0
2
0
95
84
143
73
... | ... |
@@ -28,7 +28,7 @@ |
28 | 28 |
/// \file |
29 |
/// \brief Euler tour |
|
29 |
/// \brief Euler tour iterators and a function for checking the \e Eulerian |
|
30 |
/// property. |
|
30 | 31 |
/// |
31 |
///This file provides an Euler tour iterator and ways to check |
|
32 |
///if a digraph is euler. |
|
33 |
|
|
32 |
///This file provides Euler tour iterators and a function to check |
|
33 |
///if a (di)graph is \e Eulerian. |
|
34 | 34 |
|
... | ... |
@@ -36,21 +36,19 @@ |
36 | 36 |
|
37 |
///Euler iterator for digraphs. |
|
37 |
///Euler tour iterator for digraphs. |
|
38 | 38 |
|
39 |
/// \ingroup graph_properties |
|
40 |
///This iterator converts to the \c Arc type of the digraph and using |
|
41 |
///operator ++, it provides an Euler tour of a \e directed |
|
42 |
///graph (if there exists). |
|
39 |
/// \ingroup graph_prop |
|
40 |
///This iterator provides an Euler tour (Eulerian circuit) of a \e directed |
|
41 |
///graph (if there exists) and it converts to the \c Arc type of the digraph. |
|
43 | 42 |
/// |
44 |
///For example |
|
45 |
///if the given digraph is Euler (i.e it has only one nontrivial component |
|
46 |
///and the in-degree is equal to the out-degree for all nodes), |
|
47 |
///the following code will put the arcs of \c g |
|
48 |
///to the vector \c et according to an |
|
49 |
///Euler tour of \c g. |
|
43 |
///For example, if the given digraph has an Euler tour (i.e it has only one |
|
44 |
///non-trivial component and the in-degree is equal to the out-degree |
|
45 |
///for all nodes), then the following code will put the arcs of \c g |
|
46 |
///to the vector \c et according to an Euler tour of \c g. |
|
50 | 47 |
///\code |
51 | 48 |
/// std::vector<ListDigraph::Arc> et; |
52 |
/// for(DiEulerIt<ListDigraph> e(g) |
|
49 |
/// for(DiEulerIt<ListDigraph> e(g); e!=INVALID; ++e) |
|
53 | 50 |
/// et.push_back(e); |
54 | 51 |
///\endcode |
55 |
///If \c g |
|
52 |
///If \c g has no Euler tour, then the resulted walk will not be closed |
|
53 |
///or not contain all arcs. |
|
56 | 54 |
///\sa EulerIt |
... | ... |
@@ -67,3 +65,3 @@ |
67 | 65 |
const GR &g; |
68 |
typename GR::template NodeMap<OutArcIt> |
|
66 |
typename GR::template NodeMap<OutArcIt> narc; |
|
69 | 67 |
std::list<Arc> euler; |
... | ... |
@@ -74,7 +72,8 @@ |
74 | 72 |
|
73 |
///Constructor. |
|
75 | 74 |
///\param gr A digraph. |
76 |
///\param start The starting point of the tour. If it is not given |
|
77 |
/// the tour will start from the first node. |
|
75 |
///\param start The starting point of the tour. If it is not given, |
|
76 |
///the tour will start from the first node that has an outgoing arc. |
|
78 | 77 |
DiEulerIt(const GR &gr, typename GR::Node start = INVALID) |
79 |
: g(gr), |
|
78 |
: g(gr), narc(g) |
|
80 | 79 |
{ |
... | ... |
@@ -86,7 +85,7 @@ |
86 | 85 |
if (start!=INVALID) { |
87 |
for (NodeIt n(g); n!=INVALID; ++n) nedge[n]=OutArcIt(g,n); |
|
88 |
while (nedge[start]!=INVALID) { |
|
89 |
euler.push_back(nedge[start]); |
|
90 |
Node next=g.target(nedge[start]); |
|
91 |
++ |
|
86 |
for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n); |
|
87 |
while (narc[start]!=INVALID) { |
|
88 |
euler.push_back(narc[start]); |
|
89 |
Node next=g.target(narc[start]); |
|
90 |
++narc[start]; |
|
92 | 91 |
start=next; |
... | ... |
@@ -96,5 +95,7 @@ |
96 | 95 |
|
97 |
///Arc |
|
96 |
///Arc conversion |
|
98 | 97 |
operator Arc() { return euler.empty()?INVALID:euler.front(); } |
98 |
///Compare with \c INVALID |
|
99 | 99 |
bool operator==(Invalid) { return euler.empty(); } |
100 |
///Compare with \c INVALID |
|
100 | 101 |
bool operator!=(Invalid) { return !euler.empty(); } |
... | ... |
@@ -102,2 +103,5 @@ |
102 | 103 |
///Next arc of the tour |
104 |
|
|
105 |
///Next arc of the tour |
|
106 |
/// |
|
103 | 107 |
DiEulerIt &operator++() { |
... | ... |
@@ -105,9 +109,7 @@ |
105 | 109 |
euler.pop_front(); |
106 |
//This produces a warning.Strange. |
|
107 |
//std::list<Arc>::iterator next=euler.begin(); |
|
108 | 110 |
typename std::list<Arc>::iterator next=euler.begin(); |
109 |
while(nedge[s]!=INVALID) { |
|
110 |
euler.insert(next,nedge[s]); |
|
111 |
Node n=g.target(nedge[s]); |
|
112 |
++nedge[s]; |
|
111 |
while(narc[s]!=INVALID) { |
|
112 |
euler.insert(next,narc[s]); |
|
113 |
Node n=g.target(narc[s]); |
|
114 |
++narc[s]; |
|
113 | 115 |
s=n; |
... | ... |
@@ -118,4 +120,6 @@ |
118 | 120 |
|
121 |
/// Postfix incrementation. |
|
122 |
/// |
|
119 | 123 |
///\warning This incrementation |
120 |
///returns an \c Arc, not |
|
124 |
///returns an \c Arc, not a \ref DiEulerIt, as one may |
|
121 | 125 |
///expect. |
... | ... |
@@ -129,13 +133,11 @@ |
129 | 133 |
|
130 |
///Euler iterator for graphs. |
|
134 |
///Euler tour iterator for graphs. |
|
131 | 135 |
|
132 | 136 |
/// \ingroup graph_properties |
133 |
///This iterator converts to the \c Arc (or \c Edge) |
|
134 |
///type of the digraph and using |
|
135 |
///operator ++, it provides an Euler tour of an undirected |
|
136 |
///digraph (if there exists). |
|
137 |
///This iterator provides an Euler tour (Eulerian circuit) of an |
|
138 |
///\e undirected graph (if there exists) and it converts to the \c Arc |
|
139 |
///and \c Edge types of the graph. |
|
137 | 140 |
/// |
138 |
///For example |
|
139 |
///if the given digraph if Euler (i.e it has only one nontrivial component |
|
140 |
/// |
|
141 |
///For example, if the given graph has an Euler tour (i.e it has only one |
|
142 |
///non-trivial component and the degree of each node is even), |
|
141 | 143 |
///the following code will print the arc IDs according to an |
... | ... |
@@ -143,3 +145,3 @@ |
143 | 145 |
///\code |
144 |
/// for(EulerIt<ListGraph> e(g) |
|
146 |
/// for(EulerIt<ListGraph> e(g); e!=INVALID; ++e) { |
|
145 | 147 |
/// std::cout << g.id(Edge(e)) << std::eol; |
... | ... |
@@ -147,8 +149,8 @@ |
147 | 149 |
///\endcode |
148 |
///Although the iterator provides an Euler tour of an graph, |
|
149 |
///it still returns Arcs in order to indicate the direction of the tour. |
|
150 |
/// |
|
150 |
///Although this iterator is for undirected graphs, it still returns |
|
151 |
///arcs in order to indicate the direction of the tour. |
|
152 |
///(But arcs convert to edges, of course.) |
|
151 | 153 |
/// |
152 |
///If \c g is not Euler then the resulted tour will not be full or closed. |
|
153 |
///\sa EulerIt |
|
154 |
///If \c g has no Euler tour, then the resulted walk will not be closed |
|
155 |
///or not contain all edges. |
|
154 | 156 |
template<typename GR> |
... | ... |
@@ -165,3 +167,3 @@ |
165 | 167 |
const GR &g; |
166 |
typename GR::template NodeMap<OutArcIt> |
|
168 |
typename GR::template NodeMap<OutArcIt> narc; |
|
167 | 169 |
typename GR::template EdgeMap<bool> visited; |
... | ... |
@@ -173,7 +175,8 @@ |
173 | 175 |
|
174 |
///\param gr An graph. |
|
175 |
///\param start The starting point of the tour. If it is not given |
|
176 |
/// |
|
176 |
///Constructor. |
|
177 |
///\param gr A graph. |
|
178 |
///\param start The starting point of the tour. If it is not given, |
|
179 |
///the tour will start from the first node that has an incident edge. |
|
177 | 180 |
EulerIt(const GR &gr, typename GR::Node start = INVALID) |
178 |
: g(gr), |
|
181 |
: g(gr), narc(g), visited(g, false) |
|
179 | 182 |
{ |
... | ... |
@@ -185,10 +188,10 @@ |
185 | 188 |
if (start!=INVALID) { |
186 |
for (NodeIt n(g); n!=INVALID; ++n) nedge[n]=OutArcIt(g,n); |
|
187 |
while(nedge[start]!=INVALID) { |
|
188 |
euler.push_back(nedge[start]); |
|
189 |
visited[nedge[start]]=true; |
|
190 |
Node next=g.target(nedge[start]); |
|
191 |
++nedge[start]; |
|
189 |
for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n); |
|
190 |
while(narc[start]!=INVALID) { |
|
191 |
euler.push_back(narc[start]); |
|
192 |
visited[narc[start]]=true; |
|
193 |
Node next=g.target(narc[start]); |
|
194 |
++narc[start]; |
|
192 | 195 |
start=next; |
193 |
while( |
|
196 |
while(narc[start]!=INVALID && visited[narc[start]]) ++narc[start]; |
|
194 | 197 |
} |
... | ... |
@@ -197,9 +200,9 @@ |
197 | 200 |
|
198 |
///Arc |
|
201 |
///Arc conversion |
|
199 | 202 |
operator Arc() const { return euler.empty()?INVALID:euler.front(); } |
200 |
/// |
|
203 |
///Edge conversion |
|
201 | 204 |
operator Edge() const { return euler.empty()?INVALID:euler.front(); } |
202 |
///\ |
|
205 |
///Compare with \c INVALID |
|
203 | 206 |
bool operator==(Invalid) const { return euler.empty(); } |
204 |
///\ |
|
207 |
///Compare with \c INVALID |
|
205 | 208 |
bool operator!=(Invalid) const { return !euler.empty(); } |
... | ... |
@@ -207,2 +210,5 @@ |
207 | 210 |
///Next arc of the tour |
211 |
|
|
212 |
///Next arc of the tour |
|
213 |
/// |
|
208 | 214 |
EulerIt &operator++() { |
... | ... |
@@ -211,11 +217,10 @@ |
211 | 217 |
typename std::list<Arc>::iterator next=euler.begin(); |
212 |
|
|
213 |
while(nedge[s]!=INVALID) { |
|
214 |
while(nedge[s]!=INVALID && visited[nedge[s]]) ++nedge[s]; |
|
215 |
if(nedge[s]==INVALID) break; |
|
218 |
while(narc[s]!=INVALID) { |
|
219 |
while(narc[s]!=INVALID && visited[narc[s]]) ++narc[s]; |
|
220 |
if(narc[s]==INVALID) break; |
|
216 | 221 |
else { |
217 |
euler.insert(next,nedge[s]); |
|
218 |
visited[nedge[s]]=true; |
|
219 |
Node n=g.target(nedge[s]); |
|
220 |
++nedge[s]; |
|
222 |
euler.insert(next,narc[s]); |
|
223 |
visited[narc[s]]=true; |
|
224 |
Node n=g.target(narc[s]); |
|
225 |
++narc[s]; |
|
221 | 226 |
s=n; |
... | ... |
@@ -228,5 +233,6 @@ |
228 | 233 |
|
229 |
///\warning This incrementation |
|
230 |
///returns an \c Arc, not an \ref EulerIt, as one may |
|
231 |
/// |
|
234 |
/// Postfix incrementation. |
|
235 |
/// |
|
236 |
///\warning This incrementation returns an \c Arc (which converts to |
|
237 |
///an \c Edge), not an \ref EulerIt, as one may expect. |
|
232 | 238 |
Arc operator++(int) |
... | ... |
@@ -240,14 +246,19 @@ |
240 | 246 |
|
241 |
/// |
|
247 |
///Check if the given graph is \e Eulerian |
|
242 | 248 |
|
243 | 249 |
/// \ingroup graph_properties |
244 |
///Checks if the graph is Eulerian. It works for both directed and undirected |
|
245 |
///graphs. |
|
246 |
///\note By definition, a digraph is called \e Eulerian if |
|
247 |
///and only if it is connected and the number of its incoming and outgoing |
|
250 |
///This function checks if the given graph is \e Eulerian. |
|
251 |
///It works for both directed and undirected graphs. |
|
252 |
/// |
|
253 |
///By definition, a digraph is called \e Eulerian if |
|
254 |
///and only if it is connected and the number of incoming and outgoing |
|
248 | 255 |
///arcs are the same for each node. |
249 | 256 |
///Similarly, an undirected graph is called \e Eulerian if |
250 |
///and only if it is connected and the number of incident arcs is even |
|
251 |
///for each node. <em>Therefore, there are digraphs which are not Eulerian, |
|
252 |
/// |
|
257 |
///and only if it is connected and the number of incident edges is even |
|
258 |
///for each node. |
|
259 |
/// |
|
260 |
///\note There are (di)graphs that are not Eulerian, but still have an |
|
261 |
/// Euler tour, since they may contain isolated nodes. |
|
262 |
/// |
|
263 |
///\sa DiEulerIt, EulerIt |
|
253 | 264 |
template<typename GR> |
... | ... |
@@ -270,3 +281,3 @@ |
270 | 281 |
if(countInArcs(g,n)!=countOutArcs(g,n)) return false; |
271 |
return connected( |
|
282 |
return connected(undirector(g)); |
|
272 | 283 |
} |
... | ... |
@@ -20,3 +20,4 @@ |
20 | 20 |
#include <lemon/list_graph.h> |
21 |
#include < |
|
21 |
#include <lemon/adaptors.h> |
|
22 |
#include "test_tools.h" |
|
22 | 23 |
|
... | ... |
@@ -25,3 +26,4 @@ |
25 | 26 |
template <typename Digraph> |
26 |
void checkDiEulerIt(const Digraph& g |
|
27 |
void checkDiEulerIt(const Digraph& g, |
|
28 |
const typename Digraph::Node& start = INVALID) |
|
27 | 29 |
{ |
... | ... |
@@ -29,12 +31,12 @@ |
29 | 31 |
|
30 |
DiEulerIt<Digraph> e(g); |
|
32 |
DiEulerIt<Digraph> e(g, start); |
|
33 |
if (e == INVALID) return; |
|
31 | 34 |
typename Digraph::Node firstNode = g.source(e); |
32 | 35 |
typename Digraph::Node lastNode = g.target(e); |
36 |
if (start != INVALID) { |
|
37 |
check(firstNode == start, "checkDiEulerIt: Wrong first node"); |
|
38 |
} |
|
33 | 39 |
|
34 |
for (; e != INVALID; ++e) |
|
35 |
{ |
|
36 |
if (e != INVALID) |
|
37 |
{ |
|
38 |
lastNode = g.target(e); |
|
39 |
} |
|
40 |
for (; e != INVALID; ++e) { |
|
41 |
if (e != INVALID) lastNode = g.target(e); |
|
40 | 42 |
++visitationNumber[e]; |
... | ... |
@@ -43,3 +45,3 @@ |
43 | 45 |
check(firstNode == lastNode, |
44 |
"checkDiEulerIt: |
|
46 |
"checkDiEulerIt: First and last nodes are not the same"); |
|
45 | 47 |
|
... | ... |
@@ -48,3 +50,3 @@ |
48 | 50 |
check(visitationNumber[a] == 1, |
49 |
"checkDiEulerIt: |
|
51 |
"checkDiEulerIt: Not visited or multiple times visited arc found"); |
|
50 | 52 |
} |
... | ... |
@@ -53,3 +55,4 @@ |
53 | 55 |
template <typename Graph> |
54 |
void checkEulerIt(const Graph& g |
|
56 |
void checkEulerIt(const Graph& g, |
|
57 |
const typename Graph::Node& start = INVALID) |
|
55 | 58 |
{ |
... | ... |
@@ -57,12 +60,12 @@ |
57 | 60 |
|
58 |
EulerIt<Graph> e(g); |
|
59 |
typename Graph::Node firstNode = g.u(e); |
|
60 |
|
|
61 |
EulerIt<Graph> e(g, start); |
|
62 |
if (e == INVALID) return; |
|
63 |
typename Graph::Node firstNode = g.source(typename Graph::Arc(e)); |
|
64 |
typename Graph::Node lastNode = g.target(typename Graph::Arc(e)); |
|
65 |
if (start != INVALID) { |
|
66 |
check(firstNode == start, "checkEulerIt: Wrong first node"); |
|
67 |
} |
|
61 | 68 |
|
62 |
for (; e != INVALID; ++e) |
|
63 |
{ |
|
64 |
if (e != INVALID) |
|
65 |
{ |
|
66 |
lastNode = g.v(e); |
|
67 |
} |
|
69 |
for (; e != INVALID; ++e) { |
|
70 |
if (e != INVALID) lastNode = g.target(typename Graph::Arc(e)); |
|
68 | 71 |
++visitationNumber[e]; |
... | ... |
@@ -71,3 +74,3 @@ |
71 | 74 |
check(firstNode == lastNode, |
72 |
"checkEulerIt: |
|
75 |
"checkEulerIt: First and last nodes are not the same"); |
|
73 | 76 |
|
... | ... |
@@ -76,3 +79,3 @@ |
76 | 79 |
check(visitationNumber[e] == 1, |
77 |
"checkEulerIt: |
|
80 |
"checkEulerIt: Not visited or multiple times visited edge found"); |
|
78 | 81 |
} |
... | ... |
@@ -83,70 +86,137 @@ |
83 | 86 |
typedef ListDigraph Digraph; |
84 |
typedef |
|
87 |
typedef Undirector<Digraph> Graph; |
|
88 |
|
|
89 |
{ |
|
90 |
Digraph d; |
|
91 |
Graph g(d); |
|
92 |
|
|
93 |
checkDiEulerIt(d); |
|
94 |
checkDiEulerIt(g); |
|
95 |
checkEulerIt(g); |
|
85 | 96 |
|
86 |
|
|
97 |
check(eulerian(d), "This graph is Eulerian"); |
|
98 |
check(eulerian(g), "This graph is Eulerian"); |
|
99 |
} |
|
87 | 100 |
{ |
88 |
Digraph |
|
101 |
Digraph d; |
|
102 |
Graph g(d); |
|
103 |
Digraph::Node n = d.addNode(); |
|
89 | 104 |
|
90 |
Digraph::Node n0 = g.addNode(); |
|
91 |
Digraph::Node n1 = g.addNode(); |
|
92 |
|
|
105 |
checkDiEulerIt(d); |
|
106 |
checkDiEulerIt(g); |
|
107 |
checkEulerIt(g); |
|
93 | 108 |
|
94 |
g.addArc(n0, n1); |
|
95 |
g.addArc(n1, n0); |
|
96 |
g.addArc(n1, n2); |
|
97 |
g.addArc(n2, n1); |
|
109 |
check(eulerian(d), "This graph is Eulerian"); |
|
110 |
check(eulerian(g), "This graph is Eulerian"); |
|
98 | 111 |
} |
112 |
{ |
|
113 |
Digraph d; |
|
114 |
Graph g(d); |
|
115 |
Digraph::Node n = d.addNode(); |
|
116 |
d.addArc(n, n); |
|
99 | 117 |
|
100 |
|
|
118 |
checkDiEulerIt(d); |
|
119 |
checkDiEulerIt(g); |
|
120 |
checkEulerIt(g); |
|
121 |
|
|
122 |
check(eulerian(d), "This graph is Eulerian"); |
|
123 |
check(eulerian(g), "This graph is Eulerian"); |
|
124 |
} |
|
101 | 125 |
{ |
102 |
Digraph |
|
126 |
Digraph d; |
|
127 |
Graph g(d); |
|
128 |
Digraph::Node n1 = d.addNode(); |
|
129 |
Digraph::Node n2 = d.addNode(); |
|
130 |
Digraph::Node n3 = d.addNode(); |
|
131 |
|
|
132 |
d.addArc(n1, n2); |
|
133 |
d.addArc(n2, n1); |
|
134 |
d.addArc(n2, n3); |
|
135 |
d.addArc(n3, n2); |
|
103 | 136 |
|
104 |
Digraph::Node n0 = g.addNode(); |
|
105 |
Digraph::Node n1 = g.addNode(); |
|
106 |
|
|
137 |
checkDiEulerIt(d); |
|
138 |
checkDiEulerIt(d, n2); |
|
139 |
checkDiEulerIt(g); |
|
140 |
checkDiEulerIt(g, n2); |
|
141 |
checkEulerIt(g); |
|
142 |
checkEulerIt(g, n2); |
|
107 | 143 |
|
108 |
g.addArc(n0, n1); |
|
109 |
g.addArc(n1, n0); |
|
110 |
|
|
144 |
check(eulerian(d), "This graph is Eulerian"); |
|
145 |
check(eulerian(g), "This graph is Eulerian"); |
|
111 | 146 |
} |
147 |
{ |
|
148 |
Digraph d; |
|
149 |
Graph g(d); |
|
150 |
Digraph::Node n1 = d.addNode(); |
|
151 |
Digraph::Node n2 = d.addNode(); |
|
152 |
Digraph::Node n3 = d.addNode(); |
|
153 |
Digraph::Node n4 = d.addNode(); |
|
154 |
Digraph::Node n5 = d.addNode(); |
|
155 |
Digraph::Node n6 = d.addNode(); |
|
156 |
|
|
157 |
d.addArc(n1, n2); |
|
158 |
d.addArc(n2, n4); |
|
159 |
d.addArc(n1, n3); |
|
160 |
d.addArc(n3, n4); |
|
161 |
d.addArc(n4, n1); |
|
162 |
d.addArc(n3, n5); |
|
163 |
d.addArc(n5, n2); |
|
164 |
d.addArc(n4, n6); |
|
165 |
d.addArc(n2, n6); |
|
166 |
d.addArc(n6, n1); |
|
167 |
d.addArc(n6, n3); |
|
112 | 168 |
|
113 |
|
|
169 |
checkDiEulerIt(d); |
|
170 |
checkDiEulerIt(d, n1); |
|
171 |
checkDiEulerIt(d, n5); |
|
172 |
|
|
173 |
checkDiEulerIt(g); |
|
174 |
checkDiEulerIt(g, n1); |
|
175 |
checkDiEulerIt(g, n5); |
|
176 |
checkEulerIt(g); |
|
177 |
checkEulerIt(g, n1); |
|
178 |
checkEulerIt(g, n5); |
|
179 |
|
|
180 |
check(eulerian(d), "This graph is Eulerian"); |
|
181 |
check(eulerian(g), "This graph is Eulerian"); |
|
182 |
} |
|
114 | 183 |
{ |
115 |
|
|
184 |
Digraph d; |
|
185 |
Graph g(d); |
|
186 |
Digraph::Node n0 = d.addNode(); |
|
187 |
Digraph::Node n1 = d.addNode(); |
|
188 |
Digraph::Node n2 = d.addNode(); |
|
189 |
Digraph::Node n3 = d.addNode(); |
|
190 |
Digraph::Node n4 = d.addNode(); |
|
191 |
Digraph::Node n5 = d.addNode(); |
|
192 |
|
|
193 |
d.addArc(n1, n2); |
|
194 |
d.addArc(n2, n3); |
|
195 |
d.addArc(n3, n1); |
|
116 | 196 |
|
117 |
Graph::Node n0 = g.addNode(); |
|
118 |
Graph::Node n1 = g.addNode(); |
|
119 |
|
|
197 |
checkDiEulerIt(d); |
|
198 |
checkDiEulerIt(d, n2); |
|
120 | 199 |
|
121 |
g.addEdge(n0, n1); |
|
122 |
g.addEdge(n1, n2); |
|
123 |
|
|
200 |
checkDiEulerIt(g); |
|
201 |
checkDiEulerIt(g, n2); |
|
202 |
checkEulerIt(g); |
|
203 |
checkEulerIt(g, n2); |
|
204 |
|
|
205 |
check(!eulerian(d), "This graph is not Eulerian"); |
|
206 |
check(!eulerian(g), "This graph is not Eulerian"); |
|
124 | 207 |
} |
208 |
{ |
|
209 |
Digraph d; |
|
210 |
Graph g(d); |
|
211 |
Digraph::Node n1 = d.addNode(); |
|
212 |
Digraph::Node n2 = d.addNode(); |
|
213 |
Digraph::Node n3 = d.addNode(); |
|
214 |
|
|
215 |
d.addArc(n1, n2); |
|
216 |
d.addArc(n2, n3); |
|
125 | 217 |
|
126 |
Graph graphWithoutEulerianCircuit; |
|
127 |
{ |
|
128 |
Graph& g = graphWithoutEulerianCircuit; |
|
129 |
|
|
130 |
Graph::Node n0 = g.addNode(); |
|
131 |
Graph::Node n1 = g.addNode(); |
|
132 |
Graph::Node n2 = g.addNode(); |
|
133 |
|
|
134 |
g.addEdge(n0, n1); |
|
135 |
g.addEdge(n1, n2); |
|
218 |
check(!eulerian(d), "This graph is not Eulerian"); |
|
219 |
check(!eulerian(g), "This graph is not Eulerian"); |
|
136 | 220 |
} |
137 | 221 |
|
138 |
checkDiEulerIt(digraphWithEulerianCircuit); |
|
139 |
|
|
140 |
checkEulerIt(graphWithEulerianCircuit); |
|
141 |
|
|
142 |
check(eulerian(digraphWithEulerianCircuit), |
|
143 |
"this graph should have an Eulerian circuit"); |
|
144 |
check(!eulerian(digraphWithoutEulerianCircuit), |
|
145 |
"this graph should not have an Eulerian circuit"); |
|
146 |
|
|
147 |
check(eulerian(graphWithEulerianCircuit), |
|
148 |
"this graph should have an Eulerian circuit"); |
|
149 |
check(!eulerian(graphWithoutEulerianCircuit), |
|
150 |
"this graph should have an Eulerian circuit"); |
|
151 |
|
|
152 | 222 |
return 0; |
0 comments (0 inline)