gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Modify the implementation of ListDigraph::ArcIt (#311) The new implementation is based on out-arc iteration (like ListGraph::ArcIt) instead of in-arc iteration to make it consistent with the documentation.
0 1 0
default
1 file changed with 7 insertions and 7 deletions:
↑ Collapse diff ↑
Show white space 384 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_LIST_GRAPH_H
20 20
#define LEMON_LIST_GRAPH_H
21 21

	
22 22
///\ingroup graphs
23 23
///\file
24 24
///\brief ListDigraph, ListGraph classes.
25 25

	
26 26
#include <lemon/core.h>
27 27
#include <lemon/error.h>
28 28
#include <lemon/bits/graph_extender.h>
29 29

	
30 30
#include <vector>
31 31
#include <list>
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  class ListDigraphBase {
36 36

	
37 37
  protected:
38 38
    struct NodeT {
39 39
      int first_in, first_out;
40 40
      int prev, next;
41 41
    };
42 42

	
43 43
    struct ArcT {
44 44
      int target, source;
45 45
      int prev_in, prev_out;
46 46
      int next_in, next_out;
47 47
    };
48 48

	
49 49
    std::vector<NodeT> nodes;
50 50

	
51 51
    int first_node;
52 52

	
53 53
    int first_free_node;
54 54

	
55 55
    std::vector<ArcT> arcs;
56 56

	
57 57
    int first_free_arc;
58 58

	
59 59
  public:
60 60

	
61 61
    typedef ListDigraphBase Digraph;
62 62

	
63 63
    class Node {
64 64
      friend class ListDigraphBase;
65 65
    protected:
66 66

	
67 67
      int id;
68 68
      explicit Node(int pid) { id = pid;}
69 69

	
70 70
    public:
71 71
      Node() {}
72 72
      Node (Invalid) { id = -1; }
73 73
      bool operator==(const Node& node) const {return id == node.id;}
74 74
      bool operator!=(const Node& node) const {return id != node.id;}
75 75
      bool operator<(const Node& node) const {return id < node.id;}
76 76
    };
77 77

	
78 78
    class Arc {
79 79
      friend class ListDigraphBase;
80 80
    protected:
81 81

	
82 82
      int id;
83 83
      explicit Arc(int pid) { id = pid;}
84 84

	
85 85
    public:
86 86
      Arc() {}
87 87
      Arc (Invalid) { id = -1; }
88 88
      bool operator==(const Arc& arc) const {return id == arc.id;}
89 89
      bool operator!=(const Arc& arc) const {return id != arc.id;}
90 90
      bool operator<(const Arc& arc) const {return id < arc.id;}
91 91
    };
92 92

	
93 93

	
94 94

	
95 95
    ListDigraphBase()
96 96
      : nodes(), first_node(-1),
97 97
        first_free_node(-1), arcs(), first_free_arc(-1) {}
98 98

	
99 99

	
100 100
    int maxNodeId() const { return nodes.size()-1; }
101 101
    int maxArcId() const { return arcs.size()-1; }
102 102

	
103 103
    Node source(Arc e) const { return Node(arcs[e.id].source); }
104 104
    Node target(Arc e) const { return Node(arcs[e.id].target); }
105 105

	
106 106

	
107 107
    void first(Node& node) const {
108 108
      node.id = first_node;
109 109
    }
110 110

	
111 111
    void next(Node& node) const {
112 112
      node.id = nodes[node.id].next;
113 113
    }
114 114

	
115 115

	
116 116
    void first(Arc& arc) const {
117 117
      int n;
118 118
      for(n = first_node;
119
          n!=-1 && nodes[n].first_in == -1;
119
          n != -1 && nodes[n].first_out == -1;
120 120
          n = nodes[n].next) {}
121
      arc.id = (n == -1) ? -1 : nodes[n].first_in;
121
      arc.id = (n == -1) ? -1 : nodes[n].first_out;
122 122
    }
123 123

	
124 124
    void next(Arc& arc) const {
125
      if (arcs[arc.id].next_in != -1) {
126
        arc.id = arcs[arc.id].next_in;
125
      if (arcs[arc.id].next_out != -1) {
126
        arc.id = arcs[arc.id].next_out;
127 127
      } else {
128 128
        int n;
129
        for(n = nodes[arcs[arc.id].target].next;
130
            n!=-1 && nodes[n].first_in == -1;
129
        for(n = nodes[arcs[arc.id].source].next;
130
            n != -1 && nodes[n].first_out == -1;
131 131
            n = nodes[n].next) {}
132
        arc.id = (n == -1) ? -1 : nodes[n].first_in;
132
        arc.id = (n == -1) ? -1 : nodes[n].first_out;
133 133
      }
134 134
    }
135 135

	
136 136
    void firstOut(Arc &e, const Node& v) const {
137 137
      e.id = nodes[v.id].first_out;
138 138
    }
139 139
    void nextOut(Arc &e) const {
140 140
      e.id=arcs[e.id].next_out;
141 141
    }
142 142

	
143 143
    void firstIn(Arc &e, const Node& v) const {
144 144
      e.id = nodes[v.id].first_in;
145 145
    }
146 146
    void nextIn(Arc &e) const {
147 147
      e.id=arcs[e.id].next_in;
148 148
    }
149 149

	
150 150

	
151 151
    static int id(Node v) { return v.id; }
152 152
    static int id(Arc e) { return e.id; }
153 153

	
154 154
    static Node nodeFromId(int id) { return Node(id);}
155 155
    static Arc arcFromId(int id) { return Arc(id);}
156 156

	
157 157
    bool valid(Node n) const {
158 158
      return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
159 159
        nodes[n.id].prev != -2;
160 160
    }
161 161

	
162 162
    bool valid(Arc a) const {
163 163
      return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
164 164
        arcs[a.id].prev_in != -2;
165 165
    }
166 166

	
167 167
    Node addNode() {
168 168
      int n;
169 169

	
170 170
      if(first_free_node==-1) {
171 171
        n = nodes.size();
172 172
        nodes.push_back(NodeT());
173 173
      } else {
174 174
        n = first_free_node;
175 175
        first_free_node = nodes[n].next;
176 176
      }
177 177

	
178 178
      nodes[n].next = first_node;
179 179
      if(first_node != -1) nodes[first_node].prev = n;
180 180
      first_node = n;
181 181
      nodes[n].prev = -1;
182 182

	
183 183
      nodes[n].first_in = nodes[n].first_out = -1;
184 184

	
185 185
      return Node(n);
186 186
    }
187 187

	
188 188
    Arc addArc(Node u, Node v) {
189 189
      int n;
190 190

	
191 191
      if (first_free_arc == -1) {
192 192
        n = arcs.size();
193 193
        arcs.push_back(ArcT());
194 194
      } else {
195 195
        n = first_free_arc;
196 196
        first_free_arc = arcs[n].next_in;
197 197
      }
198 198

	
199 199
      arcs[n].source = u.id;
200 200
      arcs[n].target = v.id;
201 201

	
202 202
      arcs[n].next_out = nodes[u.id].first_out;
203 203
      if(nodes[u.id].first_out != -1) {
204 204
        arcs[nodes[u.id].first_out].prev_out = n;
205 205
      }
206 206

	
207 207
      arcs[n].next_in = nodes[v.id].first_in;
208 208
      if(nodes[v.id].first_in != -1) {
209 209
        arcs[nodes[v.id].first_in].prev_in = n;
210 210
      }
211 211

	
212 212
      arcs[n].prev_in = arcs[n].prev_out = -1;
213 213

	
214 214
      nodes[u.id].first_out = nodes[v.id].first_in = n;
215 215

	
216 216
      return Arc(n);
217 217
    }
218 218

	
219 219
    void erase(const Node& node) {
220 220
      int n = node.id;
221 221

	
222 222
      if(nodes[n].next != -1) {
223 223
        nodes[nodes[n].next].prev = nodes[n].prev;
224 224
      }
225 225

	
226 226
      if(nodes[n].prev != -1) {
227 227
        nodes[nodes[n].prev].next = nodes[n].next;
228 228
      } else {
229 229
        first_node = nodes[n].next;
230 230
      }
231 231

	
232 232
      nodes[n].next = first_free_node;
233 233
      first_free_node = n;
234 234
      nodes[n].prev = -2;
235 235

	
236 236
    }
237 237

	
238 238
    void erase(const Arc& arc) {
239 239
      int n = arc.id;
240 240

	
241 241
      if(arcs[n].next_in!=-1) {
242 242
        arcs[arcs[n].next_in].prev_in = arcs[n].prev_in;
243 243
      }
244 244

	
245 245
      if(arcs[n].prev_in!=-1) {
246 246
        arcs[arcs[n].prev_in].next_in = arcs[n].next_in;
247 247
      } else {
248 248
        nodes[arcs[n].target].first_in = arcs[n].next_in;
249 249
      }
250 250

	
251 251

	
252 252
      if(arcs[n].next_out!=-1) {
253 253
        arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
254 254
      }
255 255

	
256 256
      if(arcs[n].prev_out!=-1) {
257 257
        arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
258 258
      } else {
259 259
        nodes[arcs[n].source].first_out = arcs[n].next_out;
260 260
      }
261 261

	
262 262
      arcs[n].next_in = first_free_arc;
263 263
      first_free_arc = n;
264 264
      arcs[n].prev_in = -2;
265 265
    }
266 266

	
267 267
    void clear() {
268 268
      arcs.clear();
269 269
      nodes.clear();
270 270
      first_node = first_free_node = first_free_arc = -1;
271 271
    }
272 272

	
273 273
  protected:
274 274
    void changeTarget(Arc e, Node n)
275 275
    {
276 276
      if(arcs[e.id].next_in != -1)
277 277
        arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in;
278 278
      if(arcs[e.id].prev_in != -1)
279 279
        arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in;
280 280
      else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in;
281 281
      if (nodes[n.id].first_in != -1) {
282 282
        arcs[nodes[n.id].first_in].prev_in = e.id;
283 283
      }
284 284
      arcs[e.id].target = n.id;
285 285
      arcs[e.id].prev_in = -1;
286 286
      arcs[e.id].next_in = nodes[n.id].first_in;
287 287
      nodes[n.id].first_in = e.id;
288 288
    }
289 289
    void changeSource(Arc e, Node n)
290 290
    {
291 291
      if(arcs[e.id].next_out != -1)
292 292
        arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out;
293 293
      if(arcs[e.id].prev_out != -1)
294 294
        arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out;
295 295
      else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out;
296 296
      if (nodes[n.id].first_out != -1) {
297 297
        arcs[nodes[n.id].first_out].prev_out = e.id;
298 298
      }
299 299
      arcs[e.id].source = n.id;
300 300
      arcs[e.id].prev_out = -1;
301 301
      arcs[e.id].next_out = nodes[n.id].first_out;
302 302
      nodes[n.id].first_out = e.id;
303 303
    }
304 304

	
305 305
  };
306 306

	
307 307
  typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase;
308 308

	
309 309
  /// \addtogroup graphs
310 310
  /// @{
311 311

	
312 312
  ///A general directed graph structure.
313 313

	
314 314
  ///\ref ListDigraph is a simple and fast <em>directed graph</em>
315 315
  ///implementation based on static linked lists that are stored in
316 316
  ///\c std::vector structures.
317 317
  ///
318 318
  ///It conforms to the \ref concepts::Digraph "Digraph concept" and it
319 319
  ///also provides several useful additional functionalities.
320 320
  ///Most of the member functions and nested classes are documented
321 321
  ///only in the concept class.
322 322
  ///
323 323
  ///\sa concepts::Digraph
324 324

	
0 comments (0 inline)