0
14
0
8
12
8
10
4
4
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BFS_H |
| 20 | 20 |
#define LEMON_BFS_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup search |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Bfs algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/graph_utils.h> |
| 28 | 28 |
#include <lemon/bits/path_dump.h> |
| 29 | 29 |
#include <lemon/bits/invalid.h> |
| 30 | 30 |
#include <lemon/error.h> |
| 31 | 31 |
#include <lemon/maps.h> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
|
| 36 | 36 |
|
| 37 | 37 |
///Default traits class of Bfs class. |
| 38 | 38 |
|
| 39 | 39 |
///Default traits class of Bfs class. |
| 40 |
///\ |
|
| 40 |
///\tparam GR Digraph type. |
|
| 41 | 41 |
template<class GR> |
| 42 | 42 |
struct BfsDefaultTraits |
| 43 | 43 |
{
|
| 44 | 44 |
///The digraph type the algorithm runs on. |
| 45 | 45 |
typedef GR Digraph; |
| 46 | 46 |
///\brief The type of the map that stores the last |
| 47 | 47 |
///arcs of the shortest paths. |
| 48 | 48 |
/// |
| 49 | 49 |
///The type of the map that stores the last |
| 50 | 50 |
///arcs of the shortest paths. |
| 51 | 51 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 52 | 52 |
/// |
| 53 | 53 |
typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap; |
| 54 | 54 |
///Instantiates a PredMap. |
| 55 | 55 |
|
| 56 | 56 |
///This function instantiates a \ref PredMap. |
| 57 | 57 |
///\param G is the digraph, to which we would like to define the PredMap. |
| 58 | 58 |
///\todo The digraph alone may be insufficient to initialize |
| 59 | 59 |
static PredMap *createPredMap(const GR &G) |
| 60 | 60 |
{
|
| 61 | 61 |
return new PredMap(G); |
| 62 | 62 |
} |
| 63 | 63 |
///The type of the map that indicates which nodes are processed. |
| 64 | 64 |
|
| 65 | 65 |
///The type of the map that indicates which nodes are processed. |
| 66 | 66 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 67 | 67 |
///\todo named parameter to set this type, function to read and write. |
| 68 | 68 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 69 | 69 |
///Instantiates a ProcessedMap. |
| 70 | 70 |
|
| 71 | 71 |
///This function instantiates a \ref ProcessedMap. |
| 72 | 72 |
///\param g is the digraph, to which |
| 73 | 73 |
///we would like to define the \ref ProcessedMap |
| 74 | 74 |
#ifdef DOXYGEN |
| 75 | 75 |
static ProcessedMap *createProcessedMap(const GR &g) |
| 76 | 76 |
#else |
| 77 | 77 |
static ProcessedMap *createProcessedMap(const GR &) |
| 78 | 78 |
#endif |
| 79 | 79 |
{
|
| 80 | 80 |
return new ProcessedMap(); |
| 81 | 81 |
} |
| 82 | 82 |
///The type of the map that indicates which nodes are reached. |
| 83 | 83 |
|
| 84 | 84 |
///The type of the map that indicates which nodes are reached. |
| 85 | 85 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 86 | 86 |
///\todo named parameter to set this type, function to read and write. |
| 87 | 87 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 88 | 88 |
///Instantiates a ReachedMap. |
| 89 | 89 |
|
| 90 | 90 |
///This function instantiates a \ref ReachedMap. |
| 91 | 91 |
///\param G is the digraph, to which |
| 92 | 92 |
///we would like to define the \ref ReachedMap. |
| 93 | 93 |
static ReachedMap *createReachedMap(const GR &G) |
| 94 | 94 |
{
|
| 95 | 95 |
return new ReachedMap(G); |
| 96 | 96 |
} |
| 97 | 97 |
///The type of the map that stores the dists of the nodes. |
| 98 | 98 |
|
| 99 | 99 |
///The type of the map that stores the dists of the nodes. |
| 100 | 100 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 101 | 101 |
/// |
| 102 | 102 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 103 | 103 |
///Instantiates a DistMap. |
| 104 | 104 |
|
| 105 | 105 |
///This function instantiates a \ref DistMap. |
| 106 | 106 |
///\param G is the digraph, to which we would like to define the \ref DistMap |
| 107 | 107 |
static DistMap *createDistMap(const GR &G) |
| 108 | 108 |
{
|
| 109 | 109 |
return new DistMap(G); |
| 110 | 110 |
} |
| 111 | 111 |
}; |
| 112 | 112 |
|
| 113 | 113 |
///%BFS algorithm class. |
| 114 | 114 |
|
| 115 | 115 |
///\ingroup search |
| 116 | 116 |
///This class provides an efficient implementation of the %BFS algorithm. |
| 117 | 117 |
/// |
| 118 |
///\ |
|
| 118 |
///\tparam GR The digraph type the algorithm runs on. The default value is |
|
| 119 | 119 |
///\ref ListDigraph. The value of GR is not used directly by Bfs, it |
| 120 | 120 |
///is only passed to \ref BfsDefaultTraits. |
| 121 |
///\ |
|
| 121 |
///\tparam TR Traits class to set various data types used by the algorithm. |
|
| 122 | 122 |
///The default traits class is |
| 123 | 123 |
///\ref BfsDefaultTraits "BfsDefaultTraits<GR>". |
| 124 | 124 |
///See \ref BfsDefaultTraits for the documentation of |
| 125 | 125 |
///a Bfs traits class. |
| 126 |
/// |
|
| 127 |
///\author Alpar Juttner |
|
| 128 | 126 |
|
| 129 | 127 |
#ifdef DOXYGEN |
| 130 | 128 |
template <typename GR, |
| 131 | 129 |
typename TR> |
| 132 | 130 |
#else |
| 133 | 131 |
template <typename GR=ListDigraph, |
| 134 | 132 |
typename TR=BfsDefaultTraits<GR> > |
| 135 | 133 |
#endif |
| 136 | 134 |
class Bfs {
|
| 137 | 135 |
public: |
| 138 | 136 |
/** |
| 139 | 137 |
* \brief \ref Exception for uninitialized parameters. |
| 140 | 138 |
* |
| 141 | 139 |
* This error represents problems in the initialization |
| 142 | 140 |
* of the parameters of the algorithms. |
| 143 | 141 |
*/ |
| 144 | 142 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
| 145 | 143 |
public: |
| 146 | 144 |
virtual const char* what() const throw() {
|
| 147 | 145 |
return "lemon::Bfs::UninitializedParameter"; |
| 148 | 146 |
} |
| 149 | 147 |
}; |
| 150 | 148 |
|
| 151 | 149 |
typedef TR Traits; |
| 152 | 150 |
///The type of the underlying digraph. |
| 153 | 151 |
typedef typename TR::Digraph Digraph; |
| 154 | 152 |
|
| 155 | 153 |
///\brief The type of the map that stores the last |
| 156 | 154 |
///arcs of the shortest paths. |
| 157 | 155 |
typedef typename TR::PredMap PredMap; |
| 158 | 156 |
///The type of the map indicating which nodes are reached. |
| 159 | 157 |
typedef typename TR::ReachedMap ReachedMap; |
| 160 | 158 |
///The type of the map indicating which nodes are processed. |
| 161 | 159 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 162 | 160 |
///The type of the map that stores the dists of the nodes. |
| 163 | 161 |
typedef typename TR::DistMap DistMap; |
| 164 | 162 |
private: |
| 165 | 163 |
|
| 166 | 164 |
typedef typename Digraph::Node Node; |
| 167 | 165 |
typedef typename Digraph::NodeIt NodeIt; |
| 168 | 166 |
typedef typename Digraph::Arc Arc; |
| 169 | 167 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 170 | 168 |
|
| 171 | 169 |
/// Pointer to the underlying digraph. |
| 172 | 170 |
const Digraph *G; |
| 173 | 171 |
///Pointer to the map of predecessors arcs. |
| 174 | 172 |
PredMap *_pred; |
| 175 | 173 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
| 176 | 174 |
bool local_pred; |
| 177 | 175 |
///Pointer to the map of distances. |
| 178 | 176 |
DistMap *_dist; |
| 179 | 177 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
| 180 | 178 |
bool local_dist; |
| 181 | 179 |
///Pointer to the map of reached status of the nodes. |
| 182 | 180 |
ReachedMap *_reached; |
| 183 | 181 |
///Indicates if \ref _reached is locally allocated (\c true) or not. |
| 184 | 182 |
bool local_reached; |
| 185 | 183 |
///Pointer to the map of processed status of the nodes. |
| 186 | 184 |
ProcessedMap *_processed; |
| 187 | 185 |
///Indicates if \ref _processed is locally allocated (\c true) or not. |
| 188 | 186 |
bool local_processed; |
| 189 | 187 |
|
| 190 | 188 |
std::vector<typename Digraph::Node> _queue; |
| 191 | 189 |
int _queue_head,_queue_tail,_queue_next_dist; |
| 192 | 190 |
int _curr_dist; |
| 193 | 191 |
|
| 194 | 192 |
///Creates the maps if necessary. |
| 195 | 193 |
|
| 196 | 194 |
///\todo Better memory allocation (instead of new). |
| 197 | 195 |
void create_maps() |
| 198 | 196 |
{
|
| 199 | 197 |
if(!_pred) {
|
| 200 | 198 |
local_pred = true; |
| 201 | 199 |
_pred = Traits::createPredMap(*G); |
| 202 | 200 |
} |
| 203 | 201 |
if(!_dist) {
|
| 204 | 202 |
local_dist = true; |
| 205 | 203 |
_dist = Traits::createDistMap(*G); |
| 206 | 204 |
} |
| 207 | 205 |
if(!_reached) {
|
| 208 | 206 |
local_reached = true; |
| 209 | 207 |
_reached = Traits::createReachedMap(*G); |
| 210 | 208 |
} |
| 211 | 209 |
if(!_processed) {
|
| 212 | 210 |
local_processed = true; |
| 213 | 211 |
_processed = Traits::createProcessedMap(*G); |
| 214 | 212 |
} |
| 215 | 213 |
} |
| 216 | 214 |
|
| 217 | 215 |
protected: |
| 218 | 216 |
|
| 219 | 217 |
Bfs() {}
|
| 220 | 218 |
|
| 221 | 219 |
public: |
| 222 | 220 |
|
| 223 | 221 |
typedef Bfs Create; |
| ... | ... |
@@ -663,193 +661,193 @@ |
| 663 | 661 |
/// b.start(t); |
| 664 | 662 |
///\endcode |
| 665 | 663 |
int run(Node s,Node t) {
|
| 666 | 664 |
init(); |
| 667 | 665 |
addSource(s); |
| 668 | 666 |
start(t); |
| 669 | 667 |
return reached(t) ? _curr_dist : 0; |
| 670 | 668 |
} |
| 671 | 669 |
|
| 672 | 670 |
///@} |
| 673 | 671 |
|
| 674 | 672 |
///\name Query Functions |
| 675 | 673 |
///The result of the %BFS algorithm can be obtained using these |
| 676 | 674 |
///functions.\n |
| 677 | 675 |
///Before the use of these functions, |
| 678 | 676 |
///either run() or start() must be calleb. |
| 679 | 677 |
|
| 680 | 678 |
///@{
|
| 681 | 679 |
|
| 682 | 680 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 683 | 681 |
|
| 684 | 682 |
///Gives back the shortest path. |
| 685 | 683 |
|
| 686 | 684 |
///Gives back the shortest path. |
| 687 | 685 |
///\pre The \c t should be reachable from the source. |
| 688 | 686 |
Path path(Node t) |
| 689 | 687 |
{
|
| 690 | 688 |
return Path(*G, *_pred, t); |
| 691 | 689 |
} |
| 692 | 690 |
|
| 693 | 691 |
///The distance of a node from the root(s). |
| 694 | 692 |
|
| 695 | 693 |
///Returns the distance of a node from the root(s). |
| 696 | 694 |
///\pre \ref run() must be called before using this function. |
| 697 | 695 |
///\warning If node \c v in unreachable from the root(s) the return value |
| 698 | 696 |
///of this function is undefined. |
| 699 | 697 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 700 | 698 |
|
| 701 | 699 |
///Returns the 'previous arc' of the shortest path tree. |
| 702 | 700 |
|
| 703 | 701 |
///For a node \c v it returns the 'previous arc' |
| 704 | 702 |
///of the shortest path tree, |
| 705 | 703 |
///i.e. it returns the last arc of a shortest path from the root(s) to \c |
| 706 | 704 |
///v. It is \ref INVALID |
| 707 | 705 |
///if \c v is unreachable from the root(s) or \c v is a root. The |
| 708 | 706 |
///shortest path tree used here is equal to the shortest path tree used in |
| 709 | 707 |
///\ref predNode(). |
| 710 | 708 |
///\pre Either \ref run() or \ref start() must be called before using |
| 711 | 709 |
///this function. |
| 712 | 710 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 713 | 711 |
|
| 714 | 712 |
///Returns the 'previous node' of the shortest path tree. |
| 715 | 713 |
|
| 716 | 714 |
///For a node \c v it returns the 'previous node' |
| 717 | 715 |
///of the shortest path tree, |
| 718 | 716 |
///i.e. it returns the last but one node from a shortest path from the |
| 719 | 717 |
///root(a) to \c /v. |
| 720 | 718 |
///It is INVALID if \c v is unreachable from the root(s) or |
| 721 | 719 |
///if \c v itself a root. |
| 722 | 720 |
///The shortest path tree used here is equal to the shortest path |
| 723 | 721 |
///tree used in \ref predArc(). |
| 724 | 722 |
///\pre Either \ref run() or \ref start() must be called before |
| 725 | 723 |
///using this function. |
| 726 | 724 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 727 | 725 |
G->source((*_pred)[v]); } |
| 728 | 726 |
|
| 729 | 727 |
///Returns a reference to the NodeMap of distances. |
| 730 | 728 |
|
| 731 | 729 |
///Returns a reference to the NodeMap of distances. |
| 732 | 730 |
///\pre Either \ref run() or \ref init() must |
| 733 | 731 |
///be called before using this function. |
| 734 | 732 |
const DistMap &distMap() const { return *_dist;}
|
| 735 | 733 |
|
| 736 | 734 |
///Returns a reference to the shortest path tree map. |
| 737 | 735 |
|
| 738 | 736 |
///Returns a reference to the NodeMap of the arcs of the |
| 739 | 737 |
///shortest path tree. |
| 740 | 738 |
///\pre Either \ref run() or \ref init() |
| 741 | 739 |
///must be called before using this function. |
| 742 | 740 |
const PredMap &predMap() const { return *_pred;}
|
| 743 | 741 |
|
| 744 | 742 |
///Checks if a node is reachable from the root. |
| 745 | 743 |
|
| 746 | 744 |
///Returns \c true if \c v is reachable from the root. |
| 747 | 745 |
///\warning The source nodes are indicated as unreached. |
| 748 | 746 |
///\pre Either \ref run() or \ref start() |
| 749 | 747 |
///must be called before using this function. |
| 750 | 748 |
/// |
| 751 | 749 |
bool reached(Node v) { return (*_reached)[v]; }
|
| 752 | 750 |
|
| 753 | 751 |
///@} |
| 754 | 752 |
}; |
| 755 | 753 |
|
| 756 | 754 |
///Default traits class of Bfs function. |
| 757 | 755 |
|
| 758 | 756 |
///Default traits class of Bfs function. |
| 759 |
///\ |
|
| 757 |
///\tparam GR Digraph type. |
|
| 760 | 758 |
template<class GR> |
| 761 | 759 |
struct BfsWizardDefaultTraits |
| 762 | 760 |
{
|
| 763 | 761 |
///The digraph type the algorithm runs on. |
| 764 | 762 |
typedef GR Digraph; |
| 765 | 763 |
///\brief The type of the map that stores the last |
| 766 | 764 |
///arcs of the shortest paths. |
| 767 | 765 |
/// |
| 768 | 766 |
///The type of the map that stores the last |
| 769 | 767 |
///arcs of the shortest paths. |
| 770 | 768 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 771 | 769 |
/// |
| 772 | 770 |
typedef NullMap<typename Digraph::Node,typename GR::Arc> PredMap; |
| 773 | 771 |
///Instantiates a PredMap. |
| 774 | 772 |
|
| 775 | 773 |
///This function instantiates a \ref PredMap. |
| 776 | 774 |
///\param g is the digraph, to which we would like to define the PredMap. |
| 777 | 775 |
///\todo The digraph alone may be insufficient to initialize |
| 778 | 776 |
#ifdef DOXYGEN |
| 779 | 777 |
static PredMap *createPredMap(const GR &g) |
| 780 | 778 |
#else |
| 781 | 779 |
static PredMap *createPredMap(const GR &) |
| 782 | 780 |
#endif |
| 783 | 781 |
{
|
| 784 | 782 |
return new PredMap(); |
| 785 | 783 |
} |
| 786 | 784 |
|
| 787 | 785 |
///The type of the map that indicates which nodes are processed. |
| 788 | 786 |
|
| 789 | 787 |
///The type of the map that indicates which nodes are processed. |
| 790 | 788 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 791 | 789 |
///\todo named parameter to set this type, function to read and write. |
| 792 | 790 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 793 | 791 |
///Instantiates a ProcessedMap. |
| 794 | 792 |
|
| 795 | 793 |
///This function instantiates a \ref ProcessedMap. |
| 796 | 794 |
///\param g is the digraph, to which |
| 797 | 795 |
///we would like to define the \ref ProcessedMap |
| 798 | 796 |
#ifdef DOXYGEN |
| 799 | 797 |
static ProcessedMap *createProcessedMap(const GR &g) |
| 800 | 798 |
#else |
| 801 | 799 |
static ProcessedMap *createProcessedMap(const GR &) |
| 802 | 800 |
#endif |
| 803 | 801 |
{
|
| 804 | 802 |
return new ProcessedMap(); |
| 805 | 803 |
} |
| 806 | 804 |
///The type of the map that indicates which nodes are reached. |
| 807 | 805 |
|
| 808 | 806 |
///The type of the map that indicates which nodes are reached. |
| 809 | 807 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 810 | 808 |
///\todo named parameter to set this type, function to read and write. |
| 811 | 809 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 812 | 810 |
///Instantiates a ReachedMap. |
| 813 | 811 |
|
| 814 | 812 |
///This function instantiates a \ref ReachedMap. |
| 815 | 813 |
///\param G is the digraph, to which |
| 816 | 814 |
///we would like to define the \ref ReachedMap. |
| 817 | 815 |
static ReachedMap *createReachedMap(const GR &G) |
| 818 | 816 |
{
|
| 819 | 817 |
return new ReachedMap(G); |
| 820 | 818 |
} |
| 821 | 819 |
///The type of the map that stores the dists of the nodes. |
| 822 | 820 |
|
| 823 | 821 |
///The type of the map that stores the dists of the nodes. |
| 824 | 822 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 825 | 823 |
/// |
| 826 | 824 |
typedef NullMap<typename Digraph::Node,int> DistMap; |
| 827 | 825 |
///Instantiates a DistMap. |
| 828 | 826 |
|
| 829 | 827 |
///This function instantiates a \ref DistMap. |
| 830 | 828 |
///\param g is the digraph, to which we would like to define the \ref DistMap |
| 831 | 829 |
#ifdef DOXYGEN |
| 832 | 830 |
static DistMap *createDistMap(const GR &g) |
| 833 | 831 |
#else |
| 834 | 832 |
static DistMap *createDistMap(const GR &) |
| 835 | 833 |
#endif |
| 836 | 834 |
{
|
| 837 | 835 |
return new DistMap(); |
| 838 | 836 |
} |
| 839 | 837 |
}; |
| 840 | 838 |
|
| 841 | 839 |
/// Default traits used by \ref BfsWizard |
| 842 | 840 |
|
| 843 | 841 |
/// To make it easier to use Bfs algorithm |
| 844 | 842 |
///we have created a wizard class. |
| 845 | 843 |
/// This \ref BfsWizard class needs default traits, |
| 846 | 844 |
///as well as the \ref Bfs class. |
| 847 | 845 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
| 848 | 846 |
/// \ref BfsWizard class. |
| 849 | 847 |
template<class GR> |
| 850 | 848 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
| 851 | 849 |
{
|
| 852 | 850 |
|
| 853 | 851 |
typedef BfsWizardDefaultTraits<GR> Base; |
| 854 | 852 |
protected: |
| 855 | 853 |
/// Type of the nodes in the digraph. |
| ... | ... |
@@ -1072,242 +1070,240 @@ |
| 1072 | 1070 |
{
|
| 1073 | 1071 |
Base::_source=s; |
| 1074 | 1072 |
return *this; |
| 1075 | 1073 |
} |
| 1076 | 1074 |
|
| 1077 | 1075 |
}; |
| 1078 | 1076 |
|
| 1079 | 1077 |
///Function type interface for Bfs algorithm. |
| 1080 | 1078 |
|
| 1081 | 1079 |
/// \ingroup search |
| 1082 | 1080 |
///Function type interface for Bfs algorithm. |
| 1083 | 1081 |
/// |
| 1084 | 1082 |
///This function also has several |
| 1085 | 1083 |
///\ref named-templ-func-param "named parameters", |
| 1086 | 1084 |
///they are declared as the members of class \ref BfsWizard. |
| 1087 | 1085 |
///The following |
| 1088 | 1086 |
///example shows how to use these parameters. |
| 1089 | 1087 |
///\code |
| 1090 | 1088 |
/// bfs(g,source).predMap(preds).run(); |
| 1091 | 1089 |
///\endcode |
| 1092 | 1090 |
///\warning Don't forget to put the \ref BfsWizard::run() "run()" |
| 1093 | 1091 |
///to the end of the parameter list. |
| 1094 | 1092 |
///\sa BfsWizard |
| 1095 | 1093 |
///\sa Bfs |
| 1096 | 1094 |
template<class GR> |
| 1097 | 1095 |
BfsWizard<BfsWizardBase<GR> > |
| 1098 | 1096 |
bfs(const GR &g,typename GR::Node s=INVALID) |
| 1099 | 1097 |
{
|
| 1100 | 1098 |
return BfsWizard<BfsWizardBase<GR> >(g,s); |
| 1101 | 1099 |
} |
| 1102 | 1100 |
|
| 1103 | 1101 |
#ifdef DOXYGEN |
| 1104 | 1102 |
/// \brief Visitor class for bfs. |
| 1105 | 1103 |
/// |
| 1106 | 1104 |
/// This class defines the interface of the BfsVisit events, and |
| 1107 | 1105 |
/// it could be the base of a real Visitor class. |
| 1108 | 1106 |
template <typename _Digraph> |
| 1109 | 1107 |
struct BfsVisitor {
|
| 1110 | 1108 |
typedef _Digraph Digraph; |
| 1111 | 1109 |
typedef typename Digraph::Arc Arc; |
| 1112 | 1110 |
typedef typename Digraph::Node Node; |
| 1113 | 1111 |
/// \brief Called when the arc reach a node. |
| 1114 | 1112 |
/// |
| 1115 | 1113 |
/// It is called when the bfs find an arc which target is not |
| 1116 | 1114 |
/// reached yet. |
| 1117 | 1115 |
void discover(const Arc& arc) {}
|
| 1118 | 1116 |
/// \brief Called when the node reached first time. |
| 1119 | 1117 |
/// |
| 1120 | 1118 |
/// It is Called when the node reached first time. |
| 1121 | 1119 |
void reach(const Node& node) {}
|
| 1122 | 1120 |
/// \brief Called when the arc examined but target of the arc |
| 1123 | 1121 |
/// already discovered. |
| 1124 | 1122 |
/// |
| 1125 | 1123 |
/// It called when the arc examined but the target of the arc |
| 1126 | 1124 |
/// already discovered. |
| 1127 | 1125 |
void examine(const Arc& arc) {}
|
| 1128 | 1126 |
/// \brief Called for the source node of the bfs. |
| 1129 | 1127 |
/// |
| 1130 | 1128 |
/// It is called for the source node of the bfs. |
| 1131 | 1129 |
void start(const Node& node) {}
|
| 1132 | 1130 |
/// \brief Called when the node processed. |
| 1133 | 1131 |
/// |
| 1134 | 1132 |
/// It is Called when the node processed. |
| 1135 | 1133 |
void process(const Node& node) {}
|
| 1136 | 1134 |
}; |
| 1137 | 1135 |
#else |
| 1138 | 1136 |
template <typename _Digraph> |
| 1139 | 1137 |
struct BfsVisitor {
|
| 1140 | 1138 |
typedef _Digraph Digraph; |
| 1141 | 1139 |
typedef typename Digraph::Arc Arc; |
| 1142 | 1140 |
typedef typename Digraph::Node Node; |
| 1143 | 1141 |
void discover(const Arc&) {}
|
| 1144 | 1142 |
void reach(const Node&) {}
|
| 1145 | 1143 |
void examine(const Arc&) {}
|
| 1146 | 1144 |
void start(const Node&) {}
|
| 1147 | 1145 |
void process(const Node&) {}
|
| 1148 | 1146 |
|
| 1149 | 1147 |
template <typename _Visitor> |
| 1150 | 1148 |
struct Constraints {
|
| 1151 | 1149 |
void constraints() {
|
| 1152 | 1150 |
Arc arc; |
| 1153 | 1151 |
Node node; |
| 1154 | 1152 |
visitor.discover(arc); |
| 1155 | 1153 |
visitor.reach(node); |
| 1156 | 1154 |
visitor.examine(arc); |
| 1157 | 1155 |
visitor.start(node); |
| 1158 | 1156 |
visitor.process(node); |
| 1159 | 1157 |
} |
| 1160 | 1158 |
_Visitor& visitor; |
| 1161 | 1159 |
}; |
| 1162 | 1160 |
}; |
| 1163 | 1161 |
#endif |
| 1164 | 1162 |
|
| 1165 | 1163 |
/// \brief Default traits class of BfsVisit class. |
| 1166 | 1164 |
/// |
| 1167 | 1165 |
/// Default traits class of BfsVisit class. |
| 1168 |
/// \ |
|
| 1166 |
/// \tparam _Digraph Digraph type. |
|
| 1169 | 1167 |
template<class _Digraph> |
| 1170 | 1168 |
struct BfsVisitDefaultTraits {
|
| 1171 | 1169 |
|
| 1172 | 1170 |
/// \brief The digraph type the algorithm runs on. |
| 1173 | 1171 |
typedef _Digraph Digraph; |
| 1174 | 1172 |
|
| 1175 | 1173 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1176 | 1174 |
/// |
| 1177 | 1175 |
/// The type of the map that indicates which nodes are reached. |
| 1178 | 1176 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 1179 | 1177 |
/// \todo named parameter to set this type, function to read and write. |
| 1180 | 1178 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1181 | 1179 |
|
| 1182 | 1180 |
/// \brief Instantiates a ReachedMap. |
| 1183 | 1181 |
/// |
| 1184 | 1182 |
/// This function instantiates a \ref ReachedMap. |
| 1185 | 1183 |
/// \param digraph is the digraph, to which |
| 1186 | 1184 |
/// we would like to define the \ref ReachedMap. |
| 1187 | 1185 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1188 | 1186 |
return new ReachedMap(digraph); |
| 1189 | 1187 |
} |
| 1190 | 1188 |
|
| 1191 | 1189 |
}; |
| 1192 | 1190 |
|
| 1193 | 1191 |
/// \ingroup search |
| 1194 | 1192 |
/// |
| 1195 | 1193 |
/// \brief %BFS Visit algorithm class. |
| 1196 | 1194 |
/// |
| 1197 | 1195 |
/// This class provides an efficient implementation of the %BFS algorithm |
| 1198 | 1196 |
/// with visitor interface. |
| 1199 | 1197 |
/// |
| 1200 | 1198 |
/// The %BfsVisit class provides an alternative interface to the Bfs |
| 1201 | 1199 |
/// class. It works with callback mechanism, the BfsVisit object calls |
| 1202 | 1200 |
/// on every bfs event the \c Visitor class member functions. |
| 1203 | 1201 |
/// |
| 1204 |
/// \ |
|
| 1202 |
/// \tparam _Digraph The digraph type the algorithm runs on. The default value is |
|
| 1205 | 1203 |
/// \ref ListDigraph. The value of _Digraph is not used directly by Bfs, it |
| 1206 | 1204 |
/// is only passed to \ref BfsDefaultTraits. |
| 1207 |
/// \ |
|
| 1205 |
/// \tparam _Visitor The Visitor object for the algorithm. The |
|
| 1208 | 1206 |
/// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty Visitor which |
| 1209 | 1207 |
/// does not observe the Bfs events. If you want to observe the bfs |
| 1210 | 1208 |
/// events you should implement your own Visitor class. |
| 1211 |
/// \ |
|
| 1209 |
/// \tparam _Traits Traits class to set various data types used by the |
|
| 1212 | 1210 |
/// algorithm. The default traits class is |
| 1213 | 1211 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>". |
| 1214 | 1212 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
| 1215 | 1213 |
/// a Bfs visit traits class. |
| 1216 |
/// |
|
| 1217 |
/// \author Jacint Szabo, Alpar Juttner and Balazs Dezso |
|
| 1218 | 1214 |
#ifdef DOXYGEN |
| 1219 | 1215 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
| 1220 | 1216 |
#else |
| 1221 | 1217 |
template <typename _Digraph = ListDigraph, |
| 1222 | 1218 |
typename _Visitor = BfsVisitor<_Digraph>, |
| 1223 | 1219 |
typename _Traits = BfsDefaultTraits<_Digraph> > |
| 1224 | 1220 |
#endif |
| 1225 | 1221 |
class BfsVisit {
|
| 1226 | 1222 |
public: |
| 1227 | 1223 |
|
| 1228 | 1224 |
/// \brief \ref Exception for uninitialized parameters. |
| 1229 | 1225 |
/// |
| 1230 | 1226 |
/// This error represents problems in the initialization |
| 1231 | 1227 |
/// of the parameters of the algorithms. |
| 1232 | 1228 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
| 1233 | 1229 |
public: |
| 1234 | 1230 |
virtual const char* what() const throw() |
| 1235 | 1231 |
{
|
| 1236 | 1232 |
return "lemon::BfsVisit::UninitializedParameter"; |
| 1237 | 1233 |
} |
| 1238 | 1234 |
}; |
| 1239 | 1235 |
|
| 1240 | 1236 |
typedef _Traits Traits; |
| 1241 | 1237 |
|
| 1242 | 1238 |
typedef typename Traits::Digraph Digraph; |
| 1243 | 1239 |
|
| 1244 | 1240 |
typedef _Visitor Visitor; |
| 1245 | 1241 |
|
| 1246 | 1242 |
///The type of the map indicating which nodes are reached. |
| 1247 | 1243 |
typedef typename Traits::ReachedMap ReachedMap; |
| 1248 | 1244 |
|
| 1249 | 1245 |
private: |
| 1250 | 1246 |
|
| 1251 | 1247 |
typedef typename Digraph::Node Node; |
| 1252 | 1248 |
typedef typename Digraph::NodeIt NodeIt; |
| 1253 | 1249 |
typedef typename Digraph::Arc Arc; |
| 1254 | 1250 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1255 | 1251 |
|
| 1256 | 1252 |
/// Pointer to the underlying digraph. |
| 1257 | 1253 |
const Digraph *_digraph; |
| 1258 | 1254 |
/// Pointer to the visitor object. |
| 1259 | 1255 |
Visitor *_visitor; |
| 1260 | 1256 |
///Pointer to the map of reached status of the nodes. |
| 1261 | 1257 |
ReachedMap *_reached; |
| 1262 | 1258 |
///Indicates if \ref _reached is locally allocated (\c true) or not. |
| 1263 | 1259 |
bool local_reached; |
| 1264 | 1260 |
|
| 1265 | 1261 |
std::vector<typename Digraph::Node> _list; |
| 1266 | 1262 |
int _list_front, _list_back; |
| 1267 | 1263 |
|
| 1268 | 1264 |
/// \brief Creates the maps if necessary. |
| 1269 | 1265 |
/// |
| 1270 | 1266 |
/// Creates the maps if necessary. |
| 1271 | 1267 |
void create_maps() {
|
| 1272 | 1268 |
if(!_reached) {
|
| 1273 | 1269 |
local_reached = true; |
| 1274 | 1270 |
_reached = Traits::createReachedMap(*_digraph); |
| 1275 | 1271 |
} |
| 1276 | 1272 |
} |
| 1277 | 1273 |
|
| 1278 | 1274 |
protected: |
| 1279 | 1275 |
|
| 1280 | 1276 |
BfsVisit() {}
|
| 1281 | 1277 |
|
| 1282 | 1278 |
public: |
| 1283 | 1279 |
|
| 1284 | 1280 |
typedef BfsVisit Create; |
| 1285 | 1281 |
|
| 1286 | 1282 |
/// \name Named template parameters |
| 1287 | 1283 |
|
| 1288 | 1284 |
///@{
|
| 1289 | 1285 |
template <class T> |
| 1290 | 1286 |
struct DefReachedMapTraits : public Traits {
|
| 1291 | 1287 |
typedef T ReachedMap; |
| 1292 | 1288 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1293 | 1289 |
throw UninitializedParameter(); |
| 1294 | 1290 |
} |
| 1295 | 1291 |
}; |
| 1296 | 1292 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1297 | 1293 |
/// ReachedMap type |
| 1298 | 1294 |
/// |
| 1299 | 1295 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type |
| 1300 | 1296 |
template <class T> |
| 1301 | 1297 |
struct DefReachedMap : public BfsVisit< Digraph, Visitor, |
| 1302 | 1298 |
DefReachedMapTraits<T> > {
|
| 1303 | 1299 |
typedef BfsVisit< Digraph, Visitor, DefReachedMapTraits<T> > Create; |
| 1304 | 1300 |
}; |
| 1305 | 1301 |
///@} |
| 1306 | 1302 |
|
| 1307 | 1303 |
public: |
| 1308 | 1304 |
|
| 1309 | 1305 |
/// \brief Constructor. |
| 1310 | 1306 |
/// |
| 1311 | 1307 |
/// Constructor. |
| 1312 | 1308 |
/// |
| 1313 | 1309 |
/// \param digraph the digraph the algorithm will run on. |
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BIN_HEAP_H |
| 20 | 20 |
#define LEMON_BIN_HEAP_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup auxdat |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Binary Heap implementation. |
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <utility> |
| 28 | 28 |
#include <functional> |
| 29 | 29 |
|
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
///\ingroup auxdat |
| 33 | 33 |
/// |
| 34 | 34 |
///\brief A Binary Heap implementation. |
| 35 | 35 |
/// |
| 36 | 36 |
///This class implements the \e binary \e heap data structure. A \e heap |
| 37 | 37 |
///is a data structure for storing items with specified values called \e |
| 38 | 38 |
///priorities in such a way that finding the item with minimum priority is |
| 39 | 39 |
///efficient. \c Compare specifies the ordering of the priorities. In a heap |
| 40 | 40 |
///one can change the priority of an item, add or erase an item, etc. |
| 41 | 41 |
/// |
| 42 |
///\param _Prio Type of the priority of the items. |
|
| 43 |
///\param _ItemIntMap A read and writable Item int map, used internally |
|
| 42 |
///\tparam _Prio Type of the priority of the items. |
|
| 43 |
///\tparam _ItemIntMap A read and writable Item int map, used internally |
|
| 44 | 44 |
///to handle the cross references. |
| 45 |
///\ |
|
| 45 |
///\tparam _Compare A class for the ordering of the priorities. The |
|
| 46 | 46 |
///default is \c std::less<_Prio>. |
| 47 | 47 |
/// |
| 48 | 48 |
///\sa FibHeap |
| 49 | 49 |
///\sa Dijkstra |
| 50 | 50 |
template <typename _Prio, typename _ItemIntMap, |
| 51 | 51 |
typename _Compare = std::less<_Prio> > |
| 52 | 52 |
class BinHeap {
|
| 53 | 53 |
|
| 54 | 54 |
public: |
| 55 | 55 |
///\e |
| 56 | 56 |
typedef _ItemIntMap ItemIntMap; |
| 57 | 57 |
///\e |
| 58 | 58 |
typedef _Prio Prio; |
| 59 | 59 |
///\e |
| 60 | 60 |
typedef typename ItemIntMap::Key Item; |
| 61 | 61 |
///\e |
| 62 | 62 |
typedef std::pair<Item,Prio> Pair; |
| 63 | 63 |
///\e |
| 64 | 64 |
typedef _Compare Compare; |
| 65 | 65 |
|
| 66 | 66 |
/// \brief Type to represent the items states. |
| 67 | 67 |
/// |
| 68 | 68 |
/// Each Item element have a state associated to it. It may be "in heap", |
| 69 | 69 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
| 70 | 70 |
/// heap's point of view, but may be useful to the user. |
| 71 | 71 |
/// |
| 72 | 72 |
/// The ItemIntMap \e should be initialized in such way that it maps |
| 73 | 73 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
| 74 | 74 |
enum State {
|
| 75 | 75 |
IN_HEAP = 0, |
| 76 | 76 |
PRE_HEAP = -1, |
| 77 | 77 |
POST_HEAP = -2 |
| 78 | 78 |
}; |
| 79 | 79 |
|
| 80 | 80 |
private: |
| 81 | 81 |
std::vector<Pair> data; |
| 82 | 82 |
Compare comp; |
| 83 | 83 |
ItemIntMap &iim; |
| 84 | 84 |
|
| 85 | 85 |
public: |
| 86 | 86 |
/// \brief The constructor. |
| 87 | 87 |
/// |
| 88 | 88 |
/// The constructor. |
| 89 | 89 |
/// \param _iim should be given to the constructor, since it is used |
| 90 | 90 |
/// internally to handle the cross references. The value of the map |
| 91 | 91 |
/// should be PRE_HEAP (-1) for each element. |
| 92 | 92 |
explicit BinHeap(ItemIntMap &_iim) : iim(_iim) {}
|
| 93 | 93 |
|
| 94 | 94 |
/// \brief The constructor. |
| 95 | 95 |
/// |
| 96 | 96 |
/// The constructor. |
| 97 | 97 |
/// \param _iim should be given to the constructor, since it is used |
| 98 | 98 |
/// internally to handle the cross references. The value of the map |
| 99 | 99 |
/// should be PRE_HEAP (-1) for each element. |
| 100 | 100 |
/// |
| 101 | 101 |
/// \param _comp The comparator function object. |
| 102 | 102 |
BinHeap(ItemIntMap &_iim, const Compare &_comp) |
| 103 | 103 |
: iim(_iim), comp(_comp) {}
|
| 104 | 104 |
|
| 105 | 105 |
|
| 106 | 106 |
/// The number of items stored in the heap. |
| 107 | 107 |
/// |
| 108 | 108 |
/// \brief Returns the number of items stored in the heap. |
| 109 | 109 |
int size() const { return data.size(); }
|
| 110 | 110 |
|
| 111 | 111 |
/// \brief Checks if the heap stores no items. |
| 112 | 112 |
/// |
| 113 | 113 |
/// Returns \c true if and only if the heap stores no items. |
| 114 | 114 |
bool empty() const { return data.empty(); }
|
| 115 | 115 |
|
| 116 | 116 |
/// \brief Make empty this heap. |
| 117 | 117 |
/// |
| 118 | 118 |
/// Make empty this heap. It does not change the cross reference map. |
| 119 | 119 |
/// If you want to reuse what is not surely empty you should first clear |
| 120 | 120 |
/// the heap and after that you should set the cross reference map for |
| 121 | 121 |
/// each item to \c PRE_HEAP. |
| 122 | 122 |
void clear() {
|
| 123 | 123 |
data.clear(); |
| 124 | 124 |
} |
| 125 | 125 |
|
| 126 | 126 |
private: |
| 127 | 127 |
static int parent(int i) { return (i-1)/2; }
|
| 128 | 128 |
|
| 129 | 129 |
static int second_child(int i) { return 2*i+2; }
|
| 130 | 130 |
bool less(const Pair &p1, const Pair &p2) const {
|
| 131 | 131 |
return comp(p1.second, p2.second); |
| 132 | 132 |
} |
| 133 | 133 |
|
| 134 | 134 |
int bubble_up(int hole, Pair p) {
|
| 135 | 135 |
int par = parent(hole); |
| 136 | 136 |
while( hole>0 && less(p,data[par]) ) {
|
| 137 | 137 |
move(data[par],hole); |
| 138 | 138 |
hole = par; |
| 139 | 139 |
par = parent(hole); |
| 140 | 140 |
} |
| 141 | 141 |
move(p, hole); |
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_ALTERATION_NOTIFIER_H |
| 20 | 20 |
#define LEMON_BITS_ALTERATION_NOTIFIER_H |
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
#include <list> |
| 24 | 24 |
|
| 25 | 25 |
#include <lemon/bits/utility.h> |
| 26 | 26 |
|
| 27 | 27 |
///\ingroup graphbits |
| 28 | 28 |
///\file |
| 29 | 29 |
///\brief Observer notifier for graph alteration observers. |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
|
| 33 | 33 |
/// \ingroup graphbits |
| 34 | 34 |
/// |
| 35 | 35 |
/// \brief Notifier class to notify observes about alterations in |
| 36 | 36 |
/// a container. |
| 37 | 37 |
/// |
| 38 | 38 |
/// The simple graph's can be refered as two containers, one node container |
| 39 | 39 |
/// and one edge container. But they are not standard containers they |
| 40 | 40 |
/// does not store values directly they are just key continars for more |
| 41 | 41 |
/// value containers which are the node and edge maps. |
| 42 | 42 |
/// |
| 43 | 43 |
/// The graph's node and edge sets can be changed as we add or erase |
| 44 | 44 |
/// nodes and edges in the graph. Lemon would like to handle easily |
| 45 | 45 |
/// that the node and edge maps should contain values for all nodes or |
| 46 | 46 |
/// edges. If we want to check on every indicing if the map contains |
| 47 | 47 |
/// the current indicing key that cause a drawback in the performance |
| 48 | 48 |
/// in the library. We use another solution we notify all maps about |
| 49 | 49 |
/// an alteration in the graph, which cause only drawback on the |
| 50 | 50 |
/// alteration of the graph. |
| 51 | 51 |
/// |
| 52 | 52 |
/// This class provides an interface to the container. The \e first() and \e |
| 53 | 53 |
/// next() member functions make possible to iterate on the keys of the |
| 54 | 54 |
/// container. The \e id() function returns an integer id for each key. |
| 55 | 55 |
/// The \e maxId() function gives back an upper bound of the ids. |
| 56 | 56 |
/// |
| 57 | 57 |
/// For the proper functonality of this class, we should notify it |
| 58 | 58 |
/// about each alteration in the container. The alterations have four type |
| 59 | 59 |
/// as \e add(), \e erase(), \e build() and \e clear(). The \e add() and |
| 60 | 60 |
/// \e erase() signals that only one or few items added or erased to or |
| 61 | 61 |
/// from the graph. If all items are erased from the graph or from an empty |
| 62 | 62 |
/// graph a new graph is builded then it can be signaled with the |
| 63 | 63 |
/// clear() and build() members. Important rule that if we erase items |
| 64 | 64 |
/// from graph we should first signal the alteration and after that erase |
| 65 | 65 |
/// them from the container, on the other way on item addition we should |
| 66 | 66 |
/// first extend the container and just after that signal the alteration. |
| 67 | 67 |
/// |
| 68 | 68 |
/// The alteration can be observed with a class inherited from the |
| 69 | 69 |
/// \e ObserverBase nested class. The signals can be handled with |
| 70 | 70 |
/// overriding the virtual functions defined in the base class. The |
| 71 | 71 |
/// observer base can be attached to the notifier with the |
| 72 | 72 |
/// \e attach() member and can be detached with detach() function. The |
| 73 | 73 |
/// alteration handlers should not call any function which signals |
| 74 | 74 |
/// an other alteration in the same notifier and should not |
| 75 | 75 |
/// detach any observer from the notifier. |
| 76 | 76 |
/// |
| 77 | 77 |
/// Alteration observers try to be exception safe. If an \e add() or |
| 78 | 78 |
/// a \e clear() function throws an exception then the remaining |
| 79 | 79 |
/// observeres will not be notified and the fulfilled additions will |
| 80 | 80 |
/// be rolled back by calling the \e erase() or \e clear() |
| 81 | 81 |
/// functions. Thence the \e erase() and \e clear() should not throw |
| 82 | 82 |
/// exception. Actullay, it can be throw only |
| 83 | 83 |
/// \ref AlterationObserver::ImmediateDetach ImmediateDetach |
| 84 | 84 |
/// exception which detach the observer from the notifier. |
| 85 | 85 |
/// |
| 86 | 86 |
/// There are some place when the alteration observing is not completly |
| 87 | 87 |
/// reliable. If we want to carry out the node degree in the graph |
| 88 | 88 |
/// as in the \ref InDegMap and we use the reverseEdge that cause |
| 89 | 89 |
/// unreliable functionality. Because the alteration observing signals |
| 90 | 90 |
/// only erasing and adding but not the reversing it will stores bad |
| 91 | 91 |
/// degrees. The sub graph adaptors cannot signal the alterations because |
| 92 | 92 |
/// just a setting in the filter map can modify the graph and this cannot |
| 93 | 93 |
/// be watched in any way. |
| 94 | 94 |
/// |
| 95 | 95 |
/// \param _Container The container which is observed. |
| 96 | 96 |
/// \param _Item The item type which is obserbved. |
| 97 |
/// |
|
| 98 |
/// \author Balazs Dezso |
|
| 99 | 97 |
|
| 100 | 98 |
template <typename _Container, typename _Item> |
| 101 | 99 |
class AlterationNotifier {
|
| 102 | 100 |
public: |
| 103 | 101 |
|
| 104 | 102 |
typedef True Notifier; |
| 105 | 103 |
|
| 106 | 104 |
typedef _Container Container; |
| 107 | 105 |
typedef _Item Item; |
| 108 | 106 |
|
| 109 | 107 |
/// \brief Exception which can be called from \e clear() and |
| 110 | 108 |
/// \e erase(). |
| 111 | 109 |
/// |
| 112 | 110 |
/// From the \e clear() and \e erase() function only this |
| 113 | 111 |
/// exception is allowed to throw. The exception immediatly |
| 114 | 112 |
/// detaches the current observer from the notifier. Because the |
| 115 | 113 |
/// \e clear() and \e erase() should not throw other exceptions |
| 116 | 114 |
/// it can be used to invalidate the observer. |
| 117 | 115 |
struct ImmediateDetach {};
|
| 118 | 116 |
|
| 119 | 117 |
/// \brief ObserverBase is the base class for the observers. |
| 120 | 118 |
/// |
| 121 | 119 |
/// ObserverBase is the abstract base class for the observers. |
| 122 | 120 |
/// It will be notified about an item was inserted into or |
| 123 | 121 |
/// erased from the graph. |
| 124 | 122 |
/// |
| 125 | 123 |
/// The observer interface contains some pure virtual functions |
| 126 | 124 |
/// to override. The add() and erase() functions are |
| 127 | 125 |
/// to notify the oberver when one item is added or |
| 128 | 126 |
/// erased. |
| 129 | 127 |
/// |
| 130 | 128 |
/// The build() and clear() members are to notify the observer |
| 131 | 129 |
/// about the container is built from an empty container or |
| 132 | 130 |
/// is cleared to an empty container. |
| 133 |
/// |
|
| 134 |
/// \author Balazs Dezso |
|
| 135 | 131 |
|
| 136 | 132 |
class ObserverBase {
|
| 137 | 133 |
protected: |
| 138 | 134 |
typedef AlterationNotifier Notifier; |
| 139 | 135 |
|
| 140 | 136 |
friend class AlterationNotifier; |
| 141 | 137 |
|
| 142 | 138 |
/// \brief Default constructor. |
| 143 | 139 |
/// |
| 144 | 140 |
/// Default constructor for ObserverBase. |
| 145 | 141 |
/// |
| 146 | 142 |
ObserverBase() : _notifier(0) {}
|
| 147 | 143 |
|
| 148 | 144 |
/// \brief Constructor which attach the observer into notifier. |
| 149 | 145 |
/// |
| 150 | 146 |
/// Constructor which attach the observer into notifier. |
| 151 | 147 |
ObserverBase(AlterationNotifier& nf) {
|
| 152 | 148 |
attach(nf); |
| 153 | 149 |
} |
| 154 | 150 |
|
| 155 | 151 |
/// \brief Constructor which attach the obserever to the same notifier. |
| 156 | 152 |
/// |
| 157 | 153 |
/// Constructor which attach the obserever to the same notifier as |
| 158 | 154 |
/// the other observer is attached to. |
| 159 | 155 |
ObserverBase(const ObserverBase& copy) {
|
| 160 | 156 |
if (copy.attached()) {
|
| 161 | 157 |
attach(*copy.notifier()); |
| 162 | 158 |
} |
| 163 | 159 |
} |
| 164 | 160 |
|
| 165 | 161 |
/// \brief Destructor |
| 166 | 162 |
virtual ~ObserverBase() {
|
| 167 | 163 |
if (attached()) {
|
| 168 | 164 |
detach(); |
| 169 | 165 |
} |
| 170 | 166 |
} |
| 171 | 167 |
|
| 172 | 168 |
/// \brief Attaches the observer into an AlterationNotifier. |
| 173 | 169 |
/// |
| 174 | 170 |
/// This member attaches the observer into an AlterationNotifier. |
| 175 | 171 |
/// |
| 176 | 172 |
void attach(AlterationNotifier& nf) {
|
| 177 | 173 |
nf.attach(*this); |
| 178 | 174 |
} |
| 179 | 175 |
|
| 180 | 176 |
/// \brief Detaches the observer into an AlterationNotifier. |
| 181 | 177 |
/// |
| 182 | 178 |
/// This member detaches the observer from an AlterationNotifier. |
| 183 | 179 |
/// |
| 184 | 180 |
void detach() {
|
| 185 | 181 |
_notifier->detach(*this); |
| 186 | 182 |
} |
| 187 | 183 |
|
| 188 | 184 |
/// \brief Gives back a pointer to the notifier which the map |
| 189 | 185 |
/// attached into. |
| 190 | 186 |
/// |
| 191 | 187 |
/// This function gives back a pointer to the notifier which the map |
| 192 | 188 |
/// attached into. |
| 193 | 189 |
/// |
| 194 | 190 |
Notifier* notifier() const { return const_cast<Notifier*>(_notifier); }
|
| 195 | 191 |
|
| 196 | 192 |
/// Gives back true when the observer is attached into a notifier. |
| 197 | 193 |
bool attached() const { return _notifier != 0; }
|
| 198 | 194 |
|
| 199 | 195 |
private: |
| 200 | 196 |
|
| 201 | 197 |
ObserverBase& operator=(const ObserverBase& copy); |
| 202 | 198 |
|
| 203 | 199 |
protected: |
| 204 | 200 |
|
| 205 | 201 |
Notifier* _notifier; |
| 206 | 202 |
typename std::list<ObserverBase*>::iterator _index; |
| 207 | 203 |
|
| 208 | 204 |
/// \brief The member function to notificate the observer about an |
| 209 | 205 |
/// item is added to the container. |
| 210 | 206 |
/// |
| 211 | 207 |
/// The add() member function notificates the observer about an item |
| 212 | 208 |
/// is added to the container. It have to be overrided in the |
| 213 | 209 |
/// subclasses. |
| 214 | 210 |
virtual void add(const Item&) = 0; |
| 215 | 211 |
|
| 216 | 212 |
/// \brief The member function to notificate the observer about |
| 217 | 213 |
/// more item is added to the container. |
| 218 | 214 |
/// |
| 219 | 215 |
/// The add() member function notificates the observer about more item |
| 220 | 216 |
/// is added to the container. It have to be overrided in the |
| 221 | 217 |
/// subclasses. |
| 222 | 218 |
virtual void add(const std::vector<Item>& items) = 0; |
| 223 | 219 |
|
| 224 | 220 |
/// \brief The member function to notificate the observer about an |
| 225 | 221 |
/// item is erased from the container. |
| 226 | 222 |
/// |
| 227 | 223 |
/// The erase() member function notificates the observer about an |
| 228 | 224 |
/// item is erased from the container. It have to be overrided in |
| 229 | 225 |
/// the subclasses. |
| 230 | 226 |
virtual void erase(const Item&) = 0; |
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BEZIER_H |
| 20 | 20 |
#define LEMON_BEZIER_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup misc |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Classes to compute with Bezier curves. |
| 25 | 25 |
/// |
| 26 | 26 |
///Up to now this file is used internally by \ref graph_to_eps.h |
| 27 |
/// |
|
| 28 |
///\author Alpar Juttner |
|
| 29 | 27 |
|
| 30 | 28 |
#include<lemon/dim2.h> |
| 31 | 29 |
|
| 32 | 30 |
namespace lemon {
|
| 33 | 31 |
namespace dim2 {
|
| 34 | 32 |
|
| 35 | 33 |
class BezierBase {
|
| 36 | 34 |
public: |
| 37 | 35 |
typedef Point<double> Point; |
| 38 | 36 |
protected: |
| 39 | 37 |
static Point conv(Point x,Point y,double t) {return (1-t)*x+t*y;}
|
| 40 | 38 |
}; |
| 41 | 39 |
|
| 42 | 40 |
class Bezier1 : public BezierBase |
| 43 | 41 |
{
|
| 44 | 42 |
public: |
| 45 | 43 |
Point p1,p2; |
| 46 | 44 |
|
| 47 | 45 |
Bezier1() {}
|
| 48 | 46 |
Bezier1(Point _p1, Point _p2) :p1(_p1), p2(_p2) {}
|
| 49 | 47 |
|
| 50 | 48 |
Point operator()(double t) const |
| 51 | 49 |
{
|
| 52 | 50 |
// return conv(conv(p1,p2,t),conv(p2,p3,t),t); |
| 53 | 51 |
return conv(p1,p2,t); |
| 54 | 52 |
} |
| 55 | 53 |
Bezier1 before(double t) const |
| 56 | 54 |
{
|
| 57 | 55 |
return Bezier1(p1,conv(p1,p2,t)); |
| 58 | 56 |
} |
| 59 | 57 |
|
| 60 | 58 |
Bezier1 after(double t) const |
| 61 | 59 |
{
|
| 62 | 60 |
return Bezier1(conv(p1,p2,t),p2); |
| 63 | 61 |
} |
| 64 | 62 |
|
| 65 | 63 |
Bezier1 revert() const { return Bezier1(p2,p1);}
|
| 66 | 64 |
Bezier1 operator()(double a,double b) const { return before(b).after(a/b); }
|
| 67 | 65 |
Point grad() const { return p2-p1; }
|
| 68 | 66 |
Point norm() const { return rot90(p2-p1); }
|
| 69 | 67 |
Point grad(double) const { return grad(); }
|
| 70 | 68 |
Point norm(double t) const { return rot90(grad(t)); }
|
| 71 | 69 |
}; |
| 72 | 70 |
|
| 73 | 71 |
class Bezier2 : public BezierBase |
| 74 | 72 |
{
|
| 75 | 73 |
public: |
| 76 | 74 |
Point p1,p2,p3; |
| 77 | 75 |
|
| 78 | 76 |
Bezier2() {}
|
| 79 | 77 |
Bezier2(Point _p1, Point _p2, Point _p3) :p1(_p1), p2(_p2), p3(_p3) {}
|
| 80 | 78 |
Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {}
|
| 81 | 79 |
Point operator()(double t) const |
| 82 | 80 |
{
|
| 83 | 81 |
// return conv(conv(p1,p2,t),conv(p2,p3,t),t); |
| 84 | 82 |
return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3; |
| 85 | 83 |
} |
| 86 | 84 |
Bezier2 before(double t) const |
| 87 | 85 |
{
|
| 88 | 86 |
Point q(conv(p1,p2,t)); |
| 89 | 87 |
Point r(conv(p2,p3,t)); |
| 90 | 88 |
return Bezier2(p1,q,conv(q,r,t)); |
| 91 | 89 |
} |
| 92 | 90 |
|
| 93 | 91 |
Bezier2 after(double t) const |
| 94 | 92 |
{
|
| 95 | 93 |
Point q(conv(p1,p2,t)); |
| 96 | 94 |
Point r(conv(p2,p3,t)); |
| 97 | 95 |
return Bezier2(conv(q,r,t),r,p3); |
| 98 | 96 |
} |
| 99 | 97 |
Bezier2 revert() const { return Bezier2(p3,p2,p1);}
|
| 100 | 98 |
Bezier2 operator()(double a,double b) const { return before(b).after(a/b); }
|
| 101 | 99 |
Bezier1 grad() const { return Bezier1(2.0*(p2-p1),2.0*(p3-p2)); }
|
| 102 | 100 |
Bezier1 norm() const { return Bezier1(2.0*rot90(p2-p1),2.0*rot90(p3-p2)); }
|
| 103 | 101 |
Point grad(double t) const { return grad()(t); }
|
| 104 | 102 |
Point norm(double t) const { return rot90(grad(t)); }
|
| 105 | 103 |
}; |
| 106 | 104 |
|
| 107 | 105 |
class Bezier3 : public BezierBase |
| 108 | 106 |
{
|
| 109 | 107 |
public: |
| 110 | 108 |
Point p1,p2,p3,p4; |
| 111 | 109 |
|
| 112 | 110 |
Bezier3() {}
|
| 113 | 111 |
Bezier3(Point _p1, Point _p2, Point _p3, Point _p4) |
| 114 | 112 |
: p1(_p1), p2(_p2), p3(_p3), p4(_p4) {}
|
| 115 | 113 |
Bezier3(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,1.0/3.0)), |
| 116 | 114 |
p3(conv(b.p1,b.p2,2.0/3.0)), p4(b.p2) {}
|
| 117 | 115 |
Bezier3(const Bezier2 &b) : p1(b.p1), p2(conv(b.p1,b.p2,2.0/3.0)), |
| 118 | 116 |
p3(conv(b.p2,b.p3,1.0/3.0)), p4(b.p3) {}
|
| 119 | 117 |
|
| 120 | 118 |
Point operator()(double t) const |
| 121 | 119 |
{
|
| 122 | 120 |
// return Bezier2(conv(p1,p2,t),conv(p2,p3,t),conv(p3,p4,t))(t); |
| 123 | 121 |
return ((1-t)*(1-t)*(1-t))*p1+(3*t*(1-t)*(1-t))*p2+ |
| 124 | 122 |
(3*t*t*(1-t))*p3+(t*t*t)*p4; |
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_VECTOR_MAP_H |
| 20 | 20 |
#define LEMON_BITS_VECTOR_MAP_H |
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
#include <algorithm> |
| 24 | 24 |
|
| 25 | 25 |
#include <lemon/bits/traits.h> |
| 26 | 26 |
#include <lemon/bits/utility.h> |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/bits/alteration_notifier.h> |
| 29 | 29 |
|
| 30 | 30 |
#include <lemon/concept_check.h> |
| 31 | 31 |
#include <lemon/concepts/maps.h> |
| 32 | 32 |
|
| 33 | 33 |
///\ingroup graphbits |
| 34 | 34 |
/// |
| 35 | 35 |
///\file |
| 36 | 36 |
///\brief Vector based graph maps. |
| 37 | 37 |
namespace lemon {
|
| 38 | 38 |
|
| 39 | 39 |
/// \ingroup graphbits |
| 40 | 40 |
/// |
| 41 | 41 |
/// \brief Graph map based on the std::vector storage. |
| 42 | 42 |
/// |
| 43 | 43 |
/// The VectorMap template class is graph map structure what |
| 44 | 44 |
/// automatically updates the map when a key is added to or erased from |
| 45 | 45 |
/// the map. This map type uses the std::vector to store the values. |
| 46 | 46 |
/// |
| 47 |
/// \param Notifier The AlterationNotifier that will notify this map. |
|
| 48 |
/// \param Item The item type of the graph items. |
|
| 49 |
/// \param Value The value type of the map. |
|
| 50 |
/// |
|
| 51 |
/// \ |
|
| 47 |
/// \tparam _Notifier The AlterationNotifier that will notify this map. |
|
| 48 |
/// \tparam _Item The item type of the graph items. |
|
| 49 |
/// \tparam _Value The value type of the map. |
|
| 50 |
/// \todo Fix the doc: there is _Graph parameter instead of _Notifier. |
|
| 52 | 51 |
template <typename _Graph, typename _Item, typename _Value> |
| 53 | 52 |
class VectorMap |
| 54 | 53 |
: public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase {
|
| 55 | 54 |
private: |
| 56 | 55 |
|
| 57 | 56 |
/// The container type of the map. |
| 58 | 57 |
typedef std::vector<_Value> Container; |
| 59 | 58 |
|
| 60 | 59 |
public: |
| 61 | 60 |
|
| 62 | 61 |
/// The graph type of the map. |
| 63 | 62 |
typedef _Graph Graph; |
| 64 | 63 |
/// The item type of the map. |
| 65 | 64 |
typedef _Item Item; |
| 66 | 65 |
/// The reference map tag. |
| 67 | 66 |
typedef True ReferenceMapTag; |
| 68 | 67 |
|
| 69 | 68 |
/// The key type of the map. |
| 70 | 69 |
typedef _Item Key; |
| 71 | 70 |
/// The value type of the map. |
| 72 | 71 |
typedef _Value Value; |
| 73 | 72 |
|
| 74 | 73 |
/// The notifier type. |
| 75 | 74 |
typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier; |
| 76 | 75 |
|
| 77 | 76 |
/// The map type. |
| 78 | 77 |
typedef VectorMap Map; |
| 79 | 78 |
/// The base class of the map. |
| 80 | 79 |
typedef typename Notifier::ObserverBase Parent; |
| 81 | 80 |
|
| 82 | 81 |
/// The reference type of the map; |
| 83 | 82 |
typedef typename Container::reference Reference; |
| 84 | 83 |
/// The const reference type of the map; |
| 85 | 84 |
typedef typename Container::const_reference ConstReference; |
| 86 | 85 |
|
| 87 | 86 |
|
| 88 | 87 |
/// \brief Constructor to attach the new map into the notifier. |
| 89 | 88 |
/// |
| 90 | 89 |
/// It constructs a map and attachs it into the notifier. |
| 91 | 90 |
/// It adds all the items of the graph to the map. |
| 92 | 91 |
VectorMap(const Graph& graph) {
|
| 93 | 92 |
Parent::attach(graph.notifier(Item())); |
| 94 | 93 |
container.resize(Parent::notifier()->maxId() + 1); |
| 95 | 94 |
} |
| 96 | 95 |
|
| 97 | 96 |
/// \brief Constructor uses given value to initialize the map. |
| 98 | 97 |
/// |
| 99 | 98 |
/// It constructs a map uses a given value to initialize the map. |
| 100 | 99 |
/// It adds all the items of the graph to the map. |
| 101 | 100 |
VectorMap(const Graph& graph, const Value& value) {
|
| 102 | 101 |
Parent::attach(graph.notifier(Item())); |
| 103 | 102 |
container.resize(Parent::notifier()->maxId() + 1, value); |
| 104 | 103 |
} |
| 105 | 104 |
|
| 106 | 105 |
/// \brief Copy constructor |
| 107 | 106 |
/// |
| 108 | 107 |
/// Copy constructor. |
| 109 | 108 |
VectorMap(const VectorMap& _copy) : Parent() {
|
| 110 | 109 |
if (_copy.attached()) {
|
| 111 | 110 |
Parent::attach(*_copy.notifier()); |
| 112 | 111 |
container = _copy.container; |
| 113 | 112 |
} |
| 114 | 113 |
} |
| 115 | 114 |
|
| 116 | 115 |
/// \brief Assign operator. |
| 117 | 116 |
/// |
| 118 | 117 |
/// This operator assigns for each item in the map the |
| 119 | 118 |
/// value mapped to the same item in the copied map. |
| 120 | 119 |
/// The parameter map should be indiced with the same |
| 121 | 120 |
/// itemset because this assign operator does not change |
| 122 | 121 |
/// the container of the map. |
| 123 | 122 |
VectorMap& operator=(const VectorMap& cmap) {
|
| 124 | 123 |
return operator=<VectorMap>(cmap); |
| 125 | 124 |
} |
| 126 | 125 |
|
| 127 | 126 |
|
| 128 | 127 |
/// \brief Template assign operator. |
| 129 | 128 |
/// |
| 130 | 129 |
/// The given parameter should be conform to the ReadMap |
| 131 | 130 |
/// concecpt and could be indiced by the current item set of |
| 132 | 131 |
/// the NodeMap. In this case the value for each item |
| 133 | 132 |
/// is assigned by the value of the given ReadMap. |
| 134 | 133 |
template <typename CMap> |
| 135 | 134 |
VectorMap& operator=(const CMap& cmap) {
|
| 136 | 135 |
checkConcept<concepts::ReadMap<Key, _Value>, CMap>(); |
| 137 | 136 |
const typename Parent::Notifier* nf = Parent::notifier(); |
| 138 | 137 |
Item it; |
| 139 | 138 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 140 | 139 |
set(it, cmap[it]); |
| 141 | 140 |
} |
| 142 | 141 |
return *this; |
| 143 | 142 |
} |
| 144 | 143 |
|
| 145 | 144 |
public: |
| 146 | 145 |
|
| 147 | 146 |
/// \brief The subcript operator. |
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_COLOR_H |
| 20 | 20 |
#define LEMON_COLOR_H |
| 21 | 21 |
|
| 22 | 22 |
#include<vector> |
| 23 | 23 |
#include<lemon/math.h> |
| 24 | 24 |
#include<lemon/maps.h> |
| 25 | 25 |
|
| 26 | 26 |
|
| 27 | 27 |
///\ingroup misc |
| 28 | 28 |
///\file |
| 29 | 29 |
///\brief Tools to manage RGB colors. |
| 30 |
/// |
|
| 31 |
///\author Alpar Juttner |
|
| 32 | 30 |
|
| 33 | 31 |
namespace lemon {
|
| 34 | 32 |
|
| 35 | 33 |
|
| 36 | 34 |
/// \addtogroup misc |
| 37 | 35 |
/// @{
|
| 38 | 36 |
|
| 39 | 37 |
///Data structure representing RGB colors. |
| 40 | 38 |
|
| 41 | 39 |
///Data structure representing RGB colors. |
| 42 | 40 |
class Color |
| 43 | 41 |
{
|
| 44 | 42 |
double _r,_g,_b; |
| 45 | 43 |
public: |
| 46 | 44 |
///Default constructor |
| 47 | 45 |
Color() {}
|
| 48 | 46 |
///Constructor |
| 49 | 47 |
Color(double r,double g,double b) :_r(r),_g(g),_b(b) {};
|
| 50 | 48 |
///Set the red component |
| 51 | 49 |
double & red() {return _r;}
|
| 52 | 50 |
///Return the red component |
| 53 | 51 |
const double & red() const {return _r;}
|
| 54 | 52 |
///Set the green component |
| 55 | 53 |
double & green() {return _g;}
|
| 56 | 54 |
///Return the green component |
| 57 | 55 |
const double & green() const {return _g;}
|
| 58 | 56 |
///Set the blue component |
| 59 | 57 |
double & blue() {return _b;}
|
| 60 | 58 |
///Return the blue component |
| 61 | 59 |
const double & blue() const {return _b;}
|
| 62 | 60 |
///Set the color components |
| 63 | 61 |
void set(double r,double g,double b) { _r=r;_g=g;_b=b; };
|
| 64 | 62 |
}; |
| 65 | 63 |
|
| 66 | 64 |
/// White color constant |
| 67 | 65 |
extern const Color WHITE; |
| 68 | 66 |
/// Black color constant |
| 69 | 67 |
extern const Color BLACK; |
| 70 | 68 |
/// Red color constant |
| 71 | 69 |
extern const Color RED; |
| 72 | 70 |
/// Green color constant |
| 73 | 71 |
extern const Color GREEN; |
| 74 | 72 |
/// Blue color constant |
| 75 | 73 |
extern const Color BLUE; |
| 76 | 74 |
/// Yellow color constant |
| 77 | 75 |
extern const Color YELLOW; |
| 78 | 76 |
/// Magenta color constant |
| 79 | 77 |
extern const Color MAGENTA; |
| 80 | 78 |
/// Cyan color constant |
| 81 | 79 |
extern const Color CYAN; |
| 82 | 80 |
/// Grey color constant |
| 83 | 81 |
extern const Color GREY; |
| 84 | 82 |
/// Dark red color constant |
| 85 | 83 |
extern const Color DARK_RED; |
| 86 | 84 |
/// Dark green color constant |
| 87 | 85 |
extern const Color DARK_GREEN; |
| 88 | 86 |
/// Drak blue color constant |
| 89 | 87 |
extern const Color DARK_BLUE; |
| 90 | 88 |
/// Dark yellow color constant |
| 91 | 89 |
extern const Color DARK_YELLOW; |
| 92 | 90 |
/// Dark magenta color constant |
| 93 | 91 |
extern const Color DARK_MAGENTA; |
| 94 | 92 |
/// Dark cyan color constant |
| 95 | 93 |
extern const Color DARK_CYAN; |
| 96 | 94 |
|
| 97 | 95 |
///Map <tt>int</tt>s to different \ref Color "Color"s |
| 98 | 96 |
|
| 99 | 97 |
///This map assigns one of the predefined \ref Color "Color"s to |
| 100 | 98 |
///each <tt>int</tt>. It is possible to change the colors as well as |
| 101 | 99 |
///their number. The integer range is cyclically mapped to the |
| 102 | 100 |
///provided set of colors. |
| 103 | 101 |
/// |
| 104 | 102 |
///This is a true \ref concepts::ReferenceMap "reference map", so |
| 105 | 103 |
///you can also change the actual colors. |
| 106 | 104 |
|
| 107 | 105 |
class Palette : public MapBase<int,Color> |
| 108 | 106 |
{
|
| 109 | 107 |
std::vector<Color> colors; |
| 110 | 108 |
public: |
| 111 | 109 |
///Constructor |
| 112 | 110 |
|
| 113 | 111 |
///Constructor |
| 114 | 112 |
///\param have_white indicates whether white is amongst the |
| 115 | 113 |
///provided initial colors (\c true) or not (\c false). If it is true, |
| 116 | 114 |
///white will be assigned to \c 0. |
| 117 | 115 |
///\param num the number of the allocated colors. If it is \c -1, |
| 118 | 116 |
///the default color configuration is set up (26 color plus optionaly the |
| 119 | 117 |
///white). If \c num is less then 26/27 then the default color |
| 120 | 118 |
///list is cut. Otherwise the color list is filled repeatedly with |
| 121 | 119 |
///the default color list. (The colors can be changed later on.) |
| 122 | 120 |
Palette(bool have_white=false,int num=-1) |
| 123 | 121 |
{
|
| 124 | 122 |
if (num==0) return; |
| 125 | 123 |
do {
|
| 126 | 124 |
if(have_white) colors.push_back(Color(1,1,1)); |
| 127 | 125 |
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup concept |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief Classes for representing paths in digraphs. |
| 22 | 22 |
/// |
| 23 | 23 |
///\todo Iterators have obsolete style |
| 24 | 24 |
|
| 25 | 25 |
#ifndef LEMON_CONCEPT_PATH_H |
| 26 | 26 |
#define LEMON_CONCEPT_PATH_H |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/bits/invalid.h> |
| 29 | 29 |
#include <lemon/bits/utility.h> |
| 30 | 30 |
#include <lemon/concept_check.h> |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
namespace concepts {
|
| 34 | 34 |
|
| 35 | 35 |
/// \addtogroup concept |
| 36 | 36 |
/// @{
|
| 37 | 37 |
|
| 38 | 38 |
/// \brief A skeleton structure for representing directed paths in |
| 39 | 39 |
/// a digraph. |
| 40 | 40 |
/// |
| 41 | 41 |
/// A skeleton structure for representing directed paths in a |
| 42 | 42 |
/// digraph. |
| 43 |
/// \ |
|
| 43 |
/// \tparam _Digraph The digraph type in which the path is. |
|
| 44 | 44 |
/// |
| 45 | 45 |
/// In a sense, the path can be treated as a list of arcs. The |
| 46 | 46 |
/// lemon path type stores just this list. As a consequence it |
| 47 | 47 |
/// cannot enumerate the nodes in the path and the zero length |
| 48 | 48 |
/// paths cannot store the source. |
| 49 | 49 |
/// |
| 50 | 50 |
template <typename _Digraph> |
| 51 | 51 |
class Path {
|
| 52 | 52 |
public: |
| 53 | 53 |
|
| 54 | 54 |
/// Type of the underlying digraph. |
| 55 | 55 |
typedef _Digraph Digraph; |
| 56 | 56 |
/// Arc type of the underlying digraph. |
| 57 | 57 |
typedef typename Digraph::Arc Arc; |
| 58 | 58 |
|
| 59 | 59 |
class ArcIt; |
| 60 | 60 |
|
| 61 | 61 |
/// \brief Default constructor |
| 62 | 62 |
Path() {}
|
| 63 | 63 |
|
| 64 | 64 |
/// \brief Template constructor |
| 65 | 65 |
template <typename CPath> |
| 66 | 66 |
Path(const CPath& cpath) {}
|
| 67 | 67 |
|
| 68 | 68 |
/// \brief Template assigment |
| 69 | 69 |
template <typename CPath> |
| 70 | 70 |
Path& operator=(const CPath& cpath) {}
|
| 71 | 71 |
|
| 72 | 72 |
/// Length of the path ie. the number of arcs in the path. |
| 73 | 73 |
int length() const { return 0;}
|
| 74 | 74 |
|
| 75 | 75 |
/// Returns whether the path is empty. |
| 76 | 76 |
bool empty() const { return true;}
|
| 77 | 77 |
|
| 78 | 78 |
/// Resets the path to an empty path. |
| 79 | 79 |
void clear() {}
|
| 80 | 80 |
|
| 81 | 81 |
/// \brief Lemon style iterator for path arcs |
| 82 | 82 |
/// |
| 83 | 83 |
/// This class is used to iterate on the arcs of the paths. |
| 84 | 84 |
class ArcIt {
|
| 85 | 85 |
public: |
| 86 | 86 |
/// Default constructor |
| 87 | 87 |
ArcIt() {}
|
| 88 | 88 |
/// Invalid constructor |
| 89 | 89 |
ArcIt(Invalid) {}
|
| 90 | 90 |
/// Constructor for first arc |
| 91 | 91 |
ArcIt(const Path &) {}
|
| 92 | 92 |
|
| 93 | 93 |
/// Conversion to Arc |
| 94 | 94 |
operator Arc() const { return INVALID; }
|
| 95 | 95 |
|
| 96 | 96 |
/// Next arc |
| 97 | 97 |
ArcIt& operator++() {return *this;}
|
| 98 | 98 |
|
| 99 | 99 |
/// Comparison operator |
| 100 | 100 |
bool operator==(const ArcIt&) const {return true;}
|
| 101 | 101 |
/// Comparison operator |
| 102 | 102 |
bool operator!=(const ArcIt&) const {return true;}
|
| 103 | 103 |
/// Comparison operator |
| 104 | 104 |
bool operator<(const ArcIt&) const {return false;}
|
| 105 | 105 |
|
| 106 | 106 |
}; |
| 107 | 107 |
|
| 108 | 108 |
template <typename _Path> |
| 109 | 109 |
struct Constraints {
|
| 110 | 110 |
void constraints() {
|
| 111 | 111 |
Path<Digraph> pc; |
| 112 | 112 |
_Path p, pp(pc); |
| 113 | 113 |
int l = p.length(); |
| 114 | 114 |
int e = p.empty(); |
| 115 | 115 |
p.clear(); |
| 116 | 116 |
|
| 117 | 117 |
p = pc; |
| 118 | 118 |
|
| 119 | 119 |
typename _Path::ArcIt id, ii(INVALID), i(p); |
| 120 | 120 |
|
| 121 | 121 |
++i; |
| 122 | 122 |
typename Digraph::Arc ed = i; |
| 123 | 123 |
|
| 124 | 124 |
e = (i == ii); |
| 125 | 125 |
e = (i != ii); |
| 126 | 126 |
e = (i < ii); |
| 127 | 127 |
|
| 128 | 128 |
ignore_unused_variable_warning(l); |
| 129 | 129 |
ignore_unused_variable_warning(pp); |
| 130 | 130 |
ignore_unused_variable_warning(e); |
| 131 | 131 |
ignore_unused_variable_warning(id); |
| 132 | 132 |
ignore_unused_variable_warning(ii); |
| 133 | 133 |
ignore_unused_variable_warning(ed); |
| 134 | 134 |
} |
| 135 | 135 |
}; |
| 136 | 136 |
|
| 137 | 137 |
}; |
| 138 | 138 |
|
| 139 | 139 |
namespace _path_bits {
|
| 140 | 140 |
|
| 141 | 141 |
template <typename _Digraph, typename _Path, typename RevPathTag = void> |
| 142 | 142 |
struct PathDumperConstraints {
|
| 143 | 143 |
void constraints() {
|
| 144 | 144 |
int l = p.length(); |
| 145 | 145 |
int e = p.empty(); |
| 146 | 146 |
|
| 147 | 147 |
typename _Path::ArcIt id, i(p); |
| 148 | 148 |
|
| 149 | 149 |
++i; |
| 150 | 150 |
typename _Digraph::Arc ed = i; |
| 151 | 151 |
|
| 152 | 152 |
e = (i == INVALID); |
| 153 | 153 |
e = (i != INVALID); |
| 154 | 154 |
|
| 155 | 155 |
ignore_unused_variable_warning(l); |
| 156 | 156 |
ignore_unused_variable_warning(e); |
| 157 | 157 |
ignore_unused_variable_warning(id); |
| 158 | 158 |
ignore_unused_variable_warning(ed); |
| 159 | 159 |
} |
| 160 | 160 |
_Path& p; |
| 161 | 161 |
}; |
| 162 | 162 |
|
| 163 | 163 |
template <typename _Digraph, typename _Path> |
| 164 | 164 |
struct PathDumperConstraints< |
| 165 | 165 |
_Digraph, _Path, |
| 166 | 166 |
typename enable_if<typename _Path::RevPathTag, void>::type |
| 167 | 167 |
> {
|
| 168 | 168 |
void constraints() {
|
| 169 | 169 |
int l = p.length(); |
| 170 | 170 |
int e = p.empty(); |
| 171 | 171 |
|
| 172 | 172 |
typename _Path::RevArcIt id, i(p); |
| 173 | 173 |
|
| 174 | 174 |
++i; |
| 175 | 175 |
typename _Digraph::Arc ed = i; |
| 176 | 176 |
|
| 177 | 177 |
e = (i == INVALID); |
| 178 | 178 |
e = (i != INVALID); |
| 179 | 179 |
|
| 180 | 180 |
ignore_unused_variable_warning(l); |
| 181 | 181 |
ignore_unused_variable_warning(e); |
| 182 | 182 |
ignore_unused_variable_warning(id); |
| 183 | 183 |
ignore_unused_variable_warning(ed); |
| 184 | 184 |
} |
| 185 | 185 |
_Path& p; |
| 186 | 186 |
}; |
| 187 | 187 |
|
| 188 | 188 |
} |
| 189 | 189 |
|
| 190 | 190 |
|
| 191 | 191 |
/// \brief A skeleton structure for path dumpers. |
| 192 | 192 |
/// |
| 193 | 193 |
/// A skeleton structure for path dumpers. The path dumpers are |
| 194 | 194 |
/// the generalization of the paths. The path dumpers can |
| 195 | 195 |
/// enumerate the arcs of the path wheter in forward or in |
| 196 | 196 |
/// backward order. In most time these classes are not used |
| 197 | 197 |
/// directly rather it used to assign a dumped class to a real |
| 198 | 198 |
/// path type. |
| 199 | 199 |
/// |
| 200 | 200 |
/// The main purpose of this concept is that the shortest path |
| 201 | 201 |
/// algorithms can enumerate easily the arcs in reverse order. |
| 202 | 202 |
/// If we would like to give back a real path from these |
| 203 | 203 |
/// algorithms then we should create a temporarly path object. In |
| 204 | 204 |
/// Lemon such algorithms gives back a path dumper what can |
| 205 | 205 |
/// assigned to a real path and the dumpers can be implemented as |
| 206 | 206 |
/// an adaptor class to the predecessor map. |
| 207 | 207 |
|
| 208 |
/// \ |
|
| 208 |
/// \tparam _Digraph The digraph type in which the path is. |
|
| 209 | 209 |
/// |
| 210 | 210 |
/// The paths can be constructed from any path type by a |
| 211 | 211 |
/// template constructor or a template assignment operator. |
| 212 | 212 |
/// |
| 213 | 213 |
template <typename _Digraph> |
| 214 | 214 |
class PathDumper {
|
| 215 | 215 |
public: |
| 216 | 216 |
|
| 217 | 217 |
/// Type of the underlying digraph. |
| 218 | 218 |
typedef _Digraph Digraph; |
| 219 | 219 |
/// Arc type of the underlying digraph. |
| 220 | 220 |
typedef typename Digraph::Arc Arc; |
| 221 | 221 |
|
| 222 | 222 |
/// Length of the path ie. the number of arcs in the path. |
| 223 | 223 |
int length() const { return 0;}
|
| 224 | 224 |
|
| 225 | 225 |
/// Returns whether the path is empty. |
| 226 | 226 |
bool empty() const { return true;}
|
| 227 | 227 |
|
| 228 | 228 |
/// \brief Forward or reverse dumping |
| 229 | 229 |
/// |
| 230 | 230 |
/// If the RevPathTag is defined and true then reverse dumping |
| 231 | 231 |
/// is provided in the path dumper. In this case instead of the |
| 232 | 232 |
/// ArcIt the RevArcIt iterator should be implemented in the |
| 233 | 233 |
/// dumper. |
| 234 | 234 |
typedef False RevPathTag; |
| 235 | 235 |
|
| 236 | 236 |
/// \brief Lemon style iterator for path arcs |
| 237 | 237 |
/// |
| 238 | 238 |
/// This class is used to iterate on the arcs of the paths. |
| 239 | 239 |
class ArcIt {
|
| 240 | 240 |
public: |
| 241 | 241 |
/// Default constructor |
| 242 | 242 |
ArcIt() {}
|
| 243 | 243 |
/// Invalid constructor |
| 244 | 244 |
ArcIt(Invalid) {}
|
| 245 | 245 |
/// Constructor for first arc |
| 246 | 246 |
ArcIt(const PathDumper&) {}
|
| 247 | 247 |
|
| 248 | 248 |
/// Conversion to Arc |
| 249 | 249 |
operator Arc() const { return INVALID; }
|
| 250 | 250 |
|
| 251 | 251 |
/// Next arc |
| 252 | 252 |
ArcIt& operator++() {return *this;}
|
| 253 | 253 |
|
| 254 | 254 |
/// Comparison operator |
| 255 | 255 |
bool operator==(const ArcIt&) const {return true;}
|
| 256 | 256 |
/// Comparison operator |
| 257 | 257 |
bool operator!=(const ArcIt&) const {return true;}
|
| 258 | 258 |
/// Comparison operator |
| 259 | 259 |
bool operator<(const ArcIt&) const {return false;}
|
| 260 | 260 |
|
| 261 | 261 |
}; |
| 262 | 262 |
|
| 263 | 263 |
/// \brief Lemon style iterator for path arcs |
| 264 | 264 |
/// |
| 265 | 265 |
/// This class is used to iterate on the arcs of the paths in |
| 266 | 266 |
/// reverse direction. |
| 267 | 267 |
class RevArcIt {
|
| 268 | 268 |
public: |
| 269 | 269 |
/// Default constructor |
| 270 | 270 |
RevArcIt() {}
|
| 271 | 271 |
/// Invalid constructor |
| 272 | 272 |
RevArcIt(Invalid) {}
|
| 273 | 273 |
/// Constructor for first arc |
| 274 | 274 |
RevArcIt(const PathDumper &) {}
|
| 275 | 275 |
|
| 276 | 276 |
/// Conversion to Arc |
| 277 | 277 |
operator Arc() const { return INVALID; }
|
| 278 | 278 |
|
| 279 | 279 |
/// Next arc |
| 280 | 280 |
RevArcIt& operator++() {return *this;}
|
| 281 | 281 |
|
| 282 | 282 |
/// Comparison operator |
| 283 | 283 |
bool operator==(const RevArcIt&) const {return true;}
|
| 284 | 284 |
/// Comparison operator |
| 285 | 285 |
bool operator!=(const RevArcIt&) const {return true;}
|
| 286 | 286 |
/// Comparison operator |
| 287 | 287 |
bool operator<(const RevArcIt&) const {return false;}
|
| 288 | 288 |
|
| 289 | 289 |
}; |
| 290 | 290 |
|
| 291 | 291 |
template <typename _Path> |
| 292 | 292 |
struct Constraints {
|
| 293 | 293 |
void constraints() {
|
| 294 | 294 |
function_requires<_path_bits:: |
| 295 | 295 |
PathDumperConstraints<Digraph, _Path> >(); |
| 296 | 296 |
} |
| 297 | 297 |
}; |
| 298 | 298 |
|
| 299 | 299 |
}; |
| 300 | 300 |
|
| 301 | 301 |
|
| 302 | 302 |
///@} |
| 303 | 303 |
} |
| 304 | 304 |
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DFS_H |
| 20 | 20 |
#define LEMON_DFS_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup search |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Dfs algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/graph_utils.h> |
| 28 | 28 |
#include <lemon/bits/path_dump.h> |
| 29 | 29 |
#include <lemon/bits/invalid.h> |
| 30 | 30 |
#include <lemon/error.h> |
| 31 | 31 |
#include <lemon/maps.h> |
| 32 | 32 |
|
| 33 | 33 |
#include <lemon/concept_check.h> |
| 34 | 34 |
|
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 | 37 |
|
| 38 | 38 |
///Default traits class of Dfs class. |
| 39 | 39 |
|
| 40 | 40 |
///Default traits class of Dfs class. |
| 41 |
///\ |
|
| 41 |
///\tparam GR Digraph type. |
|
| 42 | 42 |
template<class GR> |
| 43 | 43 |
struct DfsDefaultTraits |
| 44 | 44 |
{
|
| 45 | 45 |
///The digraph type the algorithm runs on. |
| 46 | 46 |
typedef GR Digraph; |
| 47 | 47 |
///\brief The type of the map that stores the last |
| 48 | 48 |
///arcs of the %DFS paths. |
| 49 | 49 |
/// |
| 50 | 50 |
///The type of the map that stores the last |
| 51 | 51 |
///arcs of the %DFS paths. |
| 52 | 52 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 53 | 53 |
/// |
| 54 | 54 |
typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap; |
| 55 | 55 |
///Instantiates a PredMap. |
| 56 | 56 |
|
| 57 | 57 |
///This function instantiates a \ref PredMap. |
| 58 | 58 |
///\param G is the digraph, to which we would like to define the PredMap. |
| 59 | 59 |
///\todo The digraph alone may be insufficient to initialize |
| 60 | 60 |
static PredMap *createPredMap(const GR &G) |
| 61 | 61 |
{
|
| 62 | 62 |
return new PredMap(G); |
| 63 | 63 |
} |
| 64 | 64 |
|
| 65 | 65 |
///The type of the map that indicates which nodes are processed. |
| 66 | 66 |
|
| 67 | 67 |
///The type of the map that indicates which nodes are processed. |
| 68 | 68 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 69 | 69 |
///\todo named parameter to set this type, function to read and write. |
| 70 | 70 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 71 | 71 |
///Instantiates a ProcessedMap. |
| 72 | 72 |
|
| 73 | 73 |
///This function instantiates a \ref ProcessedMap. |
| 74 | 74 |
///\param g is the digraph, to which |
| 75 | 75 |
///we would like to define the \ref ProcessedMap |
| 76 | 76 |
#ifdef DOXYGEN |
| 77 | 77 |
static ProcessedMap *createProcessedMap(const GR &g) |
| 78 | 78 |
#else |
| 79 | 79 |
static ProcessedMap *createProcessedMap(const GR &) |
| 80 | 80 |
#endif |
| 81 | 81 |
{
|
| 82 | 82 |
return new ProcessedMap(); |
| 83 | 83 |
} |
| 84 | 84 |
///The type of the map that indicates which nodes are reached. |
| 85 | 85 |
|
| 86 | 86 |
///The type of the map that indicates which nodes are reached. |
| 87 | 87 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 88 | 88 |
///\todo named parameter to set this type, function to read and write. |
| 89 | 89 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 90 | 90 |
///Instantiates a ReachedMap. |
| 91 | 91 |
|
| 92 | 92 |
///This function instantiates a \ref ReachedMap. |
| 93 | 93 |
///\param G is the digraph, to which |
| 94 | 94 |
///we would like to define the \ref ReachedMap. |
| 95 | 95 |
static ReachedMap *createReachedMap(const GR &G) |
| 96 | 96 |
{
|
| 97 | 97 |
return new ReachedMap(G); |
| 98 | 98 |
} |
| 99 | 99 |
///The type of the map that stores the dists of the nodes. |
| 100 | 100 |
|
| 101 | 101 |
///The type of the map that stores the dists of the nodes. |
| 102 | 102 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 103 | 103 |
/// |
| 104 | 104 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 105 | 105 |
///Instantiates a DistMap. |
| 106 | 106 |
|
| 107 | 107 |
///This function instantiates a \ref DistMap. |
| 108 | 108 |
///\param G is the digraph, to which we would like to define the \ref DistMap |
| 109 | 109 |
static DistMap *createDistMap(const GR &G) |
| 110 | 110 |
{
|
| 111 | 111 |
return new DistMap(G); |
| 112 | 112 |
} |
| 113 | 113 |
}; |
| 114 | 114 |
|
| 115 | 115 |
///%DFS algorithm class. |
| 116 | 116 |
|
| 117 | 117 |
///\ingroup search |
| 118 | 118 |
///This class provides an efficient implementation of the %DFS algorithm. |
| 119 | 119 |
/// |
| 120 |
///\ |
|
| 120 |
///\tparam GR The digraph type the algorithm runs on. The default value is |
|
| 121 | 121 |
///\ref ListDigraph. The value of GR is not used directly by Dfs, it |
| 122 | 122 |
///is only passed to \ref DfsDefaultTraits. |
| 123 |
///\ |
|
| 123 |
///\tparam TR Traits class to set various data types used by the algorithm. |
|
| 124 | 124 |
///The default traits class is |
| 125 | 125 |
///\ref DfsDefaultTraits "DfsDefaultTraits<GR>". |
| 126 | 126 |
///See \ref DfsDefaultTraits for the documentation of |
| 127 | 127 |
///a Dfs traits class. |
| 128 |
/// |
|
| 129 |
///\author Jacint Szabo and Alpar Juttner |
|
| 130 | 128 |
#ifdef DOXYGEN |
| 131 | 129 |
template <typename GR, |
| 132 | 130 |
typename TR> |
| 133 | 131 |
#else |
| 134 | 132 |
template <typename GR=ListDigraph, |
| 135 | 133 |
typename TR=DfsDefaultTraits<GR> > |
| 136 | 134 |
#endif |
| 137 | 135 |
class Dfs {
|
| 138 | 136 |
public: |
| 139 | 137 |
/** |
| 140 | 138 |
* \brief \ref Exception for uninitialized parameters. |
| 141 | 139 |
* |
| 142 | 140 |
* This error represents problems in the initialization |
| 143 | 141 |
* of the parameters of the algorithms. |
| 144 | 142 |
*/ |
| 145 | 143 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
| 146 | 144 |
public: |
| 147 | 145 |
virtual const char* what() const throw() {
|
| 148 | 146 |
return "lemon::Dfs::UninitializedParameter"; |
| 149 | 147 |
} |
| 150 | 148 |
}; |
| 151 | 149 |
|
| 152 | 150 |
typedef TR Traits; |
| 153 | 151 |
///The type of the underlying digraph. |
| 154 | 152 |
typedef typename TR::Digraph Digraph; |
| 155 | 153 |
///\e |
| 156 | 154 |
typedef typename Digraph::Node Node; |
| 157 | 155 |
///\e |
| 158 | 156 |
typedef typename Digraph::NodeIt NodeIt; |
| 159 | 157 |
///\e |
| 160 | 158 |
typedef typename Digraph::Arc Arc; |
| 161 | 159 |
///\e |
| 162 | 160 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 163 | 161 |
|
| 164 | 162 |
///\brief The type of the map that stores the last |
| 165 | 163 |
///arcs of the %DFS paths. |
| 166 | 164 |
typedef typename TR::PredMap PredMap; |
| 167 | 165 |
///The type of the map indicating which nodes are reached. |
| 168 | 166 |
typedef typename TR::ReachedMap ReachedMap; |
| 169 | 167 |
///The type of the map indicating which nodes are processed. |
| 170 | 168 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 171 | 169 |
///The type of the map that stores the dists of the nodes. |
| 172 | 170 |
typedef typename TR::DistMap DistMap; |
| 173 | 171 |
private: |
| 174 | 172 |
/// Pointer to the underlying digraph. |
| 175 | 173 |
const Digraph *G; |
| 176 | 174 |
///Pointer to the map of predecessors arcs. |
| 177 | 175 |
PredMap *_pred; |
| 178 | 176 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
| 179 | 177 |
bool local_pred; |
| 180 | 178 |
///Pointer to the map of distances. |
| 181 | 179 |
DistMap *_dist; |
| 182 | 180 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
| 183 | 181 |
bool local_dist; |
| 184 | 182 |
///Pointer to the map of reached status of the nodes. |
| 185 | 183 |
ReachedMap *_reached; |
| 186 | 184 |
///Indicates if \ref _reached is locally allocated (\c true) or not. |
| 187 | 185 |
bool local_reached; |
| 188 | 186 |
///Pointer to the map of processed status of the nodes. |
| 189 | 187 |
ProcessedMap *_processed; |
| 190 | 188 |
///Indicates if \ref _processed is locally allocated (\c true) or not. |
| 191 | 189 |
bool local_processed; |
| 192 | 190 |
|
| 193 | 191 |
std::vector<typename Digraph::OutArcIt> _stack; |
| 194 | 192 |
int _stack_head; |
| 195 | 193 |
|
| 196 | 194 |
///Creates the maps if necessary. |
| 197 | 195 |
|
| 198 | 196 |
///\todo Better memory allocation (instead of new). |
| 199 | 197 |
void create_maps() |
| 200 | 198 |
{
|
| 201 | 199 |
if(!_pred) {
|
| 202 | 200 |
local_pred = true; |
| 203 | 201 |
_pred = Traits::createPredMap(*G); |
| 204 | 202 |
} |
| 205 | 203 |
if(!_dist) {
|
| 206 | 204 |
local_dist = true; |
| 207 | 205 |
_dist = Traits::createDistMap(*G); |
| 208 | 206 |
} |
| 209 | 207 |
if(!_reached) {
|
| 210 | 208 |
local_reached = true; |
| 211 | 209 |
_reached = Traits::createReachedMap(*G); |
| 212 | 210 |
} |
| 213 | 211 |
if(!_processed) {
|
| 214 | 212 |
local_processed = true; |
| 215 | 213 |
_processed = Traits::createProcessedMap(*G); |
| 216 | 214 |
} |
| 217 | 215 |
} |
| 218 | 216 |
|
| 219 | 217 |
protected: |
| 220 | 218 |
|
| 221 | 219 |
Dfs() {}
|
| 222 | 220 |
|
| 223 | 221 |
public: |
| 224 | 222 |
|
| 225 | 223 |
typedef Dfs Create; |
| ... | ... |
@@ -646,193 +644,193 @@ |
| 646 | 644 |
/// d.start(t); |
| 647 | 645 |
///\endcode |
| 648 | 646 |
int run(Node s,Node t) {
|
| 649 | 647 |
init(); |
| 650 | 648 |
addSource(s); |
| 651 | 649 |
start(t); |
| 652 | 650 |
return reached(t)?_stack_head+1:0; |
| 653 | 651 |
} |
| 654 | 652 |
|
| 655 | 653 |
///@} |
| 656 | 654 |
|
| 657 | 655 |
///\name Query Functions |
| 658 | 656 |
///The result of the %DFS algorithm can be obtained using these |
| 659 | 657 |
///functions.\n |
| 660 | 658 |
///Before the use of these functions, |
| 661 | 659 |
///either run() or start() must be called. |
| 662 | 660 |
|
| 663 | 661 |
///@{
|
| 664 | 662 |
|
| 665 | 663 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 666 | 664 |
|
| 667 | 665 |
///Gives back the shortest path. |
| 668 | 666 |
|
| 669 | 667 |
///Gives back the shortest path. |
| 670 | 668 |
///\pre The \c t should be reachable from the source. |
| 671 | 669 |
Path path(Node t) |
| 672 | 670 |
{
|
| 673 | 671 |
return Path(*G, *_pred, t); |
| 674 | 672 |
} |
| 675 | 673 |
|
| 676 | 674 |
///The distance of a node from the root(s). |
| 677 | 675 |
|
| 678 | 676 |
///Returns the distance of a node from the root(s). |
| 679 | 677 |
///\pre \ref run() must be called before using this function. |
| 680 | 678 |
///\warning If node \c v is unreachable from the root(s) then the return |
| 681 | 679 |
///value of this funcion is undefined. |
| 682 | 680 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 683 | 681 |
|
| 684 | 682 |
///Returns the 'previous arc' of the %DFS tree. |
| 685 | 683 |
|
| 686 | 684 |
///For a node \c v it returns the 'previous arc' |
| 687 | 685 |
///of the %DFS path, |
| 688 | 686 |
///i.e. it returns the last arc of a %DFS path from the root(s) to \c |
| 689 | 687 |
///v. It is \ref INVALID |
| 690 | 688 |
///if \c v is unreachable from the root(s) or \c v is a root. The |
| 691 | 689 |
///%DFS tree used here is equal to the %DFS tree used in |
| 692 | 690 |
///\ref predNode(). |
| 693 | 691 |
///\pre Either \ref run() or \ref start() must be called before using |
| 694 | 692 |
///this function. |
| 695 | 693 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 696 | 694 |
|
| 697 | 695 |
///Returns the 'previous node' of the %DFS tree. |
| 698 | 696 |
|
| 699 | 697 |
///For a node \c v it returns the 'previous node' |
| 700 | 698 |
///of the %DFS tree, |
| 701 | 699 |
///i.e. it returns the last but one node from a %DFS path from the |
| 702 | 700 |
///root(s) to \c v. |
| 703 | 701 |
///It is INVALID if \c v is unreachable from the root(s) or |
| 704 | 702 |
///if \c v itself a root. |
| 705 | 703 |
///The %DFS tree used here is equal to the %DFS |
| 706 | 704 |
///tree used in \ref predArc(). |
| 707 | 705 |
///\pre Either \ref run() or \ref start() must be called before |
| 708 | 706 |
///using this function. |
| 709 | 707 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 710 | 708 |
G->source((*_pred)[v]); } |
| 711 | 709 |
|
| 712 | 710 |
///Returns a reference to the NodeMap of distances. |
| 713 | 711 |
|
| 714 | 712 |
///Returns a reference to the NodeMap of distances. |
| 715 | 713 |
///\pre Either \ref run() or \ref init() must |
| 716 | 714 |
///be called before using this function. |
| 717 | 715 |
const DistMap &distMap() const { return *_dist;}
|
| 718 | 716 |
|
| 719 | 717 |
///Returns a reference to the %DFS arc-tree map. |
| 720 | 718 |
|
| 721 | 719 |
///Returns a reference to the NodeMap of the arcs of the |
| 722 | 720 |
///%DFS tree. |
| 723 | 721 |
///\pre Either \ref run() or \ref init() |
| 724 | 722 |
///must be called before using this function. |
| 725 | 723 |
const PredMap &predMap() const { return *_pred;}
|
| 726 | 724 |
|
| 727 | 725 |
///Checks if a node is reachable from the root. |
| 728 | 726 |
|
| 729 | 727 |
///Returns \c true if \c v is reachable from the root(s). |
| 730 | 728 |
///\warning The source nodes are inditated as unreachable. |
| 731 | 729 |
///\pre Either \ref run() or \ref start() |
| 732 | 730 |
///must be called before using this function. |
| 733 | 731 |
/// |
| 734 | 732 |
bool reached(Node v) { return (*_reached)[v]; }
|
| 735 | 733 |
|
| 736 | 734 |
///@} |
| 737 | 735 |
}; |
| 738 | 736 |
|
| 739 | 737 |
///Default traits class of Dfs function. |
| 740 | 738 |
|
| 741 | 739 |
///Default traits class of Dfs function. |
| 742 |
///\ |
|
| 740 |
///\tparam GR Digraph type. |
|
| 743 | 741 |
template<class GR> |
| 744 | 742 |
struct DfsWizardDefaultTraits |
| 745 | 743 |
{
|
| 746 | 744 |
///The digraph type the algorithm runs on. |
| 747 | 745 |
typedef GR Digraph; |
| 748 | 746 |
///\brief The type of the map that stores the last |
| 749 | 747 |
///arcs of the %DFS paths. |
| 750 | 748 |
/// |
| 751 | 749 |
///The type of the map that stores the last |
| 752 | 750 |
///arcs of the %DFS paths. |
| 753 | 751 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 754 | 752 |
/// |
| 755 | 753 |
typedef NullMap<typename Digraph::Node,typename GR::Arc> PredMap; |
| 756 | 754 |
///Instantiates a PredMap. |
| 757 | 755 |
|
| 758 | 756 |
///This function instantiates a \ref PredMap. |
| 759 | 757 |
///\param g is the digraph, to which we would like to define the PredMap. |
| 760 | 758 |
///\todo The digraph alone may be insufficient to initialize |
| 761 | 759 |
#ifdef DOXYGEN |
| 762 | 760 |
static PredMap *createPredMap(const GR &g) |
| 763 | 761 |
#else |
| 764 | 762 |
static PredMap *createPredMap(const GR &) |
| 765 | 763 |
#endif |
| 766 | 764 |
{
|
| 767 | 765 |
return new PredMap(); |
| 768 | 766 |
} |
| 769 | 767 |
|
| 770 | 768 |
///The type of the map that indicates which nodes are processed. |
| 771 | 769 |
|
| 772 | 770 |
///The type of the map that indicates which nodes are processed. |
| 773 | 771 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 774 | 772 |
///\todo named parameter to set this type, function to read and write. |
| 775 | 773 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 776 | 774 |
///Instantiates a ProcessedMap. |
| 777 | 775 |
|
| 778 | 776 |
///This function instantiates a \ref ProcessedMap. |
| 779 | 777 |
///\param g is the digraph, to which |
| 780 | 778 |
///we would like to define the \ref ProcessedMap |
| 781 | 779 |
#ifdef DOXYGEN |
| 782 | 780 |
static ProcessedMap *createProcessedMap(const GR &g) |
| 783 | 781 |
#else |
| 784 | 782 |
static ProcessedMap *createProcessedMap(const GR &) |
| 785 | 783 |
#endif |
| 786 | 784 |
{
|
| 787 | 785 |
return new ProcessedMap(); |
| 788 | 786 |
} |
| 789 | 787 |
///The type of the map that indicates which nodes are reached. |
| 790 | 788 |
|
| 791 | 789 |
///The type of the map that indicates which nodes are reached. |
| 792 | 790 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 793 | 791 |
///\todo named parameter to set this type, function to read and write. |
| 794 | 792 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 795 | 793 |
///Instantiates a ReachedMap. |
| 796 | 794 |
|
| 797 | 795 |
///This function instantiates a \ref ReachedMap. |
| 798 | 796 |
///\param G is the digraph, to which |
| 799 | 797 |
///we would like to define the \ref ReachedMap. |
| 800 | 798 |
static ReachedMap *createReachedMap(const GR &G) |
| 801 | 799 |
{
|
| 802 | 800 |
return new ReachedMap(G); |
| 803 | 801 |
} |
| 804 | 802 |
///The type of the map that stores the dists of the nodes. |
| 805 | 803 |
|
| 806 | 804 |
///The type of the map that stores the dists of the nodes. |
| 807 | 805 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 808 | 806 |
/// |
| 809 | 807 |
typedef NullMap<typename Digraph::Node,int> DistMap; |
| 810 | 808 |
///Instantiates a DistMap. |
| 811 | 809 |
|
| 812 | 810 |
///This function instantiates a \ref DistMap. |
| 813 | 811 |
///\param g is the digraph, to which we would like to define the \ref DistMap |
| 814 | 812 |
#ifdef DOXYGEN |
| 815 | 813 |
static DistMap *createDistMap(const GR &g) |
| 816 | 814 |
#else |
| 817 | 815 |
static DistMap *createDistMap(const GR &) |
| 818 | 816 |
#endif |
| 819 | 817 |
{
|
| 820 | 818 |
return new DistMap(); |
| 821 | 819 |
} |
| 822 | 820 |
}; |
| 823 | 821 |
|
| 824 | 822 |
/// Default traits used by \ref DfsWizard |
| 825 | 823 |
|
| 826 | 824 |
/// To make it easier to use Dfs algorithm |
| 827 | 825 |
///we have created a wizard class. |
| 828 | 826 |
/// This \ref DfsWizard class needs default traits, |
| 829 | 827 |
///as well as the \ref Dfs class. |
| 830 | 828 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
| 831 | 829 |
/// \ref DfsWizard class. |
| 832 | 830 |
template<class GR> |
| 833 | 831 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
| 834 | 832 |
{
|
| 835 | 833 |
|
| 836 | 834 |
typedef DfsWizardDefaultTraits<GR> Base; |
| 837 | 835 |
protected: |
| 838 | 836 |
/// Type of the nodes in the digraph. |
| ... | ... |
@@ -1067,235 +1065,235 @@ |
| 1067 | 1065 |
///\ref named-templ-func-param "named parameters", |
| 1068 | 1066 |
///they are declared as the members of class \ref DfsWizard. |
| 1069 | 1067 |
///The following |
| 1070 | 1068 |
///example shows how to use these parameters. |
| 1071 | 1069 |
///\code |
| 1072 | 1070 |
/// dfs(g,source).predMap(preds).run(); |
| 1073 | 1071 |
///\endcode |
| 1074 | 1072 |
///\warning Don't forget to put the \ref DfsWizard::run() "run()" |
| 1075 | 1073 |
///to the end of the parameter list. |
| 1076 | 1074 |
///\sa DfsWizard |
| 1077 | 1075 |
///\sa Dfs |
| 1078 | 1076 |
template<class GR> |
| 1079 | 1077 |
DfsWizard<DfsWizardBase<GR> > |
| 1080 | 1078 |
dfs(const GR &g,typename GR::Node s=INVALID) |
| 1081 | 1079 |
{
|
| 1082 | 1080 |
return DfsWizard<DfsWizardBase<GR> >(g,s); |
| 1083 | 1081 |
} |
| 1084 | 1082 |
|
| 1085 | 1083 |
#ifdef DOXYGEN |
| 1086 | 1084 |
/// \brief Visitor class for dfs. |
| 1087 | 1085 |
/// |
| 1088 | 1086 |
/// It gives a simple interface for a functional interface for dfs |
| 1089 | 1087 |
/// traversal. The traversal on a linear data structure. |
| 1090 | 1088 |
template <typename _Digraph> |
| 1091 | 1089 |
struct DfsVisitor {
|
| 1092 | 1090 |
typedef _Digraph Digraph; |
| 1093 | 1091 |
typedef typename Digraph::Arc Arc; |
| 1094 | 1092 |
typedef typename Digraph::Node Node; |
| 1095 | 1093 |
/// \brief Called when the arc reach a node. |
| 1096 | 1094 |
/// |
| 1097 | 1095 |
/// It is called when the dfs find an arc which target is not |
| 1098 | 1096 |
/// reached yet. |
| 1099 | 1097 |
void discover(const Arc& arc) {}
|
| 1100 | 1098 |
/// \brief Called when the node reached first time. |
| 1101 | 1099 |
/// |
| 1102 | 1100 |
/// It is Called when the node reached first time. |
| 1103 | 1101 |
void reach(const Node& node) {}
|
| 1104 | 1102 |
/// \brief Called when we step back on an arc. |
| 1105 | 1103 |
/// |
| 1106 | 1104 |
/// It is called when the dfs should step back on the arc. |
| 1107 | 1105 |
void backtrack(const Arc& arc) {}
|
| 1108 | 1106 |
/// \brief Called when we step back from the node. |
| 1109 | 1107 |
/// |
| 1110 | 1108 |
/// It is called when we step back from the node. |
| 1111 | 1109 |
void leave(const Node& node) {}
|
| 1112 | 1110 |
/// \brief Called when the arc examined but target of the arc |
| 1113 | 1111 |
/// already discovered. |
| 1114 | 1112 |
/// |
| 1115 | 1113 |
/// It called when the arc examined but the target of the arc |
| 1116 | 1114 |
/// already discovered. |
| 1117 | 1115 |
void examine(const Arc& arc) {}
|
| 1118 | 1116 |
/// \brief Called for the source node of the dfs. |
| 1119 | 1117 |
/// |
| 1120 | 1118 |
/// It is called for the source node of the dfs. |
| 1121 | 1119 |
void start(const Node& node) {}
|
| 1122 | 1120 |
/// \brief Called when we leave the source node of the dfs. |
| 1123 | 1121 |
/// |
| 1124 | 1122 |
/// It is called when we leave the source node of the dfs. |
| 1125 | 1123 |
void stop(const Node& node) {}
|
| 1126 | 1124 |
|
| 1127 | 1125 |
}; |
| 1128 | 1126 |
#else |
| 1129 | 1127 |
template <typename _Digraph> |
| 1130 | 1128 |
struct DfsVisitor {
|
| 1131 | 1129 |
typedef _Digraph Digraph; |
| 1132 | 1130 |
typedef typename Digraph::Arc Arc; |
| 1133 | 1131 |
typedef typename Digraph::Node Node; |
| 1134 | 1132 |
void discover(const Arc&) {}
|
| 1135 | 1133 |
void reach(const Node&) {}
|
| 1136 | 1134 |
void backtrack(const Arc&) {}
|
| 1137 | 1135 |
void leave(const Node&) {}
|
| 1138 | 1136 |
void examine(const Arc&) {}
|
| 1139 | 1137 |
void start(const Node&) {}
|
| 1140 | 1138 |
void stop(const Node&) {}
|
| 1141 | 1139 |
|
| 1142 | 1140 |
template <typename _Visitor> |
| 1143 | 1141 |
struct Constraints {
|
| 1144 | 1142 |
void constraints() {
|
| 1145 | 1143 |
Arc arc; |
| 1146 | 1144 |
Node node; |
| 1147 | 1145 |
visitor.discover(arc); |
| 1148 | 1146 |
visitor.reach(node); |
| 1149 | 1147 |
visitor.backtrack(arc); |
| 1150 | 1148 |
visitor.leave(node); |
| 1151 | 1149 |
visitor.examine(arc); |
| 1152 | 1150 |
visitor.start(node); |
| 1153 | 1151 |
visitor.stop(arc); |
| 1154 | 1152 |
} |
| 1155 | 1153 |
_Visitor& visitor; |
| 1156 | 1154 |
}; |
| 1157 | 1155 |
}; |
| 1158 | 1156 |
#endif |
| 1159 | 1157 |
|
| 1160 | 1158 |
/// \brief Default traits class of DfsVisit class. |
| 1161 | 1159 |
/// |
| 1162 | 1160 |
/// Default traits class of DfsVisit class. |
| 1163 |
/// \ |
|
| 1161 |
/// \tparam _Digraph Digraph type. |
|
| 1164 | 1162 |
template<class _Digraph> |
| 1165 | 1163 |
struct DfsVisitDefaultTraits {
|
| 1166 | 1164 |
|
| 1167 | 1165 |
/// \brief The digraph type the algorithm runs on. |
| 1168 | 1166 |
typedef _Digraph Digraph; |
| 1169 | 1167 |
|
| 1170 | 1168 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1171 | 1169 |
/// |
| 1172 | 1170 |
/// The type of the map that indicates which nodes are reached. |
| 1173 | 1171 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 1174 | 1172 |
/// \todo named parameter to set this type, function to read and write. |
| 1175 | 1173 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1176 | 1174 |
|
| 1177 | 1175 |
/// \brief Instantiates a ReachedMap. |
| 1178 | 1176 |
/// |
| 1179 | 1177 |
/// This function instantiates a \ref ReachedMap. |
| 1180 | 1178 |
/// \param digraph is the digraph, to which |
| 1181 | 1179 |
/// we would like to define the \ref ReachedMap. |
| 1182 | 1180 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1183 | 1181 |
return new ReachedMap(digraph); |
| 1184 | 1182 |
} |
| 1185 | 1183 |
|
| 1186 | 1184 |
}; |
| 1187 | 1185 |
|
| 1188 | 1186 |
/// %DFS Visit algorithm class. |
| 1189 | 1187 |
|
| 1190 | 1188 |
/// \ingroup search |
| 1191 | 1189 |
/// This class provides an efficient implementation of the %DFS algorithm |
| 1192 | 1190 |
/// with visitor interface. |
| 1193 | 1191 |
/// |
| 1194 | 1192 |
/// The %DfsVisit class provides an alternative interface to the Dfs |
| 1195 | 1193 |
/// class. It works with callback mechanism, the DfsVisit object calls |
| 1196 | 1194 |
/// on every dfs event the \c Visitor class member functions. |
| 1197 | 1195 |
/// |
| 1198 |
/// \ |
|
| 1196 |
/// \tparam _Digraph The digraph type the algorithm runs on. The default value is |
|
| 1199 | 1197 |
/// \ref ListDigraph. The value of _Digraph is not used directly by Dfs, it |
| 1200 | 1198 |
/// is only passed to \ref DfsDefaultTraits. |
| 1201 |
/// \ |
|
| 1199 |
/// \tparam _Visitor The Visitor object for the algorithm. The |
|
| 1202 | 1200 |
/// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty Visitor which |
| 1203 | 1201 |
/// does not observe the Dfs events. If you want to observe the dfs |
| 1204 | 1202 |
/// events you should implement your own Visitor class. |
| 1205 |
/// \ |
|
| 1203 |
/// \tparam _Traits Traits class to set various data types used by the |
|
| 1206 | 1204 |
/// algorithm. The default traits class is |
| 1207 | 1205 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>". |
| 1208 | 1206 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
| 1209 | 1207 |
/// a Dfs visit traits class. |
| 1210 | 1208 |
/// |
| 1211 | 1209 |
/// \author Jacint Szabo, Alpar Juttner and Balazs Dezso |
| 1212 | 1210 |
#ifdef DOXYGEN |
| 1213 | 1211 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
| 1214 | 1212 |
#else |
| 1215 | 1213 |
template <typename _Digraph = ListDigraph, |
| 1216 | 1214 |
typename _Visitor = DfsVisitor<_Digraph>, |
| 1217 | 1215 |
typename _Traits = DfsDefaultTraits<_Digraph> > |
| 1218 | 1216 |
#endif |
| 1219 | 1217 |
class DfsVisit {
|
| 1220 | 1218 |
public: |
| 1221 | 1219 |
|
| 1222 | 1220 |
/// \brief \ref Exception for uninitialized parameters. |
| 1223 | 1221 |
/// |
| 1224 | 1222 |
/// This error represents problems in the initialization |
| 1225 | 1223 |
/// of the parameters of the algorithms. |
| 1226 | 1224 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
| 1227 | 1225 |
public: |
| 1228 | 1226 |
virtual const char* what() const throw() |
| 1229 | 1227 |
{
|
| 1230 | 1228 |
return "lemon::DfsVisit::UninitializedParameter"; |
| 1231 | 1229 |
} |
| 1232 | 1230 |
}; |
| 1233 | 1231 |
|
| 1234 | 1232 |
typedef _Traits Traits; |
| 1235 | 1233 |
|
| 1236 | 1234 |
typedef typename Traits::Digraph Digraph; |
| 1237 | 1235 |
|
| 1238 | 1236 |
typedef _Visitor Visitor; |
| 1239 | 1237 |
|
| 1240 | 1238 |
///The type of the map indicating which nodes are reached. |
| 1241 | 1239 |
typedef typename Traits::ReachedMap ReachedMap; |
| 1242 | 1240 |
|
| 1243 | 1241 |
private: |
| 1244 | 1242 |
|
| 1245 | 1243 |
typedef typename Digraph::Node Node; |
| 1246 | 1244 |
typedef typename Digraph::NodeIt NodeIt; |
| 1247 | 1245 |
typedef typename Digraph::Arc Arc; |
| 1248 | 1246 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1249 | 1247 |
|
| 1250 | 1248 |
/// Pointer to the underlying digraph. |
| 1251 | 1249 |
const Digraph *_digraph; |
| 1252 | 1250 |
/// Pointer to the visitor object. |
| 1253 | 1251 |
Visitor *_visitor; |
| 1254 | 1252 |
///Pointer to the map of reached status of the nodes. |
| 1255 | 1253 |
ReachedMap *_reached; |
| 1256 | 1254 |
///Indicates if \ref _reached is locally allocated (\c true) or not. |
| 1257 | 1255 |
bool local_reached; |
| 1258 | 1256 |
|
| 1259 | 1257 |
std::vector<typename Digraph::Arc> _stack; |
| 1260 | 1258 |
int _stack_head; |
| 1261 | 1259 |
|
| 1262 | 1260 |
/// \brief Creates the maps if necessary. |
| 1263 | 1261 |
/// |
| 1264 | 1262 |
/// Creates the maps if necessary. |
| 1265 | 1263 |
void create_maps() {
|
| 1266 | 1264 |
if(!_reached) {
|
| 1267 | 1265 |
local_reached = true; |
| 1268 | 1266 |
_reached = Traits::createReachedMap(*_digraph); |
| 1269 | 1267 |
} |
| 1270 | 1268 |
} |
| 1271 | 1269 |
|
| 1272 | 1270 |
protected: |
| 1273 | 1271 |
|
| 1274 | 1272 |
DfsVisit() {}
|
| 1275 | 1273 |
|
| 1276 | 1274 |
public: |
| 1277 | 1275 |
|
| 1278 | 1276 |
typedef DfsVisit Create; |
| 1279 | 1277 |
|
| 1280 | 1278 |
/// \name Named template parameters |
| 1281 | 1279 |
|
| 1282 | 1280 |
///@{
|
| 1283 | 1281 |
template <class T> |
| 1284 | 1282 |
struct DefReachedMapTraits : public Traits {
|
| 1285 | 1283 |
typedef T ReachedMap; |
| 1286 | 1284 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1287 | 1285 |
throw UninitializedParameter(); |
| 1288 | 1286 |
} |
| 1289 | 1287 |
}; |
| 1290 | 1288 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1291 | 1289 |
/// ReachedMap type |
| 1292 | 1290 |
/// |
| 1293 | 1291 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type |
| 1294 | 1292 |
template <class T> |
| 1295 | 1293 |
struct DefReachedMap : public DfsVisit< Digraph, Visitor, |
| 1296 | 1294 |
DefReachedMapTraits<T> > {
|
| 1297 | 1295 |
typedef DfsVisit< Digraph, Visitor, DefReachedMapTraits<T> > Create; |
| 1298 | 1296 |
}; |
| 1299 | 1297 |
///@} |
| 1300 | 1298 |
|
| 1301 | 1299 |
public: |
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
| 20 | 20 |
#define LEMON_DIJKSTRA_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup shortest_path |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Dijkstra algorithm. |
| 25 | 25 |
/// |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/list_digraph.h> |
| 28 | 28 |
#include <lemon/bin_heap.h> |
| 29 | 29 |
#include <lemon/bits/path_dump.h> |
| 30 | 30 |
#include <lemon/bits/invalid.h> |
| 31 | 31 |
#include <lemon/error.h> |
| 32 | 32 |
#include <lemon/maps.h> |
| 33 | 33 |
|
| 34 | 34 |
|
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 | 37 |
/// \brief Default OperationTraits for the Dijkstra algorithm class. |
| 38 | 38 |
/// |
| 39 | 39 |
/// It defines all computational operations and constants which are |
| 40 | 40 |
/// used in the Dijkstra algorithm. |
| 41 | 41 |
template <typename Value> |
| 42 | 42 |
struct DijkstraDefaultOperationTraits {
|
| 43 | 43 |
/// \brief Gives back the zero value of the type. |
| 44 | 44 |
static Value zero() {
|
| 45 | 45 |
return static_cast<Value>(0); |
| 46 | 46 |
} |
| 47 | 47 |
/// \brief Gives back the sum of the given two elements. |
| 48 | 48 |
static Value plus(const Value& left, const Value& right) {
|
| 49 | 49 |
return left + right; |
| 50 | 50 |
} |
| 51 | 51 |
/// \brief Gives back true only if the first value less than the second. |
| 52 | 52 |
static bool less(const Value& left, const Value& right) {
|
| 53 | 53 |
return left < right; |
| 54 | 54 |
} |
| 55 | 55 |
}; |
| 56 | 56 |
|
| 57 | 57 |
/// \brief Widest path OperationTraits for the Dijkstra algorithm class. |
| 58 | 58 |
/// |
| 59 | 59 |
/// It defines all computational operations and constants which are |
| 60 | 60 |
/// used in the Dijkstra algorithm for widest path computation. |
| 61 | 61 |
template <typename Value> |
| 62 | 62 |
struct DijkstraWidestPathOperationTraits {
|
| 63 | 63 |
/// \brief Gives back the maximum value of the type. |
| 64 | 64 |
static Value zero() {
|
| 65 | 65 |
return std::numeric_limits<Value>::max(); |
| 66 | 66 |
} |
| 67 | 67 |
/// \brief Gives back the minimum of the given two elements. |
| 68 | 68 |
static Value plus(const Value& left, const Value& right) {
|
| 69 | 69 |
return std::min(left, right); |
| 70 | 70 |
} |
| 71 | 71 |
/// \brief Gives back true only if the first value less than the second. |
| 72 | 72 |
static bool less(const Value& left, const Value& right) {
|
| 73 | 73 |
return left < right; |
| 74 | 74 |
} |
| 75 | 75 |
}; |
| 76 | 76 |
|
| 77 | 77 |
///Default traits class of Dijkstra class. |
| 78 | 78 |
|
| 79 | 79 |
///Default traits class of Dijkstra class. |
| 80 |
///\param GR Digraph type. |
|
| 81 |
///\param LM Type of length map. |
|
| 80 |
///\tparam GR Digraph type. |
|
| 81 |
///\tparam LM Type of length map. |
|
| 82 | 82 |
template<class GR, class LM> |
| 83 | 83 |
struct DijkstraDefaultTraits |
| 84 | 84 |
{
|
| 85 | 85 |
///The digraph type the algorithm runs on. |
| 86 | 86 |
typedef GR Digraph; |
| 87 | 87 |
///The type of the map that stores the arc lengths. |
| 88 | 88 |
|
| 89 | 89 |
///The type of the map that stores the arc lengths. |
| 90 | 90 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 91 | 91 |
typedef LM LengthMap; |
| 92 | 92 |
//The type of the length of the arcs. |
| 93 | 93 |
typedef typename LM::Value Value; |
| 94 | 94 |
/// Operation traits for Dijkstra algorithm. |
| 95 | 95 |
|
| 96 | 96 |
/// It defines the used operation by the algorithm. |
| 97 | 97 |
/// \see DijkstraDefaultOperationTraits |
| 98 | 98 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
| 99 | 99 |
/// The cross reference type used by heap. |
| 100 | 100 |
|
| 101 | 101 |
|
| 102 | 102 |
/// The cross reference type used by heap. |
| 103 | 103 |
/// Usually it is \c Digraph::NodeMap<int>. |
| 104 | 104 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 105 | 105 |
///Instantiates a HeapCrossRef. |
| 106 | 106 |
|
| 107 | 107 |
///This function instantiates a \c HeapCrossRef. |
| 108 | 108 |
/// \param G is the digraph, to which we would like to define the |
| 109 | 109 |
/// HeapCrossRef. |
| 110 | 110 |
static HeapCrossRef *createHeapCrossRef(const GR &G) |
| 111 | 111 |
{
|
| 112 | 112 |
return new HeapCrossRef(G); |
| 113 | 113 |
} |
| 114 | 114 |
|
| 115 | 115 |
///The heap type used by Dijkstra algorithm. |
| 116 | 116 |
|
| 117 | 117 |
///The heap type used by Dijkstra algorithm. |
| 118 | 118 |
/// |
| 119 | 119 |
///\sa BinHeap |
| 120 | 120 |
///\sa Dijkstra |
| 121 | 121 |
typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap; |
| 122 | 122 |
|
| 123 | 123 |
static Heap *createHeap(HeapCrossRef& R) |
| 124 | 124 |
{
|
| 125 | 125 |
return new Heap(R); |
| 126 | 126 |
} |
| 127 | 127 |
|
| 128 | 128 |
///\brief The type of the map that stores the last |
| 129 | 129 |
///arcs of the shortest paths. |
| 130 | 130 |
/// |
| 131 | 131 |
///The type of the map that stores the last |
| 132 | 132 |
///arcs of the shortest paths. |
| 133 | 133 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 134 | 134 |
/// |
| 135 | 135 |
typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap; |
| 136 | 136 |
///Instantiates a PredMap. |
| 137 | 137 |
|
| 138 | 138 |
///This function instantiates a \c PredMap. |
| 139 | 139 |
///\param G is the digraph, to which we would like to define the PredMap. |
| 140 | 140 |
///\todo The digraph alone may be insufficient for the initialization |
| 141 | 141 |
static PredMap *createPredMap(const GR &G) |
| 142 | 142 |
{
|
| 143 | 143 |
return new PredMap(G); |
| 144 | 144 |
} |
| 145 | 145 |
|
| 146 | 146 |
///The type of the map that stores whether a nodes is processed. |
| 147 | 147 |
|
| 148 | 148 |
///The type of the map that stores whether a nodes is processed. |
| 149 | 149 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 150 | 150 |
///By default it is a NullMap. |
| 151 | 151 |
///\todo If it is set to a real map, |
| 152 | 152 |
///Dijkstra::processed() should read this. |
| 153 | 153 |
///\todo named parameter to set this type, function to read and write. |
| 154 | 154 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 155 | 155 |
///Instantiates a ProcessedMap. |
| 156 | 156 |
|
| 157 | 157 |
///This function instantiates a \c ProcessedMap. |
| 158 | 158 |
///\param g is the digraph, to which |
| 159 | 159 |
///we would like to define the \c ProcessedMap |
| 160 | 160 |
#ifdef DOXYGEN |
| 161 | 161 |
static ProcessedMap *createProcessedMap(const GR &g) |
| 162 | 162 |
#else |
| 163 | 163 |
static ProcessedMap *createProcessedMap(const GR &) |
| 164 | 164 |
#endif |
| 165 | 165 |
{
|
| 166 | 166 |
return new ProcessedMap(); |
| 167 | 167 |
} |
| 168 | 168 |
///The type of the map that stores the dists of the nodes. |
| 169 | 169 |
|
| 170 | 170 |
///The type of the map that stores the dists of the nodes. |
| 171 | 171 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 172 | 172 |
/// |
| 173 | 173 |
typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
| 174 | 174 |
///Instantiates a DistMap. |
| 175 | 175 |
|
| 176 | 176 |
///This function instantiates a \ref DistMap. |
| 177 | 177 |
///\param G is the digraph, to which we would like to define the \ref DistMap |
| 178 | 178 |
static DistMap *createDistMap(const GR &G) |
| 179 | 179 |
{
|
| 180 | 180 |
return new DistMap(G); |
| 181 | 181 |
} |
| 182 | 182 |
}; |
| 183 | 183 |
|
| 184 | 184 |
///%Dijkstra algorithm class. |
| 185 | 185 |
|
| 186 | 186 |
/// \ingroup shortest_path |
| 187 | 187 |
///This class provides an efficient implementation of %Dijkstra algorithm. |
| 188 | 188 |
///The arc lengths are passed to the algorithm using a |
| 189 | 189 |
///\ref concepts::ReadMap "ReadMap", |
| 190 | 190 |
///so it is easy to change it to any kind of length. |
| 191 | 191 |
/// |
| 192 | 192 |
///The type of the length is determined by the |
| 193 | 193 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
| 194 | 194 |
/// |
| 195 | 195 |
///It is also possible to change the underlying priority heap. |
| 196 | 196 |
/// |
| 197 |
///\ |
|
| 197 |
///\tparam GR The digraph type the algorithm runs on. The default value |
|
| 198 | 198 |
///is \ref ListDigraph. The value of GR is not used directly by |
| 199 | 199 |
///Dijkstra, it is only passed to \ref DijkstraDefaultTraits. |
| 200 |
///\ |
|
| 200 |
///\tparam LM This read-only ArcMap determines the lengths of the |
|
| 201 | 201 |
///arcs. It is read once for each arc, so the map may involve in |
| 202 | 202 |
///relatively time consuming process to compute the arc length if |
| 203 | 203 |
///it is necessary. The default map type is \ref |
| 204 | 204 |
///concepts::Digraph::ArcMap "Digraph::ArcMap<int>". The value |
| 205 | 205 |
///of LM is not used directly by Dijkstra, it is only passed to \ref |
| 206 |
///DijkstraDefaultTraits. |
|
| 206 |
///DijkstraDefaultTraits. |
|
| 207 |
///\tparam TR Traits class to set |
|
| 207 | 208 |
///various data types used by the algorithm. The default traits |
| 208 | 209 |
///class is \ref DijkstraDefaultTraits |
| 209 | 210 |
///"DijkstraDefaultTraits<GR,LM>". See \ref |
| 210 | 211 |
///DijkstraDefaultTraits for the documentation of a Dijkstra traits |
| 211 | 212 |
///class. |
| 212 |
/// |
|
| 213 |
///\author Jacint Szabo and Alpar Juttner |
|
| 214 | 213 |
|
| 215 | 214 |
#ifdef DOXYGEN |
| 216 | 215 |
template <typename GR, typename LM, typename TR> |
| 217 | 216 |
#else |
| 218 | 217 |
template <typename GR=ListDigraph, |
| 219 | 218 |
typename LM=typename GR::template ArcMap<int>, |
| 220 | 219 |
typename TR=DijkstraDefaultTraits<GR,LM> > |
| 221 | 220 |
#endif |
| 222 | 221 |
class Dijkstra {
|
| 223 | 222 |
public: |
| 224 | 223 |
/** |
| 225 | 224 |
* \brief \ref Exception for uninitialized parameters. |
| 226 | 225 |
* |
| 227 | 226 |
* This error represents problems in the initialization |
| 228 | 227 |
* of the parameters of the algorithms. |
| 229 | 228 |
*/ |
| 230 | 229 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
| 231 | 230 |
public: |
| 232 | 231 |
virtual const char* what() const throw() {
|
| 233 | 232 |
return "lemon::Dijkstra::UninitializedParameter"; |
| 234 | 233 |
} |
| 235 | 234 |
}; |
| 236 | 235 |
|
| 237 | 236 |
typedef TR Traits; |
| 238 | 237 |
///The type of the underlying digraph. |
| 239 | 238 |
typedef typename TR::Digraph Digraph; |
| 240 | 239 |
///\e |
| 241 | 240 |
typedef typename Digraph::Node Node; |
| 242 | 241 |
///\e |
| 243 | 242 |
typedef typename Digraph::NodeIt NodeIt; |
| 244 | 243 |
///\e |
| 245 | 244 |
typedef typename Digraph::Arc Arc; |
| 246 | 245 |
///\e |
| 247 | 246 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 248 | 247 |
|
| 249 | 248 |
///The type of the length of the arcs. |
| 250 | 249 |
typedef typename TR::LengthMap::Value Value; |
| 251 | 250 |
///The type of the map that stores the arc lengths. |
| 252 | 251 |
typedef typename TR::LengthMap LengthMap; |
| 253 | 252 |
///\brief The type of the map that stores the last |
| 254 | 253 |
///arcs of the shortest paths. |
| 255 | 254 |
typedef typename TR::PredMap PredMap; |
| 256 | 255 |
///The type of the map indicating if a node is processed. |
| 257 | 256 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 258 | 257 |
///The type of the map that stores the dists of the nodes. |
| 259 | 258 |
typedef typename TR::DistMap DistMap; |
| 260 | 259 |
///The cross reference type used for the current heap. |
| 261 | 260 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
| 262 | 261 |
///The heap type used by the dijkstra algorithm. |
| 263 | 262 |
typedef typename TR::Heap Heap; |
| 264 | 263 |
///The operation traits. |
| 265 | 264 |
typedef typename TR::OperationTraits OperationTraits; |
| 266 | 265 |
private: |
| 267 | 266 |
/// Pointer to the underlying digraph. |
| 268 | 267 |
const Digraph *G; |
| 269 | 268 |
/// Pointer to the length map |
| 270 | 269 |
const LengthMap *length; |
| 271 | 270 |
///Pointer to the map of predecessors arcs. |
| 272 | 271 |
PredMap *_pred; |
| 273 | 272 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
| 274 | 273 |
bool local_pred; |
| 275 | 274 |
///Pointer to the map of distances. |
| 276 | 275 |
DistMap *_dist; |
| 277 | 276 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
| 278 | 277 |
bool local_dist; |
| 279 | 278 |
///Pointer to the map of processed status of the nodes. |
| 280 | 279 |
ProcessedMap *_processed; |
| 281 | 280 |
///Indicates if \ref _processed is locally allocated (\c true) or not. |
| 282 | 281 |
bool local_processed; |
| 283 | 282 |
///Pointer to the heap cross references. |
| 284 | 283 |
HeapCrossRef *_heap_cross_ref; |
| 285 | 284 |
///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not. |
| 286 | 285 |
bool local_heap_cross_ref; |
| 287 | 286 |
///Pointer to the heap. |
| 288 | 287 |
Heap *_heap; |
| 289 | 288 |
///Indicates if \ref _heap is locally allocated (\c true) or not. |
| 290 | 289 |
bool local_heap; |
| 291 | 290 |
|
| 292 | 291 |
///Creates the maps if necessary. |
| 293 | 292 |
|
| 294 | 293 |
///\todo Better memory allocation (instead of new). |
| 295 | 294 |
void create_maps() |
| 296 | 295 |
{
|
| 297 | 296 |
if(!_pred) {
|
| 298 | 297 |
local_pred = true; |
| 299 | 298 |
_pred = Traits::createPredMap(*G); |
| 300 | 299 |
} |
| 301 | 300 |
if(!_dist) {
|
| 302 | 301 |
local_dist = true; |
| 303 | 302 |
_dist = Traits::createDistMap(*G); |
| 304 | 303 |
} |
| 305 | 304 |
if(!_processed) {
|
| 306 | 305 |
local_processed = true; |
| 307 | 306 |
_processed = Traits::createProcessedMap(*G); |
| 308 | 307 |
} |
| 309 | 308 |
if (!_heap_cross_ref) {
|
| ... | ... |
@@ -782,194 +781,194 @@ |
| 782 | 781 |
|
| 783 | 782 |
///@} |
| 784 | 783 |
|
| 785 | 784 |
///\name Query Functions |
| 786 | 785 |
///The result of the %Dijkstra algorithm can be obtained using these |
| 787 | 786 |
///functions.\n |
| 788 | 787 |
///Before the use of these functions, |
| 789 | 788 |
///either run() or start() must be called. |
| 790 | 789 |
|
| 791 | 790 |
///@{
|
| 792 | 791 |
|
| 793 | 792 |
///Gives back the shortest path. |
| 794 | 793 |
|
| 795 | 794 |
///Gives back the shortest path. |
| 796 | 795 |
///\pre The \c t should be reachable from the source. |
| 797 | 796 |
Path path(Node t) |
| 798 | 797 |
{
|
| 799 | 798 |
return Path(*G, *_pred, t); |
| 800 | 799 |
} |
| 801 | 800 |
|
| 802 | 801 |
///The distance of a node from the root. |
| 803 | 802 |
|
| 804 | 803 |
///Returns the distance of a node from the root. |
| 805 | 804 |
///\pre \ref run() must be called before using this function. |
| 806 | 805 |
///\warning If node \c v in unreachable from the root the return value |
| 807 | 806 |
///of this funcion is undefined. |
| 808 | 807 |
Value dist(Node v) const { return (*_dist)[v]; }
|
| 809 | 808 |
|
| 810 | 809 |
///The current distance of a node from the root. |
| 811 | 810 |
|
| 812 | 811 |
///Returns the current distance of a node from the root. |
| 813 | 812 |
///It may be decreased in the following processes. |
| 814 | 813 |
///\pre \c node should be reached but not processed |
| 815 | 814 |
Value currentDist(Node v) const { return (*_heap)[v]; }
|
| 816 | 815 |
|
| 817 | 816 |
///Returns the 'previous arc' of the shortest path tree. |
| 818 | 817 |
|
| 819 | 818 |
///For a node \c v it returns the 'previous arc' of the shortest path tree, |
| 820 | 819 |
///i.e. it returns the last arc of a shortest path from the root to \c |
| 821 | 820 |
///v. It is \ref INVALID |
| 822 | 821 |
///if \c v is unreachable from the root or if \c v=s. The |
| 823 | 822 |
///shortest path tree used here is equal to the shortest path tree used in |
| 824 | 823 |
///\ref predNode(). \pre \ref run() must be called before using |
| 825 | 824 |
///this function. |
| 826 | 825 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
| 827 | 826 |
|
| 828 | 827 |
///Returns the 'previous node' of the shortest path tree. |
| 829 | 828 |
|
| 830 | 829 |
///For a node \c v it returns the 'previous node' of the shortest path tree, |
| 831 | 830 |
///i.e. it returns the last but one node from a shortest path from the |
| 832 | 831 |
///root to \c /v. It is INVALID if \c v is unreachable from the root or if |
| 833 | 832 |
///\c v=s. The shortest path tree used here is equal to the shortest path |
| 834 | 833 |
///tree used in \ref predArc(). \pre \ref run() must be called before |
| 835 | 834 |
///using this function. |
| 836 | 835 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 837 | 836 |
G->source((*_pred)[v]); } |
| 838 | 837 |
|
| 839 | 838 |
///Returns a reference to the NodeMap of distances. |
| 840 | 839 |
|
| 841 | 840 |
///Returns a reference to the NodeMap of distances. \pre \ref run() must |
| 842 | 841 |
///be called before using this function. |
| 843 | 842 |
const DistMap &distMap() const { return *_dist;}
|
| 844 | 843 |
|
| 845 | 844 |
///Returns a reference to the shortest path tree map. |
| 846 | 845 |
|
| 847 | 846 |
///Returns a reference to the NodeMap of the arcs of the |
| 848 | 847 |
///shortest path tree. |
| 849 | 848 |
///\pre \ref run() must be called before using this function. |
| 850 | 849 |
const PredMap &predMap() const { return *_pred;}
|
| 851 | 850 |
|
| 852 | 851 |
///Checks if a node is reachable from the root. |
| 853 | 852 |
|
| 854 | 853 |
///Returns \c true if \c v is reachable from the root. |
| 855 | 854 |
///\warning The source nodes are inditated as unreached. |
| 856 | 855 |
///\pre \ref run() must be called before using this function. |
| 857 | 856 |
/// |
| 858 | 857 |
bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; }
|
| 859 | 858 |
|
| 860 | 859 |
///Checks if a node is processed. |
| 861 | 860 |
|
| 862 | 861 |
///Returns \c true if \c v is processed, i.e. the shortest |
| 863 | 862 |
///path to \c v has already found. |
| 864 | 863 |
///\pre \ref run() must be called before using this function. |
| 865 | 864 |
/// |
| 866 | 865 |
bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; }
|
| 867 | 866 |
|
| 868 | 867 |
///@} |
| 869 | 868 |
}; |
| 870 | 869 |
|
| 871 | 870 |
|
| 872 | 871 |
|
| 873 | 872 |
|
| 874 | 873 |
|
| 875 | 874 |
///Default traits class of Dijkstra function. |
| 876 | 875 |
|
| 877 | 876 |
///Default traits class of Dijkstra function. |
| 878 |
///\param GR Digraph type. |
|
| 879 |
///\param LM Type of length map. |
|
| 877 |
///\tparam GR Digraph type. |
|
| 878 |
///\tparam LM Type of length map. |
|
| 880 | 879 |
template<class GR, class LM> |
| 881 | 880 |
struct DijkstraWizardDefaultTraits |
| 882 | 881 |
{
|
| 883 | 882 |
///The digraph type the algorithm runs on. |
| 884 | 883 |
typedef GR Digraph; |
| 885 | 884 |
///The type of the map that stores the arc lengths. |
| 886 | 885 |
|
| 887 | 886 |
///The type of the map that stores the arc lengths. |
| 888 | 887 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 889 | 888 |
typedef LM LengthMap; |
| 890 | 889 |
//The type of the length of the arcs. |
| 891 | 890 |
typedef typename LM::Value Value; |
| 892 | 891 |
/// Operation traits for Dijkstra algorithm. |
| 893 | 892 |
|
| 894 | 893 |
/// It defines the used operation by the algorithm. |
| 895 | 894 |
/// \see DijkstraDefaultOperationTraits |
| 896 | 895 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
| 897 | 896 |
///The heap type used by Dijkstra algorithm. |
| 898 | 897 |
|
| 899 | 898 |
/// The cross reference type used by heap. |
| 900 | 899 |
|
| 901 | 900 |
/// The cross reference type used by heap. |
| 902 | 901 |
/// Usually it is \c Digraph::NodeMap<int>. |
| 903 | 902 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 904 | 903 |
///Instantiates a HeapCrossRef. |
| 905 | 904 |
|
| 906 | 905 |
///This function instantiates a \ref HeapCrossRef. |
| 907 | 906 |
/// \param G is the digraph, to which we would like to define the |
| 908 | 907 |
/// HeapCrossRef. |
| 909 | 908 |
/// \todo The digraph alone may be insufficient for the initialization |
| 910 | 909 |
static HeapCrossRef *createHeapCrossRef(const GR &G) |
| 911 | 910 |
{
|
| 912 | 911 |
return new HeapCrossRef(G); |
| 913 | 912 |
} |
| 914 | 913 |
|
| 915 | 914 |
///The heap type used by Dijkstra algorithm. |
| 916 | 915 |
|
| 917 | 916 |
///The heap type used by Dijkstra algorithm. |
| 918 | 917 |
/// |
| 919 | 918 |
///\sa BinHeap |
| 920 | 919 |
///\sa Dijkstra |
| 921 | 920 |
typedef BinHeap<typename LM::Value, typename GR::template NodeMap<int>, |
| 922 | 921 |
std::less<Value> > Heap; |
| 923 | 922 |
|
| 924 | 923 |
static Heap *createHeap(HeapCrossRef& R) |
| 925 | 924 |
{
|
| 926 | 925 |
return new Heap(R); |
| 927 | 926 |
} |
| 928 | 927 |
|
| 929 | 928 |
///\brief The type of the map that stores the last |
| 930 | 929 |
///arcs of the shortest paths. |
| 931 | 930 |
/// |
| 932 | 931 |
///The type of the map that stores the last |
| 933 | 932 |
///arcs of the shortest paths. |
| 934 | 933 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 935 | 934 |
/// |
| 936 | 935 |
typedef NullMap <typename GR::Node,typename GR::Arc> PredMap; |
| 937 | 936 |
///Instantiates a PredMap. |
| 938 | 937 |
|
| 939 | 938 |
///This function instantiates a \ref PredMap. |
| 940 | 939 |
///\param g is the digraph, to which we would like to define the PredMap. |
| 941 | 940 |
///\todo The digraph alone may be insufficient for the initialization |
| 942 | 941 |
#ifdef DOXYGEN |
| 943 | 942 |
static PredMap *createPredMap(const GR &g) |
| 944 | 943 |
#else |
| 945 | 944 |
static PredMap *createPredMap(const GR &) |
| 946 | 945 |
#endif |
| 947 | 946 |
{
|
| 948 | 947 |
return new PredMap(); |
| 949 | 948 |
} |
| 950 | 949 |
///The type of the map that stores whether a nodes is processed. |
| 951 | 950 |
|
| 952 | 951 |
///The type of the map that stores whether a nodes is processed. |
| 953 | 952 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 954 | 953 |
///By default it is a NullMap. |
| 955 | 954 |
///\todo If it is set to a real map, |
| 956 | 955 |
///Dijkstra::processed() should read this. |
| 957 | 956 |
///\todo named parameter to set this type, function to read and write. |
| 958 | 957 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 959 | 958 |
///Instantiates a ProcessedMap. |
| 960 | 959 |
|
| 961 | 960 |
///This function instantiates a \ref ProcessedMap. |
| 962 | 961 |
///\param g is the digraph, to which |
| 963 | 962 |
///we would like to define the \ref ProcessedMap |
| 964 | 963 |
#ifdef DOXYGEN |
| 965 | 964 |
static ProcessedMap *createProcessedMap(const GR &g) |
| 966 | 965 |
#else |
| 967 | 966 |
static ProcessedMap *createProcessedMap(const GR &) |
| 968 | 967 |
#endif |
| 969 | 968 |
{
|
| 970 | 969 |
return new ProcessedMap(); |
| 971 | 970 |
} |
| 972 | 971 |
///The type of the map that stores the dists of the nodes. |
| 973 | 972 |
|
| 974 | 973 |
///The type of the map that stores the dists of the nodes. |
| 975 | 974 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| ... | ... |
@@ -323,241 +323,241 @@ |
| 323 | 323 |
os << c.red() << ' ' << c.green() << ' ' << c.blue(); |
| 324 | 324 |
return os.str(); |
| 325 | 325 |
} |
| 326 | 326 |
|
| 327 | 327 |
public: |
| 328 | 328 |
GraphToEps(const T &t) : T(t), dontPrint(false) {};
|
| 329 | 329 |
|
| 330 | 330 |
template<class X> struct CoordsTraits : public T {
|
| 331 | 331 |
typedef X CoordsMapType; |
| 332 | 332 |
const X &_coords; |
| 333 | 333 |
CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {}
|
| 334 | 334 |
}; |
| 335 | 335 |
///Sets the map of the node coordinates |
| 336 | 336 |
|
| 337 | 337 |
///Sets the map of the node coordinates. |
| 338 | 338 |
///\param x must be a node map with dim2::Point<double> or |
| 339 | 339 |
///\ref dim2::Point "dim2::Point<int>" values. |
| 340 | 340 |
template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) {
|
| 341 | 341 |
dontPrint=true; |
| 342 | 342 |
return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x)); |
| 343 | 343 |
} |
| 344 | 344 |
template<class X> struct NodeSizesTraits : public T {
|
| 345 | 345 |
const X &_nodeSizes; |
| 346 | 346 |
NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {}
|
| 347 | 347 |
}; |
| 348 | 348 |
///Sets the map of the node sizes |
| 349 | 349 |
|
| 350 | 350 |
///Sets the map of the node sizes |
| 351 | 351 |
///\param x must be a node map with \c double (or convertible) values. |
| 352 | 352 |
template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x) |
| 353 | 353 |
{
|
| 354 | 354 |
dontPrint=true; |
| 355 | 355 |
return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x)); |
| 356 | 356 |
} |
| 357 | 357 |
template<class X> struct NodeShapesTraits : public T {
|
| 358 | 358 |
const X &_nodeShapes; |
| 359 | 359 |
NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {}
|
| 360 | 360 |
}; |
| 361 | 361 |
///Sets the map of the node shapes |
| 362 | 362 |
|
| 363 | 363 |
///Sets the map of the node shapes. |
| 364 | 364 |
///The available shape values |
| 365 | 365 |
///can be found in \ref NodeShapes "enum NodeShapes". |
| 366 | 366 |
///\param x must be a node map with \c int (or convertible) values. |
| 367 | 367 |
///\sa NodeShapes |
| 368 | 368 |
template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x) |
| 369 | 369 |
{
|
| 370 | 370 |
dontPrint=true; |
| 371 | 371 |
return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x)); |
| 372 | 372 |
} |
| 373 | 373 |
template<class X> struct NodeTextsTraits : public T {
|
| 374 | 374 |
const X &_nodeTexts; |
| 375 | 375 |
NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {}
|
| 376 | 376 |
}; |
| 377 | 377 |
///Sets the text printed on the nodes |
| 378 | 378 |
|
| 379 | 379 |
///Sets the text printed on the nodes |
| 380 | 380 |
///\param x must be a node map with type that can be pushed to a standard |
| 381 | 381 |
///ostream. |
| 382 | 382 |
template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x) |
| 383 | 383 |
{
|
| 384 | 384 |
dontPrint=true; |
| 385 | 385 |
_showNodeText=true; |
| 386 | 386 |
return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x)); |
| 387 | 387 |
} |
| 388 | 388 |
template<class X> struct NodePsTextsTraits : public T {
|
| 389 | 389 |
const X &_nodePsTexts; |
| 390 | 390 |
NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {}
|
| 391 | 391 |
}; |
| 392 | 392 |
///Inserts a PostScript block to the nodes |
| 393 | 393 |
|
| 394 | 394 |
///With this command it is possible to insert a verbatim PostScript |
| 395 | 395 |
///block to the nodes. |
| 396 | 396 |
///The PS current point will be moved to the centre of the node before |
| 397 | 397 |
///the PostScript block inserted. |
| 398 | 398 |
/// |
| 399 | 399 |
///Before and after the block a newline character is inserted so you |
| 400 | 400 |
///don't have to bother with the separators. |
| 401 | 401 |
/// |
| 402 | 402 |
///\param x must be a node map with type that can be pushed to a standard |
| 403 | 403 |
///ostream. |
| 404 | 404 |
/// |
| 405 | 405 |
///\sa nodePsTextsPreamble() |
| 406 | 406 |
template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x) |
| 407 | 407 |
{
|
| 408 | 408 |
dontPrint=true; |
| 409 | 409 |
_showNodePsText=true; |
| 410 | 410 |
return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x)); |
| 411 | 411 |
} |
| 412 | 412 |
template<class X> struct ArcWidthsTraits : public T {
|
| 413 | 413 |
const X &_arcWidths; |
| 414 | 414 |
ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {}
|
| 415 | 415 |
}; |
| 416 | 416 |
///Sets the map of the arc widths |
| 417 | 417 |
|
| 418 | 418 |
///Sets the map of the arc widths |
| 419 |
///\param x must be |
|
| 419 |
///\param x must be an arc map with \c double (or convertible) values. |
|
| 420 | 420 |
template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x) |
| 421 | 421 |
{
|
| 422 | 422 |
dontPrint=true; |
| 423 | 423 |
return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x)); |
| 424 | 424 |
} |
| 425 | 425 |
|
| 426 | 426 |
template<class X> struct NodeColorsTraits : public T {
|
| 427 | 427 |
const X &_nodeColors; |
| 428 | 428 |
NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {}
|
| 429 | 429 |
}; |
| 430 | 430 |
///Sets the map of the node colors |
| 431 | 431 |
|
| 432 | 432 |
///Sets the map of the node colors |
| 433 | 433 |
///\param x must be a node map with \ref Color values. |
| 434 | 434 |
/// |
| 435 | 435 |
///\sa Palette |
| 436 | 436 |
template<class X> GraphToEps<NodeColorsTraits<X> > |
| 437 | 437 |
nodeColors(const X &x) |
| 438 | 438 |
{
|
| 439 | 439 |
dontPrint=true; |
| 440 | 440 |
return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x)); |
| 441 | 441 |
} |
| 442 | 442 |
template<class X> struct NodeTextColorsTraits : public T {
|
| 443 | 443 |
const X &_nodeTextColors; |
| 444 | 444 |
NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {}
|
| 445 | 445 |
}; |
| 446 | 446 |
///Sets the map of the node text colors |
| 447 | 447 |
|
| 448 | 448 |
///Sets the map of the node text colors |
| 449 | 449 |
///\param x must be a node map with \ref Color values. |
| 450 | 450 |
/// |
| 451 | 451 |
///\sa Palette |
| 452 | 452 |
template<class X> GraphToEps<NodeTextColorsTraits<X> > |
| 453 | 453 |
nodeTextColors(const X &x) |
| 454 | 454 |
{
|
| 455 | 455 |
dontPrint=true; |
| 456 | 456 |
_nodeTextColorType=CUST_COL; |
| 457 | 457 |
return GraphToEps<NodeTextColorsTraits<X> > |
| 458 | 458 |
(NodeTextColorsTraits<X>(*this,x)); |
| 459 | 459 |
} |
| 460 | 460 |
template<class X> struct ArcColorsTraits : public T {
|
| 461 | 461 |
const X &_arcColors; |
| 462 | 462 |
ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {}
|
| 463 | 463 |
}; |
| 464 | 464 |
///Sets the map of the arc colors |
| 465 | 465 |
|
| 466 | 466 |
///Sets the map of the arc colors |
| 467 |
///\param x must be |
|
| 467 |
///\param x must be an arc map with \ref Color values. |
|
| 468 | 468 |
/// |
| 469 | 469 |
///\sa Palette |
| 470 | 470 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
| 471 | 471 |
arcColors(const X &x) |
| 472 | 472 |
{
|
| 473 | 473 |
dontPrint=true; |
| 474 | 474 |
return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x)); |
| 475 | 475 |
} |
| 476 | 476 |
///Sets a global scale factor for node sizes |
| 477 | 477 |
|
| 478 | 478 |
///Sets a global scale factor for node sizes. |
| 479 | 479 |
/// |
| 480 | 480 |
/// If nodeSizes() is not given, this function simply sets the node |
| 481 | 481 |
/// sizes to \c d. If nodeSizes() is given, but |
| 482 | 482 |
/// autoNodeScale() is not, then the node size given by |
| 483 | 483 |
/// nodeSizes() will be multiplied by the value \c d. |
| 484 | 484 |
/// If both nodeSizes() and autoNodeScale() are used, then the |
| 485 | 485 |
/// node sizes will be scaled in such a way that the greatest size will be |
| 486 | 486 |
/// equal to \c d. |
| 487 | 487 |
/// \sa nodeSizes() |
| 488 | 488 |
/// \sa autoNodeScale() |
| 489 | 489 |
GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;}
|
| 490 | 490 |
///Turns on/off the automatic node width scaling. |
| 491 | 491 |
|
| 492 | 492 |
///Turns on/off the automatic node width scaling. |
| 493 | 493 |
/// |
| 494 | 494 |
///\sa nodeScale() |
| 495 | 495 |
/// |
| 496 | 496 |
GraphToEps<T> &autoNodeScale(bool b=true) {
|
| 497 | 497 |
_autoNodeScale=b;return *this; |
| 498 | 498 |
} |
| 499 | 499 |
|
| 500 | 500 |
///Turns on/off the absolutematic node width scaling. |
| 501 | 501 |
|
| 502 | 502 |
///Turns on/off the absolutematic node width scaling. |
| 503 | 503 |
/// |
| 504 | 504 |
///\sa nodeScale() |
| 505 | 505 |
/// |
| 506 | 506 |
GraphToEps<T> &absoluteNodeSizes(bool b=true) {
|
| 507 | 507 |
_absoluteNodeSizes=b;return *this; |
| 508 | 508 |
} |
| 509 | 509 |
|
| 510 | 510 |
///Negates the Y coordinates. |
| 511 | 511 |
|
| 512 | 512 |
///Negates the Y coordinates. |
| 513 | 513 |
/// |
| 514 | 514 |
GraphToEps<T> &negateY(bool b=true) {
|
| 515 | 515 |
_negY=b;return *this; |
| 516 | 516 |
} |
| 517 | 517 |
|
| 518 | 518 |
///Turn on/off pre-scaling |
| 519 | 519 |
|
| 520 | 520 |
///By default graphToEps() rescales the whole image in order to avoid |
| 521 | 521 |
///very big or very small bounding boxes. |
| 522 | 522 |
/// |
| 523 | 523 |
///This (p)rescaling can be turned off with this function. |
| 524 | 524 |
/// |
| 525 | 525 |
GraphToEps<T> &preScale(bool b=true) {
|
| 526 | 526 |
_preScale=b;return *this; |
| 527 | 527 |
} |
| 528 | 528 |
|
| 529 | 529 |
///Sets a global scale factor for arc widths |
| 530 | 530 |
|
| 531 | 531 |
/// Sets a global scale factor for arc widths. |
| 532 | 532 |
/// |
| 533 | 533 |
/// If arcWidths() is not given, this function simply sets the arc |
| 534 | 534 |
/// widths to \c d. If arcWidths() is given, but |
| 535 | 535 |
/// autoArcWidthScale() is not, then the arc withs given by |
| 536 | 536 |
/// arcWidths() will be multiplied by the value \c d. |
| 537 | 537 |
/// If both arcWidths() and autoArcWidthScale() are used, then the |
| 538 | 538 |
/// arc withs will be scaled in such a way that the greatest width will be |
| 539 | 539 |
/// equal to \c d. |
| 540 | 540 |
GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;}
|
| 541 | 541 |
///Turns on/off the automatic arc width scaling. |
| 542 | 542 |
|
| 543 | 543 |
///Turns on/off the automatic arc width scaling. |
| 544 | 544 |
/// |
| 545 | 545 |
///\sa arcWidthScale() |
| 546 | 546 |
/// |
| 547 | 547 |
GraphToEps<T> &autoArcWidthScale(bool b=true) {
|
| 548 | 548 |
_autoArcWidthScale=b;return *this; |
| 549 | 549 |
} |
| 550 | 550 |
///Turns on/off the absolutematic arc width scaling. |
| 551 | 551 |
|
| 552 | 552 |
///Turns on/off the absolutematic arc width scaling. |
| 553 | 553 |
/// |
| 554 | 554 |
///\sa arcWidthScale() |
| 555 | 555 |
/// |
| 556 | 556 |
GraphToEps<T> &absoluteArcWidths(bool b=true) {
|
| 557 | 557 |
_absoluteArcWidths=b;return *this; |
| 558 | 558 |
} |
| 559 | 559 |
///Sets a global scale factor for the whole picture |
| 560 | 560 |
|
| 561 | 561 |
///Sets a global scale factor for the whole picture |
| 562 | 562 |
/// |
| 563 | 563 |
| ... | ... |
@@ -261,318 +261,314 @@ |
| 261 | 261 |
inline int countOutArcs(const Graph& _g, const typename Graph::Node& _n) {
|
| 262 | 262 |
return countNodeDegree<Graph, typename Graph::OutArcIt>(_g, _n); |
| 263 | 263 |
} |
| 264 | 264 |
|
| 265 | 265 |
/// \brief Function to count the number of the in-arcs to node \c n. |
| 266 | 266 |
/// |
| 267 | 267 |
/// This function counts the number of the in-arcs to node \c n |
| 268 | 268 |
/// in the graph. |
| 269 | 269 |
template <typename Graph> |
| 270 | 270 |
inline int countInArcs(const Graph& _g, const typename Graph::Node& _n) {
|
| 271 | 271 |
return countNodeDegree<Graph, typename Graph::InArcIt>(_g, _n); |
| 272 | 272 |
} |
| 273 | 273 |
|
| 274 | 274 |
/// \brief Function to count the number of the inc-edges to node \c n. |
| 275 | 275 |
/// |
| 276 | 276 |
/// This function counts the number of the inc-edges to node \c n |
| 277 | 277 |
/// in the graph. |
| 278 | 278 |
template <typename Graph> |
| 279 | 279 |
inline int countIncEdges(const Graph& _g, const typename Graph::Node& _n) {
|
| 280 | 280 |
return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n); |
| 281 | 281 |
} |
| 282 | 282 |
|
| 283 | 283 |
namespace _graph_utils_bits {
|
| 284 | 284 |
|
| 285 | 285 |
template <typename Graph, typename Enable = void> |
| 286 | 286 |
struct FindArcSelector {
|
| 287 | 287 |
typedef typename Graph::Node Node; |
| 288 | 288 |
typedef typename Graph::Arc Arc; |
| 289 | 289 |
static Arc find(const Graph &g, Node u, Node v, Arc e) {
|
| 290 | 290 |
if (e == INVALID) {
|
| 291 | 291 |
g.firstOut(e, u); |
| 292 | 292 |
} else {
|
| 293 | 293 |
g.nextOut(e); |
| 294 | 294 |
} |
| 295 | 295 |
while (e != INVALID && g.target(e) != v) {
|
| 296 | 296 |
g.nextOut(e); |
| 297 | 297 |
} |
| 298 | 298 |
return e; |
| 299 | 299 |
} |
| 300 | 300 |
}; |
| 301 | 301 |
|
| 302 | 302 |
template <typename Graph> |
| 303 | 303 |
struct FindArcSelector< |
| 304 | 304 |
Graph, |
| 305 | 305 |
typename enable_if<typename Graph::FindEdgeTag, void>::type> |
| 306 | 306 |
{
|
| 307 | 307 |
typedef typename Graph::Node Node; |
| 308 | 308 |
typedef typename Graph::Arc Arc; |
| 309 | 309 |
static Arc find(const Graph &g, Node u, Node v, Arc prev) {
|
| 310 | 310 |
return g.findArc(u, v, prev); |
| 311 | 311 |
} |
| 312 | 312 |
}; |
| 313 | 313 |
} |
| 314 | 314 |
|
| 315 | 315 |
/// \brief Finds an arc between two nodes of a graph. |
| 316 | 316 |
/// |
| 317 | 317 |
/// Finds an arc from node \c u to node \c v in graph \c g. |
| 318 | 318 |
/// |
| 319 | 319 |
/// If \c prev is \ref INVALID (this is the default value), then |
| 320 | 320 |
/// it finds the first arc from \c u to \c v. Otherwise it looks for |
| 321 | 321 |
/// the next arc from \c u to \c v after \c prev. |
| 322 | 322 |
/// \return The found arc or \ref INVALID if there is no such an arc. |
| 323 | 323 |
/// |
| 324 | 324 |
/// Thus you can iterate through each arc from \c u to \c v as it follows. |
| 325 | 325 |
///\code |
| 326 | 326 |
/// for(Arc e=findArc(g,u,v);e!=INVALID;e=findArc(g,u,v,e)) {
|
| 327 | 327 |
/// ... |
| 328 | 328 |
/// } |
| 329 | 329 |
///\endcode |
| 330 | 330 |
/// |
| 331 | 331 |
///\sa ArcLookUp |
| 332 | 332 |
///\sa AllArcLookUp |
| 333 | 333 |
///\sa DynArcLookUp |
| 334 | 334 |
///\sa ConArcIt |
| 335 | 335 |
template <typename Graph> |
| 336 | 336 |
inline typename Graph::Arc |
| 337 | 337 |
findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
| 338 | 338 |
typename Graph::Arc prev = INVALID) {
|
| 339 | 339 |
return _graph_utils_bits::FindArcSelector<Graph>::find(g, u, v, prev); |
| 340 | 340 |
} |
| 341 | 341 |
|
| 342 | 342 |
/// \brief Iterator for iterating on arcs connected the same nodes. |
| 343 | 343 |
/// |
| 344 | 344 |
/// Iterator for iterating on arcs connected the same nodes. It is |
| 345 | 345 |
/// higher level interface for the findArc() function. You can |
| 346 | 346 |
/// use it the following way: |
| 347 | 347 |
///\code |
| 348 | 348 |
/// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
|
| 349 | 349 |
/// ... |
| 350 | 350 |
/// } |
| 351 | 351 |
///\endcode |
| 352 | 352 |
/// |
| 353 | 353 |
///\sa findArc() |
| 354 | 354 |
///\sa ArcLookUp |
| 355 | 355 |
///\sa AllArcLookUp |
| 356 | 356 |
///\sa DynArcLookUp |
| 357 |
/// |
|
| 358 |
/// \author Balazs Dezso |
|
| 359 | 357 |
template <typename _Graph> |
| 360 | 358 |
class ConArcIt : public _Graph::Arc {
|
| 361 | 359 |
public: |
| 362 | 360 |
|
| 363 | 361 |
typedef _Graph Graph; |
| 364 | 362 |
typedef typename Graph::Arc Parent; |
| 365 | 363 |
|
| 366 | 364 |
typedef typename Graph::Arc Arc; |
| 367 | 365 |
typedef typename Graph::Node Node; |
| 368 | 366 |
|
| 369 | 367 |
/// \brief Constructor. |
| 370 | 368 |
/// |
| 371 | 369 |
/// Construct a new ConArcIt iterating on the arcs which |
| 372 | 370 |
/// connects the \c u and \c v node. |
| 373 | 371 |
ConArcIt(const Graph& g, Node u, Node v) : _graph(g) {
|
| 374 | 372 |
Parent::operator=(findArc(_graph, u, v)); |
| 375 | 373 |
} |
| 376 | 374 |
|
| 377 | 375 |
/// \brief Constructor. |
| 378 | 376 |
/// |
| 379 | 377 |
/// Construct a new ConArcIt which continues the iterating from |
| 380 | 378 |
/// the \c e arc. |
| 381 | 379 |
ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {}
|
| 382 | 380 |
|
| 383 | 381 |
/// \brief Increment operator. |
| 384 | 382 |
/// |
| 385 | 383 |
/// It increments the iterator and gives back the next arc. |
| 386 | 384 |
ConArcIt& operator++() {
|
| 387 | 385 |
Parent::operator=(findArc(_graph, _graph.source(*this), |
| 388 | 386 |
_graph.target(*this), *this)); |
| 389 | 387 |
return *this; |
| 390 | 388 |
} |
| 391 | 389 |
private: |
| 392 | 390 |
const Graph& _graph; |
| 393 | 391 |
}; |
| 394 | 392 |
|
| 395 | 393 |
namespace _graph_utils_bits {
|
| 396 | 394 |
|
| 397 | 395 |
template <typename Graph, typename Enable = void> |
| 398 | 396 |
struct FindEdgeSelector {
|
| 399 | 397 |
typedef typename Graph::Node Node; |
| 400 | 398 |
typedef typename Graph::Edge Edge; |
| 401 | 399 |
static Edge find(const Graph &g, Node u, Node v, Edge e) {
|
| 402 | 400 |
bool b; |
| 403 | 401 |
if (u != v) {
|
| 404 | 402 |
if (e == INVALID) {
|
| 405 | 403 |
g.firstInc(e, b, u); |
| 406 | 404 |
} else {
|
| 407 | 405 |
b = g.source(e) == u; |
| 408 | 406 |
g.nextInc(e, b); |
| 409 | 407 |
} |
| 410 | 408 |
while (e != INVALID && (b ? g.target(e) : g.source(e)) != v) {
|
| 411 | 409 |
g.nextInc(e, b); |
| 412 | 410 |
} |
| 413 | 411 |
} else {
|
| 414 | 412 |
if (e == INVALID) {
|
| 415 | 413 |
g.firstInc(e, b, u); |
| 416 | 414 |
} else {
|
| 417 | 415 |
b = true; |
| 418 | 416 |
g.nextInc(e, b); |
| 419 | 417 |
} |
| 420 | 418 |
while (e != INVALID && (!b || g.target(e) != v)) {
|
| 421 | 419 |
g.nextInc(e, b); |
| 422 | 420 |
} |
| 423 | 421 |
} |
| 424 | 422 |
return e; |
| 425 | 423 |
} |
| 426 | 424 |
}; |
| 427 | 425 |
|
| 428 | 426 |
template <typename Graph> |
| 429 | 427 |
struct FindEdgeSelector< |
| 430 | 428 |
Graph, |
| 431 | 429 |
typename enable_if<typename Graph::FindEdgeTag, void>::type> |
| 432 | 430 |
{
|
| 433 | 431 |
typedef typename Graph::Node Node; |
| 434 | 432 |
typedef typename Graph::Edge Edge; |
| 435 | 433 |
static Edge find(const Graph &g, Node u, Node v, Edge prev) {
|
| 436 | 434 |
return g.findEdge(u, v, prev); |
| 437 | 435 |
} |
| 438 | 436 |
}; |
| 439 | 437 |
} |
| 440 | 438 |
|
| 441 | 439 |
/// \brief Finds an edge between two nodes of a graph. |
| 442 | 440 |
/// |
| 443 | 441 |
/// Finds an edge from node \c u to node \c v in graph \c g. |
| 444 | 442 |
/// If the node \c u and node \c v is equal then each loop edge |
| 445 | 443 |
/// will be enumerated once. |
| 446 | 444 |
/// |
| 447 | 445 |
/// If \c prev is \ref INVALID (this is the default value), then |
| 448 | 446 |
/// it finds the first arc from \c u to \c v. Otherwise it looks for |
| 449 | 447 |
/// the next arc from \c u to \c v after \c prev. |
| 450 | 448 |
/// \return The found arc or \ref INVALID if there is no such an arc. |
| 451 | 449 |
/// |
| 452 | 450 |
/// Thus you can iterate through each arc from \c u to \c v as it follows. |
| 453 | 451 |
///\code |
| 454 | 452 |
/// for(Edge e = findEdge(g,u,v); e != INVALID; |
| 455 | 453 |
/// e = findEdge(g,u,v,e)) {
|
| 456 | 454 |
/// ... |
| 457 | 455 |
/// } |
| 458 | 456 |
///\endcode |
| 459 | 457 |
/// |
| 460 | 458 |
///\sa ConArcIt |
| 461 | 459 |
|
| 462 | 460 |
template <typename Graph> |
| 463 | 461 |
inline typename Graph::Edge |
| 464 | 462 |
findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
| 465 | 463 |
typename Graph::Edge p = INVALID) {
|
| 466 | 464 |
return _graph_utils_bits::FindEdgeSelector<Graph>::find(g, u, v, p); |
| 467 | 465 |
} |
| 468 | 466 |
|
| 469 | 467 |
/// \brief Iterator for iterating on edges connected the same nodes. |
| 470 | 468 |
/// |
| 471 | 469 |
/// Iterator for iterating on edges connected the same nodes. It is |
| 472 | 470 |
/// higher level interface for the findEdge() function. You can |
| 473 | 471 |
/// use it the following way: |
| 474 | 472 |
///\code |
| 475 | 473 |
/// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
|
| 476 | 474 |
/// ... |
| 477 | 475 |
/// } |
| 478 | 476 |
///\endcode |
| 479 | 477 |
/// |
| 480 | 478 |
///\sa findEdge() |
| 481 |
/// |
|
| 482 |
/// \author Balazs Dezso |
|
| 483 | 479 |
template <typename _Graph> |
| 484 | 480 |
class ConEdgeIt : public _Graph::Edge {
|
| 485 | 481 |
public: |
| 486 | 482 |
|
| 487 | 483 |
typedef _Graph Graph; |
| 488 | 484 |
typedef typename Graph::Edge Parent; |
| 489 | 485 |
|
| 490 | 486 |
typedef typename Graph::Edge Edge; |
| 491 | 487 |
typedef typename Graph::Node Node; |
| 492 | 488 |
|
| 493 | 489 |
/// \brief Constructor. |
| 494 | 490 |
/// |
| 495 | 491 |
/// Construct a new ConEdgeIt iterating on the edges which |
| 496 | 492 |
/// connects the \c u and \c v node. |
| 497 | 493 |
ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) {
|
| 498 | 494 |
Parent::operator=(findEdge(_graph, u, v)); |
| 499 | 495 |
} |
| 500 | 496 |
|
| 501 | 497 |
/// \brief Constructor. |
| 502 | 498 |
/// |
| 503 | 499 |
/// Construct a new ConEdgeIt which continues the iterating from |
| 504 | 500 |
/// the \c e edge. |
| 505 | 501 |
ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {}
|
| 506 | 502 |
|
| 507 | 503 |
/// \brief Increment operator. |
| 508 | 504 |
/// |
| 509 | 505 |
/// It increments the iterator and gives back the next edge. |
| 510 | 506 |
ConEdgeIt& operator++() {
|
| 511 | 507 |
Parent::operator=(findEdge(_graph, _graph.source(*this), |
| 512 | 508 |
_graph.target(*this), *this)); |
| 513 | 509 |
return *this; |
| 514 | 510 |
} |
| 515 | 511 |
private: |
| 516 | 512 |
const Graph& _graph; |
| 517 | 513 |
}; |
| 518 | 514 |
|
| 519 | 515 |
namespace _graph_utils_bits {
|
| 520 | 516 |
|
| 521 | 517 |
template <typename Digraph, typename Item, typename RefMap> |
| 522 | 518 |
class MapCopyBase {
|
| 523 | 519 |
public: |
| 524 | 520 |
virtual void copy(const Digraph& from, const RefMap& refMap) = 0; |
| 525 | 521 |
|
| 526 | 522 |
virtual ~MapCopyBase() {}
|
| 527 | 523 |
}; |
| 528 | 524 |
|
| 529 | 525 |
template <typename Digraph, typename Item, typename RefMap, |
| 530 | 526 |
typename ToMap, typename FromMap> |
| 531 | 527 |
class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
|
| 532 | 528 |
public: |
| 533 | 529 |
|
| 534 | 530 |
MapCopy(ToMap& tmap, const FromMap& map) |
| 535 | 531 |
: _tmap(tmap), _map(map) {}
|
| 536 | 532 |
|
| 537 | 533 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
|
| 538 | 534 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
| 539 | 535 |
for (ItemIt it(digraph); it != INVALID; ++it) {
|
| 540 | 536 |
_tmap.set(refMap[it], _map[it]); |
| 541 | 537 |
} |
| 542 | 538 |
} |
| 543 | 539 |
|
| 544 | 540 |
private: |
| 545 | 541 |
ToMap& _tmap; |
| 546 | 542 |
const FromMap& _map; |
| 547 | 543 |
}; |
| 548 | 544 |
|
| 549 | 545 |
template <typename Digraph, typename Item, typename RefMap, typename It> |
| 550 | 546 |
class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
|
| 551 | 547 |
public: |
| 552 | 548 |
|
| 553 | 549 |
ItemCopy(It& it, const Item& item) : _it(it), _item(item) {}
|
| 554 | 550 |
|
| 555 | 551 |
virtual void copy(const Digraph&, const RefMap& refMap) {
|
| 556 | 552 |
_it = refMap[_item]; |
| 557 | 553 |
} |
| 558 | 554 |
|
| 559 | 555 |
private: |
| 560 | 556 |
It& _it; |
| 561 | 557 |
Item _item; |
| 562 | 558 |
}; |
| 563 | 559 |
|
| 564 | 560 |
template <typename Digraph, typename Item, typename RefMap, typename Ref> |
| 565 | 561 |
class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
|
| 566 | 562 |
public: |
| 567 | 563 |
|
| 568 | 564 |
RefCopy(Ref& map) : _map(map) {}
|
| 569 | 565 |
|
| 570 | 566 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
|
| 571 | 567 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
| 572 | 568 |
for (ItemIt it(digraph); it != INVALID; ++it) {
|
| 573 | 569 |
_map.set(it, refMap[it]); |
| 574 | 570 |
} |
| 575 | 571 |
} |
| 576 | 572 |
|
| 577 | 573 |
private: |
| 578 | 574 |
Ref& _map; |
| ... | ... |
@@ -1149,195 +1145,195 @@ |
| 1149 | 1145 |
/// |
| 1150 | 1146 |
/// \see GraphCopy |
| 1151 | 1147 |
template <typename To, typename From> |
| 1152 | 1148 |
GraphCopy<To, From> |
| 1153 | 1149 |
copyGraph(To& to, const From& from) {
|
| 1154 | 1150 |
return GraphCopy<To, From>(to, from); |
| 1155 | 1151 |
} |
| 1156 | 1152 |
|
| 1157 | 1153 |
/// @} |
| 1158 | 1154 |
|
| 1159 | 1155 |
/// \addtogroup graph_maps |
| 1160 | 1156 |
/// @{
|
| 1161 | 1157 |
|
| 1162 | 1158 |
/// Provides an immutable and unique id for each item in the graph. |
| 1163 | 1159 |
|
| 1164 | 1160 |
/// The IdMap class provides a unique and immutable id for each item of the |
| 1165 | 1161 |
/// same type (e.g. node) in the graph. This id is <ul><li>\b unique: |
| 1166 | 1162 |
/// different items (nodes) get different ids <li>\b immutable: the id of an |
| 1167 | 1163 |
/// item (node) does not change (even if you delete other nodes). </ul> |
| 1168 | 1164 |
/// Through this map you get access (i.e. can read) the inner id values of |
| 1169 | 1165 |
/// the items stored in the graph. This map can be inverted with its member |
| 1170 | 1166 |
/// class \c InverseMap or with the \c operator() member. |
| 1171 | 1167 |
/// |
| 1172 | 1168 |
template <typename _Graph, typename _Item> |
| 1173 | 1169 |
class IdMap {
|
| 1174 | 1170 |
public: |
| 1175 | 1171 |
typedef _Graph Graph; |
| 1176 | 1172 |
typedef int Value; |
| 1177 | 1173 |
typedef _Item Item; |
| 1178 | 1174 |
typedef _Item Key; |
| 1179 | 1175 |
|
| 1180 | 1176 |
/// \brief Constructor. |
| 1181 | 1177 |
/// |
| 1182 | 1178 |
/// Constructor of the map. |
| 1183 | 1179 |
explicit IdMap(const Graph& graph) : _graph(&graph) {}
|
| 1184 | 1180 |
|
| 1185 | 1181 |
/// \brief Gives back the \e id of the item. |
| 1186 | 1182 |
/// |
| 1187 | 1183 |
/// Gives back the immutable and unique \e id of the item. |
| 1188 | 1184 |
int operator[](const Item& item) const { return _graph->id(item);}
|
| 1189 | 1185 |
|
| 1190 | 1186 |
/// \brief Gives back the item by its id. |
| 1191 | 1187 |
/// |
| 1192 | 1188 |
/// Gives back the item by its id. |
| 1193 | 1189 |
Item operator()(int id) { return _graph->fromId(id, Item()); }
|
| 1194 | 1190 |
|
| 1195 | 1191 |
private: |
| 1196 | 1192 |
const Graph* _graph; |
| 1197 | 1193 |
|
| 1198 | 1194 |
public: |
| 1199 | 1195 |
|
| 1200 | 1196 |
/// \brief The class represents the inverse of its owner (IdMap). |
| 1201 | 1197 |
/// |
| 1202 | 1198 |
/// The class represents the inverse of its owner (IdMap). |
| 1203 | 1199 |
/// \see inverse() |
| 1204 | 1200 |
class InverseMap {
|
| 1205 | 1201 |
public: |
| 1206 | 1202 |
|
| 1207 | 1203 |
/// \brief Constructor. |
| 1208 | 1204 |
/// |
| 1209 | 1205 |
/// Constructor for creating an id-to-item map. |
| 1210 | 1206 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {}
|
| 1211 | 1207 |
|
| 1212 | 1208 |
/// \brief Constructor. |
| 1213 | 1209 |
/// |
| 1214 | 1210 |
/// Constructor for creating an id-to-item map. |
| 1215 | 1211 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
|
| 1216 | 1212 |
|
| 1217 | 1213 |
/// \brief Gives back the given item from its id. |
| 1218 | 1214 |
/// |
| 1219 | 1215 |
/// Gives back the given item from its id. |
| 1220 | 1216 |
/// |
| 1221 | 1217 |
Item operator[](int id) const { return _graph->fromId(id, Item());}
|
| 1222 | 1218 |
|
| 1223 | 1219 |
private: |
| 1224 | 1220 |
const Graph* _graph; |
| 1225 | 1221 |
}; |
| 1226 | 1222 |
|
| 1227 | 1223 |
/// \brief Gives back the inverse of the map. |
| 1228 | 1224 |
/// |
| 1229 | 1225 |
/// Gives back the inverse of the IdMap. |
| 1230 | 1226 |
InverseMap inverse() const { return InverseMap(*_graph);}
|
| 1231 | 1227 |
|
| 1232 | 1228 |
}; |
| 1233 | 1229 |
|
| 1234 | 1230 |
|
| 1235 | 1231 |
/// \brief General invertable graph-map type. |
| 1236 | 1232 |
|
| 1237 | 1233 |
/// This type provides simple invertable graph-maps. |
| 1238 | 1234 |
/// The InvertableMap wraps an arbitrary ReadWriteMap |
| 1239 | 1235 |
/// and if a key is set to a new value then store it |
| 1240 | 1236 |
/// in the inverse map. |
| 1241 | 1237 |
/// |
| 1242 | 1238 |
/// The values of the map can be accessed |
| 1243 | 1239 |
/// with stl compatible forward iterator. |
| 1244 | 1240 |
/// |
| 1245 |
/// \param _Graph The graph type. |
|
| 1246 |
/// \param _Item The item type of the graph. |
|
| 1247 |
/// \ |
|
| 1241 |
/// \tparam _Graph The graph type. |
|
| 1242 |
/// \tparam _Item The item type of the graph. |
|
| 1243 |
/// \tparam _Value The value type of the map. |
|
| 1248 | 1244 |
/// |
| 1249 | 1245 |
/// \see IterableValueMap |
| 1250 | 1246 |
template <typename _Graph, typename _Item, typename _Value> |
| 1251 | 1247 |
class InvertableMap : protected DefaultMap<_Graph, _Item, _Value> {
|
| 1252 | 1248 |
private: |
| 1253 | 1249 |
|
| 1254 | 1250 |
typedef DefaultMap<_Graph, _Item, _Value> Map; |
| 1255 | 1251 |
typedef _Graph Graph; |
| 1256 | 1252 |
|
| 1257 | 1253 |
typedef std::map<_Value, _Item> Container; |
| 1258 | 1254 |
Container _inv_map; |
| 1259 | 1255 |
|
| 1260 | 1256 |
public: |
| 1261 | 1257 |
|
| 1262 | 1258 |
/// The key type of InvertableMap (Node, Arc, Edge). |
| 1263 | 1259 |
typedef typename Map::Key Key; |
| 1264 | 1260 |
/// The value type of the InvertableMap. |
| 1265 | 1261 |
typedef typename Map::Value Value; |
| 1266 | 1262 |
|
| 1267 | 1263 |
|
| 1268 | 1264 |
|
| 1269 | 1265 |
/// \brief Constructor. |
| 1270 | 1266 |
/// |
| 1271 | 1267 |
/// Construct a new InvertableMap for the graph. |
| 1272 | 1268 |
/// |
| 1273 | 1269 |
explicit InvertableMap(const Graph& graph) : Map(graph) {}
|
| 1274 | 1270 |
|
| 1275 | 1271 |
/// \brief Forward iterator for values. |
| 1276 | 1272 |
/// |
| 1277 | 1273 |
/// This iterator is an stl compatible forward |
| 1278 | 1274 |
/// iterator on the values of the map. The values can |
| 1279 | 1275 |
/// be accessed in the [beginValue, endValue) range. |
| 1280 | 1276 |
/// |
| 1281 | 1277 |
class ValueIterator |
| 1282 | 1278 |
: public std::iterator<std::forward_iterator_tag, Value> {
|
| 1283 | 1279 |
friend class InvertableMap; |
| 1284 | 1280 |
private: |
| 1285 | 1281 |
ValueIterator(typename Container::const_iterator _it) |
| 1286 | 1282 |
: it(_it) {}
|
| 1287 | 1283 |
public: |
| 1288 | 1284 |
|
| 1289 | 1285 |
ValueIterator() {}
|
| 1290 | 1286 |
|
| 1291 | 1287 |
ValueIterator& operator++() { ++it; return *this; }
|
| 1292 | 1288 |
ValueIterator operator++(int) {
|
| 1293 | 1289 |
ValueIterator tmp(*this); |
| 1294 | 1290 |
operator++(); |
| 1295 | 1291 |
return tmp; |
| 1296 | 1292 |
} |
| 1297 | 1293 |
|
| 1298 | 1294 |
const Value& operator*() const { return it->first; }
|
| 1299 | 1295 |
const Value* operator->() const { return &(it->first); }
|
| 1300 | 1296 |
|
| 1301 | 1297 |
bool operator==(ValueIterator jt) const { return it == jt.it; }
|
| 1302 | 1298 |
bool operator!=(ValueIterator jt) const { return it != jt.it; }
|
| 1303 | 1299 |
|
| 1304 | 1300 |
private: |
| 1305 | 1301 |
typename Container::const_iterator it; |
| 1306 | 1302 |
}; |
| 1307 | 1303 |
|
| 1308 | 1304 |
/// \brief Returns an iterator to the first value. |
| 1309 | 1305 |
/// |
| 1310 | 1306 |
/// Returns an stl compatible iterator to the |
| 1311 | 1307 |
/// first value of the map. The values of the |
| 1312 | 1308 |
/// map can be accessed in the [beginValue, endValue) |
| 1313 | 1309 |
/// range. |
| 1314 | 1310 |
ValueIterator beginValue() const {
|
| 1315 | 1311 |
return ValueIterator(_inv_map.begin()); |
| 1316 | 1312 |
} |
| 1317 | 1313 |
|
| 1318 | 1314 |
/// \brief Returns an iterator after the last value. |
| 1319 | 1315 |
/// |
| 1320 | 1316 |
/// Returns an stl compatible iterator after the |
| 1321 | 1317 |
/// last value of the map. The values of the |
| 1322 | 1318 |
/// map can be accessed in the [beginValue, endValue) |
| 1323 | 1319 |
/// range. |
| 1324 | 1320 |
ValueIterator endValue() const {
|
| 1325 | 1321 |
return ValueIterator(_inv_map.end()); |
| 1326 | 1322 |
} |
| 1327 | 1323 |
|
| 1328 | 1324 |
/// \brief The setter function of the map. |
| 1329 | 1325 |
/// |
| 1330 | 1326 |
/// Sets the mapped value. |
| 1331 | 1327 |
void set(const Key& key, const Value& val) {
|
| 1332 | 1328 |
Value oldval = Map::operator[](key); |
| 1333 | 1329 |
typename Container::iterator it = _inv_map.find(oldval); |
| 1334 | 1330 |
if (it != _inv_map.end() && it->second == key) {
|
| 1335 | 1331 |
_inv_map.erase(it); |
| 1336 | 1332 |
} |
| 1337 | 1333 |
_inv_map.insert(make_pair(val, key)); |
| 1338 | 1334 |
Map::set(key, val); |
| 1339 | 1335 |
} |
| 1340 | 1336 |
|
| 1341 | 1337 |
/// \brief The getter function of the map. |
| 1342 | 1338 |
/// |
| 1343 | 1339 |
/// It gives back the value associated with the key. |
| ... | ... |
@@ -1354,503 +1350,499 @@ |
| 1354 | 1350 |
return it != _inv_map.end() ? it->second : INVALID; |
| 1355 | 1351 |
} |
| 1356 | 1352 |
|
| 1357 | 1353 |
protected: |
| 1358 | 1354 |
|
| 1359 | 1355 |
/// \brief Erase the key from the map. |
| 1360 | 1356 |
/// |
| 1361 | 1357 |
/// Erase the key to the map. It is called by the |
| 1362 | 1358 |
/// \c AlterationNotifier. |
| 1363 | 1359 |
virtual void erase(const Key& key) {
|
| 1364 | 1360 |
Value val = Map::operator[](key); |
| 1365 | 1361 |
typename Container::iterator it = _inv_map.find(val); |
| 1366 | 1362 |
if (it != _inv_map.end() && it->second == key) {
|
| 1367 | 1363 |
_inv_map.erase(it); |
| 1368 | 1364 |
} |
| 1369 | 1365 |
Map::erase(key); |
| 1370 | 1366 |
} |
| 1371 | 1367 |
|
| 1372 | 1368 |
/// \brief Erase more keys from the map. |
| 1373 | 1369 |
/// |
| 1374 | 1370 |
/// Erase more keys from the map. It is called by the |
| 1375 | 1371 |
/// \c AlterationNotifier. |
| 1376 | 1372 |
virtual void erase(const std::vector<Key>& keys) {
|
| 1377 | 1373 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 1378 | 1374 |
Value val = Map::operator[](keys[i]); |
| 1379 | 1375 |
typename Container::iterator it = _inv_map.find(val); |
| 1380 | 1376 |
if (it != _inv_map.end() && it->second == keys[i]) {
|
| 1381 | 1377 |
_inv_map.erase(it); |
| 1382 | 1378 |
} |
| 1383 | 1379 |
} |
| 1384 | 1380 |
Map::erase(keys); |
| 1385 | 1381 |
} |
| 1386 | 1382 |
|
| 1387 | 1383 |
/// \brief Clear the keys from the map and inverse map. |
| 1388 | 1384 |
/// |
| 1389 | 1385 |
/// Clear the keys from the map and inverse map. It is called by the |
| 1390 | 1386 |
/// \c AlterationNotifier. |
| 1391 | 1387 |
virtual void clear() {
|
| 1392 | 1388 |
_inv_map.clear(); |
| 1393 | 1389 |
Map::clear(); |
| 1394 | 1390 |
} |
| 1395 | 1391 |
|
| 1396 | 1392 |
public: |
| 1397 | 1393 |
|
| 1398 | 1394 |
/// \brief The inverse map type. |
| 1399 | 1395 |
/// |
| 1400 | 1396 |
/// The inverse of this map. The subscript operator of the map |
| 1401 | 1397 |
/// gives back always the item what was last assigned to the value. |
| 1402 | 1398 |
class InverseMap {
|
| 1403 | 1399 |
public: |
| 1404 | 1400 |
/// \brief Constructor of the InverseMap. |
| 1405 | 1401 |
/// |
| 1406 | 1402 |
/// Constructor of the InverseMap. |
| 1407 | 1403 |
explicit InverseMap(const InvertableMap& inverted) |
| 1408 | 1404 |
: _inverted(inverted) {}
|
| 1409 | 1405 |
|
| 1410 | 1406 |
/// The value type of the InverseMap. |
| 1411 | 1407 |
typedef typename InvertableMap::Key Value; |
| 1412 | 1408 |
/// The key type of the InverseMap. |
| 1413 | 1409 |
typedef typename InvertableMap::Value Key; |
| 1414 | 1410 |
|
| 1415 | 1411 |
/// \brief Subscript operator. |
| 1416 | 1412 |
/// |
| 1417 | 1413 |
/// Subscript operator. It gives back always the item |
| 1418 | 1414 |
/// what was last assigned to the value. |
| 1419 | 1415 |
Value operator[](const Key& key) const {
|
| 1420 | 1416 |
return _inverted(key); |
| 1421 | 1417 |
} |
| 1422 | 1418 |
|
| 1423 | 1419 |
private: |
| 1424 | 1420 |
const InvertableMap& _inverted; |
| 1425 | 1421 |
}; |
| 1426 | 1422 |
|
| 1427 | 1423 |
/// \brief It gives back the just readable inverse map. |
| 1428 | 1424 |
/// |
| 1429 | 1425 |
/// It gives back the just readable inverse map. |
| 1430 | 1426 |
InverseMap inverse() const {
|
| 1431 | 1427 |
return InverseMap(*this); |
| 1432 | 1428 |
} |
| 1433 | 1429 |
|
| 1434 | 1430 |
|
| 1435 | 1431 |
|
| 1436 | 1432 |
}; |
| 1437 | 1433 |
|
| 1438 | 1434 |
/// \brief Provides a mutable, continuous and unique descriptor for each |
| 1439 | 1435 |
/// item in the graph. |
| 1440 | 1436 |
/// |
| 1441 | 1437 |
/// The DescriptorMap class provides a unique and continuous (but mutable) |
| 1442 | 1438 |
/// descriptor (id) for each item of the same type (e.g. node) in the |
| 1443 | 1439 |
/// graph. This id is <ul><li>\b unique: different items (nodes) get |
| 1444 | 1440 |
/// different ids <li>\b continuous: the range of the ids is the set of |
| 1445 | 1441 |
/// integers between 0 and \c n-1, where \c n is the number of the items of |
| 1446 | 1442 |
/// this type (e.g. nodes) (so the id of a node can change if you delete an |
| 1447 | 1443 |
/// other node, i.e. this id is mutable). </ul> This map can be inverted |
| 1448 | 1444 |
/// with its member class \c InverseMap, or with the \c operator() member. |
| 1449 | 1445 |
/// |
| 1450 |
/// \param _Graph The graph class the \c DescriptorMap belongs to. |
|
| 1451 |
/// \param _Item The Item is the Key of the Map. It may be Node, Arc or |
|
| 1446 |
/// \tparam _Graph The graph class the \c DescriptorMap belongs to. |
|
| 1447 |
/// \tparam _Item The Item is the Key of the Map. It may be Node, Arc or |
|
| 1452 | 1448 |
/// Edge. |
| 1453 | 1449 |
template <typename _Graph, typename _Item> |
| 1454 | 1450 |
class DescriptorMap : protected DefaultMap<_Graph, _Item, int> {
|
| 1455 | 1451 |
|
| 1456 | 1452 |
typedef _Item Item; |
| 1457 | 1453 |
typedef DefaultMap<_Graph, _Item, int> Map; |
| 1458 | 1454 |
|
| 1459 | 1455 |
public: |
| 1460 | 1456 |
/// The graph class of DescriptorMap. |
| 1461 | 1457 |
typedef _Graph Graph; |
| 1462 | 1458 |
|
| 1463 | 1459 |
/// The key type of DescriptorMap (Node, Arc, Edge). |
| 1464 | 1460 |
typedef typename Map::Key Key; |
| 1465 | 1461 |
/// The value type of DescriptorMap. |
| 1466 | 1462 |
typedef typename Map::Value Value; |
| 1467 | 1463 |
|
| 1468 | 1464 |
/// \brief Constructor. |
| 1469 | 1465 |
/// |
| 1470 | 1466 |
/// Constructor for descriptor map. |
| 1471 | 1467 |
explicit DescriptorMap(const Graph& _graph) : Map(_graph) {
|
| 1472 | 1468 |
Item it; |
| 1473 | 1469 |
const typename Map::Notifier* nf = Map::notifier(); |
| 1474 | 1470 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 1475 | 1471 |
Map::set(it, _inv_map.size()); |
| 1476 | 1472 |
_inv_map.push_back(it); |
| 1477 | 1473 |
} |
| 1478 | 1474 |
} |
| 1479 | 1475 |
|
| 1480 | 1476 |
protected: |
| 1481 | 1477 |
|
| 1482 | 1478 |
/// \brief Add a new key to the map. |
| 1483 | 1479 |
/// |
| 1484 | 1480 |
/// Add a new key to the map. It is called by the |
| 1485 | 1481 |
/// \c AlterationNotifier. |
| 1486 | 1482 |
virtual void add(const Item& item) {
|
| 1487 | 1483 |
Map::add(item); |
| 1488 | 1484 |
Map::set(item, _inv_map.size()); |
| 1489 | 1485 |
_inv_map.push_back(item); |
| 1490 | 1486 |
} |
| 1491 | 1487 |
|
| 1492 | 1488 |
/// \brief Add more new keys to the map. |
| 1493 | 1489 |
/// |
| 1494 | 1490 |
/// Add more new keys to the map. It is called by the |
| 1495 | 1491 |
/// \c AlterationNotifier. |
| 1496 | 1492 |
virtual void add(const std::vector<Item>& items) {
|
| 1497 | 1493 |
Map::add(items); |
| 1498 | 1494 |
for (int i = 0; i < int(items.size()); ++i) {
|
| 1499 | 1495 |
Map::set(items[i], _inv_map.size()); |
| 1500 | 1496 |
_inv_map.push_back(items[i]); |
| 1501 | 1497 |
} |
| 1502 | 1498 |
} |
| 1503 | 1499 |
|
| 1504 | 1500 |
/// \brief Erase the key from the map. |
| 1505 | 1501 |
/// |
| 1506 | 1502 |
/// Erase the key from the map. It is called by the |
| 1507 | 1503 |
/// \c AlterationNotifier. |
| 1508 | 1504 |
virtual void erase(const Item& item) {
|
| 1509 | 1505 |
Map::set(_inv_map.back(), Map::operator[](item)); |
| 1510 | 1506 |
_inv_map[Map::operator[](item)] = _inv_map.back(); |
| 1511 | 1507 |
_inv_map.pop_back(); |
| 1512 | 1508 |
Map::erase(item); |
| 1513 | 1509 |
} |
| 1514 | 1510 |
|
| 1515 | 1511 |
/// \brief Erase more keys from the map. |
| 1516 | 1512 |
/// |
| 1517 | 1513 |
/// Erase more keys from the map. It is called by the |
| 1518 | 1514 |
/// \c AlterationNotifier. |
| 1519 | 1515 |
virtual void erase(const std::vector<Item>& items) {
|
| 1520 | 1516 |
for (int i = 0; i < int(items.size()); ++i) {
|
| 1521 | 1517 |
Map::set(_inv_map.back(), Map::operator[](items[i])); |
| 1522 | 1518 |
_inv_map[Map::operator[](items[i])] = _inv_map.back(); |
| 1523 | 1519 |
_inv_map.pop_back(); |
| 1524 | 1520 |
} |
| 1525 | 1521 |
Map::erase(items); |
| 1526 | 1522 |
} |
| 1527 | 1523 |
|
| 1528 | 1524 |
/// \brief Build the unique map. |
| 1529 | 1525 |
/// |
| 1530 | 1526 |
/// Build the unique map. It is called by the |
| 1531 | 1527 |
/// \c AlterationNotifier. |
| 1532 | 1528 |
virtual void build() {
|
| 1533 | 1529 |
Map::build(); |
| 1534 | 1530 |
Item it; |
| 1535 | 1531 |
const typename Map::Notifier* nf = Map::notifier(); |
| 1536 | 1532 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 1537 | 1533 |
Map::set(it, _inv_map.size()); |
| 1538 | 1534 |
_inv_map.push_back(it); |
| 1539 | 1535 |
} |
| 1540 | 1536 |
} |
| 1541 | 1537 |
|
| 1542 | 1538 |
/// \brief Clear the keys from the map. |
| 1543 | 1539 |
/// |
| 1544 | 1540 |
/// Clear the keys from the map. It is called by the |
| 1545 | 1541 |
/// \c AlterationNotifier. |
| 1546 | 1542 |
virtual void clear() {
|
| 1547 | 1543 |
_inv_map.clear(); |
| 1548 | 1544 |
Map::clear(); |
| 1549 | 1545 |
} |
| 1550 | 1546 |
|
| 1551 | 1547 |
public: |
| 1552 | 1548 |
|
| 1553 | 1549 |
/// \brief Returns the maximal value plus one. |
| 1554 | 1550 |
/// |
| 1555 | 1551 |
/// Returns the maximal value plus one in the map. |
| 1556 | 1552 |
unsigned int size() const {
|
| 1557 | 1553 |
return _inv_map.size(); |
| 1558 | 1554 |
} |
| 1559 | 1555 |
|
| 1560 | 1556 |
/// \brief Swaps the position of the two items in the map. |
| 1561 | 1557 |
/// |
| 1562 | 1558 |
/// Swaps the position of the two items in the map. |
| 1563 | 1559 |
void swap(const Item& p, const Item& q) {
|
| 1564 | 1560 |
int pi = Map::operator[](p); |
| 1565 | 1561 |
int qi = Map::operator[](q); |
| 1566 | 1562 |
Map::set(p, qi); |
| 1567 | 1563 |
_inv_map[qi] = p; |
| 1568 | 1564 |
Map::set(q, pi); |
| 1569 | 1565 |
_inv_map[pi] = q; |
| 1570 | 1566 |
} |
| 1571 | 1567 |
|
| 1572 | 1568 |
/// \brief Gives back the \e descriptor of the item. |
| 1573 | 1569 |
/// |
| 1574 | 1570 |
/// Gives back the mutable and unique \e descriptor of the map. |
| 1575 | 1571 |
int operator[](const Item& item) const {
|
| 1576 | 1572 |
return Map::operator[](item); |
| 1577 | 1573 |
} |
| 1578 | 1574 |
|
| 1579 | 1575 |
/// \brief Gives back the item by its descriptor. |
| 1580 | 1576 |
/// |
| 1581 | 1577 |
/// Gives back th item by its descriptor. |
| 1582 | 1578 |
Item operator()(int id) const {
|
| 1583 | 1579 |
return _inv_map[id]; |
| 1584 | 1580 |
} |
| 1585 | 1581 |
|
| 1586 | 1582 |
private: |
| 1587 | 1583 |
|
| 1588 | 1584 |
typedef std::vector<Item> Container; |
| 1589 | 1585 |
Container _inv_map; |
| 1590 | 1586 |
|
| 1591 | 1587 |
public: |
| 1592 | 1588 |
/// \brief The inverse map type of DescriptorMap. |
| 1593 | 1589 |
/// |
| 1594 | 1590 |
/// The inverse map type of DescriptorMap. |
| 1595 | 1591 |
class InverseMap {
|
| 1596 | 1592 |
public: |
| 1597 | 1593 |
/// \brief Constructor of the InverseMap. |
| 1598 | 1594 |
/// |
| 1599 | 1595 |
/// Constructor of the InverseMap. |
| 1600 | 1596 |
explicit InverseMap(const DescriptorMap& inverted) |
| 1601 | 1597 |
: _inverted(inverted) {}
|
| 1602 | 1598 |
|
| 1603 | 1599 |
|
| 1604 | 1600 |
/// The value type of the InverseMap. |
| 1605 | 1601 |
typedef typename DescriptorMap::Key Value; |
| 1606 | 1602 |
/// The key type of the InverseMap. |
| 1607 | 1603 |
typedef typename DescriptorMap::Value Key; |
| 1608 | 1604 |
|
| 1609 | 1605 |
/// \brief Subscript operator. |
| 1610 | 1606 |
/// |
| 1611 | 1607 |
/// Subscript operator. It gives back the item |
| 1612 | 1608 |
/// that the descriptor belongs to currently. |
| 1613 | 1609 |
Value operator[](const Key& key) const {
|
| 1614 | 1610 |
return _inverted(key); |
| 1615 | 1611 |
} |
| 1616 | 1612 |
|
| 1617 | 1613 |
/// \brief Size of the map. |
| 1618 | 1614 |
/// |
| 1619 | 1615 |
/// Returns the size of the map. |
| 1620 | 1616 |
unsigned int size() const {
|
| 1621 | 1617 |
return _inverted.size(); |
| 1622 | 1618 |
} |
| 1623 | 1619 |
|
| 1624 | 1620 |
private: |
| 1625 | 1621 |
const DescriptorMap& _inverted; |
| 1626 | 1622 |
}; |
| 1627 | 1623 |
|
| 1628 | 1624 |
/// \brief Gives back the inverse of the map. |
| 1629 | 1625 |
/// |
| 1630 | 1626 |
/// Gives back the inverse of the map. |
| 1631 | 1627 |
const InverseMap inverse() const {
|
| 1632 | 1628 |
return InverseMap(*this); |
| 1633 | 1629 |
} |
| 1634 | 1630 |
}; |
| 1635 | 1631 |
|
| 1636 | 1632 |
/// \brief Returns the source of the given arc. |
| 1637 | 1633 |
/// |
| 1638 | 1634 |
/// The SourceMap gives back the source Node of the given arc. |
| 1639 | 1635 |
/// \see TargetMap |
| 1640 |
/// \author Balazs Dezso |
|
| 1641 | 1636 |
template <typename Digraph> |
| 1642 | 1637 |
class SourceMap {
|
| 1643 | 1638 |
public: |
| 1644 | 1639 |
|
| 1645 | 1640 |
typedef typename Digraph::Node Value; |
| 1646 | 1641 |
typedef typename Digraph::Arc Key; |
| 1647 | 1642 |
|
| 1648 | 1643 |
/// \brief Constructor |
| 1649 | 1644 |
/// |
| 1650 | 1645 |
/// Constructor |
| 1651 | 1646 |
/// \param _digraph The digraph that the map belongs to. |
| 1652 | 1647 |
explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {}
|
| 1653 | 1648 |
|
| 1654 | 1649 |
/// \brief The subscript operator. |
| 1655 | 1650 |
/// |
| 1656 | 1651 |
/// The subscript operator. |
| 1657 | 1652 |
/// \param arc The arc |
| 1658 | 1653 |
/// \return The source of the arc |
| 1659 | 1654 |
Value operator[](const Key& arc) const {
|
| 1660 | 1655 |
return _digraph.source(arc); |
| 1661 | 1656 |
} |
| 1662 | 1657 |
|
| 1663 | 1658 |
private: |
| 1664 | 1659 |
const Digraph& _digraph; |
| 1665 | 1660 |
}; |
| 1666 | 1661 |
|
| 1667 | 1662 |
/// \brief Returns a \ref SourceMap class. |
| 1668 | 1663 |
/// |
| 1669 | 1664 |
/// This function just returns an \ref SourceMap class. |
| 1670 | 1665 |
/// \relates SourceMap |
| 1671 | 1666 |
template <typename Digraph> |
| 1672 | 1667 |
inline SourceMap<Digraph> sourceMap(const Digraph& digraph) {
|
| 1673 | 1668 |
return SourceMap<Digraph>(digraph); |
| 1674 | 1669 |
} |
| 1675 | 1670 |
|
| 1676 | 1671 |
/// \brief Returns the target of the given arc. |
| 1677 | 1672 |
/// |
| 1678 | 1673 |
/// The TargetMap gives back the target Node of the given arc. |
| 1679 | 1674 |
/// \see SourceMap |
| 1680 |
/// \author Balazs Dezso |
|
| 1681 | 1675 |
template <typename Digraph> |
| 1682 | 1676 |
class TargetMap {
|
| 1683 | 1677 |
public: |
| 1684 | 1678 |
|
| 1685 | 1679 |
typedef typename Digraph::Node Value; |
| 1686 | 1680 |
typedef typename Digraph::Arc Key; |
| 1687 | 1681 |
|
| 1688 | 1682 |
/// \brief Constructor |
| 1689 | 1683 |
/// |
| 1690 | 1684 |
/// Constructor |
| 1691 | 1685 |
/// \param _digraph The digraph that the map belongs to. |
| 1692 | 1686 |
explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {}
|
| 1693 | 1687 |
|
| 1694 | 1688 |
/// \brief The subscript operator. |
| 1695 | 1689 |
/// |
| 1696 | 1690 |
/// The subscript operator. |
| 1697 | 1691 |
/// \param e The arc |
| 1698 | 1692 |
/// \return The target of the arc |
| 1699 | 1693 |
Value operator[](const Key& e) const {
|
| 1700 | 1694 |
return _digraph.target(e); |
| 1701 | 1695 |
} |
| 1702 | 1696 |
|
| 1703 | 1697 |
private: |
| 1704 | 1698 |
const Digraph& _digraph; |
| 1705 | 1699 |
}; |
| 1706 | 1700 |
|
| 1707 | 1701 |
/// \brief Returns a \ref TargetMap class. |
| 1708 | 1702 |
/// |
| 1709 | 1703 |
/// This function just returns a \ref TargetMap class. |
| 1710 | 1704 |
/// \relates TargetMap |
| 1711 | 1705 |
template <typename Digraph> |
| 1712 | 1706 |
inline TargetMap<Digraph> targetMap(const Digraph& digraph) {
|
| 1713 | 1707 |
return TargetMap<Digraph>(digraph); |
| 1714 | 1708 |
} |
| 1715 | 1709 |
|
| 1716 | 1710 |
/// \brief Returns the "forward" directed arc view of an edge. |
| 1717 | 1711 |
/// |
| 1718 | 1712 |
/// Returns the "forward" directed arc view of an edge. |
| 1719 | 1713 |
/// \see BackwardMap |
| 1720 |
/// \author Balazs Dezso |
|
| 1721 | 1714 |
template <typename Graph> |
| 1722 | 1715 |
class ForwardMap {
|
| 1723 | 1716 |
public: |
| 1724 | 1717 |
|
| 1725 | 1718 |
typedef typename Graph::Arc Value; |
| 1726 | 1719 |
typedef typename Graph::Edge Key; |
| 1727 | 1720 |
|
| 1728 | 1721 |
/// \brief Constructor |
| 1729 | 1722 |
/// |
| 1730 | 1723 |
/// Constructor |
| 1731 | 1724 |
/// \param _graph The graph that the map belongs to. |
| 1732 | 1725 |
explicit ForwardMap(const Graph& graph) : _graph(graph) {}
|
| 1733 | 1726 |
|
| 1734 | 1727 |
/// \brief The subscript operator. |
| 1735 | 1728 |
/// |
| 1736 | 1729 |
/// The subscript operator. |
| 1737 | 1730 |
/// \param key An edge |
| 1738 | 1731 |
/// \return The "forward" directed arc view of edge |
| 1739 | 1732 |
Value operator[](const Key& key) const {
|
| 1740 | 1733 |
return _graph.direct(key, true); |
| 1741 | 1734 |
} |
| 1742 | 1735 |
|
| 1743 | 1736 |
private: |
| 1744 | 1737 |
const Graph& _graph; |
| 1745 | 1738 |
}; |
| 1746 | 1739 |
|
| 1747 | 1740 |
/// \brief Returns a \ref ForwardMap class. |
| 1748 | 1741 |
/// |
| 1749 | 1742 |
/// This function just returns an \ref ForwardMap class. |
| 1750 | 1743 |
/// \relates ForwardMap |
| 1751 | 1744 |
template <typename Graph> |
| 1752 | 1745 |
inline ForwardMap<Graph> forwardMap(const Graph& graph) {
|
| 1753 | 1746 |
return ForwardMap<Graph>(graph); |
| 1754 | 1747 |
} |
| 1755 | 1748 |
|
| 1756 | 1749 |
/// \brief Returns the "backward" directed arc view of an edge. |
| 1757 | 1750 |
/// |
| 1758 | 1751 |
/// Returns the "backward" directed arc view of an edge. |
| 1759 | 1752 |
/// \see ForwardMap |
| 1760 |
/// \author Balazs Dezso |
|
| 1761 | 1753 |
template <typename Graph> |
| 1762 | 1754 |
class BackwardMap {
|
| 1763 | 1755 |
public: |
| 1764 | 1756 |
|
| 1765 | 1757 |
typedef typename Graph::Arc Value; |
| 1766 | 1758 |
typedef typename Graph::Edge Key; |
| 1767 | 1759 |
|
| 1768 | 1760 |
/// \brief Constructor |
| 1769 | 1761 |
/// |
| 1770 | 1762 |
/// Constructor |
| 1771 | 1763 |
/// \param _graph The graph that the map belongs to. |
| 1772 | 1764 |
explicit BackwardMap(const Graph& graph) : _graph(graph) {}
|
| 1773 | 1765 |
|
| 1774 | 1766 |
/// \brief The subscript operator. |
| 1775 | 1767 |
/// |
| 1776 | 1768 |
/// The subscript operator. |
| 1777 | 1769 |
/// \param key An edge |
| 1778 | 1770 |
/// \return The "backward" directed arc view of edge |
| 1779 | 1771 |
Value operator[](const Key& key) const {
|
| 1780 | 1772 |
return _graph.direct(key, false); |
| 1781 | 1773 |
} |
| 1782 | 1774 |
|
| 1783 | 1775 |
private: |
| 1784 | 1776 |
const Graph& _graph; |
| 1785 | 1777 |
}; |
| 1786 | 1778 |
|
| 1787 | 1779 |
/// \brief Returns a \ref BackwardMap class |
| 1788 | 1780 |
|
| 1789 | 1781 |
/// This function just returns a \ref BackwardMap class. |
| 1790 | 1782 |
/// \relates BackwardMap |
| 1791 | 1783 |
template <typename Graph> |
| 1792 | 1784 |
inline BackwardMap<Graph> backwardMap(const Graph& graph) {
|
| 1793 | 1785 |
return BackwardMap<Graph>(graph); |
| 1794 | 1786 |
} |
| 1795 | 1787 |
|
| 1796 | 1788 |
/// \brief Potential difference map |
| 1797 | 1789 |
/// |
| 1798 | 1790 |
/// If there is an potential map on the nodes then we |
| 1799 | 1791 |
/// can get an arc map as we get the substraction of the |
| 1800 | 1792 |
/// values of the target and source. |
| 1801 | 1793 |
template <typename Digraph, typename NodeMap> |
| 1802 | 1794 |
class PotentialDifferenceMap {
|
| 1803 | 1795 |
public: |
| 1804 | 1796 |
typedef typename Digraph::Arc Key; |
| 1805 | 1797 |
typedef typename NodeMap::Value Value; |
| 1806 | 1798 |
|
| 1807 | 1799 |
/// \brief Constructor |
| 1808 | 1800 |
/// |
| 1809 | 1801 |
/// Contructor of the map |
| 1810 | 1802 |
explicit PotentialDifferenceMap(const Digraph& digraph, |
| 1811 | 1803 |
const NodeMap& potential) |
| 1812 | 1804 |
: _digraph(digraph), _potential(potential) {}
|
| 1813 | 1805 |
|
| 1814 | 1806 |
/// \brief Const subscription operator |
| 1815 | 1807 |
/// |
| 1816 | 1808 |
/// Const subscription operator |
| 1817 | 1809 |
Value operator[](const Key& arc) const {
|
| 1818 | 1810 |
return _potential[_digraph.target(arc)] - |
| 1819 | 1811 |
_potential[_digraph.source(arc)]; |
| 1820 | 1812 |
} |
| 1821 | 1813 |
|
| 1822 | 1814 |
private: |
| 1823 | 1815 |
const Digraph& _digraph; |
| 1824 | 1816 |
const NodeMap& _potential; |
| 1825 | 1817 |
}; |
| 1826 | 1818 |
|
| 1827 | 1819 |
/// \brief Returns a PotentialDifferenceMap. |
| 1828 | 1820 |
/// |
| 1829 | 1821 |
/// This function just returns a PotentialDifferenceMap. |
| 1830 | 1822 |
/// \relates PotentialDifferenceMap |
| 1831 | 1823 |
template <typename Digraph, typename NodeMap> |
| 1832 | 1824 |
PotentialDifferenceMap<Digraph, NodeMap> |
| 1833 | 1825 |
potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) {
|
| 1834 | 1826 |
return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential); |
| 1835 | 1827 |
} |
| 1836 | 1828 |
|
| 1837 | 1829 |
/// \brief Map of the node in-degrees. |
| 1838 | 1830 |
/// |
| 1839 | 1831 |
/// This map returns the in-degree of a node. Once it is constructed, |
| 1840 | 1832 |
/// the degrees are stored in a standard NodeMap, so each query is done |
| 1841 | 1833 |
/// in constant time. On the other hand, the values are updated automatically |
| 1842 | 1834 |
/// whenever the digraph changes. |
| 1843 | 1835 |
/// |
| 1844 | 1836 |
/// \warning Besides addNode() and addArc(), a digraph structure may provide |
| 1845 | 1837 |
/// alternative ways to modify the digraph. The correct behavior of InDegMap |
| 1846 | 1838 |
/// is not guarantied if these additional features are used. For example |
| 1847 | 1839 |
/// the functions \ref ListDigraph::changeSource() "changeSource()", |
| 1848 | 1840 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
| 1849 | 1841 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
| 1850 | 1842 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
| 1851 | 1843 |
/// |
| 1852 | 1844 |
/// \sa OutDegMap |
| 1853 | 1845 |
|
| 1854 | 1846 |
template <typename _Digraph> |
| 1855 | 1847 |
class InDegMap |
| 1856 | 1848 |
: protected ItemSetTraits<_Digraph, typename _Digraph::Arc> |
| ... | ... |
@@ -2003,193 +1995,193 @@ |
| 2003 | 1995 |
virtual void add(const std::vector<Key>& keys) {
|
| 2004 | 1996 |
Parent::add(keys); |
| 2005 | 1997 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 2006 | 1998 |
Parent::set(keys[i], 0); |
| 2007 | 1999 |
} |
| 2008 | 2000 |
} |
| 2009 | 2001 |
virtual void build() {
|
| 2010 | 2002 |
Parent::build(); |
| 2011 | 2003 |
Key it; |
| 2012 | 2004 |
typename Parent::Notifier* nf = Parent::notifier(); |
| 2013 | 2005 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2014 | 2006 |
Parent::set(it, 0); |
| 2015 | 2007 |
} |
| 2016 | 2008 |
} |
| 2017 | 2009 |
}; |
| 2018 | 2010 |
|
| 2019 | 2011 |
public: |
| 2020 | 2012 |
|
| 2021 | 2013 |
/// \brief Constructor. |
| 2022 | 2014 |
/// |
| 2023 | 2015 |
/// Constructor for creating out-degree map. |
| 2024 | 2016 |
explicit OutDegMap(const Digraph& digraph) |
| 2025 | 2017 |
: _digraph(digraph), _deg(digraph) {
|
| 2026 | 2018 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
| 2027 | 2019 |
|
| 2028 | 2020 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2029 | 2021 |
_deg[it] = countOutArcs(_digraph, it); |
| 2030 | 2022 |
} |
| 2031 | 2023 |
} |
| 2032 | 2024 |
|
| 2033 | 2025 |
/// Gives back the out-degree of a Node. |
| 2034 | 2026 |
int operator[](const Key& key) const {
|
| 2035 | 2027 |
return _deg[key]; |
| 2036 | 2028 |
} |
| 2037 | 2029 |
|
| 2038 | 2030 |
protected: |
| 2039 | 2031 |
|
| 2040 | 2032 |
typedef typename Digraph::Arc Arc; |
| 2041 | 2033 |
|
| 2042 | 2034 |
virtual void add(const Arc& arc) {
|
| 2043 | 2035 |
++_deg[_digraph.source(arc)]; |
| 2044 | 2036 |
} |
| 2045 | 2037 |
|
| 2046 | 2038 |
virtual void add(const std::vector<Arc>& arcs) {
|
| 2047 | 2039 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2048 | 2040 |
++_deg[_digraph.source(arcs[i])]; |
| 2049 | 2041 |
} |
| 2050 | 2042 |
} |
| 2051 | 2043 |
|
| 2052 | 2044 |
virtual void erase(const Arc& arc) {
|
| 2053 | 2045 |
--_deg[_digraph.source(arc)]; |
| 2054 | 2046 |
} |
| 2055 | 2047 |
|
| 2056 | 2048 |
virtual void erase(const std::vector<Arc>& arcs) {
|
| 2057 | 2049 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2058 | 2050 |
--_deg[_digraph.source(arcs[i])]; |
| 2059 | 2051 |
} |
| 2060 | 2052 |
} |
| 2061 | 2053 |
|
| 2062 | 2054 |
virtual void build() {
|
| 2063 | 2055 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2064 | 2056 |
_deg[it] = countOutArcs(_digraph, it); |
| 2065 | 2057 |
} |
| 2066 | 2058 |
} |
| 2067 | 2059 |
|
| 2068 | 2060 |
virtual void clear() {
|
| 2069 | 2061 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2070 | 2062 |
_deg[it] = 0; |
| 2071 | 2063 |
} |
| 2072 | 2064 |
} |
| 2073 | 2065 |
private: |
| 2074 | 2066 |
|
| 2075 | 2067 |
const Digraph& _digraph; |
| 2076 | 2068 |
AutoNodeMap _deg; |
| 2077 | 2069 |
}; |
| 2078 | 2070 |
|
| 2079 | 2071 |
|
| 2080 | 2072 |
///Dynamic arc look up between given endpoints. |
| 2081 | 2073 |
|
| 2082 | 2074 |
///\ingroup gutils |
| 2083 | 2075 |
///Using this class, you can find an arc in a digraph from a given |
| 2084 | 2076 |
///source to a given target in amortized time <em>O(log d)</em>, |
| 2085 | 2077 |
///where <em>d</em> is the out-degree of the source node. |
| 2086 | 2078 |
/// |
| 2087 | 2079 |
///It is possible to find \e all parallel arcs between two nodes with |
| 2088 | 2080 |
///the \c findFirst() and \c findNext() members. |
| 2089 | 2081 |
/// |
| 2090 | 2082 |
///See the \ref ArcLookUp and \ref AllArcLookUp classes if your |
| 2091 | 2083 |
///digraph is not changed so frequently. |
| 2092 | 2084 |
/// |
| 2093 | 2085 |
///This class uses a self-adjusting binary search tree, Sleator's |
| 2094 | 2086 |
///and Tarjan's Splay tree for guarantee the logarithmic amortized |
| 2095 | 2087 |
///time bound for arc lookups. This class also guarantees the |
| 2096 | 2088 |
///optimal time bound in a constant factor for any distribution of |
| 2097 | 2089 |
///queries. |
| 2098 | 2090 |
/// |
| 2099 |
///\ |
|
| 2091 |
///\tparam G The type of the underlying digraph. |
|
| 2100 | 2092 |
/// |
| 2101 | 2093 |
///\sa ArcLookUp |
| 2102 | 2094 |
///\sa AllArcLookUp |
| 2103 | 2095 |
template<class G> |
| 2104 | 2096 |
class DynArcLookUp |
| 2105 | 2097 |
: protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase |
| 2106 | 2098 |
{
|
| 2107 | 2099 |
public: |
| 2108 | 2100 |
typedef typename ItemSetTraits<G, typename G::Arc> |
| 2109 | 2101 |
::ItemNotifier::ObserverBase Parent; |
| 2110 | 2102 |
|
| 2111 | 2103 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
| 2112 | 2104 |
typedef G Digraph; |
| 2113 | 2105 |
|
| 2114 | 2106 |
protected: |
| 2115 | 2107 |
|
| 2116 | 2108 |
class AutoNodeMap : public DefaultMap<G, Node, Arc> {
|
| 2117 | 2109 |
public: |
| 2118 | 2110 |
|
| 2119 | 2111 |
typedef DefaultMap<G, Node, Arc> Parent; |
| 2120 | 2112 |
|
| 2121 | 2113 |
AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {}
|
| 2122 | 2114 |
|
| 2123 | 2115 |
virtual void add(const Node& node) {
|
| 2124 | 2116 |
Parent::add(node); |
| 2125 | 2117 |
Parent::set(node, INVALID); |
| 2126 | 2118 |
} |
| 2127 | 2119 |
|
| 2128 | 2120 |
virtual void add(const std::vector<Node>& nodes) {
|
| 2129 | 2121 |
Parent::add(nodes); |
| 2130 | 2122 |
for (int i = 0; i < int(nodes.size()); ++i) {
|
| 2131 | 2123 |
Parent::set(nodes[i], INVALID); |
| 2132 | 2124 |
} |
| 2133 | 2125 |
} |
| 2134 | 2126 |
|
| 2135 | 2127 |
virtual void build() {
|
| 2136 | 2128 |
Parent::build(); |
| 2137 | 2129 |
Node it; |
| 2138 | 2130 |
typename Parent::Notifier* nf = Parent::notifier(); |
| 2139 | 2131 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2140 | 2132 |
Parent::set(it, INVALID); |
| 2141 | 2133 |
} |
| 2142 | 2134 |
} |
| 2143 | 2135 |
}; |
| 2144 | 2136 |
|
| 2145 | 2137 |
const Digraph &_g; |
| 2146 | 2138 |
AutoNodeMap _head; |
| 2147 | 2139 |
typename Digraph::template ArcMap<Arc> _parent; |
| 2148 | 2140 |
typename Digraph::template ArcMap<Arc> _left; |
| 2149 | 2141 |
typename Digraph::template ArcMap<Arc> _right; |
| 2150 | 2142 |
|
| 2151 | 2143 |
class ArcLess {
|
| 2152 | 2144 |
const Digraph &g; |
| 2153 | 2145 |
public: |
| 2154 | 2146 |
ArcLess(const Digraph &_g) : g(_g) {}
|
| 2155 | 2147 |
bool operator()(Arc a,Arc b) const |
| 2156 | 2148 |
{
|
| 2157 | 2149 |
return g.target(a)<g.target(b); |
| 2158 | 2150 |
} |
| 2159 | 2151 |
}; |
| 2160 | 2152 |
|
| 2161 | 2153 |
public: |
| 2162 | 2154 |
|
| 2163 | 2155 |
///Constructor |
| 2164 | 2156 |
|
| 2165 | 2157 |
///Constructor. |
| 2166 | 2158 |
/// |
| 2167 | 2159 |
///It builds up the search database. |
| 2168 | 2160 |
DynArcLookUp(const Digraph &g) |
| 2169 | 2161 |
: _g(g),_head(g),_parent(g),_left(g),_right(g) |
| 2170 | 2162 |
{
|
| 2171 | 2163 |
Parent::attach(_g.notifier(typename Digraph::Arc())); |
| 2172 | 2164 |
refresh(); |
| 2173 | 2165 |
} |
| 2174 | 2166 |
|
| 2175 | 2167 |
protected: |
| 2176 | 2168 |
|
| 2177 | 2169 |
virtual void add(const Arc& arc) {
|
| 2178 | 2170 |
insert(arc); |
| 2179 | 2171 |
} |
| 2180 | 2172 |
|
| 2181 | 2173 |
virtual void add(const std::vector<Arc>& arcs) {
|
| 2182 | 2174 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2183 | 2175 |
insert(arcs[i]); |
| 2184 | 2176 |
} |
| 2185 | 2177 |
} |
| 2186 | 2178 |
|
| 2187 | 2179 |
virtual void erase(const Arc& arc) {
|
| 2188 | 2180 |
remove(arc); |
| 2189 | 2181 |
} |
| 2190 | 2182 |
|
| 2191 | 2183 |
virtual void erase(const std::vector<Arc>& arcs) {
|
| 2192 | 2184 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2193 | 2185 |
remove(arcs[i]); |
| 2194 | 2186 |
} |
| 2195 | 2187 |
} |
| ... | ... |
@@ -2444,306 +2436,306 @@ |
| 2444 | 2436 |
} |
| 2445 | 2437 |
} |
| 2446 | 2438 |
} |
| 2447 | 2439 |
} |
| 2448 | 2440 |
|
| 2449 | 2441 |
///Find the first arc between two nodes. |
| 2450 | 2442 |
|
| 2451 | 2443 |
///Find the first arc between two nodes in time |
| 2452 | 2444 |
/// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of |
| 2453 | 2445 |
/// outgoing arcs of \c s. |
| 2454 | 2446 |
///\param s The source node |
| 2455 | 2447 |
///\param t The target node |
| 2456 | 2448 |
///\return An arc from \c s to \c t if there exists, \ref INVALID |
| 2457 | 2449 |
/// otherwise. |
| 2458 | 2450 |
Arc findFirst(Node s, Node t) const |
| 2459 | 2451 |
{
|
| 2460 | 2452 |
Arc a = _head[s]; |
| 2461 | 2453 |
Arc r = INVALID; |
| 2462 | 2454 |
while (true) {
|
| 2463 | 2455 |
if (_g.target(a) < t) {
|
| 2464 | 2456 |
if (_right[a] == INVALID) {
|
| 2465 | 2457 |
const_cast<DynArcLookUp&>(*this).splay(a); |
| 2466 | 2458 |
return r; |
| 2467 | 2459 |
} else {
|
| 2468 | 2460 |
a = _right[a]; |
| 2469 | 2461 |
} |
| 2470 | 2462 |
} else {
|
| 2471 | 2463 |
if (_g.target(a) == t) {
|
| 2472 | 2464 |
r = a; |
| 2473 | 2465 |
} |
| 2474 | 2466 |
if (_left[a] == INVALID) {
|
| 2475 | 2467 |
const_cast<DynArcLookUp&>(*this).splay(a); |
| 2476 | 2468 |
return r; |
| 2477 | 2469 |
} else {
|
| 2478 | 2470 |
a = _left[a]; |
| 2479 | 2471 |
} |
| 2480 | 2472 |
} |
| 2481 | 2473 |
} |
| 2482 | 2474 |
} |
| 2483 | 2475 |
|
| 2484 | 2476 |
///Find the next arc between two nodes. |
| 2485 | 2477 |
|
| 2486 | 2478 |
///Find the next arc between two nodes in time |
| 2487 | 2479 |
/// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of |
| 2488 | 2480 |
/// outgoing arcs of \c s. |
| 2489 | 2481 |
///\param s The source node |
| 2490 | 2482 |
///\param t The target node |
| 2491 | 2483 |
///\return An arc from \c s to \c t if there exists, \ref INVALID |
| 2492 | 2484 |
/// otherwise. |
| 2493 | 2485 |
|
| 2494 | 2486 |
///\note If \c e is not the result of the previous \c findFirst() |
| 2495 | 2487 |
///operation then the amorized time bound can not be guaranteed. |
| 2496 | 2488 |
#ifdef DOXYGEN |
| 2497 | 2489 |
Arc findNext(Node s, Node t, Arc a) const |
| 2498 | 2490 |
#else |
| 2499 | 2491 |
Arc findNext(Node, Node t, Arc a) const |
| 2500 | 2492 |
#endif |
| 2501 | 2493 |
{
|
| 2502 | 2494 |
if (_right[a] != INVALID) {
|
| 2503 | 2495 |
a = _right[a]; |
| 2504 | 2496 |
while (_left[a] != INVALID) {
|
| 2505 | 2497 |
a = _left[a]; |
| 2506 | 2498 |
} |
| 2507 | 2499 |
const_cast<DynArcLookUp&>(*this).splay(a); |
| 2508 | 2500 |
} else {
|
| 2509 | 2501 |
while (_parent[a] != INVALID && _right[_parent[a]] == a) {
|
| 2510 | 2502 |
a = _parent[a]; |
| 2511 | 2503 |
} |
| 2512 | 2504 |
if (_parent[a] == INVALID) {
|
| 2513 | 2505 |
return INVALID; |
| 2514 | 2506 |
} else {
|
| 2515 | 2507 |
a = _parent[a]; |
| 2516 | 2508 |
const_cast<DynArcLookUp&>(*this).splay(a); |
| 2517 | 2509 |
} |
| 2518 | 2510 |
} |
| 2519 | 2511 |
if (_g.target(a) == t) return a; |
| 2520 | 2512 |
else return INVALID; |
| 2521 | 2513 |
} |
| 2522 | 2514 |
|
| 2523 | 2515 |
}; |
| 2524 | 2516 |
|
| 2525 | 2517 |
///Fast arc look up between given endpoints. |
| 2526 | 2518 |
|
| 2527 | 2519 |
///\ingroup gutils |
| 2528 | 2520 |
///Using this class, you can find an arc in a digraph from a given |
| 2529 | 2521 |
///source to a given target in time <em>O(log d)</em>, |
| 2530 | 2522 |
///where <em>d</em> is the out-degree of the source node. |
| 2531 | 2523 |
/// |
| 2532 | 2524 |
///It is not possible to find \e all parallel arcs between two nodes. |
| 2533 | 2525 |
///Use \ref AllArcLookUp for this purpose. |
| 2534 | 2526 |
/// |
| 2535 | 2527 |
///\warning This class is static, so you should refresh() (or at least |
| 2536 | 2528 |
///refresh(Node)) this data structure |
| 2537 | 2529 |
///whenever the digraph changes. This is a time consuming (superlinearly |
| 2538 | 2530 |
///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs). |
| 2539 | 2531 |
/// |
| 2540 |
///\ |
|
| 2532 |
///\tparam G The type of the underlying digraph. |
|
| 2541 | 2533 |
/// |
| 2542 | 2534 |
///\sa DynArcLookUp |
| 2543 | 2535 |
///\sa AllArcLookUp |
| 2544 | 2536 |
template<class G> |
| 2545 | 2537 |
class ArcLookUp |
| 2546 | 2538 |
{
|
| 2547 | 2539 |
public: |
| 2548 | 2540 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
| 2549 | 2541 |
typedef G Digraph; |
| 2550 | 2542 |
|
| 2551 | 2543 |
protected: |
| 2552 | 2544 |
const Digraph &_g; |
| 2553 | 2545 |
typename Digraph::template NodeMap<Arc> _head; |
| 2554 | 2546 |
typename Digraph::template ArcMap<Arc> _left; |
| 2555 | 2547 |
typename Digraph::template ArcMap<Arc> _right; |
| 2556 | 2548 |
|
| 2557 | 2549 |
class ArcLess {
|
| 2558 | 2550 |
const Digraph &g; |
| 2559 | 2551 |
public: |
| 2560 | 2552 |
ArcLess(const Digraph &_g) : g(_g) {}
|
| 2561 | 2553 |
bool operator()(Arc a,Arc b) const |
| 2562 | 2554 |
{
|
| 2563 | 2555 |
return g.target(a)<g.target(b); |
| 2564 | 2556 |
} |
| 2565 | 2557 |
}; |
| 2566 | 2558 |
|
| 2567 | 2559 |
public: |
| 2568 | 2560 |
|
| 2569 | 2561 |
///Constructor |
| 2570 | 2562 |
|
| 2571 | 2563 |
///Constructor. |
| 2572 | 2564 |
/// |
| 2573 | 2565 |
///It builds up the search database, which remains valid until the digraph |
| 2574 | 2566 |
///changes. |
| 2575 | 2567 |
ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
|
| 2576 | 2568 |
|
| 2577 | 2569 |
private: |
| 2578 | 2570 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
| 2579 | 2571 |
{
|
| 2580 | 2572 |
int m=(a+b)/2; |
| 2581 | 2573 |
Arc me=v[m]; |
| 2582 | 2574 |
_left[me] = a<m?refreshRec(v,a,m-1):INVALID; |
| 2583 | 2575 |
_right[me] = m<b?refreshRec(v,m+1,b):INVALID; |
| 2584 | 2576 |
return me; |
| 2585 | 2577 |
} |
| 2586 | 2578 |
public: |
| 2587 | 2579 |
///Refresh the data structure at a node. |
| 2588 | 2580 |
|
| 2589 | 2581 |
///Build up the search database of node \c n. |
| 2590 | 2582 |
/// |
| 2591 | 2583 |
///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is |
| 2592 | 2584 |
///the number of the outgoing arcs of \c n. |
| 2593 | 2585 |
void refresh(Node n) |
| 2594 | 2586 |
{
|
| 2595 | 2587 |
std::vector<Arc> v; |
| 2596 | 2588 |
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); |
| 2597 | 2589 |
if(v.size()) {
|
| 2598 | 2590 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
| 2599 | 2591 |
_head[n]=refreshRec(v,0,v.size()-1); |
| 2600 | 2592 |
} |
| 2601 | 2593 |
else _head[n]=INVALID; |
| 2602 | 2594 |
} |
| 2603 | 2595 |
///Refresh the full data structure. |
| 2604 | 2596 |
|
| 2605 | 2597 |
///Build up the full search database. In fact, it simply calls |
| 2606 | 2598 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
| 2607 | 2599 |
/// |
| 2608 | 2600 |
///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is |
| 2609 | 2601 |
///the number of the arcs of \c n and <em>D</em> is the maximum |
| 2610 | 2602 |
///out-degree of the digraph. |
| 2611 | 2603 |
|
| 2612 | 2604 |
void refresh() |
| 2613 | 2605 |
{
|
| 2614 | 2606 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(n); |
| 2615 | 2607 |
} |
| 2616 | 2608 |
|
| 2617 | 2609 |
///Find an arc between two nodes. |
| 2618 | 2610 |
|
| 2619 | 2611 |
///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where |
| 2620 | 2612 |
/// <em>d</em> is the number of outgoing arcs of \c s. |
| 2621 | 2613 |
///\param s The source node |
| 2622 | 2614 |
///\param t The target node |
| 2623 | 2615 |
///\return An arc from \c s to \c t if there exists, |
| 2624 | 2616 |
///\ref INVALID otherwise. |
| 2625 | 2617 |
/// |
| 2626 | 2618 |
///\warning If you change the digraph, refresh() must be called before using |
| 2627 | 2619 |
///this operator. If you change the outgoing arcs of |
| 2628 | 2620 |
///a single node \c n, then |
| 2629 | 2621 |
///\ref refresh(Node) "refresh(n)" is enough. |
| 2630 | 2622 |
/// |
| 2631 | 2623 |
Arc operator()(Node s, Node t) const |
| 2632 | 2624 |
{
|
| 2633 | 2625 |
Arc e; |
| 2634 | 2626 |
for(e=_head[s]; |
| 2635 | 2627 |
e!=INVALID&&_g.target(e)!=t; |
| 2636 | 2628 |
e = t < _g.target(e)?_left[e]:_right[e]) ; |
| 2637 | 2629 |
return e; |
| 2638 | 2630 |
} |
| 2639 | 2631 |
|
| 2640 | 2632 |
}; |
| 2641 | 2633 |
|
| 2642 | 2634 |
///Fast look up of all arcs between given endpoints. |
| 2643 | 2635 |
|
| 2644 | 2636 |
///\ingroup gutils |
| 2645 | 2637 |
///This class is the same as \ref ArcLookUp, with the addition |
| 2646 | 2638 |
///that it makes it possible to find all arcs between given endpoints. |
| 2647 | 2639 |
/// |
| 2648 | 2640 |
///\warning This class is static, so you should refresh() (or at least |
| 2649 | 2641 |
///refresh(Node)) this data structure |
| 2650 | 2642 |
///whenever the digraph changes. This is a time consuming (superlinearly |
| 2651 | 2643 |
///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs). |
| 2652 | 2644 |
/// |
| 2653 |
///\ |
|
| 2645 |
///\tparam G The type of the underlying digraph. |
|
| 2654 | 2646 |
/// |
| 2655 | 2647 |
///\sa DynArcLookUp |
| 2656 | 2648 |
///\sa ArcLookUp |
| 2657 | 2649 |
template<class G> |
| 2658 | 2650 |
class AllArcLookUp : public ArcLookUp<G> |
| 2659 | 2651 |
{
|
| 2660 | 2652 |
using ArcLookUp<G>::_g; |
| 2661 | 2653 |
using ArcLookUp<G>::_right; |
| 2662 | 2654 |
using ArcLookUp<G>::_left; |
| 2663 | 2655 |
using ArcLookUp<G>::_head; |
| 2664 | 2656 |
|
| 2665 | 2657 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
| 2666 | 2658 |
typedef G Digraph; |
| 2667 | 2659 |
|
| 2668 | 2660 |
typename Digraph::template ArcMap<Arc> _next; |
| 2669 | 2661 |
|
| 2670 | 2662 |
Arc refreshNext(Arc head,Arc next=INVALID) |
| 2671 | 2663 |
{
|
| 2672 | 2664 |
if(head==INVALID) return next; |
| 2673 | 2665 |
else {
|
| 2674 | 2666 |
next=refreshNext(_right[head],next); |
| 2675 | 2667 |
// _next[head]=next; |
| 2676 | 2668 |
_next[head]=( next!=INVALID && _g.target(next)==_g.target(head)) |
| 2677 | 2669 |
? next : INVALID; |
| 2678 | 2670 |
return refreshNext(_left[head],head); |
| 2679 | 2671 |
} |
| 2680 | 2672 |
} |
| 2681 | 2673 |
|
| 2682 | 2674 |
void refreshNext() |
| 2683 | 2675 |
{
|
| 2684 | 2676 |
for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]); |
| 2685 | 2677 |
} |
| 2686 | 2678 |
|
| 2687 | 2679 |
public: |
| 2688 | 2680 |
///Constructor |
| 2689 | 2681 |
|
| 2690 | 2682 |
///Constructor. |
| 2691 | 2683 |
/// |
| 2692 | 2684 |
///It builds up the search database, which remains valid until the digraph |
| 2693 | 2685 |
///changes. |
| 2694 | 2686 |
AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();}
|
| 2695 | 2687 |
|
| 2696 | 2688 |
///Refresh the data structure at a node. |
| 2697 | 2689 |
|
| 2698 | 2690 |
///Build up the search database of node \c n. |
| 2699 | 2691 |
/// |
| 2700 | 2692 |
///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is |
| 2701 | 2693 |
///the number of the outgoing arcs of \c n. |
| 2702 | 2694 |
|
| 2703 | 2695 |
void refresh(Node n) |
| 2704 | 2696 |
{
|
| 2705 | 2697 |
ArcLookUp<G>::refresh(n); |
| 2706 | 2698 |
refreshNext(_head[n]); |
| 2707 | 2699 |
} |
| 2708 | 2700 |
|
| 2709 | 2701 |
///Refresh the full data structure. |
| 2710 | 2702 |
|
| 2711 | 2703 |
///Build up the full search database. In fact, it simply calls |
| 2712 | 2704 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
| 2713 | 2705 |
/// |
| 2714 | 2706 |
///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is |
| 2715 | 2707 |
///the number of the arcs of \c n and <em>D</em> is the maximum |
| 2716 | 2708 |
///out-degree of the digraph. |
| 2717 | 2709 |
|
| 2718 | 2710 |
void refresh() |
| 2719 | 2711 |
{
|
| 2720 | 2712 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]); |
| 2721 | 2713 |
} |
| 2722 | 2714 |
|
| 2723 | 2715 |
///Find an arc between two nodes. |
| 2724 | 2716 |
|
| 2725 | 2717 |
///Find an arc between two nodes. |
| 2726 | 2718 |
///\param s The source node |
| 2727 | 2719 |
///\param t The target node |
| 2728 | 2720 |
///\param prev The previous arc between \c s and \c t. It it is INVALID or |
| 2729 | 2721 |
///not given, the operator finds the first appropriate arc. |
| 2730 | 2722 |
///\return An arc from \c s to \c t after \c prev or |
| 2731 | 2723 |
///\ref INVALID if there is no more. |
| 2732 | 2724 |
/// |
| 2733 | 2725 |
///For example, you can count the number of arcs from \c u to \c v in the |
| 2734 | 2726 |
///following way. |
| 2735 | 2727 |
///\code |
| 2736 | 2728 |
///AllArcLookUp<ListDigraph> ae(g); |
| 2737 | 2729 |
///... |
| 2738 | 2730 |
///int n=0; |
| 2739 | 2731 |
///for(Arc e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++; |
| 2740 | 2732 |
///\endcode |
| 2741 | 2733 |
/// |
| 2742 | 2734 |
///Finding the first arc take <em>O(</em>log<em>d)</em> time, where |
| 2743 | 2735 |
/// <em>d</em> is the number of outgoing arcs of \c s. Then, the |
| 2744 | 2736 |
///consecutive arcs are found in constant time. |
| 2745 | 2737 |
/// |
| 2746 | 2738 |
///\warning If you change the digraph, refresh() must be called before using |
| 2747 | 2739 |
///this operator. If you change the outgoing arcs of |
| 2748 | 2740 |
///a single node \c n, then |
| 2749 | 2741 |
///\ref refresh(Node) "refresh(n)" is enough. |
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup paths |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief Classes for representing paths in digraphs. |
| 22 | 22 |
/// |
| 23 | 23 |
|
| 24 | 24 |
#ifndef LEMON_PATH_H |
| 25 | 25 |
#define LEMON_PATH_H |
| 26 | 26 |
|
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <algorithm> |
| 29 | 29 |
|
| 30 | 30 |
#include <lemon/error.h> |
| 31 | 31 |
#include <lemon/bits/invalid.h> |
| 32 | 32 |
#include <lemon/concepts/path.h> |
| 33 | 33 |
|
| 34 | 34 |
namespace lemon {
|
| 35 | 35 |
|
| 36 | 36 |
/// \addtogroup paths |
| 37 | 37 |
/// @{
|
| 38 | 38 |
|
| 39 | 39 |
|
| 40 | 40 |
/// \brief A structure for representing directed paths in a digraph. |
| 41 | 41 |
/// |
| 42 | 42 |
/// A structure for representing directed path in a digraph. |
| 43 |
/// \ |
|
| 43 |
/// \tparam _Digraph The digraph type in which the path is. |
|
| 44 | 44 |
/// |
| 45 | 45 |
/// In a sense, the path can be treated as a list of arcs. The |
| 46 | 46 |
/// lemon path type stores just this list. As a consequence, it |
| 47 | 47 |
/// cannot enumerate the nodes of the path and the source node of |
| 48 | 48 |
/// a zero length path is undefined. |
| 49 | 49 |
/// |
| 50 | 50 |
/// This implementation is a back and front insertable and erasable |
| 51 | 51 |
/// path type. It can be indexed in O(1) time. The front and back |
| 52 | 52 |
/// insertion and erase is done in O(1) (amortized) time. The |
| 53 | 53 |
/// implementation uses two vectors for storing the front and back |
| 54 | 54 |
/// insertions. |
| 55 | 55 |
template <typename _Digraph> |
| 56 | 56 |
class Path {
|
| 57 | 57 |
public: |
| 58 | 58 |
|
| 59 | 59 |
typedef _Digraph Digraph; |
| 60 | 60 |
typedef typename Digraph::Arc Arc; |
| 61 | 61 |
|
| 62 | 62 |
/// \brief Default constructor |
| 63 | 63 |
/// |
| 64 | 64 |
/// Default constructor |
| 65 | 65 |
Path() {}
|
| 66 | 66 |
|
| 67 | 67 |
/// \brief Template copy constructor |
| 68 | 68 |
/// |
| 69 | 69 |
/// This constuctor initializes the path from any other path type. |
| 70 | 70 |
/// It simply makes a copy of the given path. |
| 71 | 71 |
template <typename CPath> |
| 72 | 72 |
Path(const CPath& cpath) {
|
| 73 | 73 |
copyPath(*this, cpath); |
| 74 | 74 |
} |
| 75 | 75 |
|
| 76 | 76 |
/// \brief Template copy assignment |
| 77 | 77 |
/// |
| 78 | 78 |
/// This operator makes a copy of a path of any other type. |
| 79 | 79 |
template <typename CPath> |
| 80 | 80 |
Path& operator=(const CPath& cpath) {
|
| 81 | 81 |
copyPath(*this, cpath); |
| 82 | 82 |
return *this; |
| 83 | 83 |
} |
| 84 | 84 |
|
| 85 | 85 |
/// \brief Lemon style iterator for path arcs |
| 86 | 86 |
/// |
| 87 | 87 |
/// This class is used to iterate on the arcs of the paths. |
| 88 | 88 |
class ArcIt {
|
| 89 | 89 |
friend class Path; |
| 90 | 90 |
public: |
| 91 | 91 |
/// \brief Default constructor |
| 92 | 92 |
ArcIt() {}
|
| 93 | 93 |
/// \brief Invalid constructor |
| 94 | 94 |
ArcIt(Invalid) : path(0), idx(-1) {}
|
| 95 | 95 |
/// \brief Initializate the iterator to the first arc of path |
| 96 | 96 |
ArcIt(const Path &_path) |
| 97 | 97 |
: path(&_path), idx(_path.empty() ? -1 : 0) {}
|
| 98 | 98 |
|
| 99 | 99 |
private: |
| 100 | 100 |
|
| 101 | 101 |
ArcIt(const Path &_path, int _idx) |
| 102 | 102 |
: path(&_path), idx(_idx) {}
|
| 103 | 103 |
|
| 104 | 104 |
public: |
| 105 | 105 |
|
| 106 | 106 |
/// \brief Conversion to Arc |
| 107 | 107 |
operator const Arc&() const {
|
| 108 | 108 |
return path->nth(idx); |
| 109 | 109 |
} |
| 110 | 110 |
|
| 111 | 111 |
/// \brief Next arc |
| 112 | 112 |
ArcIt& operator++() {
|
| 113 | 113 |
++idx; |
| 114 | 114 |
if (idx >= path->length()) idx = -1; |
| 115 | 115 |
return *this; |
| 116 | 116 |
} |
| 117 | 117 |
|
| 118 | 118 |
/// \brief Comparison operator |
| 119 | 119 |
bool operator==(const ArcIt& e) const { return idx==e.idx; }
|
| 120 | 120 |
/// \brief Comparison operator |
| 121 | 121 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
|
| 122 | 122 |
/// \brief Comparison operator |
| 123 | 123 |
bool operator<(const ArcIt& e) const { return idx<e.idx; }
|
| 124 | 124 |
|
| 125 | 125 |
private: |
| 126 | 126 |
const Path *path; |
| 127 | 127 |
int idx; |
| 128 | 128 |
}; |
| 129 | 129 |
|
| 130 | 130 |
/// \brief Length of the path. |
| 131 | 131 |
int length() const { return head.size() + tail.size(); }
|
| 132 | 132 |
/// \brief Return whether the path is empty. |
| 133 | 133 |
bool empty() const { return head.empty() && tail.empty(); }
|
| 134 | 134 |
|
| 135 | 135 |
/// \brief Reset the path to an empty one. |
| 136 | 136 |
void clear() { head.clear(); tail.clear(); }
|
| 137 | 137 |
|
| 138 | 138 |
/// \brief The nth arc. |
| 139 | 139 |
/// |
| 140 | 140 |
/// \pre n is in the [0..length() - 1] range |
| 141 | 141 |
const Arc& nth(int n) const {
|
| 142 | 142 |
return n < int(head.size()) ? *(head.rbegin() + n) : |
| 143 | 143 |
*(tail.begin() + (n - head.size())); |
| 144 | 144 |
} |
| 145 | 145 |
|
| 146 | 146 |
/// \brief Initialize arc iterator to point to the nth arc |
| 147 | 147 |
/// |
| 148 | 148 |
/// \pre n is in the [0..length() - 1] range |
| 149 | 149 |
ArcIt nthIt(int n) const {
|
| 150 | 150 |
return ArcIt(*this, n); |
| 151 | 151 |
} |
| 152 | 152 |
|
| 153 | 153 |
/// \brief The first arc of the path |
| 154 | 154 |
const Arc& front() const {
|
| 155 | 155 |
return head.empty() ? tail.front() : head.back(); |
| 156 | 156 |
} |
| 157 | 157 |
|
| 158 | 158 |
/// \brief Add a new arc before the current path |
| 159 | 159 |
void addFront(const Arc& arc) {
|
| 160 | 160 |
head.push_back(arc); |
| 161 | 161 |
} |
| 162 | 162 |
|
| 163 | 163 |
/// \brief Erase the first arc of the path |
| 164 | 164 |
void eraseFront() {
|
| 165 | 165 |
if (!head.empty()) {
|
| 166 | 166 |
head.pop_back(); |
| 167 | 167 |
} else {
|
| 168 | 168 |
head.clear(); |
| 169 | 169 |
int halfsize = tail.size() / 2; |
| 170 | 170 |
head.resize(halfsize); |
| 171 | 171 |
std::copy(tail.begin() + 1, tail.begin() + halfsize + 1, |
| 172 | 172 |
head.rbegin()); |
| 173 | 173 |
std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin()); |
| 174 | 174 |
tail.resize(tail.size() - halfsize - 1); |
| 175 | 175 |
} |
| 176 | 176 |
} |
| 177 | 177 |
|
| 178 | 178 |
/// \brief The last arc of the path |
| 179 | 179 |
const Arc& back() const {
|
| 180 | 180 |
return tail.empty() ? head.front() : tail.back(); |
| 181 | 181 |
} |
| 182 | 182 |
|
| 183 | 183 |
/// \brief Add a new arc behind the current path |
| 184 | 184 |
void addBack(const Arc& arc) {
|
| 185 | 185 |
tail.push_back(arc); |
| 186 | 186 |
} |
| 187 | 187 |
|
| 188 | 188 |
/// \brief Erase the last arc of the path |
| 189 | 189 |
void eraseBack() {
|
| 190 | 190 |
if (!tail.empty()) {
|
| 191 | 191 |
tail.pop_back(); |
| 192 | 192 |
} else {
|
| 193 | 193 |
int halfsize = head.size() / 2; |
| 194 | 194 |
tail.resize(halfsize); |
| 195 | 195 |
std::copy(head.begin() + 1, head.begin() + halfsize + 1, |
| 196 | 196 |
tail.rbegin()); |
| 197 | 197 |
std::copy(head.begin() + halfsize + 1, head.end(), head.begin()); |
| 198 | 198 |
head.resize(head.size() - halfsize - 1); |
| 199 | 199 |
} |
| 200 | 200 |
} |
| 201 | 201 |
|
| 202 | 202 |
typedef True BuildTag; |
| 203 | 203 |
|
| 204 | 204 |
template <typename CPath> |
| 205 | 205 |
void build(const CPath& path) {
|
| 206 | 206 |
int len = path.length(); |
| 207 | 207 |
tail.reserve(len); |
| 208 | 208 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
|
| 209 | 209 |
tail.push_back(it); |
| 210 | 210 |
} |
| 211 | 211 |
} |
| 212 | 212 |
|
| 213 | 213 |
template <typename CPath> |
| 214 | 214 |
void buildRev(const CPath& path) {
|
| 215 | 215 |
int len = path.length(); |
| 216 | 216 |
head.reserve(len); |
| 217 | 217 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
|
| 218 | 218 |
head.push_back(it); |
| 219 | 219 |
} |
| 220 | 220 |
} |
| 221 | 221 |
|
| 222 | 222 |
protected: |
| 223 | 223 |
typedef std::vector<Arc> Container; |
| 224 | 224 |
Container head, tail; |
| 225 | 225 |
|
| 226 | 226 |
}; |
| 227 | 227 |
|
| 228 | 228 |
/// \brief A structure for representing directed paths in a digraph. |
| 229 | 229 |
/// |
| 230 | 230 |
/// A structure for representing directed path in a digraph. |
| 231 |
/// \ |
|
| 231 |
/// \tparam _Digraph The digraph type in which the path is. |
|
| 232 | 232 |
/// |
| 233 | 233 |
/// In a sense, the path can be treated as a list of arcs. The |
| 234 | 234 |
/// lemon path type stores just this list. As a consequence it |
| 235 | 235 |
/// cannot enumerate the nodes in the path and the zero length paths |
| 236 | 236 |
/// cannot store the source. |
| 237 | 237 |
/// |
| 238 | 238 |
/// This implementation is a just back insertable and erasable path |
| 239 | 239 |
/// type. It can be indexed in O(1) time. The back insertion and |
| 240 | 240 |
/// erasure is amortized O(1) time. This implementation is faster |
| 241 | 241 |
/// then the \c Path type because it use just one vector for the |
| 242 | 242 |
/// arcs. |
| 243 | 243 |
template <typename _Digraph> |
| 244 | 244 |
class SimplePath {
|
| 245 | 245 |
public: |
| 246 | 246 |
|
| 247 | 247 |
typedef _Digraph Digraph; |
| 248 | 248 |
typedef typename Digraph::Arc Arc; |
| 249 | 249 |
|
| 250 | 250 |
/// \brief Default constructor |
| 251 | 251 |
/// |
| 252 | 252 |
/// Default constructor |
| 253 | 253 |
SimplePath() {}
|
| 254 | 254 |
|
| 255 | 255 |
/// \brief Template copy constructor |
| 256 | 256 |
/// |
| 257 | 257 |
/// This path can be initialized with any other path type. It just |
| 258 | 258 |
/// makes a copy of the given path. |
| 259 | 259 |
template <typename CPath> |
| 260 | 260 |
SimplePath(const CPath& cpath) {
|
| 261 | 261 |
copyPath(*this, cpath); |
| 262 | 262 |
} |
| 263 | 263 |
|
| 264 | 264 |
/// \brief Template copy assignment |
| 265 | 265 |
/// |
| 266 | 266 |
/// This path can be initialized with any other path type. It just |
| 267 | 267 |
/// makes a copy of the given path. |
| 268 | 268 |
template <typename CPath> |
| 269 | 269 |
SimplePath& operator=(const CPath& cpath) {
|
| 270 | 270 |
copyPath(*this, cpath); |
| 271 | 271 |
return *this; |
| 272 | 272 |
} |
| 273 | 273 |
|
| 274 | 274 |
/// \brief Iterator class to iterate on the arcs of the paths |
| 275 | 275 |
/// |
| 276 | 276 |
/// This class is used to iterate on the arcs of the paths |
| 277 | 277 |
/// |
| 278 | 278 |
/// Of course it converts to Digraph::Arc |
| 279 | 279 |
class ArcIt {
|
| 280 | 280 |
friend class SimplePath; |
| 281 | 281 |
public: |
| 282 | 282 |
/// Default constructor |
| 283 | 283 |
ArcIt() {}
|
| 284 | 284 |
/// Invalid constructor |
| 285 | 285 |
ArcIt(Invalid) : path(0), idx(-1) {}
|
| 286 | 286 |
/// \brief Initializate the constructor to the first arc of path |
| 287 | 287 |
ArcIt(const SimplePath &_path) |
| 288 | 288 |
: path(&_path), idx(_path.empty() ? -1 : 0) {}
|
| 289 | 289 |
|
| 290 | 290 |
private: |
| 291 | 291 |
|
| 292 | 292 |
/// Constructor with starting point |
| 293 | 293 |
ArcIt(const SimplePath &_path, int _idx) |
| 294 | 294 |
: idx(_idx), path(&_path) {}
|
| 295 | 295 |
|
| 296 | 296 |
public: |
| 297 | 297 |
|
| 298 | 298 |
///Conversion to Digraph::Arc |
| 299 | 299 |
operator const Arc&() const {
|
| 300 | 300 |
return path->nth(idx); |
| 301 | 301 |
} |
| 302 | 302 |
|
| 303 | 303 |
/// Next arc |
| 304 | 304 |
ArcIt& operator++() {
|
| 305 | 305 |
++idx; |
| 306 | 306 |
if (idx >= path->length()) idx = -1; |
| 307 | 307 |
return *this; |
| 308 | 308 |
} |
| 309 | 309 |
|
| 310 | 310 |
/// Comparison operator |
| 311 | 311 |
bool operator==(const ArcIt& e) const { return idx==e.idx; }
|
| 312 | 312 |
/// Comparison operator |
| 313 | 313 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
|
| 314 | 314 |
/// Comparison operator |
| 315 | 315 |
bool operator<(const ArcIt& e) const { return idx<e.idx; }
|
| 316 | 316 |
|
| 317 | 317 |
private: |
| 318 | 318 |
const SimplePath *path; |
| 319 | 319 |
int idx; |
| 320 | 320 |
}; |
| 321 | 321 |
|
| 322 | 322 |
/// \brief Length of the path. |
| 323 | 323 |
int length() const { return data.size(); }
|
| 324 | 324 |
/// \brief Return true if the path is empty. |
| 325 | 325 |
bool empty() const { return data.empty(); }
|
| 326 | 326 |
|
| 327 | 327 |
/// \brief Reset the path to an empty one. |
| 328 | 328 |
void clear() { data.clear(); }
|
| 329 | 329 |
|
| 330 | 330 |
/// \brief The nth arc. |
| 331 | 331 |
/// |
| 332 | 332 |
/// \pre n is in the [0..length() - 1] range |
| 333 | 333 |
const Arc& nth(int n) const {
|
| 334 | 334 |
return data[n]; |
| 335 | 335 |
} |
| 336 | 336 |
|
| 337 | 337 |
/// \brief Initializes arc iterator to point to the nth arc. |
| 338 | 338 |
ArcIt nthIt(int n) const {
|
| 339 | 339 |
return ArcIt(*this, n); |
| 340 | 340 |
} |
| 341 | 341 |
|
| 342 | 342 |
/// \brief The first arc of the path. |
| 343 | 343 |
const Arc& front() const {
|
| 344 | 344 |
return data.front(); |
| 345 | 345 |
} |
| 346 | 346 |
|
| 347 | 347 |
/// \brief The last arc of the path. |
| 348 | 348 |
const Arc& back() const {
|
| 349 | 349 |
return data.back(); |
| 350 | 350 |
} |
| 351 | 351 |
|
| 352 | 352 |
/// \brief Add a new arc behind the current path. |
| 353 | 353 |
void addBack(const Arc& arc) {
|
| 354 | 354 |
data.push_back(arc); |
| 355 | 355 |
} |
| 356 | 356 |
|
| 357 | 357 |
/// \brief Erase the last arc of the path |
| 358 | 358 |
void eraseBack() {
|
| 359 | 359 |
data.pop_back(); |
| 360 | 360 |
} |
| 361 | 361 |
|
| 362 | 362 |
typedef True BuildTag; |
| 363 | 363 |
|
| 364 | 364 |
template <typename CPath> |
| 365 | 365 |
void build(const CPath& path) {
|
| 366 | 366 |
int len = path.length(); |
| 367 | 367 |
data.resize(len); |
| 368 | 368 |
int index = 0; |
| 369 | 369 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
|
| 370 | 370 |
data[index] = it;; |
| 371 | 371 |
++index; |
| 372 | 372 |
} |
| 373 | 373 |
} |
| 374 | 374 |
|
| 375 | 375 |
template <typename CPath> |
| 376 | 376 |
void buildRev(const CPath& path) {
|
| 377 | 377 |
int len = path.length(); |
| 378 | 378 |
data.resize(len); |
| 379 | 379 |
int index = len; |
| 380 | 380 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
|
| 381 | 381 |
--index; |
| 382 | 382 |
data[index] = it;; |
| 383 | 383 |
} |
| 384 | 384 |
} |
| 385 | 385 |
|
| 386 | 386 |
protected: |
| 387 | 387 |
typedef std::vector<Arc> Container; |
| 388 | 388 |
Container data; |
| 389 | 389 |
|
| 390 | 390 |
}; |
| 391 | 391 |
|
| 392 | 392 |
/// \brief A structure for representing directed paths in a digraph. |
| 393 | 393 |
/// |
| 394 | 394 |
/// A structure for representing directed path in a digraph. |
| 395 |
/// \ |
|
| 395 |
/// \tparam _Digraph The digraph type in which the path is. |
|
| 396 | 396 |
/// |
| 397 | 397 |
/// In a sense, the path can be treated as a list of arcs. The |
| 398 | 398 |
/// lemon path type stores just this list. As a consequence it |
| 399 | 399 |
/// cannot enumerate the nodes in the path and the zero length paths |
| 400 | 400 |
/// cannot store the source. |
| 401 | 401 |
/// |
| 402 | 402 |
/// This implementation is a back and front insertable and erasable |
| 403 | 403 |
/// path type. It can be indexed in O(k) time, where k is the rank |
| 404 | 404 |
/// of the arc in the path. The length can be computed in O(n) |
| 405 | 405 |
/// time. The front and back insertion and erasure is O(1) time |
| 406 | 406 |
/// and it can be splited and spliced in O(1) time. |
| 407 | 407 |
template <typename _Digraph> |
| 408 | 408 |
class ListPath {
|
| 409 | 409 |
public: |
| 410 | 410 |
|
| 411 | 411 |
typedef _Digraph Digraph; |
| 412 | 412 |
typedef typename Digraph::Arc Arc; |
| 413 | 413 |
|
| 414 | 414 |
protected: |
| 415 | 415 |
|
| 416 | 416 |
// the std::list<> is incompatible |
| 417 | 417 |
// hard to create invalid iterator |
| 418 | 418 |
struct Node {
|
| 419 | 419 |
Arc arc; |
| 420 | 420 |
Node *next, *prev; |
| 421 | 421 |
}; |
| 422 | 422 |
|
| 423 | 423 |
Node *first, *last; |
| 424 | 424 |
|
| 425 | 425 |
std::allocator<Node> alloc; |
| 426 | 426 |
|
| 427 | 427 |
public: |
| 428 | 428 |
|
| 429 | 429 |
/// \brief Default constructor |
| 430 | 430 |
/// |
| 431 | 431 |
/// Default constructor |
| 432 | 432 |
ListPath() : first(0), last(0) {}
|
| 433 | 433 |
|
| 434 | 434 |
/// \brief Template copy constructor |
| 435 | 435 |
/// |
| 436 | 436 |
/// This path can be initialized with any other path type. It just |
| 437 | 437 |
/// makes a copy of the given path. |
| 438 | 438 |
template <typename CPath> |
| 439 | 439 |
ListPath(const CPath& cpath) : first(0), last(0) {
|
| 440 | 440 |
copyPath(*this, cpath); |
| 441 | 441 |
} |
| 442 | 442 |
|
| 443 | 443 |
/// \brief Destructor of the path |
| 444 | 444 |
/// |
| 445 | 445 |
/// Destructor of the path |
| 446 | 446 |
~ListPath() {
|
| 447 | 447 |
clear(); |
| 448 | 448 |
} |
| 449 | 449 |
|
| 450 | 450 |
/// \brief Template copy assignment |
| 451 | 451 |
/// |
| 452 | 452 |
/// This path can be initialized with any other path type. It just |
| 453 | 453 |
/// makes a copy of the given path. |
| 454 | 454 |
template <typename CPath> |
| 455 | 455 |
ListPath& operator=(const CPath& cpath) {
|
| 456 | 456 |
copyPath(*this, cpath); |
| 457 | 457 |
return *this; |
| 458 | 458 |
} |
| 459 | 459 |
|
| 460 | 460 |
/// \brief Iterator class to iterate on the arcs of the paths |
| 461 | 461 |
/// |
| 462 | 462 |
/// This class is used to iterate on the arcs of the paths |
| 463 | 463 |
/// |
| 464 | 464 |
/// Of course it converts to Digraph::Arc |
| 465 | 465 |
class ArcIt {
|
| 466 | 466 |
friend class ListPath; |
| 467 | 467 |
public: |
| 468 | 468 |
/// Default constructor |
| 469 | 469 |
ArcIt() {}
|
| 470 | 470 |
/// Invalid constructor |
| 471 | 471 |
ArcIt(Invalid) : path(0), node(0) {}
|
| 472 | 472 |
/// \brief Initializate the constructor to the first arc of path |
| 473 | 473 |
ArcIt(const ListPath &_path) |
| 474 | 474 |
: path(&_path), node(_path.first) {}
|
| 475 | 475 |
|
| 476 | 476 |
protected: |
| 477 | 477 |
|
| 478 | 478 |
ArcIt(const ListPath &_path, Node *_node) |
| 479 | 479 |
: path(&_path), node(_node) {}
|
| 480 | 480 |
|
| 481 | 481 |
|
| 482 | 482 |
public: |
| 483 | 483 |
|
| 484 | 484 |
///Conversion to Digraph::Arc |
| 485 | 485 |
operator const Arc&() const {
|
| 486 | 486 |
return node->arc; |
| 487 | 487 |
} |
| 488 | 488 |
|
| 489 | 489 |
/// Next arc |
| 490 | 490 |
ArcIt& operator++() {
|
| 491 | 491 |
node = node->next; |
| ... | ... |
@@ -639,193 +639,193 @@ |
| 639 | 639 |
/// It splices \c tpath before the current path and \c tpath |
| 640 | 640 |
/// becomes empty. The time complexity of this function |
| 641 | 641 |
/// is O(1). |
| 642 | 642 |
void spliceFront(ListPath& tpath) {
|
| 643 | 643 |
if (first) {
|
| 644 | 644 |
if (tpath.first) {
|
| 645 | 645 |
first->prev = tpath.last; |
| 646 | 646 |
tpath.last->next = first; |
| 647 | 647 |
first = tpath.first; |
| 648 | 648 |
} |
| 649 | 649 |
} else {
|
| 650 | 650 |
first = tpath.first; |
| 651 | 651 |
last = tpath.last; |
| 652 | 652 |
} |
| 653 | 653 |
tpath.first = tpath.last = 0; |
| 654 | 654 |
} |
| 655 | 655 |
|
| 656 | 656 |
/// \brief Splice a path into the current path. |
| 657 | 657 |
/// |
| 658 | 658 |
/// It splices the \c tpath into the current path before the |
| 659 | 659 |
/// position of \c it iterator and \c tpath becomes empty. The |
| 660 | 660 |
/// time complexity of this function is O(1). If the \c it is |
| 661 | 661 |
/// \c INVALID then it will splice behind the current path. |
| 662 | 662 |
void splice(ArcIt it, ListPath& tpath) {
|
| 663 | 663 |
if (it.node) {
|
| 664 | 664 |
if (tpath.first) {
|
| 665 | 665 |
tpath.first->prev = it.node->prev; |
| 666 | 666 |
if (it.node->prev) {
|
| 667 | 667 |
it.node->prev->next = tpath.first; |
| 668 | 668 |
} else {
|
| 669 | 669 |
first = tpath.first; |
| 670 | 670 |
} |
| 671 | 671 |
it.node->prev = tpath.last; |
| 672 | 672 |
tpath.last->next = it.node; |
| 673 | 673 |
} |
| 674 | 674 |
} else {
|
| 675 | 675 |
if (first) {
|
| 676 | 676 |
if (tpath.first) {
|
| 677 | 677 |
last->next = tpath.first; |
| 678 | 678 |
tpath.first->prev = last; |
| 679 | 679 |
last = tpath.last; |
| 680 | 680 |
} |
| 681 | 681 |
} else {
|
| 682 | 682 |
first = tpath.first; |
| 683 | 683 |
last = tpath.last; |
| 684 | 684 |
} |
| 685 | 685 |
} |
| 686 | 686 |
tpath.first = tpath.last = 0; |
| 687 | 687 |
} |
| 688 | 688 |
|
| 689 | 689 |
/// \brief Split the current path. |
| 690 | 690 |
/// |
| 691 | 691 |
/// It splits the current path into two parts. The part before |
| 692 | 692 |
/// the iterator \c it will remain in the current path and the part |
| 693 | 693 |
/// starting with |
| 694 | 694 |
/// \c it will put into \c tpath. If \c tpath have arcs |
| 695 | 695 |
/// before the operation they are removed first. The time |
| 696 | 696 |
/// complexity of this function is O(1) plus the the time of emtying |
| 697 | 697 |
/// \c tpath. If \c it is \c INVALID then it just clears \c tpath |
| 698 | 698 |
void split(ArcIt it, ListPath& tpath) {
|
| 699 | 699 |
tpath.clear(); |
| 700 | 700 |
if (it.node) {
|
| 701 | 701 |
tpath.first = it.node; |
| 702 | 702 |
tpath.last = last; |
| 703 | 703 |
if (it.node->prev) {
|
| 704 | 704 |
last = it.node->prev; |
| 705 | 705 |
last->next = 0; |
| 706 | 706 |
} else {
|
| 707 | 707 |
first = last = 0; |
| 708 | 708 |
} |
| 709 | 709 |
it.node->prev = 0; |
| 710 | 710 |
} |
| 711 | 711 |
} |
| 712 | 712 |
|
| 713 | 713 |
|
| 714 | 714 |
typedef True BuildTag; |
| 715 | 715 |
|
| 716 | 716 |
template <typename CPath> |
| 717 | 717 |
void build(const CPath& path) {
|
| 718 | 718 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
|
| 719 | 719 |
addBack(it); |
| 720 | 720 |
} |
| 721 | 721 |
} |
| 722 | 722 |
|
| 723 | 723 |
template <typename CPath> |
| 724 | 724 |
void buildRev(const CPath& path) {
|
| 725 | 725 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
|
| 726 | 726 |
addFront(it); |
| 727 | 727 |
} |
| 728 | 728 |
} |
| 729 | 729 |
|
| 730 | 730 |
}; |
| 731 | 731 |
|
| 732 | 732 |
/// \brief A structure for representing directed paths in a digraph. |
| 733 | 733 |
/// |
| 734 | 734 |
/// A structure for representing directed path in a digraph. |
| 735 |
/// \ |
|
| 735 |
/// \tparam _Digraph The digraph type in which the path is. |
|
| 736 | 736 |
/// |
| 737 | 737 |
/// In a sense, the path can be treated as a list of arcs. The |
| 738 | 738 |
/// lemon path type stores just this list. As a consequence it |
| 739 | 739 |
/// cannot enumerate the nodes in the path and the source node of |
| 740 | 740 |
/// a zero length path is undefined. |
| 741 | 741 |
/// |
| 742 | 742 |
/// This implementation is completly static, i.e. it can be copy constucted |
| 743 | 743 |
/// or copy assigned from another path, but otherwise it cannot be |
| 744 | 744 |
/// modified. |
| 745 | 745 |
/// |
| 746 | 746 |
/// Being the the most memory efficient path type in LEMON, |
| 747 | 747 |
/// it is intented to be |
| 748 | 748 |
/// used when you want to store a large number of paths. |
| 749 | 749 |
template <typename _Digraph> |
| 750 | 750 |
class StaticPath {
|
| 751 | 751 |
public: |
| 752 | 752 |
|
| 753 | 753 |
typedef _Digraph Digraph; |
| 754 | 754 |
typedef typename Digraph::Arc Arc; |
| 755 | 755 |
|
| 756 | 756 |
/// \brief Default constructor |
| 757 | 757 |
/// |
| 758 | 758 |
/// Default constructor |
| 759 | 759 |
StaticPath() : len(0), arcs(0) {}
|
| 760 | 760 |
|
| 761 | 761 |
/// \brief Template copy constructor |
| 762 | 762 |
/// |
| 763 | 763 |
/// This path can be initialized from any other path type. |
| 764 | 764 |
template <typename CPath> |
| 765 | 765 |
StaticPath(const CPath& cpath) : arcs(0) {
|
| 766 | 766 |
copyPath(*this, cpath); |
| 767 | 767 |
} |
| 768 | 768 |
|
| 769 | 769 |
/// \brief Destructor of the path |
| 770 | 770 |
/// |
| 771 | 771 |
/// Destructor of the path |
| 772 | 772 |
~StaticPath() {
|
| 773 | 773 |
if (arcs) delete[] arcs; |
| 774 | 774 |
} |
| 775 | 775 |
|
| 776 | 776 |
/// \brief Template copy assignment |
| 777 | 777 |
/// |
| 778 | 778 |
/// This path can be made equal to any other path type. It simply |
| 779 | 779 |
/// makes a copy of the given path. |
| 780 | 780 |
template <typename CPath> |
| 781 | 781 |
StaticPath& operator=(const CPath& cpath) {
|
| 782 | 782 |
copyPath(*this, cpath); |
| 783 | 783 |
return *this; |
| 784 | 784 |
} |
| 785 | 785 |
|
| 786 | 786 |
/// \brief Iterator class to iterate on the arcs of the paths |
| 787 | 787 |
/// |
| 788 | 788 |
/// This class is used to iterate on the arcs of the paths |
| 789 | 789 |
/// |
| 790 | 790 |
/// Of course it converts to Digraph::Arc |
| 791 | 791 |
class ArcIt {
|
| 792 | 792 |
friend class StaticPath; |
| 793 | 793 |
public: |
| 794 | 794 |
/// Default constructor |
| 795 | 795 |
ArcIt() {}
|
| 796 | 796 |
/// Invalid constructor |
| 797 | 797 |
ArcIt(Invalid) : path(0), idx(-1) {}
|
| 798 | 798 |
/// Initializate the constructor to the first arc of path |
| 799 | 799 |
ArcIt(const StaticPath &_path) |
| 800 | 800 |
: path(&_path), idx(_path.empty() ? -1 : 0) {}
|
| 801 | 801 |
|
| 802 | 802 |
private: |
| 803 | 803 |
|
| 804 | 804 |
/// Constructor with starting point |
| 805 | 805 |
ArcIt(const StaticPath &_path, int _idx) |
| 806 | 806 |
: idx(_idx), path(&_path) {}
|
| 807 | 807 |
|
| 808 | 808 |
public: |
| 809 | 809 |
|
| 810 | 810 |
///Conversion to Digraph::Arc |
| 811 | 811 |
operator const Arc&() const {
|
| 812 | 812 |
return path->nth(idx); |
| 813 | 813 |
} |
| 814 | 814 |
|
| 815 | 815 |
/// Next arc |
| 816 | 816 |
ArcIt& operator++() {
|
| 817 | 817 |
++idx; |
| 818 | 818 |
if (idx >= path->length()) idx = -1; |
| 819 | 819 |
return *this; |
| 820 | 820 |
} |
| 821 | 821 |
|
| 822 | 822 |
/// Comparison operator |
| 823 | 823 |
bool operator==(const ArcIt& e) const { return idx==e.idx; }
|
| 824 | 824 |
/// Comparison operator |
| 825 | 825 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
|
| 826 | 826 |
/// Comparison operator |
| 827 | 827 |
bool operator<(const ArcIt& e) const { return idx<e.idx; }
|
| 828 | 828 |
|
| 829 | 829 |
private: |
| 830 | 830 |
const StaticPath *path; |
| 831 | 831 |
int idx; |
| ... | ... |
@@ -109,194 +109,192 @@ |
| 109 | 109 |
Node source(Arc a) const { return Node(arcs[a._id].source); }
|
| 110 | 110 |
Node target(Arc a) const { return Node(arcs[a._id].target); }
|
| 111 | 111 |
|
| 112 | 112 |
static int id(Node v) { return v._id; }
|
| 113 | 113 |
static int id(Arc a) { return a._id; }
|
| 114 | 114 |
|
| 115 | 115 |
static Node nodeFromId(int id) { return Node(id);}
|
| 116 | 116 |
static Arc arcFromId(int id) { return Arc(id);}
|
| 117 | 117 |
|
| 118 | 118 |
bool valid(Node n) const {
|
| 119 | 119 |
return n._id >= 0 && n._id < static_cast<int>(nodes.size()); |
| 120 | 120 |
} |
| 121 | 121 |
bool valid(Arc a) const {
|
| 122 | 122 |
return a._id >= 0 && a._id < static_cast<int>(arcs.size()); |
| 123 | 123 |
} |
| 124 | 124 |
|
| 125 | 125 |
class Node {
|
| 126 | 126 |
friend class SmartDigraphBase; |
| 127 | 127 |
friend class SmartDigraph; |
| 128 | 128 |
|
| 129 | 129 |
protected: |
| 130 | 130 |
int _id; |
| 131 | 131 |
explicit Node(int id) : _id(id) {}
|
| 132 | 132 |
public: |
| 133 | 133 |
Node() {}
|
| 134 | 134 |
Node (Invalid) : _id(-1) {}
|
| 135 | 135 |
bool operator==(const Node i) const {return _id == i._id;}
|
| 136 | 136 |
bool operator!=(const Node i) const {return _id != i._id;}
|
| 137 | 137 |
bool operator<(const Node i) const {return _id < i._id;}
|
| 138 | 138 |
}; |
| 139 | 139 |
|
| 140 | 140 |
|
| 141 | 141 |
class Arc {
|
| 142 | 142 |
friend class SmartDigraphBase; |
| 143 | 143 |
friend class SmartDigraph; |
| 144 | 144 |
|
| 145 | 145 |
protected: |
| 146 | 146 |
int _id; |
| 147 | 147 |
explicit Arc(int id) : _id(id) {}
|
| 148 | 148 |
public: |
| 149 | 149 |
Arc() { }
|
| 150 | 150 |
Arc (Invalid) : _id(-1) {}
|
| 151 | 151 |
bool operator==(const Arc i) const {return _id == i._id;}
|
| 152 | 152 |
bool operator!=(const Arc i) const {return _id != i._id;}
|
| 153 | 153 |
bool operator<(const Arc i) const {return _id < i._id;}
|
| 154 | 154 |
}; |
| 155 | 155 |
|
| 156 | 156 |
void first(Node& node) const {
|
| 157 | 157 |
node._id = nodes.size() - 1; |
| 158 | 158 |
} |
| 159 | 159 |
|
| 160 | 160 |
static void next(Node& node) {
|
| 161 | 161 |
--node._id; |
| 162 | 162 |
} |
| 163 | 163 |
|
| 164 | 164 |
void first(Arc& arc) const {
|
| 165 | 165 |
arc._id = arcs.size() - 1; |
| 166 | 166 |
} |
| 167 | 167 |
|
| 168 | 168 |
static void next(Arc& arc) {
|
| 169 | 169 |
--arc._id; |
| 170 | 170 |
} |
| 171 | 171 |
|
| 172 | 172 |
void firstOut(Arc& arc, const Node& node) const {
|
| 173 | 173 |
arc._id = nodes[node._id].first_out; |
| 174 | 174 |
} |
| 175 | 175 |
|
| 176 | 176 |
void nextOut(Arc& arc) const {
|
| 177 | 177 |
arc._id = arcs[arc._id].next_out; |
| 178 | 178 |
} |
| 179 | 179 |
|
| 180 | 180 |
void firstIn(Arc& arc, const Node& node) const {
|
| 181 | 181 |
arc._id = nodes[node._id].first_in; |
| 182 | 182 |
} |
| 183 | 183 |
|
| 184 | 184 |
void nextIn(Arc& arc) const {
|
| 185 | 185 |
arc._id = arcs[arc._id].next_in; |
| 186 | 186 |
} |
| 187 | 187 |
|
| 188 | 188 |
}; |
| 189 | 189 |
|
| 190 | 190 |
typedef DigraphExtender<SmartDigraphBase> ExtendedSmartDigraphBase; |
| 191 | 191 |
|
| 192 | 192 |
///\ingroup graphs |
| 193 | 193 |
/// |
| 194 | 194 |
///\brief A smart directed graph class. |
| 195 | 195 |
/// |
| 196 | 196 |
///This is a simple and fast digraph implementation. |
| 197 | 197 |
///It is also quite memory efficient, but at the price |
| 198 | 198 |
///that <b> it does support only limited (only stack-like) |
| 199 | 199 |
///node and arc deletions</b>. |
| 200 | 200 |
///It conforms to the \ref concepts::Digraph "Digraph concept" with |
| 201 | 201 |
///an important extra feature that its maps are real \ref |
| 202 | 202 |
///concepts::ReferenceMap "reference map"s. |
| 203 | 203 |
/// |
| 204 | 204 |
///\sa concepts::Digraph. |
| 205 |
/// |
|
| 206 |
///\author Alpar Juttner |
|
| 207 | 205 |
class SmartDigraph : public ExtendedSmartDigraphBase {
|
| 208 | 206 |
public: |
| 209 | 207 |
|
| 210 | 208 |
typedef ExtendedSmartDigraphBase Parent; |
| 211 | 209 |
|
| 212 | 210 |
private: |
| 213 | 211 |
|
| 214 | 212 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
| 215 | 213 |
|
| 216 | 214 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
| 217 | 215 |
/// |
| 218 | 216 |
SmartDigraph(const SmartDigraph &) : ExtendedSmartDigraphBase() {};
|
| 219 | 217 |
///\brief Assignment of SmartDigraph to another one is \e not allowed. |
| 220 | 218 |
///Use DigraphCopy() instead. |
| 221 | 219 |
|
| 222 | 220 |
///Assignment of SmartDigraph to another one is \e not allowed. |
| 223 | 221 |
///Use DigraphCopy() instead. |
| 224 | 222 |
void operator=(const SmartDigraph &) {}
|
| 225 | 223 |
|
| 226 | 224 |
public: |
| 227 | 225 |
|
| 228 | 226 |
/// Constructor |
| 229 | 227 |
|
| 230 | 228 |
/// Constructor. |
| 231 | 229 |
/// |
| 232 | 230 |
SmartDigraph() {};
|
| 233 | 231 |
|
| 234 | 232 |
///Add a new node to the digraph. |
| 235 | 233 |
|
| 236 | 234 |
/// \return the new node. |
| 237 | 235 |
/// |
| 238 | 236 |
Node addNode() { return Parent::addNode(); }
|
| 239 | 237 |
|
| 240 | 238 |
///Add a new arc to the digraph. |
| 241 | 239 |
|
| 242 | 240 |
///Add a new arc to the digraph with source node \c s |
| 243 | 241 |
///and target node \c t. |
| 244 | 242 |
///\return the new arc. |
| 245 | 243 |
Arc addArc(const Node& s, const Node& t) {
|
| 246 | 244 |
return Parent::addArc(s, t); |
| 247 | 245 |
} |
| 248 | 246 |
|
| 249 | 247 |
/// \brief Using this it is possible to avoid the superfluous memory |
| 250 | 248 |
/// allocation. |
| 251 | 249 |
|
| 252 | 250 |
/// Using this it is possible to avoid the superfluous memory |
| 253 | 251 |
/// allocation: if you know that the digraph you want to build will |
| 254 | 252 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
| 255 | 253 |
/// then it is worth reserving space for this amount before starting |
| 256 | 254 |
/// to build the digraph. |
| 257 | 255 |
/// \sa reserveArc |
| 258 | 256 |
void reserveNode(int n) { nodes.reserve(n); };
|
| 259 | 257 |
|
| 260 | 258 |
/// \brief Using this it is possible to avoid the superfluous memory |
| 261 | 259 |
/// allocation. |
| 262 | 260 |
|
| 263 | 261 |
/// Using this it is possible to avoid the superfluous memory |
| 264 | 262 |
/// allocation: if you know that the digraph you want to build will |
| 265 | 263 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
| 266 | 264 |
/// then it is worth reserving space for this amount before starting |
| 267 | 265 |
/// to build the digraph. |
| 268 | 266 |
/// \sa reserveNode |
| 269 | 267 |
void reserveArc(int m) { arcs.reserve(m); };
|
| 270 | 268 |
|
| 271 | 269 |
/// \brief Node validity check |
| 272 | 270 |
/// |
| 273 | 271 |
/// This function gives back true if the given node is valid, |
| 274 | 272 |
/// ie. it is a real node of the graph. |
| 275 | 273 |
/// |
| 276 | 274 |
/// \warning A removed node (using Snapshot) could become valid again |
| 277 | 275 |
/// when new nodes are added to the graph. |
| 278 | 276 |
bool valid(Node n) const { return Parent::valid(n); }
|
| 279 | 277 |
|
| 280 | 278 |
/// \brief Arc validity check |
| 281 | 279 |
/// |
| 282 | 280 |
/// This function gives back true if the given arc is valid, |
| 283 | 281 |
/// ie. it is a real arc of the graph. |
| 284 | 282 |
/// |
| 285 | 283 |
/// \warning A removed arc (using Snapshot) could become valid again |
| 286 | 284 |
/// when new arcs are added to the graph. |
| 287 | 285 |
bool valid(Arc a) const { return Parent::valid(a); }
|
| 288 | 286 |
|
| 289 | 287 |
///Clear the digraph. |
| 290 | 288 |
|
| 291 | 289 |
///Erase all the nodes and arcs from the digraph. |
| 292 | 290 |
/// |
| 293 | 291 |
void clear() {
|
| 294 | 292 |
Parent::clear(); |
| 295 | 293 |
} |
| 296 | 294 |
|
| 297 | 295 |
///Split a node. |
| 298 | 296 |
|
| 299 | 297 |
///This function splits a node. First a new node is added to the digraph, |
| 300 | 298 |
///then the source of each outgoing arc of \c n is moved to this new node. |
| 301 | 299 |
///If \c connect is \c true (this is the default value), then a new arc |
| 302 | 300 |
///from \c n to the newly created node is also added. |
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_TIME_MEASURE_H |
| 20 | 20 |
#define LEMON_TIME_MEASURE_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup timecount |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Tools for measuring cpu usage |
| 25 | 25 |
|
| 26 | 26 |
#ifdef WIN32 |
| 27 | 27 |
#define WIN32_LEAN_AND_MEAN |
| 28 | 28 |
#define NOMINMAX |
| 29 | 29 |
#include <windows.h> |
| 30 | 30 |
#include <cmath> |
| 31 | 31 |
#else |
| 32 | 32 |
#include <sys/times.h> |
| 33 | 33 |
#include <sys/time.h> |
| 34 | 34 |
#endif |
| 35 | 35 |
|
| 36 | 36 |
#include <string> |
| 37 | 37 |
#include <fstream> |
| 38 | 38 |
#include <iostream> |
| 39 | 39 |
|
| 40 | 40 |
namespace lemon {
|
| 41 | 41 |
|
| 42 | 42 |
/// \addtogroup timecount |
| 43 | 43 |
/// @{
|
| 44 | 44 |
|
| 45 | 45 |
/// A class to store (cpu)time instances. |
| 46 | 46 |
|
| 47 | 47 |
/// This class stores five time values. |
| 48 | 48 |
/// - a real time |
| 49 | 49 |
/// - a user cpu time |
| 50 | 50 |
/// - a system cpu time |
| 51 | 51 |
/// - a user cpu time of children |
| 52 | 52 |
/// - a system cpu time of children |
| 53 | 53 |
/// |
| 54 | 54 |
/// TimeStamp's can be added to or substracted from each other and |
| 55 | 55 |
/// they can be pushed to a stream. |
| 56 | 56 |
/// |
| 57 | 57 |
/// In most cases, perhaps the \ref Timer or the \ref TimeReport |
| 58 | 58 |
/// class is what you want to use instead. |
| 59 |
/// |
|
| 60 |
///\author Alpar Juttner |
|
| 61 | 59 |
|
| 62 | 60 |
class TimeStamp |
| 63 | 61 |
{
|
| 64 | 62 |
double utime; |
| 65 | 63 |
double stime; |
| 66 | 64 |
double cutime; |
| 67 | 65 |
double cstime; |
| 68 | 66 |
double rtime; |
| 69 | 67 |
|
| 70 | 68 |
void _reset() {
|
| 71 | 69 |
utime = stime = cutime = cstime = rtime = 0; |
| 72 | 70 |
} |
| 73 | 71 |
|
| 74 | 72 |
public: |
| 75 | 73 |
|
| 76 | 74 |
///Read the current time values of the process |
| 77 | 75 |
void stamp() |
| 78 | 76 |
{
|
| 79 | 77 |
#ifndef WIN32 |
| 80 | 78 |
timeval tv; |
| 81 | 79 |
gettimeofday(&tv, 0); |
| 82 | 80 |
rtime=tv.tv_sec+double(tv.tv_usec)/1e6; |
| 83 | 81 |
|
| 84 | 82 |
tms ts; |
| 85 | 83 |
double tck=sysconf(_SC_CLK_TCK); |
| 86 | 84 |
times(&ts); |
| 87 | 85 |
utime=ts.tms_utime/tck; |
| 88 | 86 |
stime=ts.tms_stime/tck; |
| 89 | 87 |
cutime=ts.tms_cutime/tck; |
| 90 | 88 |
cstime=ts.tms_cstime/tck; |
| 91 | 89 |
#else |
| 92 | 90 |
static const double ch = 4294967296.0e-7; |
| 93 | 91 |
static const double cl = 1.0e-7; |
| 94 | 92 |
|
| 95 | 93 |
FILETIME system; |
| 96 | 94 |
GetSystemTimeAsFileTime(&system); |
| 97 | 95 |
rtime = ch * system.dwHighDateTime + cl * system.dwLowDateTime; |
| 98 | 96 |
|
| 99 | 97 |
FILETIME create, exit, kernel, user; |
| 100 | 98 |
if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) {
|
| 101 | 99 |
utime = ch * user.dwHighDateTime + cl * user.dwLowDateTime; |
| 102 | 100 |
stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime; |
| 103 | 101 |
cutime = 0; |
| 104 | 102 |
cstime = 0; |
| 105 | 103 |
} else {
|
| 106 | 104 |
rtime = 0; |
| 107 | 105 |
utime = 0; |
| 108 | 106 |
stime = 0; |
| 109 | 107 |
cutime = 0; |
| 110 | 108 |
cstime = 0; |
| 111 | 109 |
} |
| 112 | 110 |
#endif |
| 113 | 111 |
} |
| 114 | 112 |
|
| 115 | 113 |
/// Constructor initializing with zero |
| 116 | 114 |
TimeStamp() |
| 117 | 115 |
{ _reset(); }
|
| 118 | 116 |
///Constructor initializing with the current time values of the process |
| 119 | 117 |
TimeStamp(void *) { stamp();}
|
| 120 | 118 |
|
| 121 | 119 |
///Set every time value to zero |
| 122 | 120 |
TimeStamp &reset() {_reset();return *this;}
|
| 123 | 121 |
|
| 124 | 122 |
///\e |
| 125 | 123 |
TimeStamp &operator+=(const TimeStamp &b) |
| 126 | 124 |
{
|
| 127 | 125 |
utime+=b.utime; |
| 128 | 126 |
stime+=b.stime; |
| 129 | 127 |
cutime+=b.cutime; |
| 130 | 128 |
cstime+=b.cstime; |
| 131 | 129 |
rtime+=b.rtime; |
| 132 | 130 |
return *this; |
| 133 | 131 |
} |
| 134 | 132 |
///\e |
| 135 | 133 |
TimeStamp operator+(const TimeStamp &b) const |
| 136 | 134 |
{
|
| 137 | 135 |
TimeStamp t(*this); |
| 138 | 136 |
return t+=b; |
| 139 | 137 |
} |
| 140 | 138 |
///\e |
| 141 | 139 |
TimeStamp &operator-=(const TimeStamp &b) |
| 142 | 140 |
{
|
| 143 | 141 |
utime-=b.utime; |
| 144 | 142 |
stime-=b.stime; |
| 145 | 143 |
cutime-=b.cutime; |
| 146 | 144 |
cstime-=b.cstime; |
| 147 | 145 |
rtime-=b.rtime; |
| 148 | 146 |
return *this; |
| 149 | 147 |
} |
| 150 | 148 |
///\e |
| 151 | 149 |
TimeStamp operator-(const TimeStamp &b) const |
| 152 | 150 |
{
|
| 153 | 151 |
TimeStamp t(*this); |
| 154 | 152 |
return t-=b; |
| 155 | 153 |
} |
| 156 | 154 |
///\e |
| ... | ... |
@@ -203,194 +201,192 @@ |
| 203 | 201 |
///Gives back the system time of the process |
| 204 | 202 |
double systemTime() const |
| 205 | 203 |
{
|
| 206 | 204 |
return stime; |
| 207 | 205 |
} |
| 208 | 206 |
///Gives back the user time of the process' children |
| 209 | 207 |
|
| 210 | 208 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
| 211 | 209 |
/// |
| 212 | 210 |
double cUserTime() const |
| 213 | 211 |
{
|
| 214 | 212 |
return cutime; |
| 215 | 213 |
} |
| 216 | 214 |
///Gives back the user time of the process' children |
| 217 | 215 |
|
| 218 | 216 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
| 219 | 217 |
/// |
| 220 | 218 |
double cSystemTime() const |
| 221 | 219 |
{
|
| 222 | 220 |
return cstime; |
| 223 | 221 |
} |
| 224 | 222 |
///Gives back the real time |
| 225 | 223 |
double realTime() const {return rtime;}
|
| 226 | 224 |
}; |
| 227 | 225 |
|
| 228 | 226 |
TimeStamp operator*(double b,const TimeStamp &t) |
| 229 | 227 |
{
|
| 230 | 228 |
return t*b; |
| 231 | 229 |
} |
| 232 | 230 |
|
| 233 | 231 |
///Prints the time counters |
| 234 | 232 |
|
| 235 | 233 |
///Prints the time counters in the following form: |
| 236 | 234 |
/// |
| 237 | 235 |
/// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt> |
| 238 | 236 |
/// |
| 239 | 237 |
/// where the values are the |
| 240 | 238 |
/// \li \c u: user cpu time, |
| 241 | 239 |
/// \li \c s: system cpu time, |
| 242 | 240 |
/// \li \c cu: user cpu time of children, |
| 243 | 241 |
/// \li \c cs: system cpu time of children, |
| 244 | 242 |
/// \li \c real: real time. |
| 245 | 243 |
/// \relates TimeStamp |
| 246 | 244 |
/// \note On <tt>WIN32</tt> platform the cummulative values are not |
| 247 | 245 |
/// calculated. |
| 248 | 246 |
inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t) |
| 249 | 247 |
{
|
| 250 | 248 |
os << "u: " << t.userTime() << |
| 251 | 249 |
"s, s: " << t.systemTime() << |
| 252 | 250 |
"s, cu: " << t.cUserTime() << |
| 253 | 251 |
"s, cs: " << t.cSystemTime() << |
| 254 | 252 |
"s, real: " << t.realTime() << "s"; |
| 255 | 253 |
return os; |
| 256 | 254 |
} |
| 257 | 255 |
|
| 258 | 256 |
///Class for measuring the cpu time and real time usage of the process |
| 259 | 257 |
|
| 260 | 258 |
///Class for measuring the cpu time and real time usage of the process. |
| 261 | 259 |
///It is quite easy-to-use, here is a short example. |
| 262 | 260 |
///\code |
| 263 | 261 |
/// #include<lemon/time_measure.h> |
| 264 | 262 |
/// #include<iostream> |
| 265 | 263 |
/// |
| 266 | 264 |
/// int main() |
| 267 | 265 |
/// {
|
| 268 | 266 |
/// |
| 269 | 267 |
/// ... |
| 270 | 268 |
/// |
| 271 | 269 |
/// Timer t; |
| 272 | 270 |
/// doSomething(); |
| 273 | 271 |
/// std::cout << t << '\n'; |
| 274 | 272 |
/// t.restart(); |
| 275 | 273 |
/// doSomethingElse(); |
| 276 | 274 |
/// std::cout << t << '\n'; |
| 277 | 275 |
/// |
| 278 | 276 |
/// ... |
| 279 | 277 |
/// |
| 280 | 278 |
/// } |
| 281 | 279 |
///\endcode |
| 282 | 280 |
/// |
| 283 | 281 |
///The \ref Timer can also be \ref stop() "stopped" and |
| 284 | 282 |
///\ref start() "started" again, so it is possible to compute collected |
| 285 | 283 |
///running times. |
| 286 | 284 |
/// |
| 287 | 285 |
///\warning Depending on the operation system and its actual configuration |
| 288 | 286 |
///the time counters have a certain (10ms on a typical Linux system) |
| 289 | 287 |
///granularity. |
| 290 | 288 |
///Therefore this tool is not appropriate to measure very short times. |
| 291 | 289 |
///Also, if you start and stop the timer very frequently, it could lead to |
| 292 | 290 |
///distorted results. |
| 293 | 291 |
/// |
| 294 | 292 |
///\note If you want to measure the running time of the execution of a certain |
| 295 | 293 |
///function, consider the usage of \ref TimeReport instead. |
| 296 | 294 |
/// |
| 297 | 295 |
///\todo This shouldn't be Unix (Linux) specific. |
| 298 | 296 |
///\sa TimeReport |
| 299 |
/// |
|
| 300 |
///\author Alpar Juttner |
|
| 301 | 297 |
class Timer |
| 302 | 298 |
{
|
| 303 | 299 |
int _running; //Timer is running iff _running>0; (_running>=0 always holds) |
| 304 | 300 |
TimeStamp start_time; //This is the relativ start-time if the timer |
| 305 | 301 |
//is _running, the collected _running time otherwise. |
| 306 | 302 |
|
| 307 | 303 |
void _reset() {if(_running) start_time.stamp(); else start_time.reset();}
|
| 308 | 304 |
|
| 309 | 305 |
public: |
| 310 | 306 |
///Constructor. |
| 311 | 307 |
|
| 312 | 308 |
///\param run indicates whether or not the timer starts immediately. |
| 313 | 309 |
/// |
| 314 | 310 |
Timer(bool run=true) :_running(run) {_reset();}
|
| 315 | 311 |
|
| 316 | 312 |
///\name Control the state of the timer |
| 317 | 313 |
///Basically a Timer can be either running or stopped, |
| 318 | 314 |
///but it provides a bit finer control on the execution. |
| 319 | 315 |
///The \ref Timer also counts the number of \ref start() |
| 320 | 316 |
///executions, and is stops only after the same amount (or more) |
| 321 | 317 |
///\ref stop() "stop()"s. This can be useful e.g. to compute the running time |
| 322 | 318 |
///of recursive functions. |
| 323 | 319 |
/// |
| 324 | 320 |
|
| 325 | 321 |
///@{
|
| 326 | 322 |
|
| 327 | 323 |
///Reset and stop the time counters |
| 328 | 324 |
|
| 329 | 325 |
///This function resets and stops the time counters |
| 330 | 326 |
///\sa restart() |
| 331 | 327 |
void reset() |
| 332 | 328 |
{
|
| 333 | 329 |
_running=0; |
| 334 | 330 |
_reset(); |
| 335 | 331 |
} |
| 336 | 332 |
|
| 337 | 333 |
///Start the time counters |
| 338 | 334 |
|
| 339 | 335 |
///This function starts the time counters. |
| 340 | 336 |
/// |
| 341 | 337 |
///If the timer is started more than ones, it will remain running |
| 342 | 338 |
///until the same amount of \ref stop() is called. |
| 343 | 339 |
///\sa stop() |
| 344 | 340 |
void start() |
| 345 | 341 |
{
|
| 346 | 342 |
if(_running) _running++; |
| 347 | 343 |
else {
|
| 348 | 344 |
_running=1; |
| 349 | 345 |
TimeStamp t; |
| 350 | 346 |
t.stamp(); |
| 351 | 347 |
start_time=t-start_time; |
| 352 | 348 |
} |
| 353 | 349 |
} |
| 354 | 350 |
|
| 355 | 351 |
|
| 356 | 352 |
///Stop the time counters |
| 357 | 353 |
|
| 358 | 354 |
///This function stops the time counters. If start() was executed more than |
| 359 | 355 |
///once, then the same number of stop() execution is necessary the really |
| 360 | 356 |
///stop the timer. |
| 361 | 357 |
/// |
| 362 | 358 |
///\sa halt() |
| 363 | 359 |
///\sa start() |
| 364 | 360 |
///\sa restart() |
| 365 | 361 |
///\sa reset() |
| 366 | 362 |
|
| 367 | 363 |
void stop() |
| 368 | 364 |
{
|
| 369 | 365 |
if(_running && !--_running) {
|
| 370 | 366 |
TimeStamp t; |
| 371 | 367 |
t.stamp(); |
| 372 | 368 |
start_time=t-start_time; |
| 373 | 369 |
} |
| 374 | 370 |
} |
| 375 | 371 |
|
| 376 | 372 |
///Halt (i.e stop immediately) the time counters |
| 377 | 373 |
|
| 378 | 374 |
///This function stops immediately the time counters, i.e. <tt>t.halt()</tt> |
| 379 | 375 |
///is a faster |
| 380 | 376 |
///equivalent of the following. |
| 381 | 377 |
///\code |
| 382 | 378 |
/// while(t.running()) t.stop() |
| 383 | 379 |
///\endcode |
| 384 | 380 |
/// |
| 385 | 381 |
/// |
| 386 | 382 |
///\sa stop() |
| 387 | 383 |
///\sa restart() |
| 388 | 384 |
///\sa reset() |
| 389 | 385 |
|
| 390 | 386 |
void halt() |
| 391 | 387 |
{
|
| 392 | 388 |
if(_running) {
|
| 393 | 389 |
_running=0; |
| 394 | 390 |
TimeStamp t; |
| 395 | 391 |
t.stamp(); |
| 396 | 392 |
start_time=t-start_time; |
0 comments (0 inline)