0
3
0
... | ... |
@@ -217,393 +217,391 @@ |
217 | 217 |
|
218 | 218 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
219 | 219 |
dijkstra.run(source, target); |
220 | 220 |
\endcode |
221 | 221 |
We have a length map and a maximum speed map on the arcs of a digraph. |
222 | 222 |
The minimum time to pass the arc can be calculated as the division of |
223 | 223 |
the two maps which can be done implicitly with the \c DivMap template |
224 | 224 |
class. We use the implicit minimum time map as the length map of the |
225 | 225 |
\c Dijkstra algorithm. |
226 | 226 |
*/ |
227 | 227 |
|
228 | 228 |
/** |
229 | 229 |
@defgroup paths Path Structures |
230 | 230 |
@ingroup datas |
231 | 231 |
\brief %Path structures implemented in LEMON. |
232 | 232 |
|
233 | 233 |
This group contains the path structures implemented in LEMON. |
234 | 234 |
|
235 | 235 |
LEMON provides flexible data structures to work with paths. |
236 | 236 |
All of them have similar interfaces and they can be copied easily with |
237 | 237 |
assignment operators and copy constructors. This makes it easy and |
238 | 238 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
239 | 239 |
any kind of path structure. |
240 | 240 |
|
241 | 241 |
\sa \ref concepts::Path "Path concept" |
242 | 242 |
*/ |
243 | 243 |
|
244 | 244 |
/** |
245 | 245 |
@defgroup heaps Heap Structures |
246 | 246 |
@ingroup datas |
247 | 247 |
\brief %Heap structures implemented in LEMON. |
248 | 248 |
|
249 | 249 |
This group contains the heap structures implemented in LEMON. |
250 | 250 |
|
251 | 251 |
LEMON provides several heap classes. They are efficient implementations |
252 | 252 |
of the abstract data type \e priority \e queue. They store items with |
253 | 253 |
specified values called \e priorities in such a way that finding and |
254 | 254 |
removing the item with minimum priority are efficient. |
255 | 255 |
The basic operations are adding and erasing items, changing the priority |
256 | 256 |
of an item, etc. |
257 | 257 |
|
258 | 258 |
Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
259 | 259 |
The heap implementations have the same interface, thus any of them can be |
260 | 260 |
used easily in such algorithms. |
261 | 261 |
|
262 | 262 |
\sa \ref concepts::Heap "Heap concept" |
263 | 263 |
*/ |
264 | 264 |
|
265 | 265 |
/** |
266 | 266 |
@defgroup matrices Matrices |
267 | 267 |
@ingroup datas |
268 | 268 |
\brief Two dimensional data storages implemented in LEMON. |
269 | 269 |
|
270 | 270 |
This group contains two dimensional data storages implemented in LEMON. |
271 | 271 |
*/ |
272 | 272 |
|
273 | 273 |
/** |
274 | 274 |
@defgroup auxdat Auxiliary Data Structures |
275 | 275 |
@ingroup datas |
276 | 276 |
\brief Auxiliary data structures implemented in LEMON. |
277 | 277 |
|
278 | 278 |
This group contains some data structures implemented in LEMON in |
279 | 279 |
order to make it easier to implement combinatorial algorithms. |
280 | 280 |
*/ |
281 | 281 |
|
282 | 282 |
/** |
283 | 283 |
@defgroup geomdat Geometric Data Structures |
284 | 284 |
@ingroup auxdat |
285 | 285 |
\brief Geometric data structures implemented in LEMON. |
286 | 286 |
|
287 | 287 |
This group contains geometric data structures implemented in LEMON. |
288 | 288 |
|
289 | 289 |
- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional |
290 | 290 |
vector with the usual operations. |
291 | 291 |
- \ref lemon::dim2::Box "dim2::Box" can be used to determine the |
292 | 292 |
rectangular bounding box of a set of \ref lemon::dim2::Point |
293 | 293 |
"dim2::Point"'s. |
294 | 294 |
*/ |
295 | 295 |
|
296 | 296 |
/** |
297 | 297 |
@defgroup matrices Matrices |
298 | 298 |
@ingroup auxdat |
299 | 299 |
\brief Two dimensional data storages implemented in LEMON. |
300 | 300 |
|
301 | 301 |
This group contains two dimensional data storages implemented in LEMON. |
302 | 302 |
*/ |
303 | 303 |
|
304 | 304 |
/** |
305 | 305 |
@defgroup algs Algorithms |
306 | 306 |
\brief This group contains the several algorithms |
307 | 307 |
implemented in LEMON. |
308 | 308 |
|
309 | 309 |
This group contains the several algorithms |
310 | 310 |
implemented in LEMON. |
311 | 311 |
*/ |
312 | 312 |
|
313 | 313 |
/** |
314 | 314 |
@defgroup search Graph Search |
315 | 315 |
@ingroup algs |
316 | 316 |
\brief Common graph search algorithms. |
317 | 317 |
|
318 | 318 |
This group contains the common graph search algorithms, namely |
319 | 319 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS) |
320 | 320 |
\ref clrs01algorithms. |
321 | 321 |
*/ |
322 | 322 |
|
323 | 323 |
/** |
324 | 324 |
@defgroup shortest_path Shortest Path Algorithms |
325 | 325 |
@ingroup algs |
326 | 326 |
\brief Algorithms for finding shortest paths. |
327 | 327 |
|
328 | 328 |
This group contains the algorithms for finding shortest paths in digraphs |
329 | 329 |
\ref clrs01algorithms. |
330 | 330 |
|
331 | 331 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
332 | 332 |
when all arc lengths are non-negative. |
333 | 333 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
334 | 334 |
from a source node when arc lenghts can be either positive or negative, |
335 | 335 |
but the digraph should not contain directed cycles with negative total |
336 | 336 |
length. |
337 | 337 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
338 | 338 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
339 | 339 |
lenghts can be either positive or negative, but the digraph should |
340 | 340 |
not contain directed cycles with negative total length. |
341 | 341 |
- \ref Suurballe A successive shortest path algorithm for finding |
342 | 342 |
arc-disjoint paths between two nodes having minimum total length. |
343 | 343 |
*/ |
344 | 344 |
|
345 | 345 |
/** |
346 | 346 |
@defgroup spantree Minimum Spanning Tree Algorithms |
347 | 347 |
@ingroup algs |
348 | 348 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
349 | 349 |
|
350 | 350 |
This group contains the algorithms for finding minimum cost spanning |
351 | 351 |
trees and arborescences \ref clrs01algorithms. |
352 | 352 |
*/ |
353 | 353 |
|
354 | 354 |
/** |
355 | 355 |
@defgroup max_flow Maximum Flow Algorithms |
356 | 356 |
@ingroup algs |
357 | 357 |
\brief Algorithms for finding maximum flows. |
358 | 358 |
|
359 | 359 |
This group contains the algorithms for finding maximum flows and |
360 | 360 |
feasible circulations \ref clrs01algorithms, \ref amo93networkflows. |
361 | 361 |
|
362 | 362 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
363 | 363 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
364 | 364 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
365 | 365 |
\f$s, t \in V\f$ source and target nodes. |
366 | 366 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the |
367 | 367 |
following optimization problem. |
368 | 368 |
|
369 | 369 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
370 | 370 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
371 | 371 |
\quad \forall u\in V\setminus\{s,t\} \f] |
372 | 372 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
373 | 373 |
|
374 | 374 |
LEMON contains several algorithms for solving maximum flow problems: |
375 | 375 |
- \ref EdmondsKarp Edmonds-Karp algorithm |
376 | 376 |
\ref edmondskarp72theoretical. |
377 | 377 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm |
378 | 378 |
\ref goldberg88newapproach. |
379 | 379 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees |
380 | 380 |
\ref dinic70algorithm, \ref sleator83dynamic. |
381 | 381 |
- \ref GoldbergTarjan !Preflow push-relabel algorithm with dynamic trees |
382 | 382 |
\ref goldberg88newapproach, \ref sleator83dynamic. |
383 | 383 |
|
384 | 384 |
In most cases the \ref Preflow algorithm provides the |
385 | 385 |
fastest method for computing a maximum flow. All implementations |
386 | 386 |
also provide functions to query the minimum cut, which is the dual |
387 | 387 |
problem of maximum flow. |
388 | 388 |
|
389 | 389 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
390 | 390 |
for finding feasible circulations, which is a somewhat different problem, |
391 | 391 |
but it is strongly related to maximum flow. |
392 | 392 |
For more information, see \ref Circulation. |
393 | 393 |
*/ |
394 | 394 |
|
395 | 395 |
/** |
396 | 396 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
397 | 397 |
@ingroup algs |
398 | 398 |
|
399 | 399 |
\brief Algorithms for finding minimum cost flows and circulations. |
400 | 400 |
|
401 | 401 |
This group contains the algorithms for finding minimum cost flows and |
402 | 402 |
circulations \ref amo93networkflows. For more information about this |
403 | 403 |
problem and its dual solution, see \ref min_cost_flow |
404 | 404 |
"Minimum Cost Flow Problem". |
405 | 405 |
|
406 | 406 |
LEMON contains several algorithms for this problem. |
407 | 407 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
408 | 408 |
pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex. |
409 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
|
410 |
cost scaling \ref goldberg90approximation, \ref goldberg97efficient, |
|
409 |
- \ref CostScaling Cost Scaling algorithm based on push/augment and |
|
410 |
relabel operations \ref goldberg90approximation, \ref goldberg97efficient, |
|
411 | 411 |
\ref bunnagel98efficient. |
412 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
|
413 |
capacity scaling \ref edmondskarp72theoretical. |
|
414 |
- \ref CancelAndTighten The Cancel and Tighten algorithm |
|
415 |
\ref goldberg89cyclecanceling. |
|
416 |
- \ref CycleCanceling Cycle-Canceling algorithms |
|
417 |
\ref klein67primal, \ref goldberg89cyclecanceling. |
|
412 |
- \ref CapacityScaling Capacity Scaling algorithm based on the successive |
|
413 |
shortest path method \ref edmondskarp72theoretical. |
|
414 |
- \ref CycleCanceling Cycle-Canceling algorithms, two of which are |
|
415 |
strongly polynomial \ref klein67primal, \ref goldberg89cyclecanceling. |
|
418 | 416 |
|
419 | 417 |
In general NetworkSimplex is the most efficient implementation, |
420 | 418 |
but in special cases other algorithms could be faster. |
421 | 419 |
For example, if the total supply and/or capacities are rather small, |
422 | 420 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
423 | 421 |
*/ |
424 | 422 |
|
425 | 423 |
/** |
426 | 424 |
@defgroup min_cut Minimum Cut Algorithms |
427 | 425 |
@ingroup algs |
428 | 426 |
|
429 | 427 |
\brief Algorithms for finding minimum cut in graphs. |
430 | 428 |
|
431 | 429 |
This group contains the algorithms for finding minimum cut in graphs. |
432 | 430 |
|
433 | 431 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
434 | 432 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
435 | 433 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
436 | 434 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
437 | 435 |
cut is the \f$X\f$ solution of the next optimization problem: |
438 | 436 |
|
439 | 437 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
440 | 438 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f] |
441 | 439 |
|
442 | 440 |
LEMON contains several algorithms related to minimum cut problems: |
443 | 441 |
|
444 | 442 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
445 | 443 |
in directed graphs. |
446 | 444 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
447 | 445 |
calculating minimum cut in undirected graphs. |
448 | 446 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
449 | 447 |
all-pairs minimum cut in undirected graphs. |
450 | 448 |
|
451 | 449 |
If you want to find minimum cut just between two distinict nodes, |
452 | 450 |
see the \ref max_flow "maximum flow problem". |
453 | 451 |
*/ |
454 | 452 |
|
455 | 453 |
/** |
456 | 454 |
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms |
457 | 455 |
@ingroup algs |
458 | 456 |
\brief Algorithms for finding minimum mean cycles. |
459 | 457 |
|
460 | 458 |
This group contains the algorithms for finding minimum mean cycles |
461 | 459 |
\ref clrs01algorithms, \ref amo93networkflows. |
462 | 460 |
|
463 | 461 |
The \e minimum \e mean \e cycle \e problem is to find a directed cycle |
464 | 462 |
of minimum mean length (cost) in a digraph. |
465 | 463 |
The mean length of a cycle is the average length of its arcs, i.e. the |
466 | 464 |
ratio between the total length of the cycle and the number of arcs on it. |
467 | 465 |
|
468 | 466 |
This problem has an important connection to \e conservative \e length |
469 | 467 |
\e functions, too. A length function on the arcs of a digraph is called |
470 | 468 |
conservative if and only if there is no directed cycle of negative total |
471 | 469 |
length. For an arbitrary length function, the negative of the minimum |
472 | 470 |
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the |
473 | 471 |
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length |
474 | 472 |
function. |
475 | 473 |
|
476 | 474 |
LEMON contains three algorithms for solving the minimum mean cycle problem: |
477 | 475 |
- \ref Karp "Karp"'s original algorithm \ref amo93networkflows, |
478 | 476 |
\ref dasdan98minmeancycle. |
479 | 477 |
- \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved |
480 | 478 |
version of Karp's algorithm \ref dasdan98minmeancycle. |
481 | 479 |
- \ref Howard "Howard"'s policy iteration algorithm |
482 | 480 |
\ref dasdan98minmeancycle. |
483 | 481 |
|
484 | 482 |
In practice, the Howard algorithm proved to be by far the most efficient |
485 | 483 |
one, though the best known theoretical bound on its running time is |
486 | 484 |
exponential. |
487 | 485 |
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space |
488 | 486 |
O(n<sup>2</sup>+e), but the latter one is typically faster due to the |
489 | 487 |
applied early termination scheme. |
490 | 488 |
*/ |
491 | 489 |
|
492 | 490 |
/** |
493 | 491 |
@defgroup matching Matching Algorithms |
494 | 492 |
@ingroup algs |
495 | 493 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
496 | 494 |
|
497 | 495 |
This group contains the algorithms for calculating |
498 | 496 |
matchings in graphs and bipartite graphs. The general matching problem is |
499 | 497 |
finding a subset of the edges for which each node has at most one incident |
500 | 498 |
edge. |
501 | 499 |
|
502 | 500 |
There are several different algorithms for calculate matchings in |
503 | 501 |
graphs. The matching problems in bipartite graphs are generally |
504 | 502 |
easier than in general graphs. The goal of the matching optimization |
505 | 503 |
can be finding maximum cardinality, maximum weight or minimum cost |
506 | 504 |
matching. The search can be constrained to find perfect or |
507 | 505 |
maximum cardinality matching. |
508 | 506 |
|
509 | 507 |
The matching algorithms implemented in LEMON: |
510 | 508 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
511 | 509 |
for calculating maximum cardinality matching in bipartite graphs. |
512 | 510 |
- \ref PrBipartiteMatching Push-relabel algorithm |
513 | 511 |
for calculating maximum cardinality matching in bipartite graphs. |
514 | 512 |
- \ref MaxWeightedBipartiteMatching |
515 | 513 |
Successive shortest path algorithm for calculating maximum weighted |
516 | 514 |
matching and maximum weighted bipartite matching in bipartite graphs. |
517 | 515 |
- \ref MinCostMaxBipartiteMatching |
518 | 516 |
Successive shortest path algorithm for calculating minimum cost maximum |
519 | 517 |
matching in bipartite graphs. |
520 | 518 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
521 | 519 |
maximum cardinality matching in general graphs. |
522 | 520 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
523 | 521 |
maximum weighted matching in general graphs. |
524 | 522 |
- \ref MaxWeightedPerfectMatching |
525 | 523 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
526 | 524 |
perfect matching in general graphs. |
527 | 525 |
|
528 | 526 |
\image html bipartite_matching.png |
529 | 527 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
530 | 528 |
*/ |
531 | 529 |
|
532 | 530 |
/** |
533 | 531 |
@defgroup graph_properties Connectivity and Other Graph Properties |
534 | 532 |
@ingroup algs |
535 | 533 |
\brief Algorithms for discovering the graph properties |
536 | 534 |
|
537 | 535 |
This group contains the algorithms for discovering the graph properties |
538 | 536 |
like connectivity, bipartiteness, euler property, simplicity etc. |
539 | 537 |
|
540 | 538 |
\image html connected_components.png |
541 | 539 |
\image latex connected_components.eps "Connected components" width=\textwidth |
542 | 540 |
*/ |
543 | 541 |
|
544 | 542 |
/** |
545 | 543 |
@defgroup planar Planarity Embedding and Drawing |
546 | 544 |
@ingroup algs |
547 | 545 |
\brief Algorithms for planarity checking, embedding and drawing |
548 | 546 |
|
549 | 547 |
This group contains the algorithms for planarity checking, |
550 | 548 |
embedding and drawing. |
551 | 549 |
|
552 | 550 |
\image html planar.png |
553 | 551 |
\image latex planar.eps "Plane graph" width=\textwidth |
554 | 552 |
*/ |
555 | 553 |
|
556 | 554 |
/** |
557 | 555 |
@defgroup approx Approximation Algorithms |
558 | 556 |
@ingroup algs |
559 | 557 |
\brief Approximation algorithms. |
560 | 558 |
|
561 | 559 |
This group contains the approximation and heuristic algorithms |
562 | 560 |
implemented in LEMON. |
563 | 561 |
*/ |
564 | 562 |
|
565 | 563 |
/** |
566 | 564 |
@defgroup auxalg Auxiliary Algorithms |
567 | 565 |
@ingroup algs |
568 | 566 |
\brief Auxiliary algorithms implemented in LEMON. |
569 | 567 |
|
570 | 568 |
This group contains some algorithms implemented in LEMON |
571 | 569 |
in order to make it easier to implement complex algorithms. |
572 | 570 |
*/ |
573 | 571 |
|
574 | 572 |
/** |
575 | 573 |
@defgroup gen_opt_group General Optimization Tools |
576 | 574 |
\brief This group contains some general optimization frameworks |
577 | 575 |
implemented in LEMON. |
578 | 576 |
|
579 | 577 |
This group contains some general optimization frameworks |
580 | 578 |
implemented in LEMON. |
581 | 579 |
*/ |
582 | 580 |
|
583 | 581 |
/** |
584 | 582 |
@defgroup lp_group LP and MIP Solvers |
585 | 583 |
@ingroup gen_opt_group |
586 | 584 |
\brief LP and MIP solver interfaces for LEMON. |
587 | 585 |
|
588 | 586 |
This group contains LP and MIP solver interfaces for LEMON. |
589 | 587 |
Various LP solvers could be used in the same manner with this |
590 | 588 |
high-level interface. |
591 | 589 |
|
592 | 590 |
The currently supported solvers are \ref glpk, \ref clp, \ref cbc, |
593 | 591 |
\ref cplex, \ref soplex. |
594 | 592 |
*/ |
595 | 593 |
|
596 | 594 |
/** |
597 | 595 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
598 | 596 |
@ingroup lp_group |
599 | 597 |
\brief Helper tools to the Lp and Mip solvers. |
600 | 598 |
|
601 | 599 |
This group adds some helper tools to general optimization framework |
602 | 600 |
implemented in LEMON. |
603 | 601 |
*/ |
604 | 602 |
|
605 | 603 |
/** |
606 | 604 |
@defgroup metah Metaheuristics |
607 | 605 |
@ingroup gen_opt_group |
608 | 606 |
\brief Metaheuristics for LEMON library. |
609 | 607 |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CAPACITY_SCALING_H |
20 | 20 |
#define LEMON_CAPACITY_SCALING_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Capacity Scaling algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/core.h> |
30 | 30 |
#include <lemon/bin_heap.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
/// \brief Default traits class of CapacityScaling algorithm. |
35 | 35 |
/// |
36 | 36 |
/// Default traits class of CapacityScaling algorithm. |
37 | 37 |
/// \tparam GR Digraph type. |
38 | 38 |
/// \tparam V The number type used for flow amounts, capacity bounds |
39 | 39 |
/// and supply values. By default it is \c int. |
40 | 40 |
/// \tparam C The number type used for costs and potentials. |
41 | 41 |
/// By default it is the same as \c V. |
42 | 42 |
template <typename GR, typename V = int, typename C = V> |
43 | 43 |
struct CapacityScalingDefaultTraits |
44 | 44 |
{ |
45 | 45 |
/// The type of the digraph |
46 | 46 |
typedef GR Digraph; |
47 | 47 |
/// The type of the flow amounts, capacity bounds and supply values |
48 | 48 |
typedef V Value; |
49 | 49 |
/// The type of the arc costs |
50 | 50 |
typedef C Cost; |
51 | 51 |
|
52 | 52 |
/// \brief The type of the heap used for internal Dijkstra computations. |
53 | 53 |
/// |
54 | 54 |
/// The type of the heap used for internal Dijkstra computations. |
55 | 55 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
56 | 56 |
/// its priority type must be \c Cost and its cross reference type |
57 | 57 |
/// must be \ref RangeMap "RangeMap<int>". |
58 | 58 |
typedef BinHeap<Cost, RangeMap<int> > Heap; |
59 | 59 |
}; |
60 | 60 |
|
61 | 61 |
/// \addtogroup min_cost_flow_algs |
62 | 62 |
/// @{ |
63 | 63 |
|
64 | 64 |
/// \brief Implementation of the Capacity Scaling algorithm for |
65 | 65 |
/// finding a \ref min_cost_flow "minimum cost flow". |
66 | 66 |
/// |
67 | 67 |
/// \ref CapacityScaling implements the capacity scaling version |
68 | 68 |
/// of the successive shortest path algorithm for finding a |
69 |
/// \ref min_cost_flow "minimum cost flow" |
|
69 |
/// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows, |
|
70 |
/// \ref edmondskarp72theoretical. It is an efficient dual |
|
70 | 71 |
/// solution method. |
71 | 72 |
/// |
72 | 73 |
/// Most of the parameters of the problem (except for the digraph) |
73 | 74 |
/// can be given using separate functions, and the algorithm can be |
74 | 75 |
/// executed using the \ref run() function. If some parameters are not |
75 | 76 |
/// specified, then default values will be used. |
76 | 77 |
/// |
77 | 78 |
/// \tparam GR The digraph type the algorithm runs on. |
78 | 79 |
/// \tparam V The number type used for flow amounts, capacity bounds |
79 | 80 |
/// and supply values in the algorithm. By default it is \c int. |
80 | 81 |
/// \tparam C The number type used for costs and potentials in the |
81 | 82 |
/// algorithm. By default it is the same as \c V. |
82 | 83 |
/// |
83 | 84 |
/// \warning Both number types must be signed and all input data must |
84 | 85 |
/// be integer. |
85 | 86 |
/// \warning This algorithm does not support negative costs for such |
86 | 87 |
/// arcs that have infinite upper bound. |
87 | 88 |
#ifdef DOXYGEN |
88 | 89 |
template <typename GR, typename V, typename C, typename TR> |
89 | 90 |
#else |
90 | 91 |
template < typename GR, typename V = int, typename C = V, |
91 | 92 |
typename TR = CapacityScalingDefaultTraits<GR, V, C> > |
92 | 93 |
#endif |
93 | 94 |
class CapacityScaling |
94 | 95 |
{ |
95 | 96 |
public: |
96 | 97 |
|
97 | 98 |
/// The type of the digraph |
98 | 99 |
typedef typename TR::Digraph Digraph; |
99 | 100 |
/// The type of the flow amounts, capacity bounds and supply values |
100 | 101 |
typedef typename TR::Value Value; |
101 | 102 |
/// The type of the arc costs |
102 | 103 |
typedef typename TR::Cost Cost; |
103 | 104 |
|
104 | 105 |
/// The type of the heap used for internal Dijkstra computations |
105 | 106 |
typedef typename TR::Heap Heap; |
106 | 107 |
|
107 | 108 |
/// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm |
108 | 109 |
typedef TR Traits; |
109 | 110 |
|
110 | 111 |
public: |
111 | 112 |
|
112 | 113 |
/// \brief Problem type constants for the \c run() function. |
113 | 114 |
/// |
114 | 115 |
/// Enum type containing the problem type constants that can be |
115 | 116 |
/// returned by the \ref run() function of the algorithm. |
116 | 117 |
enum ProblemType { |
117 | 118 |
/// The problem has no feasible solution (flow). |
118 | 119 |
INFEASIBLE, |
119 | 120 |
/// The problem has optimal solution (i.e. it is feasible and |
120 | 121 |
/// bounded), and the algorithm has found optimal flow and node |
121 | 122 |
/// potentials (primal and dual solutions). |
122 | 123 |
OPTIMAL, |
123 | 124 |
/// The digraph contains an arc of negative cost and infinite |
124 | 125 |
/// upper bound. It means that the objective function is unbounded |
125 | 126 |
/// on that arc, however, note that it could actually be bounded |
126 | 127 |
/// over the feasible flows, but this algroithm cannot handle |
127 | 128 |
/// these cases. |
128 | 129 |
UNBOUNDED |
129 | 130 |
}; |
130 | 131 |
|
131 | 132 |
private: |
132 | 133 |
|
133 | 134 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
134 | 135 |
|
135 | 136 |
typedef std::vector<int> IntVector; |
136 | 137 |
typedef std::vector<char> BoolVector; |
137 | 138 |
typedef std::vector<Value> ValueVector; |
138 | 139 |
typedef std::vector<Cost> CostVector; |
139 | 140 |
|
140 | 141 |
private: |
141 | 142 |
|
142 | 143 |
// Data related to the underlying digraph |
143 | 144 |
const GR &_graph; |
144 | 145 |
int _node_num; |
145 | 146 |
int _arc_num; |
146 | 147 |
int _res_arc_num; |
147 | 148 |
int _root; |
148 | 149 |
|
149 | 150 |
// Parameters of the problem |
150 | 151 |
bool _have_lower; |
151 | 152 |
Value _sum_supply; |
152 | 153 |
|
153 | 154 |
// Data structures for storing the digraph |
154 | 155 |
IntNodeMap _node_id; |
155 | 156 |
IntArcMap _arc_idf; |
156 | 157 |
IntArcMap _arc_idb; |
157 | 158 |
IntVector _first_out; |
158 | 159 |
BoolVector _forward; |
159 | 160 |
IntVector _source; |
160 | 161 |
IntVector _target; |
161 | 162 |
IntVector _reverse; |
162 | 163 |
|
163 | 164 |
// Node and arc data |
164 | 165 |
ValueVector _lower; |
165 | 166 |
ValueVector _upper; |
166 | 167 |
CostVector _cost; |
167 | 168 |
ValueVector _supply; |
168 | 169 |
|
169 | 170 |
ValueVector _res_cap; |
170 | 171 |
CostVector _pi; |
171 | 172 |
ValueVector _excess; |
172 | 173 |
IntVector _excess_nodes; |
173 | 174 |
IntVector _deficit_nodes; |
174 | 175 |
|
175 | 176 |
Value _delta; |
176 | 177 |
int _factor; |
177 | 178 |
IntVector _pred; |
178 | 179 |
|
179 | 180 |
public: |
180 | 181 |
|
181 | 182 |
/// \brief Constant for infinite upper bounds (capacities). |
182 | 183 |
/// |
183 | 184 |
/// Constant for infinite upper bounds (capacities). |
184 | 185 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
185 | 186 |
/// \c std::numeric_limits<Value>::max() otherwise. |
186 | 187 |
const Value INF; |
187 | 188 |
|
188 | 189 |
private: |
189 | 190 |
|
190 | 191 |
// Special implementation of the Dijkstra algorithm for finding |
191 | 192 |
// shortest paths in the residual network of the digraph with |
192 | 193 |
// respect to the reduced arc costs and modifying the node |
193 | 194 |
// potentials according to the found distance labels. |
194 | 195 |
class ResidualDijkstra |
195 | 196 |
{ |
196 | 197 |
private: |
197 | 198 |
|
198 | 199 |
int _node_num; |
199 | 200 |
bool _geq; |
200 | 201 |
const IntVector &_first_out; |
201 | 202 |
const IntVector &_target; |
202 | 203 |
const CostVector &_cost; |
203 | 204 |
const ValueVector &_res_cap; |
204 | 205 |
const ValueVector &_excess; |
205 | 206 |
CostVector &_pi; |
206 | 207 |
IntVector &_pred; |
207 | 208 |
|
208 | 209 |
IntVector _proc_nodes; |
209 | 210 |
CostVector _dist; |
210 | 211 |
|
211 | 212 |
public: |
212 | 213 |
|
213 | 214 |
ResidualDijkstra(CapacityScaling& cs) : |
214 | 215 |
_node_num(cs._node_num), _geq(cs._sum_supply < 0), |
215 | 216 |
_first_out(cs._first_out), _target(cs._target), _cost(cs._cost), |
216 | 217 |
_res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi), |
217 | 218 |
_pred(cs._pred), _dist(cs._node_num) |
218 | 219 |
{} |
219 | 220 |
|
220 | 221 |
int run(int s, Value delta = 1) { |
221 | 222 |
RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP); |
222 | 223 |
Heap heap(heap_cross_ref); |
223 | 224 |
heap.push(s, 0); |
224 | 225 |
_pred[s] = -1; |
225 | 226 |
_proc_nodes.clear(); |
226 | 227 |
|
227 | 228 |
// Process nodes |
228 | 229 |
while (!heap.empty() && _excess[heap.top()] > -delta) { |
229 | 230 |
int u = heap.top(), v; |
230 | 231 |
Cost d = heap.prio() + _pi[u], dn; |
231 | 232 |
_dist[u] = heap.prio(); |
232 | 233 |
_proc_nodes.push_back(u); |
233 | 234 |
heap.pop(); |
234 | 235 |
|
235 | 236 |
// Traverse outgoing residual arcs |
236 | 237 |
int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1; |
237 | 238 |
for (int a = _first_out[u]; a != last_out; ++a) { |
238 | 239 |
if (_res_cap[a] < delta) continue; |
239 | 240 |
v = _target[a]; |
240 | 241 |
switch (heap.state(v)) { |
241 | 242 |
case Heap::PRE_HEAP: |
242 | 243 |
heap.push(v, d + _cost[a] - _pi[v]); |
243 | 244 |
_pred[v] = a; |
244 | 245 |
break; |
245 | 246 |
case Heap::IN_HEAP: |
246 | 247 |
dn = d + _cost[a] - _pi[v]; |
247 | 248 |
if (dn < heap[v]) { |
248 | 249 |
heap.decrease(v, dn); |
249 | 250 |
_pred[v] = a; |
250 | 251 |
} |
251 | 252 |
break; |
252 | 253 |
case Heap::POST_HEAP: |
253 | 254 |
break; |
254 | 255 |
} |
255 | 256 |
} |
256 | 257 |
} |
257 | 258 |
if (heap.empty()) return -1; |
258 | 259 |
|
259 | 260 |
// Update potentials of processed nodes |
260 | 261 |
int t = heap.top(); |
261 | 262 |
Cost dt = heap.prio(); |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_COST_SCALING_H |
20 | 20 |
#define LEMON_COST_SCALING_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Cost scaling algorithm for finding a minimum cost flow. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <deque> |
28 | 28 |
#include <limits> |
29 | 29 |
|
30 | 30 |
#include <lemon/core.h> |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
#include <lemon/static_graph.h> |
34 | 34 |
#include <lemon/circulation.h> |
35 | 35 |
#include <lemon/bellman_ford.h> |
36 | 36 |
|
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 | 39 |
/// \brief Default traits class of CostScaling algorithm. |
40 | 40 |
/// |
41 | 41 |
/// Default traits class of CostScaling algorithm. |
42 | 42 |
/// \tparam GR Digraph type. |
43 | 43 |
/// \tparam V The number type used for flow amounts, capacity bounds |
44 | 44 |
/// and supply values. By default it is \c int. |
45 | 45 |
/// \tparam C The number type used for costs and potentials. |
46 | 46 |
/// By default it is the same as \c V. |
47 | 47 |
#ifdef DOXYGEN |
48 | 48 |
template <typename GR, typename V = int, typename C = V> |
49 | 49 |
#else |
50 | 50 |
template < typename GR, typename V = int, typename C = V, |
51 | 51 |
bool integer = std::numeric_limits<C>::is_integer > |
52 | 52 |
#endif |
53 | 53 |
struct CostScalingDefaultTraits |
54 | 54 |
{ |
55 | 55 |
/// The type of the digraph |
56 | 56 |
typedef GR Digraph; |
57 | 57 |
/// The type of the flow amounts, capacity bounds and supply values |
58 | 58 |
typedef V Value; |
59 | 59 |
/// The type of the arc costs |
60 | 60 |
typedef C Cost; |
61 | 61 |
|
62 | 62 |
/// \brief The large cost type used for internal computations |
63 | 63 |
/// |
64 | 64 |
/// The large cost type used for internal computations. |
65 | 65 |
/// It is \c long \c long if the \c Cost type is integer, |
66 | 66 |
/// otherwise it is \c double. |
67 | 67 |
/// \c Cost must be convertible to \c LargeCost. |
68 | 68 |
typedef double LargeCost; |
69 | 69 |
}; |
70 | 70 |
|
71 | 71 |
// Default traits class for integer cost types |
72 | 72 |
template <typename GR, typename V, typename C> |
73 | 73 |
struct CostScalingDefaultTraits<GR, V, C, true> |
74 | 74 |
{ |
75 | 75 |
typedef GR Digraph; |
76 | 76 |
typedef V Value; |
77 | 77 |
typedef C Cost; |
78 | 78 |
#ifdef LEMON_HAVE_LONG_LONG |
79 | 79 |
typedef long long LargeCost; |
80 | 80 |
#else |
81 | 81 |
typedef long LargeCost; |
82 | 82 |
#endif |
83 | 83 |
}; |
84 | 84 |
|
85 | 85 |
|
86 | 86 |
/// \addtogroup min_cost_flow_algs |
87 | 87 |
/// @{ |
88 | 88 |
|
89 | 89 |
/// \brief Implementation of the Cost Scaling algorithm for |
90 | 90 |
/// finding a \ref min_cost_flow "minimum cost flow". |
91 | 91 |
/// |
92 | 92 |
/// \ref CostScaling implements a cost scaling algorithm that performs |
93 |
/// push/augment and relabel operations for finding a minimum cost |
|
94 |
/// flow. It is an efficient primal-dual solution method, which |
|
93 |
/// push/augment and relabel operations for finding a \ref min_cost_flow |
|
94 |
/// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation, |
|
95 |
/// \ref goldberg97efficient, \ref bunnagel98efficient. |
|
96 |
/// It is a highly efficient primal-dual solution method, which |
|
95 | 97 |
/// can be viewed as the generalization of the \ref Preflow |
96 | 98 |
/// "preflow push-relabel" algorithm for the maximum flow problem. |
97 | 99 |
/// |
98 | 100 |
/// Most of the parameters of the problem (except for the digraph) |
99 | 101 |
/// can be given using separate functions, and the algorithm can be |
100 | 102 |
/// executed using the \ref run() function. If some parameters are not |
101 | 103 |
/// specified, then default values will be used. |
102 | 104 |
/// |
103 | 105 |
/// \tparam GR The digraph type the algorithm runs on. |
104 | 106 |
/// \tparam V The number type used for flow amounts, capacity bounds |
105 | 107 |
/// and supply values in the algorithm. By default it is \c int. |
106 | 108 |
/// \tparam C The number type used for costs and potentials in the |
107 | 109 |
/// algorithm. By default it is the same as \c V. |
108 | 110 |
/// |
109 | 111 |
/// \warning Both number types must be signed and all input data must |
110 | 112 |
/// be integer. |
111 | 113 |
/// \warning This algorithm does not support negative costs for such |
112 | 114 |
/// arcs that have infinite upper bound. |
113 | 115 |
/// |
114 | 116 |
/// \note %CostScaling provides three different internal methods, |
115 | 117 |
/// from which the most efficient one is used by default. |
116 | 118 |
/// For more information, see \ref Method. |
117 | 119 |
#ifdef DOXYGEN |
118 | 120 |
template <typename GR, typename V, typename C, typename TR> |
119 | 121 |
#else |
120 | 122 |
template < typename GR, typename V = int, typename C = V, |
121 | 123 |
typename TR = CostScalingDefaultTraits<GR, V, C> > |
122 | 124 |
#endif |
123 | 125 |
class CostScaling |
124 | 126 |
{ |
125 | 127 |
public: |
126 | 128 |
|
127 | 129 |
/// The type of the digraph |
128 | 130 |
typedef typename TR::Digraph Digraph; |
129 | 131 |
/// The type of the flow amounts, capacity bounds and supply values |
130 | 132 |
typedef typename TR::Value Value; |
131 | 133 |
/// The type of the arc costs |
132 | 134 |
typedef typename TR::Cost Cost; |
133 | 135 |
|
134 | 136 |
/// \brief The large cost type |
135 | 137 |
/// |
136 | 138 |
/// The large cost type used for internal computations. |
137 | 139 |
/// Using the \ref CostScalingDefaultTraits "default traits class", |
138 | 140 |
/// it is \c long \c long if the \c Cost type is integer, |
139 | 141 |
/// otherwise it is \c double. |
140 | 142 |
typedef typename TR::LargeCost LargeCost; |
141 | 143 |
|
142 | 144 |
/// The \ref CostScalingDefaultTraits "traits class" of the algorithm |
143 | 145 |
typedef TR Traits; |
144 | 146 |
|
145 | 147 |
public: |
146 | 148 |
|
147 | 149 |
/// \brief Problem type constants for the \c run() function. |
148 | 150 |
/// |
149 | 151 |
/// Enum type containing the problem type constants that can be |
150 | 152 |
/// returned by the \ref run() function of the algorithm. |
151 | 153 |
enum ProblemType { |
152 | 154 |
/// The problem has no feasible solution (flow). |
153 | 155 |
INFEASIBLE, |
154 | 156 |
/// The problem has optimal solution (i.e. it is feasible and |
155 | 157 |
/// bounded), and the algorithm has found optimal flow and node |
156 | 158 |
/// potentials (primal and dual solutions). |
157 | 159 |
OPTIMAL, |
158 | 160 |
/// The digraph contains an arc of negative cost and infinite |
159 | 161 |
/// upper bound. It means that the objective function is unbounded |
160 | 162 |
/// on that arc, however, note that it could actually be bounded |
161 | 163 |
/// over the feasible flows, but this algroithm cannot handle |
162 | 164 |
/// these cases. |
163 | 165 |
UNBOUNDED |
164 | 166 |
}; |
165 | 167 |
|
166 | 168 |
/// \brief Constants for selecting the internal method. |
167 | 169 |
/// |
168 | 170 |
/// Enum type containing constants for selecting the internal method |
169 | 171 |
/// for the \ref run() function. |
170 | 172 |
/// |
171 | 173 |
/// \ref CostScaling provides three internal methods that differ mainly |
172 | 174 |
/// in their base operations, which are used in conjunction with the |
173 | 175 |
/// relabel operation. |
174 | 176 |
/// By default, the so called \ref PARTIAL_AUGMENT |
175 | 177 |
/// "Partial Augment-Relabel" method is used, which proved to be |
176 | 178 |
/// the most efficient and the most robust on various test inputs. |
177 | 179 |
/// However, the other methods can be selected using the \ref run() |
178 | 180 |
/// function with the proper parameter. |
179 | 181 |
enum Method { |
180 | 182 |
/// Local push operations are used, i.e. flow is moved only on one |
181 | 183 |
/// admissible arc at once. |
182 | 184 |
PUSH, |
183 | 185 |
/// Augment operations are used, i.e. flow is moved on admissible |
184 | 186 |
/// paths from a node with excess to a node with deficit. |
185 | 187 |
AUGMENT, |
186 | 188 |
/// Partial augment operations are used, i.e. flow is moved on |
187 | 189 |
/// admissible paths started from a node with excess, but the |
188 | 190 |
/// lengths of these paths are limited. This method can be viewed |
189 | 191 |
/// as a combined version of the previous two operations. |
190 | 192 |
PARTIAL_AUGMENT |
191 | 193 |
}; |
192 | 194 |
|
193 | 195 |
private: |
194 | 196 |
|
195 | 197 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
196 | 198 |
|
197 | 199 |
typedef std::vector<int> IntVector; |
198 | 200 |
typedef std::vector<char> BoolVector; |
199 | 201 |
typedef std::vector<Value> ValueVector; |
200 | 202 |
typedef std::vector<Cost> CostVector; |
201 | 203 |
typedef std::vector<LargeCost> LargeCostVector; |
202 | 204 |
|
203 | 205 |
private: |
204 | 206 |
|
205 | 207 |
template <typename KT, typename VT> |
206 | 208 |
class VectorMap { |
207 | 209 |
public: |
208 | 210 |
typedef KT Key; |
209 | 211 |
typedef VT Value; |
210 | 212 |
|
211 | 213 |
VectorMap(std::vector<Value>& v) : _v(v) {} |
212 | 214 |
|
213 | 215 |
const Value& operator[](const Key& key) const { |
214 | 216 |
return _v[StaticDigraph::id(key)]; |
215 | 217 |
} |
216 | 218 |
|
217 | 219 |
Value& operator[](const Key& key) { |
218 | 220 |
return _v[StaticDigraph::id(key)]; |
219 | 221 |
} |
220 | 222 |
|
221 | 223 |
void set(const Key& key, const Value& val) { |
222 | 224 |
_v[StaticDigraph::id(key)] = val; |
223 | 225 |
} |
224 | 226 |
|
225 | 227 |
private: |
226 | 228 |
std::vector<Value>& _v; |
227 | 229 |
}; |
228 | 230 |
|
229 | 231 |
typedef VectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap; |
230 | 232 |
typedef VectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap; |
231 | 233 |
|
232 | 234 |
private: |
233 | 235 |
|
234 | 236 |
// Data related to the underlying digraph |
235 | 237 |
const GR &_graph; |
236 | 238 |
int _node_num; |
237 | 239 |
int _arc_num; |
238 | 240 |
int _res_node_num; |
239 | 241 |
int _res_arc_num; |
240 | 242 |
int _root; |
241 | 243 |
|
242 | 244 |
// Parameters of the problem |
243 | 245 |
bool _have_lower; |
244 | 246 |
Value _sum_supply; |
245 | 247 |
|
246 | 248 |
// Data structures for storing the digraph |
247 | 249 |
IntNodeMap _node_id; |
248 | 250 |
IntArcMap _arc_idf; |
249 | 251 |
IntArcMap _arc_idb; |
250 | 252 |
IntVector _first_out; |
251 | 253 |
BoolVector _forward; |
252 | 254 |
IntVector _source; |
253 | 255 |
IntVector _target; |
254 | 256 |
IntVector _reverse; |
255 | 257 |
|
256 | 258 |
// Node and arc data |
257 | 259 |
ValueVector _lower; |
258 | 260 |
ValueVector _upper; |
259 | 261 |
CostVector _scost; |
260 | 262 |
ValueVector _supply; |
261 | 263 |
|
262 | 264 |
ValueVector _res_cap; |
263 | 265 |
LargeCostVector _cost; |
264 | 266 |
LargeCostVector _pi; |
265 | 267 |
ValueVector _excess; |
266 | 268 |
IntVector _next_out; |
267 | 269 |
std::deque<int> _active_nodes; |
268 | 270 |
|
269 | 271 |
// Data for scaling |
270 | 272 |
LargeCost _epsilon; |
271 | 273 |
int _alpha; |
272 | 274 |
|
273 | 275 |
// Data for a StaticDigraph structure |
274 | 276 |
typedef std::pair<int, int> IntPair; |
275 | 277 |
StaticDigraph _sgr; |
276 | 278 |
std::vector<IntPair> _arc_vec; |
277 | 279 |
std::vector<LargeCost> _cost_vec; |
278 | 280 |
LargeCostArcMap _cost_map; |
279 | 281 |
LargeCostNodeMap _pi_map; |
280 | 282 |
|
281 | 283 |
public: |
282 | 284 |
|
283 | 285 |
/// \brief Constant for infinite upper bounds (capacities). |
284 | 286 |
/// |
285 | 287 |
/// Constant for infinite upper bounds (capacities). |
286 | 288 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
0 comments (0 inline)