0
4
0
| ... | ... |
@@ -130,27 +130,28 @@ |
| 130 | 130 |
/// upper bound. It means that the objective function is unbounded |
| 131 | 131 |
/// on that arc, however, note that it could actually be bounded |
| 132 | 132 |
/// over the feasible flows, but this algroithm cannot handle |
| 133 | 133 |
/// these cases. |
| 134 | 134 |
UNBOUNDED |
| 135 | 135 |
}; |
| 136 | 136 |
|
| 137 | 137 |
private: |
| 138 | 138 |
|
| 139 | 139 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 140 | 140 |
|
| 141 | 141 |
typedef std::vector<int> IntVector; |
| 142 |
typedef std::vector<char> BoolVector; |
|
| 143 | 142 |
typedef std::vector<Value> ValueVector; |
| 144 | 143 |
typedef std::vector<Cost> CostVector; |
| 144 |
typedef std::vector<char> BoolVector; |
|
| 145 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
|
| 145 | 146 |
|
| 146 | 147 |
private: |
| 147 | 148 |
|
| 148 | 149 |
// Data related to the underlying digraph |
| 149 | 150 |
const GR &_graph; |
| 150 | 151 |
int _node_num; |
| 151 | 152 |
int _arc_num; |
| 152 | 153 |
int _res_arc_num; |
| 153 | 154 |
int _root; |
| 154 | 155 |
|
| 155 | 156 |
// Parameters of the problem |
| 156 | 157 |
bool _have_lower; |
| ... | ... |
@@ -789,33 +790,33 @@ |
| 789 | 790 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
| 790 | 791 |
int ra = _reverse[a]; |
| 791 | 792 |
_res_cap[a] = 1; |
| 792 | 793 |
_res_cap[ra] = 0; |
| 793 | 794 |
_cost[a] = 0; |
| 794 | 795 |
_cost[ra] = 0; |
| 795 | 796 |
} |
| 796 | 797 |
} |
| 797 | 798 |
|
| 798 | 799 |
// Initialize delta value |
| 799 | 800 |
if (_factor > 1) {
|
| 800 | 801 |
// With scaling |
| 801 |
Value max_sup = 0, max_dem = 0; |
|
| 802 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 802 |
Value max_sup = 0, max_dem = 0, max_cap = 0; |
|
| 803 |
for (int i = 0; i != _root; ++i) {
|
|
| 803 | 804 |
Value ex = _excess[i]; |
| 804 | 805 |
if ( ex > max_sup) max_sup = ex; |
| 805 | 806 |
if (-ex > max_dem) max_dem = -ex; |
| 807 |
int last_out = _first_out[i+1] - 1; |
|
| 808 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
|
| 809 |
if (_res_cap[j] > max_cap) max_cap = _res_cap[j]; |
|
| 806 | 810 |
} |
| 807 |
Value max_cap = 0; |
|
| 808 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 809 |
if (_res_cap[j] > max_cap) max_cap = _res_cap[j]; |
|
| 810 | 811 |
} |
| 811 | 812 |
max_sup = std::min(std::min(max_sup, max_dem), max_cap); |
| 812 | 813 |
for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ; |
| 813 | 814 |
} else {
|
| 814 | 815 |
// Without scaling |
| 815 | 816 |
_delta = 1; |
| 816 | 817 |
} |
| 817 | 818 |
|
| 818 | 819 |
return OPTIMAL; |
| 819 | 820 |
} |
| 820 | 821 |
|
| 821 | 822 |
ProblemType start() {
|
| ... | ... |
@@ -192,28 +192,29 @@ |
| 192 | 192 |
/// Partial augment operations are used, i.e. flow is moved on |
| 193 | 193 |
/// admissible paths started from a node with excess, but the |
| 194 | 194 |
/// lengths of these paths are limited. This method can be viewed |
| 195 | 195 |
/// as a combined version of the previous two operations. |
| 196 | 196 |
PARTIAL_AUGMENT |
| 197 | 197 |
}; |
| 198 | 198 |
|
| 199 | 199 |
private: |
| 200 | 200 |
|
| 201 | 201 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 202 | 202 |
|
| 203 | 203 |
typedef std::vector<int> IntVector; |
| 204 |
typedef std::vector<char> BoolVector; |
|
| 205 | 204 |
typedef std::vector<Value> ValueVector; |
| 206 | 205 |
typedef std::vector<Cost> CostVector; |
| 207 | 206 |
typedef std::vector<LargeCost> LargeCostVector; |
| 207 |
typedef std::vector<char> BoolVector; |
|
| 208 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
|
| 208 | 209 |
|
| 209 | 210 |
private: |
| 210 | 211 |
|
| 211 | 212 |
template <typename KT, typename VT> |
| 212 | 213 |
class StaticVectorMap {
|
| 213 | 214 |
public: |
| 214 | 215 |
typedef KT Key; |
| 215 | 216 |
typedef VT Value; |
| 216 | 217 |
|
| 217 | 218 |
StaticVectorMap(std::vector<Value>& v) : _v(v) {}
|
| 218 | 219 |
|
| 219 | 220 |
const Value& operator[](const Key& key) const {
|
| ... | ... |
@@ -239,24 +240,25 @@ |
| 239 | 240 |
|
| 240 | 241 |
// Data related to the underlying digraph |
| 241 | 242 |
const GR &_graph; |
| 242 | 243 |
int _node_num; |
| 243 | 244 |
int _arc_num; |
| 244 | 245 |
int _res_node_num; |
| 245 | 246 |
int _res_arc_num; |
| 246 | 247 |
int _root; |
| 247 | 248 |
|
| 248 | 249 |
// Parameters of the problem |
| 249 | 250 |
bool _have_lower; |
| 250 | 251 |
Value _sum_supply; |
| 252 |
int _sup_node_num; |
|
| 251 | 253 |
|
| 252 | 254 |
// Data structures for storing the digraph |
| 253 | 255 |
IntNodeMap _node_id; |
| 254 | 256 |
IntArcMap _arc_idf; |
| 255 | 257 |
IntArcMap _arc_idb; |
| 256 | 258 |
IntVector _first_out; |
| 257 | 259 |
BoolVector _forward; |
| 258 | 260 |
IntVector _source; |
| 259 | 261 |
IntVector _target; |
| 260 | 262 |
IntVector _reverse; |
| 261 | 263 |
|
| 262 | 264 |
// Node and arc data |
| ... | ... |
@@ -267,24 +269,30 @@ |
| 267 | 269 |
|
| 268 | 270 |
ValueVector _res_cap; |
| 269 | 271 |
LargeCostVector _cost; |
| 270 | 272 |
LargeCostVector _pi; |
| 271 | 273 |
ValueVector _excess; |
| 272 | 274 |
IntVector _next_out; |
| 273 | 275 |
std::deque<int> _active_nodes; |
| 274 | 276 |
|
| 275 | 277 |
// Data for scaling |
| 276 | 278 |
LargeCost _epsilon; |
| 277 | 279 |
int _alpha; |
| 278 | 280 |
|
| 281 |
IntVector _buckets; |
|
| 282 |
IntVector _bucket_next; |
|
| 283 |
IntVector _bucket_prev; |
|
| 284 |
IntVector _rank; |
|
| 285 |
int _max_rank; |
|
| 286 |
|
|
| 279 | 287 |
// Data for a StaticDigraph structure |
| 280 | 288 |
typedef std::pair<int, int> IntPair; |
| 281 | 289 |
StaticDigraph _sgr; |
| 282 | 290 |
std::vector<IntPair> _arc_vec; |
| 283 | 291 |
std::vector<LargeCost> _cost_vec; |
| 284 | 292 |
LargeCostArcMap _cost_map; |
| 285 | 293 |
LargeCostNodeMap _pi_map; |
| 286 | 294 |
|
| 287 | 295 |
public: |
| 288 | 296 |
|
| 289 | 297 |
/// \brief Constant for infinite upper bounds (capacities). |
| 290 | 298 |
/// |
| ... | ... |
@@ -819,24 +827,29 @@ |
| 819 | 827 |
int j = _arc_idf[a]; |
| 820 | 828 |
Value c = _lower[j]; |
| 821 | 829 |
cap[a] = _upper[j] - c; |
| 822 | 830 |
sup[_graph.source(a)] -= c; |
| 823 | 831 |
sup[_graph.target(a)] += c; |
| 824 | 832 |
} |
| 825 | 833 |
} else {
|
| 826 | 834 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 827 | 835 |
cap[a] = _upper[_arc_idf[a]]; |
| 828 | 836 |
} |
| 829 | 837 |
} |
| 830 | 838 |
|
| 839 |
_sup_node_num = 0; |
|
| 840 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 841 |
if (sup[n] > 0) ++_sup_node_num; |
|
| 842 |
} |
|
| 843 |
|
|
| 831 | 844 |
// Find a feasible flow using Circulation |
| 832 | 845 |
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap> |
| 833 | 846 |
circ(_graph, low, cap, sup); |
| 834 | 847 |
if (!circ.flowMap(flow).run()) return INFEASIBLE; |
| 835 | 848 |
|
| 836 | 849 |
// Set residual capacities and handle GEQ supply type |
| 837 | 850 |
if (_sum_supply < 0) {
|
| 838 | 851 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 839 | 852 |
Value fa = flow[a]; |
| 840 | 853 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
| 841 | 854 |
_res_cap[_arc_idb[a]] = fa; |
| 842 | 855 |
sup[_graph.source(a)] -= fa; |
| ... | ... |
@@ -853,39 +866,46 @@ |
| 853 | 866 |
_cost[a] = 0; |
| 854 | 867 |
_cost[ra] = 0; |
| 855 | 868 |
_excess[u] = 0; |
| 856 | 869 |
} |
| 857 | 870 |
} else {
|
| 858 | 871 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 859 | 872 |
Value fa = flow[a]; |
| 860 | 873 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
| 861 | 874 |
_res_cap[_arc_idb[a]] = fa; |
| 862 | 875 |
} |
| 863 | 876 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
| 864 | 877 |
int ra = _reverse[a]; |
| 865 |
_res_cap[a] = |
|
| 878 |
_res_cap[a] = 0; |
|
| 866 | 879 |
_res_cap[ra] = 0; |
| 867 | 880 |
_cost[a] = 0; |
| 868 | 881 |
_cost[ra] = 0; |
| 869 | 882 |
} |
| 870 | 883 |
} |
| 871 | 884 |
|
| 872 | 885 |
return OPTIMAL; |
| 873 | 886 |
} |
| 874 | 887 |
|
| 875 | 888 |
// Execute the algorithm and transform the results |
| 876 | 889 |
void start(Method method) {
|
| 877 | 890 |
// Maximum path length for partial augment |
| 878 | 891 |
const int MAX_PATH_LENGTH = 4; |
| 879 | 892 |
|
| 893 |
// Initialize data structures for buckets |
|
| 894 |
_max_rank = _alpha * _res_node_num; |
|
| 895 |
_buckets.resize(_max_rank); |
|
| 896 |
_bucket_next.resize(_res_node_num + 1); |
|
| 897 |
_bucket_prev.resize(_res_node_num + 1); |
|
| 898 |
_rank.resize(_res_node_num + 1); |
|
| 899 |
|
|
| 880 | 900 |
// Execute the algorithm |
| 881 | 901 |
switch (method) {
|
| 882 | 902 |
case PUSH: |
| 883 | 903 |
startPush(); |
| 884 | 904 |
break; |
| 885 | 905 |
case AUGMENT: |
| 886 | 906 |
startAugment(); |
| 887 | 907 |
break; |
| 888 | 908 |
case PARTIAL_AUGMENT: |
| 889 | 909 |
startAugment(MAX_PATH_LENGTH); |
| 890 | 910 |
break; |
| 891 | 911 |
} |
| ... | ... |
@@ -907,290 +927,386 @@ |
| 907 | 927 |
bf.init(0); |
| 908 | 928 |
bf.start(); |
| 909 | 929 |
|
| 910 | 930 |
// Handle non-zero lower bounds |
| 911 | 931 |
if (_have_lower) {
|
| 912 | 932 |
int limit = _first_out[_root]; |
| 913 | 933 |
for (int j = 0; j != limit; ++j) {
|
| 914 | 934 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
| 915 | 935 |
} |
| 916 | 936 |
} |
| 917 | 937 |
} |
| 918 | 938 |
|
| 919 |
/// Execute the algorithm performing augment and relabel operations |
|
| 920 |
void startAugment(int max_length = std::numeric_limits<int>::max()) {
|
|
| 921 |
// Paramters for heuristics |
|
| 922 |
const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
|
| 923 |
const int BF_HEURISTIC_BOUND_FACTOR = 3; |
|
| 924 |
|
|
| 925 |
// Perform cost scaling phases |
|
| 926 |
IntVector pred_arc(_res_node_num); |
|
| 927 |
std::vector<int> path_nodes; |
|
| 928 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
|
| 929 |
1 : _epsilon / _alpha ) |
|
| 930 |
{
|
|
| 931 |
// "Early Termination" heuristic: use Bellman-Ford algorithm |
|
| 932 |
// to check if the current flow is optimal |
|
| 933 |
if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
|
|
| 934 |
_arc_vec.clear(); |
|
| 935 |
_cost_vec.clear(); |
|
| 936 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 937 |
if (_res_cap[j] > 0) {
|
|
| 938 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
| 939 |
_cost_vec.push_back(_cost[j] + 1); |
|
| 940 |
} |
|
| 941 |
} |
|
| 942 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
| 943 |
|
|
| 944 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
|
| 945 |
bf.init(0); |
|
| 946 |
bool done = false; |
|
| 947 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num)); |
|
| 948 |
for (int i = 0; i < K && !done; ++i) |
|
| 949 |
done = bf.processNextWeakRound(); |
|
| 950 |
if (done) break; |
|
| 951 |
} |
|
| 952 |
|
|
| 939 |
// Initialize a cost scaling phase |
|
| 940 |
void initPhase() {
|
|
| 953 | 941 |
// Saturate arcs not satisfying the optimality condition |
| 954 |
for (int a = 0; a != _res_arc_num; ++a) {
|
|
| 955 |
if (_res_cap[a] > 0 && |
|
| 956 |
|
|
| 942 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 943 |
int last_out = _first_out[u+1]; |
|
| 944 |
LargeCost pi_u = _pi[u]; |
|
| 945 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
|
| 946 |
int v = _target[a]; |
|
| 947 |
if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) {
|
|
| 957 | 948 |
Value delta = _res_cap[a]; |
| 958 |
_excess[_source[a]] -= delta; |
|
| 959 |
_excess[_target[a]] += delta; |
|
| 949 |
_excess[u] -= delta; |
|
| 950 |
_excess[v] += delta; |
|
| 960 | 951 |
_res_cap[a] = 0; |
| 961 | 952 |
_res_cap[_reverse[a]] += delta; |
| 962 | 953 |
} |
| 963 | 954 |
} |
| 955 |
} |
|
| 964 | 956 |
|
| 965 | 957 |
// Find active nodes (i.e. nodes with positive excess) |
| 966 | 958 |
for (int u = 0; u != _res_node_num; ++u) {
|
| 967 | 959 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
| 968 | 960 |
} |
| 969 | 961 |
|
| 970 | 962 |
// Initialize the next arcs |
| 971 | 963 |
for (int u = 0; u != _res_node_num; ++u) {
|
| 972 | 964 |
_next_out[u] = _first_out[u]; |
| 973 | 965 |
} |
| 966 |
} |
|
| 967 |
|
|
| 968 |
// Early termination heuristic |
|
| 969 |
bool earlyTermination() {
|
|
| 970 |
const double EARLY_TERM_FACTOR = 3.0; |
|
| 971 |
|
|
| 972 |
// Build a static residual graph |
|
| 973 |
_arc_vec.clear(); |
|
| 974 |
_cost_vec.clear(); |
|
| 975 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 976 |
if (_res_cap[j] > 0) {
|
|
| 977 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
| 978 |
_cost_vec.push_back(_cost[j] + 1); |
|
| 979 |
} |
|
| 980 |
} |
|
| 981 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
| 982 |
|
|
| 983 |
// Run Bellman-Ford algorithm to check if the current flow is optimal |
|
| 984 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
|
| 985 |
bf.init(0); |
|
| 986 |
bool done = false; |
|
| 987 |
int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num))); |
|
| 988 |
for (int i = 0; i < K && !done; ++i) {
|
|
| 989 |
done = bf.processNextWeakRound(); |
|
| 990 |
} |
|
| 991 |
return done; |
|
| 992 |
} |
|
| 993 |
|
|
| 994 |
// Global potential update heuristic |
|
| 995 |
void globalUpdate() {
|
|
| 996 |
int bucket_end = _root + 1; |
|
| 997 |
|
|
| 998 |
// Initialize buckets |
|
| 999 |
for (int r = 0; r != _max_rank; ++r) {
|
|
| 1000 |
_buckets[r] = bucket_end; |
|
| 1001 |
} |
|
| 1002 |
Value total_excess = 0; |
|
| 1003 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 1004 |
if (_excess[i] < 0) {
|
|
| 1005 |
_rank[i] = 0; |
|
| 1006 |
_bucket_next[i] = _buckets[0]; |
|
| 1007 |
_bucket_prev[_buckets[0]] = i; |
|
| 1008 |
_buckets[0] = i; |
|
| 1009 |
} else {
|
|
| 1010 |
total_excess += _excess[i]; |
|
| 1011 |
_rank[i] = _max_rank; |
|
| 1012 |
} |
|
| 1013 |
} |
|
| 1014 |
if (total_excess == 0) return; |
|
| 1015 |
|
|
| 1016 |
// Search the buckets |
|
| 1017 |
int r = 0; |
|
| 1018 |
for ( ; r != _max_rank; ++r) {
|
|
| 1019 |
while (_buckets[r] != bucket_end) {
|
|
| 1020 |
// Remove the first node from the current bucket |
|
| 1021 |
int u = _buckets[r]; |
|
| 1022 |
_buckets[r] = _bucket_next[u]; |
|
| 1023 |
|
|
| 1024 |
// Search the incomming arcs of u |
|
| 1025 |
LargeCost pi_u = _pi[u]; |
|
| 1026 |
int last_out = _first_out[u+1]; |
|
| 1027 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
|
| 1028 |
int ra = _reverse[a]; |
|
| 1029 |
if (_res_cap[ra] > 0) {
|
|
| 1030 |
int v = _source[ra]; |
|
| 1031 |
int old_rank_v = _rank[v]; |
|
| 1032 |
if (r < old_rank_v) {
|
|
| 1033 |
// Compute the new rank of v |
|
| 1034 |
LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon; |
|
| 1035 |
int new_rank_v = old_rank_v; |
|
| 1036 |
if (nrc < LargeCost(_max_rank)) |
|
| 1037 |
new_rank_v = r + 1 + int(nrc); |
|
| 1038 |
|
|
| 1039 |
// Change the rank of v |
|
| 1040 |
if (new_rank_v < old_rank_v) {
|
|
| 1041 |
_rank[v] = new_rank_v; |
|
| 1042 |
_next_out[v] = _first_out[v]; |
|
| 1043 |
|
|
| 1044 |
// Remove v from its old bucket |
|
| 1045 |
if (old_rank_v < _max_rank) {
|
|
| 1046 |
if (_buckets[old_rank_v] == v) {
|
|
| 1047 |
_buckets[old_rank_v] = _bucket_next[v]; |
|
| 1048 |
} else {
|
|
| 1049 |
_bucket_next[_bucket_prev[v]] = _bucket_next[v]; |
|
| 1050 |
_bucket_prev[_bucket_next[v]] = _bucket_prev[v]; |
|
| 1051 |
} |
|
| 1052 |
} |
|
| 1053 |
|
|
| 1054 |
// Insert v to its new bucket |
|
| 1055 |
_bucket_next[v] = _buckets[new_rank_v]; |
|
| 1056 |
_bucket_prev[_buckets[new_rank_v]] = v; |
|
| 1057 |
_buckets[new_rank_v] = v; |
|
| 1058 |
} |
|
| 1059 |
} |
|
| 1060 |
} |
|
| 1061 |
} |
|
| 1062 |
|
|
| 1063 |
// Finish search if there are no more active nodes |
|
| 1064 |
if (_excess[u] > 0) {
|
|
| 1065 |
total_excess -= _excess[u]; |
|
| 1066 |
if (total_excess <= 0) break; |
|
| 1067 |
} |
|
| 1068 |
} |
|
| 1069 |
if (total_excess <= 0) break; |
|
| 1070 |
} |
|
| 1071 |
|
|
| 1072 |
// Relabel nodes |
|
| 1073 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 1074 |
int k = std::min(_rank[u], r); |
|
| 1075 |
if (k > 0) {
|
|
| 1076 |
_pi[u] -= _epsilon * k; |
|
| 1077 |
_next_out[u] = _first_out[u]; |
|
| 1078 |
} |
|
| 1079 |
} |
|
| 1080 |
} |
|
| 1081 |
|
|
| 1082 |
/// Execute the algorithm performing augment and relabel operations |
|
| 1083 |
void startAugment(int max_length = std::numeric_limits<int>::max()) {
|
|
| 1084 |
// Paramters for heuristics |
|
| 1085 |
const int EARLY_TERM_EPSILON_LIMIT = 1000; |
|
| 1086 |
const double GLOBAL_UPDATE_FACTOR = 3.0; |
|
| 1087 |
|
|
| 1088 |
const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * |
|
| 1089 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
|
| 1090 |
int next_update_limit = global_update_freq; |
|
| 1091 |
|
|
| 1092 |
int relabel_cnt = 0; |
|
| 1093 |
|
|
| 1094 |
// Perform cost scaling phases |
|
| 1095 |
std::vector<int> path; |
|
| 1096 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
|
| 1097 |
1 : _epsilon / _alpha ) |
|
| 1098 |
{
|
|
| 1099 |
// Early termination heuristic |
|
| 1100 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
|
|
| 1101 |
if (earlyTermination()) break; |
|
| 1102 |
} |
|
| 1103 |
|
|
| 1104 |
// Initialize current phase |
|
| 1105 |
initPhase(); |
|
| 974 | 1106 |
|
| 975 | 1107 |
// Perform partial augment and relabel operations |
| 976 | 1108 |
while (true) {
|
| 977 | 1109 |
// Select an active node (FIFO selection) |
| 978 | 1110 |
while (_active_nodes.size() > 0 && |
| 979 | 1111 |
_excess[_active_nodes.front()] <= 0) {
|
| 980 | 1112 |
_active_nodes.pop_front(); |
| 981 | 1113 |
} |
| 982 | 1114 |
if (_active_nodes.size() == 0) break; |
| 983 | 1115 |
int start = _active_nodes.front(); |
| 984 |
path_nodes.clear(); |
|
| 985 |
path_nodes.push_back(start); |
|
| 986 | 1116 |
|
| 987 | 1117 |
// Find an augmenting path from the start node |
| 1118 |
path.clear(); |
|
| 988 | 1119 |
int tip = start; |
| 989 |
while (_excess[tip] >= 0 && |
|
| 990 |
int(path_nodes.size()) <= max_length) {
|
|
| 1120 |
while (_excess[tip] >= 0 && int(path.size()) < max_length) {
|
|
| 991 | 1121 |
int u; |
| 992 |
LargeCost min_red_cost, rc; |
|
| 993 |
int last_out = _sum_supply < 0 ? |
|
| 994 |
|
|
| 1122 |
LargeCost min_red_cost, rc, pi_tip = _pi[tip]; |
|
| 1123 |
int last_out = _first_out[tip+1]; |
|
| 995 | 1124 |
for (int a = _next_out[tip]; a != last_out; ++a) {
|
| 996 |
if (_res_cap[a] > 0 && |
|
| 997 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
|
|
| 998 | 1125 |
u = _target[a]; |
| 999 |
|
|
| 1126 |
if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) {
|
|
| 1127 |
path.push_back(a); |
|
| 1000 | 1128 |
_next_out[tip] = a; |
| 1001 | 1129 |
tip = u; |
| 1002 |
path_nodes.push_back(tip); |
|
| 1003 | 1130 |
goto next_step; |
| 1004 | 1131 |
} |
| 1005 | 1132 |
} |
| 1006 | 1133 |
|
| 1007 | 1134 |
// Relabel tip node |
| 1008 |
min_red_cost = std::numeric_limits<LargeCost>::max() |
|
| 1135 |
min_red_cost = std::numeric_limits<LargeCost>::max(); |
|
| 1136 |
if (tip != start) {
|
|
| 1137 |
int ra = _reverse[path.back()]; |
|
| 1138 |
min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]]; |
|
| 1139 |
} |
|
| 1009 | 1140 |
for (int a = _first_out[tip]; a != last_out; ++a) {
|
| 1010 |
rc = _cost[a] + |
|
| 1141 |
rc = _cost[a] + pi_tip - _pi[_target[a]]; |
|
| 1011 | 1142 |
if (_res_cap[a] > 0 && rc < min_red_cost) {
|
| 1012 | 1143 |
min_red_cost = rc; |
| 1013 | 1144 |
} |
| 1014 | 1145 |
} |
| 1015 | 1146 |
_pi[tip] -= min_red_cost + _epsilon; |
| 1016 |
|
|
| 1017 |
// Reset the next arc of tip |
|
| 1018 | 1147 |
_next_out[tip] = _first_out[tip]; |
| 1148 |
++relabel_cnt; |
|
| 1019 | 1149 |
|
| 1020 | 1150 |
// Step back |
| 1021 | 1151 |
if (tip != start) {
|
| 1022 |
path_nodes.pop_back(); |
|
| 1023 |
tip = path_nodes.back(); |
|
| 1152 |
tip = _source[path.back()]; |
|
| 1153 |
path.pop_back(); |
|
| 1024 | 1154 |
} |
| 1025 | 1155 |
|
| 1026 | 1156 |
next_step: ; |
| 1027 | 1157 |
} |
| 1028 | 1158 |
|
| 1029 | 1159 |
// Augment along the found path (as much flow as possible) |
| 1030 | 1160 |
Value delta; |
| 1031 |
int u, v = path_nodes.front(), pa; |
|
| 1032 |
for (int i = 1; i < int(path_nodes.size()); ++i) {
|
|
| 1161 |
int pa, u, v = start; |
|
| 1162 |
for (int i = 0; i != int(path.size()); ++i) {
|
|
| 1163 |
pa = path[i]; |
|
| 1033 | 1164 |
u = v; |
| 1034 |
v = path_nodes[i]; |
|
| 1035 |
pa = pred_arc[v]; |
|
| 1165 |
v = _target[pa]; |
|
| 1036 | 1166 |
delta = std::min(_res_cap[pa], _excess[u]); |
| 1037 | 1167 |
_res_cap[pa] -= delta; |
| 1038 | 1168 |
_res_cap[_reverse[pa]] += delta; |
| 1039 | 1169 |
_excess[u] -= delta; |
| 1040 | 1170 |
_excess[v] += delta; |
| 1041 | 1171 |
if (_excess[v] > 0 && _excess[v] <= delta) |
| 1042 | 1172 |
_active_nodes.push_back(v); |
| 1043 | 1173 |
} |
| 1174 |
|
|
| 1175 |
// Global update heuristic |
|
| 1176 |
if (relabel_cnt >= next_update_limit) {
|
|
| 1177 |
globalUpdate(); |
|
| 1178 |
next_update_limit += global_update_freq; |
|
| 1179 |
} |
|
| 1044 | 1180 |
} |
| 1045 | 1181 |
} |
| 1046 | 1182 |
} |
| 1047 | 1183 |
|
| 1048 | 1184 |
/// Execute the algorithm performing push and relabel operations |
| 1049 | 1185 |
void startPush() {
|
| 1050 | 1186 |
// Paramters for heuristics |
| 1051 |
const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
|
| 1052 |
const int BF_HEURISTIC_BOUND_FACTOR = 3; |
|
| 1187 |
const int EARLY_TERM_EPSILON_LIMIT = 1000; |
|
| 1188 |
const double GLOBAL_UPDATE_FACTOR = 2.0; |
|
| 1189 |
|
|
| 1190 |
const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * |
|
| 1191 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
|
| 1192 |
int next_update_limit = global_update_freq; |
|
| 1193 |
|
|
| 1194 |
int relabel_cnt = 0; |
|
| 1053 | 1195 |
|
| 1054 | 1196 |
// Perform cost scaling phases |
| 1055 | 1197 |
BoolVector hyper(_res_node_num, false); |
| 1198 |
LargeCostVector hyper_cost(_res_node_num); |
|
| 1056 | 1199 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
| 1057 | 1200 |
1 : _epsilon / _alpha ) |
| 1058 | 1201 |
{
|
| 1059 |
// "Early Termination" heuristic: use Bellman-Ford algorithm |
|
| 1060 |
// to check if the current flow is optimal |
|
| 1061 |
if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
|
|
| 1062 |
_arc_vec.clear(); |
|
| 1063 |
_cost_vec.clear(); |
|
| 1064 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 1065 |
if (_res_cap[j] > 0) {
|
|
| 1066 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
| 1067 |
_cost_vec.push_back(_cost[j] + 1); |
|
| 1068 |
} |
|
| 1069 |
} |
|
| 1070 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
| 1071 |
|
|
| 1072 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
|
| 1073 |
bf.init(0); |
|
| 1074 |
bool done = false; |
|
| 1075 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num)); |
|
| 1076 |
for (int i = 0; i < K && !done; ++i) |
|
| 1077 |
done = bf.processNextWeakRound(); |
|
| 1078 |
if (done) break; |
|
| 1202 |
// Early termination heuristic |
|
| 1203 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
|
|
| 1204 |
if (earlyTermination()) break; |
|
| 1079 | 1205 |
} |
| 1080 | 1206 |
|
| 1081 |
// Saturate arcs not satisfying the optimality condition |
|
| 1082 |
for (int a = 0; a != _res_arc_num; ++a) {
|
|
| 1083 |
if (_res_cap[a] > 0 && |
|
| 1084 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
|
|
| 1085 |
Value delta = _res_cap[a]; |
|
| 1086 |
_excess[_source[a]] -= delta; |
|
| 1087 |
_excess[_target[a]] += delta; |
|
| 1088 |
_res_cap[a] = 0; |
|
| 1089 |
_res_cap[_reverse[a]] += delta; |
|
| 1090 |
} |
|
| 1091 |
} |
|
| 1092 |
|
|
| 1093 |
// Find active nodes (i.e. nodes with positive excess) |
|
| 1094 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 1095 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
|
| 1096 |
} |
|
| 1097 |
|
|
| 1098 |
// Initialize the next arcs |
|
| 1099 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 1100 |
_next_out[u] = _first_out[u]; |
|
| 1101 |
|
|
| 1207 |
// Initialize current phase |
|
| 1208 |
initPhase(); |
|
| 1102 | 1209 |
|
| 1103 | 1210 |
// Perform push and relabel operations |
| 1104 | 1211 |
while (_active_nodes.size() > 0) {
|
| 1105 |
LargeCost min_red_cost, rc; |
|
| 1212 |
LargeCost min_red_cost, rc, pi_n; |
|
| 1106 | 1213 |
Value delta; |
| 1107 | 1214 |
int n, t, a, last_out = _res_arc_num; |
| 1108 | 1215 |
|
| 1216 |
next_node: |
|
| 1109 | 1217 |
// Select an active node (FIFO selection) |
| 1110 |
next_node: |
|
| 1111 | 1218 |
n = _active_nodes.front(); |
| 1112 |
last_out = _sum_supply < 0 ? |
|
| 1113 |
_first_out[n+1] : _first_out[n+1] - 1; |
|
| 1219 |
last_out = _first_out[n+1]; |
|
| 1220 |
pi_n = _pi[n]; |
|
| 1114 | 1221 |
|
| 1115 | 1222 |
// Perform push operations if there are admissible arcs |
| 1116 | 1223 |
if (_excess[n] > 0) {
|
| 1117 | 1224 |
for (a = _next_out[n]; a != last_out; ++a) {
|
| 1118 | 1225 |
if (_res_cap[a] > 0 && |
| 1119 |
_cost[a] + |
|
| 1226 |
_cost[a] + pi_n - _pi[_target[a]] < 0) {
|
|
| 1120 | 1227 |
delta = std::min(_res_cap[a], _excess[n]); |
| 1121 | 1228 |
t = _target[a]; |
| 1122 | 1229 |
|
| 1123 | 1230 |
// Push-look-ahead heuristic |
| 1124 | 1231 |
Value ahead = -_excess[t]; |
| 1125 |
int last_out_t = _sum_supply < 0 ? |
|
| 1126 |
_first_out[t+1] : _first_out[t+1] - 1; |
|
| 1232 |
int last_out_t = _first_out[t+1]; |
|
| 1233 |
LargeCost pi_t = _pi[t]; |
|
| 1127 | 1234 |
for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
|
| 1128 | 1235 |
if (_res_cap[ta] > 0 && |
| 1129 |
_cost[ta] + |
|
| 1236 |
_cost[ta] + pi_t - _pi[_target[ta]] < 0) |
|
| 1130 | 1237 |
ahead += _res_cap[ta]; |
| 1131 | 1238 |
if (ahead >= delta) break; |
| 1132 | 1239 |
} |
| 1133 | 1240 |
if (ahead < 0) ahead = 0; |
| 1134 | 1241 |
|
| 1135 | 1242 |
// Push flow along the arc |
| 1136 |
if (ahead < delta) {
|
|
| 1243 |
if (ahead < delta && !hyper[t]) {
|
|
| 1137 | 1244 |
_res_cap[a] -= ahead; |
| 1138 | 1245 |
_res_cap[_reverse[a]] += ahead; |
| 1139 | 1246 |
_excess[n] -= ahead; |
| 1140 | 1247 |
_excess[t] += ahead; |
| 1141 | 1248 |
_active_nodes.push_front(t); |
| 1142 | 1249 |
hyper[t] = true; |
| 1250 |
hyper_cost[t] = _cost[a] + pi_n - pi_t; |
|
| 1143 | 1251 |
_next_out[n] = a; |
| 1144 | 1252 |
goto next_node; |
| 1145 | 1253 |
} else {
|
| 1146 | 1254 |
_res_cap[a] -= delta; |
| 1147 | 1255 |
_res_cap[_reverse[a]] += delta; |
| 1148 | 1256 |
_excess[n] -= delta; |
| 1149 | 1257 |
_excess[t] += delta; |
| 1150 | 1258 |
if (_excess[t] > 0 && _excess[t] <= delta) |
| 1151 | 1259 |
_active_nodes.push_back(t); |
| 1152 | 1260 |
} |
| 1153 | 1261 |
|
| 1154 | 1262 |
if (_excess[n] == 0) {
|
| 1155 | 1263 |
_next_out[n] = a; |
| 1156 | 1264 |
goto remove_nodes; |
| 1157 | 1265 |
} |
| 1158 | 1266 |
} |
| 1159 | 1267 |
} |
| 1160 | 1268 |
_next_out[n] = a; |
| 1161 | 1269 |
} |
| 1162 | 1270 |
|
| 1163 | 1271 |
// Relabel the node if it is still active (or hyper) |
| 1164 | 1272 |
if (_excess[n] > 0 || hyper[n]) {
|
| 1165 |
min_red_cost = |
|
| 1273 |
min_red_cost = hyper[n] ? -hyper_cost[n] : |
|
| 1274 |
std::numeric_limits<LargeCost>::max(); |
|
| 1166 | 1275 |
for (int a = _first_out[n]; a != last_out; ++a) {
|
| 1167 |
rc = _cost[a] + |
|
| 1276 |
rc = _cost[a] + pi_n - _pi[_target[a]]; |
|
| 1168 | 1277 |
if (_res_cap[a] > 0 && rc < min_red_cost) {
|
| 1169 | 1278 |
min_red_cost = rc; |
| 1170 | 1279 |
} |
| 1171 | 1280 |
} |
| 1172 | 1281 |
_pi[n] -= min_red_cost + _epsilon; |
| 1282 |
_next_out[n] = _first_out[n]; |
|
| 1173 | 1283 |
hyper[n] = false; |
| 1174 |
|
|
| 1175 |
// Reset the next arc |
|
| 1176 |
|
|
| 1284 |
++relabel_cnt; |
|
| 1177 | 1285 |
} |
| 1178 | 1286 |
|
| 1179 | 1287 |
// Remove nodes that are not active nor hyper |
| 1180 | 1288 |
remove_nodes: |
| 1181 | 1289 |
while ( _active_nodes.size() > 0 && |
| 1182 | 1290 |
_excess[_active_nodes.front()] <= 0 && |
| 1183 | 1291 |
!hyper[_active_nodes.front()] ) {
|
| 1184 | 1292 |
_active_nodes.pop_front(); |
| 1185 | 1293 |
} |
| 1294 |
|
|
| 1295 |
// Global update heuristic |
|
| 1296 |
if (relabel_cnt >= next_update_limit) {
|
|
| 1297 |
globalUpdate(); |
|
| 1298 |
for (int u = 0; u != _res_node_num; ++u) |
|
| 1299 |
hyper[u] = false; |
|
| 1300 |
next_update_limit += global_update_freq; |
|
| 1301 |
} |
|
| 1186 | 1302 |
} |
| 1187 | 1303 |
} |
| 1188 | 1304 |
} |
| 1189 | 1305 |
|
| 1190 | 1306 |
}; //class CostScaling |
| 1191 | 1307 |
|
| 1192 | 1308 |
///@} |
| 1193 | 1309 |
|
| 1194 | 1310 |
} //namespace lemon |
| 1195 | 1311 |
|
| 1196 | 1312 |
#endif //LEMON_COST_SCALING_H |
| ... | ... |
@@ -135,28 +135,29 @@ |
| 135 | 135 |
/// improved version of the previous method |
| 136 | 136 |
/// \ref goldberg89cyclecanceling. |
| 137 | 137 |
/// It is faster both in theory and in practice, its running time |
| 138 | 138 |
/// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)). |
| 139 | 139 |
CANCEL_AND_TIGHTEN |
| 140 | 140 |
}; |
| 141 | 141 |
|
| 142 | 142 |
private: |
| 143 | 143 |
|
| 144 | 144 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 145 | 145 |
|
| 146 | 146 |
typedef std::vector<int> IntVector; |
| 147 |
typedef std::vector<char> CharVector; |
|
| 148 | 147 |
typedef std::vector<double> DoubleVector; |
| 149 | 148 |
typedef std::vector<Value> ValueVector; |
| 150 | 149 |
typedef std::vector<Cost> CostVector; |
| 150 |
typedef std::vector<char> BoolVector; |
|
| 151 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
|
| 151 | 152 |
|
| 152 | 153 |
private: |
| 153 | 154 |
|
| 154 | 155 |
template <typename KT, typename VT> |
| 155 | 156 |
class StaticVectorMap {
|
| 156 | 157 |
public: |
| 157 | 158 |
typedef KT Key; |
| 158 | 159 |
typedef VT Value; |
| 159 | 160 |
|
| 160 | 161 |
StaticVectorMap(std::vector<Value>& v) : _v(v) {}
|
| 161 | 162 |
|
| 162 | 163 |
const Value& operator[](const Key& key) const {
|
| ... | ... |
@@ -189,25 +190,25 @@ |
| 189 | 190 |
int _res_arc_num; |
| 190 | 191 |
int _root; |
| 191 | 192 |
|
| 192 | 193 |
// Parameters of the problem |
| 193 | 194 |
bool _have_lower; |
| 194 | 195 |
Value _sum_supply; |
| 195 | 196 |
|
| 196 | 197 |
// Data structures for storing the digraph |
| 197 | 198 |
IntNodeMap _node_id; |
| 198 | 199 |
IntArcMap _arc_idf; |
| 199 | 200 |
IntArcMap _arc_idb; |
| 200 | 201 |
IntVector _first_out; |
| 201 |
|
|
| 202 |
BoolVector _forward; |
|
| 202 | 203 |
IntVector _source; |
| 203 | 204 |
IntVector _target; |
| 204 | 205 |
IntVector _reverse; |
| 205 | 206 |
|
| 206 | 207 |
// Node and arc data |
| 207 | 208 |
ValueVector _lower; |
| 208 | 209 |
ValueVector _upper; |
| 209 | 210 |
CostVector _cost; |
| 210 | 211 |
ValueVector _supply; |
| 211 | 212 |
|
| 212 | 213 |
ValueVector _res_cap; |
| 213 | 214 |
CostVector _pi; |
| ... | ... |
@@ -953,26 +954,26 @@ |
| 953 | 954 |
} |
| 954 | 955 |
} |
| 955 | 956 |
|
| 956 | 957 |
// Execute the "Cancel And Tighten" method |
| 957 | 958 |
void startCancelAndTighten() {
|
| 958 | 959 |
// Constants for the min mean cycle computations |
| 959 | 960 |
const double LIMIT_FACTOR = 1.0; |
| 960 | 961 |
const int MIN_LIMIT = 5; |
| 961 | 962 |
|
| 962 | 963 |
// Contruct auxiliary data vectors |
| 963 | 964 |
DoubleVector pi(_res_node_num, 0.0); |
| 964 | 965 |
IntVector level(_res_node_num); |
| 965 |
CharVector reached(_res_node_num); |
|
| 966 |
CharVector processed(_res_node_num); |
|
| 966 |
BoolVector reached(_res_node_num); |
|
| 967 |
BoolVector processed(_res_node_num); |
|
| 967 | 968 |
IntVector pred_node(_res_node_num); |
| 968 | 969 |
IntVector pred_arc(_res_node_num); |
| 969 | 970 |
std::vector<int> stack(_res_node_num); |
| 970 | 971 |
std::vector<int> proc_vector(_res_node_num); |
| 971 | 972 |
|
| 972 | 973 |
// Initialize epsilon |
| 973 | 974 |
double epsilon = 0; |
| 974 | 975 |
for (int a = 0; a != _res_arc_num; ++a) {
|
| 975 | 976 |
if (_res_cap[a] > 0 && -_cost[a] > epsilon) |
| 976 | 977 |
epsilon = -_cost[a]; |
| 977 | 978 |
} |
| 978 | 979 |
| ... | ... |
@@ -155,27 +155,28 @@ |
| 155 | 155 |
/// The \e Altering \e Candidate \e List pivot rule. |
| 156 | 156 |
/// It is a modified version of the Candidate List method. |
| 157 | 157 |
/// It keeps only the several best eligible arcs from the former |
| 158 | 158 |
/// candidate list and extends this list in every iteration. |
| 159 | 159 |
ALTERING_LIST |
| 160 | 160 |
}; |
| 161 | 161 |
|
| 162 | 162 |
private: |
| 163 | 163 |
|
| 164 | 164 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 165 | 165 |
|
| 166 | 166 |
typedef std::vector<int> IntVector; |
| 167 |
typedef std::vector<char> CharVector; |
|
| 168 | 167 |
typedef std::vector<Value> ValueVector; |
| 169 | 168 |
typedef std::vector<Cost> CostVector; |
| 169 |
typedef std::vector<char> BoolVector; |
|
| 170 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
|
| 170 | 171 |
|
| 171 | 172 |
// State constants for arcs |
| 172 | 173 |
enum ArcStateEnum {
|
| 173 | 174 |
STATE_UPPER = -1, |
| 174 | 175 |
STATE_TREE = 0, |
| 175 | 176 |
STATE_LOWER = 1 |
| 176 | 177 |
}; |
| 177 | 178 |
|
| 178 | 179 |
private: |
| 179 | 180 |
|
| 180 | 181 |
// Data related to the underlying digraph |
| 181 | 182 |
const GR &_graph; |
| ... | ... |
@@ -204,26 +205,26 @@ |
| 204 | 205 |
ValueVector _supply; |
| 205 | 206 |
ValueVector _flow; |
| 206 | 207 |
CostVector _pi; |
| 207 | 208 |
|
| 208 | 209 |
// Data for storing the spanning tree structure |
| 209 | 210 |
IntVector _parent; |
| 210 | 211 |
IntVector _pred; |
| 211 | 212 |
IntVector _thread; |
| 212 | 213 |
IntVector _rev_thread; |
| 213 | 214 |
IntVector _succ_num; |
| 214 | 215 |
IntVector _last_succ; |
| 215 | 216 |
IntVector _dirty_revs; |
| 216 |
CharVector _forward; |
|
| 217 |
CharVector _state; |
|
| 217 |
BoolVector _forward; |
|
| 218 |
BoolVector _state; |
|
| 218 | 219 |
int _root; |
| 219 | 220 |
|
| 220 | 221 |
// Temporary data used in the current pivot iteration |
| 221 | 222 |
int in_arc, join, u_in, v_in, u_out, v_out; |
| 222 | 223 |
int first, second, right, last; |
| 223 | 224 |
int stem, par_stem, new_stem; |
| 224 | 225 |
Value delta; |
| 225 | 226 |
|
| 226 | 227 |
const Value MAX; |
| 227 | 228 |
|
| 228 | 229 |
public: |
| 229 | 230 |
|
| ... | ... |
@@ -236,159 +237,159 @@ |
| 236 | 237 |
|
| 237 | 238 |
private: |
| 238 | 239 |
|
| 239 | 240 |
// Implementation of the First Eligible pivot rule |
| 240 | 241 |
class FirstEligiblePivotRule |
| 241 | 242 |
{
|
| 242 | 243 |
private: |
| 243 | 244 |
|
| 244 | 245 |
// References to the NetworkSimplex class |
| 245 | 246 |
const IntVector &_source; |
| 246 | 247 |
const IntVector &_target; |
| 247 | 248 |
const CostVector &_cost; |
| 248 |
const |
|
| 249 |
const BoolVector &_state; |
|
| 249 | 250 |
const CostVector &_pi; |
| 250 | 251 |
int &_in_arc; |
| 251 | 252 |
int _search_arc_num; |
| 252 | 253 |
|
| 253 | 254 |
// Pivot rule data |
| 254 | 255 |
int _next_arc; |
| 255 | 256 |
|
| 256 | 257 |
public: |
| 257 | 258 |
|
| 258 | 259 |
// Constructor |
| 259 | 260 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
| 260 | 261 |
_source(ns._source), _target(ns._target), |
| 261 | 262 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 262 | 263 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 263 | 264 |
_next_arc(0) |
| 264 | 265 |
{}
|
| 265 | 266 |
|
| 266 | 267 |
// Find next entering arc |
| 267 | 268 |
bool findEnteringArc() {
|
| 268 | 269 |
Cost c; |
| 269 |
for (int e = _next_arc; e |
|
| 270 |
for (int e = _next_arc; e != _search_arc_num; ++e) {
|
|
| 270 | 271 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 271 | 272 |
if (c < 0) {
|
| 272 | 273 |
_in_arc = e; |
| 273 | 274 |
_next_arc = e + 1; |
| 274 | 275 |
return true; |
| 275 | 276 |
} |
| 276 | 277 |
} |
| 277 |
for (int e = 0; e |
|
| 278 |
for (int e = 0; e != _next_arc; ++e) {
|
|
| 278 | 279 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 279 | 280 |
if (c < 0) {
|
| 280 | 281 |
_in_arc = e; |
| 281 | 282 |
_next_arc = e + 1; |
| 282 | 283 |
return true; |
| 283 | 284 |
} |
| 284 | 285 |
} |
| 285 | 286 |
return false; |
| 286 | 287 |
} |
| 287 | 288 |
|
| 288 | 289 |
}; //class FirstEligiblePivotRule |
| 289 | 290 |
|
| 290 | 291 |
|
| 291 | 292 |
// Implementation of the Best Eligible pivot rule |
| 292 | 293 |
class BestEligiblePivotRule |
| 293 | 294 |
{
|
| 294 | 295 |
private: |
| 295 | 296 |
|
| 296 | 297 |
// References to the NetworkSimplex class |
| 297 | 298 |
const IntVector &_source; |
| 298 | 299 |
const IntVector &_target; |
| 299 | 300 |
const CostVector &_cost; |
| 300 |
const |
|
| 301 |
const BoolVector &_state; |
|
| 301 | 302 |
const CostVector &_pi; |
| 302 | 303 |
int &_in_arc; |
| 303 | 304 |
int _search_arc_num; |
| 304 | 305 |
|
| 305 | 306 |
public: |
| 306 | 307 |
|
| 307 | 308 |
// Constructor |
| 308 | 309 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
| 309 | 310 |
_source(ns._source), _target(ns._target), |
| 310 | 311 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 311 | 312 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) |
| 312 | 313 |
{}
|
| 313 | 314 |
|
| 314 | 315 |
// Find next entering arc |
| 315 | 316 |
bool findEnteringArc() {
|
| 316 | 317 |
Cost c, min = 0; |
| 317 |
for (int e = 0; e |
|
| 318 |
for (int e = 0; e != _search_arc_num; ++e) {
|
|
| 318 | 319 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 319 | 320 |
if (c < min) {
|
| 320 | 321 |
min = c; |
| 321 | 322 |
_in_arc = e; |
| 322 | 323 |
} |
| 323 | 324 |
} |
| 324 | 325 |
return min < 0; |
| 325 | 326 |
} |
| 326 | 327 |
|
| 327 | 328 |
}; //class BestEligiblePivotRule |
| 328 | 329 |
|
| 329 | 330 |
|
| 330 | 331 |
// Implementation of the Block Search pivot rule |
| 331 | 332 |
class BlockSearchPivotRule |
| 332 | 333 |
{
|
| 333 | 334 |
private: |
| 334 | 335 |
|
| 335 | 336 |
// References to the NetworkSimplex class |
| 336 | 337 |
const IntVector &_source; |
| 337 | 338 |
const IntVector &_target; |
| 338 | 339 |
const CostVector &_cost; |
| 339 |
const |
|
| 340 |
const BoolVector &_state; |
|
| 340 | 341 |
const CostVector &_pi; |
| 341 | 342 |
int &_in_arc; |
| 342 | 343 |
int _search_arc_num; |
| 343 | 344 |
|
| 344 | 345 |
// Pivot rule data |
| 345 | 346 |
int _block_size; |
| 346 | 347 |
int _next_arc; |
| 347 | 348 |
|
| 348 | 349 |
public: |
| 349 | 350 |
|
| 350 | 351 |
// Constructor |
| 351 | 352 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
| 352 | 353 |
_source(ns._source), _target(ns._target), |
| 353 | 354 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 354 | 355 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 355 | 356 |
_next_arc(0) |
| 356 | 357 |
{
|
| 357 | 358 |
// The main parameters of the pivot rule |
| 358 |
const double BLOCK_SIZE_FACTOR = |
|
| 359 |
const double BLOCK_SIZE_FACTOR = 1.0; |
|
| 359 | 360 |
const int MIN_BLOCK_SIZE = 10; |
| 360 | 361 |
|
| 361 | 362 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
| 362 | 363 |
std::sqrt(double(_search_arc_num))), |
| 363 | 364 |
MIN_BLOCK_SIZE ); |
| 364 | 365 |
} |
| 365 | 366 |
|
| 366 | 367 |
// Find next entering arc |
| 367 | 368 |
bool findEnteringArc() {
|
| 368 | 369 |
Cost c, min = 0; |
| 369 | 370 |
int cnt = _block_size; |
| 370 | 371 |
int e; |
| 371 |
for (e = _next_arc; e |
|
| 372 |
for (e = _next_arc; e != _search_arc_num; ++e) {
|
|
| 372 | 373 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 373 | 374 |
if (c < min) {
|
| 374 | 375 |
min = c; |
| 375 | 376 |
_in_arc = e; |
| 376 | 377 |
} |
| 377 | 378 |
if (--cnt == 0) {
|
| 378 | 379 |
if (min < 0) goto search_end; |
| 379 | 380 |
cnt = _block_size; |
| 380 | 381 |
} |
| 381 | 382 |
} |
| 382 |
for (e = 0; e |
|
| 383 |
for (e = 0; e != _next_arc; ++e) {
|
|
| 383 | 384 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 384 | 385 |
if (c < min) {
|
| 385 | 386 |
min = c; |
| 386 | 387 |
_in_arc = e; |
| 387 | 388 |
} |
| 388 | 389 |
if (--cnt == 0) {
|
| 389 | 390 |
if (min < 0) goto search_end; |
| 390 | 391 |
cnt = _block_size; |
| 391 | 392 |
} |
| 392 | 393 |
} |
| 393 | 394 |
if (min >= 0) return false; |
| 394 | 395 |
|
| ... | ... |
@@ -400,25 +401,25 @@ |
| 400 | 401 |
}; //class BlockSearchPivotRule |
| 401 | 402 |
|
| 402 | 403 |
|
| 403 | 404 |
// Implementation of the Candidate List pivot rule |
| 404 | 405 |
class CandidateListPivotRule |
| 405 | 406 |
{
|
| 406 | 407 |
private: |
| 407 | 408 |
|
| 408 | 409 |
// References to the NetworkSimplex class |
| 409 | 410 |
const IntVector &_source; |
| 410 | 411 |
const IntVector &_target; |
| 411 | 412 |
const CostVector &_cost; |
| 412 |
const |
|
| 413 |
const BoolVector &_state; |
|
| 413 | 414 |
const CostVector &_pi; |
| 414 | 415 |
int &_in_arc; |
| 415 | 416 |
int _search_arc_num; |
| 416 | 417 |
|
| 417 | 418 |
// Pivot rule data |
| 418 | 419 |
IntVector _candidates; |
| 419 | 420 |
int _list_length, _minor_limit; |
| 420 | 421 |
int _curr_length, _minor_count; |
| 421 | 422 |
int _next_arc; |
| 422 | 423 |
|
| 423 | 424 |
public: |
| 424 | 425 |
|
| ... | ... |
@@ -461,36 +462,36 @@ |
| 461 | 462 |
_in_arc = e; |
| 462 | 463 |
} |
| 463 | 464 |
else if (c >= 0) {
|
| 464 | 465 |
_candidates[i--] = _candidates[--_curr_length]; |
| 465 | 466 |
} |
| 466 | 467 |
} |
| 467 | 468 |
if (min < 0) return true; |
| 468 | 469 |
} |
| 469 | 470 |
|
| 470 | 471 |
// Major iteration: build a new candidate list |
| 471 | 472 |
min = 0; |
| 472 | 473 |
_curr_length = 0; |
| 473 |
for (e = _next_arc; e |
|
| 474 |
for (e = _next_arc; e != _search_arc_num; ++e) {
|
|
| 474 | 475 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 475 | 476 |
if (c < 0) {
|
| 476 | 477 |
_candidates[_curr_length++] = e; |
| 477 | 478 |
if (c < min) {
|
| 478 | 479 |
min = c; |
| 479 | 480 |
_in_arc = e; |
| 480 | 481 |
} |
| 481 | 482 |
if (_curr_length == _list_length) goto search_end; |
| 482 | 483 |
} |
| 483 | 484 |
} |
| 484 |
for (e = 0; e |
|
| 485 |
for (e = 0; e != _next_arc; ++e) {
|
|
| 485 | 486 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 486 | 487 |
if (c < 0) {
|
| 487 | 488 |
_candidates[_curr_length++] = e; |
| 488 | 489 |
if (c < min) {
|
| 489 | 490 |
min = c; |
| 490 | 491 |
_in_arc = e; |
| 491 | 492 |
} |
| 492 | 493 |
if (_curr_length == _list_length) goto search_end; |
| 493 | 494 |
} |
| 494 | 495 |
} |
| 495 | 496 |
if (_curr_length == 0) return false; |
| 496 | 497 |
|
| ... | ... |
@@ -503,25 +504,25 @@ |
| 503 | 504 |
}; //class CandidateListPivotRule |
| 504 | 505 |
|
| 505 | 506 |
|
| 506 | 507 |
// Implementation of the Altering Candidate List pivot rule |
| 507 | 508 |
class AlteringListPivotRule |
| 508 | 509 |
{
|
| 509 | 510 |
private: |
| 510 | 511 |
|
| 511 | 512 |
// References to the NetworkSimplex class |
| 512 | 513 |
const IntVector &_source; |
| 513 | 514 |
const IntVector &_target; |
| 514 | 515 |
const CostVector &_cost; |
| 515 |
const |
|
| 516 |
const BoolVector &_state; |
|
| 516 | 517 |
const CostVector &_pi; |
| 517 | 518 |
int &_in_arc; |
| 518 | 519 |
int _search_arc_num; |
| 519 | 520 |
|
| 520 | 521 |
// Pivot rule data |
| 521 | 522 |
int _block_size, _head_length, _curr_length; |
| 522 | 523 |
int _next_arc; |
| 523 | 524 |
IntVector _candidates; |
| 524 | 525 |
CostVector _cand_cost; |
| 525 | 526 |
|
| 526 | 527 |
// Functor class to compare arcs during sort of the candidate list |
| 527 | 528 |
class SortFunc |
| ... | ... |
@@ -556,50 +557,50 @@ |
| 556 | 557 |
std::sqrt(double(_search_arc_num))), |
| 557 | 558 |
MIN_BLOCK_SIZE ); |
| 558 | 559 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
| 559 | 560 |
MIN_HEAD_LENGTH ); |
| 560 | 561 |
_candidates.resize(_head_length + _block_size); |
| 561 | 562 |
_curr_length = 0; |
| 562 | 563 |
} |
| 563 | 564 |
|
| 564 | 565 |
// Find next entering arc |
| 565 | 566 |
bool findEnteringArc() {
|
| 566 | 567 |
// Check the current candidate list |
| 567 | 568 |
int e; |
| 568 |
for (int i = 0; i |
|
| 569 |
for (int i = 0; i != _curr_length; ++i) {
|
|
| 569 | 570 |
e = _candidates[i]; |
| 570 | 571 |
_cand_cost[e] = _state[e] * |
| 571 | 572 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 572 | 573 |
if (_cand_cost[e] >= 0) {
|
| 573 | 574 |
_candidates[i--] = _candidates[--_curr_length]; |
| 574 | 575 |
} |
| 575 | 576 |
} |
| 576 | 577 |
|
| 577 | 578 |
// Extend the list |
| 578 | 579 |
int cnt = _block_size; |
| 579 | 580 |
int limit = _head_length; |
| 580 | 581 |
|
| 581 |
for (e = _next_arc; e |
|
| 582 |
for (e = _next_arc; e != _search_arc_num; ++e) {
|
|
| 582 | 583 |
_cand_cost[e] = _state[e] * |
| 583 | 584 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 584 | 585 |
if (_cand_cost[e] < 0) {
|
| 585 | 586 |
_candidates[_curr_length++] = e; |
| 586 | 587 |
} |
| 587 | 588 |
if (--cnt == 0) {
|
| 588 | 589 |
if (_curr_length > limit) goto search_end; |
| 589 | 590 |
limit = 0; |
| 590 | 591 |
cnt = _block_size; |
| 591 | 592 |
} |
| 592 | 593 |
} |
| 593 |
for (e = 0; e |
|
| 594 |
for (e = 0; e != _next_arc; ++e) {
|
|
| 594 | 595 |
_cand_cost[e] = _state[e] * |
| 595 | 596 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 596 | 597 |
if (_cand_cost[e] < 0) {
|
| 597 | 598 |
_candidates[_curr_length++] = e; |
| 598 | 599 |
} |
| 599 | 600 |
if (--cnt == 0) {
|
| 600 | 601 |
if (_curr_length > limit) goto search_end; |
| 601 | 602 |
limit = 0; |
| 602 | 603 |
cnt = _block_size; |
| 603 | 604 |
} |
| 604 | 605 |
} |
| 605 | 606 |
if (_curr_length == 0) return false; |
| ... | ... |
@@ -1351,25 +1352,25 @@ |
| 1351 | 1352 |
_rev_thread[last] = u; |
| 1352 | 1353 |
_last_succ[u_out] = u; |
| 1353 | 1354 |
|
| 1354 | 1355 |
// Remove the subtree of u_out from the thread list except for |
| 1355 | 1356 |
// the case when old_rev_thread equals to v_in |
| 1356 | 1357 |
// (it also means that join and v_out coincide) |
| 1357 | 1358 |
if (old_rev_thread != v_in) {
|
| 1358 | 1359 |
_thread[old_rev_thread] = right; |
| 1359 | 1360 |
_rev_thread[right] = old_rev_thread; |
| 1360 | 1361 |
} |
| 1361 | 1362 |
|
| 1362 | 1363 |
// Update _rev_thread using the new _thread values |
| 1363 |
for (int i = 0; i |
|
| 1364 |
for (int i = 0; i != int(_dirty_revs.size()); ++i) {
|
|
| 1364 | 1365 |
u = _dirty_revs[i]; |
| 1365 | 1366 |
_rev_thread[_thread[u]] = u; |
| 1366 | 1367 |
} |
| 1367 | 1368 |
|
| 1368 | 1369 |
// Update _pred, _forward, _last_succ and _succ_num for the |
| 1369 | 1370 |
// stem nodes from u_out to u_in |
| 1370 | 1371 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
| 1371 | 1372 |
u = u_out; |
| 1372 | 1373 |
while (u != u_in) {
|
| 1373 | 1374 |
w = _parent[u]; |
| 1374 | 1375 |
_pred[u] = _pred[w]; |
| 1375 | 1376 |
_forward[u] = !_forward[w]; |
| ... | ... |
@@ -1423,46 +1424,143 @@ |
| 1423 | 1424 |
// Update potentials |
| 1424 | 1425 |
void updatePotential() {
|
| 1425 | 1426 |
Cost sigma = _forward[u_in] ? |
| 1426 | 1427 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
| 1427 | 1428 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
| 1428 | 1429 |
// Update potentials in the subtree, which has been moved |
| 1429 | 1430 |
int end = _thread[_last_succ[u_in]]; |
| 1430 | 1431 |
for (int u = u_in; u != end; u = _thread[u]) {
|
| 1431 | 1432 |
_pi[u] += sigma; |
| 1432 | 1433 |
} |
| 1433 | 1434 |
} |
| 1434 | 1435 |
|
| 1436 |
// Heuristic initial pivots |
|
| 1437 |
bool initialPivots() {
|
|
| 1438 |
Value curr, total = 0; |
|
| 1439 |
std::vector<Node> supply_nodes, demand_nodes; |
|
| 1440 |
for (NodeIt u(_graph); u != INVALID; ++u) {
|
|
| 1441 |
curr = _supply[_node_id[u]]; |
|
| 1442 |
if (curr > 0) {
|
|
| 1443 |
total += curr; |
|
| 1444 |
supply_nodes.push_back(u); |
|
| 1445 |
} |
|
| 1446 |
else if (curr < 0) {
|
|
| 1447 |
demand_nodes.push_back(u); |
|
| 1448 |
} |
|
| 1449 |
} |
|
| 1450 |
if (_sum_supply > 0) total -= _sum_supply; |
|
| 1451 |
if (total <= 0) return true; |
|
| 1452 |
|
|
| 1453 |
IntVector arc_vector; |
|
| 1454 |
if (_sum_supply >= 0) {
|
|
| 1455 |
if (supply_nodes.size() == 1 && demand_nodes.size() == 1) {
|
|
| 1456 |
// Perform a reverse graph search from the sink to the source |
|
| 1457 |
typename GR::template NodeMap<bool> reached(_graph, false); |
|
| 1458 |
Node s = supply_nodes[0], t = demand_nodes[0]; |
|
| 1459 |
std::vector<Node> stack; |
|
| 1460 |
reached[t] = true; |
|
| 1461 |
stack.push_back(t); |
|
| 1462 |
while (!stack.empty()) {
|
|
| 1463 |
Node u, v = stack.back(); |
|
| 1464 |
stack.pop_back(); |
|
| 1465 |
if (v == s) break; |
|
| 1466 |
for (InArcIt a(_graph, v); a != INVALID; ++a) {
|
|
| 1467 |
if (reached[u = _graph.source(a)]) continue; |
|
| 1468 |
int j = _arc_id[a]; |
|
| 1469 |
if (_cap[j] >= total) {
|
|
| 1470 |
arc_vector.push_back(j); |
|
| 1471 |
reached[u] = true; |
|
| 1472 |
stack.push_back(u); |
|
| 1473 |
} |
|
| 1474 |
} |
|
| 1475 |
} |
|
| 1476 |
} else {
|
|
| 1477 |
// Find the min. cost incomming arc for each demand node |
|
| 1478 |
for (int i = 0; i != int(demand_nodes.size()); ++i) {
|
|
| 1479 |
Node v = demand_nodes[i]; |
|
| 1480 |
Cost c, min_cost = std::numeric_limits<Cost>::max(); |
|
| 1481 |
Arc min_arc = INVALID; |
|
| 1482 |
for (InArcIt a(_graph, v); a != INVALID; ++a) {
|
|
| 1483 |
c = _cost[_arc_id[a]]; |
|
| 1484 |
if (c < min_cost) {
|
|
| 1485 |
min_cost = c; |
|
| 1486 |
min_arc = a; |
|
| 1487 |
} |
|
| 1488 |
} |
|
| 1489 |
if (min_arc != INVALID) {
|
|
| 1490 |
arc_vector.push_back(_arc_id[min_arc]); |
|
| 1491 |
} |
|
| 1492 |
} |
|
| 1493 |
} |
|
| 1494 |
} else {
|
|
| 1495 |
// Find the min. cost outgoing arc for each supply node |
|
| 1496 |
for (int i = 0; i != int(supply_nodes.size()); ++i) {
|
|
| 1497 |
Node u = supply_nodes[i]; |
|
| 1498 |
Cost c, min_cost = std::numeric_limits<Cost>::max(); |
|
| 1499 |
Arc min_arc = INVALID; |
|
| 1500 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) {
|
|
| 1501 |
c = _cost[_arc_id[a]]; |
|
| 1502 |
if (c < min_cost) {
|
|
| 1503 |
min_cost = c; |
|
| 1504 |
min_arc = a; |
|
| 1505 |
} |
|
| 1506 |
} |
|
| 1507 |
if (min_arc != INVALID) {
|
|
| 1508 |
arc_vector.push_back(_arc_id[min_arc]); |
|
| 1509 |
} |
|
| 1510 |
} |
|
| 1511 |
} |
|
| 1512 |
|
|
| 1513 |
// Perform heuristic initial pivots |
|
| 1514 |
for (int i = 0; i != int(arc_vector.size()); ++i) {
|
|
| 1515 |
in_arc = arc_vector[i]; |
|
| 1516 |
if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] - |
|
| 1517 |
_pi[_target[in_arc]]) >= 0) continue; |
|
| 1518 |
findJoinNode(); |
|
| 1519 |
bool change = findLeavingArc(); |
|
| 1520 |
if (delta >= MAX) return false; |
|
| 1521 |
changeFlow(change); |
|
| 1522 |
if (change) {
|
|
| 1523 |
updateTreeStructure(); |
|
| 1524 |
updatePotential(); |
|
| 1525 |
} |
|
| 1526 |
} |
|
| 1527 |
return true; |
|
| 1528 |
} |
|
| 1529 |
|
|
| 1435 | 1530 |
// Execute the algorithm |
| 1436 | 1531 |
ProblemType start(PivotRule pivot_rule) {
|
| 1437 | 1532 |
// Select the pivot rule implementation |
| 1438 | 1533 |
switch (pivot_rule) {
|
| 1439 | 1534 |
case FIRST_ELIGIBLE: |
| 1440 | 1535 |
return start<FirstEligiblePivotRule>(); |
| 1441 | 1536 |
case BEST_ELIGIBLE: |
| 1442 | 1537 |
return start<BestEligiblePivotRule>(); |
| 1443 | 1538 |
case BLOCK_SEARCH: |
| 1444 | 1539 |
return start<BlockSearchPivotRule>(); |
| 1445 | 1540 |
case CANDIDATE_LIST: |
| 1446 | 1541 |
return start<CandidateListPivotRule>(); |
| 1447 | 1542 |
case ALTERING_LIST: |
| 1448 | 1543 |
return start<AlteringListPivotRule>(); |
| 1449 | 1544 |
} |
| 1450 | 1545 |
return INFEASIBLE; // avoid warning |
| 1451 | 1546 |
} |
| 1452 | 1547 |
|
| 1453 | 1548 |
template <typename PivotRuleImpl> |
| 1454 | 1549 |
ProblemType start() {
|
| 1455 | 1550 |
PivotRuleImpl pivot(*this); |
| 1456 | 1551 |
|
| 1552 |
// Perform heuristic initial pivots |
|
| 1553 |
if (!initialPivots()) return UNBOUNDED; |
|
| 1554 |
|
|
| 1457 | 1555 |
// Execute the Network Simplex algorithm |
| 1458 | 1556 |
while (pivot.findEnteringArc()) {
|
| 1459 | 1557 |
findJoinNode(); |
| 1460 | 1558 |
bool change = findLeavingArc(); |
| 1461 | 1559 |
if (delta >= MAX) return UNBOUNDED; |
| 1462 | 1560 |
changeFlow(change); |
| 1463 | 1561 |
if (change) {
|
| 1464 | 1562 |
updateTreeStructure(); |
| 1465 | 1563 |
updatePotential(); |
| 1466 | 1564 |
} |
| 1467 | 1565 |
} |
| 1468 | 1566 |
|
0 comments (0 inline)