0
                         105
                         25
                     
                 
                    1165
22
8
17
15
1
173
75
20
10
25
1
84
83
108
108
165
138
12
2
1
14
1
2
1
171
170
Changeset was too big and was cut off... Show full diff
| 1 | 
		%!PS-Adobe-2.0 EPSF-2.0  | 
|
| 2 | 
		%%Creator: LEMON, graphToEps()  | 
|
| 3 | 
		%%CreationDate: Sun Mar 14 09:08:34 2010  | 
|
| 4 | 
		%%BoundingBox: -353 -264 559 292  | 
|
| 5 | 
		%%EndComments  | 
|
| 6 | 
		/lb { setlinewidth setrgbcolor newpath moveto
	 | 
|
| 7 | 
		4 2 roll 1 index 1 index curveto stroke } bind def  | 
|
| 8 | 
		/l { setlinewidth setrgbcolor newpath moveto lineto stroke } bind def
	 | 
|
| 9 | 
		/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath } bind def
	 | 
|
| 10 | 
		/sq { newpath 2 index 1 index add 2 index 2 index add moveto
	 | 
|
| 11 | 
		2 index 1 index sub 2 index 2 index add lineto  | 
|
| 12 | 
		2 index 1 index sub 2 index 2 index sub lineto  | 
|
| 13 | 
		2 index 1 index add 2 index 2 index sub lineto  | 
|
| 14 | 
		closepath pop pop pop} bind def  | 
|
| 15 | 
		/di { newpath 2 index 1 index add 2 index moveto
	 | 
|
| 16 | 
		2 index 2 index 2 index add lineto  | 
|
| 17 | 
		2 index 1 index sub 2 index lineto  | 
|
| 18 | 
		2 index 2 index 2 index sub lineto  | 
|
| 19 | 
		closepath pop pop pop} bind def  | 
|
| 20 | 
		/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill
	 | 
|
| 21 | 
		setrgbcolor 1.1 div c fill  | 
|
| 22 | 
		} bind def  | 
|
| 23 | 
		/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill
	 | 
|
| 24 | 
		setrgbcolor 1.1 div sq fill  | 
|
| 25 | 
		} bind def  | 
|
| 26 | 
		/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill
	 | 
|
| 27 | 
		setrgbcolor 1.1 div di fill  | 
|
| 28 | 
		} bind def  | 
|
| 29 | 
		/nfemale { 0 0 0 setrgbcolor 3 index 0.0909091 1.5 mul mul setlinewidth
	 | 
|
| 30 | 
		newpath 5 index 5 index moveto 5 index 5 index 5 index 3.01 mul sub  | 
|
| 31 | 
		lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub moveto  | 
|
| 32 | 
		5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto stroke  | 
|
| 33 | 
		5 index 5 index 5 index c fill  | 
|
| 34 | 
		setrgbcolor 1.1 div c fill  | 
|
| 35 | 
		} bind def  | 
|
| 36 | 
		/nmale {
	 | 
|
| 37 | 
		0 0 0 setrgbcolor 3 index 0.0909091 1.5 mul mul setlinewidth  | 
|
| 38 | 
		newpath 5 index 5 index moveto  | 
|
| 39 | 
		5 index 4 index 1 mul 1.5 mul add  | 
|
| 40 | 
		5 index 5 index 3 sqrt 1.5 mul mul add  | 
|
| 41 | 
		1 index 1 index lineto  | 
|
| 42 | 
		1 index 1 index 7 index sub moveto  | 
|
| 43 | 
		1 index 1 index lineto  | 
|
| 44 | 
		exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub lineto  | 
|
| 45 | 
		stroke  | 
|
| 46 | 
		5 index 5 index 5 index c fill  | 
|
| 47 | 
		setrgbcolor 1.1 div c fill  | 
|
| 48 | 
		} bind def  | 
|
| 49 | 
		/arrl 1 def  | 
|
| 50 | 
		/arrw 0.3 def  | 
|
| 51 | 
		/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def
	 | 
|
| 52 | 
		/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx exch def
	 | 
|
| 53 | 
		/w exch def /len exch def  | 
|
| 54 | 
		newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto  | 
|
| 55 | 
		len w sub arrl sub dx dy lrl  | 
|
| 56 | 
		arrw dy dx neg lrl  | 
|
| 57 | 
		dx arrl w add mul dy w 2 div arrw add mul sub  | 
|
| 58 | 
		dy arrl w add mul dx w 2 div arrw add mul add rlineto  | 
|
| 59 | 
		dx arrl w add mul neg dy w 2 div arrw add mul sub  | 
|
| 60 | 
		dy arrl w add mul neg dx w 2 div arrw add mul add rlineto  | 
|
| 61 | 
		arrw dy dx neg lrl  | 
|
| 62 | 
		len w sub arrl sub neg dx dy lrl  | 
|
| 63 | 
		closepath fill } bind def  | 
|
| 64 | 
		/cshow { 2 index 2 index moveto dup stringwidth pop
	 | 
|
| 65 | 
		neg 2 div fosi .35 mul neg rmoveto show pop pop} def  | 
|
| 66 | 
		 | 
|
| 67 | 
		gsave  | 
|
| 68 | 
		%Arcs:  | 
|
| 69 | 
		gsave  | 
|
| 70 | 
		140.321 266.249 -327.729 150.06 0 0 0 4.99223 l  | 
|
| 71 | 
		82.1207 -238.726 -245.288 -110.743 0 0 0 4.99223 l  | 
|
| 72 | 
		336.635 -229.036 533.603 13.109 0 0 0 4.99223 l  | 
|
| 73 | 
		53.8598 -45.8071 -245.288 -110.743 0 0 0 4.99223 l  | 
|
| 74 | 
		-75.5617 118.579 -327.729 150.06 0 0 0 4.99223 l  | 
|
| 75 | 
		-327.729 150.06 -245.288 -110.743 1 0 0 11.9813 l  | 
|
| 76 | 
		533.603 13.109 218.184 -84.2955 0 0 0 4.99223 l  | 
|
| 77 | 
		39.87 175.035 141.163 67.2575 0 0 0 4.99223 l  | 
|
| 78 | 
		53.8598 -45.8071 -75.5617 118.579 0 0 0 4.99223 l  | 
|
| 79 | 
		-102.406 -141.267 82.1207 -238.726 0 0 0 4.99223 l  | 
|
| 80 | 
		399.144 166.894 533.603 13.109 1 0 0 11.9813 l  | 
|
| 81 | 
		39.87 175.035 140.321 266.249 1 0 0 11.9813 l  | 
|
| 82 | 
		399.144 166.894 140.321 266.249 0 0 0 4.99223 l  | 
|
| 83 | 
		399.144 166.894 141.163 67.2575 0 0 0 4.99223 l  | 
|
| 84 | 
		53.8598 -45.8071 204.765 -173.77 0 0 0 4.99223 l  | 
|
| 85 | 
		82.1207 -238.726 204.765 -173.77 0 0 0 4.99223 l  | 
|
| 86 | 
		258.227 61.658 399.144 166.894 0 0 0 4.99223 l  | 
|
| 87 | 
		53.8598 -45.8071 -102.406 -141.267 1 0 0 11.9813 l  | 
|
| 88 | 
		175.073 -37.4477 141.163 67.2575 0 0 0 4.99223 l  | 
|
| 89 | 
		258.227 61.658 380 0 0 0 0 4.99223 l  | 
|
| 90 | 
		34.6739 40.8267 -75.5617 118.579 1 0 0 11.9813 l  | 
|
| 91 | 
		380 0 533.603 13.109 0 0 0 4.99223 l  | 
|
| 92 | 
		175.073 -37.4477 380 0 0 0 0 4.99223 l  | 
|
| 93 | 
		218.184 -84.2955 204.765 -173.77 0 0 0 4.99223 l  | 
|
| 94 | 
		53.8598 -45.8071 34.6739 40.8267 0 0 0 4.99223 l  | 
|
| 95 | 
		167.905 -213.988 82.1207 -238.726 1 0 0 11.9813 l  | 
|
| 96 | 
		336.635 -229.036 204.765 -173.77 1 0 0 11.9813 l  | 
|
| 97 | 
		336.635 -229.036 167.905 -213.988 0 0 0 4.99223 l  | 
|
| 98 | 
		329.08 -26.3098 218.184 -84.2955 0 0 0 4.99223 l  | 
|
| 99 | 
		39.87 175.035 -75.5617 118.579 0 0 0 4.99223 l  | 
|
| 100 | 
		53.8598 -45.8071 175.073 -37.4477 0 0 0 4.99223 l  | 
|
| 101 | 
		34.6739 40.8267 141.163 67.2575 0 0 0 4.99223 l  | 
|
| 102 | 
		258.227 61.658 141.163 67.2575 1 0 0 11.9813 l  | 
|
| 103 | 
		175.073 -37.4477 218.184 -84.2955 1 0 0 11.9813 l  | 
|
| 104 | 
		380 0 329.08 -26.3098 1 0 0 11.9813 l  | 
|
| 105 | 
		grestore  | 
|
| 106 | 
		%Nodes:  | 
|
| 107 | 
		gsave  | 
|
| 108 | 
		-245.288 -110.743 14.9767 1 1 1 nc  | 
|
| 109 | 
		204.765 -173.77 14.9767 1 1 1 nc  | 
|
| 110 | 
		-327.729 150.06 14.9767 1 1 1 nc  | 
|
| 111 | 
		-75.5617 118.579 14.9767 1 1 1 nc  | 
|
| 112 | 
		218.184 -84.2955 14.9767 1 1 1 nc  | 
|
| 113 | 
		140.321 266.249 14.9767 1 1 1 nc  | 
|
| 114 | 
		141.163 67.2575 14.9767 1 1 1 nc  | 
|
| 115 | 
		82.1207 -238.726 14.9767 1 1 1 nc  | 
|
| 116 | 
		329.08 -26.3098 14.9767 1 1 1 nc  | 
|
| 117 | 
		-102.406 -141.267 14.9767 1 1 1 nc  | 
|
| 118 | 
		533.603 13.109 14.9767 1 1 1 nc  | 
|
| 119 | 
		167.905 -213.988 14.9767 1 1 1 nc  | 
|
| 120 | 
		336.635 -229.036 14.9767 1 1 1 nc  | 
|
| 121 | 
		380 0 14.9767 1 1 1 nc  | 
|
| 122 | 
		399.144 166.894 14.9767 1 1 1 nc  | 
|
| 123 | 
		34.6739 40.8267 14.9767 1 1 1 nc  | 
|
| 124 | 
		39.87 175.035 14.9767 1 1 1 nc  | 
|
| 125 | 
		175.073 -37.4477 14.9767 1 1 1 nc  | 
|
| 126 | 
		53.8598 -45.8071 14.9767 1 1 1 nc  | 
|
| 127 | 
		258.227 61.658 14.9767 1 1 1 nc  | 
|
| 128 | 
		grestore  | 
|
| 129 | 
		grestore  | 
|
| 130 | 
		showpage  | 
| 1 | 
		%!PS-Adobe-2.0 EPSF-2.0  | 
|
| 2 | 
		%%Creator: LEMON, graphToEps()  | 
|
| 3 | 
		%%CreationDate: Fri Oct 19 18:32:32 2007  | 
|
| 4 | 
		%%BoundingBox: 0 0 596 842  | 
|
| 5 | 
		%%DocumentPaperSizes: a4  | 
|
| 6 | 
		%%EndComments  | 
|
| 7 | 
		/lb { setlinewidth setrgbcolor newpath moveto
	 | 
|
| 8 | 
		4 2 roll 1 index 1 index curveto stroke } bind def  | 
|
| 9 | 
		/l { setlinewidth setrgbcolor newpath moveto lineto stroke } bind def
	 | 
|
| 10 | 
		/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath } bind def
	 | 
|
| 11 | 
		/sq { newpath 2 index 1 index add 2 index 2 index add moveto
	 | 
|
| 12 | 
		2 index 1 index sub 2 index 2 index add lineto  | 
|
| 13 | 
		2 index 1 index sub 2 index 2 index sub lineto  | 
|
| 14 | 
		2 index 1 index add 2 index 2 index sub lineto  | 
|
| 15 | 
		closepath pop pop pop} bind def  | 
|
| 16 | 
		/di { newpath 2 index 1 index add 2 index moveto
	 | 
|
| 17 | 
		2 index 2 index 2 index add lineto  | 
|
| 18 | 
		2 index 1 index sub 2 index lineto  | 
|
| 19 | 
		2 index 2 index 2 index sub lineto  | 
|
| 20 | 
		closepath pop pop pop} bind def  | 
|
| 21 | 
		/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill
	 | 
|
| 22 | 
		setrgbcolor 1.1 div c fill  | 
|
| 23 | 
		} bind def  | 
|
| 24 | 
		/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill
	 | 
|
| 25 | 
		setrgbcolor 1.1 div sq fill  | 
|
| 26 | 
		} bind def  | 
|
| 27 | 
		/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill
	 | 
|
| 28 | 
		setrgbcolor 1.1 div di fill  | 
|
| 29 | 
		} bind def  | 
|
| 30 | 
		/nfemale { 0 0 0 setrgbcolor 3 index 0.0909091 1.5 mul mul setlinewidth
	 | 
|
| 31 | 
		newpath 5 index 5 index moveto 5 index 5 index 5 index 3.01 mul sub  | 
|
| 32 | 
		lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub moveto  | 
|
| 33 | 
		5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto stroke  | 
|
| 34 | 
		5 index 5 index 5 index c fill  | 
|
| 35 | 
		setrgbcolor 1.1 div c fill  | 
|
| 36 | 
		} bind def  | 
|
| 37 | 
		/nmale {
	 | 
|
| 38 | 
		0 0 0 setrgbcolor 3 index 0.0909091 1.5 mul mul setlinewidth  | 
|
| 39 | 
		newpath 5 index 5 index moveto  | 
|
| 40 | 
		5 index 4 index 1 mul 1.5 mul add  | 
|
| 41 | 
		5 index 5 index 3 sqrt 1.5 mul mul add  | 
|
| 42 | 
		1 index 1 index lineto  | 
|
| 43 | 
		1 index 1 index 7 index sub moveto  | 
|
| 44 | 
		1 index 1 index lineto  | 
|
| 45 | 
		exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub lineto  | 
|
| 46 | 
		stroke  | 
|
| 47 | 
		5 index 5 index 5 index c fill  | 
|
| 48 | 
		setrgbcolor 1.1 div c fill  | 
|
| 49 | 
		} bind def  | 
|
| 50 | 
		/arrl 1 def  | 
|
| 51 | 
		/arrw 0.3 def  | 
|
| 52 | 
		/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def
	 | 
|
| 53 | 
		/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx exch def
	 | 
|
| 54 | 
		/w exch def /len exch def  | 
|
| 55 | 
		newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto  | 
|
| 56 | 
		len w sub arrl sub dx dy lrl  | 
|
| 57 | 
		arrw dy dx neg lrl  | 
|
| 58 | 
		dx arrl w add mul dy w 2 div arrw add mul sub  | 
|
| 59 | 
		dy arrl w add mul dx w 2 div arrw add mul add rlineto  | 
|
| 60 | 
		dx arrl w add mul neg dy w 2 div arrw add mul sub  | 
|
| 61 | 
		dy arrl w add mul neg dx w 2 div arrw add mul add rlineto  | 
|
| 62 | 
		arrw dy dx neg lrl  | 
|
| 63 | 
		len w sub arrl sub neg dx dy lrl  | 
|
| 64 | 
		closepath fill } bind def  | 
|
| 65 | 
		/cshow { 2 index 2 index moveto dup stringwidth pop
	 | 
|
| 66 | 
		neg 2 div fosi .35 mul neg rmoveto show pop pop} def  | 
|
| 67 | 
		 | 
|
| 68 | 
		gsave  | 
|
| 69 | 
		15 138.307 translate  | 
|
| 70 | 
		12.7843 dup scale  | 
|
| 71 | 
		90 rotate  | 
|
| 72 | 
		0.608112 -43.6081 translate  | 
|
| 73 | 
		%Edges:  | 
|
| 74 | 
		gsave  | 
|
| 75 | 
		9 31 9.5 30.5 10 30 0 0 0 0.091217 lb  | 
|
| 76 | 
		9 31 5.5 34.5 2 38 0 0 0 0.091217 lb  | 
|
| 77 | 
		9 31 25.5 16 42 1 0 0 0 0.091217 lb  | 
|
| 78 | 
		3 40 23 20.5 43 1 0 0 0 0.091217 lb  | 
|
| 79 | 
		3 40 22.5 20.5 42 1 0 0 0 0.091217 lb  | 
|
| 80 | 
		3 40 2.5 40.5 2 41 0 0 0 0.091217 lb  | 
|
| 81 | 
		13 25 10.5 24.5 8 24 0 0 0 0.091217 lb  | 
|
| 82 | 
		13 25 12 27 11 29 0 0 0 0.091217 lb  | 
|
| 83 | 
		3 4 2.5 3 2 2 0 0 0 0.091217 lb  | 
|
| 84 | 
		3 4 4.5 3 6 2 0 0 0 0.091217 lb  | 
|
| 85 | 
		6 25 7 24.5 8 24 0 0 0 0.091217 lb  | 
|
| 86 | 
		6 25 6 24.5 6 24 0 0 0 0.091217 lb  | 
|
| 87 | 
		34 2 33.5 2 33 2 0 0 0 0.091217 lb  | 
|
| 88 | 
		34 2 35 2 36 2 0 0 0 0.091217 lb  | 
|
| 89 | 
		6 8 16 9 26 10 0 0 0 0.091217 lb  | 
|
| 90 | 
		6 8 6 10.5 6 13 0 0 0 0.091217 lb  | 
|
| 91 | 
		6 8 6 7.5 6 7 0 0 0 0.091217 lb  | 
|
| 92 | 
		26 10 27.5 8.5 29 7 0 0 0 0.091217 lb  | 
|
| 93 | 
		26 10 27.5 9 29 8 0 0 0 0.091217 lb  | 
|
| 94 | 
		10 30 10.5 29.5 11 29 0 0 0 0.091217 lb  | 
|
| 95 | 
		8 24 7 23.5 6 23 0 0 0 0.091217 lb  | 
|
| 96 | 
		8 24 8 24.5 8 25 0 0 0 0.091217 lb  | 
|
| 97 | 
		33 2 32.5 2 32 2 0 0 0 0.091217 lb  | 
|
| 98 | 
		29 7 17.5 7 6 7 0 0 0 0.091217 lb  | 
|
| 99 | 
		2 2 1.5 22 1 42 0 0 0 0.091217 lb  | 
|
| 100 | 
		2 2 3.5 2 5 2 0 0 0 0.091217 lb  | 
|
| 101 | 
		21 15 13.5 14.5 6 14 0 0 0 0.091217 lb  | 
|
| 102 | 
		21 15 21 15.5 21 16 0 0 0 0.091217 lb  | 
|
| 103 | 
		1 42 0.5 42.5 0 43 0 0 0 0.091217 lb  | 
|
| 104 | 
		1 42 1.5 41.5 2 41 0 0 0 0.091217 lb  | 
|
| 105 | 
		6 15 6 15.5 6 16 0 0 0 0.091217 lb  | 
|
| 106 | 
		6 15 6 14.5 6 14 0 0 0 0.091217 lb  | 
|
| 107 | 
		43 1 22 0.5 1 0 0 0 0 0.091217 lb  | 
|
| 108 | 
		31 2 18.5 2 6 2 0 0 0 0.091217 lb  | 
|
| 109 | 
		31 2 31.5 2 32 2 0 0 0 0.091217 lb  | 
|
| 110 | 
		6 24 6 23.5 6 23 0 0 0 0.091217 lb  | 
|
| 111 | 
		6 16 6 16.5 6 17 0 0 0 0.091217 lb  | 
|
| 112 | 
		6 23 6 20 6 17 0 0 0 0.091217 lb  | 
|
| 113 | 
		6 2 5.5 2 5 2 0 0 0 0.091217 lb  | 
|
| 114 | 
		6 2 6 4.5 6 7 0 0 0 0.091217 lb  | 
|
| 115 | 
		0 43 0.5 21.5 1 0 0 0 0 0.091217 lb  | 
|
| 116 | 
		1 1 19.5 1.5 38 2 0 0 0 0.091217 lb  | 
|
| 117 | 
		1 1 1 0.5 1 0 0 0 0 0.091217 lb  | 
|
| 118 | 
		2 38 5.5 31.5 9 25 0 0 0 0.091217 lb  | 
|
| 119 | 
		25 13 15.5 13 6 13 0 0 0 0.091217 lb  | 
|
| 120 | 
		25 13 15.5 13.5 6 14 0 0 0 0.091217 lb  | 
|
| 121 | 
		8 25 8.5 25 9 25 0 0 0 0.091217 lb  | 
|
| 122 | 
		11 29 24.5 15.5 38 2 0 0 0 0.091217 lb  | 
|
| 123 | 
		6 17 11.5 18 17 19 0 0 0 0.091217 lb  | 
|
| 124 | 
		16 23 26.5 12.5 37 2 0 0 0 0.091217 lb  | 
|
| 125 | 
		16 23 18.5 19.5 21 16 0 0 0 0.091217 lb  | 
|
| 126 | 
		36 2 36.5 2 37 2 0 0 0 0.091217 lb  | 
|
| 127 | 
		36 2 32.5 5 29 8 0 0 0 0.091217 lb  | 
|
| 128 | 
		6 13 6 13.5 6 14 0 0 0 0.091217 lb  | 
|
| 129 | 
		37 2 37.5 2 38 2 0 0 0 0.091217 lb  | 
|
| 130 | 
		21 16 19 17.5 17 19 0 0 0 0.091217 lb  | 
|
| 131 | 
		grestore  | 
|
| 132 | 
		%Nodes:  | 
|
| 133 | 
		gsave  | 
|
| 134 | 
		29 8 0.304556 1 1 1 nc  | 
|
| 135 | 
		2 41 0.304556 1 1 1 nc  | 
|
| 136 | 
		6 7 0.304556 1 1 1 nc  | 
|
| 137 | 
		5 2 0.304556 1 1 1 nc  | 
|
| 138 | 
		17 19 0.304556 1 1 1 nc  | 
|
| 139 | 
		21 16 0.304556 1 1 1 nc  | 
|
| 140 | 
		1 0 0.304556 1 1 1 nc  | 
|
| 141 | 
		9 25 0.304556 1 1 1 nc  | 
|
| 142 | 
		6 14 0.304556 1 1 1 nc  | 
|
| 143 | 
		42 1 0.304556 1 1 1 nc  | 
|
| 144 | 
		38 2 0.304556 1 1 1 nc  | 
|
| 145 | 
		37 2 0.304556 1 1 1 nc  | 
|
| 146 | 
		6 13 0.304556 1 1 1 nc  | 
|
| 147 | 
		36 2 0.304556 1 1 1 nc  | 
|
| 148 | 
		16 23 0.304556 1 1 1 nc  | 
|
| 149 | 
		6 17 0.304556 1 1 1 nc  | 
|
| 150 | 
		11 29 0.304556 1 1 1 nc  | 
|
| 151 | 
		8 25 0.304556 1 1 1 nc  | 
|
| 152 | 
		32 2 0.304556 1 1 1 nc  | 
|
| 153 | 
		25 13 0.304556 1 1 1 nc  | 
|
| 154 | 
		2 38 0.304556 1 1 1 nc  | 
|
| 155 | 
		1 1 0.304556 1 1 1 nc  | 
|
| 156 | 
		0 43 0.304556 1 1 1 nc  | 
|
| 157 | 
		6 2 0.304556 1 1 1 nc  | 
|
| 158 | 
		6 23 0.304556 1 1 1 nc  | 
|
| 159 | 
		6 16 0.304556 1 1 1 nc  | 
|
| 160 | 
		6 24 0.304556 1 1 1 nc  | 
|
| 161 | 
		31 2 0.304556 1 1 1 nc  | 
|
| 162 | 
		43 1 0.304556 1 1 1 nc  | 
|
| 163 | 
		6 15 0.304556 1 1 1 nc  | 
|
| 164 | 
		1 42 0.304556 1 1 1 nc  | 
|
| 165 | 
		21 15 0.304556 1 1 1 nc  | 
|
| 166 | 
		2 2 0.304556 1 1 1 nc  | 
|
| 167 | 
		29 7 0.304556 1 1 1 nc  | 
|
| 168 | 
		33 2 0.304556 1 1 1 nc  | 
|
| 169 | 
		8 24 0.304556 1 1 1 nc  | 
|
| 170 | 
		10 30 0.304556 1 1 1 nc  | 
|
| 171 | 
		26 10 0.304556 1 1 1 nc  | 
|
| 172 | 
		6 8 0.304556 1 1 1 nc  | 
|
| 173 | 
		34 2 0.304556 1 1 1 nc  | 
|
| 174 | 
		6 25 0.304556 1 1 1 nc  | 
|
| 175 | 
		3 4 0.304556 1 1 1 nc  | 
|
| 176 | 
		13 25 0.304556 1 1 1 nc  | 
|
| 177 | 
		3 40 0.304556 1 1 1 nc  | 
|
| 178 | 
		9 31 0.304556 1 1 1 nc  | 
|
| 179 | 
		grestore  | 
|
| 180 | 
		grestore  | 
|
| 181 | 
		showpage  | 
| 1 | 
		%%%%% Defining LEMON %%%%%  | 
|
| 2 | 
		 | 
|
| 3 | 
		@misc{lemon,
	 | 
|
| 4 | 
		  key =          {LEMON},
	 | 
|
| 5 | 
		  title =        {{LEMON} -- {L}ibrary for {E}fficient {M}odeling and
	 | 
|
| 6 | 
		                  {O}ptimization in {N}etworks},
	 | 
|
| 7 | 
		  howpublished = {\url{http://lemon.cs.elte.hu/}},
	 | 
|
| 8 | 
		year = 2009  | 
|
| 9 | 
		}  | 
|
| 10 | 
		 | 
|
| 11 | 
		@misc{egres,
	 | 
|
| 12 | 
		  key =          {EGRES},
	 | 
|
| 13 | 
		  title =        {{EGRES} -- {E}gerv{\'a}ry {R}esearch {G}roup on
	 | 
|
| 14 | 
		                  {C}ombinatorial {O}ptimization},
	 | 
|
| 15 | 
		  url =          {http://www.cs.elte.hu/egres/}
	 | 
|
| 16 | 
		}  | 
|
| 17 | 
		 | 
|
| 18 | 
		@misc{coinor,
	 | 
|
| 19 | 
		  key =          {COIN-OR},
	 | 
|
| 20 | 
		  title =        {{COIN-OR} -- {C}omputational {I}nfrastructure for
	 | 
|
| 21 | 
		                  {O}perations {R}esearch},
	 | 
|
| 22 | 
		  url =          {http://www.coin-or.org/}
	 | 
|
| 23 | 
		}  | 
|
| 24 | 
		 | 
|
| 25 | 
		 | 
|
| 26 | 
		%%%%% Other libraries %%%%%%  | 
|
| 27 | 
		 | 
|
| 28 | 
		@misc{boost,
	 | 
|
| 29 | 
		  key =          {Boost},
	 | 
|
| 30 | 
		  title =        {{B}oost {C++} {L}ibraries},
	 | 
|
| 31 | 
		  url =          {http://www.boost.org/}
	 | 
|
| 32 | 
		}  | 
|
| 33 | 
		 | 
|
| 34 | 
		@book{bglbook,
	 | 
|
| 35 | 
		  author =       {Jeremy G. Siek and Lee-Quan Lee and Andrew
	 | 
|
| 36 | 
		Lumsdaine},  | 
|
| 37 | 
		  title =        {The Boost Graph Library: User Guide and Reference
	 | 
|
| 38 | 
		Manual},  | 
|
| 39 | 
		  publisher =    {Addison-Wesley},
	 | 
|
| 40 | 
		year = 2002  | 
|
| 41 | 
		}  | 
|
| 42 | 
		 | 
|
| 43 | 
		@misc{leda,
	 | 
|
| 44 | 
		  key =          {LEDA},
	 | 
|
| 45 | 
		  title =        {{LEDA} -- {L}ibrary of {E}fficient {D}ata {T}ypes and
	 | 
|
| 46 | 
		                  {A}lgorithms},
	 | 
|
| 47 | 
		  url =          {http://www.algorithmic-solutions.com/}
	 | 
|
| 48 | 
		}  | 
|
| 49 | 
		 | 
|
| 50 | 
		@book{ledabook,
	 | 
|
| 51 | 
		  author =       {Kurt Mehlhorn and Stefan N{\"a}her},
	 | 
|
| 52 | 
		  title =        {{LEDA}: {A} platform for combinatorial and geometric
	 | 
|
| 53 | 
		computing},  | 
|
| 54 | 
		  isbn =         {0-521-56329-1},
	 | 
|
| 55 | 
		  publisher =    {Cambridge University Press},
	 | 
|
| 56 | 
		  address =      {New York, NY, USA},
	 | 
|
| 57 | 
		year = 1999  | 
|
| 58 | 
		}  | 
|
| 59 | 
		 | 
|
| 60 | 
		 | 
|
| 61 | 
		%%%%% Tools that LEMON depends on %%%%%  | 
|
| 62 | 
		 | 
|
| 63 | 
		@misc{cmake,
	 | 
|
| 64 | 
		  key =          {CMake},
	 | 
|
| 65 | 
		  title =        {{CMake} -- {C}ross {P}latform {M}ake},
	 | 
|
| 66 | 
		  url =          {http://www.cmake.org/}
	 | 
|
| 67 | 
		}  | 
|
| 68 | 
		 | 
|
| 69 | 
		@misc{doxygen,
	 | 
|
| 70 | 
		  key =          {Doxygen},
	 | 
|
| 71 | 
		  title =        {{Doxygen} -- {S}ource code documentation generator
	 | 
|
| 72 | 
		tool},  | 
|
| 73 | 
		  url =          {http://www.doxygen.org/}
	 | 
|
| 74 | 
		}  | 
|
| 75 | 
		 | 
|
| 76 | 
		 | 
|
| 77 | 
		%%%%% LP/MIP libraries %%%%%  | 
|
| 78 | 
		 | 
|
| 79 | 
		@misc{glpk,
	 | 
|
| 80 | 
		  key =          {GLPK},
	 | 
|
| 81 | 
		  title =        {{GLPK} -- {GNU} {L}inear {P}rogramming {K}it},
	 | 
|
| 82 | 
		  url =          {http://www.gnu.org/software/glpk/}
	 | 
|
| 83 | 
		}  | 
|
| 84 | 
		 | 
|
| 85 | 
		@misc{clp,
	 | 
|
| 86 | 
		  key =          {Clp},
	 | 
|
| 87 | 
		  title =        {{Clp} -- {Coin-Or} {L}inear {P}rogramming},
	 | 
|
| 88 | 
		  url =          {http://projects.coin-or.org/Clp/}
	 | 
|
| 89 | 
		}  | 
|
| 90 | 
		 | 
|
| 91 | 
		@misc{cbc,
	 | 
|
| 92 | 
		  key =          {Cbc},
	 | 
|
| 93 | 
		  title =        {{Cbc} -- {Coin-Or} {B}ranch and {C}ut},
	 | 
|
| 94 | 
		  url =          {http://projects.coin-or.org/Cbc/}
	 | 
|
| 95 | 
		}  | 
|
| 96 | 
		 | 
|
| 97 | 
		@misc{cplex,
	 | 
|
| 98 | 
		  key =          {CPLEX},
	 | 
|
| 99 | 
		  title =        {{ILOG} {CPLEX}},
	 | 
|
| 100 | 
		  url =          {http://www.ilog.com/}
	 | 
|
| 101 | 
		}  | 
|
| 102 | 
		 | 
|
| 103 | 
		@misc{soplex,
	 | 
|
| 104 | 
		  key =          {SoPlex},
	 | 
|
| 105 | 
		  title =        {{SoPlex} -- {T}he {S}equential {O}bject-{O}riented
	 | 
|
| 106 | 
		                  {S}implex},
	 | 
|
| 107 | 
		  url =          {http://soplex.zib.de/}
	 | 
|
| 108 | 
		}  | 
|
| 109 | 
		 | 
|
| 110 | 
		 | 
|
| 111 | 
		%%%%% General books %%%%%  | 
|
| 112 | 
		 | 
|
| 113 | 
		@book{amo93networkflows,
	 | 
|
| 114 | 
		  author =       {Ravindra K. Ahuja and Thomas L. Magnanti and James
	 | 
|
| 115 | 
		B. Orlin},  | 
|
| 116 | 
		  title =        {Network Flows: Theory, Algorithms, and Applications},
	 | 
|
| 117 | 
		  publisher =    {Prentice-Hall, Inc.},
	 | 
|
| 118 | 
		year = 1993,  | 
|
| 119 | 
		month = feb,  | 
|
| 120 | 
		  isbn =         {978-0136175490}
	 | 
|
| 121 | 
		}  | 
|
| 122 | 
		 | 
|
| 123 | 
		@book{schrijver03combinatorial,
	 | 
|
| 124 | 
		  author =       {Alexander Schrijver},
	 | 
|
| 125 | 
		  title =        {Combinatorial Optimization: Polyhedra and Efficiency},
	 | 
|
| 126 | 
		  publisher =    {Springer-Verlag},
	 | 
|
| 127 | 
		year = 2003,  | 
|
| 128 | 
		  isbn =         {978-3540443896}
	 | 
|
| 129 | 
		}  | 
|
| 130 | 
		 | 
|
| 131 | 
		@book{clrs01algorithms,
	 | 
|
| 132 | 
		  author =       {Thomas H. Cormen and Charles E. Leiserson and Ronald
	 | 
|
| 133 | 
		L. Rivest and Clifford Stein},  | 
|
| 134 | 
		  title =        {Introduction to Algorithms},
	 | 
|
| 135 | 
		  publisher =    {The MIT Press},
	 | 
|
| 136 | 
		year = 2001,  | 
|
| 137 | 
		  edition =      {2nd}
	 | 
|
| 138 | 
		}  | 
|
| 139 | 
		 | 
|
| 140 | 
		@book{stroustrup00cpp,
	 | 
|
| 141 | 
		  author =       {Bjarne Stroustrup},
	 | 
|
| 142 | 
		  title =        {The C++ Programming Language},
	 | 
|
| 143 | 
		  edition =      {3rd},
	 | 
|
| 144 | 
		  publisher =    {Addison-Wesley Professional},
	 | 
|
| 145 | 
		isbn = 0201700735,  | 
|
| 146 | 
		  month =        {February},
	 | 
|
| 147 | 
		year = 2000  | 
|
| 148 | 
		}  | 
|
| 149 | 
		 | 
|
| 150 | 
		 | 
|
| 151 | 
		%%%%% Maximum flow algorithms %%%%%  | 
|
| 152 | 
		 | 
|
| 153 | 
		@article{edmondskarp72theoretical,
	 | 
|
| 154 | 
		  author =       {Jack Edmonds and Richard M. Karp},
	 | 
|
| 155 | 
		  title =        {Theoretical improvements in algorithmic efficiency
	 | 
|
| 156 | 
		for network flow problems},  | 
|
| 157 | 
		  journal =      {Journal of the ACM},
	 | 
|
| 158 | 
		year = 1972,  | 
|
| 159 | 
		volume = 19,  | 
|
| 160 | 
		number = 2,  | 
|
| 161 | 
		  pages =        {248-264}
	 | 
|
| 162 | 
		}  | 
|
| 163 | 
		 | 
|
| 164 | 
		@article{goldberg88newapproach,
	 | 
|
| 165 | 
		  author =       {Andrew V. Goldberg and Robert E. Tarjan},
	 | 
|
| 166 | 
		  title =        {A new approach to the maximum flow problem},
	 | 
|
| 167 | 
		  journal =      {Journal of the ACM},
	 | 
|
| 168 | 
		year = 1988,  | 
|
| 169 | 
		volume = 35,  | 
|
| 170 | 
		number = 4,  | 
|
| 171 | 
		  pages =        {921-940}
	 | 
|
| 172 | 
		}  | 
|
| 173 | 
		 | 
|
| 174 | 
		@article{dinic70algorithm,
	 | 
|
| 175 | 
		  author =       {E. A. Dinic},
	 | 
|
| 176 | 
		  title =        {Algorithm for solution of a problem of maximum flow
	 | 
|
| 177 | 
		in a network with power estimation},  | 
|
| 178 | 
		  journal =      {Soviet Math. Doklady},
	 | 
|
| 179 | 
		year = 1970,  | 
|
| 180 | 
		volume = 11,  | 
|
| 181 | 
		  pages =        {1277-1280}
	 | 
|
| 182 | 
		}  | 
|
| 183 | 
		 | 
|
| 184 | 
		@article{goldberg08partial,
	 | 
|
| 185 | 
		  author =       {Andrew V. Goldberg},
	 | 
|
| 186 | 
		  title =        {The Partial Augment-Relabel Algorithm for the
	 | 
|
| 187 | 
		Maximum Flow Problem},  | 
|
| 188 | 
		  journal =      {16th Annual European Symposium on Algorithms},
	 | 
|
| 189 | 
		year = 2008,  | 
|
| 190 | 
		  pages =        {466-477}
	 | 
|
| 191 | 
		}  | 
|
| 192 | 
		 | 
|
| 193 | 
		@article{sleator83dynamic,
	 | 
|
| 194 | 
		  author =       {Daniel D. Sleator and Robert E. Tarjan},
	 | 
|
| 195 | 
		  title =        {A data structure for dynamic trees},
	 | 
|
| 196 | 
		  journal =      {Journal of Computer and System Sciences},
	 | 
|
| 197 | 
		year = 1983,  | 
|
| 198 | 
		volume = 26,  | 
|
| 199 | 
		number = 3,  | 
|
| 200 | 
		  pages =        {362-391}
	 | 
|
| 201 | 
		}  | 
|
| 202 | 
		 | 
|
| 203 | 
		 | 
|
| 204 | 
		%%%%% Minimum mean cycle algorithms %%%%%  | 
|
| 205 | 
		 | 
|
| 206 | 
		@article{karp78characterization,
	 | 
|
| 207 | 
		  author =       {Richard M. Karp},
	 | 
|
| 208 | 
		  title =        {A characterization of the minimum cycle mean in a
	 | 
|
| 209 | 
		digraph},  | 
|
| 210 | 
		  journal =      {Discrete Math.},
	 | 
|
| 211 | 
		year = 1978,  | 
|
| 212 | 
		volume = 23,  | 
|
| 213 | 
		  pages =        {309-311}
	 | 
|
| 214 | 
		}  | 
|
| 215 | 
		 | 
|
| 216 | 
		@article{dasdan98minmeancycle,
	 | 
|
| 217 | 
		  author =       {Ali Dasdan and Rajesh K. Gupta},
	 | 
|
| 218 | 
		  title =        {Faster Maximum and Minimum Mean Cycle Alogrithms for
	 | 
|
| 219 | 
		System Performance Analysis},  | 
|
| 220 | 
		  journal =      {IEEE Transactions on Computer-Aided Design of
	 | 
|
| 221 | 
		Integrated Circuits and Systems},  | 
|
| 222 | 
		year = 1998,  | 
|
| 223 | 
		volume = 17,  | 
|
| 224 | 
		number = 10,  | 
|
| 225 | 
		  pages =        {889-899}
	 | 
|
| 226 | 
		}  | 
|
| 227 | 
		 | 
|
| 228 | 
		 | 
|
| 229 | 
		%%%%% Minimum cost flow algorithms %%%%%  | 
|
| 230 | 
		 | 
|
| 231 | 
		@article{klein67primal,
	 | 
|
| 232 | 
		  author =       {Morton Klein},
	 | 
|
| 233 | 
		  title =        {A primal method for minimal cost flows with
	 | 
|
| 234 | 
		applications to the assignment and transportation  | 
|
| 235 | 
		problems},  | 
|
| 236 | 
		  journal =      {Management Science},
	 | 
|
| 237 | 
		year = 1967,  | 
|
| 238 | 
		volume = 14,  | 
|
| 239 | 
		  pages =        {205-220}
	 | 
|
| 240 | 
		}  | 
|
| 241 | 
		 | 
|
| 242 | 
		@article{goldberg89cyclecanceling,
	 | 
|
| 243 | 
		  author =       {Andrew V. Goldberg and Robert E. Tarjan},
	 | 
|
| 244 | 
		  title =        {Finding minimum-cost circulations by canceling
	 | 
|
| 245 | 
		negative cycles},  | 
|
| 246 | 
		  journal =      {Journal of the ACM},
	 | 
|
| 247 | 
		year = 1989,  | 
|
| 248 | 
		volume = 36,  | 
|
| 249 | 
		number = 4,  | 
|
| 250 | 
		  pages =        {873-886}
	 | 
|
| 251 | 
		}  | 
|
| 252 | 
		 | 
|
| 253 | 
		@article{goldberg90approximation,
	 | 
|
| 254 | 
		  author =       {Andrew V. Goldberg and Robert E. Tarjan},
	 | 
|
| 255 | 
		  title =        {Finding Minimum-Cost Circulations by Successive
	 | 
|
| 256 | 
		Approximation},  | 
|
| 257 | 
		  journal =      {Mathematics of Operations Research},
	 | 
|
| 258 | 
		year = 1990,  | 
|
| 259 | 
		volume = 15,  | 
|
| 260 | 
		number = 3,  | 
|
| 261 | 
		  pages =        {430-466}
	 | 
|
| 262 | 
		}  | 
|
| 263 | 
		 | 
|
| 264 | 
		@article{goldberg97efficient,
	 | 
|
| 265 | 
		  author =       {Andrew V. Goldberg},
	 | 
|
| 266 | 
		  title =        {An Efficient Implementation of a Scaling
	 | 
|
| 267 | 
		Minimum-Cost Flow Algorithm},  | 
|
| 268 | 
		  journal =      {Journal of Algorithms},
	 | 
|
| 269 | 
		year = 1997,  | 
|
| 270 | 
		volume = 22,  | 
|
| 271 | 
		number = 1,  | 
|
| 272 | 
		  pages =        {1-29}
	 | 
|
| 273 | 
		}  | 
|
| 274 | 
		 | 
|
| 275 | 
		@article{bunnagel98efficient,
	 | 
|
| 276 | 
		  author =       {Ursula B{\"u}nnagel and Bernhard Korte and Jens
	 | 
|
| 277 | 
		Vygen},  | 
|
| 278 | 
		  title =        {Efficient implementation of the {G}oldberg-{T}arjan
	 | 
|
| 279 | 
		minimum-cost flow algorithm},  | 
|
| 280 | 
		  journal =      {Optimization Methods and Software},
	 | 
|
| 281 | 
		year = 1998,  | 
|
| 282 | 
		volume = 10,  | 
|
| 283 | 
		  pages =        {157-174}
	 | 
|
| 284 | 
		}  | 
|
| 285 | 
		 | 
|
| 286 | 
		@book{dantzig63linearprog,
	 | 
|
| 287 | 
		  author =       {George B. Dantzig},
	 | 
|
| 288 | 
		  title =        {Linear Programming and Extensions},
	 | 
|
| 289 | 
		  publisher =    {Princeton University Press},
	 | 
|
| 290 | 
		year = 1963  | 
|
| 291 | 
		}  | 
|
| 292 | 
		 | 
|
| 293 | 
		@mastersthesis{kellyoneill91netsimplex,
	 | 
|
| 294 | 
		  author =       {Damian J. Kelly and Garrett M. O'Neill},
	 | 
|
| 295 | 
		  title =        {The Minimum Cost Flow Problem and The Network
	 | 
|
| 296 | 
		Simplex Method},  | 
|
| 297 | 
		  school =       {University College},
	 | 
|
| 298 | 
		  address =      {Dublin, Ireland},
	 | 
|
| 299 | 
		year = 1991,  | 
|
| 300 | 
		month = sep,  | 
|
| 301 | 
		}  | 
| 1 | 
		/* -*- mode: C++; indent-tabs-mode: nil; -*-  | 
|
| 2 | 
		*  | 
|
| 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
|
| 4 | 
		*  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
|
| 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
|
| 8 | 
		*  | 
|
| 9 | 
		* Permission to use, modify and distribute this software is granted  | 
|
| 10 | 
		* provided that this copyright notice appears in all copies. For  | 
|
| 11 | 
		* precise terms see the accompanying LICENSE file.  | 
|
| 12 | 
		*  | 
|
| 13 | 
		* This software is provided "AS IS" with no warranty of any kind,  | 
|
| 14 | 
		* express or implied, and with no claim as to its suitability for any  | 
|
| 15 | 
		* purpose.  | 
|
| 16 | 
		*  | 
|
| 17 | 
		*/  | 
|
| 18 | 
		 | 
|
| 19 | 
		#ifndef LEMON_BELLMAN_FORD_H  | 
|
| 20 | 
		#define LEMON_BELLMAN_FORD_H  | 
|
| 21 | 
		 | 
|
| 22 | 
		/// \ingroup shortest_path  | 
|
| 23 | 
		/// \file  | 
|
| 24 | 
		/// \brief Bellman-Ford algorithm.  | 
|
| 25 | 
		 | 
|
| 26 | 
		#include <lemon/list_graph.h>  | 
|
| 27 | 
		#include <lemon/bits/path_dump.h>  | 
|
| 28 | 
		#include <lemon/core.h>  | 
|
| 29 | 
		#include <lemon/error.h>  | 
|
| 30 | 
		#include <lemon/maps.h>  | 
|
| 31 | 
		#include <lemon/tolerance.h>  | 
|
| 32 | 
		#include <lemon/path.h>  | 
|
| 33 | 
		 | 
|
| 34 | 
		#include <limits>  | 
|
| 35 | 
		 | 
|
| 36 | 
		namespace lemon {
	 | 
|
| 37 | 
		 | 
|
| 38 | 
		/// \brief Default operation traits for the BellmanFord algorithm class.  | 
|
| 39 | 
		///  | 
|
| 40 | 
		/// This operation traits class defines all computational operations  | 
|
| 41 | 
		/// and constants that are used in the Bellman-Ford algorithm.  | 
|
| 42 | 
		/// The default implementation is based on the \c numeric_limits class.  | 
|
| 43 | 
		/// If the numeric type does not have infinity value, then the maximum  | 
|
| 44 | 
		/// value is used as extremal infinity value.  | 
|
| 45 | 
		///  | 
|
| 46 | 
		/// \see BellmanFordToleranceOperationTraits  | 
|
| 47 | 
		template <  | 
|
| 48 | 
		typename V,  | 
|
| 49 | 
		bool has_inf = std::numeric_limits<V>::has_infinity>  | 
|
| 50 | 
		  struct BellmanFordDefaultOperationTraits {
	 | 
|
| 51 | 
		/// \brief Value type for the algorithm.  | 
|
| 52 | 
		typedef V Value;  | 
|
| 53 | 
		/// \brief Gives back the zero value of the type.  | 
|
| 54 | 
		    static Value zero() {
	 | 
|
| 55 | 
		return static_cast<Value>(0);  | 
|
| 56 | 
		}  | 
|
| 57 | 
		/// \brief Gives back the positive infinity value of the type.  | 
|
| 58 | 
		    static Value infinity() {
	 | 
|
| 59 | 
		return std::numeric_limits<Value>::infinity();  | 
|
| 60 | 
		}  | 
|
| 61 | 
		/// \brief Gives back the sum of the given two elements.  | 
|
| 62 | 
		    static Value plus(const Value& left, const Value& right) {
	 | 
|
| 63 | 
		return left + right;  | 
|
| 64 | 
		}  | 
|
| 65 | 
		/// \brief Gives back \c true only if the first value is less than  | 
|
| 66 | 
		/// the second.  | 
|
| 67 | 
		    static bool less(const Value& left, const Value& right) {
	 | 
|
| 68 | 
		return left < right;  | 
|
| 69 | 
		}  | 
|
| 70 | 
		};  | 
|
| 71 | 
		 | 
|
| 72 | 
		template <typename V>  | 
|
| 73 | 
		  struct BellmanFordDefaultOperationTraits<V, false> {
	 | 
|
| 74 | 
		typedef V Value;  | 
|
| 75 | 
		    static Value zero() {
	 | 
|
| 76 | 
		return static_cast<Value>(0);  | 
|
| 77 | 
		}  | 
|
| 78 | 
		    static Value infinity() {
	 | 
|
| 79 | 
		return std::numeric_limits<Value>::max();  | 
|
| 80 | 
		}  | 
|
| 81 | 
		    static Value plus(const Value& left, const Value& right) {
	 | 
|
| 82 | 
		if (left == infinity() || right == infinity()) return infinity();  | 
|
| 83 | 
		return left + right;  | 
|
| 84 | 
		}  | 
|
| 85 | 
		    static bool less(const Value& left, const Value& right) {
	 | 
|
| 86 | 
		return left < right;  | 
|
| 87 | 
		}  | 
|
| 88 | 
		};  | 
|
| 89 | 
		 | 
|
| 90 | 
		/// \brief Operation traits for the BellmanFord algorithm class  | 
|
| 91 | 
		/// using tolerance.  | 
|
| 92 | 
		///  | 
|
| 93 | 
		/// This operation traits class defines all computational operations  | 
|
| 94 | 
		/// and constants that are used in the Bellman-Ford algorithm.  | 
|
| 95 | 
		/// The only difference between this implementation and  | 
|
| 96 | 
		/// \ref BellmanFordDefaultOperationTraits is that this class uses  | 
|
| 97 | 
		/// the \ref Tolerance "tolerance technique" in its \ref less()  | 
|
| 98 | 
		/// function.  | 
|
| 99 | 
		///  | 
|
| 100 | 
		/// \tparam V The value type.  | 
|
| 101 | 
		/// \tparam eps The epsilon value for the \ref less() function.  | 
|
| 102 | 
		/// By default, it is the epsilon value used by \ref Tolerance  | 
|
| 103 | 
		/// "Tolerance<V>".  | 
|
| 104 | 
		///  | 
|
| 105 | 
		/// \see BellmanFordDefaultOperationTraits  | 
|
| 106 | 
		#ifdef DOXYGEN  | 
|
| 107 | 
		template <typename V, V eps>  | 
|
| 108 | 
		#else  | 
|
| 109 | 
		template <  | 
|
| 110 | 
		typename V,  | 
|
| 111 | 
		V eps = Tolerance<V>::def_epsilon>  | 
|
| 112 | 
		#endif  | 
|
| 113 | 
		  struct BellmanFordToleranceOperationTraits {
	 | 
|
| 114 | 
		/// \brief Value type for the algorithm.  | 
|
| 115 | 
		typedef V Value;  | 
|
| 116 | 
		/// \brief Gives back the zero value of the type.  | 
|
| 117 | 
		    static Value zero() {
	 | 
|
| 118 | 
		return static_cast<Value>(0);  | 
|
| 119 | 
		}  | 
|
| 120 | 
		/// \brief Gives back the positive infinity value of the type.  | 
|
| 121 | 
		    static Value infinity() {
	 | 
|
| 122 | 
		return std::numeric_limits<Value>::infinity();  | 
|
| 123 | 
		}  | 
|
| 124 | 
		/// \brief Gives back the sum of the given two elements.  | 
|
| 125 | 
		    static Value plus(const Value& left, const Value& right) {
	 | 
|
| 126 | 
		return left + right;  | 
|
| 127 | 
		}  | 
|
| 128 | 
		/// \brief Gives back \c true only if the first value is less than  | 
|
| 129 | 
		/// the second.  | 
|
| 130 | 
		    static bool less(const Value& left, const Value& right) {
	 | 
|
| 131 | 
		return left + eps < right;  | 
|
| 132 | 
		}  | 
|
| 133 | 
		};  | 
|
| 134 | 
		 | 
|
| 135 | 
		/// \brief Default traits class of BellmanFord class.  | 
|
| 136 | 
		///  | 
|
| 137 | 
		/// Default traits class of BellmanFord class.  | 
|
| 138 | 
		/// \param GR The type of the digraph.  | 
|
| 139 | 
		/// \param LEN The type of the length map.  | 
|
| 140 | 
		template<typename GR, typename LEN>  | 
|
| 141 | 
		  struct BellmanFordDefaultTraits {
	 | 
|
| 142 | 
		/// The type of the digraph the algorithm runs on.  | 
|
| 143 | 
		typedef GR Digraph;  | 
|
| 144 | 
		 | 
|
| 145 | 
		/// \brief The type of the map that stores the arc lengths.  | 
|
| 146 | 
		///  | 
|
| 147 | 
		/// The type of the map that stores the arc lengths.  | 
|
| 148 | 
		/// It must conform to the \ref concepts::ReadMap "ReadMap" concept.  | 
|
| 149 | 
		typedef LEN LengthMap;  | 
|
| 150 | 
		 | 
|
| 151 | 
		/// The type of the arc lengths.  | 
|
| 152 | 
		typedef typename LEN::Value Value;  | 
|
| 153 | 
		 | 
|
| 154 | 
		/// \brief Operation traits for Bellman-Ford algorithm.  | 
|
| 155 | 
		///  | 
|
| 156 | 
		/// It defines the used operations and the infinity value for the  | 
|
| 157 | 
		/// given \c Value type.  | 
|
| 158 | 
		/// \see BellmanFordDefaultOperationTraits,  | 
|
| 159 | 
		/// BellmanFordToleranceOperationTraits  | 
|
| 160 | 
		typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;  | 
|
| 161 | 
		 | 
|
| 162 | 
		/// \brief The type of the map that stores the last arcs of the  | 
|
| 163 | 
		/// shortest paths.  | 
|
| 164 | 
		///  | 
|
| 165 | 
		/// The type of the map that stores the last  | 
|
| 166 | 
		/// arcs of the shortest paths.  | 
|
| 167 | 
		/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 168 | 
		typedef typename GR::template NodeMap<typename GR::Arc> PredMap;  | 
|
| 169 | 
		 | 
|
| 170 | 
		/// \brief Instantiates a \c PredMap.  | 
|
| 171 | 
		///  | 
|
| 172 | 
		/// This function instantiates a \ref PredMap.  | 
|
| 173 | 
		/// \param g is the digraph to which we would like to define the  | 
|
| 174 | 
		/// \ref PredMap.  | 
|
| 175 | 
		    static PredMap *createPredMap(const GR& g) {
	 | 
|
| 176 | 
		return new PredMap(g);  | 
|
| 177 | 
		}  | 
|
| 178 | 
		 | 
|
| 179 | 
		/// \brief The type of the map that stores the distances of the nodes.  | 
|
| 180 | 
		///  | 
|
| 181 | 
		/// The type of the map that stores the distances of the nodes.  | 
|
| 182 | 
		/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 183 | 
		typedef typename GR::template NodeMap<typename LEN::Value> DistMap;  | 
|
| 184 | 
		 | 
|
| 185 | 
		/// \brief Instantiates a \c DistMap.  | 
|
| 186 | 
		///  | 
|
| 187 | 
		/// This function instantiates a \ref DistMap.  | 
|
| 188 | 
		/// \param g is the digraph to which we would like to define the  | 
|
| 189 | 
		/// \ref DistMap.  | 
|
| 190 | 
		    static DistMap *createDistMap(const GR& g) {
	 | 
|
| 191 | 
		return new DistMap(g);  | 
|
| 192 | 
		}  | 
|
| 193 | 
		 | 
|
| 194 | 
		};  | 
|
| 195 | 
		 | 
|
| 196 | 
		/// \brief %BellmanFord algorithm class.  | 
|
| 197 | 
		///  | 
|
| 198 | 
		/// \ingroup shortest_path  | 
|
| 199 | 
		/// This class provides an efficient implementation of the Bellman-Ford  | 
|
| 200 | 
		/// algorithm. The maximum time complexity of the algorithm is  | 
|
| 201 | 
		/// <tt>O(ne)</tt>.  | 
|
| 202 | 
		///  | 
|
| 203 | 
		/// The Bellman-Ford algorithm solves the single-source shortest path  | 
|
| 204 | 
		/// problem when the arcs can have negative lengths, but the digraph  | 
|
| 205 | 
		/// should not contain directed cycles with negative total length.  | 
|
| 206 | 
		/// If all arc costs are non-negative, consider to use the Dijkstra  | 
|
| 207 | 
		/// algorithm instead, since it is more efficient.  | 
|
| 208 | 
		///  | 
|
| 209 | 
		/// The arc lengths are passed to the algorithm using a  | 
|
| 210 | 
		/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any  | 
|
| 211 | 
		/// kind of length. The type of the length values is determined by the  | 
|
| 212 | 
		/// \ref concepts::ReadMap::Value "Value" type of the length map.  | 
|
| 213 | 
		///  | 
|
| 214 | 
		/// There is also a \ref bellmanFord() "function-type interface" for the  | 
|
| 215 | 
		/// Bellman-Ford algorithm, which is convenient in the simplier cases and  | 
|
| 216 | 
		/// it can be used easier.  | 
|
| 217 | 
		///  | 
|
| 218 | 
		/// \tparam GR The type of the digraph the algorithm runs on.  | 
|
| 219 | 
		/// The default type is \ref ListDigraph.  | 
|
| 220 | 
		/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies  | 
|
| 221 | 
		/// the lengths of the arcs. The default map type is  | 
|
| 222 | 
		/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".  | 
|
| 223 | 
		/// \tparam TR The traits class that defines various types used by the  | 
|
| 224 | 
		/// algorithm. By default, it is \ref BellmanFordDefaultTraits  | 
|
| 225 | 
		/// "BellmanFordDefaultTraits<GR, LEN>".  | 
|
| 226 | 
		/// In most cases, this parameter should not be set directly,  | 
|
| 227 | 
		/// consider to use the named template parameters instead.  | 
|
| 228 | 
		#ifdef DOXYGEN  | 
|
| 229 | 
		template <typename GR, typename LEN, typename TR>  | 
|
| 230 | 
		#else  | 
|
| 231 | 
		template <typename GR=ListDigraph,  | 
|
| 232 | 
		typename LEN=typename GR::template ArcMap<int>,  | 
|
| 233 | 
		typename TR=BellmanFordDefaultTraits<GR,LEN> >  | 
|
| 234 | 
		#endif  | 
|
| 235 | 
		  class BellmanFord {
	 | 
|
| 236 | 
		public:  | 
|
| 237 | 
		 | 
|
| 238 | 
		///The type of the underlying digraph.  | 
|
| 239 | 
		typedef typename TR::Digraph Digraph;  | 
|
| 240 | 
		 | 
|
| 241 | 
		/// \brief The type of the arc lengths.  | 
|
| 242 | 
		typedef typename TR::LengthMap::Value Value;  | 
|
| 243 | 
		/// \brief The type of the map that stores the arc lengths.  | 
|
| 244 | 
		typedef typename TR::LengthMap LengthMap;  | 
|
| 245 | 
		/// \brief The type of the map that stores the last  | 
|
| 246 | 
		/// arcs of the shortest paths.  | 
|
| 247 | 
		typedef typename TR::PredMap PredMap;  | 
|
| 248 | 
		/// \brief The type of the map that stores the distances of the nodes.  | 
|
| 249 | 
		typedef typename TR::DistMap DistMap;  | 
|
| 250 | 
		/// The type of the paths.  | 
|
| 251 | 
		typedef PredMapPath<Digraph, PredMap> Path;  | 
|
| 252 | 
		///\brief The \ref BellmanFordDefaultOperationTraits  | 
|
| 253 | 
		/// "operation traits class" of the algorithm.  | 
|
| 254 | 
		typedef typename TR::OperationTraits OperationTraits;  | 
|
| 255 | 
		 | 
|
| 256 | 
		///The \ref BellmanFordDefaultTraits "traits class" of the algorithm.  | 
|
| 257 | 
		typedef TR Traits;  | 
|
| 258 | 
		 | 
|
| 259 | 
		private:  | 
|
| 260 | 
		 | 
|
| 261 | 
		typedef typename Digraph::Node Node;  | 
|
| 262 | 
		typedef typename Digraph::NodeIt NodeIt;  | 
|
| 263 | 
		typedef typename Digraph::Arc Arc;  | 
|
| 264 | 
		typedef typename Digraph::OutArcIt OutArcIt;  | 
|
| 265 | 
		 | 
|
| 266 | 
		// Pointer to the underlying digraph.  | 
|
| 267 | 
		const Digraph *_gr;  | 
|
| 268 | 
		// Pointer to the length map  | 
|
| 269 | 
		const LengthMap *_length;  | 
|
| 270 | 
		// Pointer to the map of predecessors arcs.  | 
|
| 271 | 
		PredMap *_pred;  | 
|
| 272 | 
		// Indicates if _pred is locally allocated (true) or not.  | 
|
| 273 | 
		bool _local_pred;  | 
|
| 274 | 
		// Pointer to the map of distances.  | 
|
| 275 | 
		DistMap *_dist;  | 
|
| 276 | 
		// Indicates if _dist is locally allocated (true) or not.  | 
|
| 277 | 
		bool _local_dist;  | 
|
| 278 | 
		 | 
|
| 279 | 
		typedef typename Digraph::template NodeMap<bool> MaskMap;  | 
|
| 280 | 
		MaskMap *_mask;  | 
|
| 281 | 
		 | 
|
| 282 | 
		std::vector<Node> _process;  | 
|
| 283 | 
		 | 
|
| 284 | 
		// Creates the maps if necessary.  | 
|
| 285 | 
		    void create_maps() {
	 | 
|
| 286 | 
		      if(!_pred) {
	 | 
|
| 287 | 
		_local_pred = true;  | 
|
| 288 | 
		_pred = Traits::createPredMap(*_gr);  | 
|
| 289 | 
		}  | 
|
| 290 | 
		      if(!_dist) {
	 | 
|
| 291 | 
		_local_dist = true;  | 
|
| 292 | 
		_dist = Traits::createDistMap(*_gr);  | 
|
| 293 | 
		}  | 
|
| 294 | 
		      if(!_mask) {
	 | 
|
| 295 | 
		_mask = new MaskMap(*_gr);  | 
|
| 296 | 
		}  | 
|
| 297 | 
		}  | 
|
| 298 | 
		 | 
|
| 299 | 
		public :  | 
|
| 300 | 
		 | 
|
| 301 | 
		typedef BellmanFord Create;  | 
|
| 302 | 
		 | 
|
| 303 | 
		/// \name Named Template Parameters  | 
|
| 304 | 
		 | 
|
| 305 | 
		    ///@{
	 | 
|
| 306 | 
		 | 
|
| 307 | 
		template <class T>  | 
|
| 308 | 
		    struct SetPredMapTraits : public Traits {
	 | 
|
| 309 | 
		typedef T PredMap;  | 
|
| 310 | 
		      static PredMap *createPredMap(const Digraph&) {
	 | 
|
| 311 | 
		LEMON_ASSERT(false, "PredMap is not initialized");  | 
|
| 312 | 
		return 0; // ignore warnings  | 
|
| 313 | 
		}  | 
|
| 314 | 
		};  | 
|
| 315 | 
		 | 
|
| 316 | 
		/// \brief \ref named-templ-param "Named parameter" for setting  | 
|
| 317 | 
		/// \c PredMap type.  | 
|
| 318 | 
		///  | 
|
| 319 | 
		/// \ref named-templ-param "Named parameter" for setting  | 
|
| 320 | 
		/// \c PredMap type.  | 
|
| 321 | 
		/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 322 | 
		template <class T>  | 
|
| 323 | 
		struct SetPredMap  | 
|
| 324 | 
		      : public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
	 | 
|
| 325 | 
		typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;  | 
|
| 326 | 
		};  | 
|
| 327 | 
		 | 
|
| 328 | 
		template <class T>  | 
|
| 329 | 
		    struct SetDistMapTraits : public Traits {
	 | 
|
| 330 | 
		typedef T DistMap;  | 
|
| 331 | 
		      static DistMap *createDistMap(const Digraph&) {
	 | 
|
| 332 | 
		LEMON_ASSERT(false, "DistMap is not initialized");  | 
|
| 333 | 
		return 0; // ignore warnings  | 
|
| 334 | 
		}  | 
|
| 335 | 
		};  | 
|
| 336 | 
		 | 
|
| 337 | 
		/// \brief \ref named-templ-param "Named parameter" for setting  | 
|
| 338 | 
		/// \c DistMap type.  | 
|
| 339 | 
		///  | 
|
| 340 | 
		/// \ref named-templ-param "Named parameter" for setting  | 
|
| 341 | 
		/// \c DistMap type.  | 
|
| 342 | 
		/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 343 | 
		template <class T>  | 
|
| 344 | 
		struct SetDistMap  | 
|
| 345 | 
		      : public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
	 | 
|
| 346 | 
		typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;  | 
|
| 347 | 
		};  | 
|
| 348 | 
		 | 
|
| 349 | 
		template <class T>  | 
|
| 350 | 
		    struct SetOperationTraitsTraits : public Traits {
	 | 
|
| 351 | 
		typedef T OperationTraits;  | 
|
| 352 | 
		};  | 
|
| 353 | 
		 | 
|
| 354 | 
		/// \brief \ref named-templ-param "Named parameter" for setting  | 
|
| 355 | 
		/// \c OperationTraits type.  | 
|
| 356 | 
		///  | 
|
| 357 | 
		/// \ref named-templ-param "Named parameter" for setting  | 
|
| 358 | 
		/// \c OperationTraits type.  | 
|
| 359 | 
		/// For more information, see \ref BellmanFordDefaultOperationTraits.  | 
|
| 360 | 
		template <class T>  | 
|
| 361 | 
		struct SetOperationTraits  | 
|
| 362 | 
		      : public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
	 | 
|
| 363 | 
		typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >  | 
|
| 364 | 
		Create;  | 
|
| 365 | 
		};  | 
|
| 366 | 
		 | 
|
| 367 | 
		///@}  | 
|
| 368 | 
		 | 
|
| 369 | 
		protected:  | 
|
| 370 | 
		 | 
|
| 371 | 
		    BellmanFord() {}
	 | 
|
| 372 | 
		 | 
|
| 373 | 
		public:  | 
|
| 374 | 
		 | 
|
| 375 | 
		/// \brief Constructor.  | 
|
| 376 | 
		///  | 
|
| 377 | 
		/// Constructor.  | 
|
| 378 | 
		/// \param g The digraph the algorithm runs on.  | 
|
| 379 | 
		/// \param length The length map used by the algorithm.  | 
|
| 380 | 
		BellmanFord(const Digraph& g, const LengthMap& length) :  | 
|
| 381 | 
		_gr(&g), _length(&length),  | 
|
| 382 | 
		_pred(0), _local_pred(false),  | 
|
| 383 | 
		      _dist(0), _local_dist(false), _mask(0) {}
	 | 
|
| 384 | 
		 | 
|
| 385 | 
		///Destructor.  | 
|
| 386 | 
		    ~BellmanFord() {
	 | 
|
| 387 | 
		if(_local_pred) delete _pred;  | 
|
| 388 | 
		if(_local_dist) delete _dist;  | 
|
| 389 | 
		if(_mask) delete _mask;  | 
|
| 390 | 
		}  | 
|
| 391 | 
		 | 
|
| 392 | 
		/// \brief Sets the length map.  | 
|
| 393 | 
		///  | 
|
| 394 | 
		/// Sets the length map.  | 
|
| 395 | 
		/// \return <tt>(*this)</tt>  | 
|
| 396 | 
		    BellmanFord &lengthMap(const LengthMap &map) {
	 | 
|
| 397 | 
		_length = ↦  | 
|
| 398 | 
		return *this;  | 
|
| 399 | 
		}  | 
|
| 400 | 
		 | 
|
| 401 | 
		/// \brief Sets the map that stores the predecessor arcs.  | 
|
| 402 | 
		///  | 
|
| 403 | 
		/// Sets the map that stores the predecessor arcs.  | 
|
| 404 | 
		/// If you don't use this function before calling \ref run()  | 
|
| 405 | 
		/// or \ref init(), an instance will be allocated automatically.  | 
|
| 406 | 
		/// The destructor deallocates this automatically allocated map,  | 
|
| 407 | 
		/// of course.  | 
|
| 408 | 
		/// \return <tt>(*this)</tt>  | 
|
| 409 | 
		    BellmanFord &predMap(PredMap &map) {
	 | 
|
| 410 | 
		      if(_local_pred) {
	 | 
|
| 411 | 
		delete _pred;  | 
|
| 412 | 
		_local_pred=false;  | 
|
| 413 | 
		}  | 
|
| 414 | 
		_pred = ↦  | 
|
| 415 | 
		return *this;  | 
|
| 416 | 
		}  | 
|
| 417 | 
		 | 
|
| 418 | 
		/// \brief Sets the map that stores the distances of the nodes.  | 
|
| 419 | 
		///  | 
|
| 420 | 
		/// Sets the map that stores the distances of the nodes calculated  | 
|
| 421 | 
		/// by the algorithm.  | 
|
| 422 | 
		/// If you don't use this function before calling \ref run()  | 
|
| 423 | 
		/// or \ref init(), an instance will be allocated automatically.  | 
|
| 424 | 
		/// The destructor deallocates this automatically allocated map,  | 
|
| 425 | 
		/// of course.  | 
|
| 426 | 
		/// \return <tt>(*this)</tt>  | 
|
| 427 | 
		    BellmanFord &distMap(DistMap &map) {
	 | 
|
| 428 | 
		      if(_local_dist) {
	 | 
|
| 429 | 
		delete _dist;  | 
|
| 430 | 
		_local_dist=false;  | 
|
| 431 | 
		}  | 
|
| 432 | 
		_dist = ↦  | 
|
| 433 | 
		return *this;  | 
|
| 434 | 
		}  | 
|
| 435 | 
		 | 
|
| 436 | 
		/// \name Execution Control  | 
|
| 437 | 
		/// The simplest way to execute the Bellman-Ford algorithm is to use  | 
|
| 438 | 
		/// one of the member functions called \ref run().\n  | 
|
| 439 | 
		/// If you need better control on the execution, you have to call  | 
|
| 440 | 
		/// \ref init() first, then you can add several source nodes  | 
|
| 441 | 
		/// with \ref addSource(). Finally the actual path computation can be  | 
|
| 442 | 
		/// performed with \ref start(), \ref checkedStart() or  | 
|
| 443 | 
		/// \ref limitedStart().  | 
|
| 444 | 
		 | 
|
| 445 | 
		    ///@{
	 | 
|
| 446 | 
		 | 
|
| 447 | 
		/// \brief Initializes the internal data structures.  | 
|
| 448 | 
		///  | 
|
| 449 | 
		/// Initializes the internal data structures. The optional parameter  | 
|
| 450 | 
		/// is the initial distance of each node.  | 
|
| 451 | 
		    void init(const Value value = OperationTraits::infinity()) {
	 | 
|
| 452 | 
		create_maps();  | 
|
| 453 | 
		      for (NodeIt it(*_gr); it != INVALID; ++it) {
	 | 
|
| 454 | 
		_pred->set(it, INVALID);  | 
|
| 455 | 
		_dist->set(it, value);  | 
|
| 456 | 
		}  | 
|
| 457 | 
		_process.clear();  | 
|
| 458 | 
		      if (OperationTraits::less(value, OperationTraits::infinity())) {
	 | 
|
| 459 | 
		        for (NodeIt it(*_gr); it != INVALID; ++it) {
	 | 
|
| 460 | 
		_process.push_back(it);  | 
|
| 461 | 
		_mask->set(it, true);  | 
|
| 462 | 
		}  | 
|
| 463 | 
		      } else {
	 | 
|
| 464 | 
		        for (NodeIt it(*_gr); it != INVALID; ++it) {
	 | 
|
| 465 | 
		_mask->set(it, false);  | 
|
| 466 | 
		}  | 
|
| 467 | 
		}  | 
|
| 468 | 
		}  | 
|
| 469 | 
		 | 
|
| 470 | 
		/// \brief Adds a new source node.  | 
|
| 471 | 
		///  | 
|
| 472 | 
		/// This function adds a new source node. The optional second parameter  | 
|
| 473 | 
		/// is the initial distance of the node.  | 
|
| 474 | 
		    void addSource(Node source, Value dst = OperationTraits::zero()) {
	 | 
|
| 475 | 
		_dist->set(source, dst);  | 
|
| 476 | 
		      if (!(*_mask)[source]) {
	 | 
|
| 477 | 
		_process.push_back(source);  | 
|
| 478 | 
		_mask->set(source, true);  | 
|
| 479 | 
		}  | 
|
| 480 | 
		}  | 
|
| 481 | 
		 | 
|
| 482 | 
		/// \brief Executes one round from the Bellman-Ford algorithm.  | 
|
| 483 | 
		///  | 
|
| 484 | 
		/// If the algoritm calculated the distances in the previous round  | 
|
| 485 | 
		/// exactly for the paths of at most \c k arcs, then this function  | 
|
| 486 | 
		/// will calculate the distances exactly for the paths of at most  | 
|
| 487 | 
		/// <tt>k+1</tt> arcs. Performing \c k iterations using this function  | 
|
| 488 | 
		/// calculates the shortest path distances exactly for the paths  | 
|
| 489 | 
		/// consisting of at most \c k arcs.  | 
|
| 490 | 
		///  | 
|
| 491 | 
		/// \warning The paths with limited arc number cannot be retrieved  | 
|
| 492 | 
		/// easily with \ref path() or \ref predArc() functions. If you also  | 
|
| 493 | 
		/// need the shortest paths and not only the distances, you should  | 
|
| 494 | 
		/// store the \ref predMap() "predecessor map" after each iteration  | 
|
| 495 | 
		/// and build the path manually.  | 
|
| 496 | 
		///  | 
|
| 497 | 
		/// \return \c true when the algorithm have not found more shorter  | 
|
| 498 | 
		/// paths.  | 
|
| 499 | 
		///  | 
|
| 500 | 
		/// \see ActiveIt  | 
|
| 501 | 
		    bool processNextRound() {
	 | 
|
| 502 | 
		      for (int i = 0; i < int(_process.size()); ++i) {
	 | 
|
| 503 | 
		_mask->set(_process[i], false);  | 
|
| 504 | 
		}  | 
|
| 505 | 
		std::vector<Node> nextProcess;  | 
|
| 506 | 
		std::vector<Value> values(_process.size());  | 
|
| 507 | 
		      for (int i = 0; i < int(_process.size()); ++i) {
	 | 
|
| 508 | 
		values[i] = (*_dist)[_process[i]];  | 
|
| 509 | 
		}  | 
|
| 510 | 
		      for (int i = 0; i < int(_process.size()); ++i) {
	 | 
|
| 511 | 
		        for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
	 | 
|
| 512 | 
		Node target = _gr->target(it);  | 
|
| 513 | 
		Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);  | 
|
| 514 | 
		          if (OperationTraits::less(relaxed, (*_dist)[target])) {
	 | 
|
| 515 | 
		_pred->set(target, it);  | 
|
| 516 | 
		_dist->set(target, relaxed);  | 
|
| 517 | 
		            if (!(*_mask)[target]) {
	 | 
|
| 518 | 
		_mask->set(target, true);  | 
|
| 519 | 
		nextProcess.push_back(target);  | 
|
| 520 | 
		}  | 
|
| 521 | 
		}  | 
|
| 522 | 
		}  | 
|
| 523 | 
		}  | 
|
| 524 | 
		_process.swap(nextProcess);  | 
|
| 525 | 
		return _process.empty();  | 
|
| 526 | 
		}  | 
|
| 527 | 
		 | 
|
| 528 | 
		/// \brief Executes one weak round from the Bellman-Ford algorithm.  | 
|
| 529 | 
		///  | 
|
| 530 | 
		/// If the algorithm calculated the distances in the previous round  | 
|
| 531 | 
		/// at least for the paths of at most \c k arcs, then this function  | 
|
| 532 | 
		/// will calculate the distances at least for the paths of at most  | 
|
| 533 | 
		/// <tt>k+1</tt> arcs.  | 
|
| 534 | 
		/// This function does not make it possible to calculate the shortest  | 
|
| 535 | 
		/// path distances exactly for paths consisting of at most \c k arcs,  | 
|
| 536 | 
		/// this is why it is called weak round.  | 
|
| 537 | 
		///  | 
|
| 538 | 
		/// \return \c true when the algorithm have not found more shorter  | 
|
| 539 | 
		/// paths.  | 
|
| 540 | 
		///  | 
|
| 541 | 
		/// \see ActiveIt  | 
|
| 542 | 
		    bool processNextWeakRound() {
	 | 
|
| 543 | 
		      for (int i = 0; i < int(_process.size()); ++i) {
	 | 
|
| 544 | 
		_mask->set(_process[i], false);  | 
|
| 545 | 
		}  | 
|
| 546 | 
		std::vector<Node> nextProcess;  | 
|
| 547 | 
		      for (int i = 0; i < int(_process.size()); ++i) {
	 | 
|
| 548 | 
		        for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
	 | 
|
| 549 | 
		Node target = _gr->target(it);  | 
|
| 550 | 
		Value relaxed =  | 
|
| 551 | 
		OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);  | 
|
| 552 | 
		          if (OperationTraits::less(relaxed, (*_dist)[target])) {
	 | 
|
| 553 | 
		_pred->set(target, it);  | 
|
| 554 | 
		_dist->set(target, relaxed);  | 
|
| 555 | 
		            if (!(*_mask)[target]) {
	 | 
|
| 556 | 
		_mask->set(target, true);  | 
|
| 557 | 
		nextProcess.push_back(target);  | 
|
| 558 | 
		}  | 
|
| 559 | 
		}  | 
|
| 560 | 
		}  | 
|
| 561 | 
		}  | 
|
| 562 | 
		_process.swap(nextProcess);  | 
|
| 563 | 
		return _process.empty();  | 
|
| 564 | 
		}  | 
|
| 565 | 
		 | 
|
| 566 | 
		/// \brief Executes the algorithm.  | 
|
| 567 | 
		///  | 
|
| 568 | 
		/// Executes the algorithm.  | 
|
| 569 | 
		///  | 
|
| 570 | 
		/// This method runs the Bellman-Ford algorithm from the root node(s)  | 
|
| 571 | 
		/// in order to compute the shortest path to each node.  | 
|
| 572 | 
		///  | 
|
| 573 | 
		/// The algorithm computes  | 
|
| 574 | 
		/// - the shortest path tree (forest),  | 
|
| 575 | 
		/// - the distance of each node from the root(s).  | 
|
| 576 | 
		///  | 
|
| 577 | 
		/// \pre init() must be called and at least one root node should be  | 
|
| 578 | 
		/// added with addSource() before using this function.  | 
|
| 579 | 
		    void start() {
	 | 
|
| 580 | 
		int num = countNodes(*_gr) - 1;  | 
|
| 581 | 
		      for (int i = 0; i < num; ++i) {
	 | 
|
| 582 | 
		if (processNextWeakRound()) break;  | 
|
| 583 | 
		}  | 
|
| 584 | 
		}  | 
|
| 585 | 
		 | 
|
| 586 | 
		/// \brief Executes the algorithm and checks the negative cycles.  | 
|
| 587 | 
		///  | 
|
| 588 | 
		/// Executes the algorithm and checks the negative cycles.  | 
|
| 589 | 
		///  | 
|
| 590 | 
		/// This method runs the Bellman-Ford algorithm from the root node(s)  | 
|
| 591 | 
		/// in order to compute the shortest path to each node and also checks  | 
|
| 592 | 
		/// if the digraph contains cycles with negative total length.  | 
|
| 593 | 
		///  | 
|
| 594 | 
		/// The algorithm computes  | 
|
| 595 | 
		/// - the shortest path tree (forest),  | 
|
| 596 | 
		/// - the distance of each node from the root(s).  | 
|
| 597 | 
		///  | 
|
| 598 | 
		/// \return \c false if there is a negative cycle in the digraph.  | 
|
| 599 | 
		///  | 
|
| 600 | 
		/// \pre init() must be called and at least one root node should be  | 
|
| 601 | 
		/// added with addSource() before using this function.  | 
|
| 602 | 
		    bool checkedStart() {
	 | 
|
| 603 | 
		int num = countNodes(*_gr);  | 
|
| 604 | 
		      for (int i = 0; i < num; ++i) {
	 | 
|
| 605 | 
		if (processNextWeakRound()) return true;  | 
|
| 606 | 
		}  | 
|
| 607 | 
		return _process.empty();  | 
|
| 608 | 
		}  | 
|
| 609 | 
		 | 
|
| 610 | 
		/// \brief Executes the algorithm with arc number limit.  | 
|
| 611 | 
		///  | 
|
| 612 | 
		/// Executes the algorithm with arc number limit.  | 
|
| 613 | 
		///  | 
|
| 614 | 
		/// This method runs the Bellman-Ford algorithm from the root node(s)  | 
|
| 615 | 
		/// in order to compute the shortest path distance for each node  | 
|
| 616 | 
		/// using only the paths consisting of at most \c num arcs.  | 
|
| 617 | 
		///  | 
|
| 618 | 
		/// The algorithm computes  | 
|
| 619 | 
		/// - the limited distance of each node from the root(s),  | 
|
| 620 | 
		/// - the predecessor arc for each node.  | 
|
| 621 | 
		///  | 
|
| 622 | 
		/// \warning The paths with limited arc number cannot be retrieved  | 
|
| 623 | 
		/// easily with \ref path() or \ref predArc() functions. If you also  | 
|
| 624 | 
		/// need the shortest paths and not only the distances, you should  | 
|
| 625 | 
		/// store the \ref predMap() "predecessor map" after each iteration  | 
|
| 626 | 
		/// and build the path manually.  | 
|
| 627 | 
		///  | 
|
| 628 | 
		/// \pre init() must be called and at least one root node should be  | 
|
| 629 | 
		/// added with addSource() before using this function.  | 
|
| 630 | 
		    void limitedStart(int num) {
	 | 
|
| 631 | 
		      for (int i = 0; i < num; ++i) {
	 | 
|
| 632 | 
		if (processNextRound()) break;  | 
|
| 633 | 
		}  | 
|
| 634 | 
		}  | 
|
| 635 | 
		 | 
|
| 636 | 
		/// \brief Runs the algorithm from the given root node.  | 
|
| 637 | 
		///  | 
|
| 638 | 
		/// This method runs the Bellman-Ford algorithm from the given root  | 
|
| 639 | 
		/// node \c s in order to compute the shortest path to each node.  | 
|
| 640 | 
		///  | 
|
| 641 | 
		/// The algorithm computes  | 
|
| 642 | 
		/// - the shortest path tree (forest),  | 
|
| 643 | 
		/// - the distance of each node from the root(s).  | 
|
| 644 | 
		///  | 
|
| 645 | 
		/// \note bf.run(s) is just a shortcut of the following code.  | 
|
| 646 | 
		/// \code  | 
|
| 647 | 
		/// bf.init();  | 
|
| 648 | 
		/// bf.addSource(s);  | 
|
| 649 | 
		/// bf.start();  | 
|
| 650 | 
		/// \endcode  | 
|
| 651 | 
		    void run(Node s) {
	 | 
|
| 652 | 
		init();  | 
|
| 653 | 
		addSource(s);  | 
|
| 654 | 
		start();  | 
|
| 655 | 
		}  | 
|
| 656 | 
		 | 
|
| 657 | 
		/// \brief Runs the algorithm from the given root node with arc  | 
|
| 658 | 
		/// number limit.  | 
|
| 659 | 
		///  | 
|
| 660 | 
		/// This method runs the Bellman-Ford algorithm from the given root  | 
|
| 661 | 
		/// node \c s in order to compute the shortest path distance for each  | 
|
| 662 | 
		/// node using only the paths consisting of at most \c num arcs.  | 
|
| 663 | 
		///  | 
|
| 664 | 
		/// The algorithm computes  | 
|
| 665 | 
		/// - the limited distance of each node from the root(s),  | 
|
| 666 | 
		/// - the predecessor arc for each node.  | 
|
| 667 | 
		///  | 
|
| 668 | 
		/// \warning The paths with limited arc number cannot be retrieved  | 
|
| 669 | 
		/// easily with \ref path() or \ref predArc() functions. If you also  | 
|
| 670 | 
		/// need the shortest paths and not only the distances, you should  | 
|
| 671 | 
		/// store the \ref predMap() "predecessor map" after each iteration  | 
|
| 672 | 
		/// and build the path manually.  | 
|
| 673 | 
		///  | 
|
| 674 | 
		/// \note bf.run(s, num) is just a shortcut of the following code.  | 
|
| 675 | 
		/// \code  | 
|
| 676 | 
		/// bf.init();  | 
|
| 677 | 
		/// bf.addSource(s);  | 
|
| 678 | 
		/// bf.limitedStart(num);  | 
|
| 679 | 
		/// \endcode  | 
|
| 680 | 
		    void run(Node s, int num) {
	 | 
|
| 681 | 
		init();  | 
|
| 682 | 
		addSource(s);  | 
|
| 683 | 
		limitedStart(num);  | 
|
| 684 | 
		}  | 
|
| 685 | 
		 | 
|
| 686 | 
		///@}  | 
|
| 687 | 
		 | 
|
| 688 | 
		/// \brief LEMON iterator for getting the active nodes.  | 
|
| 689 | 
		///  | 
|
| 690 | 
		/// This class provides a common style LEMON iterator that traverses  | 
|
| 691 | 
		/// the active nodes of the Bellman-Ford algorithm after the last  | 
|
| 692 | 
		/// phase. These nodes should be checked in the next phase to  | 
|
| 693 | 
		/// find augmenting arcs outgoing from them.  | 
|
| 694 | 
		    class ActiveIt {
	 | 
|
| 695 | 
		public:  | 
|
| 696 | 
		 | 
|
| 697 | 
		/// \brief Constructor.  | 
|
| 698 | 
		///  | 
|
| 699 | 
		/// Constructor for getting the active nodes of the given BellmanFord  | 
|
| 700 | 
		/// instance.  | 
|
| 701 | 
		ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)  | 
|
| 702 | 
		      {
	 | 
|
| 703 | 
		_index = _algorithm->_process.size() - 1;  | 
|
| 704 | 
		}  | 
|
| 705 | 
		 | 
|
| 706 | 
		/// \brief Invalid constructor.  | 
|
| 707 | 
		///  | 
|
| 708 | 
		/// Invalid constructor.  | 
|
| 709 | 
		      ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
	 | 
|
| 710 | 
		 | 
|
| 711 | 
		/// \brief Conversion to \c Node.  | 
|
| 712 | 
		///  | 
|
| 713 | 
		/// Conversion to \c Node.  | 
|
| 714 | 
		      operator Node() const {
	 | 
|
| 715 | 
		return _index >= 0 ? _algorithm->_process[_index] : INVALID;  | 
|
| 716 | 
		}  | 
|
| 717 | 
		 | 
|
| 718 | 
		/// \brief Increment operator.  | 
|
| 719 | 
		///  | 
|
| 720 | 
		/// Increment operator.  | 
|
| 721 | 
		      ActiveIt& operator++() {
	 | 
|
| 722 | 
		--_index;  | 
|
| 723 | 
		return *this;  | 
|
| 724 | 
		}  | 
|
| 725 | 
		 | 
|
| 726 | 
		      bool operator==(const ActiveIt& it) const {
	 | 
|
| 727 | 
		return static_cast<Node>(*this) == static_cast<Node>(it);  | 
|
| 728 | 
		}  | 
|
| 729 | 
		      bool operator!=(const ActiveIt& it) const {
	 | 
|
| 730 | 
		return static_cast<Node>(*this) != static_cast<Node>(it);  | 
|
| 731 | 
		}  | 
|
| 732 | 
		      bool operator<(const ActiveIt& it) const {
	 | 
|
| 733 | 
		return static_cast<Node>(*this) < static_cast<Node>(it);  | 
|
| 734 | 
		}  | 
|
| 735 | 
		 | 
|
| 736 | 
		private:  | 
|
| 737 | 
		const BellmanFord* _algorithm;  | 
|
| 738 | 
		int _index;  | 
|
| 739 | 
		};  | 
|
| 740 | 
		 | 
|
| 741 | 
		/// \name Query Functions  | 
|
| 742 | 
		/// The result of the Bellman-Ford algorithm can be obtained using these  | 
|
| 743 | 
		/// functions.\n  | 
|
| 744 | 
		/// Either \ref run() or \ref init() should be called before using them.  | 
|
| 745 | 
		 | 
|
| 746 | 
		    ///@{
	 | 
|
| 747 | 
		 | 
|
| 748 | 
		/// \brief The shortest path to the given node.  | 
|
| 749 | 
		///  | 
|
| 750 | 
		/// Gives back the shortest path to the given node from the root(s).  | 
|
| 751 | 
		///  | 
|
| 752 | 
		/// \warning \c t should be reached from the root(s).  | 
|
| 753 | 
		///  | 
|
| 754 | 
		/// \pre Either \ref run() or \ref init() must be called before  | 
|
| 755 | 
		/// using this function.  | 
|
| 756 | 
		Path path(Node t) const  | 
|
| 757 | 
		    {
	 | 
|
| 758 | 
		return Path(*_gr, *_pred, t);  | 
|
| 759 | 
		}  | 
|
| 760 | 
		 | 
|
| 761 | 
		/// \brief The distance of the given node from the root(s).  | 
|
| 762 | 
		///  | 
|
| 763 | 
		/// Returns the distance of the given node from the root(s).  | 
|
| 764 | 
		///  | 
|
| 765 | 
		/// \warning If node \c v is not reached from the root(s), then  | 
|
| 766 | 
		/// the return value of this function is undefined.  | 
|
| 767 | 
		///  | 
|
| 768 | 
		/// \pre Either \ref run() or \ref init() must be called before  | 
|
| 769 | 
		/// using this function.  | 
|
| 770 | 
		    Value dist(Node v) const { return (*_dist)[v]; }
	 | 
|
| 771 | 
		 | 
|
| 772 | 
		/// \brief Returns the 'previous arc' of the shortest path tree for  | 
|
| 773 | 
		/// the given node.  | 
|
| 774 | 
		///  | 
|
| 775 | 
		/// This function returns the 'previous arc' of the shortest path  | 
|
| 776 | 
		/// tree for node \c v, i.e. it returns the last arc of a  | 
|
| 777 | 
		/// shortest path from a root to \c v. It is \c INVALID if \c v  | 
|
| 778 | 
		/// is not reached from the root(s) or if \c v is a root.  | 
|
| 779 | 
		///  | 
|
| 780 | 
		/// The shortest path tree used here is equal to the shortest path  | 
|
| 781 | 
		/// tree used in \ref predNode() and \ref predMap().  | 
|
| 782 | 
		///  | 
|
| 783 | 
		/// \pre Either \ref run() or \ref init() must be called before  | 
|
| 784 | 
		/// using this function.  | 
|
| 785 | 
		    Arc predArc(Node v) const { return (*_pred)[v]; }
	 | 
|
| 786 | 
		 | 
|
| 787 | 
		/// \brief Returns the 'previous node' of the shortest path tree for  | 
|
| 788 | 
		/// the given node.  | 
|
| 789 | 
		///  | 
|
| 790 | 
		/// This function returns the 'previous node' of the shortest path  | 
|
| 791 | 
		/// tree for node \c v, i.e. it returns the last but one node of  | 
|
| 792 | 
		/// a shortest path from a root to \c v. It is \c INVALID if \c v  | 
|
| 793 | 
		/// is not reached from the root(s) or if \c v is a root.  | 
|
| 794 | 
		///  | 
|
| 795 | 
		/// The shortest path tree used here is equal to the shortest path  | 
|
| 796 | 
		/// tree used in \ref predArc() and \ref predMap().  | 
|
| 797 | 
		///  | 
|
| 798 | 
		/// \pre Either \ref run() or \ref init() must be called before  | 
|
| 799 | 
		/// using this function.  | 
|
| 800 | 
		    Node predNode(Node v) const {
	 | 
|
| 801 | 
		return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]);  | 
|
| 802 | 
		}  | 
|
| 803 | 
		 | 
|
| 804 | 
		/// \brief Returns a const reference to the node map that stores the  | 
|
| 805 | 
		/// distances of the nodes.  | 
|
| 806 | 
		///  | 
|
| 807 | 
		/// Returns a const reference to the node map that stores the distances  | 
|
| 808 | 
		/// of the nodes calculated by the algorithm.  | 
|
| 809 | 
		///  | 
|
| 810 | 
		/// \pre Either \ref run() or \ref init() must be called before  | 
|
| 811 | 
		/// using this function.  | 
|
| 812 | 
		    const DistMap &distMap() const { return *_dist;}
	 | 
|
| 813 | 
		 | 
|
| 814 | 
		/// \brief Returns a const reference to the node map that stores the  | 
|
| 815 | 
		/// predecessor arcs.  | 
|
| 816 | 
		///  | 
|
| 817 | 
		/// Returns a const reference to the node map that stores the predecessor  | 
|
| 818 | 
		/// arcs, which form the shortest path tree (forest).  | 
|
| 819 | 
		///  | 
|
| 820 | 
		/// \pre Either \ref run() or \ref init() must be called before  | 
|
| 821 | 
		/// using this function.  | 
|
| 822 | 
		    const PredMap &predMap() const { return *_pred; }
	 | 
|
| 823 | 
		 | 
|
| 824 | 
		/// \brief Checks if a node is reached from the root(s).  | 
|
| 825 | 
		///  | 
|
| 826 | 
		/// Returns \c true if \c v is reached from the root(s).  | 
|
| 827 | 
		///  | 
|
| 828 | 
		/// \pre Either \ref run() or \ref init() must be called before  | 
|
| 829 | 
		/// using this function.  | 
|
| 830 | 
		    bool reached(Node v) const {
	 | 
|
| 831 | 
		return (*_dist)[v] != OperationTraits::infinity();  | 
|
| 832 | 
		}  | 
|
| 833 | 
		 | 
|
| 834 | 
		/// \brief Gives back a negative cycle.  | 
|
| 835 | 
		///  | 
|
| 836 | 
		/// This function gives back a directed cycle with negative total  | 
|
| 837 | 
		/// length if the algorithm has already found one.  | 
|
| 838 | 
		/// Otherwise it gives back an empty path.  | 
|
| 839 | 
		    lemon::Path<Digraph> negativeCycle() const {
	 | 
|
| 840 | 
		typename Digraph::template NodeMap<int> state(*_gr, -1);  | 
|
| 841 | 
		lemon::Path<Digraph> cycle;  | 
|
| 842 | 
		      for (int i = 0; i < int(_process.size()); ++i) {
	 | 
|
| 843 | 
		if (state[_process[i]] != -1) continue;  | 
|
| 844 | 
		for (Node v = _process[i]; (*_pred)[v] != INVALID;  | 
|
| 845 | 
		             v = _gr->source((*_pred)[v])) {
	 | 
|
| 846 | 
		          if (state[v] == i) {
	 | 
|
| 847 | 
		cycle.addFront((*_pred)[v]);  | 
|
| 848 | 
		for (Node u = _gr->source((*_pred)[v]); u != v;  | 
|
| 849 | 
		                 u = _gr->source((*_pred)[u])) {
	 | 
|
| 850 | 
		cycle.addFront((*_pred)[u]);  | 
|
| 851 | 
		}  | 
|
| 852 | 
		return cycle;  | 
|
| 853 | 
		}  | 
|
| 854 | 
		          else if (state[v] >= 0) {
	 | 
|
| 855 | 
		break;  | 
|
| 856 | 
		}  | 
|
| 857 | 
		state[v] = i;  | 
|
| 858 | 
		}  | 
|
| 859 | 
		}  | 
|
| 860 | 
		return cycle;  | 
|
| 861 | 
		}  | 
|
| 862 | 
		 | 
|
| 863 | 
		///@}  | 
|
| 864 | 
		};  | 
|
| 865 | 
		 | 
|
| 866 | 
		/// \brief Default traits class of bellmanFord() function.  | 
|
| 867 | 
		///  | 
|
| 868 | 
		/// Default traits class of bellmanFord() function.  | 
|
| 869 | 
		/// \tparam GR The type of the digraph.  | 
|
| 870 | 
		/// \tparam LEN The type of the length map.  | 
|
| 871 | 
		template <typename GR, typename LEN>  | 
|
| 872 | 
		  struct BellmanFordWizardDefaultTraits {
	 | 
|
| 873 | 
		/// The type of the digraph the algorithm runs on.  | 
|
| 874 | 
		typedef GR Digraph;  | 
|
| 875 | 
		 | 
|
| 876 | 
		/// \brief The type of the map that stores the arc lengths.  | 
|
| 877 | 
		///  | 
|
| 878 | 
		/// The type of the map that stores the arc lengths.  | 
|
| 879 | 
		/// It must meet the \ref concepts::ReadMap "ReadMap" concept.  | 
|
| 880 | 
		typedef LEN LengthMap;  | 
|
| 881 | 
		 | 
|
| 882 | 
		/// The type of the arc lengths.  | 
|
| 883 | 
		typedef typename LEN::Value Value;  | 
|
| 884 | 
		 | 
|
| 885 | 
		/// \brief Operation traits for Bellman-Ford algorithm.  | 
|
| 886 | 
		///  | 
|
| 887 | 
		/// It defines the used operations and the infinity value for the  | 
|
| 888 | 
		/// given \c Value type.  | 
|
| 889 | 
		/// \see BellmanFordDefaultOperationTraits,  | 
|
| 890 | 
		/// BellmanFordToleranceOperationTraits  | 
|
| 891 | 
		typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;  | 
|
| 892 | 
		 | 
|
| 893 | 
		/// \brief The type of the map that stores the last  | 
|
| 894 | 
		/// arcs of the shortest paths.  | 
|
| 895 | 
		///  | 
|
| 896 | 
		/// The type of the map that stores the last arcs of the shortest paths.  | 
|
| 897 | 
		/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 898 | 
		typedef typename GR::template NodeMap<typename GR::Arc> PredMap;  | 
|
| 899 | 
		 | 
|
| 900 | 
		/// \brief Instantiates a \c PredMap.  | 
|
| 901 | 
		///  | 
|
| 902 | 
		/// This function instantiates a \ref PredMap.  | 
|
| 903 | 
		/// \param g is the digraph to which we would like to define the  | 
|
| 904 | 
		/// \ref PredMap.  | 
|
| 905 | 
		    static PredMap *createPredMap(const GR &g) {
	 | 
|
| 906 | 
		return new PredMap(g);  | 
|
| 907 | 
		}  | 
|
| 908 | 
		 | 
|
| 909 | 
		/// \brief The type of the map that stores the distances of the nodes.  | 
|
| 910 | 
		///  | 
|
| 911 | 
		/// The type of the map that stores the distances of the nodes.  | 
|
| 912 | 
		/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 913 | 
		typedef typename GR::template NodeMap<Value> DistMap;  | 
|
| 914 | 
		 | 
|
| 915 | 
		/// \brief Instantiates a \c DistMap.  | 
|
| 916 | 
		///  | 
|
| 917 | 
		/// This function instantiates a \ref DistMap.  | 
|
| 918 | 
		/// \param g is the digraph to which we would like to define the  | 
|
| 919 | 
		/// \ref DistMap.  | 
|
| 920 | 
		    static DistMap *createDistMap(const GR &g) {
	 | 
|
| 921 | 
		return new DistMap(g);  | 
|
| 922 | 
		}  | 
|
| 923 | 
		 | 
|
| 924 | 
		///The type of the shortest paths.  | 
|
| 925 | 
		 | 
|
| 926 | 
		///The type of the shortest paths.  | 
|
| 927 | 
		///It must meet the \ref concepts::Path "Path" concept.  | 
|
| 928 | 
		typedef lemon::Path<Digraph> Path;  | 
|
| 929 | 
		};  | 
|
| 930 | 
		 | 
|
| 931 | 
		/// \brief Default traits class used by BellmanFordWizard.  | 
|
| 932 | 
		///  | 
|
| 933 | 
		/// Default traits class used by BellmanFordWizard.  | 
|
| 934 | 
		/// \tparam GR The type of the digraph.  | 
|
| 935 | 
		/// \tparam LEN The type of the length map.  | 
|
| 936 | 
		template <typename GR, typename LEN>  | 
|
| 937 | 
		class BellmanFordWizardBase  | 
|
| 938 | 
		    : public BellmanFordWizardDefaultTraits<GR, LEN> {
	 | 
|
| 939 | 
		 | 
|
| 940 | 
		typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;  | 
|
| 941 | 
		protected:  | 
|
| 942 | 
		// Type of the nodes in the digraph.  | 
|
| 943 | 
		typedef typename Base::Digraph::Node Node;  | 
|
| 944 | 
		 | 
|
| 945 | 
		// Pointer to the underlying digraph.  | 
|
| 946 | 
		void *_graph;  | 
|
| 947 | 
		// Pointer to the length map  | 
|
| 948 | 
		void *_length;  | 
|
| 949 | 
		// Pointer to the map of predecessors arcs.  | 
|
| 950 | 
		void *_pred;  | 
|
| 951 | 
		// Pointer to the map of distances.  | 
|
| 952 | 
		void *_dist;  | 
|
| 953 | 
		//Pointer to the shortest path to the target node.  | 
|
| 954 | 
		void *_path;  | 
|
| 955 | 
		//Pointer to the distance of the target node.  | 
|
| 956 | 
		void *_di;  | 
|
| 957 | 
		 | 
|
| 958 | 
		public:  | 
|
| 959 | 
		/// Constructor.  | 
|
| 960 | 
		 | 
|
| 961 | 
		/// This constructor does not require parameters, it initiates  | 
|
| 962 | 
		/// all of the attributes to default values \c 0.  | 
|
| 963 | 
		BellmanFordWizardBase() :  | 
|
| 964 | 
		      _graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
	 | 
|
| 965 | 
		 | 
|
| 966 | 
		/// Constructor.  | 
|
| 967 | 
		 | 
|
| 968 | 
		/// This constructor requires two parameters,  | 
|
| 969 | 
		/// others are initiated to \c 0.  | 
|
| 970 | 
		/// \param gr The digraph the algorithm runs on.  | 
|
| 971 | 
		/// \param len The length map.  | 
|
| 972 | 
		BellmanFordWizardBase(const GR& gr,  | 
|
| 973 | 
		const LEN& len) :  | 
|
| 974 | 
		_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))),  | 
|
| 975 | 
		_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))),  | 
|
| 976 | 
		      _pred(0), _dist(0), _path(0), _di(0) {}
	 | 
|
| 977 | 
		 | 
|
| 978 | 
		};  | 
|
| 979 | 
		 | 
|
| 980 | 
		/// \brief Auxiliary class for the function-type interface of the  | 
|
| 981 | 
		/// \ref BellmanFord "Bellman-Ford" algorithm.  | 
|
| 982 | 
		///  | 
|
| 983 | 
		/// This auxiliary class is created to implement the  | 
|
| 984 | 
		/// \ref bellmanFord() "function-type interface" of the  | 
|
| 985 | 
		/// \ref BellmanFord "Bellman-Ford" algorithm.  | 
|
| 986 | 
		/// It does not have own \ref run() method, it uses the  | 
|
| 987 | 
		/// functions and features of the plain \ref BellmanFord.  | 
|
| 988 | 
		///  | 
|
| 989 | 
		/// This class should only be used through the \ref bellmanFord()  | 
|
| 990 | 
		/// function, which makes it easier to use the algorithm.  | 
|
| 991 | 
		///  | 
|
| 992 | 
		/// \tparam TR The traits class that defines various types used by the  | 
|
| 993 | 
		/// algorithm.  | 
|
| 994 | 
		template<class TR>  | 
|
| 995 | 
		  class BellmanFordWizard : public TR {
	 | 
|
| 996 | 
		typedef TR Base;  | 
|
| 997 | 
		 | 
|
| 998 | 
		typedef typename TR::Digraph Digraph;  | 
|
| 999 | 
		 | 
|
| 1000 | 
		typedef typename Digraph::Node Node;  | 
|
| 1001 | 
		typedef typename Digraph::NodeIt NodeIt;  | 
|
| 1002 | 
		typedef typename Digraph::Arc Arc;  | 
|
| 1003 | 
		typedef typename Digraph::OutArcIt ArcIt;  | 
|
| 1004 | 
		 | 
|
| 1005 | 
		typedef typename TR::LengthMap LengthMap;  | 
|
| 1006 | 
		typedef typename LengthMap::Value Value;  | 
|
| 1007 | 
		typedef typename TR::PredMap PredMap;  | 
|
| 1008 | 
		typedef typename TR::DistMap DistMap;  | 
|
| 1009 | 
		typedef typename TR::Path Path;  | 
|
| 1010 | 
		 | 
|
| 1011 | 
		public:  | 
|
| 1012 | 
		/// Constructor.  | 
|
| 1013 | 
		    BellmanFordWizard() : TR() {}
	 | 
|
| 1014 | 
		 | 
|
| 1015 | 
		/// \brief Constructor that requires parameters.  | 
|
| 1016 | 
		///  | 
|
| 1017 | 
		/// Constructor that requires parameters.  | 
|
| 1018 | 
		/// These parameters will be the default values for the traits class.  | 
|
| 1019 | 
		/// \param gr The digraph the algorithm runs on.  | 
|
| 1020 | 
		/// \param len The length map.  | 
|
| 1021 | 
		BellmanFordWizard(const Digraph& gr, const LengthMap& len)  | 
|
| 1022 | 
		      : TR(gr, len) {}
	 | 
|
| 1023 | 
		 | 
|
| 1024 | 
		/// \brief Copy constructor  | 
|
| 1025 | 
		    BellmanFordWizard(const TR &b) : TR(b) {}
	 | 
|
| 1026 | 
		 | 
|
| 1027 | 
		    ~BellmanFordWizard() {}
	 | 
|
| 1028 | 
		 | 
|
| 1029 | 
		/// \brief Runs the Bellman-Ford algorithm from the given source node.  | 
|
| 1030 | 
		///  | 
|
| 1031 | 
		/// This method runs the Bellman-Ford algorithm from the given source  | 
|
| 1032 | 
		/// node in order to compute the shortest path to each node.  | 
|
| 1033 | 
		    void run(Node s) {
	 | 
|
| 1034 | 
		BellmanFord<Digraph,LengthMap,TR>  | 
|
| 1035 | 
		bf(*reinterpret_cast<const Digraph*>(Base::_graph),  | 
|
| 1036 | 
		*reinterpret_cast<const LengthMap*>(Base::_length));  | 
|
| 1037 | 
		if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));  | 
|
| 1038 | 
		if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));  | 
|
| 1039 | 
		bf.run(s);  | 
|
| 1040 | 
		}  | 
|
| 1041 | 
		 | 
|
| 1042 | 
		/// \brief Runs the Bellman-Ford algorithm to find the shortest path  | 
|
| 1043 | 
		/// between \c s and \c t.  | 
|
| 1044 | 
		///  | 
|
| 1045 | 
		/// This method runs the Bellman-Ford algorithm from node \c s  | 
|
| 1046 | 
		/// in order to compute the shortest path to node \c t.  | 
|
| 1047 | 
		/// Actually, it computes the shortest path to each node, but using  | 
|
| 1048 | 
		/// this function you can retrieve the distance and the shortest path  | 
|
| 1049 | 
		/// for a single target node easier.  | 
|
| 1050 | 
		///  | 
|
| 1051 | 
		/// \return \c true if \c t is reachable form \c s.  | 
|
| 1052 | 
		    bool run(Node s, Node t) {
	 | 
|
| 1053 | 
		BellmanFord<Digraph,LengthMap,TR>  | 
|
| 1054 | 
		bf(*reinterpret_cast<const Digraph*>(Base::_graph),  | 
|
| 1055 | 
		*reinterpret_cast<const LengthMap*>(Base::_length));  | 
|
| 1056 | 
		if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));  | 
|
| 1057 | 
		if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));  | 
|
| 1058 | 
		bf.run(s);  | 
|
| 1059 | 
		if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t);  | 
|
| 1060 | 
		if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t);  | 
|
| 1061 | 
		return bf.reached(t);  | 
|
| 1062 | 
		}  | 
|
| 1063 | 
		 | 
|
| 1064 | 
		template<class T>  | 
|
| 1065 | 
		    struct SetPredMapBase : public Base {
	 | 
|
| 1066 | 
		typedef T PredMap;  | 
|
| 1067 | 
		      static PredMap *createPredMap(const Digraph &) { return 0; };
	 | 
|
| 1068 | 
		      SetPredMapBase(const TR &b) : TR(b) {}
	 | 
|
| 1069 | 
		};  | 
|
| 1070 | 
		 | 
|
| 1071 | 
		/// \brief \ref named-templ-param "Named parameter" for setting  | 
|
| 1072 | 
		/// the predecessor map.  | 
|
| 1073 | 
		///  | 
|
| 1074 | 
		/// \ref named-templ-param "Named parameter" for setting  | 
|
| 1075 | 
		/// the map that stores the predecessor arcs of the nodes.  | 
|
| 1076 | 
		template<class T>  | 
|
| 1077 | 
		    BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
	 | 
|
| 1078 | 
		Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));  | 
|
| 1079 | 
		return BellmanFordWizard<SetPredMapBase<T> >(*this);  | 
|
| 1080 | 
		}  | 
|
| 1081 | 
		 | 
|
| 1082 | 
		template<class T>  | 
|
| 1083 | 
		    struct SetDistMapBase : public Base {
	 | 
|
| 1084 | 
		typedef T DistMap;  | 
|
| 1085 | 
		      static DistMap *createDistMap(const Digraph &) { return 0; };
	 | 
|
| 1086 | 
		      SetDistMapBase(const TR &b) : TR(b) {}
	 | 
|
| 1087 | 
		};  | 
|
| 1088 | 
		 | 
|
| 1089 | 
		/// \brief \ref named-templ-param "Named parameter" for setting  | 
|
| 1090 | 
		/// the distance map.  | 
|
| 1091 | 
		///  | 
|
| 1092 | 
		/// \ref named-templ-param "Named parameter" for setting  | 
|
| 1093 | 
		/// the map that stores the distances of the nodes calculated  | 
|
| 1094 | 
		/// by the algorithm.  | 
|
| 1095 | 
		template<class T>  | 
|
| 1096 | 
		    BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
	 | 
|
| 1097 | 
		Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));  | 
|
| 1098 | 
		return BellmanFordWizard<SetDistMapBase<T> >(*this);  | 
|
| 1099 | 
		}  | 
|
| 1100 | 
		 | 
|
| 1101 | 
		template<class T>  | 
|
| 1102 | 
		    struct SetPathBase : public Base {
	 | 
|
| 1103 | 
		typedef T Path;  | 
|
| 1104 | 
		      SetPathBase(const TR &b) : TR(b) {}
	 | 
|
| 1105 | 
		};  | 
|
| 1106 | 
		 | 
|
| 1107 | 
		/// \brief \ref named-func-param "Named parameter" for getting  | 
|
| 1108 | 
		/// the shortest path to the target node.  | 
|
| 1109 | 
		///  | 
|
| 1110 | 
		/// \ref named-func-param "Named parameter" for getting  | 
|
| 1111 | 
		/// the shortest path to the target node.  | 
|
| 1112 | 
		template<class T>  | 
|
| 1113 | 
		BellmanFordWizard<SetPathBase<T> > path(const T &t)  | 
|
| 1114 | 
		    {
	 | 
|
| 1115 | 
		Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));  | 
|
| 1116 | 
		return BellmanFordWizard<SetPathBase<T> >(*this);  | 
|
| 1117 | 
		}  | 
|
| 1118 | 
		 | 
|
| 1119 | 
		/// \brief \ref named-func-param "Named parameter" for getting  | 
|
| 1120 | 
		/// the distance of the target node.  | 
|
| 1121 | 
		///  | 
|
| 1122 | 
		/// \ref named-func-param "Named parameter" for getting  | 
|
| 1123 | 
		/// the distance of the target node.  | 
|
| 1124 | 
		BellmanFordWizard dist(const Value &d)  | 
|
| 1125 | 
		    {
	 | 
|
| 1126 | 
		Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));  | 
|
| 1127 | 
		return *this;  | 
|
| 1128 | 
		}  | 
|
| 1129 | 
		 | 
|
| 1130 | 
		};  | 
|
| 1131 | 
		 | 
|
| 1132 | 
		/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford"  | 
|
| 1133 | 
		/// algorithm.  | 
|
| 1134 | 
		///  | 
|
| 1135 | 
		/// \ingroup shortest_path  | 
|
| 1136 | 
		/// Function type interface for the \ref BellmanFord "Bellman-Ford"  | 
|
| 1137 | 
		/// algorithm.  | 
|
| 1138 | 
		///  | 
|
| 1139 | 
		/// This function also has several \ref named-templ-func-param  | 
|
| 1140 | 
		/// "named parameters", they are declared as the members of class  | 
|
| 1141 | 
		/// \ref BellmanFordWizard.  | 
|
| 1142 | 
		/// The following examples show how to use these parameters.  | 
|
| 1143 | 
		/// \code  | 
|
| 1144 | 
		/// // Compute shortest path from node s to each node  | 
|
| 1145 | 
		/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s);  | 
|
| 1146 | 
		///  | 
|
| 1147 | 
		/// // Compute shortest path from s to t  | 
|
| 1148 | 
		/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t);  | 
|
| 1149 | 
		/// \endcode  | 
|
| 1150 | 
		/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"  | 
|
| 1151 | 
		/// to the end of the parameter list.  | 
|
| 1152 | 
		/// \sa BellmanFordWizard  | 
|
| 1153 | 
		/// \sa BellmanFord  | 
|
| 1154 | 
		template<typename GR, typename LEN>  | 
|
| 1155 | 
		BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >  | 
|
| 1156 | 
		bellmanFord(const GR& digraph,  | 
|
| 1157 | 
		const LEN& length)  | 
|
| 1158 | 
		  {
	 | 
|
| 1159 | 
		return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length);  | 
|
| 1160 | 
		}  | 
|
| 1161 | 
		 | 
|
| 1162 | 
		} //END OF NAMESPACE LEMON  | 
|
| 1163 | 
		 | 
|
| 1164 | 
		#endif  | 
|
| 1165 | 
| 1 | 
		/* -*- mode: C++; indent-tabs-mode: nil; -*-  | 
|
| 2 | 
		*  | 
|
| 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
|
| 4 | 
		*  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
|
| 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
|
| 8 | 
		*  | 
|
| 9 | 
		* Permission to use, modify and distribute this software is granted  | 
|
| 10 | 
		* provided that this copyright notice appears in all copies. For  | 
|
| 11 | 
		* precise terms see the accompanying LICENSE file.  | 
|
| 12 | 
		*  | 
|
| 13 | 
		* This software is provided "AS IS" with no warranty of any kind,  | 
|
| 14 | 
		* express or implied, and with no claim as to its suitability for any  | 
|
| 15 | 
		* purpose.  | 
|
| 16 | 
		*  | 
|
| 17 | 
		*/  | 
|
| 18 | 
		 | 
|
| 19 | 
		#ifndef LEMON_BINOMIAL_HEAP_H  | 
|
| 20 | 
		#define LEMON_BINOMIAL_HEAP_H  | 
|
| 21 | 
		 | 
|
| 22 | 
		///\file  | 
|
| 23 | 
		///\ingroup heaps  | 
|
| 24 | 
		///\brief Binomial Heap implementation.  | 
|
| 25 | 
		 | 
|
| 26 | 
		#include <vector>  | 
|
| 27 | 
		#include <utility>  | 
|
| 28 | 
		#include <functional>  | 
|
| 29 | 
		#include <lemon/math.h>  | 
|
| 30 | 
		#include <lemon/counter.h>  | 
|
| 31 | 
		 | 
|
| 32 | 
		namespace lemon {
	 | 
|
| 33 | 
		 | 
|
| 34 | 
		/// \ingroup heaps  | 
|
| 35 | 
		///  | 
|
| 36 | 
		///\brief Binomial heap data structure.  | 
|
| 37 | 
		///  | 
|
| 38 | 
		/// This class implements the \e binomial \e heap data structure.  | 
|
| 39 | 
		/// It fully conforms to the \ref concepts::Heap "heap concept".  | 
|
| 40 | 
		///  | 
|
| 41 | 
		/// The methods \ref increase() and \ref erase() are not efficient  | 
|
| 42 | 
		/// in a binomial heap. In case of many calls of these operations,  | 
|
| 43 | 
		/// it is better to use other heap structure, e.g. \ref BinHeap  | 
|
| 44 | 
		/// "binary heap".  | 
|
| 45 | 
		///  | 
|
| 46 | 
		/// \tparam PR Type of the priorities of the items.  | 
|
| 47 | 
		/// \tparam IM A read-writable item map with \c int values, used  | 
|
| 48 | 
		/// internally to handle the cross references.  | 
|
| 49 | 
		/// \tparam CMP A functor class for comparing the priorities.  | 
|
| 50 | 
		/// The default is \c std::less<PR>.  | 
|
| 51 | 
		#ifdef DOXYGEN  | 
|
| 52 | 
		template <typename PR, typename IM, typename CMP>  | 
|
| 53 | 
		#else  | 
|
| 54 | 
		template <typename PR, typename IM, typename CMP = std::less<PR> >  | 
|
| 55 | 
		#endif  | 
|
| 56 | 
		  class BinomialHeap {
	 | 
|
| 57 | 
		public:  | 
|
| 58 | 
		/// Type of the item-int map.  | 
|
| 59 | 
		typedef IM ItemIntMap;  | 
|
| 60 | 
		/// Type of the priorities.  | 
|
| 61 | 
		typedef PR Prio;  | 
|
| 62 | 
		/// Type of the items stored in the heap.  | 
|
| 63 | 
		typedef typename ItemIntMap::Key Item;  | 
|
| 64 | 
		/// Functor type for comparing the priorities.  | 
|
| 65 | 
		typedef CMP Compare;  | 
|
| 66 | 
		 | 
|
| 67 | 
		/// \brief Type to represent the states of the items.  | 
|
| 68 | 
		///  | 
|
| 69 | 
		/// Each item has a state associated to it. It can be "in heap",  | 
|
| 70 | 
		/// "pre-heap" or "post-heap". The latter two are indifferent from the  | 
|
| 71 | 
		/// heap's point of view, but may be useful to the user.  | 
|
| 72 | 
		///  | 
|
| 73 | 
		/// The item-int map must be initialized in such way that it assigns  | 
|
| 74 | 
		/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.  | 
|
| 75 | 
		    enum State {
	 | 
|
| 76 | 
		IN_HEAP = 0, ///< = 0.  | 
|
| 77 | 
		PRE_HEAP = -1, ///< = -1.  | 
|
| 78 | 
		POST_HEAP = -2 ///< = -2.  | 
|
| 79 | 
		};  | 
|
| 80 | 
		 | 
|
| 81 | 
		private:  | 
|
| 82 | 
		class Store;  | 
|
| 83 | 
		 | 
|
| 84 | 
		std::vector<Store> _data;  | 
|
| 85 | 
		int _min, _head;  | 
|
| 86 | 
		ItemIntMap &_iim;  | 
|
| 87 | 
		Compare _comp;  | 
|
| 88 | 
		int _num_items;  | 
|
| 89 | 
		 | 
|
| 90 | 
		public:  | 
|
| 91 | 
		/// \brief Constructor.  | 
|
| 92 | 
		///  | 
|
| 93 | 
		/// Constructor.  | 
|
| 94 | 
		/// \param map A map that assigns \c int values to the items.  | 
|
| 95 | 
		/// It is used internally to handle the cross references.  | 
|
| 96 | 
		/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 97 | 
		explicit BinomialHeap(ItemIntMap &map)  | 
|
| 98 | 
		      : _min(0), _head(-1), _iim(map), _num_items(0) {}
	 | 
|
| 99 | 
		 | 
|
| 100 | 
		/// \brief Constructor.  | 
|
| 101 | 
		///  | 
|
| 102 | 
		/// Constructor.  | 
|
| 103 | 
		/// \param map A map that assigns \c int values to the items.  | 
|
| 104 | 
		/// It is used internally to handle the cross references.  | 
|
| 105 | 
		/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 106 | 
		/// \param comp The function object used for comparing the priorities.  | 
|
| 107 | 
		BinomialHeap(ItemIntMap &map, const Compare &comp)  | 
|
| 108 | 
		      : _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {}
	 | 
|
| 109 | 
		 | 
|
| 110 | 
		/// \brief The number of items stored in the heap.  | 
|
| 111 | 
		///  | 
|
| 112 | 
		/// This function returns the number of items stored in the heap.  | 
|
| 113 | 
		    int size() const { return _num_items; }
	 | 
|
| 114 | 
		 | 
|
| 115 | 
		/// \brief Check if the heap is empty.  | 
|
| 116 | 
		///  | 
|
| 117 | 
		/// This function returns \c true if the heap is empty.  | 
|
| 118 | 
		    bool empty() const { return _num_items==0; }
	 | 
|
| 119 | 
		 | 
|
| 120 | 
		/// \brief Make the heap empty.  | 
|
| 121 | 
		///  | 
|
| 122 | 
		/// This functon makes the heap empty.  | 
|
| 123 | 
		/// It does not change the cross reference map. If you want to reuse  | 
|
| 124 | 
		/// a heap that is not surely empty, you should first clear it and  | 
|
| 125 | 
		/// then you should set the cross reference map to \c PRE_HEAP  | 
|
| 126 | 
		/// for each item.  | 
|
| 127 | 
		    void clear() {
	 | 
|
| 128 | 
		_data.clear(); _min=0; _num_items=0; _head=-1;  | 
|
| 129 | 
		}  | 
|
| 130 | 
		 | 
|
| 131 | 
		/// \brief Set the priority of an item or insert it, if it is  | 
|
| 132 | 
		/// not stored in the heap.  | 
|
| 133 | 
		///  | 
|
| 134 | 
		/// This method sets the priority of the given item if it is  | 
|
| 135 | 
		/// already stored in the heap. Otherwise it inserts the given  | 
|
| 136 | 
		/// item into the heap with the given priority.  | 
|
| 137 | 
		/// \param item The item.  | 
|
| 138 | 
		/// \param value The priority.  | 
|
| 139 | 
		    void set (const Item& item, const Prio& value) {
	 | 
|
| 140 | 
		int i=_iim[item];  | 
|
| 141 | 
		      if ( i >= 0 && _data[i].in ) {
	 | 
|
| 142 | 
		if ( _comp(value, _data[i].prio) ) decrease(item, value);  | 
|
| 143 | 
		if ( _comp(_data[i].prio, value) ) increase(item, value);  | 
|
| 144 | 
		} else push(item, value);  | 
|
| 145 | 
		}  | 
|
| 146 | 
		 | 
|
| 147 | 
		/// \brief Insert an item into the heap with the given priority.  | 
|
| 148 | 
		///  | 
|
| 149 | 
		/// This function inserts the given item into the heap with the  | 
|
| 150 | 
		/// given priority.  | 
|
| 151 | 
		/// \param item The item to insert.  | 
|
| 152 | 
		/// \param value The priority of the item.  | 
|
| 153 | 
		/// \pre \e item must not be stored in the heap.  | 
|
| 154 | 
		    void push (const Item& item, const Prio& value) {
	 | 
|
| 155 | 
		int i=_iim[item];  | 
|
| 156 | 
		      if ( i<0 ) {
	 | 
|
| 157 | 
		int s=_data.size();  | 
|
| 158 | 
		_iim.set( item,s );  | 
|
| 159 | 
		Store st;  | 
|
| 160 | 
		st.name=item;  | 
|
| 161 | 
		st.prio=value;  | 
|
| 162 | 
		_data.push_back(st);  | 
|
| 163 | 
		i=s;  | 
|
| 164 | 
		}  | 
|
| 165 | 
		      else {
	 | 
|
| 166 | 
		_data[i].parent=_data[i].right_neighbor=_data[i].child=-1;  | 
|
| 167 | 
		_data[i].degree=0;  | 
|
| 168 | 
		_data[i].in=true;  | 
|
| 169 | 
		_data[i].prio=value;  | 
|
| 170 | 
		}  | 
|
| 171 | 
		 | 
|
| 172 | 
		      if( 0==_num_items ) {
	 | 
|
| 173 | 
		_head=i;  | 
|
| 174 | 
		_min=i;  | 
|
| 175 | 
		      } else {
	 | 
|
| 176 | 
		merge(i);  | 
|
| 177 | 
		if( _comp(_data[i].prio, _data[_min].prio) ) _min=i;  | 
|
| 178 | 
		}  | 
|
| 179 | 
		++_num_items;  | 
|
| 180 | 
		}  | 
|
| 181 | 
		 | 
|
| 182 | 
		/// \brief Return the item having minimum priority.  | 
|
| 183 | 
		///  | 
|
| 184 | 
		/// This function returns the item having minimum priority.  | 
|
| 185 | 
		/// \pre The heap must be non-empty.  | 
|
| 186 | 
		    Item top() const { return _data[_min].name; }
	 | 
|
| 187 | 
		 | 
|
| 188 | 
		/// \brief The minimum priority.  | 
|
| 189 | 
		///  | 
|
| 190 | 
		/// This function returns the minimum priority.  | 
|
| 191 | 
		/// \pre The heap must be non-empty.  | 
|
| 192 | 
		    Prio prio() const { return _data[_min].prio; }
	 | 
|
| 193 | 
		 | 
|
| 194 | 
		/// \brief The priority of the given item.  | 
|
| 195 | 
		///  | 
|
| 196 | 
		/// This function returns the priority of the given item.  | 
|
| 197 | 
		/// \param item The item.  | 
|
| 198 | 
		/// \pre \e item must be in the heap.  | 
|
| 199 | 
		    const Prio& operator[](const Item& item) const {
	 | 
|
| 200 | 
		return _data[_iim[item]].prio;  | 
|
| 201 | 
		}  | 
|
| 202 | 
		 | 
|
| 203 | 
		/// \brief Remove the item having minimum priority.  | 
|
| 204 | 
		///  | 
|
| 205 | 
		/// This function removes the item having minimum priority.  | 
|
| 206 | 
		/// \pre The heap must be non-empty.  | 
|
| 207 | 
		    void pop() {
	 | 
|
| 208 | 
		_data[_min].in=false;  | 
|
| 209 | 
		 | 
|
| 210 | 
		int head_child=-1;  | 
|
| 211 | 
		      if ( _data[_min].child!=-1 ) {
	 | 
|
| 212 | 
		int child=_data[_min].child;  | 
|
| 213 | 
		int neighb;  | 
|
| 214 | 
		        while( child!=-1 ) {
	 | 
|
| 215 | 
		neighb=_data[child].right_neighbor;  | 
|
| 216 | 
		_data[child].parent=-1;  | 
|
| 217 | 
		_data[child].right_neighbor=head_child;  | 
|
| 218 | 
		head_child=child;  | 
|
| 219 | 
		child=neighb;  | 
|
| 220 | 
		}  | 
|
| 221 | 
		}  | 
|
| 222 | 
		 | 
|
| 223 | 
		      if ( _data[_head].right_neighbor==-1 ) {
	 | 
|
| 224 | 
		// there was only one root  | 
|
| 225 | 
		_head=head_child;  | 
|
| 226 | 
		}  | 
|
| 227 | 
		      else {
	 | 
|
| 228 | 
		// there were more roots  | 
|
| 229 | 
		        if( _head!=_min )  { unlace(_min); }
	 | 
|
| 230 | 
		        else { _head=_data[_head].right_neighbor; }
	 | 
|
| 231 | 
		merge(head_child);  | 
|
| 232 | 
		}  | 
|
| 233 | 
		_min=findMin();  | 
|
| 234 | 
		--_num_items;  | 
|
| 235 | 
		}  | 
|
| 236 | 
		 | 
|
| 237 | 
		/// \brief Remove the given item from the heap.  | 
|
| 238 | 
		///  | 
|
| 239 | 
		/// This function removes the given item from the heap if it is  | 
|
| 240 | 
		/// already stored.  | 
|
| 241 | 
		/// \param item The item to delete.  | 
|
| 242 | 
		/// \pre \e item must be in the heap.  | 
|
| 243 | 
		    void erase (const Item& item) {
	 | 
|
| 244 | 
		int i=_iim[item];  | 
|
| 245 | 
		      if ( i >= 0 && _data[i].in ) {
	 | 
|
| 246 | 
		decrease( item, _data[_min].prio-1 );  | 
|
| 247 | 
		pop();  | 
|
| 248 | 
		}  | 
|
| 249 | 
		}  | 
|
| 250 | 
		 | 
|
| 251 | 
		/// \brief Decrease the priority of an item to the given value.  | 
|
| 252 | 
		///  | 
|
| 253 | 
		/// This function decreases the priority of an item to the given value.  | 
|
| 254 | 
		/// \param item The item.  | 
|
| 255 | 
		/// \param value The priority.  | 
|
| 256 | 
		/// \pre \e item must be stored in the heap with priority at least \e value.  | 
|
| 257 | 
		    void decrease (Item item, const Prio& value) {
	 | 
|
| 258 | 
		int i=_iim[item];  | 
|
| 259 | 
		int p=_data[i].parent;  | 
|
| 260 | 
		_data[i].prio=value;  | 
|
| 261 | 
		 | 
|
| 262 | 
		      while( p!=-1 && _comp(value, _data[p].prio) ) {
	 | 
|
| 263 | 
		_data[i].name=_data[p].name;  | 
|
| 264 | 
		_data[i].prio=_data[p].prio;  | 
|
| 265 | 
		_data[p].name=item;  | 
|
| 266 | 
		_data[p].prio=value;  | 
|
| 267 | 
		_iim[_data[i].name]=i;  | 
|
| 268 | 
		i=p;  | 
|
| 269 | 
		p=_data[p].parent;  | 
|
| 270 | 
		}  | 
|
| 271 | 
		_iim[item]=i;  | 
|
| 272 | 
		if ( _comp(value, _data[_min].prio) ) _min=i;  | 
|
| 273 | 
		}  | 
|
| 274 | 
		 | 
|
| 275 | 
		/// \brief Increase the priority of an item to the given value.  | 
|
| 276 | 
		///  | 
|
| 277 | 
		/// This function increases the priority of an item to the given value.  | 
|
| 278 | 
		/// \param item The item.  | 
|
| 279 | 
		/// \param value The priority.  | 
|
| 280 | 
		/// \pre \e item must be stored in the heap with priority at most \e value.  | 
|
| 281 | 
		    void increase (Item item, const Prio& value) {
	 | 
|
| 282 | 
		erase(item);  | 
|
| 283 | 
		push(item, value);  | 
|
| 284 | 
		}  | 
|
| 285 | 
		 | 
|
| 286 | 
		/// \brief Return the state of an item.  | 
|
| 287 | 
		///  | 
|
| 288 | 
		/// This method returns \c PRE_HEAP if the given item has never  | 
|
| 289 | 
		/// been in the heap, \c IN_HEAP if it is in the heap at the moment,  | 
|
| 290 | 
		/// and \c POST_HEAP otherwise.  | 
|
| 291 | 
		/// In the latter case it is possible that the item will get back  | 
|
| 292 | 
		/// to the heap again.  | 
|
| 293 | 
		/// \param item The item.  | 
|
| 294 | 
		    State state(const Item &item) const {
	 | 
|
| 295 | 
		int i=_iim[item];  | 
|
| 296 | 
		      if( i>=0 ) {
	 | 
|
| 297 | 
		if ( _data[i].in ) i=0;  | 
|
| 298 | 
		else i=-2;  | 
|
| 299 | 
		}  | 
|
| 300 | 
		return State(i);  | 
|
| 301 | 
		}  | 
|
| 302 | 
		 | 
|
| 303 | 
		/// \brief Set the state of an item in the heap.  | 
|
| 304 | 
		///  | 
|
| 305 | 
		/// This function sets the state of the given item in the heap.  | 
|
| 306 | 
		/// It can be used to manually clear the heap when it is important  | 
|
| 307 | 
		/// to achive better time complexity.  | 
|
| 308 | 
		/// \param i The item.  | 
|
| 309 | 
		/// \param st The state. It should not be \c IN_HEAP.  | 
|
| 310 | 
		    void state(const Item& i, State st) {
	 | 
|
| 311 | 
		      switch (st) {
	 | 
|
| 312 | 
		case POST_HEAP:  | 
|
| 313 | 
		case PRE_HEAP:  | 
|
| 314 | 
		        if (state(i) == IN_HEAP) {
	 | 
|
| 315 | 
		erase(i);  | 
|
| 316 | 
		}  | 
|
| 317 | 
		_iim[i] = st;  | 
|
| 318 | 
		break;  | 
|
| 319 | 
		case IN_HEAP:  | 
|
| 320 | 
		break;  | 
|
| 321 | 
		}  | 
|
| 322 | 
		}  | 
|
| 323 | 
		 | 
|
| 324 | 
		private:  | 
|
| 325 | 
		 | 
|
| 326 | 
		// Find the minimum of the roots  | 
|
| 327 | 
		    int findMin() {
	 | 
|
| 328 | 
		      if( _head!=-1 ) {
	 | 
|
| 329 | 
		int min_loc=_head, min_val=_data[_head].prio;  | 
|
| 330 | 
		for( int x=_data[_head].right_neighbor; x!=-1;  | 
|
| 331 | 
		             x=_data[x].right_neighbor ) {
	 | 
|
| 332 | 
		          if( _comp( _data[x].prio,min_val ) ) {
	 | 
|
| 333 | 
		min_val=_data[x].prio;  | 
|
| 334 | 
		min_loc=x;  | 
|
| 335 | 
		}  | 
|
| 336 | 
		}  | 
|
| 337 | 
		return min_loc;  | 
|
| 338 | 
		}  | 
|
| 339 | 
		else return -1;  | 
|
| 340 | 
		}  | 
|
| 341 | 
		 | 
|
| 342 | 
		// Merge the heap with another heap starting at the given position  | 
|
| 343 | 
		    void merge(int a) {
	 | 
|
| 344 | 
		if( _head==-1 || a==-1 ) return;  | 
|
| 345 | 
		if( _data[a].right_neighbor==-1 &&  | 
|
| 346 | 
		          _data[a].degree<=_data[_head].degree ) {
	 | 
|
| 347 | 
		_data[a].right_neighbor=_head;  | 
|
| 348 | 
		_head=a;  | 
|
| 349 | 
		      } else {
	 | 
|
| 350 | 
		interleave(a);  | 
|
| 351 | 
		}  | 
|
| 352 | 
		if( _data[_head].right_neighbor==-1 ) return;  | 
|
| 353 | 
		 | 
|
| 354 | 
		int x=_head;  | 
|
| 355 | 
		int x_prev=-1, x_next=_data[x].right_neighbor;  | 
|
| 356 | 
		      while( x_next!=-1 ) {
	 | 
|
| 357 | 
		if( _data[x].degree!=_data[x_next].degree ||  | 
|
| 358 | 
		( _data[x_next].right_neighbor!=-1 &&  | 
|
| 359 | 
		              _data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
	 | 
|
| 360 | 
		x_prev=x;  | 
|
| 361 | 
		x=x_next;  | 
|
| 362 | 
		}  | 
|
| 363 | 
		        else {
	 | 
|
| 364 | 
		          if( _comp(_data[x_next].prio,_data[x].prio) ) {
	 | 
|
| 365 | 
		            if( x_prev==-1 ) {
	 | 
|
| 366 | 
		_head=x_next;  | 
|
| 367 | 
		            } else {
	 | 
|
| 368 | 
		_data[x_prev].right_neighbor=x_next;  | 
|
| 369 | 
		}  | 
|
| 370 | 
		fuse(x,x_next);  | 
|
| 371 | 
		x=x_next;  | 
|
| 372 | 
		}  | 
|
| 373 | 
		          else {
	 | 
|
| 374 | 
		_data[x].right_neighbor=_data[x_next].right_neighbor;  | 
|
| 375 | 
		fuse(x_next,x);  | 
|
| 376 | 
		}  | 
|
| 377 | 
		}  | 
|
| 378 | 
		x_next=_data[x].right_neighbor;  | 
|
| 379 | 
		}  | 
|
| 380 | 
		}  | 
|
| 381 | 
		 | 
|
| 382 | 
		// Interleave the elements of the given list into the list of the roots  | 
|
| 383 | 
		    void interleave(int a) {
	 | 
|
| 384 | 
		int p=_head, q=a;  | 
|
| 385 | 
		int curr=_data.size();  | 
|
| 386 | 
		_data.push_back(Store());  | 
|
| 387 | 
		 | 
|
| 388 | 
		      while( p!=-1 || q!=-1 ) {
	 | 
|
| 389 | 
		        if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) {
	 | 
|
| 390 | 
		_data[curr].right_neighbor=p;  | 
|
| 391 | 
		curr=p;  | 
|
| 392 | 
		p=_data[p].right_neighbor;  | 
|
| 393 | 
		}  | 
|
| 394 | 
		        else {
	 | 
|
| 395 | 
		_data[curr].right_neighbor=q;  | 
|
| 396 | 
		curr=q;  | 
|
| 397 | 
		q=_data[q].right_neighbor;  | 
|
| 398 | 
		}  | 
|
| 399 | 
		}  | 
|
| 400 | 
		 | 
|
| 401 | 
		_head=_data.back().right_neighbor;  | 
|
| 402 | 
		_data.pop_back();  | 
|
| 403 | 
		}  | 
|
| 404 | 
		 | 
|
| 405 | 
		// Lace node a under node b  | 
|
| 406 | 
		    void fuse(int a, int b) {
	 | 
|
| 407 | 
		_data[a].parent=b;  | 
|
| 408 | 
		_data[a].right_neighbor=_data[b].child;  | 
|
| 409 | 
		_data[b].child=a;  | 
|
| 410 | 
		 | 
|
| 411 | 
		++_data[b].degree;  | 
|
| 412 | 
		}  | 
|
| 413 | 
		 | 
|
| 414 | 
		// Unlace node a (if it has siblings)  | 
|
| 415 | 
		    void unlace(int a) {
	 | 
|
| 416 | 
		int neighb=_data[a].right_neighbor;  | 
|
| 417 | 
		int other=_head;  | 
|
| 418 | 
		 | 
|
| 419 | 
		while( _data[other].right_neighbor!=a )  | 
|
| 420 | 
		other=_data[other].right_neighbor;  | 
|
| 421 | 
		_data[other].right_neighbor=neighb;  | 
|
| 422 | 
		}  | 
|
| 423 | 
		 | 
|
| 424 | 
		private:  | 
|
| 425 | 
		 | 
|
| 426 | 
		    class Store {
	 | 
|
| 427 | 
		friend class BinomialHeap;  | 
|
| 428 | 
		 | 
|
| 429 | 
		Item name;  | 
|
| 430 | 
		int parent;  | 
|
| 431 | 
		int right_neighbor;  | 
|
| 432 | 
		int child;  | 
|
| 433 | 
		int degree;  | 
|
| 434 | 
		bool in;  | 
|
| 435 | 
		Prio prio;  | 
|
| 436 | 
		 | 
|
| 437 | 
		Store() : parent(-1), right_neighbor(-1), child(-1), degree(0),  | 
|
| 438 | 
		        in(true) {}
	 | 
|
| 439 | 
		};  | 
|
| 440 | 
		};  | 
|
| 441 | 
		 | 
|
| 442 | 
		} //namespace lemon  | 
|
| 443 | 
		 | 
|
| 444 | 
		#endif //LEMON_BINOMIAL_HEAP_H  | 
|
| 445 | 
| 1 | 
		/* -*- mode: C++; indent-tabs-mode: nil; -*-  | 
|
| 2 | 
		*  | 
|
| 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
|
| 4 | 
		*  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
|
| 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
|
| 8 | 
		*  | 
|
| 9 | 
		* Permission to use, modify and distribute this software is granted  | 
|
| 10 | 
		* provided that this copyright notice appears in all copies. For  | 
|
| 11 | 
		* precise terms see the accompanying LICENSE file.  | 
|
| 12 | 
		*  | 
|
| 13 | 
		* This software is provided "AS IS" with no warranty of any kind,  | 
|
| 14 | 
		* express or implied, and with no claim as to its suitability for any  | 
|
| 15 | 
		* purpose.  | 
|
| 16 | 
		*  | 
|
| 17 | 
		*/  | 
|
| 18 | 
		 | 
|
| 19 | 
		#ifndef LEMON_CAPACITY_SCALING_H  | 
|
| 20 | 
		#define LEMON_CAPACITY_SCALING_H  | 
|
| 21 | 
		 | 
|
| 22 | 
		/// \ingroup min_cost_flow_algs  | 
|
| 23 | 
		///  | 
|
| 24 | 
		/// \file  | 
|
| 25 | 
		/// \brief Capacity Scaling algorithm for finding a minimum cost flow.  | 
|
| 26 | 
		 | 
|
| 27 | 
		#include <vector>  | 
|
| 28 | 
		#include <limits>  | 
|
| 29 | 
		#include <lemon/core.h>  | 
|
| 30 | 
		#include <lemon/bin_heap.h>  | 
|
| 31 | 
		 | 
|
| 32 | 
		namespace lemon {
	 | 
|
| 33 | 
		 | 
|
| 34 | 
		/// \brief Default traits class of CapacityScaling algorithm.  | 
|
| 35 | 
		///  | 
|
| 36 | 
		/// Default traits class of CapacityScaling algorithm.  | 
|
| 37 | 
		/// \tparam GR Digraph type.  | 
|
| 38 | 
		/// \tparam V The number type used for flow amounts, capacity bounds  | 
|
| 39 | 
		/// and supply values. By default it is \c int.  | 
|
| 40 | 
		/// \tparam C The number type used for costs and potentials.  | 
|
| 41 | 
		/// By default it is the same as \c V.  | 
|
| 42 | 
		template <typename GR, typename V = int, typename C = V>  | 
|
| 43 | 
		struct CapacityScalingDefaultTraits  | 
|
| 44 | 
		  {
	 | 
|
| 45 | 
		/// The type of the digraph  | 
|
| 46 | 
		typedef GR Digraph;  | 
|
| 47 | 
		/// The type of the flow amounts, capacity bounds and supply values  | 
|
| 48 | 
		typedef V Value;  | 
|
| 49 | 
		/// The type of the arc costs  | 
|
| 50 | 
		typedef C Cost;  | 
|
| 51 | 
		 | 
|
| 52 | 
		/// \brief The type of the heap used for internal Dijkstra computations.  | 
|
| 53 | 
		///  | 
|
| 54 | 
		/// The type of the heap used for internal Dijkstra computations.  | 
|
| 55 | 
		/// It must conform to the \ref lemon::concepts::Heap "Heap" concept,  | 
|
| 56 | 
		/// its priority type must be \c Cost and its cross reference type  | 
|
| 57 | 
		/// must be \ref RangeMap "RangeMap<int>".  | 
|
| 58 | 
		typedef BinHeap<Cost, RangeMap<int> > Heap;  | 
|
| 59 | 
		};  | 
|
| 60 | 
		 | 
|
| 61 | 
		/// \addtogroup min_cost_flow_algs  | 
|
| 62 | 
		  /// @{
	 | 
|
| 63 | 
		 | 
|
| 64 | 
		/// \brief Implementation of the Capacity Scaling algorithm for  | 
|
| 65 | 
		/// finding a \ref min_cost_flow "minimum cost flow".  | 
|
| 66 | 
		///  | 
|
| 67 | 
		/// \ref CapacityScaling implements the capacity scaling version  | 
|
| 68 | 
		/// of the successive shortest path algorithm for finding a  | 
|
| 69 | 
		/// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows,  | 
|
| 70 | 
		/// \ref edmondskarp72theoretical. It is an efficient dual  | 
|
| 71 | 
		/// solution method.  | 
|
| 72 | 
		///  | 
|
| 73 | 
		/// Most of the parameters of the problem (except for the digraph)  | 
|
| 74 | 
		/// can be given using separate functions, and the algorithm can be  | 
|
| 75 | 
		/// executed using the \ref run() function. If some parameters are not  | 
|
| 76 | 
		/// specified, then default values will be used.  | 
|
| 77 | 
		///  | 
|
| 78 | 
		/// \tparam GR The digraph type the algorithm runs on.  | 
|
| 79 | 
		/// \tparam V The number type used for flow amounts, capacity bounds  | 
|
| 80 | 
		/// and supply values in the algorithm. By default, it is \c int.  | 
|
| 81 | 
		/// \tparam C The number type used for costs and potentials in the  | 
|
| 82 | 
		/// algorithm. By default, it is the same as \c V.  | 
|
| 83 | 
		/// \tparam TR The traits class that defines various types used by the  | 
|
| 84 | 
		/// algorithm. By default, it is \ref CapacityScalingDefaultTraits  | 
|
| 85 | 
		/// "CapacityScalingDefaultTraits<GR, V, C>".  | 
|
| 86 | 
		/// In most cases, this parameter should not be set directly,  | 
|
| 87 | 
		/// consider to use the named template parameters instead.  | 
|
| 88 | 
		///  | 
|
| 89 | 
		/// \warning Both number types must be signed and all input data must  | 
|
| 90 | 
		/// be integer.  | 
|
| 91 | 
		/// \warning This algorithm does not support negative costs for such  | 
|
| 92 | 
		/// arcs that have infinite upper bound.  | 
|
| 93 | 
		#ifdef DOXYGEN  | 
|
| 94 | 
		template <typename GR, typename V, typename C, typename TR>  | 
|
| 95 | 
		#else  | 
|
| 96 | 
		template < typename GR, typename V = int, typename C = V,  | 
|
| 97 | 
		typename TR = CapacityScalingDefaultTraits<GR, V, C> >  | 
|
| 98 | 
		#endif  | 
|
| 99 | 
		class CapacityScaling  | 
|
| 100 | 
		  {
	 | 
|
| 101 | 
		public:  | 
|
| 102 | 
		 | 
|
| 103 | 
		/// The type of the digraph  | 
|
| 104 | 
		typedef typename TR::Digraph Digraph;  | 
|
| 105 | 
		/// The type of the flow amounts, capacity bounds and supply values  | 
|
| 106 | 
		typedef typename TR::Value Value;  | 
|
| 107 | 
		/// The type of the arc costs  | 
|
| 108 | 
		typedef typename TR::Cost Cost;  | 
|
| 109 | 
		 | 
|
| 110 | 
		/// The type of the heap used for internal Dijkstra computations  | 
|
| 111 | 
		typedef typename TR::Heap Heap;  | 
|
| 112 | 
		 | 
|
| 113 | 
		/// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm  | 
|
| 114 | 
		typedef TR Traits;  | 
|
| 115 | 
		 | 
|
| 116 | 
		public:  | 
|
| 117 | 
		 | 
|
| 118 | 
		/// \brief Problem type constants for the \c run() function.  | 
|
| 119 | 
		///  | 
|
| 120 | 
		/// Enum type containing the problem type constants that can be  | 
|
| 121 | 
		/// returned by the \ref run() function of the algorithm.  | 
|
| 122 | 
		    enum ProblemType {
	 | 
|
| 123 | 
		/// The problem has no feasible solution (flow).  | 
|
| 124 | 
		INFEASIBLE,  | 
|
| 125 | 
		/// The problem has optimal solution (i.e. it is feasible and  | 
|
| 126 | 
		/// bounded), and the algorithm has found optimal flow and node  | 
|
| 127 | 
		/// potentials (primal and dual solutions).  | 
|
| 128 | 
		OPTIMAL,  | 
|
| 129 | 
		/// The digraph contains an arc of negative cost and infinite  | 
|
| 130 | 
		/// upper bound. It means that the objective function is unbounded  | 
|
| 131 | 
		/// on that arc, however, note that it could actually be bounded  | 
|
| 132 | 
		/// over the feasible flows, but this algroithm cannot handle  | 
|
| 133 | 
		/// these cases.  | 
|
| 134 | 
		UNBOUNDED  | 
|
| 135 | 
		};  | 
|
| 136 | 
		 | 
|
| 137 | 
		private:  | 
|
| 138 | 
		 | 
|
| 139 | 
		TEMPLATE_DIGRAPH_TYPEDEFS(GR);  | 
|
| 140 | 
		 | 
|
| 141 | 
		typedef std::vector<int> IntVector;  | 
|
| 142 | 
		typedef std::vector<Value> ValueVector;  | 
|
| 143 | 
		typedef std::vector<Cost> CostVector;  | 
|
| 144 | 
		typedef std::vector<char> BoolVector;  | 
|
| 145 | 
		// Note: vector<char> is used instead of vector<bool> for efficiency reasons  | 
|
| 146 | 
		 | 
|
| 147 | 
		private:  | 
|
| 148 | 
		 | 
|
| 149 | 
		// Data related to the underlying digraph  | 
|
| 150 | 
		const GR &_graph;  | 
|
| 151 | 
		int _node_num;  | 
|
| 152 | 
		int _arc_num;  | 
|
| 153 | 
		int _res_arc_num;  | 
|
| 154 | 
		int _root;  | 
|
| 155 | 
		 | 
|
| 156 | 
		// Parameters of the problem  | 
|
| 157 | 
		bool _have_lower;  | 
|
| 158 | 
		Value _sum_supply;  | 
|
| 159 | 
		 | 
|
| 160 | 
		// Data structures for storing the digraph  | 
|
| 161 | 
		IntNodeMap _node_id;  | 
|
| 162 | 
		IntArcMap _arc_idf;  | 
|
| 163 | 
		IntArcMap _arc_idb;  | 
|
| 164 | 
		IntVector _first_out;  | 
|
| 165 | 
		BoolVector _forward;  | 
|
| 166 | 
		IntVector _source;  | 
|
| 167 | 
		IntVector _target;  | 
|
| 168 | 
		IntVector _reverse;  | 
|
| 169 | 
		 | 
|
| 170 | 
		// Node and arc data  | 
|
| 171 | 
		ValueVector _lower;  | 
|
| 172 | 
		ValueVector _upper;  | 
|
| 173 | 
		CostVector _cost;  | 
|
| 174 | 
		ValueVector _supply;  | 
|
| 175 | 
		 | 
|
| 176 | 
		ValueVector _res_cap;  | 
|
| 177 | 
		CostVector _pi;  | 
|
| 178 | 
		ValueVector _excess;  | 
|
| 179 | 
		IntVector _excess_nodes;  | 
|
| 180 | 
		IntVector _deficit_nodes;  | 
|
| 181 | 
		 | 
|
| 182 | 
		Value _delta;  | 
|
| 183 | 
		int _factor;  | 
|
| 184 | 
		IntVector _pred;  | 
|
| 185 | 
		 | 
|
| 186 | 
		public:  | 
|
| 187 | 
		 | 
|
| 188 | 
		/// \brief Constant for infinite upper bounds (capacities).  | 
|
| 189 | 
		///  | 
|
| 190 | 
		/// Constant for infinite upper bounds (capacities).  | 
|
| 191 | 
		/// It is \c std::numeric_limits<Value>::infinity() if available,  | 
|
| 192 | 
		/// \c std::numeric_limits<Value>::max() otherwise.  | 
|
| 193 | 
		const Value INF;  | 
|
| 194 | 
		 | 
|
| 195 | 
		private:  | 
|
| 196 | 
		 | 
|
| 197 | 
		// Special implementation of the Dijkstra algorithm for finding  | 
|
| 198 | 
		// shortest paths in the residual network of the digraph with  | 
|
| 199 | 
		// respect to the reduced arc costs and modifying the node  | 
|
| 200 | 
		// potentials according to the found distance labels.  | 
|
| 201 | 
		class ResidualDijkstra  | 
|
| 202 | 
		    {
	 | 
|
| 203 | 
		private:  | 
|
| 204 | 
		 | 
|
| 205 | 
		int _node_num;  | 
|
| 206 | 
		bool _geq;  | 
|
| 207 | 
		const IntVector &_first_out;  | 
|
| 208 | 
		const IntVector &_target;  | 
|
| 209 | 
		const CostVector &_cost;  | 
|
| 210 | 
		const ValueVector &_res_cap;  | 
|
| 211 | 
		const ValueVector &_excess;  | 
|
| 212 | 
		CostVector &_pi;  | 
|
| 213 | 
		IntVector &_pred;  | 
|
| 214 | 
		 | 
|
| 215 | 
		IntVector _proc_nodes;  | 
|
| 216 | 
		CostVector _dist;  | 
|
| 217 | 
		 | 
|
| 218 | 
		public:  | 
|
| 219 | 
		 | 
|
| 220 | 
		ResidualDijkstra(CapacityScaling& cs) :  | 
|
| 221 | 
		_node_num(cs._node_num), _geq(cs._sum_supply < 0),  | 
|
| 222 | 
		_first_out(cs._first_out), _target(cs._target), _cost(cs._cost),  | 
|
| 223 | 
		_res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),  | 
|
| 224 | 
		_pred(cs._pred), _dist(cs._node_num)  | 
|
| 225 | 
		      {}
	 | 
|
| 226 | 
		 | 
|
| 227 | 
		      int run(int s, Value delta = 1) {
	 | 
|
| 228 | 
		RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);  | 
|
| 229 | 
		Heap heap(heap_cross_ref);  | 
|
| 230 | 
		heap.push(s, 0);  | 
|
| 231 | 
		_pred[s] = -1;  | 
|
| 232 | 
		_proc_nodes.clear();  | 
|
| 233 | 
		 | 
|
| 234 | 
		// Process nodes  | 
|
| 235 | 
		        while (!heap.empty() && _excess[heap.top()] > -delta) {
	 | 
|
| 236 | 
		int u = heap.top(), v;  | 
|
| 237 | 
		Cost d = heap.prio() + _pi[u], dn;  | 
|
| 238 | 
		_dist[u] = heap.prio();  | 
|
| 239 | 
		_proc_nodes.push_back(u);  | 
|
| 240 | 
		heap.pop();  | 
|
| 241 | 
		 | 
|
| 242 | 
		// Traverse outgoing residual arcs  | 
|
| 243 | 
		int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;  | 
|
| 244 | 
		          for (int a = _first_out[u]; a != last_out; ++a) {
	 | 
|
| 245 | 
		if (_res_cap[a] < delta) continue;  | 
|
| 246 | 
		v = _target[a];  | 
|
| 247 | 
		            switch (heap.state(v)) {
	 | 
|
| 248 | 
		case Heap::PRE_HEAP:  | 
|
| 249 | 
		heap.push(v, d + _cost[a] - _pi[v]);  | 
|
| 250 | 
		_pred[v] = a;  | 
|
| 251 | 
		break;  | 
|
| 252 | 
		case Heap::IN_HEAP:  | 
|
| 253 | 
		dn = d + _cost[a] - _pi[v];  | 
|
| 254 | 
		                if (dn < heap[v]) {
	 | 
|
| 255 | 
		heap.decrease(v, dn);  | 
|
| 256 | 
		_pred[v] = a;  | 
|
| 257 | 
		}  | 
|
| 258 | 
		break;  | 
|
| 259 | 
		case Heap::POST_HEAP:  | 
|
| 260 | 
		break;  | 
|
| 261 | 
		}  | 
|
| 262 | 
		}  | 
|
| 263 | 
		}  | 
|
| 264 | 
		if (heap.empty()) return -1;  | 
|
| 265 | 
		 | 
|
| 266 | 
		// Update potentials of processed nodes  | 
|
| 267 | 
		int t = heap.top();  | 
|
| 268 | 
		Cost dt = heap.prio();  | 
|
| 269 | 
		        for (int i = 0; i < int(_proc_nodes.size()); ++i) {
	 | 
|
| 270 | 
		_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;  | 
|
| 271 | 
		}  | 
|
| 272 | 
		 | 
|
| 273 | 
		return t;  | 
|
| 274 | 
		}  | 
|
| 275 | 
		 | 
|
| 276 | 
		}; //class ResidualDijkstra  | 
|
| 277 | 
		 | 
|
| 278 | 
		public:  | 
|
| 279 | 
		 | 
|
| 280 | 
		/// \name Named Template Parameters  | 
|
| 281 | 
		    /// @{
	 | 
|
| 282 | 
		 | 
|
| 283 | 
		template <typename T>  | 
|
| 284 | 
		    struct SetHeapTraits : public Traits {
	 | 
|
| 285 | 
		typedef T Heap;  | 
|
| 286 | 
		};  | 
|
| 287 | 
		 | 
|
| 288 | 
		/// \brief \ref named-templ-param "Named parameter" for setting  | 
|
| 289 | 
		/// \c Heap type.  | 
|
| 290 | 
		///  | 
|
| 291 | 
		/// \ref named-templ-param "Named parameter" for setting \c Heap  | 
|
| 292 | 
		/// type, which is used for internal Dijkstra computations.  | 
|
| 293 | 
		/// It must conform to the \ref lemon::concepts::Heap "Heap" concept,  | 
|
| 294 | 
		/// its priority type must be \c Cost and its cross reference type  | 
|
| 295 | 
		/// must be \ref RangeMap "RangeMap<int>".  | 
|
| 296 | 
		template <typename T>  | 
|
| 297 | 
		struct SetHeap  | 
|
| 298 | 
		      : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
	 | 
|
| 299 | 
		typedef CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;  | 
|
| 300 | 
		};  | 
|
| 301 | 
		 | 
|
| 302 | 
		/// @}  | 
|
| 303 | 
		 | 
|
| 304 | 
		protected:  | 
|
| 305 | 
		 | 
|
| 306 | 
		    CapacityScaling() {}
	 | 
|
| 307 | 
		 | 
|
| 308 | 
		public:  | 
|
| 309 | 
		 | 
|
| 310 | 
		/// \brief Constructor.  | 
|
| 311 | 
		///  | 
|
| 312 | 
		/// The constructor of the class.  | 
|
| 313 | 
		///  | 
|
| 314 | 
		/// \param graph The digraph the algorithm runs on.  | 
|
| 315 | 
		CapacityScaling(const GR& graph) :  | 
|
| 316 | 
		_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),  | 
|
| 317 | 
		INF(std::numeric_limits<Value>::has_infinity ?  | 
|
| 318 | 
		std::numeric_limits<Value>::infinity() :  | 
|
| 319 | 
		std::numeric_limits<Value>::max())  | 
|
| 320 | 
		    {
	 | 
|
| 321 | 
		// Check the number types  | 
|
| 322 | 
		LEMON_ASSERT(std::numeric_limits<Value>::is_signed,  | 
|
| 323 | 
		"The flow type of CapacityScaling must be signed");  | 
|
| 324 | 
		LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,  | 
|
| 325 | 
		"The cost type of CapacityScaling must be signed");  | 
|
| 326 | 
		 | 
|
| 327 | 
		// Reset data structures  | 
|
| 328 | 
		reset();  | 
|
| 329 | 
		}  | 
|
| 330 | 
		 | 
|
| 331 | 
		/// \name Parameters  | 
|
| 332 | 
		/// The parameters of the algorithm can be specified using these  | 
|
| 333 | 
		/// functions.  | 
|
| 334 | 
		 | 
|
| 335 | 
		    /// @{
	 | 
|
| 336 | 
		 | 
|
| 337 | 
		/// \brief Set the lower bounds on the arcs.  | 
|
| 338 | 
		///  | 
|
| 339 | 
		/// This function sets the lower bounds on the arcs.  | 
|
| 340 | 
		/// If it is not used before calling \ref run(), the lower bounds  | 
|
| 341 | 
		/// will be set to zero on all arcs.  | 
|
| 342 | 
		///  | 
|
| 343 | 
		/// \param map An arc map storing the lower bounds.  | 
|
| 344 | 
		/// Its \c Value type must be convertible to the \c Value type  | 
|
| 345 | 
		/// of the algorithm.  | 
|
| 346 | 
		///  | 
|
| 347 | 
		/// \return <tt>(*this)</tt>  | 
|
| 348 | 
		template <typename LowerMap>  | 
|
| 349 | 
		    CapacityScaling& lowerMap(const LowerMap& map) {
	 | 
|
| 350 | 
		_have_lower = true;  | 
|
| 351 | 
		      for (ArcIt a(_graph); a != INVALID; ++a) {
	 | 
|
| 352 | 
		_lower[_arc_idf[a]] = map[a];  | 
|
| 353 | 
		_lower[_arc_idb[a]] = map[a];  | 
|
| 354 | 
		}  | 
|
| 355 | 
		return *this;  | 
|
| 356 | 
		}  | 
|
| 357 | 
		 | 
|
| 358 | 
		/// \brief Set the upper bounds (capacities) on the arcs.  | 
|
| 359 | 
		///  | 
|
| 360 | 
		/// This function sets the upper bounds (capacities) on the arcs.  | 
|
| 361 | 
		/// If it is not used before calling \ref run(), the upper bounds  | 
|
| 362 | 
		/// will be set to \ref INF on all arcs (i.e. the flow value will be  | 
|
| 363 | 
		/// unbounded from above).  | 
|
| 364 | 
		///  | 
|
| 365 | 
		/// \param map An arc map storing the upper bounds.  | 
|
| 366 | 
		/// Its \c Value type must be convertible to the \c Value type  | 
|
| 367 | 
		/// of the algorithm.  | 
|
| 368 | 
		///  | 
|
| 369 | 
		/// \return <tt>(*this)</tt>  | 
|
| 370 | 
		template<typename UpperMap>  | 
|
| 371 | 
		    CapacityScaling& upperMap(const UpperMap& map) {
	 | 
|
| 372 | 
		      for (ArcIt a(_graph); a != INVALID; ++a) {
	 | 
|
| 373 | 
		_upper[_arc_idf[a]] = map[a];  | 
|
| 374 | 
		}  | 
|
| 375 | 
		return *this;  | 
|
| 376 | 
		}  | 
|
| 377 | 
		 | 
|
| 378 | 
		/// \brief Set the costs of the arcs.  | 
|
| 379 | 
		///  | 
|
| 380 | 
		/// This function sets the costs of the arcs.  | 
|
| 381 | 
		/// If it is not used before calling \ref run(), the costs  | 
|
| 382 | 
		/// will be set to \c 1 on all arcs.  | 
|
| 383 | 
		///  | 
|
| 384 | 
		/// \param map An arc map storing the costs.  | 
|
| 385 | 
		/// Its \c Value type must be convertible to the \c Cost type  | 
|
| 386 | 
		/// of the algorithm.  | 
|
| 387 | 
		///  | 
|
| 388 | 
		/// \return <tt>(*this)</tt>  | 
|
| 389 | 
		template<typename CostMap>  | 
|
| 390 | 
		    CapacityScaling& costMap(const CostMap& map) {
	 | 
|
| 391 | 
		      for (ArcIt a(_graph); a != INVALID; ++a) {
	 | 
|
| 392 | 
		_cost[_arc_idf[a]] = map[a];  | 
|
| 393 | 
		_cost[_arc_idb[a]] = -map[a];  | 
|
| 394 | 
		}  | 
|
| 395 | 
		return *this;  | 
|
| 396 | 
		}  | 
|
| 397 | 
		 | 
|
| 398 | 
		/// \brief Set the supply values of the nodes.  | 
|
| 399 | 
		///  | 
|
| 400 | 
		/// This function sets the supply values of the nodes.  | 
|
| 401 | 
		/// If neither this function nor \ref stSupply() is used before  | 
|
| 402 | 
		/// calling \ref run(), the supply of each node will be set to zero.  | 
|
| 403 | 
		///  | 
|
| 404 | 
		/// \param map A node map storing the supply values.  | 
|
| 405 | 
		/// Its \c Value type must be convertible to the \c Value type  | 
|
| 406 | 
		/// of the algorithm.  | 
|
| 407 | 
		///  | 
|
| 408 | 
		/// \return <tt>(*this)</tt>  | 
|
| 409 | 
		template<typename SupplyMap>  | 
|
| 410 | 
		    CapacityScaling& supplyMap(const SupplyMap& map) {
	 | 
|
| 411 | 
		      for (NodeIt n(_graph); n != INVALID; ++n) {
	 | 
|
| 412 | 
		_supply[_node_id[n]] = map[n];  | 
|
| 413 | 
		}  | 
|
| 414 | 
		return *this;  | 
|
| 415 | 
		}  | 
|
| 416 | 
		 | 
|
| 417 | 
		/// \brief Set single source and target nodes and a supply value.  | 
|
| 418 | 
		///  | 
|
| 419 | 
		/// This function sets a single source node and a single target node  | 
|
| 420 | 
		/// and the required flow value.  | 
|
| 421 | 
		/// If neither this function nor \ref supplyMap() is used before  | 
|
| 422 | 
		/// calling \ref run(), the supply of each node will be set to zero.  | 
|
| 423 | 
		///  | 
|
| 424 | 
		/// Using this function has the same effect as using \ref supplyMap()  | 
|
| 425 | 
		/// with such a map in which \c k is assigned to \c s, \c -k is  | 
|
| 426 | 
		/// assigned to \c t and all other nodes have zero supply value.  | 
|
| 427 | 
		///  | 
|
| 428 | 
		/// \param s The source node.  | 
|
| 429 | 
		/// \param t The target node.  | 
|
| 430 | 
		/// \param k The required amount of flow from node \c s to node \c t  | 
|
| 431 | 
		/// (i.e. the supply of \c s and the demand of \c t).  | 
|
| 432 | 
		///  | 
|
| 433 | 
		/// \return <tt>(*this)</tt>  | 
|
| 434 | 
		    CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
	 | 
|
| 435 | 
		      for (int i = 0; i != _node_num; ++i) {
	 | 
|
| 436 | 
		_supply[i] = 0;  | 
|
| 437 | 
		}  | 
|
| 438 | 
		_supply[_node_id[s]] = k;  | 
|
| 439 | 
		_supply[_node_id[t]] = -k;  | 
|
| 440 | 
		return *this;  | 
|
| 441 | 
		}  | 
|
| 442 | 
		 | 
|
| 443 | 
		/// @}  | 
|
| 444 | 
		 | 
|
| 445 | 
		/// \name Execution control  | 
|
| 446 | 
		/// The algorithm can be executed using \ref run().  | 
|
| 447 | 
		 | 
|
| 448 | 
		    /// @{
	 | 
|
| 449 | 
		 | 
|
| 450 | 
		/// \brief Run the algorithm.  | 
|
| 451 | 
		///  | 
|
| 452 | 
		/// This function runs the algorithm.  | 
|
| 453 | 
		/// The paramters can be specified using functions \ref lowerMap(),  | 
|
| 454 | 
		/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().  | 
|
| 455 | 
		/// For example,  | 
|
| 456 | 
		/// \code  | 
|
| 457 | 
		/// CapacityScaling<ListDigraph> cs(graph);  | 
|
| 458 | 
		/// cs.lowerMap(lower).upperMap(upper).costMap(cost)  | 
|
| 459 | 
		/// .supplyMap(sup).run();  | 
|
| 460 | 
		/// \endcode  | 
|
| 461 | 
		///  | 
|
| 462 | 
		/// This function can be called more than once. All the given parameters  | 
|
| 463 | 
		/// are kept for the next call, unless \ref resetParams() or \ref reset()  | 
|
| 464 | 
		/// is used, thus only the modified parameters have to be set again.  | 
|
| 465 | 
		/// If the underlying digraph was also modified after the construction  | 
|
| 466 | 
		/// of the class (or the last \ref reset() call), then the \ref reset()  | 
|
| 467 | 
		/// function must be called.  | 
|
| 468 | 
		///  | 
|
| 469 | 
		/// \param factor The capacity scaling factor. It must be larger than  | 
|
| 470 | 
		/// one to use scaling. If it is less or equal to one, then scaling  | 
|
| 471 | 
		/// will be disabled.  | 
|
| 472 | 
		///  | 
|
| 473 | 
		/// \return \c INFEASIBLE if no feasible flow exists,  | 
|
| 474 | 
		/// \n \c OPTIMAL if the problem has optimal solution  | 
|
| 475 | 
		/// (i.e. it is feasible and bounded), and the algorithm has found  | 
|
| 476 | 
		/// optimal flow and node potentials (primal and dual solutions),  | 
|
| 477 | 
		/// \n \c UNBOUNDED if the digraph contains an arc of negative cost  | 
|
| 478 | 
		/// and infinite upper bound. It means that the objective function  | 
|
| 479 | 
		/// is unbounded on that arc, however, note that it could actually be  | 
|
| 480 | 
		/// bounded over the feasible flows, but this algroithm cannot handle  | 
|
| 481 | 
		/// these cases.  | 
|
| 482 | 
		///  | 
|
| 483 | 
		/// \see ProblemType  | 
|
| 484 | 
		/// \see resetParams(), reset()  | 
|
| 485 | 
		    ProblemType run(int factor = 4) {
	 | 
|
| 486 | 
		_factor = factor;  | 
|
| 487 | 
		ProblemType pt = init();  | 
|
| 488 | 
		if (pt != OPTIMAL) return pt;  | 
|
| 489 | 
		return start();  | 
|
| 490 | 
		}  | 
|
| 491 | 
		 | 
|
| 492 | 
		/// \brief Reset all the parameters that have been given before.  | 
|
| 493 | 
		///  | 
|
| 494 | 
		/// This function resets all the paramaters that have been given  | 
|
| 495 | 
		/// before using functions \ref lowerMap(), \ref upperMap(),  | 
|
| 496 | 
		/// \ref costMap(), \ref supplyMap(), \ref stSupply().  | 
|
| 497 | 
		///  | 
|
| 498 | 
		/// It is useful for multiple \ref run() calls. Basically, all the given  | 
|
| 499 | 
		/// parameters are kept for the next \ref run() call, unless  | 
|
| 500 | 
		/// \ref resetParams() or \ref reset() is used.  | 
|
| 501 | 
		/// If the underlying digraph was also modified after the construction  | 
|
| 502 | 
		/// of the class or the last \ref reset() call, then the \ref reset()  | 
|
| 503 | 
		/// function must be used, otherwise \ref resetParams() is sufficient.  | 
|
| 504 | 
		///  | 
|
| 505 | 
		/// For example,  | 
|
| 506 | 
		/// \code  | 
|
| 507 | 
		/// CapacityScaling<ListDigraph> cs(graph);  | 
|
| 508 | 
		///  | 
|
| 509 | 
		/// // First run  | 
|
| 510 | 
		/// cs.lowerMap(lower).upperMap(upper).costMap(cost)  | 
|
| 511 | 
		/// .supplyMap(sup).run();  | 
|
| 512 | 
		///  | 
|
| 513 | 
		/// // Run again with modified cost map (resetParams() is not called,  | 
|
| 514 | 
		/// // so only the cost map have to be set again)  | 
|
| 515 | 
		/// cost[e] += 100;  | 
|
| 516 | 
		/// cs.costMap(cost).run();  | 
|
| 517 | 
		///  | 
|
| 518 | 
		/// // Run again from scratch using resetParams()  | 
|
| 519 | 
		/// // (the lower bounds will be set to zero on all arcs)  | 
|
| 520 | 
		/// cs.resetParams();  | 
|
| 521 | 
		/// cs.upperMap(capacity).costMap(cost)  | 
|
| 522 | 
		/// .supplyMap(sup).run();  | 
|
| 523 | 
		/// \endcode  | 
|
| 524 | 
		///  | 
|
| 525 | 
		/// \return <tt>(*this)</tt>  | 
|
| 526 | 
		///  | 
|
| 527 | 
		/// \see reset(), run()  | 
|
| 528 | 
		    CapacityScaling& resetParams() {
	 | 
|
| 529 | 
		      for (int i = 0; i != _node_num; ++i) {
	 | 
|
| 530 | 
		_supply[i] = 0;  | 
|
| 531 | 
		}  | 
|
| 532 | 
		      for (int j = 0; j != _res_arc_num; ++j) {
	 | 
|
| 533 | 
		_lower[j] = 0;  | 
|
| 534 | 
		_upper[j] = INF;  | 
|
| 535 | 
		_cost[j] = _forward[j] ? 1 : -1;  | 
|
| 536 | 
		}  | 
|
| 537 | 
		_have_lower = false;  | 
|
| 538 | 
		return *this;  | 
|
| 539 | 
		}  | 
|
| 540 | 
		 | 
|
| 541 | 
		/// \brief Reset the internal data structures and all the parameters  | 
|
| 542 | 
		/// that have been given before.  | 
|
| 543 | 
		///  | 
|
| 544 | 
		/// This function resets the internal data structures and all the  | 
|
| 545 | 
		/// paramaters that have been given before using functions \ref lowerMap(),  | 
|
| 546 | 
		/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().  | 
|
| 547 | 
		///  | 
|
| 548 | 
		/// It is useful for multiple \ref run() calls. Basically, all the given  | 
|
| 549 | 
		/// parameters are kept for the next \ref run() call, unless  | 
|
| 550 | 
		/// \ref resetParams() or \ref reset() is used.  | 
|
| 551 | 
		/// If the underlying digraph was also modified after the construction  | 
|
| 552 | 
		/// of the class or the last \ref reset() call, then the \ref reset()  | 
|
| 553 | 
		/// function must be used, otherwise \ref resetParams() is sufficient.  | 
|
| 554 | 
		///  | 
|
| 555 | 
		/// See \ref resetParams() for examples.  | 
|
| 556 | 
		///  | 
|
| 557 | 
		/// \return <tt>(*this)</tt>  | 
|
| 558 | 
		///  | 
|
| 559 | 
		/// \see resetParams(), run()  | 
|
| 560 | 
		    CapacityScaling& reset() {
	 | 
|
| 561 | 
		// Resize vectors  | 
|
| 562 | 
		_node_num = countNodes(_graph);  | 
|
| 563 | 
		_arc_num = countArcs(_graph);  | 
|
| 564 | 
		_res_arc_num = 2 * (_arc_num + _node_num);  | 
|
| 565 | 
		_root = _node_num;  | 
|
| 566 | 
		++_node_num;  | 
|
| 567 | 
		 | 
|
| 568 | 
		_first_out.resize(_node_num + 1);  | 
|
| 569 | 
		_forward.resize(_res_arc_num);  | 
|
| 570 | 
		_source.resize(_res_arc_num);  | 
|
| 571 | 
		_target.resize(_res_arc_num);  | 
|
| 572 | 
		_reverse.resize(_res_arc_num);  | 
|
| 573 | 
		 | 
|
| 574 | 
		_lower.resize(_res_arc_num);  | 
|
| 575 | 
		_upper.resize(_res_arc_num);  | 
|
| 576 | 
		_cost.resize(_res_arc_num);  | 
|
| 577 | 
		_supply.resize(_node_num);  | 
|
| 578 | 
		 | 
|
| 579 | 
		_res_cap.resize(_res_arc_num);  | 
|
| 580 | 
		_pi.resize(_node_num);  | 
|
| 581 | 
		_excess.resize(_node_num);  | 
|
| 582 | 
		_pred.resize(_node_num);  | 
|
| 583 | 
		 | 
|
| 584 | 
		// Copy the graph  | 
|
| 585 | 
		int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;  | 
|
| 586 | 
		      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
	 | 
|
| 587 | 
		_node_id[n] = i;  | 
|
| 588 | 
		}  | 
|
| 589 | 
		i = 0;  | 
|
| 590 | 
		      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
	 | 
|
| 591 | 
		_first_out[i] = j;  | 
|
| 592 | 
		        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
	 | 
|
| 593 | 
		_arc_idf[a] = j;  | 
|
| 594 | 
		_forward[j] = true;  | 
|
| 595 | 
		_source[j] = i;  | 
|
| 596 | 
		_target[j] = _node_id[_graph.runningNode(a)];  | 
|
| 597 | 
		}  | 
|
| 598 | 
		        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
	 | 
|
| 599 | 
		_arc_idb[a] = j;  | 
|
| 600 | 
		_forward[j] = false;  | 
|
| 601 | 
		_source[j] = i;  | 
|
| 602 | 
		_target[j] = _node_id[_graph.runningNode(a)];  | 
|
| 603 | 
		}  | 
|
| 604 | 
		_forward[j] = false;  | 
|
| 605 | 
		_source[j] = i;  | 
|
| 606 | 
		_target[j] = _root;  | 
|
| 607 | 
		_reverse[j] = k;  | 
|
| 608 | 
		_forward[k] = true;  | 
|
| 609 | 
		_source[k] = _root;  | 
|
| 610 | 
		_target[k] = i;  | 
|
| 611 | 
		_reverse[k] = j;  | 
|
| 612 | 
		++j; ++k;  | 
|
| 613 | 
		}  | 
|
| 614 | 
		_first_out[i] = j;  | 
|
| 615 | 
		_first_out[_node_num] = k;  | 
|
| 616 | 
		      for (ArcIt a(_graph); a != INVALID; ++a) {
	 | 
|
| 617 | 
		int fi = _arc_idf[a];  | 
|
| 618 | 
		int bi = _arc_idb[a];  | 
|
| 619 | 
		_reverse[fi] = bi;  | 
|
| 620 | 
		_reverse[bi] = fi;  | 
|
| 621 | 
		}  | 
|
| 622 | 
		 | 
|
| 623 | 
		// Reset parameters  | 
|
| 624 | 
		resetParams();  | 
|
| 625 | 
		return *this;  | 
|
| 626 | 
		}  | 
|
| 627 | 
		 | 
|
| 628 | 
		/// @}  | 
|
| 629 | 
		 | 
|
| 630 | 
		/// \name Query Functions  | 
|
| 631 | 
		/// The results of the algorithm can be obtained using these  | 
|
| 632 | 
		/// functions.\n  | 
|
| 633 | 
		/// The \ref run() function must be called before using them.  | 
|
| 634 | 
		 | 
|
| 635 | 
		    /// @{
	 | 
|
| 636 | 
		 | 
|
| 637 | 
		/// \brief Return the total cost of the found flow.  | 
|
| 638 | 
		///  | 
|
| 639 | 
		/// This function returns the total cost of the found flow.  | 
|
| 640 | 
		/// Its complexity is O(e).  | 
|
| 641 | 
		///  | 
|
| 642 | 
		/// \note The return type of the function can be specified as a  | 
|
| 643 | 
		/// template parameter. For example,  | 
|
| 644 | 
		/// \code  | 
|
| 645 | 
		/// cs.totalCost<double>();  | 
|
| 646 | 
		/// \endcode  | 
|
| 647 | 
		/// It is useful if the total cost cannot be stored in the \c Cost  | 
|
| 648 | 
		/// type of the algorithm, which is the default return type of the  | 
|
| 649 | 
		/// function.  | 
|
| 650 | 
		///  | 
|
| 651 | 
		/// \pre \ref run() must be called before using this function.  | 
|
| 652 | 
		template <typename Number>  | 
|
| 653 | 
		    Number totalCost() const {
	 | 
|
| 654 | 
		Number c = 0;  | 
|
| 655 | 
		      for (ArcIt a(_graph); a != INVALID; ++a) {
	 | 
|
| 656 | 
		int i = _arc_idb[a];  | 
|
| 657 | 
		c += static_cast<Number>(_res_cap[i]) *  | 
|
| 658 | 
		(-static_cast<Number>(_cost[i]));  | 
|
| 659 | 
		}  | 
|
| 660 | 
		return c;  | 
|
| 661 | 
		}  | 
|
| 662 | 
		 | 
|
| 663 | 
		#ifndef DOXYGEN  | 
|
| 664 | 
		    Cost totalCost() const {
	 | 
|
| 665 | 
		return totalCost<Cost>();  | 
|
| 666 | 
		}  | 
|
| 667 | 
		#endif  | 
|
| 668 | 
		 | 
|
| 669 | 
		/// \brief Return the flow on the given arc.  | 
|
| 670 | 
		///  | 
|
| 671 | 
		/// This function returns the flow on the given arc.  | 
|
| 672 | 
		///  | 
|
| 673 | 
		/// \pre \ref run() must be called before using this function.  | 
|
| 674 | 
		    Value flow(const Arc& a) const {
	 | 
|
| 675 | 
		return _res_cap[_arc_idb[a]];  | 
|
| 676 | 
		}  | 
|
| 677 | 
		 | 
|
| 678 | 
		/// \brief Return the flow map (the primal solution).  | 
|
| 679 | 
		///  | 
|
| 680 | 
		/// This function copies the flow value on each arc into the given  | 
|
| 681 | 
		/// map. The \c Value type of the algorithm must be convertible to  | 
|
| 682 | 
		/// the \c Value type of the map.  | 
|
| 683 | 
		///  | 
|
| 684 | 
		/// \pre \ref run() must be called before using this function.  | 
|
| 685 | 
		template <typename FlowMap>  | 
|
| 686 | 
		    void flowMap(FlowMap &map) const {
	 | 
|
| 687 | 
		      for (ArcIt a(_graph); a != INVALID; ++a) {
	 | 
|
| 688 | 
		map.set(a, _res_cap[_arc_idb[a]]);  | 
|
| 689 | 
		}  | 
|
| 690 | 
		}  | 
|
| 691 | 
		 | 
|
| 692 | 
		/// \brief Return the potential (dual value) of the given node.  | 
|
| 693 | 
		///  | 
|
| 694 | 
		/// This function returns the potential (dual value) of the  | 
|
| 695 | 
		/// given node.  | 
|
| 696 | 
		///  | 
|
| 697 | 
		/// \pre \ref run() must be called before using this function.  | 
|
| 698 | 
		    Cost potential(const Node& n) const {
	 | 
|
| 699 | 
		return _pi[_node_id[n]];  | 
|
| 700 | 
		}  | 
|
| 701 | 
		 | 
|
| 702 | 
		/// \brief Return the potential map (the dual solution).  | 
|
| 703 | 
		///  | 
|
| 704 | 
		/// This function copies the potential (dual value) of each node  | 
|
| 705 | 
		/// into the given map.  | 
|
| 706 | 
		/// The \c Cost type of the algorithm must be convertible to the  | 
|
| 707 | 
		/// \c Value type of the map.  | 
|
| 708 | 
		///  | 
|
| 709 | 
		/// \pre \ref run() must be called before using this function.  | 
|
| 710 | 
		template <typename PotentialMap>  | 
|
| 711 | 
		    void potentialMap(PotentialMap &map) const {
	 | 
|
| 712 | 
		      for (NodeIt n(_graph); n != INVALID; ++n) {
	 | 
|
| 713 | 
		map.set(n, _pi[_node_id[n]]);  | 
|
| 714 | 
		}  | 
|
| 715 | 
		}  | 
|
| 716 | 
		 | 
|
| 717 | 
		/// @}  | 
|
| 718 | 
		 | 
|
| 719 | 
		private:  | 
|
| 720 | 
		 | 
|
| 721 | 
		// Initialize the algorithm  | 
|
| 722 | 
		    ProblemType init() {
	 | 
|
| 723 | 
		if (_node_num <= 1) return INFEASIBLE;  | 
|
| 724 | 
		 | 
|
| 725 | 
		// Check the sum of supply values  | 
|
| 726 | 
		_sum_supply = 0;  | 
|
| 727 | 
		      for (int i = 0; i != _root; ++i) {
	 | 
|
| 728 | 
		_sum_supply += _supply[i];  | 
|
| 729 | 
		}  | 
|
| 730 | 
		if (_sum_supply > 0) return INFEASIBLE;  | 
|
| 731 | 
		 | 
|
| 732 | 
		// Initialize vectors  | 
|
| 733 | 
		      for (int i = 0; i != _root; ++i) {
	 | 
|
| 734 | 
		_pi[i] = 0;  | 
|
| 735 | 
		_excess[i] = _supply[i];  | 
|
| 736 | 
		}  | 
|
| 737 | 
		 | 
|
| 738 | 
		// Remove non-zero lower bounds  | 
|
| 739 | 
		const Value MAX = std::numeric_limits<Value>::max();  | 
|
| 740 | 
		int last_out;  | 
|
| 741 | 
		      if (_have_lower) {
	 | 
|
| 742 | 
		        for (int i = 0; i != _root; ++i) {
	 | 
|
| 743 | 
		last_out = _first_out[i+1];  | 
|
| 744 | 
		          for (int j = _first_out[i]; j != last_out; ++j) {
	 | 
|
| 745 | 
		            if (_forward[j]) {
	 | 
|
| 746 | 
		Value c = _lower[j];  | 
|
| 747 | 
		              if (c >= 0) {
	 | 
|
| 748 | 
		_res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;  | 
|
| 749 | 
		              } else {
	 | 
|
| 750 | 
		_res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;  | 
|
| 751 | 
		}  | 
|
| 752 | 
		_excess[i] -= c;  | 
|
| 753 | 
		_excess[_target[j]] += c;  | 
|
| 754 | 
		            } else {
	 | 
|
| 755 | 
		_res_cap[j] = 0;  | 
|
| 756 | 
		}  | 
|
| 757 | 
		}  | 
|
| 758 | 
		}  | 
|
| 759 | 
		      } else {
	 | 
|
| 760 | 
		        for (int j = 0; j != _res_arc_num; ++j) {
	 | 
|
| 761 | 
		_res_cap[j] = _forward[j] ? _upper[j] : 0;  | 
|
| 762 | 
		}  | 
|
| 763 | 
		}  | 
|
| 764 | 
		 | 
|
| 765 | 
		// Handle negative costs  | 
|
| 766 | 
		      for (int i = 0; i != _root; ++i) {
	 | 
|
| 767 | 
		last_out = _first_out[i+1] - 1;  | 
|
| 768 | 
		        for (int j = _first_out[i]; j != last_out; ++j) {
	 | 
|
| 769 | 
		Value rc = _res_cap[j];  | 
|
| 770 | 
		          if (_cost[j] < 0 && rc > 0) {
	 | 
|
| 771 | 
		if (rc >= MAX) return UNBOUNDED;  | 
|
| 772 | 
		_excess[i] -= rc;  | 
|
| 773 | 
		_excess[_target[j]] += rc;  | 
|
| 774 | 
		_res_cap[j] = 0;  | 
|
| 775 | 
		_res_cap[_reverse[j]] += rc;  | 
|
| 776 | 
		}  | 
|
| 777 | 
		}  | 
|
| 778 | 
		}  | 
|
| 779 | 
		 | 
|
| 780 | 
		// Handle GEQ supply type  | 
|
| 781 | 
		      if (_sum_supply < 0) {
	 | 
|
| 782 | 
		_pi[_root] = 0;  | 
|
| 783 | 
		_excess[_root] = -_sum_supply;  | 
|
| 784 | 
		        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
	 | 
|
| 785 | 
		int ra = _reverse[a];  | 
|
| 786 | 
		_res_cap[a] = -_sum_supply + 1;  | 
|
| 787 | 
		_res_cap[ra] = 0;  | 
|
| 788 | 
		_cost[a] = 0;  | 
|
| 789 | 
		_cost[ra] = 0;  | 
|
| 790 | 
		}  | 
|
| 791 | 
		      } else {
	 | 
|
| 792 | 
		_pi[_root] = 0;  | 
|
| 793 | 
		_excess[_root] = 0;  | 
|
| 794 | 
		        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
	 | 
|
| 795 | 
		int ra = _reverse[a];  | 
|
| 796 | 
		_res_cap[a] = 1;  | 
|
| 797 | 
		_res_cap[ra] = 0;  | 
|
| 798 | 
		_cost[a] = 0;  | 
|
| 799 | 
		_cost[ra] = 0;  | 
|
| 800 | 
		}  | 
|
| 801 | 
		}  | 
|
| 802 | 
		 | 
|
| 803 | 
		// Initialize delta value  | 
|
| 804 | 
		      if (_factor > 1) {
	 | 
|
| 805 | 
		// With scaling  | 
|
| 806 | 
		Value max_sup = 0, max_dem = 0, max_cap = 0;  | 
|
| 807 | 
		        for (int i = 0; i != _root; ++i) {
	 | 
|
| 808 | 
		Value ex = _excess[i];  | 
|
| 809 | 
		if ( ex > max_sup) max_sup = ex;  | 
|
| 810 | 
		if (-ex > max_dem) max_dem = -ex;  | 
|
| 811 | 
		int last_out = _first_out[i+1] - 1;  | 
|
| 812 | 
		          for (int j = _first_out[i]; j != last_out; ++j) {
	 | 
|
| 813 | 
		if (_res_cap[j] > max_cap) max_cap = _res_cap[j];  | 
|
| 814 | 
		}  | 
|
| 815 | 
		}  | 
|
| 816 | 
		max_sup = std::min(std::min(max_sup, max_dem), max_cap);  | 
|
| 817 | 
		for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;  | 
|
| 818 | 
		      } else {
	 | 
|
| 819 | 
		// Without scaling  | 
|
| 820 | 
		_delta = 1;  | 
|
| 821 | 
		}  | 
|
| 822 | 
		 | 
|
| 823 | 
		return OPTIMAL;  | 
|
| 824 | 
		}  | 
|
| 825 | 
		 | 
|
| 826 | 
		    ProblemType start() {
	 | 
|
| 827 | 
		// Execute the algorithm  | 
|
| 828 | 
		ProblemType pt;  | 
|
| 829 | 
		if (_delta > 1)  | 
|
| 830 | 
		pt = startWithScaling();  | 
|
| 831 | 
		else  | 
|
| 832 | 
		pt = startWithoutScaling();  | 
|
| 833 | 
		 | 
|
| 834 | 
		// Handle non-zero lower bounds  | 
|
| 835 | 
		      if (_have_lower) {
	 | 
|
| 836 | 
		int limit = _first_out[_root];  | 
|
| 837 | 
		        for (int j = 0; j != limit; ++j) {
	 | 
|
| 838 | 
		if (!_forward[j]) _res_cap[j] += _lower[j];  | 
|
| 839 | 
		}  | 
|
| 840 | 
		}  | 
|
| 841 | 
		 | 
|
| 842 | 
		// Shift potentials if necessary  | 
|
| 843 | 
		Cost pr = _pi[_root];  | 
|
| 844 | 
		      if (_sum_supply < 0 || pr > 0) {
	 | 
|
| 845 | 
		        for (int i = 0; i != _node_num; ++i) {
	 | 
|
| 846 | 
		_pi[i] -= pr;  | 
|
| 847 | 
		}  | 
|
| 848 | 
		}  | 
|
| 849 | 
		 | 
|
| 850 | 
		return pt;  | 
|
| 851 | 
		}  | 
|
| 852 | 
		 | 
|
| 853 | 
		// Execute the capacity scaling algorithm  | 
|
| 854 | 
		    ProblemType startWithScaling() {
	 | 
|
| 855 | 
		// Perform capacity scaling phases  | 
|
| 856 | 
		int s, t;  | 
|
| 857 | 
		ResidualDijkstra _dijkstra(*this);  | 
|
| 858 | 
		      while (true) {
	 | 
|
| 859 | 
		// Saturate all arcs not satisfying the optimality condition  | 
|
| 860 | 
		int last_out;  | 
|
| 861 | 
		        for (int u = 0; u != _node_num; ++u) {
	 | 
|
| 862 | 
		last_out = _sum_supply < 0 ?  | 
|
| 863 | 
		_first_out[u+1] : _first_out[u+1] - 1;  | 
|
| 864 | 
		          for (int a = _first_out[u]; a != last_out; ++a) {
	 | 
|
| 865 | 
		int v = _target[a];  | 
|
| 866 | 
		Cost c = _cost[a] + _pi[u] - _pi[v];  | 
|
| 867 | 
		Value rc = _res_cap[a];  | 
|
| 868 | 
		            if (c < 0 && rc >= _delta) {
	 | 
|
| 869 | 
		_excess[u] -= rc;  | 
|
| 870 | 
		_excess[v] += rc;  | 
|
| 871 | 
		_res_cap[a] = 0;  | 
|
| 872 | 
		_res_cap[_reverse[a]] += rc;  | 
|
| 873 | 
		}  | 
|
| 874 | 
		}  | 
|
| 875 | 
		}  | 
|
| 876 | 
		 | 
|
| 877 | 
		// Find excess nodes and deficit nodes  | 
|
| 878 | 
		_excess_nodes.clear();  | 
|
| 879 | 
		_deficit_nodes.clear();  | 
|
| 880 | 
		        for (int u = 0; u != _node_num; ++u) {
	 | 
|
| 881 | 
		Value ex = _excess[u];  | 
|
| 882 | 
		if (ex >= _delta) _excess_nodes.push_back(u);  | 
|
| 883 | 
		if (ex <= -_delta) _deficit_nodes.push_back(u);  | 
|
| 884 | 
		}  | 
|
| 885 | 
		int next_node = 0, next_def_node = 0;  | 
|
| 886 | 
		 | 
|
| 887 | 
		// Find augmenting shortest paths  | 
|
| 888 | 
		        while (next_node < int(_excess_nodes.size())) {
	 | 
|
| 889 | 
		// Check deficit nodes  | 
|
| 890 | 
		          if (_delta > 1) {
	 | 
|
| 891 | 
		bool delta_deficit = false;  | 
|
| 892 | 
		for ( ; next_def_node < int(_deficit_nodes.size());  | 
|
| 893 | 
		                    ++next_def_node ) {
	 | 
|
| 894 | 
		              if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
	 | 
|
| 895 | 
		delta_deficit = true;  | 
|
| 896 | 
		break;  | 
|
| 897 | 
		}  | 
|
| 898 | 
		}  | 
|
| 899 | 
		if (!delta_deficit) break;  | 
|
| 900 | 
		}  | 
|
| 901 | 
		 | 
|
| 902 | 
		// Run Dijkstra in the residual network  | 
|
| 903 | 
		s = _excess_nodes[next_node];  | 
|
| 904 | 
		          if ((t = _dijkstra.run(s, _delta)) == -1) {
	 | 
|
| 905 | 
		            if (_delta > 1) {
	 | 
|
| 906 | 
		++next_node;  | 
|
| 907 | 
		continue;  | 
|
| 908 | 
		}  | 
|
| 909 | 
		return INFEASIBLE;  | 
|
| 910 | 
		}  | 
|
| 911 | 
		 | 
|
| 912 | 
		// Augment along a shortest path from s to t  | 
|
| 913 | 
		Value d = std::min(_excess[s], -_excess[t]);  | 
|
| 914 | 
		int u = t;  | 
|
| 915 | 
		int a;  | 
|
| 916 | 
		          if (d > _delta) {
	 | 
|
| 917 | 
		            while ((a = _pred[u]) != -1) {
	 | 
|
| 918 | 
		if (_res_cap[a] < d) d = _res_cap[a];  | 
|
| 919 | 
		u = _source[a];  | 
|
| 920 | 
		}  | 
|
| 921 | 
		}  | 
|
| 922 | 
		u = t;  | 
|
| 923 | 
		          while ((a = _pred[u]) != -1) {
	 | 
|
| 924 | 
		_res_cap[a] -= d;  | 
|
| 925 | 
		_res_cap[_reverse[a]] += d;  | 
|
| 926 | 
		u = _source[a];  | 
|
| 927 | 
		}  | 
|
| 928 | 
		_excess[s] -= d;  | 
|
| 929 | 
		_excess[t] += d;  | 
|
| 930 | 
		 | 
|
| 931 | 
		if (_excess[s] < _delta) ++next_node;  | 
|
| 932 | 
		}  | 
|
| 933 | 
		 | 
|
| 934 | 
		if (_delta == 1) break;  | 
|
| 935 | 
		_delta = _delta <= _factor ? 1 : _delta / _factor;  | 
|
| 936 | 
		}  | 
|
| 937 | 
		 | 
|
| 938 | 
		return OPTIMAL;  | 
|
| 939 | 
		}  | 
|
| 940 | 
		 | 
|
| 941 | 
		// Execute the successive shortest path algorithm  | 
|
| 942 | 
		    ProblemType startWithoutScaling() {
	 | 
|
| 943 | 
		// Find excess nodes  | 
|
| 944 | 
		_excess_nodes.clear();  | 
|
| 945 | 
		      for (int i = 0; i != _node_num; ++i) {
	 | 
|
| 946 | 
		if (_excess[i] > 0) _excess_nodes.push_back(i);  | 
|
| 947 | 
		}  | 
|
| 948 | 
		if (_excess_nodes.size() == 0) return OPTIMAL;  | 
|
| 949 | 
		int next_node = 0;  | 
|
| 950 | 
		 | 
|
| 951 | 
		// Find shortest paths  | 
|
| 952 | 
		int s, t;  | 
|
| 953 | 
		ResidualDijkstra _dijkstra(*this);  | 
|
| 954 | 
		while ( _excess[_excess_nodes[next_node]] > 0 ||  | 
|
| 955 | 
		++next_node < int(_excess_nodes.size()) )  | 
|
| 956 | 
		      {
	 | 
|
| 957 | 
		// Run Dijkstra in the residual network  | 
|
| 958 | 
		s = _excess_nodes[next_node];  | 
|
| 959 | 
		if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;  | 
|
| 960 | 
		 | 
|
| 961 | 
		// Augment along a shortest path from s to t  | 
|
| 962 | 
		Value d = std::min(_excess[s], -_excess[t]);  | 
|
| 963 | 
		int u = t;  | 
|
| 964 | 
		int a;  | 
|
| 965 | 
		        if (d > 1) {
	 | 
|
| 966 | 
		          while ((a = _pred[u]) != -1) {
	 | 
|
| 967 | 
		if (_res_cap[a] < d) d = _res_cap[a];  | 
|
| 968 | 
		u = _source[a];  | 
|
| 969 | 
		}  | 
|
| 970 | 
		}  | 
|
| 971 | 
		u = t;  | 
|
| 972 | 
		        while ((a = _pred[u]) != -1) {
	 | 
|
| 973 | 
		_res_cap[a] -= d;  | 
|
| 974 | 
		_res_cap[_reverse[a]] += d;  | 
|
| 975 | 
		u = _source[a];  | 
|
| 976 | 
		}  | 
|
| 977 | 
		_excess[s] -= d;  | 
|
| 978 | 
		_excess[t] += d;  | 
|
| 979 | 
		}  | 
|
| 980 | 
		 | 
|
| 981 | 
		return OPTIMAL;  | 
|
| 982 | 
		}  | 
|
| 983 | 
		 | 
|
| 984 | 
		}; //class CapacityScaling  | 
|
| 985 | 
		 | 
|
| 986 | 
		///@}  | 
|
| 987 | 
		 | 
|
| 988 | 
		} //namespace lemon  | 
|
| 989 | 
		 | 
|
| 990 | 
		#endif //LEMON_CAPACITY_SCALING_H  | 
| ... | ... | 
		@@ -173,3 +173,25 @@  | 
| 173 | 173 | 
		--without-coin  | 
| 174 | 174 | 
		 | 
| 175 | 175 | 
		Disable COIN-OR support.  | 
| 176 | 
		 | 
|
| 177 | 
		 | 
|
| 178 | 
		Makefile Variables  | 
|
| 179 | 
		==================  | 
|
| 180 | 
		 | 
|
| 181 | 
		Some Makefile variables are reserved by the GNU Coding Standards for  | 
|
| 182 | 
		the use of the "user" - the person building the package. For instance,  | 
|
| 183 | 
		CXX and CXXFLAGS are such variables, and have the same meaning as  | 
|
| 184 | 
		explained in the previous section. These variables can be set on the  | 
|
| 185 | 
		command line when invoking `make' like this:  | 
|
| 186 | 
		`make [VARIABLE=VALUE]...'  | 
|
| 187 | 
		 | 
|
| 188 | 
		WARNINGCXXFLAGS is a non-standard Makefile variable introduced by us  | 
|
| 189 | 
		to hold several compiler flags related to warnings. Its default value  | 
|
| 190 | 
		can be overridden when invoking `make'. For example to disable all  | 
|
| 191 | 
		warning flags use `make WARNINGCXXFLAGS='.  | 
|
| 192 | 
		 | 
|
| 193 | 
		In order to turn off a single flag from the default set of warning  | 
|
| 194 | 
		flags, you can use the CXXFLAGS variable, since this is passed after  | 
|
| 195 | 
		WARNINGCXXFLAGS. For example to turn off `-Wold-style-cast' (which is  | 
|
| 196 | 
		used by default when g++ is detected) you can use  | 
|
| 197 | 
		`make CXXFLAGS="-g -O2 -Wno-old-style-cast"'.  | 
| ... | ... | 
		@@ -17,6 +17,10 @@  | 
| 17 | 17 | 
		 | 
| 18 | 18 | 
		Copying, distribution and modification conditions and terms.  | 
| 19 | 19 | 
		 | 
| 20 | 
		NEWS  | 
|
| 21 | 
		 | 
|
| 22 | 
		News and version history.  | 
|
| 23 | 
		 | 
|
| 20 | 24 | 
		INSTALL  | 
| 21 | 25 | 
		 | 
| 22 | 26 | 
		General building and installation instructions.  | 
| ... | ... | 
		@@ -33,6 +37,10 @@  | 
| 33 | 37 | 
		 | 
| 34 | 38 | 
		Some example programs to make you easier to get familiar with LEMON.  | 
| 35 | 39 | 
		 | 
| 40 | 
		scripts/  | 
|
| 41 | 
		 | 
|
| 42 | 
		Scripts that make it easier to develop LEMON.  | 
|
| 43 | 
		 | 
|
| 36 | 44 | 
		test/  | 
| 37 | 45 | 
		 | 
| 38 | 46 | 
		Programs to check the integrity and correctness of LEMON.  | 
| ... | ... | 
		@@ -41,6 +41,7 @@  | 
| 41 | 41 | 
		AC_PROG_LIBTOOL  | 
| 42 | 42 | 
		 | 
| 43 | 43 | 
		AC_CHECK_PROG([doxygen_found],[doxygen],[yes],[no])  | 
| 44 | 
		AC_CHECK_PROG([python_found],[python],[yes],[no])  | 
|
| 44 | 45 | 
		AC_CHECK_PROG([gs_found],[gs],[yes],[no])  | 
| 45 | 46 | 
		 | 
| 46 | 47 | 
		dnl Detect Intel compiler.  | 
| ... | ... | 
		@@ -82,6 +83,21 @@  | 
| 82 | 83 | 
		fi  | 
| 83 | 84 | 
		AM_CONDITIONAL([WANT_TOOLS], [test x"$enable_tools" != x"no"])  | 
| 84 | 85 | 
		 | 
| 86 | 
		dnl Support for running test cases using valgrind.  | 
|
| 87 | 
		use_valgrind=no  | 
|
| 88 | 
		AC_ARG_ENABLE([valgrind],  | 
|
| 89 | 
		AS_HELP_STRING([--enable-valgrind], [use valgrind when running tests]),  | 
|
| 90 | 
		[use_valgrind=yes])  | 
|
| 91 | 
		 | 
|
| 92 | 
		if [[ "$use_valgrind" = "yes" ]]; then  | 
|
| 93 | 
		AC_CHECK_PROG(HAVE_VALGRIND, valgrind, yes, no)  | 
|
| 94 | 
		 | 
|
| 95 | 
		if [[ "$HAVE_VALGRIND" = "no" ]]; then  | 
|
| 96 | 
		AC_MSG_ERROR([Valgrind not found in PATH.])  | 
|
| 97 | 
		fi  | 
|
| 98 | 
		fi  | 
|
| 99 | 
		AM_CONDITIONAL(USE_VALGRIND, [test "$use_valgrind" = "yes"])  | 
|
| 100 | 
		 | 
|
| 85 | 101 | 
		dnl Checks for header files.  | 
| 86 | 102 | 
		AC_CHECK_HEADERS(limits.h sys/time.h sys/times.h unistd.h)  | 
| 87 | 103 | 
		 | 
| ... | ... | 
		@@ -128,6 +144,7 @@  | 
| 128 | 144 | 
		echo CBC support................... : $lx_cbc_found  | 
| 129 | 145 | 
		echo  | 
| 130 | 146 | 
		echo Build additional tools........ : $enable_tools  | 
| 147 | 
		echo Use valgrind for tests........ : $use_valgrind  | 
|
| 131 | 148 | 
		echo  | 
| 132 | 149 | 
		echo The packace will be installed in  | 
| 133 | 150 | 
		echo -n ' '  | 
| ... | ... | 
		@@ -2,7 +2,7 @@  | 
| 2 | 2 | 
		*  | 
| 3 | 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| ... | ... | 
		@@ -65,9 +65,18 @@  | 
| 65 | 65 | 
		  ap.other("infile", "The input file.")
	 | 
| 66 | 66 | 
		    .other("...");
	 | 
| 67 | 67 | 
		 | 
| 68 | 
		// Throw an exception when problems occurs. The default behavior is to  | 
|
| 69 | 
		// exit(1) on these cases, but this makes Valgrind falsely warn  | 
|
| 70 | 
		// about memory leaks.  | 
|
| 71 | 
		ap.throwOnProblems();  | 
|
| 72 | 
		 | 
|
| 68 | 73 | 
		// Perform the parsing process  | 
| 69 | 74 | 
		// (in case of any error it terminates the program)  | 
| 75 | 
		  // The try {} construct is necessary only if the ap.trowOnProblems()
	 | 
|
| 76 | 
		// setting is in use.  | 
|
| 77 | 
		  try {
	 | 
|
| 70 | 78 | 
		ap.parse();  | 
| 79 | 
		  } catch (ArgParserException &) { return 1; }
	 | 
|
| 71 | 80 | 
		 | 
| 72 | 81 | 
		// Check each option if it has been given and print its value  | 
| 73 | 82 | 
		std::cout << "Parameters of '" << ap.commandName() << "':\n";  | 
| ... | ... | 
		@@ -17,7 +17,7 @@  | 
| 17 | 17 | 
		@ONLY  | 
| 18 | 18 | 
		)  | 
| 19 | 19 | 
		 | 
| 20 | 
		IF(DOXYGEN_EXECUTABLE AND GHOSTSCRIPT_EXECUTABLE)  | 
|
| 20 | 
		IF(DOXYGEN_EXECUTABLE AND PYTHONINTERP_FOUND AND GHOSTSCRIPT_EXECUTABLE)  | 
|
| 21 | 21 | 
		  FILE(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/)
	 | 
| 22 | 22 | 
		SET(GHOSTSCRIPT_OPTIONS -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha)  | 
| 23 | 23 | 
		ADD_CUSTOM_TARGET(html  | 
| ... | ... | 
		@@ -28,14 +28,17 @@  | 
| 28 | 28 | 
		    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/connected_components.eps
	 | 
| 29 | 29 | 
		    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/edge_biconnected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/edge_biconnected_components.eps
	 | 
| 30 | 30 | 
		    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/grid_graph.png ${CMAKE_CURRENT_SOURCE_DIR}/images/grid_graph.eps
	 | 
| 31 | 
		    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/matching.png ${CMAKE_CURRENT_SOURCE_DIR}/images/matching.eps
	 | 
|
| 31 | 32 | 
		    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/node_biconnected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/node_biconnected_components.eps
	 | 
| 32 | 33 | 
		    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_0.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_0.eps
	 | 
| 33 | 34 | 
		    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_1.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_1.eps
	 | 
| 34 | 35 | 
		    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_2.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_2.eps
	 | 
| 35 | 36 | 
		    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_3.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_3.eps
	 | 
| 36 | 37 | 
		    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_4.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_4.eps
	 | 
| 38 | 
		    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/planar.png ${CMAKE_CURRENT_SOURCE_DIR}/images/planar.eps
	 | 
|
| 37 | 39 | 
		    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/strongly_connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/strongly_connected_components.eps
	 | 
| 38 | 40 | 
		    COMMAND ${CMAKE_COMMAND} -E remove_directory html
	 | 
| 41 | 
		    COMMAND ${PYTHON_EXECUTABLE} ${PROJECT_SOURCE_DIR}/scripts/bib2dox.py ${CMAKE_CURRENT_SOURCE_DIR}/references.bib >references.dox
	 | 
|
| 39 | 42 | 
		    COMMAND ${DOXYGEN_EXECUTABLE} Doxyfile
	 | 
| 40 | 43 | 
		    WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
	 | 
| 41 | 44 | 
		)  | 
| ... | ... | 
		@@ -97,7 +97,8 @@  | 
| 97 | 97 | 
		"@abs_top_srcdir@/demo" \  | 
| 98 | 98 | 
		"@abs_top_srcdir@/tools" \  | 
| 99 | 99 | 
		"@abs_top_srcdir@/test/test_tools.h" \  | 
| 100 | 
		"@abs_top_builddir@/doc/mainpage.dox"  | 
|
| 100 | 
		"@abs_top_builddir@/doc/mainpage.dox" \  | 
|
| 101 | 
		"@abs_top_builddir@/doc/references.dox"  | 
|
| 101 | 102 | 
		INPUT_ENCODING = UTF-8  | 
| 102 | 103 | 
		FILE_PATTERNS = *.h \  | 
| 103 | 104 | 
		*.cc \  | 
| ... | ... | 
		@@ -27,7 +27,9 @@  | 
| 27 | 27 | 
		bipartite_partitions.eps \  | 
| 28 | 28 | 
		connected_components.eps \  | 
| 29 | 29 | 
		edge_biconnected_components.eps \  | 
| 30 | 
		matching.eps \  | 
|
| 30 | 31 | 
		node_biconnected_components.eps \  | 
| 32 | 
		planar.eps \  | 
|
| 31 | 33 | 
		strongly_connected_components.eps  | 
| 32 | 34 | 
		 | 
| 33 | 35 | 
		DOC_EPS_IMAGES = \  | 
| ... | ... | 
		@@ -66,7 +68,19 @@  | 
| 66 | 68 | 
		exit 1; \  | 
| 67 | 69 | 
		fi  | 
| 68 | 70 | 
		 | 
| 69 | 
		
  | 
|
| 71 | 
		references.dox: doc/references.bib  | 
|
| 72 | 
			if test ${python_found} = yes; then \
	 | 
|
| 73 | 
		cd doc; \  | 
|
| 74 | 
		python @abs_top_srcdir@/scripts/bib2dox.py @abs_top_builddir@/$< >$@; \  | 
|
| 75 | 
		cd ..; \  | 
|
| 76 | 
		else \  | 
|
| 77 | 
		echo; \  | 
|
| 78 | 
		echo "Python not found."; \  | 
|
| 79 | 
		echo; \  | 
|
| 80 | 
		exit 1; \  | 
|
| 81 | 
		fi  | 
|
| 82 | 
		 | 
|
| 83 | 
		html-local: $(DOC_PNG_IMAGES) references.dox  | 
|
| 70 | 84 | 
			if test ${doxygen_found} = yes; then \
	 | 
| 71 | 85 | 
		cd doc; \  | 
| 72 | 86 | 
		doxygen Doxyfile; \  | 
| ... | ... | 
		@@ -2,7 +2,7 @@  | 
| 2 | 2 | 
		*  | 
| 3 | 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| ... | ... | 
		@@ -226,14 +226,6 @@  | 
| 226 | 226 | 
		*/  | 
| 227 | 227 | 
		 | 
| 228 | 228 | 
		/**  | 
| 229 | 
		@defgroup matrices Matrices  | 
|
| 230 | 
		@ingroup datas  | 
|
| 231 | 
		\brief Two dimensional data storages implemented in LEMON.  | 
|
| 232 | 
		 | 
|
| 233 | 
		This group contains two dimensional data storages implemented in LEMON.  | 
|
| 234 | 
		*/  | 
|
| 235 | 
		 | 
|
| 236 | 
		/**  | 
|
| 237 | 229 | 
		@defgroup paths Path Structures  | 
| 238 | 230 | 
		@ingroup datas  | 
| 239 | 231 | 
		\brief %Path structures implemented in LEMON.  | 
| ... | ... | 
		@@ -246,7 +238,36 @@  | 
| 246 | 238 | 
		efficient to have e.g. the Dijkstra algorithm to store its result in  | 
| 247 | 239 | 
		any kind of path structure.  | 
| 248 | 240 | 
		 | 
| 249 | 
		\sa  | 
|
| 241 | 
		\sa \ref concepts::Path "Path concept"  | 
|
| 242 | 
		*/  | 
|
| 243 | 
		 | 
|
| 244 | 
		/**  | 
|
| 245 | 
		@defgroup heaps Heap Structures  | 
|
| 246 | 
		@ingroup datas  | 
|
| 247 | 
		\brief %Heap structures implemented in LEMON.  | 
|
| 248 | 
		 | 
|
| 249 | 
		This group contains the heap structures implemented in LEMON.  | 
|
| 250 | 
		 | 
|
| 251 | 
		LEMON provides several heap classes. They are efficient implementations  | 
|
| 252 | 
		of the abstract data type \e priority \e queue. They store items with  | 
|
| 253 | 
		specified values called \e priorities in such a way that finding and  | 
|
| 254 | 
		removing the item with minimum priority are efficient.  | 
|
| 255 | 
		The basic operations are adding and erasing items, changing the priority  | 
|
| 256 | 
		of an item, etc.  | 
|
| 257 | 
		 | 
|
| 258 | 
		Heaps are crucial in several algorithms, such as Dijkstra and Prim.  | 
|
| 259 | 
		The heap implementations have the same interface, thus any of them can be  | 
|
| 260 | 
		used easily in such algorithms.  | 
|
| 261 | 
		 | 
|
| 262 | 
		\sa \ref concepts::Heap "Heap concept"  | 
|
| 263 | 
		*/  | 
|
| 264 | 
		 | 
|
| 265 | 
		/**  | 
|
| 266 | 
		@defgroup matrices Matrices  | 
|
| 267 | 
		@ingroup datas  | 
|
| 268 | 
		\brief Two dimensional data storages implemented in LEMON.  | 
|
| 269 | 
		 | 
|
| 270 | 
		This group contains two dimensional data storages implemented in LEMON.  | 
|
| 250 | 271 | 
		*/  | 
| 251 | 272 | 
		 | 
| 252 | 273 | 
		/**  | 
| ... | ... | 
		@@ -259,6 +280,28 @@  | 
| 259 | 280 | 
		*/  | 
| 260 | 281 | 
		 | 
| 261 | 282 | 
		/**  | 
| 283 | 
		@defgroup geomdat Geometric Data Structures  | 
|
| 284 | 
		@ingroup auxdat  | 
|
| 285 | 
		\brief Geometric data structures implemented in LEMON.  | 
|
| 286 | 
		 | 
|
| 287 | 
		This group contains geometric data structures implemented in LEMON.  | 
|
| 288 | 
		 | 
|
| 289 | 
		- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional  | 
|
| 290 | 
		vector with the usual operations.  | 
|
| 291 | 
		- \ref lemon::dim2::Box "dim2::Box" can be used to determine the  | 
|
| 292 | 
		rectangular bounding box of a set of \ref lemon::dim2::Point  | 
|
| 293 | 
		"dim2::Point"'s.  | 
|
| 294 | 
		*/  | 
|
| 295 | 
		 | 
|
| 296 | 
		/**  | 
|
| 297 | 
		@defgroup matrices Matrices  | 
|
| 298 | 
		@ingroup auxdat  | 
|
| 299 | 
		\brief Two dimensional data storages implemented in LEMON.  | 
|
| 300 | 
		 | 
|
| 301 | 
		This group contains two dimensional data storages implemented in LEMON.  | 
|
| 302 | 
		*/  | 
|
| 303 | 
		 | 
|
| 304 | 
		/**  | 
|
| 262 | 305 | 
		@defgroup algs Algorithms  | 
| 263 | 306 | 
		\brief This group contains the several algorithms  | 
| 264 | 307 | 
		implemented in LEMON.  | 
| ... | ... | 
		@@ -273,7 +316,8 @@  | 
| 273 | 316 | 
		\brief Common graph search algorithms.  | 
| 274 | 317 | 
		 | 
| 275 | 318 | 
		This group contains the common graph search algorithms, namely  | 
| 276 | 
		\e breadth-first \e search (BFS) and \e depth-first \e search (DFS)  | 
|
| 319 | 
		\e breadth-first \e search (BFS) and \e depth-first \e search (DFS)  | 
|
| 320 | 
		\ref clrs01algorithms.  | 
|
| 277 | 321 | 
		*/  | 
| 278 | 322 | 
		 | 
| 279 | 323 | 
		/**  | 
| ... | ... | 
		@@ -281,7 +325,8 @@  | 
| 281 | 325 | 
		@ingroup algs  | 
| 282 | 326 | 
		\brief Algorithms for finding shortest paths.  | 
| 283 | 327 | 
		 | 
| 284 | 
		This group contains the algorithms for finding shortest paths in digraphs  | 
|
| 328 | 
		This group contains the algorithms for finding shortest paths in digraphs  | 
|
| 329 | 
		\ref clrs01algorithms.  | 
|
| 285 | 330 | 
		 | 
| 286 | 331 | 
		- \ref Dijkstra algorithm for finding shortest paths from a source node  | 
| 287 | 332 | 
		when all arc lengths are non-negative.  | 
| ... | ... | 
		@@ -298,12 +343,21 @@  | 
| 298 | 343 | 
		*/  | 
| 299 | 344 | 
		 | 
| 300 | 345 | 
		/**  | 
| 346 | 
		@defgroup spantree Minimum Spanning Tree Algorithms  | 
|
| 347 | 
		@ingroup algs  | 
|
| 348 | 
		\brief Algorithms for finding minimum cost spanning trees and arborescences.  | 
|
| 349 | 
		 | 
|
| 350 | 
		This group contains the algorithms for finding minimum cost spanning  | 
|
| 351 | 
		trees and arborescences \ref clrs01algorithms.  | 
|
| 352 | 
		*/  | 
|
| 353 | 
		 | 
|
| 354 | 
		/**  | 
|
| 301 | 355 | 
		@defgroup max_flow Maximum Flow Algorithms  | 
| 302 | 356 | 
		@ingroup algs  | 
| 303 | 357 | 
		\brief Algorithms for finding maximum flows.  | 
| 304 | 358 | 
		 | 
| 305 | 359 | 
		This group contains the algorithms for finding maximum flows and  | 
| 306 | 
		feasible circulations.  | 
|
| 360 | 
		feasible circulations \ref clrs01algorithms, \ref amo93networkflows.  | 
|
| 307 | 361 | 
		 | 
| 308 | 362 | 
		The \e maximum \e flow \e problem is to find a flow of maximum value between  | 
| 309 | 363 | 
		a single source and a single target. Formally, there is a \f$G=(V,A)\f$  | 
| ... | ... | 
		@@ -318,12 +372,16 @@  | 
| 318 | 372 | 
		\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f]  | 
| 319 | 373 | 
		 | 
| 320 | 374 | 
		LEMON contains several algorithms for solving maximum flow problems:  | 
| 321 | 
		- \ref EdmondsKarp Edmonds-Karp algorithm.  | 
|
| 322 | 
		- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm.  | 
|
| 323 | 
		- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees.  | 
|
| 324 | 
		- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees.  | 
|
| 375 | 
		- \ref EdmondsKarp Edmonds-Karp algorithm  | 
|
| 376 | 
		\ref edmondskarp72theoretical.  | 
|
| 377 | 
		- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm  | 
|
| 378 | 
		\ref goldberg88newapproach.  | 
|
| 379 | 
		- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees  | 
|
| 380 | 
		\ref dinic70algorithm, \ref sleator83dynamic.  | 
|
| 381 | 
		- \ref GoldbergTarjan !Preflow push-relabel algorithm with dynamic trees  | 
|
| 382 | 
		\ref goldberg88newapproach, \ref sleator83dynamic.  | 
|
| 325 | 383 | 
		 | 
| 326 | 
		In most cases the \ref Preflow  | 
|
| 384 | 
		In most cases the \ref Preflow algorithm provides the  | 
|
| 327 | 385 | 
		fastest method for computing a maximum flow. All implementations  | 
| 328 | 386 | 
		also provide functions to query the minimum cut, which is the dual  | 
| 329 | 387 | 
		problem of maximum flow.  | 
| ... | ... | 
		@@ -341,18 +399,20 @@  | 
| 341 | 399 | 
		\brief Algorithms for finding minimum cost flows and circulations.  | 
| 342 | 400 | 
		 | 
| 343 | 401 | 
		This group contains the algorithms for finding minimum cost flows and  | 
| 344 | 
		circulations. For more information about this problem and its dual  | 
|
| 345 | 
		solution see \ref min_cost_flow "Minimum Cost Flow Problem".  | 
|
| 402 | 
		circulations \ref amo93networkflows. For more information about this  | 
|
| 403 | 
		problem and its dual solution, see \ref min_cost_flow  | 
|
| 404 | 
		"Minimum Cost Flow Problem".  | 
|
| 346 | 405 | 
		 | 
| 347 | 406 | 
		LEMON contains several algorithms for this problem.  | 
| 348 | 407 | 
		- \ref NetworkSimplex Primal Network Simplex algorithm with various  | 
| 349 | 
		pivot strategies.  | 
|
| 350 | 
		- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on  | 
|
| 351 | 
		cost scaling.  | 
|
| 352 | 
		- \ref CapacityScaling Successive Shortest %Path algorithm with optional  | 
|
| 353 | 
		capacity scaling.  | 
|
| 354 | 
		- \ref CancelAndTighten The Cancel and Tighten algorithm.  | 
|
| 355 | 
		
  | 
|
| 408 | 
		pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex.  | 
|
| 409 | 
		- \ref CostScaling Cost Scaling algorithm based on push/augment and  | 
|
| 410 | 
		relabel operations \ref goldberg90approximation, \ref goldberg97efficient,  | 
|
| 411 | 
		\ref bunnagel98efficient.  | 
|
| 412 | 
		- \ref CapacityScaling Capacity Scaling algorithm based on the successive  | 
|
| 413 | 
		shortest path method \ref edmondskarp72theoretical.  | 
|
| 414 | 
		- \ref CycleCanceling Cycle-Canceling algorithms, two of which are  | 
|
| 415 | 
		strongly polynomial \ref klein67primal, \ref goldberg89cyclecanceling.  | 
|
| 356 | 416 | 
		 | 
| 357 | 417 | 
		In general NetworkSimplex is the most efficient implementation,  | 
| 358 | 418 | 
		but in special cases other algorithms could be faster.  | 
| ... | ... | 
		@@ -375,7 +435,7 @@  | 
| 375 | 435 | 
		cut is the \f$X\f$ solution of the next optimization problem:  | 
| 376 | 436 | 
		 | 
| 377 | 437 | 
		\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
	 | 
| 378 | 
		    \sum_{uv\in A
	 | 
|
| 438 | 
		    \sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
	 | 
|
| 379 | 439 | 
		 | 
| 380 | 440 | 
		LEMON contains several algorithms related to minimum cut problems:  | 
| 381 | 441 | 
		 | 
| ... | ... | 
		@@ -391,27 +451,40 @@  | 
| 391 | 451 | 
		*/  | 
| 392 | 452 | 
		 | 
| 393 | 453 | 
		/**  | 
| 394 | 
		@defgroup  | 
|
| 454 | 
		@defgroup min_mean_cycle Minimum Mean Cycle Algorithms  | 
|
| 395 | 455 | 
		@ingroup algs  | 
| 396 | 
		\brief Algorithms for  | 
|
| 456 | 
		\brief Algorithms for finding minimum mean cycles.  | 
|
| 397 | 457 | 
		 | 
| 398 | 
		This group contains the algorithms for discovering the graph properties  | 
|
| 399 | 
		like connectivity, bipartiteness, euler property, simplicity etc.  | 
|
| 458 | 
		This group contains the algorithms for finding minimum mean cycles  | 
|
| 459 | 
		\ref clrs01algorithms, \ref amo93networkflows.  | 
|
| 400 | 460 | 
		 | 
| 401 | 
		\image html edge_biconnected_components.png  | 
|
| 402 | 
		\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth  | 
|
| 403 | 
		
  | 
|
| 461 | 
		The \e minimum \e mean \e cycle \e problem is to find a directed cycle  | 
|
| 462 | 
		of minimum mean length (cost) in a digraph.  | 
|
| 463 | 
		The mean length of a cycle is the average length of its arcs, i.e. the  | 
|
| 464 | 
		ratio between the total length of the cycle and the number of arcs on it.  | 
|
| 404 | 465 | 
		 | 
| 405 | 
		/**  | 
|
| 406 | 
		@defgroup planar Planarity Embedding and Drawing  | 
|
| 407 | 
		@ingroup algs  | 
|
| 408 | 
		\brief Algorithms for planarity checking, embedding and drawing  | 
|
| 466 | 
		This problem has an important connection to \e conservative \e length  | 
|
| 467 | 
		\e functions, too. A length function on the arcs of a digraph is called  | 
|
| 468 | 
		conservative if and only if there is no directed cycle of negative total  | 
|
| 469 | 
		length. For an arbitrary length function, the negative of the minimum  | 
|
| 470 | 
		cycle mean is the smallest \f$\epsilon\f$ value so that increasing the  | 
|
| 471 | 
		arc lengths uniformly by \f$\epsilon\f$ results in a conservative length  | 
|
| 472 | 
		function.  | 
|
| 409 | 473 | 
		 | 
| 410 | 
		This group contains the algorithms for planarity checking,  | 
|
| 411 | 
		embedding and drawing.  | 
|
| 474 | 
		LEMON contains three algorithms for solving the minimum mean cycle problem:  | 
|
| 475 | 
		- \ref Karp "Karp"'s original algorithm \ref amo93networkflows,  | 
|
| 476 | 
		\ref dasdan98minmeancycle.  | 
|
| 477 | 
		- \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved  | 
|
| 478 | 
		version of Karp's algorithm \ref dasdan98minmeancycle.  | 
|
| 479 | 
		- \ref Howard "Howard"'s policy iteration algorithm  | 
|
| 480 | 
		\ref dasdan98minmeancycle.  | 
|
| 412 | 481 | 
		 | 
| 413 | 
		\image html planar.png  | 
|
| 414 | 
		\image latex planar.eps "Plane graph" width=\textwidth  | 
|
| 482 | 
		In practice, the Howard algorithm proved to be by far the most efficient  | 
|
| 483 | 
		one, though the best known theoretical bound on its running time is  | 
|
| 484 | 
		exponential.  | 
|
| 485 | 
		Both Karp and HartmannOrlin algorithms run in time O(ne) and use space  | 
|
| 486 | 
		O(n<sup>2</sup>+e), but the latter one is typically faster due to the  | 
|
| 487 | 
		applied early termination scheme.  | 
|
| 415 | 488 | 
		*/  | 
| 416 | 489 | 
		 | 
| 417 | 490 | 
		/**  | 
| ... | ... | 
		@@ -449,18 +522,49 @@  | 
| 449 | 522 | 
		- \ref MaxWeightedPerfectMatching  | 
| 450 | 523 | 
		Edmond's blossom shrinking algorithm for calculating maximum weighted  | 
| 451 | 524 | 
		perfect matching in general graphs.  | 
| 525 | 
		- \ref MaxFractionalMatching Push-relabel algorithm for calculating  | 
|
| 526 | 
		maximum cardinality fractional matching in general graphs.  | 
|
| 527 | 
		- \ref MaxWeightedFractionalMatching Augmenting path algorithm for calculating  | 
|
| 528 | 
		maximum weighted fractional matching in general graphs.  | 
|
| 529 | 
		- \ref MaxWeightedPerfectFractionalMatching  | 
|
| 530 | 
		Augmenting path algorithm for calculating maximum weighted  | 
|
| 531 | 
		perfect fractional matching in general graphs.  | 
|
| 452 | 532 | 
		 | 
| 453 | 
		\image html bipartite_matching.png  | 
|
| 454 | 
		\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth  | 
|
| 533 | 
		\image html matching.png  | 
|
| 534 | 
		\image latex matching.eps "Min Cost Perfect Matching" width=\textwidth  | 
|
| 455 | 535 | 
		*/  | 
| 456 | 536 | 
		 | 
| 457 | 537 | 
		/**  | 
| 458 | 
		@defgroup  | 
|
| 538 | 
		@defgroup graph_properties Connectivity and Other Graph Properties  | 
|
| 459 | 539 | 
		@ingroup algs  | 
| 460 | 
		\brief Algorithms for  | 
|
| 540 | 
		\brief Algorithms for discovering the graph properties  | 
|
| 461 | 541 | 
		 | 
| 462 | 
		This group contains the algorithms for finding minimum cost spanning  | 
|
| 463 | 
		trees and arborescences.  | 
|
| 542 | 
		This group contains the algorithms for discovering the graph properties  | 
|
| 543 | 
		like connectivity, bipartiteness, euler property, simplicity etc.  | 
|
| 544 | 
		 | 
|
| 545 | 
		\image html connected_components.png  | 
|
| 546 | 
		\image latex connected_components.eps "Connected components" width=\textwidth  | 
|
| 547 | 
		*/  | 
|
| 548 | 
		 | 
|
| 549 | 
		/**  | 
|
| 550 | 
		@defgroup planar Planarity Embedding and Drawing  | 
|
| 551 | 
		@ingroup algs  | 
|
| 552 | 
		\brief Algorithms for planarity checking, embedding and drawing  | 
|
| 553 | 
		 | 
|
| 554 | 
		This group contains the algorithms for planarity checking,  | 
|
| 555 | 
		embedding and drawing.  | 
|
| 556 | 
		 | 
|
| 557 | 
		\image html planar.png  | 
|
| 558 | 
		\image latex planar.eps "Plane graph" width=\textwidth  | 
|
| 559 | 
		*/  | 
|
| 560 | 
		 | 
|
| 561 | 
		/**  | 
|
| 562 | 
		@defgroup approx Approximation Algorithms  | 
|
| 563 | 
		@ingroup algs  | 
|
| 564 | 
		\brief Approximation algorithms.  | 
|
| 565 | 
		 | 
|
| 566 | 
		This group contains the approximation and heuristic algorithms  | 
|
| 567 | 
		implemented in LEMON.  | 
|
| 464 | 568 | 
		*/  | 
| 465 | 569 | 
		 | 
| 466 | 570 | 
		/**  | 
| ... | ... | 
		@@ -473,15 +577,6 @@  | 
| 473 | 577 | 
		*/  | 
| 474 | 578 | 
		 | 
| 475 | 579 | 
		/**  | 
| 476 | 
		@defgroup approx Approximation Algorithms  | 
|
| 477 | 
		@ingroup algs  | 
|
| 478 | 
		\brief Approximation algorithms.  | 
|
| 479 | 
		 | 
|
| 480 | 
		This group contains the approximation and heuristic algorithms  | 
|
| 481 | 
		implemented in LEMON.  | 
|
| 482 | 
		*/  | 
|
| 483 | 
		 | 
|
| 484 | 
		/**  | 
|
| 485 | 580 | 
		@defgroup gen_opt_group General Optimization Tools  | 
| 486 | 581 | 
		\brief This group contains some general optimization frameworks  | 
| 487 | 582 | 
		implemented in LEMON.  | 
| ... | ... | 
		@@ -491,13 +586,16 @@  | 
| 491 | 586 | 
		*/  | 
| 492 | 587 | 
		 | 
| 493 | 588 | 
		/**  | 
| 494 | 
		@defgroup lp_group  | 
|
| 589 | 
		@defgroup lp_group LP and MIP Solvers  | 
|
| 495 | 590 | 
		@ingroup gen_opt_group  | 
| 496 | 
		\brief  | 
|
| 591 | 
		\brief LP and MIP solver interfaces for LEMON.  | 
|
| 497 | 592 | 
		 | 
| 498 | 
		This group contains Lp and Mip solver interfaces for LEMON. The  | 
|
| 499 | 
		various LP solvers could be used in the same manner with this  | 
|
| 500 | 
		
  | 
|
| 593 | 
		This group contains LP and MIP solver interfaces for LEMON.  | 
|
| 594 | 
		Various LP solvers could be used in the same manner with this  | 
|
| 595 | 
		high-level interface.  | 
|
| 596 | 
		 | 
|
| 597 | 
		The currently supported solvers are \ref glpk, \ref clp, \ref cbc,  | 
|
| 598 | 
		\ref cplex, \ref soplex.  | 
|
| 501 | 599 | 
		*/  | 
| 502 | 600 | 
		 | 
| 503 | 601 | 
		/**  | 
| ... | ... | 
		@@ -587,7 +685,7 @@  | 
| 587 | 685 | 
		*/  | 
| 588 | 686 | 
		 | 
| 589 | 687 | 
		/**  | 
| 590 | 
		@defgroup dimacs_group DIMACS  | 
|
| 688 | 
		@defgroup dimacs_group DIMACS Format  | 
|
| 591 | 689 | 
		@ingroup io_group  | 
| 592 | 690 | 
		\brief Read and write files in DIMACS format  | 
| 593 | 691 | 
		 | 
| ... | ... | 
		@@ -636,8 +734,8 @@  | 
| 636 | 734 | 
		@ingroup concept  | 
| 637 | 735 | 
		\brief Skeleton and concept checking classes for graph structures  | 
| 638 | 736 | 
		 | 
| 639 | 
		This group contains the skeletons and concept checking classes of LEMON's  | 
|
| 640 | 
		graph structures and helper classes used to implement these.  | 
|
| 737 | 
		This group contains the skeletons and concept checking classes of  | 
|
| 738 | 
		graph structures.  | 
|
| 641 | 739 | 
		*/  | 
| 642 | 740 | 
		 | 
| 643 | 741 | 
		/**  | 
| ... | ... | 
		@@ -649,6 +747,15 @@  | 
| 649 | 747 | 
		*/  | 
| 650 | 748 | 
		 | 
| 651 | 749 | 
		/**  | 
| 750 | 
		@defgroup tools Standalone Utility Applications  | 
|
| 751 | 
		 | 
|
| 752 | 
		Some utility applications are listed here.  | 
|
| 753 | 
		 | 
|
| 754 | 
		The standard compilation procedure (<tt>./configure;make</tt>) will compile  | 
|
| 755 | 
		them, as well.  | 
|
| 756 | 
		*/  | 
|
| 757 | 
		 | 
|
| 758 | 
		/**  | 
|
| 652 | 759 | 
		\anchor demoprograms  | 
| 653 | 760 | 
		 | 
| 654 | 761 | 
		@defgroup demos Demo Programs  | 
| ... | ... | 
		@@ -660,13 +767,4 @@  | 
| 660 | 767 | 
		<tt>make check</tt> commands.  | 
| 661 | 768 | 
		*/  | 
| 662 | 769 | 
		 | 
| 663 | 
		/**  | 
|
| 664 | 
		@defgroup tools Standalone Utility Applications  | 
|
| 665 | 
		 | 
|
| 666 | 
		Some utility applications are listed here.  | 
|
| 667 | 
		 | 
|
| 668 | 
		The standard compilation procedure (<tt>./configure;make</tt>) will compile  | 
|
| 669 | 
		them, as well.  | 
|
| 670 | 
		*/  | 
|
| 671 | 
		 | 
|
| 672 | 770 | 
		}  | 
| ... | ... | 
		@@ -2,7 +2,7 @@  | 
| 2 | 2 | 
		*  | 
| 3 | 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| ... | ... | 
		@@ -21,14 +21,11 @@  | 
| 21 | 21 | 
		 | 
| 22 | 22 | 
		\section intro Introduction  | 
| 23 | 23 | 
		 | 
| 24 | 
		\subsection whatis What is LEMON  | 
|
| 25 | 
		 | 
|
| 26 | 
		LEMON stands for <b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling  | 
|
| 27 | 
		and <b>O</b>ptimization in <b>N</b>etworks.  | 
|
| 28 | 
		It is a C++ template  | 
|
| 29 | 
		library aimed at combinatorial optimization tasks which  | 
|
| 30 | 
		often involve in working  | 
|
| 31 | 
		with graphs.  | 
|
| 24 | 
		<b>LEMON</b> stands for <i><b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling  | 
|
| 25 | 
		and <b>O</b>ptimization in <b>N</b>etworks</i>.  | 
|
| 26 | 
		It is a C++ template library providing efficient implementations of common  | 
|
| 27 | 
		data structures and algorithms with focus on combinatorial optimization  | 
|
| 28 | 
		tasks connected mainly with graphs and networks.  | 
|
| 32 | 29 | 
		 | 
| 33 | 30 | 
		<b>  | 
| 34 | 31 | 
		LEMON is an <a class="el" href="http://opensource.org/">open source</a>  | 
| ... | ... | 
		@@ -38,11 +35,24 @@  | 
| 38 | 35 | 
		\ref license "license terms".  | 
| 39 | 36 | 
		</b>  | 
| 40 | 37 | 
		 | 
| 41 | 
		
  | 
|
| 38 | 
		The project is maintained by the  | 
|
| 39 | 
		<a href="http://www.cs.elte.hu/egres/">Egerváry Research Group on  | 
|
| 40 | 
		Combinatorial Optimization</a> \ref egres  | 
|
| 41 | 
		at the Operations Research Department of the  | 
|
| 42 | 
		<a href="http://www.elte.hu/en/">Eötvös Loránd University</a>,  | 
|
| 43 | 
		Budapest, Hungary.  | 
|
| 44 | 
		LEMON is also a member of the <a href="http://www.coin-or.org/">COIN-OR</a>  | 
|
| 45 | 
		initiative \ref coinor.  | 
|
| 46 | 
		 | 
|
| 47 | 
		\section howtoread How to Read the Documentation  | 
|
| 42 | 48 | 
		 | 
| 43 | 49 | 
		If you would like to get to know the library, see  | 
| 44 | 50 | 
		<a class="el" href="http://lemon.cs.elte.hu/pub/tutorial/">LEMON Tutorial</a>.  | 
| 45 | 51 | 
		 | 
| 52 | 
		If you are interested in starting to use the library, see the <a class="el"  | 
|
| 53 | 
		href="http://lemon.cs.elte.hu/trac/lemon/wiki/InstallGuide/">Installation  | 
|
| 54 | 
		Guide</a>.  | 
|
| 55 | 
		 | 
|
| 46 | 56 | 
		If you know what you are looking for, then try to find it under the  | 
| 47 | 57 | 
		<a class="el" href="modules.html">Modules</a> section.  | 
| 48 | 58 | 
| ... | ... | 
		@@ -2,7 +2,7 @@  | 
| 2 | 2 | 
		*  | 
| 3 | 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| ... | ... | 
		@@ -26,7 +26,7 @@  | 
| 26 | 26 | 
		The \e minimum \e cost \e flow \e problem is to find a feasible flow of  | 
| 27 | 27 | 
		minimum total cost from a set of supply nodes to a set of demand nodes  | 
| 28 | 28 | 
		in a network with capacity constraints (lower and upper bounds)  | 
| 29 | 
		and arc costs.  | 
|
| 29 | 
		and arc costs \ref amo93networkflows.  | 
|
| 30 | 30 | 
		 | 
| 31 | 31 | 
		Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
	 | 
| 32 | 32 | 
		\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and
	 | 
| ... | ... | 
		@@ -78,7 +78,7 @@  | 
| 78 | 78 | 
		- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;  | 
| 79 | 79 | 
		- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.  | 
| 80 | 80 | 
		- For all \f$u\in V\f$ nodes:  | 
| 81 | 
		- \f$\pi(u)  | 
|
| 81 | 
		- \f$\pi(u)\leq 0\f$;  | 
|
| 82 | 82 | 
		   - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
	 | 
| 83 | 83 | 
		then \f$\pi(u)=0\f$.  | 
| 84 | 84 | 
		 | 
| ... | ... | 
		@@ -145,7 +145,7 @@  | 
| 145 | 145 | 
		- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;  | 
| 146 | 146 | 
		- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.  | 
| 147 | 147 | 
		- For all \f$u\in V\f$ nodes:  | 
| 148 | 
		- \f$\pi(u)  | 
|
| 148 | 
		- \f$\pi(u)\geq 0\f$;  | 
|
| 149 | 149 | 
		   - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
	 | 
| 150 | 150 | 
		then \f$\pi(u)=0\f$.  | 
| 151 | 151 | 
| ... | ... | 
		@@ -58,19 +58,25 @@  | 
| 58 | 58 | 
		lemon/adaptors.h \  | 
| 59 | 59 | 
		lemon/arg_parser.h \  | 
| 60 | 60 | 
		lemon/assert.h \  | 
| 61 | 
		lemon/bellman_ford.h \  | 
|
| 61 | 62 | 
		lemon/bfs.h \  | 
| 62 | 63 | 
		lemon/bin_heap.h \  | 
| 64 | 
		lemon/binomial_heap.h \  | 
|
| 63 | 65 | 
		lemon/bucket_heap.h \  | 
| 66 | 
		lemon/capacity_scaling.h \  | 
|
| 64 | 67 | 
		lemon/cbc.h \  | 
| 65 | 68 | 
		lemon/circulation.h \  | 
| 66 | 69 | 
		lemon/clp.h \  | 
| 67 | 70 | 
		lemon/color.h \  | 
| 68 | 71 | 
		lemon/concept_check.h \  | 
| 69 | 72 | 
		lemon/connectivity.h \  | 
| 73 | 
		lemon/core.h \  | 
|
| 74 | 
		lemon/cost_scaling.h \  | 
|
| 70 | 75 | 
		lemon/counter.h \  | 
| 71 | 
		lemon/core.h \  | 
|
| 72 | 76 | 
		lemon/cplex.h \  | 
| 77 | 
		lemon/cycle_canceling.h \  | 
|
| 73 | 78 | 
		lemon/dfs.h \  | 
| 79 | 
		lemon/dheap.h \  | 
|
| 74 | 80 | 
		lemon/dijkstra.h \  | 
| 75 | 81 | 
		lemon/dim2.h \  | 
| 76 | 82 | 
		lemon/dimacs.h \  | 
| ... | ... | 
		@@ -79,12 +85,16 @@  | 
| 79 | 85 | 
		lemon/error.h \  | 
| 80 | 86 | 
		lemon/euler.h \  | 
| 81 | 87 | 
		lemon/fib_heap.h \  | 
| 88 | 
		lemon/fractional_matching.h \  | 
|
| 82 | 89 | 
		lemon/full_graph.h \  | 
| 83 | 90 | 
		lemon/glpk.h \  | 
| 84 | 91 | 
		lemon/gomory_hu.h \  | 
| 85 | 92 | 
		lemon/graph_to_eps.h \  | 
| 86 | 93 | 
		lemon/grid_graph.h \  | 
| 94 | 
		lemon/hartmann_orlin_mmc.h \  | 
|
| 95 | 
		lemon/howard_mmc.h \  | 
|
| 87 | 96 | 
		lemon/hypercube_graph.h \  | 
| 97 | 
		lemon/karp_mmc.h \  | 
|
| 88 | 98 | 
		lemon/kruskal.h \  | 
| 89 | 99 | 
		lemon/hao_orlin.h \  | 
| 90 | 100 | 
		lemon/lgf_reader.h \  | 
| ... | ... | 
		@@ -99,13 +109,17 @@  | 
| 99 | 109 | 
		lemon/min_cost_arborescence.h \  | 
| 100 | 110 | 
		lemon/nauty_reader.h \  | 
| 101 | 111 | 
		lemon/network_simplex.h \  | 
| 112 | 
		lemon/pairing_heap.h \  | 
|
| 102 | 113 | 
		lemon/path.h \  | 
| 114 | 
		lemon/planarity.h \  | 
|
| 103 | 115 | 
		lemon/preflow.h \  | 
| 116 | 
		lemon/quad_heap.h \  | 
|
| 104 | 117 | 
		lemon/radix_heap.h \  | 
| 105 | 118 | 
		lemon/radix_sort.h \  | 
| 106 | 119 | 
		lemon/random.h \  | 
| 107 | 120 | 
		lemon/smart_graph.h \  | 
| 108 | 121 | 
		lemon/soplex.h \  | 
| 122 | 
		lemon/static_graph.h \  | 
|
| 109 | 123 | 
		lemon/suurballe.h \  | 
| 110 | 124 | 
		lemon/time_measure.h \  | 
| 111 | 125 | 
		lemon/tolerance.h \  | 
| ... | ... | 
		@@ -2,7 +2,7 @@  | 
| 2 | 2 | 
		*  | 
| 3 | 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| ... | ... | 
		@@ -360,6 +360,9 @@  | 
| 360 | 360 | 
		/// by adding or removing nodes or arcs, unless the \c GR template  | 
| 361 | 361 | 
		/// parameter is set to be \c const.  | 
| 362 | 362 | 
		///  | 
| 363 | 
		/// This class provides item counting in the same time as the adapted  | 
|
| 364 | 
		/// digraph structure.  | 
|
| 365 | 
		///  | 
|
| 363 | 366 | 
		/// \tparam DGR The type of the adapted digraph.  | 
| 364 | 367 | 
		/// It must conform to the \ref concepts::Digraph "Digraph" concept.  | 
| 365 | 368 | 
		/// It can also be specified to be \c const.  | 
| ... | ... | 
		@@ -719,6 +722,8 @@  | 
| 719 | 722 | 
		/// by adding or removing nodes or arcs, unless the \c GR template  | 
| 720 | 723 | 
		/// parameter is set to be \c const.  | 
| 721 | 724 | 
		///  | 
| 725 | 
		/// This class provides only linear time counting for nodes and arcs.  | 
|
| 726 | 
		///  | 
|
| 722 | 727 | 
		/// \tparam DGR The type of the adapted digraph.  | 
| 723 | 728 | 
		/// It must conform to the \ref concepts::Digraph "Digraph" concept.  | 
| 724 | 729 | 
		/// It can also be specified to be \c const.  | 
| ... | ... | 
		@@ -1314,6 +1319,8 @@  | 
| 1314 | 1319 | 
		/// by adding or removing nodes or edges, unless the \c GR template  | 
| 1315 | 1320 | 
		/// parameter is set to be \c const.  | 
| 1316 | 1321 | 
		///  | 
| 1322 | 
		/// This class provides only linear time counting for nodes, edges and arcs.  | 
|
| 1323 | 
		///  | 
|
| 1317 | 1324 | 
		/// \tparam GR The type of the adapted graph.  | 
| 1318 | 1325 | 
		/// It must conform to the \ref concepts::Graph "Graph" concept.  | 
| 1319 | 1326 | 
		/// It can also be specified to be \c const.  | 
| ... | ... | 
		@@ -1471,6 +1478,8 @@  | 
| 1471 | 1478 | 
		/// by adding or removing nodes or arcs/edges, unless the \c GR template  | 
| 1472 | 1479 | 
		/// parameter is set to be \c const.  | 
| 1473 | 1480 | 
		///  | 
| 1481 | 
		/// This class provides only linear time item counting.  | 
|
| 1482 | 
		///  | 
|
| 1474 | 1483 | 
		/// \tparam GR The type of the adapted digraph or graph.  | 
| 1475 | 1484 | 
		/// It must conform to the \ref concepts::Digraph "Digraph" concept  | 
| 1476 | 1485 | 
		/// or the \ref concepts::Graph "Graph" concept.  | 
| ... | ... | 
		@@ -1619,6 +1628,8 @@  | 
| 1619 | 1628 | 
		/// by adding or removing nodes or arcs, unless the \c GR template  | 
| 1620 | 1629 | 
		/// parameter is set to be \c const.  | 
| 1621 | 1630 | 
		///  | 
| 1631 | 
		/// This class provides only linear time counting for nodes and arcs.  | 
|
| 1632 | 
		///  | 
|
| 1622 | 1633 | 
		/// \tparam DGR The type of the adapted digraph.  | 
| 1623 | 1634 | 
		/// It must conform to the \ref concepts::Digraph "Digraph" concept.  | 
| 1624 | 1635 | 
		/// It can also be specified to be \c const.  | 
| ... | ... | 
		@@ -1729,6 +1740,8 @@  | 
| 1729 | 1740 | 
		/// by adding or removing nodes or edges, unless the \c GR template  | 
| 1730 | 1741 | 
		/// parameter is set to be \c const.  | 
| 1731 | 1742 | 
		///  | 
| 1743 | 
		/// This class provides only linear time counting for nodes, edges and arcs.  | 
|
| 1744 | 
		///  | 
|
| 1732 | 1745 | 
		/// \tparam GR The type of the adapted graph.  | 
| 1733 | 1746 | 
		/// It must conform to the \ref concepts::Graph "Graph" concept.  | 
| 1734 | 1747 | 
		/// It can also be specified to be \c const.  | 
| ... | ... | 
		@@ -2232,6 +2245,9 @@  | 
| 2232 | 2245 | 
		/// by adding or removing nodes or edges, unless the \c GR template  | 
| 2233 | 2246 | 
		/// parameter is set to be \c const.  | 
| 2234 | 2247 | 
		///  | 
| 2248 | 
		/// This class provides item counting in the same time as the adapted  | 
|
| 2249 | 
		/// digraph structure.  | 
|
| 2250 | 
		///  | 
|
| 2235 | 2251 | 
		/// \tparam DGR The type of the adapted digraph.  | 
| 2236 | 2252 | 
		/// It must conform to the \ref concepts::Digraph "Digraph" concept.  | 
| 2237 | 2253 | 
		/// It can also be specified to be \c const.  | 
| ... | ... | 
		@@ -2535,6 +2551,9 @@  | 
| 2535 | 2551 | 
		/// by adding or removing nodes or arcs, unless the \c GR template  | 
| 2536 | 2552 | 
		/// parameter is set to be \c const.  | 
| 2537 | 2553 | 
		///  | 
| 2554 | 
		/// This class provides item counting in the same time as the adapted  | 
|
| 2555 | 
		/// graph structure.  | 
|
| 2556 | 
		///  | 
|
| 2538 | 2557 | 
		/// \tparam GR The type of the adapted graph.  | 
| 2539 | 2558 | 
		/// It must conform to the \ref concepts::Graph "Graph" concept.  | 
| 2540 | 2559 | 
		/// It can also be specified to be \c const.  | 
| ... | ... | 
		@@ -2678,6 +2697,8 @@  | 
| 2678 | 2697 | 
		/// arcs).  | 
| 2679 | 2698 | 
		/// This class conforms to the \ref concepts::Digraph "Digraph" concept.  | 
| 2680 | 2699 | 
		///  | 
| 2700 | 
		/// This class provides only linear time counting for nodes and arcs.  | 
|
| 2701 | 
		///  | 
|
| 2681 | 2702 | 
		/// \tparam DGR The type of the adapted digraph.  | 
| 2682 | 2703 | 
		/// It must conform to the \ref concepts::Digraph "Digraph" concept.  | 
| 2683 | 2704 | 
		/// It is implicitly \c const.  | 
| ... | ... | 
		@@ -3325,6 +3346,9 @@  | 
| 3325 | 3346 | 
		/// costs/capacities of the original digraph to the \e bind \e arcs  | 
| 3326 | 3347 | 
		/// in the adaptor.  | 
| 3327 | 3348 | 
		///  | 
| 3349 | 
		/// This class provides item counting in the same time as the adapted  | 
|
| 3350 | 
		/// digraph structure.  | 
|
| 3351 | 
		///  | 
|
| 3328 | 3352 | 
		/// \tparam DGR The type of the adapted digraph.  | 
| 3329 | 3353 | 
		/// It must conform to the \ref concepts::Digraph "Digraph" concept.  | 
| 3330 | 3354 | 
		/// It is implicitly \c const.  | 
| ... | ... | 
		@@ -2,7 +2,7 @@  | 
| 2 | 2 | 
		*  | 
| 3 | 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| ... | ... | 
		@@ -20,14 +20,23 @@  | 
| 20 | 20 | 
		 | 
| 21 | 21 | 
		namespace lemon {
	 | 
| 22 | 22 | 
		 | 
| 23 | 
		void ArgParser::_terminate(ArgParserException::Reason reason) const  | 
|
| 24 | 
		  {
	 | 
|
| 25 | 
		if(_exit_on_problems)  | 
|
| 26 | 
		exit(1);  | 
|
| 27 | 
		else throw(ArgParserException(reason));  | 
|
| 28 | 
		}  | 
|
| 29 | 
		 | 
|
| 30 | 
		 | 
|
| 23 | 31 | 
		void ArgParser::_showHelp(void *p)  | 
| 24 | 32 | 
		  {
	 | 
| 25 | 33 | 
		(static_cast<ArgParser*>(p))->showHelp();  | 
| 26 | 
		
  | 
|
| 34 | 
		(static_cast<ArgParser*>(p))->_terminate(ArgParserException::HELP);  | 
|
| 27 | 35 | 
		}  | 
| 28 | 36 | 
		 | 
| 29 | 37 | 
		ArgParser::ArgParser(int argc, const char * const *argv)  | 
| 30 | 
		:_argc(argc), _argv(argv), _command_name(argv[0])  | 
|
| 38 | 
		:_argc(argc), _argv(argv), _command_name(argv[0]),  | 
|
| 39 | 
		    _exit_on_problems(true) {
	 | 
|
| 31 | 40 | 
		    funcOption("-help","Print a short help message",_showHelp,this);
	 | 
| 32 | 41 | 
		    synonym("help","-help");
	 | 
| 33 | 42 | 
		    synonym("h","-help");
	 | 
| ... | ... | 
		@@ -342,7 +351,7 @@  | 
| 342 | 351 | 
		for(std::vector<OtherArg>::const_iterator i=_others_help.begin();  | 
| 343 | 352 | 
		i!=_others_help.end();++i) showHelp(i);  | 
| 344 | 353 | 
		for(Opts::const_iterator i=_opts.begin();i!=_opts.end();++i) showHelp(i);  | 
| 345 | 
		
  | 
|
| 354 | 
		_terminate(ArgParserException::HELP);  | 
|
| 346 | 355 | 
		}  | 
| 347 | 356 | 
		 | 
| 348 | 357 | 
		 | 
| ... | ... | 
		@@ -351,7 +360,7 @@  | 
| 351 | 360 | 
		std::cerr << "\nUnknown option: " << arg << "\n";  | 
| 352 | 361 | 
		std::cerr << "\nType '" << _command_name <<  | 
| 353 | 362 | 
		" --help' to obtain a short summary on the usage.\n\n";  | 
| 354 | 
		
  | 
|
| 363 | 
		_terminate(ArgParserException::UNKNOWN_OPT);  | 
|
| 355 | 364 | 
		}  | 
| 356 | 365 | 
		 | 
| 357 | 366 | 
		void ArgParser::requiresValue(std::string arg, OptType t) const  | 
| ... | ... | 
		@@ -414,7 +423,7 @@  | 
| 414 | 423 | 
		    if(!ok) {
	 | 
| 415 | 424 | 
		std::cerr << "\nType '" << _command_name <<  | 
| 416 | 425 | 
		" --help' to obtain a short summary on the usage.\n\n";  | 
| 417 | 
		
  | 
|
| 426 | 
		_terminate(ArgParserException::INVALID_OPT);  | 
|
| 418 | 427 | 
		}  | 
| 419 | 428 | 
		}  | 
| 420 | 429 | 
| ... | ... | 
		@@ -2,7 +2,7 @@  | 
| 2 | 2 | 
		*  | 
| 3 | 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| ... | ... | 
		@@ -34,6 +34,44 @@  | 
| 34 | 34 | 
		 | 
| 35 | 35 | 
		namespace lemon {
	 | 
| 36 | 36 | 
		 | 
| 37 | 
		///Exception used by ArgParser  | 
|
| 38 | 
		  class ArgParserException : public Exception {
	 | 
|
| 39 | 
		public:  | 
|
| 40 | 
		    enum Reason {
	 | 
|
| 41 | 
		HELP, /// <tt>--help</tt> option was given  | 
|
| 42 | 
		UNKNOWN_OPT, /// Unknown option was given  | 
|
| 43 | 
		INVALID_OPT /// Invalid combination of options  | 
|
| 44 | 
		};  | 
|
| 45 | 
		 | 
|
| 46 | 
		private:  | 
|
| 47 | 
		Reason _reason;  | 
|
| 48 | 
		 | 
|
| 49 | 
		public:  | 
|
| 50 | 
		///Constructor  | 
|
| 51 | 
		    ArgParserException(Reason r) throw() : _reason(r) {}
	 | 
|
| 52 | 
		///Virtual destructor  | 
|
| 53 | 
		    virtual ~ArgParserException() throw() {}
	 | 
|
| 54 | 
		///A short description of the exception  | 
|
| 55 | 
		    virtual const char* what() const throw() {
	 | 
|
| 56 | 
		switch(_reason)  | 
|
| 57 | 
		        {
	 | 
|
| 58 | 
		case HELP:  | 
|
| 59 | 
		return "lemon::ArgParseException: ask for help";  | 
|
| 60 | 
		break;  | 
|
| 61 | 
		case UNKNOWN_OPT:  | 
|
| 62 | 
		return "lemon::ArgParseException: unknown option";  | 
|
| 63 | 
		break;  | 
|
| 64 | 
		case INVALID_OPT:  | 
|
| 65 | 
		return "lemon::ArgParseException: invalid combination of options";  | 
|
| 66 | 
		break;  | 
|
| 67 | 
		}  | 
|
| 68 | 
		return "";  | 
|
| 69 | 
		}  | 
|
| 70 | 
		///Return the reason for the failure  | 
|
| 71 | 
		    Reason reason() const {return _reason; }
	 | 
|
| 72 | 
		};  | 
|
| 73 | 
		 | 
|
| 74 | 
		 | 
|
| 37 | 75 | 
		///Command line arguments parser  | 
| 38 | 76 | 
		 | 
| 39 | 77 | 
		///\ingroup misc  | 
| ... | ... | 
		@@ -116,6 +154,10 @@  | 
| 116 | 154 | 
		const std::string &help,  | 
| 117 | 155 | 
		void (*func)(void *),void *data);  | 
| 118 | 156 | 
		 | 
| 157 | 
		bool _exit_on_problems;  | 
|
| 158 | 
		 | 
|
| 159 | 
		void _terminate(ArgParserException::Reason reason) const;  | 
|
| 160 | 
		 | 
|
| 119 | 161 | 
		public:  | 
| 120 | 162 | 
		 | 
| 121 | 163 | 
		///Constructor  | 
| ... | ... | 
		@@ -380,6 +422,11 @@  | 
| 380 | 422 | 
		///not starting with a '-' character.  | 
| 381 | 423 | 
		    const std::vector<std::string> &files() const { return _file_args; }
	 | 
| 382 | 424 | 
		 | 
| 425 | 
		///Throw instead of exit in case of problems  | 
|
| 426 | 
		void throwOnProblems()  | 
|
| 427 | 
		    {
	 | 
|
| 428 | 
		_exit_on_problems=false;  | 
|
| 429 | 
		}  | 
|
| 383 | 430 | 
		};  | 
| 384 | 431 | 
		}  | 
| 385 | 432 | 
| ... | ... | 
		@@ -2,7 +2,7 @@  | 
| 2 | 2 | 
		*  | 
| 3 | 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| ... | ... | 
		@@ -47,7 +47,7 @@  | 
| 47 | 47 | 
		///  | 
| 48 | 48 | 
		///The type of the map that stores the predecessor  | 
| 49 | 49 | 
		///arcs of the shortest paths.  | 
| 50 | 
		///It must  | 
|
| 50 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 51 | 51 | 
		typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;  | 
| 52 | 52 | 
		///Instantiates a \c PredMap.  | 
| 53 | 53 | 
		 | 
| ... | ... | 
		@@ -62,7 +62,8 @@  | 
| 62 | 62 | 
		///The type of the map that indicates which nodes are processed.  | 
| 63 | 63 | 
		 | 
| 64 | 64 | 
		///The type of the map that indicates which nodes are processed.  | 
| 65 | 
		///It must  | 
|
| 65 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 66 | 
		///By default, it is a NullMap.  | 
|
| 66 | 67 | 
		typedef NullMap<typename Digraph::Node,bool> ProcessedMap;  | 
| 67 | 68 | 
		///Instantiates a \c ProcessedMap.  | 
| 68 | 69 | 
		 | 
| ... | ... | 
		@@ -81,7 +82,8 @@  | 
| 81 | 82 | 
		///The type of the map that indicates which nodes are reached.  | 
| 82 | 83 | 
		 | 
| 83 | 84 | 
		///The type of the map that indicates which nodes are reached.  | 
| 84 | 
		///It must  | 
|
| 85 | 
		///It must conform to  | 
|
| 86 | 
		///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.  | 
|
| 85 | 87 | 
		typedef typename Digraph::template NodeMap<bool> ReachedMap;  | 
| 86 | 88 | 
		///Instantiates a \c ReachedMap.  | 
| 87 | 89 | 
		 | 
| ... | ... | 
		@@ -96,7 +98,7 @@  | 
| 96 | 98 | 
		///The type of the map that stores the distances of the nodes.  | 
| 97 | 99 | 
		 | 
| 98 | 100 | 
		///The type of the map that stores the distances of the nodes.  | 
| 99 | 
		///It must  | 
|
| 101 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 100 | 102 | 
		typedef typename Digraph::template NodeMap<int> DistMap;  | 
| 101 | 103 | 
		///Instantiates a \c DistMap.  | 
| 102 | 104 | 
		 | 
| ... | ... | 
		@@ -120,6 +122,11 @@  | 
| 120 | 122 | 
		///  | 
| 121 | 123 | 
		///\tparam GR The type of the digraph the algorithm runs on.  | 
| 122 | 124 | 
		///The default type is \ref ListDigraph.  | 
| 125 | 
		///\tparam TR The traits class that defines various types used by the  | 
|
| 126 | 
		///algorithm. By default, it is \ref BfsDefaultTraits  | 
|
| 127 | 
		///"BfsDefaultTraits<GR>".  | 
|
| 128 | 
		///In most cases, this parameter should not be set directly,  | 
|
| 129 | 
		///consider to use the named template parameters instead.  | 
|
| 123 | 130 | 
		#ifdef DOXYGEN  | 
| 124 | 131 | 
		template <typename GR,  | 
| 125 | 132 | 
		typename TR>  | 
| ... | ... | 
		@@ -225,7 +232,7 @@  | 
| 225 | 232 | 
		///  | 
| 226 | 233 | 
		///\ref named-templ-param "Named parameter" for setting  | 
| 227 | 234 | 
		///\c PredMap type.  | 
| 228 | 
		///It must  | 
|
| 235 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 229 | 236 | 
		template <class T>  | 
| 230 | 237 | 
		    struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
	 | 
| 231 | 238 | 
		typedef Bfs< Digraph, SetPredMapTraits<T> > Create;  | 
| ... | ... | 
		@@ -245,7 +252,7 @@  | 
| 245 | 252 | 
		///  | 
| 246 | 253 | 
		///\ref named-templ-param "Named parameter" for setting  | 
| 247 | 254 | 
		///\c DistMap type.  | 
| 248 | 
		///It must  | 
|
| 255 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 249 | 256 | 
		template <class T>  | 
| 250 | 257 | 
		    struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
	 | 
| 251 | 258 | 
		typedef Bfs< Digraph, SetDistMapTraits<T> > Create;  | 
| ... | ... | 
		@@ -265,7 +272,8 @@  | 
| 265 | 272 | 
		///  | 
| 266 | 273 | 
		///\ref named-templ-param "Named parameter" for setting  | 
| 267 | 274 | 
		///\c ReachedMap type.  | 
| 268 | 
		///It must  | 
|
| 275 | 
		///It must conform to  | 
|
| 276 | 
		///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.  | 
|
| 269 | 277 | 
		template <class T>  | 
| 270 | 278 | 
		    struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
	 | 
| 271 | 279 | 
		typedef Bfs< Digraph, SetReachedMapTraits<T> > Create;  | 
| ... | ... | 
		@@ -285,7 +293,7 @@  | 
| 285 | 293 | 
		///  | 
| 286 | 294 | 
		///\ref named-templ-param "Named parameter" for setting  | 
| 287 | 295 | 
		///\c ProcessedMap type.  | 
| 288 | 
		///It must  | 
|
| 296 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 289 | 297 | 
		template <class T>  | 
| 290 | 298 | 
		    struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
	 | 
| 291 | 299 | 
		typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create;  | 
| ... | ... | 
		@@ -413,8 +421,8 @@  | 
| 413 | 421 | 
		///\name Execution Control  | 
| 414 | 422 | 
		///The simplest way to execute the BFS algorithm is to use one of the  | 
| 415 | 423 | 
		///member functions called \ref run(Node) "run()".\n  | 
| 416 | 
		///If you need more control on the execution, first you have to call  | 
|
| 417 | 
		///\ref init(), then you can add several source nodes with  | 
|
| 424 | 
		///If you need better control on the execution, you have to call  | 
|
| 425 | 
		///\ref init() first, then you can add several source nodes with  | 
|
| 418 | 426 | 
		///\ref addSource(). Finally the actual path computation can be  | 
| 419 | 427 | 
		///performed with one of the \ref start() functions.  | 
| 420 | 428 | 
		 | 
| ... | ... | 
		@@ -700,12 +708,8 @@  | 
| 700 | 708 | 
		 | 
| 701 | 709 | 
		///Runs the algorithm to visit all nodes in the digraph.  | 
| 702 | 710 | 
		 | 
| 703 | 
		///This method runs the %BFS algorithm in order to  | 
|
| 704 | 
		///compute the shortest path to each node.  | 
|
| 705 | 
		///  | 
|
| 706 | 
		///The algorithm computes  | 
|
| 707 | 
		///- the shortest path tree (forest),  | 
|
| 708 | 
		///- the distance of each node from the root(s).  | 
|
| 711 | 
		///This method runs the %BFS algorithm in order to visit all nodes  | 
|
| 712 | 
		///in the digraph.  | 
|
| 709 | 713 | 
		///  | 
| 710 | 714 | 
		///\note <tt>b.run(s)</tt> is just a shortcut of the following code.  | 
| 711 | 715 | 
		///\code  | 
| ... | ... | 
		@@ -737,9 +741,9 @@  | 
| 737 | 741 | 
		 | 
| 738 | 742 | 
		    ///@{
	 | 
| 739 | 743 | 
		 | 
| 740 | 
		///The shortest path to  | 
|
| 744 | 
		///The shortest path to the given node.  | 
|
| 741 | 745 | 
		 | 
| 742 | 
		///Returns the shortest path to  | 
|
| 746 | 
		///Returns the shortest path to the given node from the root(s).  | 
|
| 743 | 747 | 
		///  | 
| 744 | 748 | 
		///\warning \c t should be reached from the root(s).  | 
| 745 | 749 | 
		///  | 
| ... | ... | 
		@@ -747,9 +751,9 @@  | 
| 747 | 751 | 
		///must be called before using this function.  | 
| 748 | 752 | 
		    Path path(Node t) const { return Path(*G, *_pred, t); }
	 | 
| 749 | 753 | 
		 | 
| 750 | 
		///The distance of  | 
|
| 754 | 
		///The distance of the given node from the root(s).  | 
|
| 751 | 755 | 
		 | 
| 752 | 
		///Returns the distance of  | 
|
| 756 | 
		///Returns the distance of the given node from the root(s).  | 
|
| 753 | 757 | 
		///  | 
| 754 | 758 | 
		///\warning If node \c v is not reached from the root(s), then  | 
| 755 | 759 | 
		///the return value of this function is undefined.  | 
| ... | ... | 
		@@ -758,29 +762,31 @@  | 
| 758 | 762 | 
		///must be called before using this function.  | 
| 759 | 763 | 
		    int dist(Node v) const { return (*_dist)[v]; }
	 | 
| 760 | 764 | 
		 | 
| 761 | 
		///Returns the 'previous arc' of the shortest path tree for a node.  | 
|
| 762 | 
		 | 
|
| 765 | 
		///\brief Returns the 'previous arc' of the shortest path tree for  | 
|
| 766 | 
		///the given node.  | 
|
| 767 | 
		///  | 
|
| 763 | 768 | 
		///This function returns the 'previous arc' of the shortest path  | 
| 764 | 769 | 
		///tree for the node \c v, i.e. it returns the last arc of a  | 
| 765 | 770 | 
		///shortest path from a root to \c v. It is \c INVALID if \c v  | 
| 766 | 771 | 
		///is not reached from the root(s) or if \c v is a root.  | 
| 767 | 772 | 
		///  | 
| 768 | 773 | 
		///The shortest path tree used here is equal to the shortest path  | 
| 769 | 
		///tree used in \ref predNode().  | 
|
| 774 | 
		///tree used in \ref predNode() and \ref predMap().  | 
|
| 770 | 775 | 
		///  | 
| 771 | 776 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 772 | 777 | 
		///must be called before using this function.  | 
| 773 | 778 | 
		    Arc predArc(Node v) const { return (*_pred)[v];}
	 | 
| 774 | 779 | 
		 | 
| 775 | 
		///Returns the 'previous node' of the shortest path tree for a node.  | 
|
| 776 | 
		 | 
|
| 780 | 
		///\brief Returns the 'previous node' of the shortest path tree for  | 
|
| 781 | 
		///the given node.  | 
|
| 782 | 
		///  | 
|
| 777 | 783 | 
		///This function returns the 'previous node' of the shortest path  | 
| 778 | 784 | 
		///tree for the node \c v, i.e. it returns the last but one node  | 
| 779 | 
		///  | 
|
| 785 | 
		///of a shortest path from a root to \c v. It is \c INVALID  | 
|
| 780 | 786 | 
		///if \c v is not reached from the root(s) or if \c v is a root.  | 
| 781 | 787 | 
		///  | 
| 782 | 788 | 
		///The shortest path tree used here is equal to the shortest path  | 
| 783 | 
		///tree used in \ref predArc().  | 
|
| 789 | 
		///tree used in \ref predArc() and \ref predMap().  | 
|
| 784 | 790 | 
		///  | 
| 785 | 791 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 786 | 792 | 
		///must be called before using this function.  | 
| ... | ... | 
		@@ -801,13 +807,13 @@  | 
| 801 | 807 | 
		///predecessor arcs.  | 
| 802 | 808 | 
		///  | 
| 803 | 809 | 
		///Returns a const reference to the node map that stores the predecessor  | 
| 804 | 
		///arcs, which form the shortest path tree.  | 
|
| 810 | 
		///arcs, which form the shortest path tree (forest).  | 
|
| 805 | 811 | 
		///  | 
| 806 | 812 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 807 | 813 | 
		///must be called before using this function.  | 
| 808 | 814 | 
		    const PredMap &predMap() const { return *_pred;}
	 | 
| 809 | 815 | 
		 | 
| 810 | 
		///Checks if  | 
|
| 816 | 
		///Checks if the given node is reached from the root(s).  | 
|
| 811 | 817 | 
		 | 
| 812 | 818 | 
		///Returns \c true if \c v is reached from the root(s).  | 
| 813 | 819 | 
		///  | 
| ... | ... | 
		@@ -833,7 +839,7 @@  | 
| 833 | 839 | 
		///  | 
| 834 | 840 | 
		///The type of the map that stores the predecessor  | 
| 835 | 841 | 
		///arcs of the shortest paths.  | 
| 836 | 
		///It must  | 
|
| 842 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 837 | 843 | 
		typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;  | 
| 838 | 844 | 
		///Instantiates a PredMap.  | 
| 839 | 845 | 
		 | 
| ... | ... | 
		@@ -848,8 +854,8 @@  | 
| 848 | 854 | 
		///The type of the map that indicates which nodes are processed.  | 
| 849 | 855 | 
		 | 
| 850 | 856 | 
		///The type of the map that indicates which nodes are processed.  | 
| 851 | 
		///It must meet the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 852 | 
		///By default it is a NullMap.  | 
|
| 857 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 858 | 
		///By default, it is a NullMap.  | 
|
| 853 | 859 | 
		typedef NullMap<typename Digraph::Node,bool> ProcessedMap;  | 
| 854 | 860 | 
		///Instantiates a ProcessedMap.  | 
| 855 | 861 | 
		 | 
| ... | ... | 
		@@ -868,7 +874,8 @@  | 
| 868 | 874 | 
		///The type of the map that indicates which nodes are reached.  | 
| 869 | 875 | 
		 | 
| 870 | 876 | 
		///The type of the map that indicates which nodes are reached.  | 
| 871 | 
		///It must  | 
|
| 877 | 
		///It must conform to  | 
|
| 878 | 
		///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.  | 
|
| 872 | 879 | 
		typedef typename Digraph::template NodeMap<bool> ReachedMap;  | 
| 873 | 880 | 
		///Instantiates a ReachedMap.  | 
| 874 | 881 | 
		 | 
| ... | ... | 
		@@ -883,7 +890,7 @@  | 
| 883 | 890 | 
		///The type of the map that stores the distances of the nodes.  | 
| 884 | 891 | 
		 | 
| 885 | 892 | 
		///The type of the map that stores the distances of the nodes.  | 
| 886 | 
		///It must  | 
|
| 893 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 887 | 894 | 
		typedef typename Digraph::template NodeMap<int> DistMap;  | 
| 888 | 895 | 
		///Instantiates a DistMap.  | 
| 889 | 896 | 
		 | 
| ... | ... | 
		@@ -898,18 +905,14 @@  | 
| 898 | 905 | 
		///The type of the shortest paths.  | 
| 899 | 906 | 
		 | 
| 900 | 907 | 
		///The type of the shortest paths.  | 
| 901 | 
		///It must  | 
|
| 908 | 
		///It must conform to the \ref concepts::Path "Path" concept.  | 
|
| 902 | 909 | 
		typedef lemon::Path<Digraph> Path;  | 
| 903 | 910 | 
		};  | 
| 904 | 911 | 
		 | 
| 905 | 912 | 
		/// Default traits class used by BfsWizard  | 
| 906 | 913 | 
		 | 
| 907 | 
		/// To make it easier to use Bfs algorithm  | 
|
| 908 | 
		/// we have created a wizard class.  | 
|
| 909 | 
		/// This \ref BfsWizard class needs default traits,  | 
|
| 910 | 
		/// as well as the \ref Bfs class.  | 
|
| 911 | 
		/// The \ref BfsWizardBase is a class to be the default traits of the  | 
|
| 912 | 
		/// \ref BfsWizard class.  | 
|
| 914 | 
		/// Default traits class used by BfsWizard.  | 
|
| 915 | 
		/// \tparam GR The type of the digraph.  | 
|
| 913 | 916 | 
		template<class GR>  | 
| 914 | 917 | 
		class BfsWizardBase : public BfsWizardDefaultTraits<GR>  | 
| 915 | 918 | 
		  {
	 | 
| ... | ... | 
		@@ -937,7 +940,7 @@  | 
| 937 | 940 | 
		public:  | 
| 938 | 941 | 
		/// Constructor.  | 
| 939 | 942 | 
		 | 
| 940 | 
		/// This constructor does not require parameters,  | 
|
| 943 | 
		/// This constructor does not require parameters, it initiates  | 
|
| 941 | 944 | 
		/// all of the attributes to \c 0.  | 
| 942 | 945 | 
		BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),  | 
| 943 | 946 | 
		                      _dist(0), _path(0), _di(0) {}
	 | 
| ... | ... | 
		@@ -962,12 +965,14 @@  | 
| 962 | 965 | 
		///  | 
| 963 | 966 | 
		/// This class should only be used through the \ref bfs() function,  | 
| 964 | 967 | 
		/// which makes it easier to use the algorithm.  | 
| 968 | 
		///  | 
|
| 969 | 
		/// \tparam TR The traits class that defines various types used by the  | 
|
| 970 | 
		/// algorithm.  | 
|
| 965 | 971 | 
		template<class TR>  | 
| 966 | 972 | 
		class BfsWizard : public TR  | 
| 967 | 973 | 
		  {
	 | 
| 968 | 974 | 
		typedef TR Base;  | 
| 969 | 975 | 
		 | 
| 970 | 
		///The type of the digraph the algorithm runs on.  | 
|
| 971 | 976 | 
		typedef typename TR::Digraph Digraph;  | 
| 972 | 977 | 
		 | 
| 973 | 978 | 
		typedef typename Digraph::Node Node;  | 
| ... | ... | 
		@@ -975,16 +980,10 @@  | 
| 975 | 980 | 
		typedef typename Digraph::Arc Arc;  | 
| 976 | 981 | 
		typedef typename Digraph::OutArcIt OutArcIt;  | 
| 977 | 982 | 
		 | 
| 978 | 
		///\brief The type of the map that stores the predecessor  | 
|
| 979 | 
		///arcs of the shortest paths.  | 
|
| 980 | 983 | 
		typedef typename TR::PredMap PredMap;  | 
| 981 | 
		///\brief The type of the map that stores the distances of the nodes.  | 
|
| 982 | 984 | 
		typedef typename TR::DistMap DistMap;  | 
| 983 | 
		///\brief The type of the map that indicates which nodes are reached.  | 
|
| 984 | 985 | 
		typedef typename TR::ReachedMap ReachedMap;  | 
| 985 | 
		///\brief The type of the map that indicates which nodes are processed.  | 
|
| 986 | 986 | 
		typedef typename TR::ProcessedMap ProcessedMap;  | 
| 987 | 
		///The type of the shortest paths  | 
|
| 988 | 987 | 
		typedef typename TR::Path Path;  | 
| 989 | 988 | 
		 | 
| 990 | 989 | 
		public:  | 
| ... | ... | 
		@@ -1054,8 +1053,8 @@  | 
| 1054 | 1053 | 
		 | 
| 1055 | 1054 | 
		///Runs BFS algorithm to visit all nodes in the digraph.  | 
| 1056 | 1055 | 
		 | 
| 1057 | 
		///This method runs BFS algorithm in order to compute  | 
|
| 1058 | 
		///the shortest path to each node.  | 
|
| 1056 | 
		///This method runs BFS algorithm in order to visit all nodes  | 
|
| 1057 | 
		///in the digraph.  | 
|
| 1059 | 1058 | 
		void run()  | 
| 1060 | 1059 | 
		    {
	 | 
| 1061 | 1060 | 
		run(INVALID);  | 
| ... | ... | 
		@@ -1067,11 +1066,12 @@  | 
| 1067 | 1066 | 
		      static PredMap *createPredMap(const Digraph &) { return 0; };
	 | 
| 1068 | 1067 | 
		      SetPredMapBase(const TR &b) : TR(b) {}
	 | 
| 1069 | 1068 | 
		};  | 
| 1070 | 
		///\brief \ref named-func-param "Named parameter"  | 
|
| 1071 | 
		///for setting PredMap object.  | 
|
| 1069 | 
		 | 
|
| 1070 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
|
| 1071 | 
		///the predecessor map.  | 
|
| 1072 | 1072 | 
		///  | 
| 1073 | 
		///\ref named-func-param "Named parameter"  | 
|
| 1074 | 
		///for setting PredMap object.  | 
|
| 1073 | 
		///\ref named-templ-param "Named parameter" function for setting  | 
|
| 1074 | 
		///the map that stores the predecessor arcs of the nodes.  | 
|
| 1075 | 1075 | 
		template<class T>  | 
| 1076 | 1076 | 
		BfsWizard<SetPredMapBase<T> > predMap(const T &t)  | 
| 1077 | 1077 | 
		    {
	 | 
| ... | ... | 
		@@ -1085,11 +1085,12 @@  | 
| 1085 | 1085 | 
		      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
	 | 
| 1086 | 1086 | 
		      SetReachedMapBase(const TR &b) : TR(b) {}
	 | 
| 1087 | 1087 | 
		};  | 
| 1088 | 
		///\brief \ref named-func-param "Named parameter"  | 
|
| 1089 | 
		///for setting ReachedMap object.  | 
|
| 1088 | 
		 | 
|
| 1089 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
|
| 1090 | 
		///the reached map.  | 
|
| 1090 | 1091 | 
		///  | 
| 1091 | 
		/// \ref named-func-param "Named parameter"  | 
|
| 1092 | 
		///for setting ReachedMap object.  | 
|
| 1092 | 
		///\ref named-templ-param "Named parameter" function for setting  | 
|
| 1093 | 
		///the map that indicates which nodes are reached.  | 
|
| 1093 | 1094 | 
		template<class T>  | 
| 1094 | 1095 | 
		BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)  | 
| 1095 | 1096 | 
		    {
	 | 
| ... | ... | 
		@@ -1103,11 +1104,13 @@  | 
| 1103 | 1104 | 
		      static DistMap *createDistMap(const Digraph &) { return 0; };
	 | 
| 1104 | 1105 | 
		      SetDistMapBase(const TR &b) : TR(b) {}
	 | 
| 1105 | 1106 | 
		};  | 
| 1106 | 
		///\brief \ref named-func-param "Named parameter"  | 
|
| 1107 | 
		///for setting DistMap object.  | 
|
| 1107 | 
		 | 
|
| 1108 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
|
| 1109 | 
		///the distance map.  | 
|
| 1108 | 1110 | 
		///  | 
| 1109 | 
		/// \ref named-func-param "Named parameter"  | 
|
| 1110 | 
		///for setting DistMap object.  | 
|
| 1111 | 
		///\ref named-templ-param "Named parameter" function for setting  | 
|
| 1112 | 
		///the map that stores the distances of the nodes calculated  | 
|
| 1113 | 
		///by the algorithm.  | 
|
| 1111 | 1114 | 
		template<class T>  | 
| 1112 | 1115 | 
		BfsWizard<SetDistMapBase<T> > distMap(const T &t)  | 
| 1113 | 1116 | 
		    {
	 | 
| ... | ... | 
		@@ -1121,11 +1124,12 @@  | 
| 1121 | 1124 | 
		      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
	 | 
| 1122 | 1125 | 
		      SetProcessedMapBase(const TR &b) : TR(b) {}
	 | 
| 1123 | 1126 | 
		};  | 
| 1124 | 
		///\brief \ref named-func-param "Named parameter"  | 
|
| 1125 | 
		///for setting ProcessedMap object.  | 
|
| 1127 | 
		 | 
|
| 1128 | 
		///\brief \ref named-func-param "Named parameter" for setting  | 
|
| 1129 | 
		///the processed map.  | 
|
| 1126 | 1130 | 
		///  | 
| 1127 | 
		/// \ref named-func-param "Named parameter"  | 
|
| 1128 | 
		///for setting ProcessedMap object.  | 
|
| 1131 | 
		///\ref named-templ-param "Named parameter" function for setting  | 
|
| 1132 | 
		///the map that indicates which nodes are processed.  | 
|
| 1129 | 1133 | 
		template<class T>  | 
| 1130 | 1134 | 
		BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)  | 
| 1131 | 1135 | 
		    {
	 | 
| ... | ... | 
		@@ -1264,7 +1268,8 @@  | 
| 1264 | 1268 | 
		/// \brief The type of the map that indicates which nodes are reached.  | 
| 1265 | 1269 | 
		///  | 
| 1266 | 1270 | 
		/// The type of the map that indicates which nodes are reached.  | 
| 1267 | 
		/// It must  | 
|
| 1271 | 
		/// It must conform to  | 
|
| 1272 | 
		///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.  | 
|
| 1268 | 1273 | 
		typedef typename Digraph::template NodeMap<bool> ReachedMap;  | 
| 1269 | 1274 | 
		 | 
| 1270 | 1275 | 
		/// \brief Instantiates a ReachedMap.  | 
| ... | ... | 
		@@ -1302,11 +1307,11 @@  | 
| 1302 | 1307 | 
		/// \ref BfsVisitor "BfsVisitor<GR>" is an empty visitor, which  | 
| 1303 | 1308 | 
		/// does not observe the BFS events. If you want to observe the BFS  | 
| 1304 | 1309 | 
		/// events, you should implement your own visitor class.  | 
| 1305 | 
		/// \tparam TR Traits class to set various data types used by the  | 
|
| 1306 | 
		/// algorithm. The default traits class is  | 
|
| 1307 | 
		/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<GR>".  | 
|
| 1308 | 
		/// See \ref BfsVisitDefaultTraits for the documentation of  | 
|
| 1309 | 
		///  | 
|
| 1310 | 
		/// \tparam TR The traits class that defines various types used by the  | 
|
| 1311 | 
		/// algorithm. By default, it is \ref BfsVisitDefaultTraits  | 
|
| 1312 | 
		/// "BfsVisitDefaultTraits<GR>".  | 
|
| 1313 | 
		/// In most cases, this parameter should not be set directly,  | 
|
| 1314 | 
		/// consider to use the named template parameters instead.  | 
|
| 1310 | 1315 | 
		#ifdef DOXYGEN  | 
| 1311 | 1316 | 
		template <typename GR, typename VS, typename TR>  | 
| 1312 | 1317 | 
		#else  | 
| ... | ... | 
		@@ -1425,8 +1430,8 @@  | 
| 1425 | 1430 | 
		/// \name Execution Control  | 
| 1426 | 1431 | 
		/// The simplest way to execute the BFS algorithm is to use one of the  | 
| 1427 | 1432 | 
		/// member functions called \ref run(Node) "run()".\n  | 
| 1428 | 
		/// If you need more control on the execution, first you have to call  | 
|
| 1429 | 
		/// \ref init(), then you can add several source nodes with  | 
|
| 1433 | 
		/// If you need better control on the execution, you have to call  | 
|
| 1434 | 
		/// \ref init() first, then you can add several source nodes with  | 
|
| 1430 | 1435 | 
		/// \ref addSource(). Finally the actual path computation can be  | 
| 1431 | 1436 | 
		/// performed with one of the \ref start() functions.  | 
| 1432 | 1437 | 
		 | 
| ... | ... | 
		@@ -1698,12 +1703,8 @@  | 
| 1698 | 1703 | 
		 | 
| 1699 | 1704 | 
		/// \brief Runs the algorithm to visit all nodes in the digraph.  | 
| 1700 | 1705 | 
		///  | 
| 1701 | 
		/// This method runs the %BFS algorithm in order to  | 
|
| 1702 | 
		/// compute the shortest path to each node.  | 
|
| 1703 | 
		///  | 
|
| 1704 | 
		/// The algorithm computes  | 
|
| 1705 | 
		/// - the shortest path tree (forest),  | 
|
| 1706 | 
		/// - the distance of each node from the root(s).  | 
|
| 1706 | 
		/// This method runs the %BFS algorithm in order to visit all nodes  | 
|
| 1707 | 
		/// in the digraph.  | 
|
| 1707 | 1708 | 
		///  | 
| 1708 | 1709 | 
		/// \note <tt>b.run(s)</tt> is just a shortcut of the following code.  | 
| 1709 | 1710 | 
		///\code  | 
| ... | ... | 
		@@ -1735,7 +1736,7 @@  | 
| 1735 | 1736 | 
		 | 
| 1736 | 1737 | 
		    ///@{
	 | 
| 1737 | 1738 | 
		 | 
| 1738 | 
		/// \brief Checks if  | 
|
| 1739 | 
		/// \brief Checks if the given node is reached from the root(s).  | 
|
| 1739 | 1740 | 
		///  | 
| 1740 | 1741 | 
		/// Returns \c true if \c v is reached from the root(s).  | 
| 1741 | 1742 | 
		///  | 
| ... | ... | 
		@@ -19,9 +19,9 @@  | 
| 19 | 19 | 
		#ifndef LEMON_BIN_HEAP_H  | 
| 20 | 20 | 
		#define LEMON_BIN_HEAP_H  | 
| 21 | 21 | 
		 | 
| 22 | 
		///\ingroup  | 
|
| 22 | 
		///\ingroup heaps  | 
|
| 23 | 23 | 
		///\file  | 
| 24 | 
		///\brief Binary  | 
|
| 24 | 
		///\brief Binary heap implementation.  | 
|
| 25 | 25 | 
		 | 
| 26 | 26 | 
		#include <vector>  | 
| 27 | 27 | 
		#include <utility>  | 
| ... | ... | 
		@@ -29,45 +29,41 @@  | 
| 29 | 29 | 
		 | 
| 30 | 30 | 
		namespace lemon {
	 | 
| 31 | 31 | 
		 | 
| 32 | 
		///\ingroup  | 
|
| 32 | 
		/// \ingroup heaps  | 
|
| 33 | 33 | 
		///  | 
| 34 | 
		///\brief  | 
|
| 34 | 
		/// \brief Binary heap data structure.  | 
|
| 35 | 35 | 
		///  | 
| 36 | 36 | 
		///This class implements the \e binary \e heap data structure.  | 
| 37 | 
		/// It fully conforms to the \ref concepts::Heap "heap concept".  | 
|
| 37 | 38 | 
		///  | 
| 38 | 
		///A \e heap is a data structure for storing items with specified values  | 
|
| 39 | 
		///called \e priorities in such a way that finding the item with minimum  | 
|
| 40 | 
		///priority is efficient. \c CMP specifies the ordering of the priorities.  | 
|
| 41 | 
		///In a heap one can change the priority of an item, add or erase an  | 
|
| 42 | 
		///item, etc.  | 
|
| 43 | 
		///  | 
|
| 44 | 
		///\tparam PR Type of the priority of the items.  | 
|
| 45 | 
		///\tparam IM A read and writable item map with int values, used internally  | 
|
| 46 | 
		///to handle the cross references.  | 
|
| 47 | 
		///\tparam CMP A functor class for the ordering of the priorities.  | 
|
| 39 | 
		/// \tparam PR Type of the priorities of the items.  | 
|
| 40 | 
		/// \tparam IM A read-writable item map with \c int values, used  | 
|
| 41 | 
		/// internally to handle the cross references.  | 
|
| 42 | 
		/// \tparam CMP A functor class for comparing the priorities.  | 
|
| 48 | 43 | 
		///The default is \c std::less<PR>.  | 
| 49 | 
		///  | 
|
| 50 | 
		///\sa FibHeap  | 
|
| 51 | 
		
  | 
|
| 44 | 
		#ifdef DOXYGEN  | 
|
| 45 | 
		template <typename PR, typename IM, typename CMP>  | 
|
| 46 | 
		#else  | 
|
| 52 | 47 | 
		template <typename PR, typename IM, typename CMP = std::less<PR> >  | 
| 48 | 
		#endif  | 
|
| 53 | 49 | 
		  class BinHeap {
	 | 
| 50 | 
		public:  | 
|
| 54 | 51 | 
		 | 
| 55 | 
		public:  | 
|
| 56 | 
		///\e  | 
|
| 52 | 
		/// Type of the item-int map.  | 
|
| 57 | 53 | 
		typedef IM ItemIntMap;  | 
| 58 | 
		///  | 
|
| 54 | 
		/// Type of the priorities.  | 
|
| 59 | 55 | 
		typedef PR Prio;  | 
| 60 | 
		///  | 
|
| 56 | 
		/// Type of the items stored in the heap.  | 
|
| 61 | 57 | 
		typedef typename ItemIntMap::Key Item;  | 
| 62 | 
		///  | 
|
| 58 | 
		/// Type of the item-priority pairs.  | 
|
| 63 | 59 | 
		typedef std::pair<Item,Prio> Pair;  | 
| 64 | 
		///  | 
|
| 60 | 
		/// Functor type for comparing the priorities.  | 
|
| 65 | 61 | 
		typedef CMP Compare;  | 
| 66 | 62 | 
		 | 
| 67 | 
		/// \brief Type to represent the  | 
|
| 63 | 
		/// \brief Type to represent the states of the items.  | 
|
| 68 | 64 | 
		///  | 
| 69 | 
		/// Each Item element have a state associated to it. It may be "in heap",  | 
|
| 70 | 
		/// "pre heap" or "post heap". The latter two are indifferent from the  | 
|
| 65 | 
		/// Each item has a state associated to it. It can be "in heap",  | 
|
| 66 | 
		/// "pre-heap" or "post-heap". The latter two are indifferent from the  | 
|
| 71 | 67 | 
		/// heap's point of view, but may be useful to the user.  | 
| 72 | 68 | 
		///  | 
| 73 | 69 | 
		/// The item-int map must be initialized in such way that it assigns  | 
| ... | ... | 
		@@ -84,42 +80,43 @@  | 
| 84 | 80 | 
		ItemIntMap &_iim;  | 
| 85 | 81 | 
		 | 
| 86 | 82 | 
		public:  | 
| 87 | 
		
  | 
|
| 83 | 
		 | 
|
| 84 | 
		/// \brief Constructor.  | 
|
| 88 | 85 | 
		///  | 
| 89 | 
		/// The constructor.  | 
|
| 90 | 
		/// \param map should be given to the constructor, since it is used  | 
|
| 91 | 
		/// internally to handle the cross references. The value of the map  | 
|
| 92 | 
		/// must be \c PRE_HEAP (<tt>-1</tt>) for every item.  | 
|
| 86 | 
		/// Constructor.  | 
|
| 87 | 
		/// \param map A map that assigns \c int values to the items.  | 
|
| 88 | 
		/// It is used internally to handle the cross references.  | 
|
| 89 | 
		/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 93 | 90 | 
		    explicit BinHeap(ItemIntMap &map) : _iim(map) {}
	 | 
| 94 | 91 | 
		 | 
| 95 | 
		/// \brief  | 
|
| 92 | 
		/// \brief Constructor.  | 
|
| 96 | 93 | 
		///  | 
| 97 | 
		/// The constructor.  | 
|
| 98 | 
		/// \param map should be given to the constructor, since it is used  | 
|
| 99 | 
		/// internally to handle the cross references. The value of the map  | 
|
| 100 | 
		/// should be PRE_HEAP (-1) for each element.  | 
|
| 101 | 
		///  | 
|
| 102 | 
		/// \param comp The comparator function object.  | 
|
| 94 | 
		/// Constructor.  | 
|
| 95 | 
		/// \param map A map that assigns \c int values to the items.  | 
|
| 96 | 
		/// It is used internally to handle the cross references.  | 
|
| 97 | 
		/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 98 | 
		/// \param comp The function object used for comparing the priorities.  | 
|
| 103 | 99 | 
		BinHeap(ItemIntMap &map, const Compare &comp)  | 
| 104 | 100 | 
		      : _iim(map), _comp(comp) {}
	 | 
| 105 | 101 | 
		 | 
| 106 | 102 | 
		 | 
| 107 | 
		/// The number of items stored in the heap.  | 
|
| 103 | 
		/// \brief The number of items stored in the heap.  | 
|
| 108 | 104 | 
		///  | 
| 109 | 
		///  | 
|
| 105 | 
		/// This function returns the number of items stored in the heap.  | 
|
| 110 | 106 | 
		    int size() const { return _data.size(); }
	 | 
| 111 | 107 | 
		 | 
| 112 | 
		/// \brief  | 
|
| 108 | 
		/// \brief Check if the heap is empty.  | 
|
| 113 | 109 | 
		///  | 
| 114 | 
		///  | 
|
| 110 | 
		/// This function returns \c true if the heap is empty.  | 
|
| 115 | 111 | 
		    bool empty() const { return _data.empty(); }
	 | 
| 116 | 112 | 
		 | 
| 117 | 
		/// \brief Make  | 
|
| 113 | 
		/// \brief Make the heap empty.  | 
|
| 118 | 114 | 
		///  | 
| 119 | 
		/// Make empty this heap. It does not change the cross reference map.  | 
|
| 120 | 
		/// If you want to reuse what is not surely empty you should first clear  | 
|
| 121 | 
		/// the heap and after that you should set the cross reference map for  | 
|
| 122 | 
		/// each item to \c PRE_HEAP.  | 
|
| 115 | 
		/// This functon makes the heap empty.  | 
|
| 116 | 
		/// It does not change the cross reference map. If you want to reuse  | 
|
| 117 | 
		/// a heap that is not surely empty, you should first clear it and  | 
|
| 118 | 
		/// then you should set the cross reference map to \c PRE_HEAP  | 
|
| 119 | 
		/// for each item.  | 
|
| 123 | 120 | 
		    void clear() {
	 | 
| 124 | 121 | 
		_data.clear();  | 
| 125 | 122 | 
		}  | 
| ... | ... | 
		@@ -127,12 +124,12 @@  | 
| 127 | 124 | 
		private:  | 
| 128 | 125 | 
		    static int parent(int i) { return (i-1)/2; }
	 | 
| 129 | 126 | 
		 | 
| 130 | 
		static int  | 
|
| 127 | 
		    static int secondChild(int i) { return 2*i+2; }
	 | 
|
| 131 | 128 | 
		    bool less(const Pair &p1, const Pair &p2) const {
	 | 
| 132 | 129 | 
		return _comp(p1.second, p2.second);  | 
| 133 | 130 | 
		}  | 
| 134 | 131 | 
		 | 
| 135 | 
		int  | 
|
| 132 | 
		    int bubbleUp(int hole, Pair p) {
	 | 
|
| 136 | 133 | 
		int par = parent(hole);  | 
| 137 | 134 | 
		      while( hole>0 && less(p,_data[par]) ) {
	 | 
| 138 | 135 | 
		move(_data[par],hole);  | 
| ... | ... | 
		@@ -143,8 +140,8 @@  | 
| 143 | 140 | 
		return hole;  | 
| 144 | 141 | 
		}  | 
| 145 | 142 | 
		 | 
| 146 | 
		    int bubble_down(int hole, Pair p, int length) {
	 | 
|
| 147 | 
		int child = second_child(hole);  | 
|
| 143 | 
		    int bubbleDown(int hole, Pair p, int length) {
	 | 
|
| 144 | 
		int child = secondChild(hole);  | 
|
| 148 | 145 | 
		      while(child < length) {
	 | 
| 149 | 146 | 
		        if( less(_data[child-1], _data[child]) ) {
	 | 
| 150 | 147 | 
		--child;  | 
| ... | ... | 
		@@ -153,7 +150,7 @@  | 
| 153 | 150 | 
		goto ok;  | 
| 154 | 151 | 
		move(_data[child], hole);  | 
| 155 | 152 | 
		hole = child;  | 
| 156 | 
		child =  | 
|
| 153 | 
		child = secondChild(hole);  | 
|
| 157 | 154 | 
		}  | 
| 158 | 155 | 
		child--;  | 
| 159 | 156 | 
		      if( child<length && less(_data[child], p) ) {
	 | 
| ... | ... | 
		@@ -171,87 +168,91 @@  | 
| 171 | 168 | 
		}  | 
| 172 | 169 | 
		 | 
| 173 | 170 | 
		public:  | 
| 171 | 
		 | 
|
| 174 | 172 | 
		/// \brief Insert a pair of item and priority into the heap.  | 
| 175 | 173 | 
		///  | 
| 176 | 
		///  | 
|
| 174 | 
		/// This function inserts \c p.first to the heap with priority  | 
|
| 175 | 
		/// \c p.second.  | 
|
| 177 | 176 | 
		/// \param p The pair to insert.  | 
| 177 | 
		/// \pre \c p.first must not be stored in the heap.  | 
|
| 178 | 178 | 
		    void push(const Pair &p) {
	 | 
| 179 | 179 | 
		int n = _data.size();  | 
| 180 | 180 | 
		_data.resize(n+1);  | 
| 181 | 
		
  | 
|
| 181 | 
		bubbleUp(n, p);  | 
|
| 182 | 182 | 
		}  | 
| 183 | 183 | 
		 | 
| 184 | 
		/// \brief Insert an item into the heap with the given  | 
|
| 184 | 
		/// \brief Insert an item into the heap with the given priority.  | 
|
| 185 | 185 | 
		///  | 
| 186 | 
		///  | 
|
| 186 | 
		/// This function inserts the given item into the heap with the  | 
|
| 187 | 
		/// given priority.  | 
|
| 187 | 188 | 
		/// \param i The item to insert.  | 
| 188 | 189 | 
		/// \param p The priority of the item.  | 
| 190 | 
		/// \pre \e i must not be stored in the heap.  | 
|
| 189 | 191 | 
		    void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
	 | 
| 190 | 192 | 
		 | 
| 191 | 
		/// \brief  | 
|
| 193 | 
		/// \brief Return the item having minimum priority.  | 
|
| 192 | 194 | 
		///  | 
| 193 | 
		/// This method returns the item with minimum priority relative to \c  | 
|
| 194 | 
		/// Compare.  | 
|
| 195 | 
		///  | 
|
| 195 | 
		/// This function returns the item having minimum priority.  | 
|
| 196 | 
		/// \pre The heap must be non-empty.  | 
|
| 196 | 197 | 
		    Item top() const {
	 | 
| 197 | 198 | 
		return _data[0].first;  | 
| 198 | 199 | 
		}  | 
| 199 | 200 | 
		 | 
| 200 | 
		/// \brief  | 
|
| 201 | 
		/// \brief The minimum priority.  | 
|
| 201 | 202 | 
		///  | 
| 202 | 
		/// It returns the minimum priority relative to \c Compare.  | 
|
| 203 | 
		/// \pre The heap must be nonempty.  | 
|
| 203 | 
		/// This function returns the minimum priority.  | 
|
| 204 | 
		/// \pre The heap must be non-empty.  | 
|
| 204 | 205 | 
		    Prio prio() const {
	 | 
| 205 | 206 | 
		return _data[0].second;  | 
| 206 | 207 | 
		}  | 
| 207 | 208 | 
		 | 
| 208 | 
		/// \brief  | 
|
| 209 | 
		/// \brief Remove the item having minimum priority.  | 
|
| 209 | 210 | 
		///  | 
| 210 | 
		/// This method deletes the item with minimum priority relative to \c  | 
|
| 211 | 
		/// Compare from the heap.  | 
|
| 211 | 
		/// This function removes the item having minimum priority.  | 
|
| 212 | 212 | 
		/// \pre The heap must be non-empty.  | 
| 213 | 213 | 
		    void pop() {
	 | 
| 214 | 214 | 
		int n = _data.size()-1;  | 
| 215 | 215 | 
		_iim.set(_data[0].first, POST_HEAP);  | 
| 216 | 216 | 
		      if (n > 0) {
	 | 
| 217 | 
		
  | 
|
| 217 | 
		bubbleDown(0, _data[n], n);  | 
|
| 218 | 218 | 
		}  | 
| 219 | 219 | 
		_data.pop_back();  | 
| 220 | 220 | 
		}  | 
| 221 | 221 | 
		 | 
| 222 | 
		/// \brief  | 
|
| 222 | 
		/// \brief Remove the given item from the heap.  | 
|
| 223 | 223 | 
		///  | 
| 224 | 
		/// This method deletes item \c i from the heap.  | 
|
| 225 | 
		/// \param i The item to erase.  | 
|
| 226 | 
		///  | 
|
| 224 | 
		/// This function removes the given item from the heap if it is  | 
|
| 225 | 
		/// already stored.  | 
|
| 226 | 
		/// \param i The item to delete.  | 
|
| 227 | 
		/// \pre \e i must be in the heap.  | 
|
| 227 | 228 | 
		    void erase(const Item &i) {
	 | 
| 228 | 229 | 
		int h = _iim[i];  | 
| 229 | 230 | 
		int n = _data.size()-1;  | 
| 230 | 231 | 
		_iim.set(_data[h].first, POST_HEAP);  | 
| 231 | 232 | 
		      if( h < n ) {
	 | 
| 232 | 
		        if ( bubble_up(h, _data[n]) == h) {
	 | 
|
| 233 | 
		bubble_down(h, _data[n], n);  | 
|
| 233 | 
		        if ( bubbleUp(h, _data[n]) == h) {
	 | 
|
| 234 | 
		bubbleDown(h, _data[n], n);  | 
|
| 234 | 235 | 
		}  | 
| 235 | 236 | 
		}  | 
| 236 | 237 | 
		_data.pop_back();  | 
| 237 | 238 | 
		}  | 
| 238 | 239 | 
		 | 
| 239 | 
		 | 
|
| 240 | 
		/// \brief Returns the priority of \c i.  | 
|
| 240 | 
		/// \brief The priority of the given item.  | 
|
| 241 | 241 | 
		///  | 
| 242 | 
		/// This function returns the priority of  | 
|
| 242 | 
		/// This function returns the priority of the given item.  | 
|
| 243 | 243 | 
		/// \param i The item.  | 
| 244 | 
		/// \pre \  | 
|
| 244 | 
		/// \pre \e i must be in the heap.  | 
|
| 245 | 245 | 
		    Prio operator[](const Item &i) const {
	 | 
| 246 | 246 | 
		int idx = _iim[i];  | 
| 247 | 247 | 
		return _data[idx].second;  | 
| 248 | 248 | 
		}  | 
| 249 | 249 | 
		 | 
| 250 | 
		/// \brief \c i gets to the heap with priority \c p independently  | 
|
| 251 | 
		/// if \c i was already there.  | 
|
| 250 | 
		/// \brief Set the priority of an item or insert it, if it is  | 
|
| 251 | 
		/// not stored in the heap.  | 
|
| 252 | 252 | 
		///  | 
| 253 | 
		/// This method calls \ref push(\c i, \c p) if \c i is not stored  | 
|
| 254 | 
		/// in the heap and sets the priority of \c i to \c p otherwise.  | 
|
| 253 | 
		/// This method sets the priority of the given item if it is  | 
|
| 254 | 
		/// already stored in the heap. Otherwise it inserts the given  | 
|
| 255 | 
		/// item into the heap with the given priority.  | 
|
| 255 | 256 | 
		/// \param i The item.  | 
| 256 | 257 | 
		/// \param p The priority.  | 
| 257 | 258 | 
		    void set(const Item &i, const Prio &p) {
	 | 
| ... | ... | 
		@@ -260,44 +261,42 @@  | 
| 260 | 261 | 
		push(i,p);  | 
| 261 | 262 | 
		}  | 
| 262 | 263 | 
		      else if( _comp(p, _data[idx].second) ) {
	 | 
| 263 | 
		
  | 
|
| 264 | 
		bubbleUp(idx, Pair(i,p));  | 
|
| 264 | 265 | 
		}  | 
| 265 | 266 | 
		      else {
	 | 
| 266 | 
		
  | 
|
| 267 | 
		bubbleDown(idx, Pair(i,p), _data.size());  | 
|
| 267 | 268 | 
		}  | 
| 268 | 269 | 
		}  | 
| 269 | 270 | 
		 | 
| 270 | 
		/// \brief  | 
|
| 271 | 
		/// \brief Decrease the priority of an item to the given value.  | 
|
| 271 | 272 | 
		///  | 
| 272 | 
		/// This  | 
|
| 273 | 
		/// This function decreases the priority of an item to the given value.  | 
|
| 273 | 274 | 
		/// \param i The item.  | 
| 274 | 275 | 
		/// \param p The priority.  | 
| 275 | 
		/// \pre \c i must be stored in the heap with priority at least \c  | 
|
| 276 | 
		/// p relative to \c Compare.  | 
|
| 276 | 
		/// \pre \e i must be stored in the heap with priority at least \e p.  | 
|
| 277 | 277 | 
		    void decrease(const Item &i, const Prio &p) {
	 | 
| 278 | 278 | 
		int idx = _iim[i];  | 
| 279 | 
		
  | 
|
| 279 | 
		bubbleUp(idx, Pair(i,p));  | 
|
| 280 | 280 | 
		}  | 
| 281 | 281 | 
		 | 
| 282 | 
		/// \brief  | 
|
| 282 | 
		/// \brief Increase the priority of an item to the given value.  | 
|
| 283 | 283 | 
		///  | 
| 284 | 
		/// This  | 
|
| 284 | 
		/// This function increases the priority of an item to the given value.  | 
|
| 285 | 285 | 
		/// \param i The item.  | 
| 286 | 286 | 
		/// \param p The priority.  | 
| 287 | 
		/// \pre \c i must be stored in the heap with priority at most \c  | 
|
| 288 | 
		/// p relative to \c Compare.  | 
|
| 287 | 
		/// \pre \e i must be stored in the heap with priority at most \e p.  | 
|
| 289 | 288 | 
		    void increase(const Item &i, const Prio &p) {
	 | 
| 290 | 289 | 
		int idx = _iim[i];  | 
| 291 | 
		
  | 
|
| 290 | 
		bubbleDown(idx, Pair(i,p), _data.size());  | 
|
| 292 | 291 | 
		}  | 
| 293 | 292 | 
		 | 
| 294 | 
		/// \brief Returns if \c item is in, has already been in, or has  | 
|
| 295 | 
		/// never been in the heap.  | 
|
| 293 | 
		/// \brief Return the state of an item.  | 
|
| 296 | 294 | 
		///  | 
| 297 | 
		/// This method returns PRE_HEAP if \c item has never been in the  | 
|
| 298 | 
		/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP  | 
|
| 299 | 
		/// otherwise. In the latter case it is possible that \c item will  | 
|
| 300 | 
		/// get back to the heap again.  | 
|
| 295 | 
		/// This method returns \c PRE_HEAP if the given item has never  | 
|
| 296 | 
		/// been in the heap, \c IN_HEAP if it is in the heap at the moment,  | 
|
| 297 | 
		/// and \c POST_HEAP otherwise.  | 
|
| 298 | 
		/// In the latter case it is possible that the item will get back  | 
|
| 299 | 
		/// to the heap again.  | 
|
| 301 | 300 | 
		/// \param i The item.  | 
| 302 | 301 | 
		    State state(const Item &i) const {
	 | 
| 303 | 302 | 
		int s = _iim[i];  | 
| ... | ... | 
		@@ -306,11 +305,11 @@  | 
| 306 | 305 | 
		return State(s);  | 
| 307 | 306 | 
		}  | 
| 308 | 307 | 
		 | 
| 309 | 
		/// \brief  | 
|
| 308 | 
		/// \brief Set the state of an item in the heap.  | 
|
| 310 | 309 | 
		///  | 
| 311 | 
		/// Sets the state of the \c item in the heap. It can be used to  | 
|
| 312 | 
		/// manually clear the heap when it is important to achive the  | 
|
| 313 | 
		///  | 
|
| 310 | 
		/// This function sets the state of the given item in the heap.  | 
|
| 311 | 
		/// It can be used to manually clear the heap when it is important  | 
|
| 312 | 
		/// to achive better time complexity.  | 
|
| 314 | 313 | 
		/// \param i The item.  | 
| 315 | 314 | 
		/// \param st The state. It should not be \c IN_HEAP.  | 
| 316 | 315 | 
		    void state(const Item& i, State st) {
	 | 
| ... | ... | 
		@@ -327,12 +326,13 @@  | 
| 327 | 326 | 
		}  | 
| 328 | 327 | 
		}  | 
| 329 | 328 | 
		 | 
| 330 | 
		/// \brief  | 
|
| 329 | 
		/// \brief Replace an item in the heap.  | 
|
| 331 | 330 | 
		///  | 
| 332 | 
		/// The \c i item is replaced with \c j item. The \c i item should  | 
|
| 333 | 
		/// be in the heap, while the \c j should be out of the heap. The  | 
|
| 334 | 
		/// \c i item will out of the heap and \c j will be in the heap  | 
|
| 335 | 
		/// with the same prioriority as prevoiusly the \c i item.  | 
|
| 331 | 
		/// This function replaces item \c i with item \c j.  | 
|
| 332 | 
		/// Item \c i must be in the heap, while \c j must be out of the heap.  | 
|
| 333 | 
		/// After calling this method, item \c i will be out of the  | 
|
| 334 | 
		/// heap and \c j will be in the heap with the same prioriority  | 
|
| 335 | 
		/// as item \c i had before.  | 
|
| 336 | 336 | 
		    void replace(const Item& i, const Item& j) {
	 | 
| 337 | 337 | 
		int idx = _iim[i];  | 
| 338 | 338 | 
		_iim.set(i, _iim[j]);  | 
| ... | ... | 
		@@ -2,7 +2,7 @@  | 
| 2 | 2 | 
		*  | 
| 3 | 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| ... | ... | 
		@@ -2,7 +2,7 @@  | 
| 2 | 2 | 
		*  | 
| 3 | 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| 1 | 
		/* -*- C++ -*-  | 
|
| 1 | 
		/* -*- mode: C++; indent-tabs-mode: nil; -*-  | 
|
| 2 | 2 | 
		*  | 
| 3 | 
		* This file is a part of LEMON, a generic C++ optimization library  | 
|
| 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
|
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| ... | ... | 
		@@ -56,11 +56,11 @@  | 
| 56 | 56 | 
		return Parent::maxArcId();  | 
| 57 | 57 | 
		}  | 
| 58 | 58 | 
		 | 
| 59 | 
		Node fromId(int id, Node)  | 
|
| 59 | 
		    static Node fromId(int id, Node) {
	 | 
|
| 60 | 60 | 
		return Parent::nodeFromId(id);  | 
| 61 | 61 | 
		}  | 
| 62 | 62 | 
		 | 
| 63 | 
		Arc fromId(int id, Arc)  | 
|
| 63 | 
		    static Arc fromId(int id, Arc) {
	 | 
|
| 64 | 64 | 
		return Parent::arcFromId(id);  | 
| 65 | 65 | 
		}  | 
| 66 | 66 | 
		 | 
| ... | ... | 
		@@ -355,15 +355,15 @@  | 
| 355 | 355 | 
		return Parent::maxEdgeId();  | 
| 356 | 356 | 
		}  | 
| 357 | 357 | 
		 | 
| 358 | 
		Node fromId(int id, Node)  | 
|
| 358 | 
		    static Node fromId(int id, Node) {
	 | 
|
| 359 | 359 | 
		return Parent::nodeFromId(id);  | 
| 360 | 360 | 
		}  | 
| 361 | 361 | 
		 | 
| 362 | 
		Arc fromId(int id, Arc)  | 
|
| 362 | 
		    static Arc fromId(int id, Arc) {
	 | 
|
| 363 | 363 | 
		return Parent::arcFromId(id);  | 
| 364 | 364 | 
		}  | 
| 365 | 365 | 
		 | 
| 366 | 
		Edge fromId(int id, Edge)  | 
|
| 366 | 
		    static Edge fromId(int id, Edge) {
	 | 
|
| 367 | 367 | 
		return Parent::edgeFromId(id);  | 
| 368 | 368 | 
		}  | 
| 369 | 369 | 
| ... | ... | 
		@@ -2,7 +2,7 @@  | 
| 2 | 2 | 
		*  | 
| 3 | 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| ... | ... | 
		@@ -2,7 +2,7 @@  | 
| 2 | 2 | 
		*  | 
| 3 | 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| ... | ... | 
		@@ -2,7 +2,7 @@  | 
| 2 | 2 | 
		*  | 
| 3 | 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| ... | ... | 
		@@ -19,9 +19,9 @@  | 
| 19 | 19 | 
		#ifndef LEMON_BUCKET_HEAP_H  | 
| 20 | 20 | 
		#define LEMON_BUCKET_HEAP_H  | 
| 21 | 21 | 
		 | 
| 22 | 
		///\ingroup  | 
|
| 22 | 
		///\ingroup heaps  | 
|
| 23 | 23 | 
		///\file  | 
| 24 | 
		///\brief Bucket  | 
|
| 24 | 
		///\brief Bucket heap implementation.  | 
|
| 25 | 25 | 
		 | 
| 26 | 26 | 
		#include <vector>  | 
| 27 | 27 | 
		#include <utility>  | 
| ... | ... | 
		@@ -53,35 +53,41 @@  | 
| 53 | 53 | 
		 | 
| 54 | 54 | 
		}  | 
| 55 | 55 | 
		 | 
| 56 | 
		/// \ingroup  | 
|
| 56 | 
		/// \ingroup heaps  | 
|
| 57 | 57 | 
		///  | 
| 58 | 
		/// \brief  | 
|
| 58 | 
		/// \brief Bucket heap data structure.  | 
|
| 59 | 59 | 
		///  | 
| 60 | 
		/// This class implements the \e bucket \e heap data structure. A \e heap  | 
|
| 61 | 
		/// is a data structure for storing items with specified values called \e  | 
|
| 62 | 
		/// priorities in such a way that finding the item with minimum priority is  | 
|
| 63 | 
		/// efficient. The bucket heap is very simple implementation, it can store  | 
|
| 64 | 
		/// only integer priorities and it stores for each priority in the  | 
|
| 65 | 
		/// \f$ [0..C) \f$ range a list of items. So it should be used only when  | 
|
| 66 | 
		/// the  | 
|
| 60 | 
		/// This class implements the \e bucket \e heap data structure.  | 
|
| 61 | 
		/// It practically conforms to the \ref concepts::Heap "heap concept",  | 
|
| 62 | 
		/// but it has some limitations.  | 
|
| 67 | 63 | 
		///  | 
| 68 | 
		/// \param IM A read and write Item int map, used internally  | 
|
| 69 | 
		/// to handle the cross references.  | 
|
| 70 | 
		/// \param MIN If the given parameter is false then instead of the  | 
|
| 71 | 
		/// minimum value the maximum can be retrivied with the top() and  | 
|
| 72 | 
		///  | 
|
| 64 | 
		/// The bucket heap is a very simple structure. It can store only  | 
|
| 65 | 
		/// \c int priorities and it maintains a list of items for each priority  | 
|
| 66 | 
		/// in the range <tt>[0..C)</tt>. So it should only be used when the  | 
|
| 67 | 
		/// priorities are small. It is not intended to use as a Dijkstra heap.  | 
|
| 68 | 
		///  | 
|
| 69 | 
		/// \tparam IM A read-writable item map with \c int values, used  | 
|
| 70 | 
		/// internally to handle the cross references.  | 
|
| 71 | 
		/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap.  | 
|
| 72 | 
		/// The default is \e min-heap. If this parameter is set to \c false,  | 
|
| 73 | 
		/// then the comparison is reversed, so the top(), prio() and pop()  | 
|
| 74 | 
		/// functions deal with the item having maximum priority instead of the  | 
|
| 75 | 
		/// minimum.  | 
|
| 76 | 
		///  | 
|
| 77 | 
		/// \sa SimpleBucketHeap  | 
|
| 73 | 78 | 
		template <typename IM, bool MIN = true>  | 
| 74 | 79 | 
		  class BucketHeap {
	 | 
| 75 | 80 | 
		 | 
| 76 | 81 | 
		public:  | 
| 77 | 
		/// \e  | 
|
| 78 | 
		typedef typename IM::Key Item;  | 
|
| 79 | 
		
  | 
|
| 82 | 
		 | 
|
| 83 | 
		/// Type of the item-int map.  | 
|
| 84 | 
		typedef IM ItemIntMap;  | 
|
| 85 | 
		/// Type of the priorities.  | 
|
| 80 | 86 | 
		typedef int Prio;  | 
| 81 | 
		///  | 
|
| 87 | 
		/// Type of the items stored in the heap.  | 
|
| 88 | 
		typedef typename ItemIntMap::Key Item;  | 
|
| 89 | 
		/// Type of the item-priority pairs.  | 
|
| 82 | 90 | 
		typedef std::pair<Item, Prio> Pair;  | 
| 83 | 
		/// \e  | 
|
| 84 | 
		typedef IM ItemIntMap;  | 
|
| 85 | 91 | 
		 | 
| 86 | 92 | 
		private:  | 
| 87 | 93 | 
		 | 
| ... | ... | 
		@@ -89,10 +95,10 @@  | 
| 89 | 95 | 
		 | 
| 90 | 96 | 
		public:  | 
| 91 | 97 | 
		 | 
| 92 | 
		/// \brief Type to represent the  | 
|
| 98 | 
		/// \brief Type to represent the states of the items.  | 
|
| 93 | 99 | 
		///  | 
| 94 | 
		/// Each Item element have a state associated to it. It may be "in heap",  | 
|
| 95 | 
		/// "pre heap" or "post heap". The latter two are indifferent from the  | 
|
| 100 | 
		/// Each item has a state associated to it. It can be "in heap",  | 
|
| 101 | 
		/// "pre-heap" or "post-heap". The latter two are indifferent from the  | 
|
| 96 | 102 | 
		/// heap's point of view, but may be useful to the user.  | 
| 97 | 103 | 
		///  | 
| 98 | 104 | 
		/// The item-int map must be initialized in such way that it assigns  | 
| ... | ... | 
		@@ -104,37 +110,39 @@  | 
| 104 | 110 | 
		};  | 
| 105 | 111 | 
		 | 
| 106 | 112 | 
		public:  | 
| 107 | 
		
  | 
|
| 113 | 
		 | 
|
| 114 | 
		/// \brief Constructor.  | 
|
| 108 | 115 | 
		///  | 
| 109 | 
		/// The constructor.  | 
|
| 110 | 
		/// \param map should be given to the constructor, since it is used  | 
|
| 111 | 
		/// internally to handle the cross references. The value of the map  | 
|
| 112 | 
		/// should be PRE_HEAP (-1) for each element.  | 
|
| 116 | 
		/// Constructor.  | 
|
| 117 | 
		/// \param map A map that assigns \c int values to the items.  | 
|
| 118 | 
		/// It is used internally to handle the cross references.  | 
|
| 119 | 
		/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 113 | 120 | 
		    explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {}
	 | 
| 114 | 121 | 
		 | 
| 115 | 
		/// The number of items stored in the heap.  | 
|
| 122 | 
		/// \brief The number of items stored in the heap.  | 
|
| 116 | 123 | 
		///  | 
| 117 | 
		///  | 
|
| 124 | 
		/// This function returns the number of items stored in the heap.  | 
|
| 118 | 125 | 
		    int size() const { return _data.size(); }
	 | 
| 119 | 126 | 
		 | 
| 120 | 
		/// \brief  | 
|
| 127 | 
		/// \brief Check if the heap is empty.  | 
|
| 121 | 128 | 
		///  | 
| 122 | 
		///  | 
|
| 129 | 
		/// This function returns \c true if the heap is empty.  | 
|
| 123 | 130 | 
		    bool empty() const { return _data.empty(); }
	 | 
| 124 | 131 | 
		 | 
| 125 | 
		/// \brief Make  | 
|
| 132 | 
		/// \brief Make the heap empty.  | 
|
| 126 | 133 | 
		///  | 
| 127 | 
		/// Make empty this heap. It does not change the cross reference  | 
|
| 128 | 
		/// map. If you want to reuse a heap what is not surely empty you  | 
|
| 129 | 
		/// should first clear the heap and after that you should set the  | 
|
| 130 | 
		/// cross reference map for each item to \c PRE_HEAP.  | 
|
| 134 | 
		/// This functon makes the heap empty.  | 
|
| 135 | 
		/// It does not change the cross reference map. If you want to reuse  | 
|
| 136 | 
		/// a heap that is not surely empty, you should first clear it and  | 
|
| 137 | 
		/// then you should set the cross reference map to \c PRE_HEAP  | 
|
| 138 | 
		/// for each item.  | 
|
| 131 | 139 | 
		    void clear() {
	 | 
| 132 | 140 | 
		_data.clear(); _first.clear(); _minimum = 0;  | 
| 133 | 141 | 
		}  | 
| 134 | 142 | 
		 | 
| 135 | 143 | 
		private:  | 
| 136 | 144 | 
		 | 
| 137 | 
		void  | 
|
| 145 | 
		    void relocateLast(int idx) {
	 | 
|
| 138 | 146 | 
		      if (idx + 1 < int(_data.size())) {
	 | 
| 139 | 147 | 
		_data[idx] = _data.back();  | 
| 140 | 148 | 
		        if (_data[idx].prev != -1) {
	 | 
| ... | ... | 
		@@ -174,19 +182,24 @@  | 
| 174 | 182 | 
		}  | 
| 175 | 183 | 
		 | 
| 176 | 184 | 
		public:  | 
| 185 | 
		 | 
|
| 177 | 186 | 
		/// \brief Insert a pair of item and priority into the heap.  | 
| 178 | 187 | 
		///  | 
| 179 | 
		///  | 
|
| 188 | 
		/// This function inserts \c p.first to the heap with priority  | 
|
| 189 | 
		/// \c p.second.  | 
|
| 180 | 190 | 
		/// \param p The pair to insert.  | 
| 191 | 
		/// \pre \c p.first must not be stored in the heap.  | 
|
| 181 | 192 | 
		    void push(const Pair& p) {
	 | 
| 182 | 193 | 
		push(p.first, p.second);  | 
| 183 | 194 | 
		}  | 
| 184 | 195 | 
		 | 
| 185 | 196 | 
		/// \brief Insert an item into the heap with the given priority.  | 
| 186 | 197 | 
		///  | 
| 187 | 
		///  | 
|
| 198 | 
		/// This function inserts the given item into the heap with the  | 
|
| 199 | 
		/// given priority.  | 
|
| 188 | 200 | 
		/// \param i The item to insert.  | 
| 189 | 201 | 
		/// \param p The priority of the item.  | 
| 202 | 
		/// \pre \e i must not be stored in the heap.  | 
|
| 190 | 203 | 
		    void push(const Item &i, const Prio &p) {
	 | 
| 191 | 204 | 
		int idx = _data.size();  | 
| 192 | 205 | 
		_iim[i] = idx;  | 
| ... | ... | 
		@@ -197,10 +210,10 @@  | 
| 197 | 210 | 
		}  | 
| 198 | 211 | 
		}  | 
| 199 | 212 | 
		 | 
| 200 | 
		/// \brief  | 
|
| 213 | 
		/// \brief Return the item having minimum priority.  | 
|
| 201 | 214 | 
		///  | 
| 202 | 
		/// This method returns the item with minimum priority.  | 
|
| 203 | 
		/// \pre The heap must be nonempty.  | 
|
| 215 | 
		/// This function returns the item having minimum priority.  | 
|
| 216 | 
		/// \pre The heap must be non-empty.  | 
|
| 204 | 217 | 
		    Item top() const {
	 | 
| 205 | 218 | 
		      while (_first[_minimum] == -1) {
	 | 
| 206 | 219 | 
		Direction::increase(_minimum);  | 
| ... | ... | 
		@@ -208,10 +221,10 @@  | 
| 208 | 221 | 
		return _data[_first[_minimum]].item;  | 
| 209 | 222 | 
		}  | 
| 210 | 223 | 
		 | 
| 211 | 
		/// \brief  | 
|
| 224 | 
		/// \brief The minimum priority.  | 
|
| 212 | 225 | 
		///  | 
| 213 | 
		/// It returns the minimum priority.  | 
|
| 214 | 
		/// \pre The heap must be nonempty.  | 
|
| 226 | 
		/// This function returns the minimum priority.  | 
|
| 227 | 
		/// \pre The heap must be non-empty.  | 
|
| 215 | 228 | 
		    Prio prio() const {
	 | 
| 216 | 229 | 
		      while (_first[_minimum] == -1) {
	 | 
| 217 | 230 | 
		Direction::increase(_minimum);  | 
| ... | ... | 
		@@ -219,9 +232,9 @@  | 
| 219 | 232 | 
		return _minimum;  | 
| 220 | 233 | 
		}  | 
| 221 | 234 | 
		 | 
| 222 | 
		/// \brief  | 
|
| 235 | 
		/// \brief Remove the item having minimum priority.  | 
|
| 223 | 236 | 
		///  | 
| 224 | 
		/// This  | 
|
| 237 | 
		/// This function removes the item having minimum priority.  | 
|
| 225 | 238 | 
		/// \pre The heap must be non-empty.  | 
| 226 | 239 | 
		    void pop() {
	 | 
| 227 | 240 | 
		      while (_first[_minimum] == -1) {
	 | 
| ... | ... | 
		@@ -230,37 +243,38 @@  | 
| 230 | 243 | 
		int idx = _first[_minimum];  | 
| 231 | 244 | 
		_iim[_data[idx].item] = -2;  | 
| 232 | 245 | 
		unlace(idx);  | 
| 233 | 
		
  | 
|
| 246 | 
		relocateLast(idx);  | 
|
| 234 | 247 | 
		}  | 
| 235 | 248 | 
		 | 
| 236 | 
		/// \brief  | 
|
| 249 | 
		/// \brief Remove the given item from the heap.  | 
|
| 237 | 250 | 
		///  | 
| 238 | 
		/// This method deletes item \c i from the heap, if \c i was  | 
|
| 239 | 
		/// already stored in the heap.  | 
|
| 240 | 
		///  | 
|
| 251 | 
		/// This function removes the given item from the heap if it is  | 
|
| 252 | 
		/// already stored.  | 
|
| 253 | 
		/// \param i The item to delete.  | 
|
| 254 | 
		/// \pre \e i must be in the heap.  | 
|
| 241 | 255 | 
		    void erase(const Item &i) {
	 | 
| 242 | 256 | 
		int idx = _iim[i];  | 
| 243 | 257 | 
		_iim[_data[idx].item] = -2;  | 
| 244 | 258 | 
		unlace(idx);  | 
| 245 | 
		
  | 
|
| 259 | 
		relocateLast(idx);  | 
|
| 246 | 260 | 
		}  | 
| 247 | 261 | 
		 | 
| 248 | 
		 | 
|
| 249 | 
		/// \brief Returns the priority of \c i.  | 
|
| 262 | 
		/// \brief The priority of the given item.  | 
|
| 250 | 263 | 
		///  | 
| 251 | 
		/// This function returns the priority of item \c i.  | 
|
| 252 | 
		/// \pre \c i must be in the heap.  | 
|
| 264 | 
		/// This function returns the priority of the given item.  | 
|
| 253 | 265 | 
		/// \param i The item.  | 
| 266 | 
		/// \pre \e i must be in the heap.  | 
|
| 254 | 267 | 
		    Prio operator[](const Item &i) const {
	 | 
| 255 | 268 | 
		int idx = _iim[i];  | 
| 256 | 269 | 
		return _data[idx].value;  | 
| 257 | 270 | 
		}  | 
| 258 | 271 | 
		 | 
| 259 | 
		/// \brief \c i gets to the heap with priority \c p independently  | 
|
| 260 | 
		/// if \c i was already there.  | 
|
| 272 | 
		/// \brief Set the priority of an item or insert it, if it is  | 
|
| 273 | 
		/// not stored in the heap.  | 
|
| 261 | 274 | 
		///  | 
| 262 | 
		/// This method calls \ref push(\c i, \c p) if \c i is not stored  | 
|
| 263 | 
		/// in the heap and sets the priority of \c i to \c p otherwise.  | 
|
| 275 | 
		/// This method sets the priority of the given item if it is  | 
|
| 276 | 
		/// already stored in the heap. Otherwise it inserts the given  | 
|
| 277 | 
		/// item into the heap with the given priority.  | 
|
| 264 | 278 | 
		/// \param i The item.  | 
| 265 | 279 | 
		/// \param p The priority.  | 
| 266 | 280 | 
		    void set(const Item &i, const Prio &p) {
	 | 
| ... | ... | 
		@@ -274,13 +288,12 @@  | 
| 274 | 288 | 
		}  | 
| 275 | 289 | 
		}  | 
| 276 | 290 | 
		 | 
| 277 | 
		/// \brief  | 
|
| 291 | 
		/// \brief Decrease the priority of an item to the given value.  | 
|
| 278 | 292 | 
		///  | 
| 279 | 
		/// This method decreases the priority of item \c i to \c p.  | 
|
| 280 | 
		/// \pre \c i must be stored in the heap with priority at least \c  | 
|
| 281 | 
		///  | 
|
| 293 | 
		/// This function decreases the priority of an item to the given value.  | 
|
| 282 | 294 | 
		/// \param i The item.  | 
| 283 | 295 | 
		/// \param p The priority.  | 
| 296 | 
		/// \pre \e i must be stored in the heap with priority at least \e p.  | 
|
| 284 | 297 | 
		    void decrease(const Item &i, const Prio &p) {
	 | 
| 285 | 298 | 
		int idx = _iim[i];  | 
| 286 | 299 | 
		unlace(idx);  | 
| ... | ... | 
		@@ -291,13 +304,12 @@  | 
| 291 | 304 | 
		lace(idx);  | 
| 292 | 305 | 
		}  | 
| 293 | 306 | 
		 | 
| 294 | 
		/// \brief  | 
|
| 307 | 
		/// \brief Increase the priority of an item to the given value.  | 
|
| 295 | 308 | 
		///  | 
| 296 | 
		/// This method sets the priority of item \c i to \c p.  | 
|
| 297 | 
		/// \pre \c i must be stored in the heap with priority at most \c  | 
|
| 298 | 
		///  | 
|
| 309 | 
		/// This function increases the priority of an item to the given value.  | 
|
| 299 | 310 | 
		/// \param i The item.  | 
| 300 | 311 | 
		/// \param p The priority.  | 
| 312 | 
		/// \pre \e i must be stored in the heap with priority at most \e p.  | 
|
| 301 | 313 | 
		    void increase(const Item &i, const Prio &p) {
	 | 
| 302 | 314 | 
		int idx = _iim[i];  | 
| 303 | 315 | 
		unlace(idx);  | 
| ... | ... | 
		@@ -305,13 +317,13 @@  | 
| 305 | 317 | 
		lace(idx);  | 
| 306 | 318 | 
		}  | 
| 307 | 319 | 
		 | 
| 308 | 
		/// \brief Returns if \c item is in, has already been in, or has  | 
|
| 309 | 
		/// never been in the heap.  | 
|
| 320 | 
		/// \brief Return the state of an item.  | 
|
| 310 | 321 | 
		///  | 
| 311 | 
		/// This method returns PRE_HEAP if \c item has never been in the  | 
|
| 312 | 
		/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP  | 
|
| 313 | 
		/// otherwise. In the latter case it is possible that \c item will  | 
|
| 314 | 
		/// get back to the heap again.  | 
|
| 322 | 
		/// This method returns \c PRE_HEAP if the given item has never  | 
|
| 323 | 
		/// been in the heap, \c IN_HEAP if it is in the heap at the moment,  | 
|
| 324 | 
		/// and \c POST_HEAP otherwise.  | 
|
| 325 | 
		/// In the latter case it is possible that the item will get back  | 
|
| 326 | 
		/// to the heap again.  | 
|
| 315 | 327 | 
		/// \param i The item.  | 
| 316 | 328 | 
		    State state(const Item &i) const {
	 | 
| 317 | 329 | 
		int idx = _iim[i];  | 
| ... | ... | 
		@@ -319,11 +331,11 @@  | 
| 319 | 331 | 
		return State(idx);  | 
| 320 | 332 | 
		}  | 
| 321 | 333 | 
		 | 
| 322 | 
		/// \brief  | 
|
| 334 | 
		/// \brief Set the state of an item in the heap.  | 
|
| 323 | 335 | 
		///  | 
| 324 | 
		/// Sets the state of the \c item in the heap. It can be used to  | 
|
| 325 | 
		/// manually clear the heap when it is important to achive the  | 
|
| 326 | 
		///  | 
|
| 336 | 
		/// This function sets the state of the given item in the heap.  | 
|
| 337 | 
		/// It can be used to manually clear the heap when it is important  | 
|
| 338 | 
		/// to achive better time complexity.  | 
|
| 327 | 339 | 
		/// \param i The item.  | 
| 328 | 340 | 
		/// \param st The state. It should not be \c IN_HEAP.  | 
| 329 | 341 | 
		    void state(const Item& i, State st) {
	 | 
| ... | ... | 
		@@ -359,33 +371,44 @@  | 
| 359 | 371 | 
		 | 
| 360 | 372 | 
		}; // class BucketHeap  | 
| 361 | 373 | 
		 | 
| 362 | 
		/// \ingroup  | 
|
| 374 | 
		/// \ingroup heaps  | 
|
| 363 | 375 | 
		///  | 
| 364 | 
		/// \brief  | 
|
| 376 | 
		/// \brief Simplified bucket heap data structure.  | 
|
| 365 | 377 | 
		///  | 
| 366 | 378 | 
		/// This class implements a simplified \e bucket \e heap data  | 
| 367 | 
		/// structure. It does not provide some functionality but it faster  | 
|
| 368 | 
		/// and simplier data structure than the BucketHeap. The main  | 
|
| 369 | 
		/// difference is that the BucketHeap stores for every key a double  | 
|
| 370 | 
		/// linked list while this class stores just simple lists. In the  | 
|
| 371 | 
		/// other way it does not support erasing each elements just the  | 
|
| 372 | 
		/// minimal and it does not supports key increasing, decreasing.  | 
|
| 379 | 
		/// structure. It does not provide some functionality, but it is  | 
|
| 380 | 
		/// faster and simpler than BucketHeap. The main difference is  | 
|
| 381 | 
		/// that BucketHeap stores a doubly-linked list for each key while  | 
|
| 382 | 
		/// this class stores only simply-linked lists. It supports erasing  | 
|
| 383 | 
		/// only for the item having minimum priority and it does not support  | 
|
| 384 | 
		/// key increasing and decreasing.  | 
|
| 373 | 385 | 
		///  | 
| 374 | 
		/// \param IM A read and write Item int map, used internally  | 
|
| 375 | 
		/// to handle the cross references.  | 
|
| 376 | 
		/// \param MIN If the given parameter is false then instead of the  | 
|
| 377 | 
		/// minimum value the maximum can be retrivied with the top() and  | 
|
| 378 | 
		///  | 
|
| 386 | 
		/// Note that this implementation does not conform to the  | 
|
| 387 | 
		/// \ref concepts::Heap "heap concept" due to the lack of some  | 
|
| 388 | 
		/// functionality.  | 
|
| 389 | 
		///  | 
|
| 390 | 
		/// \tparam IM A read-writable item map with \c int values, used  | 
|
| 391 | 
		/// internally to handle the cross references.  | 
|
| 392 | 
		/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap.  | 
|
| 393 | 
		/// The default is \e min-heap. If this parameter is set to \c false,  | 
|
| 394 | 
		/// then the comparison is reversed, so the top(), prio() and pop()  | 
|
| 395 | 
		/// functions deal with the item having maximum priority instead of the  | 
|
| 396 | 
		/// minimum.  | 
|
| 379 | 397 | 
		///  | 
| 380 | 398 | 
		/// \sa BucketHeap  | 
| 381 | 399 | 
		template <typename IM, bool MIN = true >  | 
| 382 | 400 | 
		  class SimpleBucketHeap {
	 | 
| 383 | 401 | 
		 | 
| 384 | 402 | 
		public:  | 
| 385 | 
		
  | 
|
| 403 | 
		 | 
|
| 404 | 
		/// Type of the item-int map.  | 
|
| 405 | 
		typedef IM ItemIntMap;  | 
|
| 406 | 
		/// Type of the priorities.  | 
|
| 386 | 407 | 
		typedef int Prio;  | 
| 408 | 
		/// Type of the items stored in the heap.  | 
|
| 409 | 
		typedef typename ItemIntMap::Key Item;  | 
|
| 410 | 
		/// Type of the item-priority pairs.  | 
|
| 387 | 411 | 
		typedef std::pair<Item, Prio> Pair;  | 
| 388 | 
		typedef IM ItemIntMap;  | 
|
| 389 | 412 | 
		 | 
| 390 | 413 | 
		private:  | 
| 391 | 414 | 
		 | 
| ... | ... | 
		@@ -393,10 +416,10 @@  | 
| 393 | 416 | 
		 | 
| 394 | 417 | 
		public:  | 
| 395 | 418 | 
		 | 
| 396 | 
		/// \brief Type to represent the  | 
|
| 419 | 
		/// \brief Type to represent the states of the items.  | 
|
| 397 | 420 | 
		///  | 
| 398 | 
		/// Each Item element have a state associated to it. It may be "in heap",  | 
|
| 399 | 
		/// "pre heap" or "post heap". The latter two are indifferent from the  | 
|
| 421 | 
		/// Each item has a state associated to it. It can be "in heap",  | 
|
| 422 | 
		/// "pre-heap" or "post-heap". The latter two are indifferent from the  | 
|
| 400 | 423 | 
		/// heap's point of view, but may be useful to the user.  | 
| 401 | 424 | 
		///  | 
| 402 | 425 | 
		/// The item-int map must be initialized in such way that it assigns  | 
| ... | ... | 
		@@ -409,48 +432,53 @@  | 
| 409 | 432 | 
		 | 
| 410 | 433 | 
		public:  | 
| 411 | 434 | 
		 | 
| 412 | 
		/// \brief  | 
|
| 435 | 
		/// \brief Constructor.  | 
|
| 413 | 436 | 
		///  | 
| 414 | 
		/// The constructor.  | 
|
| 415 | 
		/// \param map should be given to the constructor, since it is used  | 
|
| 416 | 
		/// internally to handle the cross references. The value of the map  | 
|
| 417 | 
		/// should be PRE_HEAP (-1) for each element.  | 
|
| 437 | 
		/// Constructor.  | 
|
| 438 | 
		/// \param map A map that assigns \c int values to the items.  | 
|
| 439 | 
		/// It is used internally to handle the cross references.  | 
|
| 440 | 
		/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 418 | 441 | 
		explicit SimpleBucketHeap(ItemIntMap &map)  | 
| 419 | 442 | 
		      : _iim(map), _free(-1), _num(0), _minimum(0) {}
	 | 
| 420 | 443 | 
		 | 
| 421 | 
		/// \brief  | 
|
| 444 | 
		/// \brief The number of items stored in the heap.  | 
|
| 422 | 445 | 
		///  | 
| 423 | 
		///  | 
|
| 446 | 
		/// This function returns the number of items stored in the heap.  | 
|
| 424 | 447 | 
		    int size() const { return _num; }
	 | 
| 425 | 448 | 
		 | 
| 426 | 
		/// \brief  | 
|
| 449 | 
		/// \brief Check if the heap is empty.  | 
|
| 427 | 450 | 
		///  | 
| 428 | 
		///  | 
|
| 451 | 
		/// This function returns \c true if the heap is empty.  | 
|
| 429 | 452 | 
		    bool empty() const { return _num == 0; }
	 | 
| 430 | 453 | 
		 | 
| 431 | 
		/// \brief Make  | 
|
| 454 | 
		/// \brief Make the heap empty.  | 
|
| 432 | 455 | 
		///  | 
| 433 | 
		/// Make empty this heap. It does not change the cross reference  | 
|
| 434 | 
		/// map. If you want to reuse a heap what is not surely empty you  | 
|
| 435 | 
		/// should first clear the heap and after that you should set the  | 
|
| 436 | 
		/// cross reference map for each item to \c PRE_HEAP.  | 
|
| 456 | 
		/// This functon makes the heap empty.  | 
|
| 457 | 
		/// It does not change the cross reference map. If you want to reuse  | 
|
| 458 | 
		/// a heap that is not surely empty, you should first clear it and  | 
|
| 459 | 
		/// then you should set the cross reference map to \c PRE_HEAP  | 
|
| 460 | 
		/// for each item.  | 
|
| 437 | 461 | 
		    void clear() {
	 | 
| 438 | 462 | 
		_data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0;  | 
| 439 | 463 | 
		}  | 
| 440 | 464 | 
		 | 
| 441 | 465 | 
		/// \brief Insert a pair of item and priority into the heap.  | 
| 442 | 466 | 
		///  | 
| 443 | 
		///  | 
|
| 467 | 
		/// This function inserts \c p.first to the heap with priority  | 
|
| 468 | 
		/// \c p.second.  | 
|
| 444 | 469 | 
		/// \param p The pair to insert.  | 
| 470 | 
		/// \pre \c p.first must not be stored in the heap.  | 
|
| 445 | 471 | 
		    void push(const Pair& p) {
	 | 
| 446 | 472 | 
		push(p.first, p.second);  | 
| 447 | 473 | 
		}  | 
| 448 | 474 | 
		 | 
| 449 | 475 | 
		/// \brief Insert an item into the heap with the given priority.  | 
| 450 | 476 | 
		///  | 
| 451 | 
		///  | 
|
| 477 | 
		/// This function inserts the given item into the heap with the  | 
|
| 478 | 
		/// given priority.  | 
|
| 452 | 479 | 
		/// \param i The item to insert.  | 
| 453 | 480 | 
		/// \param p The priority of the item.  | 
| 481 | 
		/// \pre \e i must not be stored in the heap.  | 
|
| 454 | 482 | 
		    void push(const Item &i, const Prio &p) {
	 | 
| 455 | 483 | 
		int idx;  | 
| 456 | 484 | 
		      if (_free == -1) {
	 | 
| ... | ... | 
		@@ -471,10 +499,10 @@  | 
| 471 | 499 | 
		++_num;  | 
| 472 | 500 | 
		}  | 
| 473 | 501 | 
		 | 
| 474 | 
		/// \brief  | 
|
| 502 | 
		/// \brief Return the item having minimum priority.  | 
|
| 475 | 503 | 
		///  | 
| 476 | 
		/// This method returns the item with minimum priority.  | 
|
| 477 | 
		/// \pre The heap must be nonempty.  | 
|
| 504 | 
		/// This function returns the item having minimum priority.  | 
|
| 505 | 
		/// \pre The heap must be non-empty.  | 
|
| 478 | 506 | 
		    Item top() const {
	 | 
| 479 | 507 | 
		      while (_first[_minimum] == -1) {
	 | 
| 480 | 508 | 
		Direction::increase(_minimum);  | 
| ... | ... | 
		@@ -482,10 +510,10 @@  | 
| 482 | 510 | 
		return _data[_first[_minimum]].item;  | 
| 483 | 511 | 
		}  | 
| 484 | 512 | 
		 | 
| 485 | 
		/// \brief  | 
|
| 513 | 
		/// \brief The minimum priority.  | 
|
| 486 | 514 | 
		///  | 
| 487 | 
		/// It returns the minimum priority.  | 
|
| 488 | 
		/// \pre The heap must be nonempty.  | 
|
| 515 | 
		/// This function returns the minimum priority.  | 
|
| 516 | 
		/// \pre The heap must be non-empty.  | 
|
| 489 | 517 | 
		    Prio prio() const {
	 | 
| 490 | 518 | 
		      while (_first[_minimum] == -1) {
	 | 
| 491 | 519 | 
		Direction::increase(_minimum);  | 
| ... | ... | 
		@@ -493,9 +521,9 @@  | 
| 493 | 521 | 
		return _minimum;  | 
| 494 | 522 | 
		}  | 
| 495 | 523 | 
		 | 
| 496 | 
		/// \brief  | 
|
| 524 | 
		/// \brief Remove the item having minimum priority.  | 
|
| 497 | 525 | 
		///  | 
| 498 | 
		/// This  | 
|
| 526 | 
		/// This function removes the item having minimum priority.  | 
|
| 499 | 527 | 
		/// \pre The heap must be non-empty.  | 
| 500 | 528 | 
		    void pop() {
	 | 
| 501 | 529 | 
		      while (_first[_minimum] == -1) {
	 | 
| ... | ... | 
		@@ -509,16 +537,15 @@  | 
| 509 | 537 | 
		--_num;  | 
| 510 | 538 | 
		}  | 
| 511 | 539 | 
		 | 
| 512 | 
		/// \brief  | 
|
| 540 | 
		/// \brief The priority of the given item.  | 
|
| 513 | 541 | 
		///  | 
| 514 | 
		/// This function returns the priority of item \c i.  | 
|
| 515 | 
		/// \warning This operator is not a constant time function  | 
|
| 516 | 
		/// because it scans the whole data structure to find the proper  | 
|
| 517 | 
		/// value.  | 
|
| 518 | 
		///  | 
|
| 542 | 
		/// This function returns the priority of the given item.  | 
|
| 519 | 543 | 
		/// \param i The item.  | 
| 544 | 
		/// \pre \e i must be in the heap.  | 
|
| 545 | 
		/// \warning This operator is not a constant time function because  | 
|
| 546 | 
		/// it scans the whole data structure to find the proper value.  | 
|
| 520 | 547 | 
		    Prio operator[](const Item &i) const {
	 | 
| 521 | 
		      for (int k = 0; k < _first.size(); ++k) {
	 | 
|
| 548 | 
		      for (int k = 0; k < int(_first.size()); ++k) {
	 | 
|
| 522 | 549 | 
		int idx = _first[k];  | 
| 523 | 550 | 
		        while (idx != -1) {
	 | 
| 524 | 551 | 
		          if (_data[idx].item == i) {
	 | 
| ... | ... | 
		@@ -530,13 +557,13 @@  | 
| 530 | 557 | 
		return -1;  | 
| 531 | 558 | 
		}  | 
| 532 | 559 | 
		 | 
| 533 | 
		/// \brief Returns if \c item is in, has already been in, or has  | 
|
| 534 | 
		/// never been in the heap.  | 
|
| 560 | 
		/// \brief Return the state of an item.  | 
|
| 535 | 561 | 
		///  | 
| 536 | 
		/// This method returns PRE_HEAP if \c item has never been in the  | 
|
| 537 | 
		/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP  | 
|
| 538 | 
		/// otherwise. In the latter case it is possible that \c item will  | 
|
| 539 | 
		/// get back to the heap again.  | 
|
| 562 | 
		/// This method returns \c PRE_HEAP if the given item has never  | 
|
| 563 | 
		/// been in the heap, \c IN_HEAP if it is in the heap at the moment,  | 
|
| 564 | 
		/// and \c POST_HEAP otherwise.  | 
|
| 565 | 
		/// In the latter case it is possible that the item will get back  | 
|
| 566 | 
		/// to the heap again.  | 
|
| 540 | 567 | 
		/// \param i The item.  | 
| 541 | 568 | 
		    State state(const Item &i) const {
	 | 
| 542 | 569 | 
		int idx = _iim[i];  | 
| ... | ... | 
		@@ -94,6 +94,18 @@  | 
| 94 | 94 | 
		return _prob->numberRows() - 1;  | 
| 95 | 95 | 
		}  | 
| 96 | 96 | 
		 | 
| 97 | 
		  int CbcMip::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
	 | 
|
| 98 | 
		std::vector<int> indexes;  | 
|
| 99 | 
		std::vector<Value> values;  | 
|
| 100 | 
		 | 
|
| 101 | 
		    for(ExprIterator it = b; it != e; ++it) {
	 | 
|
| 102 | 
		indexes.push_back(it->first);  | 
|
| 103 | 
		values.push_back(it->second);  | 
|
| 104 | 
		}  | 
|
| 105 | 
		 | 
|
| 106 | 
		_prob->addRow(values.size(), &indexes.front(), &values.front(), l, u);  | 
|
| 107 | 
		return _prob->numberRows() - 1;  | 
|
| 108 | 
		}  | 
|
| 97 | 109 | 
		 | 
| 98 | 110 | 
		  void CbcMip::_eraseCol(int i) {
	 | 
| 99 | 111 | 
		_prob->deleteColumn(i);  | 
| ... | ... | 
		@@ -2,7 +2,7 @@  | 
| 2 | 2 | 
		*  | 
| 3 | 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| ... | ... | 
		@@ -62,6 +62,7 @@  | 
| 62 | 62 | 
		 | 
| 63 | 63 | 
		virtual int _addCol();  | 
| 64 | 64 | 
		virtual int _addRow();  | 
| 65 | 
		virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u);  | 
|
| 65 | 66 | 
		 | 
| 66 | 67 | 
		virtual void _eraseCol(int i);  | 
| 67 | 68 | 
		virtual void _eraseRow(int i);  | 
| ... | ... | 
		@@ -2,7 +2,7 @@  | 
| 2 | 2 | 
		*  | 
| 3 | 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| ... | ... | 
		@@ -72,7 +72,11 @@  | 
| 72 | 72 | 
		/// The type of the map that stores the flow values.  | 
| 73 | 73 | 
		/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap"  | 
| 74 | 74 | 
		/// concept.  | 
| 75 | 
		#ifdef DOXYGEN  | 
|
| 76 | 
		typedef GR::ArcMap<Value> FlowMap;  | 
|
| 77 | 
		#else  | 
|
| 75 | 78 | 
		typedef typename Digraph::template ArcMap<Value> FlowMap;  | 
| 79 | 
		#endif  | 
|
| 76 | 80 | 
		 | 
| 77 | 81 | 
		/// \brief Instantiates a FlowMap.  | 
| 78 | 82 | 
		///  | 
| ... | ... | 
		@@ -87,9 +91,12 @@  | 
| 87 | 91 | 
		///  | 
| 88 | 92 | 
		/// The elevator type used by the algorithm.  | 
| 89 | 93 | 
		///  | 
| 90 | 
		/// \sa Elevator  | 
|
| 91 | 
		/// \sa LinkedElevator  | 
|
| 94 | 
		/// \sa Elevator, LinkedElevator  | 
|
| 95 | 
		#ifdef DOXYGEN  | 
|
| 96 | 
		typedef lemon::Elevator<GR, GR::Node> Elevator;  | 
|
| 97 | 
		#else  | 
|
| 92 | 98 | 
		typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;  | 
| 99 | 
		#endif  | 
|
| 93 | 100 | 
		 | 
| 94 | 101 | 
		/// \brief Instantiates an Elevator.  | 
| 95 | 102 | 
		///  | 
| ... | ... | 
		@@ -166,6 +173,11 @@  | 
| 166 | 173 | 
		The default map type is \c LM.  | 
| 167 | 174 | 
		\tparam SM The type of the supply map. The default map type is  | 
| 168 | 175 | 
		\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>".  | 
| 176 | 
		\tparam TR The traits class that defines various types used by the  | 
|
| 177 | 
		algorithm. By default, it is \ref CirculationDefaultTraits  | 
|
| 178 | 
		"CirculationDefaultTraits<GR, LM, UM, SM>".  | 
|
| 179 | 
		In most cases, this parameter should not be set directly,  | 
|
| 180 | 
		consider to use the named template parameters instead.  | 
|
| 169 | 181 | 
		*/  | 
| 170 | 182 | 
		#ifdef DOXYGEN  | 
| 171 | 183 | 
		template< typename GR,  | 
| ... | ... | 
		@@ -299,7 +311,7 @@  | 
| 299 | 311 | 
		/// The Elevator should have standard constructor interface to be  | 
| 300 | 312 | 
		/// able to automatically created by the algorithm (i.e. the  | 
| 301 | 313 | 
		/// digraph and the maximum level should be passed to it).  | 
| 302 | 
		/// However an external elevator object could also be passed to the  | 
|
| 314 | 
		/// However, an external elevator object could also be passed to the  | 
|
| 303 | 315 | 
		/// algorithm with the \ref elevator(Elevator&) "elevator()" function  | 
| 304 | 316 | 
		/// before calling \ref run() or \ref init().  | 
| 305 | 317 | 
		/// \sa SetElevator  | 
| ... | ... | 
		@@ -450,9 +462,10 @@  | 
| 450 | 462 | 
		return *_level;  | 
| 451 | 463 | 
		}  | 
| 452 | 464 | 
		 | 
| 453 | 
		/// \brief Sets the tolerance used by algorithm.  | 
|
| 465 | 
		/// \brief Sets the tolerance used by the algorithm.  | 
|
| 454 | 466 | 
		///  | 
| 455 | 
		/// Sets the tolerance used by algorithm.  | 
|
| 467 | 
		/// Sets the tolerance object used by the algorithm.  | 
|
| 468 | 
		/// \return <tt>(*this)</tt>  | 
|
| 456 | 469 | 
		    Circulation& tolerance(const Tolerance& tolerance) {
	 | 
| 457 | 470 | 
		_tol = tolerance;  | 
| 458 | 471 | 
		return *this;  | 
| ... | ... | 
		@@ -460,15 +473,16 @@  | 
| 460 | 473 | 
		 | 
| 461 | 474 | 
		/// \brief Returns a const reference to the tolerance.  | 
| 462 | 475 | 
		///  | 
| 463 | 
		/// Returns a const reference to the tolerance  | 
|
| 476 | 
		/// Returns a const reference to the tolerance object used by  | 
|
| 477 | 
		/// the algorithm.  | 
|
| 464 | 478 | 
		    const Tolerance& tolerance() const {
	 | 
| 465 | 479 | 
		return _tol;  | 
| 466 | 480 | 
		}  | 
| 467 | 481 | 
		 | 
| 468 | 482 | 
		/// \name Execution Control  | 
| 469 | 483 | 
		/// The simplest way to execute the algorithm is to call \ref run().\n  | 
| 470 | 
		/// If you need more control on the initial solution or the execution,  | 
|
| 471 | 
		/// first you have to call one of the \ref init() functions, then  | 
|
| 484 | 
		/// If you need better control on the initial solution or the execution,  | 
|
| 485 | 
		/// you have to call one of the \ref init() functions first, then  | 
|
| 472 | 486 | 
		/// the \ref start() function.  | 
| 473 | 487 | 
		 | 
| 474 | 488 | 
		    ///@{
	 | 
| ... | ... | 
		@@ -2,7 +2,7 @@  | 
| 2 | 2 | 
		*  | 
| 3 | 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| ... | ... | 
		@@ -78,6 +78,19 @@  | 
| 78 | 78 | 
		return _prob->numberRows() - 1;  | 
| 79 | 79 | 
		}  | 
| 80 | 80 | 
		 | 
| 81 | 
		  int ClpLp::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
	 | 
|
| 82 | 
		std::vector<int> indexes;  | 
|
| 83 | 
		std::vector<Value> values;  | 
|
| 84 | 
		 | 
|
| 85 | 
		    for(ExprIterator it = b; it != e; ++it) {
	 | 
|
| 86 | 
		indexes.push_back(it->first);  | 
|
| 87 | 
		values.push_back(it->second);  | 
|
| 88 | 
		}  | 
|
| 89 | 
		 | 
|
| 90 | 
		_prob->addRow(values.size(), &indexes.front(), &values.front(), l, u);  | 
|
| 91 | 
		return _prob->numberRows() - 1;  | 
|
| 92 | 
		}  | 
|
| 93 | 
		 | 
|
| 81 | 94 | 
		 | 
| 82 | 95 | 
		  void ClpLp::_eraseCol(int c) {
	 | 
| 83 | 96 | 
		_col_names_ref.erase(_prob->getColumnName(c));  | 
| ... | ... | 
		@@ -2,7 +2,7 @@  | 
| 2 | 2 | 
		*  | 
| 3 | 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| ... | ... | 
		@@ -75,6 +75,7 @@  | 
| 75 | 75 | 
		 | 
| 76 | 76 | 
		virtual int _addCol();  | 
| 77 | 77 | 
		virtual int _addRow();  | 
| 78 | 
		virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u);  | 
|
| 78 | 79 | 
		 | 
| 79 | 80 | 
		virtual void _eraseCol(int i);  | 
| 80 | 81 | 
		virtual void _eraseRow(int i);  | 
| ... | ... | 
		@@ -2,7 +2,7 @@  | 
| 2 | 2 | 
		*  | 
| 3 | 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
| 4 | 4 | 
		*  | 
| 5 | 
		* Copyright (C) 2003-  | 
|
| 5 | 
		* Copyright (C) 2003-2010  | 
|
| 6 | 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
| 7 | 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
| 8 | 8 | 
		*  | 
| ... | ... | 
		@@ -35,46 +35,40 @@  | 
| 35 | 35 | 
		///  | 
| 36 | 36 | 
		/// \brief Class describing the concept of directed graphs.  | 
| 37 | 37 | 
		///  | 
| 38 | 
		/// This class describes the \ref concept "concept" of the  | 
|
| 39 | 
		/// immutable directed digraphs.  | 
|
| 38 | 
		/// This class describes the common interface of all directed  | 
|
| 39 | 
		/// graphs (digraphs).  | 
|
| 40 | 40 | 
		///  | 
| 41 | 
		/// Note that actual digraph implementation like @ref ListDigraph or  | 
|
| 42 | 
		/// @ref SmartDigraph may have several additional functionality.  | 
|
| 41 | 
		/// Like all concept classes, it only provides an interface  | 
|
| 42 | 
		/// without any sensible implementation. So any general algorithm for  | 
|
| 43 | 
		/// directed graphs should compile with this class, but it will not  | 
|
| 44 | 
		/// run properly, of course.  | 
|
| 45 | 
		/// An actual digraph implementation like \ref ListDigraph or  | 
|
| 46 | 
		/// \ref SmartDigraph may have additional functionality.  | 
|
| 43 | 47 | 
		///  | 
| 44 | 
		/// \sa  | 
|
| 48 | 
		/// \sa Graph  | 
|
| 45 | 49 | 
		    class Digraph {
	 | 
| 46 | 50 | 
		private:  | 
| 47 | 
		///  | 
|
| 51 | 
		/// Diraphs are \e not copy constructible. Use DigraphCopy instead.  | 
|
| 52 | 
		      Digraph(const Digraph &) {}
	 | 
|
| 53 | 
		/// \brief Assignment of a digraph to another one is \e not allowed.  | 
|
| 54 | 
		/// Use DigraphCopy instead.  | 
|
| 55 | 
		      void operator=(const Digraph &) {}
	 | 
|
| 48 | 56 | 
		 | 
| 49 | 
		///Digraphs are \e not copy constructible. Use DigraphCopy() instead.  | 
|
| 50 | 
		///  | 
|
| 51 | 
		      Digraph(const Digraph &) {};
	 | 
|
| 52 | 
		///\brief Assignment of \ref Digraph "Digraph"s to another ones are  | 
|
| 53 | 
		
  | 
|
| 57 | 
		public:  | 
|
| 58 | 
		/// Default constructor.  | 
|
| 59 | 
		      Digraph() { }
	 | 
|
| 54 | 60 | 
		 | 
| 55 | 
		///Assignment of \ref Digraph "Digraph"s to another ones are  | 
|
| 56 | 
		///\e not allowed. Use DigraphCopy() instead.  | 
|
| 57 | 
		 | 
|
| 58 | 
		      void operator=(const Digraph &) {}
	 | 
|
| 59 | 
		public:  | 
|
| 60 | 
		///\e  | 
|
| 61 | 
		 | 
|
| 62 | 
		/// Defalult constructor.  | 
|
| 63 | 
		 | 
|
| 64 | 
		/// Defalult constructor.  | 
|
| 65 | 
		///  | 
|
| 66 | 
		      Digraph() { }
	 | 
|
| 67 | 
		///  | 
|
| 61 | 
		/// The node type of the digraph  | 
|
| 68 | 62 | 
		 | 
| 69 | 63 | 
		/// This class identifies a node of the digraph. It also serves  | 
| 70 | 64 | 
		/// as a base class of the node iterators,  | 
| 71 | 
		/// thus they  | 
|
| 65 | 
		/// thus they convert to this type.  | 
|
| 72 | 66 | 
		      class Node {
	 | 
| 73 | 67 | 
		public:  | 
| 74 | 68 | 
		/// Default constructor  | 
| 75 | 69 | 
		 | 
| 76 | 
		/// @warning The default constructor sets the iterator  | 
|
| 77 | 
		/// to an undefined value.  | 
|
| 70 | 
		/// Default constructor.  | 
|
| 71 | 
		/// \warning It sets the object to an undefined value.  | 
|
| 78 | 72 | 
		        Node() { }
	 | 
| 79 | 73 | 
		/// Copy constructor.  | 
| 80 | 74 | 
		 | 
| ... | ... | 
		@@ -82,40 +76,39 @@  | 
| 82 | 76 | 
		///  | 
| 83 | 77 | 
		        Node(const Node&) { }
	 | 
| 84 | 78 | 
		 | 
| 85 | 
		/// Invalid constructor \& conversion.  | 
|
| 79 | 
		/// %Invalid constructor \& conversion.  | 
|
| 86 | 80 | 
		 | 
| 87 | 
		///  | 
|
| 81 | 
		/// Initializes the object to be invalid.  | 
|
| 88 | 82 | 
		/// \sa Invalid for more details.  | 
| 89 | 83 | 
		        Node(Invalid) { }
	 | 
| 90 | 84 | 
		/// Equality operator  | 
| 91 | 85 | 
		 | 
| 86 | 
		/// Equality operator.  | 
|
| 87 | 
		///  | 
|
| 92 | 88 | 
		/// Two iterators are equal if and only if they point to the  | 
| 93 | 
		/// same object or both are  | 
|
| 89 | 
		/// same object or both are \c INVALID.  | 
|
| 94 | 90 | 
		        bool operator==(Node) const { return true; }
	 | 
| 95 | 91 | 
		 | 
| 96 | 92 | 
		/// Inequality operator  | 
| 97 | 93 | 
		 | 
| 98 | 
		/// \sa operator==(Node n)  | 
|
| 99 | 
		///  | 
|
| 94 | 
		/// Inequality operator.  | 
|
| 100 | 95 | 
		        bool operator!=(Node) const { return true; }
	 | 
| 101 | 96 | 
		 | 
| 102 | 97 | 
		/// Artificial ordering operator.  | 
| 103 | 98 | 
		 | 
| 104 | 
		/// To allow the use of digraph descriptors as key type in std::map or  | 
|
| 105 | 
		/// similar associative container we require this.  | 
|
| 99 | 
		/// Artificial ordering operator.  | 
|
| 106 | 100 | 
		///  | 
| 107 | 
		/// \note This operator only have to define some strict ordering of  | 
|
| 108 | 
		/// the items; this order has nothing to do with the iteration  | 
|
| 109 | 
		/// ordering of  | 
|
| 101 | 
		/// \note This operator only has to define some strict ordering of  | 
|
| 102 | 
		/// the nodes; this order has nothing to do with the iteration  | 
|
| 103 | 
		/// ordering of the nodes.  | 
|
| 110 | 104 | 
		        bool operator<(Node) const { return false; }
	 | 
| 111 | 
		 | 
|
| 112 | 105 | 
		};  | 
| 113 | 106 | 
		 | 
| 114 | 
		///  | 
|
| 107 | 
		/// Iterator class for the nodes.  | 
|
| 115 | 108 | 
		 | 
| 116 | 
		/// This iterator goes through each node.  | 
|
| 117 | 
		/// Its usage is quite simple, for example you can count the number  | 
|
| 118 | 
		///  | 
|
| 109 | 
		/// This iterator goes through each node of the digraph.  | 
|
| 110 | 
		/// Its usage is quite simple, for example, you can count the number  | 
|
| 111 | 
		/// of nodes in a digraph \c g of type \c %Digraph like this:  | 
|
| 119 | 112 | 
		///\code  | 
| 120 | 113 | 
		/// int count=0;  | 
| 121 | 114 | 
		/// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count;  | 
| ... | ... | 
		@@ -124,30 +117,28 @@  | 
| 124 | 117 | 
		public:  | 
| 125 | 118 | 
		/// Default constructor  | 
| 126 | 119 | 
		 | 
| 127 | 
		/// @warning The default constructor sets the iterator  | 
|
| 128 | 
		/// to an undefined value.  | 
|
| 120 | 
		/// Default constructor.  | 
|
| 121 | 
		/// \warning It sets the iterator to an undefined value.  | 
|
| 129 | 122 | 
		        NodeIt() { }
	 | 
| 130 | 123 | 
		/// Copy constructor.  | 
| 131 | 124 | 
		 | 
| 132 | 125 | 
		/// Copy constructor.  | 
| 133 | 126 | 
		///  | 
| 134 | 127 | 
		        NodeIt(const NodeIt& n) : Node(n) { }
	 | 
| 135 | 
		/// Invalid constructor \& conversion.  | 
|
| 128 | 
		/// %Invalid constructor \& conversion.  | 
|
| 136 | 129 | 
		 | 
| 137 | 
		///  | 
|
| 130 | 
		/// Initializes the iterator to be invalid.  | 
|
| 138 | 131 | 
		/// \sa Invalid for more details.  | 
| 139 | 132 | 
		        NodeIt(Invalid) { }
	 | 
| 140 | 133 | 
		/// Sets the iterator to the first node.  | 
| 141 | 134 | 
		 | 
| 142 | 
		/// Sets the iterator to the first node of  | 
|
| 135 | 
		/// Sets the iterator to the first node of the given digraph.  | 
|
| 143 | 136 | 
		///  | 
| 144 | 
		        NodeIt(const Digraph&) { }
	 | 
|
| 145 | 
		/// Node -> NodeIt conversion.  | 
|
| 137 | 
		        explicit NodeIt(const Digraph&) { }
	 | 
|
| 138 | 
		/// Sets the iterator to the given node.  | 
|
| 146 | 139 | 
		 | 
| 147 | 
		/// Sets the iterator to the node of \c the digraph pointed by  | 
|
| 148 | 
		/// the trivial iterator.  | 
|
| 149 | 
		/// This feature necessitates that each time we  | 
|
| 150 | 
		/// iterate the arc-set, the iteration order is the same.  | 
|
| 140 | 
		/// Sets the iterator to the given node of the given digraph.  | 
|
| 141 | 
		///  | 
|
| 151 | 142 | 
		        NodeIt(const Digraph&, const Node&) { }
	 | 
| 152 | 143 | 
		/// Next node.  | 
| 153 | 144 | 
		 | 
| ... | ... | 
		@@ -157,7 +148,7 @@  | 
| 157 | 148 | 
		};  | 
| 158 | 149 | 
		 | 
| 159 | 150 | 
		 | 
| 160 | 
		///  | 
|
| 151 | 
		/// The arc type of the digraph  | 
|
| 161 | 152 | 
		 | 
| 162 | 153 | 
		/// This class identifies an arc of the digraph. It also serves  | 
| 163 | 154 | 
		/// as a base class of the arc iterators,  | 
| ... | ... | 
		@@ -166,80 +157,78 @@  | 
| 166 | 157 | 
		public:  | 
| 167 | 158 | 
		/// Default constructor  | 
| 168 | 159 | 
		 | 
| 169 | 
		/// @warning The default constructor sets the iterator  | 
|
| 170 | 
		/// to an undefined value.  | 
|
| 160 | 
		/// Default constructor.  | 
|
| 161 | 
		/// \warning It sets the object to an undefined value.  | 
|
| 171 | 162 | 
		        Arc() { }
	 | 
| 172 | 163 | 
		/// Copy constructor.  | 
| 173 | 164 | 
		 | 
| 174 | 165 | 
		/// Copy constructor.  | 
| 175 | 166 | 
		///  | 
| 176 | 167 | 
		        Arc(const Arc&) { }
	 | 
| 177 | 
		///  | 
|
| 168 | 
		/// %Invalid constructor \& conversion.  | 
|
| 178 | 169 | 
		 | 
| 179 | 
		/// Initialize the iterator to be invalid.  | 
|
| 180 | 
		///  | 
|
| 170 | 
		/// Initializes the object to be invalid.  | 
|
| 171 | 
		/// \sa Invalid for more details.  | 
|
| 181 | 172 | 
		        Arc(Invalid) { }
	 | 
| 182 | 173 | 
		/// Equality operator  | 
| 183 | 174 | 
		 | 
| 175 | 
		/// Equality operator.  | 
|
| 176 | 
		///  | 
|
| 184 | 177 | 
		/// Two iterators are equal if and only if they point to the  | 
| 185 | 
		/// same object or both are  | 
|
| 178 | 
		/// same object or both are \c INVALID.  | 
|
| 186 | 179 | 
		        bool operator==(Arc) const { return true; }
	 | 
| 187 | 180 | 
		/// Inequality operator  | 
| 188 | 181 | 
		 | 
| 189 | 
		/// \sa operator==(Arc n)  | 
|
| 190 | 
		///  | 
|
| 182 | 
		/// Inequality operator.  | 
|
| 191 | 183 | 
		        bool operator!=(Arc) const { return true; }
	 | 
| 192 | 184 | 
		 | 
| 193 | 185 | 
		/// Artificial ordering operator.  | 
| 194 | 186 | 
		 | 
| 195 | 
		/// To allow the use of digraph descriptors as key type in std::map or  | 
|
| 196 | 
		/// similar associative container we require this.  | 
|
| 187 | 
		/// Artificial ordering operator.  | 
|
| 197 | 188 | 
		///  | 
| 198 | 
		/// \note This operator only have to define some strict ordering of  | 
|
| 199 | 
		/// the items; this order has nothing to do with the iteration  | 
|
| 200 | 
		/// ordering of  | 
|
| 189 | 
		/// \note This operator only has to define some strict ordering of  | 
|
| 190 | 
		/// the arcs; this order has nothing to do with the iteration  | 
|
| 191 | 
		/// ordering of the arcs.  | 
|
| 201 | 192 | 
		        bool operator<(Arc) const { return false; }
	 | 
| 202 | 193 | 
		};  | 
| 203 | 194 | 
		 | 
| 204 | 
		///  | 
|
| 195 | 
		/// Iterator class for the outgoing arcs of a node.  | 
|
| 205 | 196 | 
		 | 
| 206 | 197 | 
		/// This iterator goes trough the \e outgoing arcs of a certain node  | 
| 207 | 198 | 
		/// of a digraph.  | 
| 208 | 
		/// Its usage is quite simple, for example you can count the number  | 
|
| 199 | 
		/// Its usage is quite simple, for example, you can count the number  | 
|
| 209 | 200 | 
		/// of outgoing arcs of a node \c n  | 
| 210 | 
		/// in digraph \c g of type \c Digraph as follows.  | 
|
| 201 | 
		/// in a digraph \c g of type \c %Digraph as follows.  | 
|
| 211 | 202 | 
		///\code  | 
| 212 | 203 | 
		/// int count=0;  | 
| 213 | 
		/// for (Digraph::OutArcIt  | 
|
| 204 | 
		/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;  | 
|
| 214 | 205 | 
		///\endcode  | 
| 215 | 
		 | 
|
| 216 | 206 | 
		      class OutArcIt : public Arc {
	 | 
| 217 | 207 | 
		public:  | 
| 218 | 208 | 
		/// Default constructor  | 
| 219 | 209 | 
		 | 
| 220 | 
		/// @warning The default constructor sets the iterator  | 
|
| 221 | 
		/// to an undefined value.  | 
|
| 210 | 
		/// Default constructor.  | 
|
| 211 | 
		/// \warning It sets the iterator to an undefined value.  | 
|
| 222 | 212 | 
		        OutArcIt() { }
	 | 
| 223 | 213 | 
		/// Copy constructor.  | 
| 224 | 214 | 
		 | 
| 225 | 215 | 
		/// Copy constructor.  | 
| 226 | 216 | 
		///  | 
| 227 | 217 | 
		        OutArcIt(const OutArcIt& e) : Arc(e) { }
	 | 
| 228 | 
		///  | 
|
| 218 | 
		/// %Invalid constructor \& conversion.  | 
|
| 229 | 219 | 
		 | 
| 230 | 
		///  | 
|
| 220 | 
		/// Initializes the iterator to be invalid.  | 
|
| 221 | 
		/// \sa Invalid for more details.  | 
|
| 222 | 
		        OutArcIt(Invalid) { }
	 | 
|
| 223 | 
		/// Sets the iterator to the first outgoing arc.  | 
|
| 224 | 
		 | 
|
| 225 | 
		/// Sets the iterator to the first outgoing arc of the given node.  | 
|
| 231 | 226 | 
		///  | 
| 232 | 
		        OutArcIt(Invalid) { }
	 | 
|
| 233 | 
		/// This constructor sets the iterator to the first outgoing arc.  | 
|
| 227 | 
		        OutArcIt(const Digraph&, const Node&) { }
	 | 
|
| 228 | 
		/// Sets the iterator to the given arc.  | 
|
| 234 | 229 | 
		 | 
| 235 | 
		/// This constructor sets the iterator to the first outgoing arc of  | 
|
| 236 | 
		/// the node.  | 
|
| 237 | 
		        OutArcIt(const Digraph&, const Node&) { }
	 | 
|
| 238 | 
		/// Arc -> OutArcIt conversion  | 
|
| 239 | 
		 | 
|
| 240 | 
		/// Sets the iterator to the value of the trivial iterator.  | 
|
| 241 | 
		/// This feature necessitates that each time we  | 
|
| 242 | 
		/// iterate the arc-set, the iteration order is the same.  | 
|
| 230 | 
		/// Sets the iterator to the given arc of the given digraph.  | 
|
| 231 | 
		///  | 
|
| 243 | 232 | 
		        OutArcIt(const Digraph&, const Arc&) { }
	 | 
| 244 | 233 | 
		///Next outgoing arc  | 
| 245 | 234 | 
		 | 
| ... | ... | 
		@@ -248,125 +237,134 @@  | 
| 248 | 237 | 
		        OutArcIt& operator++() { return *this; }
	 | 
| 249 | 238 | 
		};  | 
| 250 | 239 | 
		 | 
| 251 | 
		///  | 
|
| 240 | 
		/// Iterator class for the incoming arcs of a node.  | 
|
| 252 | 241 | 
		 | 
| 253 | 242 | 
		/// This iterator goes trough the \e incoming arcs of a certain node  | 
| 254 | 243 | 
		/// of a digraph.  | 
| 255 | 
		/// Its usage is quite simple, for example you can count the number  | 
|
| 256 | 
		/// of outgoing arcs of a node \c n  | 
|
| 257 | 
		///  | 
|
| 244 | 
		/// Its usage is quite simple, for example, you can count the number  | 
|
| 245 | 
		/// of incoming arcs of a node \c n  | 
|
| 246 | 
		/// in a digraph \c g of type \c %Digraph as follows.  | 
|
| 258 | 247 | 
		///\code  | 
| 259 | 248 | 
		/// int count=0;  | 
| 260 | 
		/// for(Digraph::InArcIt  | 
|
| 249 | 
		/// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;  | 
|
| 261 | 250 | 
		///\endcode  | 
| 262 | 
		 | 
|
| 263 | 251 | 
		      class InArcIt : public Arc {
	 | 
| 264 | 252 | 
		public:  | 
| 265 | 253 | 
		/// Default constructor  | 
| 266 | 254 | 
		 | 
| 267 | 
		/// @warning The default constructor sets the iterator  | 
|
| 268 | 
		/// to an undefined value.  | 
|
| 255 | 
		/// Default constructor.  | 
|
| 256 | 
		/// \warning It sets the iterator to an undefined value.  | 
|
| 269 | 257 | 
		        InArcIt() { }
	 | 
| 270 | 258 | 
		/// Copy constructor.  | 
| 271 | 259 | 
		 | 
| 272 | 260 | 
		/// Copy constructor.  | 
| 273 | 261 | 
		///  | 
| 274 | 262 | 
		        InArcIt(const InArcIt& e) : Arc(e) { }
	 | 
| 275 | 
		///  | 
|
| 263 | 
		/// %Invalid constructor \& conversion.  | 
|
| 276 | 264 | 
		 | 
| 277 | 
		///  | 
|
| 265 | 
		/// Initializes the iterator to be invalid.  | 
|
| 266 | 
		/// \sa Invalid for more details.  | 
|
| 267 | 
		        InArcIt(Invalid) { }
	 | 
|
| 268 | 
		/// Sets the iterator to the first incoming arc.  | 
|
| 269 | 
		 | 
|
| 270 | 
		/// Sets the iterator to the first incoming arc of the given node.  | 
|
| 278 | 271 | 
		///  | 
| 279 | 
		        InArcIt(Invalid) { }
	 | 
|
| 280 | 
		/// This constructor sets the iterator to first incoming arc.  | 
|
| 272 | 
		        InArcIt(const Digraph&, const Node&) { }
	 | 
|
| 273 | 
		/// Sets the iterator to the given arc.  | 
|
| 281 | 274 | 
		 | 
| 282 | 
		/// This constructor set the iterator to the first incoming arc of  | 
|
| 283 | 
		/// the node.  | 
|
| 284 | 
		        InArcIt(const Digraph&, const Node&) { }
	 | 
|
| 285 | 
		/// Arc -> InArcIt conversion  | 
|
| 286 | 
		 | 
|
| 287 | 
		/// Sets the iterator to the value of the trivial iterator \c e.  | 
|
| 288 | 
		/// This feature necessitates that each time we  | 
|
| 289 | 
		/// iterate the arc-set, the iteration order is the same.  | 
|
| 275 | 
		/// Sets the iterator to the given arc of the given digraph.  | 
|
| 276 | 
		///  | 
|
| 290 | 277 | 
		        InArcIt(const Digraph&, const Arc&) { }
	 | 
| 291 | 278 | 
		/// Next incoming arc  | 
| 292 | 279 | 
		 | 
| 293 | 
		/// Assign the iterator to the next inarc of the corresponding node.  | 
|
| 294 | 
		///  | 
|
| 280 | 
		/// Assign the iterator to the next  | 
|
| 281 | 
		/// incoming arc of the corresponding node.  | 
|
| 295 | 282 | 
		        InArcIt& operator++() { return *this; }
	 | 
| 296 | 283 | 
		};  | 
| 297 | 
		/// This iterator goes through each arc.  | 
|
| 298 | 284 | 
		 | 
| 299 | 
		/// This iterator goes through each arc of a digraph.  | 
|
| 300 | 
		/// Its usage is quite simple, for example you can count the number  | 
|
| 301 | 
		///  | 
|
| 285 | 
		/// Iterator class for the arcs.  | 
|
| 286 | 
		 | 
|
| 287 | 
		/// This iterator goes through each arc of the digraph.  | 
|
| 288 | 
		/// Its usage is quite simple, for example, you can count the number  | 
|
| 289 | 
		/// of arcs in a digraph \c g of type \c %Digraph as follows:  | 
|
| 302 | 290 | 
		///\code  | 
| 303 | 291 | 
		/// int count=0;  | 
| 304 | 
		/// for(Digraph::ArcIt  | 
|
| 292 | 
		/// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count;  | 
|
| 305 | 293 | 
		///\endcode  | 
| 306 | 294 | 
		      class ArcIt : public Arc {
	 | 
| 307 | 295 | 
		public:  | 
| 308 | 296 | 
		/// Default constructor  | 
| 309 | 297 | 
		 | 
| 310 | 
		/// @warning The default constructor sets the iterator  | 
|
| 311 | 
		/// to an undefined value.  | 
|
| 298 | 
		/// Default constructor.  | 
|
| 299 | 
		/// \warning It sets the iterator to an undefined value.  | 
|
| 312 | 300 | 
		        ArcIt() { }
	 | 
| 313 | 301 | 
		/// Copy constructor.  | 
| 314 | 302 | 
		 | 
| 315 | 303 | 
		/// Copy constructor.  | 
| 316 | 304 | 
		///  | 
| 317 | 305 | 
		        ArcIt(const ArcIt& e) : Arc(e) { }
	 | 
| 318 | 
		///  | 
|
| 306 | 
		/// %Invalid constructor \& conversion.  | 
|
| 319 | 307 | 
		 | 
| 320 | 
		///  | 
|
| 308 | 
		/// Initializes the iterator to be invalid.  | 
|
| 309 | 
		/// \sa Invalid for more details.  | 
|
| 310 | 
		        ArcIt(Invalid) { }
	 | 
|
| 311 | 
		/// Sets the iterator to the first arc.  | 
|
| 312 | 
		 | 
|
| 313 | 
		/// Sets the iterator to the first arc of the given digraph.  | 
|
| 321 | 314 | 
		///  | 
| 322 | 
		        ArcIt(Invalid) { }
	 | 
|
| 323 | 
		/// This constructor sets the iterator to the first arc.  | 
|
| 315 | 
		        explicit ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
	 | 
|
| 316 | 
		/// Sets the iterator to the given arc.  | 
|
| 324 | 317 | 
		 | 
| 325 | 
		/// This constructor sets the iterator to the first arc of \c g.  | 
|
| 326 | 
		///@param g the digraph  | 
|
| 327 | 
		        ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
	 | 
|
| 328 | 
		/// Arc -> ArcIt conversion  | 
|
| 329 | 
		 | 
|
| 330 | 
		/// Sets the iterator to the value of the trivial iterator \c e.  | 
|
| 331 | 
		/// This feature necessitates that each time we  | 
|
| 332 | 
		/// iterate the arc-set, the iteration order is the same.  | 
|
| 318 | 
		/// Sets the iterator to the given arc of the given digraph.  | 
|
| 319 | 
		///  | 
|
| 333 | 320 | 
		        ArcIt(const Digraph&, const Arc&) { }
	 | 
| 334 | 321 | 
		///Next arc  | 
| 335 | 322 | 
		 | 
| 336 | 323 | 
		/// Assign the iterator to the next arc.  | 
| 324 | 
		///  | 
|
| 337 | 325 | 
		        ArcIt& operator++() { return *this; }
	 | 
| 338 | 326 | 
		};  | 
| 339 | 
		///Gives back the target node of an arc.  | 
|
| 340 | 327 | 
		 | 
| 341 | 
		///  | 
|
| 328 | 
		/// \brief The source node of the arc.  | 
|
| 342 | 329 | 
		///  | 
| 343 | 
		      Node target(Arc) const { return INVALID; }
	 | 
|
| 344 | 
		///Gives back the source node of an arc.  | 
|
| 345 | 
		 | 
|
| 346 | 
		///Gives back the source node of an arc.  | 
|
| 347 | 
		///  | 
|
| 330 | 
		/// Returns the source node of the given arc.  | 
|
| 348 | 331 | 
		      Node source(Arc) const { return INVALID; }
	 | 
| 349 | 332 | 
		 | 
| 350 | 
		/// \brief  | 
|
| 333 | 
		/// \brief The target node of the arc.  | 
|
| 334 | 
		///  | 
|
| 335 | 
		/// Returns the target node of the given arc.  | 
|
| 336 | 
		      Node target(Arc) const { return INVALID; }
	 | 
|
| 337 | 
		 | 
|
| 338 | 
		/// \brief The ID of the node.  | 
|
| 339 | 
		///  | 
|
| 340 | 
		/// Returns the ID of the given node.  | 
|
| 351 | 341 | 
		      int id(Node) const { return -1; }
	 | 
| 352 | 342 | 
		 | 
| 353 | 
		/// \brief  | 
|
| 343 | 
		/// \brief The ID of the arc.  | 
|
| 344 | 
		///  | 
|
| 345 | 
		/// Returns the ID of the given arc.  | 
|
| 354 | 346 | 
		      int id(Arc) const { return -1; }
	 | 
| 355 | 347 | 
		 | 
| 356 | 
		/// \brief  | 
|
| 348 | 
		/// \brief The node with the given ID.  | 
|
| 357 | 349 | 
		///  | 
| 358 | 
		///  | 
|
| 350 | 
		/// Returns the node with the given ID.  | 
|
| 351 | 
		/// \pre The argument should be a valid node ID in the digraph.  | 
|
| 359 | 352 | 
		      Node nodeFromId(int) const { return INVALID; }
	 | 
| 360 | 353 | 
		 | 
| 361 | 
		/// \brief  | 
|
| 354 | 
		/// \brief The arc with the given ID.  | 
|
| 362 | 355 | 
		///  | 
| 363 | 
		///  | 
|
| 356 | 
		/// Returns the arc with the given ID.  | 
|
| 357 | 
		/// \pre The argument should be a valid arc ID in the digraph.  | 
|
| 364 | 358 | 
		      Arc arcFromId(int) const { return INVALID; }
	 | 
| 365 | 359 | 
		 | 
| 366 | 
		/// \brief  | 
|
| 360 | 
		/// \brief An upper bound on the node IDs.  | 
|
| 361 | 
		///  | 
|
| 362 | 
		/// Returns an upper bound on the node IDs.  | 
|
| 367 | 363 | 
		      int maxNodeId() const { return -1; }
	 | 
| 368 | 364 | 
		 | 
| 369 | 
		/// \brief  | 
|
| 365 | 
		/// \brief An upper bound on the arc IDs.  | 
|
| 366 | 
		///  | 
|
| 367 | 
		/// Returns an upper bound on the arc IDs.  | 
|
| 370 | 368 | 
		      int maxArcId() const { return -1; }
	 | 
| 371 | 369 | 
		 | 
| 372 | 370 | 
		      void first(Node&) const {}
	 | 
| ... | ... | 
		@@ -392,45 +390,46 @@  | 
| 392 | 390 | 
		// Dummy parameter.  | 
| 393 | 391 | 
		      int maxId(Arc) const { return -1; }
	 | 
| 394 | 392 | 
		 | 
| 393 | 
		/// \brief The opposite node on the arc.  | 
|
| 394 | 
		///  | 
|
| 395 | 
		/// Returns the opposite node on the given arc.  | 
|
| 396 | 
		      Node oppositeNode(Node, Arc) const { return INVALID; }
	 | 
|
| 397 | 
		 | 
|
| 395 | 398 | 
		/// \brief The base node of the iterator.  | 
| 396 | 399 | 
		///  | 
| 397 | 
		/// Gives back the base node of the iterator.  | 
|
| 398 | 
		/// It is always the target of the pointed arc.  | 
|
| 399 | 
		
  | 
|
| 400 | 
		/// Returns the base node of the given outgoing arc iterator  | 
|
| 401 | 
		/// (i.e. the source node of the corresponding arc).  | 
|
| 402 | 
		      Node baseNode(OutArcIt) const { return INVALID; }
	 | 
|
| 400 | 403 | 
		 | 
| 401 | 404 | 
		/// \brief The running node of the iterator.  | 
| 402 | 405 | 
		///  | 
| 403 | 
		/// Gives back the running node of the iterator.  | 
|
| 404 | 
		/// It is always the source of the pointed arc.  | 
|
| 405 | 
		
  | 
|
| 406 | 
		/// Returns the running node of the given outgoing arc iterator  | 
|
| 407 | 
		/// (i.e. the target node of the corresponding arc).  | 
|
| 408 | 
		      Node runningNode(OutArcIt) const { return INVALID; }
	 | 
|
| 406 | 409 | 
		 | 
| 407 | 410 | 
		/// \brief The base node of the iterator.  | 
| 408 | 411 | 
		///  | 
| 409 | 
		/// Gives back the base node of the iterator.  | 
|
| 410 | 
		/// It is always the source of the pointed arc.  | 
|
| 411 | 
		
  | 
|
| 412 | 
		/// Returns the base node of the given incomming arc iterator  | 
|
| 413 | 
		/// (i.e. the target node of the corresponding arc).  | 
|
| 414 | 
		      Node baseNode(InArcIt) const { return INVALID; }
	 | 
|
| 412 | 415 | 
		 | 
| 413 | 416 | 
		/// \brief The running node of the iterator.  | 
| 414 | 417 | 
		///  | 
| 415 | 
		/// Gives back the running node of the iterator.  | 
|
| 416 | 
		/// It is always the target of the pointed arc.  | 
|
| 417 | 
		
  | 
|
| 418 | 
		/// Returns the running node of the given incomming arc iterator  | 
|
| 419 | 
		/// (i.e. the source node of the corresponding arc).  | 
|
| 420 | 
		      Node runningNode(InArcIt) const { return INVALID; }
	 | 
|
| 418 | 421 | 
		 | 
| 419 | 
		/// \brief  | 
|
| 422 | 
		/// \brief Standard graph map type for the nodes.  | 
|
| 420 | 423 | 
		///  | 
| 421 | 
		/// Gives back the opposite node on the given arc.  | 
|
| 422 | 
		      Node oppositeNode(const Node&, const Arc&) const { return INVALID; }
	 | 
|
| 423 | 
		 | 
|
| 424 | 
		/// \brief Reference map of the nodes to type \c T.  | 
|
| 425 | 
		///  | 
|
| 426 | 
		/// Reference map of the nodes to type \c T.  | 
|
| 424 | 
		/// Standard graph map type for the nodes.  | 
|
| 425 | 
		/// It conforms to the ReferenceMap concept.  | 
|
| 427 | 426 | 
		template<class T>  | 
| 428 | 427 | 
		      class NodeMap : public ReferenceMap<Node, T, T&, const T&> {
	 | 
| 429 | 428 | 
		public:  | 
| 430 | 429 | 
		 | 
| 431 | 
		///\e  | 
|
| 432 | 
		        NodeMap(const Digraph&) { }
	 | 
|
| 433 | 
		///  | 
|
| 430 | 
		/// Constructor  | 
|
| 431 | 
		        explicit NodeMap(const Digraph&) { }
	 | 
|
| 432 | 
		/// Constructor with given initial value  | 
|
| 434 | 433 | 
		        NodeMap(const Digraph&, T) { }
	 | 
| 435 | 434 | 
		 | 
| 436 | 435 | 
		private:  | 
| ... | ... | 
		@@ -445,17 +444,19 @@  | 
| 445 | 444 | 
		}  | 
| 446 | 445 | 
		};  | 
| 447 | 446 | 
		 | 
| 448 | 
		/// \brief  | 
|
| 447 | 
		/// \brief Standard graph map type for the arcs.  | 
|
| 449 | 448 | 
		///  | 
| 450 | 
		///  | 
|
| 449 | 
		/// Standard graph map type for the arcs.  | 
|
| 450 | 
		/// It conforms to the ReferenceMap concept.  | 
|
| 451 | 451 | 
		template<class T>  | 
| 452 | 452 | 
		      class ArcMap : public ReferenceMap<Arc, T, T&, const T&> {
	 | 
| 453 | 453 | 
		public:  | 
| 454 | 454 | 
		 | 
| 455 | 
		///\e  | 
|
| 456 | 
		        ArcMap(const Digraph&) { }
	 | 
|
| 457 | 
		///  | 
|
| 455 | 
		/// Constructor  | 
|
| 456 | 
		        explicit ArcMap(const Digraph&) { }
	 | 
|
| 457 | 
		/// Constructor with given initial value  | 
|
| 458 | 458 | 
		        ArcMap(const Digraph&, T) { }
	 | 
| 459 | 
		 | 
|
| 459 | 460 | 
		private:  | 
| 460 | 461 | 
		///Copy constructor  | 
| 461 | 462 | 
		ArcMap(const ArcMap& em) :  | 
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)