gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Using \tparam commands + removing \author commands (ticket #29, #39)
0 14 0
default
14 files changed:
↑ Collapse diff ↑
Ignore white space 6 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BFS_H
20 20
#define LEMON_BFS_H
21 21

	
22 22
///\ingroup search
23 23
///\file
24 24
///\brief Bfs algorithm.
25 25

	
26 26
#include <lemon/list_graph.h>
27 27
#include <lemon/graph_utils.h>
28 28
#include <lemon/bits/path_dump.h>
29 29
#include <lemon/bits/invalid.h>
30 30
#include <lemon/error.h>
31 31
#include <lemon/maps.h>
32 32

	
33 33
namespace lemon {
34 34

	
35 35

	
36 36
  
37 37
  ///Default traits class of Bfs class.
38 38

	
39 39
  ///Default traits class of Bfs class.
40
  ///\param GR Digraph type.
40
  ///\tparam GR Digraph type.
41 41
  template<class GR>
42 42
  struct BfsDefaultTraits
43 43
  {
44 44
    ///The digraph type the algorithm runs on. 
45 45
    typedef GR Digraph;
46 46
    ///\brief The type of the map that stores the last
47 47
    ///arcs of the shortest paths.
48 48
    /// 
49 49
    ///The type of the map that stores the last
50 50
    ///arcs of the shortest paths.
51 51
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
52 52
    ///
53 53
    typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap;
54 54
    ///Instantiates a PredMap.
55 55
 
56 56
    ///This function instantiates a \ref PredMap. 
57 57
    ///\param G is the digraph, to which we would like to define the PredMap.
58 58
    ///\todo The digraph alone may be insufficient to initialize
59 59
    static PredMap *createPredMap(const GR &G) 
60 60
    {
61 61
      return new PredMap(G);
62 62
    }
63 63
    ///The type of the map that indicates which nodes are processed.
64 64
 
65 65
    ///The type of the map that indicates which nodes are processed.
66 66
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
67 67
    ///\todo named parameter to set this type, function to read and write.
68 68
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
69 69
    ///Instantiates a ProcessedMap.
70 70
 
71 71
    ///This function instantiates a \ref ProcessedMap. 
72 72
    ///\param g is the digraph, to which
73 73
    ///we would like to define the \ref ProcessedMap
74 74
#ifdef DOXYGEN
75 75
    static ProcessedMap *createProcessedMap(const GR &g)
76 76
#else
77 77
    static ProcessedMap *createProcessedMap(const GR &)
78 78
#endif
79 79
    {
80 80
      return new ProcessedMap();
81 81
    }
82 82
    ///The type of the map that indicates which nodes are reached.
83 83
 
84 84
    ///The type of the map that indicates which nodes are reached.
85 85
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
86 86
    ///\todo named parameter to set this type, function to read and write.
87 87
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
88 88
    ///Instantiates a ReachedMap.
89 89
 
90 90
    ///This function instantiates a \ref ReachedMap. 
91 91
    ///\param G is the digraph, to which
92 92
    ///we would like to define the \ref ReachedMap.
93 93
    static ReachedMap *createReachedMap(const GR &G)
94 94
    {
95 95
      return new ReachedMap(G);
96 96
    }
97 97
    ///The type of the map that stores the dists of the nodes.
98 98
 
99 99
    ///The type of the map that stores the dists of the nodes.
100 100
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
101 101
    ///
102 102
    typedef typename Digraph::template NodeMap<int> DistMap;
103 103
    ///Instantiates a DistMap.
104 104
 
105 105
    ///This function instantiates a \ref DistMap. 
106 106
    ///\param G is the digraph, to which we would like to define the \ref DistMap
107 107
    static DistMap *createDistMap(const GR &G)
108 108
    {
109 109
      return new DistMap(G);
110 110
    }
111 111
  };
112 112
  
113 113
  ///%BFS algorithm class.
114 114
  
115 115
  ///\ingroup search
116 116
  ///This class provides an efficient implementation of the %BFS algorithm.
117 117
  ///
118
  ///\param GR The digraph type the algorithm runs on. The default value is
118
  ///\tparam GR The digraph type the algorithm runs on. The default value is
119 119
  ///\ref ListDigraph. The value of GR is not used directly by Bfs, it
120 120
  ///is only passed to \ref BfsDefaultTraits.
121
  ///\param TR Traits class to set various data types used by the algorithm.
121
  ///\tparam TR Traits class to set various data types used by the algorithm.
122 122
  ///The default traits class is
123 123
  ///\ref BfsDefaultTraits "BfsDefaultTraits<GR>".
124 124
  ///See \ref BfsDefaultTraits for the documentation of
125 125
  ///a Bfs traits class.
126
  ///
127
  ///\author Alpar Juttner
128 126

	
129 127
#ifdef DOXYGEN
130 128
  template <typename GR,
131 129
	    typename TR>
132 130
#else
133 131
  template <typename GR=ListDigraph,
134 132
	    typename TR=BfsDefaultTraits<GR> >
135 133
#endif
136 134
  class Bfs {
137 135
  public:
138 136
    /**
139 137
     * \brief \ref Exception for uninitialized parameters.
140 138
     *
141 139
     * This error represents problems in the initialization
142 140
     * of the parameters of the algorithms.
143 141
     */
144 142
    class UninitializedParameter : public lemon::UninitializedParameter {
145 143
    public:
146 144
      virtual const char* what() const throw() {
147 145
	return "lemon::Bfs::UninitializedParameter";
148 146
      }
149 147
    };
150 148

	
151 149
    typedef TR Traits;
152 150
    ///The type of the underlying digraph.
153 151
    typedef typename TR::Digraph Digraph;
154 152
    
155 153
    ///\brief The type of the map that stores the last
156 154
    ///arcs of the shortest paths.
157 155
    typedef typename TR::PredMap PredMap;
158 156
    ///The type of the map indicating which nodes are reached.
159 157
    typedef typename TR::ReachedMap ReachedMap;
160 158
    ///The type of the map indicating which nodes are processed.
161 159
    typedef typename TR::ProcessedMap ProcessedMap;
162 160
    ///The type of the map that stores the dists of the nodes.
163 161
    typedef typename TR::DistMap DistMap;
164 162
  private:
165 163

	
166 164
    typedef typename Digraph::Node Node;
167 165
    typedef typename Digraph::NodeIt NodeIt;
168 166
    typedef typename Digraph::Arc Arc;
169 167
    typedef typename Digraph::OutArcIt OutArcIt;
170 168

	
171 169
    /// Pointer to the underlying digraph.
172 170
    const Digraph *G;
173 171
    ///Pointer to the map of predecessors arcs.
174 172
    PredMap *_pred;
175 173
    ///Indicates if \ref _pred is locally allocated (\c true) or not.
176 174
    bool local_pred;
177 175
    ///Pointer to the map of distances.
178 176
    DistMap *_dist;
179 177
    ///Indicates if \ref _dist is locally allocated (\c true) or not.
180 178
    bool local_dist;
181 179
    ///Pointer to the map of reached status of the nodes.
182 180
    ReachedMap *_reached;
183 181
    ///Indicates if \ref _reached is locally allocated (\c true) or not.
184 182
    bool local_reached;
185 183
    ///Pointer to the map of processed status of the nodes.
186 184
    ProcessedMap *_processed;
187 185
    ///Indicates if \ref _processed is locally allocated (\c true) or not.
188 186
    bool local_processed;
189 187

	
190 188
    std::vector<typename Digraph::Node> _queue;
191 189
    int _queue_head,_queue_tail,_queue_next_dist;
192 190
    int _curr_dist;
193 191

	
194 192
    ///Creates the maps if necessary.
195 193
    
196 194
    ///\todo Better memory allocation (instead of new).
197 195
    void create_maps() 
198 196
    {
199 197
      if(!_pred) {
200 198
	local_pred = true;
201 199
	_pred = Traits::createPredMap(*G);
202 200
      }
203 201
      if(!_dist) {
204 202
	local_dist = true;
205 203
	_dist = Traits::createDistMap(*G);
206 204
      }
207 205
      if(!_reached) {
208 206
	local_reached = true;
209 207
	_reached = Traits::createReachedMap(*G);
210 208
      }
211 209
      if(!_processed) {
212 210
	local_processed = true;
213 211
	_processed = Traits::createProcessedMap(*G);
214 212
      }
215 213
    }
216 214

	
217 215
  protected:
218 216
    
219 217
    Bfs() {}
220 218
    
221 219
  public:
222 220
 
223 221
    typedef Bfs Create;
224 222

	
225 223
    ///\name Named template parameters
226 224

	
227 225
    ///@{
228 226

	
229 227
    template <class T>
230 228
    struct DefPredMapTraits : public Traits {
231 229
      typedef T PredMap;
232 230
      static PredMap *createPredMap(const Digraph &) 
233 231
      {
234 232
	throw UninitializedParameter();
235 233
      }
236 234
    };
237 235
    ///\brief \ref named-templ-param "Named parameter" for setting
238 236
    ///PredMap type
239 237
    ///
240 238
    ///\ref named-templ-param "Named parameter" for setting PredMap type
241 239
    ///
242 240
    template <class T>
243 241
    struct DefPredMap : public Bfs< Digraph, DefPredMapTraits<T> > { 
244 242
      typedef Bfs< Digraph, DefPredMapTraits<T> > Create;
245 243
    };
246 244
    
247 245
    template <class T>
248 246
    struct DefDistMapTraits : public Traits {
249 247
      typedef T DistMap;
250 248
      static DistMap *createDistMap(const Digraph &) 
251 249
      {
252 250
	throw UninitializedParameter();
253 251
      }
254 252
    };
255 253
    ///\brief \ref named-templ-param "Named parameter" for setting
256 254
    ///DistMap type
257 255
    ///
258 256
    ///\ref named-templ-param "Named parameter" for setting DistMap type
259 257
    ///
260 258
    template <class T>
261 259
    struct DefDistMap : public Bfs< Digraph, DefDistMapTraits<T> > { 
262 260
      typedef Bfs< Digraph, DefDistMapTraits<T> > Create;
263 261
    };
264 262
    
265 263
    template <class T>
266 264
    struct DefReachedMapTraits : public Traits {
267 265
      typedef T ReachedMap;
268 266
      static ReachedMap *createReachedMap(const Digraph &) 
269 267
      {
270 268
	throw UninitializedParameter();
271 269
      }
272 270
    };
273 271
    ///\brief \ref named-templ-param "Named parameter" for setting
274 272
    ///ReachedMap type
275 273
    ///
276 274
    ///\ref named-templ-param "Named parameter" for setting ReachedMap type
277 275
    ///
278 276
    template <class T>
279 277
    struct DefReachedMap : public Bfs< Digraph, DefReachedMapTraits<T> > { 
280 278
      typedef Bfs< Digraph, DefReachedMapTraits<T> > Create;
281 279
    };
282 280
    
283 281
    template <class T>
284 282
    struct DefProcessedMapTraits : public Traits {
285 283
      typedef T ProcessedMap;
286 284
      static ProcessedMap *createProcessedMap(const Digraph &) 
287 285
      {
288 286
	throw UninitializedParameter();
289 287
      }
290 288
    };
291 289
    ///\brief \ref named-templ-param "Named parameter" for setting
292 290
    ///ProcessedMap type
293 291
    ///
294 292
    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
295 293
    ///
296 294
    template <class T>
297 295
    struct DefProcessedMap : public Bfs< Digraph, DefProcessedMapTraits<T> > {
298 296
      typedef Bfs< Digraph, DefProcessedMapTraits<T> > Create;
299 297
    };
300 298
    
301 299
    struct DefDigraphProcessedMapTraits : public Traits {
302 300
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
303 301
      static ProcessedMap *createProcessedMap(const Digraph &G) 
304 302
      {
305 303
	return new ProcessedMap(G);
306 304
      }
307 305
    };
308 306
    ///\brief \ref named-templ-param "Named parameter"
309 307
    ///for setting the ProcessedMap type to be Digraph::NodeMap<bool>.
310 308
    ///
311 309
    ///\ref named-templ-param "Named parameter"
312 310
    ///for setting the ProcessedMap type to be Digraph::NodeMap<bool>.
313 311
    ///If you don't set it explicitly, it will be automatically allocated.
314 312
    template <class T>
315 313
    struct DefProcessedMapToBeDefaultMap :
316 314
      public Bfs< Digraph, DefDigraphProcessedMapTraits> { 
317 315
      typedef Bfs< Digraph, DefDigraphProcessedMapTraits> Create;
318 316
    };
319 317
    
320 318
    ///@}
321 319

	
322 320
  public:      
323 321
    
324 322
    ///Constructor.
325 323
    
326 324
    ///\param _G the digraph the algorithm will run on.
327 325
    ///
328 326
    Bfs(const Digraph& _G) :
329 327
      G(&_G),
330 328
      _pred(NULL), local_pred(false),
331 329
      _dist(NULL), local_dist(false),
332 330
      _reached(NULL), local_reached(false),
333 331
      _processed(NULL), local_processed(false)
334 332
    { }
335 333
    
336 334
    ///Destructor.
337 335
    ~Bfs() 
338 336
    {
339 337
      if(local_pred) delete _pred;
340 338
      if(local_dist) delete _dist;
341 339
      if(local_reached) delete _reached;
342 340
      if(local_processed) delete _processed;
343 341
    }
344 342

	
345 343
    ///Sets the map storing the predecessor arcs.
346 344

	
347 345
    ///Sets the map storing the predecessor arcs.
348 346
    ///If you don't use this function before calling \ref run(),
349 347
    ///it will allocate one. The destructor deallocates this
350 348
    ///automatically allocated map, of course.
351 349
    ///\return <tt> (*this) </tt>
352 350
    Bfs &predMap(PredMap &m) 
353 351
    {
354 352
      if(local_pred) {
355 353
	delete _pred;
356 354
	local_pred=false;
357 355
      }
358 356
      _pred = &m;
359 357
      return *this;
360 358
    }
361 359

	
362 360
    ///Sets the map indicating the reached nodes.
363 361

	
364 362
    ///Sets the map indicating the reached nodes.
365 363
    ///If you don't use this function before calling \ref run(),
366 364
    ///it will allocate one. The destructor deallocates this
367 365
    ///automatically allocated map, of course.
368 366
    ///\return <tt> (*this) </tt>
369 367
    Bfs &reachedMap(ReachedMap &m) 
370 368
    {
371 369
      if(local_reached) {
372 370
	delete _reached;
373 371
	local_reached=false;
374 372
      }
375 373
      _reached = &m;
376 374
      return *this;
377 375
    }
378 376

	
379 377
    ///Sets the map indicating the processed nodes.
380 378

	
381 379
    ///Sets the map indicating the processed nodes.
382 380
    ///If you don't use this function before calling \ref run(),
383 381
    ///it will allocate one. The destructor deallocates this
384 382
    ///automatically allocated map, of course.
385 383
    ///\return <tt> (*this) </tt>
386 384
    Bfs &processedMap(ProcessedMap &m) 
387 385
    {
388 386
      if(local_processed) {
389 387
	delete _processed;
390 388
	local_processed=false;
391 389
      }
392 390
      _processed = &m;
393 391
      return *this;
394 392
    }
395 393

	
396 394
    ///Sets the map storing the distances calculated by the algorithm.
397 395

	
398 396
    ///Sets the map storing the distances calculated by the algorithm.
399 397
    ///If you don't use this function before calling \ref run(),
400 398
    ///it will allocate one. The destructor deallocates this
401 399
    ///automatically allocated map, of course.
402 400
    ///\return <tt> (*this) </tt>
403 401
    Bfs &distMap(DistMap &m) 
404 402
    {
405 403
      if(local_dist) {
406 404
	delete _dist;
407 405
	local_dist=false;
408 406
      }
409 407
      _dist = &m;
410 408
      return *this;
411 409
    }
412 410

	
413 411
  public:
414 412
    ///\name Execution control
415 413
    ///The simplest way to execute the algorithm is to use
416 414
    ///one of the member functions called \c run(...).
417 415
    ///\n
418 416
    ///If you need more control on the execution,
419 417
    ///first you must call \ref init(), then you can add several source nodes
420 418
    ///with \ref addSource().
421 419
    ///Finally \ref start() will perform the actual path
422 420
    ///computation.
423 421

	
424 422
    ///@{
425 423

	
426 424
    ///\brief Initializes the internal data structures.
427 425
    ///
428 426
    ///Initializes the internal data structures.
429 427
    ///
430 428
    void init()
431 429
    {
432 430
      create_maps();
433 431
      _queue.resize(countNodes(*G));
434 432
      _queue_head=_queue_tail=0;
435 433
      _curr_dist=1;
436 434
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
437 435
	_pred->set(u,INVALID);
438 436
	_reached->set(u,false);
439 437
	_processed->set(u,false);
440 438
      }
441 439
    }
442 440
    
443 441
    ///Adds a new source node.
444 442

	
445 443
    ///Adds a new source node to the set of nodes to be processed.
446 444
    ///
447 445
    void addSource(Node s)
448 446
    {
449 447
      if(!(*_reached)[s])
450 448
	{
451 449
	  _reached->set(s,true);
452 450
	  _pred->set(s,INVALID);
453 451
	  _dist->set(s,0);
454 452
	  _queue[_queue_head++]=s;
455 453
	  _queue_next_dist=_queue_head;
456 454
	}
457 455
    }
458 456
    
459 457
    ///Processes the next node.
460 458

	
461 459
    ///Processes the next node.
462 460
    ///
463 461
    ///\return The processed node.
464 462
    ///
465 463
    ///\warning The queue must not be empty!
466 464
    Node processNextNode()
467 465
    {
468 466
      if(_queue_tail==_queue_next_dist) {
469 467
	_curr_dist++;
470 468
	_queue_next_dist=_queue_head;
471 469
      }
472 470
      Node n=_queue[_queue_tail++];
473 471
      _processed->set(n,true);
474 472
      Node m;
475 473
      for(OutArcIt e(*G,n);e!=INVALID;++e)
476 474
	if(!(*_reached)[m=G->target(e)]) {
477 475
	  _queue[_queue_head++]=m;
478 476
	  _reached->set(m,true);
479 477
	  _pred->set(m,e);
480 478
	  _dist->set(m,_curr_dist);
481 479
	}
482 480
      return n;
483 481
    }
484 482

	
485 483
    ///Processes the next node.
486 484

	
487 485
    ///Processes the next node. And checks that the given target node
488 486
    ///is reached. If the target node is reachable from the processed
489 487
    ///node then the reached parameter will be set true. The reached
490 488
    ///parameter should be initially false.
491 489
    ///
492 490
    ///\param target The target node.
493 491
    ///\retval reach Indicates that the target node is reached.
494 492
    ///\return The processed node.
495 493
    ///
496 494
    ///\warning The queue must not be empty!
497 495
    Node processNextNode(Node target, bool& reach)
498 496
    {
499 497
      if(_queue_tail==_queue_next_dist) {
500 498
	_curr_dist++;
501 499
	_queue_next_dist=_queue_head;
502 500
      }
503 501
      Node n=_queue[_queue_tail++];
504 502
      _processed->set(n,true);
505 503
      Node m;
506 504
      for(OutArcIt e(*G,n);e!=INVALID;++e)
507 505
	if(!(*_reached)[m=G->target(e)]) {
508 506
	  _queue[_queue_head++]=m;
509 507
	  _reached->set(m,true);
510 508
	  _pred->set(m,e);
511 509
	  _dist->set(m,_curr_dist);
512 510
          reach = reach || (target == m);
513 511
	}
514 512
      return n;
515 513
    }
516 514

	
517 515
    ///Processes the next node.
518 516

	
519 517
    ///Processes the next node. And checks that at least one of
520 518
    ///reached node has true value in the \c nm node map. If one node
521 519
    ///with true value is reachable from the processed node then the
522 520
    ///rnode parameter will be set to the first of such nodes.
523 521
    ///
524 522
    ///\param nm The node map of possible targets.
525 523
    ///\retval rnode The reached target node.
526 524
    ///\return The processed node.
527 525
    ///
528 526
    ///\warning The queue must not be empty!
529 527
    template<class NM>
530 528
    Node processNextNode(const NM& nm, Node& rnode)
531 529
    {
532 530
      if(_queue_tail==_queue_next_dist) {
533 531
	_curr_dist++;
534 532
	_queue_next_dist=_queue_head;
535 533
      }
536 534
      Node n=_queue[_queue_tail++];
537 535
      _processed->set(n,true);
538 536
      Node m;
539 537
      for(OutArcIt e(*G,n);e!=INVALID;++e)
540 538
	if(!(*_reached)[m=G->target(e)]) {
541 539
	  _queue[_queue_head++]=m;
542 540
	  _reached->set(m,true);
543 541
	  _pred->set(m,e);
544 542
	  _dist->set(m,_curr_dist);
545 543
	  if (nm[m] && rnode == INVALID) rnode = m;
546 544
	}
547 545
      return n;
548 546
    }
549 547
      
550 548
    ///Next node to be processed.
551 549

	
552 550
    ///Next node to be processed.
553 551
    ///
554 552
    ///\return The next node to be processed or INVALID if the queue is
555 553
    /// empty.
556 554
    Node nextNode()
557 555
    { 
558 556
      return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID;
559 557
    }
560 558
 
561 559
    ///\brief Returns \c false if there are nodes
562 560
    ///to be processed in the queue
563 561
    ///
564 562
    ///Returns \c false if there are nodes
565 563
    ///to be processed in the queue
566 564
    bool emptyQueue() { return _queue_tail==_queue_head; }
567 565
    ///Returns the number of the nodes to be processed.
568 566
    
569 567
    ///Returns the number of the nodes to be processed in the queue.
570 568
    int queueSize() { return _queue_head-_queue_tail; }
571 569
    
572 570
    ///Executes the algorithm.
573 571

	
574 572
    ///Executes the algorithm.
575 573
    ///
576 574
    ///\pre init() must be called and at least one node should be added
577 575
    ///with addSource() before using this function.
578 576
    ///
579 577
    ///This method runs the %BFS algorithm from the root node(s)
580 578
    ///in order to
581 579
    ///compute the
582 580
    ///shortest path to each node. The algorithm computes
583 581
    ///- The shortest path tree.
584 582
    ///- The distance of each node from the root(s).
585 583
    void start()
586 584
    {
587 585
      while ( !emptyQueue() ) processNextNode();
588 586
    }
589 587
    
590 588
    ///Executes the algorithm until \c dest is reached.
591 589

	
592 590
    ///Executes the algorithm until \c dest is reached.
593 591
    ///
594 592
    ///\pre init() must be called and at least one node should be added
595 593
    ///with addSource() before using this function.
596 594
    ///
597 595
    ///This method runs the %BFS algorithm from the root node(s)
598 596
    ///in order to compute the shortest path to \c dest.
599 597
    ///The algorithm computes
600 598
    ///- The shortest path to \c  dest.
601 599
    ///- The distance of \c dest from the root(s).
602 600
    void start(Node dest)
603 601
    {
604 602
      bool reach = false;
605 603
      while ( !emptyQueue() && !reach ) processNextNode(dest, reach);
606 604
    }
607 605
    
608 606
    ///Executes the algorithm until a condition is met.
609 607

	
610 608
    ///Executes the algorithm until a condition is met.
611 609
    ///
612 610
    ///\pre init() must be called and at least one node should be added
613 611
    ///with addSource() before using this function.
614 612
    ///
615 613
    ///\param nm must be a bool (or convertible) node map. The
616 614
    ///algorithm will stop when it reaches a node \c v with
617 615
    /// <tt>nm[v]</tt> true.
618 616
    ///
619 617
    ///\return The reached node \c v with <tt>nm[v]</tt> true or
620 618
    ///\c INVALID if no such node was found.
621 619
    template<class NM>
622 620
    Node start(const NM &nm)
623 621
    {
624 622
      Node rnode = INVALID;
625 623
      while ( !emptyQueue() && rnode == INVALID ) {
626 624
	processNextNode(nm, rnode);
627 625
      }
628 626
      return rnode;
629 627
    }
630 628
    
631 629
    ///Runs %BFS algorithm from node \c s.
632 630
    
633 631
    ///This method runs the %BFS algorithm from a root node \c s
634 632
    ///in order to
635 633
    ///compute the
636 634
    ///shortest path to each node. The algorithm computes
637 635
    ///- The shortest path tree.
638 636
    ///- The distance of each node from the root.
639 637
    ///
640 638
    ///\note b.run(s) is just a shortcut of the following code.
641 639
    ///\code
642 640
    ///  b.init();
643 641
    ///  b.addSource(s);
644 642
    ///  b.start();
645 643
    ///\endcode
646 644
    void run(Node s) {
647 645
      init();
648 646
      addSource(s);
649 647
      start();
650 648
    }
651 649
    
652 650
    ///Finds the shortest path between \c s and \c t.
653 651
    
654 652
    ///Finds the shortest path between \c s and \c t.
655 653
    ///
656 654
    ///\return The length of the shortest s---t path if there exists one,
657 655
    ///0 otherwise.
658 656
    ///\note Apart from the return value, b.run(s) is
659 657
    ///just a shortcut of the following code.
660 658
    ///\code
661 659
    ///  b.init();
662 660
    ///  b.addSource(s);
663 661
    ///  b.start(t);
664 662
    ///\endcode
665 663
    int run(Node s,Node t) {
666 664
      init();
667 665
      addSource(s);
668 666
      start(t);
669 667
      return reached(t) ? _curr_dist : 0;
670 668
    }
671 669
    
672 670
    ///@}
673 671

	
674 672
    ///\name Query Functions
675 673
    ///The result of the %BFS algorithm can be obtained using these
676 674
    ///functions.\n
677 675
    ///Before the use of these functions,
678 676
    ///either run() or start() must be calleb.
679 677
    
680 678
    ///@{
681 679

	
682 680
    typedef PredMapPath<Digraph, PredMap> Path;
683 681

	
684 682
    ///Gives back the shortest path.
685 683
    
686 684
    ///Gives back the shortest path.
687 685
    ///\pre The \c t should be reachable from the source.
688 686
    Path path(Node t) 
689 687
    {
690 688
      return Path(*G, *_pred, t);
691 689
    }
692 690

	
693 691
    ///The distance of a node from the root(s).
694 692

	
695 693
    ///Returns the distance of a node from the root(s).
696 694
    ///\pre \ref run() must be called before using this function.
697 695
    ///\warning If node \c v in unreachable from the root(s) the return value
698 696
    ///of this function is undefined.
699 697
    int dist(Node v) const { return (*_dist)[v]; }
700 698

	
701 699
    ///Returns the 'previous arc' of the shortest path tree.
702 700

	
703 701
    ///For a node \c v it returns the 'previous arc'
704 702
    ///of the shortest path tree,
705 703
    ///i.e. it returns the last arc of a shortest path from the root(s) to \c
706 704
    ///v. It is \ref INVALID
707 705
    ///if \c v is unreachable from the root(s) or \c v is a root. The
708 706
    ///shortest path tree used here is equal to the shortest path tree used in
709 707
    ///\ref predNode().
710 708
    ///\pre Either \ref run() or \ref start() must be called before using
711 709
    ///this function.
712 710
    Arc predArc(Node v) const { return (*_pred)[v];}
713 711

	
714 712
    ///Returns the 'previous node' of the shortest path tree.
715 713

	
716 714
    ///For a node \c v it returns the 'previous node'
717 715
    ///of the shortest path tree,
718 716
    ///i.e. it returns the last but one node from a shortest path from the
719 717
    ///root(a) to \c /v.
720 718
    ///It is INVALID if \c v is unreachable from the root(s) or
721 719
    ///if \c v itself a root.
722 720
    ///The shortest path tree used here is equal to the shortest path
723 721
    ///tree used in \ref predArc().
724 722
    ///\pre Either \ref run() or \ref start() must be called before
725 723
    ///using this function.
726 724
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
727 725
				  G->source((*_pred)[v]); }
728 726
    
729 727
    ///Returns a reference to the NodeMap of distances.
730 728

	
731 729
    ///Returns a reference to the NodeMap of distances.
732 730
    ///\pre Either \ref run() or \ref init() must
733 731
    ///be called before using this function.
734 732
    const DistMap &distMap() const { return *_dist;}
735 733
 
736 734
    ///Returns a reference to the shortest path tree map.
737 735

	
738 736
    ///Returns a reference to the NodeMap of the arcs of the
739 737
    ///shortest path tree.
740 738
    ///\pre Either \ref run() or \ref init()
741 739
    ///must be called before using this function.
742 740
    const PredMap &predMap() const { return *_pred;}
743 741
 
744 742
    ///Checks if a node is reachable from the root.
745 743

	
746 744
    ///Returns \c true if \c v is reachable from the root.
747 745
    ///\warning The source nodes are indicated as unreached.
748 746
    ///\pre Either \ref run() or \ref start()
749 747
    ///must be called before using this function.
750 748
    ///
751 749
    bool reached(Node v) { return (*_reached)[v]; }
752 750
    
753 751
    ///@}
754 752
  };
755 753

	
756 754
  ///Default traits class of Bfs function.
757 755

	
758 756
  ///Default traits class of Bfs function.
759
  ///\param GR Digraph type.
757
  ///\tparam GR Digraph type.
760 758
  template<class GR>
761 759
  struct BfsWizardDefaultTraits
762 760
  {
763 761
    ///The digraph type the algorithm runs on. 
764 762
    typedef GR Digraph;
765 763
    ///\brief The type of the map that stores the last
766 764
    ///arcs of the shortest paths.
767 765
    /// 
768 766
    ///The type of the map that stores the last
769 767
    ///arcs of the shortest paths.
770 768
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
771 769
    ///
772 770
    typedef NullMap<typename Digraph::Node,typename GR::Arc> PredMap;
773 771
    ///Instantiates a PredMap.
774 772
 
775 773
    ///This function instantiates a \ref PredMap. 
776 774
    ///\param g is the digraph, to which we would like to define the PredMap.
777 775
    ///\todo The digraph alone may be insufficient to initialize
778 776
#ifdef DOXYGEN
779 777
    static PredMap *createPredMap(const GR &g) 
780 778
#else
781 779
    static PredMap *createPredMap(const GR &) 
782 780
#endif
783 781
    {
784 782
      return new PredMap();
785 783
    }
786 784

	
787 785
    ///The type of the map that indicates which nodes are processed.
788 786
 
789 787
    ///The type of the map that indicates which nodes are processed.
790 788
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
791 789
    ///\todo named parameter to set this type, function to read and write.
792 790
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
793 791
    ///Instantiates a ProcessedMap.
794 792
 
795 793
    ///This function instantiates a \ref ProcessedMap. 
796 794
    ///\param g is the digraph, to which
797 795
    ///we would like to define the \ref ProcessedMap
798 796
#ifdef DOXYGEN
799 797
    static ProcessedMap *createProcessedMap(const GR &g)
800 798
#else
801 799
    static ProcessedMap *createProcessedMap(const GR &)
802 800
#endif
803 801
    {
804 802
      return new ProcessedMap();
805 803
    }
806 804
    ///The type of the map that indicates which nodes are reached.
807 805
 
808 806
    ///The type of the map that indicates which nodes are reached.
809 807
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
810 808
    ///\todo named parameter to set this type, function to read and write.
811 809
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
812 810
    ///Instantiates a ReachedMap.
813 811
 
814 812
    ///This function instantiates a \ref ReachedMap. 
815 813
    ///\param G is the digraph, to which
816 814
    ///we would like to define the \ref ReachedMap.
817 815
    static ReachedMap *createReachedMap(const GR &G)
818 816
    {
819 817
      return new ReachedMap(G);
820 818
    }
821 819
    ///The type of the map that stores the dists of the nodes.
822 820
 
823 821
    ///The type of the map that stores the dists of the nodes.
824 822
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
825 823
    ///
826 824
    typedef NullMap<typename Digraph::Node,int> DistMap;
827 825
    ///Instantiates a DistMap.
828 826
 
829 827
    ///This function instantiates a \ref DistMap. 
830 828
    ///\param g is the digraph, to which we would like to define the \ref DistMap
831 829
#ifdef DOXYGEN
832 830
    static DistMap *createDistMap(const GR &g)
833 831
#else
834 832
    static DistMap *createDistMap(const GR &)
835 833
#endif
836 834
    {
837 835
      return new DistMap();
838 836
    }
839 837
  };
840 838
  
841 839
  /// Default traits used by \ref BfsWizard
842 840

	
843 841
  /// To make it easier to use Bfs algorithm
844 842
  ///we have created a wizard class.
845 843
  /// This \ref BfsWizard class needs default traits,
846 844
  ///as well as the \ref Bfs class.
847 845
  /// The \ref BfsWizardBase is a class to be the default traits of the
848 846
  /// \ref BfsWizard class.
849 847
  template<class GR>
850 848
  class BfsWizardBase : public BfsWizardDefaultTraits<GR>
851 849
  {
852 850

	
853 851
    typedef BfsWizardDefaultTraits<GR> Base;
854 852
  protected:
855 853
    /// Type of the nodes in the digraph.
856 854
    typedef typename Base::Digraph::Node Node;
857 855

	
858 856
    /// Pointer to the underlying digraph.
859 857
    void *_g;
860 858
    ///Pointer to the map of reached nodes.
861 859
    void *_reached;
862 860
    ///Pointer to the map of processed nodes.
863 861
    void *_processed;
864 862
    ///Pointer to the map of predecessors arcs.
865 863
    void *_pred;
866 864
    ///Pointer to the map of distances.
867 865
    void *_dist;
868 866
    ///Pointer to the source node.
869 867
    Node _source;
870 868
    
871 869
    public:
872 870
    /// Constructor.
873 871
    
874 872
    /// This constructor does not require parameters, therefore it initiates
875 873
    /// all of the attributes to default values (0, INVALID).
876 874
    BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
877 875
			   _dist(0), _source(INVALID) {}
878 876

	
879 877
    /// Constructor.
880 878
    
881 879
    /// This constructor requires some parameters,
882 880
    /// listed in the parameters list.
883 881
    /// Others are initiated to 0.
884 882
    /// \param g is the initial value of  \ref _g
885 883
    /// \param s is the initial value of  \ref _source
886 884
    BfsWizardBase(const GR &g, Node s=INVALID) :
887 885
      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))), 
888 886
      _reached(0), _processed(0), _pred(0), _dist(0), _source(s) {}
889 887

	
890 888
  };
891 889
  
892 890
  /// A class to make the usage of Bfs algorithm easier
893 891

	
894 892
  /// This class is created to make it easier to use Bfs algorithm.
895 893
  /// It uses the functions and features of the plain \ref Bfs,
896 894
  /// but it is much simpler to use it.
897 895
  ///
898 896
  /// Simplicity means that the way to change the types defined
899 897
  /// in the traits class is based on functions that returns the new class
900 898
  /// and not on templatable built-in classes.
901 899
  /// When using the plain \ref Bfs
902 900
  /// the new class with the modified type comes from
903 901
  /// the original class by using the ::
904 902
  /// operator. In the case of \ref BfsWizard only
905 903
  /// a function have to be called and it will
906 904
  /// return the needed class.
907 905
  ///
908 906
  /// It does not have own \ref run method. When its \ref run method is called
909 907
  /// it initiates a plain \ref Bfs class, and calls the \ref Bfs::run
910 908
  /// method of it.
911 909
  template<class TR>
912 910
  class BfsWizard : public TR
913 911
  {
914 912
    typedef TR Base;
915 913

	
916 914
    ///The type of the underlying digraph.
917 915
    typedef typename TR::Digraph Digraph;
918 916
    //\e
919 917
    typedef typename Digraph::Node Node;
920 918
    //\e
921 919
    typedef typename Digraph::NodeIt NodeIt;
922 920
    //\e
923 921
    typedef typename Digraph::Arc Arc;
924 922
    //\e
925 923
    typedef typename Digraph::OutArcIt OutArcIt;
926 924
    
927 925
    ///\brief The type of the map that stores
928 926
    ///the reached nodes
929 927
    typedef typename TR::ReachedMap ReachedMap;
930 928
    ///\brief The type of the map that stores
931 929
    ///the processed nodes
932 930
    typedef typename TR::ProcessedMap ProcessedMap;
933 931
    ///\brief The type of the map that stores the last
934 932
    ///arcs of the shortest paths.
935 933
    typedef typename TR::PredMap PredMap;
936 934
    ///The type of the map that stores the dists of the nodes.
937 935
    typedef typename TR::DistMap DistMap;
938 936

	
939 937
  public:
940 938
    /// Constructor.
941 939
    BfsWizard() : TR() {}
942 940

	
943 941
    /// Constructor that requires parameters.
944 942

	
945 943
    /// Constructor that requires parameters.
946 944
    /// These parameters will be the default values for the traits class.
947 945
    BfsWizard(const Digraph &g, Node s=INVALID) :
948 946
      TR(g,s) {}
949 947

	
950 948
    ///Copy constructor
951 949
    BfsWizard(const TR &b) : TR(b) {}
952 950

	
953 951
    ~BfsWizard() {}
954 952

	
955 953
    ///Runs Bfs algorithm from a given node.
956 954
    
957 955
    ///Runs Bfs algorithm from a given node.
958 956
    ///The node can be given by the \ref source function.
959 957
    void run()
960 958
    {
961 959
      if(Base::_source==INVALID) throw UninitializedParameter();
962 960
      Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
963 961
      if(Base::_reached)
964 962
	alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
965 963
      if(Base::_processed) 
966 964
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
967 965
      if(Base::_pred) 
968 966
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
969 967
      if(Base::_dist) 
970 968
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
971 969
      alg.run(Base::_source);
972 970
    }
973 971

	
974 972
    ///Runs Bfs algorithm from the given node.
975 973

	
976 974
    ///Runs Bfs algorithm from the given node.
977 975
    ///\param s is the given source.
978 976
    void run(Node s)
979 977
    {
980 978
      Base::_source=s;
981 979
      run();
982 980
    }
983 981

	
984 982
    template<class T>
985 983
    struct DefPredMapBase : public Base {
986 984
      typedef T PredMap;
987 985
      static PredMap *createPredMap(const Digraph &) { return 0; };
988 986
      DefPredMapBase(const TR &b) : TR(b) {}
989 987
    };
990 988
    
991 989
    ///\brief \ref named-templ-param "Named parameter"
992 990
    ///function for setting PredMap
993 991
    ///
994 992
    /// \ref named-templ-param "Named parameter"
995 993
    ///function for setting PredMap
996 994
    ///
997 995
    template<class T>
998 996
    BfsWizard<DefPredMapBase<T> > predMap(const T &t) 
999 997
    {
1000 998
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1001 999
      return BfsWizard<DefPredMapBase<T> >(*this);
1002 1000
    }
1003 1001
    
1004 1002
 
1005 1003
    template<class T>
1006 1004
    struct DefReachedMapBase : public Base {
1007 1005
      typedef T ReachedMap;
1008 1006
      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
1009 1007
      DefReachedMapBase(const TR &b) : TR(b) {}
1010 1008
    };
1011 1009
    
1012 1010
    ///\brief \ref named-templ-param "Named parameter"
1013 1011
    ///function for setting ReachedMap
1014 1012
    ///
1015 1013
    /// \ref named-templ-param "Named parameter"
1016 1014
    ///function for setting ReachedMap
1017 1015
    ///
1018 1016
    template<class T>
1019 1017
    BfsWizard<DefReachedMapBase<T> > reachedMap(const T &t) 
1020 1018
    {
1021 1019
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1022 1020
      return BfsWizard<DefReachedMapBase<T> >(*this);
1023 1021
    }
1024 1022
    
1025 1023

	
1026 1024
    template<class T>
1027 1025
    struct DefProcessedMapBase : public Base {
1028 1026
      typedef T ProcessedMap;
1029 1027
      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1030 1028
      DefProcessedMapBase(const TR &b) : TR(b) {}
1031 1029
    };
1032 1030
    
1033 1031
    ///\brief \ref named-templ-param "Named parameter"
1034 1032
    ///function for setting ProcessedMap
1035 1033
    ///
1036 1034
    /// \ref named-templ-param "Named parameter"
1037 1035
    ///function for setting ProcessedMap
1038 1036
    ///
1039 1037
    template<class T>
1040 1038
    BfsWizard<DefProcessedMapBase<T> > processedMap(const T &t) 
1041 1039
    {
1042 1040
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1043 1041
      return BfsWizard<DefProcessedMapBase<T> >(*this);
1044 1042
    }
1045 1043
    
1046 1044
   
1047 1045
    template<class T>
1048 1046
    struct DefDistMapBase : public Base {
1049 1047
      typedef T DistMap;
1050 1048
      static DistMap *createDistMap(const Digraph &) { return 0; };
1051 1049
      DefDistMapBase(const TR &b) : TR(b) {}
1052 1050
    };
1053 1051
    
1054 1052
    ///\brief \ref named-templ-param "Named parameter"
1055 1053
    ///function for setting DistMap type
1056 1054
    ///
1057 1055
    /// \ref named-templ-param "Named parameter"
1058 1056
    ///function for setting DistMap type
1059 1057
    ///
1060 1058
    template<class T>
1061 1059
    BfsWizard<DefDistMapBase<T> > distMap(const T &t) 
1062 1060
    {
1063 1061
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1064 1062
      return BfsWizard<DefDistMapBase<T> >(*this);
1065 1063
    }
1066 1064
    
1067 1065
    /// Sets the source node, from which the Bfs algorithm runs.
1068 1066

	
1069 1067
    /// Sets the source node, from which the Bfs algorithm runs.
1070 1068
    /// \param s is the source node.
1071 1069
    BfsWizard<TR> &source(Node s) 
1072 1070
    {
1073 1071
      Base::_source=s;
1074 1072
      return *this;
1075 1073
    }
1076 1074
    
1077 1075
  };
1078 1076
  
1079 1077
  ///Function type interface for Bfs algorithm.
1080 1078

	
1081 1079
  /// \ingroup search
1082 1080
  ///Function type interface for Bfs algorithm.
1083 1081
  ///
1084 1082
  ///This function also has several
1085 1083
  ///\ref named-templ-func-param "named parameters",
1086 1084
  ///they are declared as the members of class \ref BfsWizard.
1087 1085
  ///The following
1088 1086
  ///example shows how to use these parameters.
1089 1087
  ///\code
1090 1088
  ///  bfs(g,source).predMap(preds).run();
1091 1089
  ///\endcode
1092 1090
  ///\warning Don't forget to put the \ref BfsWizard::run() "run()"
1093 1091
  ///to the end of the parameter list.
1094 1092
  ///\sa BfsWizard
1095 1093
  ///\sa Bfs
1096 1094
  template<class GR>
1097 1095
  BfsWizard<BfsWizardBase<GR> >
1098 1096
  bfs(const GR &g,typename GR::Node s=INVALID)
1099 1097
  {
1100 1098
    return BfsWizard<BfsWizardBase<GR> >(g,s);
1101 1099
  }
1102 1100

	
1103 1101
#ifdef DOXYGEN
1104 1102
  /// \brief Visitor class for bfs.
1105 1103
  ///  
1106 1104
  /// This class defines the interface of the BfsVisit events, and
1107 1105
  /// it could be the base of a real Visitor class.
1108 1106
  template <typename _Digraph>
1109 1107
  struct BfsVisitor {
1110 1108
    typedef _Digraph Digraph;
1111 1109
    typedef typename Digraph::Arc Arc;
1112 1110
    typedef typename Digraph::Node Node;
1113 1111
    /// \brief Called when the arc reach a node.
1114 1112
    /// 
1115 1113
    /// It is called when the bfs find an arc which target is not
1116 1114
    /// reached yet.
1117 1115
    void discover(const Arc& arc) {}
1118 1116
    /// \brief Called when the node reached first time.
1119 1117
    /// 
1120 1118
    /// It is Called when the node reached first time.
1121 1119
    void reach(const Node& node) {}
1122 1120
    /// \brief Called when the arc examined but target of the arc 
1123 1121
    /// already discovered.
1124 1122
    /// 
1125 1123
    /// It called when the arc examined but the target of the arc 
1126 1124
    /// already discovered.
1127 1125
    void examine(const Arc& arc) {}
1128 1126
    /// \brief Called for the source node of the bfs.
1129 1127
    /// 
1130 1128
    /// It is called for the source node of the bfs.
1131 1129
    void start(const Node& node) {}
1132 1130
    /// \brief Called when the node processed.
1133 1131
    /// 
1134 1132
    /// It is Called when the node processed.
1135 1133
    void process(const Node& node) {}
1136 1134
  };
1137 1135
#else
1138 1136
  template <typename _Digraph>
1139 1137
  struct BfsVisitor {
1140 1138
    typedef _Digraph Digraph;
1141 1139
    typedef typename Digraph::Arc Arc;
1142 1140
    typedef typename Digraph::Node Node;
1143 1141
    void discover(const Arc&) {}
1144 1142
    void reach(const Node&) {}
1145 1143
    void examine(const Arc&) {}
1146 1144
    void start(const Node&) {}
1147 1145
    void process(const Node&) {}
1148 1146

	
1149 1147
    template <typename _Visitor>
1150 1148
    struct Constraints {
1151 1149
      void constraints() {
1152 1150
	Arc arc;
1153 1151
	Node node;
1154 1152
	visitor.discover(arc);
1155 1153
	visitor.reach(node);
1156 1154
	visitor.examine(arc);
1157 1155
	visitor.start(node);
1158 1156
        visitor.process(node);
1159 1157
      }
1160 1158
      _Visitor& visitor;
1161 1159
    };
1162 1160
  };
1163 1161
#endif
1164 1162

	
1165 1163
  /// \brief Default traits class of BfsVisit class.
1166 1164
  ///
1167 1165
  /// Default traits class of BfsVisit class.
1168
  /// \param _Digraph Digraph type.
1166
  /// \tparam _Digraph Digraph type.
1169 1167
  template<class _Digraph>
1170 1168
  struct BfsVisitDefaultTraits {
1171 1169

	
1172 1170
    /// \brief The digraph type the algorithm runs on. 
1173 1171
    typedef _Digraph Digraph;
1174 1172

	
1175 1173
    /// \brief The type of the map that indicates which nodes are reached.
1176 1174
    /// 
1177 1175
    /// The type of the map that indicates which nodes are reached.
1178 1176
    /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
1179 1177
    /// \todo named parameter to set this type, function to read and write.
1180 1178
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
1181 1179

	
1182 1180
    /// \brief Instantiates a ReachedMap.
1183 1181
    ///
1184 1182
    /// This function instantiates a \ref ReachedMap. 
1185 1183
    /// \param digraph is the digraph, to which
1186 1184
    /// we would like to define the \ref ReachedMap.
1187 1185
    static ReachedMap *createReachedMap(const Digraph &digraph) {
1188 1186
      return new ReachedMap(digraph);
1189 1187
    }
1190 1188

	
1191 1189
  };
1192 1190

	
1193 1191
  /// \ingroup search
1194 1192
  ///  
1195 1193
  /// \brief %BFS Visit algorithm class.
1196 1194
  ///  
1197 1195
  /// This class provides an efficient implementation of the %BFS algorithm
1198 1196
  /// with visitor interface.
1199 1197
  ///
1200 1198
  /// The %BfsVisit class provides an alternative interface to the Bfs
1201 1199
  /// class. It works with callback mechanism, the BfsVisit object calls
1202 1200
  /// on every bfs event the \c Visitor class member functions. 
1203 1201
  ///
1204
  /// \param _Digraph The digraph type the algorithm runs on. The default value is
1202
  /// \tparam _Digraph The digraph type the algorithm runs on. The default value is
1205 1203
  /// \ref ListDigraph. The value of _Digraph is not used directly by Bfs, it
1206 1204
  /// is only passed to \ref BfsDefaultTraits.
1207
  /// \param _Visitor The Visitor object for the algorithm. The 
1205
  /// \tparam _Visitor The Visitor object for the algorithm. The 
1208 1206
  /// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty Visitor which
1209 1207
  /// does not observe the Bfs events. If you want to observe the bfs
1210 1208
  /// events you should implement your own Visitor class.
1211
  /// \param _Traits Traits class to set various data types used by the 
1209
  /// \tparam _Traits Traits class to set various data types used by the 
1212 1210
  /// algorithm. The default traits class is
1213 1211
  /// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>".
1214 1212
  /// See \ref BfsVisitDefaultTraits for the documentation of
1215 1213
  /// a Bfs visit traits class.
1216
  ///
1217
  /// \author Jacint Szabo, Alpar Juttner and Balazs Dezso
1218 1214
#ifdef DOXYGEN
1219 1215
  template <typename _Digraph, typename _Visitor, typename _Traits>
1220 1216
#else
1221 1217
  template <typename _Digraph = ListDigraph,
1222 1218
	    typename _Visitor = BfsVisitor<_Digraph>,
1223 1219
	    typename _Traits = BfsDefaultTraits<_Digraph> >
1224 1220
#endif
1225 1221
  class BfsVisit {
1226 1222
  public:
1227 1223
    
1228 1224
    /// \brief \ref Exception for uninitialized parameters.
1229 1225
    ///
1230 1226
    /// This error represents problems in the initialization
1231 1227
    /// of the parameters of the algorithms.
1232 1228
    class UninitializedParameter : public lemon::UninitializedParameter {
1233 1229
    public:
1234 1230
      virtual const char* what() const throw() 
1235 1231
      {
1236 1232
	return "lemon::BfsVisit::UninitializedParameter";
1237 1233
      }
1238 1234
    };
1239 1235

	
1240 1236
    typedef _Traits Traits;
1241 1237

	
1242 1238
    typedef typename Traits::Digraph Digraph;
1243 1239

	
1244 1240
    typedef _Visitor Visitor;
1245 1241

	
1246 1242
    ///The type of the map indicating which nodes are reached.
1247 1243
    typedef typename Traits::ReachedMap ReachedMap;
1248 1244

	
1249 1245
  private:
1250 1246

	
1251 1247
    typedef typename Digraph::Node Node;
1252 1248
    typedef typename Digraph::NodeIt NodeIt;
1253 1249
    typedef typename Digraph::Arc Arc;
1254 1250
    typedef typename Digraph::OutArcIt OutArcIt;
1255 1251

	
1256 1252
    /// Pointer to the underlying digraph.
1257 1253
    const Digraph *_digraph;
1258 1254
    /// Pointer to the visitor object.
1259 1255
    Visitor *_visitor;
1260 1256
    ///Pointer to the map of reached status of the nodes.
1261 1257
    ReachedMap *_reached;
1262 1258
    ///Indicates if \ref _reached is locally allocated (\c true) or not.
1263 1259
    bool local_reached;
1264 1260

	
1265 1261
    std::vector<typename Digraph::Node> _list;
1266 1262
    int _list_front, _list_back;
1267 1263

	
1268 1264
    /// \brief Creates the maps if necessary.
1269 1265
    ///
1270 1266
    /// Creates the maps if necessary.
1271 1267
    void create_maps() {
1272 1268
      if(!_reached) {
1273 1269
	local_reached = true;
1274 1270
	_reached = Traits::createReachedMap(*_digraph);
1275 1271
      }
1276 1272
    }
1277 1273

	
1278 1274
  protected:
1279 1275

	
1280 1276
    BfsVisit() {}
1281 1277
    
1282 1278
  public:
1283 1279

	
1284 1280
    typedef BfsVisit Create;
1285 1281

	
1286 1282
    /// \name Named template parameters
1287 1283

	
1288 1284
    ///@{
1289 1285
    template <class T>
1290 1286
    struct DefReachedMapTraits : public Traits {
1291 1287
      typedef T ReachedMap;
1292 1288
      static ReachedMap *createReachedMap(const Digraph &digraph) {
1293 1289
	throw UninitializedParameter();
1294 1290
      }
1295 1291
    };
1296 1292
    /// \brief \ref named-templ-param "Named parameter" for setting 
1297 1293
    /// ReachedMap type
1298 1294
    ///
1299 1295
    /// \ref named-templ-param "Named parameter" for setting ReachedMap type
1300 1296
    template <class T>
1301 1297
    struct DefReachedMap : public BfsVisit< Digraph, Visitor,
1302 1298
					    DefReachedMapTraits<T> > {
1303 1299
      typedef BfsVisit< Digraph, Visitor, DefReachedMapTraits<T> > Create;
1304 1300
    };
1305 1301
    ///@}
1306 1302

	
1307 1303
  public:      
1308 1304
    
1309 1305
    /// \brief Constructor.
1310 1306
    ///
1311 1307
    /// Constructor.
1312 1308
    ///
1313 1309
    /// \param digraph the digraph the algorithm will run on.
1314 1310
    /// \param visitor The visitor of the algorithm.
1315 1311
    ///
1316 1312
    BfsVisit(const Digraph& digraph, Visitor& visitor) 
1317 1313
      : _digraph(&digraph), _visitor(&visitor),
1318 1314
	_reached(0), local_reached(false) {}
1319 1315
    
1320 1316
    /// \brief Destructor.
1321 1317
    ///
1322 1318
    /// Destructor.
1323 1319
    ~BfsVisit() {
1324 1320
      if(local_reached) delete _reached;
1325 1321
    }
1326 1322

	
1327 1323
    /// \brief Sets the map indicating if a node is reached.
1328 1324
    ///
1329 1325
    /// Sets the map indicating if a node is reached.
1330 1326
    /// If you don't use this function before calling \ref run(),
1331 1327
    /// it will allocate one. The destuctor deallocates this
1332 1328
    /// automatically allocated map, of course.
1333 1329
    /// \return <tt> (*this) </tt>
1334 1330
    BfsVisit &reachedMap(ReachedMap &m) {
1335 1331
      if(local_reached) {
1336 1332
	delete _reached;
1337 1333
	local_reached = false;
1338 1334
      }
1339 1335
      _reached = &m;
1340 1336
      return *this;
1341 1337
    }
1342 1338

	
1343 1339
  public:
1344 1340
    /// \name Execution control
1345 1341
    /// The simplest way to execute the algorithm is to use
1346 1342
    /// one of the member functions called \c run(...).
1347 1343
    /// \n
1348 1344
    /// If you need more control on the execution,
1349 1345
    /// first you must call \ref init(), then you can adda source node
1350 1346
    /// with \ref addSource().
1351 1347
    /// Finally \ref start() will perform the actual path
1352 1348
    /// computation.
1353 1349

	
1354 1350
    /// @{
1355 1351
    /// \brief Initializes the internal data structures.
1356 1352
    ///
1357 1353
    /// Initializes the internal data structures.
1358 1354
    ///
1359 1355
    void init() {
1360 1356
      create_maps();
1361 1357
      _list.resize(countNodes(*_digraph));
1362 1358
      _list_front = _list_back = -1;
1363 1359
      for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
1364 1360
	_reached->set(u, false);
1365 1361
      }
1366 1362
    }
1367 1363
    
1368 1364
    /// \brief Adds a new source node.
1369 1365
    ///
1370 1366
    /// Adds a new source node to the set of nodes to be processed.
1371 1367
    void addSource(Node s) {
1372 1368
      if(!(*_reached)[s]) {
1373 1369
	  _reached->set(s,true);
1374 1370
	  _visitor->start(s);
1375 1371
	  _visitor->reach(s);
1376 1372
          _list[++_list_back] = s;
1377 1373
	}
1378 1374
    }
1379 1375
    
1380 1376
    /// \brief Processes the next node.
1381 1377
    ///
1382 1378
    /// Processes the next node.
1383 1379
    ///
1384 1380
    /// \return The processed node.
1385 1381
    ///
1386 1382
    /// \pre The queue must not be empty!
1387 1383
    Node processNextNode() { 
1388 1384
      Node n = _list[++_list_front];
1389 1385
      _visitor->process(n);
1390 1386
      Arc e;
1391 1387
      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
1392 1388
        Node m = _digraph->target(e);
1393 1389
        if (!(*_reached)[m]) {
1394 1390
          _visitor->discover(e);
1395 1391
          _visitor->reach(m);
1396 1392
          _reached->set(m, true);
1397 1393
          _list[++_list_back] = m;
1398 1394
        } else {
1399 1395
          _visitor->examine(e);
1400 1396
        }
1401 1397
      }
1402 1398
      return n;
1403 1399
    }
1404 1400

	
1405 1401
    /// \brief Processes the next node.
1406 1402
    ///
1407 1403
    /// Processes the next node. And checks that the given target node
1408 1404
    /// is reached. If the target node is reachable from the processed
1409 1405
    /// node then the reached parameter will be set true. The reached
1410 1406
    /// parameter should be initially false.
1411 1407
    ///
1412 1408
    /// \param target The target node.
1413 1409
    /// \retval reach Indicates that the target node is reached.
1414 1410
    /// \return The processed node.
1415 1411
    ///
1416 1412
    /// \warning The queue must not be empty!
1417 1413
    Node processNextNode(Node target, bool& reach) {
1418 1414
      Node n = _list[++_list_front];
1419 1415
      _visitor->process(n);
1420 1416
      Arc e;
1421 1417
      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
1422 1418
        Node m = _digraph->target(e);
1423 1419
        if (!(*_reached)[m]) {
1424 1420
          _visitor->discover(e);
1425 1421
          _visitor->reach(m);
1426 1422
          _reached->set(m, true);
1427 1423
          _list[++_list_back] = m;
1428 1424
          reach = reach || (target == m);
1429 1425
        } else {
1430 1426
          _visitor->examine(e);
1431 1427
        }
1432 1428
      }
1433 1429
      return n;
1434 1430
    }
1435 1431

	
1436 1432
    /// \brief Processes the next node.
1437 1433
    ///
1438 1434
    /// Processes the next node. And checks that at least one of
1439 1435
    /// reached node has true value in the \c nm node map. If one node
1440 1436
    /// with true value is reachable from the processed node then the
1441 1437
    /// rnode parameter will be set to the first of such nodes.
1442 1438
    ///
1443 1439
    /// \param nm The node map of possible targets.
1444 1440
    /// \retval rnode The reached target node.
1445 1441
    /// \return The processed node.
1446 1442
    ///
1447 1443
    /// \warning The queue must not be empty!
1448 1444
    template <typename NM>
1449 1445
    Node processNextNode(const NM& nm, Node& rnode) {
1450 1446
      Node n = _list[++_list_front];
1451 1447
      _visitor->process(n);
1452 1448
      Arc e;
1453 1449
      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
1454 1450
        Node m = _digraph->target(e);
1455 1451
        if (!(*_reached)[m]) {
1456 1452
          _visitor->discover(e);
1457 1453
          _visitor->reach(m);
1458 1454
          _reached->set(m, true);
1459 1455
          _list[++_list_back] = m;
1460 1456
          if (nm[m] && rnode == INVALID) rnode = m;
1461 1457
        } else {
1462 1458
          _visitor->examine(e);
1463 1459
        }
1464 1460
      }
1465 1461
      return n;
1466 1462
    }
1467 1463

	
1468 1464
    /// \brief Next node to be processed.
1469 1465
    ///
1470 1466
    /// Next node to be processed.
1471 1467
    ///
1472 1468
    /// \return The next node to be processed or INVALID if the stack is
1473 1469
    /// empty.
1474 1470
    Node nextNode() { 
1475 1471
      return _list_front != _list_back ? _list[_list_front + 1] : INVALID;
1476 1472
    }
1477 1473

	
1478 1474
    /// \brief Returns \c false if there are nodes
1479 1475
    /// to be processed in the queue
1480 1476
    ///
1481 1477
    /// Returns \c false if there are nodes
1482 1478
    /// to be processed in the queue
1483 1479
    bool emptyQueue() { return _list_front == _list_back; }
1484 1480

	
1485 1481
    /// \brief Returns the number of the nodes to be processed.
1486 1482
    ///
1487 1483
    /// Returns the number of the nodes to be processed in the queue.
1488 1484
    int queueSize() { return _list_back - _list_front; }
1489 1485
    
1490 1486
    /// \brief Executes the algorithm.
1491 1487
    ///
1492 1488
    /// Executes the algorithm.
1493 1489
    ///
1494 1490
    /// \pre init() must be called and at least one node should be added
1495 1491
    /// with addSource() before using this function.
1496 1492
    void start() {
1497 1493
      while ( !emptyQueue() ) processNextNode();
1498 1494
    }
1499 1495
    
1500 1496
    /// \brief Executes the algorithm until \c dest is reached.
1501 1497
    ///
1502 1498
    /// Executes the algorithm until \c dest is reached.
1503 1499
    ///
1504 1500
    /// \pre init() must be called and at least one node should be added
1505 1501
    /// with addSource() before using this function.
1506 1502
    void start(Node dest) {
1507 1503
      bool reach = false;
1508 1504
      while ( !emptyQueue() && !reach ) processNextNode(dest, reach);
1509 1505
    }
1510 1506
    
1511 1507
    /// \brief Executes the algorithm until a condition is met.
1512 1508
    ///
1513 1509
    /// Executes the algorithm until a condition is met.
1514 1510
    ///
1515 1511
    /// \pre init() must be called and at least one node should be added
1516 1512
    /// with addSource() before using this function.
1517 1513
    ///
1518 1514
    ///\param nm must be a bool (or convertible) node map. The
1519 1515
    ///algorithm will stop when it reaches a node \c v with
1520 1516
    /// <tt>nm[v]</tt> true.
1521 1517
    ///
1522 1518
    ///\return The reached node \c v with <tt>nm[v]</tt> true or
1523 1519
    ///\c INVALID if no such node was found.
1524 1520
    template <typename NM>
1525 1521
    Node start(const NM &nm) {
1526 1522
      Node rnode = INVALID;
1527 1523
      while ( !emptyQueue() && rnode == INVALID ) {
1528 1524
	processNextNode(nm, rnode);
1529 1525
      }
1530 1526
      return rnode;
1531 1527
    }
1532 1528

	
1533 1529
    /// \brief Runs %BFSVisit algorithm from node \c s.
1534 1530
    ///
1535 1531
    /// This method runs the %BFS algorithm from a root node \c s.
1536 1532
    /// \note b.run(s) is just a shortcut of the following code.
1537 1533
    ///\code
1538 1534
    ///   b.init();
1539 1535
    ///   b.addSource(s);
1540 1536
    ///   b.start();
1541 1537
    ///\endcode
1542 1538
    void run(Node s) {
1543 1539
      init();
1544 1540
      addSource(s);
1545 1541
      start();
1546 1542
    }
1547 1543

	
1548 1544
    /// \brief Runs %BFSVisit algorithm to visit all nodes in the digraph.
1549 1545
    ///    
1550 1546
    /// This method runs the %BFS algorithm in order to
1551 1547
    /// compute the %BFS path to each node. The algorithm computes
1552 1548
    /// - The %BFS tree.
1553 1549
    /// - The distance of each node from the root in the %BFS tree.
1554 1550
    ///
1555 1551
    ///\note b.run() is just a shortcut of the following code.
1556 1552
    ///\code
1557 1553
    ///  b.init();
1558 1554
    ///  for (NodeIt it(digraph); it != INVALID; ++it) {
1559 1555
    ///    if (!b.reached(it)) {
1560 1556
    ///      b.addSource(it);
1561 1557
    ///      b.start();
1562 1558
    ///    }
1563 1559
    ///  }
1564 1560
    ///\endcode
1565 1561
    void run() {
1566 1562
      init();
1567 1563
      for (NodeIt it(*_digraph); it != INVALID; ++it) {
1568 1564
        if (!reached(it)) {
1569 1565
          addSource(it);
1570 1566
          start();
1571 1567
        }
1572 1568
      }
1573 1569
    }
1574 1570
    ///@}
1575 1571

	
1576 1572
    /// \name Query Functions
1577 1573
    /// The result of the %BFS algorithm can be obtained using these
1578 1574
    /// functions.\n
1579 1575
    /// Before the use of these functions,
1580 1576
    /// either run() or start() must be called.
1581 1577
    ///@{
1582 1578

	
1583 1579
    /// \brief Checks if a node is reachable from the root.
1584 1580
    ///
1585 1581
    /// Returns \c true if \c v is reachable from the root(s).
1586 1582
    /// \warning The source nodes are inditated as unreachable.
1587 1583
    /// \pre Either \ref run() or \ref start()
1588 1584
    /// must be called before using this function.
1589 1585
    ///
1590 1586
    bool reached(Node v) { return (*_reached)[v]; }
1591 1587
    ///@}
1592 1588
  };
1593 1589

	
1594 1590
} //END OF NAMESPACE LEMON
1595 1591

	
1596 1592
#endif
1597 1593

	
Ignore white space 6 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BIN_HEAP_H
20 20
#define LEMON_BIN_HEAP_H
21 21

	
22 22
///\ingroup auxdat
23 23
///\file
24 24
///\brief Binary Heap implementation.
25 25

	
26 26
#include <vector>
27 27
#include <utility>
28 28
#include <functional>
29 29

	
30 30
namespace lemon {
31 31

	
32 32
  ///\ingroup auxdat
33 33
  ///
34 34
  ///\brief A Binary Heap implementation.
35 35
  ///
36 36
  ///This class implements the \e binary \e heap data structure. A \e heap
37 37
  ///is a data structure for storing items with specified values called \e
38 38
  ///priorities in such a way that finding the item with minimum priority is
39 39
  ///efficient. \c Compare specifies the ordering of the priorities. In a heap
40 40
  ///one can change the priority of an item, add or erase an item, etc.
41 41
  ///
42
  ///\param _Prio Type of the priority of the items.
43
  ///\param _ItemIntMap A read and writable Item int map, used internally
42
  ///\tparam _Prio Type of the priority of the items.
43
  ///\tparam _ItemIntMap A read and writable Item int map, used internally
44 44
  ///to handle the cross references.
45
  ///\param _Compare A class for the ordering of the priorities. The
45
  ///\tparam _Compare A class for the ordering of the priorities. The
46 46
  ///default is \c std::less<_Prio>.
47 47
  ///
48 48
  ///\sa FibHeap
49 49
  ///\sa Dijkstra
50 50
  template <typename _Prio, typename _ItemIntMap,
51 51
	    typename _Compare = std::less<_Prio> >
52 52
  class BinHeap {
53 53

	
54 54
  public:
55 55
    ///\e
56 56
    typedef _ItemIntMap ItemIntMap;
57 57
    ///\e
58 58
    typedef _Prio Prio;
59 59
    ///\e
60 60
    typedef typename ItemIntMap::Key Item;
61 61
    ///\e
62 62
    typedef std::pair<Item,Prio> Pair;
63 63
    ///\e
64 64
    typedef _Compare Compare;
65 65

	
66 66
    /// \brief Type to represent the items states.
67 67
    ///
68 68
    /// Each Item element have a state associated to it. It may be "in heap",
69 69
    /// "pre heap" or "post heap". The latter two are indifferent from the
70 70
    /// heap's point of view, but may be useful to the user.
71 71
    ///
72 72
    /// The ItemIntMap \e should be initialized in such way that it maps
73 73
    /// PRE_HEAP (-1) to any element to be put in the heap...
74 74
    enum State {
75 75
      IN_HEAP = 0,
76 76
      PRE_HEAP = -1,
77 77
      POST_HEAP = -2
78 78
    };
79 79

	
80 80
  private:
81 81
    std::vector<Pair> data;
82 82
    Compare comp;
83 83
    ItemIntMap &iim;
84 84

	
85 85
  public:
86 86
    /// \brief The constructor.
87 87
    ///
88 88
    /// The constructor.
89 89
    /// \param _iim should be given to the constructor, since it is used
90 90
    /// internally to handle the cross references. The value of the map
91 91
    /// should be PRE_HEAP (-1) for each element.
92 92
    explicit BinHeap(ItemIntMap &_iim) : iim(_iim) {}
93 93
    
94 94
    /// \brief The constructor.
95 95
    ///
96 96
    /// The constructor.
97 97
    /// \param _iim should be given to the constructor, since it is used
98 98
    /// internally to handle the cross references. The value of the map
99 99
    /// should be PRE_HEAP (-1) for each element.
100 100
    ///
101 101
    /// \param _comp The comparator function object.
102 102
    BinHeap(ItemIntMap &_iim, const Compare &_comp) 
103 103
      : iim(_iim), comp(_comp) {}
104 104

	
105 105

	
106 106
    /// The number of items stored in the heap.
107 107
    ///
108 108
    /// \brief Returns the number of items stored in the heap.
109 109
    int size() const { return data.size(); }
110 110
    
111 111
    /// \brief Checks if the heap stores no items.
112 112
    ///
113 113
    /// Returns \c true if and only if the heap stores no items.
114 114
    bool empty() const { return data.empty(); }
115 115

	
116 116
    /// \brief Make empty this heap.
117 117
    /// 
118 118
    /// Make empty this heap. It does not change the cross reference map.
119 119
    /// If you want to reuse what is not surely empty you should first clear
120 120
    /// the heap and after that you should set the cross reference map for
121 121
    /// each item to \c PRE_HEAP.
122 122
    void clear() { 
123 123
      data.clear(); 
124 124
    }
125 125

	
126 126
  private:
127 127
    static int parent(int i) { return (i-1)/2; }
128 128

	
129 129
    static int second_child(int i) { return 2*i+2; }
130 130
    bool less(const Pair &p1, const Pair &p2) const {
131 131
      return comp(p1.second, p2.second);
132 132
    }
133 133

	
134 134
    int bubble_up(int hole, Pair p) {
135 135
      int par = parent(hole);
136 136
      while( hole>0 && less(p,data[par]) ) {
137 137
	move(data[par],hole);
138 138
	hole = par;
139 139
	par = parent(hole);
140 140
      }
141 141
      move(p, hole);
142 142
      return hole;
143 143
    }
144 144

	
145 145
    int bubble_down(int hole, Pair p, int length) {
146 146
      int child = second_child(hole);
147 147
      while(child < length) {
148 148
	if( less(data[child-1], data[child]) ) {
149 149
	  --child;
150 150
	}
151 151
	if( !less(data[child], p) )
152 152
	  goto ok;
153 153
	move(data[child], hole);
154 154
	hole = child;
155 155
	child = second_child(hole);
156 156
      }
157 157
      child--;
158 158
      if( child<length && less(data[child], p) ) {
159 159
	move(data[child], hole);
160 160
	hole=child;
161 161
      }
162 162
    ok:
163 163
      move(p, hole);
164 164
      return hole;
165 165
    }
166 166

	
167 167
    void move(const Pair &p, int i) {
168 168
      data[i] = p;
169 169
      iim.set(p.first, i);
170 170
    }
171 171

	
172 172
  public:
173 173
    /// \brief Insert a pair of item and priority into the heap.
174 174
    ///
175 175
    /// Adds \c p.first to the heap with priority \c p.second.
176 176
    /// \param p The pair to insert.
177 177
    void push(const Pair &p) {
178 178
      int n = data.size();
179 179
      data.resize(n+1);
180 180
      bubble_up(n, p);
181 181
    }
182 182

	
183 183
    /// \brief Insert an item into the heap with the given heap.
184 184
    ///    
185 185
    /// Adds \c i to the heap with priority \c p. 
186 186
    /// \param i The item to insert.
187 187
    /// \param p The priority of the item.
188 188
    void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
189 189

	
190 190
    /// \brief Returns the item with minimum priority relative to \c Compare.
191 191
    ///
192 192
    /// This method returns the item with minimum priority relative to \c
193 193
    /// Compare.  
194 194
    /// \pre The heap must be nonempty.  
195 195
    Item top() const {
196 196
      return data[0].first;
197 197
    }
198 198

	
199 199
    /// \brief Returns the minimum priority relative to \c Compare.
200 200
    ///
201 201
    /// It returns the minimum priority relative to \c Compare.
202 202
    /// \pre The heap must be nonempty.
203 203
    Prio prio() const {
204 204
      return data[0].second;
205 205
    }
206 206

	
207 207
    /// \brief Deletes the item with minimum priority relative to \c Compare.
208 208
    ///
209 209
    /// This method deletes the item with minimum priority relative to \c
210 210
    /// Compare from the heap.  
211 211
    /// \pre The heap must be non-empty.  
212 212
    void pop() {
213 213
      int n = data.size()-1;
214 214
      iim.set(data[0].first, POST_HEAP);
215 215
      if (n > 0) {
216 216
	bubble_down(0, data[n], n);
217 217
      }
218 218
      data.pop_back();
219 219
    }
220 220

	
221 221
    /// \brief Deletes \c i from the heap.
222 222
    ///
223 223
    /// This method deletes item \c i from the heap.
224 224
    /// \param i The item to erase.
225 225
    /// \pre The item should be in the heap.
226 226
    void erase(const Item &i) {
227 227
      int h = iim[i];
228 228
      int n = data.size()-1;
229 229
      iim.set(data[h].first, POST_HEAP);
230 230
      if( h < n ) {
231 231
	if ( bubble_up(h, data[n]) == h) {
232 232
	  bubble_down(h, data[n], n);
233 233
	}
234 234
      }
235 235
      data.pop_back();
236 236
    }
237 237

	
238 238
    
239 239
    /// \brief Returns the priority of \c i.
240 240
    ///
241 241
    /// This function returns the priority of item \c i.  
242 242
    /// \pre \c i must be in the heap.
243 243
    /// \param i The item.
244 244
    Prio operator[](const Item &i) const {
245 245
      int idx = iim[i];
246 246
      return data[idx].second;
247 247
    }
248 248

	
249 249
    /// \brief \c i gets to the heap with priority \c p independently 
250 250
    /// if \c i was already there.
251 251
    ///
252 252
    /// This method calls \ref push(\c i, \c p) if \c i is not stored
253 253
    /// in the heap and sets the priority of \c i to \c p otherwise.
254 254
    /// \param i The item.
255 255
    /// \param p The priority.
256 256
    void set(const Item &i, const Prio &p) {
257 257
      int idx = iim[i];
258 258
      if( idx < 0 ) {
259 259
	push(i,p);
260 260
      }
261 261
      else if( comp(p, data[idx].second) ) {
262 262
	bubble_up(idx, Pair(i,p));
263 263
      }
264 264
      else {
265 265
	bubble_down(idx, Pair(i,p), data.size());
266 266
      }
267 267
    }
268 268

	
269 269
    /// \brief Decreases the priority of \c i to \c p.
270 270
    ///
271 271
    /// This method decreases the priority of item \c i to \c p.
272 272
    /// \pre \c i must be stored in the heap with priority at least \c
273 273
    /// p relative to \c Compare.
274 274
    /// \param i The item.
275 275
    /// \param p The priority.
276 276
    void decrease(const Item &i, const Prio &p) {
277 277
      int idx = iim[i];
278 278
      bubble_up(idx, Pair(i,p));
279 279
    }
280 280
    
281 281
    /// \brief Increases the priority of \c i to \c p.
282 282
    ///
283 283
    /// This method sets the priority of item \c i to \c p. 
284 284
    /// \pre \c i must be stored in the heap with priority at most \c
285 285
    /// p relative to \c Compare.
286 286
    /// \param i The item.
287 287
    /// \param p The priority.
288 288
    void increase(const Item &i, const Prio &p) {
289 289
      int idx = iim[i];
290 290
      bubble_down(idx, Pair(i,p), data.size());
291 291
    }
292 292

	
293 293
    /// \brief Returns if \c item is in, has already been in, or has 
294 294
    /// never been in the heap.
295 295
    ///
296 296
    /// This method returns PRE_HEAP if \c item has never been in the
297 297
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
298 298
    /// otherwise. In the latter case it is possible that \c item will
299 299
    /// get back to the heap again.
300 300
    /// \param i The item.
301 301
    State state(const Item &i) const {
302 302
      int s = iim[i];
303 303
      if( s>=0 )
304 304
	s=0;
305 305
      return State(s);
306 306
    }
307 307

	
308 308
    /// \brief Sets the state of the \c item in the heap.
309 309
    ///
310 310
    /// Sets the state of the \c item in the heap. It can be used to
311 311
    /// manually clear the heap when it is important to achive the
312 312
    /// better time complexity.
313 313
    /// \param i The item.
314 314
    /// \param st The state. It should not be \c IN_HEAP. 
315 315
    void state(const Item& i, State st) {
316 316
      switch (st) {
317 317
      case POST_HEAP:
318 318
      case PRE_HEAP:
319 319
        if (state(i) == IN_HEAP) {
320 320
          erase(i);
321 321
        }
322 322
        iim[i] = st;
323 323
        break;
324 324
      case IN_HEAP:
325 325
        break;
326 326
      }
327 327
    }
328 328

	
329 329
    /// \brief Replaces an item in the heap.
330 330
    ///
331 331
    /// The \c i item is replaced with \c j item. The \c i item should
332 332
    /// be in the heap, while the \c j should be out of the heap. The
333 333
    /// \c i item will out of the heap and \c j will be in the heap
334 334
    /// with the same prioriority as prevoiusly the \c i item.
335 335
    void replace(const Item& i, const Item& j) {
336 336
      int idx = iim[i];
337 337
      iim.set(i, iim[j]);
338 338
      iim.set(j, idx);
339 339
      data[idx].first = j;
340 340
    }
341 341

	
342 342
  }; // class BinHeap
343 343
  
344 344
} // namespace lemon
345 345

	
346 346
#endif // LEMON_BIN_HEAP_H
Ignore white space 6 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_ALTERATION_NOTIFIER_H
20 20
#define LEMON_BITS_ALTERATION_NOTIFIER_H
21 21

	
22 22
#include <vector>
23 23
#include <list>
24 24

	
25 25
#include <lemon/bits/utility.h>
26 26

	
27 27
///\ingroup graphbits
28 28
///\file
29 29
///\brief Observer notifier for graph alteration observers.
30 30

	
31 31
namespace lemon {
32 32

	
33 33
  /// \ingroup graphbits
34 34
  ///
35 35
  /// \brief Notifier class to notify observes about alterations in 
36 36
  /// a container.
37 37
  ///
38 38
  /// The simple graph's can be refered as two containers, one node container
39 39
  /// and one edge container. But they are not standard containers they
40 40
  /// does not store values directly they are just key continars for more
41 41
  /// value containers which are the node and edge maps.
42 42
  ///
43 43
  /// The graph's node and edge sets can be changed as we add or erase
44 44
  /// nodes and edges in the graph. Lemon would like to handle easily
45 45
  /// that the node and edge maps should contain values for all nodes or
46 46
  /// edges. If we want to check on every indicing if the map contains
47 47
  /// the current indicing key that cause a drawback in the performance
48 48
  /// in the library. We use another solution we notify all maps about
49 49
  /// an alteration in the graph, which cause only drawback on the
50 50
  /// alteration of the graph.
51 51
  ///
52 52
  /// This class provides an interface to the container. The \e first() and \e 
53 53
  /// next() member functions make possible to iterate on the keys of the
54 54
  /// container. The \e id() function returns an integer id for each key.
55 55
  /// The \e maxId() function gives back an upper bound of the ids.
56 56
  ///
57 57
  /// For the proper functonality of this class, we should notify it
58 58
  /// about each alteration in the container. The alterations have four type
59 59
  /// as \e add(), \e erase(), \e build() and \e clear(). The \e add() and
60 60
  /// \e erase() signals that only one or few items added or erased to or
61 61
  /// from the graph. If all items are erased from the graph or from an empty
62 62
  /// graph a new graph is builded then it can be signaled with the
63 63
  /// clear() and build() members. Important rule that if we erase items 
64 64
  /// from graph we should first signal the alteration and after that erase
65 65
  /// them from the container, on the other way on item addition we should
66 66
  /// first extend the container and just after that signal the alteration.
67 67
  ///
68 68
  /// The alteration can be observed with a class inherited from the
69 69
  /// \e ObserverBase nested class. The signals can be handled with
70 70
  /// overriding the virtual functions defined in the base class.  The
71 71
  /// observer base can be attached to the notifier with the 
72 72
  /// \e attach() member and can be detached with detach() function. The
73 73
  /// alteration handlers should not call any function which signals
74 74
  /// an other alteration in the same notifier and should not
75 75
  /// detach any observer from the notifier.
76 76
  ///
77 77
  /// Alteration observers try to be exception safe. If an \e add() or
78 78
  /// a \e clear() function throws an exception then the remaining
79 79
  /// observeres will not be notified and the fulfilled additions will
80 80
  /// be rolled back by calling the \e erase() or \e clear()
81 81
  /// functions. Thence the \e erase() and \e clear() should not throw
82 82
  /// exception. Actullay, it can be throw only 
83 83
  /// \ref AlterationObserver::ImmediateDetach ImmediateDetach
84 84
  /// exception which detach the observer from the notifier.
85 85
  ///
86 86
  /// There are some place when the alteration observing is not completly
87 87
  /// reliable. If we want to carry out the node degree in the graph
88 88
  /// as in the \ref InDegMap and we use the reverseEdge that cause 
89 89
  /// unreliable functionality. Because the alteration observing signals
90 90
  /// only erasing and adding but not the reversing it will stores bad
91 91
  /// degrees. The sub graph adaptors cannot signal the alterations because
92 92
  /// just a setting in the filter map can modify the graph and this cannot
93 93
  /// be watched in any way.
94 94
  ///
95 95
  /// \param _Container The container which is observed.
96 96
  /// \param _Item The item type which is obserbved.
97
  ///
98
  /// \author Balazs Dezso
99 97

	
100 98
  template <typename _Container, typename _Item>
101 99
  class AlterationNotifier {
102 100
  public:
103 101

	
104 102
    typedef True Notifier;
105 103

	
106 104
    typedef _Container Container;
107 105
    typedef _Item Item;
108 106

	
109 107
    /// \brief Exception which can be called from \e clear() and 
110 108
    /// \e erase().
111 109
    ///
112 110
    /// From the \e clear() and \e erase() function only this
113 111
    /// exception is allowed to throw. The exception immediatly
114 112
    /// detaches the current observer from the notifier. Because the
115 113
    /// \e clear() and \e erase() should not throw other exceptions
116 114
    /// it can be used to invalidate the observer.
117 115
    struct ImmediateDetach {};
118 116

	
119 117
    /// \brief ObserverBase is the base class for the observers.
120 118
    ///
121 119
    /// ObserverBase is the abstract base class for the observers.
122 120
    /// It will be notified about an item was inserted into or
123 121
    /// erased from the graph.
124 122
    ///
125 123
    /// The observer interface contains some pure virtual functions
126 124
    /// to override. The add() and erase() functions are
127 125
    /// to notify the oberver when one item is added or
128 126
    /// erased.
129 127
    ///
130 128
    /// The build() and clear() members are to notify the observer
131 129
    /// about the container is built from an empty container or
132 130
    /// is cleared to an empty container. 
133
    /// 
134
    /// \author Balazs Dezso
135 131

	
136 132
    class ObserverBase {
137 133
    protected:
138 134
      typedef AlterationNotifier Notifier;
139 135

	
140 136
      friend class AlterationNotifier;
141 137

	
142 138
      /// \brief Default constructor.
143 139
      ///
144 140
      /// Default constructor for ObserverBase.
145 141
      /// 
146 142
      ObserverBase() : _notifier(0) {}
147 143

	
148 144
      /// \brief Constructor which attach the observer into notifier.
149 145
      ///
150 146
      /// Constructor which attach the observer into notifier.
151 147
      ObserverBase(AlterationNotifier& nf) {
152 148
        attach(nf);
153 149
      }
154 150

	
155 151
      /// \brief Constructor which attach the obserever to the same notifier.
156 152
      ///
157 153
      /// Constructor which attach the obserever to the same notifier as
158 154
      /// the other observer is attached to. 
159 155
      ObserverBase(const ObserverBase& copy) {
160 156
	if (copy.attached()) {
161 157
          attach(*copy.notifier());
162 158
	}
163 159
      }
164 160
	
165 161
      /// \brief Destructor
166 162
      virtual ~ObserverBase() {
167 163
        if (attached()) {
168 164
          detach();
169 165
        }
170 166
      }
171 167

	
172 168
      /// \brief Attaches the observer into an AlterationNotifier.
173 169
      ///
174 170
      /// This member attaches the observer into an AlterationNotifier.
175 171
      ///
176 172
      void attach(AlterationNotifier& nf) {
177 173
	nf.attach(*this);
178 174
      }
179 175
      
180 176
      /// \brief Detaches the observer into an AlterationNotifier.
181 177
      ///
182 178
      /// This member detaches the observer from an AlterationNotifier.
183 179
      ///
184 180
      void detach() {
185 181
        _notifier->detach(*this);
186 182
      }
187 183
      
188 184
      /// \brief Gives back a pointer to the notifier which the map 
189 185
      /// attached into.
190 186
      ///
191 187
      /// This function gives back a pointer to the notifier which the map
192 188
      /// attached into.
193 189
      ///
194 190
      Notifier* notifier() const { return const_cast<Notifier*>(_notifier); }
195 191
      
196 192
      /// Gives back true when the observer is attached into a notifier.
197 193
      bool attached() const { return _notifier != 0; }
198 194

	
199 195
    private:
200 196

	
201 197
      ObserverBase& operator=(const ObserverBase& copy);
202 198

	
203 199
    protected:
204 200
      
205 201
      Notifier* _notifier;
206 202
      typename std::list<ObserverBase*>::iterator _index;
207 203

	
208 204
      /// \brief The member function to notificate the observer about an
209 205
      /// item is added to the container.
210 206
      ///
211 207
      /// The add() member function notificates the observer about an item
212 208
      /// is added to the container. It have to be overrided in the
213 209
      /// subclasses.
214 210
      virtual void add(const Item&) = 0;
215 211

	
216 212
      /// \brief The member function to notificate the observer about 
217 213
      /// more item is added to the container.
218 214
      ///
219 215
      /// The add() member function notificates the observer about more item
220 216
      /// is added to the container. It have to be overrided in the
221 217
      /// subclasses.
222 218
      virtual void add(const std::vector<Item>& items) = 0;
223 219

	
224 220
      /// \brief The member function to notificate the observer about an
225 221
      /// item is erased from the container.
226 222
      ///
227 223
      /// The erase() member function notificates the observer about an
228 224
      /// item is erased from the container. It have to be overrided in
229 225
      /// the subclasses.	
230 226
      virtual void erase(const Item&) = 0;
231 227

	
232 228
      /// \brief The member function to notificate the observer about 
233 229
      /// more item is erased from the container.
234 230
      ///
235 231
      /// The erase() member function notificates the observer about more item
236 232
      /// is erased from the container. It have to be overrided in the
237 233
      /// subclasses.
238 234
      virtual void erase(const std::vector<Item>& items) = 0;
239 235

	
240 236
      /// \brief The member function to notificate the observer about the
241 237
      /// container is built.
242 238
      ///
243 239
      /// The build() member function notificates the observer about the
244 240
      /// container is built from an empty container. It have to be
245 241
      /// overrided in the subclasses.
246 242

	
247 243
      virtual void build() = 0;
248 244

	
249 245
      /// \brief The member function to notificate the observer about all
250 246
      /// items are erased from the container.
251 247
      ///
252 248
      /// The clear() member function notificates the observer about all
253 249
      /// items are erased from the container. It have to be overrided in
254 250
      /// the subclasses.      
255 251
      virtual void clear() = 0;
256 252

	
257 253
    };
258 254
	
259 255
  protected:
260 256

	
261 257
    const Container* container;
262 258

	
263 259
    typedef std::list<ObserverBase*> Observers; 
264 260
    Observers _observers;
265 261

	
266 262
		
267 263
  public:
268 264

	
269 265
    /// \brief Default constructor.
270 266
    ///
271 267
    /// The default constructor of the AlterationNotifier. 
272 268
    /// It creates an empty notifier.
273 269
    AlterationNotifier() 
274 270
      : container(0) {}
275 271

	
276 272
    /// \brief Constructor.
277 273
    ///
278 274
    /// Constructor with the observed container parameter.
279 275
    AlterationNotifier(const Container& _container) 
280 276
      : container(&_container) {}
281 277

	
282 278
    /// \brief Copy Constructor of the AlterationNotifier. 
283 279
    ///
284 280
    /// Copy constructor of the AlterationNotifier. 
285 281
    /// It creates only an empty notifier because the copiable
286 282
    /// notifier's observers have to be registered still into that notifier.
287 283
    AlterationNotifier(const AlterationNotifier& _notifier) 
288 284
      : container(_notifier.container) {}
289 285

	
290 286
    /// \brief Destructor.
291 287
    ///		
292 288
    /// Destructor of the AlterationNotifier.
293 289
    ///
294 290
    ~AlterationNotifier() {
295 291
      typename Observers::iterator it;
296 292
      for (it = _observers.begin(); it != _observers.end(); ++it) {
297 293
	(*it)->_notifier = 0;
298 294
      }
299 295
    }
300 296

	
301 297
    /// \brief Sets the container.
302 298
    ///
303 299
    /// Sets the container.
304 300
    void setContainer(const Container& _container) {
305 301
      container = &_container;
306 302
    }
307 303

	
308 304
  protected:
309 305

	
310 306
    AlterationNotifier& operator=(const AlterationNotifier&);
311 307

	
312 308
  public:
313 309

	
314 310

	
315 311

	
316 312
    /// \brief First item in the container.
317 313
    ///
318 314
    /// Returns the first item in the container. It is
319 315
    /// for start the iteration on the container.
320 316
    void first(Item& item) const {
321 317
      container->first(item);
322 318
    }
323 319

	
324 320
    /// \brief Next item in the container.
325 321
    ///
326 322
    /// Returns the next item in the container. It is
327 323
    /// for iterate on the container.
328 324
    void next(Item& item) const {
329 325
      container->next(item);
330 326
    }
331 327

	
332 328
    /// \brief Returns the id of the item.
333 329
    ///
334 330
    /// Returns the id of the item provided by the container.
335 331
    int id(const Item& item) const {
336 332
      return container->id(item);
337 333
    }
338 334

	
339 335
    /// \brief Returns the maximum id of the container.
340 336
    ///
341 337
    /// Returns the maximum id of the container.
342 338
    int maxId() const {
343 339
      return container->maxId(Item());
344 340
    }
345 341
		
346 342
  protected:
347 343

	
348 344
    void attach(ObserverBase& observer) {
349 345
      observer._index = _observers.insert(_observers.begin(), &observer);
350 346
      observer._notifier = this;
351 347
    } 
352 348

	
353 349
    void detach(ObserverBase& observer) {
354 350
      _observers.erase(observer._index);
355 351
      observer._index = _observers.end();
356 352
      observer._notifier = 0;
357 353
    }
358 354

	
359 355
  public:
360 356
	
361 357
    /// \brief Notifies all the registed observers about an item added to 
362 358
    /// the container.
363 359
    ///
364 360
    /// It notifies all the registed observers about an item added to 
365 361
    /// the container.
366 362
    /// 
367 363
    void add(const Item& item) {
368 364
      typename Observers::reverse_iterator it;
369 365
      try {
370 366
        for (it = _observers.rbegin(); it != _observers.rend(); ++it) {
371 367
          (*it)->add(item);
372 368
        }
373 369
      } catch (...) {
374 370
        typename Observers::iterator jt;
375 371
        for (jt = it.base(); jt != _observers.end(); ++jt) {
376 372
          (*jt)->erase(item);
377 373
        }
378 374
        throw;
379 375
      }
380 376
    }	
381 377

	
382 378
    /// \brief Notifies all the registed observers about more item added to 
383 379
    /// the container.
384 380
    ///
385 381
    /// It notifies all the registed observers about more item added to 
386 382
    /// the container.
387 383
    /// 
388 384
    void add(const std::vector<Item>& items) {
389 385
      typename Observers::reverse_iterator it;
390 386
      try {
391 387
        for (it = _observers.rbegin(); it != _observers.rend(); ++it) {
392 388
          (*it)->add(items);
393 389
        }
394 390
      } catch (...) {
395 391
        typename Observers::iterator jt;
396 392
        for (jt = it.base(); jt != _observers.end(); ++jt) {
397 393
          (*jt)->erase(items);
398 394
        }
399 395
        throw;
400 396
      }
401 397
    }	
402 398

	
403 399
    /// \brief Notifies all the registed observers about an item erased from 
404 400
    /// the container.
405 401
    ///	
406 402
    /// It notifies all the registed observers about an item erased from 
407 403
    /// the container.
408 404
    /// 
409 405
    void erase(const Item& item) throw() {
410 406
      typename Observers::iterator it = _observers.begin();
411 407
      while (it != _observers.end()) {
412 408
        try {
413 409
          (*it)->erase(item);
414 410
          ++it;
415 411
        } catch (const ImmediateDetach&) {
416 412
          it = _observers.erase(it);
417 413
          (*it)->_index = _observers.end();
418 414
          (*it)->_notifier = 0;
419 415
        }
420 416
      }
421 417
    }
422 418

	
423 419
    /// \brief Notifies all the registed observers about more item erased  
424 420
    /// from the container.
425 421
    ///	
426 422
    /// It notifies all the registed observers about more item erased from 
427 423
    /// the container.
428 424
    /// 
429 425
    void erase(const std::vector<Item>& items) {
430 426
      typename Observers::iterator it = _observers.begin();
431 427
      while (it != _observers.end()) {
432 428
        try {
433 429
          (*it)->erase(items);
434 430
          ++it;
435 431
        } catch (const ImmediateDetach&) {
436 432
          it = _observers.erase(it);
437 433
          (*it)->_index = _observers.end();
438 434
          (*it)->_notifier = 0;
439 435
        }
440 436
      }
441 437
    }
442 438

	
443 439
    /// \brief Notifies all the registed observers about the container is 
444 440
    /// built.
445 441
    ///		
446 442
    /// Notifies all the registed observers about the container is built
447 443
    /// from an empty container.
448 444
    void build() {
449 445
      typename Observers::reverse_iterator it;
450 446
      try {
451 447
        for (it = _observers.rbegin(); it != _observers.rend(); ++it) {
452 448
          (*it)->build();
453 449
        }
454 450
      } catch (...) {
455 451
        typename Observers::iterator jt;
456 452
        for (jt = it.base(); jt != _observers.end(); ++jt) {
457 453
          (*jt)->clear();
458 454
        }
459 455
        throw;
460 456
      }
461 457
    }
462 458

	
463 459
    /// \brief Notifies all the registed observers about all items are 
464 460
    /// erased.
465 461
    ///
466 462
    /// Notifies all the registed observers about all items are erased
467 463
    /// from the container.
468 464
    void clear() {
469 465
      typename Observers::iterator it = _observers.begin();
470 466
      while (it != _observers.end()) {
471 467
        try {
472 468
          (*it)->clear();
473 469
          ++it;
474 470
        } catch (const ImmediateDetach&) {
475 471
          it = _observers.erase(it);
476 472
          (*it)->_index = _observers.end();
477 473
          (*it)->_notifier = 0;
478 474
        }
479 475
      }
480 476
    }
481 477
  };
482 478

	
483 479
}
484 480

	
485 481
#endif
Ignore white space 6 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BEZIER_H
20 20
#define LEMON_BEZIER_H
21 21

	
22 22
///\ingroup misc
23 23
///\file
24 24
///\brief Classes to compute with Bezier curves.
25 25
///
26 26
///Up to now this file is used internally by \ref graph_to_eps.h
27
///
28
///\author Alpar Juttner
29 27

	
30 28
#include<lemon/dim2.h>
31 29

	
32 30
namespace lemon {
33 31
  namespace dim2 {
34 32

	
35 33
class BezierBase {
36 34
public:
37 35
  typedef Point<double> Point;
38 36
protected:
39 37
  static Point conv(Point x,Point y,double t) {return (1-t)*x+t*y;}
40 38
};
41 39

	
42 40
class Bezier1 : public BezierBase
43 41
{
44 42
public:
45 43
  Point p1,p2;
46 44

	
47 45
  Bezier1() {}
48 46
  Bezier1(Point _p1, Point _p2) :p1(_p1), p2(_p2) {}
49 47
  
50 48
  Point operator()(double t) const
51 49
  {
52 50
    //    return conv(conv(p1,p2,t),conv(p2,p3,t),t);
53 51
    return conv(p1,p2,t);
54 52
  }
55 53
  Bezier1 before(double t) const
56 54
  {
57 55
    return Bezier1(p1,conv(p1,p2,t));
58 56
  }
59 57
  
60 58
  Bezier1 after(double t) const
61 59
  {
62 60
    return Bezier1(conv(p1,p2,t),p2);
63 61
  }
64 62

	
65 63
  Bezier1 revert() const { return Bezier1(p2,p1);}
66 64
  Bezier1 operator()(double a,double b) const { return before(b).after(a/b); }
67 65
  Point grad() const { return p2-p1; }
68 66
  Point norm() const { return rot90(p2-p1); }
69 67
  Point grad(double) const { return grad(); }
70 68
  Point norm(double t) const { return rot90(grad(t)); }
71 69
};
72 70

	
73 71
class Bezier2 : public BezierBase
74 72
{
75 73
public:
76 74
  Point p1,p2,p3;
77 75

	
78 76
  Bezier2() {}
79 77
  Bezier2(Point _p1, Point _p2, Point _p3) :p1(_p1), p2(_p2), p3(_p3) {}
80 78
  Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {}
81 79
  Point operator()(double t) const
82 80
  {
83 81
    //    return conv(conv(p1,p2,t),conv(p2,p3,t),t);
84 82
    return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3;
85 83
  }
86 84
  Bezier2 before(double t) const
87 85
  {
88 86
    Point q(conv(p1,p2,t));
89 87
    Point r(conv(p2,p3,t));
90 88
    return Bezier2(p1,q,conv(q,r,t));
91 89
  }
92 90
  
93 91
  Bezier2 after(double t) const
94 92
  {
95 93
    Point q(conv(p1,p2,t));
96 94
    Point r(conv(p2,p3,t));
97 95
    return Bezier2(conv(q,r,t),r,p3);
98 96
  }
99 97
  Bezier2 revert() const { return Bezier2(p3,p2,p1);}
100 98
  Bezier2 operator()(double a,double b) const { return before(b).after(a/b); }
101 99
  Bezier1 grad() const { return Bezier1(2.0*(p2-p1),2.0*(p3-p2)); }
102 100
  Bezier1 norm() const { return Bezier1(2.0*rot90(p2-p1),2.0*rot90(p3-p2)); }
103 101
  Point grad(double t) const { return grad()(t); }
104 102
  Point norm(double t) const { return rot90(grad(t)); }
105 103
};
106 104

	
107 105
class Bezier3 : public BezierBase
108 106
{
109 107
public:
110 108
  Point p1,p2,p3,p4;
111 109

	
112 110
  Bezier3() {}
113 111
  Bezier3(Point _p1, Point _p2, Point _p3, Point _p4)
114 112
    : p1(_p1), p2(_p2), p3(_p3), p4(_p4) {}
115 113
  Bezier3(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,1.0/3.0)), 
116 114
			      p3(conv(b.p1,b.p2,2.0/3.0)), p4(b.p2) {}
117 115
  Bezier3(const Bezier2 &b) : p1(b.p1), p2(conv(b.p1,b.p2,2.0/3.0)),
118 116
			      p3(conv(b.p2,b.p3,1.0/3.0)), p4(b.p3) {}
119 117
  
120 118
  Point operator()(double t) const 
121 119
    {
122 120
      //    return Bezier2(conv(p1,p2,t),conv(p2,p3,t),conv(p3,p4,t))(t);
123 121
      return ((1-t)*(1-t)*(1-t))*p1+(3*t*(1-t)*(1-t))*p2+
124 122
	(3*t*t*(1-t))*p3+(t*t*t)*p4;
125 123
    }
126 124
  Bezier3 before(double t) const
127 125
    {
128 126
      Point p(conv(p1,p2,t));
129 127
      Point q(conv(p2,p3,t));
130 128
      Point r(conv(p3,p4,t));
131 129
      Point a(conv(p,q,t));
132 130
      Point b(conv(q,r,t));
133 131
      Point c(conv(a,b,t));
134 132
      return Bezier3(p1,p,a,c);
135 133
    }
136 134
  
137 135
  Bezier3 after(double t) const
138 136
    {
139 137
      Point p(conv(p1,p2,t));
140 138
      Point q(conv(p2,p3,t));
141 139
      Point r(conv(p3,p4,t));
142 140
      Point a(conv(p,q,t));
143 141
      Point b(conv(q,r,t));
144 142
      Point c(conv(a,b,t));
145 143
      return Bezier3(c,b,r,p4);
146 144
    }
147 145
  Bezier3 revert() const { return Bezier3(p4,p3,p2,p1);}
148 146
  Bezier3 operator()(double a,double b) const { return before(b).after(a/b); }
149 147
  Bezier2 grad() const { return Bezier2(3.0*(p2-p1),3.0*(p3-p2),3.0*(p4-p3)); }
150 148
  Bezier2 norm() const { return Bezier2(3.0*rot90(p2-p1),
151 149
				  3.0*rot90(p3-p2),
152 150
				  3.0*rot90(p4-p3)); }
153 151
  Point grad(double t) const { return grad()(t); }
154 152
  Point norm(double t) const { return rot90(grad(t)); }
155 153

	
156 154
  template<class R,class F,class S,class D>
157 155
  R recSplit(F &_f,const S &_s,D _d) const 
158 156
  {
159 157
    const Point a=(p1+p2)/2;
160 158
    const Point b=(p2+p3)/2;
161 159
    const Point c=(p3+p4)/2;
162 160
    const Point d=(a+b)/2;
163 161
    const Point e=(b+c)/2;
164 162
    const Point f=(d+e)/2;
165 163
    R f1=_f(Bezier3(p1,a,d,e),_d);
166 164
    R f2=_f(Bezier3(e,d,c,p4),_d);
167 165
    return _s(f1,f2);
168 166
  }
169 167
  
170 168
};
171 169

	
172 170

	
173 171
} //END OF NAMESPACE dim2
174 172
} //END OF NAMESPACE lemon
175 173

	
176 174
#endif // LEMON_BEZIER_H
Ignore white space 6 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_VECTOR_MAP_H
20 20
#define LEMON_BITS_VECTOR_MAP_H
21 21

	
22 22
#include <vector>
23 23
#include <algorithm>
24 24

	
25 25
#include <lemon/bits/traits.h>
26 26
#include <lemon/bits/utility.h>
27 27

	
28 28
#include <lemon/bits/alteration_notifier.h>
29 29

	
30 30
#include <lemon/concept_check.h>
31 31
#include <lemon/concepts/maps.h>
32 32

	
33 33
///\ingroup graphbits
34 34
///
35 35
///\file
36 36
///\brief Vector based graph maps.
37 37
namespace lemon {
38 38

	
39 39
  /// \ingroup graphbits
40 40
  ///
41 41
  /// \brief Graph map based on the std::vector storage.
42 42
  ///
43 43
  /// The VectorMap template class is graph map structure what
44 44
  /// automatically updates the map when a key is added to or erased from
45 45
  /// the map. This map type uses the std::vector to store the values.
46 46
  ///
47
  /// \param Notifier The AlterationNotifier that will notify this map.
48
  /// \param Item The item type of the graph items.
49
  /// \param Value The value type of the map.
50
  /// 
51
  /// \author Balazs Dezso  	
47
  /// \tparam _Notifier The AlterationNotifier that will notify this map.
48
  /// \tparam _Item The item type of the graph items.
49
  /// \tparam _Value The value type of the map.
50
  /// \todo Fix the doc: there is _Graph parameter instead of _Notifier.
52 51
  template <typename _Graph, typename _Item, typename _Value>
53 52
  class VectorMap 
54 53
    : public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase {
55 54
  private:
56 55
		
57 56
    /// The container type of the map.
58 57
    typedef std::vector<_Value> Container;	
59 58

	
60 59
  public:
61 60

	
62 61
    /// The graph type of the map. 
63 62
    typedef _Graph Graph;
64 63
    /// The item type of the map.
65 64
    typedef _Item Item;
66 65
    /// The reference map tag.
67 66
    typedef True ReferenceMapTag;
68 67

	
69 68
    /// The key type of the map.
70 69
    typedef _Item Key;
71 70
    /// The value type of the map.
72 71
    typedef _Value Value;
73 72

	
74 73
    /// The notifier type.
75 74
    typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier;
76 75

	
77 76
    /// The map type.
78 77
    typedef VectorMap Map;
79 78
    /// The base class of the map.
80 79
    typedef typename Notifier::ObserverBase Parent;
81 80

	
82 81
    /// The reference type of the map;
83 82
    typedef typename Container::reference Reference;
84 83
    /// The const reference type of the map;
85 84
    typedef typename Container::const_reference ConstReference;
86 85

	
87 86

	
88 87
    /// \brief Constructor to attach the new map into the notifier.
89 88
    ///
90 89
    /// It constructs a map and attachs it into the notifier.
91 90
    /// It adds all the items of the graph to the map.
92 91
    VectorMap(const Graph& graph) {
93 92
      Parent::attach(graph.notifier(Item()));
94 93
      container.resize(Parent::notifier()->maxId() + 1);
95 94
    }
96 95

	
97 96
    /// \brief Constructor uses given value to initialize the map. 
98 97
    ///
99 98
    /// It constructs a map uses a given value to initialize the map. 
100 99
    /// It adds all the items of the graph to the map.
101 100
    VectorMap(const Graph& graph, const Value& value) {
102 101
      Parent::attach(graph.notifier(Item()));
103 102
      container.resize(Parent::notifier()->maxId() + 1, value);
104 103
    }
105 104

	
106 105
    /// \brief Copy constructor
107 106
    ///
108 107
    /// Copy constructor.
109 108
    VectorMap(const VectorMap& _copy) : Parent() {
110 109
      if (_copy.attached()) {
111 110
	Parent::attach(*_copy.notifier());
112 111
	container = _copy.container;
113 112
      }
114 113
    }
115 114

	
116 115
    /// \brief Assign operator.
117 116
    ///
118 117
    /// This operator assigns for each item in the map the
119 118
    /// value mapped to the same item in the copied map.  
120 119
    /// The parameter map should be indiced with the same
121 120
    /// itemset because this assign operator does not change
122 121
    /// the container of the map. 
123 122
    VectorMap& operator=(const VectorMap& cmap) {
124 123
      return operator=<VectorMap>(cmap);
125 124
    }
126 125

	
127 126

	
128 127
    /// \brief Template assign operator.
129 128
    ///
130 129
    /// The given parameter should be conform to the ReadMap
131 130
    /// concecpt and could be indiced by the current item set of
132 131
    /// the NodeMap. In this case the value for each item
133 132
    /// is assigned by the value of the given ReadMap. 
134 133
    template <typename CMap>
135 134
    VectorMap& operator=(const CMap& cmap) {
136 135
      checkConcept<concepts::ReadMap<Key, _Value>, CMap>();
137 136
      const typename Parent::Notifier* nf = Parent::notifier();
138 137
      Item it;
139 138
      for (nf->first(it); it != INVALID; nf->next(it)) {
140 139
        set(it, cmap[it]);
141 140
      }
142 141
      return *this;
143 142
    }
144 143
    
145 144
  public:
146 145

	
147 146
    /// \brief The subcript operator.
148 147
    ///
149 148
    /// The subscript operator. The map can be subscripted by the
150 149
    /// actual items of the graph.      
151 150
    Reference operator[](const Key& key) {
152 151
      return container[Parent::notifier()->id(key)];
153 152
    } 
154 153
		
155 154
    /// \brief The const subcript operator.
156 155
    ///
157 156
    /// The const subscript operator. The map can be subscripted by the
158 157
    /// actual items of the graph. 
159 158
    ConstReference operator[](const Key& key) const {
160 159
      return container[Parent::notifier()->id(key)];
161 160
    }
162 161

	
163 162

	
164 163
    /// \brief The setter function of the map.
165 164
    ///
166 165
    /// It the same as operator[](key) = value expression.
167 166
    void set(const Key& key, const Value& value) {
168 167
      (*this)[key] = value;
169 168
    }
170 169

	
171 170
  protected:
172 171

	
173 172
    /// \brief Adds a new key to the map.
174 173
    ///		
175 174
    /// It adds a new key to the map. It called by the observer notifier
176 175
    /// and it overrides the add() member function of the observer base.     
177 176
    virtual void add(const Key& key) {
178 177
      int id = Parent::notifier()->id(key);
179 178
      if (id >= int(container.size())) {
180 179
	container.resize(id + 1);
181 180
      }
182 181
    }
183 182

	
184 183
    /// \brief Adds more new keys to the map.
185 184
    ///		
186 185
    /// It adds more new keys to the map. It called by the observer notifier
187 186
    /// and it overrides the add() member function of the observer base.     
188 187
    virtual void add(const std::vector<Key>& keys) {
189 188
      int max = container.size() - 1;
190 189
      for (int i = 0; i < int(keys.size()); ++i) {
191 190
        int id = Parent::notifier()->id(keys[i]);
192 191
        if (id >= max) {
193 192
          max = id;
194 193
        }
195 194
      }
196 195
      container.resize(max + 1);
197 196
    }
198 197

	
199 198
    /// \brief Erase a key from the map.
200 199
    ///
201 200
    /// Erase a key from the map. It called by the observer notifier
202 201
    /// and it overrides the erase() member function of the observer base.     
203 202
    virtual void erase(const Key& key) {
204 203
      container[Parent::notifier()->id(key)] = Value();
205 204
    }
206 205

	
207 206
    /// \brief Erase more keys from the map.
208 207
    ///
209 208
    /// Erase more keys from the map. It called by the observer notifier
210 209
    /// and it overrides the erase() member function of the observer base.     
211 210
    virtual void erase(const std::vector<Key>& keys) {
212 211
      for (int i = 0; i < int(keys.size()); ++i) {
213 212
	container[Parent::notifier()->id(keys[i])] = Value();
214 213
      }
215 214
    }
216 215
    
217 216
    /// \brief Buildes the map.
218 217
    ///	
219 218
    /// It buildes the map. It called by the observer notifier
220 219
    /// and it overrides the build() member function of the observer base.
221 220
    virtual void build() { 
222 221
      int size = Parent::notifier()->maxId() + 1;
223 222
      container.reserve(size);
224 223
      container.resize(size);
225 224
    }
226 225

	
227 226
    /// \brief Clear the map.
228 227
    ///
229 228
    /// It erase all items from the map. It called by the observer notifier
230 229
    /// and it overrides the clear() member function of the observer base.     
231 230
    virtual void clear() { 
232 231
      container.clear();
233 232
    }
234 233
    
235 234
  private:
236 235
		
237 236
    Container container;
238 237

	
239 238
  };
240 239

	
241 240
}
242 241

	
243 242
#endif
Ignore white space 6 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_COLOR_H
20 20
#define LEMON_COLOR_H
21 21

	
22 22
#include<vector>
23 23
#include<lemon/math.h>
24 24
#include<lemon/maps.h>
25 25

	
26 26

	
27 27
///\ingroup misc
28 28
///\file
29 29
///\brief Tools to manage RGB colors.
30
///
31
///\author Alpar Juttner
32 30

	
33 31
namespace lemon {
34 32

	
35 33

	
36 34
  /// \addtogroup misc
37 35
  /// @{
38 36

	
39 37
  ///Data structure representing RGB colors.
40 38

	
41 39
  ///Data structure representing RGB colors.
42 40
  class Color
43 41
  {
44 42
    double _r,_g,_b;
45 43
  public:
46 44
    ///Default constructor
47 45
    Color() {}
48 46
    ///Constructor
49 47
    Color(double r,double g,double b) :_r(r),_g(g),_b(b) {};
50 48
    ///Set the red component
51 49
    double & red() {return _r;}
52 50
    ///Return the red component
53 51
    const double & red() const {return _r;}
54 52
    ///Set the green component
55 53
    double & green() {return _g;}
56 54
    ///Return the green component
57 55
    const double & green() const {return _g;}
58 56
    ///Set the blue component
59 57
    double & blue() {return _b;}
60 58
    ///Return the blue component
61 59
    const double & blue() const {return _b;}
62 60
    ///Set the color components
63 61
    void set(double r,double g,double b) { _r=r;_g=g;_b=b; };
64 62
  };
65 63

	
66 64
  /// White color constant
67 65
  extern const Color WHITE;  
68 66
  /// Black color constant
69 67
  extern const Color BLACK;
70 68
  /// Red color constant
71 69
  extern const Color RED;
72 70
  /// Green color constant
73 71
  extern const Color GREEN;
74 72
  /// Blue color constant
75 73
  extern const Color BLUE;
76 74
  /// Yellow color constant
77 75
  extern const Color YELLOW;
78 76
  /// Magenta color constant
79 77
  extern const Color MAGENTA;
80 78
  /// Cyan color constant
81 79
  extern const Color CYAN;
82 80
  /// Grey color constant
83 81
  extern const Color GREY;
84 82
  /// Dark red color constant
85 83
  extern const Color DARK_RED;
86 84
  /// Dark green color constant
87 85
  extern const Color DARK_GREEN;
88 86
  /// Drak blue color constant
89 87
  extern const Color DARK_BLUE;
90 88
  /// Dark yellow color constant
91 89
  extern const Color DARK_YELLOW;
92 90
  /// Dark magenta color constant
93 91
  extern const Color DARK_MAGENTA;
94 92
  /// Dark cyan color constant
95 93
  extern const Color DARK_CYAN;
96 94

	
97 95
  ///Map <tt>int</tt>s to different \ref Color "Color"s
98 96

	
99 97
  ///This map assigns one of the predefined \ref Color "Color"s to
100 98
  ///each <tt>int</tt>. It is possible to change the colors as well as
101 99
  ///their number. The integer range is cyclically mapped to the
102 100
  ///provided set of colors.
103 101
  ///
104 102
  ///This is a true \ref concepts::ReferenceMap "reference map", so
105 103
  ///you can also change the actual colors.
106 104

	
107 105
  class Palette : public MapBase<int,Color>
108 106
  {
109 107
    std::vector<Color> colors;
110 108
  public:
111 109
    ///Constructor
112 110

	
113 111
    ///Constructor 
114 112
    ///\param have_white indicates whether white is amongst the
115 113
    ///provided initial colors (\c true) or not (\c false). If it is true,
116 114
    ///white will be assigned to \c 0.
117 115
    ///\param num the number of the allocated colors. If it is \c -1,
118 116
    ///the default color configuration is set up (26 color plus optionaly the
119 117
    ///white).  If \c num is less then 26/27 then the default color
120 118
    ///list is cut. Otherwise the color list is filled repeatedly with
121 119
    ///the default color list.  (The colors can be changed later on.)
122 120
    Palette(bool have_white=false,int num=-1)
123 121
    {
124 122
      if (num==0) return;
125 123
      do {
126 124
        if(have_white) colors.push_back(Color(1,1,1));
127 125

	
128 126
        colors.push_back(Color(0,0,0));
129 127
        colors.push_back(Color(1,0,0));
130 128
        colors.push_back(Color(0,1,0));
131 129
        colors.push_back(Color(0,0,1));
132 130
        colors.push_back(Color(1,1,0));
133 131
        colors.push_back(Color(1,0,1));
134 132
        colors.push_back(Color(0,1,1));
135 133
      
136 134
        colors.push_back(Color(.5,0,0));
137 135
        colors.push_back(Color(0,.5,0));
138 136
        colors.push_back(Color(0,0,.5));
139 137
        colors.push_back(Color(.5,.5,0));
140 138
        colors.push_back(Color(.5,0,.5));
141 139
        colors.push_back(Color(0,.5,.5));
142 140
      
143 141
        colors.push_back(Color(.5,.5,.5));
144 142
        colors.push_back(Color(1,.5,.5));
145 143
        colors.push_back(Color(.5,1,.5));
146 144
        colors.push_back(Color(.5,.5,1));
147 145
        colors.push_back(Color(1,1,.5));
148 146
        colors.push_back(Color(1,.5,1));
149 147
        colors.push_back(Color(.5,1,1));
150 148
      
151 149
        colors.push_back(Color(1,.5,0));
152 150
        colors.push_back(Color(.5,1,0));
153 151
        colors.push_back(Color(1,0,.5));
154 152
        colors.push_back(Color(0,1,.5));
155 153
        colors.push_back(Color(0,.5,1));
156 154
        colors.push_back(Color(.5,0,1));
157 155
      } while(int(colors.size())<num);
158 156
      //    colors.push_back(Color(1,1,1));
159 157
      if(num>=0) colors.resize(num);
160 158
    }
161 159
    ///\e
162 160
    Color &operator[](int i)
163 161
    {
164 162
      return colors[i%colors.size()];
165 163
    }
166 164
    ///\e
167 165
    const Color &operator[](int i) const
168 166
    {
169 167
      return colors[i%colors.size()];
170 168
    }
171 169
    ///\e
172 170
    void set(int i,const Color &c)
173 171
    {
174 172
      colors[i%colors.size()]=c;
175 173
    }
176 174
    ///Add a new color to the end of the color list.
177 175
    void add(const Color &c) 
178 176
    {
179 177
      colors.push_back(c);
180 178
    }
181 179

	
182 180
    ///Sets the number of the exiting colors.
183 181
    void resize(int s) { colors.resize(s);}
184 182
    ///Returns the number of the existing colors.
185 183
    int size() const { return int(colors.size());}
186 184
  };
187 185

	
188 186
  ///Returns a visibly distinct \ref Color
189 187

	
190 188
  ///Returns a \ref Color which is as different from the given parameter
191 189
  ///as it is possible.
192 190
  inline Color distantColor(const Color &c) 
193 191
  {
194 192
    return Color(c.red()<.5?1:0,c.green()<.5?1:0,c.blue()<.5?1:0);
195 193
  }
196 194
  ///Returns black for light colors and white for the dark ones.
197 195

	
198 196
  ///Returns black for light colors and white for the dark ones.
199 197
  inline Color distantBW(const Color &c){
200 198
    return (.2125*c.red()+.7154*c.green()+.0721*c.blue())<.5 ? WHITE : BLACK;
201 199
  }
202 200

	
203 201
  /// @}
204 202

	
205 203
} //END OF NAMESPACE LEMON
206 204

	
207 205
#endif // LEMON_COLOR_H
Ignore white space 6 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup concept
20 20
///\file
21 21
///\brief Classes for representing paths in digraphs.
22 22
///
23 23
///\todo Iterators have obsolete style
24 24

	
25 25
#ifndef LEMON_CONCEPT_PATH_H
26 26
#define LEMON_CONCEPT_PATH_H
27 27

	
28 28
#include <lemon/bits/invalid.h>
29 29
#include <lemon/bits/utility.h>
30 30
#include <lemon/concept_check.h>
31 31

	
32 32
namespace lemon {
33 33
  namespace concepts {
34 34

	
35 35
    /// \addtogroup concept
36 36
    /// @{
37 37

	
38 38
    /// \brief A skeleton structure for representing directed paths in
39 39
    /// a digraph.
40 40
    ///
41 41
    /// A skeleton structure for representing directed paths in a
42 42
    /// digraph.  
43
    /// \param _Digraph The digraph type in which the path is.
43
    /// \tparam _Digraph The digraph type in which the path is.
44 44
    ///
45 45
    /// In a sense, the path can be treated as a list of arcs. The
46 46
    /// lemon path type stores just this list. As a consequence it
47 47
    /// cannot enumerate the nodes in the path and the zero length
48 48
    /// paths cannot store the source.
49 49
    ///
50 50
    template <typename _Digraph>
51 51
    class Path {
52 52
    public:
53 53

	
54 54
      /// Type of the underlying digraph.
55 55
      typedef _Digraph Digraph;
56 56
      /// Arc type of the underlying digraph.
57 57
      typedef typename Digraph::Arc Arc;
58 58

	
59 59
      class ArcIt;
60 60

	
61 61
      /// \brief Default constructor
62 62
      Path() {}
63 63

	
64 64
      /// \brief Template constructor
65 65
      template <typename CPath>
66 66
      Path(const CPath& cpath) {}
67 67

	
68 68
      /// \brief Template assigment
69 69
      template <typename CPath>
70 70
      Path& operator=(const CPath& cpath) {}
71 71

	
72 72
      /// Length of the path ie. the number of arcs in the path.
73 73
      int length() const { return 0;}
74 74

	
75 75
      /// Returns whether the path is empty.
76 76
      bool empty() const { return true;}
77 77

	
78 78
      /// Resets the path to an empty path.
79 79
      void clear() {}
80 80

	
81 81
      /// \brief Lemon style iterator for path arcs
82 82
      ///
83 83
      /// This class is used to iterate on the arcs of the paths.
84 84
      class ArcIt {
85 85
      public:
86 86
	/// Default constructor
87 87
	ArcIt() {}
88 88
	/// Invalid constructor
89 89
	ArcIt(Invalid) {}
90 90
	/// Constructor for first arc
91 91
	ArcIt(const Path &) {}
92 92

	
93 93
        /// Conversion to Arc
94 94
	operator Arc() const { return INVALID; }
95 95

	
96 96
	/// Next arc
97 97
	ArcIt& operator++() {return *this;}
98 98

	
99 99
	/// Comparison operator
100 100
	bool operator==(const ArcIt&) const {return true;}
101 101
	/// Comparison operator
102 102
	bool operator!=(const ArcIt&) const {return true;}
103 103
 	/// Comparison operator
104 104
 	bool operator<(const ArcIt&) const {return false;}
105 105

	
106 106
      };
107 107

	
108 108
      template <typename _Path>
109 109
      struct Constraints {
110 110
        void constraints() {
111 111
          Path<Digraph> pc;
112 112
          _Path p, pp(pc);
113 113
          int l = p.length();
114 114
          int e = p.empty();
115 115
          p.clear();
116 116

	
117 117
          p = pc;
118 118

	
119 119
          typename _Path::ArcIt id, ii(INVALID), i(p);
120 120

	
121 121
          ++i;
122 122
          typename Digraph::Arc ed = i;
123 123

	
124 124
          e = (i == ii);
125 125
          e = (i != ii);
126 126
          e = (i < ii);
127 127

	
128 128
          ignore_unused_variable_warning(l);
129 129
          ignore_unused_variable_warning(pp);
130 130
          ignore_unused_variable_warning(e);
131 131
          ignore_unused_variable_warning(id);
132 132
          ignore_unused_variable_warning(ii);
133 133
          ignore_unused_variable_warning(ed);
134 134
        }
135 135
      };
136 136

	
137 137
    };
138 138

	
139 139
    namespace _path_bits {
140 140
      
141 141
      template <typename _Digraph, typename _Path, typename RevPathTag = void>
142 142
      struct PathDumperConstraints {
143 143
        void constraints() {
144 144
          int l = p.length();
145 145
          int e = p.empty();
146 146

	
147 147
          typename _Path::ArcIt id, i(p);
148 148

	
149 149
          ++i;
150 150
          typename _Digraph::Arc ed = i;
151 151

	
152 152
          e = (i == INVALID);
153 153
          e = (i != INVALID);
154 154

	
155 155
          ignore_unused_variable_warning(l);
156 156
          ignore_unused_variable_warning(e);
157 157
          ignore_unused_variable_warning(id);
158 158
          ignore_unused_variable_warning(ed);
159 159
        }
160 160
        _Path& p;
161 161
      };
162 162

	
163 163
      template <typename _Digraph, typename _Path>
164 164
      struct PathDumperConstraints<
165 165
        _Digraph, _Path, 
166 166
        typename enable_if<typename _Path::RevPathTag, void>::type
167 167
      > {
168 168
        void constraints() {
169 169
          int l = p.length();
170 170
          int e = p.empty();
171 171

	
172 172
          typename _Path::RevArcIt id, i(p);
173 173

	
174 174
          ++i;
175 175
          typename _Digraph::Arc ed = i;
176 176

	
177 177
          e = (i == INVALID);
178 178
          e = (i != INVALID);
179 179

	
180 180
          ignore_unused_variable_warning(l);
181 181
          ignore_unused_variable_warning(e);
182 182
          ignore_unused_variable_warning(id);
183 183
          ignore_unused_variable_warning(ed);
184 184
        }
185 185
        _Path& p;
186 186
      };
187 187
    
188 188
    }
189 189

	
190 190

	
191 191
    /// \brief A skeleton structure for path dumpers.
192 192
    ///
193 193
    /// A skeleton structure for path dumpers. The path dumpers are
194 194
    /// the generalization of the paths. The path dumpers can
195 195
    /// enumerate the arcs of the path wheter in forward or in
196 196
    /// backward order.  In most time these classes are not used
197 197
    /// directly rather it used to assign a dumped class to a real
198 198
    /// path type.
199 199
    ///
200 200
    /// The main purpose of this concept is that the shortest path
201 201
    /// algorithms can enumerate easily the arcs in reverse order.
202 202
    /// If we would like to give back a real path from these
203 203
    /// algorithms then we should create a temporarly path object. In
204 204
    /// Lemon such algorithms gives back a path dumper what can
205 205
    /// assigned to a real path and the dumpers can be implemented as
206 206
    /// an adaptor class to the predecessor map.
207 207

	
208
    /// \param _Digraph  The digraph type in which the path is.
208
    /// \tparam _Digraph  The digraph type in which the path is.
209 209
    ///
210 210
    /// The paths can be constructed from any path type by a
211 211
    /// template constructor or a template assignment operator.
212 212
    /// 
213 213
    template <typename _Digraph>
214 214
    class PathDumper {
215 215
    public:
216 216

	
217 217
      /// Type of the underlying digraph.
218 218
      typedef _Digraph Digraph;
219 219
      /// Arc type of the underlying digraph.
220 220
      typedef typename Digraph::Arc Arc;
221 221

	
222 222
      /// Length of the path ie. the number of arcs in the path.
223 223
      int length() const { return 0;}
224 224

	
225 225
      /// Returns whether the path is empty.
226 226
      bool empty() const { return true;}
227 227

	
228 228
      /// \brief Forward or reverse dumping
229 229
      ///
230 230
      /// If the RevPathTag is defined and true then reverse dumping
231 231
      /// is provided in the path dumper. In this case instead of the
232 232
      /// ArcIt the RevArcIt iterator should be implemented in the
233 233
      /// dumper.
234 234
      typedef False RevPathTag;
235 235

	
236 236
      /// \brief Lemon style iterator for path arcs
237 237
      ///
238 238
      /// This class is used to iterate on the arcs of the paths.
239 239
      class ArcIt {
240 240
      public:
241 241
	/// Default constructor
242 242
	ArcIt() {}
243 243
	/// Invalid constructor
244 244
	ArcIt(Invalid) {}
245 245
	/// Constructor for first arc
246 246
	ArcIt(const PathDumper&) {}
247 247

	
248 248
        /// Conversion to Arc
249 249
	operator Arc() const { return INVALID; }
250 250

	
251 251
	/// Next arc
252 252
	ArcIt& operator++() {return *this;}
253 253

	
254 254
	/// Comparison operator
255 255
	bool operator==(const ArcIt&) const {return true;}
256 256
	/// Comparison operator
257 257
	bool operator!=(const ArcIt&) const {return true;}
258 258
 	/// Comparison operator
259 259
 	bool operator<(const ArcIt&) const {return false;}
260 260

	
261 261
      };
262 262

	
263 263
      /// \brief Lemon style iterator for path arcs
264 264
      ///
265 265
      /// This class is used to iterate on the arcs of the paths in
266 266
      /// reverse direction.
267 267
      class RevArcIt {
268 268
      public:
269 269
	/// Default constructor
270 270
	RevArcIt() {}
271 271
	/// Invalid constructor
272 272
	RevArcIt(Invalid) {}
273 273
	/// Constructor for first arc
274 274
	RevArcIt(const PathDumper &) {}
275 275

	
276 276
        /// Conversion to Arc
277 277
	operator Arc() const { return INVALID; }
278 278

	
279 279
	/// Next arc
280 280
	RevArcIt& operator++() {return *this;}
281 281

	
282 282
	/// Comparison operator
283 283
	bool operator==(const RevArcIt&) const {return true;}
284 284
	/// Comparison operator
285 285
	bool operator!=(const RevArcIt&) const {return true;}
286 286
 	/// Comparison operator
287 287
 	bool operator<(const RevArcIt&) const {return false;}
288 288

	
289 289
      };
290 290

	
291 291
      template <typename _Path>
292 292
      struct Constraints {
293 293
        void constraints() {
294 294
          function_requires<_path_bits::
295 295
            PathDumperConstraints<Digraph, _Path> >();
296 296
        }
297 297
      };
298 298

	
299 299
    };
300 300

	
301 301

	
302 302
    ///@}
303 303
  }
304 304

	
305 305
} // namespace lemon
306 306

	
307 307
#endif // LEMON_CONCEPT_PATH_H
Ignore white space 6 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_DFS_H
20 20
#define LEMON_DFS_H
21 21

	
22 22
///\ingroup search
23 23
///\file
24 24
///\brief Dfs algorithm.
25 25

	
26 26
#include <lemon/list_graph.h>
27 27
#include <lemon/graph_utils.h>
28 28
#include <lemon/bits/path_dump.h>
29 29
#include <lemon/bits/invalid.h>
30 30
#include <lemon/error.h>
31 31
#include <lemon/maps.h>
32 32

	
33 33
#include <lemon/concept_check.h>
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  
38 38
  ///Default traits class of Dfs class.
39 39

	
40 40
  ///Default traits class of Dfs class.
41
  ///\param GR Digraph type.
41
  ///\tparam GR Digraph type.
42 42
  template<class GR>
43 43
  struct DfsDefaultTraits
44 44
  {
45 45
    ///The digraph type the algorithm runs on. 
46 46
    typedef GR Digraph;
47 47
    ///\brief The type of the map that stores the last
48 48
    ///arcs of the %DFS paths.
49 49
    /// 
50 50
    ///The type of the map that stores the last
51 51
    ///arcs of the %DFS paths.
52 52
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
53 53
    ///
54 54
    typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap;
55 55
    ///Instantiates a PredMap.
56 56
 
57 57
    ///This function instantiates a \ref PredMap. 
58 58
    ///\param G is the digraph, to which we would like to define the PredMap.
59 59
    ///\todo The digraph alone may be insufficient to initialize
60 60
    static PredMap *createPredMap(const GR &G) 
61 61
    {
62 62
      return new PredMap(G);
63 63
    }
64 64

	
65 65
    ///The type of the map that indicates which nodes are processed.
66 66
 
67 67
    ///The type of the map that indicates which nodes are processed.
68 68
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
69 69
    ///\todo named parameter to set this type, function to read and write.
70 70
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
71 71
    ///Instantiates a ProcessedMap.
72 72
 
73 73
    ///This function instantiates a \ref ProcessedMap. 
74 74
    ///\param g is the digraph, to which
75 75
    ///we would like to define the \ref ProcessedMap
76 76
#ifdef DOXYGEN
77 77
    static ProcessedMap *createProcessedMap(const GR &g)
78 78
#else
79 79
    static ProcessedMap *createProcessedMap(const GR &)
80 80
#endif
81 81
    {
82 82
      return new ProcessedMap();
83 83
    }
84 84
    ///The type of the map that indicates which nodes are reached.
85 85
 
86 86
    ///The type of the map that indicates which nodes are reached.
87 87
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
88 88
    ///\todo named parameter to set this type, function to read and write.
89 89
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
90 90
    ///Instantiates a ReachedMap.
91 91
 
92 92
    ///This function instantiates a \ref ReachedMap. 
93 93
    ///\param G is the digraph, to which
94 94
    ///we would like to define the \ref ReachedMap.
95 95
    static ReachedMap *createReachedMap(const GR &G)
96 96
    {
97 97
      return new ReachedMap(G);
98 98
    }
99 99
    ///The type of the map that stores the dists of the nodes.
100 100
 
101 101
    ///The type of the map that stores the dists of the nodes.
102 102
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
103 103
    ///
104 104
    typedef typename Digraph::template NodeMap<int> DistMap;
105 105
    ///Instantiates a DistMap.
106 106
 
107 107
    ///This function instantiates a \ref DistMap. 
108 108
    ///\param G is the digraph, to which we would like to define the \ref DistMap
109 109
    static DistMap *createDistMap(const GR &G)
110 110
    {
111 111
      return new DistMap(G);
112 112
    }
113 113
  };
114 114
  
115 115
  ///%DFS algorithm class.
116 116
  
117 117
  ///\ingroup search
118 118
  ///This class provides an efficient implementation of the %DFS algorithm.
119 119
  ///
120
  ///\param GR The digraph type the algorithm runs on. The default value is
120
  ///\tparam GR The digraph type the algorithm runs on. The default value is
121 121
  ///\ref ListDigraph. The value of GR is not used directly by Dfs, it
122 122
  ///is only passed to \ref DfsDefaultTraits.
123
  ///\param TR Traits class to set various data types used by the algorithm.
123
  ///\tparam TR Traits class to set various data types used by the algorithm.
124 124
  ///The default traits class is
125 125
  ///\ref DfsDefaultTraits "DfsDefaultTraits<GR>".
126 126
  ///See \ref DfsDefaultTraits for the documentation of
127 127
  ///a Dfs traits class.
128
  ///
129
  ///\author Jacint Szabo and Alpar Juttner
130 128
#ifdef DOXYGEN
131 129
  template <typename GR,
132 130
	    typename TR>
133 131
#else
134 132
  template <typename GR=ListDigraph,
135 133
	    typename TR=DfsDefaultTraits<GR> >
136 134
#endif
137 135
  class Dfs {
138 136
  public:
139 137
    /**
140 138
     * \brief \ref Exception for uninitialized parameters.
141 139
     *
142 140
     * This error represents problems in the initialization
143 141
     * of the parameters of the algorithms.
144 142
     */
145 143
    class UninitializedParameter : public lemon::UninitializedParameter {
146 144
    public:
147 145
      virtual const char* what() const throw() {
148 146
	return "lemon::Dfs::UninitializedParameter";
149 147
      }
150 148
    };
151 149

	
152 150
    typedef TR Traits;
153 151
    ///The type of the underlying digraph.
154 152
    typedef typename TR::Digraph Digraph;
155 153
    ///\e
156 154
    typedef typename Digraph::Node Node;
157 155
    ///\e
158 156
    typedef typename Digraph::NodeIt NodeIt;
159 157
    ///\e
160 158
    typedef typename Digraph::Arc Arc;
161 159
    ///\e
162 160
    typedef typename Digraph::OutArcIt OutArcIt;
163 161
    
164 162
    ///\brief The type of the map that stores the last
165 163
    ///arcs of the %DFS paths.
166 164
    typedef typename TR::PredMap PredMap;
167 165
    ///The type of the map indicating which nodes are reached.
168 166
    typedef typename TR::ReachedMap ReachedMap;
169 167
    ///The type of the map indicating which nodes are processed.
170 168
    typedef typename TR::ProcessedMap ProcessedMap;
171 169
    ///The type of the map that stores the dists of the nodes.
172 170
    typedef typename TR::DistMap DistMap;
173 171
  private:
174 172
    /// Pointer to the underlying digraph.
175 173
    const Digraph *G;
176 174
    ///Pointer to the map of predecessors arcs.
177 175
    PredMap *_pred;
178 176
    ///Indicates if \ref _pred is locally allocated (\c true) or not.
179 177
    bool local_pred;
180 178
    ///Pointer to the map of distances.
181 179
    DistMap *_dist;
182 180
    ///Indicates if \ref _dist is locally allocated (\c true) or not.
183 181
    bool local_dist;
184 182
    ///Pointer to the map of reached status of the nodes.
185 183
    ReachedMap *_reached;
186 184
    ///Indicates if \ref _reached is locally allocated (\c true) or not.
187 185
    bool local_reached;
188 186
    ///Pointer to the map of processed status of the nodes.
189 187
    ProcessedMap *_processed;
190 188
    ///Indicates if \ref _processed is locally allocated (\c true) or not.
191 189
    bool local_processed;
192 190

	
193 191
    std::vector<typename Digraph::OutArcIt> _stack;
194 192
    int _stack_head;
195 193

	
196 194
    ///Creates the maps if necessary.
197 195
    
198 196
    ///\todo Better memory allocation (instead of new).
199 197
    void create_maps() 
200 198
    {
201 199
      if(!_pred) {
202 200
	local_pred = true;
203 201
	_pred = Traits::createPredMap(*G);
204 202
      }
205 203
      if(!_dist) {
206 204
	local_dist = true;
207 205
	_dist = Traits::createDistMap(*G);
208 206
      }
209 207
      if(!_reached) {
210 208
	local_reached = true;
211 209
	_reached = Traits::createReachedMap(*G);
212 210
      }
213 211
      if(!_processed) {
214 212
	local_processed = true;
215 213
	_processed = Traits::createProcessedMap(*G);
216 214
      }
217 215
    }
218 216

	
219 217
  protected:
220 218

	
221 219
    Dfs() {}
222 220
    
223 221
  public:
224 222

	
225 223
    typedef Dfs Create;
226 224

	
227 225
    ///\name Named template parameters
228 226

	
229 227
    ///@{
230 228

	
231 229
    template <class T>
232 230
    struct DefPredMapTraits : public Traits {
233 231
      typedef T PredMap;
234 232
      static PredMap *createPredMap(const Digraph &G) 
235 233
      {
236 234
	throw UninitializedParameter();
237 235
      }
238 236
    };
239 237
    ///\brief \ref named-templ-param "Named parameter" for setting
240 238
    ///PredMap type
241 239
    ///
242 240
    ///\ref named-templ-param "Named parameter" for setting PredMap type
243 241
    ///
244 242
    template <class T>
245 243
    struct DefPredMap : public Dfs<Digraph, DefPredMapTraits<T> > {
246 244
      typedef Dfs<Digraph, DefPredMapTraits<T> > Create;
247 245
    };
248 246
    
249 247
    
250 248
    template <class T>
251 249
    struct DefDistMapTraits : public Traits {
252 250
      typedef T DistMap;
253 251
      static DistMap *createDistMap(const Digraph &) 
254 252
      {
255 253
	throw UninitializedParameter();
256 254
      }
257 255
    };
258 256
    ///\brief \ref named-templ-param "Named parameter" for setting
259 257
    ///DistMap type
260 258
    ///
261 259
    ///\ref named-templ-param "Named parameter" for setting DistMap
262 260
    ///type
263 261
    template <class T>
264 262
    struct DefDistMap {
265 263
      typedef Dfs<Digraph, DefDistMapTraits<T> > Create;
266 264
    };
267 265
    
268 266
    template <class T>
269 267
    struct DefReachedMapTraits : public Traits {
270 268
      typedef T ReachedMap;
271 269
      static ReachedMap *createReachedMap(const Digraph &) 
272 270
      {
273 271
	throw UninitializedParameter();
274 272
      }
275 273
    };
276 274
    ///\brief \ref named-templ-param "Named parameter" for setting
277 275
    ///ReachedMap type
278 276
    ///
279 277
    ///\ref named-templ-param "Named parameter" for setting ReachedMap type
280 278
    ///
281 279
    template <class T>
282 280
    struct DefReachedMap : public Dfs< Digraph, DefReachedMapTraits<T> > {
283 281
      typedef Dfs< Digraph, DefReachedMapTraits<T> > Create;
284 282
    };
285 283

	
286 284
    template <class T>
287 285
    struct DefProcessedMapTraits : public Traits {
288 286
      typedef T ProcessedMap;
289 287
      static ProcessedMap *createProcessedMap(const Digraph &) 
290 288
      {
291 289
	throw UninitializedParameter();
292 290
      }
293 291
    };
294 292
    ///\brief \ref named-templ-param "Named parameter" for setting
295 293
    ///ProcessedMap type
296 294
    ///
297 295
    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
298 296
    ///
299 297
    template <class T>
300 298
    struct DefProcessedMap : public Dfs< Digraph, DefProcessedMapTraits<T> > { 
301 299
      typedef Dfs< Digraph, DefProcessedMapTraits<T> > Create;
302 300
    };
303 301
    
304 302
    struct DefDigraphProcessedMapTraits : public Traits {
305 303
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
306 304
      static ProcessedMap *createProcessedMap(const Digraph &G) 
307 305
      {
308 306
	return new ProcessedMap(G);
309 307
      }
310 308
    };
311 309
    ///\brief \ref named-templ-param "Named parameter"
312 310
    ///for setting the ProcessedMap type to be Digraph::NodeMap<bool>.
313 311
    ///
314 312
    ///\ref named-templ-param "Named parameter"
315 313
    ///for setting the ProcessedMap type to be Digraph::NodeMap<bool>.
316 314
    ///If you don't set it explicitely, it will be automatically allocated.
317 315
    template <class T>
318 316
    class DefProcessedMapToBeDefaultMap :
319 317
      public Dfs< Digraph, DefDigraphProcessedMapTraits> { 
320 318
      typedef Dfs< Digraph, DefDigraphProcessedMapTraits> Create;
321 319
    };
322 320
    
323 321
    ///@}
324 322

	
325 323
  public:      
326 324
    
327 325
    ///Constructor.
328 326
    
329 327
    ///\param _G the digraph the algorithm will run on.
330 328
    ///
331 329
    Dfs(const Digraph& _G) :
332 330
      G(&_G),
333 331
      _pred(NULL), local_pred(false),
334 332
      _dist(NULL), local_dist(false),
335 333
      _reached(NULL), local_reached(false),
336 334
      _processed(NULL), local_processed(false)
337 335
    { }
338 336
    
339 337
    ///Destructor.
340 338
    ~Dfs() 
341 339
    {
342 340
      if(local_pred) delete _pred;
343 341
      if(local_dist) delete _dist;
344 342
      if(local_reached) delete _reached;
345 343
      if(local_processed) delete _processed;
346 344
    }
347 345

	
348 346
    ///Sets the map storing the predecessor arcs.
349 347

	
350 348
    ///Sets the map storing the predecessor arcs.
351 349
    ///If you don't use this function before calling \ref run(),
352 350
    ///it will allocate one. The destuctor deallocates this
353 351
    ///automatically allocated map, of course.
354 352
    ///\return <tt> (*this) </tt>
355 353
    Dfs &predMap(PredMap &m) 
356 354
    {
357 355
      if(local_pred) {
358 356
	delete _pred;
359 357
	local_pred=false;
360 358
      }
361 359
      _pred = &m;
362 360
      return *this;
363 361
    }
364 362

	
365 363
    ///Sets the map storing the distances calculated by the algorithm.
366 364

	
367 365
    ///Sets the map storing the distances calculated by the algorithm.
368 366
    ///If you don't use this function before calling \ref run(),
369 367
    ///it will allocate one. The destuctor deallocates this
370 368
    ///automatically allocated map, of course.
371 369
    ///\return <tt> (*this) </tt>
372 370
    Dfs &distMap(DistMap &m) 
373 371
    {
374 372
      if(local_dist) {
375 373
	delete _dist;
376 374
	local_dist=false;
377 375
      }
378 376
      _dist = &m;
379 377
      return *this;
380 378
    }
381 379

	
382 380
    ///Sets the map indicating if a node is reached.
383 381

	
384 382
    ///Sets the map indicating if a node is reached.
385 383
    ///If you don't use this function before calling \ref run(),
386 384
    ///it will allocate one. The destuctor deallocates this
387 385
    ///automatically allocated map, of course.
388 386
    ///\return <tt> (*this) </tt>
389 387
    Dfs &reachedMap(ReachedMap &m) 
390 388
    {
391 389
      if(local_reached) {
392 390
	delete _reached;
393 391
	local_reached=false;
394 392
      }
395 393
      _reached = &m;
396 394
      return *this;
397 395
    }
398 396

	
399 397
    ///Sets the map indicating if a node is processed.
400 398

	
401 399
    ///Sets the map indicating if a node is processed.
402 400
    ///If you don't use this function before calling \ref run(),
403 401
    ///it will allocate one. The destuctor deallocates this
404 402
    ///automatically allocated map, of course.
405 403
    ///\return <tt> (*this) </tt>
406 404
    Dfs &processedMap(ProcessedMap &m) 
407 405
    {
408 406
      if(local_processed) {
409 407
	delete _processed;
410 408
	local_processed=false;
411 409
      }
412 410
      _processed = &m;
413 411
      return *this;
414 412
    }
415 413

	
416 414
  public:
417 415
    ///\name Execution control
418 416
    ///The simplest way to execute the algorithm is to use
419 417
    ///one of the member functions called \c run(...).
420 418
    ///\n
421 419
    ///If you need more control on the execution,
422 420
    ///first you must call \ref init(), then you can add a source node
423 421
    ///with \ref addSource().
424 422
    ///Finally \ref start() will perform the actual path
425 423
    ///computation.
426 424

	
427 425
    ///@{
428 426

	
429 427
    ///Initializes the internal data structures.
430 428

	
431 429
    ///Initializes the internal data structures.
432 430
    ///
433 431
    void init()
434 432
    {
435 433
      create_maps();
436 434
      _stack.resize(countNodes(*G));
437 435
      _stack_head=-1;
438 436
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
439 437
	_pred->set(u,INVALID);
440 438
	// _predNode->set(u,INVALID);
441 439
	_reached->set(u,false);
442 440
	_processed->set(u,false);
443 441
      }
444 442
    }
445 443
    
446 444
    ///Adds a new source node.
447 445

	
448 446
    ///Adds a new source node to the set of nodes to be processed.
449 447
    ///
450 448
    ///\warning dists are wrong (or at least strange)
451 449
    ///in case of multiple sources.
452 450
    void addSource(Node s)
453 451
    {
454 452
      if(!(*_reached)[s])
455 453
	{
456 454
	  _reached->set(s,true);
457 455
	  _pred->set(s,INVALID);
458 456
	  OutArcIt e(*G,s);
459 457
	  if(e!=INVALID) {
460 458
	    _stack[++_stack_head]=e;
461 459
	    _dist->set(s,_stack_head);
462 460
	  }
463 461
	  else {
464 462
	    _processed->set(s,true);
465 463
	    _dist->set(s,0);
466 464
	  }
467 465
	}
468 466
    }
469 467
    
470 468
    ///Processes the next arc.
471 469

	
472 470
    ///Processes the next arc.
473 471
    ///
474 472
    ///\return The processed arc.
475 473
    ///
476 474
    ///\pre The stack must not be empty!
477 475
    Arc processNextArc()
478 476
    { 
479 477
      Node m;
480 478
      Arc e=_stack[_stack_head];
481 479
      if(!(*_reached)[m=G->target(e)]) {
482 480
	_pred->set(m,e);
483 481
	_reached->set(m,true);
484 482
	++_stack_head;
485 483
	_stack[_stack_head] = OutArcIt(*G, m);
486 484
	_dist->set(m,_stack_head);
487 485
      }
488 486
      else {
489 487
	m=G->source(e);
490 488
	++_stack[_stack_head];
491 489
      }
492 490
      while(_stack_head>=0 && _stack[_stack_head]==INVALID) {
493 491
	_processed->set(m,true);
494 492
	--_stack_head;
495 493
	if(_stack_head>=0) {
496 494
	  m=G->source(_stack[_stack_head]);
497 495
	  ++_stack[_stack_head];
498 496
	}
499 497
      }
500 498
      return e;
501 499
    }
502 500
    ///Next arc to be processed.
503 501

	
504 502
    ///Next arc to be processed.
505 503
    ///
506 504
    ///\return The next arc to be processed or INVALID if the stack is
507 505
    /// empty.
508 506
    OutArcIt nextArc()
509 507
    { 
510 508
      return _stack_head>=0?_stack[_stack_head]:INVALID;
511 509
    }
512 510

	
513 511
    ///\brief Returns \c false if there are nodes
514 512
    ///to be processed in the queue
515 513
    ///
516 514
    ///Returns \c false if there are nodes
517 515
    ///to be processed in the queue
518 516
    bool emptyQueue() { return _stack_head<0; }
519 517
    ///Returns the number of the nodes to be processed.
520 518
    
521 519
    ///Returns the number of the nodes to be processed in the queue.
522 520
    int queueSize() { return _stack_head+1; }
523 521
    
524 522
    ///Executes the algorithm.
525 523

	
526 524
    ///Executes the algorithm.
527 525
    ///
528 526
    ///\pre init() must be called and at least one node should be added
529 527
    ///with addSource() before using this function.
530 528
    ///
531 529
    ///This method runs the %DFS algorithm from the root node(s)
532 530
    ///in order to
533 531
    ///compute the
534 532
    ///%DFS path to each node. The algorithm computes
535 533
    ///- The %DFS tree.
536 534
    ///- The distance of each node from the root(s) in the %DFS tree.
537 535
    ///
538 536
    void start()
539 537
    {
540 538
      while ( !emptyQueue() ) processNextArc();
541 539
    }
542 540
    
543 541
    ///Executes the algorithm until \c dest is reached.
544 542

	
545 543
    ///Executes the algorithm until \c dest is reached.
546 544
    ///
547 545
    ///\pre init() must be called and at least one node should be added
548 546
    ///with addSource() before using this function.
549 547
    ///
550 548
    ///This method runs the %DFS algorithm from the root node(s)
551 549
    ///in order to
552 550
    ///compute the
553 551
    ///%DFS path to \c dest. The algorithm computes
554 552
    ///- The %DFS path to \c  dest.
555 553
    ///- The distance of \c dest from the root(s) in the %DFS tree.
556 554
    ///
557 555
    void start(Node dest)
558 556
    {
559 557
      while ( !emptyQueue() && G->target(_stack[_stack_head])!=dest ) 
560 558
	processNextArc();
561 559
    }
562 560
    
563 561
    ///Executes the algorithm until a condition is met.
564 562

	
565 563
    ///Executes the algorithm until a condition is met.
566 564
    ///
567 565
    ///\pre init() must be called and at least one node should be added
568 566
    ///with addSource() before using this function.
569 567
    ///
570 568
    ///\param em must be a bool (or convertible) arc map. The algorithm
571 569
    ///will stop when it reaches an arc \c e with <tt>em[e]</tt> true.
572 570
    ///
573 571
    ///\return The reached arc \c e with <tt>em[e]</tt> true or
574 572
    ///\c INVALID if no such arc was found.
575 573
    ///
576 574
    ///\warning Contrary to \ref Bfs and \ref Dijkstra, \c em is an arc map,
577 575
    ///not a node map.
578 576
    template<class EM>
579 577
    Arc start(const EM &em)
580 578
    {
581 579
      while ( !emptyQueue() && !em[_stack[_stack_head]] )
582 580
        processNextArc();
583 581
      return emptyQueue() ? INVALID : _stack[_stack_head];
584 582
    }
585 583

	
586 584
    ///Runs %DFS algorithm to visit all nodes in the digraph.
587 585
    
588 586
    ///This method runs the %DFS algorithm in order to
589 587
    ///compute the
590 588
    ///%DFS path to each node. The algorithm computes
591 589
    ///- The %DFS tree.
592 590
    ///- The distance of each node from the root in the %DFS tree.
593 591
    ///
594 592
    ///\note d.run() is just a shortcut of the following code.
595 593
    ///\code
596 594
    ///  d.init();
597 595
    ///  for (NodeIt it(digraph); it != INVALID; ++it) {
598 596
    ///    if (!d.reached(it)) {
599 597
    ///      d.addSource(it);
600 598
    ///      d.start();
601 599
    ///    }
602 600
    ///  }
603 601
    ///\endcode
604 602
    void run() {
605 603
      init();
606 604
      for (NodeIt it(*G); it != INVALID; ++it) {
607 605
        if (!reached(it)) {
608 606
          addSource(it);
609 607
          start();
610 608
        }
611 609
      }
612 610
    }
613 611

	
614 612
    ///Runs %DFS algorithm from node \c s.
615 613
    
616 614
    ///This method runs the %DFS algorithm from a root node \c s
617 615
    ///in order to
618 616
    ///compute the
619 617
    ///%DFS path to each node. The algorithm computes
620 618
    ///- The %DFS tree.
621 619
    ///- The distance of each node from the root in the %DFS tree.
622 620
    ///
623 621
    ///\note d.run(s) is just a shortcut of the following code.
624 622
    ///\code
625 623
    ///  d.init();
626 624
    ///  d.addSource(s);
627 625
    ///  d.start();
628 626
    ///\endcode
629 627
    void run(Node s) {
630 628
      init();
631 629
      addSource(s);
632 630
      start();
633 631
    }
634 632
    
635 633
    ///Finds the %DFS path between \c s and \c t.
636 634
    
637 635
    ///Finds the %DFS path between \c s and \c t.
638 636
    ///
639 637
    ///\return The length of the %DFS s---t path if there exists one,
640 638
    ///0 otherwise.
641 639
    ///\note Apart from the return value, d.run(s,t) is
642 640
    ///just a shortcut of the following code.
643 641
    ///\code
644 642
    ///  d.init();
645 643
    ///  d.addSource(s);
646 644
    ///  d.start(t);
647 645
    ///\endcode
648 646
    int run(Node s,Node t) {
649 647
      init();
650 648
      addSource(s);
651 649
      start(t);
652 650
      return reached(t)?_stack_head+1:0;
653 651
    }
654 652
    
655 653
    ///@}
656 654

	
657 655
    ///\name Query Functions
658 656
    ///The result of the %DFS algorithm can be obtained using these
659 657
    ///functions.\n
660 658
    ///Before the use of these functions,
661 659
    ///either run() or start() must be called.
662 660
    
663 661
    ///@{
664 662

	
665 663
    typedef PredMapPath<Digraph, PredMap> Path;
666 664

	
667 665
    ///Gives back the shortest path.
668 666
    
669 667
    ///Gives back the shortest path.
670 668
    ///\pre The \c t should be reachable from the source.
671 669
    Path path(Node t) 
672 670
    {
673 671
      return Path(*G, *_pred, t);
674 672
    }
675 673

	
676 674
    ///The distance of a node from the root(s).
677 675

	
678 676
    ///Returns the distance of a node from the root(s).
679 677
    ///\pre \ref run() must be called before using this function.
680 678
    ///\warning If node \c v is unreachable from the root(s) then the return 
681 679
    ///value of this funcion is undefined.
682 680
    int dist(Node v) const { return (*_dist)[v]; }
683 681

	
684 682
    ///Returns the 'previous arc' of the %DFS tree.
685 683

	
686 684
    ///For a node \c v it returns the 'previous arc'
687 685
    ///of the %DFS path,
688 686
    ///i.e. it returns the last arc of a %DFS path from the root(s) to \c
689 687
    ///v. It is \ref INVALID
690 688
    ///if \c v is unreachable from the root(s) or \c v is a root. The
691 689
    ///%DFS tree used here is equal to the %DFS tree used in
692 690
    ///\ref predNode().
693 691
    ///\pre Either \ref run() or \ref start() must be called before using
694 692
    ///this function.
695 693
    Arc predArc(Node v) const { return (*_pred)[v];}
696 694

	
697 695
    ///Returns the 'previous node' of the %DFS tree.
698 696

	
699 697
    ///For a node \c v it returns the 'previous node'
700 698
    ///of the %DFS tree,
701 699
    ///i.e. it returns the last but one node from a %DFS path from the
702 700
    ///root(s) to \c v.
703 701
    ///It is INVALID if \c v is unreachable from the root(s) or
704 702
    ///if \c v itself a root.
705 703
    ///The %DFS tree used here is equal to the %DFS
706 704
    ///tree used in \ref predArc().
707 705
    ///\pre Either \ref run() or \ref start() must be called before
708 706
    ///using this function.
709 707
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
710 708
				  G->source((*_pred)[v]); }
711 709
    
712 710
    ///Returns a reference to the NodeMap of distances.
713 711

	
714 712
    ///Returns a reference to the NodeMap of distances.
715 713
    ///\pre Either \ref run() or \ref init() must
716 714
    ///be called before using this function.
717 715
    const DistMap &distMap() const { return *_dist;}
718 716
 
719 717
    ///Returns a reference to the %DFS arc-tree map.
720 718

	
721 719
    ///Returns a reference to the NodeMap of the arcs of the
722 720
    ///%DFS tree.
723 721
    ///\pre Either \ref run() or \ref init()
724 722
    ///must be called before using this function.
725 723
    const PredMap &predMap() const { return *_pred;}
726 724
 
727 725
    ///Checks if a node is reachable from the root.
728 726

	
729 727
    ///Returns \c true if \c v is reachable from the root(s).
730 728
    ///\warning The source nodes are inditated as unreachable.
731 729
    ///\pre Either \ref run() or \ref start()
732 730
    ///must be called before using this function.
733 731
    ///
734 732
    bool reached(Node v) { return (*_reached)[v]; }
735 733
    
736 734
    ///@}
737 735
  };
738 736

	
739 737
  ///Default traits class of Dfs function.
740 738

	
741 739
  ///Default traits class of Dfs function.
742
  ///\param GR Digraph type.
740
  ///\tparam GR Digraph type.
743 741
  template<class GR>
744 742
  struct DfsWizardDefaultTraits
745 743
  {
746 744
    ///The digraph type the algorithm runs on. 
747 745
    typedef GR Digraph;
748 746
    ///\brief The type of the map that stores the last
749 747
    ///arcs of the %DFS paths.
750 748
    /// 
751 749
    ///The type of the map that stores the last
752 750
    ///arcs of the %DFS paths.
753 751
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
754 752
    ///
755 753
    typedef NullMap<typename Digraph::Node,typename GR::Arc> PredMap;
756 754
    ///Instantiates a PredMap.
757 755
 
758 756
    ///This function instantiates a \ref PredMap. 
759 757
    ///\param g is the digraph, to which we would like to define the PredMap.
760 758
    ///\todo The digraph alone may be insufficient to initialize
761 759
#ifdef DOXYGEN
762 760
    static PredMap *createPredMap(const GR &g) 
763 761
#else
764 762
    static PredMap *createPredMap(const GR &) 
765 763
#endif
766 764
    {
767 765
      return new PredMap();
768 766
    }
769 767

	
770 768
    ///The type of the map that indicates which nodes are processed.
771 769
 
772 770
    ///The type of the map that indicates which nodes are processed.
773 771
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
774 772
    ///\todo named parameter to set this type, function to read and write.
775 773
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
776 774
    ///Instantiates a ProcessedMap.
777 775
 
778 776
    ///This function instantiates a \ref ProcessedMap. 
779 777
    ///\param g is the digraph, to which
780 778
    ///we would like to define the \ref ProcessedMap
781 779
#ifdef DOXYGEN
782 780
    static ProcessedMap *createProcessedMap(const GR &g)
783 781
#else
784 782
    static ProcessedMap *createProcessedMap(const GR &)
785 783
#endif
786 784
    {
787 785
      return new ProcessedMap();
788 786
    }
789 787
    ///The type of the map that indicates which nodes are reached.
790 788
 
791 789
    ///The type of the map that indicates which nodes are reached.
792 790
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
793 791
    ///\todo named parameter to set this type, function to read and write.
794 792
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
795 793
    ///Instantiates a ReachedMap.
796 794
 
797 795
    ///This function instantiates a \ref ReachedMap. 
798 796
    ///\param G is the digraph, to which
799 797
    ///we would like to define the \ref ReachedMap.
800 798
    static ReachedMap *createReachedMap(const GR &G)
801 799
    {
802 800
      return new ReachedMap(G);
803 801
    }
804 802
    ///The type of the map that stores the dists of the nodes.
805 803
 
806 804
    ///The type of the map that stores the dists of the nodes.
807 805
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
808 806
    ///
809 807
    typedef NullMap<typename Digraph::Node,int> DistMap;
810 808
    ///Instantiates a DistMap.
811 809
 
812 810
    ///This function instantiates a \ref DistMap. 
813 811
    ///\param g is the digraph, to which we would like to define the \ref DistMap
814 812
#ifdef DOXYGEN
815 813
    static DistMap *createDistMap(const GR &g)
816 814
#else
817 815
    static DistMap *createDistMap(const GR &)
818 816
#endif
819 817
    {
820 818
      return new DistMap();
821 819
    }
822 820
  };
823 821
  
824 822
  /// Default traits used by \ref DfsWizard
825 823

	
826 824
  /// To make it easier to use Dfs algorithm
827 825
  ///we have created a wizard class.
828 826
  /// This \ref DfsWizard class needs default traits,
829 827
  ///as well as the \ref Dfs class.
830 828
  /// The \ref DfsWizardBase is a class to be the default traits of the
831 829
  /// \ref DfsWizard class.
832 830
  template<class GR>
833 831
  class DfsWizardBase : public DfsWizardDefaultTraits<GR>
834 832
  {
835 833

	
836 834
    typedef DfsWizardDefaultTraits<GR> Base;
837 835
  protected:
838 836
    /// Type of the nodes in the digraph.
839 837
    typedef typename Base::Digraph::Node Node;
840 838

	
841 839
    /// Pointer to the underlying digraph.
842 840
    void *_g;
843 841
    ///Pointer to the map of reached nodes.
844 842
    void *_reached;
845 843
    ///Pointer to the map of processed nodes.
846 844
    void *_processed;
847 845
    ///Pointer to the map of predecessors arcs.
848 846
    void *_pred;
849 847
    ///Pointer to the map of distances.
850 848
    void *_dist;
851 849
    ///Pointer to the source node.
852 850
    Node _source;
853 851
    
854 852
    public:
855 853
    /// Constructor.
856 854
    
857 855
    /// This constructor does not require parameters, therefore it initiates
858 856
    /// all of the attributes to default values (0, INVALID).
859 857
    DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
860 858
			   _dist(0), _source(INVALID) {}
861 859

	
862 860
    /// Constructor.
863 861
    
864 862
    /// This constructor requires some parameters,
865 863
    /// listed in the parameters list.
866 864
    /// Others are initiated to 0.
867 865
    /// \param g is the initial value of  \ref _g
868 866
    /// \param s is the initial value of  \ref _source
869 867
    DfsWizardBase(const GR &g, Node s=INVALID) :
870 868
      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))), 
871 869
      _reached(0), _processed(0), _pred(0), _dist(0), _source(s) {}
872 870

	
873 871
  };
874 872
  
875 873
  /// A class to make the usage of the Dfs algorithm easier
876 874

	
877 875
  /// This class is created to make it easier to use the Dfs algorithm.
878 876
  /// It uses the functions and features of the plain \ref Dfs,
879 877
  /// but it is much simpler to use it.
880 878
  ///
881 879
  /// Simplicity means that the way to change the types defined
882 880
  /// in the traits class is based on functions that returns the new class
883 881
  /// and not on templatable built-in classes.
884 882
  /// When using the plain \ref Dfs
885 883
  /// the new class with the modified type comes from
886 884
  /// the original class by using the ::
887 885
  /// operator. In the case of \ref DfsWizard only
888 886
  /// a function have to be called and it will
889 887
  /// return the needed class.
890 888
  ///
891 889
  /// It does not have own \ref run method. When its \ref run method is called
892 890
  /// it initiates a plain \ref Dfs object, and calls the \ref Dfs::run
893 891
  /// method of it.
894 892
  template<class TR>
895 893
  class DfsWizard : public TR
896 894
  {
897 895
    typedef TR Base;
898 896

	
899 897
    ///The type of the underlying digraph.
900 898
    typedef typename TR::Digraph Digraph;
901 899
    //\e
902 900
    typedef typename Digraph::Node Node;
903 901
    //\e
904 902
    typedef typename Digraph::NodeIt NodeIt;
905 903
    //\e
906 904
    typedef typename Digraph::Arc Arc;
907 905
    //\e
908 906
    typedef typename Digraph::OutArcIt OutArcIt;
909 907
    
910 908
    ///\brief The type of the map that stores
911 909
    ///the reached nodes
912 910
    typedef typename TR::ReachedMap ReachedMap;
913 911
    ///\brief The type of the map that stores
914 912
    ///the processed nodes
915 913
    typedef typename TR::ProcessedMap ProcessedMap;
916 914
    ///\brief The type of the map that stores the last
917 915
    ///arcs of the %DFS paths.
918 916
    typedef typename TR::PredMap PredMap;
919 917
    ///The type of the map that stores the distances of the nodes.
920 918
    typedef typename TR::DistMap DistMap;
921 919

	
922 920
  public:
923 921
    /// Constructor.
924 922
    DfsWizard() : TR() {}
925 923

	
926 924
    /// Constructor that requires parameters.
927 925

	
928 926
    /// Constructor that requires parameters.
929 927
    /// These parameters will be the default values for the traits class.
930 928
    DfsWizard(const Digraph &g, Node s=INVALID) :
931 929
      TR(g,s) {}
932 930

	
933 931
    ///Copy constructor
934 932
    DfsWizard(const TR &b) : TR(b) {}
935 933

	
936 934
    ~DfsWizard() {}
937 935

	
938 936
    ///Runs Dfs algorithm from a given node.
939 937
    
940 938
    ///Runs Dfs algorithm from a given node.
941 939
    ///The node can be given by the \ref source function.
942 940
    void run()
943 941
    {
944 942
      if(Base::_source==INVALID) throw UninitializedParameter();
945 943
      Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
946 944
      if(Base::_reached) 
947 945
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
948 946
      if(Base::_processed) 
949 947
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
950 948
      if(Base::_pred) 
951 949
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
952 950
      if(Base::_dist) 
953 951
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
954 952
      alg.run(Base::_source);
955 953
    }
956 954

	
957 955
    ///Runs Dfs algorithm from the given node.
958 956

	
959 957
    ///Runs Dfs algorithm from the given node.
960 958
    ///\param s is the given source.
961 959
    void run(Node s)
962 960
    {
963 961
      Base::_source=s;
964 962
      run();
965 963
    }
966 964

	
967 965
    template<class T>
968 966
    struct DefPredMapBase : public Base {
969 967
      typedef T PredMap;
970 968
      static PredMap *createPredMap(const Digraph &) { return 0; };
971 969
      DefPredMapBase(const TR &b) : TR(b) {}
972 970
    };
973 971
    
974 972
    ///\brief \ref named-templ-param "Named parameter"
975 973
    ///function for setting PredMap type
976 974
    ///
977 975
    /// \ref named-templ-param "Named parameter"
978 976
    ///function for setting PredMap type
979 977
    ///
980 978
    template<class T>
981 979
    DfsWizard<DefPredMapBase<T> > predMap(const T &t) 
982 980
    {
983 981
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
984 982
      return DfsWizard<DefPredMapBase<T> >(*this);
985 983
    }
986 984
    
987 985
 
988 986
    template<class T>
989 987
    struct DefReachedMapBase : public Base {
990 988
      typedef T ReachedMap;
991 989
      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
992 990
      DefReachedMapBase(const TR &b) : TR(b) {}
993 991
    };
994 992
    
995 993
    ///\brief \ref named-templ-param "Named parameter"
996 994
    ///function for setting ReachedMap
997 995
    ///
998 996
    /// \ref named-templ-param "Named parameter"
999 997
    ///function for setting ReachedMap
1000 998
    ///
1001 999
    template<class T>
1002 1000
    DfsWizard<DefReachedMapBase<T> > reachedMap(const T &t) 
1003 1001
    {
1004 1002
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1005 1003
      return DfsWizard<DefReachedMapBase<T> >(*this);
1006 1004
    }
1007 1005
    
1008 1006

	
1009 1007
    template<class T>
1010 1008
    struct DefProcessedMapBase : public Base {
1011 1009
      typedef T ProcessedMap;
1012 1010
      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1013 1011
      DefProcessedMapBase(const TR &b) : TR(b) {}
1014 1012
    };
1015 1013
    
1016 1014
    ///\brief \ref named-templ-param "Named parameter"
1017 1015
    ///function for setting ProcessedMap
1018 1016
    ///
1019 1017
    /// \ref named-templ-param "Named parameter"
1020 1018
    ///function for setting ProcessedMap
1021 1019
    ///
1022 1020
    template<class T>
1023 1021
    DfsWizard<DefProcessedMapBase<T> > processedMap(const T &t) 
1024 1022
    {
1025 1023
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1026 1024
      return DfsWizard<DefProcessedMapBase<T> >(*this);
1027 1025
    }
1028 1026
    
1029 1027
    template<class T>
1030 1028
    struct DefDistMapBase : public Base {
1031 1029
      typedef T DistMap;
1032 1030
      static DistMap *createDistMap(const Digraph &) { return 0; };
1033 1031
      DefDistMapBase(const TR &b) : TR(b) {}
1034 1032
    };
1035 1033
    
1036 1034
    ///\brief \ref named-templ-param "Named parameter"
1037 1035
    ///function for setting DistMap type
1038 1036
    ///
1039 1037
    /// \ref named-templ-param "Named parameter"
1040 1038
    ///function for setting DistMap type
1041 1039
    ///
1042 1040
    template<class T>
1043 1041
    DfsWizard<DefDistMapBase<T> > distMap(const T &t) 
1044 1042
    {
1045 1043
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1046 1044
      return DfsWizard<DefDistMapBase<T> >(*this);
1047 1045
    }
1048 1046
    
1049 1047
    /// Sets the source node, from which the Dfs algorithm runs.
1050 1048

	
1051 1049
    /// Sets the source node, from which the Dfs algorithm runs.
1052 1050
    /// \param s is the source node.
1053 1051
    DfsWizard<TR> &source(Node s) 
1054 1052
    {
1055 1053
      Base::_source=s;
1056 1054
      return *this;
1057 1055
    }
1058 1056
    
1059 1057
  };
1060 1058
  
1061 1059
  ///Function type interface for Dfs algorithm.
1062 1060

	
1063 1061
  ///\ingroup search
1064 1062
  ///Function type interface for Dfs algorithm.
1065 1063
  ///
1066 1064
  ///This function also has several
1067 1065
  ///\ref named-templ-func-param "named parameters",
1068 1066
  ///they are declared as the members of class \ref DfsWizard.
1069 1067
  ///The following
1070 1068
  ///example shows how to use these parameters.
1071 1069
  ///\code
1072 1070
  ///  dfs(g,source).predMap(preds).run();
1073 1071
  ///\endcode
1074 1072
  ///\warning Don't forget to put the \ref DfsWizard::run() "run()"
1075 1073
  ///to the end of the parameter list.
1076 1074
  ///\sa DfsWizard
1077 1075
  ///\sa Dfs
1078 1076
  template<class GR>
1079 1077
  DfsWizard<DfsWizardBase<GR> >
1080 1078
  dfs(const GR &g,typename GR::Node s=INVALID)
1081 1079
  {
1082 1080
    return DfsWizard<DfsWizardBase<GR> >(g,s);
1083 1081
  }
1084 1082

	
1085 1083
#ifdef DOXYGEN
1086 1084
  /// \brief Visitor class for dfs.
1087 1085
  ///  
1088 1086
  /// It gives a simple interface for a functional interface for dfs 
1089 1087
  /// traversal. The traversal on a linear data structure. 
1090 1088
  template <typename _Digraph>
1091 1089
  struct DfsVisitor {
1092 1090
    typedef _Digraph Digraph;
1093 1091
    typedef typename Digraph::Arc Arc;
1094 1092
    typedef typename Digraph::Node Node;
1095 1093
    /// \brief Called when the arc reach a node.
1096 1094
    /// 
1097 1095
    /// It is called when the dfs find an arc which target is not
1098 1096
    /// reached yet.
1099 1097
    void discover(const Arc& arc) {}
1100 1098
    /// \brief Called when the node reached first time.
1101 1099
    /// 
1102 1100
    /// It is Called when the node reached first time.
1103 1101
    void reach(const Node& node) {}
1104 1102
    /// \brief Called when we step back on an arc.
1105 1103
    /// 
1106 1104
    /// It is called when the dfs should step back on the arc.
1107 1105
    void backtrack(const Arc& arc) {}
1108 1106
    /// \brief Called when we step back from the node.
1109 1107
    /// 
1110 1108
    /// It is called when we step back from the node.
1111 1109
    void leave(const Node& node) {}
1112 1110
    /// \brief Called when the arc examined but target of the arc 
1113 1111
    /// already discovered.
1114 1112
    /// 
1115 1113
    /// It called when the arc examined but the target of the arc 
1116 1114
    /// already discovered.
1117 1115
    void examine(const Arc& arc) {}
1118 1116
    /// \brief Called for the source node of the dfs.
1119 1117
    /// 
1120 1118
    /// It is called for the source node of the dfs.
1121 1119
    void start(const Node& node) {}
1122 1120
    /// \brief Called when we leave the source node of the dfs.
1123 1121
    /// 
1124 1122
    /// It is called when we leave the source node of the dfs.
1125 1123
    void stop(const Node& node) {}
1126 1124

	
1127 1125
  };
1128 1126
#else
1129 1127
  template <typename _Digraph>
1130 1128
  struct DfsVisitor {
1131 1129
    typedef _Digraph Digraph;
1132 1130
    typedef typename Digraph::Arc Arc;
1133 1131
    typedef typename Digraph::Node Node;
1134 1132
    void discover(const Arc&) {}
1135 1133
    void reach(const Node&) {}
1136 1134
    void backtrack(const Arc&) {}
1137 1135
    void leave(const Node&) {}
1138 1136
    void examine(const Arc&) {}
1139 1137
    void start(const Node&) {}
1140 1138
    void stop(const Node&) {}
1141 1139

	
1142 1140
    template <typename _Visitor>
1143 1141
    struct Constraints {
1144 1142
      void constraints() {
1145 1143
	Arc arc;
1146 1144
	Node node;
1147 1145
	visitor.discover(arc);
1148 1146
	visitor.reach(node);
1149 1147
	visitor.backtrack(arc);
1150 1148
	visitor.leave(node);
1151 1149
	visitor.examine(arc);
1152 1150
	visitor.start(node);
1153 1151
	visitor.stop(arc);
1154 1152
      }
1155 1153
      _Visitor& visitor;
1156 1154
    };
1157 1155
  };
1158 1156
#endif
1159 1157

	
1160 1158
  /// \brief Default traits class of DfsVisit class.
1161 1159
  ///
1162 1160
  /// Default traits class of DfsVisit class.
1163
  /// \param _Digraph Digraph type.
1161
  /// \tparam _Digraph Digraph type.
1164 1162
  template<class _Digraph>
1165 1163
  struct DfsVisitDefaultTraits {
1166 1164

	
1167 1165
    /// \brief The digraph type the algorithm runs on. 
1168 1166
    typedef _Digraph Digraph;
1169 1167

	
1170 1168
    /// \brief The type of the map that indicates which nodes are reached.
1171 1169
    /// 
1172 1170
    /// The type of the map that indicates which nodes are reached.
1173 1171
    /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
1174 1172
    /// \todo named parameter to set this type, function to read and write.
1175 1173
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
1176 1174

	
1177 1175
    /// \brief Instantiates a ReachedMap.
1178 1176
    ///
1179 1177
    /// This function instantiates a \ref ReachedMap. 
1180 1178
    /// \param digraph is the digraph, to which
1181 1179
    /// we would like to define the \ref ReachedMap.
1182 1180
    static ReachedMap *createReachedMap(const Digraph &digraph) {
1183 1181
      return new ReachedMap(digraph);
1184 1182
    }
1185 1183

	
1186 1184
  };
1187 1185
  
1188 1186
  /// %DFS Visit algorithm class.
1189 1187
  
1190 1188
  /// \ingroup search
1191 1189
  /// This class provides an efficient implementation of the %DFS algorithm
1192 1190
  /// with visitor interface.
1193 1191
  ///
1194 1192
  /// The %DfsVisit class provides an alternative interface to the Dfs
1195 1193
  /// class. It works with callback mechanism, the DfsVisit object calls
1196 1194
  /// on every dfs event the \c Visitor class member functions. 
1197 1195
  ///
1198
  /// \param _Digraph The digraph type the algorithm runs on. The default value is
1196
  /// \tparam _Digraph The digraph type the algorithm runs on. The default value is
1199 1197
  /// \ref ListDigraph. The value of _Digraph is not used directly by Dfs, it
1200 1198
  /// is only passed to \ref DfsDefaultTraits.
1201
  /// \param _Visitor The Visitor object for the algorithm. The 
1199
  /// \tparam _Visitor The Visitor object for the algorithm. The 
1202 1200
  /// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty Visitor which
1203 1201
  /// does not observe the Dfs events. If you want to observe the dfs
1204 1202
  /// events you should implement your own Visitor class.
1205
  /// \param _Traits Traits class to set various data types used by the 
1203
  /// \tparam _Traits Traits class to set various data types used by the 
1206 1204
  /// algorithm. The default traits class is
1207 1205
  /// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>".
1208 1206
  /// See \ref DfsVisitDefaultTraits for the documentation of
1209 1207
  /// a Dfs visit traits class.
1210 1208
  ///
1211 1209
  /// \author Jacint Szabo, Alpar Juttner and Balazs Dezso
1212 1210
#ifdef DOXYGEN
1213 1211
  template <typename _Digraph, typename _Visitor, typename _Traits>
1214 1212
#else
1215 1213
  template <typename _Digraph = ListDigraph,
1216 1214
	    typename _Visitor = DfsVisitor<_Digraph>,
1217 1215
	    typename _Traits = DfsDefaultTraits<_Digraph> >
1218 1216
#endif
1219 1217
  class DfsVisit {
1220 1218
  public:
1221 1219
    
1222 1220
    /// \brief \ref Exception for uninitialized parameters.
1223 1221
    ///
1224 1222
    /// This error represents problems in the initialization
1225 1223
    /// of the parameters of the algorithms.
1226 1224
    class UninitializedParameter : public lemon::UninitializedParameter {
1227 1225
    public:
1228 1226
      virtual const char* what() const throw() 
1229 1227
      {
1230 1228
	return "lemon::DfsVisit::UninitializedParameter";
1231 1229
      }
1232 1230
    };
1233 1231

	
1234 1232
    typedef _Traits Traits;
1235 1233

	
1236 1234
    typedef typename Traits::Digraph Digraph;
1237 1235

	
1238 1236
    typedef _Visitor Visitor;
1239 1237

	
1240 1238
    ///The type of the map indicating which nodes are reached.
1241 1239
    typedef typename Traits::ReachedMap ReachedMap;
1242 1240

	
1243 1241
  private:
1244 1242

	
1245 1243
    typedef typename Digraph::Node Node;
1246 1244
    typedef typename Digraph::NodeIt NodeIt;
1247 1245
    typedef typename Digraph::Arc Arc;
1248 1246
    typedef typename Digraph::OutArcIt OutArcIt;
1249 1247

	
1250 1248
    /// Pointer to the underlying digraph.
1251 1249
    const Digraph *_digraph;
1252 1250
    /// Pointer to the visitor object.
1253 1251
    Visitor *_visitor;
1254 1252
    ///Pointer to the map of reached status of the nodes.
1255 1253
    ReachedMap *_reached;
1256 1254
    ///Indicates if \ref _reached is locally allocated (\c true) or not.
1257 1255
    bool local_reached;
1258 1256

	
1259 1257
    std::vector<typename Digraph::Arc> _stack;
1260 1258
    int _stack_head;
1261 1259

	
1262 1260
    /// \brief Creates the maps if necessary.
1263 1261
    ///
1264 1262
    /// Creates the maps if necessary.
1265 1263
    void create_maps() {
1266 1264
      if(!_reached) {
1267 1265
	local_reached = true;
1268 1266
	_reached = Traits::createReachedMap(*_digraph);
1269 1267
      }
1270 1268
    }
1271 1269

	
1272 1270
  protected:
1273 1271

	
1274 1272
    DfsVisit() {}
1275 1273
    
1276 1274
  public:
1277 1275

	
1278 1276
    typedef DfsVisit Create;
1279 1277

	
1280 1278
    /// \name Named template parameters
1281 1279

	
1282 1280
    ///@{
1283 1281
    template <class T>
1284 1282
    struct DefReachedMapTraits : public Traits {
1285 1283
      typedef T ReachedMap;
1286 1284
      static ReachedMap *createReachedMap(const Digraph &digraph) {
1287 1285
	throw UninitializedParameter();
1288 1286
      }
1289 1287
    };
1290 1288
    /// \brief \ref named-templ-param "Named parameter" for setting 
1291 1289
    /// ReachedMap type
1292 1290
    ///
1293 1291
    /// \ref named-templ-param "Named parameter" for setting ReachedMap type
1294 1292
    template <class T>
1295 1293
    struct DefReachedMap : public DfsVisit< Digraph, Visitor,
1296 1294
					    DefReachedMapTraits<T> > {
1297 1295
      typedef DfsVisit< Digraph, Visitor, DefReachedMapTraits<T> > Create;
1298 1296
    };
1299 1297
    ///@}
1300 1298

	
1301 1299
  public:      
1302 1300
    
1303 1301
    /// \brief Constructor.
1304 1302
    ///
1305 1303
    /// Constructor.
1306 1304
    ///
1307 1305
    /// \param digraph the digraph the algorithm will run on.
1308 1306
    /// \param visitor The visitor of the algorithm.
1309 1307
    ///
1310 1308
    DfsVisit(const Digraph& digraph, Visitor& visitor) 
1311 1309
      : _digraph(&digraph), _visitor(&visitor),
1312 1310
	_reached(0), local_reached(false) {}
1313 1311
    
1314 1312
    /// \brief Destructor.
1315 1313
    ///
1316 1314
    /// Destructor.
1317 1315
    ~DfsVisit() {
1318 1316
      if(local_reached) delete _reached;
1319 1317
    }
1320 1318

	
1321 1319
    /// \brief Sets the map indicating if a node is reached.
1322 1320
    ///
1323 1321
    /// Sets the map indicating if a node is reached.
1324 1322
    /// If you don't use this function before calling \ref run(),
1325 1323
    /// it will allocate one. The destuctor deallocates this
1326 1324
    /// automatically allocated map, of course.
1327 1325
    /// \return <tt> (*this) </tt>
1328 1326
    DfsVisit &reachedMap(ReachedMap &m) {
1329 1327
      if(local_reached) {
1330 1328
	delete _reached;
1331 1329
	local_reached=false;
1332 1330
      }
1333 1331
      _reached = &m;
1334 1332
      return *this;
1335 1333
    }
1336 1334

	
1337 1335
  public:
1338 1336
    /// \name Execution control
1339 1337
    /// The simplest way to execute the algorithm is to use
1340 1338
    /// one of the member functions called \c run(...).
1341 1339
    /// \n
1342 1340
    /// If you need more control on the execution,
1343 1341
    /// first you must call \ref init(), then you can adda source node
1344 1342
    /// with \ref addSource().
1345 1343
    /// Finally \ref start() will perform the actual path
1346 1344
    /// computation.
1347 1345

	
1348 1346
    /// @{
1349 1347
    /// \brief Initializes the internal data structures.
1350 1348
    ///
1351 1349
    /// Initializes the internal data structures.
1352 1350
    ///
1353 1351
    void init() {
1354 1352
      create_maps();
1355 1353
      _stack.resize(countNodes(*_digraph));
1356 1354
      _stack_head = -1;
1357 1355
      for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
1358 1356
	_reached->set(u, false);
1359 1357
      }
1360 1358
    }
1361 1359
    
1362 1360
    /// \brief Adds a new source node.
1363 1361
    ///
1364 1362
    /// Adds a new source node to the set of nodes to be processed.
1365 1363
    void addSource(Node s) {
1366 1364
      if(!(*_reached)[s]) {
1367 1365
	  _reached->set(s,true);
1368 1366
	  _visitor->start(s);
1369 1367
	  _visitor->reach(s);
1370 1368
	  Arc e; 
1371 1369
	  _digraph->firstOut(e, s);
1372 1370
	  if (e != INVALID) {
1373 1371
	    _stack[++_stack_head] = e;
1374 1372
	  } else {
1375 1373
	    _visitor->leave(s);
1376 1374
	  }
1377 1375
	}
1378 1376
    }
1379 1377
    
1380 1378
    /// \brief Processes the next arc.
1381 1379
    ///
1382 1380
    /// Processes the next arc.
1383 1381
    ///
1384 1382
    /// \return The processed arc.
1385 1383
    ///
1386 1384
    /// \pre The stack must not be empty!
1387 1385
    Arc processNextArc() { 
1388 1386
      Arc e = _stack[_stack_head];
1389 1387
      Node m = _digraph->target(e);
1390 1388
      if(!(*_reached)[m]) {
1391 1389
	_visitor->discover(e);
1392 1390
	_visitor->reach(m);
1393 1391
	_reached->set(m, true);
1394 1392
	_digraph->firstOut(_stack[++_stack_head], m);
1395 1393
      } else {
1396 1394
	_visitor->examine(e);
1397 1395
	m = _digraph->source(e);
1398 1396
	_digraph->nextOut(_stack[_stack_head]);
1399 1397
      }
1400 1398
      while (_stack_head>=0 && _stack[_stack_head] == INVALID) {
1401 1399
	_visitor->leave(m);
1402 1400
	--_stack_head;
1403 1401
	if (_stack_head >= 0) {
1404 1402
	  _visitor->backtrack(_stack[_stack_head]);
1405 1403
	  m = _digraph->source(_stack[_stack_head]);
1406 1404
	  _digraph->nextOut(_stack[_stack_head]);
1407 1405
	} else {
1408 1406
	  _visitor->stop(m);	  
1409 1407
	}
1410 1408
      }
1411 1409
      return e;
1412 1410
    }
1413 1411

	
1414 1412
    /// \brief Next arc to be processed.
1415 1413
    ///
1416 1414
    /// Next arc to be processed.
1417 1415
    ///
1418 1416
    /// \return The next arc to be processed or INVALID if the stack is
1419 1417
    /// empty.
1420 1418
    Arc nextArc() { 
1421 1419
      return _stack_head >= 0 ? _stack[_stack_head] : INVALID;
1422 1420
    }
1423 1421

	
1424 1422
    /// \brief Returns \c false if there are nodes
1425 1423
    /// to be processed in the queue
1426 1424
    ///
1427 1425
    /// Returns \c false if there are nodes
1428 1426
    /// to be processed in the queue
1429 1427
    bool emptyQueue() { return _stack_head < 0; }
1430 1428

	
1431 1429
    /// \brief Returns the number of the nodes to be processed.
1432 1430
    ///
1433 1431
    /// Returns the number of the nodes to be processed in the queue.
1434 1432
    int queueSize() { return _stack_head + 1; }
1435 1433
    
1436 1434
    /// \brief Executes the algorithm.
1437 1435
    ///
1438 1436
    /// Executes the algorithm.
1439 1437
    ///
1440 1438
    /// \pre init() must be called and at least one node should be added
1441 1439
    /// with addSource() before using this function.
1442 1440
    void start() {
1443 1441
      while ( !emptyQueue() ) processNextArc();
1444 1442
    }
1445 1443
    
1446 1444
    /// \brief Executes the algorithm until \c dest is reached.
1447 1445
    ///
1448 1446
    /// Executes the algorithm until \c dest is reached.
1449 1447
    ///
1450 1448
    /// \pre init() must be called and at least one node should be added
1451 1449
    /// with addSource() before using this function.
1452 1450
    void start(Node dest) {
1453 1451
      while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != dest ) 
1454 1452
	processNextArc();
1455 1453
    }
1456 1454
    
1457 1455
    /// \brief Executes the algorithm until a condition is met.
1458 1456
    ///
1459 1457
    /// Executes the algorithm until a condition is met.
1460 1458
    ///
1461 1459
    /// \pre init() must be called and at least one node should be added
1462 1460
    /// with addSource() before using this function.
1463 1461
    ///
1464 1462
    /// \param em must be a bool (or convertible) arc map. The algorithm
1465 1463
    /// will stop when it reaches an arc \c e with <tt>em[e]</tt> true.
1466 1464
    ///
1467 1465
    ///\return The reached arc \c e with <tt>em[e]</tt> true or
1468 1466
    ///\c INVALID if no such arc was found.
1469 1467
    ///
1470 1468
    /// \warning Contrary to \ref Bfs and \ref Dijkstra, \c em is an arc map,
1471 1469
    /// not a node map.
1472 1470
    template <typename EM>
1473 1471
    Arc start(const EM &em) {
1474 1472
      while ( !emptyQueue() && !em[_stack[_stack_head]] )
1475 1473
        processNextArc();
1476 1474
      return emptyQueue() ? INVALID : _stack[_stack_head];
1477 1475
    }
1478 1476

	
1479 1477
    /// \brief Runs %DFSVisit algorithm from node \c s.
1480 1478
    ///
1481 1479
    /// This method runs the %DFS algorithm from a root node \c s.
1482 1480
    /// \note d.run(s) is just a shortcut of the following code.
1483 1481
    ///\code
1484 1482
    ///   d.init();
1485 1483
    ///   d.addSource(s);
1486 1484
    ///   d.start();
1487 1485
    ///\endcode
1488 1486
    void run(Node s) {
1489 1487
      init();
1490 1488
      addSource(s);
1491 1489
      start();
1492 1490
    }
1493 1491

	
1494 1492
    /// \brief Runs %DFSVisit algorithm to visit all nodes in the digraph.
1495 1493
    
1496 1494
    /// This method runs the %DFS algorithm in order to
1497 1495
    /// compute the %DFS path to each node. The algorithm computes
1498 1496
    /// - The %DFS tree.
1499 1497
    /// - The distance of each node from the root in the %DFS tree.
1500 1498
    ///
1501 1499
    ///\note d.run() is just a shortcut of the following code.
1502 1500
    ///\code
1503 1501
    ///  d.init();
1504 1502
    ///  for (NodeIt it(digraph); it != INVALID; ++it) {
1505 1503
    ///    if (!d.reached(it)) {
1506 1504
    ///      d.addSource(it);
1507 1505
    ///      d.start();
1508 1506
    ///    }
1509 1507
    ///  }
1510 1508
    ///\endcode
1511 1509
    void run() {
1512 1510
      init();
1513 1511
      for (NodeIt it(*_digraph); it != INVALID; ++it) {
1514 1512
        if (!reached(it)) {
1515 1513
          addSource(it);
1516 1514
          start();
1517 1515
        }
1518 1516
      }
1519 1517
    }
1520 1518
    ///@}
1521 1519

	
1522 1520
    /// \name Query Functions
1523 1521
    /// The result of the %DFS algorithm can be obtained using these
1524 1522
    /// functions.\n
1525 1523
    /// Before the use of these functions,
1526 1524
    /// either run() or start() must be called.
1527 1525
    ///@{
1528 1526
    /// \brief Checks if a node is reachable from the root.
1529 1527
    ///
1530 1528
    /// Returns \c true if \c v is reachable from the root(s).
1531 1529
    /// \warning The source nodes are inditated as unreachable.
1532 1530
    /// \pre Either \ref run() or \ref start()
1533 1531
    /// must be called before using this function.
1534 1532
    ///
1535 1533
    bool reached(Node v) { return (*_reached)[v]; }
1536 1534
    ///@}
1537 1535
  };
1538 1536

	
1539 1537

	
1540 1538
} //END OF NAMESPACE LEMON
1541 1539

	
1542 1540
#endif
1543 1541

	
Ignore white space 768 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_DIJKSTRA_H
20 20
#define LEMON_DIJKSTRA_H
21 21

	
22 22
///\ingroup shortest_path
23 23
///\file
24 24
///\brief Dijkstra algorithm.
25 25
///
26 26

	
27 27
#include <lemon/list_digraph.h>
28 28
#include <lemon/bin_heap.h>
29 29
#include <lemon/bits/path_dump.h>
30 30
#include <lemon/bits/invalid.h>
31 31
#include <lemon/error.h>
32 32
#include <lemon/maps.h>
33 33

	
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  /// \brief Default OperationTraits for the Dijkstra algorithm class.
38 38
  ///  
39 39
  /// It defines all computational operations and constants which are
40 40
  /// used in the Dijkstra algorithm.
41 41
  template <typename Value>
42 42
  struct DijkstraDefaultOperationTraits {
43 43
    /// \brief Gives back the zero value of the type.
44 44
    static Value zero() {
45 45
      return static_cast<Value>(0);
46 46
    }
47 47
    /// \brief Gives back the sum of the given two elements.
48 48
    static Value plus(const Value& left, const Value& right) {
49 49
      return left + right;
50 50
    }
51 51
    /// \brief Gives back true only if the first value less than the second.
52 52
    static bool less(const Value& left, const Value& right) {
53 53
      return left < right;
54 54
    }
55 55
  };
56 56

	
57 57
  /// \brief Widest path OperationTraits for the Dijkstra algorithm class.
58 58
  ///  
59 59
  /// It defines all computational operations and constants which are
60 60
  /// used in the Dijkstra algorithm for widest path computation.
61 61
  template <typename Value>
62 62
  struct DijkstraWidestPathOperationTraits {
63 63
    /// \brief Gives back the maximum value of the type.
64 64
    static Value zero() {
65 65
      return std::numeric_limits<Value>::max();
66 66
    }
67 67
    /// \brief Gives back the minimum of the given two elements.
68 68
    static Value plus(const Value& left, const Value& right) {
69 69
      return std::min(left, right);
70 70
    }
71 71
    /// \brief Gives back true only if the first value less than the second.
72 72
    static bool less(const Value& left, const Value& right) {
73 73
      return left < right;
74 74
    }
75 75
  };
76 76
  
77 77
  ///Default traits class of Dijkstra class.
78 78

	
79 79
  ///Default traits class of Dijkstra class.
80
  ///\param GR Digraph type.
81
  ///\param LM Type of length map.
80
  ///\tparam GR Digraph type.
81
  ///\tparam LM Type of length map.
82 82
  template<class GR, class LM>
83 83
  struct DijkstraDefaultTraits
84 84
  {
85 85
    ///The digraph type the algorithm runs on. 
86 86
    typedef GR Digraph;
87 87
    ///The type of the map that stores the arc lengths.
88 88

	
89 89
    ///The type of the map that stores the arc lengths.
90 90
    ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
91 91
    typedef LM LengthMap;
92 92
    //The type of the length of the arcs.
93 93
    typedef typename LM::Value Value;
94 94
    /// Operation traits for Dijkstra algorithm.
95 95

	
96 96
    /// It defines the used operation by the algorithm.
97 97
    /// \see DijkstraDefaultOperationTraits
98 98
    typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
99 99
    /// The cross reference type used by heap.
100 100

	
101 101

	
102 102
    /// The cross reference type used by heap.
103 103
    /// Usually it is \c Digraph::NodeMap<int>.
104 104
    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
105 105
    ///Instantiates a HeapCrossRef.
106 106

	
107 107
    ///This function instantiates a \c HeapCrossRef. 
108 108
    /// \param G is the digraph, to which we would like to define the 
109 109
    /// HeapCrossRef.
110 110
    static HeapCrossRef *createHeapCrossRef(const GR &G) 
111 111
    {
112 112
      return new HeapCrossRef(G);
113 113
    }
114 114
    
115 115
    ///The heap type used by Dijkstra algorithm.
116 116

	
117 117
    ///The heap type used by Dijkstra algorithm.
118 118
    ///
119 119
    ///\sa BinHeap
120 120
    ///\sa Dijkstra
121 121
    typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap;
122 122

	
123 123
    static Heap *createHeap(HeapCrossRef& R) 
124 124
    {
125 125
      return new Heap(R);
126 126
    }
127 127

	
128 128
    ///\brief The type of the map that stores the last
129 129
    ///arcs of the shortest paths.
130 130
    /// 
131 131
    ///The type of the map that stores the last
132 132
    ///arcs of the shortest paths.
133 133
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
134 134
    ///
135 135
    typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap;
136 136
    ///Instantiates a PredMap.
137 137
 
138 138
    ///This function instantiates a \c PredMap. 
139 139
    ///\param G is the digraph, to which we would like to define the PredMap.
140 140
    ///\todo The digraph alone may be insufficient for the initialization
141 141
    static PredMap *createPredMap(const GR &G) 
142 142
    {
143 143
      return new PredMap(G);
144 144
    }
145 145

	
146 146
    ///The type of the map that stores whether a nodes is processed.
147 147
 
148 148
    ///The type of the map that stores whether a nodes is processed.
149 149
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
150 150
    ///By default it is a NullMap.
151 151
    ///\todo If it is set to a real map,
152 152
    ///Dijkstra::processed() should read this.
153 153
    ///\todo named parameter to set this type, function to read and write.
154 154
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
155 155
    ///Instantiates a ProcessedMap.
156 156
 
157 157
    ///This function instantiates a \c ProcessedMap. 
158 158
    ///\param g is the digraph, to which
159 159
    ///we would like to define the \c ProcessedMap
160 160
#ifdef DOXYGEN
161 161
    static ProcessedMap *createProcessedMap(const GR &g)
162 162
#else
163 163
    static ProcessedMap *createProcessedMap(const GR &)
164 164
#endif
165 165
    {
166 166
      return new ProcessedMap();
167 167
    }
168 168
    ///The type of the map that stores the dists of the nodes.
169 169
 
170 170
    ///The type of the map that stores the dists of the nodes.
171 171
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
172 172
    ///
173 173
    typedef typename Digraph::template NodeMap<typename LM::Value> DistMap;
174 174
    ///Instantiates a DistMap.
175 175
 
176 176
    ///This function instantiates a \ref DistMap. 
177 177
    ///\param G is the digraph, to which we would like to define the \ref DistMap
178 178
    static DistMap *createDistMap(const GR &G)
179 179
    {
180 180
      return new DistMap(G);
181 181
    }
182 182
  };
183 183
  
184 184
  ///%Dijkstra algorithm class.
185 185
  
186 186
  /// \ingroup shortest_path
187 187
  ///This class provides an efficient implementation of %Dijkstra algorithm.
188 188
  ///The arc lengths are passed to the algorithm using a
189 189
  ///\ref concepts::ReadMap "ReadMap",
190 190
  ///so it is easy to change it to any kind of length.
191 191
  ///
192 192
  ///The type of the length is determined by the
193 193
  ///\ref concepts::ReadMap::Value "Value" of the length map.
194 194
  ///
195 195
  ///It is also possible to change the underlying priority heap.
196 196
  ///
197
  ///\param GR The digraph type the algorithm runs on. The default value
197
  ///\tparam GR The digraph type the algorithm runs on. The default value
198 198
  ///is \ref ListDigraph. The value of GR is not used directly by
199 199
  ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits.
200
  ///\param LM This read-only ArcMap determines the lengths of the
200
  ///\tparam LM This read-only ArcMap determines the lengths of the
201 201
  ///arcs. It is read once for each arc, so the map may involve in
202 202
  ///relatively time consuming process to compute the arc length if
203 203
  ///it is necessary. The default map type is \ref
204 204
  ///concepts::Digraph::ArcMap "Digraph::ArcMap<int>".  The value
205 205
  ///of LM is not used directly by Dijkstra, it is only passed to \ref
206
  ///DijkstraDefaultTraits.  \param TR Traits class to set
206
  ///DijkstraDefaultTraits.  
207
  ///\tparam TR Traits class to set
207 208
  ///various data types used by the algorithm.  The default traits
208 209
  ///class is \ref DijkstraDefaultTraits
209 210
  ///"DijkstraDefaultTraits<GR,LM>".  See \ref
210 211
  ///DijkstraDefaultTraits for the documentation of a Dijkstra traits
211 212
  ///class.
212
  ///
213
  ///\author Jacint Szabo and Alpar Juttner
214 213

	
215 214
#ifdef DOXYGEN
216 215
  template <typename GR, typename LM, typename TR>
217 216
#else
218 217
  template <typename GR=ListDigraph,
219 218
	    typename LM=typename GR::template ArcMap<int>,
220 219
	    typename TR=DijkstraDefaultTraits<GR,LM> >
221 220
#endif
222 221
  class Dijkstra {
223 222
  public:
224 223
    /**
225 224
     * \brief \ref Exception for uninitialized parameters.
226 225
     *
227 226
     * This error represents problems in the initialization
228 227
     * of the parameters of the algorithms.
229 228
     */
230 229
    class UninitializedParameter : public lemon::UninitializedParameter {
231 230
    public:
232 231
      virtual const char* what() const throw() {
233 232
	return "lemon::Dijkstra::UninitializedParameter";
234 233
      }
235 234
    };
236 235

	
237 236
    typedef TR Traits;
238 237
    ///The type of the underlying digraph.
239 238
    typedef typename TR::Digraph Digraph;
240 239
    ///\e
241 240
    typedef typename Digraph::Node Node;
242 241
    ///\e
243 242
    typedef typename Digraph::NodeIt NodeIt;
244 243
    ///\e
245 244
    typedef typename Digraph::Arc Arc;
246 245
    ///\e
247 246
    typedef typename Digraph::OutArcIt OutArcIt;
248 247
    
249 248
    ///The type of the length of the arcs.
250 249
    typedef typename TR::LengthMap::Value Value;
251 250
    ///The type of the map that stores the arc lengths.
252 251
    typedef typename TR::LengthMap LengthMap;
253 252
    ///\brief The type of the map that stores the last
254 253
    ///arcs of the shortest paths.
255 254
    typedef typename TR::PredMap PredMap;
256 255
    ///The type of the map indicating if a node is processed.
257 256
    typedef typename TR::ProcessedMap ProcessedMap;
258 257
    ///The type of the map that stores the dists of the nodes.
259 258
    typedef typename TR::DistMap DistMap;
260 259
    ///The cross reference type used for the current heap.
261 260
    typedef typename TR::HeapCrossRef HeapCrossRef;
262 261
    ///The heap type used by the dijkstra algorithm.
263 262
    typedef typename TR::Heap Heap;
264 263
    ///The operation traits.
265 264
    typedef typename TR::OperationTraits OperationTraits;
266 265
  private:
267 266
    /// Pointer to the underlying digraph.
268 267
    const Digraph *G;
269 268
    /// Pointer to the length map
270 269
    const LengthMap *length;
271 270
    ///Pointer to the map of predecessors arcs.
272 271
    PredMap *_pred;
273 272
    ///Indicates if \ref _pred is locally allocated (\c true) or not.
274 273
    bool local_pred;
275 274
    ///Pointer to the map of distances.
276 275
    DistMap *_dist;
277 276
    ///Indicates if \ref _dist is locally allocated (\c true) or not.
278 277
    bool local_dist;
279 278
    ///Pointer to the map of processed status of the nodes.
280 279
    ProcessedMap *_processed;
281 280
    ///Indicates if \ref _processed is locally allocated (\c true) or not.
282 281
    bool local_processed;
283 282
    ///Pointer to the heap cross references.
284 283
    HeapCrossRef *_heap_cross_ref;
285 284
    ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
286 285
    bool local_heap_cross_ref;
287 286
    ///Pointer to the heap.
288 287
    Heap *_heap;
289 288
    ///Indicates if \ref _heap is locally allocated (\c true) or not.
290 289
    bool local_heap;
291 290

	
292 291
    ///Creates the maps if necessary.
293 292
    
294 293
    ///\todo Better memory allocation (instead of new).
295 294
    void create_maps() 
296 295
    {
297 296
      if(!_pred) {
298 297
	local_pred = true;
299 298
	_pred = Traits::createPredMap(*G);
300 299
      }
301 300
      if(!_dist) {
302 301
	local_dist = true;
303 302
	_dist = Traits::createDistMap(*G);
304 303
      }
305 304
      if(!_processed) {
306 305
	local_processed = true;
307 306
	_processed = Traits::createProcessedMap(*G);
308 307
      }
309 308
      if (!_heap_cross_ref) {
310 309
	local_heap_cross_ref = true;
311 310
	_heap_cross_ref = Traits::createHeapCrossRef(*G);
312 311
      }
313 312
      if (!_heap) {
314 313
	local_heap = true;
315 314
	_heap = Traits::createHeap(*_heap_cross_ref);
316 315
      }
317 316
    }
318 317
    
319 318
  public :
320 319

	
321 320
    typedef Dijkstra Create;
322 321
 
323 322
    ///\name Named template parameters
324 323

	
325 324
    ///@{
326 325

	
327 326
    template <class T>
328 327
    struct DefPredMapTraits : public Traits {
329 328
      typedef T PredMap;
330 329
      static PredMap *createPredMap(const Digraph &)
331 330
      {
332 331
	throw UninitializedParameter();
333 332
      }
334 333
    };
335 334
    ///\ref named-templ-param "Named parameter" for setting PredMap type
336 335

	
337 336
    ///\ref named-templ-param "Named parameter" for setting PredMap type
338 337
    ///
339 338
    template <class T>
340 339
    struct DefPredMap 
341 340
      : public Dijkstra< Digraph,	LengthMap, DefPredMapTraits<T> > {
342 341
      typedef Dijkstra< Digraph,	LengthMap, DefPredMapTraits<T> > Create;
343 342
    };
344 343
    
345 344
    template <class T>
346 345
    struct DefDistMapTraits : public Traits {
347 346
      typedef T DistMap;
348 347
      static DistMap *createDistMap(const Digraph &)
349 348
      {
350 349
	throw UninitializedParameter();
351 350
      }
352 351
    };
353 352
    ///\ref named-templ-param "Named parameter" for setting DistMap type
354 353

	
355 354
    ///\ref named-templ-param "Named parameter" for setting DistMap type
356 355
    ///
357 356
    template <class T>
358 357
    struct DefDistMap 
359 358
      : public Dijkstra< Digraph, LengthMap, DefDistMapTraits<T> > { 
360 359
      typedef Dijkstra< Digraph, LengthMap, DefDistMapTraits<T> > Create;
361 360
    };
362 361
    
363 362
    template <class T>
364 363
    struct DefProcessedMapTraits : public Traits {
365 364
      typedef T ProcessedMap;
366 365
      static ProcessedMap *createProcessedMap(const Digraph &G) 
367 366
      {
368 367
	throw UninitializedParameter();
369 368
      }
370 369
    };
371 370
    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
372 371

	
373 372
    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
374 373
    ///
375 374
    template <class T>
376 375
    struct DefProcessedMap 
377 376
      : public Dijkstra< Digraph,	LengthMap, DefProcessedMapTraits<T> > { 
378 377
      typedef Dijkstra< Digraph,	LengthMap, DefProcessedMapTraits<T> > Create;
379 378
    };
380 379
    
381 380
    struct DefDigraphProcessedMapTraits : public Traits {
382 381
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
383 382
      static ProcessedMap *createProcessedMap(const Digraph &G) 
384 383
      {
385 384
	return new ProcessedMap(G);
386 385
      }
387 386
    };
388 387
    ///\brief \ref named-templ-param "Named parameter"
389 388
    ///for setting the ProcessedMap type to be Digraph::NodeMap<bool>.
390 389
    ///
391 390
    ///\ref named-templ-param "Named parameter"
392 391
    ///for setting the ProcessedMap type to be Digraph::NodeMap<bool>.
393 392
    ///If you don't set it explicitely, it will be automatically allocated.
394 393
    template <class T>
395 394
    struct DefProcessedMapToBeDefaultMap 
396 395
      : public Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits> {
397 396
      typedef Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits> Create;
398 397
    };
399 398

	
400 399
    template <class H, class CR>
401 400
    struct DefHeapTraits : public Traits {
402 401
      typedef CR HeapCrossRef;
403 402
      typedef H Heap;
404 403
      static HeapCrossRef *createHeapCrossRef(const Digraph &) {
405 404
	throw UninitializedParameter();
406 405
      }
407 406
      static Heap *createHeap(HeapCrossRef &) 
408 407
      {
409 408
	throw UninitializedParameter();
410 409
      }
411 410
    };
412 411
    ///\brief \ref named-templ-param "Named parameter" for setting
413 412
    ///heap and cross reference type
414 413
    ///
415 414
    ///\ref named-templ-param "Named parameter" for setting heap and cross 
416 415
    ///reference type
417 416
    ///
418 417
    template <class H, class CR = typename Digraph::template NodeMap<int> >
419 418
    struct DefHeap
420 419
      : public Dijkstra< Digraph,	LengthMap, DefHeapTraits<H, CR> > { 
421 420
      typedef Dijkstra< Digraph,	LengthMap, DefHeapTraits<H, CR> > Create;
422 421
    };
423 422

	
424 423
    template <class H, class CR>
425 424
    struct DefStandardHeapTraits : public Traits {
426 425
      typedef CR HeapCrossRef;
427 426
      typedef H Heap;
428 427
      static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
429 428
	return new HeapCrossRef(G);
430 429
      }
431 430
      static Heap *createHeap(HeapCrossRef &R) 
432 431
      {
433 432
	return new Heap(R);
434 433
      }
435 434
    };
436 435
    ///\brief \ref named-templ-param "Named parameter" for setting
437 436
    ///heap and cross reference type with automatic allocation
438 437
    ///
439 438
    ///\ref named-templ-param "Named parameter" for setting heap and cross 
440 439
    ///reference type. It can allocate the heap and the cross reference 
441 440
    ///object if the cross reference's constructor waits for the digraph as 
442 441
    ///parameter and the heap's constructor waits for the cross reference.
443 442
    template <class H, class CR = typename Digraph::template NodeMap<int> >
444 443
    struct DefStandardHeap
445 444
      : public Dijkstra< Digraph,	LengthMap, DefStandardHeapTraits<H, CR> > { 
446 445
      typedef Dijkstra< Digraph,	LengthMap, DefStandardHeapTraits<H, CR> > 
447 446
      Create;
448 447
    };
449 448

	
450 449
    template <class T>
451 450
    struct DefOperationTraitsTraits : public Traits {
452 451
      typedef T OperationTraits;
453 452
    };
454 453
    
455 454
    /// \brief \ref named-templ-param "Named parameter" for setting 
456 455
    /// OperationTraits type
457 456
    ///
458 457
    /// \ref named-templ-param "Named parameter" for setting OperationTraits
459 458
    /// type
460 459
    template <class T>
461 460
    struct DefOperationTraits
462 461
      : public Dijkstra<Digraph, LengthMap, DefOperationTraitsTraits<T> > {
463 462
      typedef Dijkstra<Digraph, LengthMap, DefOperationTraitsTraits<T> >
464 463
      Create;
465 464
    };
466 465
    
467 466
    ///@}
468 467

	
469 468

	
470 469
  protected:
471 470

	
472 471
    Dijkstra() {}
473 472

	
474 473
  public:      
475 474
    
476 475
    ///Constructor.
477 476
    
478 477
    ///\param _G the digraph the algorithm will run on.
479 478
    ///\param _length the length map used by the algorithm.
480 479
    Dijkstra(const Digraph& _G, const LengthMap& _length) :
481 480
      G(&_G), length(&_length),
482 481
      _pred(NULL), local_pred(false),
483 482
      _dist(NULL), local_dist(false),
484 483
      _processed(NULL), local_processed(false),
485 484
      _heap_cross_ref(NULL), local_heap_cross_ref(false),
486 485
      _heap(NULL), local_heap(false)
487 486
    { }
488 487
    
489 488
    ///Destructor.
490 489
    ~Dijkstra() 
491 490
    {
492 491
      if(local_pred) delete _pred;
493 492
      if(local_dist) delete _dist;
494 493
      if(local_processed) delete _processed;
495 494
      if(local_heap_cross_ref) delete _heap_cross_ref;
496 495
      if(local_heap) delete _heap;
497 496
    }
498 497

	
499 498
    ///Sets the length map.
500 499

	
501 500
    ///Sets the length map.
502 501
    ///\return <tt> (*this) </tt>
503 502
    Dijkstra &lengthMap(const LengthMap &m) 
504 503
    {
505 504
      length = &m;
506 505
      return *this;
507 506
    }
508 507

	
509 508
    ///Sets the map storing the predecessor arcs.
510 509

	
511 510
    ///Sets the map storing the predecessor arcs.
512 511
    ///If you don't use this function before calling \ref run(),
513 512
    ///it will allocate one. The destuctor deallocates this
514 513
    ///automatically allocated map, of course.
515 514
    ///\return <tt> (*this) </tt>
516 515
    Dijkstra &predMap(PredMap &m) 
517 516
    {
518 517
      if(local_pred) {
519 518
	delete _pred;
520 519
	local_pred=false;
521 520
      }
522 521
      _pred = &m;
523 522
      return *this;
524 523
    }
525 524

	
526 525
    ///Sets the map storing the distances calculated by the algorithm.
527 526

	
528 527
    ///Sets the map storing the distances calculated by the algorithm.
529 528
    ///If you don't use this function before calling \ref run(),
530 529
    ///it will allocate one. The destuctor deallocates this
531 530
    ///automatically allocated map, of course.
532 531
    ///\return <tt> (*this) </tt>
533 532
    Dijkstra &distMap(DistMap &m) 
534 533
    {
535 534
      if(local_dist) {
536 535
	delete _dist;
537 536
	local_dist=false;
538 537
      }
539 538
      _dist = &m;
540 539
      return *this;
541 540
    }
542 541

	
543 542
    ///Sets the heap and the cross reference used by algorithm.
544 543

	
545 544
    ///Sets the heap and the cross reference used by algorithm.
546 545
    ///If you don't use this function before calling \ref run(),
547 546
    ///it will allocate one. The destuctor deallocates this
548 547
    ///automatically allocated heap and cross reference, of course.
549 548
    ///\return <tt> (*this) </tt>
550 549
    Dijkstra &heap(Heap& hp, HeapCrossRef &cr)
551 550
    {
552 551
      if(local_heap_cross_ref) {
553 552
	delete _heap_cross_ref;
554 553
	local_heap_cross_ref=false;
555 554
      }
556 555
      _heap_cross_ref = &cr;
557 556
      if(local_heap) {
558 557
	delete _heap;
559 558
	local_heap=false;
560 559
      }
561 560
      _heap = &hp;
562 561
      return *this;
563 562
    }
564 563

	
565 564
  private:
566 565
    void finalizeNodeData(Node v,Value dst)
567 566
    {
568 567
      _processed->set(v,true);
569 568
      _dist->set(v, dst);
570 569
    }
571 570

	
572 571
  public:
573 572

	
574 573
    typedef PredMapPath<Digraph, PredMap> Path;
575 574

	
576 575
    ///\name Execution control
577 576
    ///The simplest way to execute the algorithm is to use
578 577
    ///one of the member functions called \c run(...).
579 578
    ///\n
580 579
    ///If you need more control on the execution,
581 580
    ///first you must call \ref init(), then you can add several source nodes
582 581
    ///with \ref addSource().
583 582
    ///Finally \ref start() will perform the actual path
584 583
    ///computation.
585 584

	
586 585
    ///@{
587 586

	
588 587
    ///Initializes the internal data structures.
589 588

	
590 589
    ///Initializes the internal data structures.
591 590
    ///
592 591
    void init()
593 592
    {
594 593
      create_maps();
595 594
      _heap->clear();
596 595
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
597 596
	_pred->set(u,INVALID);
598 597
	_processed->set(u,false);
599 598
	_heap_cross_ref->set(u,Heap::PRE_HEAP);
600 599
      }
601 600
    }
602 601
    
603 602
    ///Adds a new source node.
604 603

	
605 604
    ///Adds a new source node to the priority heap.
606 605
    ///
607 606
    ///The optional second parameter is the initial distance of the node.
608 607
    ///
609 608
    ///It checks if the node has already been added to the heap and
610 609
    ///it is pushed to the heap only if either it was not in the heap
611 610
    ///or the shortest path found till then is shorter than \c dst.
612 611
    void addSource(Node s,Value dst=OperationTraits::zero())
613 612
    {
614 613
      if(_heap->state(s) != Heap::IN_HEAP) {
615 614
	_heap->push(s,dst);
616 615
      } else if(OperationTraits::less((*_heap)[s], dst)) {
617 616
	_heap->set(s,dst);
618 617
	_pred->set(s,INVALID);
619 618
      }
620 619
    }
621 620
    
622 621
    ///Processes the next node in the priority heap
623 622

	
624 623
    ///Processes the next node in the priority heap.
625 624
    ///
626 625
    ///\return The processed node.
627 626
    ///
628 627
    ///\warning The priority heap must not be empty!
629 628
    Node processNextNode()
630 629
    {
631 630
      Node v=_heap->top(); 
632 631
      Value oldvalue=_heap->prio();
633 632
      _heap->pop();
634 633
      finalizeNodeData(v,oldvalue);
635 634
      
636 635
      for(OutArcIt e(*G,v); e!=INVALID; ++e) {
637 636
	Node w=G->target(e); 
638 637
	switch(_heap->state(w)) {
639 638
	case Heap::PRE_HEAP:
640 639
	  _heap->push(w,OperationTraits::plus(oldvalue, (*length)[e])); 
641 640
	  _pred->set(w,e);
642 641
	  break;
643 642
	case Heap::IN_HEAP:
644 643
	  {
645 644
	    Value newvalue = OperationTraits::plus(oldvalue, (*length)[e]);
646 645
	    if ( OperationTraits::less(newvalue, (*_heap)[w]) ) {
647 646
	      _heap->decrease(w, newvalue); 
648 647
	      _pred->set(w,e);
649 648
	    }
650 649
	  }
651 650
	  break;
652 651
	case Heap::POST_HEAP:
653 652
	  break;
654 653
	}
655 654
      }
656 655
      return v;
657 656
    }
658 657

	
659 658
    ///Next node to be processed.
660 659
    
661 660
    ///Next node to be processed.
662 661
    ///
663 662
    ///\return The next node to be processed or INVALID if the priority heap
664 663
    /// is empty.
665 664
    Node nextNode()
666 665
    { 
667 666
      return !_heap->empty()?_heap->top():INVALID;
668 667
    }
669 668
 
670 669
    ///\brief Returns \c false if there are nodes
671 670
    ///to be processed in the priority heap
672 671
    ///
673 672
    ///Returns \c false if there are nodes
674 673
    ///to be processed in the priority heap
675 674
    bool emptyQueue() { return _heap->empty(); }
676 675
    ///Returns the number of the nodes to be processed in the priority heap
677 676

	
678 677
    ///Returns the number of the nodes to be processed in the priority heap
679 678
    ///
680 679
    int queueSize() { return _heap->size(); }
681 680
    
682 681
    ///Executes the algorithm.
683 682

	
684 683
    ///Executes the algorithm.
685 684
    ///
686 685
    ///\pre init() must be called and at least one node should be added
687 686
    ///with addSource() before using this function.
688 687
    ///
689 688
    ///This method runs the %Dijkstra algorithm from the root node(s)
690 689
    ///in order to
691 690
    ///compute the
692 691
    ///shortest path to each node. The algorithm computes
693 692
    ///- The shortest path tree.
694 693
    ///- The distance of each node from the root(s).
695 694
    ///
696 695
    void start()
697 696
    {
698 697
      while ( !_heap->empty() ) processNextNode();
699 698
    }
700 699
    
701 700
    ///Executes the algorithm until \c dest is reached.
702 701

	
703 702
    ///Executes the algorithm until \c dest is reached.
704 703
    ///
705 704
    ///\pre init() must be called and at least one node should be added
706 705
    ///with addSource() before using this function.
707 706
    ///
708 707
    ///This method runs the %Dijkstra algorithm from the root node(s)
709 708
    ///in order to
710 709
    ///compute the
711 710
    ///shortest path to \c dest. The algorithm computes
712 711
    ///- The shortest path to \c  dest.
713 712
    ///- The distance of \c dest from the root(s).
714 713
    ///
715 714
    void start(Node dest)
716 715
    {
717 716
      while ( !_heap->empty() && _heap->top()!=dest ) processNextNode();
718 717
      if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
719 718
    }
720 719
    
721 720
    ///Executes the algorithm until a condition is met.
722 721

	
723 722
    ///Executes the algorithm until a condition is met.
724 723
    ///
725 724
    ///\pre init() must be called and at least one node should be added
726 725
    ///with addSource() before using this function.
727 726
    ///
728 727
    ///\param nm must be a bool (or convertible) node map. The algorithm
729 728
    ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true.
730 729
    ///
731 730
    ///\return The reached node \c v with <tt>nm[v]</tt> true or
732 731
    ///\c INVALID if no such node was found.
733 732
    template<class NodeBoolMap>
734 733
    Node start(const NodeBoolMap &nm)
735 734
    {
736 735
      while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
737 736
      if ( _heap->empty() ) return INVALID;
738 737
      finalizeNodeData(_heap->top(),_heap->prio());
739 738
      return _heap->top();
740 739
    }
741 740
    
742 741
    ///Runs %Dijkstra algorithm from node \c s.
743 742
    
744 743
    ///This method runs the %Dijkstra algorithm from a root node \c s
745 744
    ///in order to
746 745
    ///compute the
747 746
    ///shortest path to each node. The algorithm computes
748 747
    ///- The shortest path tree.
749 748
    ///- The distance of each node from the root.
750 749
    ///
751 750
    ///\note d.run(s) is just a shortcut of the following code.
752 751
    ///\code
753 752
    ///  d.init();
754 753
    ///  d.addSource(s);
755 754
    ///  d.start();
756 755
    ///\endcode
757 756
    void run(Node s) {
758 757
      init();
759 758
      addSource(s);
760 759
      start();
761 760
    }
762 761
    
763 762
    ///Finds the shortest path between \c s and \c t.
764 763
    
765 764
    ///Finds the shortest path between \c s and \c t.
766 765
    ///
767 766
    ///\return The length of the shortest s---t path if there exists one,
768 767
    ///0 otherwise.
769 768
    ///\note Apart from the return value, d.run(s) is
770 769
    ///just a shortcut of the following code.
771 770
    ///\code
772 771
    ///  d.init();
773 772
    ///  d.addSource(s);
774 773
    ///  d.start(t);
775 774
    ///\endcode
776 775
    Value run(Node s,Node t) {
777 776
      init();
778 777
      addSource(s);
779 778
      start(t);
780 779
      return (*_pred)[t]==INVALID?OperationTraits::zero():(*_dist)[t];
781 780
    }
782 781
    
783 782
    ///@}
784 783

	
785 784
    ///\name Query Functions
786 785
    ///The result of the %Dijkstra algorithm can be obtained using these
787 786
    ///functions.\n
788 787
    ///Before the use of these functions,
789 788
    ///either run() or start() must be called.
790 789
    
791 790
    ///@{
792 791

	
793 792
    ///Gives back the shortest path.
794 793
    
795 794
    ///Gives back the shortest path.
796 795
    ///\pre The \c t should be reachable from the source.
797 796
    Path path(Node t) 
798 797
    {
799 798
      return Path(*G, *_pred, t);
800 799
    }
801 800

	
802 801
    ///The distance of a node from the root.
803 802

	
804 803
    ///Returns the distance of a node from the root.
805 804
    ///\pre \ref run() must be called before using this function.
806 805
    ///\warning If node \c v in unreachable from the root the return value
807 806
    ///of this funcion is undefined.
808 807
    Value dist(Node v) const { return (*_dist)[v]; }
809 808

	
810 809
    ///The current distance of a node from the root.
811 810

	
812 811
    ///Returns the current distance of a node from the root.
813 812
    ///It may be decreased in the following processes.
814 813
    ///\pre \c node should be reached but not processed
815 814
    Value currentDist(Node v) const { return (*_heap)[v]; }
816 815

	
817 816
    ///Returns the 'previous arc' of the shortest path tree.
818 817

	
819 818
    ///For a node \c v it returns the 'previous arc' of the shortest path tree,
820 819
    ///i.e. it returns the last arc of a shortest path from the root to \c
821 820
    ///v. It is \ref INVALID
822 821
    ///if \c v is unreachable from the root or if \c v=s. The
823 822
    ///shortest path tree used here is equal to the shortest path tree used in
824 823
    ///\ref predNode().  \pre \ref run() must be called before using
825 824
    ///this function.
826 825
    Arc predArc(Node v) const { return (*_pred)[v]; }
827 826

	
828 827
    ///Returns the 'previous node' of the shortest path tree.
829 828

	
830 829
    ///For a node \c v it returns the 'previous node' of the shortest path tree,
831 830
    ///i.e. it returns the last but one node from a shortest path from the
832 831
    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
833 832
    ///\c v=s. The shortest path tree used here is equal to the shortest path
834 833
    ///tree used in \ref predArc().  \pre \ref run() must be called before
835 834
    ///using this function.
836 835
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
837 836
				  G->source((*_pred)[v]); }
838 837
    
839 838
    ///Returns a reference to the NodeMap of distances.
840 839

	
841 840
    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
842 841
    ///be called before using this function.
843 842
    const DistMap &distMap() const { return *_dist;}
844 843
 
845 844
    ///Returns a reference to the shortest path tree map.
846 845

	
847 846
    ///Returns a reference to the NodeMap of the arcs of the
848 847
    ///shortest path tree.
849 848
    ///\pre \ref run() must be called before using this function.
850 849
    const PredMap &predMap() const { return *_pred;}
851 850
 
852 851
    ///Checks if a node is reachable from the root.
853 852

	
854 853
    ///Returns \c true if \c v is reachable from the root.
855 854
    ///\warning The source nodes are inditated as unreached.
856 855
    ///\pre \ref run() must be called before using this function.
857 856
    ///
858 857
    bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; }
859 858

	
860 859
    ///Checks if a node is processed.
861 860

	
862 861
    ///Returns \c true if \c v is processed, i.e. the shortest
863 862
    ///path to \c v has already found.
864 863
    ///\pre \ref run() must be called before using this function.
865 864
    ///
866 865
    bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; }
867 866
    
868 867
    ///@}
869 868
  };
870 869

	
871 870

	
872 871

	
873 872

	
874 873
 
875 874
  ///Default traits class of Dijkstra function.
876 875

	
877 876
  ///Default traits class of Dijkstra function.
878
  ///\param GR Digraph type.
879
  ///\param LM Type of length map.
877
  ///\tparam GR Digraph type.
878
  ///\tparam LM Type of length map.
880 879
  template<class GR, class LM>
881 880
  struct DijkstraWizardDefaultTraits
882 881
  {
883 882
    ///The digraph type the algorithm runs on. 
884 883
    typedef GR Digraph;
885 884
    ///The type of the map that stores the arc lengths.
886 885

	
887 886
    ///The type of the map that stores the arc lengths.
888 887
    ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
889 888
    typedef LM LengthMap;
890 889
    //The type of the length of the arcs.
891 890
    typedef typename LM::Value Value;
892 891
    /// Operation traits for Dijkstra algorithm.
893 892

	
894 893
    /// It defines the used operation by the algorithm.
895 894
    /// \see DijkstraDefaultOperationTraits
896 895
    typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
897 896
    ///The heap type used by Dijkstra algorithm.
898 897

	
899 898
    /// The cross reference type used by heap.
900 899

	
901 900
    /// The cross reference type used by heap.
902 901
    /// Usually it is \c Digraph::NodeMap<int>.
903 902
    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
904 903
    ///Instantiates a HeapCrossRef.
905 904

	
906 905
    ///This function instantiates a \ref HeapCrossRef. 
907 906
    /// \param G is the digraph, to which we would like to define the 
908 907
    /// HeapCrossRef.
909 908
    /// \todo The digraph alone may be insufficient for the initialization
910 909
    static HeapCrossRef *createHeapCrossRef(const GR &G) 
911 910
    {
912 911
      return new HeapCrossRef(G);
913 912
    }
914 913
    
915 914
    ///The heap type used by Dijkstra algorithm.
916 915

	
917 916
    ///The heap type used by Dijkstra algorithm.
918 917
    ///
919 918
    ///\sa BinHeap
920 919
    ///\sa Dijkstra
921 920
    typedef BinHeap<typename LM::Value, typename GR::template NodeMap<int>,
922 921
		    std::less<Value> > Heap;
923 922

	
924 923
    static Heap *createHeap(HeapCrossRef& R) 
925 924
    {
926 925
      return new Heap(R);
927 926
    }
928 927

	
929 928
    ///\brief The type of the map that stores the last
930 929
    ///arcs of the shortest paths.
931 930
    /// 
932 931
    ///The type of the map that stores the last
933 932
    ///arcs of the shortest paths.
934 933
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
935 934
    ///
936 935
    typedef NullMap <typename GR::Node,typename GR::Arc> PredMap;
937 936
    ///Instantiates a PredMap.
938 937
 
939 938
    ///This function instantiates a \ref PredMap. 
940 939
    ///\param g is the digraph, to which we would like to define the PredMap.
941 940
    ///\todo The digraph alone may be insufficient for the initialization
942 941
#ifdef DOXYGEN
943 942
    static PredMap *createPredMap(const GR &g) 
944 943
#else
945 944
    static PredMap *createPredMap(const GR &) 
946 945
#endif
947 946
    {
948 947
      return new PredMap();
949 948
    }
950 949
    ///The type of the map that stores whether a nodes is processed.
951 950
 
952 951
    ///The type of the map that stores whether a nodes is processed.
953 952
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
954 953
    ///By default it is a NullMap.
955 954
    ///\todo If it is set to a real map,
956 955
    ///Dijkstra::processed() should read this.
957 956
    ///\todo named parameter to set this type, function to read and write.
958 957
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
959 958
    ///Instantiates a ProcessedMap.
960 959
 
961 960
    ///This function instantiates a \ref ProcessedMap. 
962 961
    ///\param g is the digraph, to which
963 962
    ///we would like to define the \ref ProcessedMap
964 963
#ifdef DOXYGEN
965 964
    static ProcessedMap *createProcessedMap(const GR &g)
966 965
#else
967 966
    static ProcessedMap *createProcessedMap(const GR &)
968 967
#endif
969 968
    {
970 969
      return new ProcessedMap();
971 970
    }
972 971
    ///The type of the map that stores the dists of the nodes.
973 972
 
974 973
    ///The type of the map that stores the dists of the nodes.
975 974
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
976 975
    ///
977 976
    typedef NullMap<typename Digraph::Node,typename LM::Value> DistMap;
978 977
    ///Instantiates a DistMap.
979 978
 
980 979
    ///This function instantiates a \ref DistMap. 
981 980
    ///\param g is the digraph, to which we would like to define the \ref DistMap
982 981
#ifdef DOXYGEN
983 982
    static DistMap *createDistMap(const GR &g)
984 983
#else
985 984
    static DistMap *createDistMap(const GR &)
986 985
#endif
987 986
    {
988 987
      return new DistMap();
989 988
    }
990 989
  };
991 990
  
992 991
  /// Default traits used by \ref DijkstraWizard
993 992

	
994 993
  /// To make it easier to use Dijkstra algorithm
995 994
  ///we have created a wizard class.
996 995
  /// This \ref DijkstraWizard class needs default traits,
997 996
  ///as well as the \ref Dijkstra class.
998 997
  /// The \ref DijkstraWizardBase is a class to be the default traits of the
999 998
  /// \ref DijkstraWizard class.
1000 999
  /// \todo More named parameters are required...
1001 1000
  template<class GR,class LM>
1002 1001
  class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
1003 1002
  {
1004 1003

	
1005 1004
    typedef DijkstraWizardDefaultTraits<GR,LM> Base;
1006 1005
  protected:
1007 1006
    /// Type of the nodes in the digraph.
1008 1007
    typedef typename Base::Digraph::Node Node;
1009 1008

	
1010 1009
    /// Pointer to the underlying digraph.
1011 1010
    void *_g;
1012 1011
    /// Pointer to the length map
1013 1012
    void *_length;
1014 1013
    ///Pointer to the map of predecessors arcs.
1015 1014
    void *_pred;
1016 1015
    ///Pointer to the map of distances.
1017 1016
    void *_dist;
1018 1017
    ///Pointer to the source node.
1019 1018
    Node _source;
1020 1019

	
1021 1020
    public:
1022 1021
    /// Constructor.
1023 1022
    
1024 1023
    /// This constructor does not require parameters, therefore it initiates
1025 1024
    /// all of the attributes to default values (0, INVALID).
1026 1025
    DijkstraWizardBase() : _g(0), _length(0), _pred(0),
1027 1026
			   _dist(0), _source(INVALID) {}
1028 1027

	
1029 1028
    /// Constructor.
1030 1029
    
1031 1030
    /// This constructor requires some parameters,
1032 1031
    /// listed in the parameters list.
1033 1032
    /// Others are initiated to 0.
1034 1033
    /// \param g is the initial value of  \ref _g
1035 1034
    /// \param l is the initial value of  \ref _length
1036 1035
    /// \param s is the initial value of  \ref _source
1037 1036
    DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
1038 1037
      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))), 
1039 1038
      _length(reinterpret_cast<void*>(const_cast<LM*>(&l))), 
1040 1039
      _pred(0), _dist(0), _source(s) {}
1041 1040

	
1042 1041
  };
1043 1042
  
1044 1043
  /// A class to make the usage of Dijkstra algorithm easier
1045 1044

	
1046 1045
  /// This class is created to make it easier to use Dijkstra algorithm.
1047 1046
  /// It uses the functions and features of the plain \ref Dijkstra,
1048 1047
  /// but it is much simpler to use it.
1049 1048
  ///
1050 1049
  /// Simplicity means that the way to change the types defined
1051 1050
  /// in the traits class is based on functions that returns the new class
1052 1051
  /// and not on templatable built-in classes.
1053 1052
  /// When using the plain \ref Dijkstra
1054 1053
  /// the new class with the modified type comes from
1055 1054
  /// the original class by using the ::
1056 1055
  /// operator. In the case of \ref DijkstraWizard only
1057 1056
  /// a function have to be called and it will
1058 1057
  /// return the needed class.
1059 1058
  ///
1060 1059
  /// It does not have own \ref run method. When its \ref run method is called
1061 1060
  /// it initiates a plain \ref Dijkstra class, and calls the \ref 
1062 1061
  /// Dijkstra::run method of it.
1063 1062
  template<class TR>
1064 1063
  class DijkstraWizard : public TR
1065 1064
  {
1066 1065
    typedef TR Base;
1067 1066

	
1068 1067
    ///The type of the underlying digraph.
1069 1068
    typedef typename TR::Digraph Digraph;
1070 1069
    //\e
1071 1070
    typedef typename Digraph::Node Node;
1072 1071
    //\e
1073 1072
    typedef typename Digraph::NodeIt NodeIt;
1074 1073
    //\e
1075 1074
    typedef typename Digraph::Arc Arc;
1076 1075
    //\e
1077 1076
    typedef typename Digraph::OutArcIt OutArcIt;
1078 1077
    
1079 1078
    ///The type of the map that stores the arc lengths.
1080 1079
    typedef typename TR::LengthMap LengthMap;
1081 1080
    ///The type of the length of the arcs.
1082 1081
    typedef typename LengthMap::Value Value;
1083 1082
    ///\brief The type of the map that stores the last
1084 1083
    ///arcs of the shortest paths.
1085 1084
    typedef typename TR::PredMap PredMap;
1086 1085
    ///The type of the map that stores the dists of the nodes.
1087 1086
    typedef typename TR::DistMap DistMap;
1088 1087
    ///The heap type used by the dijkstra algorithm.
1089 1088
    typedef typename TR::Heap Heap;
1090 1089
  public:
1091 1090
    /// Constructor.
1092 1091
    DijkstraWizard() : TR() {}
1093 1092

	
1094 1093
    /// Constructor that requires parameters.
1095 1094

	
1096 1095
    /// Constructor that requires parameters.
1097 1096
    /// These parameters will be the default values for the traits class.
1098 1097
    DijkstraWizard(const Digraph &g,const LengthMap &l, Node s=INVALID) :
1099 1098
      TR(g,l,s) {}
1100 1099

	
1101 1100
    ///Copy constructor
1102 1101
    DijkstraWizard(const TR &b) : TR(b) {}
1103 1102

	
1104 1103
    ~DijkstraWizard() {}
1105 1104

	
1106 1105
    ///Runs Dijkstra algorithm from a given node.
1107 1106
    
1108 1107
    ///Runs Dijkstra algorithm from a given node.
1109 1108
    ///The node can be given by the \ref source function.
1110 1109
    void run()
1111 1110
    {
1112 1111
      if(Base::_source==INVALID) throw UninitializedParameter();
1113 1112
      Dijkstra<Digraph,LengthMap,TR> 
1114 1113
	dij(*reinterpret_cast<const Digraph*>(Base::_g),
1115 1114
            *reinterpret_cast<const LengthMap*>(Base::_length));
1116 1115
      if(Base::_pred) dij.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1117 1116
      if(Base::_dist) dij.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1118 1117
      dij.run(Base::_source);
1119 1118
    }
1120 1119

	
1121 1120
    ///Runs Dijkstra algorithm from the given node.
1122 1121

	
1123 1122
    ///Runs Dijkstra algorithm from the given node.
1124 1123
    ///\param s is the given source.
1125 1124
    void run(Node s)
1126 1125
    {
1127 1126
      Base::_source=s;
1128 1127
      run();
1129 1128
    }
1130 1129

	
1131 1130
    template<class T>
1132 1131
    struct DefPredMapBase : public Base {
1133 1132
      typedef T PredMap;
1134 1133
      static PredMap *createPredMap(const Digraph &) { return 0; };
1135 1134
      DefPredMapBase(const TR &b) : TR(b) {}
1136 1135
    };
1137 1136
    
1138 1137
    ///\brief \ref named-templ-param "Named parameter"
1139 1138
    ///function for setting PredMap type
1140 1139
    ///
1141 1140
    /// \ref named-templ-param "Named parameter"
1142 1141
    ///function for setting PredMap type
1143 1142
    ///
1144 1143
    template<class T>
1145 1144
    DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) 
1146 1145
    {
1147 1146
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1148 1147
      return DijkstraWizard<DefPredMapBase<T> >(*this);
1149 1148
    }
1150 1149
    
1151 1150
    template<class T>
1152 1151
    struct DefDistMapBase : public Base {
1153 1152
      typedef T DistMap;
1154 1153
      static DistMap *createDistMap(const Digraph &) { return 0; };
1155 1154
      DefDistMapBase(const TR &b) : TR(b) {}
1156 1155
    };
1157 1156
    
1158 1157
    ///\brief \ref named-templ-param "Named parameter"
1159 1158
    ///function for setting DistMap type
1160 1159
    ///
1161 1160
    /// \ref named-templ-param "Named parameter"
1162 1161
    ///function for setting DistMap type
1163 1162
    ///
1164 1163
    template<class T>
1165 1164
    DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) 
1166 1165
    {
1167 1166
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1168 1167
      return DijkstraWizard<DefDistMapBase<T> >(*this);
1169 1168
    }
1170 1169
    
1171 1170
    /// Sets the source node, from which the Dijkstra algorithm runs.
1172 1171

	
1173 1172
    /// Sets the source node, from which the Dijkstra algorithm runs.
1174 1173
    /// \param s is the source node.
1175 1174
    DijkstraWizard<TR> &source(Node s) 
1176 1175
    {
1177 1176
      Base::_source=s;
1178 1177
      return *this;
1179 1178
    }
1180 1179
    
1181 1180
  };
1182 1181
  
1183 1182
  ///Function type interface for Dijkstra algorithm.
1184 1183

	
1185 1184
  /// \ingroup shortest_path
1186 1185
  ///Function type interface for Dijkstra algorithm.
1187 1186
  ///
1188 1187
  ///This function also has several
1189 1188
  ///\ref named-templ-func-param "named parameters",
1190 1189
  ///they are declared as the members of class \ref DijkstraWizard.
1191 1190
  ///The following
1192 1191
  ///example shows how to use these parameters.
1193 1192
  ///\code
1194 1193
  ///  dijkstra(g,length,source).predMap(preds).run();
1195 1194
  ///\endcode
1196 1195
  ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
1197 1196
  ///to the end of the parameter list.
1198 1197
  ///\sa DijkstraWizard
1199 1198
  ///\sa Dijkstra
1200 1199
  template<class GR, class LM>
1201 1200
  DijkstraWizard<DijkstraWizardBase<GR,LM> >
1202 1201
  dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
1203 1202
  {
1204 1203
    return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
1205 1204
  }
1206 1205

	
1207 1206
} //END OF NAMESPACE LEMON
1208 1207

	
1209 1208
#endif
Ignore white space 6 line context
... ...
@@ -35,817 +35,817 @@
35 35
#endif
36 36

	
37 37
#include<lemon/math.h>
38 38
#include<lemon/bits/invalid.h>
39 39
#include<lemon/dim2.h>
40 40
#include<lemon/maps.h>
41 41
#include<lemon/color.h>
42 42
#include<lemon/bits/bezier.h>
43 43

	
44 44

	
45 45
///\ingroup eps_io
46 46
///\file
47 47
///\brief A well configurable tool for visualizing graphs
48 48

	
49 49
namespace lemon {
50 50

	
51 51
  namespace _graph_to_eps_bits {
52 52
    template<class MT>
53 53
    class _NegY {
54 54
    public:
55 55
      typedef typename MT::Key Key;
56 56
      typedef typename MT::Value Value;
57 57
      const MT &map;
58 58
      int yscale;
59 59
      _NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {}
60 60
      Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);}
61 61
    };
62 62
  }
63 63
  
64 64
///Default traits class of \ref GraphToEps
65 65

	
66 66
///Default traits class of \ref GraphToEps
67 67
///
68 68
///\c G is the type of the underlying graph.
69 69
template<class G>
70 70
struct DefaultGraphToEpsTraits
71 71
{
72 72
  typedef G Graph;
73 73
  typedef typename Graph::Node Node;
74 74
  typedef typename Graph::NodeIt NodeIt;
75 75
  typedef typename Graph::Arc Arc;
76 76
  typedef typename Graph::ArcIt ArcIt;
77 77
  typedef typename Graph::InArcIt InArcIt;
78 78
  typedef typename Graph::OutArcIt OutArcIt;
79 79
  
80 80

	
81 81
  const Graph &g;
82 82

	
83 83
  std::ostream& os;
84 84
  
85 85
  typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType;
86 86
  CoordsMapType _coords;
87 87
  ConstMap<typename Graph::Node,double > _nodeSizes;
88 88
  ConstMap<typename Graph::Node,int > _nodeShapes;
89 89

	
90 90
  ConstMap<typename Graph::Node,Color > _nodeColors;
91 91
  ConstMap<typename Graph::Arc,Color > _arcColors;
92 92

	
93 93
  ConstMap<typename Graph::Arc,double > _arcWidths;
94 94

	
95 95
  double _arcWidthScale;
96 96
  
97 97
  double _nodeScale;
98 98
  double _xBorder, _yBorder;
99 99
  double _scale;
100 100
  double _nodeBorderQuotient;
101 101
  
102 102
  bool _drawArrows;
103 103
  double _arrowLength, _arrowWidth;
104 104
  
105 105
  bool _showNodes, _showArcs;
106 106

	
107 107
  bool _enableParallel;
108 108
  double _parArcDist;
109 109

	
110 110
  bool _showNodeText;
111 111
  ConstMap<typename Graph::Node,bool > _nodeTexts;  
112 112
  double _nodeTextSize;
113 113

	
114 114
  bool _showNodePsText;
115 115
  ConstMap<typename Graph::Node,bool > _nodePsTexts;  
116 116
  char *_nodePsTextsPreamble;
117 117
  
118 118
  bool _undirected;
119 119

	
120 120
  bool _pleaseRemoveOsStream;
121 121

	
122 122
  bool _scaleToA4;
123 123

	
124 124
  std::string _title;
125 125
  std::string _copyright;
126 126

	
127 127
  enum NodeTextColorType 
128 128
    { DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType;
129 129
  ConstMap<typename Graph::Node,Color > _nodeTextColors;
130 130

	
131 131
  bool _autoNodeScale;
132 132
  bool _autoArcWidthScale;
133 133

	
134 134
  bool _absoluteNodeSizes;
135 135
  bool _absoluteArcWidths;
136 136

	
137 137
  bool _negY;
138 138

	
139 139
  bool _preScale;
140 140
  ///Constructor
141 141

	
142 142
  ///Constructor
143 143
  ///\param _g is a reference to the graph to be printed
144 144
  ///\param _os is a reference to the output stream.
145 145
  ///\param _os is a reference to the output stream.
146 146
  ///\param _pros If it is \c true, then the \c ostream referenced by \c _os
147 147
  ///will be explicitly deallocated by the destructor.
148 148
  ///By default it is <tt>std::cout</tt>
149 149
  DefaultGraphToEpsTraits(const G &_g,std::ostream& _os=std::cout,
150 150
			  bool _pros=false) :
151 151
    g(_g), os(_os),
152 152
    _coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0),
153 153
    _nodeColors(WHITE), _arcColors(BLACK),
154 154
    _arcWidths(1.0), _arcWidthScale(0.003),
155 155
    _nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0),
156 156
    _nodeBorderQuotient(.1),
157 157
    _drawArrows(false), _arrowLength(1), _arrowWidth(0.3),
158 158
    _showNodes(true), _showArcs(true),
159 159
    _enableParallel(false), _parArcDist(1),
160 160
    _showNodeText(false), _nodeTexts(false), _nodeTextSize(1),
161 161
    _showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0),
162 162
    _undirected(lemon::UndirectedTagIndicator<G>::value),
163 163
    _pleaseRemoveOsStream(_pros), _scaleToA4(false),
164 164
    _nodeTextColorType(SAME_COL), _nodeTextColors(BLACK),
165 165
    _autoNodeScale(false),
166 166
    _autoArcWidthScale(false),
167 167
    _absoluteNodeSizes(false),
168 168
    _absoluteArcWidths(false),
169 169
    _negY(false),
170 170
    _preScale(true)
171 171
  {}
172 172
};
173 173

	
174 174
///Auxiliary class to implement the named parameters of \ref graphToEps()
175 175

	
176 176
///Auxiliary class to implement the named parameters of \ref graphToEps()
177 177
template<class T> class GraphToEps : public T 
178 178
{
179 179
  // Can't believe it is required by the C++ standard
180 180
  using T::g;
181 181
  using T::os;
182 182

	
183 183
  using T::_coords;
184 184
  using T::_nodeSizes;
185 185
  using T::_nodeShapes;
186 186
  using T::_nodeColors;
187 187
  using T::_arcColors;
188 188
  using T::_arcWidths;
189 189

	
190 190
  using T::_arcWidthScale;
191 191
  using T::_nodeScale;
192 192
  using T::_xBorder;
193 193
  using T::_yBorder;
194 194
  using T::_scale;
195 195
  using T::_nodeBorderQuotient;
196 196
  
197 197
  using T::_drawArrows;
198 198
  using T::_arrowLength;
199 199
  using T::_arrowWidth;
200 200
  
201 201
  using T::_showNodes;
202 202
  using T::_showArcs;
203 203

	
204 204
  using T::_enableParallel;
205 205
  using T::_parArcDist;
206 206

	
207 207
  using T::_showNodeText;
208 208
  using T::_nodeTexts;  
209 209
  using T::_nodeTextSize;
210 210

	
211 211
  using T::_showNodePsText;
212 212
  using T::_nodePsTexts;  
213 213
  using T::_nodePsTextsPreamble;
214 214
  
215 215
  using T::_undirected;
216 216

	
217 217
  using T::_pleaseRemoveOsStream;
218 218

	
219 219
  using T::_scaleToA4;
220 220

	
221 221
  using T::_title;
222 222
  using T::_copyright;
223 223

	
224 224
  using T::NodeTextColorType;
225 225
  using T::CUST_COL;
226 226
  using T::DIST_COL;
227 227
  using T::DIST_BW;
228 228
  using T::_nodeTextColorType;
229 229
  using T::_nodeTextColors;
230 230

	
231 231
  using T::_autoNodeScale;
232 232
  using T::_autoArcWidthScale;
233 233

	
234 234
  using T::_absoluteNodeSizes;
235 235
  using T::_absoluteArcWidths;
236 236

	
237 237

	
238 238
  using T::_negY;
239 239
  using T::_preScale;
240 240

	
241 241
  // dradnats ++C eht yb deriuqer si ti eveileb t'naC
242 242

	
243 243
  typedef typename T::Graph Graph;
244 244
  typedef typename Graph::Node Node;
245 245
  typedef typename Graph::NodeIt NodeIt;
246 246
  typedef typename Graph::Arc Arc;
247 247
  typedef typename Graph::ArcIt ArcIt;
248 248
  typedef typename Graph::InArcIt InArcIt;
249 249
  typedef typename Graph::OutArcIt OutArcIt;
250 250

	
251 251
  static const int INTERPOL_PREC;
252 252
  static const double A4HEIGHT;
253 253
  static const double A4WIDTH;
254 254
  static const double A4BORDER;
255 255

	
256 256
  bool dontPrint;
257 257

	
258 258
public:
259 259
  ///Node shapes
260 260

	
261 261
  ///Node shapes
262 262
  ///
263 263
  enum NodeShapes { 
264 264
    /// = 0
265 265
    ///\image html nodeshape_0.png
266 266
    ///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm
267 267
    CIRCLE=0, 
268 268
    /// = 1
269 269
    ///\image html nodeshape_1.png
270 270
    ///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm
271 271
    ///
272 272
    SQUARE=1, 
273 273
    /// = 2
274 274
    ///\image html nodeshape_2.png
275 275
    ///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm
276 276
    ///
277 277
    DIAMOND=2,
278 278
    /// = 3
279 279
    ///\image html nodeshape_3.png
280 280
    ///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm
281 281
    ///
282 282
    MALE=3,
283 283
    /// = 4
284 284
    ///\image html nodeshape_4.png
285 285
    ///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm
286 286
    ///
287 287
    FEMALE=4
288 288
  };
289 289

	
290 290
private:
291 291
  class arcLess {
292 292
    const Graph &g;
293 293
  public:
294 294
    arcLess(const Graph &_g) : g(_g) {}
295 295
    bool operator()(Arc a,Arc b) const 
296 296
    {
297 297
      Node ai=std::min(g.source(a),g.target(a));
298 298
      Node aa=std::max(g.source(a),g.target(a));
299 299
      Node bi=std::min(g.source(b),g.target(b));
300 300
      Node ba=std::max(g.source(b),g.target(b));
301 301
      return ai<bi ||
302 302
	(ai==bi && (aa < ba || 
303 303
		    (aa==ba && ai==g.source(a) && bi==g.target(b))));
304 304
    }
305 305
  };
306 306
  bool isParallel(Arc e,Arc f) const
307 307
  {
308 308
    return (g.source(e)==g.source(f)&&
309 309
	    g.target(e)==g.target(f)) ||
310 310
      (g.source(e)==g.target(f)&&
311 311
       g.target(e)==g.source(f));
312 312
  }
313 313
  template<class TT>
314 314
  static std::string psOut(const dim2::Point<TT> &p) 
315 315
    {
316 316
      std::ostringstream os;	
317 317
      os << p.x << ' ' << p.y;
318 318
      return os.str();
319 319
    }
320 320
  static std::string psOut(const Color &c) 
321 321
    {
322 322
      std::ostringstream os;	
323 323
      os << c.red() << ' ' << c.green() << ' ' << c.blue();
324 324
      return os.str();
325 325
    }
326 326
  
327 327
public:
328 328
  GraphToEps(const T &t) : T(t), dontPrint(false) {};
329 329
  
330 330
  template<class X> struct CoordsTraits : public T {
331 331
  typedef X CoordsMapType;
332 332
    const X &_coords;
333 333
    CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {}
334 334
  };
335 335
  ///Sets the map of the node coordinates
336 336

	
337 337
  ///Sets the map of the node coordinates.
338 338
  ///\param x must be a node map with dim2::Point<double> or
339 339
  ///\ref dim2::Point "dim2::Point<int>" values. 
340 340
  template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) {
341 341
    dontPrint=true;
342 342
    return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x));
343 343
  }
344 344
  template<class X> struct NodeSizesTraits : public T {
345 345
    const X &_nodeSizes;
346 346
    NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {}
347 347
  };
348 348
  ///Sets the map of the node sizes
349 349

	
350 350
  ///Sets the map of the node sizes
351 351
  ///\param x must be a node map with \c double (or convertible) values. 
352 352
  template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x)
353 353
  {
354 354
    dontPrint=true;
355 355
    return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x));
356 356
  }
357 357
  template<class X> struct NodeShapesTraits : public T {
358 358
    const X &_nodeShapes;
359 359
    NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {}
360 360
  };
361 361
  ///Sets the map of the node shapes
362 362

	
363 363
  ///Sets the map of the node shapes.
364 364
  ///The available shape values
365 365
  ///can be found in \ref NodeShapes "enum NodeShapes".
366 366
  ///\param x must be a node map with \c int (or convertible) values. 
367 367
  ///\sa NodeShapes
368 368
  template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x)
369 369
  {
370 370
    dontPrint=true;
371 371
    return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x));
372 372
  }
373 373
  template<class X> struct NodeTextsTraits : public T {
374 374
    const X &_nodeTexts;
375 375
    NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {}
376 376
  };
377 377
  ///Sets the text printed on the nodes
378 378

	
379 379
  ///Sets the text printed on the nodes
380 380
  ///\param x must be a node map with type that can be pushed to a standard
381 381
  ///ostream. 
382 382
  template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x)
383 383
  {
384 384
    dontPrint=true;
385 385
    _showNodeText=true;
386 386
    return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x));
387 387
  }
388 388
  template<class X> struct NodePsTextsTraits : public T {
389 389
    const X &_nodePsTexts;
390 390
    NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {}
391 391
  };
392 392
  ///Inserts a PostScript block to the nodes
393 393

	
394 394
  ///With this command it is possible to insert a verbatim PostScript
395 395
  ///block to the nodes.
396 396
  ///The PS current point will be moved to the centre of the node before
397 397
  ///the PostScript block inserted.
398 398
  ///
399 399
  ///Before and after the block a newline character is inserted so you
400 400
  ///don't have to bother with the separators.
401 401
  ///
402 402
  ///\param x must be a node map with type that can be pushed to a standard
403 403
  ///ostream.
404 404
  ///
405 405
  ///\sa nodePsTextsPreamble()
406 406
  template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x)
407 407
  {
408 408
    dontPrint=true;
409 409
    _showNodePsText=true;
410 410
    return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x));
411 411
  }
412 412
  template<class X> struct ArcWidthsTraits : public T {
413 413
    const X &_arcWidths;
414 414
    ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {}
415 415
  };
416 416
  ///Sets the map of the arc widths
417 417

	
418 418
  ///Sets the map of the arc widths
419
  ///\param x must be a arc map with \c double (or convertible) values. 
419
  ///\param x must be an arc map with \c double (or convertible) values. 
420 420
  template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x)
421 421
  {
422 422
    dontPrint=true;
423 423
    return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x));
424 424
  }
425 425

	
426 426
  template<class X> struct NodeColorsTraits : public T {
427 427
    const X &_nodeColors;
428 428
    NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {}
429 429
  };
430 430
  ///Sets the map of the node colors
431 431

	
432 432
  ///Sets the map of the node colors
433 433
  ///\param x must be a node map with \ref Color values.
434 434
  ///
435 435
  ///\sa Palette
436 436
  template<class X> GraphToEps<NodeColorsTraits<X> >
437 437
  nodeColors(const X &x)
438 438
  {
439 439
    dontPrint=true;
440 440
    return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x));
441 441
  }
442 442
  template<class X> struct NodeTextColorsTraits : public T {
443 443
    const X &_nodeTextColors;
444 444
    NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {}
445 445
  };
446 446
  ///Sets the map of the node text colors
447 447

	
448 448
  ///Sets the map of the node text colors
449 449
  ///\param x must be a node map with \ref Color values. 
450 450
  ///
451 451
  ///\sa Palette
452 452
  template<class X> GraphToEps<NodeTextColorsTraits<X> >
453 453
  nodeTextColors(const X &x)
454 454
  {
455 455
    dontPrint=true;
456 456
    _nodeTextColorType=CUST_COL;
457 457
    return GraphToEps<NodeTextColorsTraits<X> >
458 458
      (NodeTextColorsTraits<X>(*this,x));
459 459
  }
460 460
  template<class X> struct ArcColorsTraits : public T {
461 461
    const X &_arcColors;
462 462
    ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {}
463 463
  };
464 464
  ///Sets the map of the arc colors
465 465

	
466 466
  ///Sets the map of the arc colors
467
  ///\param x must be a arc map with \ref Color values. 
467
  ///\param x must be an arc map with \ref Color values. 
468 468
  ///
469 469
  ///\sa Palette
470 470
  template<class X> GraphToEps<ArcColorsTraits<X> >
471 471
  arcColors(const X &x)
472 472
  {
473 473
    dontPrint=true;
474 474
    return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x));
475 475
  }
476 476
  ///Sets a global scale factor for node sizes
477 477

	
478 478
  ///Sets a global scale factor for node sizes.
479 479
  /// 
480 480
  /// If nodeSizes() is not given, this function simply sets the node
481 481
  /// sizes to \c d.  If nodeSizes() is given, but
482 482
  /// autoNodeScale() is not, then the node size given by
483 483
  /// nodeSizes() will be multiplied by the value \c d.
484 484
  /// If both nodeSizes() and autoNodeScale() are used, then the
485 485
  /// node sizes will be scaled in such a way that the greatest size will be
486 486
  /// equal to \c d.
487 487
  /// \sa nodeSizes()
488 488
  /// \sa autoNodeScale()
489 489
  GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;}
490 490
  ///Turns on/off the automatic node width scaling.
491 491

	
492 492
  ///Turns on/off the automatic node width scaling.
493 493
  ///
494 494
  ///\sa nodeScale()
495 495
  ///
496 496
  GraphToEps<T> &autoNodeScale(bool b=true) {
497 497
    _autoNodeScale=b;return *this;
498 498
  }
499 499

	
500 500
  ///Turns on/off the absolutematic node width scaling.
501 501

	
502 502
  ///Turns on/off the absolutematic node width scaling.
503 503
  ///
504 504
  ///\sa nodeScale()
505 505
  ///
506 506
  GraphToEps<T> &absoluteNodeSizes(bool b=true) {
507 507
    _absoluteNodeSizes=b;return *this;
508 508
  }
509 509

	
510 510
  ///Negates the Y coordinates.
511 511

	
512 512
  ///Negates the Y coordinates.
513 513
  ///
514 514
  GraphToEps<T> &negateY(bool b=true) {
515 515
    _negY=b;return *this;
516 516
  }
517 517

	
518 518
  ///Turn on/off pre-scaling
519 519

	
520 520
  ///By default graphToEps() rescales the whole image in order to avoid
521 521
  ///very big or very small bounding boxes.
522 522
  ///
523 523
  ///This (p)rescaling can be turned off with this function.
524 524
  ///
525 525
  GraphToEps<T> &preScale(bool b=true) {
526 526
    _preScale=b;return *this;
527 527
  }
528 528

	
529 529
  ///Sets a global scale factor for arc widths
530 530

	
531 531
  /// Sets a global scale factor for arc widths.
532 532
  ///
533 533
  /// If arcWidths() is not given, this function simply sets the arc
534 534
  /// widths to \c d.  If arcWidths() is given, but
535 535
  /// autoArcWidthScale() is not, then the arc withs given by
536 536
  /// arcWidths() will be multiplied by the value \c d.
537 537
  /// If both arcWidths() and autoArcWidthScale() are used, then the
538 538
  /// arc withs will be scaled in such a way that the greatest width will be
539 539
  /// equal to \c d.
540 540
  GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;}
541 541
  ///Turns on/off the automatic arc width scaling.
542 542

	
543 543
  ///Turns on/off the automatic arc width scaling.
544 544
  ///
545 545
  ///\sa arcWidthScale()
546 546
  ///
547 547
  GraphToEps<T> &autoArcWidthScale(bool b=true) {
548 548
    _autoArcWidthScale=b;return *this;
549 549
  }
550 550
  ///Turns on/off the absolutematic arc width scaling.
551 551

	
552 552
  ///Turns on/off the absolutematic arc width scaling.
553 553
  ///
554 554
  ///\sa arcWidthScale()
555 555
  ///
556 556
  GraphToEps<T> &absoluteArcWidths(bool b=true) {
557 557
    _absoluteArcWidths=b;return *this;
558 558
  }
559 559
  ///Sets a global scale factor for the whole picture
560 560

	
561 561
  ///Sets a global scale factor for the whole picture
562 562
  ///
563 563

	
564 564
  GraphToEps<T> &scale(double d) {_scale=d;return *this;}
565 565
  ///Sets the width of the border around the picture
566 566

	
567 567
  ///Sets the width of the border around the picture
568 568
  ///
569 569
  GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;}
570 570
  ///Sets the width of the border around the picture
571 571

	
572 572
  ///Sets the width of the border around the picture
573 573
  ///
574 574
  GraphToEps<T> &border(double x, double y) {
575 575
    _xBorder=x;_yBorder=y;return *this;
576 576
  }
577 577
  ///Sets whether to draw arrows
578 578

	
579 579
  ///Sets whether to draw arrows
580 580
  ///
581 581
  GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;}
582 582
  ///Sets the length of the arrowheads
583 583

	
584 584
  ///Sets the length of the arrowheads
585 585
  ///
586 586
  GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;}
587 587
  ///Sets the width of the arrowheads
588 588

	
589 589
  ///Sets the width of the arrowheads
590 590
  ///
591 591
  GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;}
592 592
  
593 593
  ///Scales the drawing to fit to A4 page
594 594

	
595 595
  ///Scales the drawing to fit to A4 page
596 596
  ///
597 597
  GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;}
598 598
  
599 599
  ///Enables parallel arcs
600 600

	
601 601
  ///Enables parallel arcs
602 602
  GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;}
603 603
  
604 604
  ///Sets the distance 
605 605
  
606 606
  ///Sets the distance 
607 607
  ///
608 608
  GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;}
609 609
  
610 610
  ///Hides the arcs
611 611
  
612 612
  ///Hides the arcs
613 613
  ///
614 614
  GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;}
615 615
  ///Hides the nodes
616 616
  
617 617
  ///Hides the nodes
618 618
  ///
619 619
  GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;}
620 620
  
621 621
  ///Sets the size of the node texts
622 622
  
623 623
  ///Sets the size of the node texts
624 624
  ///
625 625
  GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;}
626 626

	
627 627
  ///Sets the color of the node texts to be different from the node color
628 628

	
629 629
  ///Sets the color of the node texts to be as different from the node color
630 630
  ///as it is possible
631 631
  ///
632 632
  GraphToEps<T> &distantColorNodeTexts()
633 633
  {_nodeTextColorType=DIST_COL;return *this;}
634 634
  ///Sets the color of the node texts to be black or white and always visible.
635 635

	
636 636
  ///Sets the color of the node texts to be black or white according to
637 637
  ///which is more 
638 638
  ///different from the node color
639 639
  ///
640 640
  GraphToEps<T> &distantBWNodeTexts()
641 641
  {_nodeTextColorType=DIST_BW;return *this;}
642 642

	
643 643
  ///Gives a preamble block for node Postscript block.
644 644
  
645 645
  ///Gives a preamble block for node Postscript block.
646 646
  ///
647 647
  ///\sa nodePsTexts()
648 648
  GraphToEps<T> & nodePsTextsPreamble(const char *str) {
649 649
    _nodePsTextsPreamble=str ;return *this;
650 650
  }
651 651
  ///Sets whether the the graph is undirected
652 652

	
653 653
  ///Sets whether the the graph is undirected.
654 654
  ///
655 655
  ///This setting is the default for undirected graphs.
656 656
  ///
657 657
  ///\sa directed()
658 658
   GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;}
659 659

	
660 660
  ///Sets whether the the graph is directed
661 661

	
662 662
  ///Sets whether the the graph is directed.
663 663
  ///Use it to show the edges as a pair of directed ones.
664 664
  ///
665 665
  ///This setting is the default for digraphs.
666 666
  ///
667 667
  ///\sa undirected()
668 668
  GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;}
669 669
  
670 670
  ///Sets the title.
671 671

	
672 672
  ///Sets the title of the generated image,
673 673
  ///namely it inserts a <tt>%%Title:</tt> DSC field to the header of
674 674
  ///the EPS file.
675 675
  GraphToEps<T> &title(const std::string &t) {_title=t;return *this;}
676 676
  ///Sets the copyright statement.
677 677

	
678 678
  ///Sets the copyright statement of the generated image,
679 679
  ///namely it inserts a <tt>%%Copyright:</tt> DSC field to the header of
680 680
  ///the EPS file.
681 681
  GraphToEps<T> &copyright(const std::string &t) {_copyright=t;return *this;}
682 682

	
683 683
protected:
684 684
  bool isInsideNode(dim2::Point<double> p, double r,int t) 
685 685
  {
686 686
    switch(t) {
687 687
    case CIRCLE:
688 688
    case MALE:
689 689
    case FEMALE:
690 690
      return p.normSquare()<=r*r;
691 691
    case SQUARE:
692 692
      return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r;
693 693
    case DIAMOND:
694 694
      return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r;
695 695
    }
696 696
    return false;
697 697
  }
698 698

	
699 699
public:
700 700
  ~GraphToEps() { }
701 701
  
702 702
  ///Draws the graph.
703 703

	
704 704
  ///Like other functions using
705 705
  ///\ref named-templ-func-param "named template parameters",
706 706
  ///this function calls the algorithm itself, i.e. in this case
707 707
  ///it draws the graph.
708 708
  void run() {
709 709
    //\todo better 'epsilon' would be nice here.
710 710
    const double EPSILON=1e-9;
711 711
    if(dontPrint) return;
712 712
    
713 713
    _graph_to_eps_bits::_NegY<typename T::CoordsMapType>
714 714
      mycoords(_coords,_negY);
715 715

	
716 716
    os << "%!PS-Adobe-2.0 EPSF-2.0\n";
717 717
    if(_title.size()>0) os << "%%Title: " << _title << '\n';
718 718
     if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n';
719 719
//        << "%%Copyright: XXXX\n"
720 720
    os << "%%Creator: LEMON, graphToEps()\n";
721 721

	
722 722
    {    
723 723
#ifndef WIN32 
724 724
      timeval tv;
725 725
      gettimeofday(&tv, 0);
726 726

	
727 727
      char cbuf[26];
728 728
      ctime_r(&tv.tv_sec,cbuf);
729 729
      os << "%%CreationDate: " << cbuf;
730 730
#else
731 731
      SYSTEMTIME time;
732 732
      char buf1[11], buf2[9], buf3[5];
733 733
      
734 734
      GetSystemTime(&time);
735 735
      if (GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, 
736 736
			"ddd MMM dd", buf1, 11) &&
737 737
	  GetTimeFormat(LOCALE_USER_DEFAULT, 0, &time, 
738 738
			"HH':'mm':'ss", buf2, 9) &&
739 739
	  GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, 
740 740
				"yyyy", buf3, 5)) {
741 741
	os << "%%CreationDate: " << buf1 << ' ' 
742 742
	   << buf2 << ' ' << buf3 << std::endl;
743 743
      }	  
744 744
#endif
745 745
    }
746 746

	
747 747
    if (_autoArcWidthScale) {
748 748
      double max_w=0;
749 749
      for(ArcIt e(g);e!=INVALID;++e)
750 750
	max_w=std::max(double(_arcWidths[e]),max_w);
751 751
      ///\todo better 'epsilon' would be nice here.
752 752
      if(max_w>EPSILON) {
753 753
	_arcWidthScale/=max_w;
754 754
      }
755 755
    }
756 756

	
757 757
    if (_autoNodeScale) {
758 758
      double max_s=0;
759 759
      for(NodeIt n(g);n!=INVALID;++n)
760 760
	max_s=std::max(double(_nodeSizes[n]),max_s);
761 761
      ///\todo better 'epsilon' would be nice here.
762 762
      if(max_s>EPSILON) {
763 763
	_nodeScale/=max_s;
764 764
      }
765 765
    }
766 766

	
767 767
    double diag_len = 1;
768 768
    if(!(_absoluteNodeSizes&&_absoluteArcWidths)) {
769 769
      dim2::BoundingBox<double> bb;
770 770
      for(NodeIt n(g);n!=INVALID;++n) bb.add(mycoords[n]);
771 771
      if (bb.empty()) {
772 772
	bb = dim2::BoundingBox<double>(dim2::Point<double>(0,0));
773 773
      }
774 774
      diag_len = std::sqrt((bb.bottomLeft()-bb.topRight()).normSquare());
775 775
      if(diag_len<EPSILON) diag_len = 1;
776 776
      if(!_absoluteNodeSizes) _nodeScale*=diag_len;
777 777
      if(!_absoluteArcWidths) _arcWidthScale*=diag_len;
778 778
    }
779 779
    
780 780
    dim2::BoundingBox<double> bb;
781 781
    for(NodeIt n(g);n!=INVALID;++n) {
782 782
      double ns=_nodeSizes[n]*_nodeScale;
783 783
      dim2::Point<double> p(ns,ns);
784 784
      switch(_nodeShapes[n]) {
785 785
      case CIRCLE:
786 786
      case SQUARE:
787 787
      case DIAMOND:
788 788
	bb.add(p+mycoords[n]);
789 789
	bb.add(-p+mycoords[n]);
790 790
	break;
791 791
      case MALE:
792 792
	bb.add(-p+mycoords[n]);
793 793
	bb.add(dim2::Point<double>(1.5*ns,1.5*std::sqrt(3.0)*ns)+mycoords[n]);
794 794
	break;
795 795
      case FEMALE:
796 796
	bb.add(p+mycoords[n]);
797 797
	bb.add(dim2::Point<double>(-ns,-3.01*ns)+mycoords[n]);
798 798
	break;
799 799
      }
800 800
    }
801 801
    if (bb.empty()) {
802 802
      bb = dim2::BoundingBox<double>(dim2::Point<double>(0,0));
803 803
    }
804 804
    
805 805
    if(_scaleToA4)
806 806
      os <<"%%BoundingBox: 0 0 596 842\n%%DocumentPaperSizes: a4\n";
807 807
    else {
808 808
      if(_preScale) {
809 809
	//Rescale so that BoundingBox won't be neither to big nor too small.
810 810
	while(bb.height()*_scale>1000||bb.width()*_scale>1000) _scale/=10;
811 811
	while(bb.height()*_scale<100||bb.width()*_scale<100) _scale*=10;
812 812
      }
813 813
      
814 814
      os << "%%BoundingBox: "
815 815
	 << int(floor(bb.left()   * _scale - _xBorder)) << ' '
816 816
	 << int(floor(bb.bottom() * _scale - _yBorder)) << ' '
817 817
	 << int(ceil(bb.right()  * _scale + _xBorder)) << ' '
818 818
	 << int(ceil(bb.top()    * _scale + _yBorder)) << '\n';
819 819
    }
820 820
    
821 821
    os << "%%EndComments\n";
822 822
    
823 823
    //x1 y1 x2 y2 x3 y3 cr cg cb w
824 824
    os << "/lb { setlinewidth setrgbcolor newpath moveto\n"
825 825
       << "      4 2 roll 1 index 1 index curveto stroke } bind def\n";
826 826
    os << "/l { setlinewidth setrgbcolor newpath moveto lineto stroke } bind def\n";
827 827
    //x y r
828 828
    os << "/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath } bind def\n";
829 829
    //x y r
830 830
    os << "/sq { newpath 2 index 1 index add 2 index 2 index add moveto\n"
831 831
       << "      2 index 1 index sub 2 index 2 index add lineto\n"
832 832
       << "      2 index 1 index sub 2 index 2 index sub lineto\n"
833 833
       << "      2 index 1 index add 2 index 2 index sub lineto\n"
834 834
       << "      closepath pop pop pop} bind def\n";
835 835
    //x y r
836 836
    os << "/di { newpath 2 index 1 index add 2 index moveto\n"
837 837
       << "      2 index             2 index 2 index add lineto\n"
838 838
       << "      2 index 1 index sub 2 index             lineto\n"
839 839
       << "      2 index             2 index 2 index sub lineto\n"
840 840
       << "      closepath pop pop pop} bind def\n";
841 841
    // x y r cr cg cb
842 842
    os << "/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill\n"
843 843
       << "     setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n"
844 844
       << "   } bind def\n";
845 845
    os << "/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill\n"
846 846
       << "     setrgbcolor " << 1+_nodeBorderQuotient << " div sq fill\n"
847 847
       << "   } bind def\n";
848 848
    os << "/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill\n"
849 849
       << "     setrgbcolor " << 1+_nodeBorderQuotient << " div di fill\n"
850 850
       << "   } bind def\n";
851 851
    os << "/nfemale { 0 0 0 setrgbcolor 3 index "

Changeset was too big and was cut off... Show full diff

0 comments (0 inline)