0
4
0
1 | 1 |
LEMON code without an explicit copyright notice is covered by the following |
2 | 2 |
copyright/license. |
3 | 3 |
|
4 |
Copyright (C) 2003- |
|
4 |
Copyright (C) 2003-2010 Egervary Jeno Kombinatorikus Optimalizalasi |
|
5 | 5 |
Kutatocsoport (Egervary Combinatorial Optimization Research Group, |
6 | 6 |
EGRES). |
7 | 7 |
|
8 | 8 |
=========================================================================== |
9 | 9 |
Boost Software License, Version 1.0 |
10 | 10 |
=========================================================================== |
11 | 11 |
|
12 | 12 |
Permission is hereby granted, free of charge, to any person or organization |
13 | 13 |
obtaining a copy of the software and accompanying documentation covered by |
14 | 14 |
this license (the "Software") to use, reproduce, display, distribute, |
15 | 15 |
execute, and transmit the Software, and to prepare derivative works of the |
16 | 16 |
Software, and to permit third-parties to whom the Software is furnished to |
17 | 17 |
do so, all subject to the following: |
18 | 18 |
|
19 | 19 |
The copyright notices in the Software and this entire statement, including |
20 | 20 |
the above license grant, this restriction and the following disclaimer, |
21 | 21 |
must be included in all copies of the Software, in whole or in part, and |
22 | 22 |
all derivative works of the Software, unless such copies or derivative |
23 | 23 |
works are solely in the form of machine-executable object code generated by |
24 | 24 |
a source language processor. |
25 | 25 |
|
26 | 26 |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
27 | 27 |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
28 | 28 |
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT |
29 | 29 |
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE |
30 | 30 |
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, |
31 | 31 |
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
32 | 32 |
DEALINGS IN THE SOFTWARE. |
... | ... |
@@ -218,104 +218,96 @@ |
218 | 218 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
219 | 219 |
dijkstra.run(source, target); |
220 | 220 |
\endcode |
221 | 221 |
We have a length map and a maximum speed map on the arcs of a digraph. |
222 | 222 |
The minimum time to pass the arc can be calculated as the division of |
223 | 223 |
the two maps which can be done implicitly with the \c DivMap template |
224 | 224 |
class. We use the implicit minimum time map as the length map of the |
225 | 225 |
\c Dijkstra algorithm. |
226 | 226 |
*/ |
227 | 227 |
|
228 | 228 |
/** |
229 | 229 |
@defgroup paths Path Structures |
230 | 230 |
@ingroup datas |
231 | 231 |
\brief %Path structures implemented in LEMON. |
232 | 232 |
|
233 | 233 |
This group contains the path structures implemented in LEMON. |
234 | 234 |
|
235 | 235 |
LEMON provides flexible data structures to work with paths. |
236 | 236 |
All of them have similar interfaces and they can be copied easily with |
237 | 237 |
assignment operators and copy constructors. This makes it easy and |
238 | 238 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
239 | 239 |
any kind of path structure. |
240 | 240 |
|
241 | 241 |
\sa \ref concepts::Path "Path concept" |
242 | 242 |
*/ |
243 | 243 |
|
244 | 244 |
/** |
245 | 245 |
@defgroup heaps Heap Structures |
246 | 246 |
@ingroup datas |
247 | 247 |
\brief %Heap structures implemented in LEMON. |
248 | 248 |
|
249 | 249 |
This group contains the heap structures implemented in LEMON. |
250 | 250 |
|
251 | 251 |
LEMON provides several heap classes. They are efficient implementations |
252 | 252 |
of the abstract data type \e priority \e queue. They store items with |
253 | 253 |
specified values called \e priorities in such a way that finding and |
254 | 254 |
removing the item with minimum priority are efficient. |
255 | 255 |
The basic operations are adding and erasing items, changing the priority |
256 | 256 |
of an item, etc. |
257 | 257 |
|
258 | 258 |
Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
259 | 259 |
The heap implementations have the same interface, thus any of them can be |
260 | 260 |
used easily in such algorithms. |
261 | 261 |
|
262 | 262 |
\sa \ref concepts::Heap "Heap concept" |
263 | 263 |
*/ |
264 | 264 |
|
265 | 265 |
/** |
266 |
@defgroup matrices Matrices |
|
267 |
@ingroup datas |
|
268 |
\brief Two dimensional data storages implemented in LEMON. |
|
269 |
|
|
270 |
This group contains two dimensional data storages implemented in LEMON. |
|
271 |
*/ |
|
272 |
|
|
273 |
/** |
|
274 | 266 |
@defgroup auxdat Auxiliary Data Structures |
275 | 267 |
@ingroup datas |
276 | 268 |
\brief Auxiliary data structures implemented in LEMON. |
277 | 269 |
|
278 | 270 |
This group contains some data structures implemented in LEMON in |
279 | 271 |
order to make it easier to implement combinatorial algorithms. |
280 | 272 |
*/ |
281 | 273 |
|
282 | 274 |
/** |
283 | 275 |
@defgroup geomdat Geometric Data Structures |
284 | 276 |
@ingroup auxdat |
285 | 277 |
\brief Geometric data structures implemented in LEMON. |
286 | 278 |
|
287 | 279 |
This group contains geometric data structures implemented in LEMON. |
288 | 280 |
|
289 | 281 |
- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional |
290 | 282 |
vector with the usual operations. |
291 | 283 |
- \ref lemon::dim2::Box "dim2::Box" can be used to determine the |
292 | 284 |
rectangular bounding box of a set of \ref lemon::dim2::Point |
293 | 285 |
"dim2::Point"'s. |
294 | 286 |
*/ |
295 | 287 |
|
296 | 288 |
/** |
297 | 289 |
@defgroup matrices Matrices |
298 | 290 |
@ingroup auxdat |
299 | 291 |
\brief Two dimensional data storages implemented in LEMON. |
300 | 292 |
|
301 | 293 |
This group contains two dimensional data storages implemented in LEMON. |
302 | 294 |
*/ |
303 | 295 |
|
304 | 296 |
/** |
305 | 297 |
@defgroup algs Algorithms |
306 | 298 |
\brief This group contains the several algorithms |
307 | 299 |
implemented in LEMON. |
308 | 300 |
|
309 | 301 |
This group contains the several algorithms |
310 | 302 |
implemented in LEMON. |
311 | 303 |
*/ |
312 | 304 |
|
313 | 305 |
/** |
314 | 306 |
@defgroup search Graph Search |
315 | 307 |
@ingroup algs |
316 | 308 |
\brief Common graph search algorithms. |
317 | 309 |
|
318 | 310 |
This group contains the common graph search algorithms, namely |
319 | 311 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS) |
320 | 312 |
\ref clrs01algorithms. |
321 | 313 |
*/ |
... | ... |
@@ -427,109 +419,109 @@ |
427 | 419 |
\brief Algorithms for finding minimum cut in graphs. |
428 | 420 |
|
429 | 421 |
This group contains the algorithms for finding minimum cut in graphs. |
430 | 422 |
|
431 | 423 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
432 | 424 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
433 | 425 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
434 | 426 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
435 | 427 |
cut is the \f$X\f$ solution of the next optimization problem: |
436 | 428 |
|
437 | 429 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
438 | 430 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f] |
439 | 431 |
|
440 | 432 |
LEMON contains several algorithms related to minimum cut problems: |
441 | 433 |
|
442 | 434 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
443 | 435 |
in directed graphs. |
444 | 436 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
445 | 437 |
calculating minimum cut in undirected graphs. |
446 | 438 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
447 | 439 |
all-pairs minimum cut in undirected graphs. |
448 | 440 |
|
449 | 441 |
If you want to find minimum cut just between two distinict nodes, |
450 | 442 |
see the \ref max_flow "maximum flow problem". |
451 | 443 |
*/ |
452 | 444 |
|
453 | 445 |
/** |
454 | 446 |
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms |
455 | 447 |
@ingroup algs |
456 | 448 |
\brief Algorithms for finding minimum mean cycles. |
457 | 449 |
|
458 | 450 |
This group contains the algorithms for finding minimum mean cycles |
459 | 451 |
\ref clrs01algorithms, \ref amo93networkflows. |
460 | 452 |
|
461 | 453 |
The \e minimum \e mean \e cycle \e problem is to find a directed cycle |
462 | 454 |
of minimum mean length (cost) in a digraph. |
463 | 455 |
The mean length of a cycle is the average length of its arcs, i.e. the |
464 | 456 |
ratio between the total length of the cycle and the number of arcs on it. |
465 | 457 |
|
466 | 458 |
This problem has an important connection to \e conservative \e length |
467 | 459 |
\e functions, too. A length function on the arcs of a digraph is called |
468 | 460 |
conservative if and only if there is no directed cycle of negative total |
469 | 461 |
length. For an arbitrary length function, the negative of the minimum |
470 | 462 |
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the |
471 | 463 |
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length |
472 | 464 |
function. |
473 | 465 |
|
474 | 466 |
LEMON contains three algorithms for solving the minimum mean cycle problem: |
475 |
- \ref |
|
467 |
- \ref KarpMmc Karp's original algorithm \ref amo93networkflows, |
|
476 | 468 |
\ref dasdan98minmeancycle. |
477 |
- \ref |
|
469 |
- \ref HartmannOrlinMmc Hartmann-Orlin's algorithm, which is an improved |
|
478 | 470 |
version of Karp's algorithm \ref dasdan98minmeancycle. |
479 |
- \ref |
|
471 |
- \ref HowardMmc Howard's policy iteration algorithm |
|
480 | 472 |
\ref dasdan98minmeancycle. |
481 | 473 |
|
482 |
In practice, the Howard algorithm proved to be by far the most efficient |
|
483 |
one, though the best known theoretical bound on its running time is |
|
484 |
exponential. |
|
485 |
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space |
|
486 |
O(n<sup>2</sup>+e), but the latter one is typically faster due to the |
|
487 |
applied early termination scheme. |
|
474 |
In practice, the \ref HowardMmc "Howard" algorithm proved to be by far the |
|
475 |
most efficient one, though the best known theoretical bound on its running |
|
476 |
time is exponential. |
|
477 |
Both \ref KarpMmc "Karp" and \ref HartmannOrlinMmc "Hartmann-Orlin" algorithms |
|
478 |
run in time O(ne) and use space O(n<sup>2</sup>+e), but the latter one is |
|
479 |
typically faster due to the applied early termination scheme. |
|
488 | 480 |
*/ |
489 | 481 |
|
490 | 482 |
/** |
491 | 483 |
@defgroup matching Matching Algorithms |
492 | 484 |
@ingroup algs |
493 | 485 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
494 | 486 |
|
495 | 487 |
This group contains the algorithms for calculating |
496 | 488 |
matchings in graphs and bipartite graphs. The general matching problem is |
497 | 489 |
finding a subset of the edges for which each node has at most one incident |
498 | 490 |
edge. |
499 | 491 |
|
500 | 492 |
There are several different algorithms for calculate matchings in |
501 | 493 |
graphs. The matching problems in bipartite graphs are generally |
502 | 494 |
easier than in general graphs. The goal of the matching optimization |
503 | 495 |
can be finding maximum cardinality, maximum weight or minimum cost |
504 | 496 |
matching. The search can be constrained to find perfect or |
505 | 497 |
maximum cardinality matching. |
506 | 498 |
|
507 | 499 |
The matching algorithms implemented in LEMON: |
508 | 500 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
509 | 501 |
for calculating maximum cardinality matching in bipartite graphs. |
510 | 502 |
- \ref PrBipartiteMatching Push-relabel algorithm |
511 | 503 |
for calculating maximum cardinality matching in bipartite graphs. |
512 | 504 |
- \ref MaxWeightedBipartiteMatching |
513 | 505 |
Successive shortest path algorithm for calculating maximum weighted |
514 | 506 |
matching and maximum weighted bipartite matching in bipartite graphs. |
515 | 507 |
- \ref MinCostMaxBipartiteMatching |
516 | 508 |
Successive shortest path algorithm for calculating minimum cost maximum |
517 | 509 |
matching in bipartite graphs. |
518 | 510 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
519 | 511 |
maximum cardinality matching in general graphs. |
520 | 512 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
521 | 513 |
maximum weighted matching in general graphs. |
522 | 514 |
- \ref MaxWeightedPerfectMatching |
523 | 515 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
524 | 516 |
perfect matching in general graphs. |
525 | 517 |
- \ref MaxFractionalMatching Push-relabel algorithm for calculating |
526 | 518 |
maximum cardinality fractional matching in general graphs. |
527 | 519 |
- \ref MaxWeightedFractionalMatching Augmenting path algorithm for calculating |
528 | 520 |
maximum weighted fractional matching in general graphs. |
529 | 521 |
- \ref MaxWeightedPerfectFractionalMatching |
530 | 522 |
Augmenting path algorithm for calculating maximum weighted |
531 | 523 |
perfect fractional matching in general graphs. |
532 | 524 |
|
533 | 525 |
\image html matching.png |
534 | 526 |
\image latex matching.eps "Min Cost Perfect Matching" width=\textwidth |
535 | 527 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2010 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ARG_PARSER_H |
20 | 20 |
#define LEMON_ARG_PARSER_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <map> |
24 | 24 |
#include <list> |
25 | 25 |
#include <string> |
26 | 26 |
#include <iostream> |
27 | 27 |
#include <sstream> |
28 | 28 |
#include <algorithm> |
29 | 29 |
#include <lemon/assert.h> |
30 | 30 |
|
31 | 31 |
///\ingroup misc |
32 | 32 |
///\file |
33 | 33 |
///\brief A tool to parse command line arguments. |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
///Exception used by ArgParser |
38 |
|
|
39 |
///Exception used by ArgParser. |
|
40 |
/// |
|
38 | 41 |
class ArgParserException : public Exception { |
39 | 42 |
public: |
43 |
/// Reasons for failure |
|
44 |
|
|
45 |
/// Reasons for failure. |
|
46 |
/// |
|
40 | 47 |
enum Reason { |
41 |
HELP, /// <tt>--help</tt> option was given |
|
42 |
UNKNOWN_OPT, /// Unknown option was given |
|
43 |
|
|
48 |
HELP, ///< <tt>--help</tt> option was given. |
|
49 |
UNKNOWN_OPT, ///< Unknown option was given. |
|
50 |
INVALID_OPT ///< Invalid combination of options. |
|
44 | 51 |
}; |
45 | 52 |
|
46 | 53 |
private: |
47 | 54 |
Reason _reason; |
48 | 55 |
|
49 | 56 |
public: |
50 | 57 |
///Constructor |
51 | 58 |
ArgParserException(Reason r) throw() : _reason(r) {} |
52 | 59 |
///Virtual destructor |
53 | 60 |
virtual ~ArgParserException() throw() {} |
54 | 61 |
///A short description of the exception |
55 | 62 |
virtual const char* what() const throw() { |
56 | 63 |
switch(_reason) |
57 | 64 |
{ |
58 | 65 |
case HELP: |
59 | 66 |
return "lemon::ArgParseException: ask for help"; |
60 | 67 |
break; |
61 | 68 |
case UNKNOWN_OPT: |
62 | 69 |
return "lemon::ArgParseException: unknown option"; |
63 | 70 |
break; |
64 | 71 |
case INVALID_OPT: |
65 | 72 |
return "lemon::ArgParseException: invalid combination of options"; |
66 | 73 |
break; |
67 | 74 |
} |
68 | 75 |
return ""; |
69 | 76 |
} |
70 | 77 |
///Return the reason for the failure |
71 | 78 |
Reason reason() const {return _reason; } |
72 | 79 |
}; |
73 | 80 |
|
74 | 81 |
|
75 | 82 |
///Command line arguments parser |
76 | 83 |
|
77 | 84 |
///\ingroup misc |
78 | 85 |
///Command line arguments parser. |
79 | 86 |
/// |
80 | 87 |
///For a complete example see the \ref arg_parser_demo.cc demo file. |
81 | 88 |
class ArgParser { |
82 | 89 |
|
83 | 90 |
static void _showHelp(void *p); |
84 | 91 |
protected: |
85 | 92 |
|
86 | 93 |
int _argc; |
87 | 94 |
const char * const *_argv; |
88 | 95 |
|
89 | 96 |
enum OptType { UNKNOWN=0, BOOL=1, STRING=2, DOUBLE=3, INTEGER=4, FUNC=5 }; |
90 | 97 |
|
91 | 98 |
class ParData { |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2010 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_HARTMANN_ORLIN_MMC_H |
20 | 20 |
#define LEMON_HARTMANN_ORLIN_MMC_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_mean_cycle |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/core.h> |
30 | 30 |
#include <lemon/path.h> |
31 | 31 |
#include <lemon/tolerance.h> |
32 | 32 |
#include <lemon/connectivity.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \brief Default traits class of HartmannOrlinMmc class. |
37 | 37 |
/// |
38 | 38 |
/// Default traits class of HartmannOrlinMmc class. |
39 | 39 |
/// \tparam GR The type of the digraph. |
40 | 40 |
/// \tparam CM The type of the cost map. |
41 |
/// It must conform to the \ref concepts:: |
|
41 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
42 | 42 |
#ifdef DOXYGEN |
43 | 43 |
template <typename GR, typename CM> |
44 | 44 |
#else |
45 | 45 |
template <typename GR, typename CM, |
46 | 46 |
bool integer = std::numeric_limits<typename CM::Value>::is_integer> |
47 | 47 |
#endif |
48 | 48 |
struct HartmannOrlinMmcDefaultTraits |
49 | 49 |
{ |
50 | 50 |
/// The type of the digraph |
51 | 51 |
typedef GR Digraph; |
52 | 52 |
/// The type of the cost map |
53 | 53 |
typedef CM CostMap; |
54 | 54 |
/// The type of the arc costs |
55 | 55 |
typedef typename CostMap::Value Cost; |
56 | 56 |
|
57 | 57 |
/// \brief The large cost type used for internal computations |
58 | 58 |
/// |
59 | 59 |
/// The large cost type used for internal computations. |
60 | 60 |
/// It is \c long \c long if the \c Cost type is integer, |
61 | 61 |
/// otherwise it is \c double. |
62 | 62 |
/// \c Cost must be convertible to \c LargeCost. |
63 | 63 |
typedef double LargeCost; |
64 | 64 |
|
65 | 65 |
/// The tolerance type used for internal computations |
66 | 66 |
typedef lemon::Tolerance<LargeCost> Tolerance; |
67 | 67 |
|
68 | 68 |
/// \brief The path type of the found cycles |
69 | 69 |
/// |
70 | 70 |
/// The path type of the found cycles. |
71 | 71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
72 | 72 |
/// and it must have an \c addFront() function. |
73 | 73 |
typedef lemon::Path<Digraph> Path; |
74 | 74 |
}; |
75 | 75 |
|
76 | 76 |
// Default traits class for integer cost types |
77 | 77 |
template <typename GR, typename CM> |
78 | 78 |
struct HartmannOrlinMmcDefaultTraits<GR, CM, true> |
79 | 79 |
{ |
80 | 80 |
typedef GR Digraph; |
81 | 81 |
typedef CM CostMap; |
82 | 82 |
typedef typename CostMap::Value Cost; |
83 | 83 |
#ifdef LEMON_HAVE_LONG_LONG |
84 | 84 |
typedef long long LargeCost; |
85 | 85 |
#else |
86 | 86 |
typedef long LargeCost; |
87 | 87 |
#endif |
88 | 88 |
typedef lemon::Tolerance<LargeCost> Tolerance; |
89 | 89 |
typedef lemon::Path<Digraph> Path; |
90 | 90 |
}; |
91 | 91 |
|
92 | 92 |
|
93 | 93 |
/// \addtogroup min_mean_cycle |
94 | 94 |
/// @{ |
95 | 95 |
|
96 | 96 |
/// \brief Implementation of the Hartmann-Orlin algorithm for finding |
97 | 97 |
/// a minimum mean cycle. |
98 | 98 |
/// |
99 | 99 |
/// This class implements the Hartmann-Orlin algorithm for finding |
100 | 100 |
/// a directed cycle of minimum mean cost in a digraph |
101 | 101 |
/// \ref amo93networkflows, \ref dasdan98minmeancycle. |
102 |
/// It is an improved version of \ref |
|
102 |
/// It is an improved version of \ref KarpMmc "Karp"'s original algorithm, |
|
103 | 103 |
/// it applies an efficient early termination scheme. |
104 | 104 |
/// It runs in time O(ne) and uses space O(n<sup>2</sup>+e). |
105 | 105 |
/// |
106 | 106 |
/// \tparam GR The type of the digraph the algorithm runs on. |
107 | 107 |
/// \tparam CM The type of the cost map. The default |
108 | 108 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
109 | 109 |
/// \tparam TR The traits class that defines various types used by the |
110 | 110 |
/// algorithm. By default, it is \ref HartmannOrlinMmcDefaultTraits |
111 | 111 |
/// "HartmannOrlinMmcDefaultTraits<GR, CM>". |
112 | 112 |
/// In most cases, this parameter should not be set directly, |
113 | 113 |
/// consider to use the named template parameters instead. |
114 | 114 |
#ifdef DOXYGEN |
115 | 115 |
template <typename GR, typename CM, typename TR> |
116 | 116 |
#else |
117 | 117 |
template < typename GR, |
118 | 118 |
typename CM = typename GR::template ArcMap<int>, |
119 | 119 |
typename TR = HartmannOrlinMmcDefaultTraits<GR, CM> > |
120 | 120 |
#endif |
121 | 121 |
class HartmannOrlinMmc |
122 | 122 |
{ |
123 | 123 |
public: |
124 | 124 |
|
125 | 125 |
/// The type of the digraph |
126 | 126 |
typedef typename TR::Digraph Digraph; |
127 | 127 |
/// The type of the cost map |
128 | 128 |
typedef typename TR::CostMap CostMap; |
129 | 129 |
/// The type of the arc costs |
130 | 130 |
typedef typename TR::Cost Cost; |
131 | 131 |
|
132 | 132 |
/// \brief The large cost type |
133 | 133 |
/// |
134 | 134 |
/// The large cost type used for internal computations. |
135 | 135 |
/// By default, it is \c long \c long if the \c Cost type is integer, |
136 | 136 |
/// otherwise it is \c double. |
137 | 137 |
typedef typename TR::LargeCost LargeCost; |
138 | 138 |
|
139 | 139 |
/// The tolerance type |
140 | 140 |
typedef typename TR::Tolerance Tolerance; |
141 | 141 |
|
142 | 142 |
/// \brief The path type of the found cycles |
143 | 143 |
/// |
144 | 144 |
/// The path type of the found cycles. |
145 | 145 |
/// Using the \ref HartmannOrlinMmcDefaultTraits "default traits class", |
146 | 146 |
/// it is \ref lemon::Path "Path<Digraph>". |
147 | 147 |
typedef typename TR::Path Path; |
148 | 148 |
|
149 | 149 |
/// The \ref HartmannOrlinMmcDefaultTraits "traits class" of the algorithm |
150 | 150 |
typedef TR Traits; |
0 comments (0 inline)