gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Unify member names in heaps (#299) The following renamings are made. Public members: - UnderFlowPriorityError -> PriorityUnderflowError ("underflow" is only one word) Private members: - bubble_up() -> bubbleUp() - bubble_down() -> bubbleDown() - second_child() -> secondChild() - makeroot() -> makeRoot() - relocate_last() -> relocateLast() - data -> _data - boxes -> _boxes
0 4 0
default
4 files changed with 97 insertions and 97 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
... ...
@@ -115,51 +115,51 @@
115 115
    /// This functon makes the heap empty.
116 116
    /// It does not change the cross reference map. If you want to reuse
117 117
    /// a heap that is not surely empty, you should first clear it and
118 118
    /// then you should set the cross reference map to \c PRE_HEAP
119 119
    /// for each item.
120 120
    void clear() {
121 121
      _data.clear();
122 122
    }
123 123

	
124 124
  private:
125 125
    static int parent(int i) { return (i-1)/2; }
126 126

	
127
    static int second_child(int i) { return 2*i+2; }
127
    static int secondChild(int i) { return 2*i+2; }
128 128
    bool less(const Pair &p1, const Pair &p2) const {
129 129
      return _comp(p1.second, p2.second);
130 130
    }
131 131

	
132
    int bubble_up(int hole, Pair p) {
132
    int bubbleUp(int hole, Pair p) {
133 133
      int par = parent(hole);
134 134
      while( hole>0 && less(p,_data[par]) ) {
135 135
        move(_data[par],hole);
136 136
        hole = par;
137 137
        par = parent(hole);
138 138
      }
139 139
      move(p, hole);
140 140
      return hole;
141 141
    }
142 142

	
143
    int bubble_down(int hole, Pair p, int length) {
144
      int child = second_child(hole);
143
    int bubbleDown(int hole, Pair p, int length) {
144
      int child = secondChild(hole);
145 145
      while(child < length) {
146 146
        if( less(_data[child-1], _data[child]) ) {
147 147
          --child;
148 148
        }
149 149
        if( !less(_data[child], p) )
150 150
          goto ok;
151 151
        move(_data[child], hole);
152 152
        hole = child;
153
        child = second_child(hole);
153
        child = secondChild(hole);
154 154
      }
155 155
      child--;
156 156
      if( child<length && less(_data[child], p) ) {
157 157
        move(_data[child], hole);
158 158
        hole=child;
159 159
      }
160 160
    ok:
161 161
      move(p, hole);
162 162
      return hole;
163 163
    }
164 164

	
165 165
    void move(const Pair &p, int i) {
... ...
@@ -169,25 +169,25 @@
169 169

	
170 170
  public:
171 171

	
172 172
    /// \brief Insert a pair of item and priority into the heap.
173 173
    ///
174 174
    /// This function inserts \c p.first to the heap with priority
175 175
    /// \c p.second.
176 176
    /// \param p The pair to insert.
177 177
    /// \pre \c p.first must not be stored in the heap.
178 178
    void push(const Pair &p) {
179 179
      int n = _data.size();
180 180
      _data.resize(n+1);
181
      bubble_up(n, p);
181
      bubbleUp(n, p);
182 182
    }
183 183

	
184 184
    /// \brief Insert an item into the heap with the given priority.
185 185
    ///
186 186
    /// This function inserts the given item into the heap with the
187 187
    /// given priority.
188 188
    /// \param i The item to insert.
189 189
    /// \param p The priority of the item.
190 190
    /// \pre \e i must not be stored in the heap.
191 191
    void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
192 192

	
193 193
    /// \brief Return the item having minimum priority.
... ...
@@ -205,42 +205,42 @@
205 205
    Prio prio() const {
206 206
      return _data[0].second;
207 207
    }
208 208

	
209 209
    /// \brief Remove the item having minimum priority.
210 210
    ///
211 211
    /// This function removes the item having minimum priority.
212 212
    /// \pre The heap must be non-empty.
213 213
    void pop() {
214 214
      int n = _data.size()-1;
215 215
      _iim.set(_data[0].first, POST_HEAP);
216 216
      if (n > 0) {
217
        bubble_down(0, _data[n], n);
217
        bubbleDown(0, _data[n], n);
218 218
      }
219 219
      _data.pop_back();
220 220
    }
221 221

	
222 222
    /// \brief Remove the given item from the heap.
223 223
    ///
224 224
    /// This function removes the given item from the heap if it is
225 225
    /// already stored.
226 226
    /// \param i The item to delete.
227 227
    /// \pre \e i must be in the heap.
228 228
    void erase(const Item &i) {
229 229
      int h = _iim[i];
230 230
      int n = _data.size()-1;
231 231
      _iim.set(_data[h].first, POST_HEAP);
232 232
      if( h < n ) {
233
        if ( bubble_up(h, _data[n]) == h) {
234
          bubble_down(h, _data[n], n);
233
        if ( bubbleUp(h, _data[n]) == h) {
234
          bubbleDown(h, _data[n], n);
235 235
        }
236 236
      }
237 237
      _data.pop_back();
238 238
    }
239 239

	
240 240
    /// \brief The priority of the given item.
241 241
    ///
242 242
    /// This function returns the priority of the given item.
243 243
    /// \param i The item.
244 244
    /// \pre \e i must be in the heap.
245 245
    Prio operator[](const Item &i) const {
246 246
      int idx = _iim[i];
... ...
@@ -252,51 +252,51 @@
252 252
    ///
253 253
    /// This method sets the priority of the given item if it is
254 254
    /// already stored in the heap. Otherwise it inserts the given
255 255
    /// item into the heap with the given priority.
256 256
    /// \param i The item.
257 257
    /// \param p The priority.
258 258
    void set(const Item &i, const Prio &p) {
259 259
      int idx = _iim[i];
260 260
      if( idx < 0 ) {
261 261
        push(i,p);
262 262
      }
263 263
      else if( _comp(p, _data[idx].second) ) {
264
        bubble_up(idx, Pair(i,p));
264
        bubbleUp(idx, Pair(i,p));
265 265
      }
266 266
      else {
267
        bubble_down(idx, Pair(i,p), _data.size());
267
        bubbleDown(idx, Pair(i,p), _data.size());
268 268
      }
269 269
    }
270 270

	
271 271
    /// \brief Decrease the priority of an item to the given value.
272 272
    ///
273 273
    /// This function decreases the priority of an item to the given value.
274 274
    /// \param i The item.
275 275
    /// \param p The priority.
276 276
    /// \pre \e i must be stored in the heap with priority at least \e p.
277 277
    void decrease(const Item &i, const Prio &p) {
278 278
      int idx = _iim[i];
279
      bubble_up(idx, Pair(i,p));
279
      bubbleUp(idx, Pair(i,p));
280 280
    }
281 281

	
282 282
    /// \brief Increase the priority of an item to the given value.
283 283
    ///
284 284
    /// This function increases the priority of an item to the given value.
285 285
    /// \param i The item.
286 286
    /// \param p The priority.
287 287
    /// \pre \e i must be stored in the heap with priority at most \e p.
288 288
    void increase(const Item &i, const Prio &p) {
289 289
      int idx = _iim[i];
290
      bubble_down(idx, Pair(i,p), _data.size());
290
      bubbleDown(idx, Pair(i,p), _data.size());
291 291
    }
292 292

	
293 293
    /// \brief Return the state of an item.
294 294
    ///
295 295
    /// This method returns \c PRE_HEAP if the given item has never
296 296
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
297 297
    /// and \c POST_HEAP otherwise.
298 298
    /// In the latter case it is possible that the item will get back
299 299
    /// to the heap again.
300 300
    /// \param i The item.
301 301
    State state(const Item &i) const {
302 302
      int s = _iim[i];
Ignore white space 6 line context
... ...
@@ -133,25 +133,25 @@
133 133
    ///
134 134
    /// This functon makes the heap empty.
135 135
    /// It does not change the cross reference map. If you want to reuse
136 136
    /// a heap that is not surely empty, you should first clear it and
137 137
    /// then you should set the cross reference map to \c PRE_HEAP
138 138
    /// for each item.
139 139
    void clear() {
140 140
      _data.clear(); _first.clear(); _minimum = 0;
141 141
    }
142 142

	
143 143
  private:
144 144

	
145
    void relocate_last(int idx) {
145
    void relocateLast(int idx) {
146 146
      if (idx + 1 < int(_data.size())) {
147 147
        _data[idx] = _data.back();
148 148
        if (_data[idx].prev != -1) {
149 149
          _data[_data[idx].prev].next = idx;
150 150
        } else {
151 151
          _first[_data[idx].value] = idx;
152 152
        }
153 153
        if (_data[idx].next != -1) {
154 154
          _data[_data[idx].next].prev = idx;
155 155
        }
156 156
        _iim[_data[idx].item] = idx;
157 157
      }
... ...
@@ -234,38 +234,38 @@
234 234

	
235 235
    /// \brief Remove the item having minimum priority.
236 236
    ///
237 237
    /// This function removes the item having minimum priority.
238 238
    /// \pre The heap must be non-empty.
239 239
    void pop() {
240 240
      while (_first[_minimum] == -1) {
241 241
        Direction::increase(_minimum);
242 242
      }
243 243
      int idx = _first[_minimum];
244 244
      _iim[_data[idx].item] = -2;
245 245
      unlace(idx);
246
      relocate_last(idx);
246
      relocateLast(idx);
247 247
    }
248 248

	
249 249
    /// \brief Remove the given item from the heap.
250 250
    ///
251 251
    /// This function removes the given item from the heap if it is
252 252
    /// already stored.
253 253
    /// \param i The item to delete.
254 254
    /// \pre \e i must be in the heap.
255 255
    void erase(const Item &i) {
256 256
      int idx = _iim[i];
257 257
      _iim[_data[idx].item] = -2;
258 258
      unlace(idx);
259
      relocate_last(idx);
259
      relocateLast(idx);
260 260
    }
261 261

	
262 262
    /// \brief The priority of the given item.
263 263
    ///
264 264
    /// This function returns the priority of the given item.
265 265
    /// \param i The item.
266 266
    /// \pre \e i must be in the heap.
267 267
    Prio operator[](const Item &i) const {
268 268
      int idx = _iim[i];
269 269
      return _data[idx].value;
270 270
    }
271 271

	
Ignore white space 24 line context
... ...
@@ -179,38 +179,38 @@
179 179
    /// \pre The heap must be non-empty.
180 180
    Prio prio() const { return _data[_minimum].prio; }
181 181

	
182 182
    /// \brief Remove the item having minimum priority.
183 183
    ///
184 184
    /// This function removes the item having minimum priority.
185 185
    /// \pre The heap must be non-empty.
186 186
    void pop() {
187 187
      /*The first case is that there are only one root.*/
188 188
      if ( _data[_minimum].left_neighbor==_minimum ) {
189 189
        _data[_minimum].in=false;
190 190
        if ( _data[_minimum].degree!=0 ) {
191
          makeroot(_data[_minimum].child);
191
          makeRoot(_data[_minimum].child);
192 192
          _minimum=_data[_minimum].child;
193 193
          balance();
194 194
        }
195 195
      } else {
196 196
        int right=_data[_minimum].right_neighbor;
197 197
        unlace(_minimum);
198 198
        _data[_minimum].in=false;
199 199
        if ( _data[_minimum].degree > 0 ) {
200 200
          int left=_data[_minimum].left_neighbor;
201 201
          int child=_data[_minimum].child;
202 202
          int last_child=_data[child].left_neighbor;
203 203

	
204
          makeroot(child);
204
          makeRoot(child);
205 205

	
206 206
          _data[left].right_neighbor=child;
207 207
          _data[child].left_neighbor=left;
208 208
          _data[right].left_neighbor=last_child;
209 209
          _data[last_child].right_neighbor=right;
210 210
        }
211 211
        _minimum=right;
212 212
        balance();
213 213
      } // the case where there are more roots
214 214
      --_num;
215 215
    }
216 216

	
... ...
@@ -363,25 +363,25 @@
363 363

	
364 364

	
365 365
      while ( _data[_minimum].parent >=0 )
366 366
        _minimum=_data[_minimum].parent;
367 367
      int s=_minimum;
368 368
      int m=_minimum;
369 369
      do {
370 370
        if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s;
371 371
        s=_data[s].right_neighbor;
372 372
      } while ( s != m );
373 373
    }
374 374

	
375
    void makeroot(int c) {
375
    void makeRoot(int c) {
376 376
      int s=c;
377 377
      do {
378 378
        _data[s].parent=-1;
379 379
        s=_data[s].right_neighbor;
380 380
      } while ( s != c );
381 381
    }
382 382

	
383 383
    void cut(int a, int b) {
384 384
      /*
385 385
       *Replacing a from the children of b.
386 386
       */
387 387
      --_data[b].degree;
Ignore white space 6 line context
... ...
@@ -49,28 +49,28 @@
49 49
    /// Type of the item-int map.
50 50
    typedef IM ItemIntMap;
51 51
    /// Type of the priorities.
52 52
    typedef int Prio;
53 53
    /// Type of the items stored in the heap.
54 54
    typedef typename ItemIntMap::Key Item;
55 55

	
56 56
    /// \brief Exception thrown by RadixHeap.
57 57
    ///
58 58
    /// This exception is thrown when an item is inserted into a
59 59
    /// RadixHeap with a priority smaller than the last erased one.
60 60
    /// \see RadixHeap
61
    class UnderFlowPriorityError : public Exception {
61
    class PriorityUnderflowError : public Exception {
62 62
    public:
63 63
      virtual const char* what() const throw() {
64
        return "lemon::RadixHeap::UnderFlowPriorityError";
64
        return "lemon::RadixHeap::PriorityUnderflowError";
65 65
      }
66 66
    };
67 67

	
68 68
    /// \brief Type to represent the states of the items.
69 69
    ///
70 70
    /// Each item has a state associated to it. It can be "in heap",
71 71
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
72 72
    /// heap's point of view, but may be useful to the user.
73 73
    ///
74 74
    /// The item-int map must be initialized in such way that it assigns
75 75
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
76 76
    enum State {
... ...
@@ -85,324 +85,324 @@
85 85
      int prev, next, box;
86 86
      Item item;
87 87
      int prio;
88 88
      RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {}
89 89
    };
90 90

	
91 91
    struct RadixBox {
92 92
      int first;
93 93
      int min, size;
94 94
      RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
95 95
    };
96 96

	
97
    std::vector<RadixItem> data;
98
    std::vector<RadixBox> boxes;
97
    std::vector<RadixItem> _data;
98
    std::vector<RadixBox> _boxes;
99 99

	
100 100
    ItemIntMap &_iim;
101 101

	
102 102
  public:
103 103

	
104 104
    /// \brief Constructor.
105 105
    ///
106 106
    /// Constructor.
107 107
    /// \param map A map that assigns \c int values to the items.
108 108
    /// It is used internally to handle the cross references.
109 109
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
110 110
    /// \param minimum The initial minimum value of the heap.
111 111
    /// \param capacity The initial capacity of the heap.
112 112
    RadixHeap(ItemIntMap &map, int minimum = 0, int capacity = 0)
113 113
      : _iim(map)
114 114
    {
115
      boxes.push_back(RadixBox(minimum, 1));
116
      boxes.push_back(RadixBox(minimum + 1, 1));
117
      while (lower(boxes.size() - 1, capacity + minimum - 1)) {
115
      _boxes.push_back(RadixBox(minimum, 1));
116
      _boxes.push_back(RadixBox(minimum + 1, 1));
117
      while (lower(_boxes.size() - 1, capacity + minimum - 1)) {
118 118
        extend();
119 119
      }
120 120
    }
121 121

	
122 122
    /// \brief The number of items stored in the heap.
123 123
    ///
124 124
    /// This function returns the number of items stored in the heap.
125
    int size() const { return data.size(); }
125
    int size() const { return _data.size(); }
126 126

	
127 127
    /// \brief Check if the heap is empty.
128 128
    ///
129 129
    /// This function returns \c true if the heap is empty.
130
    bool empty() const { return data.empty(); }
130
    bool empty() const { return _data.empty(); }
131 131

	
132 132
    /// \brief Make the heap empty.
133 133
    ///
134 134
    /// This functon makes the heap empty.
135 135
    /// It does not change the cross reference map. If you want to reuse
136 136
    /// a heap that is not surely empty, you should first clear it and
137 137
    /// then you should set the cross reference map to \c PRE_HEAP
138 138
    /// for each item.
139 139
    /// \param minimum The minimum value of the heap.
140 140
    /// \param capacity The capacity of the heap.
141 141
    void clear(int minimum = 0, int capacity = 0) {
142
      data.clear(); boxes.clear();
143
      boxes.push_back(RadixBox(minimum, 1));
144
      boxes.push_back(RadixBox(minimum + 1, 1));
145
      while (lower(boxes.size() - 1, capacity + minimum - 1)) {
142
      _data.clear(); _boxes.clear();
143
      _boxes.push_back(RadixBox(minimum, 1));
144
      _boxes.push_back(RadixBox(minimum + 1, 1));
145
      while (lower(_boxes.size() - 1, capacity + minimum - 1)) {
146 146
        extend();
147 147
      }
148 148
    }
149 149

	
150 150
  private:
151 151

	
152 152
    bool upper(int box, Prio pr) {
153
      return pr < boxes[box].min;
153
      return pr < _boxes[box].min;
154 154
    }
155 155

	
156 156
    bool lower(int box, Prio pr) {
157
      return pr >= boxes[box].min + boxes[box].size;
157
      return pr >= _boxes[box].min + _boxes[box].size;
158 158
    }
159 159

	
160 160
    // Remove item from the box list
161 161
    void remove(int index) {
162
      if (data[index].prev >= 0) {
163
        data[data[index].prev].next = data[index].next;
162
      if (_data[index].prev >= 0) {
163
        _data[_data[index].prev].next = _data[index].next;
164 164
      } else {
165
        boxes[data[index].box].first = data[index].next;
165
        _boxes[_data[index].box].first = _data[index].next;
166 166
      }
167
      if (data[index].next >= 0) {
168
        data[data[index].next].prev = data[index].prev;
167
      if (_data[index].next >= 0) {
168
        _data[_data[index].next].prev = _data[index].prev;
169 169
      }
170 170
    }
171 171

	
172 172
    // Insert item into the box list
173 173
    void insert(int box, int index) {
174
      if (boxes[box].first == -1) {
175
        boxes[box].first = index;
176
        data[index].next = data[index].prev = -1;
174
      if (_boxes[box].first == -1) {
175
        _boxes[box].first = index;
176
        _data[index].next = _data[index].prev = -1;
177 177
      } else {
178
        data[index].next = boxes[box].first;
179
        data[boxes[box].first].prev = index;
180
        data[index].prev = -1;
181
        boxes[box].first = index;
178
        _data[index].next = _boxes[box].first;
179
        _data[_boxes[box].first].prev = index;
180
        _data[index].prev = -1;
181
        _boxes[box].first = index;
182 182
      }
183
      data[index].box = box;
183
      _data[index].box = box;
184 184
    }
185 185

	
186 186
    // Add a new box to the box list
187 187
    void extend() {
188
      int min = boxes.back().min + boxes.back().size;
189
      int bs = 2 * boxes.back().size;
190
      boxes.push_back(RadixBox(min, bs));
188
      int min = _boxes.back().min + _boxes.back().size;
189
      int bs = 2 * _boxes.back().size;
190
      _boxes.push_back(RadixBox(min, bs));
191 191
    }
192 192

	
193 193
    // Move an item up into the proper box.
194
    void bubble_up(int index) {
195
      if (!lower(data[index].box, data[index].prio)) return;
194
    void bubbleUp(int index) {
195
      if (!lower(_data[index].box, _data[index].prio)) return;
196 196
      remove(index);
197
      int box = findUp(data[index].box, data[index].prio);
197
      int box = findUp(_data[index].box, _data[index].prio);
198 198
      insert(box, index);
199 199
    }
200 200

	
201 201
    // Find up the proper box for the item with the given priority
202 202
    int findUp(int start, int pr) {
203 203
      while (lower(start, pr)) {
204
        if (++start == int(boxes.size())) {
204
        if (++start == int(_boxes.size())) {
205 205
          extend();
206 206
        }
207 207
      }
208 208
      return start;
209 209
    }
210 210

	
211 211
    // Move an item down into the proper box
212
    void bubble_down(int index) {
213
      if (!upper(data[index].box, data[index].prio)) return;
212
    void bubbleDown(int index) {
213
      if (!upper(_data[index].box, _data[index].prio)) return;
214 214
      remove(index);
215
      int box = findDown(data[index].box, data[index].prio);
215
      int box = findDown(_data[index].box, _data[index].prio);
216 216
      insert(box, index);
217 217
    }
218 218

	
219 219
    // Find down the proper box for the item with the given priority
220 220
    int findDown(int start, int pr) {
221 221
      while (upper(start, pr)) {
222
        if (--start < 0) throw UnderFlowPriorityError();
222
        if (--start < 0) throw PriorityUnderflowError();
223 223
      }
224 224
      return start;
225 225
    }
226 226

	
227 227
    // Find the first non-empty box
228 228
    int findFirst() {
229 229
      int first = 0;
230
      while (boxes[first].first == -1) ++first;
230
      while (_boxes[first].first == -1) ++first;
231 231
      return first;
232 232
    }
233 233

	
234 234
    // Gives back the minimum priority of the given box
235 235
    int minValue(int box) {
236
      int min = data[boxes[box].first].prio;
237
      for (int k = boxes[box].first; k != -1; k = data[k].next) {
238
        if (data[k].prio < min) min = data[k].prio;
236
      int min = _data[_boxes[box].first].prio;
237
      for (int k = _boxes[box].first; k != -1; k = _data[k].next) {
238
        if (_data[k].prio < min) min = _data[k].prio;
239 239
      }
240 240
      return min;
241 241
    }
242 242

	
243 243
    // Rearrange the items of the heap and make the first box non-empty
244 244
    void moveDown() {
245 245
      int box = findFirst();
246 246
      if (box == 0) return;
247 247
      int min = minValue(box);
248 248
      for (int i = 0; i <= box; ++i) {
249
        boxes[i].min = min;
250
        min += boxes[i].size;
249
        _boxes[i].min = min;
250
        min += _boxes[i].size;
251 251
      }
252
      int curr = boxes[box].first, next;
252
      int curr = _boxes[box].first, next;
253 253
      while (curr != -1) {
254
        next = data[curr].next;
255
        bubble_down(curr);
254
        next = _data[curr].next;
255
        bubbleDown(curr);
256 256
        curr = next;
257 257
      }
258 258
    }
259 259

	
260
    void relocate_last(int index) {
261
      if (index != int(data.size()) - 1) {
262
        data[index] = data.back();
263
        if (data[index].prev != -1) {
264
          data[data[index].prev].next = index;
260
    void relocateLast(int index) {
261
      if (index != int(_data.size()) - 1) {
262
        _data[index] = _data.back();
263
        if (_data[index].prev != -1) {
264
          _data[_data[index].prev].next = index;
265 265
        } else {
266
          boxes[data[index].box].first = index;
266
          _boxes[_data[index].box].first = index;
267 267
        }
268
        if (data[index].next != -1) {
269
          data[data[index].next].prev = index;
268
        if (_data[index].next != -1) {
269
          _data[_data[index].next].prev = index;
270 270
        }
271
        _iim[data[index].item] = index;
271
        _iim[_data[index].item] = index;
272 272
      }
273
      data.pop_back();
273
      _data.pop_back();
274 274
    }
275 275

	
276 276
  public:
277 277

	
278 278
    /// \brief Insert an item into the heap with the given priority.
279 279
    ///
280 280
    /// This function inserts the given item into the heap with the
281 281
    /// given priority.
282 282
    /// \param i The item to insert.
283 283
    /// \param p The priority of the item.
284 284
    /// \pre \e i must not be stored in the heap.
285 285
    /// \warning This method may throw an \c UnderFlowPriorityException.
286 286
    void push(const Item &i, const Prio &p) {
287
      int n = data.size();
287
      int n = _data.size();
288 288
      _iim.set(i, n);
289
      data.push_back(RadixItem(i, p));
290
      while (lower(boxes.size() - 1, p)) {
289
      _data.push_back(RadixItem(i, p));
290
      while (lower(_boxes.size() - 1, p)) {
291 291
        extend();
292 292
      }
293
      int box = findDown(boxes.size() - 1, p);
293
      int box = findDown(_boxes.size() - 1, p);
294 294
      insert(box, n);
295 295
    }
296 296

	
297 297
    /// \brief Return the item having minimum priority.
298 298
    ///
299 299
    /// This function returns the item having minimum priority.
300 300
    /// \pre The heap must be non-empty.
301 301
    Item top() const {
302 302
      const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
303
      return data[boxes[0].first].item;
303
      return _data[_boxes[0].first].item;
304 304
    }
305 305

	
306 306
    /// \brief The minimum priority.
307 307
    ///
308 308
    /// This function returns the minimum priority.
309 309
    /// \pre The heap must be non-empty.
310 310
    Prio prio() const {
311 311
      const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
312
      return data[boxes[0].first].prio;
312
      return _data[_boxes[0].first].prio;
313 313
     }
314 314

	
315 315
    /// \brief Remove the item having minimum priority.
316 316
    ///
317 317
    /// This function removes the item having minimum priority.
318 318
    /// \pre The heap must be non-empty.
319 319
    void pop() {
320 320
      moveDown();
321
      int index = boxes[0].first;
322
      _iim[data[index].item] = POST_HEAP;
321
      int index = _boxes[0].first;
322
      _iim[_data[index].item] = POST_HEAP;
323 323
      remove(index);
324
      relocate_last(index);
324
      relocateLast(index);
325 325
    }
326 326

	
327 327
    /// \brief Remove the given item from the heap.
328 328
    ///
329 329
    /// This function removes the given item from the heap if it is
330 330
    /// already stored.
331 331
    /// \param i The item to delete.
332 332
    /// \pre \e i must be in the heap.
333 333
    void erase(const Item &i) {
334 334
      int index = _iim[i];
335 335
      _iim[i] = POST_HEAP;
336 336
      remove(index);
337
      relocate_last(index);
337
      relocateLast(index);
338 338
   }
339 339

	
340 340
    /// \brief The priority of the given item.
341 341
    ///
342 342
    /// This function returns the priority of the given item.
343 343
    /// \param i The item.
344 344
    /// \pre \e i must be in the heap.
345 345
    Prio operator[](const Item &i) const {
346 346
      int idx = _iim[i];
347
      return data[idx].prio;
347
      return _data[idx].prio;
348 348
    }
349 349

	
350 350
    /// \brief Set the priority of an item or insert it, if it is
351 351
    /// not stored in the heap.
352 352
    ///
353 353
    /// This method sets the priority of the given item if it is
354 354
    /// already stored in the heap. Otherwise it inserts the given
355 355
    /// item into the heap with the given priority.
356 356
    /// \param i The item.
357 357
    /// \param p The priority.
358 358
    /// \pre \e i must be in the heap.
359 359
    /// \warning This method may throw an \c UnderFlowPriorityException.
360 360
    void set(const Item &i, const Prio &p) {
361 361
      int idx = _iim[i];
362 362
      if( idx < 0 ) {
363 363
        push(i, p);
364 364
      }
365
      else if( p >= data[idx].prio ) {
366
        data[idx].prio = p;
367
        bubble_up(idx);
365
      else if( p >= _data[idx].prio ) {
366
        _data[idx].prio = p;
367
        bubbleUp(idx);
368 368
      } else {
369
        data[idx].prio = p;
370
        bubble_down(idx);
369
        _data[idx].prio = p;
370
        bubbleDown(idx);
371 371
      }
372 372
    }
373 373

	
374 374
    /// \brief Decrease the priority of an item to the given value.
375 375
    ///
376 376
    /// This function decreases the priority of an item to the given value.
377 377
    /// \param i The item.
378 378
    /// \param p The priority.
379 379
    /// \pre \e i must be stored in the heap with priority at least \e p.
380 380
    /// \warning This method may throw an \c UnderFlowPriorityException.
381 381
    void decrease(const Item &i, const Prio &p) {
382 382
      int idx = _iim[i];
383
      data[idx].prio = p;
384
      bubble_down(idx);
383
      _data[idx].prio = p;
384
      bubbleDown(idx);
385 385
    }
386 386

	
387 387
    /// \brief Increase the priority of an item to the given value.
388 388
    ///
389 389
    /// This function increases the priority of an item to the given value.
390 390
    /// \param i The item.
391 391
    /// \param p The priority.
392 392
    /// \pre \e i must be stored in the heap with priority at most \e p.
393 393
    void increase(const Item &i, const Prio &p) {
394 394
      int idx = _iim[i];
395
      data[idx].prio = p;
396
      bubble_up(idx);
395
      _data[idx].prio = p;
396
      bubbleUp(idx);
397 397
    }
398 398

	
399 399
    /// \brief Return the state of an item.
400 400
    ///
401 401
    /// This method returns \c PRE_HEAP if the given item has never
402 402
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
403 403
    /// and \c POST_HEAP otherwise.
404 404
    /// In the latter case it is possible that the item will get back
405 405
    /// to the heap again.
406 406
    /// \param i The item.
407 407
    State state(const Item &i) const {
408 408
      int s = _iim[i];
0 comments (0 inline)