0
4
0
... | ... |
@@ -31,317 +31,317 @@ |
31 | 31 |
|
32 | 32 |
/// \ingroup heaps |
33 | 33 |
/// |
34 | 34 |
/// \brief Binary heap data structure. |
35 | 35 |
/// |
36 | 36 |
/// This class implements the \e binary \e heap data structure. |
37 | 37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
38 | 38 |
/// |
39 | 39 |
/// \tparam PR Type of the priorities of the items. |
40 | 40 |
/// \tparam IM A read-writable item map with \c int values, used |
41 | 41 |
/// internally to handle the cross references. |
42 | 42 |
/// \tparam CMP A functor class for comparing the priorities. |
43 | 43 |
/// The default is \c std::less<PR>. |
44 | 44 |
#ifdef DOXYGEN |
45 | 45 |
template <typename PR, typename IM, typename CMP> |
46 | 46 |
#else |
47 | 47 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
48 | 48 |
#endif |
49 | 49 |
class BinHeap { |
50 | 50 |
public: |
51 | 51 |
|
52 | 52 |
/// Type of the item-int map. |
53 | 53 |
typedef IM ItemIntMap; |
54 | 54 |
/// Type of the priorities. |
55 | 55 |
typedef PR Prio; |
56 | 56 |
/// Type of the items stored in the heap. |
57 | 57 |
typedef typename ItemIntMap::Key Item; |
58 | 58 |
/// Type of the item-priority pairs. |
59 | 59 |
typedef std::pair<Item,Prio> Pair; |
60 | 60 |
/// Functor type for comparing the priorities. |
61 | 61 |
typedef CMP Compare; |
62 | 62 |
|
63 | 63 |
/// \brief Type to represent the states of the items. |
64 | 64 |
/// |
65 | 65 |
/// Each item has a state associated to it. It can be "in heap", |
66 | 66 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
67 | 67 |
/// heap's point of view, but may be useful to the user. |
68 | 68 |
/// |
69 | 69 |
/// The item-int map must be initialized in such way that it assigns |
70 | 70 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
71 | 71 |
enum State { |
72 | 72 |
IN_HEAP = 0, ///< = 0. |
73 | 73 |
PRE_HEAP = -1, ///< = -1. |
74 | 74 |
POST_HEAP = -2 ///< = -2. |
75 | 75 |
}; |
76 | 76 |
|
77 | 77 |
private: |
78 | 78 |
std::vector<Pair> _data; |
79 | 79 |
Compare _comp; |
80 | 80 |
ItemIntMap &_iim; |
81 | 81 |
|
82 | 82 |
public: |
83 | 83 |
|
84 | 84 |
/// \brief Constructor. |
85 | 85 |
/// |
86 | 86 |
/// Constructor. |
87 | 87 |
/// \param map A map that assigns \c int values to the items. |
88 | 88 |
/// It is used internally to handle the cross references. |
89 | 89 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
90 | 90 |
explicit BinHeap(ItemIntMap &map) : _iim(map) {} |
91 | 91 |
|
92 | 92 |
/// \brief Constructor. |
93 | 93 |
/// |
94 | 94 |
/// Constructor. |
95 | 95 |
/// \param map A map that assigns \c int values to the items. |
96 | 96 |
/// It is used internally to handle the cross references. |
97 | 97 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
98 | 98 |
/// \param comp The function object used for comparing the priorities. |
99 | 99 |
BinHeap(ItemIntMap &map, const Compare &comp) |
100 | 100 |
: _iim(map), _comp(comp) {} |
101 | 101 |
|
102 | 102 |
|
103 | 103 |
/// \brief The number of items stored in the heap. |
104 | 104 |
/// |
105 | 105 |
/// This function returns the number of items stored in the heap. |
106 | 106 |
int size() const { return _data.size(); } |
107 | 107 |
|
108 | 108 |
/// \brief Check if the heap is empty. |
109 | 109 |
/// |
110 | 110 |
/// This function returns \c true if the heap is empty. |
111 | 111 |
bool empty() const { return _data.empty(); } |
112 | 112 |
|
113 | 113 |
/// \brief Make the heap empty. |
114 | 114 |
/// |
115 | 115 |
/// This functon makes the heap empty. |
116 | 116 |
/// It does not change the cross reference map. If you want to reuse |
117 | 117 |
/// a heap that is not surely empty, you should first clear it and |
118 | 118 |
/// then you should set the cross reference map to \c PRE_HEAP |
119 | 119 |
/// for each item. |
120 | 120 |
void clear() { |
121 | 121 |
_data.clear(); |
122 | 122 |
} |
123 | 123 |
|
124 | 124 |
private: |
125 | 125 |
static int parent(int i) { return (i-1)/2; } |
126 | 126 |
|
127 |
static int |
|
127 |
static int secondChild(int i) { return 2*i+2; } |
|
128 | 128 |
bool less(const Pair &p1, const Pair &p2) const { |
129 | 129 |
return _comp(p1.second, p2.second); |
130 | 130 |
} |
131 | 131 |
|
132 |
int |
|
132 |
int bubbleUp(int hole, Pair p) { |
|
133 | 133 |
int par = parent(hole); |
134 | 134 |
while( hole>0 && less(p,_data[par]) ) { |
135 | 135 |
move(_data[par],hole); |
136 | 136 |
hole = par; |
137 | 137 |
par = parent(hole); |
138 | 138 |
} |
139 | 139 |
move(p, hole); |
140 | 140 |
return hole; |
141 | 141 |
} |
142 | 142 |
|
143 |
int bubble_down(int hole, Pair p, int length) { |
|
144 |
int child = second_child(hole); |
|
143 |
int bubbleDown(int hole, Pair p, int length) { |
|
144 |
int child = secondChild(hole); |
|
145 | 145 |
while(child < length) { |
146 | 146 |
if( less(_data[child-1], _data[child]) ) { |
147 | 147 |
--child; |
148 | 148 |
} |
149 | 149 |
if( !less(_data[child], p) ) |
150 | 150 |
goto ok; |
151 | 151 |
move(_data[child], hole); |
152 | 152 |
hole = child; |
153 |
child = |
|
153 |
child = secondChild(hole); |
|
154 | 154 |
} |
155 | 155 |
child--; |
156 | 156 |
if( child<length && less(_data[child], p) ) { |
157 | 157 |
move(_data[child], hole); |
158 | 158 |
hole=child; |
159 | 159 |
} |
160 | 160 |
ok: |
161 | 161 |
move(p, hole); |
162 | 162 |
return hole; |
163 | 163 |
} |
164 | 164 |
|
165 | 165 |
void move(const Pair &p, int i) { |
166 | 166 |
_data[i] = p; |
167 | 167 |
_iim.set(p.first, i); |
168 | 168 |
} |
169 | 169 |
|
170 | 170 |
public: |
171 | 171 |
|
172 | 172 |
/// \brief Insert a pair of item and priority into the heap. |
173 | 173 |
/// |
174 | 174 |
/// This function inserts \c p.first to the heap with priority |
175 | 175 |
/// \c p.second. |
176 | 176 |
/// \param p The pair to insert. |
177 | 177 |
/// \pre \c p.first must not be stored in the heap. |
178 | 178 |
void push(const Pair &p) { |
179 | 179 |
int n = _data.size(); |
180 | 180 |
_data.resize(n+1); |
181 |
|
|
181 |
bubbleUp(n, p); |
|
182 | 182 |
} |
183 | 183 |
|
184 | 184 |
/// \brief Insert an item into the heap with the given priority. |
185 | 185 |
/// |
186 | 186 |
/// This function inserts the given item into the heap with the |
187 | 187 |
/// given priority. |
188 | 188 |
/// \param i The item to insert. |
189 | 189 |
/// \param p The priority of the item. |
190 | 190 |
/// \pre \e i must not be stored in the heap. |
191 | 191 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
192 | 192 |
|
193 | 193 |
/// \brief Return the item having minimum priority. |
194 | 194 |
/// |
195 | 195 |
/// This function returns the item having minimum priority. |
196 | 196 |
/// \pre The heap must be non-empty. |
197 | 197 |
Item top() const { |
198 | 198 |
return _data[0].first; |
199 | 199 |
} |
200 | 200 |
|
201 | 201 |
/// \brief The minimum priority. |
202 | 202 |
/// |
203 | 203 |
/// This function returns the minimum priority. |
204 | 204 |
/// \pre The heap must be non-empty. |
205 | 205 |
Prio prio() const { |
206 | 206 |
return _data[0].second; |
207 | 207 |
} |
208 | 208 |
|
209 | 209 |
/// \brief Remove the item having minimum priority. |
210 | 210 |
/// |
211 | 211 |
/// This function removes the item having minimum priority. |
212 | 212 |
/// \pre The heap must be non-empty. |
213 | 213 |
void pop() { |
214 | 214 |
int n = _data.size()-1; |
215 | 215 |
_iim.set(_data[0].first, POST_HEAP); |
216 | 216 |
if (n > 0) { |
217 |
|
|
217 |
bubbleDown(0, _data[n], n); |
|
218 | 218 |
} |
219 | 219 |
_data.pop_back(); |
220 | 220 |
} |
221 | 221 |
|
222 | 222 |
/// \brief Remove the given item from the heap. |
223 | 223 |
/// |
224 | 224 |
/// This function removes the given item from the heap if it is |
225 | 225 |
/// already stored. |
226 | 226 |
/// \param i The item to delete. |
227 | 227 |
/// \pre \e i must be in the heap. |
228 | 228 |
void erase(const Item &i) { |
229 | 229 |
int h = _iim[i]; |
230 | 230 |
int n = _data.size()-1; |
231 | 231 |
_iim.set(_data[h].first, POST_HEAP); |
232 | 232 |
if( h < n ) { |
233 |
if ( bubble_up(h, _data[n]) == h) { |
|
234 |
bubble_down(h, _data[n], n); |
|
233 |
if ( bubbleUp(h, _data[n]) == h) { |
|
234 |
bubbleDown(h, _data[n], n); |
|
235 | 235 |
} |
236 | 236 |
} |
237 | 237 |
_data.pop_back(); |
238 | 238 |
} |
239 | 239 |
|
240 | 240 |
/// \brief The priority of the given item. |
241 | 241 |
/// |
242 | 242 |
/// This function returns the priority of the given item. |
243 | 243 |
/// \param i The item. |
244 | 244 |
/// \pre \e i must be in the heap. |
245 | 245 |
Prio operator[](const Item &i) const { |
246 | 246 |
int idx = _iim[i]; |
247 | 247 |
return _data[idx].second; |
248 | 248 |
} |
249 | 249 |
|
250 | 250 |
/// \brief Set the priority of an item or insert it, if it is |
251 | 251 |
/// not stored in the heap. |
252 | 252 |
/// |
253 | 253 |
/// This method sets the priority of the given item if it is |
254 | 254 |
/// already stored in the heap. Otherwise it inserts the given |
255 | 255 |
/// item into the heap with the given priority. |
256 | 256 |
/// \param i The item. |
257 | 257 |
/// \param p The priority. |
258 | 258 |
void set(const Item &i, const Prio &p) { |
259 | 259 |
int idx = _iim[i]; |
260 | 260 |
if( idx < 0 ) { |
261 | 261 |
push(i,p); |
262 | 262 |
} |
263 | 263 |
else if( _comp(p, _data[idx].second) ) { |
264 |
|
|
264 |
bubbleUp(idx, Pair(i,p)); |
|
265 | 265 |
} |
266 | 266 |
else { |
267 |
|
|
267 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
268 | 268 |
} |
269 | 269 |
} |
270 | 270 |
|
271 | 271 |
/// \brief Decrease the priority of an item to the given value. |
272 | 272 |
/// |
273 | 273 |
/// This function decreases the priority of an item to the given value. |
274 | 274 |
/// \param i The item. |
275 | 275 |
/// \param p The priority. |
276 | 276 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
277 | 277 |
void decrease(const Item &i, const Prio &p) { |
278 | 278 |
int idx = _iim[i]; |
279 |
|
|
279 |
bubbleUp(idx, Pair(i,p)); |
|
280 | 280 |
} |
281 | 281 |
|
282 | 282 |
/// \brief Increase the priority of an item to the given value. |
283 | 283 |
/// |
284 | 284 |
/// This function increases the priority of an item to the given value. |
285 | 285 |
/// \param i The item. |
286 | 286 |
/// \param p The priority. |
287 | 287 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
288 | 288 |
void increase(const Item &i, const Prio &p) { |
289 | 289 |
int idx = _iim[i]; |
290 |
|
|
290 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
291 | 291 |
} |
292 | 292 |
|
293 | 293 |
/// \brief Return the state of an item. |
294 | 294 |
/// |
295 | 295 |
/// This method returns \c PRE_HEAP if the given item has never |
296 | 296 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
297 | 297 |
/// and \c POST_HEAP otherwise. |
298 | 298 |
/// In the latter case it is possible that the item will get back |
299 | 299 |
/// to the heap again. |
300 | 300 |
/// \param i The item. |
301 | 301 |
State state(const Item &i) const { |
302 | 302 |
int s = _iim[i]; |
303 | 303 |
if( s>=0 ) |
304 | 304 |
s=0; |
305 | 305 |
return State(s); |
306 | 306 |
} |
307 | 307 |
|
308 | 308 |
/// \brief Set the state of an item in the heap. |
309 | 309 |
/// |
310 | 310 |
/// This function sets the state of the given item in the heap. |
311 | 311 |
/// It can be used to manually clear the heap when it is important |
312 | 312 |
/// to achive better time complexity. |
313 | 313 |
/// \param i The item. |
314 | 314 |
/// \param st The state. It should not be \c IN_HEAP. |
315 | 315 |
void state(const Item& i, State st) { |
316 | 316 |
switch (st) { |
317 | 317 |
case POST_HEAP: |
318 | 318 |
case PRE_HEAP: |
319 | 319 |
if (state(i) == IN_HEAP) { |
320 | 320 |
erase(i); |
321 | 321 |
} |
322 | 322 |
_iim[i] = st; |
323 | 323 |
break; |
324 | 324 |
case IN_HEAP: |
325 | 325 |
break; |
326 | 326 |
} |
327 | 327 |
} |
328 | 328 |
|
329 | 329 |
/// \brief Replace an item in the heap. |
330 | 330 |
/// |
331 | 331 |
/// This function replaces item \c i with item \c j. |
332 | 332 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
333 | 333 |
/// After calling this method, item \c i will be out of the |
334 | 334 |
/// heap and \c j will be in the heap with the same prioriority |
335 | 335 |
/// as item \c i had before. |
336 | 336 |
void replace(const Item& i, const Item& j) { |
337 | 337 |
int idx = _iim[i]; |
338 | 338 |
_iim.set(i, _iim[j]); |
339 | 339 |
_iim.set(j, idx); |
340 | 340 |
_data[idx].first = j; |
341 | 341 |
} |
342 | 342 |
|
343 | 343 |
}; // class BinHeap |
344 | 344 |
|
345 | 345 |
} // namespace lemon |
346 | 346 |
|
347 | 347 |
#endif // LEMON_BIN_HEAP_H |
... | ... |
@@ -49,307 +49,307 @@ |
49 | 49 |
static void increase(int& value) { |
50 | 50 |
--value; |
51 | 51 |
} |
52 | 52 |
}; |
53 | 53 |
|
54 | 54 |
} |
55 | 55 |
|
56 | 56 |
/// \ingroup heaps |
57 | 57 |
/// |
58 | 58 |
/// \brief Bucket heap data structure. |
59 | 59 |
/// |
60 | 60 |
/// This class implements the \e bucket \e heap data structure. |
61 | 61 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
62 | 62 |
/// but it has some limitations. |
63 | 63 |
/// |
64 | 64 |
/// The bucket heap is a very simple structure. It can store only |
65 | 65 |
/// \c int priorities and it maintains a list of items for each priority |
66 | 66 |
/// in the range <tt>[0..C)</tt>. So it should only be used when the |
67 | 67 |
/// priorities are small. It is not intended to use as a Dijkstra heap. |
68 | 68 |
/// |
69 | 69 |
/// \tparam IM A read-writable item map with \c int values, used |
70 | 70 |
/// internally to handle the cross references. |
71 | 71 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
72 | 72 |
/// The default is \e min-heap. If this parameter is set to \c false, |
73 | 73 |
/// then the comparison is reversed, so the top(), prio() and pop() |
74 | 74 |
/// functions deal with the item having maximum priority instead of the |
75 | 75 |
/// minimum. |
76 | 76 |
/// |
77 | 77 |
/// \sa SimpleBucketHeap |
78 | 78 |
template <typename IM, bool MIN = true> |
79 | 79 |
class BucketHeap { |
80 | 80 |
|
81 | 81 |
public: |
82 | 82 |
|
83 | 83 |
/// Type of the item-int map. |
84 | 84 |
typedef IM ItemIntMap; |
85 | 85 |
/// Type of the priorities. |
86 | 86 |
typedef int Prio; |
87 | 87 |
/// Type of the items stored in the heap. |
88 | 88 |
typedef typename ItemIntMap::Key Item; |
89 | 89 |
/// Type of the item-priority pairs. |
90 | 90 |
typedef std::pair<Item,Prio> Pair; |
91 | 91 |
|
92 | 92 |
private: |
93 | 93 |
|
94 | 94 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
95 | 95 |
|
96 | 96 |
public: |
97 | 97 |
|
98 | 98 |
/// \brief Type to represent the states of the items. |
99 | 99 |
/// |
100 | 100 |
/// Each item has a state associated to it. It can be "in heap", |
101 | 101 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
102 | 102 |
/// heap's point of view, but may be useful to the user. |
103 | 103 |
/// |
104 | 104 |
/// The item-int map must be initialized in such way that it assigns |
105 | 105 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
106 | 106 |
enum State { |
107 | 107 |
IN_HEAP = 0, ///< = 0. |
108 | 108 |
PRE_HEAP = -1, ///< = -1. |
109 | 109 |
POST_HEAP = -2 ///< = -2. |
110 | 110 |
}; |
111 | 111 |
|
112 | 112 |
public: |
113 | 113 |
|
114 | 114 |
/// \brief Constructor. |
115 | 115 |
/// |
116 | 116 |
/// Constructor. |
117 | 117 |
/// \param map A map that assigns \c int values to the items. |
118 | 118 |
/// It is used internally to handle the cross references. |
119 | 119 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
120 | 120 |
explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {} |
121 | 121 |
|
122 | 122 |
/// \brief The number of items stored in the heap. |
123 | 123 |
/// |
124 | 124 |
/// This function returns the number of items stored in the heap. |
125 | 125 |
int size() const { return _data.size(); } |
126 | 126 |
|
127 | 127 |
/// \brief Check if the heap is empty. |
128 | 128 |
/// |
129 | 129 |
/// This function returns \c true if the heap is empty. |
130 | 130 |
bool empty() const { return _data.empty(); } |
131 | 131 |
|
132 | 132 |
/// \brief Make the heap empty. |
133 | 133 |
/// |
134 | 134 |
/// This functon makes the heap empty. |
135 | 135 |
/// It does not change the cross reference map. If you want to reuse |
136 | 136 |
/// a heap that is not surely empty, you should first clear it and |
137 | 137 |
/// then you should set the cross reference map to \c PRE_HEAP |
138 | 138 |
/// for each item. |
139 | 139 |
void clear() { |
140 | 140 |
_data.clear(); _first.clear(); _minimum = 0; |
141 | 141 |
} |
142 | 142 |
|
143 | 143 |
private: |
144 | 144 |
|
145 |
void |
|
145 |
void relocateLast(int idx) { |
|
146 | 146 |
if (idx + 1 < int(_data.size())) { |
147 | 147 |
_data[idx] = _data.back(); |
148 | 148 |
if (_data[idx].prev != -1) { |
149 | 149 |
_data[_data[idx].prev].next = idx; |
150 | 150 |
} else { |
151 | 151 |
_first[_data[idx].value] = idx; |
152 | 152 |
} |
153 | 153 |
if (_data[idx].next != -1) { |
154 | 154 |
_data[_data[idx].next].prev = idx; |
155 | 155 |
} |
156 | 156 |
_iim[_data[idx].item] = idx; |
157 | 157 |
} |
158 | 158 |
_data.pop_back(); |
159 | 159 |
} |
160 | 160 |
|
161 | 161 |
void unlace(int idx) { |
162 | 162 |
if (_data[idx].prev != -1) { |
163 | 163 |
_data[_data[idx].prev].next = _data[idx].next; |
164 | 164 |
} else { |
165 | 165 |
_first[_data[idx].value] = _data[idx].next; |
166 | 166 |
} |
167 | 167 |
if (_data[idx].next != -1) { |
168 | 168 |
_data[_data[idx].next].prev = _data[idx].prev; |
169 | 169 |
} |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
void lace(int idx) { |
173 | 173 |
if (int(_first.size()) <= _data[idx].value) { |
174 | 174 |
_first.resize(_data[idx].value + 1, -1); |
175 | 175 |
} |
176 | 176 |
_data[idx].next = _first[_data[idx].value]; |
177 | 177 |
if (_data[idx].next != -1) { |
178 | 178 |
_data[_data[idx].next].prev = idx; |
179 | 179 |
} |
180 | 180 |
_first[_data[idx].value] = idx; |
181 | 181 |
_data[idx].prev = -1; |
182 | 182 |
} |
183 | 183 |
|
184 | 184 |
public: |
185 | 185 |
|
186 | 186 |
/// \brief Insert a pair of item and priority into the heap. |
187 | 187 |
/// |
188 | 188 |
/// This function inserts \c p.first to the heap with priority |
189 | 189 |
/// \c p.second. |
190 | 190 |
/// \param p The pair to insert. |
191 | 191 |
/// \pre \c p.first must not be stored in the heap. |
192 | 192 |
void push(const Pair& p) { |
193 | 193 |
push(p.first, p.second); |
194 | 194 |
} |
195 | 195 |
|
196 | 196 |
/// \brief Insert an item into the heap with the given priority. |
197 | 197 |
/// |
198 | 198 |
/// This function inserts the given item into the heap with the |
199 | 199 |
/// given priority. |
200 | 200 |
/// \param i The item to insert. |
201 | 201 |
/// \param p The priority of the item. |
202 | 202 |
/// \pre \e i must not be stored in the heap. |
203 | 203 |
void push(const Item &i, const Prio &p) { |
204 | 204 |
int idx = _data.size(); |
205 | 205 |
_iim[i] = idx; |
206 | 206 |
_data.push_back(BucketItem(i, p)); |
207 | 207 |
lace(idx); |
208 | 208 |
if (Direction::less(p, _minimum)) { |
209 | 209 |
_minimum = p; |
210 | 210 |
} |
211 | 211 |
} |
212 | 212 |
|
213 | 213 |
/// \brief Return the item having minimum priority. |
214 | 214 |
/// |
215 | 215 |
/// This function returns the item having minimum priority. |
216 | 216 |
/// \pre The heap must be non-empty. |
217 | 217 |
Item top() const { |
218 | 218 |
while (_first[_minimum] == -1) { |
219 | 219 |
Direction::increase(_minimum); |
220 | 220 |
} |
221 | 221 |
return _data[_first[_minimum]].item; |
222 | 222 |
} |
223 | 223 |
|
224 | 224 |
/// \brief The minimum priority. |
225 | 225 |
/// |
226 | 226 |
/// This function returns the minimum priority. |
227 | 227 |
/// \pre The heap must be non-empty. |
228 | 228 |
Prio prio() const { |
229 | 229 |
while (_first[_minimum] == -1) { |
230 | 230 |
Direction::increase(_minimum); |
231 | 231 |
} |
232 | 232 |
return _minimum; |
233 | 233 |
} |
234 | 234 |
|
235 | 235 |
/// \brief Remove the item having minimum priority. |
236 | 236 |
/// |
237 | 237 |
/// This function removes the item having minimum priority. |
238 | 238 |
/// \pre The heap must be non-empty. |
239 | 239 |
void pop() { |
240 | 240 |
while (_first[_minimum] == -1) { |
241 | 241 |
Direction::increase(_minimum); |
242 | 242 |
} |
243 | 243 |
int idx = _first[_minimum]; |
244 | 244 |
_iim[_data[idx].item] = -2; |
245 | 245 |
unlace(idx); |
246 |
|
|
246 |
relocateLast(idx); |
|
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
/// \brief Remove the given item from the heap. |
250 | 250 |
/// |
251 | 251 |
/// This function removes the given item from the heap if it is |
252 | 252 |
/// already stored. |
253 | 253 |
/// \param i The item to delete. |
254 | 254 |
/// \pre \e i must be in the heap. |
255 | 255 |
void erase(const Item &i) { |
256 | 256 |
int idx = _iim[i]; |
257 | 257 |
_iim[_data[idx].item] = -2; |
258 | 258 |
unlace(idx); |
259 |
|
|
259 |
relocateLast(idx); |
|
260 | 260 |
} |
261 | 261 |
|
262 | 262 |
/// \brief The priority of the given item. |
263 | 263 |
/// |
264 | 264 |
/// This function returns the priority of the given item. |
265 | 265 |
/// \param i The item. |
266 | 266 |
/// \pre \e i must be in the heap. |
267 | 267 |
Prio operator[](const Item &i) const { |
268 | 268 |
int idx = _iim[i]; |
269 | 269 |
return _data[idx].value; |
270 | 270 |
} |
271 | 271 |
|
272 | 272 |
/// \brief Set the priority of an item or insert it, if it is |
273 | 273 |
/// not stored in the heap. |
274 | 274 |
/// |
275 | 275 |
/// This method sets the priority of the given item if it is |
276 | 276 |
/// already stored in the heap. Otherwise it inserts the given |
277 | 277 |
/// item into the heap with the given priority. |
278 | 278 |
/// \param i The item. |
279 | 279 |
/// \param p The priority. |
280 | 280 |
void set(const Item &i, const Prio &p) { |
281 | 281 |
int idx = _iim[i]; |
282 | 282 |
if (idx < 0) { |
283 | 283 |
push(i, p); |
284 | 284 |
} else if (Direction::less(p, _data[idx].value)) { |
285 | 285 |
decrease(i, p); |
286 | 286 |
} else { |
287 | 287 |
increase(i, p); |
288 | 288 |
} |
289 | 289 |
} |
290 | 290 |
|
291 | 291 |
/// \brief Decrease the priority of an item to the given value. |
292 | 292 |
/// |
293 | 293 |
/// This function decreases the priority of an item to the given value. |
294 | 294 |
/// \param i The item. |
295 | 295 |
/// \param p The priority. |
296 | 296 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
297 | 297 |
void decrease(const Item &i, const Prio &p) { |
298 | 298 |
int idx = _iim[i]; |
299 | 299 |
unlace(idx); |
300 | 300 |
_data[idx].value = p; |
301 | 301 |
if (Direction::less(p, _minimum)) { |
302 | 302 |
_minimum = p; |
303 | 303 |
} |
304 | 304 |
lace(idx); |
305 | 305 |
} |
306 | 306 |
|
307 | 307 |
/// \brief Increase the priority of an item to the given value. |
308 | 308 |
/// |
309 | 309 |
/// This function increases the priority of an item to the given value. |
310 | 310 |
/// \param i The item. |
311 | 311 |
/// \param p The priority. |
312 | 312 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
313 | 313 |
void increase(const Item &i, const Prio &p) { |
314 | 314 |
int idx = _iim[i]; |
315 | 315 |
unlace(idx); |
316 | 316 |
_data[idx].value = p; |
317 | 317 |
lace(idx); |
318 | 318 |
} |
319 | 319 |
|
320 | 320 |
/// \brief Return the state of an item. |
321 | 321 |
/// |
322 | 322 |
/// This method returns \c PRE_HEAP if the given item has never |
323 | 323 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
324 | 324 |
/// and \c POST_HEAP otherwise. |
325 | 325 |
/// In the latter case it is possible that the item will get back |
326 | 326 |
/// to the heap again. |
327 | 327 |
/// \param i The item. |
328 | 328 |
State state(const Item &i) const { |
329 | 329 |
int idx = _iim[i]; |
330 | 330 |
if (idx >= 0) idx = 0; |
331 | 331 |
return State(idx); |
332 | 332 |
} |
333 | 333 |
|
334 | 334 |
/// \brief Set the state of an item in the heap. |
335 | 335 |
/// |
336 | 336 |
/// This function sets the state of the given item in the heap. |
337 | 337 |
/// It can be used to manually clear the heap when it is important |
338 | 338 |
/// to achive better time complexity. |
339 | 339 |
/// \param i The item. |
340 | 340 |
/// \param st The state. It should not be \c IN_HEAP. |
341 | 341 |
void state(const Item& i, State st) { |
342 | 342 |
switch (st) { |
343 | 343 |
case POST_HEAP: |
344 | 344 |
case PRE_HEAP: |
345 | 345 |
if (state(i) == IN_HEAP) { |
346 | 346 |
erase(i); |
347 | 347 |
} |
348 | 348 |
_iim[i] = st; |
349 | 349 |
break; |
350 | 350 |
case IN_HEAP: |
351 | 351 |
break; |
352 | 352 |
} |
353 | 353 |
} |
354 | 354 |
|
355 | 355 |
private: |
... | ... |
@@ -95,377 +95,377 @@ |
95 | 95 |
/// Constructor. |
96 | 96 |
/// \param map A map that assigns \c int values to the items. |
97 | 97 |
/// It is used internally to handle the cross references. |
98 | 98 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
99 | 99 |
explicit FibHeap(ItemIntMap &map) |
100 | 100 |
: _minimum(0), _iim(map), _num() {} |
101 | 101 |
|
102 | 102 |
/// \brief Constructor. |
103 | 103 |
/// |
104 | 104 |
/// Constructor. |
105 | 105 |
/// \param map A map that assigns \c int values to the items. |
106 | 106 |
/// It is used internally to handle the cross references. |
107 | 107 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
108 | 108 |
/// \param comp The function object used for comparing the priorities. |
109 | 109 |
FibHeap(ItemIntMap &map, const Compare &comp) |
110 | 110 |
: _minimum(0), _iim(map), _comp(comp), _num() {} |
111 | 111 |
|
112 | 112 |
/// \brief The number of items stored in the heap. |
113 | 113 |
/// |
114 | 114 |
/// This function returns the number of items stored in the heap. |
115 | 115 |
int size() const { return _num; } |
116 | 116 |
|
117 | 117 |
/// \brief Check if the heap is empty. |
118 | 118 |
/// |
119 | 119 |
/// This function returns \c true if the heap is empty. |
120 | 120 |
bool empty() const { return _num==0; } |
121 | 121 |
|
122 | 122 |
/// \brief Make the heap empty. |
123 | 123 |
/// |
124 | 124 |
/// This functon makes the heap empty. |
125 | 125 |
/// It does not change the cross reference map. If you want to reuse |
126 | 126 |
/// a heap that is not surely empty, you should first clear it and |
127 | 127 |
/// then you should set the cross reference map to \c PRE_HEAP |
128 | 128 |
/// for each item. |
129 | 129 |
void clear() { |
130 | 130 |
_data.clear(); _minimum = 0; _num = 0; |
131 | 131 |
} |
132 | 132 |
|
133 | 133 |
/// \brief Insert an item into the heap with the given priority. |
134 | 134 |
/// |
135 | 135 |
/// This function inserts the given item into the heap with the |
136 | 136 |
/// given priority. |
137 | 137 |
/// \param item The item to insert. |
138 | 138 |
/// \param prio The priority of the item. |
139 | 139 |
/// \pre \e item must not be stored in the heap. |
140 | 140 |
void push (const Item& item, const Prio& prio) { |
141 | 141 |
int i=_iim[item]; |
142 | 142 |
if ( i < 0 ) { |
143 | 143 |
int s=_data.size(); |
144 | 144 |
_iim.set( item, s ); |
145 | 145 |
Store st; |
146 | 146 |
st.name=item; |
147 | 147 |
_data.push_back(st); |
148 | 148 |
i=s; |
149 | 149 |
} else { |
150 | 150 |
_data[i].parent=_data[i].child=-1; |
151 | 151 |
_data[i].degree=0; |
152 | 152 |
_data[i].in=true; |
153 | 153 |
_data[i].marked=false; |
154 | 154 |
} |
155 | 155 |
|
156 | 156 |
if ( _num ) { |
157 | 157 |
_data[_data[_minimum].right_neighbor].left_neighbor=i; |
158 | 158 |
_data[i].right_neighbor=_data[_minimum].right_neighbor; |
159 | 159 |
_data[_minimum].right_neighbor=i; |
160 | 160 |
_data[i].left_neighbor=_minimum; |
161 | 161 |
if ( _comp( prio, _data[_minimum].prio) ) _minimum=i; |
162 | 162 |
} else { |
163 | 163 |
_data[i].right_neighbor=_data[i].left_neighbor=i; |
164 | 164 |
_minimum=i; |
165 | 165 |
} |
166 | 166 |
_data[i].prio=prio; |
167 | 167 |
++_num; |
168 | 168 |
} |
169 | 169 |
|
170 | 170 |
/// \brief Return the item having minimum priority. |
171 | 171 |
/// |
172 | 172 |
/// This function returns the item having minimum priority. |
173 | 173 |
/// \pre The heap must be non-empty. |
174 | 174 |
Item top() const { return _data[_minimum].name; } |
175 | 175 |
|
176 | 176 |
/// \brief The minimum priority. |
177 | 177 |
/// |
178 | 178 |
/// This function returns the minimum priority. |
179 | 179 |
/// \pre The heap must be non-empty. |
180 | 180 |
Prio prio() const { return _data[_minimum].prio; } |
181 | 181 |
|
182 | 182 |
/// \brief Remove the item having minimum priority. |
183 | 183 |
/// |
184 | 184 |
/// This function removes the item having minimum priority. |
185 | 185 |
/// \pre The heap must be non-empty. |
186 | 186 |
void pop() { |
187 | 187 |
/*The first case is that there are only one root.*/ |
188 | 188 |
if ( _data[_minimum].left_neighbor==_minimum ) { |
189 | 189 |
_data[_minimum].in=false; |
190 | 190 |
if ( _data[_minimum].degree!=0 ) { |
191 |
|
|
191 |
makeRoot(_data[_minimum].child); |
|
192 | 192 |
_minimum=_data[_minimum].child; |
193 | 193 |
balance(); |
194 | 194 |
} |
195 | 195 |
} else { |
196 | 196 |
int right=_data[_minimum].right_neighbor; |
197 | 197 |
unlace(_minimum); |
198 | 198 |
_data[_minimum].in=false; |
199 | 199 |
if ( _data[_minimum].degree > 0 ) { |
200 | 200 |
int left=_data[_minimum].left_neighbor; |
201 | 201 |
int child=_data[_minimum].child; |
202 | 202 |
int last_child=_data[child].left_neighbor; |
203 | 203 |
|
204 |
|
|
204 |
makeRoot(child); |
|
205 | 205 |
|
206 | 206 |
_data[left].right_neighbor=child; |
207 | 207 |
_data[child].left_neighbor=left; |
208 | 208 |
_data[right].left_neighbor=last_child; |
209 | 209 |
_data[last_child].right_neighbor=right; |
210 | 210 |
} |
211 | 211 |
_minimum=right; |
212 | 212 |
balance(); |
213 | 213 |
} // the case where there are more roots |
214 | 214 |
--_num; |
215 | 215 |
} |
216 | 216 |
|
217 | 217 |
/// \brief Remove the given item from the heap. |
218 | 218 |
/// |
219 | 219 |
/// This function removes the given item from the heap if it is |
220 | 220 |
/// already stored. |
221 | 221 |
/// \param item The item to delete. |
222 | 222 |
/// \pre \e item must be in the heap. |
223 | 223 |
void erase (const Item& item) { |
224 | 224 |
int i=_iim[item]; |
225 | 225 |
|
226 | 226 |
if ( i >= 0 && _data[i].in ) { |
227 | 227 |
if ( _data[i].parent!=-1 ) { |
228 | 228 |
int p=_data[i].parent; |
229 | 229 |
cut(i,p); |
230 | 230 |
cascade(p); |
231 | 231 |
} |
232 | 232 |
_minimum=i; //As if its prio would be -infinity |
233 | 233 |
pop(); |
234 | 234 |
} |
235 | 235 |
} |
236 | 236 |
|
237 | 237 |
/// \brief The priority of the given item. |
238 | 238 |
/// |
239 | 239 |
/// This function returns the priority of the given item. |
240 | 240 |
/// \param item The item. |
241 | 241 |
/// \pre \e item must be in the heap. |
242 | 242 |
Prio operator[](const Item& item) const { |
243 | 243 |
return _data[_iim[item]].prio; |
244 | 244 |
} |
245 | 245 |
|
246 | 246 |
/// \brief Set the priority of an item or insert it, if it is |
247 | 247 |
/// not stored in the heap. |
248 | 248 |
/// |
249 | 249 |
/// This method sets the priority of the given item if it is |
250 | 250 |
/// already stored in the heap. Otherwise it inserts the given |
251 | 251 |
/// item into the heap with the given priority. |
252 | 252 |
/// \param item The item. |
253 | 253 |
/// \param prio The priority. |
254 | 254 |
void set (const Item& item, const Prio& prio) { |
255 | 255 |
int i=_iim[item]; |
256 | 256 |
if ( i >= 0 && _data[i].in ) { |
257 | 257 |
if ( _comp(prio, _data[i].prio) ) decrease(item, prio); |
258 | 258 |
if ( _comp(_data[i].prio, prio) ) increase(item, prio); |
259 | 259 |
} else push(item, prio); |
260 | 260 |
} |
261 | 261 |
|
262 | 262 |
/// \brief Decrease the priority of an item to the given value. |
263 | 263 |
/// |
264 | 264 |
/// This function decreases the priority of an item to the given value. |
265 | 265 |
/// \param item The item. |
266 | 266 |
/// \param prio The priority. |
267 | 267 |
/// \pre \e item must be stored in the heap with priority at least \e prio. |
268 | 268 |
void decrease (const Item& item, const Prio& prio) { |
269 | 269 |
int i=_iim[item]; |
270 | 270 |
_data[i].prio=prio; |
271 | 271 |
int p=_data[i].parent; |
272 | 272 |
|
273 | 273 |
if ( p!=-1 && _comp(prio, _data[p].prio) ) { |
274 | 274 |
cut(i,p); |
275 | 275 |
cascade(p); |
276 | 276 |
} |
277 | 277 |
if ( _comp(prio, _data[_minimum].prio) ) _minimum=i; |
278 | 278 |
} |
279 | 279 |
|
280 | 280 |
/// \brief Increase the priority of an item to the given value. |
281 | 281 |
/// |
282 | 282 |
/// This function increases the priority of an item to the given value. |
283 | 283 |
/// \param item The item. |
284 | 284 |
/// \param prio The priority. |
285 | 285 |
/// \pre \e item must be stored in the heap with priority at most \e prio. |
286 | 286 |
void increase (const Item& item, const Prio& prio) { |
287 | 287 |
erase(item); |
288 | 288 |
push(item, prio); |
289 | 289 |
} |
290 | 290 |
|
291 | 291 |
/// \brief Return the state of an item. |
292 | 292 |
/// |
293 | 293 |
/// This method returns \c PRE_HEAP if the given item has never |
294 | 294 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
295 | 295 |
/// and \c POST_HEAP otherwise. |
296 | 296 |
/// In the latter case it is possible that the item will get back |
297 | 297 |
/// to the heap again. |
298 | 298 |
/// \param item The item. |
299 | 299 |
State state(const Item &item) const { |
300 | 300 |
int i=_iim[item]; |
301 | 301 |
if( i>=0 ) { |
302 | 302 |
if ( _data[i].in ) i=0; |
303 | 303 |
else i=-2; |
304 | 304 |
} |
305 | 305 |
return State(i); |
306 | 306 |
} |
307 | 307 |
|
308 | 308 |
/// \brief Set the state of an item in the heap. |
309 | 309 |
/// |
310 | 310 |
/// This function sets the state of the given item in the heap. |
311 | 311 |
/// It can be used to manually clear the heap when it is important |
312 | 312 |
/// to achive better time complexity. |
313 | 313 |
/// \param i The item. |
314 | 314 |
/// \param st The state. It should not be \c IN_HEAP. |
315 | 315 |
void state(const Item& i, State st) { |
316 | 316 |
switch (st) { |
317 | 317 |
case POST_HEAP: |
318 | 318 |
case PRE_HEAP: |
319 | 319 |
if (state(i) == IN_HEAP) { |
320 | 320 |
erase(i); |
321 | 321 |
} |
322 | 322 |
_iim[i] = st; |
323 | 323 |
break; |
324 | 324 |
case IN_HEAP: |
325 | 325 |
break; |
326 | 326 |
} |
327 | 327 |
} |
328 | 328 |
|
329 | 329 |
private: |
330 | 330 |
|
331 | 331 |
void balance() { |
332 | 332 |
|
333 | 333 |
int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1; |
334 | 334 |
|
335 | 335 |
std::vector<int> A(maxdeg,-1); |
336 | 336 |
|
337 | 337 |
/* |
338 | 338 |
*Recall that now minimum does not point to the minimum prio element. |
339 | 339 |
*We set minimum to this during balance(). |
340 | 340 |
*/ |
341 | 341 |
int anchor=_data[_minimum].left_neighbor; |
342 | 342 |
int next=_minimum; |
343 | 343 |
bool end=false; |
344 | 344 |
|
345 | 345 |
do { |
346 | 346 |
int active=next; |
347 | 347 |
if ( anchor==active ) end=true; |
348 | 348 |
int d=_data[active].degree; |
349 | 349 |
next=_data[active].right_neighbor; |
350 | 350 |
|
351 | 351 |
while (A[d]!=-1) { |
352 | 352 |
if( _comp(_data[active].prio, _data[A[d]].prio) ) { |
353 | 353 |
fuse(active,A[d]); |
354 | 354 |
} else { |
355 | 355 |
fuse(A[d],active); |
356 | 356 |
active=A[d]; |
357 | 357 |
} |
358 | 358 |
A[d]=-1; |
359 | 359 |
++d; |
360 | 360 |
} |
361 | 361 |
A[d]=active; |
362 | 362 |
} while ( !end ); |
363 | 363 |
|
364 | 364 |
|
365 | 365 |
while ( _data[_minimum].parent >=0 ) |
366 | 366 |
_minimum=_data[_minimum].parent; |
367 | 367 |
int s=_minimum; |
368 | 368 |
int m=_minimum; |
369 | 369 |
do { |
370 | 370 |
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; |
371 | 371 |
s=_data[s].right_neighbor; |
372 | 372 |
} while ( s != m ); |
373 | 373 |
} |
374 | 374 |
|
375 |
void |
|
375 |
void makeRoot(int c) { |
|
376 | 376 |
int s=c; |
377 | 377 |
do { |
378 | 378 |
_data[s].parent=-1; |
379 | 379 |
s=_data[s].right_neighbor; |
380 | 380 |
} while ( s != c ); |
381 | 381 |
} |
382 | 382 |
|
383 | 383 |
void cut(int a, int b) { |
384 | 384 |
/* |
385 | 385 |
*Replacing a from the children of b. |
386 | 386 |
*/ |
387 | 387 |
--_data[b].degree; |
388 | 388 |
|
389 | 389 |
if ( _data[b].degree !=0 ) { |
390 | 390 |
int child=_data[b].child; |
391 | 391 |
if ( child==a ) |
392 | 392 |
_data[b].child=_data[child].right_neighbor; |
393 | 393 |
unlace(a); |
394 | 394 |
} |
395 | 395 |
|
396 | 396 |
|
397 | 397 |
/*Lacing a to the roots.*/ |
398 | 398 |
int right=_data[_minimum].right_neighbor; |
399 | 399 |
_data[_minimum].right_neighbor=a; |
400 | 400 |
_data[a].left_neighbor=_minimum; |
401 | 401 |
_data[a].right_neighbor=right; |
402 | 402 |
_data[right].left_neighbor=a; |
403 | 403 |
|
404 | 404 |
_data[a].parent=-1; |
405 | 405 |
_data[a].marked=false; |
406 | 406 |
} |
407 | 407 |
|
408 | 408 |
void cascade(int a) { |
409 | 409 |
if ( _data[a].parent!=-1 ) { |
410 | 410 |
int p=_data[a].parent; |
411 | 411 |
|
412 | 412 |
if ( _data[a].marked==false ) _data[a].marked=true; |
413 | 413 |
else { |
414 | 414 |
cut(a,p); |
415 | 415 |
cascade(p); |
416 | 416 |
} |
417 | 417 |
} |
418 | 418 |
} |
419 | 419 |
|
420 | 420 |
void fuse(int a, int b) { |
421 | 421 |
unlace(b); |
422 | 422 |
|
423 | 423 |
/*Lacing b under a.*/ |
424 | 424 |
_data[b].parent=a; |
425 | 425 |
|
426 | 426 |
if (_data[a].degree==0) { |
427 | 427 |
_data[b].left_neighbor=b; |
428 | 428 |
_data[b].right_neighbor=b; |
429 | 429 |
_data[a].child=b; |
430 | 430 |
} else { |
431 | 431 |
int child=_data[a].child; |
432 | 432 |
int last_child=_data[child].left_neighbor; |
433 | 433 |
_data[child].left_neighbor=b; |
434 | 434 |
_data[b].right_neighbor=child; |
435 | 435 |
_data[last_child].right_neighbor=b; |
436 | 436 |
_data[b].left_neighbor=last_child; |
437 | 437 |
} |
438 | 438 |
|
439 | 439 |
++_data[a].degree; |
440 | 440 |
|
441 | 441 |
_data[b].marked=false; |
442 | 442 |
} |
443 | 443 |
|
444 | 444 |
/* |
445 | 445 |
*It is invoked only if a has siblings. |
446 | 446 |
*/ |
447 | 447 |
void unlace(int a) { |
448 | 448 |
int leftn=_data[a].left_neighbor; |
449 | 449 |
int rightn=_data[a].right_neighbor; |
450 | 450 |
_data[leftn].right_neighbor=rightn; |
451 | 451 |
_data[rightn].left_neighbor=leftn; |
452 | 452 |
} |
453 | 453 |
|
454 | 454 |
|
455 | 455 |
class Store { |
456 | 456 |
friend class FibHeap; |
457 | 457 |
|
458 | 458 |
Item name; |
459 | 459 |
int parent; |
460 | 460 |
int left_neighbor; |
461 | 461 |
int right_neighbor; |
462 | 462 |
int child; |
463 | 463 |
int degree; |
464 | 464 |
bool marked; |
465 | 465 |
bool in; |
466 | 466 |
Prio prio; |
467 | 467 |
|
468 | 468 |
Store() : parent(-1), child(-1), degree(), marked(false), in(true) {} |
469 | 469 |
}; |
470 | 470 |
}; |
471 | 471 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_RADIX_HEAP_H |
20 | 20 |
#define LEMON_RADIX_HEAP_H |
21 | 21 |
|
22 | 22 |
///\ingroup heaps |
23 | 23 |
///\file |
24 | 24 |
///\brief Radix heap implementation. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <lemon/error.h> |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
|
32 | 32 |
/// \ingroup heaps |
33 | 33 |
/// |
34 | 34 |
/// \brief Radix heap data structure. |
35 | 35 |
/// |
36 | 36 |
/// This class implements the \e radix \e heap data structure. |
37 | 37 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
38 | 38 |
/// but it has some limitations due its special implementation. |
39 | 39 |
/// The type of the priorities must be \c int and the priority of an |
40 | 40 |
/// item cannot be decreased under the priority of the last removed item. |
41 | 41 |
/// |
42 | 42 |
/// \tparam IM A read-writable item map with \c int values, used |
43 | 43 |
/// internally to handle the cross references. |
44 | 44 |
template <typename IM> |
45 | 45 |
class RadixHeap { |
46 | 46 |
|
47 | 47 |
public: |
48 | 48 |
|
49 | 49 |
/// Type of the item-int map. |
50 | 50 |
typedef IM ItemIntMap; |
51 | 51 |
/// Type of the priorities. |
52 | 52 |
typedef int Prio; |
53 | 53 |
/// Type of the items stored in the heap. |
54 | 54 |
typedef typename ItemIntMap::Key Item; |
55 | 55 |
|
56 | 56 |
/// \brief Exception thrown by RadixHeap. |
57 | 57 |
/// |
58 | 58 |
/// This exception is thrown when an item is inserted into a |
59 | 59 |
/// RadixHeap with a priority smaller than the last erased one. |
60 | 60 |
/// \see RadixHeap |
61 |
class |
|
61 |
class PriorityUnderflowError : public Exception { |
|
62 | 62 |
public: |
63 | 63 |
virtual const char* what() const throw() { |
64 |
return "lemon::RadixHeap:: |
|
64 |
return "lemon::RadixHeap::PriorityUnderflowError"; |
|
65 | 65 |
} |
66 | 66 |
}; |
67 | 67 |
|
68 | 68 |
/// \brief Type to represent the states of the items. |
69 | 69 |
/// |
70 | 70 |
/// Each item has a state associated to it. It can be "in heap", |
71 | 71 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
72 | 72 |
/// heap's point of view, but may be useful to the user. |
73 | 73 |
/// |
74 | 74 |
/// The item-int map must be initialized in such way that it assigns |
75 | 75 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
76 | 76 |
enum State { |
77 | 77 |
IN_HEAP = 0, ///< = 0. |
78 | 78 |
PRE_HEAP = -1, ///< = -1. |
79 | 79 |
POST_HEAP = -2 ///< = -2. |
80 | 80 |
}; |
81 | 81 |
|
82 | 82 |
private: |
83 | 83 |
|
84 | 84 |
struct RadixItem { |
85 | 85 |
int prev, next, box; |
86 | 86 |
Item item; |
87 | 87 |
int prio; |
88 | 88 |
RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {} |
89 | 89 |
}; |
90 | 90 |
|
91 | 91 |
struct RadixBox { |
92 | 92 |
int first; |
93 | 93 |
int min, size; |
94 | 94 |
RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {} |
95 | 95 |
}; |
96 | 96 |
|
97 |
std::vector<RadixItem> data; |
|
98 |
std::vector<RadixBox> boxes; |
|
97 |
std::vector<RadixItem> _data; |
|
98 |
std::vector<RadixBox> _boxes; |
|
99 | 99 |
|
100 | 100 |
ItemIntMap &_iim; |
101 | 101 |
|
102 | 102 |
public: |
103 | 103 |
|
104 | 104 |
/// \brief Constructor. |
105 | 105 |
/// |
106 | 106 |
/// Constructor. |
107 | 107 |
/// \param map A map that assigns \c int values to the items. |
108 | 108 |
/// It is used internally to handle the cross references. |
109 | 109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
110 | 110 |
/// \param minimum The initial minimum value of the heap. |
111 | 111 |
/// \param capacity The initial capacity of the heap. |
112 | 112 |
RadixHeap(ItemIntMap &map, int minimum = 0, int capacity = 0) |
113 | 113 |
: _iim(map) |
114 | 114 |
{ |
115 |
boxes.push_back(RadixBox(minimum, 1)); |
|
116 |
boxes.push_back(RadixBox(minimum + 1, 1)); |
|
117 |
|
|
115 |
_boxes.push_back(RadixBox(minimum, 1)); |
|
116 |
_boxes.push_back(RadixBox(minimum + 1, 1)); |
|
117 |
while (lower(_boxes.size() - 1, capacity + minimum - 1)) { |
|
118 | 118 |
extend(); |
119 | 119 |
} |
120 | 120 |
} |
121 | 121 |
|
122 | 122 |
/// \brief The number of items stored in the heap. |
123 | 123 |
/// |
124 | 124 |
/// This function returns the number of items stored in the heap. |
125 |
int size() const { return |
|
125 |
int size() const { return _data.size(); } |
|
126 | 126 |
|
127 | 127 |
/// \brief Check if the heap is empty. |
128 | 128 |
/// |
129 | 129 |
/// This function returns \c true if the heap is empty. |
130 |
bool empty() const { return |
|
130 |
bool empty() const { return _data.empty(); } |
|
131 | 131 |
|
132 | 132 |
/// \brief Make the heap empty. |
133 | 133 |
/// |
134 | 134 |
/// This functon makes the heap empty. |
135 | 135 |
/// It does not change the cross reference map. If you want to reuse |
136 | 136 |
/// a heap that is not surely empty, you should first clear it and |
137 | 137 |
/// then you should set the cross reference map to \c PRE_HEAP |
138 | 138 |
/// for each item. |
139 | 139 |
/// \param minimum The minimum value of the heap. |
140 | 140 |
/// \param capacity The capacity of the heap. |
141 | 141 |
void clear(int minimum = 0, int capacity = 0) { |
142 |
data.clear(); boxes.clear(); |
|
143 |
boxes.push_back(RadixBox(minimum, 1)); |
|
144 |
boxes.push_back(RadixBox(minimum + 1, 1)); |
|
145 |
while (lower(boxes.size() - 1, capacity + minimum - 1)) { |
|
142 |
_data.clear(); _boxes.clear(); |
|
143 |
_boxes.push_back(RadixBox(minimum, 1)); |
|
144 |
_boxes.push_back(RadixBox(minimum + 1, 1)); |
|
145 |
while (lower(_boxes.size() - 1, capacity + minimum - 1)) { |
|
146 | 146 |
extend(); |
147 | 147 |
} |
148 | 148 |
} |
149 | 149 |
|
150 | 150 |
private: |
151 | 151 |
|
152 | 152 |
bool upper(int box, Prio pr) { |
153 |
return pr < |
|
153 |
return pr < _boxes[box].min; |
|
154 | 154 |
} |
155 | 155 |
|
156 | 156 |
bool lower(int box, Prio pr) { |
157 |
return pr >= |
|
157 |
return pr >= _boxes[box].min + _boxes[box].size; |
|
158 | 158 |
} |
159 | 159 |
|
160 | 160 |
// Remove item from the box list |
161 | 161 |
void remove(int index) { |
162 |
if (data[index].prev >= 0) { |
|
163 |
data[data[index].prev].next = data[index].next; |
|
162 |
if (_data[index].prev >= 0) { |
|
163 |
_data[_data[index].prev].next = _data[index].next; |
|
164 | 164 |
} else { |
165 |
|
|
165 |
_boxes[_data[index].box].first = _data[index].next; |
|
166 | 166 |
} |
167 |
if (data[index].next >= 0) { |
|
168 |
data[data[index].next].prev = data[index].prev; |
|
167 |
if (_data[index].next >= 0) { |
|
168 |
_data[_data[index].next].prev = _data[index].prev; |
|
169 | 169 |
} |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
// Insert item into the box list |
173 | 173 |
void insert(int box, int index) { |
174 |
if (boxes[box].first == -1) { |
|
175 |
boxes[box].first = index; |
|
176 |
|
|
174 |
if (_boxes[box].first == -1) { |
|
175 |
_boxes[box].first = index; |
|
176 |
_data[index].next = _data[index].prev = -1; |
|
177 | 177 |
} else { |
178 |
data[index].next = boxes[box].first; |
|
179 |
data[boxes[box].first].prev = index; |
|
180 |
data[index].prev = -1; |
|
181 |
boxes[box].first = index; |
|
178 |
_data[index].next = _boxes[box].first; |
|
179 |
_data[_boxes[box].first].prev = index; |
|
180 |
_data[index].prev = -1; |
|
181 |
_boxes[box].first = index; |
|
182 | 182 |
} |
183 |
|
|
183 |
_data[index].box = box; |
|
184 | 184 |
} |
185 | 185 |
|
186 | 186 |
// Add a new box to the box list |
187 | 187 |
void extend() { |
188 |
int min = boxes.back().min + boxes.back().size; |
|
189 |
int bs = 2 * boxes.back().size; |
|
190 |
|
|
188 |
int min = _boxes.back().min + _boxes.back().size; |
|
189 |
int bs = 2 * _boxes.back().size; |
|
190 |
_boxes.push_back(RadixBox(min, bs)); |
|
191 | 191 |
} |
192 | 192 |
|
193 | 193 |
// Move an item up into the proper box. |
194 |
void bubble_up(int index) { |
|
195 |
if (!lower(data[index].box, data[index].prio)) return; |
|
194 |
void bubbleUp(int index) { |
|
195 |
if (!lower(_data[index].box, _data[index].prio)) return; |
|
196 | 196 |
remove(index); |
197 |
int box = findUp( |
|
197 |
int box = findUp(_data[index].box, _data[index].prio); |
|
198 | 198 |
insert(box, index); |
199 | 199 |
} |
200 | 200 |
|
201 | 201 |
// Find up the proper box for the item with the given priority |
202 | 202 |
int findUp(int start, int pr) { |
203 | 203 |
while (lower(start, pr)) { |
204 |
if (++start == int( |
|
204 |
if (++start == int(_boxes.size())) { |
|
205 | 205 |
extend(); |
206 | 206 |
} |
207 | 207 |
} |
208 | 208 |
return start; |
209 | 209 |
} |
210 | 210 |
|
211 | 211 |
// Move an item down into the proper box |
212 |
void bubble_down(int index) { |
|
213 |
if (!upper(data[index].box, data[index].prio)) return; |
|
212 |
void bubbleDown(int index) { |
|
213 |
if (!upper(_data[index].box, _data[index].prio)) return; |
|
214 | 214 |
remove(index); |
215 |
int box = findDown( |
|
215 |
int box = findDown(_data[index].box, _data[index].prio); |
|
216 | 216 |
insert(box, index); |
217 | 217 |
} |
218 | 218 |
|
219 | 219 |
// Find down the proper box for the item with the given priority |
220 | 220 |
int findDown(int start, int pr) { |
221 | 221 |
while (upper(start, pr)) { |
222 |
if (--start < 0) throw |
|
222 |
if (--start < 0) throw PriorityUnderflowError(); |
|
223 | 223 |
} |
224 | 224 |
return start; |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
// Find the first non-empty box |
228 | 228 |
int findFirst() { |
229 | 229 |
int first = 0; |
230 |
while ( |
|
230 |
while (_boxes[first].first == -1) ++first; |
|
231 | 231 |
return first; |
232 | 232 |
} |
233 | 233 |
|
234 | 234 |
// Gives back the minimum priority of the given box |
235 | 235 |
int minValue(int box) { |
236 |
int min = data[boxes[box].first].prio; |
|
237 |
for (int k = boxes[box].first; k != -1; k = data[k].next) { |
|
238 |
|
|
236 |
int min = _data[_boxes[box].first].prio; |
|
237 |
for (int k = _boxes[box].first; k != -1; k = _data[k].next) { |
|
238 |
if (_data[k].prio < min) min = _data[k].prio; |
|
239 | 239 |
} |
240 | 240 |
return min; |
241 | 241 |
} |
242 | 242 |
|
243 | 243 |
// Rearrange the items of the heap and make the first box non-empty |
244 | 244 |
void moveDown() { |
245 | 245 |
int box = findFirst(); |
246 | 246 |
if (box == 0) return; |
247 | 247 |
int min = minValue(box); |
248 | 248 |
for (int i = 0; i <= box; ++i) { |
249 |
boxes[i].min = min; |
|
250 |
min += boxes[i].size; |
|
249 |
_boxes[i].min = min; |
|
250 |
min += _boxes[i].size; |
|
251 | 251 |
} |
252 |
int curr = |
|
252 |
int curr = _boxes[box].first, next; |
|
253 | 253 |
while (curr != -1) { |
254 |
next = data[curr].next; |
|
255 |
bubble_down(curr); |
|
254 |
next = _data[curr].next; |
|
255 |
bubbleDown(curr); |
|
256 | 256 |
curr = next; |
257 | 257 |
} |
258 | 258 |
} |
259 | 259 |
|
260 |
void relocate_last(int index) { |
|
261 |
if (index != int(data.size()) - 1) { |
|
262 |
data[index] = data.back(); |
|
263 |
if (data[index].prev != -1) { |
|
264 |
|
|
260 |
void relocateLast(int index) { |
|
261 |
if (index != int(_data.size()) - 1) { |
|
262 |
_data[index] = _data.back(); |
|
263 |
if (_data[index].prev != -1) { |
|
264 |
_data[_data[index].prev].next = index; |
|
265 | 265 |
} else { |
266 |
|
|
266 |
_boxes[_data[index].box].first = index; |
|
267 | 267 |
} |
268 |
if (data[index].next != -1) { |
|
269 |
data[data[index].next].prev = index; |
|
268 |
if (_data[index].next != -1) { |
|
269 |
_data[_data[index].next].prev = index; |
|
270 | 270 |
} |
271 |
_iim[ |
|
271 |
_iim[_data[index].item] = index; |
|
272 | 272 |
} |
273 |
|
|
273 |
_data.pop_back(); |
|
274 | 274 |
} |
275 | 275 |
|
276 | 276 |
public: |
277 | 277 |
|
278 | 278 |
/// \brief Insert an item into the heap with the given priority. |
279 | 279 |
/// |
280 | 280 |
/// This function inserts the given item into the heap with the |
281 | 281 |
/// given priority. |
282 | 282 |
/// \param i The item to insert. |
283 | 283 |
/// \param p The priority of the item. |
284 | 284 |
/// \pre \e i must not be stored in the heap. |
285 | 285 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
286 | 286 |
void push(const Item &i, const Prio &p) { |
287 |
int n = |
|
287 |
int n = _data.size(); |
|
288 | 288 |
_iim.set(i, n); |
289 |
data.push_back(RadixItem(i, p)); |
|
290 |
while (lower(boxes.size() - 1, p)) { |
|
289 |
_data.push_back(RadixItem(i, p)); |
|
290 |
while (lower(_boxes.size() - 1, p)) { |
|
291 | 291 |
extend(); |
292 | 292 |
} |
293 |
int box = findDown( |
|
293 |
int box = findDown(_boxes.size() - 1, p); |
|
294 | 294 |
insert(box, n); |
295 | 295 |
} |
296 | 296 |
|
297 | 297 |
/// \brief Return the item having minimum priority. |
298 | 298 |
/// |
299 | 299 |
/// This function returns the item having minimum priority. |
300 | 300 |
/// \pre The heap must be non-empty. |
301 | 301 |
Item top() const { |
302 | 302 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
303 |
return |
|
303 |
return _data[_boxes[0].first].item; |
|
304 | 304 |
} |
305 | 305 |
|
306 | 306 |
/// \brief The minimum priority. |
307 | 307 |
/// |
308 | 308 |
/// This function returns the minimum priority. |
309 | 309 |
/// \pre The heap must be non-empty. |
310 | 310 |
Prio prio() const { |
311 | 311 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
312 |
return |
|
312 |
return _data[_boxes[0].first].prio; |
|
313 | 313 |
} |
314 | 314 |
|
315 | 315 |
/// \brief Remove the item having minimum priority. |
316 | 316 |
/// |
317 | 317 |
/// This function removes the item having minimum priority. |
318 | 318 |
/// \pre The heap must be non-empty. |
319 | 319 |
void pop() { |
320 | 320 |
moveDown(); |
321 |
int index = boxes[0].first; |
|
322 |
_iim[data[index].item] = POST_HEAP; |
|
321 |
int index = _boxes[0].first; |
|
322 |
_iim[_data[index].item] = POST_HEAP; |
|
323 | 323 |
remove(index); |
324 |
|
|
324 |
relocateLast(index); |
|
325 | 325 |
} |
326 | 326 |
|
327 | 327 |
/// \brief Remove the given item from the heap. |
328 | 328 |
/// |
329 | 329 |
/// This function removes the given item from the heap if it is |
330 | 330 |
/// already stored. |
331 | 331 |
/// \param i The item to delete. |
332 | 332 |
/// \pre \e i must be in the heap. |
333 | 333 |
void erase(const Item &i) { |
334 | 334 |
int index = _iim[i]; |
335 | 335 |
_iim[i] = POST_HEAP; |
336 | 336 |
remove(index); |
337 |
|
|
337 |
relocateLast(index); |
|
338 | 338 |
} |
339 | 339 |
|
340 | 340 |
/// \brief The priority of the given item. |
341 | 341 |
/// |
342 | 342 |
/// This function returns the priority of the given item. |
343 | 343 |
/// \param i The item. |
344 | 344 |
/// \pre \e i must be in the heap. |
345 | 345 |
Prio operator[](const Item &i) const { |
346 | 346 |
int idx = _iim[i]; |
347 |
return |
|
347 |
return _data[idx].prio; |
|
348 | 348 |
} |
349 | 349 |
|
350 | 350 |
/// \brief Set the priority of an item or insert it, if it is |
351 | 351 |
/// not stored in the heap. |
352 | 352 |
/// |
353 | 353 |
/// This method sets the priority of the given item if it is |
354 | 354 |
/// already stored in the heap. Otherwise it inserts the given |
355 | 355 |
/// item into the heap with the given priority. |
356 | 356 |
/// \param i The item. |
357 | 357 |
/// \param p The priority. |
358 | 358 |
/// \pre \e i must be in the heap. |
359 | 359 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
360 | 360 |
void set(const Item &i, const Prio &p) { |
361 | 361 |
int idx = _iim[i]; |
362 | 362 |
if( idx < 0 ) { |
363 | 363 |
push(i, p); |
364 | 364 |
} |
365 |
else if( p >= data[idx].prio ) { |
|
366 |
data[idx].prio = p; |
|
367 |
|
|
365 |
else if( p >= _data[idx].prio ) { |
|
366 |
_data[idx].prio = p; |
|
367 |
bubbleUp(idx); |
|
368 | 368 |
} else { |
369 |
data[idx].prio = p; |
|
370 |
bubble_down(idx); |
|
369 |
_data[idx].prio = p; |
|
370 |
bubbleDown(idx); |
|
371 | 371 |
} |
372 | 372 |
} |
373 | 373 |
|
374 | 374 |
/// \brief Decrease the priority of an item to the given value. |
375 | 375 |
/// |
376 | 376 |
/// This function decreases the priority of an item to the given value. |
377 | 377 |
/// \param i The item. |
378 | 378 |
/// \param p The priority. |
379 | 379 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
380 | 380 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
381 | 381 |
void decrease(const Item &i, const Prio &p) { |
382 | 382 |
int idx = _iim[i]; |
383 |
data[idx].prio = p; |
|
384 |
bubble_down(idx); |
|
383 |
_data[idx].prio = p; |
|
384 |
bubbleDown(idx); |
|
385 | 385 |
} |
386 | 386 |
|
387 | 387 |
/// \brief Increase the priority of an item to the given value. |
388 | 388 |
/// |
389 | 389 |
/// This function increases the priority of an item to the given value. |
390 | 390 |
/// \param i The item. |
391 | 391 |
/// \param p The priority. |
392 | 392 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
393 | 393 |
void increase(const Item &i, const Prio &p) { |
394 | 394 |
int idx = _iim[i]; |
395 |
data[idx].prio = p; |
|
396 |
bubble_up(idx); |
|
395 |
_data[idx].prio = p; |
|
396 |
bubbleUp(idx); |
|
397 | 397 |
} |
398 | 398 |
|
399 | 399 |
/// \brief Return the state of an item. |
400 | 400 |
/// |
401 | 401 |
/// This method returns \c PRE_HEAP if the given item has never |
402 | 402 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
403 | 403 |
/// and \c POST_HEAP otherwise. |
404 | 404 |
/// In the latter case it is possible that the item will get back |
405 | 405 |
/// to the heap again. |
406 | 406 |
/// \param i The item. |
407 | 407 |
State state(const Item &i) const { |
408 | 408 |
int s = _iim[i]; |
409 | 409 |
if( s >= 0 ) s = 0; |
410 | 410 |
return State(s); |
411 | 411 |
} |
412 | 412 |
|
413 | 413 |
/// \brief Set the state of an item in the heap. |
414 | 414 |
/// |
415 | 415 |
/// This function sets the state of the given item in the heap. |
416 | 416 |
/// It can be used to manually clear the heap when it is important |
417 | 417 |
/// to achive better time complexity. |
418 | 418 |
/// \param i The item. |
419 | 419 |
/// \param st The state. It should not be \c IN_HEAP. |
420 | 420 |
void state(const Item& i, State st) { |
421 | 421 |
switch (st) { |
422 | 422 |
case POST_HEAP: |
423 | 423 |
case PRE_HEAP: |
424 | 424 |
if (state(i) == IN_HEAP) { |
425 | 425 |
erase(i); |
426 | 426 |
} |
427 | 427 |
_iim[i] = st; |
428 | 428 |
break; |
429 | 429 |
case IN_HEAP: |
430 | 430 |
break; |
431 | 431 |
} |
432 | 432 |
} |
433 | 433 |
|
434 | 434 |
}; // class RadixHeap |
435 | 435 |
|
436 | 436 |
} // namespace lemon |
437 | 437 |
|
438 | 438 |
#endif // LEMON_RADIX_HEAP_H |
0 comments (0 inline)