0
4
0
1
2
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BFS_H |
20 | 20 |
#define LEMON_BFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief BFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Bfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Bfs class. |
38 | 38 |
///\tparam GR Digraph type. |
39 | 39 |
template<class GR> |
40 | 40 |
struct BfsDefaultTraits |
41 | 41 |
{ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the shortest paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the shortest paths. |
50 | 50 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 | 65 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
66 | 66 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
67 | 67 |
///Instantiates a ProcessedMap. |
68 | 68 |
|
69 | 69 |
///This function instantiates a ProcessedMap. |
70 | 70 |
///\param g is the digraph, to which |
71 | 71 |
///we would like to define the ProcessedMap |
72 | 72 |
#ifdef DOXYGEN |
73 | 73 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
74 | 74 |
#else |
75 | 75 |
static ProcessedMap *createProcessedMap(const Digraph &) |
76 | 76 |
#endif |
77 | 77 |
{ |
78 | 78 |
return new ProcessedMap(); |
79 | 79 |
} |
80 | 80 |
|
81 | 81 |
///The type of the map that indicates which nodes are reached. |
82 | 82 |
|
83 |
///The type of the map that indicates which nodes are reached. |
|
84 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
83 |
///The type of the map that indicates which nodes are reached.///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
85 | 84 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
86 | 85 |
///Instantiates a ReachedMap. |
87 | 86 |
|
88 | 87 |
///This function instantiates a ReachedMap. |
89 | 88 |
///\param g is the digraph, to which |
90 | 89 |
///we would like to define the ReachedMap. |
91 | 90 |
static ReachedMap *createReachedMap(const Digraph &g) |
92 | 91 |
{ |
93 | 92 |
return new ReachedMap(g); |
94 | 93 |
} |
95 | 94 |
|
96 | 95 |
///The type of the map that stores the distances of the nodes. |
97 | 96 |
|
98 | 97 |
///The type of the map that stores the distances of the nodes. |
99 | 98 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
100 | 99 |
typedef typename Digraph::template NodeMap<int> DistMap; |
101 | 100 |
///Instantiates a DistMap. |
102 | 101 |
|
103 | 102 |
///This function instantiates a DistMap. |
104 | 103 |
///\param g is the digraph, to which we would like to define the |
105 | 104 |
///DistMap. |
106 | 105 |
static DistMap *createDistMap(const Digraph &g) |
107 | 106 |
{ |
108 | 107 |
return new DistMap(g); |
109 | 108 |
} |
110 | 109 |
}; |
111 | 110 |
|
112 | 111 |
///%BFS algorithm class. |
113 | 112 |
|
114 | 113 |
///\ingroup search |
115 | 114 |
///This class provides an efficient implementation of the %BFS algorithm. |
116 | 115 |
/// |
117 | 116 |
///There is also a \ref bfs() "function-type interface" for the BFS |
118 | 117 |
///algorithm, which is convenient in the simplier cases and it can be |
119 | 118 |
///used easier. |
120 | 119 |
/// |
121 | 120 |
///\tparam GR The type of the digraph the algorithm runs on. |
122 | 121 |
///The default value is \ref ListDigraph. The value of GR is not used |
123 | 122 |
///directly by \ref Bfs, it is only passed to \ref BfsDefaultTraits. |
124 | 123 |
///\tparam TR Traits class to set various data types used by the algorithm. |
125 | 124 |
///The default traits class is |
126 | 125 |
///\ref BfsDefaultTraits "BfsDefaultTraits<GR>". |
127 | 126 |
///See \ref BfsDefaultTraits for the documentation of |
128 | 127 |
///a Bfs traits class. |
129 | 128 |
#ifdef DOXYGEN |
130 | 129 |
template <typename GR, |
131 | 130 |
typename TR> |
132 | 131 |
#else |
133 | 132 |
template <typename GR=ListDigraph, |
134 | 133 |
typename TR=BfsDefaultTraits<GR> > |
135 | 134 |
#endif |
136 | 135 |
class Bfs { |
137 | 136 |
public: |
138 | 137 |
|
139 | 138 |
///The type of the digraph the algorithm runs on. |
140 | 139 |
typedef typename TR::Digraph Digraph; |
141 | 140 |
|
142 | 141 |
///\brief The type of the map that stores the predecessor arcs of the |
143 | 142 |
///shortest paths. |
144 | 143 |
typedef typename TR::PredMap PredMap; |
145 | 144 |
///The type of the map that stores the distances of the nodes. |
146 | 145 |
typedef typename TR::DistMap DistMap; |
147 | 146 |
///The type of the map that indicates which nodes are reached. |
148 | 147 |
typedef typename TR::ReachedMap ReachedMap; |
149 | 148 |
///The type of the map that indicates which nodes are processed. |
150 | 149 |
typedef typename TR::ProcessedMap ProcessedMap; |
151 | 150 |
///The type of the paths. |
152 | 151 |
typedef PredMapPath<Digraph, PredMap> Path; |
153 | 152 |
|
154 | 153 |
///The traits class. |
155 | 154 |
typedef TR Traits; |
156 | 155 |
|
157 | 156 |
private: |
158 | 157 |
|
159 | 158 |
typedef typename Digraph::Node Node; |
160 | 159 |
typedef typename Digraph::NodeIt NodeIt; |
161 | 160 |
typedef typename Digraph::Arc Arc; |
162 | 161 |
typedef typename Digraph::OutArcIt OutArcIt; |
163 | 162 |
|
164 | 163 |
//Pointer to the underlying digraph. |
165 | 164 |
const Digraph *G; |
166 | 165 |
//Pointer to the map of predecessor arcs. |
167 | 166 |
PredMap *_pred; |
168 | 167 |
//Indicates if _pred is locally allocated (true) or not. |
169 | 168 |
bool local_pred; |
170 | 169 |
//Pointer to the map of distances. |
171 | 170 |
DistMap *_dist; |
172 | 171 |
//Indicates if _dist is locally allocated (true) or not. |
173 | 172 |
bool local_dist; |
174 | 173 |
//Pointer to the map of reached status of the nodes. |
175 | 174 |
ReachedMap *_reached; |
176 | 175 |
//Indicates if _reached is locally allocated (true) or not. |
177 | 176 |
bool local_reached; |
178 | 177 |
//Pointer to the map of processed status of the nodes. |
179 | 178 |
ProcessedMap *_processed; |
180 | 179 |
//Indicates if _processed is locally allocated (true) or not. |
181 | 180 |
bool local_processed; |
182 | 181 |
|
183 | 182 |
std::vector<typename Digraph::Node> _queue; |
184 | 183 |
int _queue_head,_queue_tail,_queue_next_dist; |
185 | 184 |
int _curr_dist; |
186 | 185 |
|
187 | 186 |
//Creates the maps if necessary. |
188 | 187 |
void create_maps() |
189 | 188 |
{ |
190 | 189 |
if(!_pred) { |
191 | 190 |
local_pred = true; |
192 | 191 |
_pred = Traits::createPredMap(*G); |
193 | 192 |
} |
194 | 193 |
if(!_dist) { |
195 | 194 |
local_dist = true; |
196 | 195 |
_dist = Traits::createDistMap(*G); |
197 | 196 |
} |
198 | 197 |
if(!_reached) { |
199 | 198 |
local_reached = true; |
200 | 199 |
_reached = Traits::createReachedMap(*G); |
201 | 200 |
} |
202 | 201 |
if(!_processed) { |
203 | 202 |
local_processed = true; |
204 | 203 |
_processed = Traits::createProcessedMap(*G); |
205 | 204 |
} |
206 | 205 |
} |
207 | 206 |
|
208 | 207 |
protected: |
209 | 208 |
|
210 | 209 |
Bfs() {} |
211 | 210 |
|
212 | 211 |
public: |
213 | 212 |
|
214 | 213 |
typedef Bfs Create; |
215 | 214 |
|
216 | 215 |
///\name Named template parameters |
217 | 216 |
|
218 | 217 |
///@{ |
219 | 218 |
|
220 | 219 |
template <class T> |
221 | 220 |
struct SetPredMapTraits : public Traits { |
222 | 221 |
typedef T PredMap; |
223 | 222 |
static PredMap *createPredMap(const Digraph &) |
224 | 223 |
{ |
225 | 224 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
226 | 225 |
return 0; // ignore warnings |
227 | 226 |
} |
228 | 227 |
}; |
229 | 228 |
///\brief \ref named-templ-param "Named parameter" for setting |
230 | 229 |
///PredMap type. |
231 | 230 |
/// |
232 | 231 |
///\ref named-templ-param "Named parameter" for setting |
233 | 232 |
///PredMap type. |
234 | 233 |
template <class T> |
235 | 234 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > { |
236 | 235 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
237 | 236 |
}; |
238 | 237 |
|
239 | 238 |
template <class T> |
240 | 239 |
struct SetDistMapTraits : public Traits { |
241 | 240 |
typedef T DistMap; |
242 | 241 |
static DistMap *createDistMap(const Digraph &) |
243 | 242 |
{ |
244 | 243 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
245 | 244 |
return 0; // ignore warnings |
246 | 245 |
} |
247 | 246 |
}; |
248 | 247 |
///\brief \ref named-templ-param "Named parameter" for setting |
249 | 248 |
///DistMap type. |
250 | 249 |
/// |
251 | 250 |
///\ref named-templ-param "Named parameter" for setting |
252 | 251 |
///DistMap type. |
253 | 252 |
template <class T> |
254 | 253 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > { |
255 | 254 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
256 | 255 |
}; |
257 | 256 |
|
258 | 257 |
template <class T> |
259 | 258 |
struct SetReachedMapTraits : public Traits { |
260 | 259 |
typedef T ReachedMap; |
261 | 260 |
static ReachedMap *createReachedMap(const Digraph &) |
262 | 261 |
{ |
263 | 262 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
264 | 263 |
return 0; // ignore warnings |
265 | 264 |
} |
266 | 265 |
}; |
267 | 266 |
///\brief \ref named-templ-param "Named parameter" for setting |
268 | 267 |
///ReachedMap type. |
269 | 268 |
/// |
270 | 269 |
///\ref named-templ-param "Named parameter" for setting |
271 | 270 |
///ReachedMap type. |
272 | 271 |
template <class T> |
273 | 272 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > { |
274 | 273 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
275 | 274 |
}; |
276 | 275 |
|
277 | 276 |
template <class T> |
278 | 277 |
struct SetProcessedMapTraits : public Traits { |
279 | 278 |
typedef T ProcessedMap; |
280 | 279 |
static ProcessedMap *createProcessedMap(const Digraph &) |
281 | 280 |
{ |
282 | 281 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
283 | 282 |
return 0; // ignore warnings |
284 | 283 |
} |
285 | 284 |
}; |
286 | 285 |
///\brief \ref named-templ-param "Named parameter" for setting |
287 | 286 |
///ProcessedMap type. |
288 | 287 |
/// |
289 | 288 |
///\ref named-templ-param "Named parameter" for setting |
290 | 289 |
///ProcessedMap type. |
291 | 290 |
template <class T> |
292 | 291 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > { |
293 | 292 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
294 | 293 |
}; |
295 | 294 |
|
296 | 295 |
struct SetStandardProcessedMapTraits : public Traits { |
297 | 296 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
298 | 297 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
299 | 298 |
{ |
300 | 299 |
return new ProcessedMap(g); |
301 | 300 |
return 0; // ignore warnings |
302 | 301 |
} |
303 | 302 |
}; |
304 | 303 |
///\brief \ref named-templ-param "Named parameter" for setting |
305 | 304 |
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
306 | 305 |
/// |
307 | 306 |
///\ref named-templ-param "Named parameter" for setting |
308 | 307 |
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
309 | 308 |
///If you don't set it explicitly, it will be automatically allocated. |
310 | 309 |
struct SetStandardProcessedMap : |
311 | 310 |
public Bfs< Digraph, SetStandardProcessedMapTraits > { |
312 | 311 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
313 | 312 |
}; |
314 | 313 |
|
315 | 314 |
///@} |
316 | 315 |
|
317 | 316 |
public: |
318 | 317 |
|
319 | 318 |
///Constructor. |
320 | 319 |
|
321 | 320 |
///Constructor. |
322 | 321 |
///\param g The digraph the algorithm runs on. |
323 | 322 |
Bfs(const Digraph &g) : |
324 | 323 |
G(&g), |
325 | 324 |
_pred(NULL), local_pred(false), |
326 | 325 |
_dist(NULL), local_dist(false), |
327 | 326 |
_reached(NULL), local_reached(false), |
328 | 327 |
_processed(NULL), local_processed(false) |
329 | 328 |
{ } |
330 | 329 |
|
331 | 330 |
///Destructor. |
332 | 331 |
~Bfs() |
333 | 332 |
{ |
334 | 333 |
if(local_pred) delete _pred; |
335 | 334 |
if(local_dist) delete _dist; |
336 | 335 |
if(local_reached) delete _reached; |
337 | 336 |
if(local_processed) delete _processed; |
338 | 337 |
} |
339 | 338 |
|
340 | 339 |
///Sets the map that stores the predecessor arcs. |
341 | 340 |
|
342 | 341 |
///Sets the map that stores the predecessor arcs. |
343 | 342 |
///If you don't use this function before calling \ref run(), |
344 | 343 |
///it will allocate one. The destructor deallocates this |
345 | 344 |
///automatically allocated map, of course. |
346 | 345 |
///\return <tt> (*this) </tt> |
347 | 346 |
Bfs &predMap(PredMap &m) |
348 | 347 |
{ |
349 | 348 |
if(local_pred) { |
350 | 349 |
delete _pred; |
351 | 350 |
local_pred=false; |
352 | 351 |
} |
353 | 352 |
_pred = &m; |
354 | 353 |
return *this; |
355 | 354 |
} |
356 | 355 |
|
357 | 356 |
///Sets the map that indicates which nodes are reached. |
358 | 357 |
|
359 | 358 |
///Sets the map that indicates which nodes are reached. |
360 | 359 |
///If you don't use this function before calling \ref run(), |
361 | 360 |
///it will allocate one. The destructor deallocates this |
362 | 361 |
///automatically allocated map, of course. |
363 | 362 |
///\return <tt> (*this) </tt> |
364 | 363 |
Bfs &reachedMap(ReachedMap &m) |
365 | 364 |
{ |
366 | 365 |
if(local_reached) { |
367 | 366 |
delete _reached; |
368 | 367 |
local_reached=false; |
369 | 368 |
} |
370 | 369 |
_reached = &m; |
371 | 370 |
return *this; |
372 | 371 |
} |
373 | 372 |
|
374 | 373 |
///Sets the map that indicates which nodes are processed. |
375 | 374 |
|
376 | 375 |
///Sets the map that indicates which nodes are processed. |
377 | 376 |
///If you don't use this function before calling \ref run(), |
378 | 377 |
///it will allocate one. The destructor deallocates this |
379 | 378 |
///automatically allocated map, of course. |
380 | 379 |
///\return <tt> (*this) </tt> |
381 | 380 |
Bfs &processedMap(ProcessedMap &m) |
382 | 381 |
{ |
383 | 382 |
if(local_processed) { |
384 | 383 |
delete _processed; |
385 | 384 |
local_processed=false; |
386 | 385 |
} |
387 | 386 |
_processed = &m; |
388 | 387 |
return *this; |
389 | 388 |
} |
390 | 389 |
|
391 | 390 |
///Sets the map that stores the distances of the nodes. |
392 | 391 |
|
393 | 392 |
///Sets the map that stores the distances of the nodes calculated by |
394 | 393 |
///the algorithm. |
395 | 394 |
///If you don't use this function before calling \ref run(), |
396 | 395 |
///it will allocate one. The destructor deallocates this |
397 | 396 |
///automatically allocated map, of course. |
398 | 397 |
///\return <tt> (*this) </tt> |
399 | 398 |
Bfs &distMap(DistMap &m) |
400 | 399 |
{ |
401 | 400 |
if(local_dist) { |
402 | 401 |
delete _dist; |
403 | 402 |
local_dist=false; |
404 | 403 |
} |
405 | 404 |
_dist = &m; |
406 | 405 |
return *this; |
407 | 406 |
} |
408 | 407 |
|
409 | 408 |
public: |
410 | 409 |
|
411 | 410 |
///\name Execution control |
412 | 411 |
///The simplest way to execute the algorithm is to use |
413 | 412 |
///one of the member functions called \ref lemon::Bfs::run() "run()". |
414 | 413 |
///\n |
415 | 414 |
///If you need more control on the execution, first you must call |
416 | 415 |
///\ref lemon::Bfs::init() "init()", then you can add several source |
417 | 416 |
///nodes with \ref lemon::Bfs::addSource() "addSource()". |
418 | 417 |
///Finally \ref lemon::Bfs::start() "start()" will perform the |
419 | 418 |
///actual path computation. |
420 | 419 |
|
421 | 420 |
///@{ |
422 | 421 |
|
423 | 422 |
///Initializes the internal data structures. |
424 | 423 |
|
425 | 424 |
///Initializes the internal data structures. |
426 | 425 |
/// |
427 | 426 |
void init() |
428 | 427 |
{ |
429 | 428 |
create_maps(); |
430 | 429 |
_queue.resize(countNodes(*G)); |
431 | 430 |
_queue_head=_queue_tail=0; |
432 | 431 |
_curr_dist=1; |
433 | 432 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
434 | 433 |
_pred->set(u,INVALID); |
435 | 434 |
_reached->set(u,false); |
436 | 435 |
_processed->set(u,false); |
437 | 436 |
} |
438 | 437 |
} |
439 | 438 |
|
440 | 439 |
///Adds a new source node. |
441 | 440 |
|
442 | 441 |
///Adds a new source node to the set of nodes to be processed. |
443 | 442 |
/// |
444 | 443 |
void addSource(Node s) |
445 | 444 |
{ |
446 | 445 |
if(!(*_reached)[s]) |
447 | 446 |
{ |
448 | 447 |
_reached->set(s,true); |
449 | 448 |
_pred->set(s,INVALID); |
450 | 449 |
_dist->set(s,0); |
451 | 450 |
_queue[_queue_head++]=s; |
452 | 451 |
_queue_next_dist=_queue_head; |
453 | 452 |
} |
454 | 453 |
} |
455 | 454 |
|
456 | 455 |
///Processes the next node. |
457 | 456 |
|
458 | 457 |
///Processes the next node. |
459 | 458 |
/// |
460 | 459 |
///\return The processed node. |
461 | 460 |
/// |
462 | 461 |
///\pre The queue must not be empty. |
463 | 462 |
Node processNextNode() |
464 | 463 |
{ |
465 | 464 |
if(_queue_tail==_queue_next_dist) { |
466 | 465 |
_curr_dist++; |
467 | 466 |
_queue_next_dist=_queue_head; |
468 | 467 |
} |
469 | 468 |
Node n=_queue[_queue_tail++]; |
470 | 469 |
_processed->set(n,true); |
471 | 470 |
Node m; |
472 | 471 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
473 | 472 |
if(!(*_reached)[m=G->target(e)]) { |
474 | 473 |
_queue[_queue_head++]=m; |
475 | 474 |
_reached->set(m,true); |
476 | 475 |
_pred->set(m,e); |
477 | 476 |
_dist->set(m,_curr_dist); |
478 | 477 |
} |
479 | 478 |
return n; |
480 | 479 |
} |
481 | 480 |
|
482 | 481 |
///Processes the next node. |
483 | 482 |
|
484 | 483 |
///Processes the next node and checks if the given target node |
485 | 484 |
///is reached. If the target node is reachable from the processed |
486 | 485 |
///node, then the \c reach parameter will be set to \c true. |
487 | 486 |
/// |
488 | 487 |
///\param target The target node. |
489 | 488 |
///\retval reach Indicates if the target node is reached. |
490 | 489 |
///It should be initially \c false. |
491 | 490 |
/// |
492 | 491 |
///\return The processed node. |
493 | 492 |
/// |
494 | 493 |
///\pre The queue must not be empty. |
495 | 494 |
Node processNextNode(Node target, bool& reach) |
496 | 495 |
{ |
497 | 496 |
if(_queue_tail==_queue_next_dist) { |
498 | 497 |
_curr_dist++; |
499 | 498 |
_queue_next_dist=_queue_head; |
500 | 499 |
} |
501 | 500 |
Node n=_queue[_queue_tail++]; |
502 | 501 |
_processed->set(n,true); |
503 | 502 |
Node m; |
504 | 503 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
505 | 504 |
if(!(*_reached)[m=G->target(e)]) { |
506 | 505 |
_queue[_queue_head++]=m; |
507 | 506 |
_reached->set(m,true); |
508 | 507 |
_pred->set(m,e); |
509 | 508 |
_dist->set(m,_curr_dist); |
510 | 509 |
reach = reach || (target == m); |
511 | 510 |
} |
512 | 511 |
return n; |
513 | 512 |
} |
514 | 513 |
|
515 | 514 |
///Processes the next node. |
516 | 515 |
|
517 | 516 |
///Processes the next node and checks if at least one of reached |
518 | 517 |
///nodes has \c true value in the \c nm node map. If one node |
519 | 518 |
///with \c true value is reachable from the processed node, then the |
520 | 519 |
///\c rnode parameter will be set to the first of such nodes. |
521 | 520 |
/// |
522 | 521 |
///\param nm A \c bool (or convertible) node map that indicates the |
523 | 522 |
///possible targets. |
524 | 523 |
///\retval rnode The reached target node. |
525 | 524 |
///It should be initially \c INVALID. |
526 | 525 |
/// |
527 | 526 |
///\return The processed node. |
528 | 527 |
/// |
529 | 528 |
///\pre The queue must not be empty. |
530 | 529 |
template<class NM> |
531 | 530 |
Node processNextNode(const NM& nm, Node& rnode) |
532 | 531 |
{ |
533 | 532 |
if(_queue_tail==_queue_next_dist) { |
534 | 533 |
_curr_dist++; |
535 | 534 |
_queue_next_dist=_queue_head; |
536 | 535 |
} |
537 | 536 |
Node n=_queue[_queue_tail++]; |
538 | 537 |
_processed->set(n,true); |
539 | 538 |
Node m; |
540 | 539 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
541 | 540 |
if(!(*_reached)[m=G->target(e)]) { |
542 | 541 |
_queue[_queue_head++]=m; |
543 | 542 |
_reached->set(m,true); |
544 | 543 |
_pred->set(m,e); |
545 | 544 |
_dist->set(m,_curr_dist); |
546 | 545 |
if (nm[m] && rnode == INVALID) rnode = m; |
547 | 546 |
} |
548 | 547 |
return n; |
549 | 548 |
} |
550 | 549 |
|
551 | 550 |
///The next node to be processed. |
552 | 551 |
|
553 | 552 |
///Returns the next node to be processed or \c INVALID if the queue |
554 | 553 |
///is empty. |
555 | 554 |
Node nextNode() const |
556 | 555 |
{ |
557 | 556 |
return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID; |
558 | 557 |
} |
559 | 558 |
|
560 | 559 |
///\brief Returns \c false if there are nodes |
561 | 560 |
///to be processed. |
562 | 561 |
/// |
563 | 562 |
///Returns \c false if there are nodes |
564 | 563 |
///to be processed in the queue. |
565 | 564 |
bool emptyQueue() const { return _queue_tail==_queue_head; } |
566 | 565 |
|
567 | 566 |
///Returns the number of the nodes to be processed. |
568 | 567 |
|
569 | 568 |
///Returns the number of the nodes to be processed in the queue. |
570 | 569 |
int queueSize() const { return _queue_head-_queue_tail; } |
571 | 570 |
|
572 | 571 |
///Executes the algorithm. |
573 | 572 |
|
574 | 573 |
///Executes the algorithm. |
575 | 574 |
/// |
576 | 575 |
///This method runs the %BFS algorithm from the root node(s) |
577 | 576 |
///in order to compute the shortest path to each node. |
578 | 577 |
/// |
579 | 578 |
///The algorithm computes |
580 | 579 |
///- the shortest path tree (forest), |
581 | 580 |
///- the distance of each node from the root(s). |
582 | 581 |
/// |
583 | 582 |
///\pre init() must be called and at least one root node should be |
584 | 583 |
///added with addSource() before using this function. |
585 | 584 |
/// |
586 | 585 |
///\note <tt>b.start()</tt> is just a shortcut of the following code. |
587 | 586 |
///\code |
588 | 587 |
/// while ( !b.emptyQueue() ) { |
589 | 588 |
/// b.processNextNode(); |
590 | 589 |
/// } |
591 | 590 |
///\endcode |
592 | 591 |
void start() |
593 | 592 |
{ |
594 | 593 |
while ( !emptyQueue() ) processNextNode(); |
595 | 594 |
} |
596 | 595 |
|
597 | 596 |
///Executes the algorithm until the given target node is reached. |
598 | 597 |
|
599 | 598 |
///Executes the algorithm until the given target node is reached. |
600 | 599 |
/// |
601 | 600 |
///This method runs the %BFS algorithm from the root node(s) |
602 | 601 |
///in order to compute the shortest path to \c t. |
603 | 602 |
/// |
604 | 603 |
///The algorithm computes |
605 | 604 |
///- the shortest path to \c t, |
606 | 605 |
///- the distance of \c t from the root(s). |
607 | 606 |
/// |
608 | 607 |
///\pre init() must be called and at least one root node should be |
609 | 608 |
///added with addSource() before using this function. |
610 | 609 |
/// |
611 | 610 |
///\note <tt>b.start(t)</tt> is just a shortcut of the following code. |
612 | 611 |
///\code |
613 | 612 |
/// bool reach = false; |
614 | 613 |
/// while ( !b.emptyQueue() && !reach ) { |
615 | 614 |
/// b.processNextNode(t, reach); |
616 | 615 |
/// } |
617 | 616 |
///\endcode |
618 | 617 |
void start(Node t) |
619 | 618 |
{ |
620 | 619 |
bool reach = false; |
621 | 620 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
622 | 621 |
} |
623 | 622 |
|
624 | 623 |
///Executes the algorithm until a condition is met. |
625 | 624 |
|
626 | 625 |
///Executes the algorithm until a condition is met. |
627 | 626 |
/// |
628 | 627 |
///This method runs the %BFS algorithm from the root node(s) in |
629 | 628 |
///order to compute the shortest path to a node \c v with |
630 | 629 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
631 | 630 |
/// |
632 | 631 |
///\param nm A \c bool (or convertible) node map. The algorithm |
633 | 632 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
634 | 633 |
/// |
635 | 634 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
636 | 635 |
///\c INVALID if no such node was found. |
637 | 636 |
/// |
638 | 637 |
///\pre init() must be called and at least one root node should be |
639 | 638 |
///added with addSource() before using this function. |
640 | 639 |
/// |
641 | 640 |
///\note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
642 | 641 |
///\code |
643 | 642 |
/// Node rnode = INVALID; |
644 | 643 |
/// while ( !b.emptyQueue() && rnode == INVALID ) { |
645 | 644 |
/// b.processNextNode(nm, rnode); |
646 | 645 |
/// } |
647 | 646 |
/// return rnode; |
648 | 647 |
///\endcode |
649 | 648 |
template<class NodeBoolMap> |
650 | 649 |
Node start(const NodeBoolMap &nm) |
651 | 650 |
{ |
652 | 651 |
Node rnode = INVALID; |
653 | 652 |
while ( !emptyQueue() && rnode == INVALID ) { |
654 | 653 |
processNextNode(nm, rnode); |
655 | 654 |
} |
656 | 655 |
return rnode; |
657 | 656 |
} |
658 | 657 |
|
659 | 658 |
///Runs the algorithm from the given source node. |
660 | 659 |
|
661 | 660 |
///This method runs the %BFS algorithm from node \c s |
662 | 661 |
///in order to compute the shortest path to each node. |
663 | 662 |
/// |
664 | 663 |
///The algorithm computes |
665 | 664 |
///- the shortest path tree, |
666 | 665 |
///- the distance of each node from the root. |
667 | 666 |
/// |
668 | 667 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
669 | 668 |
///\code |
670 | 669 |
/// b.init(); |
671 | 670 |
/// b.addSource(s); |
672 | 671 |
/// b.start(); |
673 | 672 |
///\endcode |
674 | 673 |
void run(Node s) { |
675 | 674 |
init(); |
676 | 675 |
addSource(s); |
677 | 676 |
start(); |
678 | 677 |
} |
679 | 678 |
|
680 | 679 |
///Finds the shortest path between \c s and \c t. |
681 | 680 |
|
682 | 681 |
///This method runs the %BFS algorithm from node \c s |
683 | 682 |
///in order to compute the shortest path to node \c t |
684 | 683 |
///(it stops searching when \c t is processed). |
685 | 684 |
/// |
686 | 685 |
///\return \c true if \c t is reachable form \c s. |
687 | 686 |
/// |
688 | 687 |
///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
689 | 688 |
///shortcut of the following code. |
690 | 689 |
///\code |
691 | 690 |
/// b.init(); |
692 | 691 |
/// b.addSource(s); |
693 | 692 |
/// b.start(t); |
694 | 693 |
///\endcode |
695 | 694 |
bool run(Node s,Node t) { |
696 | 695 |
init(); |
697 | 696 |
addSource(s); |
698 | 697 |
start(t); |
699 | 698 |
return reached(t); |
700 | 699 |
} |
701 | 700 |
|
702 | 701 |
///Runs the algorithm to visit all nodes in the digraph. |
703 | 702 |
|
704 | 703 |
///This method runs the %BFS algorithm in order to |
705 | 704 |
///compute the shortest path to each node. |
706 | 705 |
/// |
707 | 706 |
///The algorithm computes |
708 | 707 |
///- the shortest path tree (forest), |
709 | 708 |
///- the distance of each node from the root(s). |
710 | 709 |
/// |
711 | 710 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
712 | 711 |
///\code |
713 | 712 |
/// b.init(); |
714 | 713 |
/// for (NodeIt n(gr); n != INVALID; ++n) { |
715 | 714 |
/// if (!b.reached(n)) { |
716 | 715 |
/// b.addSource(n); |
717 | 716 |
/// b.start(); |
718 | 717 |
/// } |
719 | 718 |
/// } |
720 | 719 |
///\endcode |
721 | 720 |
void run() { |
722 | 721 |
init(); |
723 | 722 |
for (NodeIt n(*G); n != INVALID; ++n) { |
724 | 723 |
if (!reached(n)) { |
725 | 724 |
addSource(n); |
726 | 725 |
start(); |
727 | 726 |
} |
728 | 727 |
} |
729 | 728 |
} |
730 | 729 |
|
731 | 730 |
///@} |
732 | 731 |
|
733 | 732 |
///\name Query Functions |
734 | 733 |
///The result of the %BFS algorithm can be obtained using these |
735 | 734 |
///functions.\n |
736 | 735 |
///Either \ref lemon::Bfs::run() "run()" or \ref lemon::Bfs::start() |
737 | 736 |
///"start()" must be called before using them. |
738 | 737 |
|
739 | 738 |
///@{ |
740 | 739 |
|
741 | 740 |
///The shortest path to a node. |
742 | 741 |
|
743 | 742 |
///Returns the shortest path to a node. |
744 | 743 |
/// |
745 | 744 |
///\warning \c t should be reachable from the root(s). |
746 | 745 |
/// |
747 | 746 |
///\pre Either \ref run() or \ref start() must be called before |
748 | 747 |
///using this function. |
749 | 748 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
750 | 749 |
|
751 | 750 |
///The distance of a node from the root(s). |
752 | 751 |
|
753 | 752 |
///Returns the distance of a node from the root(s). |
754 | 753 |
/// |
755 | 754 |
///\warning If node \c v is not reachable from the root(s), then |
756 | 755 |
///the return value of this function is undefined. |
757 | 756 |
/// |
758 | 757 |
///\pre Either \ref run() or \ref start() must be called before |
759 | 758 |
///using this function. |
760 | 759 |
int dist(Node v) const { return (*_dist)[v]; } |
761 | 760 |
|
762 | 761 |
///Returns the 'previous arc' of the shortest path tree for a node. |
763 | 762 |
|
764 | 763 |
///This function returns the 'previous arc' of the shortest path |
765 | 764 |
///tree for the node \c v, i.e. it returns the last arc of a |
766 | 765 |
///shortest path from the root(s) to \c v. It is \c INVALID if \c v |
767 | 766 |
///is not reachable from the root(s) or if \c v is a root. |
768 | 767 |
/// |
769 | 768 |
///The shortest path tree used here is equal to the shortest path |
770 | 769 |
///tree used in \ref predNode(). |
771 | 770 |
/// |
772 | 771 |
///\pre Either \ref run() or \ref start() must be called before |
773 | 772 |
///using this function. |
774 | 773 |
Arc predArc(Node v) const { return (*_pred)[v];} |
775 | 774 |
|
776 | 775 |
///Returns the 'previous node' of the shortest path tree for a node. |
777 | 776 |
|
778 | 777 |
///This function returns the 'previous node' of the shortest path |
779 | 778 |
///tree for the node \c v, i.e. it returns the last but one node |
780 | 779 |
///from a shortest path from the root(s) to \c v. It is \c INVALID |
781 | 780 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
782 | 781 |
/// |
783 | 782 |
///The shortest path tree used here is equal to the shortest path |
784 | 783 |
///tree used in \ref predArc(). |
785 | 784 |
/// |
786 | 785 |
///\pre Either \ref run() or \ref start() must be called before |
787 | 786 |
///using this function. |
788 | 787 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
789 | 788 |
G->source((*_pred)[v]); } |
790 | 789 |
|
791 | 790 |
///\brief Returns a const reference to the node map that stores the |
792 | 791 |
/// distances of the nodes. |
793 | 792 |
/// |
794 | 793 |
///Returns a const reference to the node map that stores the distances |
795 | 794 |
///of the nodes calculated by the algorithm. |
796 | 795 |
/// |
797 | 796 |
///\pre Either \ref run() or \ref init() |
798 | 797 |
///must be called before using this function. |
799 | 798 |
const DistMap &distMap() const { return *_dist;} |
800 | 799 |
|
801 | 800 |
///\brief Returns a const reference to the node map that stores the |
802 | 801 |
///predecessor arcs. |
803 | 802 |
/// |
804 | 803 |
///Returns a const reference to the node map that stores the predecessor |
805 | 804 |
///arcs, which form the shortest path tree. |
806 | 805 |
/// |
807 | 806 |
///\pre Either \ref run() or \ref init() |
808 | 807 |
///must be called before using this function. |
809 | 808 |
const PredMap &predMap() const { return *_pred;} |
810 | 809 |
|
811 | 810 |
///Checks if a node is reachable from the root(s). |
812 | 811 |
|
813 | 812 |
///Returns \c true if \c v is reachable from the root(s). |
814 | 813 |
///\pre Either \ref run() or \ref start() |
815 | 814 |
///must be called before using this function. |
816 | 815 |
bool reached(Node v) const { return (*_reached)[v]; } |
817 | 816 |
|
818 | 817 |
///@} |
819 | 818 |
}; |
820 | 819 |
|
821 | 820 |
///Default traits class of bfs() function. |
822 | 821 |
|
823 | 822 |
///Default traits class of bfs() function. |
824 | 823 |
///\tparam GR Digraph type. |
825 | 824 |
template<class GR> |
826 | 825 |
struct BfsWizardDefaultTraits |
827 | 826 |
{ |
828 | 827 |
///The type of the digraph the algorithm runs on. |
829 | 828 |
typedef GR Digraph; |
830 | 829 |
|
831 | 830 |
///\brief The type of the map that stores the predecessor |
832 | 831 |
///arcs of the shortest paths. |
833 | 832 |
/// |
834 | 833 |
///The type of the map that stores the predecessor |
835 | 834 |
///arcs of the shortest paths. |
836 | 835 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
837 | 836 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
838 | 837 |
///Instantiates a PredMap. |
839 | 838 |
|
840 | 839 |
///This function instantiates a PredMap. |
841 | 840 |
///\param g is the digraph, to which we would like to define the |
842 | 841 |
///PredMap. |
843 | 842 |
static PredMap *createPredMap(const Digraph &g) |
844 | 843 |
{ |
845 | 844 |
return new PredMap(g); |
846 | 845 |
} |
847 | 846 |
|
848 | 847 |
///The type of the map that indicates which nodes are processed. |
849 | 848 |
|
850 | 849 |
///The type of the map that indicates which nodes are processed. |
851 | 850 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
852 | 851 |
///By default it is a NullMap. |
853 | 852 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
854 | 853 |
///Instantiates a ProcessedMap. |
855 | 854 |
|
856 | 855 |
///This function instantiates a ProcessedMap. |
857 | 856 |
///\param g is the digraph, to which |
858 | 857 |
///we would like to define the ProcessedMap. |
859 | 858 |
#ifdef DOXYGEN |
860 | 859 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
861 | 860 |
#else |
862 | 861 |
static ProcessedMap *createProcessedMap(const Digraph &) |
863 | 862 |
#endif |
864 | 863 |
{ |
865 | 864 |
return new ProcessedMap(); |
866 | 865 |
} |
867 | 866 |
|
868 | 867 |
///The type of the map that indicates which nodes are reached. |
869 | 868 |
|
870 | 869 |
///The type of the map that indicates which nodes are reached. |
871 | 870 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
872 | 871 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
873 | 872 |
///Instantiates a ReachedMap. |
874 | 873 |
|
875 | 874 |
///This function instantiates a ReachedMap. |
876 | 875 |
///\param g is the digraph, to which |
877 | 876 |
///we would like to define the ReachedMap. |
878 | 877 |
static ReachedMap *createReachedMap(const Digraph &g) |
879 | 878 |
{ |
880 | 879 |
return new ReachedMap(g); |
881 | 880 |
} |
882 | 881 |
|
883 | 882 |
///The type of the map that stores the distances of the nodes. |
884 | 883 |
|
885 | 884 |
///The type of the map that stores the distances of the nodes. |
886 | 885 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
887 | 886 |
typedef typename Digraph::template NodeMap<int> DistMap; |
888 | 887 |
///Instantiates a DistMap. |
889 | 888 |
|
890 | 889 |
///This function instantiates a DistMap. |
891 | 890 |
///\param g is the digraph, to which we would like to define |
892 | 891 |
///the DistMap |
893 | 892 |
static DistMap *createDistMap(const Digraph &g) |
894 | 893 |
{ |
895 | 894 |
return new DistMap(g); |
896 | 895 |
} |
897 | 896 |
|
898 | 897 |
///The type of the shortest paths. |
899 | 898 |
|
900 | 899 |
///The type of the shortest paths. |
901 | 900 |
///It must meet the \ref concepts::Path "Path" concept. |
902 | 901 |
typedef lemon::Path<Digraph> Path; |
903 | 902 |
}; |
904 | 903 |
|
905 | 904 |
/// Default traits class used by BfsWizard |
906 | 905 |
|
907 | 906 |
/// To make it easier to use Bfs algorithm |
908 | 907 |
/// we have created a wizard class. |
909 | 908 |
/// This \ref BfsWizard class needs default traits, |
910 | 909 |
/// as well as the \ref Bfs class. |
911 | 910 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
912 | 911 |
/// \ref BfsWizard class. |
913 | 912 |
template<class GR> |
914 | 913 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
915 | 914 |
{ |
916 | 915 |
|
917 | 916 |
typedef BfsWizardDefaultTraits<GR> Base; |
918 | 917 |
protected: |
919 | 918 |
//The type of the nodes in the digraph. |
920 | 919 |
typedef typename Base::Digraph::Node Node; |
921 | 920 |
|
922 | 921 |
//Pointer to the digraph the algorithm runs on. |
923 | 922 |
void *_g; |
924 | 923 |
//Pointer to the map of reached nodes. |
925 | 924 |
void *_reached; |
926 | 925 |
//Pointer to the map of processed nodes. |
927 | 926 |
void *_processed; |
928 | 927 |
//Pointer to the map of predecessors arcs. |
929 | 928 |
void *_pred; |
930 | 929 |
//Pointer to the map of distances. |
931 | 930 |
void *_dist; |
932 | 931 |
//Pointer to the shortest path to the target node. |
933 | 932 |
void *_path; |
934 | 933 |
//Pointer to the distance of the target node. |
935 | 934 |
int *_di; |
936 | 935 |
|
937 | 936 |
public: |
938 | 937 |
/// Constructor. |
939 | 938 |
|
940 | 939 |
/// This constructor does not require parameters, therefore it initiates |
941 | 940 |
/// all of the attributes to \c 0. |
942 | 941 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
943 | 942 |
_dist(0), _path(0), _di(0) {} |
944 | 943 |
|
945 | 944 |
/// Constructor. |
946 | 945 |
|
947 | 946 |
/// This constructor requires one parameter, |
948 | 947 |
/// others are initiated to \c 0. |
949 | 948 |
/// \param g The digraph the algorithm runs on. |
950 | 949 |
BfsWizardBase(const GR &g) : |
951 | 950 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
952 | 951 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
953 | 952 |
|
954 | 953 |
}; |
955 | 954 |
|
956 | 955 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
957 | 956 |
|
958 | 957 |
/// This auxiliary class is created to implement the |
959 | 958 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
960 | 959 |
/// It does not have own \ref run() method, it uses the functions |
961 | 960 |
/// and features of the plain \ref Bfs. |
962 | 961 |
/// |
963 | 962 |
/// This class should only be used through the \ref bfs() function, |
964 | 963 |
/// which makes it easier to use the algorithm. |
965 | 964 |
template<class TR> |
966 | 965 |
class BfsWizard : public TR |
967 | 966 |
{ |
968 | 967 |
typedef TR Base; |
969 | 968 |
|
970 | 969 |
///The type of the digraph the algorithm runs on. |
971 | 970 |
typedef typename TR::Digraph Digraph; |
972 | 971 |
|
973 | 972 |
typedef typename Digraph::Node Node; |
974 | 973 |
typedef typename Digraph::NodeIt NodeIt; |
975 | 974 |
typedef typename Digraph::Arc Arc; |
976 | 975 |
typedef typename Digraph::OutArcIt OutArcIt; |
977 | 976 |
|
978 | 977 |
///\brief The type of the map that stores the predecessor |
979 | 978 |
///arcs of the shortest paths. |
980 | 979 |
typedef typename TR::PredMap PredMap; |
981 | 980 |
///\brief The type of the map that stores the distances of the nodes. |
982 | 981 |
typedef typename TR::DistMap DistMap; |
983 | 982 |
///\brief The type of the map that indicates which nodes are reached. |
984 | 983 |
typedef typename TR::ReachedMap ReachedMap; |
985 | 984 |
///\brief The type of the map that indicates which nodes are processed. |
986 | 985 |
typedef typename TR::ProcessedMap ProcessedMap; |
987 | 986 |
///The type of the shortest paths |
988 | 987 |
typedef typename TR::Path Path; |
989 | 988 |
|
990 | 989 |
public: |
991 | 990 |
|
992 | 991 |
/// Constructor. |
993 | 992 |
BfsWizard() : TR() {} |
994 | 993 |
|
995 | 994 |
/// Constructor that requires parameters. |
996 | 995 |
|
997 | 996 |
/// Constructor that requires parameters. |
998 | 997 |
/// These parameters will be the default values for the traits class. |
999 | 998 |
/// \param g The digraph the algorithm runs on. |
1000 | 999 |
BfsWizard(const Digraph &g) : |
1001 | 1000 |
TR(g) {} |
1002 | 1001 |
|
1003 | 1002 |
///Copy constructor |
1004 | 1003 |
BfsWizard(const TR &b) : TR(b) {} |
1005 | 1004 |
|
1006 | 1005 |
~BfsWizard() {} |
1007 | 1006 |
|
1008 | 1007 |
///Runs BFS algorithm from the given source node. |
1009 | 1008 |
|
1010 | 1009 |
///This method runs BFS algorithm from node \c s |
1011 | 1010 |
///in order to compute the shortest path to each node. |
1012 | 1011 |
void run(Node s) |
1013 | 1012 |
{ |
1014 | 1013 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1015 | 1014 |
if (Base::_pred) |
1016 | 1015 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1017 | 1016 |
if (Base::_dist) |
1018 | 1017 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1019 | 1018 |
if (Base::_reached) |
1020 | 1019 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1021 | 1020 |
if (Base::_processed) |
1022 | 1021 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1023 | 1022 |
if (s!=INVALID) |
1024 | 1023 |
alg.run(s); |
1025 | 1024 |
else |
1026 | 1025 |
alg.run(); |
1027 | 1026 |
} |
1028 | 1027 |
|
1029 | 1028 |
///Finds the shortest path between \c s and \c t. |
1030 | 1029 |
|
1031 | 1030 |
///This method runs BFS algorithm from node \c s |
1032 | 1031 |
///in order to compute the shortest path to node \c t |
1033 | 1032 |
///(it stops searching when \c t is processed). |
1034 | 1033 |
/// |
1035 | 1034 |
///\return \c true if \c t is reachable form \c s. |
1036 | 1035 |
bool run(Node s, Node t) |
1037 | 1036 |
{ |
1038 | 1037 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1039 | 1038 |
if (Base::_pred) |
1040 | 1039 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1041 | 1040 |
if (Base::_dist) |
1042 | 1041 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1043 | 1042 |
if (Base::_reached) |
1044 | 1043 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1045 | 1044 |
if (Base::_processed) |
1046 | 1045 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1047 | 1046 |
alg.run(s,t); |
1048 | 1047 |
if (Base::_path) |
1049 | 1048 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
1050 | 1049 |
if (Base::_di) |
1051 | 1050 |
*Base::_di = alg.dist(t); |
1052 | 1051 |
return alg.reached(t); |
1053 | 1052 |
} |
1054 | 1053 |
|
1055 | 1054 |
///Runs BFS algorithm to visit all nodes in the digraph. |
1056 | 1055 |
|
1057 | 1056 |
///This method runs BFS algorithm in order to compute |
1058 | 1057 |
///the shortest path to each node. |
1059 | 1058 |
void run() |
1060 | 1059 |
{ |
1061 | 1060 |
run(INVALID); |
1062 | 1061 |
} |
1063 | 1062 |
|
1064 | 1063 |
template<class T> |
1065 | 1064 |
struct SetPredMapBase : public Base { |
1066 | 1065 |
typedef T PredMap; |
1067 | 1066 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1068 | 1067 |
SetPredMapBase(const TR &b) : TR(b) {} |
1069 | 1068 |
}; |
1070 | 1069 |
///\brief \ref named-func-param "Named parameter" |
1071 | 1070 |
///for setting PredMap object. |
1072 | 1071 |
/// |
1073 | 1072 |
///\ref named-func-param "Named parameter" |
1074 | 1073 |
///for setting PredMap object. |
1075 | 1074 |
template<class T> |
1076 | 1075 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1077 | 1076 |
{ |
1078 | 1077 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1079 | 1078 |
return BfsWizard<SetPredMapBase<T> >(*this); |
1080 | 1079 |
} |
1081 | 1080 |
|
1082 | 1081 |
template<class T> |
1083 | 1082 |
struct SetReachedMapBase : public Base { |
1084 | 1083 |
typedef T ReachedMap; |
1085 | 1084 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1086 | 1085 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1087 | 1086 |
}; |
1088 | 1087 |
///\brief \ref named-func-param "Named parameter" |
1089 | 1088 |
///for setting ReachedMap object. |
1090 | 1089 |
/// |
1091 | 1090 |
/// \ref named-func-param "Named parameter" |
1092 | 1091 |
///for setting ReachedMap object. |
1093 | 1092 |
template<class T> |
1094 | 1093 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1095 | 1094 |
{ |
1096 | 1095 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1097 | 1096 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
1098 | 1097 |
} |
1099 | 1098 |
|
1100 | 1099 |
template<class T> |
1101 | 1100 |
struct SetDistMapBase : public Base { |
1102 | 1101 |
typedef T DistMap; |
1103 | 1102 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1104 | 1103 |
SetDistMapBase(const TR &b) : TR(b) {} |
1105 | 1104 |
}; |
1106 | 1105 |
///\brief \ref named-func-param "Named parameter" |
1107 | 1106 |
///for setting DistMap object. |
1108 | 1107 |
/// |
1109 | 1108 |
/// \ref named-func-param "Named parameter" |
1110 | 1109 |
///for setting DistMap object. |
1111 | 1110 |
template<class T> |
1112 | 1111 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1113 | 1112 |
{ |
1114 | 1113 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1115 | 1114 |
return BfsWizard<SetDistMapBase<T> >(*this); |
1116 | 1115 |
} |
1117 | 1116 |
|
1118 | 1117 |
template<class T> |
1119 | 1118 |
struct SetProcessedMapBase : public Base { |
1120 | 1119 |
typedef T ProcessedMap; |
1121 | 1120 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1122 | 1121 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1123 | 1122 |
}; |
1124 | 1123 |
///\brief \ref named-func-param "Named parameter" |
1125 | 1124 |
///for setting ProcessedMap object. |
1126 | 1125 |
/// |
1127 | 1126 |
/// \ref named-func-param "Named parameter" |
1128 | 1127 |
///for setting ProcessedMap object. |
1129 | 1128 |
template<class T> |
1130 | 1129 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1131 | 1130 |
{ |
1132 | 1131 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1133 | 1132 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
1134 | 1133 |
} |
1135 | 1134 |
|
1136 | 1135 |
template<class T> |
1137 | 1136 |
struct SetPathBase : public Base { |
1138 | 1137 |
typedef T Path; |
1139 | 1138 |
SetPathBase(const TR &b) : TR(b) {} |
1140 | 1139 |
}; |
1141 | 1140 |
///\brief \ref named-func-param "Named parameter" |
1142 | 1141 |
///for getting the shortest path to the target node. |
1143 | 1142 |
/// |
1144 | 1143 |
///\ref named-func-param "Named parameter" |
1145 | 1144 |
///for getting the shortest path to the target node. |
1146 | 1145 |
template<class T> |
1147 | 1146 |
BfsWizard<SetPathBase<T> > path(const T &t) |
1148 | 1147 |
{ |
1149 | 1148 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1150 | 1149 |
return BfsWizard<SetPathBase<T> >(*this); |
1151 | 1150 |
} |
1152 | 1151 |
|
1153 | 1152 |
///\brief \ref named-func-param "Named parameter" |
1154 | 1153 |
///for getting the distance of the target node. |
1155 | 1154 |
/// |
1156 | 1155 |
///\ref named-func-param "Named parameter" |
1157 | 1156 |
///for getting the distance of the target node. |
1158 | 1157 |
BfsWizard dist(const int &d) |
1159 | 1158 |
{ |
1160 | 1159 |
Base::_di=const_cast<int*>(&d); |
1161 | 1160 |
return *this; |
1162 | 1161 |
} |
1163 | 1162 |
|
1164 | 1163 |
}; |
1165 | 1164 |
|
1166 | 1165 |
///Function-type interface for BFS algorithm. |
1167 | 1166 |
|
1168 | 1167 |
/// \ingroup search |
1169 | 1168 |
///Function-type interface for BFS algorithm. |
1170 | 1169 |
/// |
1171 | 1170 |
///This function also has several \ref named-func-param "named parameters", |
1172 | 1171 |
///they are declared as the members of class \ref BfsWizard. |
1173 | 1172 |
///The following examples show how to use these parameters. |
1174 | 1173 |
///\code |
1175 | 1174 |
/// // Compute shortest path from node s to each node |
1176 | 1175 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
1177 | 1176 |
/// |
1178 | 1177 |
/// // Compute shortest path from s to t |
1179 | 1178 |
/// bool reached = bfs(g).path(p).dist(d).run(s,t); |
1180 | 1179 |
///\endcode |
1181 | 1180 |
///\warning Don't forget to put the \ref BfsWizard::run() "run()" |
1182 | 1181 |
///to the end of the parameter list. |
1183 | 1182 |
///\sa BfsWizard |
1184 | 1183 |
///\sa Bfs |
1185 | 1184 |
template<class GR> |
1186 | 1185 |
BfsWizard<BfsWizardBase<GR> > |
1187 | 1186 |
bfs(const GR &digraph) |
1188 | 1187 |
{ |
1189 | 1188 |
return BfsWizard<BfsWizardBase<GR> >(digraph); |
1190 | 1189 |
} |
1191 | 1190 |
|
1192 | 1191 |
#ifdef DOXYGEN |
1193 | 1192 |
/// \brief Visitor class for BFS. |
1194 | 1193 |
/// |
1195 | 1194 |
/// This class defines the interface of the BfsVisit events, and |
1196 | 1195 |
/// it could be the base of a real visitor class. |
1197 | 1196 |
template <typename _Digraph> |
1198 | 1197 |
struct BfsVisitor { |
1199 | 1198 |
typedef _Digraph Digraph; |
1200 | 1199 |
typedef typename Digraph::Arc Arc; |
1201 | 1200 |
typedef typename Digraph::Node Node; |
1202 | 1201 |
/// \brief Called for the source node(s) of the BFS. |
1203 | 1202 |
/// |
1204 | 1203 |
/// This function is called for the source node(s) of the BFS. |
1205 | 1204 |
void start(const Node& node) {} |
1206 | 1205 |
/// \brief Called when a node is reached first time. |
1207 | 1206 |
/// |
1208 | 1207 |
/// This function is called when a node is reached first time. |
1209 | 1208 |
void reach(const Node& node) {} |
1210 | 1209 |
/// \brief Called when a node is processed. |
1211 | 1210 |
/// |
1212 | 1211 |
/// This function is called when a node is processed. |
1213 | 1212 |
void process(const Node& node) {} |
1214 | 1213 |
/// \brief Called when an arc reaches a new node. |
1215 | 1214 |
/// |
1216 | 1215 |
/// This function is called when the BFS finds an arc whose target node |
1217 | 1216 |
/// is not reached yet. |
1218 | 1217 |
void discover(const Arc& arc) {} |
1219 | 1218 |
/// \brief Called when an arc is examined but its target node is |
1220 | 1219 |
/// already discovered. |
1221 | 1220 |
/// |
1222 | 1221 |
/// This function is called when an arc is examined but its target node is |
1223 | 1222 |
/// already discovered. |
1224 | 1223 |
void examine(const Arc& arc) {} |
1225 | 1224 |
}; |
1226 | 1225 |
#else |
1227 | 1226 |
template <typename _Digraph> |
1228 | 1227 |
struct BfsVisitor { |
1229 | 1228 |
typedef _Digraph Digraph; |
1230 | 1229 |
typedef typename Digraph::Arc Arc; |
1231 | 1230 |
typedef typename Digraph::Node Node; |
1232 | 1231 |
void start(const Node&) {} |
1233 | 1232 |
void reach(const Node&) {} |
1234 | 1233 |
void process(const Node&) {} |
1235 | 1234 |
void discover(const Arc&) {} |
1236 | 1235 |
void examine(const Arc&) {} |
1237 | 1236 |
|
1238 | 1237 |
template <typename _Visitor> |
1239 | 1238 |
struct Constraints { |
1240 | 1239 |
void constraints() { |
1241 | 1240 |
Arc arc; |
1242 | 1241 |
Node node; |
1243 | 1242 |
visitor.start(node); |
1244 | 1243 |
visitor.reach(node); |
1245 | 1244 |
visitor.process(node); |
1246 | 1245 |
visitor.discover(arc); |
1247 | 1246 |
visitor.examine(arc); |
1248 | 1247 |
} |
1249 | 1248 |
_Visitor& visitor; |
1250 | 1249 |
}; |
1251 | 1250 |
}; |
1252 | 1251 |
#endif |
1253 | 1252 |
|
1254 | 1253 |
/// \brief Default traits class of BfsVisit class. |
1255 | 1254 |
/// |
1256 | 1255 |
/// Default traits class of BfsVisit class. |
1257 | 1256 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1258 | 1257 |
template<class _Digraph> |
1259 | 1258 |
struct BfsVisitDefaultTraits { |
1260 | 1259 |
|
1261 | 1260 |
/// \brief The type of the digraph the algorithm runs on. |
1262 | 1261 |
typedef _Digraph Digraph; |
1263 | 1262 |
|
1264 | 1263 |
/// \brief The type of the map that indicates which nodes are reached. |
1265 | 1264 |
/// |
1266 | 1265 |
/// The type of the map that indicates which nodes are reached. |
1267 | 1266 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
1268 | 1267 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1269 | 1268 |
|
1270 | 1269 |
/// \brief Instantiates a ReachedMap. |
1271 | 1270 |
/// |
1272 | 1271 |
/// This function instantiates a ReachedMap. |
1273 | 1272 |
/// \param digraph is the digraph, to which |
1274 | 1273 |
/// we would like to define the ReachedMap. |
1275 | 1274 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1276 | 1275 |
return new ReachedMap(digraph); |
1277 | 1276 |
} |
1278 | 1277 |
|
1279 | 1278 |
}; |
1280 | 1279 |
|
1281 | 1280 |
/// \ingroup search |
1282 | 1281 |
/// |
1283 | 1282 |
/// \brief %BFS algorithm class with visitor interface. |
1284 | 1283 |
/// |
1285 | 1284 |
/// This class provides an efficient implementation of the %BFS algorithm |
1286 | 1285 |
/// with visitor interface. |
1287 | 1286 |
/// |
1288 | 1287 |
/// The %BfsVisit class provides an alternative interface to the Bfs |
1289 | 1288 |
/// class. It works with callback mechanism, the BfsVisit object calls |
1290 | 1289 |
/// the member functions of the \c Visitor class on every BFS event. |
1291 | 1290 |
/// |
1292 | 1291 |
/// This interface of the BFS algorithm should be used in special cases |
1293 | 1292 |
/// when extra actions have to be performed in connection with certain |
1294 | 1293 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
1295 | 1294 |
/// instead. |
1296 | 1295 |
/// |
1297 | 1296 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1298 | 1297 |
/// The default value is |
1299 | 1298 |
/// \ref ListDigraph. The value of _Digraph is not used directly by |
1300 | 1299 |
/// \ref BfsVisit, it is only passed to \ref BfsVisitDefaultTraits. |
1301 | 1300 |
/// \tparam _Visitor The Visitor type that is used by the algorithm. |
1302 | 1301 |
/// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty visitor, which |
1303 | 1302 |
/// does not observe the BFS events. If you want to observe the BFS |
1304 | 1303 |
/// events, you should implement your own visitor class. |
1305 | 1304 |
/// \tparam _Traits Traits class to set various data types used by the |
1306 | 1305 |
/// algorithm. The default traits class is |
1307 | 1306 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>". |
1308 | 1307 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
1309 | 1308 |
/// a BFS visit traits class. |
1310 | 1309 |
#ifdef DOXYGEN |
1311 | 1310 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
1312 | 1311 |
#else |
1313 | 1312 |
template <typename _Digraph = ListDigraph, |
1314 | 1313 |
typename _Visitor = BfsVisitor<_Digraph>, |
1315 | 1314 |
typename _Traits = BfsVisitDefaultTraits<_Digraph> > |
1316 | 1315 |
#endif |
1317 | 1316 |
class BfsVisit { |
1318 | 1317 |
public: |
1319 | 1318 |
|
1320 | 1319 |
///The traits class. |
1321 | 1320 |
typedef _Traits Traits; |
1322 | 1321 |
|
1323 | 1322 |
///The type of the digraph the algorithm runs on. |
1324 | 1323 |
typedef typename Traits::Digraph Digraph; |
1325 | 1324 |
|
1326 | 1325 |
///The visitor type used by the algorithm. |
1327 | 1326 |
typedef _Visitor Visitor; |
1328 | 1327 |
|
1329 | 1328 |
///The type of the map that indicates which nodes are reached. |
1330 | 1329 |
typedef typename Traits::ReachedMap ReachedMap; |
1331 | 1330 |
|
1332 | 1331 |
private: |
1333 | 1332 |
|
1334 | 1333 |
typedef typename Digraph::Node Node; |
1335 | 1334 |
typedef typename Digraph::NodeIt NodeIt; |
1336 | 1335 |
typedef typename Digraph::Arc Arc; |
1337 | 1336 |
typedef typename Digraph::OutArcIt OutArcIt; |
1338 | 1337 |
|
1339 | 1338 |
//Pointer to the underlying digraph. |
1340 | 1339 |
const Digraph *_digraph; |
1341 | 1340 |
//Pointer to the visitor object. |
1342 | 1341 |
Visitor *_visitor; |
1343 | 1342 |
//Pointer to the map of reached status of the nodes. |
1344 | 1343 |
ReachedMap *_reached; |
1345 | 1344 |
//Indicates if _reached is locally allocated (true) or not. |
1346 | 1345 |
bool local_reached; |
1347 | 1346 |
|
1348 | 1347 |
std::vector<typename Digraph::Node> _list; |
1349 | 1348 |
int _list_front, _list_back; |
1350 | 1349 |
|
1351 | 1350 |
//Creates the maps if necessary. |
1352 | 1351 |
void create_maps() { |
1353 | 1352 |
if(!_reached) { |
1354 | 1353 |
local_reached = true; |
1355 | 1354 |
_reached = Traits::createReachedMap(*_digraph); |
1356 | 1355 |
} |
1357 | 1356 |
} |
1358 | 1357 |
|
1359 | 1358 |
protected: |
1360 | 1359 |
|
1361 | 1360 |
BfsVisit() {} |
1362 | 1361 |
|
1363 | 1362 |
public: |
1364 | 1363 |
|
1365 | 1364 |
typedef BfsVisit Create; |
1366 | 1365 |
|
1367 | 1366 |
/// \name Named template parameters |
1368 | 1367 |
|
1369 | 1368 |
///@{ |
1370 | 1369 |
template <class T> |
1371 | 1370 |
struct SetReachedMapTraits : public Traits { |
1372 | 1371 |
typedef T ReachedMap; |
1373 | 1372 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1374 | 1373 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
1375 | 1374 |
return 0; // ignore warnings |
1376 | 1375 |
} |
1377 | 1376 |
}; |
1378 | 1377 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1379 | 1378 |
/// ReachedMap type. |
1380 | 1379 |
/// |
1381 | 1380 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1382 | 1381 |
template <class T> |
1383 | 1382 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
1384 | 1383 |
SetReachedMapTraits<T> > { |
1385 | 1384 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1386 | 1385 |
}; |
1387 | 1386 |
///@} |
1388 | 1387 |
|
1389 | 1388 |
public: |
1390 | 1389 |
|
1391 | 1390 |
/// \brief Constructor. |
1392 | 1391 |
/// |
1393 | 1392 |
/// Constructor. |
1394 | 1393 |
/// |
1395 | 1394 |
/// \param digraph The digraph the algorithm runs on. |
1396 | 1395 |
/// \param visitor The visitor object of the algorithm. |
1397 | 1396 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
1398 | 1397 |
: _digraph(&digraph), _visitor(&visitor), |
1399 | 1398 |
_reached(0), local_reached(false) {} |
1400 | 1399 |
|
1401 | 1400 |
/// \brief Destructor. |
1402 | 1401 |
~BfsVisit() { |
1403 | 1402 |
if(local_reached) delete _reached; |
1404 | 1403 |
} |
1405 | 1404 |
|
1406 | 1405 |
/// \brief Sets the map that indicates which nodes are reached. |
1407 | 1406 |
/// |
1408 | 1407 |
/// Sets the map that indicates which nodes are reached. |
1409 | 1408 |
/// If you don't use this function before calling \ref run(), |
1410 | 1409 |
/// it will allocate one. The destructor deallocates this |
1411 | 1410 |
/// automatically allocated map, of course. |
1412 | 1411 |
/// \return <tt> (*this) </tt> |
1413 | 1412 |
BfsVisit &reachedMap(ReachedMap &m) { |
1414 | 1413 |
if(local_reached) { |
1415 | 1414 |
delete _reached; |
1416 | 1415 |
local_reached = false; |
1417 | 1416 |
} |
1418 | 1417 |
_reached = &m; |
1419 | 1418 |
return *this; |
1420 | 1419 |
} |
1421 | 1420 |
|
1422 | 1421 |
public: |
1423 | 1422 |
|
1424 | 1423 |
/// \name Execution control |
1425 | 1424 |
/// The simplest way to execute the algorithm is to use |
1426 | 1425 |
/// one of the member functions called \ref lemon::BfsVisit::run() |
1427 | 1426 |
/// "run()". |
1428 | 1427 |
/// \n |
1429 | 1428 |
/// If you need more control on the execution, first you must call |
1430 | 1429 |
/// \ref lemon::BfsVisit::init() "init()", then you can add several |
1431 | 1430 |
/// source nodes with \ref lemon::BfsVisit::addSource() "addSource()". |
1432 | 1431 |
/// Finally \ref lemon::BfsVisit::start() "start()" will perform the |
1433 | 1432 |
/// actual path computation. |
1434 | 1433 |
|
1435 | 1434 |
/// @{ |
1436 | 1435 |
|
1437 | 1436 |
/// \brief Initializes the internal data structures. |
1438 | 1437 |
/// |
1439 | 1438 |
/// Initializes the internal data structures. |
1440 | 1439 |
void init() { |
1441 | 1440 |
create_maps(); |
1442 | 1441 |
_list.resize(countNodes(*_digraph)); |
1443 | 1442 |
_list_front = _list_back = -1; |
1444 | 1443 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1445 | 1444 |
_reached->set(u, false); |
1446 | 1445 |
} |
1447 | 1446 |
} |
1448 | 1447 |
|
1449 | 1448 |
/// \brief Adds a new source node. |
1450 | 1449 |
/// |
1451 | 1450 |
/// Adds a new source node to the set of nodes to be processed. |
1452 | 1451 |
void addSource(Node s) { |
1453 | 1452 |
if(!(*_reached)[s]) { |
1454 | 1453 |
_reached->set(s,true); |
1455 | 1454 |
_visitor->start(s); |
1456 | 1455 |
_visitor->reach(s); |
1457 | 1456 |
_list[++_list_back] = s; |
1458 | 1457 |
} |
1459 | 1458 |
} |
1460 | 1459 |
|
1461 | 1460 |
/// \brief Processes the next node. |
1462 | 1461 |
/// |
1463 | 1462 |
/// Processes the next node. |
1464 | 1463 |
/// |
1465 | 1464 |
/// \return The processed node. |
1466 | 1465 |
/// |
1467 | 1466 |
/// \pre The queue must not be empty. |
1468 | 1467 |
Node processNextNode() { |
1469 | 1468 |
Node n = _list[++_list_front]; |
1470 | 1469 |
_visitor->process(n); |
1471 | 1470 |
Arc e; |
1472 | 1471 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1473 | 1472 |
Node m = _digraph->target(e); |
1474 | 1473 |
if (!(*_reached)[m]) { |
1475 | 1474 |
_visitor->discover(e); |
1476 | 1475 |
_visitor->reach(m); |
1477 | 1476 |
_reached->set(m, true); |
1478 | 1477 |
_list[++_list_back] = m; |
1479 | 1478 |
} else { |
1480 | 1479 |
_visitor->examine(e); |
1481 | 1480 |
} |
1482 | 1481 |
} |
1483 | 1482 |
return n; |
1484 | 1483 |
} |
1485 | 1484 |
|
1486 | 1485 |
/// \brief Processes the next node. |
1487 | 1486 |
/// |
1488 | 1487 |
/// Processes the next node and checks if the given target node |
1489 | 1488 |
/// is reached. If the target node is reachable from the processed |
1490 | 1489 |
/// node, then the \c reach parameter will be set to \c true. |
1491 | 1490 |
/// |
1492 | 1491 |
/// \param target The target node. |
1493 | 1492 |
/// \retval reach Indicates if the target node is reached. |
1494 | 1493 |
/// It should be initially \c false. |
1495 | 1494 |
/// |
1496 | 1495 |
/// \return The processed node. |
1497 | 1496 |
/// |
1498 | 1497 |
/// \pre The queue must not be empty. |
1499 | 1498 |
Node processNextNode(Node target, bool& reach) { |
1500 | 1499 |
Node n = _list[++_list_front]; |
1501 | 1500 |
_visitor->process(n); |
1502 | 1501 |
Arc e; |
1503 | 1502 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1504 | 1503 |
Node m = _digraph->target(e); |
1505 | 1504 |
if (!(*_reached)[m]) { |
1506 | 1505 |
_visitor->discover(e); |
1507 | 1506 |
_visitor->reach(m); |
1508 | 1507 |
_reached->set(m, true); |
1509 | 1508 |
_list[++_list_back] = m; |
1510 | 1509 |
reach = reach || (target == m); |
1511 | 1510 |
} else { |
1512 | 1511 |
_visitor->examine(e); |
1513 | 1512 |
} |
1514 | 1513 |
} |
1515 | 1514 |
return n; |
1516 | 1515 |
} |
1517 | 1516 |
|
1518 | 1517 |
/// \brief Processes the next node. |
1519 | 1518 |
/// |
1520 | 1519 |
/// Processes the next node and checks if at least one of reached |
1521 | 1520 |
/// nodes has \c true value in the \c nm node map. If one node |
1522 | 1521 |
/// with \c true value is reachable from the processed node, then the |
1523 | 1522 |
/// \c rnode parameter will be set to the first of such nodes. |
1524 | 1523 |
/// |
1525 | 1524 |
/// \param nm A \c bool (or convertible) node map that indicates the |
1526 | 1525 |
/// possible targets. |
1527 | 1526 |
/// \retval rnode The reached target node. |
1528 | 1527 |
/// It should be initially \c INVALID. |
1529 | 1528 |
/// |
1530 | 1529 |
/// \return The processed node. |
1531 | 1530 |
/// |
1532 | 1531 |
/// \pre The queue must not be empty. |
1533 | 1532 |
template <typename NM> |
1534 | 1533 |
Node processNextNode(const NM& nm, Node& rnode) { |
1535 | 1534 |
Node n = _list[++_list_front]; |
1536 | 1535 |
_visitor->process(n); |
1537 | 1536 |
Arc e; |
1538 | 1537 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1539 | 1538 |
Node m = _digraph->target(e); |
1540 | 1539 |
if (!(*_reached)[m]) { |
1541 | 1540 |
_visitor->discover(e); |
1542 | 1541 |
_visitor->reach(m); |
1543 | 1542 |
_reached->set(m, true); |
1544 | 1543 |
_list[++_list_back] = m; |
1545 | 1544 |
if (nm[m] && rnode == INVALID) rnode = m; |
1546 | 1545 |
} else { |
1547 | 1546 |
_visitor->examine(e); |
1548 | 1547 |
} |
1549 | 1548 |
} |
1550 | 1549 |
return n; |
1551 | 1550 |
} |
1552 | 1551 |
|
1553 | 1552 |
/// \brief The next node to be processed. |
1554 | 1553 |
/// |
1555 | 1554 |
/// Returns the next node to be processed or \c INVALID if the queue |
1556 | 1555 |
/// is empty. |
1557 | 1556 |
Node nextNode() const { |
1558 | 1557 |
return _list_front != _list_back ? _list[_list_front + 1] : INVALID; |
1559 | 1558 |
} |
1560 | 1559 |
|
1561 | 1560 |
/// \brief Returns \c false if there are nodes |
1562 | 1561 |
/// to be processed. |
1563 | 1562 |
/// |
1564 | 1563 |
/// Returns \c false if there are nodes |
1565 | 1564 |
/// to be processed in the queue. |
1566 | 1565 |
bool emptyQueue() const { return _list_front == _list_back; } |
1567 | 1566 |
|
1568 | 1567 |
/// \brief Returns the number of the nodes to be processed. |
1569 | 1568 |
/// |
1570 | 1569 |
/// Returns the number of the nodes to be processed in the queue. |
1571 | 1570 |
int queueSize() const { return _list_back - _list_front; } |
1572 | 1571 |
|
1573 | 1572 |
/// \brief Executes the algorithm. |
1574 | 1573 |
/// |
1575 | 1574 |
/// Executes the algorithm. |
1576 | 1575 |
/// |
1577 | 1576 |
/// This method runs the %BFS algorithm from the root node(s) |
1578 | 1577 |
/// in order to compute the shortest path to each node. |
1579 | 1578 |
/// |
1580 | 1579 |
/// The algorithm computes |
1581 | 1580 |
/// - the shortest path tree (forest), |
1582 | 1581 |
/// - the distance of each node from the root(s). |
1583 | 1582 |
/// |
1584 | 1583 |
/// \pre init() must be called and at least one root node should be added |
1585 | 1584 |
/// with addSource() before using this function. |
1586 | 1585 |
/// |
1587 | 1586 |
/// \note <tt>b.start()</tt> is just a shortcut of the following code. |
1588 | 1587 |
/// \code |
1589 | 1588 |
/// while ( !b.emptyQueue() ) { |
1590 | 1589 |
/// b.processNextNode(); |
1591 | 1590 |
/// } |
1592 | 1591 |
/// \endcode |
1593 | 1592 |
void start() { |
1594 | 1593 |
while ( !emptyQueue() ) processNextNode(); |
1595 | 1594 |
} |
1596 | 1595 |
|
1597 | 1596 |
/// \brief Executes the algorithm until the given target node is reached. |
1598 | 1597 |
/// |
1599 | 1598 |
/// Executes the algorithm until the given target node is reached. |
1600 | 1599 |
/// |
1601 | 1600 |
/// This method runs the %BFS algorithm from the root node(s) |
1602 | 1601 |
/// in order to compute the shortest path to \c t. |
1603 | 1602 |
/// |
1604 | 1603 |
/// The algorithm computes |
1605 | 1604 |
/// - the shortest path to \c t, |
1606 | 1605 |
/// - the distance of \c t from the root(s). |
1607 | 1606 |
/// |
1608 | 1607 |
/// \pre init() must be called and at least one root node should be |
1609 | 1608 |
/// added with addSource() before using this function. |
1610 | 1609 |
/// |
1611 | 1610 |
/// \note <tt>b.start(t)</tt> is just a shortcut of the following code. |
1612 | 1611 |
/// \code |
1613 | 1612 |
/// bool reach = false; |
1614 | 1613 |
/// while ( !b.emptyQueue() && !reach ) { |
1615 | 1614 |
/// b.processNextNode(t, reach); |
1616 | 1615 |
/// } |
1617 | 1616 |
/// \endcode |
1618 | 1617 |
void start(Node t) { |
1619 | 1618 |
bool reach = false; |
1620 | 1619 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
1 | 1 |
#!/bin/bash |
2 | 2 |
|
3 | 3 |
YEAR=`date +2003-%Y` |
4 | 4 |
HGROOT=`hg root` |
5 | 5 |
|
6 | 6 |
# file enumaration modes |
7 | 7 |
|
8 | 8 |
function all_files() { |
9 | 9 |
hg status -a -m -c | |
10 | 10 |
cut -d ' ' -f 2 | grep -E '(\.(cc|h|dox)$|Makefile\.am$)' | |
11 | 11 |
while read file; do echo $HGROOT/$file; done |
12 | 12 |
} |
13 | 13 |
|
14 | 14 |
function modified_files() { |
15 | 15 |
hg status -a -m | |
16 | 16 |
cut -d ' ' -f 2 | grep -E '(\.(cc|h|dox)$|Makefile\.am$)' | |
17 | 17 |
while read file; do echo $HGROOT/$file; done |
18 | 18 |
} |
19 | 19 |
|
20 | 20 |
function changed_files() { |
21 | 21 |
{ |
22 | 22 |
if [ -n "$HG_PARENT1" ] |
23 | 23 |
then |
24 | 24 |
hg status --rev $HG_PARENT1:$HG_NODE -a -m |
25 | 25 |
fi |
26 | 26 |
if [ -n "$HG_PARENT2" ] |
27 | 27 |
then |
28 | 28 |
hg status --rev $HG_PARENT2:$HG_NODE -a -m |
29 | 29 |
fi |
30 | 30 |
} | cut -d ' ' -f 2 | grep -E '(\.(cc|h|dox)$|Makefile\.am$)' | |
31 | 31 |
sort | uniq | |
32 | 32 |
while read file; do echo $HGROOT/$file; done |
33 | 33 |
} |
34 | 34 |
|
35 | 35 |
function given_files() { |
36 | 36 |
for file in $GIVEN_FILES |
37 | 37 |
do |
38 | 38 |
echo $file |
39 | 39 |
done |
40 | 40 |
} |
41 | 41 |
|
42 | 42 |
# actions |
43 | 43 |
|
44 | 44 |
function update_action() { |
45 | 45 |
if ! diff -q $1 $2 >/dev/null |
46 | 46 |
then |
47 | 47 |
echo -n " [$3 updated]" |
48 | 48 |
rm $2 |
49 | 49 |
mv $1 $2 |
50 | 50 |
CHANGED=YES |
51 | 51 |
fi |
52 | 52 |
} |
53 | 53 |
|
54 | 54 |
function update_warning() { |
55 | 55 |
echo -n " [$2 warning]" |
56 | 56 |
WARNED=YES |
57 | 57 |
} |
58 | 58 |
|
59 | 59 |
function update_init() { |
60 | 60 |
echo Update source files... |
61 | 61 |
TOTAL_FILES=0 |
62 | 62 |
CHANGED_FILES=0 |
63 | 63 |
WARNED_FILES=0 |
64 | 64 |
} |
65 | 65 |
|
66 | 66 |
function update_done() { |
67 | 67 |
echo $CHANGED_FILES out of $TOTAL_FILES files has been changed. |
68 | 68 |
echo $WARNED_FILES out of $TOTAL_FILES files triggered warnings. |
69 | 69 |
} |
70 | 70 |
|
71 | 71 |
function update_begin() { |
72 | 72 |
((TOTAL_FILES++)) |
73 | 73 |
CHANGED=NO |
74 | 74 |
WARNED=NO |
75 | 75 |
} |
76 | 76 |
|
77 | 77 |
function update_end() { |
78 | 78 |
if [ $CHANGED == YES ] |
79 | 79 |
then |
80 | 80 |
((++CHANGED_FILES)) |
81 | 81 |
fi |
82 | 82 |
if [ $WARNED == YES ] |
83 | 83 |
then |
84 | 84 |
((++WARNED_FILES)) |
85 | 85 |
fi |
86 | 86 |
} |
87 | 87 |
|
88 | 88 |
function check_action() { |
89 | 89 |
if ! diff -q $1 $2 >/dev/null |
90 | 90 |
then |
91 |
echo |
|
91 |
echo |
|
92 |
echo -n " $3 failed at line(s): " |
|
93 |
echo -n $(diff $1 $2 | grep '^[0-9]' | sed "s/^\(.*\)c.*$/ \1/g" | |
|
94 |
sed "s/,/-/g" | paste -s -d',') |
|
92 | 95 |
FAILED=YES |
93 | 96 |
fi |
94 | 97 |
} |
95 | 98 |
|
96 | 99 |
function check_warning() { |
97 |
echo |
|
100 |
echo |
|
101 |
if [ "$2" == 'long lines' ] |
|
102 |
then |
|
103 |
echo -n " $2 warning at line(s): " |
|
104 |
echo -n $(grep -n -E '.{81,}' $1 | sed "s/^\([0-9]*\)/ \1\t/g" | |
|
105 |
cut -f 1 | paste -s -d',') |
|
106 |
else |
|
107 |
echo -n " $2 warning" |
|
108 |
fi |
|
98 | 109 |
WARNED=YES |
99 | 110 |
} |
100 | 111 |
|
101 | 112 |
function check_init() { |
102 | 113 |
echo Check source files... |
103 | 114 |
FAILED_FILES=0 |
104 | 115 |
WARNED_FILES=0 |
105 | 116 |
TOTAL_FILES=0 |
106 | 117 |
} |
107 | 118 |
|
108 | 119 |
function check_done() { |
109 | 120 |
echo $FAILED_FILES out of $TOTAL_FILES files has been failed. |
110 | 121 |
echo $WARNED_FILES out of $TOTAL_FILES files triggered warnings. |
111 | 122 |
|
112 | 123 |
if [ $FAILED_FILES -gt 0 ] |
113 | 124 |
then |
114 | 125 |
return 1 |
115 | 126 |
elif [ $WARNED_FILES -gt 0 ] |
116 | 127 |
then |
117 | 128 |
if [ "$WARNING" == 'INTERACTIVE' ] |
118 | 129 |
then |
119 | 130 |
echo -n "Are the files with warnings acceptable? (yes/no) " |
120 | 131 |
while read answer |
121 | 132 |
do |
122 | 133 |
if [ "$answer" == 'yes' ] |
123 | 134 |
then |
124 | 135 |
return 0 |
125 | 136 |
elif [ "$answer" == 'no' ] |
126 | 137 |
then |
127 | 138 |
return 1 |
128 | 139 |
fi |
129 | 140 |
echo -n "Are the files with warnings acceptable? (yes/no) " |
130 | 141 |
done |
131 | 142 |
elif [ "$WARNING" == 'WERROR' ] |
132 | 143 |
then |
133 | 144 |
return 1 |
134 | 145 |
fi |
135 | 146 |
fi |
136 | 147 |
} |
137 | 148 |
|
138 | 149 |
function check_begin() { |
139 | 150 |
((TOTAL_FILES++)) |
140 | 151 |
FAILED=NO |
141 | 152 |
WARNED=NO |
142 | 153 |
} |
143 | 154 |
|
144 | 155 |
function check_end() { |
145 | 156 |
if [ $FAILED == YES ] |
146 | 157 |
then |
147 | 158 |
((++FAILED_FILES)) |
148 | 159 |
fi |
149 | 160 |
if [ $WARNED == YES ] |
150 | 161 |
then |
151 | 162 |
((++WARNED_FILES)) |
152 | 163 |
fi |
153 | 164 |
} |
154 | 165 |
|
155 | 166 |
|
156 | 167 |
|
157 | 168 |
# checks |
158 | 169 |
|
159 | 170 |
function header_check() { |
160 | 171 |
if echo $1 | grep -q -E 'Makefile\.am$' |
161 | 172 |
then |
162 | 173 |
return |
163 | 174 |
fi |
164 | 175 |
|
165 | 176 |
TMP_FILE=`mktemp` |
166 | 177 |
|
167 | 178 |
(echo "/* -*- mode: C++; indent-tabs-mode: nil; -*- |
168 | 179 |
* |
169 | 180 |
* This file is a part of LEMON, a generic C++ optimization library. |
170 | 181 |
* |
171 | 182 |
* Copyright (C) "$YEAR" |
172 | 183 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
173 | 184 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
174 | 185 |
* |
175 | 186 |
* Permission to use, modify and distribute this software is granted |
176 | 187 |
* provided that this copyright notice appears in all copies. For |
177 | 188 |
* precise terms see the accompanying LICENSE file. |
178 | 189 |
* |
179 | 190 |
* This software is provided \"AS IS\" with no warranty of any kind, |
180 | 191 |
* express or implied, and with no claim as to its suitability for any |
181 | 192 |
* purpose. |
182 | 193 |
* |
183 | 194 |
*/ |
184 | 195 |
" |
185 | 196 |
awk 'BEGIN { pm=0; } |
186 | 197 |
pm==3 { print } |
187 | 198 |
/\/\* / && pm==0 { pm=1;} |
188 | 199 |
/[^:blank:]/ && (pm==0 || pm==2) { pm=3; print;} |
189 | 200 |
/\*\// && pm==1 { pm=2;} |
190 | 201 |
' $1 |
191 | 202 |
) >$TMP_FILE |
192 | 203 |
|
193 | 204 |
"$ACTION"_action "$TMP_FILE" "$1" header |
194 | 205 |
} |
195 | 206 |
|
196 | 207 |
function tabs_check() { |
197 | 208 |
if echo $1 | grep -q -v -E 'Makefile\.am$' |
198 | 209 |
then |
199 | 210 |
OLD_PATTERN=$(echo -e '\t') |
200 | 211 |
NEW_PATTERN=' ' |
201 | 212 |
else |
202 | 213 |
OLD_PATTERN=' ' |
203 | 214 |
NEW_PATTERN=$(echo -e '\t') |
204 | 215 |
fi |
205 | 216 |
TMP_FILE=`mktemp` |
206 | 217 |
cat $1 | sed -e "s/$OLD_PATTERN/$NEW_PATTERN/g" >$TMP_FILE |
207 | 218 |
|
208 | 219 |
"$ACTION"_action "$TMP_FILE" "$1" 'tabs' |
209 | 220 |
} |
210 | 221 |
|
211 | 222 |
function spaces_check() { |
212 | 223 |
TMP_FILE=`mktemp` |
213 | 224 |
cat $1 | sed -e 's/ \+$//g' >$TMP_FILE |
214 | 225 |
|
215 |
"$ACTION"_action "$TMP_FILE" "$1" 'spaces' |
|
226 |
"$ACTION"_action "$TMP_FILE" "$1" 'trailing spaces' |
|
216 | 227 |
} |
217 | 228 |
|
218 | 229 |
function long_lines_check() { |
219 | 230 |
if cat $1 | grep -q -E '.{81,}' |
220 | 231 |
then |
221 | 232 |
"$ACTION"_warning $1 'long lines' |
222 | 233 |
fi |
223 | 234 |
} |
224 | 235 |
|
225 | 236 |
# process the file |
226 | 237 |
|
227 | 238 |
function process_file() { |
228 |
echo -n " $ACTION |
|
239 |
echo -n " $ACTION $1..." |
|
229 | 240 |
|
230 | 241 |
CHECKING="header tabs spaces long_lines" |
231 | 242 |
|
232 | 243 |
"$ACTION"_begin $1 |
233 | 244 |
for check in $CHECKING |
234 | 245 |
do |
235 | 246 |
"$check"_check $1 |
236 | 247 |
done |
237 | 248 |
"$ACTION"_end $1 |
238 | 249 |
echo |
239 | 250 |
} |
240 | 251 |
|
241 | 252 |
function process_all { |
242 | 253 |
"$ACTION"_init |
243 | 254 |
while read file |
244 | 255 |
do |
245 | 256 |
process_file $file |
246 | 257 |
done < <($FILES) |
247 | 258 |
"$ACTION"_done |
248 | 259 |
} |
249 | 260 |
|
250 | 261 |
while [ $# -gt 0 ] |
251 | 262 |
do |
252 | 263 |
|
253 | 264 |
if [ "$1" == '--help' ] || [ "$1" == '-h' ] |
254 | 265 |
then |
255 | 266 |
echo -n \ |
256 | 267 |
"Usage: |
257 | 268 |
$0 [OPTIONS] [files] |
258 | 269 |
Options: |
259 | 270 |
--dry-run|-n |
260 | 271 |
Check the files, but do not modify them. |
261 | 272 |
--interactive|-i |
262 | 273 |
If --dry-run is specified and the checker emits warnings, |
263 | 274 |
then the user is asked if the warnings should be considered |
264 | 275 |
errors. |
265 | 276 |
--werror|-w |
266 | 277 |
Make all warnings into errors. |
267 | 278 |
--all|-a |
268 |
|
|
279 |
Check all source files in the repository. |
|
269 | 280 |
--modified|-m |
270 | 281 |
Check only the modified (and new) source files. This option is |
271 | 282 |
useful to check the modification before making a commit. |
272 | 283 |
--changed|-c |
273 | 284 |
Check only the changed source files compared to the parent(s) of |
274 | 285 |
the current hg node. This option is useful as hg hook script. |
275 | 286 |
To automatically check all your changes before making a commit, |
276 | 287 |
add the following section to the appropriate .hg/hgrc file. |
277 | 288 |
|
278 | 289 |
[hooks] |
279 | 290 |
pretxncommit.checksources = scripts/unify-sources.sh -c -n -i |
280 | 291 |
|
281 | 292 |
--help|-h |
282 | 293 |
Print this help message. |
283 | 294 |
files |
284 |
The files to check/unify. If no file names are given, the |
|
285 |
modified source will be checked/unified |
|
286 |
|
|
295 |
The files to check/unify. If no file names are given, the modified |
|
296 |
source files will be checked/unified (just like using the |
|
297 |
--modified|-m option). |
|
287 | 298 |
" |
288 | 299 |
exit 0 |
289 | 300 |
elif [ "$1" == '--dry-run' ] || [ "$1" == '-n' ] |
290 | 301 |
then |
291 |
[ -n "$ACTION" ] && echo " |
|
302 |
[ -n "$ACTION" ] && echo "Conflicting action options" >&2 && exit 1 |
|
292 | 303 |
ACTION=check |
293 | 304 |
elif [ "$1" == "--all" ] || [ "$1" == '-a' ] |
294 | 305 |
then |
295 |
[ -n "$FILES" ] && echo " |
|
306 |
[ -n "$FILES" ] && echo "Conflicting target options" >&2 && exit 1 |
|
296 | 307 |
FILES=all_files |
297 | 308 |
elif [ "$1" == "--changed" ] || [ "$1" == '-c' ] |
298 | 309 |
then |
299 |
[ -n "$FILES" ] && echo " |
|
310 |
[ -n "$FILES" ] && echo "Conflicting target options" >&2 && exit 1 |
|
300 | 311 |
FILES=changed_files |
301 | 312 |
elif [ "$1" == "--modified" ] || [ "$1" == '-m' ] |
302 | 313 |
then |
303 |
[ -n "$FILES" ] && echo " |
|
314 |
[ -n "$FILES" ] && echo "Conflicting target options" >&2 && exit 1 |
|
304 | 315 |
FILES=modified_files |
305 | 316 |
elif [ "$1" == "--interactive" ] || [ "$1" == "-i" ] |
306 | 317 |
then |
307 |
[ -n "$WARNING" ] && echo " |
|
318 |
[ -n "$WARNING" ] && echo "Conflicting warning options" >&2 && exit 1 |
|
308 | 319 |
WARNING='INTERACTIVE' |
309 | 320 |
elif [ "$1" == "--werror" ] || [ "$1" == "-w" ] |
310 | 321 |
then |
311 |
[ -n "$WARNING" ] && echo " |
|
322 |
[ -n "$WARNING" ] && echo "Conflicting warning options" >&2 && exit 1 |
|
312 | 323 |
WARNING='WERROR' |
313 |
elif [ $(echo $1 | cut -c |
|
324 |
elif [ $(echo x$1 | cut -c 2) == '-' ] |
|
314 | 325 |
then |
315 | 326 |
echo "Invalid option $1" >&2 && exit 1 |
316 | 327 |
else |
317 | 328 |
[ -n "$FILES" ] && echo "Invalid option $1" >&2 && exit 1 |
318 | 329 |
GIVEN_FILES=$@ |
319 | 330 |
FILES=given_files |
320 | 331 |
break |
321 | 332 |
fi |
322 | 333 |
|
323 | 334 |
shift |
324 | 335 |
done |
325 | 336 |
|
326 | 337 |
if [ -z $FILES ] |
327 | 338 |
then |
328 | 339 |
FILES=modified_files |
329 | 340 |
fi |
330 | 341 |
|
331 | 342 |
if [ -z $ACTION ] |
332 | 343 |
then |
333 | 344 |
ACTION=update |
334 | 345 |
fi |
335 | 346 |
|
336 | 347 |
process_all |
0 comments (0 inline)