0
2
0
38
39
... | ... |
@@ -299,2485 +299,2484 @@ |
299 | 299 |
public: |
300 | 300 |
|
301 | 301 |
///\e |
302 | 302 |
Reference operator[](const Key &k) { |
303 | 303 |
return _vector[k]; |
304 | 304 |
} |
305 | 305 |
|
306 | 306 |
///\e |
307 | 307 |
ConstReference operator[](const Key &k) const { |
308 | 308 |
return _vector[k]; |
309 | 309 |
} |
310 | 310 |
|
311 | 311 |
///\e |
312 | 312 |
void set(const Key &k, const Value &v) { |
313 | 313 |
_vector[k] = v; |
314 | 314 |
} |
315 | 315 |
}; |
316 | 316 |
|
317 | 317 |
/// Returns a \c RangeMap class |
318 | 318 |
|
319 | 319 |
/// This function just returns a \c RangeMap class. |
320 | 320 |
/// \relates RangeMap |
321 | 321 |
template<typename V> |
322 | 322 |
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) { |
323 | 323 |
return RangeMap<V>(size, value); |
324 | 324 |
} |
325 | 325 |
|
326 | 326 |
/// \brief Returns a \c RangeMap class created from an appropriate |
327 | 327 |
/// \c std::vector |
328 | 328 |
|
329 | 329 |
/// This function just returns a \c RangeMap class created from an |
330 | 330 |
/// appropriate \c std::vector. |
331 | 331 |
/// \relates RangeMap |
332 | 332 |
template<typename V> |
333 | 333 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) { |
334 | 334 |
return RangeMap<V>(vector); |
335 | 335 |
} |
336 | 336 |
|
337 | 337 |
|
338 | 338 |
/// Map type based on \c std::map |
339 | 339 |
|
340 | 340 |
/// This map is essentially a wrapper for \c std::map with addition |
341 | 341 |
/// that you can specify a default value for the keys that are not |
342 | 342 |
/// stored actually. This value can be different from the default |
343 | 343 |
/// contructed value (i.e. \c %Value()). |
344 | 344 |
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
345 | 345 |
/// concept. |
346 | 346 |
/// |
347 | 347 |
/// This map is useful if a default value should be assigned to most of |
348 | 348 |
/// the keys and different values should be assigned only to a few |
349 | 349 |
/// keys (i.e. the map is "sparse"). |
350 | 350 |
/// The name of this type also refers to this important usage. |
351 | 351 |
/// |
352 | 352 |
/// Apart form that this map can be used in many other cases since it |
353 | 353 |
/// is based on \c std::map, which is a general associative container. |
354 | 354 |
/// However keep in mind that it is usually not as efficient as other |
355 | 355 |
/// maps. |
356 | 356 |
/// |
357 | 357 |
/// The simplest way of using this map is through the sparseMap() |
358 | 358 |
/// function. |
359 | 359 |
template <typename K, typename V, typename Comp = std::less<K> > |
360 | 360 |
class SparseMap : public MapBase<K, V> { |
361 | 361 |
template <typename K1, typename V1, typename C1> |
362 | 362 |
friend class SparseMap; |
363 | 363 |
public: |
364 | 364 |
|
365 | 365 |
/// Key type |
366 | 366 |
typedef K Key; |
367 | 367 |
/// Value type |
368 | 368 |
typedef V Value; |
369 | 369 |
/// Reference type |
370 | 370 |
typedef Value& Reference; |
371 | 371 |
/// Const reference type |
372 | 372 |
typedef const Value& ConstReference; |
373 | 373 |
|
374 | 374 |
typedef True ReferenceMapTag; |
375 | 375 |
|
376 | 376 |
private: |
377 | 377 |
|
378 | 378 |
typedef std::map<K, V, Comp> Map; |
379 | 379 |
Map _map; |
380 | 380 |
Value _value; |
381 | 381 |
|
382 | 382 |
public: |
383 | 383 |
|
384 | 384 |
/// \brief Constructor with specified default value. |
385 | 385 |
SparseMap(const Value &value = Value()) : _value(value) {} |
386 | 386 |
/// \brief Constructs the map from an appropriate \c std::map, and |
387 | 387 |
/// explicitly specifies a default value. |
388 | 388 |
template <typename V1, typename Comp1> |
389 | 389 |
SparseMap(const std::map<Key, V1, Comp1> &map, |
390 | 390 |
const Value &value = Value()) |
391 | 391 |
: _map(map.begin(), map.end()), _value(value) {} |
392 | 392 |
|
393 | 393 |
/// \brief Constructs the map from another \c SparseMap. |
394 | 394 |
template<typename V1, typename Comp1> |
395 | 395 |
SparseMap(const SparseMap<Key, V1, Comp1> &c) |
396 | 396 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {} |
397 | 397 |
|
398 | 398 |
private: |
399 | 399 |
|
400 | 400 |
SparseMap& operator=(const SparseMap&); |
401 | 401 |
|
402 | 402 |
public: |
403 | 403 |
|
404 | 404 |
///\e |
405 | 405 |
Reference operator[](const Key &k) { |
406 | 406 |
typename Map::iterator it = _map.lower_bound(k); |
407 | 407 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
408 | 408 |
return it->second; |
409 | 409 |
else |
410 | 410 |
return _map.insert(it, std::make_pair(k, _value))->second; |
411 | 411 |
} |
412 | 412 |
|
413 | 413 |
///\e |
414 | 414 |
ConstReference operator[](const Key &k) const { |
415 | 415 |
typename Map::const_iterator it = _map.find(k); |
416 | 416 |
if (it != _map.end()) |
417 | 417 |
return it->second; |
418 | 418 |
else |
419 | 419 |
return _value; |
420 | 420 |
} |
421 | 421 |
|
422 | 422 |
///\e |
423 | 423 |
void set(const Key &k, const Value &v) { |
424 | 424 |
typename Map::iterator it = _map.lower_bound(k); |
425 | 425 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
426 | 426 |
it->second = v; |
427 | 427 |
else |
428 | 428 |
_map.insert(it, std::make_pair(k, v)); |
429 | 429 |
} |
430 | 430 |
|
431 | 431 |
///\e |
432 | 432 |
void setAll(const Value &v) { |
433 | 433 |
_value = v; |
434 | 434 |
_map.clear(); |
435 | 435 |
} |
436 | 436 |
}; |
437 | 437 |
|
438 | 438 |
/// Returns a \c SparseMap class |
439 | 439 |
|
440 | 440 |
/// This function just returns a \c SparseMap class with specified |
441 | 441 |
/// default value. |
442 | 442 |
/// \relates SparseMap |
443 | 443 |
template<typename K, typename V, typename Compare> |
444 | 444 |
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) { |
445 | 445 |
return SparseMap<K, V, Compare>(value); |
446 | 446 |
} |
447 | 447 |
|
448 | 448 |
template<typename K, typename V> |
449 | 449 |
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) { |
450 | 450 |
return SparseMap<K, V, std::less<K> >(value); |
451 | 451 |
} |
452 | 452 |
|
453 | 453 |
/// \brief Returns a \c SparseMap class created from an appropriate |
454 | 454 |
/// \c std::map |
455 | 455 |
|
456 | 456 |
/// This function just returns a \c SparseMap class created from an |
457 | 457 |
/// appropriate \c std::map. |
458 | 458 |
/// \relates SparseMap |
459 | 459 |
template<typename K, typename V, typename Compare> |
460 | 460 |
inline SparseMap<K, V, Compare> |
461 | 461 |
sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
462 | 462 |
{ |
463 | 463 |
return SparseMap<K, V, Compare>(map, value); |
464 | 464 |
} |
465 | 465 |
|
466 | 466 |
/// @} |
467 | 467 |
|
468 | 468 |
/// \addtogroup map_adaptors |
469 | 469 |
/// @{ |
470 | 470 |
|
471 | 471 |
/// Composition of two maps |
472 | 472 |
|
473 | 473 |
/// This \ref concepts::ReadMap "read-only map" returns the |
474 | 474 |
/// composition of two given maps. That is to say, if \c m1 is of |
475 | 475 |
/// type \c M1 and \c m2 is of \c M2, then for |
476 | 476 |
/// \code |
477 | 477 |
/// ComposeMap<M1, M2> cm(m1,m2); |
478 | 478 |
/// \endcode |
479 | 479 |
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
480 | 480 |
/// |
481 | 481 |
/// The \c Key type of the map is inherited from \c M2 and the |
482 | 482 |
/// \c Value type is from \c M1. |
483 | 483 |
/// \c M2::Value must be convertible to \c M1::Key. |
484 | 484 |
/// |
485 | 485 |
/// The simplest way of using this map is through the composeMap() |
486 | 486 |
/// function. |
487 | 487 |
/// |
488 | 488 |
/// \sa CombineMap |
489 | 489 |
template <typename M1, typename M2> |
490 | 490 |
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> { |
491 | 491 |
const M1 &_m1; |
492 | 492 |
const M2 &_m2; |
493 | 493 |
public: |
494 | 494 |
///\e |
495 | 495 |
typedef typename M2::Key Key; |
496 | 496 |
///\e |
497 | 497 |
typedef typename M1::Value Value; |
498 | 498 |
|
499 | 499 |
/// Constructor |
500 | 500 |
ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
501 | 501 |
|
502 | 502 |
///\e |
503 | 503 |
typename MapTraits<M1>::ConstReturnValue |
504 | 504 |
operator[](const Key &k) const { return _m1[_m2[k]]; } |
505 | 505 |
}; |
506 | 506 |
|
507 | 507 |
/// Returns a \c ComposeMap class |
508 | 508 |
|
509 | 509 |
/// This function just returns a \c ComposeMap class. |
510 | 510 |
/// |
511 | 511 |
/// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is |
512 | 512 |
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
513 | 513 |
/// will be equal to <tt>m1[m2[x]]</tt>. |
514 | 514 |
/// |
515 | 515 |
/// \relates ComposeMap |
516 | 516 |
template <typename M1, typename M2> |
517 | 517 |
inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) { |
518 | 518 |
return ComposeMap<M1, M2>(m1, m2); |
519 | 519 |
} |
520 | 520 |
|
521 | 521 |
|
522 | 522 |
/// Combination of two maps using an STL (binary) functor. |
523 | 523 |
|
524 | 524 |
/// This \ref concepts::ReadMap "read-only map" takes two maps and a |
525 | 525 |
/// binary functor and returns the combination of the two given maps |
526 | 526 |
/// using the functor. |
527 | 527 |
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
528 | 528 |
/// and \c f is of \c F, then for |
529 | 529 |
/// \code |
530 | 530 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
531 | 531 |
/// \endcode |
532 | 532 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
533 | 533 |
/// |
534 | 534 |
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
535 | 535 |
/// must be convertible to \c M2::Key) and the \c Value type is \c V. |
536 | 536 |
/// \c M2::Value and \c M1::Value must be convertible to the |
537 | 537 |
/// corresponding input parameter of \c F and the return type of \c F |
538 | 538 |
/// must be convertible to \c V. |
539 | 539 |
/// |
540 | 540 |
/// The simplest way of using this map is through the combineMap() |
541 | 541 |
/// function. |
542 | 542 |
/// |
543 | 543 |
/// \sa ComposeMap |
544 | 544 |
template<typename M1, typename M2, typename F, |
545 | 545 |
typename V = typename F::result_type> |
546 | 546 |
class CombineMap : public MapBase<typename M1::Key, V> { |
547 | 547 |
const M1 &_m1; |
548 | 548 |
const M2 &_m2; |
549 | 549 |
F _f; |
550 | 550 |
public: |
551 | 551 |
///\e |
552 | 552 |
typedef typename M1::Key Key; |
553 | 553 |
///\e |
554 | 554 |
typedef V Value; |
555 | 555 |
|
556 | 556 |
/// Constructor |
557 | 557 |
CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) |
558 | 558 |
: _m1(m1), _m2(m2), _f(f) {} |
559 | 559 |
///\e |
560 | 560 |
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); } |
561 | 561 |
}; |
562 | 562 |
|
563 | 563 |
/// Returns a \c CombineMap class |
564 | 564 |
|
565 | 565 |
/// This function just returns a \c CombineMap class. |
566 | 566 |
/// |
567 | 567 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
568 | 568 |
/// values, then |
569 | 569 |
/// \code |
570 | 570 |
/// combineMap(m1,m2,std::plus<double>()) |
571 | 571 |
/// \endcode |
572 | 572 |
/// is equivalent to |
573 | 573 |
/// \code |
574 | 574 |
/// addMap(m1,m2) |
575 | 575 |
/// \endcode |
576 | 576 |
/// |
577 | 577 |
/// This function is specialized for adaptable binary function |
578 | 578 |
/// classes and C++ functions. |
579 | 579 |
/// |
580 | 580 |
/// \relates CombineMap |
581 | 581 |
template<typename M1, typename M2, typename F, typename V> |
582 | 582 |
inline CombineMap<M1, M2, F, V> |
583 | 583 |
combineMap(const M1 &m1, const M2 &m2, const F &f) { |
584 | 584 |
return CombineMap<M1, M2, F, V>(m1,m2,f); |
585 | 585 |
} |
586 | 586 |
|
587 | 587 |
template<typename M1, typename M2, typename F> |
588 | 588 |
inline CombineMap<M1, M2, F, typename F::result_type> |
589 | 589 |
combineMap(const M1 &m1, const M2 &m2, const F &f) { |
590 | 590 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
591 | 591 |
} |
592 | 592 |
|
593 | 593 |
template<typename M1, typename M2, typename K1, typename K2, typename V> |
594 | 594 |
inline CombineMap<M1, M2, V (*)(K1, K2), V> |
595 | 595 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { |
596 | 596 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
597 | 597 |
} |
598 | 598 |
|
599 | 599 |
|
600 | 600 |
/// Converts an STL style (unary) functor to a map |
601 | 601 |
|
602 | 602 |
/// This \ref concepts::ReadMap "read-only map" returns the value |
603 | 603 |
/// of a given functor. Actually, it just wraps the functor and |
604 | 604 |
/// provides the \c Key and \c Value typedefs. |
605 | 605 |
/// |
606 | 606 |
/// Template parameters \c K and \c V will become its \c Key and |
607 | 607 |
/// \c Value. In most cases they have to be given explicitly because |
608 | 608 |
/// a functor typically does not provide \c argument_type and |
609 | 609 |
/// \c result_type typedefs. |
610 | 610 |
/// Parameter \c F is the type of the used functor. |
611 | 611 |
/// |
612 | 612 |
/// The simplest way of using this map is through the functorToMap() |
613 | 613 |
/// function. |
614 | 614 |
/// |
615 | 615 |
/// \sa MapToFunctor |
616 | 616 |
template<typename F, |
617 | 617 |
typename K = typename F::argument_type, |
618 | 618 |
typename V = typename F::result_type> |
619 | 619 |
class FunctorToMap : public MapBase<K, V> { |
620 | 620 |
F _f; |
621 | 621 |
public: |
622 | 622 |
///\e |
623 | 623 |
typedef K Key; |
624 | 624 |
///\e |
625 | 625 |
typedef V Value; |
626 | 626 |
|
627 | 627 |
/// Constructor |
628 | 628 |
FunctorToMap(const F &f = F()) : _f(f) {} |
629 | 629 |
///\e |
630 | 630 |
Value operator[](const Key &k) const { return _f(k); } |
631 | 631 |
}; |
632 | 632 |
|
633 | 633 |
/// Returns a \c FunctorToMap class |
634 | 634 |
|
635 | 635 |
/// This function just returns a \c FunctorToMap class. |
636 | 636 |
/// |
637 | 637 |
/// This function is specialized for adaptable binary function |
638 | 638 |
/// classes and C++ functions. |
639 | 639 |
/// |
640 | 640 |
/// \relates FunctorToMap |
641 | 641 |
template<typename K, typename V, typename F> |
642 | 642 |
inline FunctorToMap<F, K, V> functorToMap(const F &f) { |
643 | 643 |
return FunctorToMap<F, K, V>(f); |
644 | 644 |
} |
645 | 645 |
|
646 | 646 |
template <typename F> |
647 | 647 |
inline FunctorToMap<F, typename F::argument_type, typename F::result_type> |
648 | 648 |
functorToMap(const F &f) |
649 | 649 |
{ |
650 | 650 |
return FunctorToMap<F, typename F::argument_type, |
651 | 651 |
typename F::result_type>(f); |
652 | 652 |
} |
653 | 653 |
|
654 | 654 |
template <typename K, typename V> |
655 | 655 |
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) { |
656 | 656 |
return FunctorToMap<V (*)(K), K, V>(f); |
657 | 657 |
} |
658 | 658 |
|
659 | 659 |
|
660 | 660 |
/// Converts a map to an STL style (unary) functor |
661 | 661 |
|
662 | 662 |
/// This class converts a map to an STL style (unary) functor. |
663 | 663 |
/// That is it provides an <tt>operator()</tt> to read its values. |
664 | 664 |
/// |
665 | 665 |
/// For the sake of convenience it also works as a usual |
666 | 666 |
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
667 | 667 |
/// and the \c Key and \c Value typedefs also exist. |
668 | 668 |
/// |
669 | 669 |
/// The simplest way of using this map is through the mapToFunctor() |
670 | 670 |
/// function. |
671 | 671 |
/// |
672 | 672 |
///\sa FunctorToMap |
673 | 673 |
template <typename M> |
674 | 674 |
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> { |
675 | 675 |
const M &_m; |
676 | 676 |
public: |
677 | 677 |
///\e |
678 | 678 |
typedef typename M::Key Key; |
679 | 679 |
///\e |
680 | 680 |
typedef typename M::Value Value; |
681 | 681 |
|
682 | 682 |
typedef typename M::Key argument_type; |
683 | 683 |
typedef typename M::Value result_type; |
684 | 684 |
|
685 | 685 |
/// Constructor |
686 | 686 |
MapToFunctor(const M &m) : _m(m) {} |
687 | 687 |
///\e |
688 | 688 |
Value operator()(const Key &k) const { return _m[k]; } |
689 | 689 |
///\e |
690 | 690 |
Value operator[](const Key &k) const { return _m[k]; } |
691 | 691 |
}; |
692 | 692 |
|
693 | 693 |
/// Returns a \c MapToFunctor class |
694 | 694 |
|
695 | 695 |
/// This function just returns a \c MapToFunctor class. |
696 | 696 |
/// \relates MapToFunctor |
697 | 697 |
template<typename M> |
698 | 698 |
inline MapToFunctor<M> mapToFunctor(const M &m) { |
699 | 699 |
return MapToFunctor<M>(m); |
700 | 700 |
} |
701 | 701 |
|
702 | 702 |
|
703 | 703 |
/// \brief Map adaptor to convert the \c Value type of a map to |
704 | 704 |
/// another type using the default conversion. |
705 | 705 |
|
706 | 706 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
707 | 707 |
/// "readable map" to another type using the default conversion. |
708 | 708 |
/// The \c Key type of it is inherited from \c M and the \c Value |
709 | 709 |
/// type is \c V. |
710 | 710 |
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
711 | 711 |
/// |
712 | 712 |
/// The simplest way of using this map is through the convertMap() |
713 | 713 |
/// function. |
714 | 714 |
template <typename M, typename V> |
715 | 715 |
class ConvertMap : public MapBase<typename M::Key, V> { |
716 | 716 |
const M &_m; |
717 | 717 |
public: |
718 | 718 |
///\e |
719 | 719 |
typedef typename M::Key Key; |
720 | 720 |
///\e |
721 | 721 |
typedef V Value; |
722 | 722 |
|
723 | 723 |
/// Constructor |
724 | 724 |
|
725 | 725 |
/// Constructor. |
726 | 726 |
/// \param m The underlying map. |
727 | 727 |
ConvertMap(const M &m) : _m(m) {} |
728 | 728 |
|
729 | 729 |
///\e |
730 | 730 |
Value operator[](const Key &k) const { return _m[k]; } |
731 | 731 |
}; |
732 | 732 |
|
733 | 733 |
/// Returns a \c ConvertMap class |
734 | 734 |
|
735 | 735 |
/// This function just returns a \c ConvertMap class. |
736 | 736 |
/// \relates ConvertMap |
737 | 737 |
template<typename V, typename M> |
738 | 738 |
inline ConvertMap<M, V> convertMap(const M &map) { |
739 | 739 |
return ConvertMap<M, V>(map); |
740 | 740 |
} |
741 | 741 |
|
742 | 742 |
|
743 | 743 |
/// Applies all map setting operations to two maps |
744 | 744 |
|
745 | 745 |
/// This map has two \ref concepts::WriteMap "writable map" parameters |
746 | 746 |
/// and each write request will be passed to both of them. |
747 | 747 |
/// If \c M1 is also \ref concepts::ReadMap "readable", then the read |
748 | 748 |
/// operations will return the corresponding values of \c M1. |
749 | 749 |
/// |
750 | 750 |
/// The \c Key and \c Value types are inherited from \c M1. |
751 | 751 |
/// The \c Key and \c Value of \c M2 must be convertible from those |
752 | 752 |
/// of \c M1. |
753 | 753 |
/// |
754 | 754 |
/// The simplest way of using this map is through the forkMap() |
755 | 755 |
/// function. |
756 | 756 |
template<typename M1, typename M2> |
757 | 757 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> { |
758 | 758 |
M1 &_m1; |
759 | 759 |
M2 &_m2; |
760 | 760 |
public: |
761 | 761 |
///\e |
762 | 762 |
typedef typename M1::Key Key; |
763 | 763 |
///\e |
764 | 764 |
typedef typename M1::Value Value; |
765 | 765 |
|
766 | 766 |
/// Constructor |
767 | 767 |
ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {} |
768 | 768 |
/// Returns the value associated with the given key in the first map. |
769 | 769 |
Value operator[](const Key &k) const { return _m1[k]; } |
770 | 770 |
/// Sets the value associated with the given key in both maps. |
771 | 771 |
void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); } |
772 | 772 |
}; |
773 | 773 |
|
774 | 774 |
/// Returns a \c ForkMap class |
775 | 775 |
|
776 | 776 |
/// This function just returns a \c ForkMap class. |
777 | 777 |
/// \relates ForkMap |
778 | 778 |
template <typename M1, typename M2> |
779 | 779 |
inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) { |
780 | 780 |
return ForkMap<M1,M2>(m1,m2); |
781 | 781 |
} |
782 | 782 |
|
783 | 783 |
|
784 | 784 |
/// Sum of two maps |
785 | 785 |
|
786 | 786 |
/// This \ref concepts::ReadMap "read-only map" returns the sum |
787 | 787 |
/// of the values of the two given maps. |
788 | 788 |
/// Its \c Key and \c Value types are inherited from \c M1. |
789 | 789 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
790 | 790 |
/// \c M1. |
791 | 791 |
/// |
792 | 792 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
793 | 793 |
/// \code |
794 | 794 |
/// AddMap<M1,M2> am(m1,m2); |
795 | 795 |
/// \endcode |
796 | 796 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>. |
797 | 797 |
/// |
798 | 798 |
/// The simplest way of using this map is through the addMap() |
799 | 799 |
/// function. |
800 | 800 |
/// |
801 | 801 |
/// \sa SubMap, MulMap, DivMap |
802 | 802 |
/// \sa ShiftMap, ShiftWriteMap |
803 | 803 |
template<typename M1, typename M2> |
804 | 804 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> { |
805 | 805 |
const M1 &_m1; |
806 | 806 |
const M2 &_m2; |
807 | 807 |
public: |
808 | 808 |
///\e |
809 | 809 |
typedef typename M1::Key Key; |
810 | 810 |
///\e |
811 | 811 |
typedef typename M1::Value Value; |
812 | 812 |
|
813 | 813 |
/// Constructor |
814 | 814 |
AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
815 | 815 |
///\e |
816 | 816 |
Value operator[](const Key &k) const { return _m1[k]+_m2[k]; } |
817 | 817 |
}; |
818 | 818 |
|
819 | 819 |
/// Returns an \c AddMap class |
820 | 820 |
|
821 | 821 |
/// This function just returns an \c AddMap class. |
822 | 822 |
/// |
823 | 823 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
824 | 824 |
/// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to |
825 | 825 |
/// <tt>m1[x]+m2[x]</tt>. |
826 | 826 |
/// |
827 | 827 |
/// \relates AddMap |
828 | 828 |
template<typename M1, typename M2> |
829 | 829 |
inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) { |
830 | 830 |
return AddMap<M1, M2>(m1,m2); |
831 | 831 |
} |
832 | 832 |
|
833 | 833 |
|
834 | 834 |
/// Difference of two maps |
835 | 835 |
|
836 | 836 |
/// This \ref concepts::ReadMap "read-only map" returns the difference |
837 | 837 |
/// of the values of the two given maps. |
838 | 838 |
/// Its \c Key and \c Value types are inherited from \c M1. |
839 | 839 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
840 | 840 |
/// \c M1. |
841 | 841 |
/// |
842 | 842 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
843 | 843 |
/// \code |
844 | 844 |
/// SubMap<M1,M2> sm(m1,m2); |
845 | 845 |
/// \endcode |
846 | 846 |
/// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>. |
847 | 847 |
/// |
848 | 848 |
/// The simplest way of using this map is through the subMap() |
849 | 849 |
/// function. |
850 | 850 |
/// |
851 | 851 |
/// \sa AddMap, MulMap, DivMap |
852 | 852 |
template<typename M1, typename M2> |
853 | 853 |
class SubMap : public MapBase<typename M1::Key, typename M1::Value> { |
854 | 854 |
const M1 &_m1; |
855 | 855 |
const M2 &_m2; |
856 | 856 |
public: |
857 | 857 |
///\e |
858 | 858 |
typedef typename M1::Key Key; |
859 | 859 |
///\e |
860 | 860 |
typedef typename M1::Value Value; |
861 | 861 |
|
862 | 862 |
/// Constructor |
863 | 863 |
SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
864 | 864 |
///\e |
865 | 865 |
Value operator[](const Key &k) const { return _m1[k]-_m2[k]; } |
866 | 866 |
}; |
867 | 867 |
|
868 | 868 |
/// Returns a \c SubMap class |
869 | 869 |
|
870 | 870 |
/// This function just returns a \c SubMap class. |
871 | 871 |
/// |
872 | 872 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
873 | 873 |
/// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to |
874 | 874 |
/// <tt>m1[x]-m2[x]</tt>. |
875 | 875 |
/// |
876 | 876 |
/// \relates SubMap |
877 | 877 |
template<typename M1, typename M2> |
878 | 878 |
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) { |
879 | 879 |
return SubMap<M1, M2>(m1,m2); |
880 | 880 |
} |
881 | 881 |
|
882 | 882 |
|
883 | 883 |
/// Product of two maps |
884 | 884 |
|
885 | 885 |
/// This \ref concepts::ReadMap "read-only map" returns the product |
886 | 886 |
/// of the values of the two given maps. |
887 | 887 |
/// Its \c Key and \c Value types are inherited from \c M1. |
888 | 888 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
889 | 889 |
/// \c M1. |
890 | 890 |
/// |
891 | 891 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
892 | 892 |
/// \code |
893 | 893 |
/// MulMap<M1,M2> mm(m1,m2); |
894 | 894 |
/// \endcode |
895 | 895 |
/// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>. |
896 | 896 |
/// |
897 | 897 |
/// The simplest way of using this map is through the mulMap() |
898 | 898 |
/// function. |
899 | 899 |
/// |
900 | 900 |
/// \sa AddMap, SubMap, DivMap |
901 | 901 |
/// \sa ScaleMap, ScaleWriteMap |
902 | 902 |
template<typename M1, typename M2> |
903 | 903 |
class MulMap : public MapBase<typename M1::Key, typename M1::Value> { |
904 | 904 |
const M1 &_m1; |
905 | 905 |
const M2 &_m2; |
906 | 906 |
public: |
907 | 907 |
///\e |
908 | 908 |
typedef typename M1::Key Key; |
909 | 909 |
///\e |
910 | 910 |
typedef typename M1::Value Value; |
911 | 911 |
|
912 | 912 |
/// Constructor |
913 | 913 |
MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
914 | 914 |
///\e |
915 | 915 |
Value operator[](const Key &k) const { return _m1[k]*_m2[k]; } |
916 | 916 |
}; |
917 | 917 |
|
918 | 918 |
/// Returns a \c MulMap class |
919 | 919 |
|
920 | 920 |
/// This function just returns a \c MulMap class. |
921 | 921 |
/// |
922 | 922 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
923 | 923 |
/// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to |
924 | 924 |
/// <tt>m1[x]*m2[x]</tt>. |
925 | 925 |
/// |
926 | 926 |
/// \relates MulMap |
927 | 927 |
template<typename M1, typename M2> |
928 | 928 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) { |
929 | 929 |
return MulMap<M1, M2>(m1,m2); |
930 | 930 |
} |
931 | 931 |
|
932 | 932 |
|
933 | 933 |
/// Quotient of two maps |
934 | 934 |
|
935 | 935 |
/// This \ref concepts::ReadMap "read-only map" returns the quotient |
936 | 936 |
/// of the values of the two given maps. |
937 | 937 |
/// Its \c Key and \c Value types are inherited from \c M1. |
938 | 938 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
939 | 939 |
/// \c M1. |
940 | 940 |
/// |
941 | 941 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
942 | 942 |
/// \code |
943 | 943 |
/// DivMap<M1,M2> dm(m1,m2); |
944 | 944 |
/// \endcode |
945 | 945 |
/// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>. |
946 | 946 |
/// |
947 | 947 |
/// The simplest way of using this map is through the divMap() |
948 | 948 |
/// function. |
949 | 949 |
/// |
950 | 950 |
/// \sa AddMap, SubMap, MulMap |
951 | 951 |
template<typename M1, typename M2> |
952 | 952 |
class DivMap : public MapBase<typename M1::Key, typename M1::Value> { |
953 | 953 |
const M1 &_m1; |
954 | 954 |
const M2 &_m2; |
955 | 955 |
public: |
956 | 956 |
///\e |
957 | 957 |
typedef typename M1::Key Key; |
958 | 958 |
///\e |
959 | 959 |
typedef typename M1::Value Value; |
960 | 960 |
|
961 | 961 |
/// Constructor |
962 | 962 |
DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
963 | 963 |
///\e |
964 | 964 |
Value operator[](const Key &k) const { return _m1[k]/_m2[k]; } |
965 | 965 |
}; |
966 | 966 |
|
967 | 967 |
/// Returns a \c DivMap class |
968 | 968 |
|
969 | 969 |
/// This function just returns a \c DivMap class. |
970 | 970 |
/// |
971 | 971 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
972 | 972 |
/// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to |
973 | 973 |
/// <tt>m1[x]/m2[x]</tt>. |
974 | 974 |
/// |
975 | 975 |
/// \relates DivMap |
976 | 976 |
template<typename M1, typename M2> |
977 | 977 |
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) { |
978 | 978 |
return DivMap<M1, M2>(m1,m2); |
979 | 979 |
} |
980 | 980 |
|
981 | 981 |
|
982 | 982 |
/// Shifts a map with a constant. |
983 | 983 |
|
984 | 984 |
/// This \ref concepts::ReadMap "read-only map" returns the sum of |
985 | 985 |
/// the given map and a constant value (i.e. it shifts the map with |
986 | 986 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
987 | 987 |
/// |
988 | 988 |
/// Actually, |
989 | 989 |
/// \code |
990 | 990 |
/// ShiftMap<M> sh(m,v); |
991 | 991 |
/// \endcode |
992 | 992 |
/// is equivalent to |
993 | 993 |
/// \code |
994 | 994 |
/// ConstMap<M::Key, M::Value> cm(v); |
995 | 995 |
/// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm); |
996 | 996 |
/// \endcode |
997 | 997 |
/// |
998 | 998 |
/// The simplest way of using this map is through the shiftMap() |
999 | 999 |
/// function. |
1000 | 1000 |
/// |
1001 | 1001 |
/// \sa ShiftWriteMap |
1002 | 1002 |
template<typename M, typename C = typename M::Value> |
1003 | 1003 |
class ShiftMap : public MapBase<typename M::Key, typename M::Value> { |
1004 | 1004 |
const M &_m; |
1005 | 1005 |
C _v; |
1006 | 1006 |
public: |
1007 | 1007 |
///\e |
1008 | 1008 |
typedef typename M::Key Key; |
1009 | 1009 |
///\e |
1010 | 1010 |
typedef typename M::Value Value; |
1011 | 1011 |
|
1012 | 1012 |
/// Constructor |
1013 | 1013 |
|
1014 | 1014 |
/// Constructor. |
1015 | 1015 |
/// \param m The undelying map. |
1016 | 1016 |
/// \param v The constant value. |
1017 | 1017 |
ShiftMap(const M &m, const C &v) : _m(m), _v(v) {} |
1018 | 1018 |
///\e |
1019 | 1019 |
Value operator[](const Key &k) const { return _m[k]+_v; } |
1020 | 1020 |
}; |
1021 | 1021 |
|
1022 | 1022 |
/// Shifts a map with a constant (read-write version). |
1023 | 1023 |
|
1024 | 1024 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the sum |
1025 | 1025 |
/// of the given map and a constant value (i.e. it shifts the map with |
1026 | 1026 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
1027 | 1027 |
/// It makes also possible to write the map. |
1028 | 1028 |
/// |
1029 | 1029 |
/// The simplest way of using this map is through the shiftWriteMap() |
1030 | 1030 |
/// function. |
1031 | 1031 |
/// |
1032 | 1032 |
/// \sa ShiftMap |
1033 | 1033 |
template<typename M, typename C = typename M::Value> |
1034 | 1034 |
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> { |
1035 | 1035 |
M &_m; |
1036 | 1036 |
C _v; |
1037 | 1037 |
public: |
1038 | 1038 |
///\e |
1039 | 1039 |
typedef typename M::Key Key; |
1040 | 1040 |
///\e |
1041 | 1041 |
typedef typename M::Value Value; |
1042 | 1042 |
|
1043 | 1043 |
/// Constructor |
1044 | 1044 |
|
1045 | 1045 |
/// Constructor. |
1046 | 1046 |
/// \param m The undelying map. |
1047 | 1047 |
/// \param v The constant value. |
1048 | 1048 |
ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
1049 | 1049 |
///\e |
1050 | 1050 |
Value operator[](const Key &k) const { return _m[k]+_v; } |
1051 | 1051 |
///\e |
1052 | 1052 |
void set(const Key &k, const Value &v) { _m.set(k, v-_v); } |
1053 | 1053 |
}; |
1054 | 1054 |
|
1055 | 1055 |
/// Returns a \c ShiftMap class |
1056 | 1056 |
|
1057 | 1057 |
/// This function just returns a \c ShiftMap class. |
1058 | 1058 |
/// |
1059 | 1059 |
/// For example, if \c m is a map with \c double values and \c v is |
1060 | 1060 |
/// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to |
1061 | 1061 |
/// <tt>m[x]+v</tt>. |
1062 | 1062 |
/// |
1063 | 1063 |
/// \relates ShiftMap |
1064 | 1064 |
template<typename M, typename C> |
1065 | 1065 |
inline ShiftMap<M, C> shiftMap(const M &m, const C &v) { |
1066 | 1066 |
return ShiftMap<M, C>(m,v); |
1067 | 1067 |
} |
1068 | 1068 |
|
1069 | 1069 |
/// Returns a \c ShiftWriteMap class |
1070 | 1070 |
|
1071 | 1071 |
/// This function just returns a \c ShiftWriteMap class. |
1072 | 1072 |
/// |
1073 | 1073 |
/// For example, if \c m is a map with \c double values and \c v is |
1074 | 1074 |
/// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to |
1075 | 1075 |
/// <tt>m[x]+v</tt>. |
1076 | 1076 |
/// Moreover it makes also possible to write the map. |
1077 | 1077 |
/// |
1078 | 1078 |
/// \relates ShiftWriteMap |
1079 | 1079 |
template<typename M, typename C> |
1080 | 1080 |
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) { |
1081 | 1081 |
return ShiftWriteMap<M, C>(m,v); |
1082 | 1082 |
} |
1083 | 1083 |
|
1084 | 1084 |
|
1085 | 1085 |
/// Scales a map with a constant. |
1086 | 1086 |
|
1087 | 1087 |
/// This \ref concepts::ReadMap "read-only map" returns the value of |
1088 | 1088 |
/// the given map multiplied from the left side with a constant value. |
1089 | 1089 |
/// Its \c Key and \c Value are inherited from \c M. |
1090 | 1090 |
/// |
1091 | 1091 |
/// Actually, |
1092 | 1092 |
/// \code |
1093 | 1093 |
/// ScaleMap<M> sc(m,v); |
1094 | 1094 |
/// \endcode |
1095 | 1095 |
/// is equivalent to |
1096 | 1096 |
/// \code |
1097 | 1097 |
/// ConstMap<M::Key, M::Value> cm(v); |
1098 | 1098 |
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m); |
1099 | 1099 |
/// \endcode |
1100 | 1100 |
/// |
1101 | 1101 |
/// The simplest way of using this map is through the scaleMap() |
1102 | 1102 |
/// function. |
1103 | 1103 |
/// |
1104 | 1104 |
/// \sa ScaleWriteMap |
1105 | 1105 |
template<typename M, typename C = typename M::Value> |
1106 | 1106 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> { |
1107 | 1107 |
const M &_m; |
1108 | 1108 |
C _v; |
1109 | 1109 |
public: |
1110 | 1110 |
///\e |
1111 | 1111 |
typedef typename M::Key Key; |
1112 | 1112 |
///\e |
1113 | 1113 |
typedef typename M::Value Value; |
1114 | 1114 |
|
1115 | 1115 |
/// Constructor |
1116 | 1116 |
|
1117 | 1117 |
/// Constructor. |
1118 | 1118 |
/// \param m The undelying map. |
1119 | 1119 |
/// \param v The constant value. |
1120 | 1120 |
ScaleMap(const M &m, const C &v) : _m(m), _v(v) {} |
1121 | 1121 |
///\e |
1122 | 1122 |
Value operator[](const Key &k) const { return _v*_m[k]; } |
1123 | 1123 |
}; |
1124 | 1124 |
|
1125 | 1125 |
/// Scales a map with a constant (read-write version). |
1126 | 1126 |
|
1127 | 1127 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the value of |
1128 | 1128 |
/// the given map multiplied from the left side with a constant value. |
1129 | 1129 |
/// Its \c Key and \c Value are inherited from \c M. |
1130 | 1130 |
/// It can also be used as write map if the \c / operator is defined |
1131 | 1131 |
/// between \c Value and \c C and the given multiplier is not zero. |
1132 | 1132 |
/// |
1133 | 1133 |
/// The simplest way of using this map is through the scaleWriteMap() |
1134 | 1134 |
/// function. |
1135 | 1135 |
/// |
1136 | 1136 |
/// \sa ScaleMap |
1137 | 1137 |
template<typename M, typename C = typename M::Value> |
1138 | 1138 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> { |
1139 | 1139 |
M &_m; |
1140 | 1140 |
C _v; |
1141 | 1141 |
public: |
1142 | 1142 |
///\e |
1143 | 1143 |
typedef typename M::Key Key; |
1144 | 1144 |
///\e |
1145 | 1145 |
typedef typename M::Value Value; |
1146 | 1146 |
|
1147 | 1147 |
/// Constructor |
1148 | 1148 |
|
1149 | 1149 |
/// Constructor. |
1150 | 1150 |
/// \param m The undelying map. |
1151 | 1151 |
/// \param v The constant value. |
1152 | 1152 |
ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
1153 | 1153 |
///\e |
1154 | 1154 |
Value operator[](const Key &k) const { return _v*_m[k]; } |
1155 | 1155 |
///\e |
1156 | 1156 |
void set(const Key &k, const Value &v) { _m.set(k, v/_v); } |
1157 | 1157 |
}; |
1158 | 1158 |
|
1159 | 1159 |
/// Returns a \c ScaleMap class |
1160 | 1160 |
|
1161 | 1161 |
/// This function just returns a \c ScaleMap class. |
1162 | 1162 |
/// |
1163 | 1163 |
/// For example, if \c m is a map with \c double values and \c v is |
1164 | 1164 |
/// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to |
1165 | 1165 |
/// <tt>v*m[x]</tt>. |
1166 | 1166 |
/// |
1167 | 1167 |
/// \relates ScaleMap |
1168 | 1168 |
template<typename M, typename C> |
1169 | 1169 |
inline ScaleMap<M, C> scaleMap(const M &m, const C &v) { |
1170 | 1170 |
return ScaleMap<M, C>(m,v); |
1171 | 1171 |
} |
1172 | 1172 |
|
1173 | 1173 |
/// Returns a \c ScaleWriteMap class |
1174 | 1174 |
|
1175 | 1175 |
/// This function just returns a \c ScaleWriteMap class. |
1176 | 1176 |
/// |
1177 | 1177 |
/// For example, if \c m is a map with \c double values and \c v is |
1178 | 1178 |
/// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to |
1179 | 1179 |
/// <tt>v*m[x]</tt>. |
1180 | 1180 |
/// Moreover it makes also possible to write the map. |
1181 | 1181 |
/// |
1182 | 1182 |
/// \relates ScaleWriteMap |
1183 | 1183 |
template<typename M, typename C> |
1184 | 1184 |
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) { |
1185 | 1185 |
return ScaleWriteMap<M, C>(m,v); |
1186 | 1186 |
} |
1187 | 1187 |
|
1188 | 1188 |
|
1189 | 1189 |
/// Negative of a map |
1190 | 1190 |
|
1191 | 1191 |
/// This \ref concepts::ReadMap "read-only map" returns the negative |
1192 | 1192 |
/// of the values of the given map (using the unary \c - operator). |
1193 | 1193 |
/// Its \c Key and \c Value are inherited from \c M. |
1194 | 1194 |
/// |
1195 | 1195 |
/// If M::Value is \c int, \c double etc., then |
1196 | 1196 |
/// \code |
1197 | 1197 |
/// NegMap<M> neg(m); |
1198 | 1198 |
/// \endcode |
1199 | 1199 |
/// is equivalent to |
1200 | 1200 |
/// \code |
1201 | 1201 |
/// ScaleMap<M> neg(m,-1); |
1202 | 1202 |
/// \endcode |
1203 | 1203 |
/// |
1204 | 1204 |
/// The simplest way of using this map is through the negMap() |
1205 | 1205 |
/// function. |
1206 | 1206 |
/// |
1207 | 1207 |
/// \sa NegWriteMap |
1208 | 1208 |
template<typename M> |
1209 | 1209 |
class NegMap : public MapBase<typename M::Key, typename M::Value> { |
1210 | 1210 |
const M& _m; |
1211 | 1211 |
public: |
1212 | 1212 |
///\e |
1213 | 1213 |
typedef typename M::Key Key; |
1214 | 1214 |
///\e |
1215 | 1215 |
typedef typename M::Value Value; |
1216 | 1216 |
|
1217 | 1217 |
/// Constructor |
1218 | 1218 |
NegMap(const M &m) : _m(m) {} |
1219 | 1219 |
///\e |
1220 | 1220 |
Value operator[](const Key &k) const { return -_m[k]; } |
1221 | 1221 |
}; |
1222 | 1222 |
|
1223 | 1223 |
/// Negative of a map (read-write version) |
1224 | 1224 |
|
1225 | 1225 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
1226 | 1226 |
/// negative of the values of the given map (using the unary \c - |
1227 | 1227 |
/// operator). |
1228 | 1228 |
/// Its \c Key and \c Value are inherited from \c M. |
1229 | 1229 |
/// It makes also possible to write the map. |
1230 | 1230 |
/// |
1231 | 1231 |
/// If M::Value is \c int, \c double etc., then |
1232 | 1232 |
/// \code |
1233 | 1233 |
/// NegWriteMap<M> neg(m); |
1234 | 1234 |
/// \endcode |
1235 | 1235 |
/// is equivalent to |
1236 | 1236 |
/// \code |
1237 | 1237 |
/// ScaleWriteMap<M> neg(m,-1); |
1238 | 1238 |
/// \endcode |
1239 | 1239 |
/// |
1240 | 1240 |
/// The simplest way of using this map is through the negWriteMap() |
1241 | 1241 |
/// function. |
1242 | 1242 |
/// |
1243 | 1243 |
/// \sa NegMap |
1244 | 1244 |
template<typename M> |
1245 | 1245 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> { |
1246 | 1246 |
M &_m; |
1247 | 1247 |
public: |
1248 | 1248 |
///\e |
1249 | 1249 |
typedef typename M::Key Key; |
1250 | 1250 |
///\e |
1251 | 1251 |
typedef typename M::Value Value; |
1252 | 1252 |
|
1253 | 1253 |
/// Constructor |
1254 | 1254 |
NegWriteMap(M &m) : _m(m) {} |
1255 | 1255 |
///\e |
1256 | 1256 |
Value operator[](const Key &k) const { return -_m[k]; } |
1257 | 1257 |
///\e |
1258 | 1258 |
void set(const Key &k, const Value &v) { _m.set(k, -v); } |
1259 | 1259 |
}; |
1260 | 1260 |
|
1261 | 1261 |
/// Returns a \c NegMap class |
1262 | 1262 |
|
1263 | 1263 |
/// This function just returns a \c NegMap class. |
1264 | 1264 |
/// |
1265 | 1265 |
/// For example, if \c m is a map with \c double values, then |
1266 | 1266 |
/// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
1267 | 1267 |
/// |
1268 | 1268 |
/// \relates NegMap |
1269 | 1269 |
template <typename M> |
1270 | 1270 |
inline NegMap<M> negMap(const M &m) { |
1271 | 1271 |
return NegMap<M>(m); |
1272 | 1272 |
} |
1273 | 1273 |
|
1274 | 1274 |
/// Returns a \c NegWriteMap class |
1275 | 1275 |
|
1276 | 1276 |
/// This function just returns a \c NegWriteMap class. |
1277 | 1277 |
/// |
1278 | 1278 |
/// For example, if \c m is a map with \c double values, then |
1279 | 1279 |
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
1280 | 1280 |
/// Moreover it makes also possible to write the map. |
1281 | 1281 |
/// |
1282 | 1282 |
/// \relates NegWriteMap |
1283 | 1283 |
template <typename M> |
1284 | 1284 |
inline NegWriteMap<M> negWriteMap(M &m) { |
1285 | 1285 |
return NegWriteMap<M>(m); |
1286 | 1286 |
} |
1287 | 1287 |
|
1288 | 1288 |
|
1289 | 1289 |
/// Absolute value of a map |
1290 | 1290 |
|
1291 | 1291 |
/// This \ref concepts::ReadMap "read-only map" returns the absolute |
1292 | 1292 |
/// value of the values of the given map. |
1293 | 1293 |
/// Its \c Key and \c Value are inherited from \c M. |
1294 | 1294 |
/// \c Value must be comparable to \c 0 and the unary \c - |
1295 | 1295 |
/// operator must be defined for it, of course. |
1296 | 1296 |
/// |
1297 | 1297 |
/// The simplest way of using this map is through the absMap() |
1298 | 1298 |
/// function. |
1299 | 1299 |
template<typename M> |
1300 | 1300 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> { |
1301 | 1301 |
const M &_m; |
1302 | 1302 |
public: |
1303 | 1303 |
///\e |
1304 | 1304 |
typedef typename M::Key Key; |
1305 | 1305 |
///\e |
1306 | 1306 |
typedef typename M::Value Value; |
1307 | 1307 |
|
1308 | 1308 |
/// Constructor |
1309 | 1309 |
AbsMap(const M &m) : _m(m) {} |
1310 | 1310 |
///\e |
1311 | 1311 |
Value operator[](const Key &k) const { |
1312 | 1312 |
Value tmp = _m[k]; |
1313 | 1313 |
return tmp >= 0 ? tmp : -tmp; |
1314 | 1314 |
} |
1315 | 1315 |
|
1316 | 1316 |
}; |
1317 | 1317 |
|
1318 | 1318 |
/// Returns an \c AbsMap class |
1319 | 1319 |
|
1320 | 1320 |
/// This function just returns an \c AbsMap class. |
1321 | 1321 |
/// |
1322 | 1322 |
/// For example, if \c m is a map with \c double values, then |
1323 | 1323 |
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if |
1324 | 1324 |
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is |
1325 | 1325 |
/// negative. |
1326 | 1326 |
/// |
1327 | 1327 |
/// \relates AbsMap |
1328 | 1328 |
template<typename M> |
1329 | 1329 |
inline AbsMap<M> absMap(const M &m) { |
1330 | 1330 |
return AbsMap<M>(m); |
1331 | 1331 |
} |
1332 | 1332 |
|
1333 | 1333 |
/// @} |
1334 | 1334 |
|
1335 | 1335 |
// Logical maps and map adaptors: |
1336 | 1336 |
|
1337 | 1337 |
/// \addtogroup maps |
1338 | 1338 |
/// @{ |
1339 | 1339 |
|
1340 | 1340 |
/// Constant \c true map. |
1341 | 1341 |
|
1342 | 1342 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1343 | 1343 |
/// each key. |
1344 | 1344 |
/// |
1345 | 1345 |
/// Note that |
1346 | 1346 |
/// \code |
1347 | 1347 |
/// TrueMap<K> tm; |
1348 | 1348 |
/// \endcode |
1349 | 1349 |
/// is equivalent to |
1350 | 1350 |
/// \code |
1351 | 1351 |
/// ConstMap<K,bool> tm(true); |
1352 | 1352 |
/// \endcode |
1353 | 1353 |
/// |
1354 | 1354 |
/// \sa FalseMap |
1355 | 1355 |
/// \sa ConstMap |
1356 | 1356 |
template <typename K> |
1357 | 1357 |
class TrueMap : public MapBase<K, bool> { |
1358 | 1358 |
public: |
1359 | 1359 |
///\e |
1360 | 1360 |
typedef K Key; |
1361 | 1361 |
///\e |
1362 | 1362 |
typedef bool Value; |
1363 | 1363 |
|
1364 | 1364 |
/// Gives back \c true. |
1365 | 1365 |
Value operator[](const Key&) const { return true; } |
1366 | 1366 |
}; |
1367 | 1367 |
|
1368 | 1368 |
/// Returns a \c TrueMap class |
1369 | 1369 |
|
1370 | 1370 |
/// This function just returns a \c TrueMap class. |
1371 | 1371 |
/// \relates TrueMap |
1372 | 1372 |
template<typename K> |
1373 | 1373 |
inline TrueMap<K> trueMap() { |
1374 | 1374 |
return TrueMap<K>(); |
1375 | 1375 |
} |
1376 | 1376 |
|
1377 | 1377 |
|
1378 | 1378 |
/// Constant \c false map. |
1379 | 1379 |
|
1380 | 1380 |
/// This \ref concepts::ReadMap "read-only map" assigns \c false to |
1381 | 1381 |
/// each key. |
1382 | 1382 |
/// |
1383 | 1383 |
/// Note that |
1384 | 1384 |
/// \code |
1385 | 1385 |
/// FalseMap<K> fm; |
1386 | 1386 |
/// \endcode |
1387 | 1387 |
/// is equivalent to |
1388 | 1388 |
/// \code |
1389 | 1389 |
/// ConstMap<K,bool> fm(false); |
1390 | 1390 |
/// \endcode |
1391 | 1391 |
/// |
1392 | 1392 |
/// \sa TrueMap |
1393 | 1393 |
/// \sa ConstMap |
1394 | 1394 |
template <typename K> |
1395 | 1395 |
class FalseMap : public MapBase<K, bool> { |
1396 | 1396 |
public: |
1397 | 1397 |
///\e |
1398 | 1398 |
typedef K Key; |
1399 | 1399 |
///\e |
1400 | 1400 |
typedef bool Value; |
1401 | 1401 |
|
1402 | 1402 |
/// Gives back \c false. |
1403 | 1403 |
Value operator[](const Key&) const { return false; } |
1404 | 1404 |
}; |
1405 | 1405 |
|
1406 | 1406 |
/// Returns a \c FalseMap class |
1407 | 1407 |
|
1408 | 1408 |
/// This function just returns a \c FalseMap class. |
1409 | 1409 |
/// \relates FalseMap |
1410 | 1410 |
template<typename K> |
1411 | 1411 |
inline FalseMap<K> falseMap() { |
1412 | 1412 |
return FalseMap<K>(); |
1413 | 1413 |
} |
1414 | 1414 |
|
1415 | 1415 |
/// @} |
1416 | 1416 |
|
1417 | 1417 |
/// \addtogroup map_adaptors |
1418 | 1418 |
/// @{ |
1419 | 1419 |
|
1420 | 1420 |
/// Logical 'and' of two maps |
1421 | 1421 |
|
1422 | 1422 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1423 | 1423 |
/// 'and' of the values of the two given maps. |
1424 | 1424 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1425 | 1425 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1426 | 1426 |
/// |
1427 | 1427 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1428 | 1428 |
/// \code |
1429 | 1429 |
/// AndMap<M1,M2> am(m1,m2); |
1430 | 1430 |
/// \endcode |
1431 | 1431 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>. |
1432 | 1432 |
/// |
1433 | 1433 |
/// The simplest way of using this map is through the andMap() |
1434 | 1434 |
/// function. |
1435 | 1435 |
/// |
1436 | 1436 |
/// \sa OrMap |
1437 | 1437 |
/// \sa NotMap, NotWriteMap |
1438 | 1438 |
template<typename M1, typename M2> |
1439 | 1439 |
class AndMap : public MapBase<typename M1::Key, bool> { |
1440 | 1440 |
const M1 &_m1; |
1441 | 1441 |
const M2 &_m2; |
1442 | 1442 |
public: |
1443 | 1443 |
///\e |
1444 | 1444 |
typedef typename M1::Key Key; |
1445 | 1445 |
///\e |
1446 | 1446 |
typedef bool Value; |
1447 | 1447 |
|
1448 | 1448 |
/// Constructor |
1449 | 1449 |
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1450 | 1450 |
///\e |
1451 | 1451 |
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; } |
1452 | 1452 |
}; |
1453 | 1453 |
|
1454 | 1454 |
/// Returns an \c AndMap class |
1455 | 1455 |
|
1456 | 1456 |
/// This function just returns an \c AndMap class. |
1457 | 1457 |
/// |
1458 | 1458 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
1459 | 1459 |
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to |
1460 | 1460 |
/// <tt>m1[x]&&m2[x]</tt>. |
1461 | 1461 |
/// |
1462 | 1462 |
/// \relates AndMap |
1463 | 1463 |
template<typename M1, typename M2> |
1464 | 1464 |
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) { |
1465 | 1465 |
return AndMap<M1, M2>(m1,m2); |
1466 | 1466 |
} |
1467 | 1467 |
|
1468 | 1468 |
|
1469 | 1469 |
/// Logical 'or' of two maps |
1470 | 1470 |
|
1471 | 1471 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1472 | 1472 |
/// 'or' of the values of the two given maps. |
1473 | 1473 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1474 | 1474 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1475 | 1475 |
/// |
1476 | 1476 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1477 | 1477 |
/// \code |
1478 | 1478 |
/// OrMap<M1,M2> om(m1,m2); |
1479 | 1479 |
/// \endcode |
1480 | 1480 |
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>. |
1481 | 1481 |
/// |
1482 | 1482 |
/// The simplest way of using this map is through the orMap() |
1483 | 1483 |
/// function. |
1484 | 1484 |
/// |
1485 | 1485 |
/// \sa AndMap |
1486 | 1486 |
/// \sa NotMap, NotWriteMap |
1487 | 1487 |
template<typename M1, typename M2> |
1488 | 1488 |
class OrMap : public MapBase<typename M1::Key, bool> { |
1489 | 1489 |
const M1 &_m1; |
1490 | 1490 |
const M2 &_m2; |
1491 | 1491 |
public: |
1492 | 1492 |
///\e |
1493 | 1493 |
typedef typename M1::Key Key; |
1494 | 1494 |
///\e |
1495 | 1495 |
typedef bool Value; |
1496 | 1496 |
|
1497 | 1497 |
/// Constructor |
1498 | 1498 |
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1499 | 1499 |
///\e |
1500 | 1500 |
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; } |
1501 | 1501 |
}; |
1502 | 1502 |
|
1503 | 1503 |
/// Returns an \c OrMap class |
1504 | 1504 |
|
1505 | 1505 |
/// This function just returns an \c OrMap class. |
1506 | 1506 |
/// |
1507 | 1507 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
1508 | 1508 |
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to |
1509 | 1509 |
/// <tt>m1[x]||m2[x]</tt>. |
1510 | 1510 |
/// |
1511 | 1511 |
/// \relates OrMap |
1512 | 1512 |
template<typename M1, typename M2> |
1513 | 1513 |
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) { |
1514 | 1514 |
return OrMap<M1, M2>(m1,m2); |
1515 | 1515 |
} |
1516 | 1516 |
|
1517 | 1517 |
|
1518 | 1518 |
/// Logical 'not' of a map |
1519 | 1519 |
|
1520 | 1520 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1521 | 1521 |
/// negation of the values of the given map. |
1522 | 1522 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
1523 | 1523 |
/// |
1524 | 1524 |
/// The simplest way of using this map is through the notMap() |
1525 | 1525 |
/// function. |
1526 | 1526 |
/// |
1527 | 1527 |
/// \sa NotWriteMap |
1528 | 1528 |
template <typename M> |
1529 | 1529 |
class NotMap : public MapBase<typename M::Key, bool> { |
1530 | 1530 |
const M &_m; |
1531 | 1531 |
public: |
1532 | 1532 |
///\e |
1533 | 1533 |
typedef typename M::Key Key; |
1534 | 1534 |
///\e |
1535 | 1535 |
typedef bool Value; |
1536 | 1536 |
|
1537 | 1537 |
/// Constructor |
1538 | 1538 |
NotMap(const M &m) : _m(m) {} |
1539 | 1539 |
///\e |
1540 | 1540 |
Value operator[](const Key &k) const { return !_m[k]; } |
1541 | 1541 |
}; |
1542 | 1542 |
|
1543 | 1543 |
/// Logical 'not' of a map (read-write version) |
1544 | 1544 |
|
1545 | 1545 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
1546 | 1546 |
/// logical negation of the values of the given map. |
1547 | 1547 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
1548 | 1548 |
/// It makes also possible to write the map. When a value is set, |
1549 | 1549 |
/// the opposite value is set to the original map. |
1550 | 1550 |
/// |
1551 | 1551 |
/// The simplest way of using this map is through the notWriteMap() |
1552 | 1552 |
/// function. |
1553 | 1553 |
/// |
1554 | 1554 |
/// \sa NotMap |
1555 | 1555 |
template <typename M> |
1556 | 1556 |
class NotWriteMap : public MapBase<typename M::Key, bool> { |
1557 | 1557 |
M &_m; |
1558 | 1558 |
public: |
1559 | 1559 |
///\e |
1560 | 1560 |
typedef typename M::Key Key; |
1561 | 1561 |
///\e |
1562 | 1562 |
typedef bool Value; |
1563 | 1563 |
|
1564 | 1564 |
/// Constructor |
1565 | 1565 |
NotWriteMap(M &m) : _m(m) {} |
1566 | 1566 |
///\e |
1567 | 1567 |
Value operator[](const Key &k) const { return !_m[k]; } |
1568 | 1568 |
///\e |
1569 | 1569 |
void set(const Key &k, bool v) { _m.set(k, !v); } |
1570 | 1570 |
}; |
1571 | 1571 |
|
1572 | 1572 |
/// Returns a \c NotMap class |
1573 | 1573 |
|
1574 | 1574 |
/// This function just returns a \c NotMap class. |
1575 | 1575 |
/// |
1576 | 1576 |
/// For example, if \c m is a map with \c bool values, then |
1577 | 1577 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1578 | 1578 |
/// |
1579 | 1579 |
/// \relates NotMap |
1580 | 1580 |
template <typename M> |
1581 | 1581 |
inline NotMap<M> notMap(const M &m) { |
1582 | 1582 |
return NotMap<M>(m); |
1583 | 1583 |
} |
1584 | 1584 |
|
1585 | 1585 |
/// Returns a \c NotWriteMap class |
1586 | 1586 |
|
1587 | 1587 |
/// This function just returns a \c NotWriteMap class. |
1588 | 1588 |
/// |
1589 | 1589 |
/// For example, if \c m is a map with \c bool values, then |
1590 | 1590 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1591 | 1591 |
/// Moreover it makes also possible to write the map. |
1592 | 1592 |
/// |
1593 | 1593 |
/// \relates NotWriteMap |
1594 | 1594 |
template <typename M> |
1595 | 1595 |
inline NotWriteMap<M> notWriteMap(M &m) { |
1596 | 1596 |
return NotWriteMap<M>(m); |
1597 | 1597 |
} |
1598 | 1598 |
|
1599 | 1599 |
|
1600 | 1600 |
/// Combination of two maps using the \c == operator |
1601 | 1601 |
|
1602 | 1602 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1603 | 1603 |
/// the keys for which the corresponding values of the two maps are |
1604 | 1604 |
/// equal. |
1605 | 1605 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1606 | 1606 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1607 | 1607 |
/// |
1608 | 1608 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1609 | 1609 |
/// \code |
1610 | 1610 |
/// EqualMap<M1,M2> em(m1,m2); |
1611 | 1611 |
/// \endcode |
1612 | 1612 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
1613 | 1613 |
/// |
1614 | 1614 |
/// The simplest way of using this map is through the equalMap() |
1615 | 1615 |
/// function. |
1616 | 1616 |
/// |
1617 | 1617 |
/// \sa LessMap |
1618 | 1618 |
template<typename M1, typename M2> |
1619 | 1619 |
class EqualMap : public MapBase<typename M1::Key, bool> { |
1620 | 1620 |
const M1 &_m1; |
1621 | 1621 |
const M2 &_m2; |
1622 | 1622 |
public: |
1623 | 1623 |
///\e |
1624 | 1624 |
typedef typename M1::Key Key; |
1625 | 1625 |
///\e |
1626 | 1626 |
typedef bool Value; |
1627 | 1627 |
|
1628 | 1628 |
/// Constructor |
1629 | 1629 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1630 | 1630 |
///\e |
1631 | 1631 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } |
1632 | 1632 |
}; |
1633 | 1633 |
|
1634 | 1634 |
/// Returns an \c EqualMap class |
1635 | 1635 |
|
1636 | 1636 |
/// This function just returns an \c EqualMap class. |
1637 | 1637 |
/// |
1638 | 1638 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1639 | 1639 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
1640 | 1640 |
/// <tt>m1[x]==m2[x]</tt>. |
1641 | 1641 |
/// |
1642 | 1642 |
/// \relates EqualMap |
1643 | 1643 |
template<typename M1, typename M2> |
1644 | 1644 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) { |
1645 | 1645 |
return EqualMap<M1, M2>(m1,m2); |
1646 | 1646 |
} |
1647 | 1647 |
|
1648 | 1648 |
|
1649 | 1649 |
/// Combination of two maps using the \c < operator |
1650 | 1650 |
|
1651 | 1651 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1652 | 1652 |
/// the keys for which the corresponding value of the first map is |
1653 | 1653 |
/// less then the value of the second map. |
1654 | 1654 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1655 | 1655 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1656 | 1656 |
/// |
1657 | 1657 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1658 | 1658 |
/// \code |
1659 | 1659 |
/// LessMap<M1,M2> lm(m1,m2); |
1660 | 1660 |
/// \endcode |
1661 | 1661 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
1662 | 1662 |
/// |
1663 | 1663 |
/// The simplest way of using this map is through the lessMap() |
1664 | 1664 |
/// function. |
1665 | 1665 |
/// |
1666 | 1666 |
/// \sa EqualMap |
1667 | 1667 |
template<typename M1, typename M2> |
1668 | 1668 |
class LessMap : public MapBase<typename M1::Key, bool> { |
1669 | 1669 |
const M1 &_m1; |
1670 | 1670 |
const M2 &_m2; |
1671 | 1671 |
public: |
1672 | 1672 |
///\e |
1673 | 1673 |
typedef typename M1::Key Key; |
1674 | 1674 |
///\e |
1675 | 1675 |
typedef bool Value; |
1676 | 1676 |
|
1677 | 1677 |
/// Constructor |
1678 | 1678 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1679 | 1679 |
///\e |
1680 | 1680 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
1681 | 1681 |
}; |
1682 | 1682 |
|
1683 | 1683 |
/// Returns an \c LessMap class |
1684 | 1684 |
|
1685 | 1685 |
/// This function just returns an \c LessMap class. |
1686 | 1686 |
/// |
1687 | 1687 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1688 | 1688 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
1689 | 1689 |
/// <tt>m1[x]<m2[x]</tt>. |
1690 | 1690 |
/// |
1691 | 1691 |
/// \relates LessMap |
1692 | 1692 |
template<typename M1, typename M2> |
1693 | 1693 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
1694 | 1694 |
return LessMap<M1, M2>(m1,m2); |
1695 | 1695 |
} |
1696 | 1696 |
|
1697 | 1697 |
namespace _maps_bits { |
1698 | 1698 |
|
1699 | 1699 |
template <typename _Iterator, typename Enable = void> |
1700 | 1700 |
struct IteratorTraits { |
1701 | 1701 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
1702 | 1702 |
}; |
1703 | 1703 |
|
1704 | 1704 |
template <typename _Iterator> |
1705 | 1705 |
struct IteratorTraits<_Iterator, |
1706 | 1706 |
typename exists<typename _Iterator::container_type>::type> |
1707 | 1707 |
{ |
1708 | 1708 |
typedef typename _Iterator::container_type::value_type Value; |
1709 | 1709 |
}; |
1710 | 1710 |
|
1711 | 1711 |
} |
1712 | 1712 |
|
1713 | 1713 |
/// @} |
1714 | 1714 |
|
1715 | 1715 |
/// \addtogroup maps |
1716 | 1716 |
/// @{ |
1717 | 1717 |
|
1718 | 1718 |
/// \brief Writable bool map for logging each \c true assigned element |
1719 | 1719 |
/// |
1720 | 1720 |
/// A \ref concepts::WriteMap "writable" bool map for logging |
1721 | 1721 |
/// each \c true assigned element, i.e it copies subsequently each |
1722 | 1722 |
/// keys set to \c true to the given iterator. |
1723 | 1723 |
/// The most important usage of it is storing certain nodes or arcs |
1724 | 1724 |
/// that were marked \c true by an algorithm. |
1725 | 1725 |
/// |
1726 | 1726 |
/// There are several algorithms that provide solutions through bool |
1727 | 1727 |
/// maps and most of them assign \c true at most once for each key. |
1728 | 1728 |
/// In these cases it is a natural request to store each \c true |
1729 | 1729 |
/// assigned elements (in order of the assignment), which can be |
1730 | 1730 |
/// easily done with LoggerBoolMap. |
1731 | 1731 |
/// |
1732 | 1732 |
/// The simplest way of using this map is through the loggerBoolMap() |
1733 | 1733 |
/// function. |
1734 | 1734 |
/// |
1735 | 1735 |
/// \tparam IT The type of the iterator. |
1736 | 1736 |
/// \tparam KEY The key type of the map. The default value set |
1737 | 1737 |
/// according to the iterator type should work in most cases. |
1738 | 1738 |
/// |
1739 | 1739 |
/// \note The container of the iterator must contain enough space |
1740 | 1740 |
/// for the elements or the iterator should be an inserter iterator. |
1741 | 1741 |
#ifdef DOXYGEN |
1742 | 1742 |
template <typename IT, typename KEY> |
1743 | 1743 |
#else |
1744 | 1744 |
template <typename IT, |
1745 | 1745 |
typename KEY = typename _maps_bits::IteratorTraits<IT>::Value> |
1746 | 1746 |
#endif |
1747 | 1747 |
class LoggerBoolMap : public MapBase<KEY, bool> { |
1748 | 1748 |
public: |
1749 | 1749 |
|
1750 | 1750 |
///\e |
1751 | 1751 |
typedef KEY Key; |
1752 | 1752 |
///\e |
1753 | 1753 |
typedef bool Value; |
1754 | 1754 |
///\e |
1755 | 1755 |
typedef IT Iterator; |
1756 | 1756 |
|
1757 | 1757 |
/// Constructor |
1758 | 1758 |
LoggerBoolMap(Iterator it) |
1759 | 1759 |
: _begin(it), _end(it) {} |
1760 | 1760 |
|
1761 | 1761 |
/// Gives back the given iterator set for the first key |
1762 | 1762 |
Iterator begin() const { |
1763 | 1763 |
return _begin; |
1764 | 1764 |
} |
1765 | 1765 |
|
1766 | 1766 |
/// Gives back the the 'after the last' iterator |
1767 | 1767 |
Iterator end() const { |
1768 | 1768 |
return _end; |
1769 | 1769 |
} |
1770 | 1770 |
|
1771 | 1771 |
/// The set function of the map |
1772 | 1772 |
void set(const Key& key, Value value) { |
1773 | 1773 |
if (value) { |
1774 | 1774 |
*_end++ = key; |
1775 | 1775 |
} |
1776 | 1776 |
} |
1777 | 1777 |
|
1778 | 1778 |
private: |
1779 | 1779 |
Iterator _begin; |
1780 | 1780 |
Iterator _end; |
1781 | 1781 |
}; |
1782 | 1782 |
|
1783 | 1783 |
/// Returns a \c LoggerBoolMap class |
1784 | 1784 |
|
1785 | 1785 |
/// This function just returns a \c LoggerBoolMap class. |
1786 | 1786 |
/// |
1787 | 1787 |
/// The most important usage of it is storing certain nodes or arcs |
1788 | 1788 |
/// that were marked \c true by an algorithm. |
1789 | 1789 |
/// For example it makes easier to store the nodes in the processing |
1790 | 1790 |
/// order of Dfs algorithm, as the following examples show. |
1791 | 1791 |
/// \code |
1792 | 1792 |
/// std::vector<Node> v; |
1793 | 1793 |
/// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
1794 | 1794 |
/// \endcode |
1795 | 1795 |
/// \code |
1796 | 1796 |
/// std::vector<Node> v(countNodes(g)); |
1797 | 1797 |
/// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run(); |
1798 | 1798 |
/// \endcode |
1799 | 1799 |
/// |
1800 | 1800 |
/// \note The container of the iterator must contain enough space |
1801 | 1801 |
/// for the elements or the iterator should be an inserter iterator. |
1802 | 1802 |
/// |
1803 | 1803 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
1804 | 1804 |
/// it cannot be used when a readable map is needed, for example as |
1805 | 1805 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
1806 | 1806 |
/// |
1807 | 1807 |
/// \relates LoggerBoolMap |
1808 | 1808 |
template<typename Iterator> |
1809 | 1809 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
1810 | 1810 |
return LoggerBoolMap<Iterator>(it); |
1811 | 1811 |
} |
1812 | 1812 |
|
1813 | 1813 |
/// @} |
1814 | 1814 |
|
1815 | 1815 |
/// \addtogroup graph_maps |
1816 | 1816 |
/// @{ |
1817 | 1817 |
|
1818 | 1818 |
/// \brief Provides an immutable and unique id for each item in a graph. |
1819 | 1819 |
/// |
1820 | 1820 |
/// IdMap provides a unique and immutable id for each item of the |
1821 | 1821 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
1822 | 1822 |
/// - \b unique: different items get different ids, |
1823 | 1823 |
/// - \b immutable: the id of an item does not change (even if you |
1824 | 1824 |
/// delete other nodes). |
1825 | 1825 |
/// |
1826 | 1826 |
/// Using this map you get access (i.e. can read) the inner id values of |
1827 | 1827 |
/// the items stored in the graph, which is returned by the \c id() |
1828 | 1828 |
/// function of the graph. This map can be inverted with its member |
1829 | 1829 |
/// class \c InverseMap or with the \c operator() member. |
1830 | 1830 |
/// |
1831 | 1831 |
/// \tparam GR The graph type. |
1832 | 1832 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1833 | 1833 |
/// \c GR::Edge). |
1834 | 1834 |
/// |
1835 |
/// \see |
|
1835 |
/// \see RangeIdMap |
|
1836 | 1836 |
template <typename GR, typename K> |
1837 | 1837 |
class IdMap : public MapBase<K, int> { |
1838 | 1838 |
public: |
1839 | 1839 |
/// The graph type of IdMap. |
1840 | 1840 |
typedef GR Graph; |
1841 | 1841 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1842 | 1842 |
typedef K Item; |
1843 | 1843 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1844 | 1844 |
typedef K Key; |
1845 | 1845 |
/// The value type of IdMap. |
1846 | 1846 |
typedef int Value; |
1847 | 1847 |
|
1848 | 1848 |
/// \brief Constructor. |
1849 | 1849 |
/// |
1850 | 1850 |
/// Constructor of the map. |
1851 | 1851 |
explicit IdMap(const Graph& graph) : _graph(&graph) {} |
1852 | 1852 |
|
1853 | 1853 |
/// \brief Gives back the \e id of the item. |
1854 | 1854 |
/// |
1855 | 1855 |
/// Gives back the immutable and unique \e id of the item. |
1856 | 1856 |
int operator[](const Item& item) const { return _graph->id(item);} |
1857 | 1857 |
|
1858 | 1858 |
/// \brief Gives back the \e item by its id. |
1859 | 1859 |
/// |
1860 | 1860 |
/// Gives back the \e item by its id. |
1861 | 1861 |
Item operator()(int id) { return _graph->fromId(id, Item()); } |
1862 | 1862 |
|
1863 | 1863 |
private: |
1864 | 1864 |
const Graph* _graph; |
1865 | 1865 |
|
1866 | 1866 |
public: |
1867 | 1867 |
|
1868 | 1868 |
/// \brief This class represents the inverse of its owner (IdMap). |
1869 | 1869 |
/// |
1870 | 1870 |
/// This class represents the inverse of its owner (IdMap). |
1871 | 1871 |
/// \see inverse() |
1872 | 1872 |
class InverseMap { |
1873 | 1873 |
public: |
1874 | 1874 |
|
1875 | 1875 |
/// \brief Constructor. |
1876 | 1876 |
/// |
1877 | 1877 |
/// Constructor for creating an id-to-item map. |
1878 | 1878 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {} |
1879 | 1879 |
|
1880 | 1880 |
/// \brief Constructor. |
1881 | 1881 |
/// |
1882 | 1882 |
/// Constructor for creating an id-to-item map. |
1883 | 1883 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
1884 | 1884 |
|
1885 | 1885 |
/// \brief Gives back the given item from its id. |
1886 | 1886 |
/// |
1887 | 1887 |
/// Gives back the given item from its id. |
1888 | 1888 |
Item operator[](int id) const { return _graph->fromId(id, Item());} |
1889 | 1889 |
|
1890 | 1890 |
private: |
1891 | 1891 |
const Graph* _graph; |
1892 | 1892 |
}; |
1893 | 1893 |
|
1894 | 1894 |
/// \brief Gives back the inverse of the map. |
1895 | 1895 |
/// |
1896 | 1896 |
/// Gives back the inverse of the IdMap. |
1897 | 1897 |
InverseMap inverse() const { return InverseMap(*_graph);} |
1898 | 1898 |
}; |
1899 | 1899 |
|
1900 | 1900 |
|
1901 |
/// \brief General |
|
1901 |
/// \brief General cross reference graph map type. |
|
1902 | 1902 |
|
1903 | 1903 |
/// This class provides simple invertable graph maps. |
1904 | 1904 |
/// It wraps an arbitrary \ref concepts::ReadWriteMap "ReadWriteMap" |
1905 | 1905 |
/// and if a key is set to a new value then store it |
1906 | 1906 |
/// in the inverse map. |
1907 | 1907 |
/// |
1908 | 1908 |
/// The values of the map can be accessed |
1909 | 1909 |
/// with stl compatible forward iterator. |
1910 | 1910 |
/// |
1911 | 1911 |
/// \tparam GR The graph type. |
1912 | 1912 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1913 | 1913 |
/// \c GR::Edge). |
1914 | 1914 |
/// \tparam V The value type of the map. |
1915 | 1915 |
/// |
1916 | 1916 |
/// \see IterableValueMap |
1917 | 1917 |
template <typename GR, typename K, typename V> |
1918 |
class |
|
1918 |
class CrossRefMap |
|
1919 | 1919 |
: protected ItemSetTraits<GR, K>::template Map<V>::Type { |
1920 | 1920 |
private: |
1921 | 1921 |
|
1922 | 1922 |
typedef typename ItemSetTraits<GR, K>:: |
1923 | 1923 |
template Map<V>::Type Map; |
1924 | 1924 |
|
1925 | 1925 |
typedef std::map<V, K> Container; |
1926 | 1926 |
Container _inv_map; |
1927 | 1927 |
|
1928 | 1928 |
public: |
1929 | 1929 |
|
1930 |
/// The graph type of |
|
1930 |
/// The graph type of CrossRefMap. |
|
1931 | 1931 |
typedef GR Graph; |
1932 |
/// The key type of |
|
1932 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
|
1933 | 1933 |
typedef K Item; |
1934 |
/// The key type of |
|
1934 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
|
1935 | 1935 |
typedef K Key; |
1936 |
/// The value type of |
|
1936 |
/// The value type of CrossRefMap. |
|
1937 | 1937 |
typedef V Value; |
1938 | 1938 |
|
1939 | 1939 |
/// \brief Constructor. |
1940 | 1940 |
/// |
1941 |
/// Construct a new InvertableMap for the given graph. |
|
1942 |
explicit InvertableMap(const Graph& graph) : Map(graph) {} |
|
1941 |
/// Construct a new CrossRefMap for the given graph. |
|
1942 |
explicit CrossRefMap(const Graph& graph) : Map(graph) {} |
|
1943 | 1943 |
|
1944 | 1944 |
/// \brief Forward iterator for values. |
1945 | 1945 |
/// |
1946 | 1946 |
/// This iterator is an stl compatible forward |
1947 | 1947 |
/// iterator on the values of the map. The values can |
1948 | 1948 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
1949 | 1949 |
class ValueIterator |
1950 | 1950 |
: public std::iterator<std::forward_iterator_tag, Value> { |
1951 |
friend class |
|
1951 |
friend class CrossRefMap; |
|
1952 | 1952 |
private: |
1953 | 1953 |
ValueIterator(typename Container::const_iterator _it) |
1954 | 1954 |
: it(_it) {} |
1955 | 1955 |
public: |
1956 | 1956 |
|
1957 | 1957 |
ValueIterator() {} |
1958 | 1958 |
|
1959 | 1959 |
ValueIterator& operator++() { ++it; return *this; } |
1960 | 1960 |
ValueIterator operator++(int) { |
1961 | 1961 |
ValueIterator tmp(*this); |
1962 | 1962 |
operator++(); |
1963 | 1963 |
return tmp; |
1964 | 1964 |
} |
1965 | 1965 |
|
1966 | 1966 |
const Value& operator*() const { return it->first; } |
1967 | 1967 |
const Value* operator->() const { return &(it->first); } |
1968 | 1968 |
|
1969 | 1969 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
1970 | 1970 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
1971 | 1971 |
|
1972 | 1972 |
private: |
1973 | 1973 |
typename Container::const_iterator it; |
1974 | 1974 |
}; |
1975 | 1975 |
|
1976 | 1976 |
/// \brief Returns an iterator to the first value. |
1977 | 1977 |
/// |
1978 | 1978 |
/// Returns an stl compatible iterator to the |
1979 | 1979 |
/// first value of the map. The values of the |
1980 | 1980 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
1981 | 1981 |
/// range. |
1982 | 1982 |
ValueIterator beginValue() const { |
1983 | 1983 |
return ValueIterator(_inv_map.begin()); |
1984 | 1984 |
} |
1985 | 1985 |
|
1986 | 1986 |
/// \brief Returns an iterator after the last value. |
1987 | 1987 |
/// |
1988 | 1988 |
/// Returns an stl compatible iterator after the |
1989 | 1989 |
/// last value of the map. The values of the |
1990 | 1990 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
1991 | 1991 |
/// range. |
1992 | 1992 |
ValueIterator endValue() const { |
1993 | 1993 |
return ValueIterator(_inv_map.end()); |
1994 | 1994 |
} |
1995 | 1995 |
|
1996 | 1996 |
/// \brief Sets the value associated with the given key. |
1997 | 1997 |
/// |
1998 | 1998 |
/// Sets the value associated with the given key. |
1999 | 1999 |
void set(const Key& key, const Value& val) { |
2000 | 2000 |
Value oldval = Map::operator[](key); |
2001 | 2001 |
typename Container::iterator it = _inv_map.find(oldval); |
2002 | 2002 |
if (it != _inv_map.end() && it->second == key) { |
2003 | 2003 |
_inv_map.erase(it); |
2004 | 2004 |
} |
2005 | 2005 |
_inv_map.insert(make_pair(val, key)); |
2006 | 2006 |
Map::set(key, val); |
2007 | 2007 |
} |
2008 | 2008 |
|
2009 | 2009 |
/// \brief Returns the value associated with the given key. |
2010 | 2010 |
/// |
2011 | 2011 |
/// Returns the value associated with the given key. |
2012 | 2012 |
typename MapTraits<Map>::ConstReturnValue |
2013 | 2013 |
operator[](const Key& key) const { |
2014 | 2014 |
return Map::operator[](key); |
2015 | 2015 |
} |
2016 | 2016 |
|
2017 | 2017 |
/// \brief Gives back the item by its value. |
2018 | 2018 |
/// |
2019 | 2019 |
/// Gives back the item by its value. |
2020 | 2020 |
Key operator()(const Value& key) const { |
2021 | 2021 |
typename Container::const_iterator it = _inv_map.find(key); |
2022 | 2022 |
return it != _inv_map.end() ? it->second : INVALID; |
2023 | 2023 |
} |
2024 | 2024 |
|
2025 | 2025 |
protected: |
2026 | 2026 |
|
2027 | 2027 |
/// \brief Erase the key from the map and the inverse map. |
2028 | 2028 |
/// |
2029 | 2029 |
/// Erase the key from the map and the inverse map. It is called by the |
2030 | 2030 |
/// \c AlterationNotifier. |
2031 | 2031 |
virtual void erase(const Key& key) { |
2032 | 2032 |
Value val = Map::operator[](key); |
2033 | 2033 |
typename Container::iterator it = _inv_map.find(val); |
2034 | 2034 |
if (it != _inv_map.end() && it->second == key) { |
2035 | 2035 |
_inv_map.erase(it); |
2036 | 2036 |
} |
2037 | 2037 |
Map::erase(key); |
2038 | 2038 |
} |
2039 | 2039 |
|
2040 | 2040 |
/// \brief Erase more keys from the map and the inverse map. |
2041 | 2041 |
/// |
2042 | 2042 |
/// Erase more keys from the map and the inverse map. It is called by the |
2043 | 2043 |
/// \c AlterationNotifier. |
2044 | 2044 |
virtual void erase(const std::vector<Key>& keys) { |
2045 | 2045 |
for (int i = 0; i < int(keys.size()); ++i) { |
2046 | 2046 |
Value val = Map::operator[](keys[i]); |
2047 | 2047 |
typename Container::iterator it = _inv_map.find(val); |
2048 | 2048 |
if (it != _inv_map.end() && it->second == keys[i]) { |
2049 | 2049 |
_inv_map.erase(it); |
2050 | 2050 |
} |
2051 | 2051 |
} |
2052 | 2052 |
Map::erase(keys); |
2053 | 2053 |
} |
2054 | 2054 |
|
2055 | 2055 |
/// \brief Clear the keys from the map and the inverse map. |
2056 | 2056 |
/// |
2057 | 2057 |
/// Clear the keys from the map and the inverse map. It is called by the |
2058 | 2058 |
/// \c AlterationNotifier. |
2059 | 2059 |
virtual void clear() { |
2060 | 2060 |
_inv_map.clear(); |
2061 | 2061 |
Map::clear(); |
2062 | 2062 |
} |
2063 | 2063 |
|
2064 | 2064 |
public: |
2065 | 2065 |
|
2066 | 2066 |
/// \brief The inverse map type. |
2067 | 2067 |
/// |
2068 | 2068 |
/// The inverse of this map. The subscript operator of the map |
2069 | 2069 |
/// gives back the item that was last assigned to the value. |
2070 | 2070 |
class InverseMap { |
2071 | 2071 |
public: |
2072 | 2072 |
/// \brief Constructor |
2073 | 2073 |
/// |
2074 | 2074 |
/// Constructor of the InverseMap. |
2075 |
explicit InverseMap(const |
|
2075 |
explicit InverseMap(const CrossRefMap& inverted) |
|
2076 | 2076 |
: _inverted(inverted) {} |
2077 | 2077 |
|
2078 | 2078 |
/// The value type of the InverseMap. |
2079 |
typedef typename |
|
2079 |
typedef typename CrossRefMap::Key Value; |
|
2080 | 2080 |
/// The key type of the InverseMap. |
2081 |
typedef typename |
|
2081 |
typedef typename CrossRefMap::Value Key; |
|
2082 | 2082 |
|
2083 | 2083 |
/// \brief Subscript operator. |
2084 | 2084 |
/// |
2085 | 2085 |
/// Subscript operator. It gives back the item |
2086 | 2086 |
/// that was last assigned to the given value. |
2087 | 2087 |
Value operator[](const Key& key) const { |
2088 | 2088 |
return _inverted(key); |
2089 | 2089 |
} |
2090 | 2090 |
|
2091 | 2091 |
private: |
2092 |
const |
|
2092 |
const CrossRefMap& _inverted; |
|
2093 | 2093 |
}; |
2094 | 2094 |
|
2095 | 2095 |
/// \brief It gives back the read-only inverse map. |
2096 | 2096 |
/// |
2097 | 2097 |
/// It gives back the read-only inverse map. |
2098 | 2098 |
InverseMap inverse() const { |
2099 | 2099 |
return InverseMap(*this); |
2100 | 2100 |
} |
2101 | 2101 |
|
2102 | 2102 |
}; |
2103 | 2103 |
|
2104 |
/// \brief Provides a mutable, continuous and unique descriptor for each |
|
2105 |
/// item in a graph. |
|
2104 |
/// \brief Provides continuous and unique ID for the |
|
2105 |
/// items of a graph. |
|
2106 | 2106 |
/// |
2107 |
/// DescriptorMap provides a unique and continuous (but mutable) |
|
2108 |
/// descriptor (id) for each item of the same type (\c Node, \c Arc or |
|
2107 |
/// RangeIdMap provides a unique and continuous |
|
2108 |
/// ID for each item of a given type (\c Node, \c Arc or |
|
2109 | 2109 |
/// \c Edge) in a graph. This id is |
2110 | 2110 |
/// - \b unique: different items get different ids, |
2111 | 2111 |
/// - \b continuous: the range of the ids is the set of integers |
2112 | 2112 |
/// between 0 and \c n-1, where \c n is the number of the items of |
2113 |
/// this type (\c Node, \c Arc or \c Edge). So the id of an item can |
|
2114 |
/// change if you delete an other item of the same type, i.e. this |
|
2115 |
/// |
|
2113 |
/// this type (\c Node, \c Arc or \c Edge). |
|
2114 |
/// - So, the ids can change when deleting an item of the same type. |
|
2116 | 2115 |
/// |
2117 | 2116 |
/// Thus this id is not (necessarily) the same as what can get using |
2118 | 2117 |
/// the \c id() function of the graph or \ref IdMap. |
2119 | 2118 |
/// This map can be inverted with its member class \c InverseMap, |
2120 | 2119 |
/// or with the \c operator() member. |
2121 | 2120 |
/// |
2122 | 2121 |
/// \tparam GR The graph type. |
2123 | 2122 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
2124 | 2123 |
/// \c GR::Edge). |
2125 | 2124 |
/// |
2126 | 2125 |
/// \see IdMap |
2127 | 2126 |
template <typename GR, typename K> |
2128 |
class |
|
2127 |
class RangeIdMap |
|
2129 | 2128 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type { |
2130 | 2129 |
|
2131 | 2130 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map; |
2132 | 2131 |
|
2133 | 2132 |
public: |
2134 |
/// The graph type of |
|
2133 |
/// The graph type of RangeIdMap. |
|
2135 | 2134 |
typedef GR Graph; |
2136 |
/// The key type of |
|
2135 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
|
2137 | 2136 |
typedef K Item; |
2138 |
/// The key type of |
|
2137 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
|
2139 | 2138 |
typedef K Key; |
2140 |
/// The value type of |
|
2139 |
/// The value type of RangeIdMap. |
|
2141 | 2140 |
typedef int Value; |
2142 | 2141 |
|
2143 | 2142 |
/// \brief Constructor. |
2144 | 2143 |
/// |
2145 |
/// Constructor for descriptor map. |
|
2146 |
explicit DescriptorMap(const Graph& gr) : Map(gr) { |
|
2144 |
/// Constructor. |
|
2145 |
explicit RangeIdMap(const Graph& gr) : Map(gr) { |
|
2147 | 2146 |
Item it; |
2148 | 2147 |
const typename Map::Notifier* nf = Map::notifier(); |
2149 | 2148 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2150 | 2149 |
Map::set(it, _inv_map.size()); |
2151 | 2150 |
_inv_map.push_back(it); |
2152 | 2151 |
} |
2153 | 2152 |
} |
2154 | 2153 |
|
2155 | 2154 |
protected: |
2156 | 2155 |
|
2157 | 2156 |
/// \brief Adds a new key to the map. |
2158 | 2157 |
/// |
2159 | 2158 |
/// Add a new key to the map. It is called by the |
2160 | 2159 |
/// \c AlterationNotifier. |
2161 | 2160 |
virtual void add(const Item& item) { |
2162 | 2161 |
Map::add(item); |
2163 | 2162 |
Map::set(item, _inv_map.size()); |
2164 | 2163 |
_inv_map.push_back(item); |
2165 | 2164 |
} |
2166 | 2165 |
|
2167 | 2166 |
/// \brief Add more new keys to the map. |
2168 | 2167 |
/// |
2169 | 2168 |
/// Add more new keys to the map. It is called by the |
2170 | 2169 |
/// \c AlterationNotifier. |
2171 | 2170 |
virtual void add(const std::vector<Item>& items) { |
2172 | 2171 |
Map::add(items); |
2173 | 2172 |
for (int i = 0; i < int(items.size()); ++i) { |
2174 | 2173 |
Map::set(items[i], _inv_map.size()); |
2175 | 2174 |
_inv_map.push_back(items[i]); |
2176 | 2175 |
} |
2177 | 2176 |
} |
2178 | 2177 |
|
2179 | 2178 |
/// \brief Erase the key from the map. |
2180 | 2179 |
/// |
2181 | 2180 |
/// Erase the key from the map. It is called by the |
2182 | 2181 |
/// \c AlterationNotifier. |
2183 | 2182 |
virtual void erase(const Item& item) { |
2184 | 2183 |
Map::set(_inv_map.back(), Map::operator[](item)); |
2185 | 2184 |
_inv_map[Map::operator[](item)] = _inv_map.back(); |
2186 | 2185 |
_inv_map.pop_back(); |
2187 | 2186 |
Map::erase(item); |
2188 | 2187 |
} |
2189 | 2188 |
|
2190 | 2189 |
/// \brief Erase more keys from the map. |
2191 | 2190 |
/// |
2192 | 2191 |
/// Erase more keys from the map. It is called by the |
2193 | 2192 |
/// \c AlterationNotifier. |
2194 | 2193 |
virtual void erase(const std::vector<Item>& items) { |
2195 | 2194 |
for (int i = 0; i < int(items.size()); ++i) { |
2196 | 2195 |
Map::set(_inv_map.back(), Map::operator[](items[i])); |
2197 | 2196 |
_inv_map[Map::operator[](items[i])] = _inv_map.back(); |
2198 | 2197 |
_inv_map.pop_back(); |
2199 | 2198 |
} |
2200 | 2199 |
Map::erase(items); |
2201 | 2200 |
} |
2202 | 2201 |
|
2203 | 2202 |
/// \brief Build the unique map. |
2204 | 2203 |
/// |
2205 | 2204 |
/// Build the unique map. It is called by the |
2206 | 2205 |
/// \c AlterationNotifier. |
2207 | 2206 |
virtual void build() { |
2208 | 2207 |
Map::build(); |
2209 | 2208 |
Item it; |
2210 | 2209 |
const typename Map::Notifier* nf = Map::notifier(); |
2211 | 2210 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2212 | 2211 |
Map::set(it, _inv_map.size()); |
2213 | 2212 |
_inv_map.push_back(it); |
2214 | 2213 |
} |
2215 | 2214 |
} |
2216 | 2215 |
|
2217 | 2216 |
/// \brief Clear the keys from the map. |
2218 | 2217 |
/// |
2219 | 2218 |
/// Clear the keys from the map. It is called by the |
2220 | 2219 |
/// \c AlterationNotifier. |
2221 | 2220 |
virtual void clear() { |
2222 | 2221 |
_inv_map.clear(); |
2223 | 2222 |
Map::clear(); |
2224 | 2223 |
} |
2225 | 2224 |
|
2226 | 2225 |
public: |
2227 | 2226 |
|
2228 | 2227 |
/// \brief Returns the maximal value plus one. |
2229 | 2228 |
/// |
2230 | 2229 |
/// Returns the maximal value plus one in the map. |
2231 | 2230 |
unsigned int size() const { |
2232 | 2231 |
return _inv_map.size(); |
2233 | 2232 |
} |
2234 | 2233 |
|
2235 | 2234 |
/// \brief Swaps the position of the two items in the map. |
2236 | 2235 |
/// |
2237 | 2236 |
/// Swaps the position of the two items in the map. |
2238 | 2237 |
void swap(const Item& p, const Item& q) { |
2239 | 2238 |
int pi = Map::operator[](p); |
2240 | 2239 |
int qi = Map::operator[](q); |
2241 | 2240 |
Map::set(p, qi); |
2242 | 2241 |
_inv_map[qi] = p; |
2243 | 2242 |
Map::set(q, pi); |
2244 | 2243 |
_inv_map[pi] = q; |
2245 | 2244 |
} |
2246 | 2245 |
|
2247 |
/// \brief Gives back the \e |
|
2246 |
/// \brief Gives back the \e RangeId of the item |
|
2248 | 2247 |
/// |
2249 |
/// Gives back the |
|
2248 |
/// Gives back the \e RangeId of the item. |
|
2250 | 2249 |
int operator[](const Item& item) const { |
2251 | 2250 |
return Map::operator[](item); |
2252 | 2251 |
} |
2253 | 2252 |
|
2254 |
/// \brief Gives back the item by its descriptor. |
|
2255 |
/// |
|
2256 |
/// Gives back |
|
2253 |
/// \brief Gives back the item belonging to a \e RangeId |
|
2254 |
/// |
|
2255 |
/// Gives back the item belonging to a \e RangeId. |
|
2257 | 2256 |
Item operator()(int id) const { |
2258 | 2257 |
return _inv_map[id]; |
2259 | 2258 |
} |
2260 | 2259 |
|
2261 | 2260 |
private: |
2262 | 2261 |
|
2263 | 2262 |
typedef std::vector<Item> Container; |
2264 | 2263 |
Container _inv_map; |
2265 | 2264 |
|
2266 | 2265 |
public: |
2267 | 2266 |
|
2268 |
/// \brief The inverse map type of |
|
2267 |
/// \brief The inverse map type of RangeIdMap. |
|
2269 | 2268 |
/// |
2270 |
/// The inverse map type of |
|
2269 |
/// The inverse map type of RangeIdMap. |
|
2271 | 2270 |
class InverseMap { |
2272 | 2271 |
public: |
2273 | 2272 |
/// \brief Constructor |
2274 | 2273 |
/// |
2275 | 2274 |
/// Constructor of the InverseMap. |
2276 |
explicit InverseMap(const |
|
2275 |
explicit InverseMap(const RangeIdMap& inverted) |
|
2277 | 2276 |
: _inverted(inverted) {} |
2278 | 2277 |
|
2279 | 2278 |
|
2280 | 2279 |
/// The value type of the InverseMap. |
2281 |
typedef typename |
|
2280 |
typedef typename RangeIdMap::Key Value; |
|
2282 | 2281 |
/// The key type of the InverseMap. |
2283 |
typedef typename |
|
2282 |
typedef typename RangeIdMap::Value Key; |
|
2284 | 2283 |
|
2285 | 2284 |
/// \brief Subscript operator. |
2286 | 2285 |
/// |
2287 | 2286 |
/// Subscript operator. It gives back the item |
2288 | 2287 |
/// that the descriptor currently belongs to. |
2289 | 2288 |
Value operator[](const Key& key) const { |
2290 | 2289 |
return _inverted(key); |
2291 | 2290 |
} |
2292 | 2291 |
|
2293 | 2292 |
/// \brief Size of the map. |
2294 | 2293 |
/// |
2295 | 2294 |
/// Returns the size of the map. |
2296 | 2295 |
unsigned int size() const { |
2297 | 2296 |
return _inverted.size(); |
2298 | 2297 |
} |
2299 | 2298 |
|
2300 | 2299 |
private: |
2301 |
const |
|
2300 |
const RangeIdMap& _inverted; |
|
2302 | 2301 |
}; |
2303 | 2302 |
|
2304 | 2303 |
/// \brief Gives back the inverse of the map. |
2305 | 2304 |
/// |
2306 | 2305 |
/// Gives back the inverse of the map. |
2307 | 2306 |
const InverseMap inverse() const { |
2308 | 2307 |
return InverseMap(*this); |
2309 | 2308 |
} |
2310 | 2309 |
}; |
2311 | 2310 |
|
2312 | 2311 |
/// \brief Map of the source nodes of arcs in a digraph. |
2313 | 2312 |
/// |
2314 | 2313 |
/// SourceMap provides access for the source node of each arc in a digraph, |
2315 | 2314 |
/// which is returned by the \c source() function of the digraph. |
2316 | 2315 |
/// \tparam GR The digraph type. |
2317 | 2316 |
/// \see TargetMap |
2318 | 2317 |
template <typename GR> |
2319 | 2318 |
class SourceMap { |
2320 | 2319 |
public: |
2321 | 2320 |
|
2322 | 2321 |
///\e |
2323 | 2322 |
typedef typename GR::Arc Key; |
2324 | 2323 |
///\e |
2325 | 2324 |
typedef typename GR::Node Value; |
2326 | 2325 |
|
2327 | 2326 |
/// \brief Constructor |
2328 | 2327 |
/// |
2329 | 2328 |
/// Constructor. |
2330 | 2329 |
/// \param digraph The digraph that the map belongs to. |
2331 | 2330 |
explicit SourceMap(const GR& digraph) : _graph(digraph) {} |
2332 | 2331 |
|
2333 | 2332 |
/// \brief Returns the source node of the given arc. |
2334 | 2333 |
/// |
2335 | 2334 |
/// Returns the source node of the given arc. |
2336 | 2335 |
Value operator[](const Key& arc) const { |
2337 | 2336 |
return _graph.source(arc); |
2338 | 2337 |
} |
2339 | 2338 |
|
2340 | 2339 |
private: |
2341 | 2340 |
const GR& _graph; |
2342 | 2341 |
}; |
2343 | 2342 |
|
2344 | 2343 |
/// \brief Returns a \c SourceMap class. |
2345 | 2344 |
/// |
2346 | 2345 |
/// This function just returns an \c SourceMap class. |
2347 | 2346 |
/// \relates SourceMap |
2348 | 2347 |
template <typename GR> |
2349 | 2348 |
inline SourceMap<GR> sourceMap(const GR& graph) { |
2350 | 2349 |
return SourceMap<GR>(graph); |
2351 | 2350 |
} |
2352 | 2351 |
|
2353 | 2352 |
/// \brief Map of the target nodes of arcs in a digraph. |
2354 | 2353 |
/// |
2355 | 2354 |
/// TargetMap provides access for the target node of each arc in a digraph, |
2356 | 2355 |
/// which is returned by the \c target() function of the digraph. |
2357 | 2356 |
/// \tparam GR The digraph type. |
2358 | 2357 |
/// \see SourceMap |
2359 | 2358 |
template <typename GR> |
2360 | 2359 |
class TargetMap { |
2361 | 2360 |
public: |
2362 | 2361 |
|
2363 | 2362 |
///\e |
2364 | 2363 |
typedef typename GR::Arc Key; |
2365 | 2364 |
///\e |
2366 | 2365 |
typedef typename GR::Node Value; |
2367 | 2366 |
|
2368 | 2367 |
/// \brief Constructor |
2369 | 2368 |
/// |
2370 | 2369 |
/// Constructor. |
2371 | 2370 |
/// \param digraph The digraph that the map belongs to. |
2372 | 2371 |
explicit TargetMap(const GR& digraph) : _graph(digraph) {} |
2373 | 2372 |
|
2374 | 2373 |
/// \brief Returns the target node of the given arc. |
2375 | 2374 |
/// |
2376 | 2375 |
/// Returns the target node of the given arc. |
2377 | 2376 |
Value operator[](const Key& e) const { |
2378 | 2377 |
return _graph.target(e); |
2379 | 2378 |
} |
2380 | 2379 |
|
2381 | 2380 |
private: |
2382 | 2381 |
const GR& _graph; |
2383 | 2382 |
}; |
2384 | 2383 |
|
2385 | 2384 |
/// \brief Returns a \c TargetMap class. |
2386 | 2385 |
/// |
2387 | 2386 |
/// This function just returns a \c TargetMap class. |
2388 | 2387 |
/// \relates TargetMap |
2389 | 2388 |
template <typename GR> |
2390 | 2389 |
inline TargetMap<GR> targetMap(const GR& graph) { |
2391 | 2390 |
return TargetMap<GR>(graph); |
2392 | 2391 |
} |
2393 | 2392 |
|
2394 | 2393 |
/// \brief Map of the "forward" directed arc view of edges in a graph. |
2395 | 2394 |
/// |
2396 | 2395 |
/// ForwardMap provides access for the "forward" directed arc view of |
2397 | 2396 |
/// each edge in a graph, which is returned by the \c direct() function |
2398 | 2397 |
/// of the graph with \c true parameter. |
2399 | 2398 |
/// \tparam GR The graph type. |
2400 | 2399 |
/// \see BackwardMap |
2401 | 2400 |
template <typename GR> |
2402 | 2401 |
class ForwardMap { |
2403 | 2402 |
public: |
2404 | 2403 |
|
2405 | 2404 |
typedef typename GR::Arc Value; |
2406 | 2405 |
typedef typename GR::Edge Key; |
2407 | 2406 |
|
2408 | 2407 |
/// \brief Constructor |
2409 | 2408 |
/// |
2410 | 2409 |
/// Constructor. |
2411 | 2410 |
/// \param graph The graph that the map belongs to. |
2412 | 2411 |
explicit ForwardMap(const GR& graph) : _graph(graph) {} |
2413 | 2412 |
|
2414 | 2413 |
/// \brief Returns the "forward" directed arc view of the given edge. |
2415 | 2414 |
/// |
2416 | 2415 |
/// Returns the "forward" directed arc view of the given edge. |
2417 | 2416 |
Value operator[](const Key& key) const { |
2418 | 2417 |
return _graph.direct(key, true); |
2419 | 2418 |
} |
2420 | 2419 |
|
2421 | 2420 |
private: |
2422 | 2421 |
const GR& _graph; |
2423 | 2422 |
}; |
2424 | 2423 |
|
2425 | 2424 |
/// \brief Returns a \c ForwardMap class. |
2426 | 2425 |
/// |
2427 | 2426 |
/// This function just returns an \c ForwardMap class. |
2428 | 2427 |
/// \relates ForwardMap |
2429 | 2428 |
template <typename GR> |
2430 | 2429 |
inline ForwardMap<GR> forwardMap(const GR& graph) { |
2431 | 2430 |
return ForwardMap<GR>(graph); |
2432 | 2431 |
} |
2433 | 2432 |
|
2434 | 2433 |
/// \brief Map of the "backward" directed arc view of edges in a graph. |
2435 | 2434 |
/// |
2436 | 2435 |
/// BackwardMap provides access for the "backward" directed arc view of |
2437 | 2436 |
/// each edge in a graph, which is returned by the \c direct() function |
2438 | 2437 |
/// of the graph with \c false parameter. |
2439 | 2438 |
/// \tparam GR The graph type. |
2440 | 2439 |
/// \see ForwardMap |
2441 | 2440 |
template <typename GR> |
2442 | 2441 |
class BackwardMap { |
2443 | 2442 |
public: |
2444 | 2443 |
|
2445 | 2444 |
typedef typename GR::Arc Value; |
2446 | 2445 |
typedef typename GR::Edge Key; |
2447 | 2446 |
|
2448 | 2447 |
/// \brief Constructor |
2449 | 2448 |
/// |
2450 | 2449 |
/// Constructor. |
2451 | 2450 |
/// \param graph The graph that the map belongs to. |
2452 | 2451 |
explicit BackwardMap(const GR& graph) : _graph(graph) {} |
2453 | 2452 |
|
2454 | 2453 |
/// \brief Returns the "backward" directed arc view of the given edge. |
2455 | 2454 |
/// |
2456 | 2455 |
/// Returns the "backward" directed arc view of the given edge. |
2457 | 2456 |
Value operator[](const Key& key) const { |
2458 | 2457 |
return _graph.direct(key, false); |
2459 | 2458 |
} |
2460 | 2459 |
|
2461 | 2460 |
private: |
2462 | 2461 |
const GR& _graph; |
2463 | 2462 |
}; |
2464 | 2463 |
|
2465 | 2464 |
/// \brief Returns a \c BackwardMap class |
2466 | 2465 |
|
2467 | 2466 |
/// This function just returns a \c BackwardMap class. |
2468 | 2467 |
/// \relates BackwardMap |
2469 | 2468 |
template <typename GR> |
2470 | 2469 |
inline BackwardMap<GR> backwardMap(const GR& graph) { |
2471 | 2470 |
return BackwardMap<GR>(graph); |
2472 | 2471 |
} |
2473 | 2472 |
|
2474 | 2473 |
/// \brief Map of the in-degrees of nodes in a digraph. |
2475 | 2474 |
/// |
2476 | 2475 |
/// This map returns the in-degree of a node. Once it is constructed, |
2477 | 2476 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
2478 | 2477 |
/// in constant time. On the other hand, the values are updated automatically |
2479 | 2478 |
/// whenever the digraph changes. |
2480 | 2479 |
/// |
2481 | 2480 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
2482 | 2481 |
/// may provide alternative ways to modify the digraph. |
2483 | 2482 |
/// The correct behavior of InDegMap is not guarantied if these additional |
2484 | 2483 |
/// features are used. For example the functions |
2485 | 2484 |
/// \ref ListDigraph::changeSource() "changeSource()", |
2486 | 2485 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
2487 | 2486 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
2488 | 2487 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
2489 | 2488 |
/// |
2490 | 2489 |
/// \sa OutDegMap |
2491 | 2490 |
template <typename GR> |
2492 | 2491 |
class InDegMap |
2493 | 2492 |
: protected ItemSetTraits<GR, typename GR::Arc> |
2494 | 2493 |
::ItemNotifier::ObserverBase { |
2495 | 2494 |
|
2496 | 2495 |
public: |
2497 | 2496 |
|
2498 | 2497 |
/// The digraph type |
2499 | 2498 |
typedef GR Digraph; |
2500 | 2499 |
/// The key type |
2501 | 2500 |
typedef typename Digraph::Node Key; |
2502 | 2501 |
/// The value type |
2503 | 2502 |
typedef int Value; |
2504 | 2503 |
|
2505 | 2504 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
2506 | 2505 |
::ItemNotifier::ObserverBase Parent; |
2507 | 2506 |
|
2508 | 2507 |
private: |
2509 | 2508 |
|
2510 | 2509 |
class AutoNodeMap |
2511 | 2510 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
2512 | 2511 |
public: |
2513 | 2512 |
|
2514 | 2513 |
typedef typename ItemSetTraits<Digraph, Key>:: |
2515 | 2514 |
template Map<int>::Type Parent; |
2516 | 2515 |
|
2517 | 2516 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
2518 | 2517 |
|
2519 | 2518 |
virtual void add(const Key& key) { |
2520 | 2519 |
Parent::add(key); |
2521 | 2520 |
Parent::set(key, 0); |
2522 | 2521 |
} |
2523 | 2522 |
|
2524 | 2523 |
virtual void add(const std::vector<Key>& keys) { |
2525 | 2524 |
Parent::add(keys); |
2526 | 2525 |
for (int i = 0; i < int(keys.size()); ++i) { |
2527 | 2526 |
Parent::set(keys[i], 0); |
2528 | 2527 |
} |
2529 | 2528 |
} |
2530 | 2529 |
|
2531 | 2530 |
virtual void build() { |
2532 | 2531 |
Parent::build(); |
2533 | 2532 |
Key it; |
2534 | 2533 |
typename Parent::Notifier* nf = Parent::notifier(); |
2535 | 2534 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2536 | 2535 |
Parent::set(it, 0); |
2537 | 2536 |
} |
2538 | 2537 |
} |
2539 | 2538 |
}; |
2540 | 2539 |
|
2541 | 2540 |
public: |
2542 | 2541 |
|
2543 | 2542 |
/// \brief Constructor. |
2544 | 2543 |
/// |
2545 | 2544 |
/// Constructor for creating an in-degree map. |
2546 | 2545 |
explicit InDegMap(const Digraph& graph) |
2547 | 2546 |
: _digraph(graph), _deg(graph) { |
2548 | 2547 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
2549 | 2548 |
|
2550 | 2549 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2551 | 2550 |
_deg[it] = countInArcs(_digraph, it); |
2552 | 2551 |
} |
2553 | 2552 |
} |
2554 | 2553 |
|
2555 | 2554 |
/// \brief Gives back the in-degree of a Node. |
2556 | 2555 |
/// |
2557 | 2556 |
/// Gives back the in-degree of a Node. |
2558 | 2557 |
int operator[](const Key& key) const { |
2559 | 2558 |
return _deg[key]; |
2560 | 2559 |
} |
2561 | 2560 |
|
2562 | 2561 |
protected: |
2563 | 2562 |
|
2564 | 2563 |
typedef typename Digraph::Arc Arc; |
2565 | 2564 |
|
2566 | 2565 |
virtual void add(const Arc& arc) { |
2567 | 2566 |
++_deg[_digraph.target(arc)]; |
2568 | 2567 |
} |
2569 | 2568 |
|
2570 | 2569 |
virtual void add(const std::vector<Arc>& arcs) { |
2571 | 2570 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2572 | 2571 |
++_deg[_digraph.target(arcs[i])]; |
2573 | 2572 |
} |
2574 | 2573 |
} |
2575 | 2574 |
|
2576 | 2575 |
virtual void erase(const Arc& arc) { |
2577 | 2576 |
--_deg[_digraph.target(arc)]; |
2578 | 2577 |
} |
2579 | 2578 |
|
2580 | 2579 |
virtual void erase(const std::vector<Arc>& arcs) { |
2581 | 2580 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2582 | 2581 |
--_deg[_digraph.target(arcs[i])]; |
2583 | 2582 |
} |
2584 | 2583 |
} |
2585 | 2584 |
|
2586 | 2585 |
virtual void build() { |
2587 | 2586 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2588 | 2587 |
_deg[it] = countInArcs(_digraph, it); |
2589 | 2588 |
} |
2590 | 2589 |
} |
2591 | 2590 |
|
2592 | 2591 |
virtual void clear() { |
2593 | 2592 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2594 | 2593 |
_deg[it] = 0; |
2595 | 2594 |
} |
2596 | 2595 |
} |
2597 | 2596 |
private: |
2598 | 2597 |
|
2599 | 2598 |
const Digraph& _digraph; |
2600 | 2599 |
AutoNodeMap _deg; |
2601 | 2600 |
}; |
2602 | 2601 |
|
2603 | 2602 |
/// \brief Map of the out-degrees of nodes in a digraph. |
2604 | 2603 |
/// |
2605 | 2604 |
/// This map returns the out-degree of a node. Once it is constructed, |
2606 | 2605 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
2607 | 2606 |
/// in constant time. On the other hand, the values are updated automatically |
2608 | 2607 |
/// whenever the digraph changes. |
2609 | 2608 |
/// |
2610 | 2609 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
2611 | 2610 |
/// may provide alternative ways to modify the digraph. |
2612 | 2611 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
2613 | 2612 |
/// features are used. For example the functions |
2614 | 2613 |
/// \ref ListDigraph::changeSource() "changeSource()", |
2615 | 2614 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
2616 | 2615 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
2617 | 2616 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
2618 | 2617 |
/// |
2619 | 2618 |
/// \sa InDegMap |
2620 | 2619 |
template <typename GR> |
2621 | 2620 |
class OutDegMap |
2622 | 2621 |
: protected ItemSetTraits<GR, typename GR::Arc> |
2623 | 2622 |
::ItemNotifier::ObserverBase { |
2624 | 2623 |
|
2625 | 2624 |
public: |
2626 | 2625 |
|
2627 | 2626 |
/// The digraph type |
2628 | 2627 |
typedef GR Digraph; |
2629 | 2628 |
/// The key type |
2630 | 2629 |
typedef typename Digraph::Node Key; |
2631 | 2630 |
/// The value type |
2632 | 2631 |
typedef int Value; |
2633 | 2632 |
|
2634 | 2633 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
2635 | 2634 |
::ItemNotifier::ObserverBase Parent; |
2636 | 2635 |
|
2637 | 2636 |
private: |
2638 | 2637 |
|
2639 | 2638 |
class AutoNodeMap |
2640 | 2639 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
2641 | 2640 |
public: |
2642 | 2641 |
|
2643 | 2642 |
typedef typename ItemSetTraits<Digraph, Key>:: |
2644 | 2643 |
template Map<int>::Type Parent; |
2645 | 2644 |
|
2646 | 2645 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
2647 | 2646 |
|
2648 | 2647 |
virtual void add(const Key& key) { |
2649 | 2648 |
Parent::add(key); |
2650 | 2649 |
Parent::set(key, 0); |
2651 | 2650 |
} |
2652 | 2651 |
virtual void add(const std::vector<Key>& keys) { |
2653 | 2652 |
Parent::add(keys); |
2654 | 2653 |
for (int i = 0; i < int(keys.size()); ++i) { |
2655 | 2654 |
Parent::set(keys[i], 0); |
2656 | 2655 |
} |
2657 | 2656 |
} |
2658 | 2657 |
virtual void build() { |
2659 | 2658 |
Parent::build(); |
2660 | 2659 |
Key it; |
2661 | 2660 |
typename Parent::Notifier* nf = Parent::notifier(); |
2662 | 2661 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2663 | 2662 |
Parent::set(it, 0); |
2664 | 2663 |
} |
2665 | 2664 |
} |
2666 | 2665 |
}; |
2667 | 2666 |
|
2668 | 2667 |
public: |
2669 | 2668 |
|
2670 | 2669 |
/// \brief Constructor. |
2671 | 2670 |
/// |
2672 | 2671 |
/// Constructor for creating an out-degree map. |
2673 | 2672 |
explicit OutDegMap(const Digraph& graph) |
2674 | 2673 |
: _digraph(graph), _deg(graph) { |
2675 | 2674 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
2676 | 2675 |
|
2677 | 2676 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2678 | 2677 |
_deg[it] = countOutArcs(_digraph, it); |
2679 | 2678 |
} |
2680 | 2679 |
} |
2681 | 2680 |
|
2682 | 2681 |
/// \brief Gives back the out-degree of a Node. |
2683 | 2682 |
/// |
2684 | 2683 |
/// Gives back the out-degree of a Node. |
2685 | 2684 |
int operator[](const Key& key) const { |
2686 | 2685 |
return _deg[key]; |
2687 | 2686 |
} |
2688 | 2687 |
|
2689 | 2688 |
protected: |
2690 | 2689 |
|
2691 | 2690 |
typedef typename Digraph::Arc Arc; |
2692 | 2691 |
|
2693 | 2692 |
virtual void add(const Arc& arc) { |
2694 | 2693 |
++_deg[_digraph.source(arc)]; |
2695 | 2694 |
} |
2696 | 2695 |
|
2697 | 2696 |
virtual void add(const std::vector<Arc>& arcs) { |
2698 | 2697 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2699 | 2698 |
++_deg[_digraph.source(arcs[i])]; |
2700 | 2699 |
} |
2701 | 2700 |
} |
2702 | 2701 |
|
2703 | 2702 |
virtual void erase(const Arc& arc) { |
2704 | 2703 |
--_deg[_digraph.source(arc)]; |
2705 | 2704 |
} |
2706 | 2705 |
|
2707 | 2706 |
virtual void erase(const std::vector<Arc>& arcs) { |
2708 | 2707 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2709 | 2708 |
--_deg[_digraph.source(arcs[i])]; |
2710 | 2709 |
} |
2711 | 2710 |
} |
2712 | 2711 |
|
2713 | 2712 |
virtual void build() { |
2714 | 2713 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2715 | 2714 |
_deg[it] = countOutArcs(_digraph, it); |
2716 | 2715 |
} |
2717 | 2716 |
} |
2718 | 2717 |
|
2719 | 2718 |
virtual void clear() { |
2720 | 2719 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2721 | 2720 |
_deg[it] = 0; |
2722 | 2721 |
} |
2723 | 2722 |
} |
2724 | 2723 |
private: |
2725 | 2724 |
|
2726 | 2725 |
const Digraph& _digraph; |
2727 | 2726 |
AutoNodeMap _deg; |
2728 | 2727 |
}; |
2729 | 2728 |
|
2730 | 2729 |
/// \brief Potential difference map |
2731 | 2730 |
/// |
2732 | 2731 |
/// PotentialMap returns the difference between the potentials of the |
2733 | 2732 |
/// source and target nodes of each arc in a digraph, i.e. it returns |
2734 | 2733 |
/// \code |
2735 | 2734 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
2736 | 2735 |
/// \endcode |
2737 | 2736 |
/// \tparam GR The digraph type. |
2738 | 2737 |
/// \tparam POT A node map storing the potentials. |
2739 | 2738 |
template <typename GR, typename POT> |
2740 | 2739 |
class PotentialDifferenceMap { |
2741 | 2740 |
public: |
2742 | 2741 |
/// Key type |
2743 | 2742 |
typedef typename GR::Arc Key; |
2744 | 2743 |
/// Value type |
2745 | 2744 |
typedef typename POT::Value Value; |
2746 | 2745 |
|
2747 | 2746 |
/// \brief Constructor |
2748 | 2747 |
/// |
2749 | 2748 |
/// Contructor of the map. |
2750 | 2749 |
explicit PotentialDifferenceMap(const GR& gr, |
2751 | 2750 |
const POT& potential) |
2752 | 2751 |
: _digraph(gr), _potential(potential) {} |
2753 | 2752 |
|
2754 | 2753 |
/// \brief Returns the potential difference for the given arc. |
2755 | 2754 |
/// |
2756 | 2755 |
/// Returns the potential difference for the given arc, i.e. |
2757 | 2756 |
/// \code |
2758 | 2757 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
2759 | 2758 |
/// \endcode |
2760 | 2759 |
Value operator[](const Key& arc) const { |
2761 | 2760 |
return _potential[_digraph.target(arc)] - |
2762 | 2761 |
_potential[_digraph.source(arc)]; |
2763 | 2762 |
} |
2764 | 2763 |
|
2765 | 2764 |
private: |
2766 | 2765 |
const GR& _digraph; |
2767 | 2766 |
const POT& _potential; |
2768 | 2767 |
}; |
2769 | 2768 |
|
2770 | 2769 |
/// \brief Returns a PotentialDifferenceMap. |
2771 | 2770 |
/// |
2772 | 2771 |
/// This function just returns a PotentialDifferenceMap. |
2773 | 2772 |
/// \relates PotentialDifferenceMap |
2774 | 2773 |
template <typename GR, typename POT> |
2775 | 2774 |
PotentialDifferenceMap<GR, POT> |
2776 | 2775 |
potentialDifferenceMap(const GR& gr, const POT& potential) { |
2777 | 2776 |
return PotentialDifferenceMap<GR, POT>(gr, potential); |
2778 | 2777 |
} |
2779 | 2778 |
|
2780 | 2779 |
/// @} |
2781 | 2780 |
} |
2782 | 2781 |
|
2783 | 2782 |
#endif // LEMON_MAPS_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <cstdlib> |
20 | 20 |
#include <ctime> |
21 | 21 |
|
22 | 22 |
#include <lemon/random.h> |
23 | 23 |
#include <lemon/list_graph.h> |
24 | 24 |
#include <lemon/smart_graph.h> |
25 | 25 |
#include <lemon/maps.h> |
26 | 26 |
|
27 | 27 |
#include "graph_test.h" |
28 | 28 |
#include "test_tools.h" |
29 | 29 |
|
30 | 30 |
using namespace lemon; |
31 | 31 |
|
32 | 32 |
template <typename Digraph> |
33 | 33 |
void checkFindArcs() { |
34 | 34 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
35 | 35 |
|
36 | 36 |
{ |
37 | 37 |
Digraph digraph; |
38 | 38 |
for (int i = 0; i < 10; ++i) { |
39 | 39 |
digraph.addNode(); |
40 | 40 |
} |
41 |
DescriptorMap<Digraph, Node> nodes(digraph); |
|
42 |
typename DescriptorMap<Digraph, Node>::InverseMap invNodes(nodes); |
|
41 |
RangeIdMap<Digraph, Node> nodes(digraph); |
|
42 |
typename RangeIdMap<Digraph, Node>::InverseMap invNodes(nodes); |
|
43 | 43 |
for (int i = 0; i < 100; ++i) { |
44 | 44 |
int src = rnd[invNodes.size()]; |
45 | 45 |
int trg = rnd[invNodes.size()]; |
46 | 46 |
digraph.addArc(invNodes[src], invNodes[trg]); |
47 | 47 |
} |
48 | 48 |
typename Digraph::template ArcMap<bool> found(digraph, false); |
49 |
|
|
49 |
RangeIdMap<Digraph, Arc> arcs(digraph); |
|
50 | 50 |
for (NodeIt src(digraph); src != INVALID; ++src) { |
51 | 51 |
for (NodeIt trg(digraph); trg != INVALID; ++trg) { |
52 | 52 |
for (ConArcIt<Digraph> con(digraph, src, trg); con != INVALID; ++con) { |
53 | 53 |
check(digraph.source(con) == src, "Wrong source."); |
54 | 54 |
check(digraph.target(con) == trg, "Wrong target."); |
55 | 55 |
check(found[con] == false, "The arc found already."); |
56 | 56 |
found[con] = true; |
57 | 57 |
} |
58 | 58 |
} |
59 | 59 |
} |
60 | 60 |
for (ArcIt it(digraph); it != INVALID; ++it) { |
61 | 61 |
check(found[it] == true, "The arc is not found."); |
62 | 62 |
} |
63 | 63 |
} |
64 | 64 |
|
65 | 65 |
{ |
66 | 66 |
int num = 5; |
67 | 67 |
Digraph fg; |
68 | 68 |
std::vector<Node> nodes; |
69 | 69 |
for (int i = 0; i < num; ++i) { |
70 | 70 |
nodes.push_back(fg.addNode()); |
71 | 71 |
} |
72 | 72 |
for (int i = 0; i < num * num; ++i) { |
73 | 73 |
fg.addArc(nodes[i / num], nodes[i % num]); |
74 | 74 |
} |
75 | 75 |
check(countNodes(fg) == num, "Wrong node number."); |
76 | 76 |
check(countArcs(fg) == num*num, "Wrong arc number."); |
77 | 77 |
for (NodeIt src(fg); src != INVALID; ++src) { |
78 | 78 |
for (NodeIt trg(fg); trg != INVALID; ++trg) { |
79 | 79 |
ConArcIt<Digraph> con(fg, src, trg); |
80 | 80 |
check(con != INVALID, "There is no connecting arc."); |
81 | 81 |
check(fg.source(con) == src, "Wrong source."); |
82 | 82 |
check(fg.target(con) == trg, "Wrong target."); |
83 | 83 |
check(++con == INVALID, "There is more connecting arc."); |
84 | 84 |
} |
85 | 85 |
} |
86 | 86 |
ArcLookUp<Digraph> al1(fg); |
87 | 87 |
DynArcLookUp<Digraph> al2(fg); |
88 | 88 |
AllArcLookUp<Digraph> al3(fg); |
89 | 89 |
for (NodeIt src(fg); src != INVALID; ++src) { |
90 | 90 |
for (NodeIt trg(fg); trg != INVALID; ++trg) { |
91 | 91 |
Arc con1 = al1(src, trg); |
92 | 92 |
Arc con2 = al2(src, trg); |
93 | 93 |
Arc con3 = al3(src, trg); |
94 | 94 |
Arc con4 = findArc(fg, src, trg); |
95 | 95 |
check(con1 == con2 && con2 == con3 && con3 == con4, |
96 | 96 |
"Different results.") |
97 | 97 |
check(con1 != INVALID, "There is no connecting arc."); |
98 | 98 |
check(fg.source(con1) == src, "Wrong source."); |
99 | 99 |
check(fg.target(con1) == trg, "Wrong target."); |
100 | 100 |
check(al3(src, trg, con3) == INVALID, |
101 | 101 |
"There is more connecting arc."); |
102 | 102 |
check(findArc(fg, src, trg, con4) == INVALID, |
103 | 103 |
"There is more connecting arc."); |
104 | 104 |
} |
105 | 105 |
} |
106 | 106 |
} |
107 | 107 |
} |
108 | 108 |
|
109 | 109 |
template <typename Graph> |
110 | 110 |
void checkFindEdges() { |
111 | 111 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
112 | 112 |
Graph graph; |
113 | 113 |
for (int i = 0; i < 10; ++i) { |
114 | 114 |
graph.addNode(); |
115 | 115 |
} |
116 |
DescriptorMap<Graph, Node> nodes(graph); |
|
117 |
typename DescriptorMap<Graph, Node>::InverseMap invNodes(nodes); |
|
116 |
RangeIdMap<Graph, Node> nodes(graph); |
|
117 |
typename RangeIdMap<Graph, Node>::InverseMap invNodes(nodes); |
|
118 | 118 |
for (int i = 0; i < 100; ++i) { |
119 | 119 |
int src = rnd[invNodes.size()]; |
120 | 120 |
int trg = rnd[invNodes.size()]; |
121 | 121 |
graph.addEdge(invNodes[src], invNodes[trg]); |
122 | 122 |
} |
123 | 123 |
typename Graph::template EdgeMap<int> found(graph, 0); |
124 |
|
|
124 |
RangeIdMap<Graph, Edge> edges(graph); |
|
125 | 125 |
for (NodeIt src(graph); src != INVALID; ++src) { |
126 | 126 |
for (NodeIt trg(graph); trg != INVALID; ++trg) { |
127 | 127 |
for (ConEdgeIt<Graph> con(graph, src, trg); con != INVALID; ++con) { |
128 | 128 |
check( (graph.u(con) == src && graph.v(con) == trg) || |
129 | 129 |
(graph.v(con) == src && graph.u(con) == trg), |
130 | 130 |
"Wrong end nodes."); |
131 | 131 |
++found[con]; |
132 | 132 |
check(found[con] <= 2, "The edge found more than twice."); |
133 | 133 |
} |
134 | 134 |
} |
135 | 135 |
} |
136 | 136 |
for (EdgeIt it(graph); it != INVALID; ++it) { |
137 | 137 |
check( (graph.u(it) != graph.v(it) && found[it] == 2) || |
138 | 138 |
(graph.u(it) == graph.v(it) && found[it] == 1), |
139 | 139 |
"The edge is not found correctly."); |
140 | 140 |
} |
141 | 141 |
} |
142 | 142 |
|
143 | 143 |
template <class Digraph> |
144 | 144 |
void checkDeg() |
145 | 145 |
{ |
146 | 146 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
147 | 147 |
|
148 | 148 |
const int nodeNum = 10; |
149 | 149 |
const int arcNum = 100; |
150 | 150 |
Digraph digraph; |
151 | 151 |
InDegMap<Digraph> inDeg(digraph); |
152 | 152 |
OutDegMap<Digraph> outDeg(digraph); |
153 | 153 |
std::vector<Node> nodes(nodeNum); |
154 | 154 |
for (int i = 0; i < nodeNum; ++i) { |
155 | 155 |
nodes[i] = digraph.addNode(); |
156 | 156 |
} |
157 | 157 |
std::vector<Arc> arcs(arcNum); |
158 | 158 |
for (int i = 0; i < arcNum; ++i) { |
159 | 159 |
arcs[i] = digraph.addArc(nodes[rnd[nodeNum]], nodes[rnd[nodeNum]]); |
160 | 160 |
} |
161 | 161 |
for (int i = 0; i < nodeNum; ++i) { |
162 | 162 |
check(inDeg[nodes[i]] == countInArcs(digraph, nodes[i]), |
163 | 163 |
"Wrong in degree map"); |
164 | 164 |
} |
165 | 165 |
for (int i = 0; i < nodeNum; ++i) { |
166 | 166 |
check(outDeg[nodes[i]] == countOutArcs(digraph, nodes[i]), |
167 | 167 |
"Wrong out degree map"); |
168 | 168 |
} |
169 | 169 |
} |
170 | 170 |
|
171 | 171 |
template <class Digraph> |
172 | 172 |
void checkSnapDeg() |
173 | 173 |
{ |
174 | 174 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
175 | 175 |
|
176 | 176 |
Digraph g; |
177 | 177 |
Node n1=g.addNode(); |
178 | 178 |
Node n2=g.addNode(); |
179 | 179 |
|
180 | 180 |
InDegMap<Digraph> ind(g); |
181 | 181 |
|
182 | 182 |
g.addArc(n1,n2); |
183 | 183 |
|
184 | 184 |
typename Digraph::Snapshot snap(g); |
185 | 185 |
|
186 | 186 |
OutDegMap<Digraph> outd(g); |
187 | 187 |
|
188 | 188 |
check(ind[n1]==0 && ind[n2]==1, "Wrong InDegMap value."); |
189 | 189 |
check(outd[n1]==1 && outd[n2]==0, "Wrong OutDegMap value."); |
190 | 190 |
|
191 | 191 |
g.addArc(n1,n2); |
192 | 192 |
g.addArc(n2,n1); |
193 | 193 |
|
194 | 194 |
check(ind[n1]==1 && ind[n2]==2, "Wrong InDegMap value."); |
195 | 195 |
check(outd[n1]==2 && outd[n2]==1, "Wrong OutDegMap value."); |
196 | 196 |
|
197 | 197 |
snap.restore(); |
198 | 198 |
|
199 | 199 |
check(ind[n1]==0 && ind[n2]==1, "Wrong InDegMap value."); |
200 | 200 |
check(outd[n1]==1 && outd[n2]==0, "Wrong OutDegMap value."); |
201 | 201 |
} |
202 | 202 |
|
203 | 203 |
int main() { |
204 | 204 |
// Checking ConArcIt, ConEdgeIt, ArcLookUp, AllArcLookUp, and DynArcLookUp |
205 | 205 |
checkFindArcs<ListDigraph>(); |
206 | 206 |
checkFindArcs<SmartDigraph>(); |
207 | 207 |
checkFindEdges<ListGraph>(); |
208 | 208 |
checkFindEdges<SmartGraph>(); |
209 | 209 |
|
210 | 210 |
// Checking In/OutDegMap (and Snapshot feature) |
211 | 211 |
checkDeg<ListDigraph>(); |
212 | 212 |
checkDeg<SmartDigraph>(); |
213 | 213 |
checkSnapDeg<ListDigraph>(); |
214 | 214 |
checkSnapDeg<SmartDigraph>(); |
215 | 215 |
|
216 | 216 |
return 0; |
217 | 217 |
} |
0 comments (0 inline)