| ... | ... |
@@ -30,548 +30,912 @@ |
| 30 | 30 |
#include <lemon/core.h> |
| 31 | 31 |
#include <lemon/maps.h> |
| 32 | 32 |
#include <lemon/math.h> |
| 33 |
#include <lemon/ |
|
| 33 |
#include <lemon/static_graph.h> |
|
| 34 | 34 |
#include <lemon/circulation.h> |
| 35 | 35 |
#include <lemon/bellman_ford.h> |
| 36 | 36 |
|
| 37 | 37 |
namespace lemon {
|
| 38 | 38 |
|
| 39 |
/// \brief Default traits class of CostScaling algorithm. |
|
| 40 |
/// |
|
| 41 |
/// Default traits class of CostScaling algorithm. |
|
| 42 |
/// \tparam GR Digraph type. |
|
| 43 |
/// \tparam V The value type used for flow amounts, capacity bounds |
|
| 44 |
/// and supply values. By default it is \c int. |
|
| 45 |
/// \tparam C The value type used for costs and potentials. |
|
| 46 |
/// By default it is the same as \c V. |
|
| 47 |
#ifdef DOXYGEN |
|
| 48 |
template <typename GR, typename V = int, typename C = V> |
|
| 49 |
#else |
|
| 50 |
template < typename GR, typename V = int, typename C = V, |
|
| 51 |
bool integer = std::numeric_limits<C>::is_integer > |
|
| 52 |
#endif |
|
| 53 |
struct CostScalingDefaultTraits |
|
| 54 |
{
|
|
| 55 |
/// The type of the digraph |
|
| 56 |
typedef GR Digraph; |
|
| 57 |
/// The type of the flow amounts, capacity bounds and supply values |
|
| 58 |
typedef V Value; |
|
| 59 |
/// The type of the arc costs |
|
| 60 |
typedef C Cost; |
|
| 61 |
|
|
| 62 |
/// \brief The large cost type used for internal computations |
|
| 63 |
/// |
|
| 64 |
/// The large cost type used for internal computations. |
|
| 65 |
/// It is \c long \c long if the \c Cost type is integer, |
|
| 66 |
/// otherwise it is \c double. |
|
| 67 |
/// \c Cost must be convertible to \c LargeCost. |
|
| 68 |
typedef double LargeCost; |
|
| 69 |
}; |
|
| 70 |
|
|
| 71 |
// Default traits class for integer cost types |
|
| 72 |
template <typename GR, typename V, typename C> |
|
| 73 |
struct CostScalingDefaultTraits<GR, V, C, true> |
|
| 74 |
{
|
|
| 75 |
typedef GR Digraph; |
|
| 76 |
typedef V Value; |
|
| 77 |
typedef C Cost; |
|
| 78 |
#ifdef LEMON_HAVE_LONG_LONG |
|
| 79 |
typedef long long LargeCost; |
|
| 80 |
#else |
|
| 81 |
typedef long LargeCost; |
|
| 82 |
#endif |
|
| 83 |
}; |
|
| 84 |
|
|
| 85 |
|
|
| 39 | 86 |
/// \addtogroup min_cost_flow_algs |
| 40 | 87 |
/// @{
|
| 41 | 88 |
|
| 42 |
/// \brief Implementation of the cost scaling algorithm for finding a |
|
| 43 |
/// minimum cost flow. |
|
| 89 |
/// \brief Implementation of the Cost Scaling algorithm for |
|
| 90 |
/// finding a \ref min_cost_flow "minimum cost flow". |
|
| 44 | 91 |
/// |
| 45 |
/// \ref CostScaling implements the cost scaling algorithm performing |
|
| 46 |
/// augment/push and relabel operations for finding a minimum cost |
|
| 47 |
/// |
|
| 92 |
/// \ref CostScaling implements a cost scaling algorithm that performs |
|
| 93 |
/// push/augment and relabel operations for finding a minimum cost |
|
| 94 |
/// flow. It is an efficient primal-dual solution method, which |
|
| 95 |
/// can be viewed as the generalization of the \ref Preflow |
|
| 96 |
/// "preflow push-relabel" algorithm for the maximum flow problem. |
|
| 48 | 97 |
/// |
| 49 |
/// \tparam Digraph The digraph type the algorithm runs on. |
|
| 50 |
/// \tparam LowerMap The type of the lower bound map. |
|
| 51 |
/// \tparam CapacityMap The type of the capacity (upper bound) map. |
|
| 52 |
/// \tparam CostMap The type of the cost (length) map. |
|
| 53 |
/// |
|
| 98 |
/// Most of the parameters of the problem (except for the digraph) |
|
| 99 |
/// can be given using separate functions, and the algorithm can be |
|
| 100 |
/// executed using the \ref run() function. If some parameters are not |
|
| 101 |
/// specified, then default values will be used. |
|
| 54 | 102 |
/// |
| 55 |
/// \warning |
|
| 56 |
/// - Arc capacities and costs should be \e non-negative \e integers. |
|
| 57 |
/// - Supply values should be \e signed \e integers. |
|
| 58 |
/// - The value types of the maps should be convertible to each other. |
|
| 59 |
/// |
|
| 103 |
/// \tparam GR The digraph type the algorithm runs on. |
|
| 104 |
/// \tparam V The value type used for flow amounts, capacity bounds |
|
| 105 |
/// and supply values in the algorithm. By default it is \c int. |
|
| 106 |
/// \tparam C The value type used for costs and potentials in the |
|
| 107 |
/// algorithm. By default it is the same as \c V. |
|
| 60 | 108 |
/// |
| 61 |
/// \note Arc costs are multiplied with the number of nodes during |
|
| 62 |
/// the algorithm so overflow problems may arise more easily than with |
|
| 63 |
/// other minimum cost flow algorithms. |
|
| 64 |
/// If it is available, <tt>long long int</tt> type is used instead of |
|
| 65 |
/// <tt>long int</tt> in the inside computations. |
|
| 66 |
/// |
|
| 67 |
/// \author Peter Kovacs |
|
| 68 |
template < typename Digraph, |
|
| 69 |
typename LowerMap = typename Digraph::template ArcMap<int>, |
|
| 70 |
typename CapacityMap = typename Digraph::template ArcMap<int>, |
|
| 71 |
typename CostMap = typename Digraph::template ArcMap<int>, |
|
| 72 |
typename SupplyMap = typename Digraph::template NodeMap<int> > |
|
| 109 |
/// \warning Both value types must be signed and all input data must |
|
| 110 |
/// be integer. |
|
| 111 |
/// \warning This algorithm does not support negative costs for such |
|
| 112 |
/// arcs that have infinite upper bound. |
|
| 113 |
#ifdef DOXYGEN |
|
| 114 |
template <typename GR, typename V, typename C, typename TR> |
|
| 115 |
#else |
|
| 116 |
template < typename GR, typename V = int, typename C = V, |
|
| 117 |
typename TR = CostScalingDefaultTraits<GR, V, C> > |
|
| 118 |
#endif |
|
| 73 | 119 |
class CostScaling |
| 74 | 120 |
{
|
| 75 |
|
|
| 121 |
public: |
|
| 76 | 122 |
|
| 77 |
typedef typename CapacityMap::Value Capacity; |
|
| 78 |
typedef typename CostMap::Value Cost; |
|
| 79 |
typedef typename SupplyMap::Value Supply; |
|
| 80 |
typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap; |
|
| 81 |
|
|
| 123 |
/// The type of the digraph |
|
| 124 |
typedef typename TR::Digraph Digraph; |
|
| 125 |
/// The type of the flow amounts, capacity bounds and supply values |
|
| 126 |
typedef typename TR::Value Value; |
|
| 127 |
/// The type of the arc costs |
|
| 128 |
typedef typename TR::Cost Cost; |
|
| 82 | 129 |
|
| 83 |
typedef ResidualDigraph< const Digraph, |
|
| 84 |
CapacityArcMap, CapacityArcMap > ResDigraph; |
|
| 85 |
|
|
| 130 |
/// \brief The large cost type |
|
| 131 |
/// |
|
| 132 |
/// The large cost type used for internal computations. |
|
| 133 |
/// Using the \ref CostScalingDefaultTraits "default traits class", |
|
| 134 |
/// it is \c long \c long if the \c Cost type is integer, |
|
| 135 |
/// otherwise it is \c double. |
|
| 136 |
typedef typename TR::LargeCost LargeCost; |
|
| 86 | 137 |
|
| 87 |
#if defined __GNUC__ && !defined __STRICT_ANSI__ |
|
| 88 |
typedef long long int LCost; |
|
| 89 |
#else |
|
| 90 |
typedef long int LCost; |
|
| 91 |
#endif |
|
| 92 |
typedef typename Digraph::template ArcMap<LCost> LargeCostMap; |
|
| 138 |
/// The \ref CostScalingDefaultTraits "traits class" of the algorithm |
|
| 139 |
typedef TR Traits; |
|
| 93 | 140 |
|
| 94 | 141 |
public: |
| 95 | 142 |
|
| 96 |
/// The type of the flow map. |
|
| 97 |
typedef typename Digraph::template ArcMap<Capacity> FlowMap; |
|
| 98 |
/// The type of the potential map. |
|
| 99 |
typedef typename Digraph::template NodeMap<LCost> PotentialMap; |
|
| 143 |
/// \brief Problem type constants for the \c run() function. |
|
| 144 |
/// |
|
| 145 |
/// Enum type containing the problem type constants that can be |
|
| 146 |
/// returned by the \ref run() function of the algorithm. |
|
| 147 |
enum ProblemType {
|
|
| 148 |
/// The problem has no feasible solution (flow). |
|
| 149 |
INFEASIBLE, |
|
| 150 |
/// The problem has optimal solution (i.e. it is feasible and |
|
| 151 |
/// bounded), and the algorithm has found optimal flow and node |
|
| 152 |
/// potentials (primal and dual solutions). |
|
| 153 |
OPTIMAL, |
|
| 154 |
/// The digraph contains an arc of negative cost and infinite |
|
| 155 |
/// upper bound. It means that the objective function is unbounded |
|
| 156 |
/// on that arc, however note that it could actually be bounded |
|
| 157 |
/// over the feasible flows, but this algroithm cannot handle |
|
| 158 |
/// these cases. |
|
| 159 |
UNBOUNDED |
|
| 160 |
}; |
|
| 100 | 161 |
|
| 101 | 162 |
private: |
| 102 | 163 |
|
| 103 |
/// \brief Map adaptor class for handling residual arc costs. |
|
| 104 |
/// |
|
| 105 |
/// Map adaptor class for handling residual arc costs. |
|
| 106 |
template <typename Map> |
|
| 107 |
class ResidualCostMap : public MapBase<ResArc, typename Map::Value> |
|
| 108 |
{
|
|
| 109 |
|
|
| 164 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
| 110 | 165 |
|
| 111 |
|
|
| 166 |
typedef std::vector<int> IntVector; |
|
| 167 |
typedef std::vector<char> BoolVector; |
|
| 168 |
typedef std::vector<Value> ValueVector; |
|
| 169 |
typedef std::vector<Cost> CostVector; |
|
| 170 |
typedef std::vector<LargeCost> LargeCostVector; |
|
| 112 | 171 |
|
| 172 |
private: |
|
| 173 |
|
|
| 174 |
template <typename KT, typename VT> |
|
| 175 |
class VectorMap {
|
|
| 113 | 176 |
public: |
| 114 |
|
|
| 115 |
///\e |
|
| 116 |
ResidualCostMap(const Map &cost_map) : |
|
| 117 |
_cost_map(cost_map) {}
|
|
| 118 |
|
|
| 119 |
///\e |
|
| 120 |
inline typename Map::Value operator[](const ResArc &e) const {
|
|
| 121 |
return ResDigraph::forward(e) ? _cost_map[e] : -_cost_map[e]; |
|
| 177 |
typedef KT Key; |
|
| 178 |
typedef VT Value; |
|
| 179 |
|
|
| 180 |
VectorMap(std::vector<Value>& v) : _v(v) {}
|
|
| 181 |
|
|
| 182 |
const Value& operator[](const Key& key) const {
|
|
| 183 |
return _v[StaticDigraph::id(key)]; |
|
| 122 | 184 |
} |
| 123 | 185 |
|
| 124 |
}; //class ResidualCostMap |
|
| 125 |
|
|
| 126 |
/// \brief Map adaptor class for handling reduced arc costs. |
|
| 127 |
/// |
|
| 128 |
/// Map adaptor class for handling reduced arc costs. |
|
| 129 |
class ReducedCostMap : public MapBase<Arc, LCost> |
|
| 130 |
{
|
|
| 131 |
private: |
|
| 132 |
|
|
| 133 |
const Digraph &_gr; |
|
| 134 |
const LargeCostMap &_cost_map; |
|
| 135 |
const PotentialMap &_pot_map; |
|
| 136 |
|
|
| 137 |
public: |
|
| 138 |
|
|
| 139 |
///\e |
|
| 140 |
ReducedCostMap( const Digraph &gr, |
|
| 141 |
const LargeCostMap &cost_map, |
|
| 142 |
const PotentialMap &pot_map ) : |
|
| 143 |
_gr(gr), _cost_map(cost_map), _pot_map(pot_map) {}
|
|
| 144 |
|
|
| 145 |
///\e |
|
| 146 |
inline LCost operator[](const Arc &e) const {
|
|
| 147 |
return _cost_map[e] + _pot_map[_gr.source(e)] |
|
| 148 |
|
|
| 186 |
Value& operator[](const Key& key) {
|
|
| 187 |
return _v[StaticDigraph::id(key)]; |
|
| 188 |
} |
|
| 189 |
|
|
| 190 |
void set(const Key& key, const Value& val) {
|
|
| 191 |
_v[StaticDigraph::id(key)] = val; |
|
| 149 | 192 |
} |
| 150 | 193 |
|
| 151 |
|
|
| 194 |
private: |
|
| 195 |
std::vector<Value>& _v; |
|
| 196 |
}; |
|
| 197 |
|
|
| 198 |
typedef VectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap; |
|
| 199 |
typedef VectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap; |
|
| 152 | 200 |
|
| 153 | 201 |
private: |
| 154 | 202 |
|
| 155 |
// The digraph the algorithm runs on |
|
| 156 |
const Digraph &_graph; |
|
| 157 |
// The original lower bound map |
|
| 158 |
const LowerMap *_lower; |
|
| 159 |
// The modified capacity map |
|
| 160 |
CapacityArcMap _capacity; |
|
| 161 |
// The original cost map |
|
| 162 |
const CostMap &_orig_cost; |
|
| 163 |
// The scaled cost map |
|
| 164 |
LargeCostMap _cost; |
|
| 165 |
// The modified supply map |
|
| 166 |
SupplyNodeMap _supply; |
|
| 167 |
|
|
| 203 |
// Data related to the underlying digraph |
|
| 204 |
const GR &_graph; |
|
| 205 |
int _node_num; |
|
| 206 |
int _arc_num; |
|
| 207 |
int _res_node_num; |
|
| 208 |
int _res_arc_num; |
|
| 209 |
int _root; |
|
| 168 | 210 |
|
| 169 |
// Arc map of the current flow |
|
| 170 |
FlowMap *_flow; |
|
| 171 |
bool _local_flow; |
|
| 172 |
// Node map of the current potentials |
|
| 173 |
PotentialMap *_potential; |
|
| 174 |
bool _local_potential; |
|
| 211 |
// Parameters of the problem |
|
| 212 |
bool _have_lower; |
|
| 213 |
Value _sum_supply; |
|
| 175 | 214 |
|
| 176 |
// The residual cost map |
|
| 177 |
ResidualCostMap<LargeCostMap> _res_cost; |
|
| 178 |
// The residual digraph |
|
| 179 |
ResDigraph *_res_graph; |
|
| 180 |
// The reduced cost map |
|
| 181 |
ReducedCostMap *_red_cost; |
|
| 182 |
// The excess map |
|
| 183 |
SupplyNodeMap _excess; |
|
| 184 |
// The epsilon parameter used for cost scaling |
|
| 185 |
LCost _epsilon; |
|
| 186 |
// |
|
| 215 |
// Data structures for storing the digraph |
|
| 216 |
IntNodeMap _node_id; |
|
| 217 |
IntArcMap _arc_idf; |
|
| 218 |
IntArcMap _arc_idb; |
|
| 219 |
IntVector _first_out; |
|
| 220 |
BoolVector _forward; |
|
| 221 |
IntVector _source; |
|
| 222 |
IntVector _target; |
|
| 223 |
IntVector _reverse; |
|
| 224 |
|
|
| 225 |
// Node and arc data |
|
| 226 |
ValueVector _lower; |
|
| 227 |
ValueVector _upper; |
|
| 228 |
CostVector _scost; |
|
| 229 |
ValueVector _supply; |
|
| 230 |
|
|
| 231 |
ValueVector _res_cap; |
|
| 232 |
LargeCostVector _cost; |
|
| 233 |
LargeCostVector _pi; |
|
| 234 |
ValueVector _excess; |
|
| 235 |
IntVector _next_out; |
|
| 236 |
std::deque<int> _active_nodes; |
|
| 237 |
|
|
| 238 |
// Data for scaling |
|
| 239 |
LargeCost _epsilon; |
|
| 187 | 240 |
int _alpha; |
| 188 | 241 |
|
| 242 |
// Data for a StaticDigraph structure |
|
| 243 |
typedef std::pair<int, int> IntPair; |
|
| 244 |
StaticDigraph _sgr; |
|
| 245 |
std::vector<IntPair> _arc_vec; |
|
| 246 |
std::vector<LargeCost> _cost_vec; |
|
| 247 |
LargeCostArcMap _cost_map; |
|
| 248 |
LargeCostNodeMap _pi_map; |
|
| 249 |
|
|
| 250 |
public: |
|
| 251 |
|
|
| 252 |
/// \brief Constant for infinite upper bounds (capacities). |
|
| 253 |
/// |
|
| 254 |
/// Constant for infinite upper bounds (capacities). |
|
| 255 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
|
| 256 |
/// \c std::numeric_limits<Value>::max() otherwise. |
|
| 257 |
const Value INF; |
|
| 258 |
|
|
| 189 | 259 |
public: |
| 190 | 260 |
|
| 191 |
/// \ |
|
| 261 |
/// \name Named Template Parameters |
|
| 262 |
/// @{
|
|
| 263 |
|
|
| 264 |
template <typename T> |
|
| 265 |
struct SetLargeCostTraits : public Traits {
|
|
| 266 |
typedef T LargeCost; |
|
| 267 |
}; |
|
| 268 |
|
|
| 269 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 270 |
/// \c LargeCost type. |
|
| 192 | 271 |
/// |
| 193 |
/// |
|
| 272 |
/// \ref named-templ-param "Named parameter" for setting \c LargeCost |
|
| 273 |
/// type, which is used for internal computations in the algorithm. |
|
| 274 |
/// \c Cost must be convertible to \c LargeCost. |
|
| 275 |
template <typename T> |
|
| 276 |
struct SetLargeCost |
|
| 277 |
: public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
|
|
| 278 |
typedef CostScaling<GR, V, C, SetLargeCostTraits<T> > Create; |
|
| 279 |
}; |
|
| 280 |
|
|
| 281 |
/// @} |
|
| 282 |
|
|
| 283 |
public: |
|
| 284 |
|
|
| 285 |
/// \brief Constructor. |
|
| 194 | 286 |
/// |
| 195 |
/// \param digraph The digraph the algorithm runs on. |
|
| 196 |
/// \param lower The lower bounds of the arcs. |
|
| 197 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 198 |
/// \param cost The cost (length) values of the arcs. |
|
| 199 |
/// \param supply The supply values of the nodes (signed). |
|
| 200 |
CostScaling( const Digraph &digraph, |
|
| 201 |
const LowerMap &lower, |
|
| 202 |
const CapacityMap &capacity, |
|
| 203 |
const CostMap &cost, |
|
| 204 |
const SupplyMap &supply ) : |
|
| 205 |
_graph(digraph), _lower(&lower), _capacity(digraph), _orig_cost(cost), |
|
| 206 |
_cost(digraph), _supply(digraph), _flow(NULL), _local_flow(false), |
|
| 207 |
_potential(NULL), _local_potential(false), _res_cost(_cost), |
|
| 208 |
_res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) |
|
| 287 |
/// The constructor of the class. |
|
| 288 |
/// |
|
| 289 |
/// \param graph The digraph the algorithm runs on. |
|
| 290 |
CostScaling(const GR& graph) : |
|
| 291 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
|
| 292 |
_cost_map(_cost_vec), _pi_map(_pi), |
|
| 293 |
INF(std::numeric_limits<Value>::has_infinity ? |
|
| 294 |
std::numeric_limits<Value>::infinity() : |
|
| 295 |
std::numeric_limits<Value>::max()) |
|
| 209 | 296 |
{
|
| 210 |
// Check the sum of supply values |
|
| 211 |
Supply sum = 0; |
|
| 212 |
for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; |
|
| 213 |
_valid_supply = sum == 0; |
|
| 297 |
// Check the value types |
|
| 298 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
|
| 299 |
"The flow type of CostScaling must be signed"); |
|
| 300 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
|
| 301 |
"The cost type of CostScaling must be signed"); |
|
| 302 |
|
|
| 303 |
// Resize vectors |
|
| 304 |
_node_num = countNodes(_graph); |
|
| 305 |
_arc_num = countArcs(_graph); |
|
| 306 |
_res_node_num = _node_num + 1; |
|
| 307 |
_res_arc_num = 2 * (_arc_num + _node_num); |
|
| 308 |
_root = _node_num; |
|
| 309 |
|
|
| 310 |
_first_out.resize(_res_node_num + 1); |
|
| 311 |
_forward.resize(_res_arc_num); |
|
| 312 |
_source.resize(_res_arc_num); |
|
| 313 |
_target.resize(_res_arc_num); |
|
| 314 |
_reverse.resize(_res_arc_num); |
|
| 315 |
|
|
| 316 |
_lower.resize(_res_arc_num); |
|
| 317 |
_upper.resize(_res_arc_num); |
|
| 318 |
_scost.resize(_res_arc_num); |
|
| 319 |
_supply.resize(_res_node_num); |
|
| 214 | 320 |
|
| 215 |
for (ArcIt e(_graph); e != INVALID; ++e) _capacity[e] = capacity[e]; |
|
| 216 |
for (NodeIt n(_graph); n != INVALID; ++n) _supply[n] = supply[n]; |
|
| 321 |
_res_cap.resize(_res_arc_num); |
|
| 322 |
_cost.resize(_res_arc_num); |
|
| 323 |
_pi.resize(_res_node_num); |
|
| 324 |
_excess.resize(_res_node_num); |
|
| 325 |
_next_out.resize(_res_node_num); |
|
| 217 | 326 |
|
| 218 |
// Remove non-zero lower bounds |
|
| 219 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 220 |
if (lower[e] != 0) {
|
|
| 221 |
_capacity[e] -= lower[e]; |
|
| 222 |
_supply[_graph.source(e)] -= lower[e]; |
|
| 223 |
_supply[_graph.target(e)] += lower[e]; |
|
| 327 |
_arc_vec.reserve(_res_arc_num); |
|
| 328 |
_cost_vec.reserve(_res_arc_num); |
|
| 329 |
|
|
| 330 |
// Copy the graph |
|
| 331 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
|
| 332 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 333 |
_node_id[n] = i; |
|
| 334 |
} |
|
| 335 |
i = 0; |
|
| 336 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 337 |
_first_out[i] = j; |
|
| 338 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
|
| 339 |
_arc_idf[a] = j; |
|
| 340 |
_forward[j] = true; |
|
| 341 |
_source[j] = i; |
|
| 342 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
| 224 | 343 |
} |
| 344 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
|
| 345 |
_arc_idb[a] = j; |
|
| 346 |
_forward[j] = false; |
|
| 347 |
_source[j] = i; |
|
| 348 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
| 349 |
} |
|
| 350 |
_forward[j] = false; |
|
| 351 |
_source[j] = i; |
|
| 352 |
_target[j] = _root; |
|
| 353 |
_reverse[j] = k; |
|
| 354 |
_forward[k] = true; |
|
| 355 |
_source[k] = _root; |
|
| 356 |
_target[k] = i; |
|
| 357 |
_reverse[k] = j; |
|
| 358 |
++j; ++k; |
|
| 225 | 359 |
} |
| 226 |
} |
|
| 227 |
/* |
|
| 228 |
/// \brief General constructor (without lower bounds). |
|
| 229 |
/// |
|
| 230 |
/// General constructor (without lower bounds). |
|
| 231 |
/// |
|
| 232 |
/// \param digraph The digraph the algorithm runs on. |
|
| 233 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 234 |
/// \param cost The cost (length) values of the arcs. |
|
| 235 |
/// \param supply The supply values of the nodes (signed). |
|
| 236 |
CostScaling( const Digraph &digraph, |
|
| 237 |
const CapacityMap &capacity, |
|
| 238 |
const CostMap &cost, |
|
| 239 |
const SupplyMap &supply ) : |
|
| 240 |
_graph(digraph), _lower(NULL), _capacity(capacity), _orig_cost(cost), |
|
| 241 |
_cost(digraph), _supply(supply), _flow(NULL), _local_flow(false), |
|
| 242 |
_potential(NULL), _local_potential(false), _res_cost(_cost), |
|
| 243 |
_res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) |
|
| 244 |
{
|
|
| 245 |
// Check the sum of supply values |
|
| 246 |
Supply sum = 0; |
|
| 247 |
for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; |
|
| 248 |
|
|
| 360 |
_first_out[i] = j; |
|
| 361 |
_first_out[_res_node_num] = k; |
|
| 362 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 363 |
int fi = _arc_idf[a]; |
|
| 364 |
int bi = _arc_idb[a]; |
|
| 365 |
_reverse[fi] = bi; |
|
| 366 |
_reverse[bi] = fi; |
|
| 367 |
} |
|
| 368 |
|
|
| 369 |
// Reset parameters |
|
| 370 |
reset(); |
|
| 249 | 371 |
} |
| 250 | 372 |
|
| 251 |
/// \ |
|
| 373 |
/// \name Parameters |
|
| 374 |
/// The parameters of the algorithm can be specified using these |
|
| 375 |
/// functions. |
|
| 376 |
|
|
| 377 |
/// @{
|
|
| 378 |
|
|
| 379 |
/// \brief Set the lower bounds on the arcs. |
|
| 252 | 380 |
/// |
| 253 |
/// |
|
| 381 |
/// This function sets the lower bounds on the arcs. |
|
| 382 |
/// If it is not used before calling \ref run(), the lower bounds |
|
| 383 |
/// will be set to zero on all arcs. |
|
| 254 | 384 |
/// |
| 255 |
/// \param digraph The digraph the algorithm runs on. |
|
| 256 |
/// \param lower The lower bounds of the arcs. |
|
| 257 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 258 |
/// \param cost The cost (length) values of the arcs. |
|
| 259 |
/// \param s The source node. |
|
| 260 |
/// \param t The target node. |
|
| 261 |
/// \param flow_value The required amount of flow from node \c s |
|
| 262 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
| 263 |
CostScaling( const Digraph &digraph, |
|
| 264 |
const LowerMap &lower, |
|
| 265 |
const CapacityMap &capacity, |
|
| 266 |
const CostMap &cost, |
|
| 267 |
Node s, Node t, |
|
| 268 |
Supply flow_value ) : |
|
| 269 |
_graph(digraph), _lower(&lower), _capacity(capacity), _orig_cost(cost), |
|
| 270 |
_cost(digraph), _supply(digraph, 0), _flow(NULL), _local_flow(false), |
|
| 271 |
_potential(NULL), _local_potential(false), _res_cost(_cost), |
|
| 272 |
_res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) |
|
| 273 |
{
|
|
| 274 |
// Remove non-zero lower bounds |
|
| 275 |
_supply[s] = flow_value; |
|
| 276 |
_supply[t] = -flow_value; |
|
| 277 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 278 |
if (lower[e] != 0) {
|
|
| 279 |
_capacity[e] -= lower[e]; |
|
| 280 |
_supply[_graph.source(e)] -= lower[e]; |
|
| 281 |
_supply[_graph.target(e)] += lower[e]; |
|
| 282 |
} |
|
| 385 |
/// \param map An arc map storing the lower bounds. |
|
| 386 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 387 |
/// of the algorithm. |
|
| 388 |
/// |
|
| 389 |
/// \return <tt>(*this)</tt> |
|
| 390 |
template <typename LowerMap> |
|
| 391 |
CostScaling& lowerMap(const LowerMap& map) {
|
|
| 392 |
_have_lower = true; |
|
| 393 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 394 |
_lower[_arc_idf[a]] = map[a]; |
|
| 395 |
_lower[_arc_idb[a]] = map[a]; |
|
| 283 | 396 |
} |
| 284 |
_valid_supply = true; |
|
| 285 |
} |
|
| 286 |
|
|
| 287 |
/// \brief Simple constructor (without lower bounds). |
|
| 288 |
/// |
|
| 289 |
/// Simple constructor (without lower bounds). |
|
| 290 |
/// |
|
| 291 |
/// \param digraph The digraph the algorithm runs on. |
|
| 292 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 293 |
/// \param cost The cost (length) values of the arcs. |
|
| 294 |
/// \param s The source node. |
|
| 295 |
/// \param t The target node. |
|
| 296 |
/// \param flow_value The required amount of flow from node \c s |
|
| 297 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
| 298 |
CostScaling( const Digraph &digraph, |
|
| 299 |
const CapacityMap &capacity, |
|
| 300 |
const CostMap &cost, |
|
| 301 |
Node s, Node t, |
|
| 302 |
Supply flow_value ) : |
|
| 303 |
_graph(digraph), _lower(NULL), _capacity(capacity), _orig_cost(cost), |
|
| 304 |
_cost(digraph), _supply(digraph, 0), _flow(NULL), _local_flow(false), |
|
| 305 |
_potential(NULL), _local_potential(false), _res_cost(_cost), |
|
| 306 |
_res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) |
|
| 307 |
{
|
|
| 308 |
_supply[s] = flow_value; |
|
| 309 |
_supply[t] = -flow_value; |
|
| 310 |
_valid_supply = true; |
|
| 311 |
} |
|
| 312 |
*/ |
|
| 313 |
/// Destructor. |
|
| 314 |
~CostScaling() {
|
|
| 315 |
if (_local_flow) delete _flow; |
|
| 316 |
if (_local_potential) delete _potential; |
|
| 317 |
delete _res_graph; |
|
| 318 |
delete _red_cost; |
|
| 319 |
} |
|
| 320 |
|
|
| 321 |
/// \brief Set the flow map. |
|
| 322 |
/// |
|
| 323 |
/// Set the flow map. |
|
| 324 |
/// |
|
| 325 |
/// \return \c (*this) |
|
| 326 |
CostScaling& flowMap(FlowMap &map) {
|
|
| 327 |
if (_local_flow) {
|
|
| 328 |
delete _flow; |
|
| 329 |
_local_flow = false; |
|
| 330 |
} |
|
| 331 |
_flow = ↦ |
|
| 332 | 397 |
return *this; |
| 333 | 398 |
} |
| 334 | 399 |
|
| 335 |
/// \brief Set the |
|
| 400 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
| 336 | 401 |
/// |
| 337 |
/// |
|
| 402 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
| 403 |
/// If it is not used before calling \ref run(), the upper bounds |
|
| 404 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
|
| 405 |
/// unbounded from above on each arc). |
|
| 338 | 406 |
/// |
| 339 |
/// \return \c (*this) |
|
| 340 |
CostScaling& potentialMap(PotentialMap &map) {
|
|
| 341 |
if (_local_potential) {
|
|
| 342 |
delete _potential; |
|
| 343 |
|
|
| 407 |
/// \param map An arc map storing the upper bounds. |
|
| 408 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 409 |
/// of the algorithm. |
|
| 410 |
/// |
|
| 411 |
/// \return <tt>(*this)</tt> |
|
| 412 |
template<typename UpperMap> |
|
| 413 |
CostScaling& upperMap(const UpperMap& map) {
|
|
| 414 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 415 |
_upper[_arc_idf[a]] = map[a]; |
|
| 344 | 416 |
} |
| 345 |
_potential = ↦ |
|
| 346 | 417 |
return *this; |
| 347 | 418 |
} |
| 348 | 419 |
|
| 420 |
/// \brief Set the costs of the arcs. |
|
| 421 |
/// |
|
| 422 |
/// This function sets the costs of the arcs. |
|
| 423 |
/// If it is not used before calling \ref run(), the costs |
|
| 424 |
/// will be set to \c 1 on all arcs. |
|
| 425 |
/// |
|
| 426 |
/// \param map An arc map storing the costs. |
|
| 427 |
/// Its \c Value type must be convertible to the \c Cost type |
|
| 428 |
/// of the algorithm. |
|
| 429 |
/// |
|
| 430 |
/// \return <tt>(*this)</tt> |
|
| 431 |
template<typename CostMap> |
|
| 432 |
CostScaling& costMap(const CostMap& map) {
|
|
| 433 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 434 |
_scost[_arc_idf[a]] = map[a]; |
|
| 435 |
_scost[_arc_idb[a]] = -map[a]; |
|
| 436 |
} |
|
| 437 |
return *this; |
|
| 438 |
} |
|
| 439 |
|
|
| 440 |
/// \brief Set the supply values of the nodes. |
|
| 441 |
/// |
|
| 442 |
/// This function sets the supply values of the nodes. |
|
| 443 |
/// If neither this function nor \ref stSupply() is used before |
|
| 444 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
| 445 |
/// |
|
| 446 |
/// \param map A node map storing the supply values. |
|
| 447 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 448 |
/// of the algorithm. |
|
| 449 |
/// |
|
| 450 |
/// \return <tt>(*this)</tt> |
|
| 451 |
template<typename SupplyMap> |
|
| 452 |
CostScaling& supplyMap(const SupplyMap& map) {
|
|
| 453 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 454 |
_supply[_node_id[n]] = map[n]; |
|
| 455 |
} |
|
| 456 |
return *this; |
|
| 457 |
} |
|
| 458 |
|
|
| 459 |
/// \brief Set single source and target nodes and a supply value. |
|
| 460 |
/// |
|
| 461 |
/// This function sets a single source node and a single target node |
|
| 462 |
/// and the required flow value. |
|
| 463 |
/// If neither this function nor \ref supplyMap() is used before |
|
| 464 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
| 465 |
/// |
|
| 466 |
/// Using this function has the same effect as using \ref supplyMap() |
|
| 467 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
|
| 468 |
/// assigned to \c t and all other nodes have zero supply value. |
|
| 469 |
/// |
|
| 470 |
/// \param s The source node. |
|
| 471 |
/// \param t The target node. |
|
| 472 |
/// \param k The required amount of flow from node \c s to node \c t |
|
| 473 |
/// (i.e. the supply of \c s and the demand of \c t). |
|
| 474 |
/// |
|
| 475 |
/// \return <tt>(*this)</tt> |
|
| 476 |
CostScaling& stSupply(const Node& s, const Node& t, Value k) {
|
|
| 477 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 478 |
_supply[i] = 0; |
|
| 479 |
} |
|
| 480 |
_supply[_node_id[s]] = k; |
|
| 481 |
_supply[_node_id[t]] = -k; |
|
| 482 |
return *this; |
|
| 483 |
} |
|
| 484 |
|
|
| 485 |
/// @} |
|
| 486 |
|
|
| 349 | 487 |
/// \name Execution control |
| 488 |
/// The algorithm can be executed using \ref run(). |
|
| 350 | 489 |
|
| 351 | 490 |
/// @{
|
| 352 | 491 |
|
| 353 | 492 |
/// \brief Run the algorithm. |
| 354 | 493 |
/// |
| 355 |
/// |
|
| 494 |
/// This function runs the algorithm. |
|
| 495 |
/// The paramters can be specified using functions \ref lowerMap(), |
|
| 496 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
| 497 |
/// For example, |
|
| 498 |
/// \code |
|
| 499 |
/// CostScaling<ListDigraph> cs(graph); |
|
| 500 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
|
| 501 |
/// .supplyMap(sup).run(); |
|
| 502 |
/// \endcode |
|
| 503 |
/// |
|
| 504 |
/// This function can be called more than once. All the parameters |
|
| 505 |
/// that have been given are kept for the next call, unless |
|
| 506 |
/// \ref reset() is called, thus only the modified parameters |
|
| 507 |
/// have to be set again. See \ref reset() for examples. |
|
| 508 |
/// However the underlying digraph must not be modified after this |
|
| 509 |
/// class have been constructed, since it copies the digraph. |
|
| 356 | 510 |
/// |
| 357 | 511 |
/// \param partial_augment By default the algorithm performs |
| 358 | 512 |
/// partial augment and relabel operations in the cost scaling |
| 359 | 513 |
/// phases. Set this parameter to \c false for using local push and |
| 360 | 514 |
/// relabel operations instead. |
| 361 | 515 |
/// |
| 362 |
/// \return \c true if a feasible flow can be found. |
|
| 363 |
bool run(bool partial_augment = true) {
|
|
| 364 |
if (partial_augment) {
|
|
| 365 |
return init() && startPartialAugment(); |
|
| 366 |
} else {
|
|
| 367 |
return init() && startPushRelabel(); |
|
| 516 |
/// \return \c INFEASIBLE if no feasible flow exists, |
|
| 517 |
/// \n \c OPTIMAL if the problem has optimal solution |
|
| 518 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
|
| 519 |
/// optimal flow and node potentials (primal and dual solutions), |
|
| 520 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
|
| 521 |
/// and infinite upper bound. It means that the objective function |
|
| 522 |
/// is unbounded on that arc, however note that it could actually be |
|
| 523 |
/// bounded over the feasible flows, but this algroithm cannot handle |
|
| 524 |
/// these cases. |
|
| 525 |
/// |
|
| 526 |
/// \see ProblemType |
|
| 527 |
ProblemType run(bool partial_augment = true) {
|
|
| 528 |
ProblemType pt = init(); |
|
| 529 |
if (pt != OPTIMAL) return pt; |
|
| 530 |
start(partial_augment); |
|
| 531 |
return OPTIMAL; |
|
| 532 |
} |
|
| 533 |
|
|
| 534 |
/// \brief Reset all the parameters that have been given before. |
|
| 535 |
/// |
|
| 536 |
/// This function resets all the paramaters that have been given |
|
| 537 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
|
| 538 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
| 539 |
/// |
|
| 540 |
/// It is useful for multiple run() calls. If this function is not |
|
| 541 |
/// used, all the parameters given before are kept for the next |
|
| 542 |
/// \ref run() call. |
|
| 543 |
/// However the underlying digraph must not be modified after this |
|
| 544 |
/// class have been constructed, since it copies and extends the graph. |
|
| 545 |
/// |
|
| 546 |
/// For example, |
|
| 547 |
/// \code |
|
| 548 |
/// CostScaling<ListDigraph> cs(graph); |
|
| 549 |
/// |
|
| 550 |
/// // First run |
|
| 551 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
|
| 552 |
/// .supplyMap(sup).run(); |
|
| 553 |
/// |
|
| 554 |
/// // Run again with modified cost map (reset() is not called, |
|
| 555 |
/// // so only the cost map have to be set again) |
|
| 556 |
/// cost[e] += 100; |
|
| 557 |
/// cs.costMap(cost).run(); |
|
| 558 |
/// |
|
| 559 |
/// // Run again from scratch using reset() |
|
| 560 |
/// // (the lower bounds will be set to zero on all arcs) |
|
| 561 |
/// cs.reset(); |
|
| 562 |
/// cs.upperMap(capacity).costMap(cost) |
|
| 563 |
/// .supplyMap(sup).run(); |
|
| 564 |
/// \endcode |
|
| 565 |
/// |
|
| 566 |
/// \return <tt>(*this)</tt> |
|
| 567 |
CostScaling& reset() {
|
|
| 568 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 569 |
_supply[i] = 0; |
|
| 368 | 570 |
} |
| 571 |
int limit = _first_out[_root]; |
|
| 572 |
for (int j = 0; j != limit; ++j) {
|
|
| 573 |
_lower[j] = 0; |
|
| 574 |
_upper[j] = INF; |
|
| 575 |
_scost[j] = _forward[j] ? 1 : -1; |
|
| 576 |
} |
|
| 577 |
for (int j = limit; j != _res_arc_num; ++j) {
|
|
| 578 |
_lower[j] = 0; |
|
| 579 |
_upper[j] = INF; |
|
| 580 |
_scost[j] = 0; |
|
| 581 |
_scost[_reverse[j]] = 0; |
|
| 582 |
} |
|
| 583 |
_have_lower = false; |
|
| 584 |
return *this; |
|
| 369 | 585 |
} |
| 370 | 586 |
|
| 371 | 587 |
/// @} |
| 372 | 588 |
|
| 373 | 589 |
/// \name Query Functions |
| 374 |
/// The |
|
| 590 |
/// The results of the algorithm can be obtained using these |
|
| 375 | 591 |
/// functions.\n |
| 376 |
/// \ref lemon::CostScaling::run() "run()" must be called before |
|
| 377 |
/// using them. |
|
| 592 |
/// The \ref run() function must be called before using them. |
|
| 378 | 593 |
|
| 379 | 594 |
/// @{
|
| 380 | 595 |
|
| 381 |
/// \brief Return a const reference to the arc map storing the |
|
| 382 |
/// found flow. |
|
| 596 |
/// \brief Return the total cost of the found flow. |
|
| 383 | 597 |
/// |
| 384 |
/// |
|
| 598 |
/// This function returns the total cost of the found flow. |
|
| 599 |
/// Its complexity is O(e). |
|
| 600 |
/// |
|
| 601 |
/// \note The return type of the function can be specified as a |
|
| 602 |
/// template parameter. For example, |
|
| 603 |
/// \code |
|
| 604 |
/// cs.totalCost<double>(); |
|
| 605 |
/// \endcode |
|
| 606 |
/// It is useful if the total cost cannot be stored in the \c Cost |
|
| 607 |
/// type of the algorithm, which is the default return type of the |
|
| 608 |
/// function. |
|
| 385 | 609 |
/// |
| 386 | 610 |
/// \pre \ref run() must be called before using this function. |
| 387 |
const FlowMap& flowMap() const {
|
|
| 388 |
return *_flow; |
|
| 611 |
template <typename Number> |
|
| 612 |
Number totalCost() const {
|
|
| 613 |
Number c = 0; |
|
| 614 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 615 |
int i = _arc_idb[a]; |
|
| 616 |
c += static_cast<Number>(_res_cap[i]) * |
|
| 617 |
(-static_cast<Number>(_scost[i])); |
|
| 618 |
} |
|
| 619 |
return c; |
|
| 389 | 620 |
} |
| 390 | 621 |
|
| 391 |
/// \brief Return a const reference to the node map storing the |
|
| 392 |
/// found potentials (the dual solution). |
|
| 393 |
/// |
|
| 394 |
/// Return a const reference to the node map storing the found |
|
| 395 |
/// potentials (the dual solution). |
|
| 396 |
/// |
|
| 397 |
/// \pre \ref run() must be called before using this function. |
|
| 398 |
const PotentialMap& potentialMap() const {
|
|
| 399 |
|
|
| 622 |
#ifndef DOXYGEN |
|
| 623 |
Cost totalCost() const {
|
|
| 624 |
return totalCost<Cost>(); |
|
| 400 | 625 |
} |
| 626 |
#endif |
|
| 401 | 627 |
|
| 402 | 628 |
/// \brief Return the flow on the given arc. |
| 403 | 629 |
/// |
| 404 |
/// |
|
| 630 |
/// This function returns the flow on the given arc. |
|
| 405 | 631 |
/// |
| 406 | 632 |
/// \pre \ref run() must be called before using this function. |
| 407 |
Capacity flow(const Arc& arc) const {
|
|
| 408 |
return (*_flow)[arc]; |
|
| 633 |
Value flow(const Arc& a) const {
|
|
| 634 |
return _res_cap[_arc_idb[a]]; |
|
| 409 | 635 |
} |
| 410 | 636 |
|
| 411 |
/// \brief Return the |
|
| 637 |
/// \brief Return the flow map (the primal solution). |
|
| 412 | 638 |
/// |
| 413 |
/// |
|
| 639 |
/// This function copies the flow value on each arc into the given |
|
| 640 |
/// map. The \c Value type of the algorithm must be convertible to |
|
| 641 |
/// the \c Value type of the map. |
|
| 414 | 642 |
/// |
| 415 | 643 |
/// \pre \ref run() must be called before using this function. |
| 416 |
Cost potential(const Node& node) const {
|
|
| 417 |
return (*_potential)[node]; |
|
| 644 |
template <typename FlowMap> |
|
| 645 |
void flowMap(FlowMap &map) const {
|
|
| 646 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 647 |
map.set(a, _res_cap[_arc_idb[a]]); |
|
| 648 |
} |
|
| 418 | 649 |
} |
| 419 | 650 |
|
| 420 |
/// \brief Return the |
|
| 651 |
/// \brief Return the potential (dual value) of the given node. |
|
| 421 | 652 |
/// |
| 422 |
/// Return the total cost of the found flow. The complexity of the |
|
| 423 |
/// function is \f$ O(e) \f$. |
|
| 653 |
/// This function returns the potential (dual value) of the |
|
| 654 |
/// given node. |
|
| 424 | 655 |
/// |
| 425 | 656 |
/// \pre \ref run() must be called before using this function. |
| 426 |
Cost totalCost() const {
|
|
| 427 |
Cost c = 0; |
|
| 428 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 429 |
c += (*_flow)[e] * _orig_cost[e]; |
|
| 430 |
|
|
| 657 |
Cost potential(const Node& n) const {
|
|
| 658 |
return static_cast<Cost>(_pi[_node_id[n]]); |
|
| 659 |
} |
|
| 660 |
|
|
| 661 |
/// \brief Return the potential map (the dual solution). |
|
| 662 |
/// |
|
| 663 |
/// This function copies the potential (dual value) of each node |
|
| 664 |
/// into the given map. |
|
| 665 |
/// The \c Cost type of the algorithm must be convertible to the |
|
| 666 |
/// \c Value type of the map. |
|
| 667 |
/// |
|
| 668 |
/// \pre \ref run() must be called before using this function. |
|
| 669 |
template <typename PotentialMap> |
|
| 670 |
void potentialMap(PotentialMap &map) const {
|
|
| 671 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 672 |
map.set(n, static_cast<Cost>(_pi[_node_id[n]])); |
|
| 673 |
} |
|
| 431 | 674 |
} |
| 432 | 675 |
|
| 433 | 676 |
/// @} |
| 434 | 677 |
|
| 435 | 678 |
private: |
| 436 | 679 |
|
| 437 |
/// Initialize the algorithm. |
|
| 438 |
bool init() {
|
|
| 439 |
if (!_valid_supply) return false; |
|
| 440 |
// The scaling factor |
|
| 680 |
// Initialize the algorithm |
|
| 681 |
ProblemType init() {
|
|
| 682 |
if (_res_node_num == 0) return INFEASIBLE; |
|
| 683 |
|
|
| 684 |
// Scaling factor |
|
| 441 | 685 |
_alpha = 8; |
| 442 | 686 |
|
| 443 |
// Initialize flow and potential maps |
|
| 444 |
if (!_flow) {
|
|
| 445 |
_flow = new FlowMap(_graph); |
|
| 446 |
_local_flow = true; |
|
| 687 |
// Check the sum of supply values |
|
| 688 |
_sum_supply = 0; |
|
| 689 |
for (int i = 0; i != _root; ++i) {
|
|
| 690 |
_sum_supply += _supply[i]; |
|
| 447 | 691 |
} |
| 448 |
if (!_potential) {
|
|
| 449 |
_potential = new PotentialMap(_graph); |
|
| 450 |
|
|
| 692 |
if (_sum_supply > 0) return INFEASIBLE; |
|
| 693 |
|
|
| 694 |
|
|
| 695 |
// Initialize vectors |
|
| 696 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 697 |
_pi[i] = 0; |
|
| 698 |
_excess[i] = _supply[i]; |
|
| 699 |
} |
|
| 700 |
|
|
| 701 |
// Remove infinite upper bounds and check negative arcs |
|
| 702 |
const Value MAX = std::numeric_limits<Value>::max(); |
|
| 703 |
int last_out; |
|
| 704 |
if (_have_lower) {
|
|
| 705 |
for (int i = 0; i != _root; ++i) {
|
|
| 706 |
last_out = _first_out[i+1]; |
|
| 707 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
|
| 708 |
if (_forward[j]) {
|
|
| 709 |
Value c = _scost[j] < 0 ? _upper[j] : _lower[j]; |
|
| 710 |
if (c >= MAX) return UNBOUNDED; |
|
| 711 |
_excess[i] -= c; |
|
| 712 |
_excess[_target[j]] += c; |
|
| 713 |
} |
|
| 714 |
} |
|
| 715 |
} |
|
| 716 |
} else {
|
|
| 717 |
for (int i = 0; i != _root; ++i) {
|
|
| 718 |
last_out = _first_out[i+1]; |
|
| 719 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
|
| 720 |
if (_forward[j] && _scost[j] < 0) {
|
|
| 721 |
Value c = _upper[j]; |
|
| 722 |
if (c >= MAX) return UNBOUNDED; |
|
| 723 |
_excess[i] -= c; |
|
| 724 |
_excess[_target[j]] += c; |
|
| 725 |
} |
|
| 726 |
} |
|
| 727 |
} |
|
| 728 |
} |
|
| 729 |
Value ex, max_cap = 0; |
|
| 730 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 731 |
ex = _excess[i]; |
|
| 732 |
_excess[i] = 0; |
|
| 733 |
if (ex < 0) max_cap -= ex; |
|
| 734 |
} |
|
| 735 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 736 |
if (_upper[j] >= MAX) _upper[j] = max_cap; |
|
| 451 | 737 |
} |
| 452 | 738 |
|
| 453 |
_red_cost = new ReducedCostMap(_graph, _cost, *_potential); |
|
| 454 |
_res_graph = new ResDigraph(_graph, _capacity, *_flow); |
|
| 739 |
// Initialize the large cost vector and the epsilon parameter |
|
| 740 |
_epsilon = 0; |
|
| 741 |
LargeCost lc; |
|
| 742 |
for (int i = 0; i != _root; ++i) {
|
|
| 743 |
last_out = _first_out[i+1]; |
|
| 744 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
|
| 745 |
lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha; |
|
| 746 |
_cost[j] = lc; |
|
| 747 |
if (lc > _epsilon) _epsilon = lc; |
|
| 748 |
} |
|
| 749 |
} |
|
| 750 |
_epsilon /= _alpha; |
|
| 455 | 751 |
|
| 456 |
// Initialize the scaled cost map and the epsilon parameter |
|
| 457 |
Cost max_cost = 0; |
|
| 458 |
int node_num = countNodes(_graph); |
|
| 459 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 460 |
_cost[e] = LCost(_orig_cost[e]) * node_num * _alpha; |
|
| 461 |
if (_orig_cost[e] > max_cost) max_cost = _orig_cost[e]; |
|
| 752 |
// Initialize maps for Circulation and remove non-zero lower bounds |
|
| 753 |
ConstMap<Arc, Value> low(0); |
|
| 754 |
typedef typename Digraph::template ArcMap<Value> ValueArcMap; |
|
| 755 |
typedef typename Digraph::template NodeMap<Value> ValueNodeMap; |
|
| 756 |
ValueArcMap cap(_graph), flow(_graph); |
|
| 757 |
ValueNodeMap sup(_graph); |
|
| 758 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 759 |
sup[n] = _supply[_node_id[n]]; |
|
| 462 | 760 |
} |
| 463 |
|
|
| 761 |
if (_have_lower) {
|
|
| 762 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 763 |
int j = _arc_idf[a]; |
|
| 764 |
Value c = _lower[j]; |
|
| 765 |
cap[a] = _upper[j] - c; |
|
| 766 |
sup[_graph.source(a)] -= c; |
|
| 767 |
sup[_graph.target(a)] += c; |
|
| 768 |
} |
|
| 769 |
} else {
|
|
| 770 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 771 |
cap[a] = _upper[_arc_idf[a]]; |
|
| 772 |
} |
|
| 773 |
} |
|
| 464 | 774 |
|
| 465 | 775 |
// Find a feasible flow using Circulation |
| 466 |
Circulation< Digraph, ConstMap<Arc, Capacity>, CapacityArcMap, |
|
| 467 |
SupplyMap > |
|
| 468 |
circulation( _graph, constMap<Arc>(Capacity(0)), _capacity, |
|
| 469 |
_supply ); |
|
| 470 |
|
|
| 776 |
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap> |
|
| 777 |
circ(_graph, low, cap, sup); |
|
| 778 |
if (!circ.flowMap(flow).run()) return INFEASIBLE; |
|
| 779 |
|
|
| 780 |
// Set residual capacities and handle GEQ supply type |
|
| 781 |
if (_sum_supply < 0) {
|
|
| 782 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 783 |
Value fa = flow[a]; |
|
| 784 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
|
| 785 |
_res_cap[_arc_idb[a]] = fa; |
|
| 786 |
sup[_graph.source(a)] -= fa; |
|
| 787 |
sup[_graph.target(a)] += fa; |
|
| 788 |
} |
|
| 789 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 790 |
_excess[_node_id[n]] = sup[n]; |
|
| 791 |
} |
|
| 792 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
|
| 793 |
int u = _target[a]; |
|
| 794 |
int ra = _reverse[a]; |
|
| 795 |
_res_cap[a] = -_sum_supply + 1; |
|
| 796 |
_res_cap[ra] = -_excess[u]; |
|
| 797 |
_cost[a] = 0; |
|
| 798 |
_cost[ra] = 0; |
|
| 799 |
_excess[u] = 0; |
|
| 800 |
} |
|
| 801 |
} else {
|
|
| 802 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 803 |
Value fa = flow[a]; |
|
| 804 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
|
| 805 |
_res_cap[_arc_idb[a]] = fa; |
|
| 806 |
} |
|
| 807 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
|
| 808 |
int ra = _reverse[a]; |
|
| 809 |
_res_cap[a] = 1; |
|
| 810 |
_res_cap[ra] = 0; |
|
| 811 |
_cost[a] = 0; |
|
| 812 |
_cost[ra] = 0; |
|
| 813 |
} |
|
| 814 |
} |
|
| 815 |
|
|
| 816 |
return OPTIMAL; |
|
| 817 |
} |
|
| 818 |
|
|
| 819 |
// Execute the algorithm and transform the results |
|
| 820 |
void start(bool partial_augment) {
|
|
| 821 |
// Execute the algorithm |
|
| 822 |
if (partial_augment) {
|
|
| 823 |
startPartialAugment(); |
|
| 824 |
} else {
|
|
| 825 |
startPushRelabel(); |
|
| 826 |
} |
|
| 827 |
|
|
| 828 |
// Compute node potentials for the original costs |
|
| 829 |
_arc_vec.clear(); |
|
| 830 |
_cost_vec.clear(); |
|
| 831 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 832 |
if (_res_cap[j] > 0) {
|
|
| 833 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
| 834 |
_cost_vec.push_back(_scost[j]); |
|
| 835 |
} |
|
| 836 |
} |
|
| 837 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
| 838 |
|
|
| 839 |
typename BellmanFord<StaticDigraph, LargeCostArcMap> |
|
| 840 |
::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map); |
|
| 841 |
bf.distMap(_pi_map); |
|
| 842 |
bf.init(0); |
|
| 843 |
bf.start(); |
|
| 844 |
|
|
| 845 |
// Handle non-zero lower bounds |
|
| 846 |
if (_have_lower) {
|
|
| 847 |
int limit = _first_out[_root]; |
|
| 848 |
for (int j = 0; j != limit; ++j) {
|
|
| 849 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
|
| 850 |
} |
|
| 851 |
} |
|
| 471 | 852 |
} |
| 472 | 853 |
|
| 473 | 854 |
/// Execute the algorithm performing partial augmentation and |
| 474 |
/// relabel operations. |
|
| 475 |
bool startPartialAugment() {
|
|
| 855 |
/// relabel operations |
|
| 856 |
void startPartialAugment() {
|
|
| 476 | 857 |
// Paramters for heuristics |
| 477 |
// const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
|
| 478 |
// const int BF_HEURISTIC_BOUND_FACTOR = 3; |
|
| 858 |
const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
|
| 859 |
const int BF_HEURISTIC_BOUND_FACTOR = 3; |
|
| 479 | 860 |
// Maximum augment path length |
| 480 | 861 |
const int MAX_PATH_LENGTH = 4; |
| 481 | 862 |
|
| 482 |
// Variables |
|
| 483 |
typename Digraph::template NodeMap<Arc> pred_arc(_graph); |
|
| 484 |
typename Digraph::template NodeMap<bool> forward(_graph); |
|
| 485 |
typename Digraph::template NodeMap<OutArcIt> next_out(_graph); |
|
| 486 |
typename Digraph::template NodeMap<InArcIt> next_in(_graph); |
|
| 487 |
typename Digraph::template NodeMap<bool> next_dir(_graph); |
|
| 488 |
std::deque<Node> active_nodes; |
|
| 489 |
std::vector<Node> path_nodes; |
|
| 490 |
|
|
| 491 |
// int node_num = countNodes(_graph); |
|
| 863 |
// Perform cost scaling phases |
|
| 864 |
IntVector pred_arc(_res_node_num); |
|
| 865 |
std::vector<int> path_nodes; |
|
| 492 | 866 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
| 493 | 867 |
1 : _epsilon / _alpha ) |
| 494 | 868 |
{
|
| 495 |
/* |
|
| 496 | 869 |
// "Early Termination" heuristic: use Bellman-Ford algorithm |
| 497 | 870 |
// to check if the current flow is optimal |
| 498 | 871 |
if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
|
| 499 |
typedef ShiftMap< ResidualCostMap<LargeCostMap> > ShiftCostMap; |
|
| 500 |
ShiftCostMap shift_cost(_res_cost, 1); |
|
| 501 |
|
|
| 872 |
_arc_vec.clear(); |
|
| 873 |
_cost_vec.clear(); |
|
| 874 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 875 |
if (_res_cap[j] > 0) {
|
|
| 876 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
| 877 |
_cost_vec.push_back(_cost[j] + 1); |
|
| 878 |
} |
|
| 879 |
} |
|
| 880 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
| 881 |
|
|
| 882 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
|
| 502 | 883 |
bf.init(0); |
| 503 | 884 |
bool done = false; |
| 504 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt( |
|
| 885 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num)); |
|
| 505 | 886 |
for (int i = 0; i < K && !done; ++i) |
| 506 | 887 |
done = bf.processNextWeakRound(); |
| 507 | 888 |
if (done) break; |
| 508 | 889 |
} |
| 509 |
|
|
| 890 |
|
|
| 510 | 891 |
// Saturate arcs not satisfying the optimality condition |
| 511 |
Capacity delta; |
|
| 512 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 513 |
if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
|
|
| 514 |
delta = _capacity[e] - (*_flow)[e]; |
|
| 515 |
_excess[_graph.source(e)] -= delta; |
|
| 516 |
_excess[_graph.target(e)] += delta; |
|
| 517 |
(*_flow)[e] = _capacity[e]; |
|
| 518 |
} |
|
| 519 |
if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
|
|
| 520 |
_excess[_graph.target(e)] -= (*_flow)[e]; |
|
| 521 |
_excess[_graph.source(e)] += (*_flow)[e]; |
|
| 522 |
(*_flow)[e] = 0; |
|
| 892 |
for (int a = 0; a != _res_arc_num; ++a) {
|
|
| 893 |
if (_res_cap[a] > 0 && |
|
| 894 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
|
|
| 895 |
Value delta = _res_cap[a]; |
|
| 896 |
_excess[_source[a]] -= delta; |
|
| 897 |
_excess[_target[a]] += delta; |
|
| 898 |
_res_cap[a] = 0; |
|
| 899 |
_res_cap[_reverse[a]] += delta; |
|
| 523 | 900 |
} |
| 524 | 901 |
} |
| 525 |
|
|
| 902 |
|
|
| 526 | 903 |
// Find active nodes (i.e. nodes with positive excess) |
| 527 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 528 |
if (_excess[n] > 0) active_nodes.push_back(n); |
|
| 904 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 905 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
|
| 529 | 906 |
} |
| 530 | 907 |
|
| 531 |
// Initialize the next arc maps |
|
| 532 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 533 |
next_out[n] = OutArcIt(_graph, n); |
|
| 534 |
next_in[n] = InArcIt(_graph, n); |
|
| 535 |
|
|
| 908 |
// Initialize the next arcs |
|
| 909 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 910 |
_next_out[u] = _first_out[u]; |
|
| 536 | 911 |
} |
| 537 | 912 |
|
| 538 | 913 |
// Perform partial augment and relabel operations |
| 539 |
while ( |
|
| 914 |
while (true) {
|
|
| 540 | 915 |
// Select an active node (FIFO selection) |
| 541 |
if (_excess[active_nodes[0]] <= 0) {
|
|
| 542 |
active_nodes.pop_front(); |
|
| 543 |
|
|
| 916 |
while (_active_nodes.size() > 0 && |
|
| 917 |
_excess[_active_nodes.front()] <= 0) {
|
|
| 918 |
_active_nodes.pop_front(); |
|
| 544 | 919 |
} |
| 545 |
|
|
| 920 |
if (_active_nodes.size() == 0) break; |
|
| 921 |
int start = _active_nodes.front(); |
|
| 546 | 922 |
path_nodes.clear(); |
| 547 | 923 |
path_nodes.push_back(start); |
| 548 | 924 |
|
| 549 | 925 |
// Find an augmenting path from the start node |
| 550 |
Node u, tip = start; |
|
| 551 |
LCost min_red_cost; |
|
| 552 |
while ( _excess[tip] >= 0 && |
|
| 553 |
int(path_nodes.size()) <= MAX_PATH_LENGTH ) |
|
| 554 |
{
|
|
| 555 |
if (next_dir[tip]) {
|
|
| 556 |
for (OutArcIt e = next_out[tip]; e != INVALID; ++e) {
|
|
| 557 |
if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
|
|
| 558 |
u = _graph.target(e); |
|
| 559 |
pred_arc[u] = e; |
|
| 560 |
forward[u] = true; |
|
| 561 |
next_out[tip] = e; |
|
| 562 |
tip = u; |
|
| 563 |
path_nodes.push_back(tip); |
|
| 564 |
goto next_step; |
|
| 565 |
} |
|
| 566 |
} |
|
| 567 |
next_dir[tip] = false; |
|
| 568 |
} |
|
| 569 |
for (InArcIt e = next_in[tip]; e != INVALID; ++e) {
|
|
| 570 |
if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
|
|
| 571 |
u = _graph.source(e); |
|
| 572 |
pred_arc[u] = e; |
|
| 573 |
forward[u] = false; |
|
| 574 |
|
|
| 926 |
int tip = start; |
|
| 927 |
while (_excess[tip] >= 0 && |
|
| 928 |
int(path_nodes.size()) <= MAX_PATH_LENGTH) {
|
|
| 929 |
int u; |
|
| 930 |
LargeCost min_red_cost, rc; |
|
| 931 |
int last_out = _sum_supply < 0 ? |
|
| 932 |
_first_out[tip+1] : _first_out[tip+1] - 1; |
|
| 933 |
for (int a = _next_out[tip]; a != last_out; ++a) {
|
|
| 934 |
if (_res_cap[a] > 0 && |
|
| 935 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
|
|
| 936 |
u = _target[a]; |
|
| 937 |
pred_arc[u] = a; |
|
| 938 |
_next_out[tip] = a; |
|
| 575 | 939 |
tip = u; |
| 576 | 940 |
path_nodes.push_back(tip); |
| 577 | 941 |
goto next_step; |
| ... | ... |
@@ -579,266 +943,186 @@ |
| 579 | 943 |
} |
| 580 | 944 |
|
| 581 | 945 |
// Relabel tip node |
| 582 |
min_red_cost = std::numeric_limits<LCost>::max() / 2; |
|
| 583 |
for (OutArcIt oe(_graph, tip); oe != INVALID; ++oe) {
|
|
| 584 |
if ( _capacity[oe] - (*_flow)[oe] > 0 && |
|
| 585 |
(*_red_cost)[oe] < min_red_cost ) |
|
| 586 |
|
|
| 946 |
min_red_cost = std::numeric_limits<LargeCost>::max() / 2; |
|
| 947 |
for (int a = _first_out[tip]; a != last_out; ++a) {
|
|
| 948 |
rc = _cost[a] + _pi[_source[a]] - _pi[_target[a]]; |
|
| 949 |
if (_res_cap[a] > 0 && rc < min_red_cost) {
|
|
| 950 |
min_red_cost = rc; |
|
| 951 |
} |
|
| 587 | 952 |
} |
| 588 |
for (InArcIt ie(_graph, tip); ie != INVALID; ++ie) {
|
|
| 589 |
if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < min_red_cost) |
|
| 590 |
min_red_cost = -(*_red_cost)[ie]; |
|
| 591 |
} |
|
| 592 |
|
|
| 953 |
_pi[tip] -= min_red_cost + _epsilon; |
|
| 593 | 954 |
|
| 594 |
// Reset the next arc maps |
|
| 595 |
next_out[tip] = OutArcIt(_graph, tip); |
|
| 596 |
next_in[tip] = InArcIt(_graph, tip); |
|
| 597 |
next_dir[tip] = true; |
|
| 955 |
// Reset the next arc of tip |
|
| 956 |
_next_out[tip] = _first_out[tip]; |
|
| 598 | 957 |
|
| 599 | 958 |
// Step back |
| 600 | 959 |
if (tip != start) {
|
| 601 | 960 |
path_nodes.pop_back(); |
| 602 |
tip = path_nodes |
|
| 961 |
tip = path_nodes.back(); |
|
| 603 | 962 |
} |
| 604 | 963 |
|
| 605 |
next_step: |
|
| 606 |
continue; |
|
| 964 |
next_step: ; |
|
| 607 | 965 |
} |
| 608 | 966 |
|
| 609 | 967 |
// Augment along the found path (as much flow as possible) |
| 610 |
|
|
| 968 |
Value delta; |
|
| 969 |
int u, v = path_nodes.front(), pa; |
|
| 611 | 970 |
for (int i = 1; i < int(path_nodes.size()); ++i) {
|
| 612 |
u = path_nodes[i]; |
|
| 613 |
delta = forward[u] ? |
|
| 614 |
_capacity[pred_arc[u]] - (*_flow)[pred_arc[u]] : |
|
| 615 |
(*_flow)[pred_arc[u]]; |
|
| 616 |
delta = std::min(delta, _excess[path_nodes[i-1]]); |
|
| 617 |
(*_flow)[pred_arc[u]] += forward[u] ? delta : -delta; |
|
| 618 |
_excess[path_nodes[i-1]] -= delta; |
|
| 619 |
_excess[u] += delta; |
|
| 620 |
|
|
| 971 |
u = v; |
|
| 972 |
v = path_nodes[i]; |
|
| 973 |
pa = pred_arc[v]; |
|
| 974 |
delta = std::min(_res_cap[pa], _excess[u]); |
|
| 975 |
_res_cap[pa] -= delta; |
|
| 976 |
_res_cap[_reverse[pa]] += delta; |
|
| 977 |
_excess[u] -= delta; |
|
| 978 |
_excess[v] += delta; |
|
| 979 |
if (_excess[v] > 0 && _excess[v] <= delta) |
|
| 980 |
_active_nodes.push_back(v); |
|
| 621 | 981 |
} |
| 622 | 982 |
} |
| 623 | 983 |
} |
| 624 |
|
|
| 625 |
// Compute node potentials for the original costs |
|
| 626 |
ResidualCostMap<CostMap> res_cost(_orig_cost); |
|
| 627 |
BellmanFord< ResDigraph, ResidualCostMap<CostMap> > |
|
| 628 |
bf(*_res_graph, res_cost); |
|
| 629 |
bf.init(0); bf.start(); |
|
| 630 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
| 631 |
(*_potential)[n] = bf.dist(n); |
|
| 632 |
|
|
| 633 |
// Handle non-zero lower bounds |
|
| 634 |
if (_lower) {
|
|
| 635 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 636 |
(*_flow)[e] += (*_lower)[e]; |
|
| 637 |
} |
|
| 638 |
return true; |
|
| 639 | 984 |
} |
| 640 | 985 |
|
| 641 |
/// Execute the algorithm performing push and relabel operations. |
|
| 642 |
bool startPushRelabel() {
|
|
| 986 |
/// Execute the algorithm performing push and relabel operations |
|
| 987 |
void startPushRelabel() {
|
|
| 643 | 988 |
// Paramters for heuristics |
| 644 |
// const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
|
| 645 |
// const int BF_HEURISTIC_BOUND_FACTOR = 3; |
|
| 989 |
const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
|
| 990 |
const int BF_HEURISTIC_BOUND_FACTOR = 3; |
|
| 646 | 991 |
|
| 647 |
typename Digraph::template NodeMap<bool> hyper(_graph, false); |
|
| 648 |
typename Digraph::template NodeMap<Arc> pred_arc(_graph); |
|
| 649 |
typename Digraph::template NodeMap<bool> forward(_graph); |
|
| 650 |
typename Digraph::template NodeMap<OutArcIt> next_out(_graph); |
|
| 651 |
typename Digraph::template NodeMap<InArcIt> next_in(_graph); |
|
| 652 |
typename Digraph::template NodeMap<bool> next_dir(_graph); |
|
| 653 |
std::deque<Node> active_nodes; |
|
| 654 |
|
|
| 655 |
|
|
| 992 |
// Perform cost scaling phases |
|
| 993 |
BoolVector hyper(_res_node_num, false); |
|
| 656 | 994 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
| 657 | 995 |
1 : _epsilon / _alpha ) |
| 658 | 996 |
{
|
| 659 |
/* |
|
| 660 | 997 |
// "Early Termination" heuristic: use Bellman-Ford algorithm |
| 661 | 998 |
// to check if the current flow is optimal |
| 662 | 999 |
if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
|
| 663 |
typedef ShiftMap< ResidualCostMap<LargeCostMap> > ShiftCostMap; |
|
| 664 |
ShiftCostMap shift_cost(_res_cost, 1); |
|
| 665 |
|
|
| 1000 |
_arc_vec.clear(); |
|
| 1001 |
_cost_vec.clear(); |
|
| 1002 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 1003 |
if (_res_cap[j] > 0) {
|
|
| 1004 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
| 1005 |
_cost_vec.push_back(_cost[j] + 1); |
|
| 1006 |
} |
|
| 1007 |
} |
|
| 1008 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
| 1009 |
|
|
| 1010 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
|
| 666 | 1011 |
bf.init(0); |
| 667 | 1012 |
bool done = false; |
| 668 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt( |
|
| 1013 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num)); |
|
| 669 | 1014 |
for (int i = 0; i < K && !done; ++i) |
| 670 | 1015 |
done = bf.processNextWeakRound(); |
| 671 | 1016 |
if (done) break; |
| 672 | 1017 |
} |
| 673 |
*/ |
|
| 674 | 1018 |
|
| 675 | 1019 |
// Saturate arcs not satisfying the optimality condition |
| 676 |
Capacity delta; |
|
| 677 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 678 |
if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
|
|
| 679 |
delta = _capacity[e] - (*_flow)[e]; |
|
| 680 |
_excess[_graph.source(e)] -= delta; |
|
| 681 |
_excess[_graph.target(e)] += delta; |
|
| 682 |
(*_flow)[e] = _capacity[e]; |
|
| 683 |
} |
|
| 684 |
if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
|
|
| 685 |
_excess[_graph.target(e)] -= (*_flow)[e]; |
|
| 686 |
_excess[_graph.source(e)] += (*_flow)[e]; |
|
| 687 |
(*_flow)[e] = 0; |
|
| 1020 |
for (int a = 0; a != _res_arc_num; ++a) {
|
|
| 1021 |
if (_res_cap[a] > 0 && |
|
| 1022 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
|
|
| 1023 |
Value delta = _res_cap[a]; |
|
| 1024 |
_excess[_source[a]] -= delta; |
|
| 1025 |
_excess[_target[a]] += delta; |
|
| 1026 |
_res_cap[a] = 0; |
|
| 1027 |
_res_cap[_reverse[a]] += delta; |
|
| 688 | 1028 |
} |
| 689 | 1029 |
} |
| 690 | 1030 |
|
| 691 | 1031 |
// Find active nodes (i.e. nodes with positive excess) |
| 692 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 693 |
if (_excess[n] > 0) active_nodes.push_back(n); |
|
| 1032 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 1033 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
|
| 694 | 1034 |
} |
| 695 | 1035 |
|
| 696 |
// Initialize the next arc maps |
|
| 697 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 698 |
next_out[n] = OutArcIt(_graph, n); |
|
| 699 |
next_in[n] = InArcIt(_graph, n); |
|
| 700 |
|
|
| 1036 |
// Initialize the next arcs |
|
| 1037 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 1038 |
_next_out[u] = _first_out[u]; |
|
| 701 | 1039 |
} |
| 702 | 1040 |
|
| 703 | 1041 |
// Perform push and relabel operations |
| 704 |
while ( |
|
| 1042 |
while (_active_nodes.size() > 0) {
|
|
| 1043 |
LargeCost min_red_cost, rc; |
|
| 1044 |
Value delta; |
|
| 1045 |
int n, t, a, last_out = _res_arc_num; |
|
| 1046 |
|
|
| 705 | 1047 |
// Select an active node (FIFO selection) |
| 706 |
Node n = active_nodes[0], t; |
|
| 707 |
bool relabel_enabled = true; |
|
| 1048 |
next_node: |
|
| 1049 |
n = _active_nodes.front(); |
|
| 1050 |
last_out = _sum_supply < 0 ? |
|
| 1051 |
_first_out[n+1] : _first_out[n+1] - 1; |
|
| 708 | 1052 |
|
| 709 | 1053 |
// Perform push operations if there are admissible arcs |
| 710 |
if (_excess[n] > 0 && next_dir[n]) {
|
|
| 711 |
OutArcIt e = next_out[n]; |
|
| 712 |
for ( ; e != INVALID; ++e) {
|
|
| 713 |
if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
|
|
| 714 |
delta = std::min(_capacity[e] - (*_flow)[e], _excess[n]); |
|
| 715 |
t = _graph.target(e); |
|
| 1054 |
if (_excess[n] > 0) {
|
|
| 1055 |
for (a = _next_out[n]; a != last_out; ++a) {
|
|
| 1056 |
if (_res_cap[a] > 0 && |
|
| 1057 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
|
|
| 1058 |
delta = std::min(_res_cap[a], _excess[n]); |
|
| 1059 |
t = _target[a]; |
|
| 716 | 1060 |
|
| 717 | 1061 |
// Push-look-ahead heuristic |
| 718 |
Capacity ahead = -_excess[t]; |
|
| 719 |
for (OutArcIt oe(_graph, t); oe != INVALID; ++oe) {
|
|
| 720 |
if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0) |
|
| 721 |
ahead += _capacity[oe] - (*_flow)[oe]; |
|
| 722 |
} |
|
| 723 |
for (InArcIt ie(_graph, t); ie != INVALID; ++ie) {
|
|
| 724 |
if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0) |
|
| 725 |
ahead += (*_flow)[ie]; |
|
| 1062 |
Value ahead = -_excess[t]; |
|
| 1063 |
int last_out_t = _sum_supply < 0 ? |
|
| 1064 |
_first_out[t+1] : _first_out[t+1] - 1; |
|
| 1065 |
for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
|
|
| 1066 |
if (_res_cap[ta] > 0 && |
|
| 1067 |
_cost[ta] + _pi[_source[ta]] - _pi[_target[ta]] < 0) |
|
| 1068 |
ahead += _res_cap[ta]; |
|
| 1069 |
if (ahead >= delta) break; |
|
| 726 | 1070 |
} |
| 727 | 1071 |
if (ahead < 0) ahead = 0; |
| 728 | 1072 |
|
| 729 | 1073 |
// Push flow along the arc |
| 730 | 1074 |
if (ahead < delta) {
|
| 731 |
|
|
| 1075 |
_res_cap[a] -= ahead; |
|
| 1076 |
_res_cap[_reverse[a]] += ahead; |
|
| 732 | 1077 |
_excess[n] -= ahead; |
| 733 | 1078 |
_excess[t] += ahead; |
| 734 |
|
|
| 1079 |
_active_nodes.push_front(t); |
|
| 735 | 1080 |
hyper[t] = true; |
| 736 |
relabel_enabled = false; |
|
| 737 |
break; |
|
| 1081 |
_next_out[n] = a; |
|
| 1082 |
goto next_node; |
|
| 738 | 1083 |
} else {
|
| 739 |
|
|
| 1084 |
_res_cap[a] -= delta; |
|
| 1085 |
_res_cap[_reverse[a]] += delta; |
|
| 740 | 1086 |
_excess[n] -= delta; |
| 741 | 1087 |
_excess[t] += delta; |
| 742 | 1088 |
if (_excess[t] > 0 && _excess[t] <= delta) |
| 743 |
|
|
| 1089 |
_active_nodes.push_back(t); |
|
| 744 | 1090 |
} |
| 745 | 1091 |
|
| 746 |
if (_excess[n] == 0) |
|
| 1092 |
if (_excess[n] == 0) {
|
|
| 1093 |
_next_out[n] = a; |
|
| 1094 |
goto remove_nodes; |
|
| 1095 |
} |
|
| 747 | 1096 |
} |
| 748 | 1097 |
} |
| 749 |
if (e != INVALID) {
|
|
| 750 |
next_out[n] = e; |
|
| 751 |
} else {
|
|
| 752 |
next_dir[n] = false; |
|
| 753 |
} |
|
| 754 |
} |
|
| 755 |
|
|
| 756 |
if (_excess[n] > 0 && !next_dir[n]) {
|
|
| 757 |
InArcIt e = next_in[n]; |
|
| 758 |
for ( ; e != INVALID; ++e) {
|
|
| 759 |
if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
|
|
| 760 |
delta = std::min((*_flow)[e], _excess[n]); |
|
| 761 |
t = _graph.source(e); |
|
| 762 |
|
|
| 763 |
// Push-look-ahead heuristic |
|
| 764 |
Capacity ahead = -_excess[t]; |
|
| 765 |
for (OutArcIt oe(_graph, t); oe != INVALID; ++oe) {
|
|
| 766 |
if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0) |
|
| 767 |
ahead += _capacity[oe] - (*_flow)[oe]; |
|
| 768 |
} |
|
| 769 |
for (InArcIt ie(_graph, t); ie != INVALID; ++ie) {
|
|
| 770 |
if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0) |
|
| 771 |
ahead += (*_flow)[ie]; |
|
| 772 |
} |
|
| 773 |
if (ahead < 0) ahead = 0; |
|
| 774 |
|
|
| 775 |
// Push flow along the arc |
|
| 776 |
if (ahead < delta) {
|
|
| 777 |
(*_flow)[e] -= ahead; |
|
| 778 |
_excess[n] -= ahead; |
|
| 779 |
_excess[t] += ahead; |
|
| 780 |
active_nodes.push_front(t); |
|
| 781 |
hyper[t] = true; |
|
| 782 |
relabel_enabled = false; |
|
| 783 |
break; |
|
| 784 |
} else {
|
|
| 785 |
(*_flow)[e] -= delta; |
|
| 786 |
_excess[n] -= delta; |
|
| 787 |
_excess[t] += delta; |
|
| 788 |
if (_excess[t] > 0 && _excess[t] <= delta) |
|
| 789 |
active_nodes.push_back(t); |
|
| 790 |
} |
|
| 791 |
|
|
| 792 |
if (_excess[n] == 0) break; |
|
| 793 |
} |
|
| 794 |
} |
|
| 795 |
|
|
| 1098 |
_next_out[n] = a; |
|
| 796 | 1099 |
} |
| 797 | 1100 |
|
| 798 | 1101 |
// Relabel the node if it is still active (or hyper) |
| 799 |
if (relabel_enabled && (_excess[n] > 0 || hyper[n])) {
|
|
| 800 |
LCost min_red_cost = std::numeric_limits<LCost>::max() / 2; |
|
| 801 |
for (OutArcIt oe(_graph, n); oe != INVALID; ++oe) {
|
|
| 802 |
if ( _capacity[oe] - (*_flow)[oe] > 0 && |
|
| 803 |
(*_red_cost)[oe] < min_red_cost ) |
|
| 804 |
min_red_cost = (*_red_cost)[oe]; |
|
| 1102 |
if (_excess[n] > 0 || hyper[n]) {
|
|
| 1103 |
min_red_cost = std::numeric_limits<LargeCost>::max() / 2; |
|
| 1104 |
for (int a = _first_out[n]; a != last_out; ++a) {
|
|
| 1105 |
rc = _cost[a] + _pi[_source[a]] - _pi[_target[a]]; |
|
| 1106 |
if (_res_cap[a] > 0 && rc < min_red_cost) {
|
|
| 1107 |
min_red_cost = rc; |
|
| 1108 |
} |
|
| 805 | 1109 |
} |
| 806 |
for (InArcIt ie(_graph, n); ie != INVALID; ++ie) {
|
|
| 807 |
if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < min_red_cost) |
|
| 808 |
min_red_cost = -(*_red_cost)[ie]; |
|
| 809 |
} |
|
| 810 |
|
|
| 1110 |
_pi[n] -= min_red_cost + _epsilon; |
|
| 811 | 1111 |
hyper[n] = false; |
| 812 | 1112 |
|
| 813 |
// Reset the next arc maps |
|
| 814 |
next_out[n] = OutArcIt(_graph, n); |
|
| 815 |
next_in[n] = InArcIt(_graph, n); |
|
| 816 |
next_dir[n] = true; |
|
| 1113 |
// Reset the next arc |
|
| 1114 |
_next_out[n] = _first_out[n]; |
|
| 817 | 1115 |
} |
| 818 |
|
|
| 1116 |
|
|
| 819 | 1117 |
// Remove nodes that are not active nor hyper |
| 820 |
while ( active_nodes.size() > 0 && |
|
| 821 |
_excess[active_nodes[0]] <= 0 && |
|
| 822 |
!hyper[active_nodes[0]] ) {
|
|
| 823 |
active_nodes.pop_front(); |
|
| 1118 |
remove_nodes: |
|
| 1119 |
while ( _active_nodes.size() > 0 && |
|
| 1120 |
_excess[_active_nodes.front()] <= 0 && |
|
| 1121 |
!hyper[_active_nodes.front()] ) {
|
|
| 1122 |
_active_nodes.pop_front(); |
|
| 824 | 1123 |
} |
| 825 | 1124 |
} |
| 826 | 1125 |
} |
| 827 |
|
|
| 828 |
// Compute node potentials for the original costs |
|
| 829 |
ResidualCostMap<CostMap> res_cost(_orig_cost); |
|
| 830 |
BellmanFord< ResDigraph, ResidualCostMap<CostMap> > |
|
| 831 |
bf(*_res_graph, res_cost); |
|
| 832 |
bf.init(0); bf.start(); |
|
| 833 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
| 834 |
(*_potential)[n] = bf.dist(n); |
|
| 835 |
|
|
| 836 |
// Handle non-zero lower bounds |
|
| 837 |
if (_lower) {
|
|
| 838 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 839 |
(*_flow)[e] += (*_lower)[e]; |
|
| 840 |
} |
|
| 841 |
return true; |
|
| 842 | 1126 |
} |
| 843 | 1127 |
|
| 844 | 1128 |
}; //class CostScaling |
0 comments (0 inline)