0
4
0
... | ... |
@@ -115,51 +115,51 @@ |
115 | 115 |
/// This functon makes the heap empty. |
116 | 116 |
/// It does not change the cross reference map. If you want to reuse |
117 | 117 |
/// a heap that is not surely empty, you should first clear it and |
118 | 118 |
/// then you should set the cross reference map to \c PRE_HEAP |
119 | 119 |
/// for each item. |
120 | 120 |
void clear() { |
121 | 121 |
_data.clear(); |
122 | 122 |
} |
123 | 123 |
|
124 | 124 |
private: |
125 | 125 |
static int parent(int i) { return (i-1)/2; } |
126 | 126 |
|
127 |
static int |
|
127 |
static int secondChild(int i) { return 2*i+2; } |
|
128 | 128 |
bool less(const Pair &p1, const Pair &p2) const { |
129 | 129 |
return _comp(p1.second, p2.second); |
130 | 130 |
} |
131 | 131 |
|
132 |
int |
|
132 |
int bubbleUp(int hole, Pair p) { |
|
133 | 133 |
int par = parent(hole); |
134 | 134 |
while( hole>0 && less(p,_data[par]) ) { |
135 | 135 |
move(_data[par],hole); |
136 | 136 |
hole = par; |
137 | 137 |
par = parent(hole); |
138 | 138 |
} |
139 | 139 |
move(p, hole); |
140 | 140 |
return hole; |
141 | 141 |
} |
142 | 142 |
|
143 |
int bubble_down(int hole, Pair p, int length) { |
|
144 |
int child = second_child(hole); |
|
143 |
int bubbleDown(int hole, Pair p, int length) { |
|
144 |
int child = secondChild(hole); |
|
145 | 145 |
while(child < length) { |
146 | 146 |
if( less(_data[child-1], _data[child]) ) { |
147 | 147 |
--child; |
148 | 148 |
} |
149 | 149 |
if( !less(_data[child], p) ) |
150 | 150 |
goto ok; |
151 | 151 |
move(_data[child], hole); |
152 | 152 |
hole = child; |
153 |
child = |
|
153 |
child = secondChild(hole); |
|
154 | 154 |
} |
155 | 155 |
child--; |
156 | 156 |
if( child<length && less(_data[child], p) ) { |
157 | 157 |
move(_data[child], hole); |
158 | 158 |
hole=child; |
159 | 159 |
} |
160 | 160 |
ok: |
161 | 161 |
move(p, hole); |
162 | 162 |
return hole; |
163 | 163 |
} |
164 | 164 |
|
165 | 165 |
void move(const Pair &p, int i) { |
... | ... |
@@ -169,25 +169,25 @@ |
169 | 169 |
|
170 | 170 |
public: |
171 | 171 |
|
172 | 172 |
/// \brief Insert a pair of item and priority into the heap. |
173 | 173 |
/// |
174 | 174 |
/// This function inserts \c p.first to the heap with priority |
175 | 175 |
/// \c p.second. |
176 | 176 |
/// \param p The pair to insert. |
177 | 177 |
/// \pre \c p.first must not be stored in the heap. |
178 | 178 |
void push(const Pair &p) { |
179 | 179 |
int n = _data.size(); |
180 | 180 |
_data.resize(n+1); |
181 |
|
|
181 |
bubbleUp(n, p); |
|
182 | 182 |
} |
183 | 183 |
|
184 | 184 |
/// \brief Insert an item into the heap with the given priority. |
185 | 185 |
/// |
186 | 186 |
/// This function inserts the given item into the heap with the |
187 | 187 |
/// given priority. |
188 | 188 |
/// \param i The item to insert. |
189 | 189 |
/// \param p The priority of the item. |
190 | 190 |
/// \pre \e i must not be stored in the heap. |
191 | 191 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
192 | 192 |
|
193 | 193 |
/// \brief Return the item having minimum priority. |
... | ... |
@@ -205,42 +205,42 @@ |
205 | 205 |
Prio prio() const { |
206 | 206 |
return _data[0].second; |
207 | 207 |
} |
208 | 208 |
|
209 | 209 |
/// \brief Remove the item having minimum priority. |
210 | 210 |
/// |
211 | 211 |
/// This function removes the item having minimum priority. |
212 | 212 |
/// \pre The heap must be non-empty. |
213 | 213 |
void pop() { |
214 | 214 |
int n = _data.size()-1; |
215 | 215 |
_iim.set(_data[0].first, POST_HEAP); |
216 | 216 |
if (n > 0) { |
217 |
|
|
217 |
bubbleDown(0, _data[n], n); |
|
218 | 218 |
} |
219 | 219 |
_data.pop_back(); |
220 | 220 |
} |
221 | 221 |
|
222 | 222 |
/// \brief Remove the given item from the heap. |
223 | 223 |
/// |
224 | 224 |
/// This function removes the given item from the heap if it is |
225 | 225 |
/// already stored. |
226 | 226 |
/// \param i The item to delete. |
227 | 227 |
/// \pre \e i must be in the heap. |
228 | 228 |
void erase(const Item &i) { |
229 | 229 |
int h = _iim[i]; |
230 | 230 |
int n = _data.size()-1; |
231 | 231 |
_iim.set(_data[h].first, POST_HEAP); |
232 | 232 |
if( h < n ) { |
233 |
if ( bubble_up(h, _data[n]) == h) { |
|
234 |
bubble_down(h, _data[n], n); |
|
233 |
if ( bubbleUp(h, _data[n]) == h) { |
|
234 |
bubbleDown(h, _data[n], n); |
|
235 | 235 |
} |
236 | 236 |
} |
237 | 237 |
_data.pop_back(); |
238 | 238 |
} |
239 | 239 |
|
240 | 240 |
/// \brief The priority of the given item. |
241 | 241 |
/// |
242 | 242 |
/// This function returns the priority of the given item. |
243 | 243 |
/// \param i The item. |
244 | 244 |
/// \pre \e i must be in the heap. |
245 | 245 |
Prio operator[](const Item &i) const { |
246 | 246 |
int idx = _iim[i]; |
... | ... |
@@ -252,51 +252,51 @@ |
252 | 252 |
/// |
253 | 253 |
/// This method sets the priority of the given item if it is |
254 | 254 |
/// already stored in the heap. Otherwise it inserts the given |
255 | 255 |
/// item into the heap with the given priority. |
256 | 256 |
/// \param i The item. |
257 | 257 |
/// \param p The priority. |
258 | 258 |
void set(const Item &i, const Prio &p) { |
259 | 259 |
int idx = _iim[i]; |
260 | 260 |
if( idx < 0 ) { |
261 | 261 |
push(i,p); |
262 | 262 |
} |
263 | 263 |
else if( _comp(p, _data[idx].second) ) { |
264 |
|
|
264 |
bubbleUp(idx, Pair(i,p)); |
|
265 | 265 |
} |
266 | 266 |
else { |
267 |
|
|
267 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
268 | 268 |
} |
269 | 269 |
} |
270 | 270 |
|
271 | 271 |
/// \brief Decrease the priority of an item to the given value. |
272 | 272 |
/// |
273 | 273 |
/// This function decreases the priority of an item to the given value. |
274 | 274 |
/// \param i The item. |
275 | 275 |
/// \param p The priority. |
276 | 276 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
277 | 277 |
void decrease(const Item &i, const Prio &p) { |
278 | 278 |
int idx = _iim[i]; |
279 |
|
|
279 |
bubbleUp(idx, Pair(i,p)); |
|
280 | 280 |
} |
281 | 281 |
|
282 | 282 |
/// \brief Increase the priority of an item to the given value. |
283 | 283 |
/// |
284 | 284 |
/// This function increases the priority of an item to the given value. |
285 | 285 |
/// \param i The item. |
286 | 286 |
/// \param p The priority. |
287 | 287 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
288 | 288 |
void increase(const Item &i, const Prio &p) { |
289 | 289 |
int idx = _iim[i]; |
290 |
|
|
290 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
291 | 291 |
} |
292 | 292 |
|
293 | 293 |
/// \brief Return the state of an item. |
294 | 294 |
/// |
295 | 295 |
/// This method returns \c PRE_HEAP if the given item has never |
296 | 296 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
297 | 297 |
/// and \c POST_HEAP otherwise. |
298 | 298 |
/// In the latter case it is possible that the item will get back |
299 | 299 |
/// to the heap again. |
300 | 300 |
/// \param i The item. |
301 | 301 |
State state(const Item &i) const { |
302 | 302 |
int s = _iim[i]; |
... | ... |
@@ -133,25 +133,25 @@ |
133 | 133 |
/// |
134 | 134 |
/// This functon makes the heap empty. |
135 | 135 |
/// It does not change the cross reference map. If you want to reuse |
136 | 136 |
/// a heap that is not surely empty, you should first clear it and |
137 | 137 |
/// then you should set the cross reference map to \c PRE_HEAP |
138 | 138 |
/// for each item. |
139 | 139 |
void clear() { |
140 | 140 |
_data.clear(); _first.clear(); _minimum = 0; |
141 | 141 |
} |
142 | 142 |
|
143 | 143 |
private: |
144 | 144 |
|
145 |
void |
|
145 |
void relocateLast(int idx) { |
|
146 | 146 |
if (idx + 1 < int(_data.size())) { |
147 | 147 |
_data[idx] = _data.back(); |
148 | 148 |
if (_data[idx].prev != -1) { |
149 | 149 |
_data[_data[idx].prev].next = idx; |
150 | 150 |
} else { |
151 | 151 |
_first[_data[idx].value] = idx; |
152 | 152 |
} |
153 | 153 |
if (_data[idx].next != -1) { |
154 | 154 |
_data[_data[idx].next].prev = idx; |
155 | 155 |
} |
156 | 156 |
_iim[_data[idx].item] = idx; |
157 | 157 |
} |
... | ... |
@@ -234,38 +234,38 @@ |
234 | 234 |
|
235 | 235 |
/// \brief Remove the item having minimum priority. |
236 | 236 |
/// |
237 | 237 |
/// This function removes the item having minimum priority. |
238 | 238 |
/// \pre The heap must be non-empty. |
239 | 239 |
void pop() { |
240 | 240 |
while (_first[_minimum] == -1) { |
241 | 241 |
Direction::increase(_minimum); |
242 | 242 |
} |
243 | 243 |
int idx = _first[_minimum]; |
244 | 244 |
_iim[_data[idx].item] = -2; |
245 | 245 |
unlace(idx); |
246 |
|
|
246 |
relocateLast(idx); |
|
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
/// \brief Remove the given item from the heap. |
250 | 250 |
/// |
251 | 251 |
/// This function removes the given item from the heap if it is |
252 | 252 |
/// already stored. |
253 | 253 |
/// \param i The item to delete. |
254 | 254 |
/// \pre \e i must be in the heap. |
255 | 255 |
void erase(const Item &i) { |
256 | 256 |
int idx = _iim[i]; |
257 | 257 |
_iim[_data[idx].item] = -2; |
258 | 258 |
unlace(idx); |
259 |
|
|
259 |
relocateLast(idx); |
|
260 | 260 |
} |
261 | 261 |
|
262 | 262 |
/// \brief The priority of the given item. |
263 | 263 |
/// |
264 | 264 |
/// This function returns the priority of the given item. |
265 | 265 |
/// \param i The item. |
266 | 266 |
/// \pre \e i must be in the heap. |
267 | 267 |
Prio operator[](const Item &i) const { |
268 | 268 |
int idx = _iim[i]; |
269 | 269 |
return _data[idx].value; |
270 | 270 |
} |
271 | 271 |
... | ... |
@@ -179,38 +179,38 @@ |
179 | 179 |
/// \pre The heap must be non-empty. |
180 | 180 |
Prio prio() const { return _data[_minimum].prio; } |
181 | 181 |
|
182 | 182 |
/// \brief Remove the item having minimum priority. |
183 | 183 |
/// |
184 | 184 |
/// This function removes the item having minimum priority. |
185 | 185 |
/// \pre The heap must be non-empty. |
186 | 186 |
void pop() { |
187 | 187 |
/*The first case is that there are only one root.*/ |
188 | 188 |
if ( _data[_minimum].left_neighbor==_minimum ) { |
189 | 189 |
_data[_minimum].in=false; |
190 | 190 |
if ( _data[_minimum].degree!=0 ) { |
191 |
|
|
191 |
makeRoot(_data[_minimum].child); |
|
192 | 192 |
_minimum=_data[_minimum].child; |
193 | 193 |
balance(); |
194 | 194 |
} |
195 | 195 |
} else { |
196 | 196 |
int right=_data[_minimum].right_neighbor; |
197 | 197 |
unlace(_minimum); |
198 | 198 |
_data[_minimum].in=false; |
199 | 199 |
if ( _data[_minimum].degree > 0 ) { |
200 | 200 |
int left=_data[_minimum].left_neighbor; |
201 | 201 |
int child=_data[_minimum].child; |
202 | 202 |
int last_child=_data[child].left_neighbor; |
203 | 203 |
|
204 |
|
|
204 |
makeRoot(child); |
|
205 | 205 |
|
206 | 206 |
_data[left].right_neighbor=child; |
207 | 207 |
_data[child].left_neighbor=left; |
208 | 208 |
_data[right].left_neighbor=last_child; |
209 | 209 |
_data[last_child].right_neighbor=right; |
210 | 210 |
} |
211 | 211 |
_minimum=right; |
212 | 212 |
balance(); |
213 | 213 |
} // the case where there are more roots |
214 | 214 |
--_num; |
215 | 215 |
} |
216 | 216 |
|
... | ... |
@@ -363,25 +363,25 @@ |
363 | 363 |
|
364 | 364 |
|
365 | 365 |
while ( _data[_minimum].parent >=0 ) |
366 | 366 |
_minimum=_data[_minimum].parent; |
367 | 367 |
int s=_minimum; |
368 | 368 |
int m=_minimum; |
369 | 369 |
do { |
370 | 370 |
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; |
371 | 371 |
s=_data[s].right_neighbor; |
372 | 372 |
} while ( s != m ); |
373 | 373 |
} |
374 | 374 |
|
375 |
void |
|
375 |
void makeRoot(int c) { |
|
376 | 376 |
int s=c; |
377 | 377 |
do { |
378 | 378 |
_data[s].parent=-1; |
379 | 379 |
s=_data[s].right_neighbor; |
380 | 380 |
} while ( s != c ); |
381 | 381 |
} |
382 | 382 |
|
383 | 383 |
void cut(int a, int b) { |
384 | 384 |
/* |
385 | 385 |
*Replacing a from the children of b. |
386 | 386 |
*/ |
387 | 387 |
--_data[b].degree; |
... | ... |
@@ -49,28 +49,28 @@ |
49 | 49 |
/// Type of the item-int map. |
50 | 50 |
typedef IM ItemIntMap; |
51 | 51 |
/// Type of the priorities. |
52 | 52 |
typedef int Prio; |
53 | 53 |
/// Type of the items stored in the heap. |
54 | 54 |
typedef typename ItemIntMap::Key Item; |
55 | 55 |
|
56 | 56 |
/// \brief Exception thrown by RadixHeap. |
57 | 57 |
/// |
58 | 58 |
/// This exception is thrown when an item is inserted into a |
59 | 59 |
/// RadixHeap with a priority smaller than the last erased one. |
60 | 60 |
/// \see RadixHeap |
61 |
class |
|
61 |
class PriorityUnderflowError : public Exception { |
|
62 | 62 |
public: |
63 | 63 |
virtual const char* what() const throw() { |
64 |
return "lemon::RadixHeap:: |
|
64 |
return "lemon::RadixHeap::PriorityUnderflowError"; |
|
65 | 65 |
} |
66 | 66 |
}; |
67 | 67 |
|
68 | 68 |
/// \brief Type to represent the states of the items. |
69 | 69 |
/// |
70 | 70 |
/// Each item has a state associated to it. It can be "in heap", |
71 | 71 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
72 | 72 |
/// heap's point of view, but may be useful to the user. |
73 | 73 |
/// |
74 | 74 |
/// The item-int map must be initialized in such way that it assigns |
75 | 75 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
76 | 76 |
enum State { |
... | ... |
@@ -85,324 +85,324 @@ |
85 | 85 |
int prev, next, box; |
86 | 86 |
Item item; |
87 | 87 |
int prio; |
88 | 88 |
RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {} |
89 | 89 |
}; |
90 | 90 |
|
91 | 91 |
struct RadixBox { |
92 | 92 |
int first; |
93 | 93 |
int min, size; |
94 | 94 |
RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {} |
95 | 95 |
}; |
96 | 96 |
|
97 |
std::vector<RadixItem> data; |
|
98 |
std::vector<RadixBox> boxes; |
|
97 |
std::vector<RadixItem> _data; |
|
98 |
std::vector<RadixBox> _boxes; |
|
99 | 99 |
|
100 | 100 |
ItemIntMap &_iim; |
101 | 101 |
|
102 | 102 |
public: |
103 | 103 |
|
104 | 104 |
/// \brief Constructor. |
105 | 105 |
/// |
106 | 106 |
/// Constructor. |
107 | 107 |
/// \param map A map that assigns \c int values to the items. |
108 | 108 |
/// It is used internally to handle the cross references. |
109 | 109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
110 | 110 |
/// \param minimum The initial minimum value of the heap. |
111 | 111 |
/// \param capacity The initial capacity of the heap. |
112 | 112 |
RadixHeap(ItemIntMap &map, int minimum = 0, int capacity = 0) |
113 | 113 |
: _iim(map) |
114 | 114 |
{ |
115 |
boxes.push_back(RadixBox(minimum, 1)); |
|
116 |
boxes.push_back(RadixBox(minimum + 1, 1)); |
|
117 |
|
|
115 |
_boxes.push_back(RadixBox(minimum, 1)); |
|
116 |
_boxes.push_back(RadixBox(minimum + 1, 1)); |
|
117 |
while (lower(_boxes.size() - 1, capacity + minimum - 1)) { |
|
118 | 118 |
extend(); |
119 | 119 |
} |
120 | 120 |
} |
121 | 121 |
|
122 | 122 |
/// \brief The number of items stored in the heap. |
123 | 123 |
/// |
124 | 124 |
/// This function returns the number of items stored in the heap. |
125 |
int size() const { return |
|
125 |
int size() const { return _data.size(); } |
|
126 | 126 |
|
127 | 127 |
/// \brief Check if the heap is empty. |
128 | 128 |
/// |
129 | 129 |
/// This function returns \c true if the heap is empty. |
130 |
bool empty() const { return |
|
130 |
bool empty() const { return _data.empty(); } |
|
131 | 131 |
|
132 | 132 |
/// \brief Make the heap empty. |
133 | 133 |
/// |
134 | 134 |
/// This functon makes the heap empty. |
135 | 135 |
/// It does not change the cross reference map. If you want to reuse |
136 | 136 |
/// a heap that is not surely empty, you should first clear it and |
137 | 137 |
/// then you should set the cross reference map to \c PRE_HEAP |
138 | 138 |
/// for each item. |
139 | 139 |
/// \param minimum The minimum value of the heap. |
140 | 140 |
/// \param capacity The capacity of the heap. |
141 | 141 |
void clear(int minimum = 0, int capacity = 0) { |
142 |
data.clear(); boxes.clear(); |
|
143 |
boxes.push_back(RadixBox(minimum, 1)); |
|
144 |
boxes.push_back(RadixBox(minimum + 1, 1)); |
|
145 |
while (lower(boxes.size() - 1, capacity + minimum - 1)) { |
|
142 |
_data.clear(); _boxes.clear(); |
|
143 |
_boxes.push_back(RadixBox(minimum, 1)); |
|
144 |
_boxes.push_back(RadixBox(minimum + 1, 1)); |
|
145 |
while (lower(_boxes.size() - 1, capacity + minimum - 1)) { |
|
146 | 146 |
extend(); |
147 | 147 |
} |
148 | 148 |
} |
149 | 149 |
|
150 | 150 |
private: |
151 | 151 |
|
152 | 152 |
bool upper(int box, Prio pr) { |
153 |
return pr < |
|
153 |
return pr < _boxes[box].min; |
|
154 | 154 |
} |
155 | 155 |
|
156 | 156 |
bool lower(int box, Prio pr) { |
157 |
return pr >= |
|
157 |
return pr >= _boxes[box].min + _boxes[box].size; |
|
158 | 158 |
} |
159 | 159 |
|
160 | 160 |
// Remove item from the box list |
161 | 161 |
void remove(int index) { |
162 |
if (data[index].prev >= 0) { |
|
163 |
data[data[index].prev].next = data[index].next; |
|
162 |
if (_data[index].prev >= 0) { |
|
163 |
_data[_data[index].prev].next = _data[index].next; |
|
164 | 164 |
} else { |
165 |
|
|
165 |
_boxes[_data[index].box].first = _data[index].next; |
|
166 | 166 |
} |
167 |
if (data[index].next >= 0) { |
|
168 |
data[data[index].next].prev = data[index].prev; |
|
167 |
if (_data[index].next >= 0) { |
|
168 |
_data[_data[index].next].prev = _data[index].prev; |
|
169 | 169 |
} |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
// Insert item into the box list |
173 | 173 |
void insert(int box, int index) { |
174 |
if (boxes[box].first == -1) { |
|
175 |
boxes[box].first = index; |
|
176 |
|
|
174 |
if (_boxes[box].first == -1) { |
|
175 |
_boxes[box].first = index; |
|
176 |
_data[index].next = _data[index].prev = -1; |
|
177 | 177 |
} else { |
178 |
data[index].next = boxes[box].first; |
|
179 |
data[boxes[box].first].prev = index; |
|
180 |
data[index].prev = -1; |
|
181 |
boxes[box].first = index; |
|
178 |
_data[index].next = _boxes[box].first; |
|
179 |
_data[_boxes[box].first].prev = index; |
|
180 |
_data[index].prev = -1; |
|
181 |
_boxes[box].first = index; |
|
182 | 182 |
} |
183 |
|
|
183 |
_data[index].box = box; |
|
184 | 184 |
} |
185 | 185 |
|
186 | 186 |
// Add a new box to the box list |
187 | 187 |
void extend() { |
188 |
int min = boxes.back().min + boxes.back().size; |
|
189 |
int bs = 2 * boxes.back().size; |
|
190 |
|
|
188 |
int min = _boxes.back().min + _boxes.back().size; |
|
189 |
int bs = 2 * _boxes.back().size; |
|
190 |
_boxes.push_back(RadixBox(min, bs)); |
|
191 | 191 |
} |
192 | 192 |
|
193 | 193 |
// Move an item up into the proper box. |
194 |
void bubble_up(int index) { |
|
195 |
if (!lower(data[index].box, data[index].prio)) return; |
|
194 |
void bubbleUp(int index) { |
|
195 |
if (!lower(_data[index].box, _data[index].prio)) return; |
|
196 | 196 |
remove(index); |
197 |
int box = findUp( |
|
197 |
int box = findUp(_data[index].box, _data[index].prio); |
|
198 | 198 |
insert(box, index); |
199 | 199 |
} |
200 | 200 |
|
201 | 201 |
// Find up the proper box for the item with the given priority |
202 | 202 |
int findUp(int start, int pr) { |
203 | 203 |
while (lower(start, pr)) { |
204 |
if (++start == int( |
|
204 |
if (++start == int(_boxes.size())) { |
|
205 | 205 |
extend(); |
206 | 206 |
} |
207 | 207 |
} |
208 | 208 |
return start; |
209 | 209 |
} |
210 | 210 |
|
211 | 211 |
// Move an item down into the proper box |
212 |
void bubble_down(int index) { |
|
213 |
if (!upper(data[index].box, data[index].prio)) return; |
|
212 |
void bubbleDown(int index) { |
|
213 |
if (!upper(_data[index].box, _data[index].prio)) return; |
|
214 | 214 |
remove(index); |
215 |
int box = findDown( |
|
215 |
int box = findDown(_data[index].box, _data[index].prio); |
|
216 | 216 |
insert(box, index); |
217 | 217 |
} |
218 | 218 |
|
219 | 219 |
// Find down the proper box for the item with the given priority |
220 | 220 |
int findDown(int start, int pr) { |
221 | 221 |
while (upper(start, pr)) { |
222 |
if (--start < 0) throw |
|
222 |
if (--start < 0) throw PriorityUnderflowError(); |
|
223 | 223 |
} |
224 | 224 |
return start; |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
// Find the first non-empty box |
228 | 228 |
int findFirst() { |
229 | 229 |
int first = 0; |
230 |
while ( |
|
230 |
while (_boxes[first].first == -1) ++first; |
|
231 | 231 |
return first; |
232 | 232 |
} |
233 | 233 |
|
234 | 234 |
// Gives back the minimum priority of the given box |
235 | 235 |
int minValue(int box) { |
236 |
int min = data[boxes[box].first].prio; |
|
237 |
for (int k = boxes[box].first; k != -1; k = data[k].next) { |
|
238 |
|
|
236 |
int min = _data[_boxes[box].first].prio; |
|
237 |
for (int k = _boxes[box].first; k != -1; k = _data[k].next) { |
|
238 |
if (_data[k].prio < min) min = _data[k].prio; |
|
239 | 239 |
} |
240 | 240 |
return min; |
241 | 241 |
} |
242 | 242 |
|
243 | 243 |
// Rearrange the items of the heap and make the first box non-empty |
244 | 244 |
void moveDown() { |
245 | 245 |
int box = findFirst(); |
246 | 246 |
if (box == 0) return; |
247 | 247 |
int min = minValue(box); |
248 | 248 |
for (int i = 0; i <= box; ++i) { |
249 |
boxes[i].min = min; |
|
250 |
min += boxes[i].size; |
|
249 |
_boxes[i].min = min; |
|
250 |
min += _boxes[i].size; |
|
251 | 251 |
} |
252 |
int curr = |
|
252 |
int curr = _boxes[box].first, next; |
|
253 | 253 |
while (curr != -1) { |
254 |
next = data[curr].next; |
|
255 |
bubble_down(curr); |
|
254 |
next = _data[curr].next; |
|
255 |
bubbleDown(curr); |
|
256 | 256 |
curr = next; |
257 | 257 |
} |
258 | 258 |
} |
259 | 259 |
|
260 |
void relocate_last(int index) { |
|
261 |
if (index != int(data.size()) - 1) { |
|
262 |
data[index] = data.back(); |
|
263 |
if (data[index].prev != -1) { |
|
264 |
|
|
260 |
void relocateLast(int index) { |
|
261 |
if (index != int(_data.size()) - 1) { |
|
262 |
_data[index] = _data.back(); |
|
263 |
if (_data[index].prev != -1) { |
|
264 |
_data[_data[index].prev].next = index; |
|
265 | 265 |
} else { |
266 |
|
|
266 |
_boxes[_data[index].box].first = index; |
|
267 | 267 |
} |
268 |
if (data[index].next != -1) { |
|
269 |
data[data[index].next].prev = index; |
|
268 |
if (_data[index].next != -1) { |
|
269 |
_data[_data[index].next].prev = index; |
|
270 | 270 |
} |
271 |
_iim[ |
|
271 |
_iim[_data[index].item] = index; |
|
272 | 272 |
} |
273 |
|
|
273 |
_data.pop_back(); |
|
274 | 274 |
} |
275 | 275 |
|
276 | 276 |
public: |
277 | 277 |
|
278 | 278 |
/// \brief Insert an item into the heap with the given priority. |
279 | 279 |
/// |
280 | 280 |
/// This function inserts the given item into the heap with the |
281 | 281 |
/// given priority. |
282 | 282 |
/// \param i The item to insert. |
283 | 283 |
/// \param p The priority of the item. |
284 | 284 |
/// \pre \e i must not be stored in the heap. |
285 | 285 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
286 | 286 |
void push(const Item &i, const Prio &p) { |
287 |
int n = |
|
287 |
int n = _data.size(); |
|
288 | 288 |
_iim.set(i, n); |
289 |
data.push_back(RadixItem(i, p)); |
|
290 |
while (lower(boxes.size() - 1, p)) { |
|
289 |
_data.push_back(RadixItem(i, p)); |
|
290 |
while (lower(_boxes.size() - 1, p)) { |
|
291 | 291 |
extend(); |
292 | 292 |
} |
293 |
int box = findDown( |
|
293 |
int box = findDown(_boxes.size() - 1, p); |
|
294 | 294 |
insert(box, n); |
295 | 295 |
} |
296 | 296 |
|
297 | 297 |
/// \brief Return the item having minimum priority. |
298 | 298 |
/// |
299 | 299 |
/// This function returns the item having minimum priority. |
300 | 300 |
/// \pre The heap must be non-empty. |
301 | 301 |
Item top() const { |
302 | 302 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
303 |
return |
|
303 |
return _data[_boxes[0].first].item; |
|
304 | 304 |
} |
305 | 305 |
|
306 | 306 |
/// \brief The minimum priority. |
307 | 307 |
/// |
308 | 308 |
/// This function returns the minimum priority. |
309 | 309 |
/// \pre The heap must be non-empty. |
310 | 310 |
Prio prio() const { |
311 | 311 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
312 |
return |
|
312 |
return _data[_boxes[0].first].prio; |
|
313 | 313 |
} |
314 | 314 |
|
315 | 315 |
/// \brief Remove the item having minimum priority. |
316 | 316 |
/// |
317 | 317 |
/// This function removes the item having minimum priority. |
318 | 318 |
/// \pre The heap must be non-empty. |
319 | 319 |
void pop() { |
320 | 320 |
moveDown(); |
321 |
int index = boxes[0].first; |
|
322 |
_iim[data[index].item] = POST_HEAP; |
|
321 |
int index = _boxes[0].first; |
|
322 |
_iim[_data[index].item] = POST_HEAP; |
|
323 | 323 |
remove(index); |
324 |
|
|
324 |
relocateLast(index); |
|
325 | 325 |
} |
326 | 326 |
|
327 | 327 |
/// \brief Remove the given item from the heap. |
328 | 328 |
/// |
329 | 329 |
/// This function removes the given item from the heap if it is |
330 | 330 |
/// already stored. |
331 | 331 |
/// \param i The item to delete. |
332 | 332 |
/// \pre \e i must be in the heap. |
333 | 333 |
void erase(const Item &i) { |
334 | 334 |
int index = _iim[i]; |
335 | 335 |
_iim[i] = POST_HEAP; |
336 | 336 |
remove(index); |
337 |
|
|
337 |
relocateLast(index); |
|
338 | 338 |
} |
339 | 339 |
|
340 | 340 |
/// \brief The priority of the given item. |
341 | 341 |
/// |
342 | 342 |
/// This function returns the priority of the given item. |
343 | 343 |
/// \param i The item. |
344 | 344 |
/// \pre \e i must be in the heap. |
345 | 345 |
Prio operator[](const Item &i) const { |
346 | 346 |
int idx = _iim[i]; |
347 |
return |
|
347 |
return _data[idx].prio; |
|
348 | 348 |
} |
349 | 349 |
|
350 | 350 |
/// \brief Set the priority of an item or insert it, if it is |
351 | 351 |
/// not stored in the heap. |
352 | 352 |
/// |
353 | 353 |
/// This method sets the priority of the given item if it is |
354 | 354 |
/// already stored in the heap. Otherwise it inserts the given |
355 | 355 |
/// item into the heap with the given priority. |
356 | 356 |
/// \param i The item. |
357 | 357 |
/// \param p The priority. |
358 | 358 |
/// \pre \e i must be in the heap. |
359 | 359 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
360 | 360 |
void set(const Item &i, const Prio &p) { |
361 | 361 |
int idx = _iim[i]; |
362 | 362 |
if( idx < 0 ) { |
363 | 363 |
push(i, p); |
364 | 364 |
} |
365 |
else if( p >= data[idx].prio ) { |
|
366 |
data[idx].prio = p; |
|
367 |
|
|
365 |
else if( p >= _data[idx].prio ) { |
|
366 |
_data[idx].prio = p; |
|
367 |
bubbleUp(idx); |
|
368 | 368 |
} else { |
369 |
data[idx].prio = p; |
|
370 |
bubble_down(idx); |
|
369 |
_data[idx].prio = p; |
|
370 |
bubbleDown(idx); |
|
371 | 371 |
} |
372 | 372 |
} |
373 | 373 |
|
374 | 374 |
/// \brief Decrease the priority of an item to the given value. |
375 | 375 |
/// |
376 | 376 |
/// This function decreases the priority of an item to the given value. |
377 | 377 |
/// \param i The item. |
378 | 378 |
/// \param p The priority. |
379 | 379 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
380 | 380 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
381 | 381 |
void decrease(const Item &i, const Prio &p) { |
382 | 382 |
int idx = _iim[i]; |
383 |
data[idx].prio = p; |
|
384 |
bubble_down(idx); |
|
383 |
_data[idx].prio = p; |
|
384 |
bubbleDown(idx); |
|
385 | 385 |
} |
386 | 386 |
|
387 | 387 |
/// \brief Increase the priority of an item to the given value. |
388 | 388 |
/// |
389 | 389 |
/// This function increases the priority of an item to the given value. |
390 | 390 |
/// \param i The item. |
391 | 391 |
/// \param p The priority. |
392 | 392 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
393 | 393 |
void increase(const Item &i, const Prio &p) { |
394 | 394 |
int idx = _iim[i]; |
395 |
data[idx].prio = p; |
|
396 |
bubble_up(idx); |
|
395 |
_data[idx].prio = p; |
|
396 |
bubbleUp(idx); |
|
397 | 397 |
} |
398 | 398 |
|
399 | 399 |
/// \brief Return the state of an item. |
400 | 400 |
/// |
401 | 401 |
/// This method returns \c PRE_HEAP if the given item has never |
402 | 402 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
403 | 403 |
/// and \c POST_HEAP otherwise. |
404 | 404 |
/// In the latter case it is possible that the item will get back |
405 | 405 |
/// to the heap again. |
406 | 406 |
/// \param i The item. |
407 | 407 |
State state(const Item &i) const { |
408 | 408 |
int s = _iim[i]; |
0 comments (0 inline)