1 |
1 |
/* -*- C++ -*-
|
2 |
2 |
*
|
3 |
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
4 |
4 |
*
|
5 |
5 |
* Copyright (C) 2003-2008
|
6 |
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
7 |
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
8 |
8 |
*
|
9 |
9 |
* Permission to use, modify and distribute this software is granted
|
10 |
10 |
* provided that this copyright notice appears in all copies. For
|
11 |
11 |
* precise terms see the accompanying LICENSE file.
|
12 |
12 |
*
|
13 |
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
14 |
14 |
* express or implied, and with no claim as to its suitability for any
|
15 |
15 |
* purpose.
|
16 |
16 |
*
|
17 |
17 |
*/
|
18 |
18 |
|
19 |
|
#ifndef LEMON_MIN_MEAN_CYCLE_H
|
20 |
|
#define LEMON_MIN_MEAN_CYCLE_H
|
|
19 |
#ifndef LEMON_HOWARD_H
|
|
20 |
#define LEMON_HOWARD_H
|
21 |
21 |
|
22 |
22 |
/// \ingroup shortest_path
|
23 |
23 |
///
|
24 |
24 |
/// \file
|
25 |
25 |
/// \brief Howard's algorithm for finding a minimum mean cycle.
|
26 |
26 |
|
27 |
27 |
#include <vector>
|
28 |
28 |
#include <limits>
|
29 |
29 |
#include <lemon/core.h>
|
30 |
30 |
#include <lemon/path.h>
|
31 |
31 |
#include <lemon/tolerance.h>
|
32 |
32 |
#include <lemon/connectivity.h>
|
33 |
33 |
|
34 |
34 |
namespace lemon {
|
35 |
35 |
|
36 |
|
/// \brief Default traits class of MinMeanCycle class.
|
|
36 |
/// \brief Default traits class of Howard class.
|
37 |
37 |
///
|
38 |
|
/// Default traits class of MinMeanCycle class.
|
|
38 |
/// Default traits class of Howard class.
|
39 |
39 |
/// \tparam GR The type of the digraph.
|
40 |
40 |
/// \tparam LEN The type of the length map.
|
41 |
41 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
|
42 |
42 |
#ifdef DOXYGEN
|
43 |
43 |
template <typename GR, typename LEN>
|
44 |
44 |
#else
|
45 |
45 |
template <typename GR, typename LEN,
|
46 |
46 |
bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
|
47 |
47 |
#endif
|
48 |
|
struct MinMeanCycleDefaultTraits
|
|
48 |
struct HowardDefaultTraits
|
49 |
49 |
{
|
50 |
50 |
/// The type of the digraph
|
51 |
51 |
typedef GR Digraph;
|
52 |
52 |
/// The type of the length map
|
53 |
53 |
typedef LEN LengthMap;
|
54 |
54 |
/// The type of the arc lengths
|
55 |
55 |
typedef typename LengthMap::Value Value;
|
56 |
56 |
|
57 |
57 |
/// \brief The large value type used for internal computations
|
58 |
58 |
///
|
59 |
59 |
/// The large value type used for internal computations.
|
60 |
60 |
/// It is \c long \c long if the \c Value type is integer,
|
61 |
61 |
/// otherwise it is \c double.
|
62 |
62 |
/// \c Value must be convertible to \c LargeValue.
|
63 |
63 |
typedef double LargeValue;
|
64 |
64 |
|
65 |
65 |
/// The tolerance type used for internal computations
|
66 |
66 |
typedef lemon::Tolerance<LargeValue> Tolerance;
|
67 |
67 |
|
68 |
68 |
/// \brief The path type of the found cycles
|
69 |
69 |
///
|
70 |
70 |
/// The path type of the found cycles.
|
71 |
71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept
|
72 |
72 |
/// and it must have an \c addBack() function.
|
73 |
73 |
typedef lemon::Path<Digraph> Path;
|
74 |
74 |
};
|
75 |
75 |
|
76 |
76 |
// Default traits class for integer value types
|
77 |
77 |
template <typename GR, typename LEN>
|
78 |
|
struct MinMeanCycleDefaultTraits<GR, LEN, true>
|
|
78 |
struct HowardDefaultTraits<GR, LEN, true>
|
79 |
79 |
{
|
80 |
80 |
typedef GR Digraph;
|
81 |
81 |
typedef LEN LengthMap;
|
82 |
82 |
typedef typename LengthMap::Value Value;
|
83 |
83 |
#ifdef LEMON_HAVE_LONG_LONG
|
84 |
84 |
typedef long long LargeValue;
|
85 |
85 |
#else
|
86 |
86 |
typedef long LargeValue;
|
87 |
87 |
#endif
|
88 |
88 |
typedef lemon::Tolerance<LargeValue> Tolerance;
|
89 |
89 |
typedef lemon::Path<Digraph> Path;
|
90 |
90 |
};
|
91 |
91 |
|
92 |
92 |
|
93 |
93 |
/// \addtogroup shortest_path
|
94 |
94 |
/// @{
|
95 |
95 |
|
96 |
96 |
/// \brief Implementation of Howard's algorithm for finding a minimum
|
97 |
97 |
/// mean cycle.
|
98 |
98 |
///
|
99 |
|
/// \ref MinMeanCycle implements Howard's algorithm for finding a
|
100 |
|
/// directed cycle of minimum mean length (cost) in a digraph.
|
|
99 |
/// This class implements Howard's policy iteration algorithm for finding
|
|
100 |
/// a directed cycle of minimum mean length (cost) in a digraph.
|
101 |
101 |
///
|
102 |
102 |
/// \tparam GR The type of the digraph the algorithm runs on.
|
103 |
103 |
/// \tparam LEN The type of the length map. The default
|
104 |
104 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
|
105 |
105 |
#ifdef DOXYGEN
|
106 |
106 |
template <typename GR, typename LEN, typename TR>
|
107 |
107 |
#else
|
108 |
108 |
template < typename GR,
|
109 |
109 |
typename LEN = typename GR::template ArcMap<int>,
|
110 |
|
typename TR = MinMeanCycleDefaultTraits<GR, LEN> >
|
|
110 |
typename TR = HowardDefaultTraits<GR, LEN> >
|
111 |
111 |
#endif
|
112 |
|
class MinMeanCycle
|
|
112 |
class Howard
|
113 |
113 |
{
|
114 |
114 |
public:
|
115 |
115 |
|
116 |
116 |
/// The type of the digraph
|
117 |
117 |
typedef typename TR::Digraph Digraph;
|
118 |
118 |
/// The type of the length map
|
119 |
119 |
typedef typename TR::LengthMap LengthMap;
|
120 |
120 |
/// The type of the arc lengths
|
121 |
121 |
typedef typename TR::Value Value;
|
122 |
122 |
|
123 |
123 |
/// \brief The large value type
|
124 |
124 |
///
|
125 |
125 |
/// The large value type used for internal computations.
|
126 |
|
/// Using the \ref MinMeanCycleDefaultTraits "default traits class",
|
|
126 |
/// Using the \ref HowardDefaultTraits "default traits class",
|
127 |
127 |
/// it is \c long \c long if the \c Value type is integer,
|
128 |
128 |
/// otherwise it is \c double.
|
129 |
129 |
typedef typename TR::LargeValue LargeValue;
|
130 |
130 |
|
131 |
131 |
/// The tolerance type
|
132 |
132 |
typedef typename TR::Tolerance Tolerance;
|
133 |
133 |
|
134 |
134 |
/// \brief The path type of the found cycles
|
135 |
135 |
///
|
136 |
136 |
/// The path type of the found cycles.
|
137 |
|
/// Using the \ref MinMeanCycleDefaultTraits "default traits class",
|
|
137 |
/// Using the \ref HowardDefaultTraits "default traits class",
|
138 |
138 |
/// it is \ref lemon::Path "Path<Digraph>".
|
139 |
139 |
typedef typename TR::Path Path;
|
140 |
140 |
|
141 |
|
/// The \ref MinMeanCycleDefaultTraits "traits class" of the algorithm
|
|
141 |
/// The \ref HowardDefaultTraits "traits class" of the algorithm
|
142 |
142 |
typedef TR Traits;
|
143 |
143 |
|
144 |
144 |
private:
|
145 |
145 |
|
146 |
146 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
|
147 |
147 |
|
148 |
148 |
// The digraph the algorithm runs on
|
149 |
149 |
const Digraph &_gr;
|
150 |
150 |
// The length of the arcs
|
151 |
151 |
const LengthMap &_length;
|
152 |
152 |
|
153 |
153 |
// Data for the found cycles
|
154 |
154 |
bool _curr_found, _best_found;
|
155 |
155 |
LargeValue _curr_length, _best_length;
|
156 |
156 |
int _curr_size, _best_size;
|
157 |
157 |
Node _curr_node, _best_node;
|
158 |
158 |
|
159 |
159 |
Path *_cycle_path;
|
160 |
160 |
bool _local_path;
|
161 |
161 |
|
162 |
162 |
// Internal data used by the algorithm
|
163 |
163 |
typename Digraph::template NodeMap<Arc> _policy;
|
164 |
164 |
typename Digraph::template NodeMap<bool> _reached;
|
165 |
165 |
typename Digraph::template NodeMap<int> _level;
|
166 |
166 |
typename Digraph::template NodeMap<LargeValue> _dist;
|
167 |
167 |
|
168 |
168 |
// Data for storing the strongly connected components
|
169 |
169 |
int _comp_num;
|
170 |
170 |
typename Digraph::template NodeMap<int> _comp;
|
171 |
171 |
std::vector<std::vector<Node> > _comp_nodes;
|
172 |
172 |
std::vector<Node>* _nodes;
|
173 |
173 |
typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
|
174 |
174 |
|
175 |
175 |
// Queue used for BFS search
|
176 |
176 |
std::vector<Node> _queue;
|
177 |
177 |
int _qfront, _qback;
|
178 |
178 |
|
179 |
179 |
Tolerance _tolerance;
|
180 |
180 |
|
181 |
181 |
public:
|
182 |
182 |
|
183 |
183 |
/// \name Named Template Parameters
|
184 |
184 |
/// @{
|
185 |
185 |
|
186 |
186 |
template <typename T>
|
187 |
187 |
struct SetLargeValueTraits : public Traits {
|
188 |
188 |
typedef T LargeValue;
|
189 |
189 |
typedef lemon::Tolerance<T> Tolerance;
|
190 |
190 |
};
|
191 |
191 |
|
192 |
192 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
193 |
193 |
/// \c LargeValue type.
|
194 |
194 |
///
|
195 |
195 |
/// \ref named-templ-param "Named parameter" for setting \c LargeValue
|
196 |
196 |
/// type. It is used for internal computations in the algorithm.
|
197 |
197 |
template <typename T>
|
198 |
198 |
struct SetLargeValue
|
199 |
|
: public MinMeanCycle<GR, LEN, SetLargeValueTraits<T> > {
|
200 |
|
typedef MinMeanCycle<GR, LEN, SetLargeValueTraits<T> > Create;
|
|
199 |
: public Howard<GR, LEN, SetLargeValueTraits<T> > {
|
|
200 |
typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create;
|
201 |
201 |
};
|
202 |
202 |
|
203 |
203 |
template <typename T>
|
204 |
204 |
struct SetPathTraits : public Traits {
|
205 |
205 |
typedef T Path;
|
206 |
206 |
};
|
207 |
207 |
|
208 |
208 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
209 |
209 |
/// \c %Path type.
|
210 |
210 |
///
|
211 |
211 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path
|
212 |
212 |
/// type of the found cycles.
|
213 |
213 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept
|
214 |
214 |
/// and it must have an \c addBack() function.
|
215 |
215 |
template <typename T>
|
216 |
216 |
struct SetPath
|
217 |
|
: public MinMeanCycle<GR, LEN, SetPathTraits<T> > {
|
218 |
|
typedef MinMeanCycle<GR, LEN, SetPathTraits<T> > Create;
|
|
217 |
: public Howard<GR, LEN, SetPathTraits<T> > {
|
|
218 |
typedef Howard<GR, LEN, SetPathTraits<T> > Create;
|
219 |
219 |
};
|
220 |
220 |
|
221 |
221 |
/// @}
|
222 |
222 |
|
223 |
223 |
public:
|
224 |
224 |
|
225 |
225 |
/// \brief Constructor.
|
226 |
226 |
///
|
227 |
227 |
/// The constructor of the class.
|
228 |
228 |
///
|
229 |
229 |
/// \param digraph The digraph the algorithm runs on.
|
230 |
230 |
/// \param length The lengths (costs) of the arcs.
|
231 |
|
MinMeanCycle( const Digraph &digraph,
|
232 |
|
const LengthMap &length ) :
|
|
231 |
Howard( const Digraph &digraph,
|
|
232 |
const LengthMap &length ) :
|
233 |
233 |
_gr(digraph), _length(length), _cycle_path(NULL), _local_path(false),
|
234 |
234 |
_policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
|
235 |
235 |
_comp(digraph), _in_arcs(digraph)
|
236 |
236 |
{}
|
237 |
237 |
|
238 |
238 |
/// Destructor.
|
239 |
|
~MinMeanCycle() {
|
|
239 |
~Howard() {
|
240 |
240 |
if (_local_path) delete _cycle_path;
|
241 |
241 |
}
|
242 |
242 |
|
243 |
243 |
/// \brief Set the path structure for storing the found cycle.
|
244 |
244 |
///
|
245 |
245 |
/// This function sets an external path structure for storing the
|
246 |
246 |
/// found cycle.
|
247 |
247 |
///
|
248 |
248 |
/// If you don't call this function before calling \ref run() or
|
249 |
249 |
/// \ref findMinMean(), it will allocate a local \ref Path "path"
|
250 |
250 |
/// structure. The destuctor deallocates this automatically
|
251 |
251 |
/// allocated object, of course.
|
252 |
252 |
///
|
253 |
253 |
/// \note The algorithm calls only the \ref lemon::Path::addBack()
|
254 |
254 |
/// "addBack()" function of the given path structure.
|
255 |
255 |
///
|
256 |
256 |
/// \return <tt>(*this)</tt>
|
257 |
|
MinMeanCycle& cycle(Path &path) {
|
|
257 |
Howard& cycle(Path &path) {
|
258 |
258 |
if (_local_path) {
|
259 |
259 |
delete _cycle_path;
|
260 |
260 |
_local_path = false;
|
261 |
261 |
}
|
262 |
262 |
_cycle_path = &path;
|
263 |
263 |
return *this;
|
264 |
264 |
}
|
265 |
265 |
|
266 |
266 |
/// \name Execution control
|
267 |
267 |
/// The simplest way to execute the algorithm is to call the \ref run()
|
268 |
268 |
/// function.\n
|
269 |
269 |
/// If you only need the minimum mean length, you may call
|
270 |
270 |
/// \ref findMinMean().
|
271 |
271 |
|
272 |
272 |
/// @{
|
273 |
273 |
|
274 |
274 |
/// \brief Run the algorithm.
|
275 |
275 |
///
|
276 |
276 |
/// This function runs the algorithm.
|
277 |
277 |
/// It can be called more than once (e.g. if the underlying digraph
|
278 |
278 |
/// and/or the arc lengths have been modified).
|
279 |
279 |
///
|
280 |
280 |
/// \return \c true if a directed cycle exists in the digraph.
|
281 |
281 |
///
|
282 |
282 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
|
283 |
283 |
/// \code
|
284 |
284 |
/// return mmc.findMinMean() && mmc.findCycle();
|
285 |
285 |
/// \endcode
|
286 |
286 |
bool run() {
|
287 |
287 |
return findMinMean() && findCycle();
|
288 |
288 |
}
|
289 |
289 |
|
290 |
290 |
/// \brief Find the minimum cycle mean.
|
291 |
291 |
///
|
292 |
292 |
/// This function finds the minimum mean length of the directed
|
293 |
293 |
/// cycles in the digraph.
|
294 |
294 |
///
|
295 |
295 |
/// \return \c true if a directed cycle exists in the digraph.
|
296 |
296 |
bool findMinMean() {
|
297 |
297 |
// Initialize and find strongly connected components
|
298 |
298 |
init();
|
299 |
299 |
findComponents();
|
300 |
300 |
|
301 |
301 |
// Find the minimum cycle mean in the components
|
302 |
302 |
for (int comp = 0; comp < _comp_num; ++comp) {
|
303 |
303 |
// Find the minimum mean cycle in the current component
|
304 |
304 |
if (!buildPolicyGraph(comp)) continue;
|
305 |
305 |
while (true) {
|
306 |
306 |
findPolicyCycle();
|
307 |
307 |
if (!computeNodeDistances()) break;
|
308 |
308 |
}
|
309 |
309 |
// Update the best cycle (global minimum mean cycle)
|
310 |
310 |
if ( !_best_found || (_curr_found &&
|
311 |
311 |
_curr_length * _best_size < _best_length * _curr_size) ) {
|
312 |
312 |
_best_found = true;
|
313 |
313 |
_best_length = _curr_length;
|
314 |
314 |
_best_size = _curr_size;
|
315 |
315 |
_best_node = _curr_node;
|
316 |
316 |
}
|
317 |
317 |
}
|
318 |
318 |
return _best_found;
|
319 |
319 |
}
|
320 |
320 |
|
321 |
321 |
/// \brief Find a minimum mean directed cycle.
|
322 |
322 |
///
|
323 |
323 |
/// This function finds a directed cycle of minimum mean length
|
324 |
324 |
/// in the digraph using the data computed by findMinMean().
|
325 |
325 |
///
|
326 |
326 |
/// \return \c true if a directed cycle exists in the digraph.
|
327 |
327 |
///
|
328 |
328 |
/// \pre \ref findMinMean() must be called before using this function.
|
329 |
329 |
bool findCycle() {
|
330 |
330 |
if (!_best_found) return false;
|
331 |
331 |
_cycle_path->addBack(_policy[_best_node]);
|
332 |
332 |
for ( Node v = _best_node;
|
333 |
333 |
(v = _gr.target(_policy[v])) != _best_node; ) {
|
334 |
334 |
_cycle_path->addBack(_policy[v]);
|
335 |
335 |
}
|
336 |
336 |
return true;
|
337 |
337 |
}
|
338 |
338 |
|
339 |
339 |
/// @}
|
340 |
340 |
|
341 |
341 |
/// \name Query Functions
|
342 |
342 |
/// The results of the algorithm can be obtained using these
|
343 |
343 |
/// functions.\n
|
344 |
344 |
/// The algorithm should be executed before using them.
|
345 |
345 |
|
346 |
346 |
/// @{
|
347 |
347 |
|
348 |
348 |
/// \brief Return the total length of the found cycle.
|
349 |
349 |
///
|
350 |
350 |
/// This function returns the total length of the found cycle.
|
351 |
351 |
///
|
352 |
352 |
/// \pre \ref run() or \ref findMinMean() must be called before
|
353 |
353 |
/// using this function.
|
354 |
354 |
LargeValue cycleLength() const {
|
355 |
355 |
return _best_length;
|
356 |
356 |
}
|
357 |
357 |
|
358 |
358 |
/// \brief Return the number of arcs on the found cycle.
|
359 |
359 |
///
|
360 |
360 |
/// This function returns the number of arcs on the found cycle.
|
361 |
361 |
///
|
362 |
362 |
/// \pre \ref run() or \ref findMinMean() must be called before
|
363 |
363 |
/// using this function.
|
364 |
364 |
int cycleArcNum() const {
|
365 |
365 |
return _best_size;
|
366 |
366 |
}
|
367 |
367 |
|
368 |
368 |
/// \brief Return the mean length of the found cycle.
|
369 |
369 |
///
|
370 |
370 |
/// This function returns the mean length of the found cycle.
|
371 |
371 |
///
|
372 |
372 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
|
373 |
373 |
/// following code.
|
374 |
374 |
/// \code
|
375 |
375 |
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
|
376 |
376 |
/// \endcode
|
377 |
377 |
///
|
378 |
378 |
/// \pre \ref run() or \ref findMinMean() must be called before
|
379 |
379 |
/// using this function.
|
380 |
380 |
double cycleMean() const {
|
381 |
381 |
return static_cast<double>(_best_length) / _best_size;
|
382 |
382 |
}
|
383 |
383 |
|
384 |
384 |
/// \brief Return the found cycle.
|
385 |
385 |
///
|
386 |
386 |
/// This function returns a const reference to the path structure
|
387 |
387 |
/// storing the found cycle.
|
388 |
388 |
///
|
389 |
389 |
/// \pre \ref run() or \ref findCycle() must be called before using
|
390 |
390 |
/// this function.
|
391 |
391 |
const Path& cycle() const {
|
392 |
392 |
return *_cycle_path;
|
393 |
393 |
}
|
394 |
394 |
|
395 |
395 |
///@}
|
396 |
396 |
|
397 |
397 |
private:
|
398 |
398 |
|
399 |
399 |
// Initialize
|
400 |
400 |
void init() {
|
401 |
401 |
if (!_cycle_path) {
|
402 |
402 |
_local_path = true;
|
403 |
403 |
_cycle_path = new Path;
|
404 |
404 |
}
|
405 |
405 |
_queue.resize(countNodes(_gr));
|
406 |
406 |
_best_found = false;
|
407 |
407 |
_best_length = 0;
|
408 |
408 |
_best_size = 1;
|
409 |
409 |
_cycle_path->clear();
|
410 |
410 |
}
|
411 |
411 |
|
412 |
412 |
// Find strongly connected components and initialize _comp_nodes
|
413 |
413 |
// and _in_arcs
|
414 |
414 |
void findComponents() {
|
415 |
415 |
_comp_num = stronglyConnectedComponents(_gr, _comp);
|
416 |
416 |
_comp_nodes.resize(_comp_num);
|
417 |
417 |
if (_comp_num == 1) {
|
418 |
418 |
_comp_nodes[0].clear();
|
419 |
419 |
for (NodeIt n(_gr); n != INVALID; ++n) {
|
420 |
420 |
_comp_nodes[0].push_back(n);
|
421 |
421 |
_in_arcs[n].clear();
|
422 |
422 |
for (InArcIt a(_gr, n); a != INVALID; ++a) {
|
423 |
423 |
_in_arcs[n].push_back(a);
|
424 |
424 |
}
|
425 |
425 |
}
|
426 |
426 |
} else {
|
427 |
427 |
for (int i = 0; i < _comp_num; ++i)
|
428 |
428 |
_comp_nodes[i].clear();
|
429 |
429 |
for (NodeIt n(_gr); n != INVALID; ++n) {
|
430 |
430 |
int k = _comp[n];
|
431 |
431 |
_comp_nodes[k].push_back(n);
|
432 |
432 |
_in_arcs[n].clear();
|
433 |
433 |
for (InArcIt a(_gr, n); a != INVALID; ++a) {
|
434 |
434 |
if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
|
435 |
435 |
}
|
436 |
436 |
}
|
437 |
437 |
}
|
438 |
438 |
}
|
439 |
439 |
|
440 |
440 |
// Build the policy graph in the given strongly connected component
|
441 |
441 |
// (the out-degree of every node is 1)
|
442 |
442 |
bool buildPolicyGraph(int comp) {
|
443 |
443 |
_nodes = &(_comp_nodes[comp]);
|
444 |
444 |
if (_nodes->size() < 1 ||
|
445 |
445 |
(_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
|
446 |
446 |
return false;
|
447 |
447 |
}
|
448 |
448 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
449 |
449 |
_dist[(*_nodes)[i]] = std::numeric_limits<LargeValue>::max();
|
450 |
450 |
}
|
451 |
451 |
Node u, v;
|
452 |
452 |
Arc e;
|
453 |
453 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
454 |
454 |
v = (*_nodes)[i];
|
455 |
455 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
|
456 |
456 |
e = _in_arcs[v][j];
|
457 |
457 |
u = _gr.source(e);
|
458 |
458 |
if (_length[e] < _dist[u]) {
|
459 |
459 |
_dist[u] = _length[e];
|
460 |
460 |
_policy[u] = e;
|
461 |
461 |
}
|
462 |
462 |
}
|
463 |
463 |
}
|
464 |
464 |
return true;
|
465 |
465 |
}
|
466 |
466 |
|
467 |
467 |
// Find the minimum mean cycle in the policy graph
|
468 |
468 |
void findPolicyCycle() {
|
469 |
469 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
470 |
470 |
_level[(*_nodes)[i]] = -1;
|
471 |
471 |
}
|
472 |
472 |
LargeValue clength;
|
473 |
473 |
int csize;
|
474 |
474 |
Node u, v;
|
475 |
475 |
_curr_found = false;
|
476 |
476 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
477 |
477 |
u = (*_nodes)[i];
|
478 |
478 |
if (_level[u] >= 0) continue;
|
479 |
479 |
for (; _level[u] < 0; u = _gr.target(_policy[u])) {
|
480 |
480 |
_level[u] = i;
|
481 |
481 |
}
|
482 |
482 |
if (_level[u] == i) {
|
483 |
483 |
// A cycle is found
|
484 |
484 |
clength = _length[_policy[u]];
|
485 |
485 |
csize = 1;
|
486 |
486 |
for (v = u; (v = _gr.target(_policy[v])) != u; ) {
|
487 |
487 |
clength += _length[_policy[v]];
|
488 |
488 |
++csize;
|
489 |
489 |
}
|
490 |
490 |
if ( !_curr_found ||
|
491 |
491 |
(clength * _curr_size < _curr_length * csize) ) {
|
492 |
492 |
_curr_found = true;
|
493 |
493 |
_curr_length = clength;
|
494 |
494 |
_curr_size = csize;
|
495 |
495 |
_curr_node = u;
|
496 |
496 |
}
|
497 |
497 |
}
|
498 |
498 |
}
|
499 |
499 |
}
|
500 |
500 |
|
501 |
501 |
// Contract the policy graph and compute node distances
|
502 |
502 |
bool computeNodeDistances() {
|
503 |
503 |
// Find the component of the main cycle and compute node distances
|
504 |
504 |
// using reverse BFS
|
505 |
505 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
506 |
506 |
_reached[(*_nodes)[i]] = false;
|
507 |
507 |
}
|
508 |
508 |
_qfront = _qback = 0;
|
509 |
509 |
_queue[0] = _curr_node;
|
510 |
510 |
_reached[_curr_node] = true;
|
511 |
511 |
_dist[_curr_node] = 0;
|
512 |
512 |
Node u, v;
|
513 |
513 |
Arc e;
|
514 |
514 |
while (_qfront <= _qback) {
|
515 |
515 |
v = _queue[_qfront++];
|
516 |
516 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
|
517 |
517 |
e = _in_arcs[v][j];
|
518 |
518 |
u = _gr.source(e);
|
519 |
519 |
if (_policy[u] == e && !_reached[u]) {
|
520 |
520 |
_reached[u] = true;
|
521 |
521 |
_dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
|
522 |
522 |
_queue[++_qback] = u;
|
523 |
523 |
}
|
524 |
524 |
}
|
525 |
525 |
}
|
526 |
526 |
|
527 |
527 |
// Connect all other nodes to this component and compute node
|
528 |
528 |
// distances using reverse BFS
|
529 |
529 |
_qfront = 0;
|
530 |
530 |
while (_qback < int(_nodes->size())-1) {
|
531 |
531 |
v = _queue[_qfront++];
|
532 |
532 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
|
533 |
533 |
e = _in_arcs[v][j];
|
534 |
534 |
u = _gr.source(e);
|
535 |
535 |
if (!_reached[u]) {
|
536 |
536 |
_reached[u] = true;
|
537 |
537 |
_policy[u] = e;
|
538 |
538 |
_dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
|
539 |
539 |
_queue[++_qback] = u;
|
540 |
540 |
}
|
541 |
541 |
}
|
542 |
542 |
}
|
543 |
543 |
|
544 |
544 |
// Improve node distances
|
545 |
545 |
bool improved = false;
|
546 |
546 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
547 |
547 |
v = (*_nodes)[i];
|
548 |
548 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
|
549 |
549 |
e = _in_arcs[v][j];
|
550 |
550 |
u = _gr.source(e);
|
551 |
551 |
LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length;
|
552 |
552 |
if (_tolerance.less(delta, _dist[u])) {
|
553 |
553 |
_dist[u] = delta;
|
554 |
554 |
_policy[u] = e;
|
555 |
555 |
improved = true;
|
556 |
556 |
}
|
557 |
557 |
}
|
558 |
558 |
}
|
559 |
559 |
return improved;
|
560 |
560 |
}
|
561 |
561 |
|
562 |
|
}; //class MinMeanCycle
|
|
562 |
}; //class Howard
|
563 |
563 |
|
564 |
564 |
///@}
|
565 |
565 |
|
566 |
566 |
} //namespace lemon
|
567 |
567 |
|
568 |
|
#endif //LEMON_MIN_MEAN_CYCLE_H
|
|
568 |
#endif //LEMON_HOWARD_H
|