0
2
0
... | ... |
@@ -336,401 +336,399 @@ |
336 | 336 |
} |
337 | 337 |
|
338 | 338 |
/// \brief Sets the target node. |
339 | 339 |
/// |
340 | 340 |
/// Sets the target node. |
341 | 341 |
/// \return <tt>(*this)</tt> |
342 | 342 |
Preflow& target(const Node& node) { |
343 | 343 |
_target = node; |
344 | 344 |
return *this; |
345 | 345 |
} |
346 | 346 |
|
347 | 347 |
/// \brief Sets the elevator used by algorithm. |
348 | 348 |
/// |
349 | 349 |
/// Sets the elevator used by algorithm. |
350 | 350 |
/// If you don't use this function before calling \ref run() or |
351 | 351 |
/// \ref init(), an instance will be allocated automatically. |
352 | 352 |
/// The destructor deallocates this automatically allocated elevator, |
353 | 353 |
/// of course. |
354 | 354 |
/// \return <tt>(*this)</tt> |
355 | 355 |
Preflow& elevator(Elevator& elevator) { |
356 | 356 |
if (_local_level) { |
357 | 357 |
delete _level; |
358 | 358 |
_local_level = false; |
359 | 359 |
} |
360 | 360 |
_level = &elevator; |
361 | 361 |
return *this; |
362 | 362 |
} |
363 | 363 |
|
364 | 364 |
/// \brief Returns a const reference to the elevator. |
365 | 365 |
/// |
366 | 366 |
/// Returns a const reference to the elevator. |
367 | 367 |
/// |
368 | 368 |
/// \pre Either \ref run() or \ref init() must be called before |
369 | 369 |
/// using this function. |
370 | 370 |
const Elevator& elevator() const { |
371 | 371 |
return *_level; |
372 | 372 |
} |
373 | 373 |
|
374 | 374 |
/// \brief Sets the tolerance used by algorithm. |
375 | 375 |
/// |
376 | 376 |
/// Sets the tolerance used by algorithm. |
377 | 377 |
Preflow& tolerance(const Tolerance& tolerance) { |
378 | 378 |
_tolerance = tolerance; |
379 | 379 |
return *this; |
380 | 380 |
} |
381 | 381 |
|
382 | 382 |
/// \brief Returns a const reference to the tolerance. |
383 | 383 |
/// |
384 | 384 |
/// Returns a const reference to the tolerance. |
385 | 385 |
const Tolerance& tolerance() const { |
386 | 386 |
return _tolerance; |
387 | 387 |
} |
388 | 388 |
|
389 | 389 |
/// \name Execution Control |
390 | 390 |
/// The simplest way to execute the preflow algorithm is to use |
391 | 391 |
/// \ref run() or \ref runMinCut().\n |
392 | 392 |
/// If you need more control on the initial solution or the execution, |
393 | 393 |
/// first you have to call one of the \ref init() functions, then |
394 | 394 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
395 | 395 |
|
396 | 396 |
///@{ |
397 | 397 |
|
398 | 398 |
/// \brief Initializes the internal data structures. |
399 | 399 |
/// |
400 | 400 |
/// Initializes the internal data structures and sets the initial |
401 | 401 |
/// flow to zero on each arc. |
402 | 402 |
void init() { |
403 | 403 |
createStructures(); |
404 | 404 |
|
405 | 405 |
_phase = true; |
406 | 406 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
407 | 407 |
(*_excess)[n] = 0; |
408 | 408 |
} |
409 | 409 |
|
410 | 410 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
411 | 411 |
_flow->set(e, 0); |
412 | 412 |
} |
413 | 413 |
|
414 | 414 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
415 | 415 |
|
416 | 416 |
_level->initStart(); |
417 | 417 |
_level->initAddItem(_target); |
418 | 418 |
|
419 | 419 |
std::vector<Node> queue; |
420 | 420 |
reached[_source] = true; |
421 | 421 |
|
422 | 422 |
queue.push_back(_target); |
423 | 423 |
reached[_target] = true; |
424 | 424 |
while (!queue.empty()) { |
425 | 425 |
_level->initNewLevel(); |
426 | 426 |
std::vector<Node> nqueue; |
427 | 427 |
for (int i = 0; i < int(queue.size()); ++i) { |
428 | 428 |
Node n = queue[i]; |
429 | 429 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
430 | 430 |
Node u = _graph.source(e); |
431 | 431 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) { |
432 | 432 |
reached[u] = true; |
433 | 433 |
_level->initAddItem(u); |
434 | 434 |
nqueue.push_back(u); |
435 | 435 |
} |
436 | 436 |
} |
437 | 437 |
} |
438 | 438 |
queue.swap(nqueue); |
439 | 439 |
} |
440 | 440 |
_level->initFinish(); |
441 | 441 |
|
442 | 442 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
443 | 443 |
if (_tolerance.positive((*_capacity)[e])) { |
444 | 444 |
Node u = _graph.target(e); |
445 | 445 |
if ((*_level)[u] == _level->maxLevel()) continue; |
446 | 446 |
_flow->set(e, (*_capacity)[e]); |
447 | 447 |
(*_excess)[u] += (*_capacity)[e]; |
448 | 448 |
if (u != _target && !_level->active(u)) { |
449 | 449 |
_level->activate(u); |
450 | 450 |
} |
451 | 451 |
} |
452 | 452 |
} |
453 | 453 |
} |
454 | 454 |
|
455 | 455 |
/// \brief Initializes the internal data structures using the |
456 | 456 |
/// given flow map. |
457 | 457 |
/// |
458 | 458 |
/// Initializes the internal data structures and sets the initial |
459 | 459 |
/// flow to the given \c flowMap. The \c flowMap should contain a |
460 | 460 |
/// flow or at least a preflow, i.e. at each node excluding the |
461 | 461 |
/// source node the incoming flow should greater or equal to the |
462 | 462 |
/// outgoing flow. |
463 | 463 |
/// \return \c false if the given \c flowMap is not a preflow. |
464 | 464 |
template <typename FlowMap> |
465 | 465 |
bool init(const FlowMap& flowMap) { |
466 | 466 |
createStructures(); |
467 | 467 |
|
468 | 468 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
469 | 469 |
_flow->set(e, flowMap[e]); |
470 | 470 |
} |
471 | 471 |
|
472 | 472 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
473 | 473 |
Value excess = 0; |
474 | 474 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
475 | 475 |
excess += (*_flow)[e]; |
476 | 476 |
} |
477 | 477 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
478 | 478 |
excess -= (*_flow)[e]; |
479 | 479 |
} |
480 | 480 |
if (excess < 0 && n != _source) return false; |
481 | 481 |
(*_excess)[n] = excess; |
482 | 482 |
} |
483 | 483 |
|
484 | 484 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
485 | 485 |
|
486 | 486 |
_level->initStart(); |
487 | 487 |
_level->initAddItem(_target); |
488 | 488 |
|
489 | 489 |
std::vector<Node> queue; |
490 | 490 |
reached[_source] = true; |
491 | 491 |
|
492 | 492 |
queue.push_back(_target); |
493 | 493 |
reached[_target] = true; |
494 | 494 |
while (!queue.empty()) { |
495 | 495 |
_level->initNewLevel(); |
496 | 496 |
std::vector<Node> nqueue; |
497 | 497 |
for (int i = 0; i < int(queue.size()); ++i) { |
498 | 498 |
Node n = queue[i]; |
499 | 499 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
500 | 500 |
Node u = _graph.source(e); |
501 | 501 |
if (!reached[u] && |
502 | 502 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) { |
503 | 503 |
reached[u] = true; |
504 | 504 |
_level->initAddItem(u); |
505 | 505 |
nqueue.push_back(u); |
506 | 506 |
} |
507 | 507 |
} |
508 | 508 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
509 | 509 |
Node v = _graph.target(e); |
510 | 510 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) { |
511 | 511 |
reached[v] = true; |
512 | 512 |
_level->initAddItem(v); |
513 | 513 |
nqueue.push_back(v); |
514 | 514 |
} |
515 | 515 |
} |
516 | 516 |
} |
517 | 517 |
queue.swap(nqueue); |
518 | 518 |
} |
519 | 519 |
_level->initFinish(); |
520 | 520 |
|
521 | 521 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
522 | 522 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
523 | 523 |
if (_tolerance.positive(rem)) { |
524 | 524 |
Node u = _graph.target(e); |
525 | 525 |
if ((*_level)[u] == _level->maxLevel()) continue; |
526 | 526 |
_flow->set(e, (*_capacity)[e]); |
527 | 527 |
(*_excess)[u] += rem; |
528 |
if (u != _target && !_level->active(u)) { |
|
529 |
_level->activate(u); |
|
530 |
} |
|
531 | 528 |
} |
532 | 529 |
} |
533 | 530 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) { |
534 | 531 |
Value rem = (*_flow)[e]; |
535 | 532 |
if (_tolerance.positive(rem)) { |
536 | 533 |
Node v = _graph.source(e); |
537 | 534 |
if ((*_level)[v] == _level->maxLevel()) continue; |
538 | 535 |
_flow->set(e, 0); |
539 | 536 |
(*_excess)[v] += rem; |
540 |
if (v != _target && !_level->active(v)) { |
|
541 |
_level->activate(v); |
|
542 |
} |
|
543 | 537 |
} |
544 | 538 |
} |
539 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
540 |
if(n!=_source && n!=_target && _tolerance.positive((*_excess)[n])) |
|
541 |
_level->activate(n); |
|
542 |
|
|
545 | 543 |
return true; |
546 | 544 |
} |
547 | 545 |
|
548 | 546 |
/// \brief Starts the first phase of the preflow algorithm. |
549 | 547 |
/// |
550 | 548 |
/// The preflow algorithm consists of two phases, this method runs |
551 | 549 |
/// the first phase. After the first phase the maximum flow value |
552 | 550 |
/// and a minimum value cut can already be computed, although a |
553 | 551 |
/// maximum flow is not yet obtained. So after calling this method |
554 | 552 |
/// \ref flowValue() returns the value of a maximum flow and \ref |
555 | 553 |
/// minCut() returns a minimum cut. |
556 | 554 |
/// \pre One of the \ref init() functions must be called before |
557 | 555 |
/// using this function. |
558 | 556 |
void startFirstPhase() { |
559 | 557 |
_phase = true; |
560 | 558 |
|
561 | 559 |
while (true) { |
562 | 560 |
int num = _node_num; |
563 | 561 |
|
564 | 562 |
Node n = INVALID; |
565 | 563 |
int level = -1; |
566 | 564 |
|
567 | 565 |
while (num > 0) { |
568 | 566 |
n = _level->highestActive(); |
569 | 567 |
if (n == INVALID) goto first_phase_done; |
570 | 568 |
level = _level->highestActiveLevel(); |
571 | 569 |
--num; |
572 | 570 |
|
573 | 571 |
Value excess = (*_excess)[n]; |
574 | 572 |
int new_level = _level->maxLevel(); |
575 | 573 |
|
576 | 574 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
577 | 575 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
578 | 576 |
if (!_tolerance.positive(rem)) continue; |
579 | 577 |
Node v = _graph.target(e); |
580 | 578 |
if ((*_level)[v] < level) { |
581 | 579 |
if (!_level->active(v) && v != _target) { |
582 | 580 |
_level->activate(v); |
583 | 581 |
} |
584 | 582 |
if (!_tolerance.less(rem, excess)) { |
585 | 583 |
_flow->set(e, (*_flow)[e] + excess); |
586 | 584 |
(*_excess)[v] += excess; |
587 | 585 |
excess = 0; |
588 | 586 |
goto no_more_push_1; |
589 | 587 |
} else { |
590 | 588 |
excess -= rem; |
591 | 589 |
(*_excess)[v] += rem; |
592 | 590 |
_flow->set(e, (*_capacity)[e]); |
593 | 591 |
} |
594 | 592 |
} else if (new_level > (*_level)[v]) { |
595 | 593 |
new_level = (*_level)[v]; |
596 | 594 |
} |
597 | 595 |
} |
598 | 596 |
|
599 | 597 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
600 | 598 |
Value rem = (*_flow)[e]; |
601 | 599 |
if (!_tolerance.positive(rem)) continue; |
602 | 600 |
Node v = _graph.source(e); |
603 | 601 |
if ((*_level)[v] < level) { |
604 | 602 |
if (!_level->active(v) && v != _target) { |
605 | 603 |
_level->activate(v); |
606 | 604 |
} |
607 | 605 |
if (!_tolerance.less(rem, excess)) { |
608 | 606 |
_flow->set(e, (*_flow)[e] - excess); |
609 | 607 |
(*_excess)[v] += excess; |
610 | 608 |
excess = 0; |
611 | 609 |
goto no_more_push_1; |
612 | 610 |
} else { |
613 | 611 |
excess -= rem; |
614 | 612 |
(*_excess)[v] += rem; |
615 | 613 |
_flow->set(e, 0); |
616 | 614 |
} |
617 | 615 |
} else if (new_level > (*_level)[v]) { |
618 | 616 |
new_level = (*_level)[v]; |
619 | 617 |
} |
620 | 618 |
} |
621 | 619 |
|
622 | 620 |
no_more_push_1: |
623 | 621 |
|
624 | 622 |
(*_excess)[n] = excess; |
625 | 623 |
|
626 | 624 |
if (excess != 0) { |
627 | 625 |
if (new_level + 1 < _level->maxLevel()) { |
628 | 626 |
_level->liftHighestActive(new_level + 1); |
629 | 627 |
} else { |
630 | 628 |
_level->liftHighestActiveToTop(); |
631 | 629 |
} |
632 | 630 |
if (_level->emptyLevel(level)) { |
633 | 631 |
_level->liftToTop(level); |
634 | 632 |
} |
635 | 633 |
} else { |
636 | 634 |
_level->deactivate(n); |
637 | 635 |
} |
638 | 636 |
} |
639 | 637 |
|
640 | 638 |
num = _node_num * 20; |
641 | 639 |
while (num > 0) { |
642 | 640 |
while (level >= 0 && _level->activeFree(level)) { |
643 | 641 |
--level; |
644 | 642 |
} |
645 | 643 |
if (level == -1) { |
646 | 644 |
n = _level->highestActive(); |
647 | 645 |
level = _level->highestActiveLevel(); |
648 | 646 |
if (n == INVALID) goto first_phase_done; |
649 | 647 |
} else { |
650 | 648 |
n = _level->activeOn(level); |
651 | 649 |
} |
652 | 650 |
--num; |
653 | 651 |
|
654 | 652 |
Value excess = (*_excess)[n]; |
655 | 653 |
int new_level = _level->maxLevel(); |
656 | 654 |
|
657 | 655 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
658 | 656 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
659 | 657 |
if (!_tolerance.positive(rem)) continue; |
660 | 658 |
Node v = _graph.target(e); |
661 | 659 |
if ((*_level)[v] < level) { |
662 | 660 |
if (!_level->active(v) && v != _target) { |
663 | 661 |
_level->activate(v); |
664 | 662 |
} |
665 | 663 |
if (!_tolerance.less(rem, excess)) { |
666 | 664 |
_flow->set(e, (*_flow)[e] + excess); |
667 | 665 |
(*_excess)[v] += excess; |
668 | 666 |
excess = 0; |
669 | 667 |
goto no_more_push_2; |
670 | 668 |
} else { |
671 | 669 |
excess -= rem; |
672 | 670 |
(*_excess)[v] += rem; |
673 | 671 |
_flow->set(e, (*_capacity)[e]); |
674 | 672 |
} |
675 | 673 |
} else if (new_level > (*_level)[v]) { |
676 | 674 |
new_level = (*_level)[v]; |
677 | 675 |
} |
678 | 676 |
} |
679 | 677 |
|
680 | 678 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
681 | 679 |
Value rem = (*_flow)[e]; |
682 | 680 |
if (!_tolerance.positive(rem)) continue; |
683 | 681 |
Node v = _graph.source(e); |
684 | 682 |
if ((*_level)[v] < level) { |
685 | 683 |
if (!_level->active(v) && v != _target) { |
686 | 684 |
_level->activate(v); |
687 | 685 |
} |
688 | 686 |
if (!_tolerance.less(rem, excess)) { |
689 | 687 |
_flow->set(e, (*_flow)[e] - excess); |
690 | 688 |
(*_excess)[v] += excess; |
691 | 689 |
excess = 0; |
692 | 690 |
goto no_more_push_2; |
693 | 691 |
} else { |
694 | 692 |
excess -= rem; |
695 | 693 |
(*_excess)[v] += rem; |
696 | 694 |
_flow->set(e, 0); |
697 | 695 |
} |
698 | 696 |
} else if (new_level > (*_level)[v]) { |
699 | 697 |
new_level = (*_level)[v]; |
700 | 698 |
} |
701 | 699 |
} |
702 | 700 |
|
703 | 701 |
no_more_push_2: |
704 | 702 |
|
705 | 703 |
(*_excess)[n] = excess; |
706 | 704 |
|
707 | 705 |
if (excess != 0) { |
708 | 706 |
if (new_level + 1 < _level->maxLevel()) { |
709 | 707 |
_level->liftActiveOn(level, new_level + 1); |
710 | 708 |
} else { |
711 | 709 |
_level->liftActiveToTop(level); |
712 | 710 |
} |
713 | 711 |
if (_level->emptyLevel(level)) { |
714 | 712 |
_level->liftToTop(level); |
715 | 713 |
} |
716 | 714 |
} else { |
717 | 715 |
_level->deactivate(n); |
718 | 716 |
} |
719 | 717 |
} |
720 | 718 |
} |
721 | 719 |
first_phase_done:; |
722 | 720 |
} |
723 | 721 |
|
724 | 722 |
/// \brief Starts the second phase of the preflow algorithm. |
725 | 723 |
/// |
726 | 724 |
/// The preflow algorithm consists of two phases, this method runs |
727 | 725 |
/// the second phase. After calling one of the \ref init() functions |
728 | 726 |
/// and \ref startFirstPhase() and then \ref startSecondPhase(), |
729 | 727 |
/// \ref flowMap() returns a maximum flow, \ref flowValue() returns the |
730 | 728 |
/// value of a maximum flow, \ref minCut() returns a minimum cut |
731 | 729 |
/// \pre One of the \ref init() functions and \ref startFirstPhase() |
732 | 730 |
/// must be called before using this function. |
733 | 731 |
void startSecondPhase() { |
734 | 732 |
_phase = false; |
735 | 733 |
|
736 | 734 |
typename Digraph::template NodeMap<bool> reached(_graph); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
|
21 | 21 |
#include "test_tools.h" |
22 | 22 |
#include <lemon/smart_graph.h> |
23 | 23 |
#include <lemon/preflow.h> |
24 | 24 |
#include <lemon/concepts/digraph.h> |
25 | 25 |
#include <lemon/concepts/maps.h> |
26 | 26 |
#include <lemon/lgf_reader.h> |
27 | 27 |
#include <lemon/elevator.h> |
28 | 28 |
|
29 | 29 |
using namespace lemon; |
30 | 30 |
|
31 | 31 |
char test_lgf[] = |
32 | 32 |
"@nodes\n" |
33 | 33 |
"label\n" |
34 | 34 |
"0\n" |
35 | 35 |
"1\n" |
36 | 36 |
"2\n" |
37 | 37 |
"3\n" |
38 | 38 |
"4\n" |
39 | 39 |
"5\n" |
40 | 40 |
"6\n" |
41 | 41 |
"7\n" |
42 | 42 |
"8\n" |
43 | 43 |
"9\n" |
44 | 44 |
"@arcs\n" |
45 | 45 |
" label capacity\n" |
46 | 46 |
"0 1 0 20\n" |
47 | 47 |
"0 2 1 0\n" |
48 | 48 |
"1 1 2 3\n" |
49 | 49 |
"1 2 3 8\n" |
50 | 50 |
"1 3 4 8\n" |
51 | 51 |
"2 5 5 5\n" |
52 | 52 |
"3 2 6 5\n" |
53 | 53 |
"3 5 7 5\n" |
54 | 54 |
"3 6 8 5\n" |
55 | 55 |
"4 3 9 3\n" |
56 | 56 |
"5 7 10 3\n" |
57 | 57 |
"5 6 11 10\n" |
58 | 58 |
"5 8 12 10\n" |
59 | 59 |
"6 8 13 8\n" |
60 | 60 |
"8 9 14 20\n" |
61 | 61 |
"8 1 15 5\n" |
62 | 62 |
"9 5 16 5\n" |
63 | 63 |
"@attributes\n" |
64 | 64 |
"source 1\n" |
65 | 65 |
"target 8\n"; |
66 | 66 |
|
67 | 67 |
void checkPreflowCompile() |
68 | 68 |
{ |
69 | 69 |
typedef int VType; |
70 | 70 |
typedef concepts::Digraph Digraph; |
71 | 71 |
|
72 | 72 |
typedef Digraph::Node Node; |
73 | 73 |
typedef Digraph::Arc Arc; |
74 | 74 |
typedef concepts::ReadMap<Arc,VType> CapMap; |
75 | 75 |
typedef concepts::ReadWriteMap<Arc,VType> FlowMap; |
76 | 76 |
typedef concepts::WriteMap<Node,bool> CutMap; |
77 | 77 |
|
78 | 78 |
typedef Elevator<Digraph, Digraph::Node> Elev; |
79 | 79 |
typedef LinkedElevator<Digraph, Digraph::Node> LinkedElev; |
80 | 80 |
|
81 | 81 |
Digraph g; |
82 | 82 |
Node n; |
83 | 83 |
Arc e; |
84 | 84 |
CapMap cap; |
85 | 85 |
FlowMap flow; |
86 | 86 |
CutMap cut; |
87 | 87 |
VType v; |
88 | 88 |
bool b; |
89 | 89 |
|
90 | 90 |
typedef Preflow<Digraph, CapMap> |
91 | 91 |
::SetFlowMap<FlowMap> |
92 | 92 |
::SetElevator<Elev> |
93 | 93 |
::SetStandardElevator<LinkedElev> |
94 | 94 |
::Create PreflowType; |
95 | 95 |
PreflowType preflow_test(g, cap, n, n); |
96 | 96 |
const PreflowType& const_preflow_test = preflow_test; |
97 | 97 |
|
98 | 98 |
preflow_test |
99 | 99 |
.capacityMap(cap) |
100 | 100 |
.flowMap(flow) |
101 | 101 |
.source(n) |
102 | 102 |
.target(n); |
103 | 103 |
|
104 | 104 |
preflow_test.init(); |
105 | 105 |
preflow_test.init(cap); |
106 | 106 |
preflow_test.startFirstPhase(); |
107 | 107 |
preflow_test.startSecondPhase(); |
108 | 108 |
preflow_test.run(); |
109 | 109 |
preflow_test.runMinCut(); |
110 | 110 |
|
111 | 111 |
v = const_preflow_test.flowValue(); |
112 | 112 |
v = const_preflow_test.flow(e); |
113 | 113 |
const FlowMap& fm = const_preflow_test.flowMap(); |
114 | 114 |
b = const_preflow_test.minCut(n); |
115 | 115 |
const_preflow_test.minCutMap(cut); |
116 | 116 |
|
117 | 117 |
ignore_unused_variable_warning(fm); |
118 | 118 |
} |
119 | 119 |
|
120 | 120 |
int cutValue (const SmartDigraph& g, |
121 | 121 |
const SmartDigraph::NodeMap<bool>& cut, |
122 | 122 |
const SmartDigraph::ArcMap<int>& cap) { |
123 | 123 |
|
124 | 124 |
int c=0; |
125 | 125 |
for(SmartDigraph::ArcIt e(g); e!=INVALID; ++e) { |
126 | 126 |
if (cut[g.source(e)] && !cut[g.target(e)]) c+=cap[e]; |
127 | 127 |
} |
128 | 128 |
return c; |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
bool checkFlow(const SmartDigraph& g, |
132 | 132 |
const SmartDigraph::ArcMap<int>& flow, |
133 | 133 |
const SmartDigraph::ArcMap<int>& cap, |
134 | 134 |
SmartDigraph::Node s, SmartDigraph::Node t) { |
135 | 135 |
|
136 | 136 |
for (SmartDigraph::ArcIt e(g); e != INVALID; ++e) { |
137 | 137 |
if (flow[e] < 0 || flow[e] > cap[e]) return false; |
138 | 138 |
} |
139 | 139 |
|
140 | 140 |
for (SmartDigraph::NodeIt n(g); n != INVALID; ++n) { |
141 | 141 |
if (n == s || n == t) continue; |
142 | 142 |
int sum = 0; |
143 | 143 |
for (SmartDigraph::OutArcIt e(g, n); e != INVALID; ++e) { |
144 | 144 |
sum += flow[e]; |
145 | 145 |
} |
146 | 146 |
for (SmartDigraph::InArcIt e(g, n); e != INVALID; ++e) { |
147 | 147 |
sum -= flow[e]; |
148 | 148 |
} |
149 | 149 |
if (sum != 0) return false; |
150 | 150 |
} |
151 | 151 |
return true; |
152 | 152 |
} |
153 | 153 |
|
154 |
void initFlowTest() |
|
155 |
{ |
|
156 |
DIGRAPH_TYPEDEFS(SmartDigraph); |
|
157 |
|
|
158 |
SmartDigraph g; |
|
159 |
SmartDigraph::ArcMap<int> cap(g),iflow(g); |
|
160 |
Node s=g.addNode(); Node t=g.addNode(); |
|
161 |
Node n1=g.addNode(); Node n2=g.addNode(); |
|
162 |
Arc a; |
|
163 |
a=g.addArc(s,n1); cap[a]=20; iflow[a]=20; |
|
164 |
a=g.addArc(n1,n2); cap[a]=10; iflow[a]=0; |
|
165 |
a=g.addArc(n2,t); cap[a]=20; iflow[a]=0; |
|
166 |
|
|
167 |
Preflow<SmartDigraph> pre(g,cap,s,t); |
|
168 |
pre.init(iflow); |
|
169 |
pre.startFirstPhase(); |
|
170 |
check(pre.flowValue() == 10, "The incorrect max flow value."); |
|
171 |
check(pre.minCut(s), "Wrong min cut (Node s)."); |
|
172 |
check(pre.minCut(n1), "Wrong min cut (Node n1)."); |
|
173 |
check(!pre.minCut(n2), "Wrong min cut (Node n2)."); |
|
174 |
check(!pre.minCut(t), "Wrong min cut (Node t)."); |
|
175 |
} |
|
176 |
|
|
177 |
|
|
154 | 178 |
int main() { |
155 | 179 |
|
156 | 180 |
typedef SmartDigraph Digraph; |
157 | 181 |
|
158 | 182 |
typedef Digraph::Node Node; |
159 | 183 |
typedef Digraph::NodeIt NodeIt; |
160 | 184 |
typedef Digraph::ArcIt ArcIt; |
161 | 185 |
typedef Digraph::ArcMap<int> CapMap; |
162 | 186 |
typedef Digraph::ArcMap<int> FlowMap; |
163 | 187 |
typedef Digraph::NodeMap<bool> CutMap; |
164 | 188 |
|
165 | 189 |
typedef Preflow<Digraph, CapMap> PType; |
166 | 190 |
|
167 | 191 |
Digraph g; |
168 | 192 |
Node s, t; |
169 | 193 |
CapMap cap(g); |
170 | 194 |
std::istringstream input(test_lgf); |
171 | 195 |
DigraphReader<Digraph>(g,input). |
172 | 196 |
arcMap("capacity", cap). |
173 | 197 |
node("source",s). |
174 | 198 |
node("target",t). |
175 | 199 |
run(); |
176 | 200 |
|
177 | 201 |
PType preflow_test(g, cap, s, t); |
178 | 202 |
preflow_test.run(); |
179 | 203 |
|
180 | 204 |
check(checkFlow(g, preflow_test.flowMap(), cap, s, t), |
181 | 205 |
"The flow is not feasible."); |
182 | 206 |
|
183 | 207 |
CutMap min_cut(g); |
184 | 208 |
preflow_test.minCutMap(min_cut); |
185 | 209 |
int min_cut_value=cutValue(g,min_cut,cap); |
186 | 210 |
|
187 | 211 |
check(preflow_test.flowValue() == min_cut_value, |
188 | 212 |
"The max flow value is not equal to the three min cut values."); |
189 | 213 |
|
190 | 214 |
FlowMap flow(g); |
191 | 215 |
for(ArcIt e(g); e!=INVALID; ++e) flow[e] = preflow_test.flowMap()[e]; |
192 | 216 |
|
193 | 217 |
int flow_value=preflow_test.flowValue(); |
194 | 218 |
|
195 | 219 |
for(ArcIt e(g); e!=INVALID; ++e) cap[e]=2*cap[e]; |
196 | 220 |
preflow_test.init(flow); |
197 | 221 |
preflow_test.startFirstPhase(); |
198 | 222 |
|
199 | 223 |
CutMap min_cut1(g); |
200 | 224 |
preflow_test.minCutMap(min_cut1); |
201 | 225 |
min_cut_value=cutValue(g,min_cut1,cap); |
202 | 226 |
|
203 | 227 |
check(preflow_test.flowValue() == min_cut_value && |
204 | 228 |
min_cut_value == 2*flow_value, |
205 | 229 |
"The max flow value or the min cut value is wrong."); |
206 | 230 |
|
207 | 231 |
preflow_test.startSecondPhase(); |
208 | 232 |
|
209 | 233 |
check(checkFlow(g, preflow_test.flowMap(), cap, s, t), |
210 | 234 |
"The flow is not feasible."); |
211 | 235 |
|
212 | 236 |
CutMap min_cut2(g); |
213 | 237 |
preflow_test.minCutMap(min_cut2); |
214 | 238 |
min_cut_value=cutValue(g,min_cut2,cap); |
215 | 239 |
|
216 | 240 |
check(preflow_test.flowValue() == min_cut_value && |
217 | 241 |
min_cut_value == 2*flow_value, |
218 | 242 |
"The max flow value or the three min cut values were not doubled"); |
219 | 243 |
|
220 | 244 |
|
221 | 245 |
preflow_test.flowMap(flow); |
222 | 246 |
|
223 | 247 |
NodeIt tmp1(g,s); |
224 | 248 |
++tmp1; |
225 | 249 |
if ( tmp1 != INVALID ) s=tmp1; |
226 | 250 |
|
227 | 251 |
NodeIt tmp2(g,t); |
228 | 252 |
++tmp2; |
229 | 253 |
if ( tmp2 != INVALID ) t=tmp2; |
230 | 254 |
|
231 | 255 |
preflow_test.source(s); |
232 | 256 |
preflow_test.target(t); |
233 | 257 |
|
234 | 258 |
preflow_test.run(); |
235 | 259 |
|
236 | 260 |
CutMap min_cut3(g); |
237 | 261 |
preflow_test.minCutMap(min_cut3); |
238 | 262 |
min_cut_value=cutValue(g,min_cut3,cap); |
239 | 263 |
|
240 | 264 |
|
241 | 265 |
check(preflow_test.flowValue() == min_cut_value, |
242 | 266 |
"The max flow value or the three min cut values are incorrect."); |
243 | 267 |
|
268 |
initFlowTest(); |
|
269 |
|
|
244 | 270 |
return 0; |
245 | 271 |
} |
0 comments (0 inline)