0
2
0
1085
879
198
38
... | ... |
@@ -3,1444 +3,1650 @@ |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MAPS_H |
20 | 20 |
#define LEMON_MAPS_H |
21 | 21 |
|
22 | 22 |
#include <iterator> |
23 | 23 |
#include <functional> |
24 | 24 |
#include <vector> |
25 | 25 |
|
26 | 26 |
#include <lemon/bits/utility.h> |
27 |
|
|
27 |
#include <lemon/bits/traits.h> |
|
28 | 28 |
|
29 | 29 |
///\file |
30 | 30 |
///\ingroup maps |
31 | 31 |
///\brief Miscellaneous property maps |
32 |
|
|
32 |
|
|
33 | 33 |
#include <map> |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \addtogroup maps |
38 | 38 |
/// @{ |
39 | 39 |
|
40 | 40 |
/// Base class of maps. |
41 | 41 |
|
42 |
/// Base class of maps. |
|
43 |
/// It provides the necessary <tt>typedef</tt>s required by the map concept. |
|
44 |
|
|
42 |
/// Base class of maps. It provides the necessary type definitions |
|
43 |
/// required by the map %concepts. |
|
44 |
template<typename K, typename V> |
|
45 | 45 |
class MapBase { |
46 | 46 |
public: |
47 |
/// The key type of the map. |
|
47 |
/// \biref The key type of the map. |
|
48 | 48 |
typedef K Key; |
49 |
/// The value type of the map. (The type of objects associated with the keys). |
|
50 |
typedef T Value; |
|
49 |
/// \brief The value type of the map. |
|
50 |
/// (The type of objects associated with the keys). |
|
51 |
typedef V Value; |
|
51 | 52 |
}; |
52 | 53 |
|
54 |
|
|
53 | 55 |
/// Null map. (a.k.a. DoNothingMap) |
54 | 56 |
|
55 | 57 |
/// This map can be used if you have to provide a map only for |
56 | 58 |
/// its type definitions, or if you have to provide a writable map, |
57 | 59 |
/// but data written to it is not required (i.e. it will be sent to |
58 | 60 |
/// <tt>/dev/null</tt>). |
59 |
template<typename K, typename T> |
|
60 |
class NullMap : public MapBase<K, T> { |
|
61 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
62 |
/// |
|
63 |
/// \sa ConstMap |
|
64 |
template<typename K, typename V> |
|
65 |
class NullMap : public MapBase<K, V> { |
|
61 | 66 |
public: |
62 |
typedef MapBase<K, |
|
67 |
typedef MapBase<K, V> Parent; |
|
63 | 68 |
typedef typename Parent::Key Key; |
64 | 69 |
typedef typename Parent::Value Value; |
65 | 70 |
|
66 | 71 |
/// Gives back a default constructed element. |
67 |
|
|
72 |
Value operator[](const Key&) const { return Value(); } |
|
68 | 73 |
/// Absorbs the value. |
69 |
void set(const |
|
74 |
void set(const Key&, const Value&) {} |
|
70 | 75 |
}; |
71 | 76 |
|
72 |
///Returns a \ |
|
77 |
/// Returns a \ref NullMap class |
|
73 | 78 |
|
74 |
///This function just returns a \ |
|
79 |
/// This function just returns a \ref NullMap class. |
|
75 | 80 |
///\relates NullMap |
76 | 81 |
template <typename K, typename V> |
77 | 82 |
NullMap<K, V> nullMap() { |
78 | 83 |
return NullMap<K, V>(); |
79 | 84 |
} |
80 | 85 |
|
81 | 86 |
|
82 | 87 |
/// Constant map. |
83 | 88 |
|
84 | 89 |
/// This is a \ref concepts::ReadMap "readable" map which assigns a |
85 | 90 |
/// specified value to each key. |
86 |
/// In other aspects it is equivalent to \c NullMap. |
|
87 |
template<typename K, typename T> |
|
88 |
|
|
91 |
/// |
|
92 |
/// In other aspects it is equivalent to \ref NullMap. |
|
93 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
94 |
/// concept, but it absorbs the data written to it. |
|
95 |
/// |
|
96 |
/// The simplest way of using this map is through the constMap() |
|
97 |
/// function. |
|
98 |
/// |
|
99 |
/// \sa NullMap |
|
100 |
/// \sa IdentityMap |
|
101 |
template<typename K, typename V> |
|
102 |
class ConstMap : public MapBase<K, V> { |
|
89 | 103 |
private: |
90 |
|
|
104 |
V _value; |
|
91 | 105 |
public: |
92 |
|
|
93 |
typedef MapBase<K, T> Parent; |
|
106 |
typedef MapBase<K, V> Parent; |
|
94 | 107 |
typedef typename Parent::Key Key; |
95 | 108 |
typedef typename Parent::Value Value; |
96 | 109 |
|
97 | 110 |
/// Default constructor |
98 | 111 |
|
99 | 112 |
/// Default constructor. |
100 |
/// The value of the map will be uninitialized. |
|
101 |
/// (More exactly it will be default constructed.) |
|
113 |
/// The value of the map will be default constructed. |
|
102 | 114 |
ConstMap() {} |
103 | 115 |
|
104 | 116 |
/// Constructor with specified initial value |
105 | 117 |
|
106 | 118 |
/// Constructor with specified initial value. |
107 |
/// \param _v is the initial value of the map. |
|
108 |
ConstMap(const T &_v) : v(_v) {} |
|
119 |
/// \param v is the initial value of the map. |
|
120 |
ConstMap(const Value &v) : _value(v) {} |
|
109 | 121 |
|
110 |
///\e |
|
111 |
T operator[](const K&) const { return v; } |
|
122 |
/// Gives back the specified value. |
|
123 |
Value operator[](const Key&) const { return _value; } |
|
112 | 124 |
|
113 |
///\e |
|
114 |
void setAll(const T &t) { |
|
115 |
|
|
125 |
/// Absorbs the value. |
|
126 |
void set(const Key&, const Value&) {} |
|
127 |
|
|
128 |
/// Sets the value that is assigned to each key. |
|
129 |
void setAll(const Value &v) { |
|
130 |
_value = v; |
|
116 | 131 |
} |
117 | 132 |
|
118 |
template<typename T1> |
|
119 |
ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {} |
|
133 |
template<typename V1> |
|
134 |
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {} |
|
120 | 135 |
}; |
121 | 136 |
|
122 |
///Returns a \ |
|
137 |
/// Returns a \ref ConstMap class |
|
123 | 138 |
|
124 |
///This function just returns a \ |
|
139 |
/// This function just returns a \ref ConstMap class. |
|
125 | 140 |
///\relates ConstMap |
126 | 141 |
template<typename K, typename V> |
127 | 142 |
inline ConstMap<K, V> constMap(const V &v) { |
128 | 143 |
return ConstMap<K, V>(v); |
129 | 144 |
} |
130 | 145 |
|
131 | 146 |
|
132 | 147 |
template<typename T, T v> |
133 | 148 |
struct Const { }; |
134 | 149 |
|
135 | 150 |
/// Constant map with inlined constant value. |
136 | 151 |
|
137 | 152 |
/// This is a \ref concepts::ReadMap "readable" map which assigns a |
138 | 153 |
/// specified value to each key. |
139 |
/// |
|
154 |
/// |
|
155 |
/// In other aspects it is equivalent to \ref NullMap. |
|
156 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
157 |
/// concept, but it absorbs the data written to it. |
|
158 |
/// |
|
159 |
/// The simplest way of using this map is through the constMap() |
|
160 |
/// function. |
|
161 |
/// |
|
162 |
/// \sa NullMap |
|
163 |
/// \sa IdentityMap |
|
140 | 164 |
template<typename K, typename V, V v> |
141 | 165 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
142 | 166 |
public: |
143 | 167 |
typedef MapBase<K, V> Parent; |
144 | 168 |
typedef typename Parent::Key Key; |
145 | 169 |
typedef typename Parent::Value Value; |
146 | 170 |
|
171 |
/// Constructor. |
|
147 | 172 |
ConstMap() { } |
148 |
///\e |
|
149 |
V operator[](const K&) const { return v; } |
|
150 |
///\e |
|
151 |
void set(const K&, const V&) { } |
|
173 |
|
|
174 |
/// Gives back the specified value. |
|
175 |
Value operator[](const Key&) const { return v; } |
|
176 |
|
|
177 |
/// Absorbs the value. |
|
178 |
void set(const Key&, const Value&) {} |
|
152 | 179 |
}; |
153 | 180 |
|
154 |
///Returns a \ |
|
181 |
/// Returns a \ref ConstMap class with inlined constant value |
|
155 | 182 |
|
156 |
///This function just returns a \ |
|
183 |
/// This function just returns a \ref ConstMap class with inlined |
|
184 |
/// constant value. |
|
157 | 185 |
///\relates ConstMap |
158 | 186 |
template<typename K, typename V, V v> |
159 | 187 |
inline ConstMap<K, Const<V, v> > constMap() { |
160 | 188 |
return ConstMap<K, Const<V, v> >(); |
161 | 189 |
} |
162 | 190 |
|
163 |
///Map based on \c std::map |
|
164 | 191 |
|
165 |
///This is essentially a wrapper for \c std::map with addition that |
|
166 |
///you can specify a default value different from \c Value(). |
|
167 |
///It meets the \ref concepts::ReferenceMap "ReferenceMap" concept. |
|
168 |
template <typename K, typename T, typename Compare = std::less<K> > |
|
169 |
class StdMap : public MapBase<K, T> { |
|
170 |
template <typename K1, typename T1, typename C1> |
|
171 |
|
|
192 |
/// \brief Identity map. |
|
193 |
/// |
|
194 |
/// This map gives back the given key as value without any |
|
195 |
/// modification. |
|
196 |
/// |
|
197 |
/// \sa ConstMap |
|
198 |
template <typename T> |
|
199 |
class IdentityMap : public MapBase<T, T> { |
|
200 |
public: |
|
201 |
typedef MapBase<T, T> Parent; |
|
202 |
typedef typename Parent::Key Key; |
|
203 |
typedef typename Parent::Value Value; |
|
204 |
|
|
205 |
/// Gives back the given value without any modification. |
|
206 |
const T& operator[](const T& t) const { |
|
207 |
return t; |
|
208 |
} |
|
209 |
}; |
|
210 |
|
|
211 |
/// Returns an \ref IdentityMap class |
|
212 |
|
|
213 |
/// This function just returns an \ref IdentityMap class. |
|
214 |
/// \relates IdentityMap |
|
215 |
template<typename T> |
|
216 |
inline IdentityMap<T> identityMap() { |
|
217 |
return IdentityMap<T>(); |
|
218 |
} |
|
219 |
|
|
220 |
|
|
221 |
/// \brief Map for storing values for integer keys from the range |
|
222 |
/// <tt>[0..size-1]</tt>. |
|
223 |
/// |
|
224 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
|
225 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
|
226 |
/// It can be used with some data structures, for example |
|
227 |
/// \ref UnionFind, \ref BinHeap, when the used items are small |
|
228 |
/// integers. This map conforms the \ref concepts::ReferenceMap |
|
229 |
/// "ReferenceMap" concept. |
|
230 |
/// |
|
231 |
/// The simplest way of using this map is through the rangeMap() |
|
232 |
/// function. |
|
233 |
template <typename V> |
|
234 |
class RangeMap : public MapBase<int, V> { |
|
235 |
template <typename V1> |
|
236 |
friend class RangeMap; |
|
237 |
private: |
|
238 |
|
|
239 |
typedef std::vector<V> Vector; |
|
240 |
Vector _vector; |
|
241 |
|
|
172 | 242 |
public: |
173 | 243 |
|
174 |
typedef MapBase< |
|
244 |
typedef MapBase<int, V> Parent; |
|
175 | 245 |
///Key type |
176 | 246 |
typedef typename Parent::Key Key; |
177 | 247 |
///Value type |
178 | 248 |
typedef typename Parent::Value Value; |
179 |
///Reference Type |
|
180 |
typedef T& Reference; |
|
249 |
/// Reference type |
|
250 |
typedef typename Vector::reference Reference; |
|
181 | 251 |
///Const reference type |
182 |
typedef |
|
252 |
typedef typename Vector::const_reference ConstReference; |
|
253 |
|
|
254 |
typedef True ReferenceMapTag; |
|
255 |
|
|
256 |
public: |
|
257 |
|
|
258 |
/// Constructor with specified default value. |
|
259 |
RangeMap(int size = 0, const Value &value = Value()) |
|
260 |
: _vector(size, value) {} |
|
261 |
|
|
262 |
/// Constructs the map from an appropriate \c std::vector. |
|
263 |
template <typename V1> |
|
264 |
RangeMap(const std::vector<V1>& vector) |
|
265 |
: _vector(vector.begin(), vector.end()) {} |
|
266 |
|
|
267 |
/// Constructs the map from another \ref RangeMap. |
|
268 |
template <typename V1> |
|
269 |
RangeMap(const RangeMap<V1> &c) |
|
270 |
: _vector(c._vector.begin(), c._vector.end()) {} |
|
271 |
|
|
272 |
/// Returns the size of the map. |
|
273 |
int size() { |
|
274 |
return _vector.size(); |
|
275 |
} |
|
276 |
|
|
277 |
/// Resizes the map. |
|
278 |
|
|
279 |
/// Resizes the underlying \c std::vector container, so changes the |
|
280 |
/// keyset of the map. |
|
281 |
/// \param size The new size of the map. The new keyset will be the |
|
282 |
/// range <tt>[0..size-1]</tt>. |
|
283 |
/// \param value The default value to assign to the new keys. |
|
284 |
void resize(int size, const Value &value = Value()) { |
|
285 |
_vector.resize(size, value); |
|
286 |
} |
|
287 |
|
|
288 |
private: |
|
289 |
|
|
290 |
RangeMap& operator=(const RangeMap&); |
|
291 |
|
|
292 |
public: |
|
293 |
|
|
294 |
///\e |
|
295 |
Reference operator[](const Key &k) { |
|
296 |
return _vector[k]; |
|
297 |
} |
|
298 |
|
|
299 |
///\e |
|
300 |
ConstReference operator[](const Key &k) const { |
|
301 |
return _vector[k]; |
|
302 |
} |
|
303 |
|
|
304 |
///\e |
|
305 |
void set(const Key &k, const Value &v) { |
|
306 |
_vector[k] = v; |
|
307 |
} |
|
308 |
}; |
|
309 |
|
|
310 |
/// Returns a \ref RangeMap class |
|
311 |
|
|
312 |
/// This function just returns a \ref RangeMap class. |
|
313 |
/// \relates RangeMap |
|
314 |
template<typename V> |
|
315 |
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) { |
|
316 |
return RangeMap<V>(size, value); |
|
317 |
} |
|
318 |
|
|
319 |
/// \brief Returns a \ref RangeMap class created from an appropriate |
|
320 |
/// \c std::vector |
|
321 |
|
|
322 |
/// This function just returns a \ref RangeMap class created from an |
|
323 |
/// appropriate \c std::vector. |
|
324 |
/// \relates RangeMap |
|
325 |
template<typename V> |
|
326 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) { |
|
327 |
return RangeMap<V>(vector); |
|
328 |
} |
|
329 |
|
|
330 |
|
|
331 |
/// Map type based on \c std::map |
|
332 |
|
|
333 |
/// This map is essentially a wrapper for \c std::map with addition |
|
334 |
/// that you can specify a default value for the keys that are not |
|
335 |
/// stored actually. This value can be different from the default |
|
336 |
/// contructed value (i.e. \c %Value()). |
|
337 |
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
|
338 |
/// concept. |
|
339 |
/// |
|
340 |
/// This map is useful if a default value should be assigned to most of |
|
341 |
/// the keys and different values should be assigned only to a few |
|
342 |
/// keys (i.e. the map is "sparse"). |
|
343 |
/// The name of this type also refers to this important usage. |
|
344 |
/// |
|
345 |
/// Apart form that this map can be used in many other cases since it |
|
346 |
/// is based on \c std::map, which is a general associative container. |
|
347 |
/// However keep in mind that it is usually not as efficient as other |
|
348 |
/// maps. |
|
349 |
/// |
|
350 |
/// The simplest way of using this map is through the sparseMap() |
|
351 |
/// function. |
|
352 |
template <typename K, typename V, typename Compare = std::less<K> > |
|
353 |
class SparseMap : public MapBase<K, V> { |
|
354 |
template <typename K1, typename V1, typename C1> |
|
355 |
friend class SparseMap; |
|
356 |
public: |
|
357 |
|
|
358 |
typedef MapBase<K, V> Parent; |
|
359 |
/// Key type |
|
360 |
typedef typename Parent::Key Key; |
|
361 |
/// Value type |
|
362 |
typedef typename Parent::Value Value; |
|
363 |
/// Reference type |
|
364 |
typedef Value& Reference; |
|
365 |
/// Const reference type |
|
366 |
typedef const Value& ConstReference; |
|
183 | 367 |
|
184 | 368 |
typedef True ReferenceMapTag; |
185 | 369 |
|
186 | 370 |
private: |
187 | 371 |
|
188 |
typedef std::map<K, |
|
372 |
typedef std::map<K, V, Compare> Map; |
|
373 |
Map _map; |
|
189 | 374 |
Value _value; |
190 |
Map _map; |
|
191 | 375 |
|
192 | 376 |
public: |
193 | 377 |
|
194 |
/// Constructor with specified default value |
|
195 |
StdMap(const T& value = T()) : _value(value) {} |
|
378 |
/// \brief Constructor with specified default value. |
|
379 |
SparseMap(const Value &value = Value()) : _value(value) {} |
|
196 | 380 |
/// \brief Constructs the map from an appropriate \c std::map, and |
197 | 381 |
/// explicitly specifies a default value. |
198 |
template <typename T1, typename Comp1> |
|
199 |
StdMap(const std::map<Key, T1, Comp1> &map, const T& value = T()) |
|
382 |
template <typename V1, typename Comp1> |
|
383 |
SparseMap(const std::map<Key, V1, Comp1> &map, |
|
384 |
const Value &value = Value()) |
|
200 | 385 |
: _map(map.begin(), map.end()), _value(value) {} |
201 | 386 |
|
202 |
/// \brief Constructs a map from an other \ref StdMap. |
|
203 |
template<typename T1, typename Comp1> |
|
204 |
|
|
387 |
/// \brief Constructs the map from another \ref SparseMap. |
|
388 |
template<typename V1, typename Comp1> |
|
389 |
SparseMap(const SparseMap<Key, V1, Comp1> &c) |
|
205 | 390 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {} |
206 | 391 |
|
207 | 392 |
private: |
208 | 393 |
|
209 |
|
|
394 |
SparseMap& operator=(const SparseMap&); |
|
210 | 395 |
|
211 | 396 |
public: |
212 | 397 |
|
213 | 398 |
///\e |
214 | 399 |
Reference operator[](const Key &k) { |
215 | 400 |
typename Map::iterator it = _map.lower_bound(k); |
216 | 401 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
217 | 402 |
return it->second; |
218 | 403 |
else |
219 | 404 |
return _map.insert(it, std::make_pair(k, _value))->second; |
220 | 405 |
} |
221 | 406 |
|
222 | 407 |
/// \e |
223 | 408 |
ConstReference operator[](const Key &k) const { |
224 | 409 |
typename Map::const_iterator it = _map.find(k); |
225 | 410 |
if (it != _map.end()) |
226 | 411 |
return it->second; |
227 | 412 |
else |
228 | 413 |
return _value; |
229 | 414 |
} |
230 | 415 |
|
231 | 416 |
/// \e |
232 |
void set(const Key &k, const |
|
417 |
void set(const Key &k, const Value &v) { |
|
233 | 418 |
typename Map::iterator it = _map.lower_bound(k); |
234 | 419 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
235 |
it->second = |
|
420 |
it->second = v; |
|
236 | 421 |
else |
237 |
_map.insert(it, std::make_pair(k, |
|
422 |
_map.insert(it, std::make_pair(k, v)); |
|
238 | 423 |
} |
239 | 424 |
|
240 | 425 |
/// \e |
241 |
void setAll(const T &t) { |
|
242 |
_value = t; |
|
426 |
void setAll(const Value &v) { |
|
427 |
_value = v; |
|
243 | 428 |
_map.clear(); |
244 | 429 |
} |
245 |
|
|
246 | 430 |
}; |
247 | 431 |
|
248 |
///Returns a \ |
|
432 |
/// Returns a \ref SparseMap class |
|
249 | 433 |
|
250 |
///This function just returns a \ |
|
434 |
/// This function just returns a \ref SparseMap class with specified |
|
251 | 435 |
///default value. |
252 |
///\relates |
|
436 |
/// \relates SparseMap |
|
253 | 437 |
template<typename K, typename V, typename Compare> |
254 |
inline StdMap<K, V, Compare> stdMap(const V& value = V()) { |
|
255 |
return StdMap<K, V, Compare>(value); |
|
438 |
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) { |
|
439 |
return SparseMap<K, V, Compare>(value); |
|
256 | 440 |
} |
257 | 441 |
|
258 |
///Returns a \c StdMap class |
|
259 |
|
|
260 |
///This function just returns a \c StdMap class with specified |
|
261 |
///default value. |
|
262 |
///\relates StdMap |
|
263 | 442 |
template<typename K, typename V> |
264 |
inline StdMap<K, V, std::less<K> > stdMap(const V& value = V()) { |
|
265 |
return StdMap<K, V, std::less<K> >(value); |
|
443 |
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) { |
|
444 |
return SparseMap<K, V, std::less<K> >(value); |
|
266 | 445 |
} |
267 | 446 |
|
268 |
///Returns a \ |
|
447 |
/// \brief Returns a \ref SparseMap class created from an appropriate |
|
448 |
/// \c std::map |
|
269 | 449 |
|
270 |
///This function just returns a \c StdMap class created from an |
|
271 |
///appropriate std::map. |
|
272 |
/// |
|
450 |
/// This function just returns a \ref SparseMap class created from an |
|
451 |
/// appropriate \c std::map. |
|
452 |
/// \relates SparseMap |
|
273 | 453 |
template<typename K, typename V, typename Compare> |
274 |
inline StdMap<K, V, Compare> stdMap( const std::map<K, V, Compare> &map, |
|
275 |
const V& value = V() ) { |
|
276 |
return StdMap<K, V, Compare>(map, value); |
|
277 |
} |
|
278 |
|
|
279 |
///Returns a \c StdMap class created from an appropriate std::map |
|
280 |
|
|
281 |
///This function just returns a \c StdMap class created from an |
|
282 |
///appropriate std::map. |
|
283 |
///\relates StdMap |
|
284 |
template<typename K, typename V> |
|
285 |
inline StdMap<K, V, std::less<K> > stdMap( const std::map<K, V, std::less<K> > &map, |
|
286 |
const V& value = V() ) { |
|
287 |
return StdMap<K, V, std::less<K> >(map, value); |
|
288 |
} |
|
289 |
|
|
290 |
/// \brief Map for storing values for keys from the range <tt>[0..size-1]</tt> |
|
291 |
/// |
|
292 |
/// This map has the <tt>[0..size-1]</tt> keyset and the values |
|
293 |
/// are stored in a \c std::vector<T> container. It can be used with |
|
294 |
/// some data structures, for example \c UnionFind, \c BinHeap, when |
|
295 |
/// the used items are small integer numbers. |
|
296 |
/// This map meets the \ref concepts::ReferenceMap "ReferenceMap" concept. |
|
297 |
/// |
|
298 |
/// \todo Revise its name |
|
299 |
template <typename T> |
|
300 |
class IntegerMap : public MapBase<int, T> { |
|
301 |
|
|
302 |
template <typename T1> |
|
303 |
friend class IntegerMap; |
|
304 |
|
|
305 |
public: |
|
306 |
|
|
307 |
typedef MapBase<int, T> Parent; |
|
308 |
///\e |
|
309 |
typedef typename Parent::Key Key; |
|
310 |
///\e |
|
311 |
typedef typename Parent::Value Value; |
|
312 |
///\e |
|
313 |
typedef T& Reference; |
|
314 |
///\e |
|
315 |
typedef const T& ConstReference; |
|
316 |
|
|
317 |
typedef True ReferenceMapTag; |
|
318 |
|
|
319 |
private: |
|
320 |
|
|
321 |
typedef std::vector<T> Vector; |
|
322 |
Vector _vector; |
|
323 |
|
|
324 |
public: |
|
325 |
|
|
326 |
/// Constructor with specified default value |
|
327 |
IntegerMap(int size = 0, const T& value = T()) : _vector(size, value) {} |
|
328 |
|
|
329 |
/// \brief Constructs the map from an appropriate \c std::vector. |
|
330 |
template <typename T1> |
|
331 |
IntegerMap(const std::vector<T1>& vector) |
|
332 |
: _vector(vector.begin(), vector.end()) {} |
|
333 |
|
|
334 |
/// \brief Constructs a map from an other \ref IntegerMap. |
|
335 |
template <typename T1> |
|
336 |
IntegerMap(const IntegerMap<T1> &c) |
|
337 |
: _vector(c._vector.begin(), c._vector.end()) {} |
|
338 |
|
|
339 |
/// \brief Resize the container |
|
340 |
void resize(int size, const T& value = T()) { |
|
341 |
_vector.resize(size, value); |
|
342 |
} |
|
343 |
|
|
344 |
private: |
|
345 |
|
|
346 |
IntegerMap& operator=(const IntegerMap&); |
|
347 |
|
|
348 |
public: |
|
349 |
|
|
350 |
///\e |
|
351 |
Reference operator[](Key k) { |
|
352 |
return _vector[k]; |
|
353 |
} |
|
354 |
|
|
355 |
/// \e |
|
356 |
ConstReference operator[](Key k) const { |
|
357 |
return _vector[k]; |
|
358 |
} |
|
359 |
|
|
360 |
/// \e |
|
361 |
void set(const Key &k, const T& t) { |
|
362 |
_vector[k] = t; |
|
363 |
} |
|
364 |
|
|
365 |
}; |
|
366 |
|
|
367 |
///Returns an \c IntegerMap class |
|
368 |
|
|
369 |
///This function just returns an \c IntegerMap class. |
|
370 |
///\relates IntegerMap |
|
371 |
template<typename T> |
|
372 |
inline IntegerMap<T> integerMap(int size = 0, const T& value = T()) { |
|
373 |
return IntegerMap<T>(size, value); |
|
454 |
inline SparseMap<K, V, Compare> |
|
455 |
sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
|
456 |
{ |
|
457 |
return SparseMap<K, V, Compare>(map, value); |
|
374 | 458 |
} |
375 | 459 |
|
376 | 460 |
/// @} |
377 | 461 |
|
378 | 462 |
/// \addtogroup map_adaptors |
379 | 463 |
/// @{ |
380 | 464 |
|
381 |
/// \brief Identity map. |
|
382 |
/// |
|
383 |
/// This map gives back the given key as value without any |
|
384 |
/// modification. |
|
385 |
template <typename T> |
|
386 |
class IdentityMap : public MapBase<T, T> { |
|
387 |
public: |
|
388 |
typedef MapBase<T, T> Parent; |
|
389 |
typedef typename Parent::Key Key; |
|
390 |
typedef typename Parent::Value Value; |
|
391 |
|
|
392 |
/// \e |
|
393 |
const T& operator[](const T& t) const { |
|
394 |
return t; |
|
395 |
} |
|
396 |
}; |
|
397 |
|
|
398 |
///Returns an \c IdentityMap class |
|
399 |
|
|
400 |
///This function just returns an \c IdentityMap class. |
|
401 |
///\relates IdentityMap |
|
402 |
template<typename T> |
|
403 |
inline IdentityMap<T> identityMap() { |
|
404 |
return IdentityMap<T>(); |
|
405 |
} |
|
406 |
|
|
407 |
|
|
408 |
///\brief Convert the \c Value of a map to another type using |
|
409 |
///the default conversion. |
|
410 |
/// |
|
411 |
///This \ref concepts::ReadMap "read only map" |
|
412 |
///converts the \c Value of a map to type \c T. |
|
413 |
///Its \c Key is inherited from \c M. |
|
414 |
template <typename M, typename T> |
|
415 |
class ConvertMap : public MapBase<typename M::Key, T> { |
|
416 |
const M& m; |
|
417 |
public: |
|
418 |
typedef MapBase<typename M::Key, T> Parent; |
|
419 |
typedef typename Parent::Key Key; |
|
420 |
typedef typename Parent::Value Value; |
|
421 |
|
|
422 |
///Constructor |
|
423 |
|
|
424 |
///Constructor. |
|
425 |
///\param _m is the underlying map. |
|
426 |
ConvertMap(const M &_m) : m(_m) {}; |
|
427 |
|
|
428 |
///\e |
|
429 |
Value operator[](const Key& k) const {return m[k];} |
|
430 |
}; |
|
431 |
|
|
432 |
///Returns a \c ConvertMap class |
|
433 |
|
|
434 |
///This function just returns a \c ConvertMap class. |
|
435 |
///\relates ConvertMap |
|
436 |
template<typename T, typename M> |
|
437 |
inline ConvertMap<M, T> convertMap(const M &m) { |
|
438 |
return ConvertMap<M, T>(m); |
|
439 |
} |
|
440 |
|
|
441 |
///Simple wrapping of a map |
|
442 |
|
|
443 |
///This \ref concepts::ReadMap "read only map" returns the simple |
|
444 |
///wrapping of the given map. Sometimes the reference maps cannot be |
|
445 |
///combined with simple read maps. This map adaptor wraps the given |
|
446 |
///map to simple read map. |
|
447 |
/// |
|
448 |
///\sa SimpleWriteMap |
|
449 |
/// |
|
450 |
/// \todo Revise the misleading name |
|
451 |
template<typename M> |
|
452 |
class SimpleMap : public MapBase<typename M::Key, typename M::Value> { |
|
453 |
const M& m; |
|
454 |
|
|
455 |
public: |
|
456 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
457 |
typedef typename Parent::Key Key; |
|
458 |
typedef typename Parent::Value Value; |
|
459 |
|
|
460 |
///Constructor |
|
461 |
SimpleMap(const M &_m) : m(_m) {}; |
|
462 |
///\e |
|
463 |
Value operator[](Key k) const {return m[k];} |
|
464 |
}; |
|
465 |
|
|
466 |
///Returns a \c SimpleMap class |
|
467 |
|
|
468 |
///This function just returns a \c SimpleMap class. |
|
469 |
///\relates SimpleMap |
|
470 |
template<typename M> |
|
471 |
inline SimpleMap<M> simpleMap(const M &m) { |
|
472 |
return SimpleMap<M>(m); |
|
473 |
} |
|
474 |
|
|
475 |
///Simple writable wrapping of a map |
|
476 |
|
|
477 |
///This \ref concepts::ReadWriteMap "read-write map" returns the simple |
|
478 |
///wrapping of the given map. Sometimes the reference maps cannot be |
|
479 |
///combined with simple read-write maps. This map adaptor wraps the |
|
480 |
///given map to simple read-write map. |
|
481 |
/// |
|
482 |
///\sa SimpleMap |
|
483 |
/// |
|
484 |
/// \todo Revise the misleading name |
|
485 |
template<typename M> |
|
486 |
class SimpleWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|
487 |
M& m; |
|
488 |
|
|
489 |
public: |
|
490 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
491 |
typedef typename Parent::Key Key; |
|
492 |
typedef typename Parent::Value Value; |
|
493 |
|
|
494 |
///Constructor |
|
495 |
SimpleWriteMap(M &_m) : m(_m) {}; |
|
496 |
///\e |
|
497 |
Value operator[](Key k) const {return m[k];} |
|
498 |
///\e |
|
499 |
void set(Key k, const Value& c) { m.set(k, c); } |
|
500 |
}; |
|
501 |
|
|
502 |
///Returns a \c SimpleWriteMap class |
|
503 |
|
|
504 |
///This function just returns a \c SimpleWriteMap class. |
|
505 |
///\relates SimpleWriteMap |
|
506 |
template<typename M> |
|
507 |
inline SimpleWriteMap<M> simpleWriteMap(M &m) { |
|
508 |
return SimpleWriteMap<M>(m); |
|
509 |
} |
|
510 |
|
|
511 |
///Sum of two maps |
|
512 |
|
|
513 |
///This \ref concepts::ReadMap "read only map" returns the sum of the two |
|
514 |
///given maps. |
|
515 |
///Its \c Key and \c Value are inherited from \c M1. |
|
516 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. |
|
517 |
template<typename M1, typename M2> |
|
518 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> { |
|
519 |
const M1& m1; |
|
520 |
const M2& m2; |
|
521 |
|
|
522 |
public: |
|
523 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
524 |
typedef typename Parent::Key Key; |
|
525 |
typedef typename Parent::Value Value; |
|
526 |
|
|
527 |
///Constructor |
|
528 |
AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; |
|
529 |
///\e |
|
530 |
Value operator[](Key k) const {return m1[k]+m2[k];} |
|
531 |
}; |
|
532 |
|
|
533 |
///Returns an \c AddMap class |
|
534 |
|
|
535 |
///This function just returns an \c AddMap class. |
|
536 |
///\todo Extend the documentation: how to call these type of functions? |
|
537 |
/// |
|
538 |
///\relates AddMap |
|
539 |
template<typename M1, typename M2> |
|
540 |
inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) { |
|
541 |
return AddMap<M1, M2>(m1,m2); |
|
542 |
} |
|
543 |
|
|
544 |
///Shift a map with a constant. |
|
545 |
|
|
546 |
///This \ref concepts::ReadMap "read only map" returns the sum of the |
|
547 |
///given map and a constant value. |
|
548 |
///Its \c Key and \c Value are inherited from \c M. |
|
549 |
/// |
|
550 |
///Actually, |
|
551 |
///\code |
|
552 |
/// ShiftMap<X> sh(x,v); |
|
553 |
///\endcode |
|
554 |
///is equivalent to |
|
555 |
///\code |
|
556 |
/// ConstMap<X::Key, X::Value> c_tmp(v); |
|
557 |
/// AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v); |
|
558 |
///\endcode |
|
559 |
/// |
|
560 |
///\sa ShiftWriteMap |
|
561 |
template<typename M, typename C = typename M::Value> |
|
562 |
class ShiftMap : public MapBase<typename M::Key, typename M::Value> { |
|
563 |
const M& m; |
|
564 |
C v; |
|
565 |
public: |
|
566 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
567 |
typedef typename Parent::Key Key; |
|
568 |
typedef typename Parent::Value Value; |
|
569 |
|
|
570 |
///Constructor |
|
571 |
|
|
572 |
///Constructor. |
|
573 |
///\param _m is the undelying map. |
|
574 |
///\param _v is the shift value. |
|
575 |
ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {}; |
|
576 |
///\e |
|
577 |
Value operator[](Key k) const {return m[k] + v;} |
|
578 |
}; |
|
579 |
|
|
580 |
///Shift a map with a constant (ReadWrite version). |
|
581 |
|
|
582 |
///This \ref concepts::ReadWriteMap "read-write map" returns the sum of the |
|
583 |
///given map and a constant value. It makes also possible to write the map. |
|
584 |
///Its \c Key and \c Value are inherited from \c M. |
|
585 |
/// |
|
586 |
///\sa ShiftMap |
|
587 |
template<typename M, typename C = typename M::Value> |
|
588 |
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|
589 |
M& m; |
|
590 |
C v; |
|
591 |
public: |
|
592 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
593 |
typedef typename Parent::Key Key; |
|
594 |
typedef typename Parent::Value Value; |
|
595 |
|
|
596 |
///Constructor |
|
597 |
|
|
598 |
///Constructor. |
|
599 |
///\param _m is the undelying map. |
|
600 |
///\param _v is the shift value. |
|
601 |
ShiftWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {}; |
|
602 |
/// \e |
|
603 |
Value operator[](Key k) const {return m[k] + v;} |
|
604 |
/// \e |
|
605 |
void set(Key k, const Value& c) { m.set(k, c - v); } |
|
606 |
}; |
|
607 |
|
|
608 |
///Returns a \c ShiftMap class |
|
609 |
|
|
610 |
///This function just returns a \c ShiftMap class. |
|
611 |
///\relates ShiftMap |
|
612 |
template<typename M, typename C> |
|
613 |
inline ShiftMap<M, C> shiftMap(const M &m,const C &v) { |
|
614 |
return ShiftMap<M, C>(m,v); |
|
615 |
} |
|
616 |
|
|
617 |
///Returns a \c ShiftWriteMap class |
|
618 |
|
|
619 |
///This function just returns a \c ShiftWriteMap class. |
|
620 |
///\relates ShiftWriteMap |
|
621 |
template<typename M, typename C> |
|
622 |
inline ShiftWriteMap<M, C> shiftMap(M &m,const C &v) { |
|
623 |
return ShiftWriteMap<M, C>(m,v); |
|
624 |
} |
|
625 |
|
|
626 |
///Difference of two maps |
|
627 |
|
|
628 |
///This \ref concepts::ReadMap "read only map" returns the difference |
|
629 |
///of the values of the two given maps. |
|
630 |
///Its \c Key and \c Value are inherited from \c M1. |
|
631 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. |
|
632 |
/// |
|
633 |
/// \todo Revise the misleading name |
|
634 |
template<typename M1, typename M2> |
|
635 |
class SubMap : public MapBase<typename M1::Key, typename M1::Value> { |
|
636 |
const M1& m1; |
|
637 |
const M2& m2; |
|
638 |
public: |
|
639 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
640 |
typedef typename Parent::Key Key; |
|
641 |
typedef typename Parent::Value Value; |
|
642 |
|
|
643 |
///Constructor |
|
644 |
SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; |
|
645 |
/// \e |
|
646 |
Value operator[](Key k) const {return m1[k]-m2[k];} |
|
647 |
}; |
|
648 |
|
|
649 |
///Returns a \c SubMap class |
|
650 |
|
|
651 |
///This function just returns a \c SubMap class. |
|
652 |
/// |
|
653 |
///\relates SubMap |
|
654 |
template<typename M1, typename M2> |
|
655 |
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) { |
|
656 |
return SubMap<M1, M2>(m1, m2); |
|
657 |
} |
|
658 |
|
|
659 |
///Product of two maps |
|
660 |
|
|
661 |
///This \ref concepts::ReadMap "read only map" returns the product of the |
|
662 |
///values of the two given maps. |
|
663 |
///Its \c Key and \c Value are inherited from \c M1. |
|
664 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. |
|
665 |
template<typename M1, typename M2> |
|
666 |
class MulMap : public MapBase<typename M1::Key, typename M1::Value> { |
|
667 |
const M1& m1; |
|
668 |
const M2& m2; |
|
669 |
public: |
|
670 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
671 |
typedef typename Parent::Key Key; |
|
672 |
typedef typename Parent::Value Value; |
|
673 |
|
|
674 |
///Constructor |
|
675 |
MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; |
|
676 |
/// \e |
|
677 |
Value operator[](Key k) const {return m1[k]*m2[k];} |
|
678 |
}; |
|
679 |
|
|
680 |
///Returns a \c MulMap class |
|
681 |
|
|
682 |
///This function just returns a \c MulMap class. |
|
683 |
///\relates MulMap |
|
684 |
template<typename M1, typename M2> |
|
685 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) { |
|
686 |
return MulMap<M1, M2>(m1,m2); |
|
687 |
} |
|
688 |
|
|
689 |
///Scales a map with a constant. |
|
690 |
|
|
691 |
///This \ref concepts::ReadMap "read only map" returns the value of the |
|
692 |
///given map multiplied from the left side with a constant value. |
|
693 |
///Its \c Key and \c Value are inherited from \c M. |
|
694 |
/// |
|
695 |
///Actually, |
|
696 |
///\code |
|
697 |
/// ScaleMap<X> sc(x,v); |
|
698 |
///\endcode |
|
699 |
///is equivalent to |
|
700 |
///\code |
|
701 |
/// ConstMap<X::Key, X::Value> c_tmp(v); |
|
702 |
/// MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v); |
|
703 |
///\endcode |
|
704 |
/// |
|
705 |
///\sa ScaleWriteMap |
|
706 |
template<typename M, typename C = typename M::Value> |
|
707 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> { |
|
708 |
const M& m; |
|
709 |
C v; |
|
710 |
public: |
|
711 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
712 |
typedef typename Parent::Key Key; |
|
713 |
typedef typename Parent::Value Value; |
|
714 |
|
|
715 |
///Constructor |
|
716 |
|
|
717 |
///Constructor. |
|
718 |
///\param _m is the undelying map. |
|
719 |
///\param _v is the scaling value. |
|
720 |
ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {}; |
|
721 |
/// \e |
|
722 |
Value operator[](Key k) const {return v * m[k];} |
|
723 |
}; |
|
724 |
|
|
725 |
///Scales a map with a constant (ReadWrite version). |
|
726 |
|
|
727 |
///This \ref concepts::ReadWriteMap "read-write map" returns the value of the |
|
728 |
///given map multiplied from the left side with a constant value. It can |
|
729 |
///also be used as write map if the \c / operator is defined between |
|
730 |
///\c Value and \c C and the given multiplier is not zero. |
|
731 |
///Its \c Key and \c Value are inherited from \c M. |
|
732 |
/// |
|
733 |
///\sa ScaleMap |
|
734 |
template<typename M, typename C = typename M::Value> |
|
735 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|
736 |
M& m; |
|
737 |
C v; |
|
738 |
public: |
|
739 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
740 |
typedef typename Parent::Key Key; |
|
741 |
typedef typename Parent::Value Value; |
|
742 |
|
|
743 |
///Constructor |
|
744 |
|
|
745 |
///Constructor. |
|
746 |
///\param _m is the undelying map. |
|
747 |
///\param _v is the scaling value. |
|
748 |
ScaleWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {}; |
|
749 |
/// \e |
|
750 |
Value operator[](Key k) const {return v * m[k];} |
|
751 |
/// \e |
|
752 |
void set(Key k, const Value& c) { m.set(k, c / v);} |
|
753 |
}; |
|
754 |
|
|
755 |
///Returns a \c ScaleMap class |
|
756 |
|
|
757 |
///This function just returns a \c ScaleMap class. |
|
758 |
///\relates ScaleMap |
|
759 |
template<typename M, typename C> |
|
760 |
inline ScaleMap<M, C> scaleMap(const M &m,const C &v) { |
|
761 |
return ScaleMap<M, C>(m,v); |
|
762 |
} |
|
763 |
|
|
764 |
///Returns a \c ScaleWriteMap class |
|
765 |
|
|
766 |
///This function just returns a \c ScaleWriteMap class. |
|
767 |
///\relates ScaleWriteMap |
|
768 |
template<typename M, typename C> |
|
769 |
inline ScaleWriteMap<M, C> scaleMap(M &m,const C &v) { |
|
770 |
return ScaleWriteMap<M, C>(m,v); |
|
771 |
} |
|
772 |
|
|
773 |
///Quotient of two maps |
|
774 |
|
|
775 |
///This \ref concepts::ReadMap "read only map" returns the quotient of the |
|
776 |
///values of the two given maps. |
|
777 |
///Its \c Key and \c Value are inherited from \c M1. |
|
778 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. |
|
779 |
template<typename M1, typename M2> |
|
780 |
class DivMap : public MapBase<typename M1::Key, typename M1::Value> { |
|
781 |
const M1& m1; |
|
782 |
const M2& m2; |
|
783 |
public: |
|
784 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
785 |
typedef typename Parent::Key Key; |
|
786 |
typedef typename Parent::Value Value; |
|
787 |
|
|
788 |
///Constructor |
|
789 |
DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; |
|
790 |
/// \e |
|
791 |
Value operator[](Key k) const {return m1[k]/m2[k];} |
|
792 |
}; |
|
793 |
|
|
794 |
///Returns a \c DivMap class |
|
795 |
|
|
796 |
///This function just returns a \c DivMap class. |
|
797 |
///\relates DivMap |
|
798 |
template<typename M1, typename M2> |
|
799 |
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) { |
|
800 |
return DivMap<M1, M2>(m1,m2); |
|
801 |
} |
|
802 |
|
|
803 | 465 |
///Composition of two maps |
804 | 466 |
|
805 |
///This \ref concepts::ReadMap "read only map" returns the composition of |
|
806 |
///two given maps. |
|
807 |
///That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2, |
|
808 |
///then for |
|
467 |
/// This \ref concepts::ReadMap "read only map" returns the |
|
468 |
/// composition of two given maps. That is to say, if \c m1 is of |
|
469 |
/// type \c M1 and \c m2 is of \c M2, then for |
|
809 | 470 |
///\code |
810 | 471 |
/// ComposeMap<M1, M2> cm(m1,m2); |
811 | 472 |
///\endcode |
812 | 473 |
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
813 | 474 |
/// |
814 |
/// |
|
475 |
/// The \c Key type of the map is inherited from \c M2 and the |
|
476 |
/// \c Value type is from \c M1. |
|
815 | 477 |
///\c M2::Value must be convertible to \c M1::Key. |
816 | 478 |
/// |
479 |
/// The simplest way of using this map is through the composeMap() |
|
480 |
/// function. |
|
481 |
/// |
|
817 | 482 |
///\sa CombineMap |
818 | 483 |
/// |
819 | 484 |
///\todo Check the requirements. |
820 | 485 |
template <typename M1, typename M2> |
821 | 486 |
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> { |
822 |
const M1& m1; |
|
823 |
const M2& m2; |
|
487 |
const M1 &_m1; |
|
488 |
const M2 &_m2; |
|
824 | 489 |
public: |
825 | 490 |
typedef MapBase<typename M2::Key, typename M1::Value> Parent; |
826 | 491 |
typedef typename Parent::Key Key; |
827 | 492 |
typedef typename Parent::Value Value; |
828 | 493 |
|
829 | 494 |
///Constructor |
830 |
ComposeMap(const M1 & |
|
495 |
ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|
831 | 496 |
|
832 | 497 |
/// \e |
833 |
|
|
834 |
|
|
835 |
/// \todo Use the MapTraits once it is ported. |
|
836 |
/// |
|
837 |
|
|
838 |
//typename MapTraits<M1>::ConstReturnValue |
|
839 |
typename M1::Value |
|
840 |
operator[](Key k) const {return m1[m2[k]];} |
|
498 |
typename MapTraits<M1>::ConstReturnValue |
|
499 |
operator[](const Key &k) const { return _m1[_m2[k]]; } |
|
841 | 500 |
}; |
842 | 501 |
|
843 |
///Returns a \ |
|
502 |
/// Returns a \ref ComposeMap class |
|
844 | 503 |
|
845 |
///This function just returns a \ |
|
504 |
/// This function just returns a \ref ComposeMap class. |
|
505 |
/// |
|
506 |
/// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is |
|
507 |
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
|
508 |
/// will be equal to <tt>m1[m2[x]]</tt>. |
|
509 |
/// |
|
846 | 510 |
///\relates ComposeMap |
847 | 511 |
template <typename M1, typename M2> |
848 | 512 |
inline ComposeMap<M1, M2> composeMap(const M1 &m1,const M2 &m2) { |
849 | 513 |
return ComposeMap<M1, M2>(m1,m2); |
850 | 514 |
} |
851 | 515 |
|
852 |
///Combine of two maps using an STL (binary) functor. |
|
853 | 516 |
|
854 |
///Combine of two maps using an STL (binary) functor. |
|
855 |
/// |
|
517 |
/// Combination of two maps using an STL (binary) functor. |
|
518 |
|
|
856 | 519 |
///This \ref concepts::ReadMap "read only map" takes two maps and a |
857 |
///binary functor and returns the composition of the two |
|
858 |
///given maps unsing the functor. |
|
859 |
/// |
|
520 |
/// binary functor and returns the combination of the two given maps |
|
521 |
/// using the functor. |
|
522 |
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
|
860 | 523 |
///and \c f is of \c F, then for |
861 | 524 |
///\code |
862 | 525 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
863 | 526 |
///\endcode |
864 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt> |
|
527 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
|
865 | 528 |
/// |
866 |
///Its \c Key is inherited from \c M1 and its \c Value is \c V. |
|
867 |
///\c M2::Value and \c M1::Value must be convertible to the corresponding |
|
868 |
///input parameter of \c F and the return type of \c F must be convertible |
|
869 |
///to \c V. |
|
529 |
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
|
530 |
/// must be convertible to \c M2::Key) and the \c Value type is \c V. |
|
531 |
/// \c M2::Value and \c M1::Value must be convertible to the |
|
532 |
/// corresponding input parameter of \c F and the return type of \c F |
|
533 |
/// must be convertible to \c V. |
|
534 |
/// |
|
535 |
/// The simplest way of using this map is through the combineMap() |
|
536 |
/// function. |
|
870 | 537 |
/// |
871 | 538 |
///\sa ComposeMap |
872 | 539 |
/// |
873 | 540 |
///\todo Check the requirements. |
874 | 541 |
template<typename M1, typename M2, typename F, |
875 | 542 |
typename V = typename F::result_type> |
876 | 543 |
class CombineMap : public MapBase<typename M1::Key, V> { |
877 |
const M1& m1; |
|
878 |
const M2& m2; |
|
879 |
|
|
544 |
const M1 &_m1; |
|
545 |
const M2 &_m2; |
|
546 |
F _f; |
|
880 | 547 |
public: |
881 | 548 |
typedef MapBase<typename M1::Key, V> Parent; |
882 | 549 |
typedef typename Parent::Key Key; |
883 | 550 |
typedef typename Parent::Value Value; |
884 | 551 |
|
885 | 552 |
///Constructor |
886 |
CombineMap(const M1 &_m1,const M2 &_m2,const F &_f = F()) |
|
887 |
: m1(_m1), m2(_m2), f(_f) {}; |
|
553 |
CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) |
|
554 |
: _m1(m1), _m2(m2), _f(f) {} |
|
888 | 555 |
/// \e |
889 |
Value operator[](Key k) const {return |
|
556 |
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); } |
|
890 | 557 |
}; |
891 | 558 |
|
892 |
///Returns a \ |
|
559 |
/// Returns a \ref CombineMap class |
|
893 | 560 |
|
894 |
///This function just returns a \ |
|
561 |
/// This function just returns a \ref CombineMap class. |
|
895 | 562 |
/// |
896 |
///For example if \c m1 and \c m2 are both \c double |
|
563 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
|
564 |
/// values, then |
|
897 | 565 |
///\code |
898 | 566 |
///combineMap(m1,m2,std::plus<double>()) |
899 | 567 |
///\endcode |
900 | 568 |
///is equivalent to |
901 | 569 |
///\code |
902 | 570 |
///addMap(m1,m2) |
903 | 571 |
///\endcode |
904 | 572 |
/// |
905 | 573 |
///This function is specialized for adaptable binary function |
906 | 574 |
///classes and C++ functions. |
907 | 575 |
/// |
908 | 576 |
///\relates CombineMap |
909 | 577 |
template<typename M1, typename M2, typename F, typename V> |
910 | 578 |
inline CombineMap<M1, M2, F, V> |
911 | 579 |
combineMap(const M1& m1,const M2& m2, const F& f) { |
912 | 580 |
return CombineMap<M1, M2, F, V>(m1,m2,f); |
913 | 581 |
} |
914 | 582 |
|
915 | 583 |
template<typename M1, typename M2, typename F> |
916 | 584 |
inline CombineMap<M1, M2, F, typename F::result_type> |
917 | 585 |
combineMap(const M1& m1, const M2& m2, const F& f) { |
918 | 586 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
919 | 587 |
} |
920 | 588 |
|
921 | 589 |
template<typename M1, typename M2, typename K1, typename K2, typename V> |
922 | 590 |
inline CombineMap<M1, M2, V (*)(K1, K2), V> |
923 | 591 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { |
924 | 592 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
925 | 593 |
} |
926 | 594 |
|
927 |
///Negative value of a map |
|
928 | 595 |
|
929 |
///This \ref concepts::ReadMap "read only map" returns the negative |
|
930 |
///value of the value returned by the given map. |
|
931 |
///Its \c Key and \c Value are inherited from \c M. |
|
932 |
///The unary \c - operator must be defined for \c Value, of course. |
|
596 |
/// Converts an STL style (unary) functor to a map |
|
597 |
|
|
598 |
/// This \ref concepts::ReadMap "read only map" returns the value |
|
599 |
/// of a given functor. Actually, it just wraps the functor and |
|
600 |
/// provides the \c Key and \c Value typedefs. |
|
933 | 601 |
/// |
934 |
/// |
|
602 |
/// Template parameters \c K and \c V will become its \c Key and |
|
603 |
/// \c Value. In most cases they have to be given explicitly because |
|
604 |
/// a functor typically does not provide \c argument_type and |
|
605 |
/// \c result_type typedefs. |
|
606 |
/// Parameter \c F is the type of the used functor. |
|
607 |
/// |
|
608 |
/// The simplest way of using this map is through the functorToMap() |
|
609 |
/// function. |
|
610 |
/// |
|
611 |
/// \sa MapToFunctor |
|
612 |
template<typename F, |
|
613 |
typename K = typename F::argument_type, |
|
614 |
typename V = typename F::result_type> |
|
615 |
class FunctorToMap : public MapBase<K, V> { |
|
616 |
const F &_f; |
|
617 |
public: |
|
618 |
typedef MapBase<K, V> Parent; |
|
619 |
typedef typename Parent::Key Key; |
|
620 |
typedef typename Parent::Value Value; |
|
621 |
|
|
622 |
/// Constructor |
|
623 |
FunctorToMap(const F &f = F()) : _f(f) {} |
|
624 |
/// \e |
|
625 |
Value operator[](const Key &k) const { return _f(k); } |
|
626 |
}; |
|
627 |
|
|
628 |
/// Returns a \ref FunctorToMap class |
|
629 |
|
|
630 |
/// This function just returns a \ref FunctorToMap class. |
|
631 |
/// |
|
632 |
/// This function is specialized for adaptable binary function |
|
633 |
/// classes and C++ functions. |
|
634 |
/// |
|
635 |
/// \relates FunctorToMap |
|
636 |
template<typename K, typename V, typename F> |
|
637 |
inline FunctorToMap<F, K, V> functorToMap(const F &f) { |
|
638 |
return FunctorToMap<F, K, V>(f); |
|
639 |
} |
|
640 |
|
|
641 |
template <typename F> |
|
642 |
inline FunctorToMap<F, typename F::argument_type, typename F::result_type> |
|
643 |
functorToMap(const F &f) |
|
644 |
{ |
|
645 |
return FunctorToMap<F, typename F::argument_type, |
|
646 |
typename F::result_type>(f); |
|
647 |
} |
|
648 |
|
|
649 |
template <typename K, typename V> |
|
650 |
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) { |
|
651 |
return FunctorToMap<V (*)(K), K, V>(f); |
|
652 |
} |
|
653 |
|
|
654 |
|
|
655 |
/// Converts a map to an STL style (unary) functor |
|
656 |
|
|
657 |
/// This class converts a map to an STL style (unary) functor. |
|
658 |
/// That is it provides an <tt>operator()</tt> to read its values. |
|
659 |
/// |
|
660 |
/// For the sake of convenience it also works as a usual |
|
661 |
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
|
662 |
/// and the \c Key and \c Value typedefs also exist. |
|
663 |
/// |
|
664 |
/// The simplest way of using this map is through the mapToFunctor() |
|
665 |
/// function. |
|
666 |
/// |
|
667 |
///\sa FunctorToMap |
|
935 | 668 |
template<typename M> |
936 |
class NegMap : public MapBase<typename M::Key, typename M::Value> { |
|
937 |
const M& m; |
|
669 |
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> { |
|
670 |
const M &_m; |
|
671 |
public: |
|
672 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
673 |
typedef typename Parent::Key Key; |
|
674 |
typedef typename Parent::Value Value; |
|
675 |
|
|
676 |
typedef typename Parent::Key argument_type; |
|
677 |
typedef typename Parent::Value result_type; |
|
678 |
|
|
679 |
/// Constructor |
|
680 |
MapToFunctor(const M &m) : _m(m) {} |
|
681 |
/// \e |
|
682 |
Value operator()(const Key &k) const { return _m[k]; } |
|
683 |
/// \e |
|
684 |
Value operator[](const Key &k) const { return _m[k]; } |
|
685 |
}; |
|
686 |
|
|
687 |
/// Returns a \ref MapToFunctor class |
|
688 |
|
|
689 |
/// This function just returns a \ref MapToFunctor class. |
|
690 |
/// \relates MapToFunctor |
|
691 |
template<typename M> |
|
692 |
inline MapToFunctor<M> mapToFunctor(const M &m) { |
|
693 |
return MapToFunctor<M>(m); |
|
694 |
} |
|
695 |
|
|
696 |
|
|
697 |
/// \brief Map adaptor to convert the \c Value type of a map to |
|
698 |
/// another type using the default conversion. |
|
699 |
|
|
700 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
|
701 |
/// "readable map" to another type using the default conversion. |
|
702 |
/// The \c Key type of it is inherited from \c M and the \c Value |
|
703 |
/// type is \c V. |
|
704 |
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
|
705 |
/// |
|
706 |
/// The simplest way of using this map is through the convertMap() |
|
707 |
/// function. |
|
708 |
template <typename M, typename V> |
|
709 |
class ConvertMap : public MapBase<typename M::Key, V> { |
|
710 |
const M &_m; |
|
711 |
public: |
|
712 |
typedef MapBase<typename M::Key, V> Parent; |
|
713 |
typedef typename Parent::Key Key; |
|
714 |
typedef typename Parent::Value Value; |
|
715 |
|
|
716 |
/// Constructor |
|
717 |
|
|
718 |
/// Constructor. |
|
719 |
/// \param m The underlying map. |
|
720 |
ConvertMap(const M &m) : _m(m) {} |
|
721 |
|
|
722 |
/// \e |
|
723 |
Value operator[](const Key &k) const { return _m[k]; } |
|
724 |
}; |
|
725 |
|
|
726 |
/// Returns a \ref ConvertMap class |
|
727 |
|
|
728 |
/// This function just returns a \ref ConvertMap class. |
|
729 |
/// \relates ConvertMap |
|
730 |
template<typename V, typename M> |
|
731 |
inline ConvertMap<M, V> convertMap(const M &map) { |
|
732 |
return ConvertMap<M, V>(map); |
|
733 |
} |
|
734 |
|
|
735 |
|
|
736 |
/// Applies all map setting operations to two maps |
|
737 |
|
|
738 |
/// This map has two \ref concepts::WriteMap "writable map" parameters |
|
739 |
/// and each write request will be passed to both of them. |
|
740 |
/// If \c M1 is also \ref concepts::ReadMap "readable", then the read |
|
741 |
/// operations will return the corresponding values of \c M1. |
|
742 |
/// |
|
743 |
/// The \c Key and \c Value types are inherited from \c M1. |
|
744 |
/// The \c Key and \c Value of \c M2 must be convertible from those |
|
745 |
/// of \c M1. |
|
746 |
/// |
|
747 |
/// The simplest way of using this map is through the forkMap() |
|
748 |
/// function. |
|
749 |
template<typename M1, typename M2> |
|
750 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> { |
|
751 |
M1 &_m1; |
|
752 |
M2 &_m2; |
|
753 |
public: |
|
754 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
755 |
typedef typename Parent::Key Key; |
|
756 |
typedef typename Parent::Value Value; |
|
757 |
|
|
758 |
/// Constructor |
|
759 |
ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {} |
|
760 |
/// Returns the value associated with the given key in the first map. |
|
761 |
Value operator[](const Key &k) const { return _m1[k]; } |
|
762 |
/// Sets the value associated with the given key in both maps. |
|
763 |
void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); } |
|
764 |
}; |
|
765 |
|
|
766 |
/// Returns a \ref ForkMap class |
|
767 |
|
|
768 |
/// This function just returns a \ref ForkMap class. |
|
769 |
/// \relates ForkMap |
|
770 |
template <typename M1, typename M2> |
|
771 |
inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) { |
|
772 |
return ForkMap<M1,M2>(m1,m2); |
|
773 |
} |
|
774 |
|
|
775 |
|
|
776 |
/// Simple wrapping of a map |
|
777 |
|
|
778 |
/// This \ref concepts::ReadMap "read only map" returns the simple |
|
779 |
/// wrapping of the given map. Sometimes the reference maps cannot be |
|
780 |
/// combined with simple read maps. This map adaptor wraps the given |
|
781 |
/// map to simple read map. |
|
782 |
/// |
|
783 |
/// The simplest way of using this map is through the wrapMap() |
|
784 |
/// function. |
|
785 |
/// |
|
786 |
/// \sa WrapWriteMap |
|
787 |
template<typename M> |
|
788 |
class WrapMap : public MapBase<typename M::Key, typename M::Value> { |
|
789 |
const M &_m; |
|
938 | 790 |
public: |
939 | 791 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
940 | 792 |
typedef typename Parent::Key Key; |
941 | 793 |
typedef typename Parent::Value Value; |
942 | 794 |
|
943 | 795 |
///Constructor |
944 |
|
|
796 |
WrapMap(const M &m) : _m(m) {} |
|
945 | 797 |
/// \e |
946 |
Value operator[](Key k) const {return |
|
798 |
Value operator[](const Key &k) const { return _m[k]; } |
|
947 | 799 |
}; |
948 | 800 |
|
949 |
/// |
|
801 |
/// Returns a \ref WrapMap class |
|
950 | 802 |
|
951 |
///This \ref concepts::ReadWriteMap "read-write map" returns the negative |
|
952 |
///value of the value returned by the given map. |
|
953 |
///Its \c Key and \c Value are inherited from \c M. |
|
954 |
///The unary \c - operator must be defined for \c Value, of course. |
|
803 |
/// This function just returns a \ref WrapMap class. |
|
804 |
/// \relates WrapMap |
|
805 |
template<typename M> |
|
806 |
inline WrapMap<M> wrapMap(const M &map) { |
|
807 |
return WrapMap<M>(map); |
|
808 |
} |
|
809 |
|
|
810 |
|
|
811 |
/// Simple writable wrapping of a map |
|
812 |
|
|
813 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the simple |
|
814 |
/// wrapping of the given map. Sometimes the reference maps cannot be |
|
815 |
/// combined with simple read-write maps. This map adaptor wraps the |
|
816 |
/// given map to simple read-write map. |
|
955 | 817 |
/// |
956 |
/// |
|
818 |
/// The simplest way of using this map is through the wrapWriteMap() |
|
819 |
/// function. |
|
820 |
/// |
|
821 |
/// \sa WrapMap |
|
957 | 822 |
template<typename M> |
958 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|
959 |
M& m; |
|
823 |
class WrapWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|
824 |
M &_m; |
|
960 | 825 |
public: |
961 | 826 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
962 | 827 |
typedef typename Parent::Key Key; |
963 | 828 |
typedef typename Parent::Value Value; |
964 | 829 |
|
965 | 830 |
///Constructor |
966 |
|
|
831 |
WrapWriteMap(M &m) : _m(m) {} |
|
967 | 832 |
/// \e |
968 |
Value operator[](Key k) const {return |
|
833 |
Value operator[](const Key &k) const { return _m[k]; } |
|
969 | 834 |
/// \e |
970 |
void set(Key k, const Value |
|
835 |
void set(const Key &k, const Value &c) { _m.set(k, c); } |
|
971 | 836 |
}; |
972 | 837 |
|
973 |
///Returns a \ |
|
838 |
///Returns a \ref WrapWriteMap class |
|
974 | 839 |
|
975 |
///This function just returns a \ |
|
840 |
///This function just returns a \ref WrapWriteMap class. |
|
841 |
///\relates WrapWriteMap |
|
842 |
template<typename M> |
|
843 |
inline WrapWriteMap<M> wrapWriteMap(M &map) { |
|
844 |
return WrapWriteMap<M>(map); |
|
845 |
} |
|
846 |
|
|
847 |
|
|
848 |
/// Sum of two maps |
|
849 |
|
|
850 |
/// This \ref concepts::ReadMap "read only map" returns the sum |
|
851 |
/// of the values of the two given maps. |
|
852 |
/// Its \c Key and \c Value types are inherited from \c M1. |
|
853 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
|
854 |
/// \c M1. |
|
855 |
/// |
|
856 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|
857 |
/// \code |
|
858 |
/// AddMap<M1,M2> am(m1,m2); |
|
859 |
/// \endcode |
|
860 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>. |
|
861 |
/// |
|
862 |
/// The simplest way of using this map is through the addMap() |
|
863 |
/// function. |
|
864 |
/// |
|
865 |
/// \sa SubMap, MulMap, DivMap |
|
866 |
/// \sa ShiftMap, ShiftWriteMap |
|
867 |
template<typename M1, typename M2> |
|
868 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> { |
|
869 |
const M1 &_m1; |
|
870 |
const M2 &_m2; |
|
871 |
public: |
|
872 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
873 |
typedef typename Parent::Key Key; |
|
874 |
typedef typename Parent::Value Value; |
|
875 |
|
|
876 |
/// Constructor |
|
877 |
AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|
878 |
/// \e |
|
879 |
Value operator[](const Key &k) const { return _m1[k]+_m2[k]; } |
|
880 |
}; |
|
881 |
|
|
882 |
/// Returns an \ref AddMap class |
|
883 |
|
|
884 |
/// This function just returns an \ref AddMap class. |
|
885 |
/// |
|
886 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
|
887 |
/// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to |
|
888 |
/// <tt>m1[x]+m2[x]</tt>. |
|
889 |
/// |
|
890 |
/// \relates AddMap |
|
891 |
template<typename M1, typename M2> |
|
892 |
inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) { |
|
893 |
return AddMap<M1, M2>(m1,m2); |
|
894 |
} |
|
895 |
|
|
896 |
|
|
897 |
/// Difference of two maps |
|
898 |
|
|
899 |
/// This \ref concepts::ReadMap "read only map" returns the difference |
|
900 |
/// of the values of the two given maps. |
|
901 |
/// Its \c Key and \c Value types are inherited from \c M1. |
|
902 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
|
903 |
/// \c M1. |
|
904 |
/// |
|
905 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|
906 |
/// \code |
|
907 |
/// SubMap<M1,M2> sm(m1,m2); |
|
908 |
/// \endcode |
|
909 |
/// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>. |
|
910 |
/// |
|
911 |
/// The simplest way of using this map is through the subMap() |
|
912 |
/// function. |
|
913 |
/// |
|
914 |
/// \sa AddMap, MulMap, DivMap |
|
915 |
template<typename M1, typename M2> |
|
916 |
class SubMap : public MapBase<typename M1::Key, typename M1::Value> { |
|
917 |
const M1 &_m1; |
|
918 |
const M2 &_m2; |
|
919 |
public: |
|
920 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
921 |
typedef typename Parent::Key Key; |
|
922 |
typedef typename Parent::Value Value; |
|
923 |
|
|
924 |
/// Constructor |
|
925 |
SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|
926 |
/// \e |
|
927 |
Value operator[](const Key &k) const { return _m1[k]-_m2[k]; } |
|
928 |
}; |
|
929 |
|
|
930 |
/// Returns a \ref SubMap class |
|
931 |
|
|
932 |
/// This function just returns a \ref SubMap class. |
|
933 |
/// |
|
934 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
|
935 |
/// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to |
|
936 |
/// <tt>m1[x]-m2[x]</tt>. |
|
937 |
/// |
|
938 |
/// \relates SubMap |
|
939 |
template<typename M1, typename M2> |
|
940 |
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) { |
|
941 |
return SubMap<M1, M2>(m1,m2); |
|
942 |
} |
|
943 |
|
|
944 |
|
|
945 |
/// Product of two maps |
|
946 |
|
|
947 |
/// This \ref concepts::ReadMap "read only map" returns the product |
|
948 |
/// of the values of the two given maps. |
|
949 |
/// Its \c Key and \c Value types are inherited from \c M1. |
|
950 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
|
951 |
/// \c M1. |
|
952 |
/// |
|
953 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|
954 |
/// \code |
|
955 |
/// MulMap<M1,M2> mm(m1,m2); |
|
956 |
/// \endcode |
|
957 |
/// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>. |
|
958 |
/// |
|
959 |
/// The simplest way of using this map is through the mulMap() |
|
960 |
/// function. |
|
961 |
/// |
|
962 |
/// \sa AddMap, SubMap, DivMap |
|
963 |
/// \sa ScaleMap, ScaleWriteMap |
|
964 |
template<typename M1, typename M2> |
|
965 |
class MulMap : public MapBase<typename M1::Key, typename M1::Value> { |
|
966 |
const M1 &_m1; |
|
967 |
const M2 &_m2; |
|
968 |
public: |
|
969 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
970 |
typedef typename Parent::Key Key; |
|
971 |
typedef typename Parent::Value Value; |
|
972 |
|
|
973 |
/// Constructor |
|
974 |
MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
|
975 |
/// \e |
|
976 |
Value operator[](const Key &k) const { return _m1[k]*_m2[k]; } |
|
977 |
}; |
|
978 |
|
|
979 |
/// Returns a \ref MulMap class |
|
980 |
|
|
981 |
/// This function just returns a \ref MulMap class. |
|
982 |
/// |
|
983 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
|
984 |
/// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to |
|
985 |
/// <tt>m1[x]*m2[x]</tt>. |
|
986 |
/// |
|
987 |
/// \relates MulMap |
|
988 |
template<typename M1, typename M2> |
|
989 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) { |
|
990 |
return MulMap<M1, M2>(m1,m2); |
|
991 |
} |
|
992 |
|
|
993 |
|
|
994 |
/// Quotient of two maps |
|
995 |
|
|
996 |
/// This \ref concepts::ReadMap "read only map" returns the quotient |
|
997 |
/// of the values of the two given maps. |
|
998 |
/// Its \c Key and \c Value types are inherited from \c M1. |
|
999 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
|
1000 |
/// \c M1. |
|
1001 |
/// |
|
1002 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|
1003 |
/// \code |
|
1004 |
/// DivMap<M1,M2> dm(m1,m2); |
|
1005 |
/// \endcode |
|
1006 |
/// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>. |
|
1007 |
/// |
|
1008 |
/// The simplest way of using this map is through the divMap() |
|
1009 |
/// function. |
|
1010 |
/// |
|
1011 |
/// \sa AddMap, SubMap, MulMap |
|
1012 |
template<typename M1, typename M2> |
|
1013 |
class DivMap : public MapBase<typename M1::Key, typename M1::Value> { |
|
1014 |
const M1 &_m1; |
|
1015 |
const M2 &_m2; |
|
1016 |
public: |
|
1017 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
1018 |
typedef typename Parent::Key Key; |
|
1019 |
typedef typename Parent::Value Value; |
|
1020 |
|
|
1021 |
/// Constructor |
|
1022 |
DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
|
1023 |
/// \e |
|
1024 |
Value operator[](const Key &k) const { return _m1[k]/_m2[k]; } |
|
1025 |
}; |
|
1026 |
|
|
1027 |
/// Returns a \ref DivMap class |
|
1028 |
|
|
1029 |
/// This function just returns a \ref DivMap class. |
|
1030 |
/// |
|
1031 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
|
1032 |
/// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to |
|
1033 |
/// <tt>m1[x]/m2[x]</tt>. |
|
1034 |
/// |
|
1035 |
/// \relates DivMap |
|
1036 |
template<typename M1, typename M2> |
|
1037 |
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) { |
|
1038 |
return DivMap<M1, M2>(m1,m2); |
|
1039 |
} |
|
1040 |
|
|
1041 |
|
|
1042 |
/// Shifts a map with a constant. |
|
1043 |
|
|
1044 |
/// This \ref concepts::ReadMap "read only map" returns the sum of |
|
1045 |
/// the given map and a constant value (i.e. it shifts the map with |
|
1046 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
|
1047 |
/// |
|
1048 |
/// Actually, |
|
1049 |
/// \code |
|
1050 |
/// ShiftMap<M> sh(m,v); |
|
1051 |
/// \endcode |
|
1052 |
/// is equivalent to |
|
1053 |
/// \code |
|
1054 |
/// ConstMap<M::Key, M::Value> cm(v); |
|
1055 |
/// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm); |
|
1056 |
/// \endcode |
|
1057 |
/// |
|
1058 |
/// The simplest way of using this map is through the shiftMap() |
|
1059 |
/// function. |
|
1060 |
/// |
|
1061 |
/// \sa ShiftWriteMap |
|
1062 |
template<typename M, typename C = typename M::Value> |
|
1063 |
class ShiftMap : public MapBase<typename M::Key, typename M::Value> { |
|
1064 |
const M &_m; |
|
1065 |
C _v; |
|
1066 |
public: |
|
1067 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
1068 |
typedef typename Parent::Key Key; |
|
1069 |
typedef typename Parent::Value Value; |
|
1070 |
|
|
1071 |
/// Constructor |
|
1072 |
|
|
1073 |
/// Constructor. |
|
1074 |
/// \param m The undelying map. |
|
1075 |
/// \param v The constant value. |
|
1076 |
ShiftMap(const M &m, const C &v) : _m(m), _v(v) {} |
|
1077 |
/// \e |
|
1078 |
Value operator[](const Key &k) const { return _m[k]+_v; } |
|
1079 |
}; |
|
1080 |
|
|
1081 |
/// Shifts a map with a constant (read-write version). |
|
1082 |
|
|
1083 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the sum |
|
1084 |
/// of the given map and a constant value (i.e. it shifts the map with |
|
1085 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
|
1086 |
/// It makes also possible to write the map. |
|
1087 |
/// |
|
1088 |
/// The simplest way of using this map is through the shiftWriteMap() |
|
1089 |
/// function. |
|
1090 |
/// |
|
1091 |
/// \sa ShiftMap |
|
1092 |
template<typename M, typename C = typename M::Value> |
|
1093 |
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|
1094 |
M &_m; |
|
1095 |
C _v; |
|
1096 |
public: |
|
1097 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
1098 |
typedef typename Parent::Key Key; |
|
1099 |
typedef typename Parent::Value Value; |
|
1100 |
|
|
1101 |
/// Constructor |
|
1102 |
|
|
1103 |
/// Constructor. |
|
1104 |
/// \param m The undelying map. |
|
1105 |
/// \param v The constant value. |
|
1106 |
ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
|
1107 |
/// \e |
|
1108 |
Value operator[](const Key &k) const { return _m[k]+_v; } |
|
1109 |
/// \e |
|
1110 |
void set(const Key &k, const Value &v) { _m.set(k, v-_v); } |
|
1111 |
}; |
|
1112 |
|
|
1113 |
/// Returns a \ref ShiftMap class |
|
1114 |
|
|
1115 |
/// This function just returns a \ref ShiftMap class. |
|
1116 |
/// |
|
1117 |
/// For example, if \c m is a map with \c double values and \c v is |
|
1118 |
/// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to |
|
1119 |
/// <tt>m[x]+v</tt>. |
|
1120 |
/// |
|
1121 |
/// \relates ShiftMap |
|
1122 |
template<typename M, typename C> |
|
1123 |
inline ShiftMap<M, C> shiftMap(const M &m, const C &v) { |
|
1124 |
return ShiftMap<M, C>(m,v); |
|
1125 |
} |
|
1126 |
|
|
1127 |
/// Returns a \ref ShiftWriteMap class |
|
1128 |
|
|
1129 |
/// This function just returns a \ref ShiftWriteMap class. |
|
1130 |
/// |
|
1131 |
/// For example, if \c m is a map with \c double values and \c v is |
|
1132 |
/// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to |
|
1133 |
/// <tt>m[x]+v</tt>. |
|
1134 |
/// Moreover it makes also possible to write the map. |
|
1135 |
/// |
|
1136 |
/// \relates ShiftWriteMap |
|
1137 |
template<typename M, typename C> |
|
1138 |
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) { |
|
1139 |
return ShiftWriteMap<M, C>(m,v); |
|
1140 |
} |
|
1141 |
|
|
1142 |
|
|
1143 |
/// Scales a map with a constant. |
|
1144 |
|
|
1145 |
/// This \ref concepts::ReadMap "read only map" returns the value of |
|
1146 |
/// the given map multiplied from the left side with a constant value. |
|
1147 |
/// Its \c Key and \c Value are inherited from \c M. |
|
1148 |
/// |
|
1149 |
/// Actually, |
|
1150 |
/// \code |
|
1151 |
/// ScaleMap<M> sc(m,v); |
|
1152 |
/// \endcode |
|
1153 |
/// is equivalent to |
|
1154 |
/// \code |
|
1155 |
/// ConstMap<M::Key, M::Value> cm(v); |
|
1156 |
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m); |
|
1157 |
/// \endcode |
|
1158 |
/// |
|
1159 |
/// The simplest way of using this map is through the scaleMap() |
|
1160 |
/// function. |
|
1161 |
/// |
|
1162 |
/// \sa ScaleWriteMap |
|
1163 |
template<typename M, typename C = typename M::Value> |
|
1164 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> { |
|
1165 |
const M &_m; |
|
1166 |
C _v; |
|
1167 |
public: |
|
1168 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
1169 |
typedef typename Parent::Key Key; |
|
1170 |
typedef typename Parent::Value Value; |
|
1171 |
|
|
1172 |
/// Constructor |
|
1173 |
|
|
1174 |
/// Constructor. |
|
1175 |
/// \param m The undelying map. |
|
1176 |
/// \param v The constant value. |
|
1177 |
ScaleMap(const M &m, const C &v) : _m(m), _v(v) {} |
|
1178 |
/// \e |
|
1179 |
Value operator[](const Key &k) const { return _v*_m[k]; } |
|
1180 |
}; |
|
1181 |
|
|
1182 |
/// Scales a map with a constant (read-write version). |
|
1183 |
|
|
1184 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the value of |
|
1185 |
/// the given map multiplied from the left side with a constant value. |
|
1186 |
/// Its \c Key and \c Value are inherited from \c M. |
|
1187 |
/// It can also be used as write map if the \c / operator is defined |
|
1188 |
/// between \c Value and \c C and the given multiplier is not zero. |
|
1189 |
/// |
|
1190 |
/// The simplest way of using this map is through the scaleWriteMap() |
|
1191 |
/// function. |
|
1192 |
/// |
|
1193 |
/// \sa ScaleMap |
|
1194 |
template<typename M, typename C = typename M::Value> |
|
1195 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|
1196 |
M &_m; |
|
1197 |
C _v; |
|
1198 |
public: |
|
1199 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
1200 |
typedef typename Parent::Key Key; |
|
1201 |
typedef typename Parent::Value Value; |
|
1202 |
|
|
1203 |
/// Constructor |
|
1204 |
|
|
1205 |
/// Constructor. |
|
1206 |
/// \param m The undelying map. |
|
1207 |
/// \param v The constant value. |
|
1208 |
ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
|
1209 |
/// \e |
|
1210 |
Value operator[](const Key &k) const { return _v*_m[k]; } |
|
1211 |
/// \e |
|
1212 |
void set(const Key &k, const Value &v) { _m.set(k, v/_v); } |
|
1213 |
}; |
|
1214 |
|
|
1215 |
/// Returns a \ref ScaleMap class |
|
1216 |
|
|
1217 |
/// This function just returns a \ref ScaleMap class. |
|
1218 |
/// |
|
1219 |
/// For example, if \c m is a map with \c double values and \c v is |
|
1220 |
/// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to |
|
1221 |
/// <tt>v*m[x]</tt>. |
|
1222 |
/// |
|
1223 |
/// \relates ScaleMap |
|
1224 |
template<typename M, typename C> |
|
1225 |
inline ScaleMap<M, C> scaleMap(const M &m, const C &v) { |
|
1226 |
return ScaleMap<M, C>(m,v); |
|
1227 |
} |
|
1228 |
|
|
1229 |
/// Returns a \ref ScaleWriteMap class |
|
1230 |
|
|
1231 |
/// This function just returns a \ref ScaleWriteMap class. |
|
1232 |
/// |
|
1233 |
/// For example, if \c m is a map with \c double values and \c v is |
|
1234 |
/// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to |
|
1235 |
/// <tt>v*m[x]</tt>. |
|
1236 |
/// Moreover it makes also possible to write the map. |
|
1237 |
/// |
|
1238 |
/// \relates ScaleWriteMap |
|
1239 |
template<typename M, typename C> |
|
1240 |
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) { |
|
1241 |
return ScaleWriteMap<M, C>(m,v); |
|
1242 |
} |
|
1243 |
|
|
1244 |
|
|
1245 |
/// Negative of a map |
|
1246 |
|
|
1247 |
/// This \ref concepts::ReadMap "read only map" returns the negative |
|
1248 |
/// of the values of the given map (using the unary \c - operator). |
|
1249 |
/// Its \c Key and \c Value are inherited from \c M. |
|
1250 |
/// |
|
1251 |
/// If M::Value is \c int, \c double etc., then |
|
1252 |
/// \code |
|
1253 |
/// NegMap<M> neg(m); |
|
1254 |
/// \endcode |
|
1255 |
/// is equivalent to |
|
1256 |
/// \code |
|
1257 |
/// ScaleMap<M> neg(m,-1); |
|
1258 |
/// \endcode |
|
1259 |
/// |
|
1260 |
/// The simplest way of using this map is through the negMap() |
|
1261 |
/// function. |
|
1262 |
/// |
|
1263 |
/// \sa NegWriteMap |
|
1264 |
template<typename M> |
|
1265 |
class NegMap : public MapBase<typename M::Key, typename M::Value> { |
|
1266 |
const M& _m; |
|
1267 |
public: |
|
1268 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
1269 |
typedef typename Parent::Key Key; |
|
1270 |
typedef typename Parent::Value Value; |
|
1271 |
|
|
1272 |
/// Constructor |
|
1273 |
NegMap(const M &m) : _m(m) {} |
|
1274 |
/// \e |
|
1275 |
Value operator[](const Key &k) const { return -_m[k]; } |
|
1276 |
}; |
|
1277 |
|
|
1278 |
/// Negative of a map (read-write version) |
|
1279 |
|
|
1280 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
|
1281 |
/// negative of the values of the given map (using the unary \c - |
|
1282 |
/// operator). |
|
1283 |
/// Its \c Key and \c Value are inherited from \c M. |
|
1284 |
/// It makes also possible to write the map. |
|
1285 |
/// |
|
1286 |
/// If M::Value is \c int, \c double etc., then |
|
1287 |
/// \code |
|
1288 |
/// NegWriteMap<M> neg(m); |
|
1289 |
/// \endcode |
|
1290 |
/// is equivalent to |
|
1291 |
/// \code |
|
1292 |
/// ScaleWriteMap<M> neg(m,-1); |
|
1293 |
/// \endcode |
|
1294 |
/// |
|
1295 |
/// The simplest way of using this map is through the negWriteMap() |
|
1296 |
/// function. |
|
1297 |
/// |
|
1298 |
/// \sa NegMap |
|
1299 |
template<typename M> |
|
1300 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|
1301 |
M &_m; |
|
1302 |
public: |
|
1303 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
1304 |
typedef typename Parent::Key Key; |
|
1305 |
typedef typename Parent::Value Value; |
|
1306 |
|
|
1307 |
/// Constructor |
|
1308 |
NegWriteMap(M &m) : _m(m) {} |
|
1309 |
/// \e |
|
1310 |
Value operator[](const Key &k) const { return -_m[k]; } |
|
1311 |
/// \e |
|
1312 |
void set(const Key &k, const Value &v) { _m.set(k, -v); } |
|
1313 |
}; |
|
1314 |
|
|
1315 |
/// Returns a \ref NegMap class |
|
1316 |
|
|
1317 |
/// This function just returns a \ref NegMap class. |
|
1318 |
/// |
|
1319 |
/// For example, if \c m is a map with \c double values, then |
|
1320 |
/// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
|
1321 |
/// |
|
976 | 1322 |
///\relates NegMap |
977 | 1323 |
template <typename M> |
978 | 1324 |
inline NegMap<M> negMap(const M &m) { |
979 | 1325 |
return NegMap<M>(m); |
980 | 1326 |
} |
981 | 1327 |
|
982 |
///Returns a \ |
|
1328 |
/// Returns a \ref NegWriteMap class |
|
983 | 1329 |
|
984 |
///This function just returns a \ |
|
1330 |
/// This function just returns a \ref NegWriteMap class. |
|
1331 |
/// |
|
1332 |
/// For example, if \c m is a map with \c double values, then |
|
1333 |
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
|
1334 |
/// Moreover it makes also possible to write the map. |
|
1335 |
/// |
|
985 | 1336 |
///\relates NegWriteMap |
986 | 1337 |
template <typename M> |
987 |
inline NegWriteMap<M> |
|
1338 |
inline NegWriteMap<M> negWriteMap(M &m) { |
|
988 | 1339 |
return NegWriteMap<M>(m); |
989 | 1340 |
} |
990 | 1341 |
|
1342 |
|
|
991 | 1343 |
///Absolute value of a map |
992 | 1344 |
|
993 |
///This \ref concepts::ReadMap "read only map" returns the absolute value |
|
994 |
///of the value returned by the given map. |
|
1345 |
/// This \ref concepts::ReadMap "read only map" returns the absolute |
|
1346 |
/// value of the values of the given map. |
|
995 | 1347 |
///Its \c Key and \c Value are inherited from \c M. |
996 | 1348 |
///\c Value must be comparable to \c 0 and the unary \c - |
997 | 1349 |
///operator must be defined for it, of course. |
1350 |
/// |
|
1351 |
/// The simplest way of using this map is through the absMap() |
|
1352 |
/// function. |
|
998 | 1353 |
template<typename M> |
999 | 1354 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> { |
1000 |
const M |
|
1355 |
const M &_m; |
|
1001 | 1356 |
public: |
1002 | 1357 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
1003 | 1358 |
typedef typename Parent::Key Key; |
1004 | 1359 |
typedef typename Parent::Value Value; |
1005 | 1360 |
|
1006 | 1361 |
///Constructor |
1007 |
AbsMap(const M & |
|
1362 |
AbsMap(const M &m) : _m(m) {} |
|
1008 | 1363 |
/// \e |
1009 |
Value operator[](Key k) const { |
|
1010 |
Value tmp = m[k]; |
|
1364 |
Value operator[](const Key &k) const { |
|
1365 |
Value tmp = _m[k]; |
|
1011 | 1366 |
return tmp >= 0 ? tmp : -tmp; |
1012 | 1367 |
} |
1013 | 1368 |
|
1014 | 1369 |
}; |
1015 | 1370 |
|
1016 |
///Returns an \ |
|
1371 |
/// Returns an \ref AbsMap class |
|
1017 | 1372 |
|
1018 |
///This function just returns an \ |
|
1373 |
/// This function just returns an \ref AbsMap class. |
|
1374 |
/// |
|
1375 |
/// For example, if \c m is a map with \c double values, then |
|
1376 |
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if |
|
1377 |
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is |
|
1378 |
/// negative. |
|
1379 |
/// |
|
1019 | 1380 |
///\relates AbsMap |
1020 | 1381 |
template<typename M> |
1021 | 1382 |
inline AbsMap<M> absMap(const M &m) { |
1022 | 1383 |
return AbsMap<M>(m); |
1023 | 1384 |
} |
1024 | 1385 |
|
1025 |
///Converts an STL style functor to a map |
|
1026 |
|
|
1027 |
///This \ref concepts::ReadMap "read only map" returns the value |
|
1028 |
///of a given functor. |
|
1029 |
/// |
|
1030 |
///Template parameters \c K and \c V will become its |
|
1031 |
///\c Key and \c Value. |
|
1032 |
///In most cases they have to be given explicitly because a |
|
1033 |
///functor typically does not provide \c argument_type and |
|
1034 |
///\c result_type typedefs. |
|
1035 |
/// |
|
1036 |
///Parameter \c F is the type of the used functor. |
|
1037 |
/// |
|
1038 |
///\sa MapFunctor |
|
1039 |
template<typename F, |
|
1040 |
typename K = typename F::argument_type, |
|
1041 |
typename V = typename F::result_type> |
|
1042 |
class FunctorMap : public MapBase<K, V> { |
|
1043 |
F f; |
|
1044 |
public: |
|
1045 |
typedef MapBase<K, V> Parent; |
|
1046 |
typedef typename Parent::Key Key; |
|
1047 |
typedef typename Parent::Value Value; |
|
1048 |
|
|
1049 |
///Constructor |
|
1050 |
FunctorMap(const F &_f = F()) : f(_f) {} |
|
1051 |
/// \e |
|
1052 |
Value operator[](Key k) const { return f(k);} |
|
1053 |
}; |
|
1054 |
|
|
1055 |
///Returns a \c FunctorMap class |
|
1056 |
|
|
1057 |
///This function just returns a \c FunctorMap class. |
|
1058 |
/// |
|
1059 |
///This function is specialized for adaptable binary function |
|
1060 |
///classes and C++ functions. |
|
1061 |
/// |
|
1062 |
///\relates FunctorMap |
|
1063 |
template<typename K, typename V, typename F> inline |
|
1064 |
FunctorMap<F, K, V> functorMap(const F &f) { |
|
1065 |
return FunctorMap<F, K, V>(f); |
|
1066 |
} |
|
1067 |
|
|
1068 |
template <typename F> inline |
|
1069 |
FunctorMap<F, typename F::argument_type, typename F::result_type> |
|
1070 |
functorMap(const F &f) { |
|
1071 |
return FunctorMap<F, typename F::argument_type, |
|
1072 |
typename F::result_type>(f); |
|
1073 |
} |
|
1074 |
|
|
1075 |
template <typename K, typename V> inline |
|
1076 |
FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) { |
|
1077 |
return FunctorMap<V (*)(K), K, V>(f); |
|
1078 |
} |
|
1079 |
|
|
1080 |
|
|
1081 |
///Converts a map to an STL style (unary) functor |
|
1082 |
|
|
1083 |
///This class Converts a map to an STL style (unary) functor. |
|
1084 |
///That is it provides an <tt>operator()</tt> to read its values. |
|
1085 |
/// |
|
1086 |
///For the sake of convenience it also works as |
|
1087 |
///a ususal \ref concepts::ReadMap "readable map", |
|
1088 |
///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist. |
|
1089 |
/// |
|
1090 |
///\sa FunctorMap |
|
1091 |
template <typename M> |
|
1092 |
class MapFunctor : public MapBase<typename M::Key, typename M::Value> { |
|
1093 |
const M& m; |
|
1094 |
public: |
|
1095 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
1096 |
typedef typename Parent::Key Key; |
|
1097 |
typedef typename Parent::Value Value; |
|
1098 |
|
|
1099 |
typedef typename M::Key argument_type; |
|
1100 |
typedef typename M::Value result_type; |
|
1101 |
|
|
1102 |
///Constructor |
|
1103 |
MapFunctor(const M &_m) : m(_m) {}; |
|
1104 |
///\e |
|
1105 |
Value operator()(Key k) const {return m[k];} |
|
1106 |
///\e |
|
1107 |
Value operator[](Key k) const {return m[k];} |
|
1108 |
}; |
|
1109 |
|
|
1110 |
///Returns a \c MapFunctor class |
|
1111 |
|
|
1112 |
///This function just returns a \c MapFunctor class. |
|
1113 |
///\relates MapFunctor |
|
1114 |
template<typename M> |
|
1115 |
inline MapFunctor<M> mapFunctor(const M &m) { |
|
1116 |
return MapFunctor<M>(m); |
|
1117 |
} |
|
1118 |
|
|
1119 |
///Just readable version of \ref ForkWriteMap |
|
1120 |
|
|
1121 |
///This map has two \ref concepts::ReadMap "readable map" |
|
1122 |
///parameters and each read request will be passed just to the |
|
1123 |
///first map. This class is the just readable map type of \c ForkWriteMap. |
|
1124 |
/// |
|
1125 |
///The \c Key and \c Value are inherited from \c M1. |
|
1126 |
///The \c Key and \c Value of \c M2 must be convertible from those of \c M1. |
|
1127 |
/// |
|
1128 |
///\sa ForkWriteMap |
|
1129 |
/// |
|
1130 |
/// \todo Why is it needed? |
|
1131 |
template<typename M1, typename M2> |
|
1132 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> { |
|
1133 |
const M1& m1; |
|
1134 |
const M2& m2; |
|
1135 |
public: |
|
1136 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
1137 |
typedef typename Parent::Key Key; |
|
1138 |
typedef typename Parent::Value Value; |
|
1139 |
|
|
1140 |
///Constructor |
|
1141 |
ForkMap(const M1 &_m1, const M2 &_m2) : m1(_m1), m2(_m2) {}; |
|
1142 |
/// \e |
|
1143 |
Value operator[](Key k) const {return m1[k];} |
|
1144 |
}; |
|
1145 |
|
|
1146 |
|
|
1147 |
///Applies all map setting operations to two maps |
|
1148 |
|
|
1149 |
///This map has two \ref concepts::WriteMap "writable map" |
|
1150 |
///parameters and each write request will be passed to both of them. |
|
1151 |
///If \c M1 is also \ref concepts::ReadMap "readable", |
|
1152 |
///then the read operations will return the |
|
1153 |
///corresponding values of \c M1. |
|
1154 |
/// |
|
1155 |
///The \c Key and \c Value are inherited from \c M1. |
|
1156 |
///The \c Key and \c Value of \c M2 must be convertible from those of \c M1. |
|
1157 |
/// |
|
1158 |
///\sa ForkMap |
|
1159 |
template<typename M1, typename M2> |
|
1160 |
class ForkWriteMap : public MapBase<typename M1::Key, typename M1::Value> { |
|
1161 |
M1& m1; |
|
1162 |
M2& m2; |
|
1163 |
public: |
|
1164 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
1165 |
typedef typename Parent::Key Key; |
|
1166 |
typedef typename Parent::Value Value; |
|
1167 |
|
|
1168 |
///Constructor |
|
1169 |
ForkWriteMap(M1 &_m1, M2 &_m2) : m1(_m1), m2(_m2) {}; |
|
1170 |
///\e |
|
1171 |
Value operator[](Key k) const {return m1[k];} |
|
1172 |
///\e |
|
1173 |
void set(Key k, const Value &v) {m1.set(k,v); m2.set(k,v);} |
|
1174 |
}; |
|
1175 |
|
|
1176 |
///Returns a \c ForkMap class |
|
1177 |
|
|
1178 |
///This function just returns a \c ForkMap class. |
|
1179 |
///\relates ForkMap |
|
1180 |
template <typename M1, typename M2> |
|
1181 |
inline ForkMap<M1, M2> forkMap(const M1 &m1, const M2 &m2) { |
|
1182 |
return ForkMap<M1, M2>(m1,m2); |
|
1183 |
} |
|
1184 |
|
|
1185 |
///Returns a \c ForkWriteMap class |
|
1186 |
|
|
1187 |
///This function just returns a \c ForkWriteMap class. |
|
1188 |
///\relates ForkWriteMap |
|
1189 |
template <typename M1, typename M2> |
|
1190 |
inline ForkWriteMap<M1, M2> forkMap(M1 &m1, M2 &m2) { |
|
1191 |
return ForkWriteMap<M1, M2>(m1,m2); |
|
1192 |
} |
|
1193 |
|
|
1194 |
|
|
1195 |
|
|
1196 |
/* ************* BOOL MAPS ******************* */ |
|
1197 | 1386 |
|
1198 | 1387 |
///Logical 'not' of a map |
1199 | 1388 |
|
1200 |
///This bool \ref concepts::ReadMap "read only map" returns the |
|
1201 |
///logical negation of the value returned by the given map. |
|
1202 |
/// |
|
1389 |
/// This \ref concepts::ReadMap "read only map" returns the logical |
|
1390 |
/// negation of the values of the given map. |
|
1391 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
|
1392 |
/// |
|
1393 |
/// The simplest way of using this map is through the notMap() |
|
1394 |
/// function. |
|
1203 | 1395 |
/// |
1204 | 1396 |
///\sa NotWriteMap |
1205 | 1397 |
template <typename M> |
1206 | 1398 |
class NotMap : public MapBase<typename M::Key, bool> { |
1207 |
const M |
|
1399 |
const M &_m; |
|
1208 | 1400 |
public: |
1209 | 1401 |
typedef MapBase<typename M::Key, bool> Parent; |
1210 | 1402 |
typedef typename Parent::Key Key; |
1211 | 1403 |
typedef typename Parent::Value Value; |
1212 | 1404 |
|
1213 | 1405 |
/// Constructor |
1214 |
NotMap(const M & |
|
1406 |
NotMap(const M &m) : _m(m) {} |
|
1215 | 1407 |
///\e |
1216 |
Value operator[](Key k) const {return ! |
|
1408 |
Value operator[](const Key &k) const { return !_m[k]; } |
|
1217 | 1409 |
}; |
1218 | 1410 |
|
1219 |
///Logical 'not' of a map ( |
|
1411 |
/// Logical 'not' of a map (read-write version) |
|
1220 | 1412 |
|
1221 |
///This bool \ref concepts::ReadWriteMap "read-write map" returns the |
|
1222 |
///logical negation of the value returned by the given map. When it is set, |
|
1413 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
|
1414 |
/// logical negation of the values of the given map. |
|
1415 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
|
1416 |
/// It makes also possible to write the map. When a value is set, |
|
1223 | 1417 |
///the opposite value is set to the original map. |
1224 |
/// |
|
1418 |
/// |
|
1419 |
/// The simplest way of using this map is through the notWriteMap() |
|
1420 |
/// function. |
|
1225 | 1421 |
/// |
1226 | 1422 |
///\sa NotMap |
1227 | 1423 |
template <typename M> |
1228 | 1424 |
class NotWriteMap : public MapBase<typename M::Key, bool> { |
1229 |
M |
|
1425 |
M &_m; |
|
1230 | 1426 |
public: |
1231 | 1427 |
typedef MapBase<typename M::Key, bool> Parent; |
1232 | 1428 |
typedef typename Parent::Key Key; |
1233 | 1429 |
typedef typename Parent::Value Value; |
1234 | 1430 |
|
1235 | 1431 |
/// Constructor |
1236 |
NotWriteMap(M & |
|
1432 |
NotWriteMap(M &m) : _m(m) {} |
|
1237 | 1433 |
///\e |
1238 |
Value operator[](Key k) const {return ! |
|
1434 |
Value operator[](const Key &k) const { return !_m[k]; } |
|
1239 | 1435 |
///\e |
1240 |
void set(Key k, bool v) { |
|
1436 |
void set(const Key &k, bool v) { _m.set(k, !v); } |
|
1241 | 1437 |
}; |
1242 | 1438 |
|
1243 |
///Returns a \ |
|
1439 |
/// Returns a \ref NotMap class |
|
1244 | 1440 |
|
1245 |
///This function just returns a \ |
|
1441 |
/// This function just returns a \ref NotMap class. |
|
1442 |
/// |
|
1443 |
/// For example, if \c m is a map with \c bool values, then |
|
1444 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
|
1445 |
/// |
|
1246 | 1446 |
///\relates NotMap |
1247 | 1447 |
template <typename M> |
1248 | 1448 |
inline NotMap<M> notMap(const M &m) { |
1249 | 1449 |
return NotMap<M>(m); |
1250 | 1450 |
} |
1251 | 1451 |
|
1252 |
///Returns a \ |
|
1452 |
/// Returns a \ref NotWriteMap class |
|
1253 | 1453 |
|
1254 |
///This function just returns a \ |
|
1454 |
/// This function just returns a \ref NotWriteMap class. |
|
1455 |
/// |
|
1456 |
/// For example, if \c m is a map with \c bool values, then |
|
1457 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
|
1458 |
/// Moreover it makes also possible to write the map. |
|
1459 |
/// |
|
1255 | 1460 |
///\relates NotWriteMap |
1256 | 1461 |
template <typename M> |
1257 |
inline NotWriteMap<M> |
|
1462 |
inline NotWriteMap<M> notWriteMap(M &m) { |
|
1258 | 1463 |
return NotWriteMap<M>(m); |
1259 | 1464 |
} |
1260 | 1465 |
|
1466 |
|
|
1261 | 1467 |
namespace _maps_bits { |
1262 | 1468 |
|
1263 | 1469 |
template <typename Value> |
1264 | 1470 |
struct Identity { |
1265 | 1471 |
typedef Value argument_type; |
1266 | 1472 |
typedef Value result_type; |
1267 | 1473 |
Value operator()(const Value& val) const { |
1268 | 1474 |
return val; |
1269 | 1475 |
} |
1270 | 1476 |
}; |
1271 | 1477 |
|
1272 | 1478 |
template <typename _Iterator, typename Enable = void> |
1273 | 1479 |
struct IteratorTraits { |
1274 | 1480 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
1275 | 1481 |
}; |
1276 | 1482 |
|
1277 | 1483 |
template <typename _Iterator> |
1278 | 1484 |
struct IteratorTraits<_Iterator, |
1279 | 1485 |
typename exists<typename _Iterator::container_type>::type> |
1280 | 1486 |
{ |
1281 | 1487 |
typedef typename _Iterator::container_type::value_type Value; |
1282 | 1488 |
}; |
1283 | 1489 |
|
1284 | 1490 |
} |
1285 | 1491 |
|
1286 | 1492 |
|
1287 | 1493 |
/// \brief Writable bool map for logging each \c true assigned element |
1288 | 1494 |
/// |
1289 | 1495 |
/// A \ref concepts::ReadWriteMap "read-write" bool map for logging |
1290 | 1496 |
/// each \c true assigned element, i.e it copies all the keys set |
1291 | 1497 |
/// to \c true to the given iterator. |
1292 | 1498 |
/// |
1293 | 1499 |
/// \note The container of the iterator should contain space |
1294 | 1500 |
/// for each element. |
1295 | 1501 |
/// |
1296 | 1502 |
/// The following example shows how you can write the edges found by |
1297 | 1503 |
/// the \ref Prim algorithm directly to the standard output. |
1298 | 1504 |
///\code |
1299 | 1505 |
/// typedef IdMap<Graph, Edge> EdgeIdMap; |
1300 | 1506 |
/// EdgeIdMap edgeId(graph); |
1301 | 1507 |
/// |
1302 |
/// typedef |
|
1508 |
/// typedef MapToFunctor<EdgeIdMap> EdgeIdFunctor; |
|
1303 | 1509 |
/// EdgeIdFunctor edgeIdFunctor(edgeId); |
1304 | 1510 |
/// |
1305 | 1511 |
/// StoreBoolMap<ostream_iterator<int>, EdgeIdFunctor> |
1306 | 1512 |
/// writerMap(ostream_iterator<int>(cout, " "), edgeIdFunctor); |
1307 | 1513 |
/// |
1308 | 1514 |
/// prim(graph, cost, writerMap); |
1309 | 1515 |
///\endcode |
1310 | 1516 |
/// |
1311 | 1517 |
///\sa BackInserterBoolMap |
1312 | 1518 |
///\sa FrontInserterBoolMap |
1313 | 1519 |
///\sa InserterBoolMap |
1314 | 1520 |
/// |
1315 | 1521 |
///\todo Revise the name of this class and the related ones. |
1316 | 1522 |
template <typename _Iterator, |
1317 | 1523 |
typename _Functor = |
1318 | 1524 |
_maps_bits::Identity<typename _maps_bits:: |
1319 | 1525 |
IteratorTraits<_Iterator>::Value> > |
1320 | 1526 |
class StoreBoolMap { |
1321 | 1527 |
public: |
1322 | 1528 |
typedef _Iterator Iterator; |
1323 | 1529 |
|
1324 | 1530 |
typedef typename _Functor::argument_type Key; |
1325 | 1531 |
typedef bool Value; |
1326 | 1532 |
|
1327 | 1533 |
typedef _Functor Functor; |
1328 | 1534 |
|
1329 | 1535 |
/// Constructor |
1330 | 1536 |
StoreBoolMap(Iterator it, const Functor& functor = Functor()) |
1331 | 1537 |
: _begin(it), _end(it), _functor(functor) {} |
1332 | 1538 |
|
1333 | 1539 |
/// Gives back the given iterator set for the first key |
1334 | 1540 |
Iterator begin() const { |
1335 | 1541 |
return _begin; |
1336 | 1542 |
} |
1337 | 1543 |
|
1338 | 1544 |
/// Gives back the the 'after the last' iterator |
1339 | 1545 |
Iterator end() const { |
1340 | 1546 |
return _end; |
1341 | 1547 |
} |
1342 | 1548 |
|
1343 |
/// The |
|
1549 |
/// The set function of the map |
|
1344 | 1550 |
void set(const Key& key, Value value) const { |
1345 | 1551 |
if (value) { |
1346 | 1552 |
*_end++ = _functor(key); |
1347 | 1553 |
} |
1348 | 1554 |
} |
1349 | 1555 |
|
1350 | 1556 |
private: |
1351 | 1557 |
Iterator _begin; |
1352 | 1558 |
mutable Iterator _end; |
1353 | 1559 |
Functor _functor; |
1354 | 1560 |
}; |
1355 | 1561 |
|
1356 | 1562 |
/// \brief Writable bool map for logging each \c true assigned element in |
1357 | 1563 |
/// a back insertable container. |
1358 | 1564 |
/// |
1359 | 1565 |
/// Writable bool map for logging each \c true assigned element by pushing |
1360 | 1566 |
/// them into a back insertable container. |
1361 | 1567 |
/// It can be used to retrieve the items into a standard |
1362 | 1568 |
/// container. The next example shows how you can store the |
1363 | 1569 |
/// edges found by the Prim algorithm in a vector. |
1364 | 1570 |
/// |
1365 | 1571 |
///\code |
1366 | 1572 |
/// vector<Edge> span_tree_edges; |
1367 | 1573 |
/// BackInserterBoolMap<vector<Edge> > inserter_map(span_tree_edges); |
1368 | 1574 |
/// prim(graph, cost, inserter_map); |
1369 | 1575 |
///\endcode |
1370 | 1576 |
/// |
1371 | 1577 |
///\sa StoreBoolMap |
1372 | 1578 |
///\sa FrontInserterBoolMap |
1373 | 1579 |
///\sa InserterBoolMap |
1374 | 1580 |
template <typename Container, |
1375 | 1581 |
typename Functor = |
1376 | 1582 |
_maps_bits::Identity<typename Container::value_type> > |
1377 | 1583 |
class BackInserterBoolMap { |
1378 | 1584 |
public: |
1379 | 1585 |
typedef typename Functor::argument_type Key; |
1380 | 1586 |
typedef bool Value; |
1381 | 1587 |
|
1382 | 1588 |
/// Constructor |
1383 | 1589 |
BackInserterBoolMap(Container& _container, |
1384 | 1590 |
const Functor& _functor = Functor()) |
1385 | 1591 |
: container(_container), functor(_functor) {} |
1386 | 1592 |
|
1387 |
/// The |
|
1593 |
/// The set function of the map |
|
1388 | 1594 |
void set(const Key& key, Value value) { |
1389 | 1595 |
if (value) { |
1390 | 1596 |
container.push_back(functor(key)); |
1391 | 1597 |
} |
1392 | 1598 |
} |
1393 | 1599 |
|
1394 | 1600 |
private: |
1395 | 1601 |
Container& container; |
1396 | 1602 |
Functor functor; |
1397 | 1603 |
}; |
1398 | 1604 |
|
1399 | 1605 |
/// \brief Writable bool map for logging each \c true assigned element in |
1400 | 1606 |
/// a front insertable container. |
1401 | 1607 |
/// |
1402 | 1608 |
/// Writable bool map for logging each \c true assigned element by pushing |
1403 | 1609 |
/// them into a front insertable container. |
1404 | 1610 |
/// It can be used to retrieve the items into a standard |
1405 | 1611 |
/// container. For example see \ref BackInserterBoolMap. |
1406 | 1612 |
/// |
1407 | 1613 |
///\sa BackInserterBoolMap |
1408 | 1614 |
///\sa InserterBoolMap |
1409 | 1615 |
template <typename Container, |
1410 | 1616 |
typename Functor = |
1411 | 1617 |
_maps_bits::Identity<typename Container::value_type> > |
1412 | 1618 |
class FrontInserterBoolMap { |
1413 | 1619 |
public: |
1414 | 1620 |
typedef typename Functor::argument_type Key; |
1415 | 1621 |
typedef bool Value; |
1416 | 1622 |
|
1417 | 1623 |
/// Constructor |
1418 | 1624 |
FrontInserterBoolMap(Container& _container, |
1419 | 1625 |
const Functor& _functor = Functor()) |
1420 | 1626 |
: container(_container), functor(_functor) {} |
1421 | 1627 |
|
1422 |
/// The |
|
1628 |
/// The set function of the map |
|
1423 | 1629 |
void set(const Key& key, Value value) { |
1424 | 1630 |
if (value) { |
1425 | 1631 |
container.push_front(functor(key)); |
1426 | 1632 |
} |
1427 | 1633 |
} |
1428 | 1634 |
|
1429 | 1635 |
private: |
1430 | 1636 |
Container& container; |
1431 | 1637 |
Functor functor; |
1432 | 1638 |
}; |
1433 | 1639 |
|
1434 | 1640 |
/// \brief Writable bool map for storing each \c true assigned element in |
1435 | 1641 |
/// an insertable container. |
1436 | 1642 |
/// |
1437 | 1643 |
/// Writable bool map for storing each \c true assigned element in an |
1438 | 1644 |
/// insertable container. It will insert all the keys set to \c true into |
1439 | 1645 |
/// the container. |
1440 | 1646 |
/// |
1441 | 1647 |
/// For example, if you want to store the cut arcs of the strongly |
1442 | 1648 |
/// connected components in a set you can use the next code: |
1443 | 1649 |
/// |
1444 | 1650 |
///\code |
1445 | 1651 |
/// set<Arc> cut_arcs; |
1446 | 1652 |
/// InserterBoolMap<set<Arc> > inserter_map(cut_arcs); |
... | ... |
@@ -1455,49 +1661,49 @@ |
1455 | 1661 |
class InserterBoolMap { |
1456 | 1662 |
public: |
1457 | 1663 |
typedef typename Container::value_type Key; |
1458 | 1664 |
typedef bool Value; |
1459 | 1665 |
|
1460 | 1666 |
/// Constructor with specified iterator |
1461 | 1667 |
|
1462 | 1668 |
/// Constructor with specified iterator. |
1463 | 1669 |
/// \param _container The container for storing the elements. |
1464 | 1670 |
/// \param _it The elements will be inserted before this iterator. |
1465 | 1671 |
/// \param _functor The functor that is used when an element is stored. |
1466 | 1672 |
InserterBoolMap(Container& _container, typename Container::iterator _it, |
1467 | 1673 |
const Functor& _functor = Functor()) |
1468 | 1674 |
: container(_container), it(_it), functor(_functor) {} |
1469 | 1675 |
|
1470 | 1676 |
/// Constructor |
1471 | 1677 |
|
1472 | 1678 |
/// Constructor without specified iterator. |
1473 | 1679 |
/// The elements will be inserted before <tt>_container.end()</tt>. |
1474 | 1680 |
/// \param _container The container for storing the elements. |
1475 | 1681 |
/// \param _functor The functor that is used when an element is stored. |
1476 | 1682 |
InserterBoolMap(Container& _container, const Functor& _functor = Functor()) |
1477 | 1683 |
: container(_container), it(_container.end()), functor(_functor) {} |
1478 | 1684 |
|
1479 |
/// The |
|
1685 |
/// The set function of the map |
|
1480 | 1686 |
void set(const Key& key, Value value) { |
1481 | 1687 |
if (value) { |
1482 | 1688 |
it = container.insert(it, functor(key)); |
1483 | 1689 |
++it; |
1484 | 1690 |
} |
1485 | 1691 |
} |
1486 | 1692 |
|
1487 | 1693 |
private: |
1488 | 1694 |
Container& container; |
1489 | 1695 |
typename Container::iterator it; |
1490 | 1696 |
Functor functor; |
1491 | 1697 |
}; |
1492 | 1698 |
|
1493 | 1699 |
/// \brief Writable bool map for filling each \c true assigned element with a |
1494 | 1700 |
/// given value. |
1495 | 1701 |
/// |
1496 | 1702 |
/// Writable bool map for filling each \c true assigned element with a |
1497 | 1703 |
/// given value. The value can set the container. |
1498 | 1704 |
/// |
1499 | 1705 |
/// The following code finds the connected components of a graph |
1500 | 1706 |
/// and stores it in the \c comp map: |
1501 | 1707 |
///\code |
1502 | 1708 |
/// typedef Graph::NodeMap<int> ComponentMap; |
1503 | 1709 |
/// ComponentMap comp(graph); |
... | ... |
@@ -1523,117 +1729,117 @@ |
1523 | 1729 |
|
1524 | 1730 |
/// Constructor |
1525 | 1731 |
FillBoolMap(Map& _map, const typename Map::Value& _fill) |
1526 | 1732 |
: map(_map), fill(_fill) {} |
1527 | 1733 |
|
1528 | 1734 |
/// Constructor |
1529 | 1735 |
FillBoolMap(Map& _map) |
1530 | 1736 |
: map(_map), fill() {} |
1531 | 1737 |
|
1532 | 1738 |
/// Gives back the current fill value |
1533 | 1739 |
const typename Map::Value& fillValue() const { |
1534 | 1740 |
return fill; |
1535 | 1741 |
} |
1536 | 1742 |
|
1537 | 1743 |
/// Gives back the current fill value |
1538 | 1744 |
typename Map::Value& fillValue() { |
1539 | 1745 |
return fill; |
1540 | 1746 |
} |
1541 | 1747 |
|
1542 | 1748 |
/// Sets the current fill value |
1543 | 1749 |
void fillValue(const typename Map::Value& _fill) { |
1544 | 1750 |
fill = _fill; |
1545 | 1751 |
} |
1546 | 1752 |
|
1547 |
/// The |
|
1753 |
/// The set function of the map |
|
1548 | 1754 |
void set(const Key& key, Value value) { |
1549 | 1755 |
if (value) { |
1550 | 1756 |
map.set(key, fill); |
1551 | 1757 |
} |
1552 | 1758 |
} |
1553 | 1759 |
|
1554 | 1760 |
private: |
1555 | 1761 |
Map& map; |
1556 | 1762 |
typename Map::Value fill; |
1557 | 1763 |
}; |
1558 | 1764 |
|
1559 | 1765 |
|
1560 | 1766 |
/// \brief Writable bool map for storing the sequence number of |
1561 | 1767 |
/// \c true assignments. |
1562 | 1768 |
/// |
1563 | 1769 |
/// Writable bool map that stores for each \c true assigned elements |
1564 | 1770 |
/// the sequence number of this setting. |
1565 | 1771 |
/// It makes it easy to calculate the leaving |
1566 |
/// order of the nodes in the \ |
|
1772 |
/// order of the nodes in the \ref Dfs algorithm. |
|
1567 | 1773 |
/// |
1568 | 1774 |
///\code |
1569 | 1775 |
/// typedef Digraph::NodeMap<int> OrderMap; |
1570 | 1776 |
/// OrderMap order(digraph); |
1571 | 1777 |
/// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap; |
1572 | 1778 |
/// OrderSetterMap setter(order); |
1573 | 1779 |
/// Dfs<Digraph>::DefProcessedMap<OrderSetterMap>::Create dfs(digraph); |
1574 | 1780 |
/// dfs.processedMap(setter); |
1575 | 1781 |
/// dfs.init(); |
1576 | 1782 |
/// for (NodeIt it(digraph); it != INVALID; ++it) { |
1577 | 1783 |
/// if (!dfs.reached(it)) { |
1578 | 1784 |
/// dfs.addSource(it); |
1579 | 1785 |
/// dfs.start(); |
1580 | 1786 |
/// } |
1581 | 1787 |
/// } |
1582 | 1788 |
///\endcode |
1583 | 1789 |
/// |
1584 | 1790 |
/// The storing of the discovering order is more difficult because the |
1585 | 1791 |
/// ReachedMap should be readable in the dfs algorithm but the setting |
1586 | 1792 |
/// order map is not readable. Thus we must use the fork map: |
1587 | 1793 |
/// |
1588 | 1794 |
///\code |
1589 | 1795 |
/// typedef Digraph::NodeMap<int> OrderMap; |
1590 | 1796 |
/// OrderMap order(digraph); |
1591 | 1797 |
/// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap; |
1592 | 1798 |
/// OrderSetterMap setter(order); |
1593 | 1799 |
/// typedef Digraph::NodeMap<bool> StoreMap; |
1594 | 1800 |
/// StoreMap store(digraph); |
1595 | 1801 |
/// |
1596 |
/// typedef |
|
1802 |
/// typedef ForkMap<StoreMap, OrderSetterMap> ReachedMap; |
|
1597 | 1803 |
/// ReachedMap reached(store, setter); |
1598 | 1804 |
/// |
1599 | 1805 |
/// Dfs<Digraph>::DefReachedMap<ReachedMap>::Create dfs(digraph); |
1600 | 1806 |
/// dfs.reachedMap(reached); |
1601 | 1807 |
/// dfs.init(); |
1602 | 1808 |
/// for (NodeIt it(digraph); it != INVALID; ++it) { |
1603 | 1809 |
/// if (!dfs.reached(it)) { |
1604 | 1810 |
/// dfs.addSource(it); |
1605 | 1811 |
/// dfs.start(); |
1606 | 1812 |
/// } |
1607 | 1813 |
/// } |
1608 | 1814 |
///\endcode |
1609 | 1815 |
template <typename Map> |
1610 | 1816 |
class SettingOrderBoolMap { |
1611 | 1817 |
public: |
1612 | 1818 |
typedef typename Map::Key Key; |
1613 | 1819 |
typedef bool Value; |
1614 | 1820 |
|
1615 | 1821 |
/// Constructor |
1616 | 1822 |
SettingOrderBoolMap(Map& _map) |
1617 | 1823 |
: map(_map), counter(0) {} |
1618 | 1824 |
|
1619 | 1825 |
/// Number of set operations. |
1620 | 1826 |
int num() const { |
1621 | 1827 |
return counter; |
1622 | 1828 |
} |
1623 | 1829 |
|
1624 |
/// The |
|
1830 |
/// The set function of the map |
|
1625 | 1831 |
void set(const Key& key, Value value) { |
1626 | 1832 |
if (value) { |
1627 | 1833 |
map.set(key, counter++); |
1628 | 1834 |
} |
1629 | 1835 |
} |
1630 | 1836 |
|
1631 | 1837 |
private: |
1632 | 1838 |
Map& map; |
1633 | 1839 |
int counter; |
1634 | 1840 |
}; |
1635 | 1841 |
|
1636 | 1842 |
/// @} |
1637 | 1843 |
} |
1638 | 1844 |
|
1639 | 1845 |
#endif // LEMON_MAPS_H |
... | ... |
@@ -17,92 +17,252 @@ |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <deque> |
20 | 20 |
#include <set> |
21 | 21 |
|
22 | 22 |
#include <lemon/concept_check.h> |
23 | 23 |
#include <lemon/concepts/maps.h> |
24 | 24 |
#include <lemon/maps.h> |
25 | 25 |
|
26 | 26 |
#include "test_tools.h" |
27 | 27 |
|
28 | 28 |
using namespace lemon; |
29 | 29 |
using namespace lemon::concepts; |
30 | 30 |
|
31 | 31 |
struct A {}; |
32 | 32 |
inline bool operator<(A, A) { return true; } |
33 | 33 |
struct B {}; |
34 | 34 |
|
35 | 35 |
class F { |
36 | 36 |
public: |
37 | 37 |
typedef A argument_type; |
38 | 38 |
typedef B result_type; |
39 | 39 |
|
40 | 40 |
B operator()(const A &) const {return B();} |
41 |
private: |
|
42 |
F& operator=(const F&); |
|
41 | 43 |
}; |
42 | 44 |
|
43 | 45 |
int func(A) {return 3;} |
44 | 46 |
|
45 |
int binc(int, B) {return |
|
47 |
int binc(int a, B) { return a+1; } |
|
46 | 48 |
|
47 | 49 |
typedef ReadMap<A,double> DoubleMap; |
48 |
typedef ReadWriteMap<A, double> |
|
50 |
typedef ReadWriteMap<A, double> DoubleWriteMap; |
|
51 |
typedef ReferenceMap<A, double, double&, const double&> DoubleRefMap; |
|
49 | 52 |
|
50 | 53 |
typedef ReadMap<A,bool> BoolMap; |
51 | 54 |
typedef ReadWriteMap<A, bool> BoolWriteMap; |
55 |
typedef ReferenceMap<A, bool, bool&, const bool&> BoolRefMap; |
|
52 | 56 |
|
53 | 57 |
int main() |
54 |
{ // checking graph components |
|
55 |
|
|
58 |
{ |
|
59 |
// Map concepts |
|
56 | 60 |
checkConcept<ReadMap<A,B>, ReadMap<A,B> >(); |
57 | 61 |
checkConcept<WriteMap<A,B>, WriteMap<A,B> >(); |
58 | 62 |
checkConcept<ReadWriteMap<A,B>, ReadWriteMap<A,B> >(); |
59 | 63 |
checkConcept<ReferenceMap<A,B,B&,const B&>, ReferenceMap<A,B,B&,const B&> >(); |
60 | 64 |
|
61 |
checkConcept<ReadMap<A,double>, AddMap<DoubleMap,DoubleMap> >(); |
|
62 |
checkConcept<ReadMap<A,double>, SubMap<DoubleMap,DoubleMap> >(); |
|
63 |
checkConcept<ReadMap<A,double>, MulMap<DoubleMap,DoubleMap> >(); |
|
64 |
checkConcept<ReadMap<A,double>, DivMap<DoubleMap,DoubleMap> >(); |
|
65 |
checkConcept<ReadMap<A,double>, NegMap<DoubleMap> >(); |
|
66 |
checkConcept<ReadWriteMap<A,double>, NegWriteMap<WriteDoubleMap> >(); |
|
67 |
checkConcept<ReadMap<A,double>, AbsMap<DoubleMap> >(); |
|
68 |
checkConcept<ReadMap<A,double>, ShiftMap<DoubleMap> >(); |
|
69 |
checkConcept<ReadWriteMap<A,double>, ShiftWriteMap<WriteDoubleMap> >(); |
|
70 |
checkConcept<ReadMap<A,double>, ScaleMap<DoubleMap> >(); |
|
71 |
checkConcept<ReadWriteMap<A,double>, ScaleWriteMap<WriteDoubleMap> >(); |
|
72 |
checkConcept<ReadMap<A,double>, ForkMap<DoubleMap, DoubleMap> >(); |
|
73 |
checkConcept<ReadWriteMap<A,double>, |
|
74 |
ForkWriteMap<WriteDoubleMap, WriteDoubleMap> >(); |
|
65 |
// NullMap |
|
66 |
{ |
|
67 |
checkConcept<ReadWriteMap<A,B>, NullMap<A,B> >(); |
|
68 |
NullMap<A,B> map1; |
|
69 |
NullMap<A,B> map2 = map1; |
|
70 |
map1 = nullMap<A,B>(); |
|
71 |
} |
|
75 | 72 |
|
76 |
|
|
73 |
// ConstMap |
|
74 |
{ |
|
75 |
checkConcept<ReadWriteMap<A,B>, ConstMap<A,B> >(); |
|
76 |
ConstMap<A,B> map1; |
|
77 |
ConstMap<A,B> map2(B()); |
|
78 |
ConstMap<A,B> map3 = map1; |
|
79 |
map1 = constMap<A>(B()); |
|
80 |
map1.setAll(B()); |
|
77 | 81 |
|
78 |
checkConcept< |
|
82 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,int> >(); |
|
83 |
check(constMap<A>(10)[A()] == 10, "Something is wrong with ConstMap"); |
|
79 | 84 |
|
80 |
checkConcept<ReadMap<A, bool>, NotMap<BoolMap> >(); |
|
81 |
checkConcept<ReadWriteMap<A, bool>, NotWriteMap<BoolWriteMap> >(); |
|
85 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,Const<int,10> > >(); |
|
86 |
ConstMap<A,Const<int,10> > map4; |
|
87 |
ConstMap<A,Const<int,10> > map5 = map4; |
|
88 |
map4 = map5; |
|
89 |
check(map4[A()] == 10 && map5[A()] == 10, "Something is wrong with ConstMap"); |
|
90 |
} |
|
82 | 91 |
|
83 |
checkConcept<WriteMap<A, bool>, StoreBoolMap<A*> >(); |
|
84 |
checkConcept<WriteMap<A, bool>, BackInserterBoolMap<std::deque<A> > >(); |
|
85 |
checkConcept<WriteMap<A, bool>, FrontInserterBoolMap<std::deque<A> > >(); |
|
86 |
checkConcept<WriteMap<A, bool>, InserterBoolMap<std::set<A> > >(); |
|
87 |
checkConcept<WriteMap<A, bool>, FillBoolMap<WriteMap<A, B> > >(); |
|
88 |
checkConcept<WriteMap<A, bool>, SettingOrderBoolMap<WriteMap<A, int> > >(); |
|
92 |
// IdentityMap |
|
93 |
{ |
|
94 |
checkConcept<ReadMap<A,A>, IdentityMap<A> >(); |
|
95 |
IdentityMap<A> map1; |
|
96 |
IdentityMap<A> map2 = map1; |
|
97 |
map1 = identityMap<A>(); |
|
89 | 98 |
|
90 |
|
|
99 |
checkConcept<ReadMap<double,double>, IdentityMap<double> >(); |
|
100 |
check(identityMap<double>()[1.0] == 1.0 && identityMap<double>()[3.14] == 3.14, |
|
101 |
"Something is wrong with IdentityMap"); |
|
102 |
} |
|
91 | 103 |
|
92 |
a=mapFunctor(constMap<A,int>(2))(A()); |
|
93 |
check(a==2,"Something is wrong with mapFunctor"); |
|
104 |
// RangeMap |
|
105 |
{ |
|
106 |
checkConcept<ReferenceMap<int,B,B&,const B&>, RangeMap<B> >(); |
|
107 |
RangeMap<B> map1; |
|
108 |
RangeMap<B> map2(10); |
|
109 |
RangeMap<B> map3(10,B()); |
|
110 |
RangeMap<B> map4 = map1; |
|
111 |
RangeMap<B> map5 = rangeMap<B>(); |
|
112 |
RangeMap<B> map6 = rangeMap<B>(10); |
|
113 |
RangeMap<B> map7 = rangeMap(10,B()); |
|
94 | 114 |
|
95 |
B b; |
|
96 |
b=functorMap(F())[A()]; |
|
115 |
checkConcept< ReferenceMap<int, double, double&, const double&>, |
|
116 |
RangeMap<double> >(); |
|
117 |
std::vector<double> v(10, 0); |
|
118 |
v[5] = 100; |
|
119 |
RangeMap<double> map8(v); |
|
120 |
RangeMap<double> map9 = rangeMap(v); |
|
121 |
check(map9.size() == 10 && map9[2] == 0 && map9[5] == 100, |
|
122 |
"Something is wrong with RangeMap"); |
|
123 |
} |
|
97 | 124 |
|
98 |
a=functorMap(&func)[A()]; |
|
99 |
check(a==3,"Something is wrong with functorMap"); |
|
125 |
// SparseMap |
|
126 |
{ |
|
127 |
checkConcept<ReferenceMap<A,B,B&,const B&>, SparseMap<A,B> >(); |
|
128 |
SparseMap<A,B> map1; |
|
129 |
SparseMap<A,B> map2(B()); |
|
130 |
SparseMap<A,B> map3 = sparseMap<A,B>(); |
|
131 |
SparseMap<A,B> map4 = sparseMap<A>(B()); |
|
100 | 132 |
|
101 |
a=combineMap(constMap<B, int, 1>(), identityMap<B>(), &binc)[B()]; |
|
102 |
check(a==4,"Something is wrong with combineMap"); |
|
133 |
checkConcept< ReferenceMap<double, int, int&, const int&>, |
|
134 |
SparseMap<double, int> >(); |
|
135 |
std::map<double, int> m; |
|
136 |
SparseMap<double, int> map5(m); |
|
137 |
SparseMap<double, int> map6(m,10); |
|
138 |
SparseMap<double, int> map7 = sparseMap(m); |
|
139 |
SparseMap<double, int> map8 = sparseMap(m,10); |
|
103 | 140 |
|
141 |
check(map5[1.0] == 0 && map5[3.14] == 0 && map6[1.0] == 10 && map6[3.14] == 10, |
|
142 |
"Something is wrong with SparseMap"); |
|
143 |
map5[1.0] = map6[3.14] = 100; |
|
144 |
check(map5[1.0] == 100 && map5[3.14] == 0 && map6[1.0] == 10 && map6[3.14] == 100, |
|
145 |
"Something is wrong with SparseMap"); |
|
146 |
} |
|
104 | 147 |
|
105 |
|
|
148 |
// ComposeMap |
|
149 |
{ |
|
150 |
typedef ComposeMap<DoubleMap, ReadMap<B,A> > CompMap; |
|
151 |
checkConcept<ReadMap<B,double>, CompMap>(); |
|
152 |
CompMap map1(DoubleMap(),ReadMap<B,A>()); |
|
153 |
CompMap map2 = composeMap(DoubleMap(), ReadMap<B,A>()); |
|
154 |
|
|
155 |
SparseMap<double, bool> m1(false); m1[3.14] = true; |
|
156 |
RangeMap<double> m2(2); m2[0] = 3.0; m2[1] = 3.14; |
|
157 |
check(!composeMap(m1,m2)[0] && composeMap(m1,m2)[1], "Something is wrong with ComposeMap") |
|
158 |
} |
|
159 |
|
|
160 |
// CombineMap |
|
161 |
{ |
|
162 |
typedef CombineMap<DoubleMap, DoubleMap, std::plus<double> > CombMap; |
|
163 |
checkConcept<ReadMap<A,double>, CombMap>(); |
|
164 |
CombMap map1(DoubleMap(), DoubleMap()); |
|
165 |
CombMap map2 = combineMap(DoubleMap(), DoubleMap(), std::plus<double>()); |
|
166 |
|
|
167 |
check(combineMap(constMap<B,int,2>(), identityMap<B>(), &binc)[B()] == 3, |
|
168 |
"Something is wrong with CombineMap"); |
|
169 |
} |
|
170 |
|
|
171 |
// FunctorToMap, MapToFunctor |
|
172 |
{ |
|
173 |
checkConcept<ReadMap<A,B>, FunctorToMap<F,A,B> >(); |
|
174 |
checkConcept<ReadMap<A,B>, FunctorToMap<F> >(); |
|
175 |
FunctorToMap<F> map1; |
|
176 |
FunctorToMap<F> map2(F()); |
|
177 |
B b = functorToMap(F())[A()]; |
|
178 |
|
|
179 |
checkConcept<ReadMap<A,B>, MapToFunctor<ReadMap<A,B> > >(); |
|
180 |
MapToFunctor<ReadMap<A,B> > map(ReadMap<A,B>()); |
|
181 |
|
|
182 |
check(functorToMap(&func)[A()] == 3, "Something is wrong with FunctorToMap"); |
|
183 |
check(mapToFunctor(constMap<A,int>(2))(A()) == 2, "Something is wrong with MapToFunctor"); |
|
184 |
check(mapToFunctor(functorToMap(&func))(A()) == 3 && mapToFunctor(functorToMap(&func))[A()] == 3, |
|
185 |
"Something is wrong with FunctorToMap or MapToFunctor"); |
|
186 |
check(functorToMap(mapToFunctor(constMap<A,int>(2)))[A()] == 2, |
|
187 |
"Something is wrong with FunctorToMap or MapToFunctor"); |
|
188 |
} |
|
189 |
|
|
190 |
// ConvertMap |
|
191 |
{ |
|
192 |
checkConcept<ReadMap<double,double>, ConvertMap<ReadMap<double, int>, double> >(); |
|
193 |
ConvertMap<RangeMap<bool>, int> map1(rangeMap(1, true)); |
|
194 |
ConvertMap<RangeMap<bool>, int> map2 = convertMap<int>(rangeMap(2, false)); |
|
195 |
} |
|
196 |
|
|
197 |
// ForkMap |
|
198 |
{ |
|
199 |
checkConcept<DoubleWriteMap, ForkMap<DoubleWriteMap, DoubleWriteMap> >(); |
|
200 |
|
|
201 |
typedef RangeMap<double> RM; |
|
202 |
typedef SparseMap<int, double> SM; |
|
203 |
RM m1(10, -1); |
|
204 |
SM m2(-1); |
|
205 |
checkConcept<ReadWriteMap<int, double>, ForkMap<RM, SM> >(); |
|
206 |
checkConcept<ReadWriteMap<int, double>, ForkMap<SM, RM> >(); |
|
207 |
ForkMap<RM, SM> map1(m1,m2); |
|
208 |
ForkMap<SM, RM> map2 = forkMap(m2,m1); |
|
209 |
map2.set(5, 10); |
|
210 |
check(m1[1] == -1 && m1[5] == 10 && m2[1] == -1 && m2[5] == 10 && map2[1] == -1 && map2[5] == 10, |
|
211 |
"Something is wrong with ForkMap"); |
|
212 |
} |
|
213 |
|
|
214 |
// Arithmetic maps: |
|
215 |
// - AddMap, SubMap, MulMap, DivMap |
|
216 |
// - ShiftMap, ShiftWriteMap, ScaleMap, ScaleWriteMap |
|
217 |
// - NegMap, NegWriteMap, AbsMap |
|
218 |
{ |
|
219 |
checkConcept<DoubleMap, AddMap<DoubleMap,DoubleMap> >(); |
|
220 |
checkConcept<DoubleMap, SubMap<DoubleMap,DoubleMap> >(); |
|
221 |
checkConcept<DoubleMap, MulMap<DoubleMap,DoubleMap> >(); |
|
222 |
checkConcept<DoubleMap, DivMap<DoubleMap,DoubleMap> >(); |
|
223 |
|
|
224 |
ConstMap<int, double> c1(1.0), c2(3.14); |
|
225 |
IdentityMap<int> im; |
|
226 |
ConvertMap<IdentityMap<int>, double> id(im); |
|
227 |
check(addMap(c1,id)[0] == 1.0 && addMap(c1,id)[10] == 11.0, "Something is wrong with AddMap"); |
|
228 |
check(subMap(id,c1)[0] == -1.0 && subMap(id,c1)[10] == 9.0, "Something is wrong with SubMap"); |
|
229 |
check(mulMap(id,c2)[0] == 0 && mulMap(id,c2)[2] == 6.28, "Something is wrong with MulMap"); |
|
230 |
check(divMap(c2,id)[1] == 3.14 && divMap(c2,id)[2] == 1.57, "Something is wrong with DivMap"); |
|
231 |
|
|
232 |
checkConcept<DoubleMap, ShiftMap<DoubleMap> >(); |
|
233 |
checkConcept<DoubleWriteMap, ShiftWriteMap<DoubleWriteMap> >(); |
|
234 |
checkConcept<DoubleMap, ScaleMap<DoubleMap> >(); |
|
235 |
checkConcept<DoubleWriteMap, ScaleWriteMap<DoubleWriteMap> >(); |
|
236 |
checkConcept<DoubleMap, NegMap<DoubleMap> >(); |
|
237 |
checkConcept<DoubleWriteMap, NegWriteMap<DoubleWriteMap> >(); |
|
238 |
checkConcept<DoubleMap, AbsMap<DoubleMap> >(); |
|
239 |
|
|
240 |
check(shiftMap(id, 2.0)[1] == 3.0 && shiftMap(id, 2.0)[10] == 12.0, |
|
241 |
"Something is wrong with ShiftMap"); |
|
242 |
check(shiftWriteMap(id, 2.0)[1] == 3.0 && shiftWriteMap(id, 2.0)[10] == 12.0, |
|
243 |
"Something is wrong with ShiftWriteMap"); |
|
244 |
check(scaleMap(id, 2.0)[1] == 2.0 && scaleMap(id, 2.0)[10] == 20.0, |
|
245 |
"Something is wrong with ScaleMap"); |
|
246 |
check(scaleWriteMap(id, 2.0)[1] == 2.0 && scaleWriteMap(id, 2.0)[10] == 20.0, |
|
247 |
"Something is wrong with ScaleWriteMap"); |
|
248 |
check(negMap(id)[1] == -1.0 && negMap(id)[-10] == 10.0, |
|
249 |
"Something is wrong with NegMap"); |
|
250 |
check(negWriteMap(id)[1] == -1.0 && negWriteMap(id)[-10] == 10.0, |
|
251 |
"Something is wrong with NegWriteMap"); |
|
252 |
check(absMap(id)[1] == 1.0 && absMap(id)[-10] == 10.0, |
|
253 |
"Something is wrong with AbsMap"); |
|
254 |
} |
|
255 |
|
|
256 |
// Logical maps |
|
257 |
{ |
|
258 |
checkConcept<BoolMap, NotMap<BoolMap> >(); |
|
259 |
checkConcept<BoolWriteMap, NotWriteMap<BoolWriteMap> >(); |
|
260 |
|
|
261 |
RangeMap<bool> rm(2); |
|
262 |
rm[0] = true; rm[1] = false; |
|
263 |
check(!(notMap(rm)[0]) && notMap(rm)[1], "Something is wrong with NotMap"); |
|
264 |
check(!(notWriteMap(rm)[0]) && notWriteMap(rm)[1], "Something is wrong with NotWriteMap"); |
|
265 |
} |
|
106 | 266 |
|
107 | 267 |
return 0; |
108 | 268 |
} |
0 comments (0 inline)