... | ... |
@@ -18,12 +18,13 @@ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CIRCULATION_H |
20 | 20 |
#define LEMON_CIRCULATION_H |
21 | 21 |
|
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
#include <lemon/elevator.h> |
24 |
#include <limits> |
|
24 | 25 |
|
25 | 26 |
///\ingroup max_flow |
26 | 27 |
///\file |
27 | 28 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
28 | 29 |
/// |
29 | 30 |
namespace lemon { |
... | ... |
@@ -116,21 +117,21 @@ |
116 | 117 |
It is to find a feasible circulation when lower and upper bounds |
117 | 118 |
are given for the flow values on the arcs and lower bounds are |
118 | 119 |
given for the difference between the outgoing and incoming flow |
119 | 120 |
at the nodes. |
120 | 121 |
|
121 | 122 |
The exact formulation of this problem is the following. |
122 |
Let \f$G=(V,A)\f$ be a digraph, |
|
123 |
\f$lower, upper: A\rightarrow\mathbf{R}^+_0\f$ denote the lower and |
|
124 |
|
|
123 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$ |
|
124 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and |
|
125 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
|
125 | 126 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$ |
126 | 127 |
denotes the signed supply values of the nodes. |
127 | 128 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
128 | 129 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
129 | 130 |
\f$-sup(u)\f$ demand. |
130 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R} |
|
131 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$ |
|
131 | 132 |
solution of the following problem. |
132 | 133 |
|
133 | 134 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) |
134 | 135 |
\geq sup(u) \quad \forall u\in V, \f] |
135 | 136 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
136 | 137 |
|
... | ... |
@@ -148,12 +149,16 @@ |
148 | 149 |
(i.e. the total demand is less than the total supply and all the demands |
149 | 150 |
have to be satisfied while there could be supplies that are not used), |
150 | 151 |
then you could easily transform the problem to the above form by reversing |
151 | 152 |
the direction of the arcs and taking the negative of the supply values |
152 | 153 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
153 | 154 |
|
155 |
This algorithm either calculates a feasible circulation, or provides |
|
156 |
a \ref barrier() "barrier", which prooves that a feasible soultion |
|
157 |
cannot exist. |
|
158 |
|
|
154 | 159 |
Note that this algorithm also provides a feasible solution for the |
155 | 160 |
\ref min_cost_flow "minimum cost flow problem". |
156 | 161 |
|
157 | 162 |
\tparam GR The type of the digraph the algorithm runs on. |
158 | 163 |
\tparam LM The type of the lower bound map. The default |
159 | 164 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
... | ... |
@@ -334,12 +339,19 @@ |
334 | 339 |
destroyStructures(); |
335 | 340 |
} |
336 | 341 |
|
337 | 342 |
|
338 | 343 |
private: |
339 | 344 |
|
345 |
bool checkBoundMaps() { |
|
346 |
for (ArcIt e(_g);e!=INVALID;++e) { |
|
347 |
if (_tol.less((*_up)[e], (*_lo)[e])) return false; |
|
348 |
} |
|
349 |
return true; |
|
350 |
} |
|
351 |
|
|
340 | 352 |
void createStructures() { |
341 | 353 |
_node_num = _el = countNodes(_g); |
342 | 354 |
|
343 | 355 |
if (!_flow) { |
344 | 356 |
_flow = Traits::createFlowMap(_g); |
345 | 357 |
_local_flow = true; |
... | ... |
@@ -377,13 +389,13 @@ |
377 | 389 |
} |
378 | 390 |
|
379 | 391 |
/// Sets the upper bound (capacity) map. |
380 | 392 |
|
381 | 393 |
/// Sets the upper bound (capacity) map. |
382 | 394 |
/// \return <tt>(*this)</tt> |
383 |
Circulation& upperMap(const |
|
395 |
Circulation& upperMap(const UpperMap& map) { |
|
384 | 396 |
_up = ↦ |
385 | 397 |
return *this; |
386 | 398 |
} |
387 | 399 |
|
388 | 400 |
/// Sets the supply map. |
389 | 401 |
|
... | ... |
@@ -464,12 +476,15 @@ |
464 | 476 |
/// Initializes the internal data structures. |
465 | 477 |
|
466 | 478 |
/// Initializes the internal data structures and sets all flow values |
467 | 479 |
/// to the lower bound. |
468 | 480 |
void init() |
469 | 481 |
{ |
482 |
LEMON_DEBUG(checkBoundMaps(), |
|
483 |
"Upper bounds must be greater or equal to the lower bounds"); |
|
484 |
|
|
470 | 485 |
createStructures(); |
471 | 486 |
|
472 | 487 |
for(NodeIt n(_g);n!=INVALID;++n) { |
473 | 488 |
(*_excess)[n] = (*_supply)[n]; |
474 | 489 |
} |
475 | 490 |
|
... | ... |
@@ -493,24 +508,27 @@ |
493 | 508 |
/// Initializes the internal data structures using a greedy approach. |
494 | 509 |
|
495 | 510 |
/// Initializes the internal data structures using a greedy approach |
496 | 511 |
/// to construct the initial solution. |
497 | 512 |
void greedyInit() |
498 | 513 |
{ |
514 |
LEMON_DEBUG(checkBoundMaps(), |
|
515 |
"Upper bounds must be greater or equal to the lower bounds"); |
|
516 |
|
|
499 | 517 |
createStructures(); |
500 | 518 |
|
501 | 519 |
for(NodeIt n(_g);n!=INVALID;++n) { |
502 | 520 |
(*_excess)[n] = (*_supply)[n]; |
503 | 521 |
} |
504 | 522 |
|
505 | 523 |
for (ArcIt e(_g);e!=INVALID;++e) { |
506 |
if (!_tol. |
|
524 |
if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) { |
|
507 | 525 |
_flow->set(e, (*_up)[e]); |
508 | 526 |
(*_excess)[_g.target(e)] += (*_up)[e]; |
509 | 527 |
(*_excess)[_g.source(e)] -= (*_up)[e]; |
510 |
} else if (_tol. |
|
528 |
} else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) { |
|
511 | 529 |
_flow->set(e, (*_lo)[e]); |
512 | 530 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
513 | 531 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
514 | 532 |
} else { |
515 | 533 |
Flow fc = -(*_excess)[_g.target(e)]; |
516 | 534 |
_flow->set(e, fc); |
... | ... |
@@ -745,20 +763,26 @@ |
745 | 763 |
///Check whether or not the last execution provides a barrier. |
746 | 764 |
///\sa barrier() |
747 | 765 |
///\sa barrierMap() |
748 | 766 |
bool checkBarrier() const |
749 | 767 |
{ |
750 | 768 |
Flow delta=0; |
769 |
Flow inf_cap = std::numeric_limits<Flow>::has_infinity ? |
|
770 |
std::numeric_limits<Flow>::infinity() : |
|
771 |
std::numeric_limits<Flow>::max(); |
|
751 | 772 |
for(NodeIt n(_g);n!=INVALID;++n) |
752 | 773 |
if(barrier(n)) |
753 | 774 |
delta-=(*_supply)[n]; |
754 | 775 |
for(ArcIt e(_g);e!=INVALID;++e) |
755 | 776 |
{ |
756 | 777 |
Node s=_g.source(e); |
757 | 778 |
Node t=_g.target(e); |
758 |
if(barrier(s)&&!barrier(t)) |
|
779 |
if(barrier(s)&&!barrier(t)) { |
|
780 |
if (_tol.less(inf_cap - (*_up)[e], delta)) return false; |
|
781 |
delta+=(*_up)[e]; |
|
782 |
} |
|
759 | 783 |
else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e]; |
760 | 784 |
} |
761 | 785 |
return _tol.negative(delta); |
762 | 786 |
} |
763 | 787 |
|
764 | 788 |
/// @} |
0 comments (0 inline)