gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Minor doc fix related to #348
0 1 0
default
1 file changed with 1 insertions and 1 deletions:
↑ Collapse diff ↑
Ignore white space 384 line context
... ...
@@ -335,385 +335,385 @@
335 335
   but the digraph should not contain directed cycles with negative total
336 336
   length.
337 337
 - \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms
338 338
   for solving the \e all-pairs \e shortest \e paths \e problem when arc
339 339
   lenghts can be either positive or negative, but the digraph should
340 340
   not contain directed cycles with negative total length.
341 341
 - \ref Suurballe A successive shortest path algorithm for finding
342 342
   arc-disjoint paths between two nodes having minimum total length.
343 343
*/
344 344

	
345 345
/**
346 346
@defgroup spantree Minimum Spanning Tree Algorithms
347 347
@ingroup algs
348 348
\brief Algorithms for finding minimum cost spanning trees and arborescences.
349 349

	
350 350
This group contains the algorithms for finding minimum cost spanning
351 351
trees and arborescences \ref clrs01algorithms.
352 352
*/
353 353

	
354 354
/**
355 355
@defgroup max_flow Maximum Flow Algorithms
356 356
@ingroup algs
357 357
\brief Algorithms for finding maximum flows.
358 358

	
359 359
This group contains the algorithms for finding maximum flows and
360 360
feasible circulations \ref clrs01algorithms, \ref amo93networkflows.
361 361

	
362 362
The \e maximum \e flow \e problem is to find a flow of maximum value between
363 363
a single source and a single target. Formally, there is a \f$G=(V,A)\f$
364 364
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
365 365
\f$s, t \in V\f$ source and target nodes.
366 366
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
367 367
following optimization problem.
368 368

	
369 369
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
370 370
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
371 371
    \quad \forall u\in V\setminus\{s,t\} \f]
372 372
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f]
373 373

	
374 374
LEMON contains several algorithms for solving maximum flow problems:
375 375
- \ref EdmondsKarp Edmonds-Karp algorithm
376 376
  \ref edmondskarp72theoretical.
377 377
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm
378 378
  \ref goldberg88newapproach.
379 379
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees
380 380
  \ref dinic70algorithm, \ref sleator83dynamic.
381 381
- \ref GoldbergTarjan !Preflow push-relabel algorithm with dynamic trees
382 382
  \ref goldberg88newapproach, \ref sleator83dynamic.
383 383

	
384 384
In most cases the \ref Preflow algorithm provides the
385 385
fastest method for computing a maximum flow. All implementations
386 386
also provide functions to query the minimum cut, which is the dual
387 387
problem of maximum flow.
388 388

	
389 389
\ref Circulation is a preflow push-relabel algorithm implemented directly 
390 390
for finding feasible circulations, which is a somewhat different problem,
391 391
but it is strongly related to maximum flow.
392 392
For more information, see \ref Circulation.
393 393
*/
394 394

	
395 395
/**
396 396
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms
397 397
@ingroup algs
398 398

	
399 399
\brief Algorithms for finding minimum cost flows and circulations.
400 400

	
401 401
This group contains the algorithms for finding minimum cost flows and
402 402
circulations \ref amo93networkflows. For more information about this
403 403
problem and its dual solution, see \ref min_cost_flow
404 404
"Minimum Cost Flow Problem".
405 405

	
406 406
LEMON contains several algorithms for this problem.
407 407
 - \ref NetworkSimplex Primal Network Simplex algorithm with various
408 408
   pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex.
409 409
 - \ref CostScaling Cost Scaling algorithm based on push/augment and
410 410
   relabel operations \ref goldberg90approximation, \ref goldberg97efficient,
411 411
   \ref bunnagel98efficient.
412 412
 - \ref CapacityScaling Capacity Scaling algorithm based on the successive
413 413
   shortest path method \ref edmondskarp72theoretical.
414 414
 - \ref CycleCanceling Cycle-Canceling algorithms, two of which are
415 415
   strongly polynomial \ref klein67primal, \ref goldberg89cyclecanceling.
416 416

	
417 417
In general NetworkSimplex is the most efficient implementation,
418 418
but in special cases other algorithms could be faster.
419 419
For example, if the total supply and/or capacities are rather small,
420 420
CapacityScaling is usually the fastest algorithm (without effective scaling).
421 421
*/
422 422

	
423 423
/**
424 424
@defgroup min_cut Minimum Cut Algorithms
425 425
@ingroup algs
426 426

	
427 427
\brief Algorithms for finding minimum cut in graphs.
428 428

	
429 429
This group contains the algorithms for finding minimum cut in graphs.
430 430

	
431 431
The \e minimum \e cut \e problem is to find a non-empty and non-complete
432 432
\f$X\f$ subset of the nodes with minimum overall capacity on
433 433
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
434 434
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
435 435
cut is the \f$X\f$ solution of the next optimization problem:
436 436

	
437 437
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
438 438
    \sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
439 439

	
440 440
LEMON contains several algorithms related to minimum cut problems:
441 441

	
442 442
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
443 443
  in directed graphs.
444 444
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
445 445
  calculating minimum cut in undirected graphs.
446 446
- \ref GomoryHu "Gomory-Hu tree computation" for calculating
447 447
  all-pairs minimum cut in undirected graphs.
448 448

	
449 449
If you want to find minimum cut just between two distinict nodes,
450 450
see the \ref max_flow "maximum flow problem".
451 451
*/
452 452

	
453 453
/**
454 454
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms
455 455
@ingroup algs
456 456
\brief Algorithms for finding minimum mean cycles.
457 457

	
458 458
This group contains the algorithms for finding minimum mean cycles
459 459
\ref clrs01algorithms, \ref amo93networkflows.
460 460

	
461 461
The \e minimum \e mean \e cycle \e problem is to find a directed cycle
462 462
of minimum mean length (cost) in a digraph.
463 463
The mean length of a cycle is the average length of its arcs, i.e. the
464 464
ratio between the total length of the cycle and the number of arcs on it.
465 465

	
466 466
This problem has an important connection to \e conservative \e length
467 467
\e functions, too. A length function on the arcs of a digraph is called
468 468
conservative if and only if there is no directed cycle of negative total
469 469
length. For an arbitrary length function, the negative of the minimum
470 470
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the
471 471
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length
472 472
function.
473 473

	
474 474
LEMON contains three algorithms for solving the minimum mean cycle problem:
475 475
- \ref Karp "Karp"'s original algorithm \ref amo93networkflows,
476 476
  \ref dasdan98minmeancycle.
477 477
- \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved
478 478
  version of Karp's algorithm \ref dasdan98minmeancycle.
479 479
- \ref Howard "Howard"'s policy iteration algorithm
480 480
  \ref dasdan98minmeancycle.
481 481

	
482 482
In practice, the Howard algorithm proved to be by far the most efficient
483 483
one, though the best known theoretical bound on its running time is
484 484
exponential.
485 485
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space
486 486
O(n<sup>2</sup>+e), but the latter one is typically faster due to the
487 487
applied early termination scheme.
488 488
*/
489 489

	
490 490
/**
491 491
@defgroup matching Matching Algorithms
492 492
@ingroup algs
493 493
\brief Algorithms for finding matchings in graphs and bipartite graphs.
494 494

	
495 495
This group contains the algorithms for calculating
496 496
matchings in graphs and bipartite graphs. The general matching problem is
497 497
finding a subset of the edges for which each node has at most one incident
498 498
edge.
499 499

	
500 500
There are several different algorithms for calculate matchings in
501 501
graphs.  The matching problems in bipartite graphs are generally
502 502
easier than in general graphs. The goal of the matching optimization
503 503
can be finding maximum cardinality, maximum weight or minimum cost
504 504
matching. The search can be constrained to find perfect or
505 505
maximum cardinality matching.
506 506

	
507 507
The matching algorithms implemented in LEMON:
508 508
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm
509 509
  for calculating maximum cardinality matching in bipartite graphs.
510 510
- \ref PrBipartiteMatching Push-relabel algorithm
511 511
  for calculating maximum cardinality matching in bipartite graphs.
512 512
- \ref MaxWeightedBipartiteMatching
513 513
  Successive shortest path algorithm for calculating maximum weighted
514 514
  matching and maximum weighted bipartite matching in bipartite graphs.
515 515
- \ref MinCostMaxBipartiteMatching
516 516
  Successive shortest path algorithm for calculating minimum cost maximum
517 517
  matching in bipartite graphs.
518 518
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
519 519
  maximum cardinality matching in general graphs.
520 520
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
521 521
  maximum weighted matching in general graphs.
522 522
- \ref MaxWeightedPerfectMatching
523 523
  Edmond's blossom shrinking algorithm for calculating maximum weighted
524 524
  perfect matching in general graphs.
525 525

	
526 526
\image html matching.png
527
\image latex matching.eps "Bipartite Matching" width=\textwidth
527
\image latex matching.eps "Min Cost Perfect Matching" width=\textwidth
528 528
*/
529 529

	
530 530
/**
531 531
@defgroup graph_properties Connectivity and Other Graph Properties
532 532
@ingroup algs
533 533
\brief Algorithms for discovering the graph properties
534 534

	
535 535
This group contains the algorithms for discovering the graph properties
536 536
like connectivity, bipartiteness, euler property, simplicity etc.
537 537

	
538 538
\image html connected_components.png
539 539
\image latex connected_components.eps "Connected components" width=\textwidth
540 540
*/
541 541

	
542 542
/**
543 543
@defgroup planar Planarity Embedding and Drawing
544 544
@ingroup algs
545 545
\brief Algorithms for planarity checking, embedding and drawing
546 546

	
547 547
This group contains the algorithms for planarity checking,
548 548
embedding and drawing.
549 549

	
550 550
\image html planar.png
551 551
\image latex planar.eps "Plane graph" width=\textwidth
552 552
*/
553 553

	
554 554
/**
555 555
@defgroup approx Approximation Algorithms
556 556
@ingroup algs
557 557
\brief Approximation algorithms.
558 558

	
559 559
This group contains the approximation and heuristic algorithms
560 560
implemented in LEMON.
561 561
*/
562 562

	
563 563
/**
564 564
@defgroup auxalg Auxiliary Algorithms
565 565
@ingroup algs
566 566
\brief Auxiliary algorithms implemented in LEMON.
567 567

	
568 568
This group contains some algorithms implemented in LEMON
569 569
in order to make it easier to implement complex algorithms.
570 570
*/
571 571

	
572 572
/**
573 573
@defgroup gen_opt_group General Optimization Tools
574 574
\brief This group contains some general optimization frameworks
575 575
implemented in LEMON.
576 576

	
577 577
This group contains some general optimization frameworks
578 578
implemented in LEMON.
579 579
*/
580 580

	
581 581
/**
582 582
@defgroup lp_group LP and MIP Solvers
583 583
@ingroup gen_opt_group
584 584
\brief LP and MIP solver interfaces for LEMON.
585 585

	
586 586
This group contains LP and MIP solver interfaces for LEMON.
587 587
Various LP solvers could be used in the same manner with this
588 588
high-level interface.
589 589

	
590 590
The currently supported solvers are \ref glpk, \ref clp, \ref cbc,
591 591
\ref cplex, \ref soplex.
592 592
*/
593 593

	
594 594
/**
595 595
@defgroup lp_utils Tools for Lp and Mip Solvers
596 596
@ingroup lp_group
597 597
\brief Helper tools to the Lp and Mip solvers.
598 598

	
599 599
This group adds some helper tools to general optimization framework
600 600
implemented in LEMON.
601 601
*/
602 602

	
603 603
/**
604 604
@defgroup metah Metaheuristics
605 605
@ingroup gen_opt_group
606 606
\brief Metaheuristics for LEMON library.
607 607

	
608 608
This group contains some metaheuristic optimization tools.
609 609
*/
610 610

	
611 611
/**
612 612
@defgroup utils Tools and Utilities
613 613
\brief Tools and utilities for programming in LEMON
614 614

	
615 615
Tools and utilities for programming in LEMON.
616 616
*/
617 617

	
618 618
/**
619 619
@defgroup gutils Basic Graph Utilities
620 620
@ingroup utils
621 621
\brief Simple basic graph utilities.
622 622

	
623 623
This group contains some simple basic graph utilities.
624 624
*/
625 625

	
626 626
/**
627 627
@defgroup misc Miscellaneous Tools
628 628
@ingroup utils
629 629
\brief Tools for development, debugging and testing.
630 630

	
631 631
This group contains several useful tools for development,
632 632
debugging and testing.
633 633
*/
634 634

	
635 635
/**
636 636
@defgroup timecount Time Measuring and Counting
637 637
@ingroup misc
638 638
\brief Simple tools for measuring the performance of algorithms.
639 639

	
640 640
This group contains simple tools for measuring the performance
641 641
of algorithms.
642 642
*/
643 643

	
644 644
/**
645 645
@defgroup exceptions Exceptions
646 646
@ingroup utils
647 647
\brief Exceptions defined in LEMON.
648 648

	
649 649
This group contains the exceptions defined in LEMON.
650 650
*/
651 651

	
652 652
/**
653 653
@defgroup io_group Input-Output
654 654
\brief Graph Input-Output methods
655 655

	
656 656
This group contains the tools for importing and exporting graphs
657 657
and graph related data. Now it supports the \ref lgf-format
658 658
"LEMON Graph Format", the \c DIMACS format and the encapsulated
659 659
postscript (EPS) format.
660 660
*/
661 661

	
662 662
/**
663 663
@defgroup lemon_io LEMON Graph Format
664 664
@ingroup io_group
665 665
\brief Reading and writing LEMON Graph Format.
666 666

	
667 667
This group contains methods for reading and writing
668 668
\ref lgf-format "LEMON Graph Format".
669 669
*/
670 670

	
671 671
/**
672 672
@defgroup eps_io Postscript Exporting
673 673
@ingroup io_group
674 674
\brief General \c EPS drawer and graph exporter
675 675

	
676 676
This group contains general \c EPS drawing methods and special
677 677
graph exporting tools.
678 678
*/
679 679

	
680 680
/**
681 681
@defgroup dimacs_group DIMACS Format
682 682
@ingroup io_group
683 683
\brief Read and write files in DIMACS format
684 684

	
685 685
Tools to read a digraph from or write it to a file in DIMACS format data.
686 686
*/
687 687

	
688 688
/**
689 689
@defgroup nauty_group NAUTY Format
690 690
@ingroup io_group
691 691
\brief Read \e Nauty format
692 692

	
693 693
Tool to read graphs from \e Nauty format data.
694 694
*/
695 695

	
696 696
/**
697 697
@defgroup concept Concepts
698 698
\brief Skeleton classes and concept checking classes
699 699

	
700 700
This group contains the data/algorithm skeletons and concept checking
701 701
classes implemented in LEMON.
702 702

	
703 703
The purpose of the classes in this group is fourfold.
704 704

	
705 705
- These classes contain the documentations of the %concepts. In order
706 706
  to avoid document multiplications, an implementation of a concept
707 707
  simply refers to the corresponding concept class.
708 708

	
709 709
- These classes declare every functions, <tt>typedef</tt>s etc. an
710 710
  implementation of the %concepts should provide, however completely
711 711
  without implementations and real data structures behind the
712 712
  interface. On the other hand they should provide nothing else. All
713 713
  the algorithms working on a data structure meeting a certain concept
714 714
  should compile with these classes. (Though it will not run properly,
715 715
  of course.) In this way it is easily to check if an algorithm
716 716
  doesn't use any extra feature of a certain implementation.
717 717

	
718 718
- The concept descriptor classes also provide a <em>checker class</em>
719 719
  that makes it possible to check whether a certain implementation of a
0 comments (0 inline)