0
27
6
1100
100
57
59
62
108
108
164
137
55
60
60
60
2
9
125
118
2
2
20
11
184
179
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_BELLMAN_FORD_H |
|
20 |
#define LEMON_BELLMAN_FORD_H |
|
21 |
|
|
22 |
/// \ingroup shortest_path |
|
23 |
/// \file |
|
24 |
/// \brief Bellman-Ford algorithm. |
|
25 |
|
|
26 |
#include <lemon/bits/path_dump.h> |
|
27 |
#include <lemon/core.h> |
|
28 |
#include <lemon/error.h> |
|
29 |
#include <lemon/maps.h> |
|
30 |
#include <lemon/path.h> |
|
31 |
|
|
32 |
#include <limits> |
|
33 |
|
|
34 |
namespace lemon { |
|
35 |
|
|
36 |
/// \brief Default OperationTraits for the BellmanFord algorithm class. |
|
37 |
/// |
|
38 |
/// This operation traits class defines all computational operations |
|
39 |
/// and constants that are used in the Bellman-Ford algorithm. |
|
40 |
/// The default implementation is based on the \c numeric_limits class. |
|
41 |
/// If the numeric type does not have infinity value, then the maximum |
|
42 |
/// value is used as extremal infinity value. |
|
43 |
template < |
|
44 |
typename V, |
|
45 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
|
46 |
struct BellmanFordDefaultOperationTraits { |
|
47 |
/// \e |
|
48 |
typedef V Value; |
|
49 |
/// \brief Gives back the zero value of the type. |
|
50 |
static Value zero() { |
|
51 |
return static_cast<Value>(0); |
|
52 |
} |
|
53 |
/// \brief Gives back the positive infinity value of the type. |
|
54 |
static Value infinity() { |
|
55 |
return std::numeric_limits<Value>::infinity(); |
|
56 |
} |
|
57 |
/// \brief Gives back the sum of the given two elements. |
|
58 |
static Value plus(const Value& left, const Value& right) { |
|
59 |
return left + right; |
|
60 |
} |
|
61 |
/// \brief Gives back \c true only if the first value is less than |
|
62 |
/// the second. |
|
63 |
static bool less(const Value& left, const Value& right) { |
|
64 |
return left < right; |
|
65 |
} |
|
66 |
}; |
|
67 |
|
|
68 |
template <typename V> |
|
69 |
struct BellmanFordDefaultOperationTraits<V, false> { |
|
70 |
typedef V Value; |
|
71 |
static Value zero() { |
|
72 |
return static_cast<Value>(0); |
|
73 |
} |
|
74 |
static Value infinity() { |
|
75 |
return std::numeric_limits<Value>::max(); |
|
76 |
} |
|
77 |
static Value plus(const Value& left, const Value& right) { |
|
78 |
if (left == infinity() || right == infinity()) return infinity(); |
|
79 |
return left + right; |
|
80 |
} |
|
81 |
static bool less(const Value& left, const Value& right) { |
|
82 |
return left < right; |
|
83 |
} |
|
84 |
}; |
|
85 |
|
|
86 |
/// \brief Default traits class of BellmanFord class. |
|
87 |
/// |
|
88 |
/// Default traits class of BellmanFord class. |
|
89 |
/// \param GR The type of the digraph. |
|
90 |
/// \param LEN The type of the length map. |
|
91 |
template<typename GR, typename LEN> |
|
92 |
struct BellmanFordDefaultTraits { |
|
93 |
/// The type of the digraph the algorithm runs on. |
|
94 |
typedef GR Digraph; |
|
95 |
|
|
96 |
/// \brief The type of the map that stores the arc lengths. |
|
97 |
/// |
|
98 |
/// The type of the map that stores the arc lengths. |
|
99 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
100 |
typedef LEN LengthMap; |
|
101 |
|
|
102 |
/// The type of the arc lengths. |
|
103 |
typedef typename LEN::Value Value; |
|
104 |
|
|
105 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
106 |
/// |
|
107 |
/// It defines the used operations and the infinity value for the |
|
108 |
/// given \c Value type. |
|
109 |
/// \see BellmanFordDefaultOperationTraits |
|
110 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
111 |
|
|
112 |
/// \brief The type of the map that stores the last arcs of the |
|
113 |
/// shortest paths. |
|
114 |
/// |
|
115 |
/// The type of the map that stores the last |
|
116 |
/// arcs of the shortest paths. |
|
117 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
118 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
119 |
|
|
120 |
/// \brief Instantiates a \c PredMap. |
|
121 |
/// |
|
122 |
/// This function instantiates a \ref PredMap. |
|
123 |
/// \param g is the digraph to which we would like to define the |
|
124 |
/// \ref PredMap. |
|
125 |
static PredMap *createPredMap(const GR& g) { |
|
126 |
return new PredMap(g); |
|
127 |
} |
|
128 |
|
|
129 |
/// \brief The type of the map that stores the distances of the nodes. |
|
130 |
/// |
|
131 |
/// The type of the map that stores the distances of the nodes. |
|
132 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
133 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
|
134 |
|
|
135 |
/// \brief Instantiates a \c DistMap. |
|
136 |
/// |
|
137 |
/// This function instantiates a \ref DistMap. |
|
138 |
/// \param g is the digraph to which we would like to define the |
|
139 |
/// \ref DistMap. |
|
140 |
static DistMap *createDistMap(const GR& g) { |
|
141 |
return new DistMap(g); |
|
142 |
} |
|
143 |
|
|
144 |
}; |
|
145 |
|
|
146 |
/// \brief %BellmanFord algorithm class. |
|
147 |
/// |
|
148 |
/// \ingroup shortest_path |
|
149 |
/// This class provides an efficient implementation of the Bellman-Ford |
|
150 |
/// algorithm. The maximum time complexity of the algorithm is |
|
151 |
/// <tt>O(ne)</tt>. |
|
152 |
/// |
|
153 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
|
154 |
/// problem when the arcs can have negative lengths, but the digraph |
|
155 |
/// should not contain directed cycles with negative total length. |
|
156 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
|
157 |
/// algorithm instead, since it is more efficient. |
|
158 |
/// |
|
159 |
/// The arc lengths are passed to the algorithm using a |
|
160 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
161 |
/// kind of length. The type of the length values is determined by the |
|
162 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
|
163 |
/// |
|
164 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
|
165 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
|
166 |
/// it can be used easier. |
|
167 |
/// |
|
168 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
169 |
/// The default type is \ref ListDigraph. |
|
170 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
|
171 |
/// the lengths of the arcs. The default map type is |
|
172 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
173 |
#ifdef DOXYGEN |
|
174 |
template <typename GR, typename LEN, typename TR> |
|
175 |
#else |
|
176 |
template <typename GR=ListDigraph, |
|
177 |
typename LEN=typename GR::template ArcMap<int>, |
|
178 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
|
179 |
#endif |
|
180 |
class BellmanFord { |
|
181 |
public: |
|
182 |
|
|
183 |
///The type of the underlying digraph. |
|
184 |
typedef typename TR::Digraph Digraph; |
|
185 |
|
|
186 |
/// \brief The type of the arc lengths. |
|
187 |
typedef typename TR::LengthMap::Value Value; |
|
188 |
/// \brief The type of the map that stores the arc lengths. |
|
189 |
typedef typename TR::LengthMap LengthMap; |
|
190 |
/// \brief The type of the map that stores the last |
|
191 |
/// arcs of the shortest paths. |
|
192 |
typedef typename TR::PredMap PredMap; |
|
193 |
/// \brief The type of the map that stores the distances of the nodes. |
|
194 |
typedef typename TR::DistMap DistMap; |
|
195 |
/// The type of the paths. |
|
196 |
typedef PredMapPath<Digraph, PredMap> Path; |
|
197 |
///\brief The \ref BellmanFordDefaultOperationTraits |
|
198 |
/// "operation traits class" of the algorithm. |
|
199 |
typedef typename TR::OperationTraits OperationTraits; |
|
200 |
|
|
201 |
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
|
202 |
typedef TR Traits; |
|
203 |
|
|
204 |
private: |
|
205 |
|
|
206 |
typedef typename Digraph::Node Node; |
|
207 |
typedef typename Digraph::NodeIt NodeIt; |
|
208 |
typedef typename Digraph::Arc Arc; |
|
209 |
typedef typename Digraph::OutArcIt OutArcIt; |
|
210 |
|
|
211 |
// Pointer to the underlying digraph. |
|
212 |
const Digraph *_gr; |
|
213 |
// Pointer to the length map |
|
214 |
const LengthMap *_length; |
|
215 |
// Pointer to the map of predecessors arcs. |
|
216 |
PredMap *_pred; |
|
217 |
// Indicates if _pred is locally allocated (true) or not. |
|
218 |
bool _local_pred; |
|
219 |
// Pointer to the map of distances. |
|
220 |
DistMap *_dist; |
|
221 |
// Indicates if _dist is locally allocated (true) or not. |
|
222 |
bool _local_dist; |
|
223 |
|
|
224 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
|
225 |
MaskMap *_mask; |
|
226 |
|
|
227 |
std::vector<Node> _process; |
|
228 |
|
|
229 |
// Creates the maps if necessary. |
|
230 |
void create_maps() { |
|
231 |
if(!_pred) { |
|
232 |
_local_pred = true; |
|
233 |
_pred = Traits::createPredMap(*_gr); |
|
234 |
} |
|
235 |
if(!_dist) { |
|
236 |
_local_dist = true; |
|
237 |
_dist = Traits::createDistMap(*_gr); |
|
238 |
} |
|
239 |
_mask = new MaskMap(*_gr, false); |
|
240 |
} |
|
241 |
|
|
242 |
public : |
|
243 |
|
|
244 |
typedef BellmanFord Create; |
|
245 |
|
|
246 |
/// \name Named Template Parameters |
|
247 |
|
|
248 |
///@{ |
|
249 |
|
|
250 |
template <class T> |
|
251 |
struct SetPredMapTraits : public Traits { |
|
252 |
typedef T PredMap; |
|
253 |
static PredMap *createPredMap(const Digraph&) { |
|
254 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
|
255 |
return 0; // ignore warnings |
|
256 |
} |
|
257 |
}; |
|
258 |
|
|
259 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
260 |
/// \c PredMap type. |
|
261 |
/// |
|
262 |
/// \ref named-templ-param "Named parameter" for setting |
|
263 |
/// \c PredMap type. |
|
264 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
265 |
template <class T> |
|
266 |
struct SetPredMap |
|
267 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > { |
|
268 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
|
269 |
}; |
|
270 |
|
|
271 |
template <class T> |
|
272 |
struct SetDistMapTraits : public Traits { |
|
273 |
typedef T DistMap; |
|
274 |
static DistMap *createDistMap(const Digraph&) { |
|
275 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
|
276 |
return 0; // ignore warnings |
|
277 |
} |
|
278 |
}; |
|
279 |
|
|
280 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
281 |
/// \c DistMap type. |
|
282 |
/// |
|
283 |
/// \ref named-templ-param "Named parameter" for setting |
|
284 |
/// \c DistMap type. |
|
285 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
286 |
template <class T> |
|
287 |
struct SetDistMap |
|
288 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > { |
|
289 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
|
290 |
}; |
|
291 |
|
|
292 |
template <class T> |
|
293 |
struct SetOperationTraitsTraits : public Traits { |
|
294 |
typedef T OperationTraits; |
|
295 |
}; |
|
296 |
|
|
297 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
298 |
/// \c OperationTraits type. |
|
299 |
/// |
|
300 |
/// \ref named-templ-param "Named parameter" for setting |
|
301 |
/// \c OperationTraits type. |
|
302 |
/// For more information see \ref BellmanFordDefaultOperationTraits. |
|
303 |
template <class T> |
|
304 |
struct SetOperationTraits |
|
305 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
|
306 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
|
307 |
Create; |
|
308 |
}; |
|
309 |
|
|
310 |
///@} |
|
311 |
|
|
312 |
protected: |
|
313 |
|
|
314 |
BellmanFord() {} |
|
315 |
|
|
316 |
public: |
|
317 |
|
|
318 |
/// \brief Constructor. |
|
319 |
/// |
|
320 |
/// Constructor. |
|
321 |
/// \param g The digraph the algorithm runs on. |
|
322 |
/// \param length The length map used by the algorithm. |
|
323 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
|
324 |
_gr(&g), _length(&length), |
|
325 |
_pred(0), _local_pred(false), |
|
326 |
_dist(0), _local_dist(false), _mask(0) {} |
|
327 |
|
|
328 |
///Destructor. |
|
329 |
~BellmanFord() { |
|
330 |
if(_local_pred) delete _pred; |
|
331 |
if(_local_dist) delete _dist; |
|
332 |
if(_mask) delete _mask; |
|
333 |
} |
|
334 |
|
|
335 |
/// \brief Sets the length map. |
|
336 |
/// |
|
337 |
/// Sets the length map. |
|
338 |
/// \return <tt>(*this)</tt> |
|
339 |
BellmanFord &lengthMap(const LengthMap &map) { |
|
340 |
_length = ↦ |
|
341 |
return *this; |
|
342 |
} |
|
343 |
|
|
344 |
/// \brief Sets the map that stores the predecessor arcs. |
|
345 |
/// |
|
346 |
/// Sets the map that stores the predecessor arcs. |
|
347 |
/// If you don't use this function before calling \ref run() |
|
348 |
/// or \ref init(), an instance will be allocated automatically. |
|
349 |
/// The destructor deallocates this automatically allocated map, |
|
350 |
/// of course. |
|
351 |
/// \return <tt>(*this)</tt> |
|
352 |
BellmanFord &predMap(PredMap &map) { |
|
353 |
if(_local_pred) { |
|
354 |
delete _pred; |
|
355 |
_local_pred=false; |
|
356 |
} |
|
357 |
_pred = ↦ |
|
358 |
return *this; |
|
359 |
} |
|
360 |
|
|
361 |
/// \brief Sets the map that stores the distances of the nodes. |
|
362 |
/// |
|
363 |
/// Sets the map that stores the distances of the nodes calculated |
|
364 |
/// by the algorithm. |
|
365 |
/// If you don't use this function before calling \ref run() |
|
366 |
/// or \ref init(), an instance will be allocated automatically. |
|
367 |
/// The destructor deallocates this automatically allocated map, |
|
368 |
/// of course. |
|
369 |
/// \return <tt>(*this)</tt> |
|
370 |
BellmanFord &distMap(DistMap &map) { |
|
371 |
if(_local_dist) { |
|
372 |
delete _dist; |
|
373 |
_local_dist=false; |
|
374 |
} |
|
375 |
_dist = ↦ |
|
376 |
return *this; |
|
377 |
} |
|
378 |
|
|
379 |
/// \name Execution Control |
|
380 |
/// The simplest way to execute the Bellman-Ford algorithm is to use |
|
381 |
/// one of the member functions called \ref run().\n |
|
382 |
/// If you need better control on the execution, you have to call |
|
383 |
/// \ref init() first, then you can add several source nodes |
|
384 |
/// with \ref addSource(). Finally the actual path computation can be |
|
385 |
/// performed with \ref start(), \ref checkedStart() or |
|
386 |
/// \ref limitedStart(). |
|
387 |
|
|
388 |
///@{ |
|
389 |
|
|
390 |
/// \brief Initializes the internal data structures. |
|
391 |
/// |
|
392 |
/// Initializes the internal data structures. The optional parameter |
|
393 |
/// is the initial distance of each node. |
|
394 |
void init(const Value value = OperationTraits::infinity()) { |
|
395 |
create_maps(); |
|
396 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
|
397 |
_pred->set(it, INVALID); |
|
398 |
_dist->set(it, value); |
|
399 |
} |
|
400 |
_process.clear(); |
|
401 |
if (OperationTraits::less(value, OperationTraits::infinity())) { |
|
402 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
|
403 |
_process.push_back(it); |
|
404 |
_mask->set(it, true); |
|
405 |
} |
|
406 |
} |
|
407 |
} |
|
408 |
|
|
409 |
/// \brief Adds a new source node. |
|
410 |
/// |
|
411 |
/// This function adds a new source node. The optional second parameter |
|
412 |
/// is the initial distance of the node. |
|
413 |
void addSource(Node source, Value dst = OperationTraits::zero()) { |
|
414 |
_dist->set(source, dst); |
|
415 |
if (!(*_mask)[source]) { |
|
416 |
_process.push_back(source); |
|
417 |
_mask->set(source, true); |
|
418 |
} |
|
419 |
} |
|
420 |
|
|
421 |
/// \brief Executes one round from the Bellman-Ford algorithm. |
|
422 |
/// |
|
423 |
/// If the algoritm calculated the distances in the previous round |
|
424 |
/// exactly for the paths of at most \c k arcs, then this function |
|
425 |
/// will calculate the distances exactly for the paths of at most |
|
426 |
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function |
|
427 |
/// calculates the shortest path distances exactly for the paths |
|
428 |
/// consisting of at most \c k arcs. |
|
429 |
/// |
|
430 |
/// \warning The paths with limited arc number cannot be retrieved |
|
431 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
432 |
/// need the shortest paths and not only the distances, you should |
|
433 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
434 |
/// and build the path manually. |
|
435 |
/// |
|
436 |
/// \return \c true when the algorithm have not found more shorter |
|
437 |
/// paths. |
|
438 |
/// |
|
439 |
/// \see ActiveIt |
|
440 |
bool processNextRound() { |
|
441 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
442 |
_mask->set(_process[i], false); |
|
443 |
} |
|
444 |
std::vector<Node> nextProcess; |
|
445 |
std::vector<Value> values(_process.size()); |
|
446 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
447 |
values[i] = (*_dist)[_process[i]]; |
|
448 |
} |
|
449 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
450 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
|
451 |
Node target = _gr->target(it); |
|
452 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
|
453 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
454 |
_pred->set(target, it); |
|
455 |
_dist->set(target, relaxed); |
|
456 |
if (!(*_mask)[target]) { |
|
457 |
_mask->set(target, true); |
|
458 |
nextProcess.push_back(target); |
|
459 |
} |
|
460 |
} |
|
461 |
} |
|
462 |
} |
|
463 |
_process.swap(nextProcess); |
|
464 |
return _process.empty(); |
|
465 |
} |
|
466 |
|
|
467 |
/// \brief Executes one weak round from the Bellman-Ford algorithm. |
|
468 |
/// |
|
469 |
/// If the algorithm calculated the distances in the previous round |
|
470 |
/// at least for the paths of at most \c k arcs, then this function |
|
471 |
/// will calculate the distances at least for the paths of at most |
|
472 |
/// <tt>k+1</tt> arcs. |
|
473 |
/// This function does not make it possible to calculate the shortest |
|
474 |
/// path distances exactly for paths consisting of at most \c k arcs, |
|
475 |
/// this is why it is called weak round. |
|
476 |
/// |
|
477 |
/// \return \c true when the algorithm have not found more shorter |
|
478 |
/// paths. |
|
479 |
/// |
|
480 |
/// \see ActiveIt |
|
481 |
bool processNextWeakRound() { |
|
482 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
483 |
_mask->set(_process[i], false); |
|
484 |
} |
|
485 |
std::vector<Node> nextProcess; |
|
486 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
487 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
|
488 |
Node target = _gr->target(it); |
|
489 |
Value relaxed = |
|
490 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
|
491 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
492 |
_pred->set(target, it); |
|
493 |
_dist->set(target, relaxed); |
|
494 |
if (!(*_mask)[target]) { |
|
495 |
_mask->set(target, true); |
|
496 |
nextProcess.push_back(target); |
|
497 |
} |
|
498 |
} |
|
499 |
} |
|
500 |
} |
|
501 |
_process.swap(nextProcess); |
|
502 |
return _process.empty(); |
|
503 |
} |
|
504 |
|
|
505 |
/// \brief Executes the algorithm. |
|
506 |
/// |
|
507 |
/// Executes the algorithm. |
|
508 |
/// |
|
509 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
510 |
/// in order to compute the shortest path to each node. |
|
511 |
/// |
|
512 |
/// The algorithm computes |
|
513 |
/// - the shortest path tree (forest), |
|
514 |
/// - the distance of each node from the root(s). |
|
515 |
/// |
|
516 |
/// \pre init() must be called and at least one root node should be |
|
517 |
/// added with addSource() before using this function. |
|
518 |
void start() { |
|
519 |
int num = countNodes(*_gr) - 1; |
|
520 |
for (int i = 0; i < num; ++i) { |
|
521 |
if (processNextWeakRound()) break; |
|
522 |
} |
|
523 |
} |
|
524 |
|
|
525 |
/// \brief Executes the algorithm and checks the negative cycles. |
|
526 |
/// |
|
527 |
/// Executes the algorithm and checks the negative cycles. |
|
528 |
/// |
|
529 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
530 |
/// in order to compute the shortest path to each node and also checks |
|
531 |
/// if the digraph contains cycles with negative total length. |
|
532 |
/// |
|
533 |
/// The algorithm computes |
|
534 |
/// - the shortest path tree (forest), |
|
535 |
/// - the distance of each node from the root(s). |
|
536 |
/// |
|
537 |
/// \return \c false if there is a negative cycle in the digraph. |
|
538 |
/// |
|
539 |
/// \pre init() must be called and at least one root node should be |
|
540 |
/// added with addSource() before using this function. |
|
541 |
bool checkedStart() { |
|
542 |
int num = countNodes(*_gr); |
|
543 |
for (int i = 0; i < num; ++i) { |
|
544 |
if (processNextWeakRound()) return true; |
|
545 |
} |
|
546 |
return _process.empty(); |
|
547 |
} |
|
548 |
|
|
549 |
/// \brief Executes the algorithm with arc number limit. |
|
550 |
/// |
|
551 |
/// Executes the algorithm with arc number limit. |
|
552 |
/// |
|
553 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
554 |
/// in order to compute the shortest path distance for each node |
|
555 |
/// using only the paths consisting of at most \c num arcs. |
|
556 |
/// |
|
557 |
/// The algorithm computes |
|
558 |
/// - the limited distance of each node from the root(s), |
|
559 |
/// - the predecessor arc for each node. |
|
560 |
/// |
|
561 |
/// \warning The paths with limited arc number cannot be retrieved |
|
562 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
563 |
/// need the shortest paths and not only the distances, you should |
|
564 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
565 |
/// and build the path manually. |
|
566 |
/// |
|
567 |
/// \pre init() must be called and at least one root node should be |
|
568 |
/// added with addSource() before using this function. |
|
569 |
void limitedStart(int num) { |
|
570 |
for (int i = 0; i < num; ++i) { |
|
571 |
if (processNextRound()) break; |
|
572 |
} |
|
573 |
} |
|
574 |
|
|
575 |
/// \brief Runs the algorithm from the given root node. |
|
576 |
/// |
|
577 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
578 |
/// node \c s in order to compute the shortest path to each node. |
|
579 |
/// |
|
580 |
/// The algorithm computes |
|
581 |
/// - the shortest path tree (forest), |
|
582 |
/// - the distance of each node from the root(s). |
|
583 |
/// |
|
584 |
/// \note bf.run(s) is just a shortcut of the following code. |
|
585 |
/// \code |
|
586 |
/// bf.init(); |
|
587 |
/// bf.addSource(s); |
|
588 |
/// bf.start(); |
|
589 |
/// \endcode |
|
590 |
void run(Node s) { |
|
591 |
init(); |
|
592 |
addSource(s); |
|
593 |
start(); |
|
594 |
} |
|
595 |
|
|
596 |
/// \brief Runs the algorithm from the given root node with arc |
|
597 |
/// number limit. |
|
598 |
/// |
|
599 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
600 |
/// node \c s in order to compute the shortest path distance for each |
|
601 |
/// node using only the paths consisting of at most \c num arcs. |
|
602 |
/// |
|
603 |
/// The algorithm computes |
|
604 |
/// - the limited distance of each node from the root(s), |
|
605 |
/// - the predecessor arc for each node. |
|
606 |
/// |
|
607 |
/// \warning The paths with limited arc number cannot be retrieved |
|
608 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
609 |
/// need the shortest paths and not only the distances, you should |
|
610 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
611 |
/// and build the path manually. |
|
612 |
/// |
|
613 |
/// \note bf.run(s, num) is just a shortcut of the following code. |
|
614 |
/// \code |
|
615 |
/// bf.init(); |
|
616 |
/// bf.addSource(s); |
|
617 |
/// bf.limitedStart(num); |
|
618 |
/// \endcode |
|
619 |
void run(Node s, int num) { |
|
620 |
init(); |
|
621 |
addSource(s); |
|
622 |
limitedStart(num); |
|
623 |
} |
|
624 |
|
|
625 |
///@} |
|
626 |
|
|
627 |
/// \brief LEMON iterator for getting the active nodes. |
|
628 |
/// |
|
629 |
/// This class provides a common style LEMON iterator that traverses |
|
630 |
/// the active nodes of the Bellman-Ford algorithm after the last |
|
631 |
/// phase. These nodes should be checked in the next phase to |
|
632 |
/// find augmenting arcs outgoing from them. |
|
633 |
class ActiveIt { |
|
634 |
public: |
|
635 |
|
|
636 |
/// \brief Constructor. |
|
637 |
/// |
|
638 |
/// Constructor for getting the active nodes of the given BellmanFord |
|
639 |
/// instance. |
|
640 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
|
641 |
{ |
|
642 |
_index = _algorithm->_process.size() - 1; |
|
643 |
} |
|
644 |
|
|
645 |
/// \brief Invalid constructor. |
|
646 |
/// |
|
647 |
/// Invalid constructor. |
|
648 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {} |
|
649 |
|
|
650 |
/// \brief Conversion to \c Node. |
|
651 |
/// |
|
652 |
/// Conversion to \c Node. |
|
653 |
operator Node() const { |
|
654 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
|
655 |
} |
|
656 |
|
|
657 |
/// \brief Increment operator. |
|
658 |
/// |
|
659 |
/// Increment operator. |
|
660 |
ActiveIt& operator++() { |
|
661 |
--_index; |
|
662 |
return *this; |
|
663 |
} |
|
664 |
|
|
665 |
bool operator==(const ActiveIt& it) const { |
|
666 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
|
667 |
} |
|
668 |
bool operator!=(const ActiveIt& it) const { |
|
669 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
|
670 |
} |
|
671 |
bool operator<(const ActiveIt& it) const { |
|
672 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
|
673 |
} |
|
674 |
|
|
675 |
private: |
|
676 |
const BellmanFord* _algorithm; |
|
677 |
int _index; |
|
678 |
}; |
|
679 |
|
|
680 |
/// \name Query Functions |
|
681 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
|
682 |
/// functions.\n |
|
683 |
/// Either \ref run() or \ref init() should be called before using them. |
|
684 |
|
|
685 |
///@{ |
|
686 |
|
|
687 |
/// \brief The shortest path to the given node. |
|
688 |
/// |
|
689 |
/// Gives back the shortest path to the given node from the root(s). |
|
690 |
/// |
|
691 |
/// \warning \c t should be reached from the root(s). |
|
692 |
/// |
|
693 |
/// \pre Either \ref run() or \ref init() must be called before |
|
694 |
/// using this function. |
|
695 |
Path path(Node t) const |
|
696 |
{ |
|
697 |
return Path(*_gr, *_pred, t); |
|
698 |
} |
|
699 |
|
|
700 |
/// \brief The distance of the given node from the root(s). |
|
701 |
/// |
|
702 |
/// Returns the distance of the given node from the root(s). |
|
703 |
/// |
|
704 |
/// \warning If node \c v is not reached from the root(s), then |
|
705 |
/// the return value of this function is undefined. |
|
706 |
/// |
|
707 |
/// \pre Either \ref run() or \ref init() must be called before |
|
708 |
/// using this function. |
|
709 |
Value dist(Node v) const { return (*_dist)[v]; } |
|
710 |
|
|
711 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
|
712 |
/// the given node. |
|
713 |
/// |
|
714 |
/// This function returns the 'previous arc' of the shortest path |
|
715 |
/// tree for node \c v, i.e. it returns the last arc of a |
|
716 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
|
717 |
/// is not reached from the root(s) or if \c v is a root. |
|
718 |
/// |
|
719 |
/// The shortest path tree used here is equal to the shortest path |
|
720 |
/// tree used in \ref predNode() and \predMap(). |
|
721 |
/// |
|
722 |
/// \pre Either \ref run() or \ref init() must be called before |
|
723 |
/// using this function. |
|
724 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
|
725 |
|
|
726 |
/// \brief Returns the 'previous node' of the shortest path tree for |
|
727 |
/// the given node. |
|
728 |
/// |
|
729 |
/// This function returns the 'previous node' of the shortest path |
|
730 |
/// tree for node \c v, i.e. it returns the last but one node of |
|
731 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
|
732 |
/// is not reached from the root(s) or if \c v is a root. |
|
733 |
/// |
|
734 |
/// The shortest path tree used here is equal to the shortest path |
|
735 |
/// tree used in \ref predArc() and \predMap(). |
|
736 |
/// |
|
737 |
/// \pre Either \ref run() or \ref init() must be called before |
|
738 |
/// using this function. |
|
739 |
Node predNode(Node v) const { |
|
740 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
|
741 |
} |
|
742 |
|
|
743 |
/// \brief Returns a const reference to the node map that stores the |
|
744 |
/// distances of the nodes. |
|
745 |
/// |
|
746 |
/// Returns a const reference to the node map that stores the distances |
|
747 |
/// of the nodes calculated by the algorithm. |
|
748 |
/// |
|
749 |
/// \pre Either \ref run() or \ref init() must be called before |
|
750 |
/// using this function. |
|
751 |
const DistMap &distMap() const { return *_dist;} |
|
752 |
|
|
753 |
/// \brief Returns a const reference to the node map that stores the |
|
754 |
/// predecessor arcs. |
|
755 |
/// |
|
756 |
/// Returns a const reference to the node map that stores the predecessor |
|
757 |
/// arcs, which form the shortest path tree (forest). |
|
758 |
/// |
|
759 |
/// \pre Either \ref run() or \ref init() must be called before |
|
760 |
/// using this function. |
|
761 |
const PredMap &predMap() const { return *_pred; } |
|
762 |
|
|
763 |
/// \brief Checks if a node is reached from the root(s). |
|
764 |
/// |
|
765 |
/// Returns \c true if \c v is reached from the root(s). |
|
766 |
/// |
|
767 |
/// \pre Either \ref run() or \ref init() must be called before |
|
768 |
/// using this function. |
|
769 |
bool reached(Node v) const { |
|
770 |
return (*_dist)[v] != OperationTraits::infinity(); |
|
771 |
} |
|
772 |
|
|
773 |
/// \brief Gives back a negative cycle. |
|
774 |
/// |
|
775 |
/// This function gives back a directed cycle with negative total |
|
776 |
/// length if the algorithm has already found one. |
|
777 |
/// Otherwise it gives back an empty path. |
|
778 |
lemon::Path<Digraph> negativeCycle() { |
|
779 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
|
780 |
lemon::Path<Digraph> cycle; |
|
781 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
782 |
if (state[_process[i]] != -1) continue; |
|
783 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
|
784 |
v = _gr->source((*_pred)[v])) { |
|
785 |
if (state[v] == i) { |
|
786 |
cycle.addFront((*_pred)[v]); |
|
787 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
|
788 |
u = _gr->source((*_pred)[u])) { |
|
789 |
cycle.addFront((*_pred)[u]); |
|
790 |
} |
|
791 |
return cycle; |
|
792 |
} |
|
793 |
else if (state[v] >= 0) { |
|
794 |
break; |
|
795 |
} |
|
796 |
state[v] = i; |
|
797 |
} |
|
798 |
} |
|
799 |
return cycle; |
|
800 |
} |
|
801 |
|
|
802 |
///@} |
|
803 |
}; |
|
804 |
|
|
805 |
/// \brief Default traits class of bellmanFord() function. |
|
806 |
/// |
|
807 |
/// Default traits class of bellmanFord() function. |
|
808 |
/// \tparam GR The type of the digraph. |
|
809 |
/// \tparam LEN The type of the length map. |
|
810 |
template <typename GR, typename LEN> |
|
811 |
struct BellmanFordWizardDefaultTraits { |
|
812 |
/// The type of the digraph the algorithm runs on. |
|
813 |
typedef GR Digraph; |
|
814 |
|
|
815 |
/// \brief The type of the map that stores the arc lengths. |
|
816 |
/// |
|
817 |
/// The type of the map that stores the arc lengths. |
|
818 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
819 |
typedef LEN LengthMap; |
|
820 |
|
|
821 |
/// The type of the arc lengths. |
|
822 |
typedef typename LEN::Value Value; |
|
823 |
|
|
824 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
825 |
/// |
|
826 |
/// It defines the used operations and the infinity value for the |
|
827 |
/// given \c Value type. |
|
828 |
/// \see BellmanFordDefaultOperationTraits |
|
829 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
830 |
|
|
831 |
/// \brief The type of the map that stores the last |
|
832 |
/// arcs of the shortest paths. |
|
833 |
/// |
|
834 |
/// The type of the map that stores the last arcs of the shortest paths. |
|
835 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
836 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
837 |
|
|
838 |
/// \brief Instantiates a \c PredMap. |
|
839 |
/// |
|
840 |
/// This function instantiates a \ref PredMap. |
|
841 |
/// \param g is the digraph to which we would like to define the |
|
842 |
/// \ref PredMap. |
|
843 |
static PredMap *createPredMap(const GR &g) { |
|
844 |
return new PredMap(g); |
|
845 |
} |
|
846 |
|
|
847 |
/// \brief The type of the map that stores the distances of the nodes. |
|
848 |
/// |
|
849 |
/// The type of the map that stores the distances of the nodes. |
|
850 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
851 |
typedef typename GR::template NodeMap<Value> DistMap; |
|
852 |
|
|
853 |
/// \brief Instantiates a \c DistMap. |
|
854 |
/// |
|
855 |
/// This function instantiates a \ref DistMap. |
|
856 |
/// \param g is the digraph to which we would like to define the |
|
857 |
/// \ref DistMap. |
|
858 |
static DistMap *createDistMap(const GR &g) { |
|
859 |
return new DistMap(g); |
|
860 |
} |
|
861 |
|
|
862 |
///The type of the shortest paths. |
|
863 |
|
|
864 |
///The type of the shortest paths. |
|
865 |
///It must meet the \ref concepts::Path "Path" concept. |
|
866 |
typedef lemon::Path<Digraph> Path; |
|
867 |
}; |
|
868 |
|
|
869 |
/// \brief Default traits class used by BellmanFordWizard. |
|
870 |
/// |
|
871 |
/// Default traits class used by BellmanFordWizard. |
|
872 |
/// \tparam GR The type of the digraph. |
|
873 |
/// \tparam LEN The type of the length map. |
|
874 |
template <typename GR, typename LEN> |
|
875 |
class BellmanFordWizardBase |
|
876 |
: public BellmanFordWizardDefaultTraits<GR, LEN> { |
|
877 |
|
|
878 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
|
879 |
protected: |
|
880 |
// Type of the nodes in the digraph. |
|
881 |
typedef typename Base::Digraph::Node Node; |
|
882 |
|
|
883 |
// Pointer to the underlying digraph. |
|
884 |
void *_graph; |
|
885 |
// Pointer to the length map |
|
886 |
void *_length; |
|
887 |
// Pointer to the map of predecessors arcs. |
|
888 |
void *_pred; |
|
889 |
// Pointer to the map of distances. |
|
890 |
void *_dist; |
|
891 |
//Pointer to the shortest path to the target node. |
|
892 |
void *_path; |
|
893 |
//Pointer to the distance of the target node. |
|
894 |
void *_di; |
|
895 |
|
|
896 |
public: |
|
897 |
/// Constructor. |
|
898 |
|
|
899 |
/// This constructor does not require parameters, it initiates |
|
900 |
/// all of the attributes to default values \c 0. |
|
901 |
BellmanFordWizardBase() : |
|
902 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {} |
|
903 |
|
|
904 |
/// Constructor. |
|
905 |
|
|
906 |
/// This constructor requires two parameters, |
|
907 |
/// others are initiated to \c 0. |
|
908 |
/// \param gr The digraph the algorithm runs on. |
|
909 |
/// \param len The length map. |
|
910 |
BellmanFordWizardBase(const GR& gr, |
|
911 |
const LEN& len) : |
|
912 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
|
913 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
|
914 |
_pred(0), _dist(0), _path(0), _di(0) {} |
|
915 |
|
|
916 |
}; |
|
917 |
|
|
918 |
/// \brief Auxiliary class for the function-type interface of the |
|
919 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
920 |
/// |
|
921 |
/// This auxiliary class is created to implement the |
|
922 |
/// \ref bellmanFord() "function-type interface" of the |
|
923 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
924 |
/// It does not have own \ref run() method, it uses the |
|
925 |
/// functions and features of the plain \ref BellmanFord. |
|
926 |
/// |
|
927 |
/// This class should only be used through the \ref bellmanFord() |
|
928 |
/// function, which makes it easier to use the algorithm. |
|
929 |
template<class TR> |
|
930 |
class BellmanFordWizard : public TR { |
|
931 |
typedef TR Base; |
|
932 |
|
|
933 |
typedef typename TR::Digraph Digraph; |
|
934 |
|
|
935 |
typedef typename Digraph::Node Node; |
|
936 |
typedef typename Digraph::NodeIt NodeIt; |
|
937 |
typedef typename Digraph::Arc Arc; |
|
938 |
typedef typename Digraph::OutArcIt ArcIt; |
|
939 |
|
|
940 |
typedef typename TR::LengthMap LengthMap; |
|
941 |
typedef typename LengthMap::Value Value; |
|
942 |
typedef typename TR::PredMap PredMap; |
|
943 |
typedef typename TR::DistMap DistMap; |
|
944 |
typedef typename TR::Path Path; |
|
945 |
|
|
946 |
public: |
|
947 |
/// Constructor. |
|
948 |
BellmanFordWizard() : TR() {} |
|
949 |
|
|
950 |
/// \brief Constructor that requires parameters. |
|
951 |
/// |
|
952 |
/// Constructor that requires parameters. |
|
953 |
/// These parameters will be the default values for the traits class. |
|
954 |
/// \param gr The digraph the algorithm runs on. |
|
955 |
/// \param len The length map. |
|
956 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
|
957 |
: TR(gr, len) {} |
|
958 |
|
|
959 |
/// \brief Copy constructor |
|
960 |
BellmanFordWizard(const TR &b) : TR(b) {} |
|
961 |
|
|
962 |
~BellmanFordWizard() {} |
|
963 |
|
|
964 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
|
965 |
/// |
|
966 |
/// This method runs the Bellman-Ford algorithm from the given source |
|
967 |
/// node in order to compute the shortest path to each node. |
|
968 |
void run(Node s) { |
|
969 |
BellmanFord<Digraph,LengthMap,TR> |
|
970 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
971 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
972 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
973 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
974 |
bf.run(s); |
|
975 |
} |
|
976 |
|
|
977 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
|
978 |
/// between \c s and \c t. |
|
979 |
/// |
|
980 |
/// This method runs the Bellman-Ford algorithm from node \c s |
|
981 |
/// in order to compute the shortest path to node \c t. |
|
982 |
/// Actually, it computes the shortest path to each node, but using |
|
983 |
/// this function you can retrieve the distance and the shortest path |
|
984 |
/// for a single target node easier. |
|
985 |
/// |
|
986 |
/// \return \c true if \c t is reachable form \c s. |
|
987 |
bool run(Node s, Node t) { |
|
988 |
BellmanFord<Digraph,LengthMap,TR> |
|
989 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
990 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
991 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
992 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
993 |
bf.run(s); |
|
994 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
|
995 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
|
996 |
return bf.reached(t); |
|
997 |
} |
|
998 |
|
|
999 |
template<class T> |
|
1000 |
struct SetPredMapBase : public Base { |
|
1001 |
typedef T PredMap; |
|
1002 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
|
1003 |
SetPredMapBase(const TR &b) : TR(b) {} |
|
1004 |
}; |
|
1005 |
|
|
1006 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
1007 |
/// the predecessor map. |
|
1008 |
/// |
|
1009 |
/// \ref named-templ-param "Named parameter" for setting |
|
1010 |
/// the map that stores the predecessor arcs of the nodes. |
|
1011 |
template<class T> |
|
1012 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) { |
|
1013 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1014 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
|
1015 |
} |
|
1016 |
|
|
1017 |
template<class T> |
|
1018 |
struct SetDistMapBase : public Base { |
|
1019 |
typedef T DistMap; |
|
1020 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
|
1021 |
SetDistMapBase(const TR &b) : TR(b) {} |
|
1022 |
}; |
|
1023 |
|
|
1024 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
1025 |
/// the distance map. |
|
1026 |
/// |
|
1027 |
/// \ref named-templ-param "Named parameter" for setting |
|
1028 |
/// the map that stores the distances of the nodes calculated |
|
1029 |
/// by the algorithm. |
|
1030 |
template<class T> |
|
1031 |
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) { |
|
1032 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1033 |
return BellmanFordWizard<SetDistMapBase<T> >(*this); |
|
1034 |
} |
|
1035 |
|
|
1036 |
template<class T> |
|
1037 |
struct SetPathBase : public Base { |
|
1038 |
typedef T Path; |
|
1039 |
SetPathBase(const TR &b) : TR(b) {} |
|
1040 |
}; |
|
1041 |
|
|
1042 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
1043 |
/// the shortest path to the target node. |
|
1044 |
/// |
|
1045 |
/// \ref named-func-param "Named parameter" for getting |
|
1046 |
/// the shortest path to the target node. |
|
1047 |
template<class T> |
|
1048 |
BellmanFordWizard<SetPathBase<T> > path(const T &t) |
|
1049 |
{ |
|
1050 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1051 |
return BellmanFordWizard<SetPathBase<T> >(*this); |
|
1052 |
} |
|
1053 |
|
|
1054 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
1055 |
/// the distance of the target node. |
|
1056 |
/// |
|
1057 |
/// \ref named-func-param "Named parameter" for getting |
|
1058 |
/// the distance of the target node. |
|
1059 |
BellmanFordWizard dist(const Value &d) |
|
1060 |
{ |
|
1061 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
|
1062 |
return *this; |
|
1063 |
} |
|
1064 |
|
|
1065 |
}; |
|
1066 |
|
|
1067 |
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
1068 |
/// algorithm. |
|
1069 |
/// |
|
1070 |
/// \ingroup shortest_path |
|
1071 |
/// Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
1072 |
/// algorithm. |
|
1073 |
/// |
|
1074 |
/// This function also has several \ref named-templ-func-param |
|
1075 |
/// "named parameters", they are declared as the members of class |
|
1076 |
/// \ref BellmanFordWizard. |
|
1077 |
/// The following examples show how to use these parameters. |
|
1078 |
/// \code |
|
1079 |
/// // Compute shortest path from node s to each node |
|
1080 |
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s); |
|
1081 |
/// |
|
1082 |
/// // Compute shortest path from s to t |
|
1083 |
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t); |
|
1084 |
/// \endcode |
|
1085 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
|
1086 |
/// to the end of the parameter list. |
|
1087 |
/// \sa BellmanFordWizard |
|
1088 |
/// \sa BellmanFord |
|
1089 |
template<typename GR, typename LEN> |
|
1090 |
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> > |
|
1091 |
bellmanFord(const GR& digraph, |
|
1092 |
const LEN& length) |
|
1093 |
{ |
|
1094 |
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length); |
|
1095 |
} |
|
1096 |
|
|
1097 |
} //END OF NAMESPACE LEMON |
|
1098 |
|
|
1099 |
#endif |
|
1100 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_BINOM_HEAP_H |
|
20 |
#define LEMON_BINOM_HEAP_H |
|
21 |
|
|
22 |
///\file |
|
23 |
///\ingroup heaps |
|
24 |
///\brief Binomial Heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
#include <lemon/math.h> |
|
30 |
#include <lemon/counter.h> |
|
31 |
|
|
32 |
namespace lemon { |
|
33 |
|
|
34 |
/// \ingroup heaps |
|
35 |
/// |
|
36 |
///\brief Binomial heap data structure. |
|
37 |
/// |
|
38 |
/// This class implements the \e binomial \e heap data structure. |
|
39 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
40 |
/// |
|
41 |
/// The methods \ref increase() and \ref erase() are not efficient |
|
42 |
/// in a binomial heap. In case of many calls of these operations, |
|
43 |
/// it is better to use other heap structure, e.g. \ref BinHeap |
|
44 |
/// "binary heap". |
|
45 |
/// |
|
46 |
/// \tparam PR Type of the priorities of the items. |
|
47 |
/// \tparam IM A read-writable item map with \c int values, used |
|
48 |
/// internally to handle the cross references. |
|
49 |
/// \tparam CMP A functor class for comparing the priorities. |
|
50 |
/// The default is \c std::less<PR>. |
|
51 |
#ifdef DOXYGEN |
|
52 |
template <typename PR, typename IM, typename CMP> |
|
53 |
#else |
|
54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
55 |
#endif |
|
56 |
class BinomHeap { |
|
57 |
public: |
|
58 |
/// Type of the item-int map. |
|
59 |
typedef IM ItemIntMap; |
|
60 |
/// Type of the priorities. |
|
61 |
typedef PR Prio; |
|
62 |
/// Type of the items stored in the heap. |
|
63 |
typedef typename ItemIntMap::Key Item; |
|
64 |
/// Functor type for comparing the priorities. |
|
65 |
typedef CMP Compare; |
|
66 |
|
|
67 |
/// \brief Type to represent the states of the items. |
|
68 |
/// |
|
69 |
/// Each item has a state associated to it. It can be "in heap", |
|
70 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
71 |
/// heap's point of view, but may be useful to the user. |
|
72 |
/// |
|
73 |
/// The item-int map must be initialized in such way that it assigns |
|
74 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
75 |
enum State { |
|
76 |
IN_HEAP = 0, ///< = 0. |
|
77 |
PRE_HEAP = -1, ///< = -1. |
|
78 |
POST_HEAP = -2 ///< = -2. |
|
79 |
}; |
|
80 |
|
|
81 |
private: |
|
82 |
class Store; |
|
83 |
|
|
84 |
std::vector<Store> _data; |
|
85 |
int _min, _head; |
|
86 |
ItemIntMap &_iim; |
|
87 |
Compare _comp; |
|
88 |
int _num_items; |
|
89 |
|
|
90 |
public: |
|
91 |
/// \brief Constructor. |
|
92 |
/// |
|
93 |
/// Constructor. |
|
94 |
/// \param map A map that assigns \c int values to the items. |
|
95 |
/// It is used internally to handle the cross references. |
|
96 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
97 |
explicit BinomHeap(ItemIntMap &map) |
|
98 |
: _min(0), _head(-1), _iim(map), _num_items(0) {} |
|
99 |
|
|
100 |
/// \brief Constructor. |
|
101 |
/// |
|
102 |
/// Constructor. |
|
103 |
/// \param map A map that assigns \c int values to the items. |
|
104 |
/// It is used internally to handle the cross references. |
|
105 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
106 |
/// \param comp The function object used for comparing the priorities. |
|
107 |
BinomHeap(ItemIntMap &map, const Compare &comp) |
|
108 |
: _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {} |
|
109 |
|
|
110 |
/// \brief The number of items stored in the heap. |
|
111 |
/// |
|
112 |
/// This function returns the number of items stored in the heap. |
|
113 |
int size() const { return _num_items; } |
|
114 |
|
|
115 |
/// \brief Check if the heap is empty. |
|
116 |
/// |
|
117 |
/// This function returns \c true if the heap is empty. |
|
118 |
bool empty() const { return _num_items==0; } |
|
119 |
|
|
120 |
/// \brief Make the heap empty. |
|
121 |
/// |
|
122 |
/// This functon makes the heap empty. |
|
123 |
/// It does not change the cross reference map. If you want to reuse |
|
124 |
/// a heap that is not surely empty, you should first clear it and |
|
125 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
126 |
/// for each item. |
|
127 |
void clear() { |
|
128 |
_data.clear(); _min=0; _num_items=0; _head=-1; |
|
129 |
} |
|
130 |
|
|
131 |
/// \brief Set the priority of an item or insert it, if it is |
|
132 |
/// not stored in the heap. |
|
133 |
/// |
|
134 |
/// This method sets the priority of the given item if it is |
|
135 |
/// already stored in the heap. Otherwise it inserts the given |
|
136 |
/// item into the heap with the given priority. |
|
137 |
/// \param item The item. |
|
138 |
/// \param value The priority. |
|
139 |
void set (const Item& item, const Prio& value) { |
|
140 |
int i=_iim[item]; |
|
141 |
if ( i >= 0 && _data[i].in ) { |
|
142 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
143 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
144 |
} else push(item, value); |
|
145 |
} |
|
146 |
|
|
147 |
/// \brief Insert an item into the heap with the given priority. |
|
148 |
/// |
|
149 |
/// This function inserts the given item into the heap with the |
|
150 |
/// given priority. |
|
151 |
/// \param item The item to insert. |
|
152 |
/// \param value The priority of the item. |
|
153 |
/// \pre \e item must not be stored in the heap. |
|
154 |
void push (const Item& item, const Prio& value) { |
|
155 |
int i=_iim[item]; |
|
156 |
if ( i<0 ) { |
|
157 |
int s=_data.size(); |
|
158 |
_iim.set( item,s ); |
|
159 |
Store st; |
|
160 |
st.name=item; |
|
161 |
st.prio=value; |
|
162 |
_data.push_back(st); |
|
163 |
i=s; |
|
164 |
} |
|
165 |
else { |
|
166 |
_data[i].parent=_data[i].right_neighbor=_data[i].child=-1; |
|
167 |
_data[i].degree=0; |
|
168 |
_data[i].in=true; |
|
169 |
_data[i].prio=value; |
|
170 |
} |
|
171 |
|
|
172 |
if( 0==_num_items ) { |
|
173 |
_head=i; |
|
174 |
_min=i; |
|
175 |
} else { |
|
176 |
merge(i); |
|
177 |
if( _comp(_data[i].prio, _data[_min].prio) ) _min=i; |
|
178 |
} |
|
179 |
++_num_items; |
|
180 |
} |
|
181 |
|
|
182 |
/// \brief Return the item having minimum priority. |
|
183 |
/// |
|
184 |
/// This function returns the item having minimum priority. |
|
185 |
/// \pre The heap must be non-empty. |
|
186 |
Item top() const { return _data[_min].name; } |
|
187 |
|
|
188 |
/// \brief The minimum priority. |
|
189 |
/// |
|
190 |
/// This function returns the minimum priority. |
|
191 |
/// \pre The heap must be non-empty. |
|
192 |
Prio prio() const { return _data[_min].prio; } |
|
193 |
|
|
194 |
/// \brief The priority of the given item. |
|
195 |
/// |
|
196 |
/// This function returns the priority of the given item. |
|
197 |
/// \param item The item. |
|
198 |
/// \pre \e item must be in the heap. |
|
199 |
const Prio& operator[](const Item& item) const { |
|
200 |
return _data[_iim[item]].prio; |
|
201 |
} |
|
202 |
|
|
203 |
/// \brief Remove the item having minimum priority. |
|
204 |
/// |
|
205 |
/// This function removes the item having minimum priority. |
|
206 |
/// \pre The heap must be non-empty. |
|
207 |
void pop() { |
|
208 |
_data[_min].in=false; |
|
209 |
|
|
210 |
int head_child=-1; |
|
211 |
if ( _data[_min].child!=-1 ) { |
|
212 |
int child=_data[_min].child; |
|
213 |
int neighb; |
|
214 |
while( child!=-1 ) { |
|
215 |
neighb=_data[child].right_neighbor; |
|
216 |
_data[child].parent=-1; |
|
217 |
_data[child].right_neighbor=head_child; |
|
218 |
head_child=child; |
|
219 |
child=neighb; |
|
220 |
} |
|
221 |
} |
|
222 |
|
|
223 |
if ( _data[_head].right_neighbor==-1 ) { |
|
224 |
// there was only one root |
|
225 |
_head=head_child; |
|
226 |
} |
|
227 |
else { |
|
228 |
// there were more roots |
|
229 |
if( _head!=_min ) { unlace(_min); } |
|
230 |
else { _head=_data[_head].right_neighbor; } |
|
231 |
merge(head_child); |
|
232 |
} |
|
233 |
_min=findMin(); |
|
234 |
--_num_items; |
|
235 |
} |
|
236 |
|
|
237 |
/// \brief Remove the given item from the heap. |
|
238 |
/// |
|
239 |
/// This function removes the given item from the heap if it is |
|
240 |
/// already stored. |
|
241 |
/// \param item The item to delete. |
|
242 |
/// \pre \e item must be in the heap. |
|
243 |
void erase (const Item& item) { |
|
244 |
int i=_iim[item]; |
|
245 |
if ( i >= 0 && _data[i].in ) { |
|
246 |
decrease( item, _data[_min].prio-1 ); |
|
247 |
pop(); |
|
248 |
} |
|
249 |
} |
|
250 |
|
|
251 |
/// \brief Decrease the priority of an item to the given value. |
|
252 |
/// |
|
253 |
/// This function decreases the priority of an item to the given value. |
|
254 |
/// \param item The item. |
|
255 |
/// \param value The priority. |
|
256 |
/// \pre \e item must be stored in the heap with priority at least \e value. |
|
257 |
void decrease (Item item, const Prio& value) { |
|
258 |
int i=_iim[item]; |
|
259 |
int p=_data[i].parent; |
|
260 |
_data[i].prio=value; |
|
261 |
|
|
262 |
while( p!=-1 && _comp(value, _data[p].prio) ) { |
|
263 |
_data[i].name=_data[p].name; |
|
264 |
_data[i].prio=_data[p].prio; |
|
265 |
_data[p].name=item; |
|
266 |
_data[p].prio=value; |
|
267 |
_iim[_data[i].name]=i; |
|
268 |
i=p; |
|
269 |
p=_data[p].parent; |
|
270 |
} |
|
271 |
_iim[item]=i; |
|
272 |
if ( _comp(value, _data[_min].prio) ) _min=i; |
|
273 |
} |
|
274 |
|
|
275 |
/// \brief Increase the priority of an item to the given value. |
|
276 |
/// |
|
277 |
/// This function increases the priority of an item to the given value. |
|
278 |
/// \param item The item. |
|
279 |
/// \param value The priority. |
|
280 |
/// \pre \e item must be stored in the heap with priority at most \e value. |
|
281 |
void increase (Item item, const Prio& value) { |
|
282 |
erase(item); |
|
283 |
push(item, value); |
|
284 |
} |
|
285 |
|
|
286 |
/// \brief Return the state of an item. |
|
287 |
/// |
|
288 |
/// This method returns \c PRE_HEAP if the given item has never |
|
289 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
290 |
/// and \c POST_HEAP otherwise. |
|
291 |
/// In the latter case it is possible that the item will get back |
|
292 |
/// to the heap again. |
|
293 |
/// \param item The item. |
|
294 |
State state(const Item &item) const { |
|
295 |
int i=_iim[item]; |
|
296 |
if( i>=0 ) { |
|
297 |
if ( _data[i].in ) i=0; |
|
298 |
else i=-2; |
|
299 |
} |
|
300 |
return State(i); |
|
301 |
} |
|
302 |
|
|
303 |
/// \brief Set the state of an item in the heap. |
|
304 |
/// |
|
305 |
/// This function sets the state of the given item in the heap. |
|
306 |
/// It can be used to manually clear the heap when it is important |
|
307 |
/// to achive better time complexity. |
|
308 |
/// \param i The item. |
|
309 |
/// \param st The state. It should not be \c IN_HEAP. |
|
310 |
void state(const Item& i, State st) { |
|
311 |
switch (st) { |
|
312 |
case POST_HEAP: |
|
313 |
case PRE_HEAP: |
|
314 |
if (state(i) == IN_HEAP) { |
|
315 |
erase(i); |
|
316 |
} |
|
317 |
_iim[i] = st; |
|
318 |
break; |
|
319 |
case IN_HEAP: |
|
320 |
break; |
|
321 |
} |
|
322 |
} |
|
323 |
|
|
324 |
private: |
|
325 |
|
|
326 |
// Find the minimum of the roots |
|
327 |
int findMin() { |
|
328 |
if( _head!=-1 ) { |
|
329 |
int min_loc=_head, min_val=_data[_head].prio; |
|
330 |
for( int x=_data[_head].right_neighbor; x!=-1; |
|
331 |
x=_data[x].right_neighbor ) { |
|
332 |
if( _comp( _data[x].prio,min_val ) ) { |
|
333 |
min_val=_data[x].prio; |
|
334 |
min_loc=x; |
|
335 |
} |
|
336 |
} |
|
337 |
return min_loc; |
|
338 |
} |
|
339 |
else return -1; |
|
340 |
} |
|
341 |
|
|
342 |
// Merge the heap with another heap starting at the given position |
|
343 |
void merge(int a) { |
|
344 |
if( _head==-1 || a==-1 ) return; |
|
345 |
if( _data[a].right_neighbor==-1 && |
|
346 |
_data[a].degree<=_data[_head].degree ) { |
|
347 |
_data[a].right_neighbor=_head; |
|
348 |
_head=a; |
|
349 |
} else { |
|
350 |
interleave(a); |
|
351 |
} |
|
352 |
if( _data[_head].right_neighbor==-1 ) return; |
|
353 |
|
|
354 |
int x=_head; |
|
355 |
int x_prev=-1, x_next=_data[x].right_neighbor; |
|
356 |
while( x_next!=-1 ) { |
|
357 |
if( _data[x].degree!=_data[x_next].degree || |
|
358 |
( _data[x_next].right_neighbor!=-1 && |
|
359 |
_data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) { |
|
360 |
x_prev=x; |
|
361 |
x=x_next; |
|
362 |
} |
|
363 |
else { |
|
364 |
if( _comp(_data[x_next].prio,_data[x].prio) ) { |
|
365 |
if( x_prev==-1 ) { |
|
366 |
_head=x_next; |
|
367 |
} else { |
|
368 |
_data[x_prev].right_neighbor=x_next; |
|
369 |
} |
|
370 |
fuse(x,x_next); |
|
371 |
x=x_next; |
|
372 |
} |
|
373 |
else { |
|
374 |
_data[x].right_neighbor=_data[x_next].right_neighbor; |
|
375 |
fuse(x_next,x); |
|
376 |
} |
|
377 |
} |
|
378 |
x_next=_data[x].right_neighbor; |
|
379 |
} |
|
380 |
} |
|
381 |
|
|
382 |
// Interleave the elements of the given list into the list of the roots |
|
383 |
void interleave(int a) { |
|
384 |
int p=_head, q=a; |
|
385 |
int curr=_data.size(); |
|
386 |
_data.push_back(Store()); |
|
387 |
|
|
388 |
while( p!=-1 || q!=-1 ) { |
|
389 |
if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) { |
|
390 |
_data[curr].right_neighbor=p; |
|
391 |
curr=p; |
|
392 |
p=_data[p].right_neighbor; |
|
393 |
} |
|
394 |
else { |
|
395 |
_data[curr].right_neighbor=q; |
|
396 |
curr=q; |
|
397 |
q=_data[q].right_neighbor; |
|
398 |
} |
|
399 |
} |
|
400 |
|
|
401 |
_head=_data.back().right_neighbor; |
|
402 |
_data.pop_back(); |
|
403 |
} |
|
404 |
|
|
405 |
// Lace node a under node b |
|
406 |
void fuse(int a, int b) { |
|
407 |
_data[a].parent=b; |
|
408 |
_data[a].right_neighbor=_data[b].child; |
|
409 |
_data[b].child=a; |
|
410 |
|
|
411 |
++_data[b].degree; |
|
412 |
} |
|
413 |
|
|
414 |
// Unlace node a (if it has siblings) |
|
415 |
void unlace(int a) { |
|
416 |
int neighb=_data[a].right_neighbor; |
|
417 |
int other=_head; |
|
418 |
|
|
419 |
while( _data[other].right_neighbor!=a ) |
|
420 |
other=_data[other].right_neighbor; |
|
421 |
_data[other].right_neighbor=neighb; |
|
422 |
} |
|
423 |
|
|
424 |
private: |
|
425 |
|
|
426 |
class Store { |
|
427 |
friend class BinomHeap; |
|
428 |
|
|
429 |
Item name; |
|
430 |
int parent; |
|
431 |
int right_neighbor; |
|
432 |
int child; |
|
433 |
int degree; |
|
434 |
bool in; |
|
435 |
Prio prio; |
|
436 |
|
|
437 |
Store() : parent(-1), right_neighbor(-1), child(-1), degree(0), |
|
438 |
in(true) {} |
|
439 |
}; |
|
440 |
}; |
|
441 |
|
|
442 |
} //namespace lemon |
|
443 |
|
|
444 |
#endif //LEMON_BINOM_HEAP_H |
|
445 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_FOURARY_HEAP_H |
|
20 |
#define LEMON_FOURARY_HEAP_H |
|
21 |
|
|
22 |
///\ingroup heaps |
|
23 |
///\file |
|
24 |
///\brief Fourary heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
|
|
30 |
namespace lemon { |
|
31 |
|
|
32 |
/// \ingroup heaps |
|
33 |
/// |
|
34 |
///\brief Fourary heap data structure. |
|
35 |
/// |
|
36 |
/// This class implements the \e fourary \e heap data structure. |
|
37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
38 |
/// |
|
39 |
/// The fourary heap is a specialization of the \ref KaryHeap "K-ary heap" |
|
40 |
/// for <tt>K=4</tt>. It is similar to the \ref BinHeap "binary heap", |
|
41 |
/// but its nodes have at most four children, instead of two. |
|
42 |
/// |
|
43 |
/// \tparam PR Type of the priorities of the items. |
|
44 |
/// \tparam IM A read-writable item map with \c int values, used |
|
45 |
/// internally to handle the cross references. |
|
46 |
/// \tparam CMP A functor class for comparing the priorities. |
|
47 |
/// The default is \c std::less<PR>. |
|
48 |
/// |
|
49 |
///\sa BinHeap |
|
50 |
///\sa KaryHeap |
|
51 |
#ifdef DOXYGEN |
|
52 |
template <typename PR, typename IM, typename CMP> |
|
53 |
#else |
|
54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
55 |
#endif |
|
56 |
class FouraryHeap { |
|
57 |
public: |
|
58 |
/// Type of the item-int map. |
|
59 |
typedef IM ItemIntMap; |
|
60 |
/// Type of the priorities. |
|
61 |
typedef PR Prio; |
|
62 |
/// Type of the items stored in the heap. |
|
63 |
typedef typename ItemIntMap::Key Item; |
|
64 |
/// Type of the item-priority pairs. |
|
65 |
typedef std::pair<Item,Prio> Pair; |
|
66 |
/// Functor type for comparing the priorities. |
|
67 |
typedef CMP Compare; |
|
68 |
|
|
69 |
/// \brief Type to represent the states of the items. |
|
70 |
/// |
|
71 |
/// Each item has a state associated to it. It can be "in heap", |
|
72 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
73 |
/// heap's point of view, but may be useful to the user. |
|
74 |
/// |
|
75 |
/// The item-int map must be initialized in such way that it assigns |
|
76 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
77 |
enum State { |
|
78 |
IN_HEAP = 0, ///< = 0. |
|
79 |
PRE_HEAP = -1, ///< = -1. |
|
80 |
POST_HEAP = -2 ///< = -2. |
|
81 |
}; |
|
82 |
|
|
83 |
private: |
|
84 |
std::vector<Pair> _data; |
|
85 |
Compare _comp; |
|
86 |
ItemIntMap &_iim; |
|
87 |
|
|
88 |
public: |
|
89 |
/// \brief Constructor. |
|
90 |
/// |
|
91 |
/// Constructor. |
|
92 |
/// \param map A map that assigns \c int values to the items. |
|
93 |
/// It is used internally to handle the cross references. |
|
94 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
95 |
explicit FouraryHeap(ItemIntMap &map) : _iim(map) {} |
|
96 |
|
|
97 |
/// \brief Constructor. |
|
98 |
/// |
|
99 |
/// Constructor. |
|
100 |
/// \param map A map that assigns \c int values to the items. |
|
101 |
/// It is used internally to handle the cross references. |
|
102 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
103 |
/// \param comp The function object used for comparing the priorities. |
|
104 |
FouraryHeap(ItemIntMap &map, const Compare &comp) |
|
105 |
: _iim(map), _comp(comp) {} |
|
106 |
|
|
107 |
/// \brief The number of items stored in the heap. |
|
108 |
/// |
|
109 |
/// This function returns the number of items stored in the heap. |
|
110 |
int size() const { return _data.size(); } |
|
111 |
|
|
112 |
/// \brief Check if the heap is empty. |
|
113 |
/// |
|
114 |
/// This function returns \c true if the heap is empty. |
|
115 |
bool empty() const { return _data.empty(); } |
|
116 |
|
|
117 |
/// \brief Make the heap empty. |
|
118 |
/// |
|
119 |
/// This functon makes the heap empty. |
|
120 |
/// It does not change the cross reference map. If you want to reuse |
|
121 |
/// a heap that is not surely empty, you should first clear it and |
|
122 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
123 |
/// for each item. |
|
124 |
void clear() { _data.clear(); } |
|
125 |
|
|
126 |
private: |
|
127 |
static int parent(int i) { return (i-1)/4; } |
|
128 |
static int firstChild(int i) { return 4*i+1; } |
|
129 |
|
|
130 |
bool less(const Pair &p1, const Pair &p2) const { |
|
131 |
return _comp(p1.second, p2.second); |
|
132 |
} |
|
133 |
|
|
134 |
void bubbleUp(int hole, Pair p) { |
|
135 |
int par = parent(hole); |
|
136 |
while( hole>0 && less(p,_data[par]) ) { |
|
137 |
move(_data[par],hole); |
|
138 |
hole = par; |
|
139 |
par = parent(hole); |
|
140 |
} |
|
141 |
move(p, hole); |
|
142 |
} |
|
143 |
|
|
144 |
void bubbleDown(int hole, Pair p, int length) { |
|
145 |
if( length>1 ) { |
|
146 |
int child = firstChild(hole); |
|
147 |
while( child+3<length ) { |
|
148 |
int min=child; |
|
149 |
if( less(_data[++child], _data[min]) ) min=child; |
|
150 |
if( less(_data[++child], _data[min]) ) min=child; |
|
151 |
if( less(_data[++child], _data[min]) ) min=child; |
|
152 |
if( !less(_data[min], p) ) |
|
153 |
goto ok; |
|
154 |
move(_data[min], hole); |
|
155 |
hole = min; |
|
156 |
child = firstChild(hole); |
|
157 |
} |
|
158 |
if ( child<length ) { |
|
159 |
int min = child; |
|
160 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
|
161 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
|
162 |
if( less(_data[min], p) ) { |
|
163 |
move(_data[min], hole); |
|
164 |
hole = min; |
|
165 |
} |
|
166 |
} |
|
167 |
} |
|
168 |
ok: |
|
169 |
move(p, hole); |
|
170 |
} |
|
171 |
|
|
172 |
void move(const Pair &p, int i) { |
|
173 |
_data[i] = p; |
|
174 |
_iim.set(p.first, i); |
|
175 |
} |
|
176 |
|
|
177 |
public: |
|
178 |
/// \brief Insert a pair of item and priority into the heap. |
|
179 |
/// |
|
180 |
/// This function inserts \c p.first to the heap with priority |
|
181 |
/// \c p.second. |
|
182 |
/// \param p The pair to insert. |
|
183 |
/// \pre \c p.first must not be stored in the heap. |
|
184 |
void push(const Pair &p) { |
|
185 |
int n = _data.size(); |
|
186 |
_data.resize(n+1); |
|
187 |
bubbleUp(n, p); |
|
188 |
} |
|
189 |
|
|
190 |
/// \brief Insert an item into the heap with the given priority. |
|
191 |
/// |
|
192 |
/// This function inserts the given item into the heap with the |
|
193 |
/// given priority. |
|
194 |
/// \param i The item to insert. |
|
195 |
/// \param p The priority of the item. |
|
196 |
/// \pre \e i must not be stored in the heap. |
|
197 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
|
198 |
|
|
199 |
/// \brief Return the item having minimum priority. |
|
200 |
/// |
|
201 |
/// This function returns the item having minimum priority. |
|
202 |
/// \pre The heap must be non-empty. |
|
203 |
Item top() const { return _data[0].first; } |
|
204 |
|
|
205 |
/// \brief The minimum priority. |
|
206 |
/// |
|
207 |
/// This function returns the minimum priority. |
|
208 |
/// \pre The heap must be non-empty. |
|
209 |
Prio prio() const { return _data[0].second; } |
|
210 |
|
|
211 |
/// \brief Remove the item having minimum priority. |
|
212 |
/// |
|
213 |
/// This function removes the item having minimum priority. |
|
214 |
/// \pre The heap must be non-empty. |
|
215 |
void pop() { |
|
216 |
int n = _data.size()-1; |
|
217 |
_iim.set(_data[0].first, POST_HEAP); |
|
218 |
if (n>0) bubbleDown(0, _data[n], n); |
|
219 |
_data.pop_back(); |
|
220 |
} |
|
221 |
|
|
222 |
/// \brief Remove the given item from the heap. |
|
223 |
/// |
|
224 |
/// This function removes the given item from the heap if it is |
|
225 |
/// already stored. |
|
226 |
/// \param i The item to delete. |
|
227 |
/// \pre \e i must be in the heap. |
|
228 |
void erase(const Item &i) { |
|
229 |
int h = _iim[i]; |
|
230 |
int n = _data.size()-1; |
|
231 |
_iim.set(_data[h].first, POST_HEAP); |
|
232 |
if( h<n ) { |
|
233 |
if( less(_data[parent(h)], _data[n]) ) |
|
234 |
bubbleDown(h, _data[n], n); |
|
235 |
else |
|
236 |
bubbleUp(h, _data[n]); |
|
237 |
} |
|
238 |
_data.pop_back(); |
|
239 |
} |
|
240 |
|
|
241 |
/// \brief The priority of the given item. |
|
242 |
/// |
|
243 |
/// This function returns the priority of the given item. |
|
244 |
/// \param i The item. |
|
245 |
/// \pre \e i must be in the heap. |
|
246 |
Prio operator[](const Item &i) const { |
|
247 |
int idx = _iim[i]; |
|
248 |
return _data[idx].second; |
|
249 |
} |
|
250 |
|
|
251 |
/// \brief Set the priority of an item or insert it, if it is |
|
252 |
/// not stored in the heap. |
|
253 |
/// |
|
254 |
/// This method sets the priority of the given item if it is |
|
255 |
/// already stored in the heap. Otherwise it inserts the given |
|
256 |
/// item into the heap with the given priority. |
|
257 |
/// \param i The item. |
|
258 |
/// \param p The priority. |
|
259 |
void set(const Item &i, const Prio &p) { |
|
260 |
int idx = _iim[i]; |
|
261 |
if( idx < 0 ) |
|
262 |
push(i,p); |
|
263 |
else if( _comp(p, _data[idx].second) ) |
|
264 |
bubbleUp(idx, Pair(i,p)); |
|
265 |
else |
|
266 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
267 |
} |
|
268 |
|
|
269 |
/// \brief Decrease the priority of an item to the given value. |
|
270 |
/// |
|
271 |
/// This function decreases the priority of an item to the given value. |
|
272 |
/// \param i The item. |
|
273 |
/// \param p The priority. |
|
274 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
275 |
void decrease(const Item &i, const Prio &p) { |
|
276 |
int idx = _iim[i]; |
|
277 |
bubbleUp(idx, Pair(i,p)); |
|
278 |
} |
|
279 |
|
|
280 |
/// \brief Increase the priority of an item to the given value. |
|
281 |
/// |
|
282 |
/// This function increases the priority of an item to the given value. |
|
283 |
/// \param i The item. |
|
284 |
/// \param p The priority. |
|
285 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
286 |
void increase(const Item &i, const Prio &p) { |
|
287 |
int idx = _iim[i]; |
|
288 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
289 |
} |
|
290 |
|
|
291 |
/// \brief Return the state of an item. |
|
292 |
/// |
|
293 |
/// This method returns \c PRE_HEAP if the given item has never |
|
294 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
295 |
/// and \c POST_HEAP otherwise. |
|
296 |
/// In the latter case it is possible that the item will get back |
|
297 |
/// to the heap again. |
|
298 |
/// \param i The item. |
|
299 |
State state(const Item &i) const { |
|
300 |
int s = _iim[i]; |
|
301 |
if (s>=0) s=0; |
|
302 |
return State(s); |
|
303 |
} |
|
304 |
|
|
305 |
/// \brief Set the state of an item in the heap. |
|
306 |
/// |
|
307 |
/// This function sets the state of the given item in the heap. |
|
308 |
/// It can be used to manually clear the heap when it is important |
|
309 |
/// to achive better time complexity. |
|
310 |
/// \param i The item. |
|
311 |
/// \param st The state. It should not be \c IN_HEAP. |
|
312 |
void state(const Item& i, State st) { |
|
313 |
switch (st) { |
|
314 |
case POST_HEAP: |
|
315 |
case PRE_HEAP: |
|
316 |
if (state(i) == IN_HEAP) erase(i); |
|
317 |
_iim[i] = st; |
|
318 |
break; |
|
319 |
case IN_HEAP: |
|
320 |
break; |
|
321 |
} |
|
322 |
} |
|
323 |
|
|
324 |
/// \brief Replace an item in the heap. |
|
325 |
/// |
|
326 |
/// This function replaces item \c i with item \c j. |
|
327 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
328 |
/// After calling this method, item \c i will be out of the |
|
329 |
/// heap and \c j will be in the heap with the same prioriority |
|
330 |
/// as item \c i had before. |
|
331 |
void replace(const Item& i, const Item& j) { |
|
332 |
int idx = _iim[i]; |
|
333 |
_iim.set(i, _iim[j]); |
|
334 |
_iim.set(j, idx); |
|
335 |
_data[idx].first = j; |
|
336 |
} |
|
337 |
|
|
338 |
}; // class FouraryHeap |
|
339 |
|
|
340 |
} // namespace lemon |
|
341 |
|
|
342 |
#endif // LEMON_FOURARY_HEAP_H |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_KARY_HEAP_H |
|
20 |
#define LEMON_KARY_HEAP_H |
|
21 |
|
|
22 |
///\ingroup heaps |
|
23 |
///\file |
|
24 |
///\brief Fourary heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
|
|
30 |
namespace lemon { |
|
31 |
|
|
32 |
/// \ingroup heaps |
|
33 |
/// |
|
34 |
///\brief K-ary heap data structure. |
|
35 |
/// |
|
36 |
/// This class implements the \e K-ary \e heap data structure. |
|
37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
38 |
/// |
|
39 |
/// The \ref KaryHeap "K-ary heap" is a generalization of the |
|
40 |
/// \ref BinHeap "binary heap" structure, its nodes have at most |
|
41 |
/// \c K children, instead of two. |
|
42 |
/// \ref BinHeap and \ref FouraryHeap are specialized implementations |
|
43 |
/// of this structure for <tt>K=2</tt> and <tt>K=4</tt>, respectively. |
|
44 |
/// |
|
45 |
/// \tparam PR Type of the priorities of the items. |
|
46 |
/// \tparam IM A read-writable item map with \c int values, used |
|
47 |
/// internally to handle the cross references. |
|
48 |
/// \tparam K The degree of the heap, each node have at most \e K |
|
49 |
/// children. The default is 16. Powers of two are suggested to use |
|
50 |
/// so that the multiplications and divisions needed to traverse the |
|
51 |
/// nodes of the heap could be performed faster. |
|
52 |
/// \tparam CMP A functor class for comparing the priorities. |
|
53 |
/// The default is \c std::less<PR>. |
|
54 |
/// |
|
55 |
///\sa BinHeap |
|
56 |
///\sa FouraryHeap |
|
57 |
#ifdef DOXYGEN |
|
58 |
template <typename PR, typename IM, int K, typename CMP> |
|
59 |
#else |
|
60 |
template <typename PR, typename IM, int K = 16, |
|
61 |
typename CMP = std::less<PR> > |
|
62 |
#endif |
|
63 |
class KaryHeap { |
|
64 |
public: |
|
65 |
/// Type of the item-int map. |
|
66 |
typedef IM ItemIntMap; |
|
67 |
/// Type of the priorities. |
|
68 |
typedef PR Prio; |
|
69 |
/// Type of the items stored in the heap. |
|
70 |
typedef typename ItemIntMap::Key Item; |
|
71 |
/// Type of the item-priority pairs. |
|
72 |
typedef std::pair<Item,Prio> Pair; |
|
73 |
/// Functor type for comparing the priorities. |
|
74 |
typedef CMP Compare; |
|
75 |
|
|
76 |
/// \brief Type to represent the states of the items. |
|
77 |
/// |
|
78 |
/// Each item has a state associated to it. It can be "in heap", |
|
79 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
80 |
/// heap's point of view, but may be useful to the user. |
|
81 |
/// |
|
82 |
/// The item-int map must be initialized in such way that it assigns |
|
83 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
84 |
enum State { |
|
85 |
IN_HEAP = 0, ///< = 0. |
|
86 |
PRE_HEAP = -1, ///< = -1. |
|
87 |
POST_HEAP = -2 ///< = -2. |
|
88 |
}; |
|
89 |
|
|
90 |
private: |
|
91 |
std::vector<Pair> _data; |
|
92 |
Compare _comp; |
|
93 |
ItemIntMap &_iim; |
|
94 |
|
|
95 |
public: |
|
96 |
/// \brief Constructor. |
|
97 |
/// |
|
98 |
/// Constructor. |
|
99 |
/// \param map A map that assigns \c int values to the items. |
|
100 |
/// It is used internally to handle the cross references. |
|
101 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
102 |
explicit KaryHeap(ItemIntMap &map) : _iim(map) {} |
|
103 |
|
|
104 |
/// \brief Constructor. |
|
105 |
/// |
|
106 |
/// Constructor. |
|
107 |
/// \param map A map that assigns \c int values to the items. |
|
108 |
/// It is used internally to handle the cross references. |
|
109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
110 |
/// \param comp The function object used for comparing the priorities. |
|
111 |
KaryHeap(ItemIntMap &map, const Compare &comp) |
|
112 |
: _iim(map), _comp(comp) {} |
|
113 |
|
|
114 |
/// \brief The number of items stored in the heap. |
|
115 |
/// |
|
116 |
/// This function returns the number of items stored in the heap. |
|
117 |
int size() const { return _data.size(); } |
|
118 |
|
|
119 |
/// \brief Check if the heap is empty. |
|
120 |
/// |
|
121 |
/// This function returns \c true if the heap is empty. |
|
122 |
bool empty() const { return _data.empty(); } |
|
123 |
|
|
124 |
/// \brief Make the heap empty. |
|
125 |
/// |
|
126 |
/// This functon makes the heap empty. |
|
127 |
/// It does not change the cross reference map. If you want to reuse |
|
128 |
/// a heap that is not surely empty, you should first clear it and |
|
129 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
130 |
/// for each item. |
|
131 |
void clear() { _data.clear(); } |
|
132 |
|
|
133 |
private: |
|
134 |
int parent(int i) { return (i-1)/K; } |
|
135 |
int firstChild(int i) { return K*i+1; } |
|
136 |
|
|
137 |
bool less(const Pair &p1, const Pair &p2) const { |
|
138 |
return _comp(p1.second, p2.second); |
|
139 |
} |
|
140 |
|
|
141 |
void bubbleUp(int hole, Pair p) { |
|
142 |
int par = parent(hole); |
|
143 |
while( hole>0 && less(p,_data[par]) ) { |
|
144 |
move(_data[par],hole); |
|
145 |
hole = par; |
|
146 |
par = parent(hole); |
|
147 |
} |
|
148 |
move(p, hole); |
|
149 |
} |
|
150 |
|
|
151 |
void bubbleDown(int hole, Pair p, int length) { |
|
152 |
if( length>1 ) { |
|
153 |
int child = firstChild(hole); |
|
154 |
while( child+K<=length ) { |
|
155 |
int min=child; |
|
156 |
for (int i=1; i<K; ++i) { |
|
157 |
if( less(_data[child+i], _data[min]) ) |
|
158 |
min=child+i; |
|
159 |
} |
|
160 |
if( !less(_data[min], p) ) |
|
161 |
goto ok; |
|
162 |
move(_data[min], hole); |
|
163 |
hole = min; |
|
164 |
child = firstChild(hole); |
|
165 |
} |
|
166 |
if ( child<length ) { |
|
167 |
int min = child; |
|
168 |
while (++child < length) { |
|
169 |
if( less(_data[child], _data[min]) ) |
|
170 |
min=child; |
|
171 |
} |
|
172 |
if( less(_data[min], p) ) { |
|
173 |
move(_data[min], hole); |
|
174 |
hole = min; |
|
175 |
} |
|
176 |
} |
|
177 |
} |
|
178 |
ok: |
|
179 |
move(p, hole); |
|
180 |
} |
|
181 |
|
|
182 |
void move(const Pair &p, int i) { |
|
183 |
_data[i] = p; |
|
184 |
_iim.set(p.first, i); |
|
185 |
} |
|
186 |
|
|
187 |
public: |
|
188 |
/// \brief Insert a pair of item and priority into the heap. |
|
189 |
/// |
|
190 |
/// This function inserts \c p.first to the heap with priority |
|
191 |
/// \c p.second. |
|
192 |
/// \param p The pair to insert. |
|
193 |
/// \pre \c p.first must not be stored in the heap. |
|
194 |
void push(const Pair &p) { |
|
195 |
int n = _data.size(); |
|
196 |
_data.resize(n+1); |
|
197 |
bubbleUp(n, p); |
|
198 |
} |
|
199 |
|
|
200 |
/// \brief Insert an item into the heap with the given priority. |
|
201 |
/// |
|
202 |
/// This function inserts the given item into the heap with the |
|
203 |
/// given priority. |
|
204 |
/// \param i The item to insert. |
|
205 |
/// \param p The priority of the item. |
|
206 |
/// \pre \e i must not be stored in the heap. |
|
207 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
|
208 |
|
|
209 |
/// \brief Return the item having minimum priority. |
|
210 |
/// |
|
211 |
/// This function returns the item having minimum priority. |
|
212 |
/// \pre The heap must be non-empty. |
|
213 |
Item top() const { return _data[0].first; } |
|
214 |
|
|
215 |
/// \brief The minimum priority. |
|
216 |
/// |
|
217 |
/// This function returns the minimum priority. |
|
218 |
/// \pre The heap must be non-empty. |
|
219 |
Prio prio() const { return _data[0].second; } |
|
220 |
|
|
221 |
/// \brief Remove the item having minimum priority. |
|
222 |
/// |
|
223 |
/// This function removes the item having minimum priority. |
|
224 |
/// \pre The heap must be non-empty. |
|
225 |
void pop() { |
|
226 |
int n = _data.size()-1; |
|
227 |
_iim.set(_data[0].first, POST_HEAP); |
|
228 |
if (n>0) bubbleDown(0, _data[n], n); |
|
229 |
_data.pop_back(); |
|
230 |
} |
|
231 |
|
|
232 |
/// \brief Remove the given item from the heap. |
|
233 |
/// |
|
234 |
/// This function removes the given item from the heap if it is |
|
235 |
/// already stored. |
|
236 |
/// \param i The item to delete. |
|
237 |
/// \pre \e i must be in the heap. |
|
238 |
void erase(const Item &i) { |
|
239 |
int h = _iim[i]; |
|
240 |
int n = _data.size()-1; |
|
241 |
_iim.set(_data[h].first, POST_HEAP); |
|
242 |
if( h<n ) { |
|
243 |
if( less(_data[parent(h)], _data[n]) ) |
|
244 |
bubbleDown(h, _data[n], n); |
|
245 |
else |
|
246 |
bubbleUp(h, _data[n]); |
|
247 |
} |
|
248 |
_data.pop_back(); |
|
249 |
} |
|
250 |
|
|
251 |
/// \brief The priority of the given item. |
|
252 |
/// |
|
253 |
/// This function returns the priority of the given item. |
|
254 |
/// \param i The item. |
|
255 |
/// \pre \e i must be in the heap. |
|
256 |
Prio operator[](const Item &i) const { |
|
257 |
int idx = _iim[i]; |
|
258 |
return _data[idx].second; |
|
259 |
} |
|
260 |
|
|
261 |
/// \brief Set the priority of an item or insert it, if it is |
|
262 |
/// not stored in the heap. |
|
263 |
/// |
|
264 |
/// This method sets the priority of the given item if it is |
|
265 |
/// already stored in the heap. Otherwise it inserts the given |
|
266 |
/// item into the heap with the given priority. |
|
267 |
/// \param i The item. |
|
268 |
/// \param p The priority. |
|
269 |
void set(const Item &i, const Prio &p) { |
|
270 |
int idx = _iim[i]; |
|
271 |
if( idx<0 ) |
|
272 |
push(i,p); |
|
273 |
else if( _comp(p, _data[idx].second) ) |
|
274 |
bubbleUp(idx, Pair(i,p)); |
|
275 |
else |
|
276 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
277 |
} |
|
278 |
|
|
279 |
/// \brief Decrease the priority of an item to the given value. |
|
280 |
/// |
|
281 |
/// This function decreases the priority of an item to the given value. |
|
282 |
/// \param i The item. |
|
283 |
/// \param p The priority. |
|
284 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
285 |
void decrease(const Item &i, const Prio &p) { |
|
286 |
int idx = _iim[i]; |
|
287 |
bubbleUp(idx, Pair(i,p)); |
|
288 |
} |
|
289 |
|
|
290 |
/// \brief Increase the priority of an item to the given value. |
|
291 |
/// |
|
292 |
/// This function increases the priority of an item to the given value. |
|
293 |
/// \param i The item. |
|
294 |
/// \param p The priority. |
|
295 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
296 |
void increase(const Item &i, const Prio &p) { |
|
297 |
int idx = _iim[i]; |
|
298 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
299 |
} |
|
300 |
|
|
301 |
/// \brief Return the state of an item. |
|
302 |
/// |
|
303 |
/// This method returns \c PRE_HEAP if the given item has never |
|
304 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
305 |
/// and \c POST_HEAP otherwise. |
|
306 |
/// In the latter case it is possible that the item will get back |
|
307 |
/// to the heap again. |
|
308 |
/// \param i The item. |
|
309 |
State state(const Item &i) const { |
|
310 |
int s = _iim[i]; |
|
311 |
if (s>=0) s=0; |
|
312 |
return State(s); |
|
313 |
} |
|
314 |
|
|
315 |
/// \brief Set the state of an item in the heap. |
|
316 |
/// |
|
317 |
/// This function sets the state of the given item in the heap. |
|
318 |
/// It can be used to manually clear the heap when it is important |
|
319 |
/// to achive better time complexity. |
|
320 |
/// \param i The item. |
|
321 |
/// \param st The state. It should not be \c IN_HEAP. |
|
322 |
void state(const Item& i, State st) { |
|
323 |
switch (st) { |
|
324 |
case POST_HEAP: |
|
325 |
case PRE_HEAP: |
|
326 |
if (state(i) == IN_HEAP) erase(i); |
|
327 |
_iim[i] = st; |
|
328 |
break; |
|
329 |
case IN_HEAP: |
|
330 |
break; |
|
331 |
} |
|
332 |
} |
|
333 |
|
|
334 |
/// \brief Replace an item in the heap. |
|
335 |
/// |
|
336 |
/// This function replaces item \c i with item \c j. |
|
337 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
338 |
/// After calling this method, item \c i will be out of the |
|
339 |
/// heap and \c j will be in the heap with the same prioriority |
|
340 |
/// as item \c i had before. |
|
341 |
void replace(const Item& i, const Item& j) { |
|
342 |
int idx=_iim[i]; |
|
343 |
_iim.set(i, _iim[j]); |
|
344 |
_iim.set(j, idx); |
|
345 |
_data[idx].first=j; |
|
346 |
} |
|
347 |
|
|
348 |
}; // class KaryHeap |
|
349 |
|
|
350 |
} // namespace lemon |
|
351 |
|
|
352 |
#endif // LEMON_KARY_HEAP_H |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_PAIRING_HEAP_H |
|
20 |
#define LEMON_PAIRING_HEAP_H |
|
21 |
|
|
22 |
///\file |
|
23 |
///\ingroup heaps |
|
24 |
///\brief Pairing heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
#include <lemon/math.h> |
|
30 |
|
|
31 |
namespace lemon { |
|
32 |
|
|
33 |
/// \ingroup heaps |
|
34 |
/// |
|
35 |
///\brief Pairing Heap. |
|
36 |
/// |
|
37 |
/// This class implements the \e pairing \e heap data structure. |
|
38 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
39 |
/// |
|
40 |
/// The methods \ref increase() and \ref erase() are not efficient |
|
41 |
/// in a pairing heap. In case of many calls of these operations, |
|
42 |
/// it is better to use other heap structure, e.g. \ref BinHeap |
|
43 |
/// "binary heap". |
|
44 |
/// |
|
45 |
/// \tparam PR Type of the priorities of the items. |
|
46 |
/// \tparam IM A read-writable item map with \c int values, used |
|
47 |
/// internally to handle the cross references. |
|
48 |
/// \tparam CMP A functor class for comparing the priorities. |
|
49 |
/// The default is \c std::less<PR>. |
|
50 |
#ifdef DOXYGEN |
|
51 |
template <typename PR, typename IM, typename CMP> |
|
52 |
#else |
|
53 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
54 |
#endif |
|
55 |
class PairingHeap { |
|
56 |
public: |
|
57 |
/// Type of the item-int map. |
|
58 |
typedef IM ItemIntMap; |
|
59 |
/// Type of the priorities. |
|
60 |
typedef PR Prio; |
|
61 |
/// Type of the items stored in the heap. |
|
62 |
typedef typename ItemIntMap::Key Item; |
|
63 |
/// Functor type for comparing the priorities. |
|
64 |
typedef CMP Compare; |
|
65 |
|
|
66 |
/// \brief Type to represent the states of the items. |
|
67 |
/// |
|
68 |
/// Each item has a state associated to it. It can be "in heap", |
|
69 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
70 |
/// heap's point of view, but may be useful to the user. |
|
71 |
/// |
|
72 |
/// The item-int map must be initialized in such way that it assigns |
|
73 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
74 |
enum State { |
|
75 |
IN_HEAP = 0, ///< = 0. |
|
76 |
PRE_HEAP = -1, ///< = -1. |
|
77 |
POST_HEAP = -2 ///< = -2. |
|
78 |
}; |
|
79 |
|
|
80 |
private: |
|
81 |
class store; |
|
82 |
|
|
83 |
std::vector<store> _data; |
|
84 |
int _min; |
|
85 |
ItemIntMap &_iim; |
|
86 |
Compare _comp; |
|
87 |
int _num_items; |
|
88 |
|
|
89 |
public: |
|
90 |
/// \brief Constructor. |
|
91 |
/// |
|
92 |
/// Constructor. |
|
93 |
/// \param map A map that assigns \c int values to the items. |
|
94 |
/// It is used internally to handle the cross references. |
|
95 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
96 |
explicit PairingHeap(ItemIntMap &map) |
|
97 |
: _min(0), _iim(map), _num_items(0) {} |
|
98 |
|
|
99 |
/// \brief Constructor. |
|
100 |
/// |
|
101 |
/// Constructor. |
|
102 |
/// \param map A map that assigns \c int values to the items. |
|
103 |
/// It is used internally to handle the cross references. |
|
104 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
105 |
/// \param comp The function object used for comparing the priorities. |
|
106 |
PairingHeap(ItemIntMap &map, const Compare &comp) |
|
107 |
: _min(0), _iim(map), _comp(comp), _num_items(0) {} |
|
108 |
|
|
109 |
/// \brief The number of items stored in the heap. |
|
110 |
/// |
|
111 |
/// This function returns the number of items stored in the heap. |
|
112 |
int size() const { return _num_items; } |
|
113 |
|
|
114 |
/// \brief Check if the heap is empty. |
|
115 |
/// |
|
116 |
/// This function returns \c true if the heap is empty. |
|
117 |
bool empty() const { return _num_items==0; } |
|
118 |
|
|
119 |
/// \brief Make the heap empty. |
|
120 |
/// |
|
121 |
/// This functon makes the heap empty. |
|
122 |
/// It does not change the cross reference map. If you want to reuse |
|
123 |
/// a heap that is not surely empty, you should first clear it and |
|
124 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
125 |
/// for each item. |
|
126 |
void clear() { |
|
127 |
_data.clear(); |
|
128 |
_min = 0; |
|
129 |
_num_items = 0; |
|
130 |
} |
|
131 |
|
|
132 |
/// \brief Set the priority of an item or insert it, if it is |
|
133 |
/// not stored in the heap. |
|
134 |
/// |
|
135 |
/// This method sets the priority of the given item if it is |
|
136 |
/// already stored in the heap. Otherwise it inserts the given |
|
137 |
/// item into the heap with the given priority. |
|
138 |
/// \param item The item. |
|
139 |
/// \param value The priority. |
|
140 |
void set (const Item& item, const Prio& value) { |
|
141 |
int i=_iim[item]; |
|
142 |
if ( i>=0 && _data[i].in ) { |
|
143 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
144 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
145 |
} else push(item, value); |
|
146 |
} |
|
147 |
|
|
148 |
/// \brief Insert an item into the heap with the given priority. |
|
149 |
/// |
|
150 |
/// This function inserts the given item into the heap with the |
|
151 |
/// given priority. |
|
152 |
/// \param item The item to insert. |
|
153 |
/// \param value The priority of the item. |
|
154 |
/// \pre \e item must not be stored in the heap. |
|
155 |
void push (const Item& item, const Prio& value) { |
|
156 |
int i=_iim[item]; |
|
157 |
if( i<0 ) { |
|
158 |
int s=_data.size(); |
|
159 |
_iim.set(item, s); |
|
160 |
store st; |
|
161 |
st.name=item; |
|
162 |
_data.push_back(st); |
|
163 |
i=s; |
|
164 |
} else { |
|
165 |
_data[i].parent=_data[i].child=-1; |
|
166 |
_data[i].left_child=false; |
|
167 |
_data[i].degree=0; |
|
168 |
_data[i].in=true; |
|
169 |
} |
|
170 |
|
|
171 |
_data[i].prio=value; |
|
172 |
|
|
173 |
if ( _num_items!=0 ) { |
|
174 |
if ( _comp( value, _data[_min].prio) ) { |
|
175 |
fuse(i,_min); |
|
176 |
_min=i; |
|
177 |
} |
|
178 |
else fuse(_min,i); |
|
179 |
} |
|
180 |
else _min=i; |
|
181 |
|
|
182 |
++_num_items; |
|
183 |
} |
|
184 |
|
|
185 |
/// \brief Return the item having minimum priority. |
|
186 |
/// |
|
187 |
/// This function returns the item having minimum priority. |
|
188 |
/// \pre The heap must be non-empty. |
|
189 |
Item top() const { return _data[_min].name; } |
|
190 |
|
|
191 |
/// \brief The minimum priority. |
|
192 |
/// |
|
193 |
/// This function returns the minimum priority. |
|
194 |
/// \pre The heap must be non-empty. |
|
195 |
const Prio& prio() const { return _data[_min].prio; } |
|
196 |
|
|
197 |
/// \brief The priority of the given item. |
|
198 |
/// |
|
199 |
/// This function returns the priority of the given item. |
|
200 |
/// \param item The item. |
|
201 |
/// \pre \e item must be in the heap. |
|
202 |
const Prio& operator[](const Item& item) const { |
|
203 |
return _data[_iim[item]].prio; |
|
204 |
} |
|
205 |
|
|
206 |
/// \brief Remove the item having minimum priority. |
|
207 |
/// |
|
208 |
/// This function removes the item having minimum priority. |
|
209 |
/// \pre The heap must be non-empty. |
|
210 |
void pop() { |
|
211 |
std::vector<int> trees; |
|
212 |
int i=0, child_right = 0; |
|
213 |
_data[_min].in=false; |
|
214 |
|
|
215 |
if( -1!=_data[_min].child ) { |
|
216 |
i=_data[_min].child; |
|
217 |
trees.push_back(i); |
|
218 |
_data[i].parent = -1; |
|
219 |
_data[_min].child = -1; |
|
220 |
|
|
221 |
int ch=-1; |
|
222 |
while( _data[i].child!=-1 ) { |
|
223 |
ch=_data[i].child; |
|
224 |
if( _data[ch].left_child && i==_data[ch].parent ) { |
|
225 |
break; |
|
226 |
} else { |
|
227 |
if( _data[ch].left_child ) { |
|
228 |
child_right=_data[ch].parent; |
|
229 |
_data[ch].parent = i; |
|
230 |
--_data[i].degree; |
|
231 |
} |
|
232 |
else { |
|
233 |
child_right=ch; |
|
234 |
_data[i].child=-1; |
|
235 |
_data[i].degree=0; |
|
236 |
} |
|
237 |
_data[child_right].parent = -1; |
|
238 |
trees.push_back(child_right); |
|
239 |
i = child_right; |
|
240 |
} |
|
241 |
} |
|
242 |
|
|
243 |
int num_child = trees.size(); |
|
244 |
int other; |
|
245 |
for( i=0; i<num_child-1; i+=2 ) { |
|
246 |
if ( !_comp(_data[trees[i]].prio, _data[trees[i+1]].prio) ) { |
|
247 |
other=trees[i]; |
|
248 |
trees[i]=trees[i+1]; |
|
249 |
trees[i+1]=other; |
|
250 |
} |
|
251 |
fuse( trees[i], trees[i+1] ); |
|
252 |
} |
|
253 |
|
|
254 |
i = (0==(num_child % 2)) ? num_child-2 : num_child-1; |
|
255 |
while(i>=2) { |
|
256 |
if ( _comp(_data[trees[i]].prio, _data[trees[i-2]].prio) ) { |
|
257 |
other=trees[i]; |
|
258 |
trees[i]=trees[i-2]; |
|
259 |
trees[i-2]=other; |
|
260 |
} |
|
261 |
fuse( trees[i-2], trees[i] ); |
|
262 |
i-=2; |
|
263 |
} |
|
264 |
_min = trees[0]; |
|
265 |
} |
|
266 |
else { |
|
267 |
_min = _data[_min].child; |
|
268 |
} |
|
269 |
|
|
270 |
if (_min >= 0) _data[_min].left_child = false; |
|
271 |
--_num_items; |
|
272 |
} |
|
273 |
|
|
274 |
/// \brief Remove the given item from the heap. |
|
275 |
/// |
|
276 |
/// This function removes the given item from the heap if it is |
|
277 |
/// already stored. |
|
278 |
/// \param item The item to delete. |
|
279 |
/// \pre \e item must be in the heap. |
|
280 |
void erase (const Item& item) { |
|
281 |
int i=_iim[item]; |
|
282 |
if ( i>=0 && _data[i].in ) { |
|
283 |
decrease( item, _data[_min].prio-1 ); |
|
284 |
pop(); |
|
285 |
} |
|
286 |
} |
|
287 |
|
|
288 |
/// \brief Decrease the priority of an item to the given value. |
|
289 |
/// |
|
290 |
/// This function decreases the priority of an item to the given value. |
|
291 |
/// \param item The item. |
|
292 |
/// \param value The priority. |
|
293 |
/// \pre \e item must be stored in the heap with priority at least \e value. |
|
294 |
void decrease (Item item, const Prio& value) { |
|
295 |
int i=_iim[item]; |
|
296 |
_data[i].prio=value; |
|
297 |
int p=_data[i].parent; |
|
298 |
|
|
299 |
if( _data[i].left_child && i!=_data[p].child ) { |
|
300 |
p=_data[p].parent; |
|
301 |
} |
|
302 |
|
|
303 |
if ( p!=-1 && _comp(value,_data[p].prio) ) { |
|
304 |
cut(i,p); |
|
305 |
if ( _comp(_data[_min].prio,value) ) { |
|
306 |
fuse(_min,i); |
|
307 |
} else { |
|
308 |
fuse(i,_min); |
|
309 |
_min=i; |
|
310 |
} |
|
311 |
} |
|
312 |
} |
|
313 |
|
|
314 |
/// \brief Increase the priority of an item to the given value. |
|
315 |
/// |
|
316 |
/// This function increases the priority of an item to the given value. |
|
317 |
/// \param item The item. |
|
318 |
/// \param value The priority. |
|
319 |
/// \pre \e item must be stored in the heap with priority at most \e value. |
|
320 |
void increase (Item item, const Prio& value) { |
|
321 |
erase(item); |
|
322 |
push(item,value); |
|
323 |
} |
|
324 |
|
|
325 |
/// \brief Return the state of an item. |
|
326 |
/// |
|
327 |
/// This method returns \c PRE_HEAP if the given item has never |
|
328 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
329 |
/// and \c POST_HEAP otherwise. |
|
330 |
/// In the latter case it is possible that the item will get back |
|
331 |
/// to the heap again. |
|
332 |
/// \param item The item. |
|
333 |
State state(const Item &item) const { |
|
334 |
int i=_iim[item]; |
|
335 |
if( i>=0 ) { |
|
336 |
if( _data[i].in ) i=0; |
|
337 |
else i=-2; |
|
338 |
} |
|
339 |
return State(i); |
|
340 |
} |
|
341 |
|
|
342 |
/// \brief Set the state of an item in the heap. |
|
343 |
/// |
|
344 |
/// This function sets the state of the given item in the heap. |
|
345 |
/// It can be used to manually clear the heap when it is important |
|
346 |
/// to achive better time complexity. |
|
347 |
/// \param i The item. |
|
348 |
/// \param st The state. It should not be \c IN_HEAP. |
|
349 |
void state(const Item& i, State st) { |
|
350 |
switch (st) { |
|
351 |
case POST_HEAP: |
|
352 |
case PRE_HEAP: |
|
353 |
if (state(i) == IN_HEAP) erase(i); |
|
354 |
_iim[i]=st; |
|
355 |
break; |
|
356 |
case IN_HEAP: |
|
357 |
break; |
|
358 |
} |
|
359 |
} |
|
360 |
|
|
361 |
private: |
|
362 |
|
|
363 |
void cut(int a, int b) { |
|
364 |
int child_a; |
|
365 |
switch (_data[a].degree) { |
|
366 |
case 2: |
|
367 |
child_a = _data[_data[a].child].parent; |
|
368 |
if( _data[a].left_child ) { |
|
369 |
_data[child_a].left_child=true; |
|
370 |
_data[b].child=child_a; |
|
371 |
_data[child_a].parent=_data[a].parent; |
|
372 |
} |
|
373 |
else { |
|
374 |
_data[child_a].left_child=false; |
|
375 |
_data[child_a].parent=b; |
|
376 |
if( a!=_data[b].child ) |
|
377 |
_data[_data[b].child].parent=child_a; |
|
378 |
else |
|
379 |
_data[b].child=child_a; |
|
380 |
} |
|
381 |
--_data[a].degree; |
|
382 |
_data[_data[a].child].parent=a; |
|
383 |
break; |
|
384 |
|
|
385 |
case 1: |
|
386 |
child_a = _data[a].child; |
|
387 |
if( !_data[child_a].left_child ) { |
|
388 |
--_data[a].degree; |
|
389 |
if( _data[a].left_child ) { |
|
390 |
_data[child_a].left_child=true; |
|
391 |
_data[child_a].parent=_data[a].parent; |
|
392 |
_data[b].child=child_a; |
|
393 |
} |
|
394 |
else { |
|
395 |
_data[child_a].left_child=false; |
|
396 |
_data[child_a].parent=b; |
|
397 |
if( a!=_data[b].child ) |
|
398 |
_data[_data[b].child].parent=child_a; |
|
399 |
else |
|
400 |
_data[b].child=child_a; |
|
401 |
} |
|
402 |
_data[a].child=-1; |
|
403 |
} |
|
404 |
else { |
|
405 |
--_data[b].degree; |
|
406 |
if( _data[a].left_child ) { |
|
407 |
_data[b].child = |
|
408 |
(1==_data[b].degree) ? _data[a].parent : -1; |
|
409 |
} else { |
|
410 |
if (1==_data[b].degree) |
|
411 |
_data[_data[b].child].parent=b; |
|
412 |
else |
|
413 |
_data[b].child=-1; |
|
414 |
} |
|
415 |
} |
|
416 |
break; |
|
417 |
|
|
418 |
case 0: |
|
419 |
--_data[b].degree; |
|
420 |
if( _data[a].left_child ) { |
|
421 |
_data[b].child = |
|
422 |
(0!=_data[b].degree) ? _data[a].parent : -1; |
|
423 |
} else { |
|
424 |
if( 0!=_data[b].degree ) |
|
425 |
_data[_data[b].child].parent=b; |
|
426 |
else |
|
427 |
_data[b].child=-1; |
|
428 |
} |
|
429 |
break; |
|
430 |
} |
|
431 |
_data[a].parent=-1; |
|
432 |
_data[a].left_child=false; |
|
433 |
} |
|
434 |
|
|
435 |
void fuse(int a, int b) { |
|
436 |
int child_a = _data[a].child; |
|
437 |
int child_b = _data[b].child; |
|
438 |
_data[a].child=b; |
|
439 |
_data[b].parent=a; |
|
440 |
_data[b].left_child=true; |
|
441 |
|
|
442 |
if( -1!=child_a ) { |
|
443 |
_data[b].child=child_a; |
|
444 |
_data[child_a].parent=b; |
|
445 |
_data[child_a].left_child=false; |
|
446 |
++_data[b].degree; |
|
447 |
|
|
448 |
if( -1!=child_b ) { |
|
449 |
_data[b].child=child_b; |
|
450 |
_data[child_b].parent=child_a; |
|
451 |
} |
|
452 |
} |
|
453 |
else { ++_data[a].degree; } |
|
454 |
} |
|
455 |
|
|
456 |
class store { |
|
457 |
friend class PairingHeap; |
|
458 |
|
|
459 |
Item name; |
|
460 |
int parent; |
|
461 |
int child; |
|
462 |
bool left_child; |
|
463 |
int degree; |
|
464 |
bool in; |
|
465 |
Prio prio; |
|
466 |
|
|
467 |
store() : parent(-1), child(-1), left_child(false), degree(0), in(true) {} |
|
468 |
}; |
|
469 |
}; |
|
470 |
|
|
471 |
} //namespace lemon |
|
472 |
|
|
473 |
#endif //LEMON_PAIRING_HEAP_H |
|
474 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#include <lemon/concepts/digraph.h> |
|
20 |
#include <lemon/smart_graph.h> |
|
21 |
#include <lemon/list_graph.h> |
|
22 |
#include <lemon/lgf_reader.h> |
|
23 |
#include <lemon/bellman_ford.h> |
|
24 |
#include <lemon/path.h> |
|
25 |
|
|
26 |
#include "graph_test.h" |
|
27 |
#include "test_tools.h" |
|
28 |
|
|
29 |
using namespace lemon; |
|
30 |
|
|
31 |
char test_lgf[] = |
|
32 |
"@nodes\n" |
|
33 |
"label\n" |
|
34 |
"0\n" |
|
35 |
"1\n" |
|
36 |
"2\n" |
|
37 |
"3\n" |
|
38 |
"4\n" |
|
39 |
"@arcs\n" |
|
40 |
" length\n" |
|
41 |
"0 1 3\n" |
|
42 |
"1 2 -3\n" |
|
43 |
"1 2 -5\n" |
|
44 |
"1 3 -2\n" |
|
45 |
"0 2 -1\n" |
|
46 |
"1 2 -4\n" |
|
47 |
"0 3 2\n" |
|
48 |
"4 2 -5\n" |
|
49 |
"2 3 1\n" |
|
50 |
"@attributes\n" |
|
51 |
"source 0\n" |
|
52 |
"target 3\n"; |
|
53 |
|
|
54 |
|
|
55 |
void checkBellmanFordCompile() |
|
56 |
{ |
|
57 |
typedef int Value; |
|
58 |
typedef concepts::Digraph Digraph; |
|
59 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
|
60 |
typedef BellmanFord<Digraph, LengthMap> BF; |
|
61 |
typedef Digraph::Node Node; |
|
62 |
typedef Digraph::Arc Arc; |
|
63 |
|
|
64 |
Digraph gr; |
|
65 |
Node s, t, n; |
|
66 |
Arc e; |
|
67 |
Value l; |
|
68 |
int k; |
|
69 |
bool b; |
|
70 |
BF::DistMap d(gr); |
|
71 |
BF::PredMap p(gr); |
|
72 |
LengthMap length; |
|
73 |
concepts::Path<Digraph> pp; |
|
74 |
|
|
75 |
{ |
|
76 |
BF bf_test(gr,length); |
|
77 |
const BF& const_bf_test = bf_test; |
|
78 |
|
|
79 |
bf_test.run(s); |
|
80 |
bf_test.run(s,k); |
|
81 |
|
|
82 |
bf_test.init(); |
|
83 |
bf_test.addSource(s); |
|
84 |
bf_test.addSource(s, 1); |
|
85 |
b = bf_test.processNextRound(); |
|
86 |
b = bf_test.processNextWeakRound(); |
|
87 |
|
|
88 |
bf_test.start(); |
|
89 |
bf_test.checkedStart(); |
|
90 |
bf_test.limitedStart(k); |
|
91 |
|
|
92 |
l = const_bf_test.dist(t); |
|
93 |
e = const_bf_test.predArc(t); |
|
94 |
s = const_bf_test.predNode(t); |
|
95 |
b = const_bf_test.reached(t); |
|
96 |
d = const_bf_test.distMap(); |
|
97 |
p = const_bf_test.predMap(); |
|
98 |
pp = const_bf_test.path(t); |
|
99 |
|
|
100 |
for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {} |
|
101 |
} |
|
102 |
{ |
|
103 |
BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
|
104 |
::SetDistMap<concepts::ReadWriteMap<Node,Value> > |
|
105 |
::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> > |
|
106 |
::Create bf_test(gr,length); |
|
107 |
|
|
108 |
LengthMap length_map; |
|
109 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
|
110 |
concepts::ReadWriteMap<Node,Value> dist_map; |
|
111 |
|
|
112 |
bf_test |
|
113 |
.lengthMap(length_map) |
|
114 |
.predMap(pred_map) |
|
115 |
.distMap(dist_map); |
|
116 |
|
|
117 |
bf_test.run(s); |
|
118 |
bf_test.run(s,k); |
|
119 |
|
|
120 |
bf_test.init(); |
|
121 |
bf_test.addSource(s); |
|
122 |
bf_test.addSource(s, 1); |
|
123 |
b = bf_test.processNextRound(); |
|
124 |
b = bf_test.processNextWeakRound(); |
|
125 |
|
|
126 |
bf_test.start(); |
|
127 |
bf_test.checkedStart(); |
|
128 |
bf_test.limitedStart(k); |
|
129 |
|
|
130 |
l = bf_test.dist(t); |
|
131 |
e = bf_test.predArc(t); |
|
132 |
s = bf_test.predNode(t); |
|
133 |
b = bf_test.reached(t); |
|
134 |
pp = bf_test.path(t); |
|
135 |
} |
|
136 |
} |
|
137 |
|
|
138 |
void checkBellmanFordFunctionCompile() |
|
139 |
{ |
|
140 |
typedef int Value; |
|
141 |
typedef concepts::Digraph Digraph; |
|
142 |
typedef Digraph::Arc Arc; |
|
143 |
typedef Digraph::Node Node; |
|
144 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
|
145 |
|
|
146 |
Digraph g; |
|
147 |
bool b; |
|
148 |
bellmanFord(g,LengthMap()).run(Node()); |
|
149 |
b = bellmanFord(g,LengthMap()).run(Node(),Node()); |
|
150 |
bellmanFord(g,LengthMap()) |
|
151 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
|
152 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
|
153 |
.run(Node()); |
|
154 |
b=bellmanFord(g,LengthMap()) |
|
155 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
|
156 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
|
157 |
.path(concepts::Path<Digraph>()) |
|
158 |
.dist(Value()) |
|
159 |
.run(Node(),Node()); |
|
160 |
} |
|
161 |
|
|
162 |
|
|
163 |
template <typename Digraph, typename Value> |
|
164 |
void checkBellmanFord() { |
|
165 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
166 |
typedef typename Digraph::template ArcMap<Value> LengthMap; |
|
167 |
|
|
168 |
Digraph gr; |
|
169 |
Node s, t; |
|
170 |
LengthMap length(gr); |
|
171 |
|
|
172 |
std::istringstream input(test_lgf); |
|
173 |
digraphReader(gr, input). |
|
174 |
arcMap("length", length). |
|
175 |
node("source", s). |
|
176 |
node("target", t). |
|
177 |
run(); |
|
178 |
|
|
179 |
BellmanFord<Digraph, LengthMap> |
|
180 |
bf(gr, length); |
|
181 |
bf.run(s); |
|
182 |
Path<Digraph> p = bf.path(t); |
|
183 |
|
|
184 |
check(bf.reached(t) && bf.dist(t) == -1, "Bellman-Ford found a wrong path."); |
|
185 |
check(p.length() == 3, "path() found a wrong path."); |
|
186 |
check(checkPath(gr, p), "path() found a wrong path."); |
|
187 |
check(pathSource(gr, p) == s, "path() found a wrong path."); |
|
188 |
check(pathTarget(gr, p) == t, "path() found a wrong path."); |
|
189 |
|
|
190 |
ListPath<Digraph> path; |
|
191 |
Value dist; |
|
192 |
bool reached = bellmanFord(gr,length).path(path).dist(dist).run(s,t); |
|
193 |
|
|
194 |
check(reached && dist == -1, "Bellman-Ford found a wrong path."); |
|
195 |
check(path.length() == 3, "path() found a wrong path."); |
|
196 |
check(checkPath(gr, path), "path() found a wrong path."); |
|
197 |
check(pathSource(gr, path) == s, "path() found a wrong path."); |
|
198 |
check(pathTarget(gr, path) == t, "path() found a wrong path."); |
|
199 |
|
|
200 |
for(ArcIt e(gr); e!=INVALID; ++e) { |
|
201 |
Node u=gr.source(e); |
|
202 |
Node v=gr.target(e); |
|
203 |
check(!bf.reached(u) || (bf.dist(v) - bf.dist(u) <= length[e]), |
|
204 |
"Wrong output. dist(target)-dist(source)-arc_length=" << |
|
205 |
bf.dist(v) - bf.dist(u) - length[e]); |
|
206 |
} |
|
207 |
|
|
208 |
for(NodeIt v(gr); v!=INVALID; ++v) { |
|
209 |
if (bf.reached(v)) { |
|
210 |
check(v==s || bf.predArc(v)!=INVALID, "Wrong tree."); |
|
211 |
if (bf.predArc(v)!=INVALID ) { |
|
212 |
Arc e=bf.predArc(v); |
|
213 |
Node u=gr.source(e); |
|
214 |
check(u==bf.predNode(v),"Wrong tree."); |
|
215 |
check(bf.dist(v) - bf.dist(u) == length[e], |
|
216 |
"Wrong distance! Difference: " << |
|
217 |
bf.dist(v) - bf.dist(u) - length[e]); |
|
218 |
} |
|
219 |
} |
|
220 |
} |
|
221 |
} |
|
222 |
|
|
223 |
void checkBellmanFordNegativeCycle() { |
|
224 |
DIGRAPH_TYPEDEFS(SmartDigraph); |
|
225 |
|
|
226 |
SmartDigraph gr; |
|
227 |
IntArcMap length(gr); |
|
228 |
|
|
229 |
Node n1 = gr.addNode(); |
|
230 |
Node n2 = gr.addNode(); |
|
231 |
Node n3 = gr.addNode(); |
|
232 |
Node n4 = gr.addNode(); |
|
233 |
|
|
234 |
Arc a1 = gr.addArc(n1, n2); |
|
235 |
Arc a2 = gr.addArc(n2, n2); |
|
236 |
|
|
237 |
length[a1] = 2; |
|
238 |
length[a2] = -1; |
|
239 |
|
|
240 |
{ |
|
241 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
|
242 |
bf.run(n1); |
|
243 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
|
244 |
check(p.length() == 1 && p.front() == p.back() && p.front() == a2, |
|
245 |
"Wrong negative cycle."); |
|
246 |
} |
|
247 |
|
|
248 |
length[a2] = 0; |
|
249 |
|
|
250 |
{ |
|
251 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
|
252 |
bf.run(n1); |
|
253 |
check(bf.negativeCycle().empty(), |
|
254 |
"Negative cycle should not be found."); |
|
255 |
} |
|
256 |
|
|
257 |
length[gr.addArc(n1, n3)] = 5; |
|
258 |
length[gr.addArc(n4, n3)] = 1; |
|
259 |
length[gr.addArc(n2, n4)] = 2; |
|
260 |
length[gr.addArc(n3, n2)] = -4; |
|
261 |
|
|
262 |
{ |
|
263 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
|
264 |
bf.init(); |
|
265 |
bf.addSource(n1); |
|
266 |
for (int i = 0; i < 4; ++i) { |
|
267 |
check(bf.negativeCycle().empty(), |
|
268 |
"Negative cycle should not be found."); |
|
269 |
bf.processNextRound(); |
|
270 |
} |
|
271 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
|
272 |
check(p.length() == 3, "Wrong negative cycle."); |
|
273 |
check(length[p.nth(0)] + length[p.nth(1)] + length[p.nth(2)] == -1, |
|
274 |
"Wrong negative cycle."); |
|
275 |
} |
|
276 |
} |
|
277 |
|
|
278 |
int main() { |
|
279 |
checkBellmanFord<ListDigraph, int>(); |
|
280 |
checkBellmanFord<SmartDigraph, double>(); |
|
281 |
checkBellmanFordNegativeCycle(); |
|
282 |
return 0; |
|
283 |
} |
... | ... |
@@ -165,508 +165,551 @@ |
165 | 165 |
/** |
166 | 166 |
\defgroup map_adaptors Map Adaptors |
167 | 167 |
\ingroup maps |
168 | 168 |
\brief Tools to create new maps from existing ones |
169 | 169 |
|
170 | 170 |
This group contains map adaptors that are used to create "implicit" |
171 | 171 |
maps from other maps. |
172 | 172 |
|
173 | 173 |
Most of them are \ref concepts::ReadMap "read-only maps". |
174 | 174 |
They can make arithmetic and logical operations between one or two maps |
175 | 175 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
176 | 176 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
177 | 177 |
|
178 | 178 |
The typical usage of this classes is passing implicit maps to |
179 | 179 |
algorithms. If a function type algorithm is called then the function |
180 | 180 |
type map adaptors can be used comfortable. For example let's see the |
181 | 181 |
usage of map adaptors with the \c graphToEps() function. |
182 | 182 |
\code |
183 | 183 |
Color nodeColor(int deg) { |
184 | 184 |
if (deg >= 2) { |
185 | 185 |
return Color(0.5, 0.0, 0.5); |
186 | 186 |
} else if (deg == 1) { |
187 | 187 |
return Color(1.0, 0.5, 1.0); |
188 | 188 |
} else { |
189 | 189 |
return Color(0.0, 0.0, 0.0); |
190 | 190 |
} |
191 | 191 |
} |
192 | 192 |
|
193 | 193 |
Digraph::NodeMap<int> degree_map(graph); |
194 | 194 |
|
195 | 195 |
graphToEps(graph, "graph.eps") |
196 | 196 |
.coords(coords).scaleToA4().undirected() |
197 | 197 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
198 | 198 |
.run(); |
199 | 199 |
\endcode |
200 | 200 |
The \c functorToMap() function makes an \c int to \c Color map from the |
201 | 201 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
202 | 202 |
and the previously created map. The composed map is a proper function to |
203 | 203 |
get the color of each node. |
204 | 204 |
|
205 | 205 |
The usage with class type algorithms is little bit harder. In this |
206 | 206 |
case the function type map adaptors can not be used, because the |
207 | 207 |
function map adaptors give back temporary objects. |
208 | 208 |
\code |
209 | 209 |
Digraph graph; |
210 | 210 |
|
211 | 211 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
212 | 212 |
DoubleArcMap length(graph); |
213 | 213 |
DoubleArcMap speed(graph); |
214 | 214 |
|
215 | 215 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
216 | 216 |
TimeMap time(length, speed); |
217 | 217 |
|
218 | 218 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
219 | 219 |
dijkstra.run(source, target); |
220 | 220 |
\endcode |
221 | 221 |
We have a length map and a maximum speed map on the arcs of a digraph. |
222 | 222 |
The minimum time to pass the arc can be calculated as the division of |
223 | 223 |
the two maps which can be done implicitly with the \c DivMap template |
224 | 224 |
class. We use the implicit minimum time map as the length map of the |
225 | 225 |
\c Dijkstra algorithm. |
226 | 226 |
*/ |
227 | 227 |
|
228 | 228 |
/** |
229 |
@defgroup matrices Matrices |
|
230 |
@ingroup datas |
|
231 |
\brief Two dimensional data storages implemented in LEMON. |
|
232 |
|
|
233 |
This group contains two dimensional data storages implemented in LEMON. |
|
234 |
*/ |
|
235 |
|
|
236 |
/** |
|
237 | 229 |
@defgroup paths Path Structures |
238 | 230 |
@ingroup datas |
239 | 231 |
\brief %Path structures implemented in LEMON. |
240 | 232 |
|
241 | 233 |
This group contains the path structures implemented in LEMON. |
242 | 234 |
|
243 | 235 |
LEMON provides flexible data structures to work with paths. |
244 | 236 |
All of them have similar interfaces and they can be copied easily with |
245 | 237 |
assignment operators and copy constructors. This makes it easy and |
246 | 238 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
247 | 239 |
any kind of path structure. |
248 | 240 |
|
249 |
\sa |
|
241 |
\sa \ref concepts::Path "Path concept" |
|
242 |
*/ |
|
243 |
|
|
244 |
/** |
|
245 |
@defgroup heaps Heap Structures |
|
246 |
@ingroup datas |
|
247 |
\brief %Heap structures implemented in LEMON. |
|
248 |
|
|
249 |
This group contains the heap structures implemented in LEMON. |
|
250 |
|
|
251 |
LEMON provides several heap classes. They are efficient implementations |
|
252 |
of the abstract data type \e priority \e queue. They store items with |
|
253 |
specified values called \e priorities in such a way that finding and |
|
254 |
removing the item with minimum priority are efficient. |
|
255 |
The basic operations are adding and erasing items, changing the priority |
|
256 |
of an item, etc. |
|
257 |
|
|
258 |
Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
|
259 |
The heap implementations have the same interface, thus any of them can be |
|
260 |
used easily in such algorithms. |
|
261 |
|
|
262 |
\sa \ref concepts::Heap "Heap concept" |
|
263 |
*/ |
|
264 |
|
|
265 |
/** |
|
266 |
@defgroup matrices Matrices |
|
267 |
@ingroup datas |
|
268 |
\brief Two dimensional data storages implemented in LEMON. |
|
269 |
|
|
270 |
This group contains two dimensional data storages implemented in LEMON. |
|
250 | 271 |
*/ |
251 | 272 |
|
252 | 273 |
/** |
253 | 274 |
@defgroup auxdat Auxiliary Data Structures |
254 | 275 |
@ingroup datas |
255 | 276 |
\brief Auxiliary data structures implemented in LEMON. |
256 | 277 |
|
257 | 278 |
This group contains some data structures implemented in LEMON in |
258 | 279 |
order to make it easier to implement combinatorial algorithms. |
259 | 280 |
*/ |
260 | 281 |
|
261 | 282 |
/** |
283 |
@defgroup geomdat Geometric Data Structures |
|
284 |
@ingroup auxdat |
|
285 |
\brief Geometric data structures implemented in LEMON. |
|
286 |
|
|
287 |
This group contains geometric data structures implemented in LEMON. |
|
288 |
|
|
289 |
- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional |
|
290 |
vector with the usual operations. |
|
291 |
- \ref lemon::dim2::Box "dim2::Box" can be used to determine the |
|
292 |
rectangular bounding box of a set of \ref lemon::dim2::Point |
|
293 |
"dim2::Point"'s. |
|
294 |
*/ |
|
295 |
|
|
296 |
/** |
|
297 |
@defgroup matrices Matrices |
|
298 |
@ingroup auxdat |
|
299 |
\brief Two dimensional data storages implemented in LEMON. |
|
300 |
|
|
301 |
This group contains two dimensional data storages implemented in LEMON. |
|
302 |
*/ |
|
303 |
|
|
304 |
/** |
|
262 | 305 |
@defgroup algs Algorithms |
263 | 306 |
\brief This group contains the several algorithms |
264 | 307 |
implemented in LEMON. |
265 | 308 |
|
266 | 309 |
This group contains the several algorithms |
267 | 310 |
implemented in LEMON. |
268 | 311 |
*/ |
269 | 312 |
|
270 | 313 |
/** |
271 | 314 |
@defgroup search Graph Search |
272 | 315 |
@ingroup algs |
273 | 316 |
\brief Common graph search algorithms. |
274 | 317 |
|
275 | 318 |
This group contains the common graph search algorithms, namely |
276 | 319 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
277 | 320 |
*/ |
278 | 321 |
|
279 | 322 |
/** |
280 | 323 |
@defgroup shortest_path Shortest Path Algorithms |
281 | 324 |
@ingroup algs |
282 | 325 |
\brief Algorithms for finding shortest paths. |
283 | 326 |
|
284 | 327 |
This group contains the algorithms for finding shortest paths in digraphs. |
285 | 328 |
|
286 | 329 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
287 | 330 |
when all arc lengths are non-negative. |
288 | 331 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
289 | 332 |
from a source node when arc lenghts can be either positive or negative, |
290 | 333 |
but the digraph should not contain directed cycles with negative total |
291 | 334 |
length. |
292 | 335 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
293 | 336 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
294 | 337 |
lenghts can be either positive or negative, but the digraph should |
295 | 338 |
not contain directed cycles with negative total length. |
296 | 339 |
- \ref Suurballe A successive shortest path algorithm for finding |
297 | 340 |
arc-disjoint paths between two nodes having minimum total length. |
298 | 341 |
*/ |
299 | 342 |
|
300 | 343 |
/** |
344 |
@defgroup spantree Minimum Spanning Tree Algorithms |
|
345 |
@ingroup algs |
|
346 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
|
347 |
|
|
348 |
This group contains the algorithms for finding minimum cost spanning |
|
349 |
trees and arborescences. |
|
350 |
*/ |
|
351 |
|
|
352 |
/** |
|
301 | 353 |
@defgroup max_flow Maximum Flow Algorithms |
302 | 354 |
@ingroup algs |
303 | 355 |
\brief Algorithms for finding maximum flows. |
304 | 356 |
|
305 | 357 |
This group contains the algorithms for finding maximum flows and |
306 | 358 |
feasible circulations. |
307 | 359 |
|
308 | 360 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
309 | 361 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
310 | 362 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
311 | 363 |
\f$s, t \in V\f$ source and target nodes. |
312 | 364 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the |
313 | 365 |
following optimization problem. |
314 | 366 |
|
315 | 367 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
316 | 368 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
317 | 369 |
\quad \forall u\in V\setminus\{s,t\} \f] |
318 | 370 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
319 | 371 |
|
320 | 372 |
LEMON contains several algorithms for solving maximum flow problems: |
321 | 373 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
322 | 374 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
323 | 375 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
324 | 376 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
325 | 377 |
|
326 | 378 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
327 | 379 |
fastest method for computing a maximum flow. All implementations |
328 | 380 |
also provide functions to query the minimum cut, which is the dual |
329 | 381 |
problem of maximum flow. |
330 | 382 |
|
331 | 383 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
332 | 384 |
for finding feasible circulations, which is a somewhat different problem, |
333 | 385 |
but it is strongly related to maximum flow. |
334 | 386 |
For more information, see \ref Circulation. |
335 | 387 |
*/ |
336 | 388 |
|
337 | 389 |
/** |
338 | 390 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
339 | 391 |
@ingroup algs |
340 | 392 |
|
341 | 393 |
\brief Algorithms for finding minimum cost flows and circulations. |
342 | 394 |
|
343 | 395 |
This group contains the algorithms for finding minimum cost flows and |
344 | 396 |
circulations. For more information about this problem and its dual |
345 | 397 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
346 | 398 |
|
347 | 399 |
LEMON contains several algorithms for this problem. |
348 | 400 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
349 | 401 |
pivot strategies. |
350 | 402 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
351 | 403 |
cost scaling. |
352 | 404 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
353 | 405 |
capacity scaling. |
354 | 406 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
355 | 407 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
356 | 408 |
|
357 | 409 |
In general NetworkSimplex is the most efficient implementation, |
358 | 410 |
but in special cases other algorithms could be faster. |
359 | 411 |
For example, if the total supply and/or capacities are rather small, |
360 | 412 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
361 | 413 |
*/ |
362 | 414 |
|
363 | 415 |
/** |
364 | 416 |
@defgroup min_cut Minimum Cut Algorithms |
365 | 417 |
@ingroup algs |
366 | 418 |
|
367 | 419 |
\brief Algorithms for finding minimum cut in graphs. |
368 | 420 |
|
369 | 421 |
This group contains the algorithms for finding minimum cut in graphs. |
370 | 422 |
|
371 | 423 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
372 | 424 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
373 | 425 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
374 | 426 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
375 | 427 |
cut is the \f$X\f$ solution of the next optimization problem: |
376 | 428 |
|
377 | 429 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
378 |
\sum_{uv\in A |
|
430 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f] |
|
379 | 431 |
|
380 | 432 |
LEMON contains several algorithms related to minimum cut problems: |
381 | 433 |
|
382 | 434 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
383 | 435 |
in directed graphs. |
384 | 436 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
385 | 437 |
calculating minimum cut in undirected graphs. |
386 | 438 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
387 | 439 |
all-pairs minimum cut in undirected graphs. |
388 | 440 |
|
389 | 441 |
If you want to find minimum cut just between two distinict nodes, |
390 | 442 |
see the \ref max_flow "maximum flow problem". |
391 | 443 |
*/ |
392 | 444 |
|
393 | 445 |
/** |
394 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
395 |
@ingroup algs |
|
396 |
\brief Algorithms for discovering the graph properties |
|
397 |
|
|
398 |
This group contains the algorithms for discovering the graph properties |
|
399 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
400 |
|
|
401 |
\image html edge_biconnected_components.png |
|
402 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
|
403 |
*/ |
|
404 |
|
|
405 |
/** |
|
406 |
@defgroup planar Planarity Embedding and Drawing |
|
407 |
@ingroup algs |
|
408 |
\brief Algorithms for planarity checking, embedding and drawing |
|
409 |
|
|
410 |
This group contains the algorithms for planarity checking, |
|
411 |
embedding and drawing. |
|
412 |
|
|
413 |
\image html planar.png |
|
414 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
415 |
*/ |
|
416 |
|
|
417 |
/** |
|
418 | 446 |
@defgroup matching Matching Algorithms |
419 | 447 |
@ingroup algs |
420 | 448 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
421 | 449 |
|
422 | 450 |
This group contains the algorithms for calculating |
423 | 451 |
matchings in graphs and bipartite graphs. The general matching problem is |
424 | 452 |
finding a subset of the edges for which each node has at most one incident |
425 | 453 |
edge. |
426 | 454 |
|
427 | 455 |
There are several different algorithms for calculate matchings in |
428 | 456 |
graphs. The matching problems in bipartite graphs are generally |
429 | 457 |
easier than in general graphs. The goal of the matching optimization |
430 | 458 |
can be finding maximum cardinality, maximum weight or minimum cost |
431 | 459 |
matching. The search can be constrained to find perfect or |
432 | 460 |
maximum cardinality matching. |
433 | 461 |
|
434 | 462 |
The matching algorithms implemented in LEMON: |
435 | 463 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
436 | 464 |
for calculating maximum cardinality matching in bipartite graphs. |
437 | 465 |
- \ref PrBipartiteMatching Push-relabel algorithm |
438 | 466 |
for calculating maximum cardinality matching in bipartite graphs. |
439 | 467 |
- \ref MaxWeightedBipartiteMatching |
440 | 468 |
Successive shortest path algorithm for calculating maximum weighted |
441 | 469 |
matching and maximum weighted bipartite matching in bipartite graphs. |
442 | 470 |
- \ref MinCostMaxBipartiteMatching |
443 | 471 |
Successive shortest path algorithm for calculating minimum cost maximum |
444 | 472 |
matching in bipartite graphs. |
445 | 473 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
446 | 474 |
maximum cardinality matching in general graphs. |
447 | 475 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
448 | 476 |
maximum weighted matching in general graphs. |
449 | 477 |
- \ref MaxWeightedPerfectMatching |
450 | 478 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
451 | 479 |
perfect matching in general graphs. |
452 | 480 |
|
453 | 481 |
\image html bipartite_matching.png |
454 | 482 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
455 | 483 |
*/ |
456 | 484 |
|
457 | 485 |
/** |
458 |
@defgroup |
|
486 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
459 | 487 |
@ingroup algs |
460 |
\brief Algorithms for |
|
488 |
\brief Algorithms for discovering the graph properties |
|
461 | 489 |
|
462 |
This group contains the algorithms for finding minimum cost spanning |
|
463 |
trees and arborescences. |
|
490 |
This group contains the algorithms for discovering the graph properties |
|
491 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
492 |
|
|
493 |
\image html connected_components.png |
|
494 |
\image latex connected_components.eps "Connected components" width=\textwidth |
|
495 |
*/ |
|
496 |
|
|
497 |
/** |
|
498 |
@defgroup planar Planarity Embedding and Drawing |
|
499 |
@ingroup algs |
|
500 |
\brief Algorithms for planarity checking, embedding and drawing |
|
501 |
|
|
502 |
This group contains the algorithms for planarity checking, |
|
503 |
embedding and drawing. |
|
504 |
|
|
505 |
\image html planar.png |
|
506 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
507 |
*/ |
|
508 |
|
|
509 |
/** |
|
510 |
@defgroup approx Approximation Algorithms |
|
511 |
@ingroup algs |
|
512 |
\brief Approximation algorithms. |
|
513 |
|
|
514 |
This group contains the approximation and heuristic algorithms |
|
515 |
implemented in LEMON. |
|
464 | 516 |
*/ |
465 | 517 |
|
466 | 518 |
/** |
467 | 519 |
@defgroup auxalg Auxiliary Algorithms |
468 | 520 |
@ingroup algs |
469 | 521 |
\brief Auxiliary algorithms implemented in LEMON. |
470 | 522 |
|
471 | 523 |
This group contains some algorithms implemented in LEMON |
472 | 524 |
in order to make it easier to implement complex algorithms. |
473 | 525 |
*/ |
474 | 526 |
|
475 | 527 |
/** |
476 |
@defgroup approx Approximation Algorithms |
|
477 |
@ingroup algs |
|
478 |
\brief Approximation algorithms. |
|
479 |
|
|
480 |
This group contains the approximation and heuristic algorithms |
|
481 |
implemented in LEMON. |
|
482 |
*/ |
|
483 |
|
|
484 |
/** |
|
485 | 528 |
@defgroup gen_opt_group General Optimization Tools |
486 | 529 |
\brief This group contains some general optimization frameworks |
487 | 530 |
implemented in LEMON. |
488 | 531 |
|
489 | 532 |
This group contains some general optimization frameworks |
490 | 533 |
implemented in LEMON. |
491 | 534 |
*/ |
492 | 535 |
|
493 | 536 |
/** |
494 | 537 |
@defgroup lp_group Lp and Mip Solvers |
495 | 538 |
@ingroup gen_opt_group |
496 | 539 |
\brief Lp and Mip solver interfaces for LEMON. |
497 | 540 |
|
498 | 541 |
This group contains Lp and Mip solver interfaces for LEMON. The |
499 | 542 |
various LP solvers could be used in the same manner with this |
500 | 543 |
interface. |
501 | 544 |
*/ |
502 | 545 |
|
503 | 546 |
/** |
504 | 547 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
505 | 548 |
@ingroup lp_group |
506 | 549 |
\brief Helper tools to the Lp and Mip solvers. |
507 | 550 |
|
508 | 551 |
This group adds some helper tools to general optimization framework |
509 | 552 |
implemented in LEMON. |
510 | 553 |
*/ |
511 | 554 |
|
512 | 555 |
/** |
513 | 556 |
@defgroup metah Metaheuristics |
514 | 557 |
@ingroup gen_opt_group |
515 | 558 |
\brief Metaheuristics for LEMON library. |
516 | 559 |
|
517 | 560 |
This group contains some metaheuristic optimization tools. |
518 | 561 |
*/ |
519 | 562 |
|
520 | 563 |
/** |
521 | 564 |
@defgroup utils Tools and Utilities |
522 | 565 |
\brief Tools and utilities for programming in LEMON |
523 | 566 |
|
524 | 567 |
Tools and utilities for programming in LEMON. |
525 | 568 |
*/ |
526 | 569 |
|
527 | 570 |
/** |
528 | 571 |
@defgroup gutils Basic Graph Utilities |
529 | 572 |
@ingroup utils |
530 | 573 |
\brief Simple basic graph utilities. |
531 | 574 |
|
532 | 575 |
This group contains some simple basic graph utilities. |
533 | 576 |
*/ |
534 | 577 |
|
535 | 578 |
/** |
536 | 579 |
@defgroup misc Miscellaneous Tools |
537 | 580 |
@ingroup utils |
538 | 581 |
\brief Tools for development, debugging and testing. |
539 | 582 |
|
540 | 583 |
This group contains several useful tools for development, |
541 | 584 |
debugging and testing. |
542 | 585 |
*/ |
543 | 586 |
|
544 | 587 |
/** |
545 | 588 |
@defgroup timecount Time Measuring and Counting |
546 | 589 |
@ingroup misc |
547 | 590 |
\brief Simple tools for measuring the performance of algorithms. |
548 | 591 |
|
549 | 592 |
This group contains simple tools for measuring the performance |
550 | 593 |
of algorithms. |
551 | 594 |
*/ |
552 | 595 |
|
553 | 596 |
/** |
554 | 597 |
@defgroup exceptions Exceptions |
555 | 598 |
@ingroup utils |
556 | 599 |
\brief Exceptions defined in LEMON. |
557 | 600 |
|
558 | 601 |
This group contains the exceptions defined in LEMON. |
559 | 602 |
*/ |
560 | 603 |
|
561 | 604 |
/** |
562 | 605 |
@defgroup io_group Input-Output |
563 | 606 |
\brief Graph Input-Output methods |
564 | 607 |
|
565 | 608 |
This group contains the tools for importing and exporting graphs |
566 | 609 |
and graph related data. Now it supports the \ref lgf-format |
567 | 610 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
568 | 611 |
postscript (EPS) format. |
569 | 612 |
*/ |
570 | 613 |
|
571 | 614 |
/** |
572 | 615 |
@defgroup lemon_io LEMON Graph Format |
573 | 616 |
@ingroup io_group |
574 | 617 |
\brief Reading and writing LEMON Graph Format. |
575 | 618 |
|
576 | 619 |
This group contains methods for reading and writing |
577 | 620 |
\ref lgf-format "LEMON Graph Format". |
578 | 621 |
*/ |
579 | 622 |
|
580 | 623 |
/** |
581 | 624 |
@defgroup eps_io Postscript Exporting |
582 | 625 |
@ingroup io_group |
583 | 626 |
\brief General \c EPS drawer and graph exporter |
584 | 627 |
|
585 | 628 |
This group contains general \c EPS drawing methods and special |
586 | 629 |
graph exporting tools. |
587 | 630 |
*/ |
588 | 631 |
|
589 | 632 |
/** |
590 |
@defgroup dimacs_group DIMACS |
|
633 |
@defgroup dimacs_group DIMACS Format |
|
591 | 634 |
@ingroup io_group |
592 | 635 |
\brief Read and write files in DIMACS format |
593 | 636 |
|
594 | 637 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
595 | 638 |
*/ |
596 | 639 |
|
597 | 640 |
/** |
598 | 641 |
@defgroup nauty_group NAUTY Format |
599 | 642 |
@ingroup io_group |
600 | 643 |
\brief Read \e Nauty format |
601 | 644 |
|
602 | 645 |
Tool to read graphs from \e Nauty format data. |
603 | 646 |
*/ |
604 | 647 |
|
605 | 648 |
/** |
606 | 649 |
@defgroup concept Concepts |
607 | 650 |
\brief Skeleton classes and concept checking classes |
608 | 651 |
|
609 | 652 |
This group contains the data/algorithm skeletons and concept checking |
610 | 653 |
classes implemented in LEMON. |
611 | 654 |
|
612 | 655 |
The purpose of the classes in this group is fourfold. |
613 | 656 |
|
614 | 657 |
- These classes contain the documentations of the %concepts. In order |
615 | 658 |
to avoid document multiplications, an implementation of a concept |
616 | 659 |
simply refers to the corresponding concept class. |
617 | 660 |
|
618 | 661 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
619 | 662 |
implementation of the %concepts should provide, however completely |
620 | 663 |
without implementations and real data structures behind the |
621 | 664 |
interface. On the other hand they should provide nothing else. All |
622 | 665 |
the algorithms working on a data structure meeting a certain concept |
623 | 666 |
should compile with these classes. (Though it will not run properly, |
624 | 667 |
of course.) In this way it is easily to check if an algorithm |
625 | 668 |
doesn't use any extra feature of a certain implementation. |
626 | 669 |
|
627 | 670 |
- The concept descriptor classes also provide a <em>checker class</em> |
628 | 671 |
that makes it possible to check whether a certain implementation of a |
629 | 672 |
concept indeed provides all the required features. |
630 | 673 |
|
631 | 674 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
632 | 675 |
*/ |
633 | 676 |
|
634 | 677 |
/** |
635 | 678 |
@defgroup graph_concepts Graph Structure Concepts |
636 | 679 |
@ingroup concept |
637 | 680 |
\brief Skeleton and concept checking classes for graph structures |
638 | 681 |
|
639 | 682 |
This group contains the skeletons and concept checking classes of LEMON's |
640 | 683 |
graph structures and helper classes used to implement these. |
641 | 684 |
*/ |
642 | 685 |
|
643 | 686 |
/** |
644 | 687 |
@defgroup map_concepts Map Concepts |
645 | 688 |
@ingroup concept |
646 | 689 |
\brief Skeleton and concept checking classes for maps |
647 | 690 |
|
648 | 691 |
This group contains the skeletons and concept checking classes of maps. |
649 | 692 |
*/ |
650 | 693 |
|
651 | 694 |
/** |
695 |
@defgroup tools Standalone Utility Applications |
|
696 |
|
|
697 |
Some utility applications are listed here. |
|
698 |
|
|
699 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
700 |
them, as well. |
|
701 |
*/ |
|
702 |
|
|
703 |
/** |
|
652 | 704 |
\anchor demoprograms |
653 | 705 |
|
654 | 706 |
@defgroup demos Demo Programs |
655 | 707 |
|
656 | 708 |
Some demo programs are listed here. Their full source codes can be found in |
657 | 709 |
the \c demo subdirectory of the source tree. |
658 | 710 |
|
659 | 711 |
In order to compile them, use the <tt>make demo</tt> or the |
660 | 712 |
<tt>make check</tt> commands. |
661 | 713 |
*/ |
662 | 714 |
|
663 |
/** |
|
664 |
@defgroup tools Standalone Utility Applications |
|
665 |
|
|
666 |
Some utility applications are listed here. |
|
667 |
|
|
668 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
669 |
them, as well. |
|
670 |
*/ |
|
671 |
|
|
672 | 715 |
} |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
lemon/lemon.pc.in \ |
3 | 3 |
lemon/CMakeLists.txt \ |
4 | 4 |
lemon/config.h.cmake |
5 | 5 |
|
6 | 6 |
pkgconfig_DATA += lemon/lemon.pc |
7 | 7 |
|
8 | 8 |
lib_LTLIBRARIES += lemon/libemon.la |
9 | 9 |
|
10 | 10 |
lemon_libemon_la_SOURCES = \ |
11 | 11 |
lemon/arg_parser.cc \ |
12 | 12 |
lemon/base.cc \ |
13 | 13 |
lemon/color.cc \ |
14 | 14 |
lemon/lp_base.cc \ |
15 | 15 |
lemon/lp_skeleton.cc \ |
16 | 16 |
lemon/random.cc \ |
17 | 17 |
lemon/bits/windows.cc |
18 | 18 |
|
19 | 19 |
nodist_lemon_HEADERS = lemon/config.h |
20 | 20 |
|
21 | 21 |
lemon_libemon_la_CXXFLAGS = \ |
22 | 22 |
$(AM_CXXFLAGS) \ |
23 | 23 |
$(GLPK_CFLAGS) \ |
24 | 24 |
$(CPLEX_CFLAGS) \ |
25 | 25 |
$(SOPLEX_CXXFLAGS) \ |
26 | 26 |
$(CLP_CXXFLAGS) \ |
27 | 27 |
$(CBC_CXXFLAGS) |
28 | 28 |
|
29 | 29 |
lemon_libemon_la_LDFLAGS = \ |
30 | 30 |
$(GLPK_LIBS) \ |
31 | 31 |
$(CPLEX_LIBS) \ |
32 | 32 |
$(SOPLEX_LIBS) \ |
33 | 33 |
$(CLP_LIBS) \ |
34 | 34 |
$(CBC_LIBS) |
35 | 35 |
|
36 | 36 |
if HAVE_GLPK |
37 | 37 |
lemon_libemon_la_SOURCES += lemon/glpk.cc |
38 | 38 |
endif |
39 | 39 |
|
40 | 40 |
if HAVE_CPLEX |
41 | 41 |
lemon_libemon_la_SOURCES += lemon/cplex.cc |
42 | 42 |
endif |
43 | 43 |
|
44 | 44 |
if HAVE_SOPLEX |
45 | 45 |
lemon_libemon_la_SOURCES += lemon/soplex.cc |
46 | 46 |
endif |
47 | 47 |
|
48 | 48 |
if HAVE_CLP |
49 | 49 |
lemon_libemon_la_SOURCES += lemon/clp.cc |
50 | 50 |
endif |
51 | 51 |
|
52 | 52 |
if HAVE_CBC |
53 | 53 |
lemon_libemon_la_SOURCES += lemon/cbc.cc |
54 | 54 |
endif |
55 | 55 |
|
56 | 56 |
lemon_HEADERS += \ |
57 | 57 |
lemon/adaptors.h \ |
58 | 58 |
lemon/arg_parser.h \ |
59 | 59 |
lemon/assert.h \ |
60 |
lemon/bellman_ford.h \ |
|
60 | 61 |
lemon/bfs.h \ |
61 | 62 |
lemon/bin_heap.h \ |
63 |
lemon/binom_heap.h \ |
|
62 | 64 |
lemon/bucket_heap.h \ |
63 | 65 |
lemon/cbc.h \ |
64 | 66 |
lemon/circulation.h \ |
65 | 67 |
lemon/clp.h \ |
66 | 68 |
lemon/color.h \ |
67 | 69 |
lemon/concept_check.h \ |
68 | 70 |
lemon/connectivity.h \ |
69 | 71 |
lemon/counter.h \ |
70 | 72 |
lemon/core.h \ |
71 | 73 |
lemon/cplex.h \ |
72 | 74 |
lemon/dfs.h \ |
73 | 75 |
lemon/dijkstra.h \ |
74 | 76 |
lemon/dim2.h \ |
75 | 77 |
lemon/dimacs.h \ |
76 | 78 |
lemon/edge_set.h \ |
77 | 79 |
lemon/elevator.h \ |
78 | 80 |
lemon/error.h \ |
79 | 81 |
lemon/euler.h \ |
80 | 82 |
lemon/fib_heap.h \ |
83 |
lemon/fourary_heap.h \ |
|
81 | 84 |
lemon/full_graph.h \ |
82 | 85 |
lemon/glpk.h \ |
83 | 86 |
lemon/gomory_hu.h \ |
84 | 87 |
lemon/graph_to_eps.h \ |
85 | 88 |
lemon/grid_graph.h \ |
86 | 89 |
lemon/hypercube_graph.h \ |
90 |
lemon/kary_heap.h \ |
|
87 | 91 |
lemon/kruskal.h \ |
88 | 92 |
lemon/hao_orlin.h \ |
89 | 93 |
lemon/lgf_reader.h \ |
90 | 94 |
lemon/lgf_writer.h \ |
91 | 95 |
lemon/list_graph.h \ |
92 | 96 |
lemon/lp.h \ |
93 | 97 |
lemon/lp_base.h \ |
94 | 98 |
lemon/lp_skeleton.h \ |
95 |
lemon/list_graph.h \ |
|
96 | 99 |
lemon/maps.h \ |
97 | 100 |
lemon/matching.h \ |
98 | 101 |
lemon/math.h \ |
99 | 102 |
lemon/min_cost_arborescence.h \ |
100 | 103 |
lemon/nauty_reader.h \ |
101 | 104 |
lemon/network_simplex.h \ |
105 |
lemon/pairing_heap.h \ |
|
102 | 106 |
lemon/path.h \ |
103 | 107 |
lemon/preflow.h \ |
104 | 108 |
lemon/radix_heap.h \ |
105 | 109 |
lemon/radix_sort.h \ |
106 | 110 |
lemon/random.h \ |
107 | 111 |
lemon/smart_graph.h \ |
108 | 112 |
lemon/soplex.h \ |
109 | 113 |
lemon/suurballe.h \ |
110 | 114 |
lemon/time_measure.h \ |
111 | 115 |
lemon/tolerance.h \ |
112 | 116 |
lemon/unionfind.h \ |
113 | 117 |
lemon/bits/windows.h |
114 | 118 |
|
115 | 119 |
bits_HEADERS += \ |
116 | 120 |
lemon/bits/alteration_notifier.h \ |
117 | 121 |
lemon/bits/array_map.h \ |
118 | 122 |
lemon/bits/bezier.h \ |
119 | 123 |
lemon/bits/default_map.h \ |
120 | 124 |
lemon/bits/edge_set_extender.h \ |
121 | 125 |
lemon/bits/enable_if.h \ |
122 | 126 |
lemon/bits/graph_adaptor_extender.h \ |
123 | 127 |
lemon/bits/graph_extender.h \ |
124 | 128 |
lemon/bits/map_extender.h \ |
125 | 129 |
lemon/bits/path_dump.h \ |
126 | 130 |
lemon/bits/solver_bits.h \ |
127 | 131 |
lemon/bits/traits.h \ |
128 | 132 |
lemon/bits/variant.h \ |
129 | 133 |
lemon/bits/vector_map.h |
130 | 134 |
|
131 | 135 |
concept_HEADERS += \ |
132 | 136 |
lemon/concepts/digraph.h \ |
133 | 137 |
lemon/concepts/graph.h \ |
134 | 138 |
lemon/concepts/graph_components.h \ |
135 | 139 |
lemon/concepts/heap.h \ |
136 | 140 |
lemon/concepts/maps.h \ |
137 | 141 |
lemon/concepts/path.h |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BFS_H |
20 | 20 |
#define LEMON_BFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief BFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Bfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Bfs class. |
38 | 38 |
///\tparam GR Digraph type. |
39 | 39 |
template<class GR> |
40 | 40 |
struct BfsDefaultTraits |
41 | 41 |
{ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the shortest paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the shortest paths. |
50 |
///It must |
|
50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a \c PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 |
///It must |
|
65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
66 |
///By default it is a NullMap. |
|
66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
67 | 68 |
///Instantiates a \c ProcessedMap. |
68 | 69 |
|
69 | 70 |
///This function instantiates a \ref ProcessedMap. |
70 | 71 |
///\param g is the digraph, to which |
71 | 72 |
///we would like to define the \ref ProcessedMap |
72 | 73 |
#ifdef DOXYGEN |
73 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
74 | 75 |
#else |
75 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
76 | 77 |
#endif |
77 | 78 |
{ |
78 | 79 |
return new ProcessedMap(); |
79 | 80 |
} |
80 | 81 |
|
81 | 82 |
///The type of the map that indicates which nodes are reached. |
82 | 83 |
|
83 | 84 |
///The type of the map that indicates which nodes are reached. |
84 |
///It must |
|
85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
85 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
86 | 87 |
///Instantiates a \c ReachedMap. |
87 | 88 |
|
88 | 89 |
///This function instantiates a \ref ReachedMap. |
89 | 90 |
///\param g is the digraph, to which |
90 | 91 |
///we would like to define the \ref ReachedMap. |
91 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
92 | 93 |
{ |
93 | 94 |
return new ReachedMap(g); |
94 | 95 |
} |
95 | 96 |
|
96 | 97 |
///The type of the map that stores the distances of the nodes. |
97 | 98 |
|
98 | 99 |
///The type of the map that stores the distances of the nodes. |
99 |
///It must |
|
100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
100 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
101 | 102 |
///Instantiates a \c DistMap. |
102 | 103 |
|
103 | 104 |
///This function instantiates a \ref DistMap. |
104 | 105 |
///\param g is the digraph, to which we would like to define the |
105 | 106 |
///\ref DistMap. |
106 | 107 |
static DistMap *createDistMap(const Digraph &g) |
107 | 108 |
{ |
108 | 109 |
return new DistMap(g); |
109 | 110 |
} |
110 | 111 |
}; |
111 | 112 |
|
112 | 113 |
///%BFS algorithm class. |
113 | 114 |
|
114 | 115 |
///\ingroup search |
115 | 116 |
///This class provides an efficient implementation of the %BFS algorithm. |
116 | 117 |
/// |
117 | 118 |
///There is also a \ref bfs() "function-type interface" for the BFS |
118 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
119 | 120 |
///used easier. |
120 | 121 |
/// |
121 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
122 | 123 |
///The default type is \ref ListDigraph. |
123 | 124 |
#ifdef DOXYGEN |
124 | 125 |
template <typename GR, |
125 | 126 |
typename TR> |
126 | 127 |
#else |
127 | 128 |
template <typename GR=ListDigraph, |
128 | 129 |
typename TR=BfsDefaultTraits<GR> > |
129 | 130 |
#endif |
130 | 131 |
class Bfs { |
131 | 132 |
public: |
132 | 133 |
|
133 | 134 |
///The type of the digraph the algorithm runs on. |
134 | 135 |
typedef typename TR::Digraph Digraph; |
135 | 136 |
|
136 | 137 |
///\brief The type of the map that stores the predecessor arcs of the |
137 | 138 |
///shortest paths. |
138 | 139 |
typedef typename TR::PredMap PredMap; |
139 | 140 |
///The type of the map that stores the distances of the nodes. |
140 | 141 |
typedef typename TR::DistMap DistMap; |
141 | 142 |
///The type of the map that indicates which nodes are reached. |
142 | 143 |
typedef typename TR::ReachedMap ReachedMap; |
143 | 144 |
///The type of the map that indicates which nodes are processed. |
144 | 145 |
typedef typename TR::ProcessedMap ProcessedMap; |
145 | 146 |
///The type of the paths. |
146 | 147 |
typedef PredMapPath<Digraph, PredMap> Path; |
147 | 148 |
|
148 | 149 |
///The \ref BfsDefaultTraits "traits class" of the algorithm. |
149 | 150 |
typedef TR Traits; |
150 | 151 |
|
151 | 152 |
private: |
152 | 153 |
|
153 | 154 |
typedef typename Digraph::Node Node; |
154 | 155 |
typedef typename Digraph::NodeIt NodeIt; |
155 | 156 |
typedef typename Digraph::Arc Arc; |
156 | 157 |
typedef typename Digraph::OutArcIt OutArcIt; |
157 | 158 |
|
158 | 159 |
//Pointer to the underlying digraph. |
159 | 160 |
const Digraph *G; |
160 | 161 |
//Pointer to the map of predecessor arcs. |
161 | 162 |
PredMap *_pred; |
162 | 163 |
//Indicates if _pred is locally allocated (true) or not. |
163 | 164 |
bool local_pred; |
164 | 165 |
//Pointer to the map of distances. |
165 | 166 |
DistMap *_dist; |
166 | 167 |
//Indicates if _dist is locally allocated (true) or not. |
167 | 168 |
bool local_dist; |
168 | 169 |
//Pointer to the map of reached status of the nodes. |
169 | 170 |
ReachedMap *_reached; |
170 | 171 |
//Indicates if _reached is locally allocated (true) or not. |
171 | 172 |
bool local_reached; |
172 | 173 |
//Pointer to the map of processed status of the nodes. |
173 | 174 |
ProcessedMap *_processed; |
174 | 175 |
//Indicates if _processed is locally allocated (true) or not. |
175 | 176 |
bool local_processed; |
176 | 177 |
|
177 | 178 |
std::vector<typename Digraph::Node> _queue; |
178 | 179 |
int _queue_head,_queue_tail,_queue_next_dist; |
179 | 180 |
int _curr_dist; |
180 | 181 |
|
181 | 182 |
//Creates the maps if necessary. |
182 | 183 |
void create_maps() |
183 | 184 |
{ |
184 | 185 |
if(!_pred) { |
185 | 186 |
local_pred = true; |
186 | 187 |
_pred = Traits::createPredMap(*G); |
187 | 188 |
} |
188 | 189 |
if(!_dist) { |
189 | 190 |
local_dist = true; |
190 | 191 |
_dist = Traits::createDistMap(*G); |
191 | 192 |
} |
192 | 193 |
if(!_reached) { |
193 | 194 |
local_reached = true; |
194 | 195 |
_reached = Traits::createReachedMap(*G); |
195 | 196 |
} |
196 | 197 |
if(!_processed) { |
197 | 198 |
local_processed = true; |
198 | 199 |
_processed = Traits::createProcessedMap(*G); |
199 | 200 |
} |
200 | 201 |
} |
201 | 202 |
|
202 | 203 |
protected: |
203 | 204 |
|
204 | 205 |
Bfs() {} |
205 | 206 |
|
206 | 207 |
public: |
207 | 208 |
|
208 | 209 |
typedef Bfs Create; |
209 | 210 |
|
210 | 211 |
///\name Named Template Parameters |
211 | 212 |
|
212 | 213 |
///@{ |
213 | 214 |
|
214 | 215 |
template <class T> |
215 | 216 |
struct SetPredMapTraits : public Traits { |
216 | 217 |
typedef T PredMap; |
217 | 218 |
static PredMap *createPredMap(const Digraph &) |
218 | 219 |
{ |
219 | 220 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
220 | 221 |
return 0; // ignore warnings |
221 | 222 |
} |
222 | 223 |
}; |
223 | 224 |
///\brief \ref named-templ-param "Named parameter" for setting |
224 | 225 |
///\c PredMap type. |
225 | 226 |
/// |
226 | 227 |
///\ref named-templ-param "Named parameter" for setting |
227 | 228 |
///\c PredMap type. |
228 |
///It must |
|
229 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
229 | 230 |
template <class T> |
230 | 231 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > { |
231 | 232 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
232 | 233 |
}; |
233 | 234 |
|
234 | 235 |
template <class T> |
235 | 236 |
struct SetDistMapTraits : public Traits { |
236 | 237 |
typedef T DistMap; |
237 | 238 |
static DistMap *createDistMap(const Digraph &) |
238 | 239 |
{ |
239 | 240 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
240 | 241 |
return 0; // ignore warnings |
241 | 242 |
} |
242 | 243 |
}; |
243 | 244 |
///\brief \ref named-templ-param "Named parameter" for setting |
244 | 245 |
///\c DistMap type. |
245 | 246 |
/// |
246 | 247 |
///\ref named-templ-param "Named parameter" for setting |
247 | 248 |
///\c DistMap type. |
248 |
///It must |
|
249 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
249 | 250 |
template <class T> |
250 | 251 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > { |
251 | 252 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
252 | 253 |
}; |
253 | 254 |
|
254 | 255 |
template <class T> |
255 | 256 |
struct SetReachedMapTraits : public Traits { |
256 | 257 |
typedef T ReachedMap; |
257 | 258 |
static ReachedMap *createReachedMap(const Digraph &) |
258 | 259 |
{ |
259 | 260 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
260 | 261 |
return 0; // ignore warnings |
261 | 262 |
} |
262 | 263 |
}; |
263 | 264 |
///\brief \ref named-templ-param "Named parameter" for setting |
264 | 265 |
///\c ReachedMap type. |
265 | 266 |
/// |
266 | 267 |
///\ref named-templ-param "Named parameter" for setting |
267 | 268 |
///\c ReachedMap type. |
268 |
///It must |
|
269 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
269 | 270 |
template <class T> |
270 | 271 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > { |
271 | 272 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
272 | 273 |
}; |
273 | 274 |
|
274 | 275 |
template <class T> |
275 | 276 |
struct SetProcessedMapTraits : public Traits { |
276 | 277 |
typedef T ProcessedMap; |
277 | 278 |
static ProcessedMap *createProcessedMap(const Digraph &) |
278 | 279 |
{ |
279 | 280 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
280 | 281 |
return 0; // ignore warnings |
281 | 282 |
} |
282 | 283 |
}; |
283 | 284 |
///\brief \ref named-templ-param "Named parameter" for setting |
284 | 285 |
///\c ProcessedMap type. |
285 | 286 |
/// |
286 | 287 |
///\ref named-templ-param "Named parameter" for setting |
287 | 288 |
///\c ProcessedMap type. |
288 |
///It must |
|
289 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
289 | 290 |
template <class T> |
290 | 291 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > { |
291 | 292 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
292 | 293 |
}; |
293 | 294 |
|
294 | 295 |
struct SetStandardProcessedMapTraits : public Traits { |
295 | 296 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
296 | 297 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
297 | 298 |
{ |
298 | 299 |
return new ProcessedMap(g); |
299 | 300 |
return 0; // ignore warnings |
300 | 301 |
} |
301 | 302 |
}; |
302 | 303 |
///\brief \ref named-templ-param "Named parameter" for setting |
303 | 304 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
304 | 305 |
/// |
305 | 306 |
///\ref named-templ-param "Named parameter" for setting |
306 | 307 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
307 | 308 |
///If you don't set it explicitly, it will be automatically allocated. |
308 | 309 |
struct SetStandardProcessedMap : |
309 | 310 |
public Bfs< Digraph, SetStandardProcessedMapTraits > { |
310 | 311 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
311 | 312 |
}; |
312 | 313 |
|
313 | 314 |
///@} |
314 | 315 |
|
315 | 316 |
public: |
316 | 317 |
|
317 | 318 |
///Constructor. |
318 | 319 |
|
319 | 320 |
///Constructor. |
320 | 321 |
///\param g The digraph the algorithm runs on. |
321 | 322 |
Bfs(const Digraph &g) : |
322 | 323 |
G(&g), |
323 | 324 |
_pred(NULL), local_pred(false), |
324 | 325 |
_dist(NULL), local_dist(false), |
325 | 326 |
_reached(NULL), local_reached(false), |
326 | 327 |
_processed(NULL), local_processed(false) |
327 | 328 |
{ } |
328 | 329 |
|
329 | 330 |
///Destructor. |
330 | 331 |
~Bfs() |
331 | 332 |
{ |
332 | 333 |
if(local_pred) delete _pred; |
333 | 334 |
if(local_dist) delete _dist; |
334 | 335 |
if(local_reached) delete _reached; |
335 | 336 |
if(local_processed) delete _processed; |
336 | 337 |
} |
337 | 338 |
|
338 | 339 |
///Sets the map that stores the predecessor arcs. |
339 | 340 |
|
340 | 341 |
///Sets the map that stores the predecessor arcs. |
341 | 342 |
///If you don't use this function before calling \ref run(Node) "run()" |
342 | 343 |
///or \ref init(), an instance will be allocated automatically. |
343 | 344 |
///The destructor deallocates this automatically allocated map, |
344 | 345 |
///of course. |
345 | 346 |
///\return <tt> (*this) </tt> |
346 | 347 |
Bfs &predMap(PredMap &m) |
347 | 348 |
{ |
348 | 349 |
if(local_pred) { |
349 | 350 |
delete _pred; |
350 | 351 |
local_pred=false; |
351 | 352 |
} |
352 | 353 |
_pred = &m; |
353 | 354 |
return *this; |
354 | 355 |
} |
355 | 356 |
|
356 | 357 |
///Sets the map that indicates which nodes are reached. |
357 | 358 |
|
358 | 359 |
///Sets the map that indicates which nodes are reached. |
359 | 360 |
///If you don't use this function before calling \ref run(Node) "run()" |
360 | 361 |
///or \ref init(), an instance will be allocated automatically. |
361 | 362 |
///The destructor deallocates this automatically allocated map, |
362 | 363 |
///of course. |
363 | 364 |
///\return <tt> (*this) </tt> |
364 | 365 |
Bfs &reachedMap(ReachedMap &m) |
365 | 366 |
{ |
366 | 367 |
if(local_reached) { |
367 | 368 |
delete _reached; |
368 | 369 |
local_reached=false; |
369 | 370 |
} |
370 | 371 |
_reached = &m; |
371 | 372 |
return *this; |
372 | 373 |
} |
373 | 374 |
|
374 | 375 |
///Sets the map that indicates which nodes are processed. |
375 | 376 |
|
376 | 377 |
///Sets the map that indicates which nodes are processed. |
377 | 378 |
///If you don't use this function before calling \ref run(Node) "run()" |
378 | 379 |
///or \ref init(), an instance will be allocated automatically. |
379 | 380 |
///The destructor deallocates this automatically allocated map, |
380 | 381 |
///of course. |
381 | 382 |
///\return <tt> (*this) </tt> |
382 | 383 |
Bfs &processedMap(ProcessedMap &m) |
383 | 384 |
{ |
384 | 385 |
if(local_processed) { |
385 | 386 |
delete _processed; |
386 | 387 |
local_processed=false; |
387 | 388 |
} |
388 | 389 |
_processed = &m; |
389 | 390 |
return *this; |
390 | 391 |
} |
391 | 392 |
|
392 | 393 |
///Sets the map that stores the distances of the nodes. |
393 | 394 |
|
394 | 395 |
///Sets the map that stores the distances of the nodes calculated by |
395 | 396 |
///the algorithm. |
396 | 397 |
///If you don't use this function before calling \ref run(Node) "run()" |
397 | 398 |
///or \ref init(), an instance will be allocated automatically. |
398 | 399 |
///The destructor deallocates this automatically allocated map, |
399 | 400 |
///of course. |
400 | 401 |
///\return <tt> (*this) </tt> |
401 | 402 |
Bfs &distMap(DistMap &m) |
402 | 403 |
{ |
403 | 404 |
if(local_dist) { |
404 | 405 |
delete _dist; |
405 | 406 |
local_dist=false; |
406 | 407 |
} |
407 | 408 |
_dist = &m; |
408 | 409 |
return *this; |
409 | 410 |
} |
410 | 411 |
|
411 | 412 |
public: |
412 | 413 |
|
413 | 414 |
///\name Execution Control |
414 | 415 |
///The simplest way to execute the BFS algorithm is to use one of the |
415 | 416 |
///member functions called \ref run(Node) "run()".\n |
416 |
///If you need more control on the execution, first you have to call |
|
417 |
///\ref init(), then you can add several source nodes with |
|
417 |
///If you need better control on the execution, you have to call |
|
418 |
///\ref init() first, then you can add several source nodes with |
|
418 | 419 |
///\ref addSource(). Finally the actual path computation can be |
419 | 420 |
///performed with one of the \ref start() functions. |
420 | 421 |
|
421 | 422 |
///@{ |
422 | 423 |
|
423 | 424 |
///\brief Initializes the internal data structures. |
424 | 425 |
/// |
425 | 426 |
///Initializes the internal data structures. |
426 | 427 |
void init() |
427 | 428 |
{ |
428 | 429 |
create_maps(); |
429 | 430 |
_queue.resize(countNodes(*G)); |
430 | 431 |
_queue_head=_queue_tail=0; |
431 | 432 |
_curr_dist=1; |
432 | 433 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
433 | 434 |
_pred->set(u,INVALID); |
434 | 435 |
_reached->set(u,false); |
435 | 436 |
_processed->set(u,false); |
436 | 437 |
} |
437 | 438 |
} |
438 | 439 |
|
439 | 440 |
///Adds a new source node. |
440 | 441 |
|
441 | 442 |
///Adds a new source node to the set of nodes to be processed. |
442 | 443 |
/// |
443 | 444 |
void addSource(Node s) |
444 | 445 |
{ |
445 | 446 |
if(!(*_reached)[s]) |
446 | 447 |
{ |
447 | 448 |
_reached->set(s,true); |
448 | 449 |
_pred->set(s,INVALID); |
449 | 450 |
_dist->set(s,0); |
450 | 451 |
_queue[_queue_head++]=s; |
451 | 452 |
_queue_next_dist=_queue_head; |
452 | 453 |
} |
453 | 454 |
} |
454 | 455 |
|
455 | 456 |
///Processes the next node. |
456 | 457 |
|
457 | 458 |
///Processes the next node. |
458 | 459 |
/// |
459 | 460 |
///\return The processed node. |
460 | 461 |
/// |
461 | 462 |
///\pre The queue must not be empty. |
462 | 463 |
Node processNextNode() |
463 | 464 |
{ |
464 | 465 |
if(_queue_tail==_queue_next_dist) { |
465 | 466 |
_curr_dist++; |
466 | 467 |
_queue_next_dist=_queue_head; |
467 | 468 |
} |
468 | 469 |
Node n=_queue[_queue_tail++]; |
469 | 470 |
_processed->set(n,true); |
470 | 471 |
Node m; |
471 | 472 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
472 | 473 |
if(!(*_reached)[m=G->target(e)]) { |
473 | 474 |
_queue[_queue_head++]=m; |
474 | 475 |
_reached->set(m,true); |
475 | 476 |
_pred->set(m,e); |
476 | 477 |
_dist->set(m,_curr_dist); |
477 | 478 |
} |
478 | 479 |
return n; |
479 | 480 |
} |
480 | 481 |
|
481 | 482 |
///Processes the next node. |
... | ... |
@@ -676,517 +677,513 @@ |
676 | 677 |
start(); |
677 | 678 |
} |
678 | 679 |
|
679 | 680 |
///Finds the shortest path between \c s and \c t. |
680 | 681 |
|
681 | 682 |
///This method runs the %BFS algorithm from node \c s |
682 | 683 |
///in order to compute the shortest path to node \c t |
683 | 684 |
///(it stops searching when \c t is processed). |
684 | 685 |
/// |
685 | 686 |
///\return \c true if \c t is reachable form \c s. |
686 | 687 |
/// |
687 | 688 |
///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
688 | 689 |
///shortcut of the following code. |
689 | 690 |
///\code |
690 | 691 |
/// b.init(); |
691 | 692 |
/// b.addSource(s); |
692 | 693 |
/// b.start(t); |
693 | 694 |
///\endcode |
694 | 695 |
bool run(Node s,Node t) { |
695 | 696 |
init(); |
696 | 697 |
addSource(s); |
697 | 698 |
start(t); |
698 | 699 |
return reached(t); |
699 | 700 |
} |
700 | 701 |
|
701 | 702 |
///Runs the algorithm to visit all nodes in the digraph. |
702 | 703 |
|
703 | 704 |
///This method runs the %BFS algorithm in order to |
704 | 705 |
///compute the shortest path to each node. |
705 | 706 |
/// |
706 | 707 |
///The algorithm computes |
707 | 708 |
///- the shortest path tree (forest), |
708 | 709 |
///- the distance of each node from the root(s). |
709 | 710 |
/// |
710 | 711 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
711 | 712 |
///\code |
712 | 713 |
/// b.init(); |
713 | 714 |
/// for (NodeIt n(gr); n != INVALID; ++n) { |
714 | 715 |
/// if (!b.reached(n)) { |
715 | 716 |
/// b.addSource(n); |
716 | 717 |
/// b.start(); |
717 | 718 |
/// } |
718 | 719 |
/// } |
719 | 720 |
///\endcode |
720 | 721 |
void run() { |
721 | 722 |
init(); |
722 | 723 |
for (NodeIt n(*G); n != INVALID; ++n) { |
723 | 724 |
if (!reached(n)) { |
724 | 725 |
addSource(n); |
725 | 726 |
start(); |
726 | 727 |
} |
727 | 728 |
} |
728 | 729 |
} |
729 | 730 |
|
730 | 731 |
///@} |
731 | 732 |
|
732 | 733 |
///\name Query Functions |
733 | 734 |
///The results of the BFS algorithm can be obtained using these |
734 | 735 |
///functions.\n |
735 | 736 |
///Either \ref run(Node) "run()" or \ref start() should be called |
736 | 737 |
///before using them. |
737 | 738 |
|
738 | 739 |
///@{ |
739 | 740 |
|
740 |
///The shortest path to |
|
741 |
///The shortest path to the given node. |
|
741 | 742 |
|
742 |
///Returns the shortest path to |
|
743 |
///Returns the shortest path to the given node from the root(s). |
|
743 | 744 |
/// |
744 | 745 |
///\warning \c t should be reached from the root(s). |
745 | 746 |
/// |
746 | 747 |
///\pre Either \ref run(Node) "run()" or \ref init() |
747 | 748 |
///must be called before using this function. |
748 | 749 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
749 | 750 |
|
750 |
///The distance of |
|
751 |
///The distance of the given node from the root(s). |
|
751 | 752 |
|
752 |
///Returns the distance of |
|
753 |
///Returns the distance of the given node from the root(s). |
|
753 | 754 |
/// |
754 | 755 |
///\warning If node \c v is not reached from the root(s), then |
755 | 756 |
///the return value of this function is undefined. |
756 | 757 |
/// |
757 | 758 |
///\pre Either \ref run(Node) "run()" or \ref init() |
758 | 759 |
///must be called before using this function. |
759 | 760 |
int dist(Node v) const { return (*_dist)[v]; } |
760 | 761 |
|
761 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
762 |
|
|
762 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
763 |
///the given node. |
|
764 |
/// |
|
763 | 765 |
///This function returns the 'previous arc' of the shortest path |
764 | 766 |
///tree for the node \c v, i.e. it returns the last arc of a |
765 | 767 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
766 | 768 |
///is not reached from the root(s) or if \c v is a root. |
767 | 769 |
/// |
768 | 770 |
///The shortest path tree used here is equal to the shortest path |
769 |
///tree used in \ref predNode(). |
|
771 |
///tree used in \ref predNode() and \ref predMap(). |
|
770 | 772 |
/// |
771 | 773 |
///\pre Either \ref run(Node) "run()" or \ref init() |
772 | 774 |
///must be called before using this function. |
773 | 775 |
Arc predArc(Node v) const { return (*_pred)[v];} |
774 | 776 |
|
775 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
776 |
|
|
777 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
778 |
///the given node. |
|
779 |
/// |
|
777 | 780 |
///This function returns the 'previous node' of the shortest path |
778 | 781 |
///tree for the node \c v, i.e. it returns the last but one node |
779 |
/// |
|
782 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
780 | 783 |
///if \c v is not reached from the root(s) or if \c v is a root. |
781 | 784 |
/// |
782 | 785 |
///The shortest path tree used here is equal to the shortest path |
783 |
///tree used in \ref predArc(). |
|
786 |
///tree used in \ref predArc() and \ref predMap(). |
|
784 | 787 |
/// |
785 | 788 |
///\pre Either \ref run(Node) "run()" or \ref init() |
786 | 789 |
///must be called before using this function. |
787 | 790 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
788 | 791 |
G->source((*_pred)[v]); } |
789 | 792 |
|
790 | 793 |
///\brief Returns a const reference to the node map that stores the |
791 | 794 |
/// distances of the nodes. |
792 | 795 |
/// |
793 | 796 |
///Returns a const reference to the node map that stores the distances |
794 | 797 |
///of the nodes calculated by the algorithm. |
795 | 798 |
/// |
796 | 799 |
///\pre Either \ref run(Node) "run()" or \ref init() |
797 | 800 |
///must be called before using this function. |
798 | 801 |
const DistMap &distMap() const { return *_dist;} |
799 | 802 |
|
800 | 803 |
///\brief Returns a const reference to the node map that stores the |
801 | 804 |
///predecessor arcs. |
802 | 805 |
/// |
803 | 806 |
///Returns a const reference to the node map that stores the predecessor |
804 |
///arcs, which form the shortest path tree. |
|
807 |
///arcs, which form the shortest path tree (forest). |
|
805 | 808 |
/// |
806 | 809 |
///\pre Either \ref run(Node) "run()" or \ref init() |
807 | 810 |
///must be called before using this function. |
808 | 811 |
const PredMap &predMap() const { return *_pred;} |
809 | 812 |
|
810 |
///Checks if |
|
813 |
///Checks if the given node is reached from the root(s). |
|
811 | 814 |
|
812 | 815 |
///Returns \c true if \c v is reached from the root(s). |
813 | 816 |
/// |
814 | 817 |
///\pre Either \ref run(Node) "run()" or \ref init() |
815 | 818 |
///must be called before using this function. |
816 | 819 |
bool reached(Node v) const { return (*_reached)[v]; } |
817 | 820 |
|
818 | 821 |
///@} |
819 | 822 |
}; |
820 | 823 |
|
821 | 824 |
///Default traits class of bfs() function. |
822 | 825 |
|
823 | 826 |
///Default traits class of bfs() function. |
824 | 827 |
///\tparam GR Digraph type. |
825 | 828 |
template<class GR> |
826 | 829 |
struct BfsWizardDefaultTraits |
827 | 830 |
{ |
828 | 831 |
///The type of the digraph the algorithm runs on. |
829 | 832 |
typedef GR Digraph; |
830 | 833 |
|
831 | 834 |
///\brief The type of the map that stores the predecessor |
832 | 835 |
///arcs of the shortest paths. |
833 | 836 |
/// |
834 | 837 |
///The type of the map that stores the predecessor |
835 | 838 |
///arcs of the shortest paths. |
836 |
///It must |
|
839 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
837 | 840 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
838 | 841 |
///Instantiates a PredMap. |
839 | 842 |
|
840 | 843 |
///This function instantiates a PredMap. |
841 | 844 |
///\param g is the digraph, to which we would like to define the |
842 | 845 |
///PredMap. |
843 | 846 |
static PredMap *createPredMap(const Digraph &g) |
844 | 847 |
{ |
845 | 848 |
return new PredMap(g); |
846 | 849 |
} |
847 | 850 |
|
848 | 851 |
///The type of the map that indicates which nodes are processed. |
849 | 852 |
|
850 | 853 |
///The type of the map that indicates which nodes are processed. |
851 |
///It must |
|
854 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
852 | 855 |
///By default it is a NullMap. |
853 | 856 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
854 | 857 |
///Instantiates a ProcessedMap. |
855 | 858 |
|
856 | 859 |
///This function instantiates a ProcessedMap. |
857 | 860 |
///\param g is the digraph, to which |
858 | 861 |
///we would like to define the ProcessedMap. |
859 | 862 |
#ifdef DOXYGEN |
860 | 863 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
861 | 864 |
#else |
862 | 865 |
static ProcessedMap *createProcessedMap(const Digraph &) |
863 | 866 |
#endif |
864 | 867 |
{ |
865 | 868 |
return new ProcessedMap(); |
866 | 869 |
} |
867 | 870 |
|
868 | 871 |
///The type of the map that indicates which nodes are reached. |
869 | 872 |
|
870 | 873 |
///The type of the map that indicates which nodes are reached. |
871 |
///It must |
|
874 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
872 | 875 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
873 | 876 |
///Instantiates a ReachedMap. |
874 | 877 |
|
875 | 878 |
///This function instantiates a ReachedMap. |
876 | 879 |
///\param g is the digraph, to which |
877 | 880 |
///we would like to define the ReachedMap. |
878 | 881 |
static ReachedMap *createReachedMap(const Digraph &g) |
879 | 882 |
{ |
880 | 883 |
return new ReachedMap(g); |
881 | 884 |
} |
882 | 885 |
|
883 | 886 |
///The type of the map that stores the distances of the nodes. |
884 | 887 |
|
885 | 888 |
///The type of the map that stores the distances of the nodes. |
886 |
///It must |
|
889 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
887 | 890 |
typedef typename Digraph::template NodeMap<int> DistMap; |
888 | 891 |
///Instantiates a DistMap. |
889 | 892 |
|
890 | 893 |
///This function instantiates a DistMap. |
891 | 894 |
///\param g is the digraph, to which we would like to define |
892 | 895 |
///the DistMap |
893 | 896 |
static DistMap *createDistMap(const Digraph &g) |
894 | 897 |
{ |
895 | 898 |
return new DistMap(g); |
896 | 899 |
} |
897 | 900 |
|
898 | 901 |
///The type of the shortest paths. |
899 | 902 |
|
900 | 903 |
///The type of the shortest paths. |
901 |
///It must |
|
904 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
902 | 905 |
typedef lemon::Path<Digraph> Path; |
903 | 906 |
}; |
904 | 907 |
|
905 | 908 |
/// Default traits class used by BfsWizard |
906 | 909 |
|
907 |
/// To make it easier to use Bfs algorithm |
|
908 |
/// we have created a wizard class. |
|
909 |
/// This \ref BfsWizard class needs default traits, |
|
910 |
/// as well as the \ref Bfs class. |
|
911 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
|
912 |
/// \ref BfsWizard class. |
|
910 |
/// Default traits class used by BfsWizard. |
|
911 |
/// \tparam GR The type of the digraph. |
|
913 | 912 |
template<class GR> |
914 | 913 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
915 | 914 |
{ |
916 | 915 |
|
917 | 916 |
typedef BfsWizardDefaultTraits<GR> Base; |
918 | 917 |
protected: |
919 | 918 |
//The type of the nodes in the digraph. |
920 | 919 |
typedef typename Base::Digraph::Node Node; |
921 | 920 |
|
922 | 921 |
//Pointer to the digraph the algorithm runs on. |
923 | 922 |
void *_g; |
924 | 923 |
//Pointer to the map of reached nodes. |
925 | 924 |
void *_reached; |
926 | 925 |
//Pointer to the map of processed nodes. |
927 | 926 |
void *_processed; |
928 | 927 |
//Pointer to the map of predecessors arcs. |
929 | 928 |
void *_pred; |
930 | 929 |
//Pointer to the map of distances. |
931 | 930 |
void *_dist; |
932 | 931 |
//Pointer to the shortest path to the target node. |
933 | 932 |
void *_path; |
934 | 933 |
//Pointer to the distance of the target node. |
935 | 934 |
int *_di; |
936 | 935 |
|
937 | 936 |
public: |
938 | 937 |
/// Constructor. |
939 | 938 |
|
940 |
/// This constructor does not require parameters, |
|
939 |
/// This constructor does not require parameters, it initiates |
|
941 | 940 |
/// all of the attributes to \c 0. |
942 | 941 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
943 | 942 |
_dist(0), _path(0), _di(0) {} |
944 | 943 |
|
945 | 944 |
/// Constructor. |
946 | 945 |
|
947 | 946 |
/// This constructor requires one parameter, |
948 | 947 |
/// others are initiated to \c 0. |
949 | 948 |
/// \param g The digraph the algorithm runs on. |
950 | 949 |
BfsWizardBase(const GR &g) : |
951 | 950 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
952 | 951 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
953 | 952 |
|
954 | 953 |
}; |
955 | 954 |
|
956 | 955 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
957 | 956 |
|
958 | 957 |
/// This auxiliary class is created to implement the |
959 | 958 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
960 | 959 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
961 | 960 |
/// functions and features of the plain \ref Bfs. |
962 | 961 |
/// |
963 | 962 |
/// This class should only be used through the \ref bfs() function, |
964 | 963 |
/// which makes it easier to use the algorithm. |
965 | 964 |
template<class TR> |
966 | 965 |
class BfsWizard : public TR |
967 | 966 |
{ |
968 | 967 |
typedef TR Base; |
969 | 968 |
|
970 |
///The type of the digraph the algorithm runs on. |
|
971 | 969 |
typedef typename TR::Digraph Digraph; |
972 | 970 |
|
973 | 971 |
typedef typename Digraph::Node Node; |
974 | 972 |
typedef typename Digraph::NodeIt NodeIt; |
975 | 973 |
typedef typename Digraph::Arc Arc; |
976 | 974 |
typedef typename Digraph::OutArcIt OutArcIt; |
977 | 975 |
|
978 |
///\brief The type of the map that stores the predecessor |
|
979 |
///arcs of the shortest paths. |
|
980 | 976 |
typedef typename TR::PredMap PredMap; |
981 |
///\brief The type of the map that stores the distances of the nodes. |
|
982 | 977 |
typedef typename TR::DistMap DistMap; |
983 |
///\brief The type of the map that indicates which nodes are reached. |
|
984 | 978 |
typedef typename TR::ReachedMap ReachedMap; |
985 |
///\brief The type of the map that indicates which nodes are processed. |
|
986 | 979 |
typedef typename TR::ProcessedMap ProcessedMap; |
987 |
///The type of the shortest paths |
|
988 | 980 |
typedef typename TR::Path Path; |
989 | 981 |
|
990 | 982 |
public: |
991 | 983 |
|
992 | 984 |
/// Constructor. |
993 | 985 |
BfsWizard() : TR() {} |
994 | 986 |
|
995 | 987 |
/// Constructor that requires parameters. |
996 | 988 |
|
997 | 989 |
/// Constructor that requires parameters. |
998 | 990 |
/// These parameters will be the default values for the traits class. |
999 | 991 |
/// \param g The digraph the algorithm runs on. |
1000 | 992 |
BfsWizard(const Digraph &g) : |
1001 | 993 |
TR(g) {} |
1002 | 994 |
|
1003 | 995 |
///Copy constructor |
1004 | 996 |
BfsWizard(const TR &b) : TR(b) {} |
1005 | 997 |
|
1006 | 998 |
~BfsWizard() {} |
1007 | 999 |
|
1008 | 1000 |
///Runs BFS algorithm from the given source node. |
1009 | 1001 |
|
1010 | 1002 |
///This method runs BFS algorithm from node \c s |
1011 | 1003 |
///in order to compute the shortest path to each node. |
1012 | 1004 |
void run(Node s) |
1013 | 1005 |
{ |
1014 | 1006 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1015 | 1007 |
if (Base::_pred) |
1016 | 1008 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1017 | 1009 |
if (Base::_dist) |
1018 | 1010 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1019 | 1011 |
if (Base::_reached) |
1020 | 1012 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1021 | 1013 |
if (Base::_processed) |
1022 | 1014 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1023 | 1015 |
if (s!=INVALID) |
1024 | 1016 |
alg.run(s); |
1025 | 1017 |
else |
1026 | 1018 |
alg.run(); |
1027 | 1019 |
} |
1028 | 1020 |
|
1029 | 1021 |
///Finds the shortest path between \c s and \c t. |
1030 | 1022 |
|
1031 | 1023 |
///This method runs BFS algorithm from node \c s |
1032 | 1024 |
///in order to compute the shortest path to node \c t |
1033 | 1025 |
///(it stops searching when \c t is processed). |
1034 | 1026 |
/// |
1035 | 1027 |
///\return \c true if \c t is reachable form \c s. |
1036 | 1028 |
bool run(Node s, Node t) |
1037 | 1029 |
{ |
1038 | 1030 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1039 | 1031 |
if (Base::_pred) |
1040 | 1032 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1041 | 1033 |
if (Base::_dist) |
1042 | 1034 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1043 | 1035 |
if (Base::_reached) |
1044 | 1036 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1045 | 1037 |
if (Base::_processed) |
1046 | 1038 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1047 | 1039 |
alg.run(s,t); |
1048 | 1040 |
if (Base::_path) |
1049 | 1041 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
1050 | 1042 |
if (Base::_di) |
1051 | 1043 |
*Base::_di = alg.dist(t); |
1052 | 1044 |
return alg.reached(t); |
1053 | 1045 |
} |
1054 | 1046 |
|
1055 | 1047 |
///Runs BFS algorithm to visit all nodes in the digraph. |
1056 | 1048 |
|
1057 | 1049 |
///This method runs BFS algorithm in order to compute |
1058 | 1050 |
///the shortest path to each node. |
1059 | 1051 |
void run() |
1060 | 1052 |
{ |
1061 | 1053 |
run(INVALID); |
1062 | 1054 |
} |
1063 | 1055 |
|
1064 | 1056 |
template<class T> |
1065 | 1057 |
struct SetPredMapBase : public Base { |
1066 | 1058 |
typedef T PredMap; |
1067 | 1059 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1068 | 1060 |
SetPredMapBase(const TR &b) : TR(b) {} |
1069 | 1061 |
}; |
1070 |
///\brief \ref named-func-param "Named parameter" |
|
1071 |
///for setting PredMap object. |
|
1062 |
|
|
1063 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1064 |
///the predecessor map. |
|
1072 | 1065 |
/// |
1073 |
///\ref named-func-param "Named parameter" |
|
1074 |
///for setting PredMap object. |
|
1066 |
///\ref named-templ-param "Named parameter" function for setting |
|
1067 |
///the map that stores the predecessor arcs of the nodes. |
|
1075 | 1068 |
template<class T> |
1076 | 1069 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1077 | 1070 |
{ |
1078 | 1071 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1079 | 1072 |
return BfsWizard<SetPredMapBase<T> >(*this); |
1080 | 1073 |
} |
1081 | 1074 |
|
1082 | 1075 |
template<class T> |
1083 | 1076 |
struct SetReachedMapBase : public Base { |
1084 | 1077 |
typedef T ReachedMap; |
1085 | 1078 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1086 | 1079 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1087 | 1080 |
}; |
1088 |
///\brief \ref named-func-param "Named parameter" |
|
1089 |
///for setting ReachedMap object. |
|
1081 |
|
|
1082 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1083 |
///the reached map. |
|
1090 | 1084 |
/// |
1091 |
/// \ref named-func-param "Named parameter" |
|
1092 |
///for setting ReachedMap object. |
|
1085 |
///\ref named-templ-param "Named parameter" function for setting |
|
1086 |
///the map that indicates which nodes are reached. |
|
1093 | 1087 |
template<class T> |
1094 | 1088 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1095 | 1089 |
{ |
1096 | 1090 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1097 | 1091 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
1098 | 1092 |
} |
1099 | 1093 |
|
1100 | 1094 |
template<class T> |
1101 | 1095 |
struct SetDistMapBase : public Base { |
1102 | 1096 |
typedef T DistMap; |
1103 | 1097 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1104 | 1098 |
SetDistMapBase(const TR &b) : TR(b) {} |
1105 | 1099 |
}; |
1106 |
///\brief \ref named-func-param "Named parameter" |
|
1107 |
///for setting DistMap object. |
|
1100 |
|
|
1101 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1102 |
///the distance map. |
|
1108 | 1103 |
/// |
1109 |
/// \ref named-func-param "Named parameter" |
|
1110 |
///for setting DistMap object. |
|
1104 |
///\ref named-templ-param "Named parameter" function for setting |
|
1105 |
///the map that stores the distances of the nodes calculated |
|
1106 |
///by the algorithm. |
|
1111 | 1107 |
template<class T> |
1112 | 1108 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1113 | 1109 |
{ |
1114 | 1110 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1115 | 1111 |
return BfsWizard<SetDistMapBase<T> >(*this); |
1116 | 1112 |
} |
1117 | 1113 |
|
1118 | 1114 |
template<class T> |
1119 | 1115 |
struct SetProcessedMapBase : public Base { |
1120 | 1116 |
typedef T ProcessedMap; |
1121 | 1117 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1122 | 1118 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1123 | 1119 |
}; |
1124 |
///\brief \ref named-func-param "Named parameter" |
|
1125 |
///for setting ProcessedMap object. |
|
1120 |
|
|
1121 |
///\brief \ref named-func-param "Named parameter" for setting |
|
1122 |
///the processed map. |
|
1126 | 1123 |
/// |
1127 |
/// \ref named-func-param "Named parameter" |
|
1128 |
///for setting ProcessedMap object. |
|
1124 |
///\ref named-templ-param "Named parameter" function for setting |
|
1125 |
///the map that indicates which nodes are processed. |
|
1129 | 1126 |
template<class T> |
1130 | 1127 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1131 | 1128 |
{ |
1132 | 1129 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1133 | 1130 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
1134 | 1131 |
} |
1135 | 1132 |
|
1136 | 1133 |
template<class T> |
1137 | 1134 |
struct SetPathBase : public Base { |
1138 | 1135 |
typedef T Path; |
1139 | 1136 |
SetPathBase(const TR &b) : TR(b) {} |
1140 | 1137 |
}; |
1141 | 1138 |
///\brief \ref named-func-param "Named parameter" |
1142 | 1139 |
///for getting the shortest path to the target node. |
1143 | 1140 |
/// |
1144 | 1141 |
///\ref named-func-param "Named parameter" |
1145 | 1142 |
///for getting the shortest path to the target node. |
1146 | 1143 |
template<class T> |
1147 | 1144 |
BfsWizard<SetPathBase<T> > path(const T &t) |
1148 | 1145 |
{ |
1149 | 1146 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1150 | 1147 |
return BfsWizard<SetPathBase<T> >(*this); |
1151 | 1148 |
} |
1152 | 1149 |
|
1153 | 1150 |
///\brief \ref named-func-param "Named parameter" |
1154 | 1151 |
///for getting the distance of the target node. |
1155 | 1152 |
/// |
1156 | 1153 |
///\ref named-func-param "Named parameter" |
1157 | 1154 |
///for getting the distance of the target node. |
1158 | 1155 |
BfsWizard dist(const int &d) |
1159 | 1156 |
{ |
1160 | 1157 |
Base::_di=const_cast<int*>(&d); |
1161 | 1158 |
return *this; |
1162 | 1159 |
} |
1163 | 1160 |
|
1164 | 1161 |
}; |
1165 | 1162 |
|
1166 | 1163 |
///Function-type interface for BFS algorithm. |
1167 | 1164 |
|
1168 | 1165 |
/// \ingroup search |
1169 | 1166 |
///Function-type interface for BFS algorithm. |
1170 | 1167 |
/// |
1171 | 1168 |
///This function also has several \ref named-func-param "named parameters", |
1172 | 1169 |
///they are declared as the members of class \ref BfsWizard. |
1173 | 1170 |
///The following examples show how to use these parameters. |
1174 | 1171 |
///\code |
1175 | 1172 |
/// // Compute shortest path from node s to each node |
1176 | 1173 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
1177 | 1174 |
/// |
1178 | 1175 |
/// // Compute shortest path from s to t |
1179 | 1176 |
/// bool reached = bfs(g).path(p).dist(d).run(s,t); |
1180 | 1177 |
///\endcode |
1181 | 1178 |
///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()" |
1182 | 1179 |
///to the end of the parameter list. |
1183 | 1180 |
///\sa BfsWizard |
1184 | 1181 |
///\sa Bfs |
1185 | 1182 |
template<class GR> |
1186 | 1183 |
BfsWizard<BfsWizardBase<GR> > |
1187 | 1184 |
bfs(const GR &digraph) |
1188 | 1185 |
{ |
1189 | 1186 |
return BfsWizard<BfsWizardBase<GR> >(digraph); |
1190 | 1187 |
} |
1191 | 1188 |
|
1192 | 1189 |
#ifdef DOXYGEN |
... | ... |
@@ -1203,129 +1200,129 @@ |
1203 | 1200 |
/// |
1204 | 1201 |
/// This function is called for the source node(s) of the BFS. |
1205 | 1202 |
void start(const Node& node) {} |
1206 | 1203 |
/// \brief Called when a node is reached first time. |
1207 | 1204 |
/// |
1208 | 1205 |
/// This function is called when a node is reached first time. |
1209 | 1206 |
void reach(const Node& node) {} |
1210 | 1207 |
/// \brief Called when a node is processed. |
1211 | 1208 |
/// |
1212 | 1209 |
/// This function is called when a node is processed. |
1213 | 1210 |
void process(const Node& node) {} |
1214 | 1211 |
/// \brief Called when an arc reaches a new node. |
1215 | 1212 |
/// |
1216 | 1213 |
/// This function is called when the BFS finds an arc whose target node |
1217 | 1214 |
/// is not reached yet. |
1218 | 1215 |
void discover(const Arc& arc) {} |
1219 | 1216 |
/// \brief Called when an arc is examined but its target node is |
1220 | 1217 |
/// already discovered. |
1221 | 1218 |
/// |
1222 | 1219 |
/// This function is called when an arc is examined but its target node is |
1223 | 1220 |
/// already discovered. |
1224 | 1221 |
void examine(const Arc& arc) {} |
1225 | 1222 |
}; |
1226 | 1223 |
#else |
1227 | 1224 |
template <typename GR> |
1228 | 1225 |
struct BfsVisitor { |
1229 | 1226 |
typedef GR Digraph; |
1230 | 1227 |
typedef typename Digraph::Arc Arc; |
1231 | 1228 |
typedef typename Digraph::Node Node; |
1232 | 1229 |
void start(const Node&) {} |
1233 | 1230 |
void reach(const Node&) {} |
1234 | 1231 |
void process(const Node&) {} |
1235 | 1232 |
void discover(const Arc&) {} |
1236 | 1233 |
void examine(const Arc&) {} |
1237 | 1234 |
|
1238 | 1235 |
template <typename _Visitor> |
1239 | 1236 |
struct Constraints { |
1240 | 1237 |
void constraints() { |
1241 | 1238 |
Arc arc; |
1242 | 1239 |
Node node; |
1243 | 1240 |
visitor.start(node); |
1244 | 1241 |
visitor.reach(node); |
1245 | 1242 |
visitor.process(node); |
1246 | 1243 |
visitor.discover(arc); |
1247 | 1244 |
visitor.examine(arc); |
1248 | 1245 |
} |
1249 | 1246 |
_Visitor& visitor; |
1250 | 1247 |
}; |
1251 | 1248 |
}; |
1252 | 1249 |
#endif |
1253 | 1250 |
|
1254 | 1251 |
/// \brief Default traits class of BfsVisit class. |
1255 | 1252 |
/// |
1256 | 1253 |
/// Default traits class of BfsVisit class. |
1257 | 1254 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1258 | 1255 |
template<class GR> |
1259 | 1256 |
struct BfsVisitDefaultTraits { |
1260 | 1257 |
|
1261 | 1258 |
/// \brief The type of the digraph the algorithm runs on. |
1262 | 1259 |
typedef GR Digraph; |
1263 | 1260 |
|
1264 | 1261 |
/// \brief The type of the map that indicates which nodes are reached. |
1265 | 1262 |
/// |
1266 | 1263 |
/// The type of the map that indicates which nodes are reached. |
1267 |
/// It must |
|
1264 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
1268 | 1265 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1269 | 1266 |
|
1270 | 1267 |
/// \brief Instantiates a ReachedMap. |
1271 | 1268 |
/// |
1272 | 1269 |
/// This function instantiates a ReachedMap. |
1273 | 1270 |
/// \param digraph is the digraph, to which |
1274 | 1271 |
/// we would like to define the ReachedMap. |
1275 | 1272 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1276 | 1273 |
return new ReachedMap(digraph); |
1277 | 1274 |
} |
1278 | 1275 |
|
1279 | 1276 |
}; |
1280 | 1277 |
|
1281 | 1278 |
/// \ingroup search |
1282 | 1279 |
/// |
1283 | 1280 |
/// \brief BFS algorithm class with visitor interface. |
1284 | 1281 |
/// |
1285 | 1282 |
/// This class provides an efficient implementation of the BFS algorithm |
1286 | 1283 |
/// with visitor interface. |
1287 | 1284 |
/// |
1288 | 1285 |
/// The BfsVisit class provides an alternative interface to the Bfs |
1289 | 1286 |
/// class. It works with callback mechanism, the BfsVisit object calls |
1290 | 1287 |
/// the member functions of the \c Visitor class on every BFS event. |
1291 | 1288 |
/// |
1292 | 1289 |
/// This interface of the BFS algorithm should be used in special cases |
1293 | 1290 |
/// when extra actions have to be performed in connection with certain |
1294 | 1291 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
1295 | 1292 |
/// instead. |
1296 | 1293 |
/// |
1297 | 1294 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1298 | 1295 |
/// The default type is \ref ListDigraph. |
1299 | 1296 |
/// The value of GR is not used directly by \ref BfsVisit, |
1300 | 1297 |
/// it is only passed to \ref BfsVisitDefaultTraits. |
1301 | 1298 |
/// \tparam VS The Visitor type that is used by the algorithm. |
1302 | 1299 |
/// \ref BfsVisitor "BfsVisitor<GR>" is an empty visitor, which |
1303 | 1300 |
/// does not observe the BFS events. If you want to observe the BFS |
1304 | 1301 |
/// events, you should implement your own visitor class. |
1305 | 1302 |
/// \tparam TR Traits class to set various data types used by the |
1306 | 1303 |
/// algorithm. The default traits class is |
1307 | 1304 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<GR>". |
1308 | 1305 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
1309 | 1306 |
/// a BFS visit traits class. |
1310 | 1307 |
#ifdef DOXYGEN |
1311 | 1308 |
template <typename GR, typename VS, typename TR> |
1312 | 1309 |
#else |
1313 | 1310 |
template <typename GR = ListDigraph, |
1314 | 1311 |
typename VS = BfsVisitor<GR>, |
1315 | 1312 |
typename TR = BfsVisitDefaultTraits<GR> > |
1316 | 1313 |
#endif |
1317 | 1314 |
class BfsVisit { |
1318 | 1315 |
public: |
1319 | 1316 |
|
1320 | 1317 |
///The traits class. |
1321 | 1318 |
typedef TR Traits; |
1322 | 1319 |
|
1323 | 1320 |
///The type of the digraph the algorithm runs on. |
1324 | 1321 |
typedef typename Traits::Digraph Digraph; |
1325 | 1322 |
|
1326 | 1323 |
///The visitor type used by the algorithm. |
1327 | 1324 |
typedef VS Visitor; |
1328 | 1325 |
|
1329 | 1326 |
///The type of the map that indicates which nodes are reached. |
1330 | 1327 |
typedef typename Traits::ReachedMap ReachedMap; |
1331 | 1328 |
|
... | ... |
@@ -1364,130 +1361,130 @@ |
1364 | 1361 |
|
1365 | 1362 |
typedef BfsVisit Create; |
1366 | 1363 |
|
1367 | 1364 |
/// \name Named Template Parameters |
1368 | 1365 |
|
1369 | 1366 |
///@{ |
1370 | 1367 |
template <class T> |
1371 | 1368 |
struct SetReachedMapTraits : public Traits { |
1372 | 1369 |
typedef T ReachedMap; |
1373 | 1370 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1374 | 1371 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
1375 | 1372 |
return 0; // ignore warnings |
1376 | 1373 |
} |
1377 | 1374 |
}; |
1378 | 1375 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1379 | 1376 |
/// ReachedMap type. |
1380 | 1377 |
/// |
1381 | 1378 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1382 | 1379 |
template <class T> |
1383 | 1380 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
1384 | 1381 |
SetReachedMapTraits<T> > { |
1385 | 1382 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1386 | 1383 |
}; |
1387 | 1384 |
///@} |
1388 | 1385 |
|
1389 | 1386 |
public: |
1390 | 1387 |
|
1391 | 1388 |
/// \brief Constructor. |
1392 | 1389 |
/// |
1393 | 1390 |
/// Constructor. |
1394 | 1391 |
/// |
1395 | 1392 |
/// \param digraph The digraph the algorithm runs on. |
1396 | 1393 |
/// \param visitor The visitor object of the algorithm. |
1397 | 1394 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
1398 | 1395 |
: _digraph(&digraph), _visitor(&visitor), |
1399 | 1396 |
_reached(0), local_reached(false) {} |
1400 | 1397 |
|
1401 | 1398 |
/// \brief Destructor. |
1402 | 1399 |
~BfsVisit() { |
1403 | 1400 |
if(local_reached) delete _reached; |
1404 | 1401 |
} |
1405 | 1402 |
|
1406 | 1403 |
/// \brief Sets the map that indicates which nodes are reached. |
1407 | 1404 |
/// |
1408 | 1405 |
/// Sets the map that indicates which nodes are reached. |
1409 | 1406 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1410 | 1407 |
/// or \ref init(), an instance will be allocated automatically. |
1411 | 1408 |
/// The destructor deallocates this automatically allocated map, |
1412 | 1409 |
/// of course. |
1413 | 1410 |
/// \return <tt> (*this) </tt> |
1414 | 1411 |
BfsVisit &reachedMap(ReachedMap &m) { |
1415 | 1412 |
if(local_reached) { |
1416 | 1413 |
delete _reached; |
1417 | 1414 |
local_reached = false; |
1418 | 1415 |
} |
1419 | 1416 |
_reached = &m; |
1420 | 1417 |
return *this; |
1421 | 1418 |
} |
1422 | 1419 |
|
1423 | 1420 |
public: |
1424 | 1421 |
|
1425 | 1422 |
/// \name Execution Control |
1426 | 1423 |
/// The simplest way to execute the BFS algorithm is to use one of the |
1427 | 1424 |
/// member functions called \ref run(Node) "run()".\n |
1428 |
/// If you need more control on the execution, first you have to call |
|
1429 |
/// \ref init(), then you can add several source nodes with |
|
1425 |
/// If you need better control on the execution, you have to call |
|
1426 |
/// \ref init() first, then you can add several source nodes with |
|
1430 | 1427 |
/// \ref addSource(). Finally the actual path computation can be |
1431 | 1428 |
/// performed with one of the \ref start() functions. |
1432 | 1429 |
|
1433 | 1430 |
/// @{ |
1434 | 1431 |
|
1435 | 1432 |
/// \brief Initializes the internal data structures. |
1436 | 1433 |
/// |
1437 | 1434 |
/// Initializes the internal data structures. |
1438 | 1435 |
void init() { |
1439 | 1436 |
create_maps(); |
1440 | 1437 |
_list.resize(countNodes(*_digraph)); |
1441 | 1438 |
_list_front = _list_back = -1; |
1442 | 1439 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1443 | 1440 |
_reached->set(u, false); |
1444 | 1441 |
} |
1445 | 1442 |
} |
1446 | 1443 |
|
1447 | 1444 |
/// \brief Adds a new source node. |
1448 | 1445 |
/// |
1449 | 1446 |
/// Adds a new source node to the set of nodes to be processed. |
1450 | 1447 |
void addSource(Node s) { |
1451 | 1448 |
if(!(*_reached)[s]) { |
1452 | 1449 |
_reached->set(s,true); |
1453 | 1450 |
_visitor->start(s); |
1454 | 1451 |
_visitor->reach(s); |
1455 | 1452 |
_list[++_list_back] = s; |
1456 | 1453 |
} |
1457 | 1454 |
} |
1458 | 1455 |
|
1459 | 1456 |
/// \brief Processes the next node. |
1460 | 1457 |
/// |
1461 | 1458 |
/// Processes the next node. |
1462 | 1459 |
/// |
1463 | 1460 |
/// \return The processed node. |
1464 | 1461 |
/// |
1465 | 1462 |
/// \pre The queue must not be empty. |
1466 | 1463 |
Node processNextNode() { |
1467 | 1464 |
Node n = _list[++_list_front]; |
1468 | 1465 |
_visitor->process(n); |
1469 | 1466 |
Arc e; |
1470 | 1467 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1471 | 1468 |
Node m = _digraph->target(e); |
1472 | 1469 |
if (!(*_reached)[m]) { |
1473 | 1470 |
_visitor->discover(e); |
1474 | 1471 |
_visitor->reach(m); |
1475 | 1472 |
_reached->set(m, true); |
1476 | 1473 |
_list[++_list_back] = m; |
1477 | 1474 |
} else { |
1478 | 1475 |
_visitor->examine(e); |
1479 | 1476 |
} |
1480 | 1477 |
} |
1481 | 1478 |
return n; |
1482 | 1479 |
} |
1483 | 1480 |
|
1484 | 1481 |
/// \brief Processes the next node. |
1485 | 1482 |
/// |
1486 | 1483 |
/// Processes the next node and checks if the given target node |
1487 | 1484 |
/// is reached. If the target node is reachable from the processed |
1488 | 1485 |
/// node, then the \c reach parameter will be set to \c true. |
1489 | 1486 |
/// |
1490 | 1487 |
/// \param target The target node. |
1491 | 1488 |
/// \retval reach Indicates if the target node is reached. |
1492 | 1489 |
/// It should be initially \c false. |
1493 | 1490 |
/// |
... | ... |
@@ -1674,79 +1671,79 @@ |
1674 | 1671 |
start(); |
1675 | 1672 |
} |
1676 | 1673 |
|
1677 | 1674 |
/// \brief Finds the shortest path between \c s and \c t. |
1678 | 1675 |
/// |
1679 | 1676 |
/// This method runs the %BFS algorithm from node \c s |
1680 | 1677 |
/// in order to compute the shortest path to node \c t |
1681 | 1678 |
/// (it stops searching when \c t is processed). |
1682 | 1679 |
/// |
1683 | 1680 |
/// \return \c true if \c t is reachable form \c s. |
1684 | 1681 |
/// |
1685 | 1682 |
/// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
1686 | 1683 |
/// shortcut of the following code. |
1687 | 1684 |
///\code |
1688 | 1685 |
/// b.init(); |
1689 | 1686 |
/// b.addSource(s); |
1690 | 1687 |
/// b.start(t); |
1691 | 1688 |
///\endcode |
1692 | 1689 |
bool run(Node s,Node t) { |
1693 | 1690 |
init(); |
1694 | 1691 |
addSource(s); |
1695 | 1692 |
start(t); |
1696 | 1693 |
return reached(t); |
1697 | 1694 |
} |
1698 | 1695 |
|
1699 | 1696 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1700 | 1697 |
/// |
1701 | 1698 |
/// This method runs the %BFS algorithm in order to |
1702 | 1699 |
/// compute the shortest path to each node. |
1703 | 1700 |
/// |
1704 | 1701 |
/// The algorithm computes |
1705 | 1702 |
/// - the shortest path tree (forest), |
1706 | 1703 |
/// - the distance of each node from the root(s). |
1707 | 1704 |
/// |
1708 | 1705 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
1709 | 1706 |
///\code |
1710 | 1707 |
/// b.init(); |
1711 | 1708 |
/// for (NodeIt n(gr); n != INVALID; ++n) { |
1712 | 1709 |
/// if (!b.reached(n)) { |
1713 | 1710 |
/// b.addSource(n); |
1714 | 1711 |
/// b.start(); |
1715 | 1712 |
/// } |
1716 | 1713 |
/// } |
1717 | 1714 |
///\endcode |
1718 | 1715 |
void run() { |
1719 | 1716 |
init(); |
1720 | 1717 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1721 | 1718 |
if (!reached(it)) { |
1722 | 1719 |
addSource(it); |
1723 | 1720 |
start(); |
1724 | 1721 |
} |
1725 | 1722 |
} |
1726 | 1723 |
} |
1727 | 1724 |
|
1728 | 1725 |
///@} |
1729 | 1726 |
|
1730 | 1727 |
/// \name Query Functions |
1731 | 1728 |
/// The results of the BFS algorithm can be obtained using these |
1732 | 1729 |
/// functions.\n |
1733 | 1730 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
1734 | 1731 |
/// before using them. |
1735 | 1732 |
|
1736 | 1733 |
///@{ |
1737 | 1734 |
|
1738 |
/// \brief Checks if |
|
1735 |
/// \brief Checks if the given node is reached from the root(s). |
|
1739 | 1736 |
/// |
1740 | 1737 |
/// Returns \c true if \c v is reached from the root(s). |
1741 | 1738 |
/// |
1742 | 1739 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
1743 | 1740 |
/// must be called before using this function. |
1744 | 1741 |
bool reached(Node v) const { return (*_reached)[v]; } |
1745 | 1742 |
|
1746 | 1743 |
///@} |
1747 | 1744 |
|
1748 | 1745 |
}; |
1749 | 1746 |
|
1750 | 1747 |
} //END OF NAMESPACE LEMON |
1751 | 1748 |
|
1752 | 1749 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BIN_HEAP_H |
20 | 20 |
#define LEMON_BIN_HEAP_H |
21 | 21 |
|
22 |
///\ingroup |
|
22 |
///\ingroup heaps |
|
23 | 23 |
///\file |
24 |
///\brief Binary |
|
24 |
///\brief Binary heap implementation. |
|
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 |
///\ingroup |
|
32 |
/// \ingroup heaps |
|
33 | 33 |
/// |
34 |
///\brief |
|
34 |
/// \brief Binary heap data structure. |
|
35 | 35 |
/// |
36 | 36 |
///This class implements the \e binary \e heap data structure. |
37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
37 | 38 |
/// |
38 |
///A \e heap is a data structure for storing items with specified values |
|
39 |
///called \e priorities in such a way that finding the item with minimum |
|
40 |
///priority is efficient. \c CMP specifies the ordering of the priorities. |
|
41 |
///In a heap one can change the priority of an item, add or erase an |
|
42 |
///item, etc. |
|
43 |
/// |
|
44 |
///\tparam PR Type of the priority of the items. |
|
45 |
///\tparam IM A read and writable item map with int values, used internally |
|
46 |
///to handle the cross references. |
|
47 |
///\tparam CMP A functor class for the ordering of the priorities. |
|
39 |
/// \tparam PR Type of the priorities of the items. |
|
40 |
/// \tparam IM A read-writable item map with \c int values, used |
|
41 |
/// internally to handle the cross references. |
|
42 |
/// \tparam CMP A functor class for comparing the priorities. |
|
48 | 43 |
///The default is \c std::less<PR>. |
49 |
/// |
|
50 |
///\sa FibHeap |
|
51 |
|
|
44 |
#ifdef DOXYGEN |
|
45 |
template <typename PR, typename IM, typename CMP> |
|
46 |
#else |
|
52 | 47 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
48 |
#endif |
|
53 | 49 |
class BinHeap { |
50 |
public: |
|
54 | 51 |
|
55 |
public: |
|
56 |
///\e |
|
52 |
/// Type of the item-int map. |
|
57 | 53 |
typedef IM ItemIntMap; |
58 |
/// |
|
54 |
/// Type of the priorities. |
|
59 | 55 |
typedef PR Prio; |
60 |
/// |
|
56 |
/// Type of the items stored in the heap. |
|
61 | 57 |
typedef typename ItemIntMap::Key Item; |
62 |
/// |
|
58 |
/// Type of the item-priority pairs. |
|
63 | 59 |
typedef std::pair<Item,Prio> Pair; |
64 |
/// |
|
60 |
/// Functor type for comparing the priorities. |
|
65 | 61 |
typedef CMP Compare; |
66 | 62 |
|
67 |
/// \brief Type to represent the |
|
63 |
/// \brief Type to represent the states of the items. |
|
68 | 64 |
/// |
69 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
70 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
65 |
/// Each item has a state associated to it. It can be "in heap", |
|
66 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
71 | 67 |
/// heap's point of view, but may be useful to the user. |
72 | 68 |
/// |
73 | 69 |
/// The item-int map must be initialized in such way that it assigns |
74 | 70 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
75 | 71 |
enum State { |
76 | 72 |
IN_HEAP = 0, ///< = 0. |
77 | 73 |
PRE_HEAP = -1, ///< = -1. |
78 | 74 |
POST_HEAP = -2 ///< = -2. |
79 | 75 |
}; |
80 | 76 |
|
81 | 77 |
private: |
82 | 78 |
std::vector<Pair> _data; |
83 | 79 |
Compare _comp; |
84 | 80 |
ItemIntMap &_iim; |
85 | 81 |
|
86 | 82 |
public: |
87 |
|
|
83 |
|
|
84 |
/// \brief Constructor. |
|
88 | 85 |
/// |
89 |
/// The constructor. |
|
90 |
/// \param map should be given to the constructor, since it is used |
|
91 |
/// internally to handle the cross references. The value of the map |
|
92 |
/// must be \c PRE_HEAP (<tt>-1</tt>) for every item. |
|
86 |
/// Constructor. |
|
87 |
/// \param map A map that assigns \c int values to the items. |
|
88 |
/// It is used internally to handle the cross references. |
|
89 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
93 | 90 |
explicit BinHeap(ItemIntMap &map) : _iim(map) {} |
94 | 91 |
|
95 |
/// \brief |
|
92 |
/// \brief Constructor. |
|
96 | 93 |
/// |
97 |
/// The constructor. |
|
98 |
/// \param map should be given to the constructor, since it is used |
|
99 |
/// internally to handle the cross references. The value of the map |
|
100 |
/// should be PRE_HEAP (-1) for each element. |
|
101 |
/// |
|
102 |
/// \param comp The comparator function object. |
|
94 |
/// Constructor. |
|
95 |
/// \param map A map that assigns \c int values to the items. |
|
96 |
/// It is used internally to handle the cross references. |
|
97 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
98 |
/// \param comp The function object used for comparing the priorities. |
|
103 | 99 |
BinHeap(ItemIntMap &map, const Compare &comp) |
104 | 100 |
: _iim(map), _comp(comp) {} |
105 | 101 |
|
106 | 102 |
|
107 |
/// The number of items stored in the heap. |
|
103 |
/// \brief The number of items stored in the heap. |
|
108 | 104 |
/// |
109 |
/// |
|
105 |
/// This function returns the number of items stored in the heap. |
|
110 | 106 |
int size() const { return _data.size(); } |
111 | 107 |
|
112 |
/// \brief |
|
108 |
/// \brief Check if the heap is empty. |
|
113 | 109 |
/// |
114 |
/// |
|
110 |
/// This function returns \c true if the heap is empty. |
|
115 | 111 |
bool empty() const { return _data.empty(); } |
116 | 112 |
|
117 |
/// \brief Make |
|
113 |
/// \brief Make the heap empty. |
|
118 | 114 |
/// |
119 |
/// Make empty this heap. It does not change the cross reference map. |
|
120 |
/// If you want to reuse what is not surely empty you should first clear |
|
121 |
/// the heap and after that you should set the cross reference map for |
|
122 |
/// each item to \c PRE_HEAP. |
|
115 |
/// This functon makes the heap empty. |
|
116 |
/// It does not change the cross reference map. If you want to reuse |
|
117 |
/// a heap that is not surely empty, you should first clear it and |
|
118 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
119 |
/// for each item. |
|
123 | 120 |
void clear() { |
124 | 121 |
_data.clear(); |
125 | 122 |
} |
126 | 123 |
|
127 | 124 |
private: |
128 | 125 |
static int parent(int i) { return (i-1)/2; } |
129 | 126 |
|
130 |
static int |
|
127 |
static int secondChild(int i) { return 2*i+2; } |
|
131 | 128 |
bool less(const Pair &p1, const Pair &p2) const { |
132 | 129 |
return _comp(p1.second, p2.second); |
133 | 130 |
} |
134 | 131 |
|
135 |
int |
|
132 |
int bubbleUp(int hole, Pair p) { |
|
136 | 133 |
int par = parent(hole); |
137 | 134 |
while( hole>0 && less(p,_data[par]) ) { |
138 | 135 |
move(_data[par],hole); |
139 | 136 |
hole = par; |
140 | 137 |
par = parent(hole); |
141 | 138 |
} |
142 | 139 |
move(p, hole); |
143 | 140 |
return hole; |
144 | 141 |
} |
145 | 142 |
|
146 |
int bubble_down(int hole, Pair p, int length) { |
|
147 |
int child = second_child(hole); |
|
143 |
int bubbleDown(int hole, Pair p, int length) { |
|
144 |
int child = secondChild(hole); |
|
148 | 145 |
while(child < length) { |
149 | 146 |
if( less(_data[child-1], _data[child]) ) { |
150 | 147 |
--child; |
151 | 148 |
} |
152 | 149 |
if( !less(_data[child], p) ) |
153 | 150 |
goto ok; |
154 | 151 |
move(_data[child], hole); |
155 | 152 |
hole = child; |
156 |
child = |
|
153 |
child = secondChild(hole); |
|
157 | 154 |
} |
158 | 155 |
child--; |
159 | 156 |
if( child<length && less(_data[child], p) ) { |
160 | 157 |
move(_data[child], hole); |
161 | 158 |
hole=child; |
162 | 159 |
} |
163 | 160 |
ok: |
164 | 161 |
move(p, hole); |
165 | 162 |
return hole; |
166 | 163 |
} |
167 | 164 |
|
168 | 165 |
void move(const Pair &p, int i) { |
169 | 166 |
_data[i] = p; |
170 | 167 |
_iim.set(p.first, i); |
171 | 168 |
} |
172 | 169 |
|
173 | 170 |
public: |
171 |
|
|
174 | 172 |
/// \brief Insert a pair of item and priority into the heap. |
175 | 173 |
/// |
176 |
/// |
|
174 |
/// This function inserts \c p.first to the heap with priority |
|
175 |
/// \c p.second. |
|
177 | 176 |
/// \param p The pair to insert. |
177 |
/// \pre \c p.first must not be stored in the heap. |
|
178 | 178 |
void push(const Pair &p) { |
179 | 179 |
int n = _data.size(); |
180 | 180 |
_data.resize(n+1); |
181 |
|
|
181 |
bubbleUp(n, p); |
|
182 | 182 |
} |
183 | 183 |
|
184 |
/// \brief Insert an item into the heap with the given |
|
184 |
/// \brief Insert an item into the heap with the given priority. |
|
185 | 185 |
/// |
186 |
/// |
|
186 |
/// This function inserts the given item into the heap with the |
|
187 |
/// given priority. |
|
187 | 188 |
/// \param i The item to insert. |
188 | 189 |
/// \param p The priority of the item. |
190 |
/// \pre \e i must not be stored in the heap. |
|
189 | 191 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
190 | 192 |
|
191 |
/// \brief |
|
193 |
/// \brief Return the item having minimum priority. |
|
192 | 194 |
/// |
193 |
/// This method returns the item with minimum priority relative to \c |
|
194 |
/// Compare. |
|
195 |
/// |
|
195 |
/// This function returns the item having minimum priority. |
|
196 |
/// \pre The heap must be non-empty. |
|
196 | 197 |
Item top() const { |
197 | 198 |
return _data[0].first; |
198 | 199 |
} |
199 | 200 |
|
200 |
/// \brief |
|
201 |
/// \brief The minimum priority. |
|
201 | 202 |
/// |
202 |
/// It returns the minimum priority relative to \c Compare. |
|
203 |
/// \pre The heap must be nonempty. |
|
203 |
/// This function returns the minimum priority. |
|
204 |
/// \pre The heap must be non-empty. |
|
204 | 205 |
Prio prio() const { |
205 | 206 |
return _data[0].second; |
206 | 207 |
} |
207 | 208 |
|
208 |
/// \brief |
|
209 |
/// \brief Remove the item having minimum priority. |
|
209 | 210 |
/// |
210 |
/// This method deletes the item with minimum priority relative to \c |
|
211 |
/// Compare from the heap. |
|
211 |
/// This function removes the item having minimum priority. |
|
212 | 212 |
/// \pre The heap must be non-empty. |
213 | 213 |
void pop() { |
214 | 214 |
int n = _data.size()-1; |
215 | 215 |
_iim.set(_data[0].first, POST_HEAP); |
216 | 216 |
if (n > 0) { |
217 |
|
|
217 |
bubbleDown(0, _data[n], n); |
|
218 | 218 |
} |
219 | 219 |
_data.pop_back(); |
220 | 220 |
} |
221 | 221 |
|
222 |
/// \brief |
|
222 |
/// \brief Remove the given item from the heap. |
|
223 | 223 |
/// |
224 |
/// This method deletes item \c i from the heap. |
|
225 |
/// \param i The item to erase. |
|
226 |
/// |
|
224 |
/// This function removes the given item from the heap if it is |
|
225 |
/// already stored. |
|
226 |
/// \param i The item to delete. |
|
227 |
/// \pre \e i must be in the heap. |
|
227 | 228 |
void erase(const Item &i) { |
228 | 229 |
int h = _iim[i]; |
229 | 230 |
int n = _data.size()-1; |
230 | 231 |
_iim.set(_data[h].first, POST_HEAP); |
231 | 232 |
if( h < n ) { |
232 |
if ( bubble_up(h, _data[n]) == h) { |
|
233 |
bubble_down(h, _data[n], n); |
|
233 |
if ( bubbleUp(h, _data[n]) == h) { |
|
234 |
bubbleDown(h, _data[n], n); |
|
234 | 235 |
} |
235 | 236 |
} |
236 | 237 |
_data.pop_back(); |
237 | 238 |
} |
238 | 239 |
|
239 |
|
|
240 |
/// \brief Returns the priority of \c i. |
|
240 |
/// \brief The priority of the given item. |
|
241 | 241 |
/// |
242 |
/// This function returns the priority of |
|
242 |
/// This function returns the priority of the given item. |
|
243 | 243 |
/// \param i The item. |
244 |
/// \pre \ |
|
244 |
/// \pre \e i must be in the heap. |
|
245 | 245 |
Prio operator[](const Item &i) const { |
246 | 246 |
int idx = _iim[i]; |
247 | 247 |
return _data[idx].second; |
248 | 248 |
} |
249 | 249 |
|
250 |
/// \brief \c i gets to the heap with priority \c p independently |
|
251 |
/// if \c i was already there. |
|
250 |
/// \brief Set the priority of an item or insert it, if it is |
|
251 |
/// not stored in the heap. |
|
252 | 252 |
/// |
253 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
254 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
253 |
/// This method sets the priority of the given item if it is |
|
254 |
/// already stored in the heap. Otherwise it inserts the given |
|
255 |
/// item into the heap with the given priority. |
|
255 | 256 |
/// \param i The item. |
256 | 257 |
/// \param p The priority. |
257 | 258 |
void set(const Item &i, const Prio &p) { |
258 | 259 |
int idx = _iim[i]; |
259 | 260 |
if( idx < 0 ) { |
260 | 261 |
push(i,p); |
261 | 262 |
} |
262 | 263 |
else if( _comp(p, _data[idx].second) ) { |
263 |
|
|
264 |
bubbleUp(idx, Pair(i,p)); |
|
264 | 265 |
} |
265 | 266 |
else { |
266 |
|
|
267 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
267 | 268 |
} |
268 | 269 |
} |
269 | 270 |
|
270 |
/// \brief |
|
271 |
/// \brief Decrease the priority of an item to the given value. |
|
271 | 272 |
/// |
272 |
/// This |
|
273 |
/// This function decreases the priority of an item to the given value. |
|
273 | 274 |
/// \param i The item. |
274 | 275 |
/// \param p The priority. |
275 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
276 |
/// p relative to \c Compare. |
|
276 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
277 | 277 |
void decrease(const Item &i, const Prio &p) { |
278 | 278 |
int idx = _iim[i]; |
279 |
|
|
279 |
bubbleUp(idx, Pair(i,p)); |
|
280 | 280 |
} |
281 | 281 |
|
282 |
/// \brief |
|
282 |
/// \brief Increase the priority of an item to the given value. |
|
283 | 283 |
/// |
284 |
/// This |
|
284 |
/// This function increases the priority of an item to the given value. |
|
285 | 285 |
/// \param i The item. |
286 | 286 |
/// \param p The priority. |
287 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
288 |
/// p relative to \c Compare. |
|
287 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
289 | 288 |
void increase(const Item &i, const Prio &p) { |
290 | 289 |
int idx = _iim[i]; |
291 |
|
|
290 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
292 | 291 |
} |
293 | 292 |
|
294 |
/// \brief Returns if \c item is in, has already been in, or has |
|
295 |
/// never been in the heap. |
|
293 |
/// \brief Return the state of an item. |
|
296 | 294 |
/// |
297 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
298 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
299 |
/// otherwise. In the latter case it is possible that \c item will |
|
300 |
/// get back to the heap again. |
|
295 |
/// This method returns \c PRE_HEAP if the given item has never |
|
296 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
297 |
/// and \c POST_HEAP otherwise. |
|
298 |
/// In the latter case it is possible that the item will get back |
|
299 |
/// to the heap again. |
|
301 | 300 |
/// \param i The item. |
302 | 301 |
State state(const Item &i) const { |
303 | 302 |
int s = _iim[i]; |
304 | 303 |
if( s>=0 ) |
305 | 304 |
s=0; |
306 | 305 |
return State(s); |
307 | 306 |
} |
308 | 307 |
|
309 |
/// \brief |
|
308 |
/// \brief Set the state of an item in the heap. |
|
310 | 309 |
/// |
311 |
/// Sets the state of the \c item in the heap. It can be used to |
|
312 |
/// manually clear the heap when it is important to achive the |
|
313 |
/// |
|
310 |
/// This function sets the state of the given item in the heap. |
|
311 |
/// It can be used to manually clear the heap when it is important |
|
312 |
/// to achive better time complexity. |
|
314 | 313 |
/// \param i The item. |
315 | 314 |
/// \param st The state. It should not be \c IN_HEAP. |
316 | 315 |
void state(const Item& i, State st) { |
317 | 316 |
switch (st) { |
318 | 317 |
case POST_HEAP: |
319 | 318 |
case PRE_HEAP: |
320 | 319 |
if (state(i) == IN_HEAP) { |
321 | 320 |
erase(i); |
322 | 321 |
} |
323 | 322 |
_iim[i] = st; |
324 | 323 |
break; |
325 | 324 |
case IN_HEAP: |
326 | 325 |
break; |
327 | 326 |
} |
328 | 327 |
} |
329 | 328 |
|
330 |
/// \brief |
|
329 |
/// \brief Replace an item in the heap. |
|
331 | 330 |
/// |
332 |
/// The \c i item is replaced with \c j item. The \c i item should |
|
333 |
/// be in the heap, while the \c j should be out of the heap. The |
|
334 |
/// \c i item will out of the heap and \c j will be in the heap |
|
335 |
/// with the same prioriority as prevoiusly the \c i item. |
|
331 |
/// This function replaces item \c i with item \c j. |
|
332 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
333 |
/// After calling this method, item \c i will be out of the |
|
334 |
/// heap and \c j will be in the heap with the same prioriority |
|
335 |
/// as item \c i had before. |
|
336 | 336 |
void replace(const Item& i, const Item& j) { |
337 | 337 |
int idx = _iim[i]; |
338 | 338 |
_iim.set(i, _iim[j]); |
339 | 339 |
_iim.set(j, idx); |
340 | 340 |
_data[idx].first = j; |
341 | 341 |
} |
342 | 342 |
|
343 | 343 |
}; // class BinHeap |
344 | 344 |
|
345 | 345 |
} // namespace lemon |
346 | 346 |
|
347 | 347 |
#endif // LEMON_BIN_HEAP_H |
... | ... |
@@ -476,150 +476,150 @@ |
476 | 476 |
|
477 | 477 |
IncEdgeIt(const Graph& _graph, const Node &n) : graph(&_graph) { |
478 | 478 |
_graph.firstInc(*this, direction, n); |
479 | 479 |
} |
480 | 480 |
|
481 | 481 |
IncEdgeIt(const Graph& _graph, const Edge &ue, const Node &n) |
482 | 482 |
: graph(&_graph), Edge(ue) { |
483 | 483 |
direction = (_graph.source(ue) == n); |
484 | 484 |
} |
485 | 485 |
|
486 | 486 |
IncEdgeIt& operator++() { |
487 | 487 |
graph->nextInc(*this, direction); |
488 | 488 |
return *this; |
489 | 489 |
} |
490 | 490 |
}; |
491 | 491 |
|
492 | 492 |
// \brief Base node of the iterator |
493 | 493 |
// |
494 | 494 |
// Returns the base node (ie. the source in this case) of the iterator |
495 | 495 |
Node baseNode(const OutArcIt &e) const { |
496 | 496 |
return Parent::source(static_cast<const Arc&>(e)); |
497 | 497 |
} |
498 | 498 |
// \brief Running node of the iterator |
499 | 499 |
// |
500 | 500 |
// Returns the running node (ie. the target in this case) of the |
501 | 501 |
// iterator |
502 | 502 |
Node runningNode(const OutArcIt &e) const { |
503 | 503 |
return Parent::target(static_cast<const Arc&>(e)); |
504 | 504 |
} |
505 | 505 |
|
506 | 506 |
// \brief Base node of the iterator |
507 | 507 |
// |
508 | 508 |
// Returns the base node (ie. the target in this case) of the iterator |
509 | 509 |
Node baseNode(const InArcIt &e) const { |
510 | 510 |
return Parent::target(static_cast<const Arc&>(e)); |
511 | 511 |
} |
512 | 512 |
// \brief Running node of the iterator |
513 | 513 |
// |
514 | 514 |
// Returns the running node (ie. the source in this case) of the |
515 | 515 |
// iterator |
516 | 516 |
Node runningNode(const InArcIt &e) const { |
517 | 517 |
return Parent::source(static_cast<const Arc&>(e)); |
518 | 518 |
} |
519 | 519 |
|
520 | 520 |
// Base node of the iterator |
521 | 521 |
// |
522 | 522 |
// Returns the base node of the iterator |
523 | 523 |
Node baseNode(const IncEdgeIt &e) const { |
524 | 524 |
return e.direction ? u(e) : v(e); |
525 | 525 |
} |
526 | 526 |
// Running node of the iterator |
527 | 527 |
// |
528 | 528 |
// Returns the running node of the iterator |
529 | 529 |
Node runningNode(const IncEdgeIt &e) const { |
530 | 530 |
return e.direction ? v(e) : u(e); |
531 | 531 |
} |
532 | 532 |
|
533 | 533 |
|
534 | 534 |
template <typename _Value> |
535 | 535 |
class ArcMap |
536 | 536 |
: public MapExtender<DefaultMap<Graph, Arc, _Value> > { |
537 | 537 |
typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent; |
538 | 538 |
|
539 | 539 |
public: |
540 |
ArcMap(const Graph& _g) |
|
540 |
explicit ArcMap(const Graph& _g) |
|
541 | 541 |
: Parent(_g) {} |
542 | 542 |
ArcMap(const Graph& _g, const _Value& _v) |
543 | 543 |
: Parent(_g, _v) {} |
544 | 544 |
|
545 | 545 |
ArcMap& operator=(const ArcMap& cmap) { |
546 | 546 |
return operator=<ArcMap>(cmap); |
547 | 547 |
} |
548 | 548 |
|
549 | 549 |
template <typename CMap> |
550 | 550 |
ArcMap& operator=(const CMap& cmap) { |
551 | 551 |
Parent::operator=(cmap); |
552 | 552 |
return *this; |
553 | 553 |
} |
554 | 554 |
|
555 | 555 |
}; |
556 | 556 |
|
557 | 557 |
|
558 | 558 |
template <typename _Value> |
559 | 559 |
class EdgeMap |
560 | 560 |
: public MapExtender<DefaultMap<Graph, Edge, _Value> > { |
561 | 561 |
typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent; |
562 | 562 |
|
563 | 563 |
public: |
564 |
EdgeMap(const Graph& _g) |
|
564 |
explicit EdgeMap(const Graph& _g) |
|
565 | 565 |
: Parent(_g) {} |
566 | 566 |
|
567 | 567 |
EdgeMap(const Graph& _g, const _Value& _v) |
568 | 568 |
: Parent(_g, _v) {} |
569 | 569 |
|
570 | 570 |
EdgeMap& operator=(const EdgeMap& cmap) { |
571 | 571 |
return operator=<EdgeMap>(cmap); |
572 | 572 |
} |
573 | 573 |
|
574 | 574 |
template <typename CMap> |
575 | 575 |
EdgeMap& operator=(const CMap& cmap) { |
576 | 576 |
Parent::operator=(cmap); |
577 | 577 |
return *this; |
578 | 578 |
} |
579 | 579 |
|
580 | 580 |
}; |
581 | 581 |
|
582 | 582 |
|
583 | 583 |
// Alteration extension |
584 | 584 |
|
585 | 585 |
Edge addEdge(const Node& from, const Node& to) { |
586 | 586 |
Edge edge = Parent::addEdge(from, to); |
587 | 587 |
notifier(Edge()).add(edge); |
588 | 588 |
std::vector<Arc> arcs; |
589 | 589 |
arcs.push_back(Parent::direct(edge, true)); |
590 | 590 |
arcs.push_back(Parent::direct(edge, false)); |
591 | 591 |
notifier(Arc()).add(arcs); |
592 | 592 |
return edge; |
593 | 593 |
} |
594 | 594 |
|
595 | 595 |
void clear() { |
596 | 596 |
notifier(Arc()).clear(); |
597 | 597 |
notifier(Edge()).clear(); |
598 | 598 |
Parent::clear(); |
599 | 599 |
} |
600 | 600 |
|
601 | 601 |
void erase(const Edge& edge) { |
602 | 602 |
std::vector<Arc> arcs; |
603 | 603 |
arcs.push_back(Parent::direct(edge, true)); |
604 | 604 |
arcs.push_back(Parent::direct(edge, false)); |
605 | 605 |
notifier(Arc()).erase(arcs); |
606 | 606 |
notifier(Edge()).erase(edge); |
607 | 607 |
Parent::erase(edge); |
608 | 608 |
} |
609 | 609 |
|
610 | 610 |
|
611 | 611 |
EdgeSetExtender() { |
612 | 612 |
arc_notifier.setContainer(*this); |
613 | 613 |
edge_notifier.setContainer(*this); |
614 | 614 |
} |
615 | 615 |
|
616 | 616 |
~EdgeSetExtender() { |
617 | 617 |
edge_notifier.clear(); |
618 | 618 |
arc_notifier.clear(); |
619 | 619 |
} |
620 | 620 |
|
621 | 621 |
}; |
622 | 622 |
|
623 | 623 |
} |
624 | 624 |
|
625 | 625 |
#endif |
... | ... |
@@ -543,177 +543,177 @@ |
543 | 543 |
IncEdgeIt(const Graph& graph, const Node &node) : _graph(&graph) { |
544 | 544 |
_graph->firstInc(*this, _direction, node); |
545 | 545 |
} |
546 | 546 |
|
547 | 547 |
IncEdgeIt(const Graph& graph, const Edge &edge, const Node &node) |
548 | 548 |
: _graph(&graph), Edge(edge) { |
549 | 549 |
_direction = (_graph->source(edge) == node); |
550 | 550 |
} |
551 | 551 |
|
552 | 552 |
IncEdgeIt& operator++() { |
553 | 553 |
_graph->nextInc(*this, _direction); |
554 | 554 |
return *this; |
555 | 555 |
} |
556 | 556 |
}; |
557 | 557 |
|
558 | 558 |
// \brief Base node of the iterator |
559 | 559 |
// |
560 | 560 |
// Returns the base node (ie. the source in this case) of the iterator |
561 | 561 |
Node baseNode(const OutArcIt &arc) const { |
562 | 562 |
return Parent::source(static_cast<const Arc&>(arc)); |
563 | 563 |
} |
564 | 564 |
// \brief Running node of the iterator |
565 | 565 |
// |
566 | 566 |
// Returns the running node (ie. the target in this case) of the |
567 | 567 |
// iterator |
568 | 568 |
Node runningNode(const OutArcIt &arc) const { |
569 | 569 |
return Parent::target(static_cast<const Arc&>(arc)); |
570 | 570 |
} |
571 | 571 |
|
572 | 572 |
// \brief Base node of the iterator |
573 | 573 |
// |
574 | 574 |
// Returns the base node (ie. the target in this case) of the iterator |
575 | 575 |
Node baseNode(const InArcIt &arc) const { |
576 | 576 |
return Parent::target(static_cast<const Arc&>(arc)); |
577 | 577 |
} |
578 | 578 |
// \brief Running node of the iterator |
579 | 579 |
// |
580 | 580 |
// Returns the running node (ie. the source in this case) of the |
581 | 581 |
// iterator |
582 | 582 |
Node runningNode(const InArcIt &arc) const { |
583 | 583 |
return Parent::source(static_cast<const Arc&>(arc)); |
584 | 584 |
} |
585 | 585 |
|
586 | 586 |
// Base node of the iterator |
587 | 587 |
// |
588 | 588 |
// Returns the base node of the iterator |
589 | 589 |
Node baseNode(const IncEdgeIt &edge) const { |
590 | 590 |
return edge._direction ? u(edge) : v(edge); |
591 | 591 |
} |
592 | 592 |
// Running node of the iterator |
593 | 593 |
// |
594 | 594 |
// Returns the running node of the iterator |
595 | 595 |
Node runningNode(const IncEdgeIt &edge) const { |
596 | 596 |
return edge._direction ? v(edge) : u(edge); |
597 | 597 |
} |
598 | 598 |
|
599 | 599 |
// Mappable extension |
600 | 600 |
|
601 | 601 |
template <typename _Value> |
602 | 602 |
class NodeMap |
603 | 603 |
: public MapExtender<DefaultMap<Graph, Node, _Value> > { |
604 | 604 |
typedef MapExtender<DefaultMap<Graph, Node, _Value> > Parent; |
605 | 605 |
|
606 | 606 |
public: |
607 |
NodeMap(const Graph& graph) |
|
607 |
explicit NodeMap(const Graph& graph) |
|
608 | 608 |
: Parent(graph) {} |
609 | 609 |
NodeMap(const Graph& graph, const _Value& value) |
610 | 610 |
: Parent(graph, value) {} |
611 | 611 |
|
612 | 612 |
private: |
613 | 613 |
NodeMap& operator=(const NodeMap& cmap) { |
614 | 614 |
return operator=<NodeMap>(cmap); |
615 | 615 |
} |
616 | 616 |
|
617 | 617 |
template <typename CMap> |
618 | 618 |
NodeMap& operator=(const CMap& cmap) { |
619 | 619 |
Parent::operator=(cmap); |
620 | 620 |
return *this; |
621 | 621 |
} |
622 | 622 |
|
623 | 623 |
}; |
624 | 624 |
|
625 | 625 |
template <typename _Value> |
626 | 626 |
class ArcMap |
627 | 627 |
: public MapExtender<DefaultMap<Graph, Arc, _Value> > { |
628 | 628 |
typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent; |
629 | 629 |
|
630 | 630 |
public: |
631 |
ArcMap(const Graph& graph) |
|
631 |
explicit ArcMap(const Graph& graph) |
|
632 | 632 |
: Parent(graph) {} |
633 | 633 |
ArcMap(const Graph& graph, const _Value& value) |
634 | 634 |
: Parent(graph, value) {} |
635 | 635 |
|
636 | 636 |
private: |
637 | 637 |
ArcMap& operator=(const ArcMap& cmap) { |
638 | 638 |
return operator=<ArcMap>(cmap); |
639 | 639 |
} |
640 | 640 |
|
641 | 641 |
template <typename CMap> |
642 | 642 |
ArcMap& operator=(const CMap& cmap) { |
643 | 643 |
Parent::operator=(cmap); |
644 | 644 |
return *this; |
645 | 645 |
} |
646 | 646 |
}; |
647 | 647 |
|
648 | 648 |
|
649 | 649 |
template <typename _Value> |
650 | 650 |
class EdgeMap |
651 | 651 |
: public MapExtender<DefaultMap<Graph, Edge, _Value> > { |
652 | 652 |
typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent; |
653 | 653 |
|
654 | 654 |
public: |
655 |
EdgeMap(const Graph& graph) |
|
655 |
explicit EdgeMap(const Graph& graph) |
|
656 | 656 |
: Parent(graph) {} |
657 | 657 |
|
658 | 658 |
EdgeMap(const Graph& graph, const _Value& value) |
659 | 659 |
: Parent(graph, value) {} |
660 | 660 |
|
661 | 661 |
private: |
662 | 662 |
EdgeMap& operator=(const EdgeMap& cmap) { |
663 | 663 |
return operator=<EdgeMap>(cmap); |
664 | 664 |
} |
665 | 665 |
|
666 | 666 |
template <typename CMap> |
667 | 667 |
EdgeMap& operator=(const CMap& cmap) { |
668 | 668 |
Parent::operator=(cmap); |
669 | 669 |
return *this; |
670 | 670 |
} |
671 | 671 |
|
672 | 672 |
}; |
673 | 673 |
|
674 | 674 |
// Alteration extension |
675 | 675 |
|
676 | 676 |
Node addNode() { |
677 | 677 |
Node node = Parent::addNode(); |
678 | 678 |
notifier(Node()).add(node); |
679 | 679 |
return node; |
680 | 680 |
} |
681 | 681 |
|
682 | 682 |
Edge addEdge(const Node& from, const Node& to) { |
683 | 683 |
Edge edge = Parent::addEdge(from, to); |
684 | 684 |
notifier(Edge()).add(edge); |
685 | 685 |
std::vector<Arc> ev; |
686 | 686 |
ev.push_back(Parent::direct(edge, true)); |
687 | 687 |
ev.push_back(Parent::direct(edge, false)); |
688 | 688 |
notifier(Arc()).add(ev); |
689 | 689 |
return edge; |
690 | 690 |
} |
691 | 691 |
|
692 | 692 |
void clear() { |
693 | 693 |
notifier(Arc()).clear(); |
694 | 694 |
notifier(Edge()).clear(); |
695 | 695 |
notifier(Node()).clear(); |
696 | 696 |
Parent::clear(); |
697 | 697 |
} |
698 | 698 |
|
699 | 699 |
template <typename Graph, typename NodeRefMap, typename EdgeRefMap> |
700 | 700 |
void build(const Graph& graph, NodeRefMap& nodeRef, |
701 | 701 |
EdgeRefMap& edgeRef) { |
702 | 702 |
Parent::build(graph, nodeRef, edgeRef); |
703 | 703 |
notifier(Node()).build(); |
704 | 704 |
notifier(Edge()).build(); |
705 | 705 |
notifier(Arc()).build(); |
706 | 706 |
} |
707 | 707 |
|
708 | 708 |
void erase(const Node& node) { |
709 | 709 |
Arc arc; |
710 | 710 |
Parent::firstOut(arc, node); |
711 | 711 |
while (arc != INVALID ) { |
712 | 712 |
erase(arc); |
713 | 713 |
Parent::firstOut(arc, node); |
714 | 714 |
} |
715 | 715 |
|
716 | 716 |
Parent::firstIn(arc, node); |
717 | 717 |
while (arc != INVALID ) { |
718 | 718 |
erase(arc); |
719 | 719 |
Parent::firstIn(arc, node); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_MAP_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_MAP_EXTENDER_H |
21 | 21 |
|
22 | 22 |
#include <iterator> |
23 | 23 |
|
24 | 24 |
#include <lemon/bits/traits.h> |
25 | 25 |
|
26 | 26 |
#include <lemon/concept_check.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 | 29 |
//\file |
30 | 30 |
//\brief Extenders for iterable maps. |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
// \ingroup graphbits |
35 | 35 |
// |
36 | 36 |
// \brief Extender for maps |
37 | 37 |
template <typename _Map> |
38 | 38 |
class MapExtender : public _Map { |
39 | 39 |
typedef _Map Parent; |
40 | 40 |
typedef typename Parent::GraphType GraphType; |
41 | 41 |
|
42 | 42 |
public: |
43 | 43 |
|
44 | 44 |
typedef MapExtender Map; |
45 | 45 |
typedef typename Parent::Key Item; |
46 | 46 |
|
47 | 47 |
typedef typename Parent::Key Key; |
48 | 48 |
typedef typename Parent::Value Value; |
49 | 49 |
typedef typename Parent::Reference Reference; |
50 | 50 |
typedef typename Parent::ConstReference ConstReference; |
51 | 51 |
|
52 |
typedef typename Parent::ReferenceMapTag ReferenceMapTag; |
|
53 |
|
|
52 | 54 |
class MapIt; |
53 | 55 |
class ConstMapIt; |
54 | 56 |
|
55 | 57 |
friend class MapIt; |
56 | 58 |
friend class ConstMapIt; |
57 | 59 |
|
58 | 60 |
public: |
59 | 61 |
|
60 | 62 |
MapExtender(const GraphType& graph) |
61 | 63 |
: Parent(graph) {} |
62 | 64 |
|
63 | 65 |
MapExtender(const GraphType& graph, const Value& value) |
64 | 66 |
: Parent(graph, value) {} |
65 | 67 |
|
66 | 68 |
private: |
67 | 69 |
MapExtender& operator=(const MapExtender& cmap) { |
68 | 70 |
return operator=<MapExtender>(cmap); |
69 | 71 |
} |
70 | 72 |
|
71 | 73 |
template <typename CMap> |
72 | 74 |
MapExtender& operator=(const CMap& cmap) { |
73 | 75 |
Parent::operator=(cmap); |
74 | 76 |
return *this; |
75 | 77 |
} |
76 | 78 |
|
77 | 79 |
public: |
78 | 80 |
class MapIt : public Item { |
79 | 81 |
typedef Item Parent; |
80 | 82 |
|
81 | 83 |
public: |
82 | 84 |
|
83 | 85 |
typedef typename Map::Value Value; |
84 | 86 |
|
85 | 87 |
MapIt() {} |
86 | 88 |
|
87 | 89 |
MapIt(Invalid i) : Parent(i) { } |
88 | 90 |
|
89 | 91 |
explicit MapIt(Map& _map) : map(_map) { |
90 | 92 |
map.notifier()->first(*this); |
91 | 93 |
} |
92 | 94 |
|
93 | 95 |
MapIt(const Map& _map, const Item& item) |
94 | 96 |
: Parent(item), map(_map) {} |
95 | 97 |
|
96 | 98 |
MapIt& operator++() { |
97 | 99 |
map.notifier()->next(*this); |
98 | 100 |
return *this; |
99 | 101 |
} |
100 | 102 |
|
101 | 103 |
typename MapTraits<Map>::ConstReturnValue operator*() const { |
102 | 104 |
return map[*this]; |
103 | 105 |
} |
104 | 106 |
|
105 | 107 |
typename MapTraits<Map>::ReturnValue operator*() { |
106 | 108 |
return map[*this]; |
107 | 109 |
} |
108 | 110 |
|
109 | 111 |
void set(const Value& value) { |
110 | 112 |
map.set(*this, value); |
111 | 113 |
} |
112 | 114 |
|
113 | 115 |
protected: |
114 | 116 |
Map& map; |
115 | 117 |
|
... | ... |
@@ -130,128 +132,130 @@ |
130 | 132 |
map.notifier()->first(*this); |
131 | 133 |
} |
132 | 134 |
|
133 | 135 |
ConstMapIt(const Map& _map, const Item& item) |
134 | 136 |
: Parent(item), map(_map) {} |
135 | 137 |
|
136 | 138 |
ConstMapIt& operator++() { |
137 | 139 |
map.notifier()->next(*this); |
138 | 140 |
return *this; |
139 | 141 |
} |
140 | 142 |
|
141 | 143 |
typename MapTraits<Map>::ConstReturnValue operator*() const { |
142 | 144 |
return map[*this]; |
143 | 145 |
} |
144 | 146 |
|
145 | 147 |
protected: |
146 | 148 |
const Map& map; |
147 | 149 |
}; |
148 | 150 |
|
149 | 151 |
class ItemIt : public Item { |
150 | 152 |
typedef Item Parent; |
151 | 153 |
|
152 | 154 |
public: |
153 | 155 |
|
154 | 156 |
ItemIt() {} |
155 | 157 |
|
156 | 158 |
ItemIt(Invalid i) : Parent(i) { } |
157 | 159 |
|
158 | 160 |
explicit ItemIt(Map& _map) : map(_map) { |
159 | 161 |
map.notifier()->first(*this); |
160 | 162 |
} |
161 | 163 |
|
162 | 164 |
ItemIt(const Map& _map, const Item& item) |
163 | 165 |
: Parent(item), map(_map) {} |
164 | 166 |
|
165 | 167 |
ItemIt& operator++() { |
166 | 168 |
map.notifier()->next(*this); |
167 | 169 |
return *this; |
168 | 170 |
} |
169 | 171 |
|
170 | 172 |
protected: |
171 | 173 |
const Map& map; |
172 | 174 |
|
173 | 175 |
}; |
174 | 176 |
}; |
175 | 177 |
|
176 | 178 |
// \ingroup graphbits |
177 | 179 |
// |
178 | 180 |
// \brief Extender for maps which use a subset of the items. |
179 | 181 |
template <typename _Graph, typename _Map> |
180 | 182 |
class SubMapExtender : public _Map { |
181 | 183 |
typedef _Map Parent; |
182 | 184 |
typedef _Graph GraphType; |
183 | 185 |
|
184 | 186 |
public: |
185 | 187 |
|
186 | 188 |
typedef SubMapExtender Map; |
187 | 189 |
typedef typename Parent::Key Item; |
188 | 190 |
|
189 | 191 |
typedef typename Parent::Key Key; |
190 | 192 |
typedef typename Parent::Value Value; |
191 | 193 |
typedef typename Parent::Reference Reference; |
192 | 194 |
typedef typename Parent::ConstReference ConstReference; |
193 | 195 |
|
196 |
typedef typename Parent::ReferenceMapTag ReferenceMapTag; |
|
197 |
|
|
194 | 198 |
class MapIt; |
195 | 199 |
class ConstMapIt; |
196 | 200 |
|
197 | 201 |
friend class MapIt; |
198 | 202 |
friend class ConstMapIt; |
199 | 203 |
|
200 | 204 |
public: |
201 | 205 |
|
202 | 206 |
SubMapExtender(const GraphType& _graph) |
203 | 207 |
: Parent(_graph), graph(_graph) {} |
204 | 208 |
|
205 | 209 |
SubMapExtender(const GraphType& _graph, const Value& _value) |
206 | 210 |
: Parent(_graph, _value), graph(_graph) {} |
207 | 211 |
|
208 | 212 |
private: |
209 | 213 |
SubMapExtender& operator=(const SubMapExtender& cmap) { |
210 | 214 |
return operator=<MapExtender>(cmap); |
211 | 215 |
} |
212 | 216 |
|
213 | 217 |
template <typename CMap> |
214 | 218 |
SubMapExtender& operator=(const CMap& cmap) { |
215 | 219 |
checkConcept<concepts::ReadMap<Key, Value>, CMap>(); |
216 | 220 |
Item it; |
217 | 221 |
for (graph.first(it); it != INVALID; graph.next(it)) { |
218 | 222 |
Parent::set(it, cmap[it]); |
219 | 223 |
} |
220 | 224 |
return *this; |
221 | 225 |
} |
222 | 226 |
|
223 | 227 |
public: |
224 | 228 |
class MapIt : public Item { |
225 | 229 |
typedef Item Parent; |
226 | 230 |
|
227 | 231 |
public: |
228 | 232 |
typedef typename Map::Value Value; |
229 | 233 |
|
230 | 234 |
MapIt() {} |
231 | 235 |
|
232 | 236 |
MapIt(Invalid i) : Parent(i) { } |
233 | 237 |
|
234 | 238 |
explicit MapIt(Map& _map) : map(_map) { |
235 | 239 |
map.graph.first(*this); |
236 | 240 |
} |
237 | 241 |
|
238 | 242 |
MapIt(const Map& _map, const Item& item) |
239 | 243 |
: Parent(item), map(_map) {} |
240 | 244 |
|
241 | 245 |
MapIt& operator++() { |
242 | 246 |
map.graph.next(*this); |
243 | 247 |
return *this; |
244 | 248 |
} |
245 | 249 |
|
246 | 250 |
typename MapTraits<Map>::ConstReturnValue operator*() const { |
247 | 251 |
return map[*this]; |
248 | 252 |
} |
249 | 253 |
|
250 | 254 |
typename MapTraits<Map>::ReturnValue operator*() { |
251 | 255 |
return map[*this]; |
252 | 256 |
} |
253 | 257 |
|
254 | 258 |
void set(const Value& value) { |
255 | 259 |
map.set(*this, value); |
256 | 260 |
} |
257 | 261 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BUCKET_HEAP_H |
20 | 20 |
#define LEMON_BUCKET_HEAP_H |
21 | 21 |
|
22 |
///\ingroup |
|
22 |
///\ingroup heaps |
|
23 | 23 |
///\file |
24 |
///\brief Bucket |
|
24 |
///\brief Bucket heap implementation. |
|
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
namespace _bucket_heap_bits { |
33 | 33 |
|
34 | 34 |
template <bool MIN> |
35 | 35 |
struct DirectionTraits { |
36 | 36 |
static bool less(int left, int right) { |
37 | 37 |
return left < right; |
38 | 38 |
} |
39 | 39 |
static void increase(int& value) { |
40 | 40 |
++value; |
41 | 41 |
} |
42 | 42 |
}; |
43 | 43 |
|
44 | 44 |
template <> |
45 | 45 |
struct DirectionTraits<false> { |
46 | 46 |
static bool less(int left, int right) { |
47 | 47 |
return left > right; |
48 | 48 |
} |
49 | 49 |
static void increase(int& value) { |
50 | 50 |
--value; |
51 | 51 |
} |
52 | 52 |
}; |
53 | 53 |
|
54 | 54 |
} |
55 | 55 |
|
56 |
/// \ingroup |
|
56 |
/// \ingroup heaps |
|
57 | 57 |
/// |
58 |
/// \brief |
|
58 |
/// \brief Bucket heap data structure. |
|
59 | 59 |
/// |
60 |
/// This class implements the \e bucket \e heap data structure. A \e heap |
|
61 |
/// is a data structure for storing items with specified values called \e |
|
62 |
/// priorities in such a way that finding the item with minimum priority is |
|
63 |
/// efficient. The bucket heap is very simple implementation, it can store |
|
64 |
/// only integer priorities and it stores for each priority in the |
|
65 |
/// \f$ [0..C) \f$ range a list of items. So it should be used only when |
|
66 |
/// the |
|
60 |
/// This class implements the \e bucket \e heap data structure. |
|
61 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
|
62 |
/// but it has some limitations. |
|
67 | 63 |
/// |
68 |
/// \param IM A read and write Item int map, used internally |
|
69 |
/// to handle the cross references. |
|
70 |
/// \param MIN If the given parameter is false then instead of the |
|
71 |
/// minimum value the maximum can be retrivied with the top() and |
|
72 |
/// |
|
64 |
/// The bucket heap is a very simple structure. It can store only |
|
65 |
/// \c int priorities and it maintains a list of items for each priority |
|
66 |
/// in the range <tt>[0..C)</tt>. So it should only be used when the |
|
67 |
/// priorities are small. It is not intended to use as a Dijkstra heap. |
|
68 |
/// |
|
69 |
/// \tparam IM A read-writable item map with \c int values, used |
|
70 |
/// internally to handle the cross references. |
|
71 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
|
72 |
/// The default is \e min-heap. If this parameter is set to \c false, |
|
73 |
/// then the comparison is reversed, so the top(), prio() and pop() |
|
74 |
/// functions deal with the item having maximum priority instead of the |
|
75 |
/// minimum. |
|
76 |
/// |
|
77 |
/// \sa SimpleBucketHeap |
|
73 | 78 |
template <typename IM, bool MIN = true> |
74 | 79 |
class BucketHeap { |
75 | 80 |
|
76 | 81 |
public: |
77 |
/// \e |
|
78 |
typedef typename IM::Key Item; |
|
79 |
|
|
82 |
|
|
83 |
/// Type of the item-int map. |
|
84 |
typedef IM ItemIntMap; |
|
85 |
/// Type of the priorities. |
|
80 | 86 |
typedef int Prio; |
81 |
/// |
|
87 |
/// Type of the items stored in the heap. |
|
88 |
typedef typename ItemIntMap::Key Item; |
|
89 |
/// Type of the item-priority pairs. |
|
82 | 90 |
typedef std::pair<Item, Prio> Pair; |
83 |
/// \e |
|
84 |
typedef IM ItemIntMap; |
|
85 | 91 |
|
86 | 92 |
private: |
87 | 93 |
|
88 | 94 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
89 | 95 |
|
90 | 96 |
public: |
91 | 97 |
|
92 |
/// \brief Type to represent the |
|
98 |
/// \brief Type to represent the states of the items. |
|
93 | 99 |
/// |
94 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
95 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
100 |
/// Each item has a state associated to it. It can be "in heap", |
|
101 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
96 | 102 |
/// heap's point of view, but may be useful to the user. |
97 | 103 |
/// |
98 | 104 |
/// The item-int map must be initialized in such way that it assigns |
99 | 105 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
100 | 106 |
enum State { |
101 | 107 |
IN_HEAP = 0, ///< = 0. |
102 | 108 |
PRE_HEAP = -1, ///< = -1. |
103 | 109 |
POST_HEAP = -2 ///< = -2. |
104 | 110 |
}; |
105 | 111 |
|
106 | 112 |
public: |
107 |
|
|
113 |
|
|
114 |
/// \brief Constructor. |
|
108 | 115 |
/// |
109 |
/// The constructor. |
|
110 |
/// \param map should be given to the constructor, since it is used |
|
111 |
/// internally to handle the cross references. The value of the map |
|
112 |
/// should be PRE_HEAP (-1) for each element. |
|
116 |
/// Constructor. |
|
117 |
/// \param map A map that assigns \c int values to the items. |
|
118 |
/// It is used internally to handle the cross references. |
|
119 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
113 | 120 |
explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {} |
114 | 121 |
|
115 |
/// The number of items stored in the heap. |
|
122 |
/// \brief The number of items stored in the heap. |
|
116 | 123 |
/// |
117 |
/// |
|
124 |
/// This function returns the number of items stored in the heap. |
|
118 | 125 |
int size() const { return _data.size(); } |
119 | 126 |
|
120 |
/// \brief |
|
127 |
/// \brief Check if the heap is empty. |
|
121 | 128 |
/// |
122 |
/// |
|
129 |
/// This function returns \c true if the heap is empty. |
|
123 | 130 |
bool empty() const { return _data.empty(); } |
124 | 131 |
|
125 |
/// \brief Make |
|
132 |
/// \brief Make the heap empty. |
|
126 | 133 |
/// |
127 |
/// Make empty this heap. It does not change the cross reference |
|
128 |
/// map. If you want to reuse a heap what is not surely empty you |
|
129 |
/// should first clear the heap and after that you should set the |
|
130 |
/// cross reference map for each item to \c PRE_HEAP. |
|
134 |
/// This functon makes the heap empty. |
|
135 |
/// It does not change the cross reference map. If you want to reuse |
|
136 |
/// a heap that is not surely empty, you should first clear it and |
|
137 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
138 |
/// for each item. |
|
131 | 139 |
void clear() { |
132 | 140 |
_data.clear(); _first.clear(); _minimum = 0; |
133 | 141 |
} |
134 | 142 |
|
135 | 143 |
private: |
136 | 144 |
|
137 |
void |
|
145 |
void relocateLast(int idx) { |
|
138 | 146 |
if (idx + 1 < int(_data.size())) { |
139 | 147 |
_data[idx] = _data.back(); |
140 | 148 |
if (_data[idx].prev != -1) { |
141 | 149 |
_data[_data[idx].prev].next = idx; |
142 | 150 |
} else { |
143 | 151 |
_first[_data[idx].value] = idx; |
144 | 152 |
} |
145 | 153 |
if (_data[idx].next != -1) { |
146 | 154 |
_data[_data[idx].next].prev = idx; |
147 | 155 |
} |
148 | 156 |
_iim[_data[idx].item] = idx; |
149 | 157 |
} |
150 | 158 |
_data.pop_back(); |
151 | 159 |
} |
152 | 160 |
|
153 | 161 |
void unlace(int idx) { |
154 | 162 |
if (_data[idx].prev != -1) { |
155 | 163 |
_data[_data[idx].prev].next = _data[idx].next; |
156 | 164 |
} else { |
157 | 165 |
_first[_data[idx].value] = _data[idx].next; |
158 | 166 |
} |
159 | 167 |
if (_data[idx].next != -1) { |
160 | 168 |
_data[_data[idx].next].prev = _data[idx].prev; |
161 | 169 |
} |
162 | 170 |
} |
163 | 171 |
|
164 | 172 |
void lace(int idx) { |
165 | 173 |
if (int(_first.size()) <= _data[idx].value) { |
166 | 174 |
_first.resize(_data[idx].value + 1, -1); |
167 | 175 |
} |
168 | 176 |
_data[idx].next = _first[_data[idx].value]; |
169 | 177 |
if (_data[idx].next != -1) { |
170 | 178 |
_data[_data[idx].next].prev = idx; |
171 | 179 |
} |
172 | 180 |
_first[_data[idx].value] = idx; |
173 | 181 |
_data[idx].prev = -1; |
174 | 182 |
} |
175 | 183 |
|
176 | 184 |
public: |
185 |
|
|
177 | 186 |
/// \brief Insert a pair of item and priority into the heap. |
178 | 187 |
/// |
179 |
/// |
|
188 |
/// This function inserts \c p.first to the heap with priority |
|
189 |
/// \c p.second. |
|
180 | 190 |
/// \param p The pair to insert. |
191 |
/// \pre \c p.first must not be stored in the heap. |
|
181 | 192 |
void push(const Pair& p) { |
182 | 193 |
push(p.first, p.second); |
183 | 194 |
} |
184 | 195 |
|
185 | 196 |
/// \brief Insert an item into the heap with the given priority. |
186 | 197 |
/// |
187 |
/// |
|
198 |
/// This function inserts the given item into the heap with the |
|
199 |
/// given priority. |
|
188 | 200 |
/// \param i The item to insert. |
189 | 201 |
/// \param p The priority of the item. |
202 |
/// \pre \e i must not be stored in the heap. |
|
190 | 203 |
void push(const Item &i, const Prio &p) { |
191 | 204 |
int idx = _data.size(); |
192 | 205 |
_iim[i] = idx; |
193 | 206 |
_data.push_back(BucketItem(i, p)); |
194 | 207 |
lace(idx); |
195 | 208 |
if (Direction::less(p, _minimum)) { |
196 | 209 |
_minimum = p; |
197 | 210 |
} |
198 | 211 |
} |
199 | 212 |
|
200 |
/// \brief |
|
213 |
/// \brief Return the item having minimum priority. |
|
201 | 214 |
/// |
202 |
/// This method returns the item with minimum priority. |
|
203 |
/// \pre The heap must be nonempty. |
|
215 |
/// This function returns the item having minimum priority. |
|
216 |
/// \pre The heap must be non-empty. |
|
204 | 217 |
Item top() const { |
205 | 218 |
while (_first[_minimum] == -1) { |
206 | 219 |
Direction::increase(_minimum); |
207 | 220 |
} |
208 | 221 |
return _data[_first[_minimum]].item; |
209 | 222 |
} |
210 | 223 |
|
211 |
/// \brief |
|
224 |
/// \brief The minimum priority. |
|
212 | 225 |
/// |
213 |
/// It returns the minimum priority. |
|
214 |
/// \pre The heap must be nonempty. |
|
226 |
/// This function returns the minimum priority. |
|
227 |
/// \pre The heap must be non-empty. |
|
215 | 228 |
Prio prio() const { |
216 | 229 |
while (_first[_minimum] == -1) { |
217 | 230 |
Direction::increase(_minimum); |
218 | 231 |
} |
219 | 232 |
return _minimum; |
220 | 233 |
} |
221 | 234 |
|
222 |
/// \brief |
|
235 |
/// \brief Remove the item having minimum priority. |
|
223 | 236 |
/// |
224 |
/// This |
|
237 |
/// This function removes the item having minimum priority. |
|
225 | 238 |
/// \pre The heap must be non-empty. |
226 | 239 |
void pop() { |
227 | 240 |
while (_first[_minimum] == -1) { |
228 | 241 |
Direction::increase(_minimum); |
229 | 242 |
} |
230 | 243 |
int idx = _first[_minimum]; |
231 | 244 |
_iim[_data[idx].item] = -2; |
232 | 245 |
unlace(idx); |
233 |
|
|
246 |
relocateLast(idx); |
|
234 | 247 |
} |
235 | 248 |
|
236 |
/// \brief |
|
249 |
/// \brief Remove the given item from the heap. |
|
237 | 250 |
/// |
238 |
/// This method deletes item \c i from the heap, if \c i was |
|
239 |
/// already stored in the heap. |
|
240 |
/// |
|
251 |
/// This function removes the given item from the heap if it is |
|
252 |
/// already stored. |
|
253 |
/// \param i The item to delete. |
|
254 |
/// \pre \e i must be in the heap. |
|
241 | 255 |
void erase(const Item &i) { |
242 | 256 |
int idx = _iim[i]; |
243 | 257 |
_iim[_data[idx].item] = -2; |
244 | 258 |
unlace(idx); |
245 |
|
|
259 |
relocateLast(idx); |
|
246 | 260 |
} |
247 | 261 |
|
248 |
|
|
249 |
/// \brief Returns the priority of \c i. |
|
262 |
/// \brief The priority of the given item. |
|
250 | 263 |
/// |
251 |
/// This function returns the priority of item \c i. |
|
252 |
/// \pre \c i must be in the heap. |
|
264 |
/// This function returns the priority of the given item. |
|
253 | 265 |
/// \param i The item. |
266 |
/// \pre \e i must be in the heap. |
|
254 | 267 |
Prio operator[](const Item &i) const { |
255 | 268 |
int idx = _iim[i]; |
256 | 269 |
return _data[idx].value; |
257 | 270 |
} |
258 | 271 |
|
259 |
/// \brief \c i gets to the heap with priority \c p independently |
|
260 |
/// if \c i was already there. |
|
272 |
/// \brief Set the priority of an item or insert it, if it is |
|
273 |
/// not stored in the heap. |
|
261 | 274 |
/// |
262 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
263 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
275 |
/// This method sets the priority of the given item if it is |
|
276 |
/// already stored in the heap. Otherwise it inserts the given |
|
277 |
/// item into the heap with the given priority. |
|
264 | 278 |
/// \param i The item. |
265 | 279 |
/// \param p The priority. |
266 | 280 |
void set(const Item &i, const Prio &p) { |
267 | 281 |
int idx = _iim[i]; |
268 | 282 |
if (idx < 0) { |
269 | 283 |
push(i, p); |
270 | 284 |
} else if (Direction::less(p, _data[idx].value)) { |
271 | 285 |
decrease(i, p); |
272 | 286 |
} else { |
273 | 287 |
increase(i, p); |
274 | 288 |
} |
275 | 289 |
} |
276 | 290 |
|
277 |
/// \brief |
|
291 |
/// \brief Decrease the priority of an item to the given value. |
|
278 | 292 |
/// |
279 |
/// This method decreases the priority of item \c i to \c p. |
|
280 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
281 |
/// |
|
293 |
/// This function decreases the priority of an item to the given value. |
|
282 | 294 |
/// \param i The item. |
283 | 295 |
/// \param p The priority. |
296 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
284 | 297 |
void decrease(const Item &i, const Prio &p) { |
285 | 298 |
int idx = _iim[i]; |
286 | 299 |
unlace(idx); |
287 | 300 |
_data[idx].value = p; |
288 | 301 |
if (Direction::less(p, _minimum)) { |
289 | 302 |
_minimum = p; |
290 | 303 |
} |
291 | 304 |
lace(idx); |
292 | 305 |
} |
293 | 306 |
|
294 |
/// \brief |
|
307 |
/// \brief Increase the priority of an item to the given value. |
|
295 | 308 |
/// |
296 |
/// This method sets the priority of item \c i to \c p. |
|
297 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
298 |
/// |
|
309 |
/// This function increases the priority of an item to the given value. |
|
299 | 310 |
/// \param i The item. |
300 | 311 |
/// \param p The priority. |
312 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
301 | 313 |
void increase(const Item &i, const Prio &p) { |
302 | 314 |
int idx = _iim[i]; |
303 | 315 |
unlace(idx); |
304 | 316 |
_data[idx].value = p; |
305 | 317 |
lace(idx); |
306 | 318 |
} |
307 | 319 |
|
308 |
/// \brief Returns if \c item is in, has already been in, or has |
|
309 |
/// never been in the heap. |
|
320 |
/// \brief Return the state of an item. |
|
310 | 321 |
/// |
311 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
312 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
313 |
/// otherwise. In the latter case it is possible that \c item will |
|
314 |
/// get back to the heap again. |
|
322 |
/// This method returns \c PRE_HEAP if the given item has never |
|
323 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
324 |
/// and \c POST_HEAP otherwise. |
|
325 |
/// In the latter case it is possible that the item will get back |
|
326 |
/// to the heap again. |
|
315 | 327 |
/// \param i The item. |
316 | 328 |
State state(const Item &i) const { |
317 | 329 |
int idx = _iim[i]; |
318 | 330 |
if (idx >= 0) idx = 0; |
319 | 331 |
return State(idx); |
320 | 332 |
} |
321 | 333 |
|
322 |
/// \brief |
|
334 |
/// \brief Set the state of an item in the heap. |
|
323 | 335 |
/// |
324 |
/// Sets the state of the \c item in the heap. It can be used to |
|
325 |
/// manually clear the heap when it is important to achive the |
|
326 |
/// |
|
336 |
/// This function sets the state of the given item in the heap. |
|
337 |
/// It can be used to manually clear the heap when it is important |
|
338 |
/// to achive better time complexity. |
|
327 | 339 |
/// \param i The item. |
328 | 340 |
/// \param st The state. It should not be \c IN_HEAP. |
329 | 341 |
void state(const Item& i, State st) { |
330 | 342 |
switch (st) { |
331 | 343 |
case POST_HEAP: |
332 | 344 |
case PRE_HEAP: |
333 | 345 |
if (state(i) == IN_HEAP) { |
334 | 346 |
erase(i); |
335 | 347 |
} |
336 | 348 |
_iim[i] = st; |
337 | 349 |
break; |
338 | 350 |
case IN_HEAP: |
339 | 351 |
break; |
340 | 352 |
} |
341 | 353 |
} |
342 | 354 |
|
343 | 355 |
private: |
344 | 356 |
|
345 | 357 |
struct BucketItem { |
346 | 358 |
BucketItem(const Item& _item, int _value) |
347 | 359 |
: item(_item), value(_value) {} |
348 | 360 |
|
349 | 361 |
Item item; |
350 | 362 |
int value; |
351 | 363 |
|
352 | 364 |
int prev, next; |
353 | 365 |
}; |
354 | 366 |
|
355 | 367 |
ItemIntMap& _iim; |
356 | 368 |
std::vector<int> _first; |
357 | 369 |
std::vector<BucketItem> _data; |
358 | 370 |
mutable int _minimum; |
359 | 371 |
|
360 | 372 |
}; // class BucketHeap |
361 | 373 |
|
362 |
/// \ingroup |
|
374 |
/// \ingroup heaps |
|
363 | 375 |
/// |
364 |
/// \brief |
|
376 |
/// \brief Simplified bucket heap data structure. |
|
365 | 377 |
/// |
366 | 378 |
/// This class implements a simplified \e bucket \e heap data |
367 |
/// structure. It does not provide some functionality but it faster |
|
368 |
/// and simplier data structure than the BucketHeap. The main |
|
369 |
/// difference is that the BucketHeap stores for every key a double |
|
370 |
/// linked list while this class stores just simple lists. In the |
|
371 |
/// other way it does not support erasing each elements just the |
|
372 |
/// minimal and it does not supports key increasing, decreasing. |
|
379 |
/// structure. It does not provide some functionality, but it is |
|
380 |
/// faster and simpler than BucketHeap. The main difference is |
|
381 |
/// that BucketHeap stores a doubly-linked list for each key while |
|
382 |
/// this class stores only simply-linked lists. It supports erasing |
|
383 |
/// only for the item having minimum priority and it does not support |
|
384 |
/// key increasing and decreasing. |
|
373 | 385 |
/// |
374 |
/// \param IM A read and write Item int map, used internally |
|
375 |
/// to handle the cross references. |
|
376 |
/// \param MIN If the given parameter is false then instead of the |
|
377 |
/// minimum value the maximum can be retrivied with the top() and |
|
378 |
/// |
|
386 |
/// Note that this implementation does not conform to the |
|
387 |
/// \ref concepts::Heap "heap concept" due to the lack of some |
|
388 |
/// functionality. |
|
389 |
/// |
|
390 |
/// \tparam IM A read-writable item map with \c int values, used |
|
391 |
/// internally to handle the cross references. |
|
392 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
|
393 |
/// The default is \e min-heap. If this parameter is set to \c false, |
|
394 |
/// then the comparison is reversed, so the top(), prio() and pop() |
|
395 |
/// functions deal with the item having maximum priority instead of the |
|
396 |
/// minimum. |
|
379 | 397 |
/// |
380 | 398 |
/// \sa BucketHeap |
381 | 399 |
template <typename IM, bool MIN = true > |
382 | 400 |
class SimpleBucketHeap { |
383 | 401 |
|
384 | 402 |
public: |
385 |
|
|
403 |
|
|
404 |
/// Type of the item-int map. |
|
405 |
typedef IM ItemIntMap; |
|
406 |
/// Type of the priorities. |
|
386 | 407 |
typedef int Prio; |
408 |
/// Type of the items stored in the heap. |
|
409 |
typedef typename ItemIntMap::Key Item; |
|
410 |
/// Type of the item-priority pairs. |
|
387 | 411 |
typedef std::pair<Item, Prio> Pair; |
388 |
typedef IM ItemIntMap; |
|
389 | 412 |
|
390 | 413 |
private: |
391 | 414 |
|
392 | 415 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
393 | 416 |
|
394 | 417 |
public: |
395 | 418 |
|
396 |
/// \brief Type to represent the |
|
419 |
/// \brief Type to represent the states of the items. |
|
397 | 420 |
/// |
398 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
399 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
421 |
/// Each item has a state associated to it. It can be "in heap", |
|
422 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
400 | 423 |
/// heap's point of view, but may be useful to the user. |
401 | 424 |
/// |
402 | 425 |
/// The item-int map must be initialized in such way that it assigns |
403 | 426 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
404 | 427 |
enum State { |
405 | 428 |
IN_HEAP = 0, ///< = 0. |
406 | 429 |
PRE_HEAP = -1, ///< = -1. |
407 | 430 |
POST_HEAP = -2 ///< = -2. |
408 | 431 |
}; |
409 | 432 |
|
410 | 433 |
public: |
411 | 434 |
|
412 |
/// \brief |
|
435 |
/// \brief Constructor. |
|
413 | 436 |
/// |
414 |
/// The constructor. |
|
415 |
/// \param map should be given to the constructor, since it is used |
|
416 |
/// internally to handle the cross references. The value of the map |
|
417 |
/// should be PRE_HEAP (-1) for each element. |
|
437 |
/// Constructor. |
|
438 |
/// \param map A map that assigns \c int values to the items. |
|
439 |
/// It is used internally to handle the cross references. |
|
440 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
418 | 441 |
explicit SimpleBucketHeap(ItemIntMap &map) |
419 | 442 |
: _iim(map), _free(-1), _num(0), _minimum(0) {} |
420 | 443 |
|
421 |
/// \brief |
|
444 |
/// \brief The number of items stored in the heap. |
|
422 | 445 |
/// |
423 |
/// |
|
446 |
/// This function returns the number of items stored in the heap. |
|
424 | 447 |
int size() const { return _num; } |
425 | 448 |
|
426 |
/// \brief |
|
449 |
/// \brief Check if the heap is empty. |
|
427 | 450 |
/// |
428 |
/// |
|
451 |
/// This function returns \c true if the heap is empty. |
|
429 | 452 |
bool empty() const { return _num == 0; } |
430 | 453 |
|
431 |
/// \brief Make |
|
454 |
/// \brief Make the heap empty. |
|
432 | 455 |
/// |
433 |
/// Make empty this heap. It does not change the cross reference |
|
434 |
/// map. If you want to reuse a heap what is not surely empty you |
|
435 |
/// should first clear the heap and after that you should set the |
|
436 |
/// cross reference map for each item to \c PRE_HEAP. |
|
456 |
/// This functon makes the heap empty. |
|
457 |
/// It does not change the cross reference map. If you want to reuse |
|
458 |
/// a heap that is not surely empty, you should first clear it and |
|
459 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
460 |
/// for each item. |
|
437 | 461 |
void clear() { |
438 | 462 |
_data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0; |
439 | 463 |
} |
440 | 464 |
|
441 | 465 |
/// \brief Insert a pair of item and priority into the heap. |
442 | 466 |
/// |
443 |
/// |
|
467 |
/// This function inserts \c p.first to the heap with priority |
|
468 |
/// \c p.second. |
|
444 | 469 |
/// \param p The pair to insert. |
470 |
/// \pre \c p.first must not be stored in the heap. |
|
445 | 471 |
void push(const Pair& p) { |
446 | 472 |
push(p.first, p.second); |
447 | 473 |
} |
448 | 474 |
|
449 | 475 |
/// \brief Insert an item into the heap with the given priority. |
450 | 476 |
/// |
451 |
/// |
|
477 |
/// This function inserts the given item into the heap with the |
|
478 |
/// given priority. |
|
452 | 479 |
/// \param i The item to insert. |
453 | 480 |
/// \param p The priority of the item. |
481 |
/// \pre \e i must not be stored in the heap. |
|
454 | 482 |
void push(const Item &i, const Prio &p) { |
455 | 483 |
int idx; |
456 | 484 |
if (_free == -1) { |
457 | 485 |
idx = _data.size(); |
458 | 486 |
_data.push_back(BucketItem(i)); |
459 | 487 |
} else { |
460 | 488 |
idx = _free; |
461 | 489 |
_free = _data[idx].next; |
462 | 490 |
_data[idx].item = i; |
463 | 491 |
} |
464 | 492 |
_iim[i] = idx; |
465 | 493 |
if (p >= int(_first.size())) _first.resize(p + 1, -1); |
466 | 494 |
_data[idx].next = _first[p]; |
467 | 495 |
_first[p] = idx; |
468 | 496 |
if (Direction::less(p, _minimum)) { |
469 | 497 |
_minimum = p; |
470 | 498 |
} |
471 | 499 |
++_num; |
472 | 500 |
} |
473 | 501 |
|
474 |
/// \brief |
|
502 |
/// \brief Return the item having minimum priority. |
|
475 | 503 |
/// |
476 |
/// This method returns the item with minimum priority. |
|
477 |
/// \pre The heap must be nonempty. |
|
504 |
/// This function returns the item having minimum priority. |
|
505 |
/// \pre The heap must be non-empty. |
|
478 | 506 |
Item top() const { |
479 | 507 |
while (_first[_minimum] == -1) { |
480 | 508 |
Direction::increase(_minimum); |
481 | 509 |
} |
482 | 510 |
return _data[_first[_minimum]].item; |
483 | 511 |
} |
484 | 512 |
|
485 |
/// \brief |
|
513 |
/// \brief The minimum priority. |
|
486 | 514 |
/// |
487 |
/// It returns the minimum priority. |
|
488 |
/// \pre The heap must be nonempty. |
|
515 |
/// This function returns the minimum priority. |
|
516 |
/// \pre The heap must be non-empty. |
|
489 | 517 |
Prio prio() const { |
490 | 518 |
while (_first[_minimum] == -1) { |
491 | 519 |
Direction::increase(_minimum); |
492 | 520 |
} |
493 | 521 |
return _minimum; |
494 | 522 |
} |
495 | 523 |
|
496 |
/// \brief |
|
524 |
/// \brief Remove the item having minimum priority. |
|
497 | 525 |
/// |
498 |
/// This |
|
526 |
/// This function removes the item having minimum priority. |
|
499 | 527 |
/// \pre The heap must be non-empty. |
500 | 528 |
void pop() { |
501 | 529 |
while (_first[_minimum] == -1) { |
502 | 530 |
Direction::increase(_minimum); |
503 | 531 |
} |
504 | 532 |
int idx = _first[_minimum]; |
505 | 533 |
_iim[_data[idx].item] = -2; |
506 | 534 |
_first[_minimum] = _data[idx].next; |
507 | 535 |
_data[idx].next = _free; |
508 | 536 |
_free = idx; |
509 | 537 |
--_num; |
510 | 538 |
} |
511 | 539 |
|
512 |
/// \brief |
|
540 |
/// \brief The priority of the given item. |
|
513 | 541 |
/// |
514 |
/// This function returns the priority of item \c i. |
|
515 |
/// \warning This operator is not a constant time function |
|
516 |
/// because it scans the whole data structure to find the proper |
|
517 |
/// value. |
|
518 |
/// |
|
542 |
/// This function returns the priority of the given item. |
|
519 | 543 |
/// \param i The item. |
544 |
/// \pre \e i must be in the heap. |
|
545 |
/// \warning This operator is not a constant time function because |
|
546 |
/// it scans the whole data structure to find the proper value. |
|
520 | 547 |
Prio operator[](const Item &i) const { |
521 |
for (int k = 0; k < _first.size(); ++k) { |
|
548 |
for (int k = 0; k < int(_first.size()); ++k) { |
|
522 | 549 |
int idx = _first[k]; |
523 | 550 |
while (idx != -1) { |
524 | 551 |
if (_data[idx].item == i) { |
525 | 552 |
return k; |
526 | 553 |
} |
527 | 554 |
idx = _data[idx].next; |
528 | 555 |
} |
529 | 556 |
} |
530 | 557 |
return -1; |
531 | 558 |
} |
532 | 559 |
|
533 |
/// \brief Returns if \c item is in, has already been in, or has |
|
534 |
/// never been in the heap. |
|
560 |
/// \brief Return the state of an item. |
|
535 | 561 |
/// |
536 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
537 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
538 |
/// otherwise. In the latter case it is possible that \c item will |
|
539 |
/// get back to the heap again. |
|
562 |
/// This method returns \c PRE_HEAP if the given item has never |
|
563 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
564 |
/// and \c POST_HEAP otherwise. |
|
565 |
/// In the latter case it is possible that the item will get back |
|
566 |
/// to the heap again. |
|
540 | 567 |
/// \param i The item. |
541 | 568 |
State state(const Item &i) const { |
542 | 569 |
int idx = _iim[i]; |
543 | 570 |
if (idx >= 0) idx = 0; |
544 | 571 |
return State(idx); |
545 | 572 |
} |
546 | 573 |
|
547 | 574 |
private: |
548 | 575 |
|
549 | 576 |
struct BucketItem { |
550 | 577 |
BucketItem(const Item& _item) |
551 | 578 |
: item(_item) {} |
552 | 579 |
|
553 | 580 |
Item item; |
554 | 581 |
int next; |
555 | 582 |
}; |
556 | 583 |
|
557 | 584 |
ItemIntMap& _iim; |
558 | 585 |
std::vector<int> _first; |
559 | 586 |
std::vector<BucketItem> _data; |
560 | 587 |
int _free, _num; |
561 | 588 |
mutable int _minimum; |
562 | 589 |
|
563 | 590 |
}; // class SimpleBucketHeap |
564 | 591 |
|
565 | 592 |
} |
566 | 593 |
|
567 | 594 |
#endif |
... | ... |
@@ -11,146 +11,153 @@ |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CIRCULATION_H |
20 | 20 |
#define LEMON_CIRCULATION_H |
21 | 21 |
|
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
#include <lemon/elevator.h> |
24 | 24 |
#include <limits> |
25 | 25 |
|
26 | 26 |
///\ingroup max_flow |
27 | 27 |
///\file |
28 | 28 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
29 | 29 |
/// |
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
/// \brief Default traits class of Circulation class. |
33 | 33 |
/// |
34 | 34 |
/// Default traits class of Circulation class. |
35 | 35 |
/// |
36 | 36 |
/// \tparam GR Type of the digraph the algorithm runs on. |
37 | 37 |
/// \tparam LM The type of the lower bound map. |
38 | 38 |
/// \tparam UM The type of the upper bound (capacity) map. |
39 | 39 |
/// \tparam SM The type of the supply map. |
40 | 40 |
template <typename GR, typename LM, |
41 | 41 |
typename UM, typename SM> |
42 | 42 |
struct CirculationDefaultTraits { |
43 | 43 |
|
44 | 44 |
/// \brief The type of the digraph the algorithm runs on. |
45 | 45 |
typedef GR Digraph; |
46 | 46 |
|
47 | 47 |
/// \brief The type of the lower bound map. |
48 | 48 |
/// |
49 | 49 |
/// The type of the map that stores the lower bounds on the arcs. |
50 | 50 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
51 | 51 |
typedef LM LowerMap; |
52 | 52 |
|
53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
54 | 54 |
/// |
55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
56 | 56 |
/// on the arcs. |
57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
58 | 58 |
typedef UM UpperMap; |
59 | 59 |
|
60 | 60 |
/// \brief The type of supply map. |
61 | 61 |
/// |
62 | 62 |
/// The type of the map that stores the signed supply values of the |
63 | 63 |
/// nodes. |
64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
65 | 65 |
typedef SM SupplyMap; |
66 | 66 |
|
67 | 67 |
/// \brief The type of the flow and supply values. |
68 | 68 |
typedef typename SupplyMap::Value Value; |
69 | 69 |
|
70 | 70 |
/// \brief The type of the map that stores the flow values. |
71 | 71 |
/// |
72 | 72 |
/// The type of the map that stores the flow values. |
73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
74 | 74 |
/// concept. |
75 |
#ifdef DOXYGEN |
|
76 |
typedef GR::ArcMap<Value> FlowMap; |
|
77 |
#else |
|
75 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
79 |
#endif |
|
76 | 80 |
|
77 | 81 |
/// \brief Instantiates a FlowMap. |
78 | 82 |
/// |
79 | 83 |
/// This function instantiates a \ref FlowMap. |
80 | 84 |
/// \param digraph The digraph for which we would like to define |
81 | 85 |
/// the flow map. |
82 | 86 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
83 | 87 |
return new FlowMap(digraph); |
84 | 88 |
} |
85 | 89 |
|
86 | 90 |
/// \brief The elevator type used by the algorithm. |
87 | 91 |
/// |
88 | 92 |
/// The elevator type used by the algorithm. |
89 | 93 |
/// |
90 |
/// \sa Elevator |
|
91 |
/// \sa LinkedElevator |
|
94 |
/// \sa Elevator, LinkedElevator |
|
95 |
#ifdef DOXYGEN |
|
96 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
97 |
#else |
|
92 | 98 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
99 |
#endif |
|
93 | 100 |
|
94 | 101 |
/// \brief Instantiates an Elevator. |
95 | 102 |
/// |
96 | 103 |
/// This function instantiates an \ref Elevator. |
97 | 104 |
/// \param digraph The digraph for which we would like to define |
98 | 105 |
/// the elevator. |
99 | 106 |
/// \param max_level The maximum level of the elevator. |
100 | 107 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
101 | 108 |
return new Elevator(digraph, max_level); |
102 | 109 |
} |
103 | 110 |
|
104 | 111 |
/// \brief The tolerance used by the algorithm |
105 | 112 |
/// |
106 | 113 |
/// The tolerance used by the algorithm to handle inexact computation. |
107 | 114 |
typedef lemon::Tolerance<Value> Tolerance; |
108 | 115 |
|
109 | 116 |
}; |
110 | 117 |
|
111 | 118 |
/** |
112 | 119 |
\brief Push-relabel algorithm for the network circulation problem. |
113 | 120 |
|
114 | 121 |
\ingroup max_flow |
115 | 122 |
This class implements a push-relabel algorithm for the \e network |
116 | 123 |
\e circulation problem. |
117 | 124 |
It is to find a feasible circulation when lower and upper bounds |
118 | 125 |
are given for the flow values on the arcs and lower bounds are |
119 | 126 |
given for the difference between the outgoing and incoming flow |
120 | 127 |
at the nodes. |
121 | 128 |
|
122 | 129 |
The exact formulation of this problem is the following. |
123 | 130 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$ |
124 | 131 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and |
125 | 132 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
126 | 133 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$ |
127 | 134 |
denotes the signed supply values of the nodes. |
128 | 135 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
129 | 136 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
130 | 137 |
\f$-sup(u)\f$ demand. |
131 | 138 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$ |
132 | 139 |
solution of the following problem. |
133 | 140 |
|
134 | 141 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) |
135 | 142 |
\geq sup(u) \quad \forall u\in V, \f] |
136 | 143 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
137 | 144 |
|
138 | 145 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
139 | 146 |
zero or negative in order to have a feasible solution (since the sum |
140 | 147 |
of the expressions on the left-hand side of the inequalities is zero). |
141 | 148 |
It means that the total demand must be greater or equal to the total |
142 | 149 |
supply and all the supplies have to be carried out from the supply nodes, |
143 | 150 |
but there could be demands that are not satisfied. |
144 | 151 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
145 | 152 |
constraints have to be satisfied with equality, i.e. all demands |
146 | 153 |
have to be satisfied and all supplies have to be used. |
147 | 154 |
|
148 | 155 |
If you need the opposite inequalities in the supply/demand constraints |
149 | 156 |
(i.e. the total demand is less than the total supply and all the demands |
150 | 157 |
have to be satisfied while there could be supplies that are not used), |
151 | 158 |
then you could easily transform the problem to the above form by reversing |
152 | 159 |
the direction of the arcs and taking the negative of the supply values |
153 | 160 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
154 | 161 |
|
155 | 162 |
This algorithm either calculates a feasible circulation, or provides |
156 | 163 |
a \ref barrier() "barrier", which prooves that a feasible soultion |
... | ... |
@@ -389,147 +396,149 @@ |
389 | 396 |
} |
390 | 397 |
|
391 | 398 |
/// Sets the upper bound (capacity) map. |
392 | 399 |
|
393 | 400 |
/// Sets the upper bound (capacity) map. |
394 | 401 |
/// \return <tt>(*this)</tt> |
395 | 402 |
Circulation& upperMap(const UpperMap& map) { |
396 | 403 |
_up = ↦ |
397 | 404 |
return *this; |
398 | 405 |
} |
399 | 406 |
|
400 | 407 |
/// Sets the supply map. |
401 | 408 |
|
402 | 409 |
/// Sets the supply map. |
403 | 410 |
/// \return <tt>(*this)</tt> |
404 | 411 |
Circulation& supplyMap(const SupplyMap& map) { |
405 | 412 |
_supply = ↦ |
406 | 413 |
return *this; |
407 | 414 |
} |
408 | 415 |
|
409 | 416 |
/// \brief Sets the flow map. |
410 | 417 |
/// |
411 | 418 |
/// Sets the flow map. |
412 | 419 |
/// If you don't use this function before calling \ref run() or |
413 | 420 |
/// \ref init(), an instance will be allocated automatically. |
414 | 421 |
/// The destructor deallocates this automatically allocated map, |
415 | 422 |
/// of course. |
416 | 423 |
/// \return <tt>(*this)</tt> |
417 | 424 |
Circulation& flowMap(FlowMap& map) { |
418 | 425 |
if (_local_flow) { |
419 | 426 |
delete _flow; |
420 | 427 |
_local_flow = false; |
421 | 428 |
} |
422 | 429 |
_flow = ↦ |
423 | 430 |
return *this; |
424 | 431 |
} |
425 | 432 |
|
426 | 433 |
/// \brief Sets the elevator used by algorithm. |
427 | 434 |
/// |
428 | 435 |
/// Sets the elevator used by algorithm. |
429 | 436 |
/// If you don't use this function before calling \ref run() or |
430 | 437 |
/// \ref init(), an instance will be allocated automatically. |
431 | 438 |
/// The destructor deallocates this automatically allocated elevator, |
432 | 439 |
/// of course. |
433 | 440 |
/// \return <tt>(*this)</tt> |
434 | 441 |
Circulation& elevator(Elevator& elevator) { |
435 | 442 |
if (_local_level) { |
436 | 443 |
delete _level; |
437 | 444 |
_local_level = false; |
438 | 445 |
} |
439 | 446 |
_level = &elevator; |
440 | 447 |
return *this; |
441 | 448 |
} |
442 | 449 |
|
443 | 450 |
/// \brief Returns a const reference to the elevator. |
444 | 451 |
/// |
445 | 452 |
/// Returns a const reference to the elevator. |
446 | 453 |
/// |
447 | 454 |
/// \pre Either \ref run() or \ref init() must be called before |
448 | 455 |
/// using this function. |
449 | 456 |
const Elevator& elevator() const { |
450 | 457 |
return *_level; |
451 | 458 |
} |
452 | 459 |
|
453 |
/// \brief Sets the tolerance used by algorithm. |
|
460 |
/// \brief Sets the tolerance used by the algorithm. |
|
454 | 461 |
/// |
455 |
/// Sets the tolerance used by algorithm. |
|
456 |
Circulation& tolerance(const Tolerance& tolerance) const { |
|
462 |
/// Sets the tolerance object used by the algorithm. |
|
463 |
/// \return <tt>(*this)</tt> |
|
464 |
Circulation& tolerance(const Tolerance& tolerance) { |
|
457 | 465 |
_tol = tolerance; |
458 | 466 |
return *this; |
459 | 467 |
} |
460 | 468 |
|
461 | 469 |
/// \brief Returns a const reference to the tolerance. |
462 | 470 |
/// |
463 |
/// Returns a const reference to the tolerance |
|
471 |
/// Returns a const reference to the tolerance object used by |
|
472 |
/// the algorithm. |
|
464 | 473 |
const Tolerance& tolerance() const { |
465 |
return |
|
474 |
return _tol; |
|
466 | 475 |
} |
467 | 476 |
|
468 | 477 |
/// \name Execution Control |
469 | 478 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
470 |
/// If you need more control on the initial solution or the execution, |
|
471 |
/// first you have to call one of the \ref init() functions, then |
|
479 |
/// If you need better control on the initial solution or the execution, |
|
480 |
/// you have to call one of the \ref init() functions first, then |
|
472 | 481 |
/// the \ref start() function. |
473 | 482 |
|
474 | 483 |
///@{ |
475 | 484 |
|
476 | 485 |
/// Initializes the internal data structures. |
477 | 486 |
|
478 | 487 |
/// Initializes the internal data structures and sets all flow values |
479 | 488 |
/// to the lower bound. |
480 | 489 |
void init() |
481 | 490 |
{ |
482 | 491 |
LEMON_DEBUG(checkBoundMaps(), |
483 | 492 |
"Upper bounds must be greater or equal to the lower bounds"); |
484 | 493 |
|
485 | 494 |
createStructures(); |
486 | 495 |
|
487 | 496 |
for(NodeIt n(_g);n!=INVALID;++n) { |
488 | 497 |
(*_excess)[n] = (*_supply)[n]; |
489 | 498 |
} |
490 | 499 |
|
491 | 500 |
for (ArcIt e(_g);e!=INVALID;++e) { |
492 | 501 |
_flow->set(e, (*_lo)[e]); |
493 | 502 |
(*_excess)[_g.target(e)] += (*_flow)[e]; |
494 | 503 |
(*_excess)[_g.source(e)] -= (*_flow)[e]; |
495 | 504 |
} |
496 | 505 |
|
497 | 506 |
// global relabeling tested, but in general case it provides |
498 | 507 |
// worse performance for random digraphs |
499 | 508 |
_level->initStart(); |
500 | 509 |
for(NodeIt n(_g);n!=INVALID;++n) |
501 | 510 |
_level->initAddItem(n); |
502 | 511 |
_level->initFinish(); |
503 | 512 |
for(NodeIt n(_g);n!=INVALID;++n) |
504 | 513 |
if(_tol.positive((*_excess)[n])) |
505 | 514 |
_level->activate(n); |
506 | 515 |
} |
507 | 516 |
|
508 | 517 |
/// Initializes the internal data structures using a greedy approach. |
509 | 518 |
|
510 | 519 |
/// Initializes the internal data structures using a greedy approach |
511 | 520 |
/// to construct the initial solution. |
512 | 521 |
void greedyInit() |
513 | 522 |
{ |
514 | 523 |
LEMON_DEBUG(checkBoundMaps(), |
515 | 524 |
"Upper bounds must be greater or equal to the lower bounds"); |
516 | 525 |
|
517 | 526 |
createStructures(); |
518 | 527 |
|
519 | 528 |
for(NodeIt n(_g);n!=INVALID;++n) { |
520 | 529 |
(*_excess)[n] = (*_supply)[n]; |
521 | 530 |
} |
522 | 531 |
|
523 | 532 |
for (ArcIt e(_g);e!=INVALID;++e) { |
524 | 533 |
if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) { |
525 | 534 |
_flow->set(e, (*_up)[e]); |
526 | 535 |
(*_excess)[_g.target(e)] += (*_up)[e]; |
527 | 536 |
(*_excess)[_g.source(e)] -= (*_up)[e]; |
528 | 537 |
} else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) { |
529 | 538 |
_flow->set(e, (*_lo)[e]); |
530 | 539 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
531 | 540 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
532 | 541 |
} else { |
533 | 542 |
Value fc = -(*_excess)[_g.target(e)]; |
534 | 543 |
_flow->set(e, fc); |
535 | 544 |
(*_excess)[_g.target(e)] = 0; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 |
#ifndef LEMON_CONCEPTS_HEAP_H |
|
20 |
#define LEMON_CONCEPTS_HEAP_H |
|
21 |
|
|
19 | 22 |
///\ingroup concept |
20 | 23 |
///\file |
21 | 24 |
///\brief The concept of heaps. |
22 | 25 |
|
23 |
#ifndef LEMON_CONCEPTS_HEAP_H |
|
24 |
#define LEMON_CONCEPTS_HEAP_H |
|
25 |
|
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concept_check.h> |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \addtogroup concept |
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// \brief The heap concept. |
37 | 37 |
/// |
38 |
/// Concept class describing the main interface of heaps. A \e heap |
|
39 |
/// is a data structure for storing items with specified values called |
|
40 |
/// \e priorities in such a way that finding the item with minimum |
|
41 |
/// priority is efficient. In a heap one can change the priority of an |
|
42 |
/// |
|
38 |
/// This concept class describes the main interface of heaps. |
|
39 |
/// The various \ref heaps "heap structures" are efficient |
|
40 |
/// implementations of the abstract data type \e priority \e queue. |
|
41 |
/// They store items with specified values called \e priorities |
|
42 |
/// in such a way that finding and removing the item with minimum |
|
43 |
/// priority are efficient. The basic operations are adding and |
|
44 |
/// erasing items, changing the priority of an item, etc. |
|
43 | 45 |
/// |
44 |
/// \tparam PR Type of the priority of the items. |
|
45 |
/// \tparam IM A read and writable item map with int values, used |
|
46 |
/// Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
|
47 |
/// Any class that conforms to this concept can be used easily in such |
|
48 |
/// algorithms. |
|
49 |
/// |
|
50 |
/// \tparam PR Type of the priorities of the items. |
|
51 |
/// \tparam IM A read-writable item map with \c int values, used |
|
46 | 52 |
/// internally to handle the cross references. |
47 |
/// \tparam |
|
53 |
/// \tparam CMP A functor class for comparing the priorities. |
|
48 | 54 |
/// The default is \c std::less<PR>. |
49 | 55 |
#ifdef DOXYGEN |
50 |
template <typename PR, typename IM, typename |
|
56 |
template <typename PR, typename IM, typename CMP> |
|
51 | 57 |
#else |
52 |
template <typename PR, typename IM> |
|
58 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
53 | 59 |
#endif |
54 | 60 |
class Heap { |
55 | 61 |
public: |
56 | 62 |
|
57 | 63 |
/// Type of the item-int map. |
58 | 64 |
typedef IM ItemIntMap; |
59 | 65 |
/// Type of the priorities. |
60 | 66 |
typedef PR Prio; |
61 | 67 |
/// Type of the items stored in the heap. |
62 | 68 |
typedef typename ItemIntMap::Key Item; |
63 | 69 |
|
64 | 70 |
/// \brief Type to represent the states of the items. |
65 | 71 |
/// |
66 | 72 |
/// Each item has a state associated to it. It can be "in heap", |
67 |
/// "pre heap" or "post heap". The later two are indifferent |
|
68 |
/// from the point of view of the heap, but may be useful for |
|
69 |
/// |
|
73 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
74 |
/// heap's point of view, but may be useful to the user. |
|
70 | 75 |
/// |
71 | 76 |
/// The item-int map must be initialized in such way that it assigns |
72 | 77 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
73 | 78 |
enum State { |
74 | 79 |
IN_HEAP = 0, ///< = 0. The "in heap" state constant. |
75 |
PRE_HEAP = -1, ///< = -1. The "pre heap" state constant. |
|
76 |
POST_HEAP = -2 ///< = -2. The "post heap" state constant. |
|
80 |
PRE_HEAP = -1, ///< = -1. The "pre-heap" state constant. |
|
81 |
POST_HEAP = -2 ///< = -2. The "post-heap" state constant. |
|
77 | 82 |
}; |
78 | 83 |
|
79 |
/// \brief |
|
84 |
/// \brief Constructor. |
|
80 | 85 |
/// |
81 |
/// |
|
86 |
/// Constructor. |
|
82 | 87 |
/// \param map A map that assigns \c int values to keys of type |
83 | 88 |
/// \c Item. It is used internally by the heap implementations to |
84 | 89 |
/// handle the cross references. The assigned value must be |
85 |
/// \c PRE_HEAP (<tt>-1</tt>) for |
|
90 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
86 | 91 |
explicit Heap(ItemIntMap &map) {} |
87 | 92 |
|
93 |
/// \brief Constructor. |
|
94 |
/// |
|
95 |
/// Constructor. |
|
96 |
/// \param map A map that assigns \c int values to keys of type |
|
97 |
/// \c Item. It is used internally by the heap implementations to |
|
98 |
/// handle the cross references. The assigned value must be |
|
99 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
100 |
/// \param comp The function object used for comparing the priorities. |
|
101 |
explicit Heap(ItemIntMap &map, const CMP &comp) {} |
|
102 |
|
|
88 | 103 |
/// \brief The number of items stored in the heap. |
89 | 104 |
/// |
90 |
/// |
|
105 |
/// This function returns the number of items stored in the heap. |
|
91 | 106 |
int size() const { return 0; } |
92 | 107 |
|
93 |
/// \brief |
|
108 |
/// \brief Check if the heap is empty. |
|
94 | 109 |
/// |
95 |
/// |
|
110 |
/// This function returns \c true if the heap is empty. |
|
96 | 111 |
bool empty() const { return false; } |
97 | 112 |
|
98 |
/// \brief |
|
113 |
/// \brief Make the heap empty. |
|
99 | 114 |
/// |
100 |
/// Makes the heap empty. |
|
101 |
void clear(); |
|
115 |
/// This functon makes the heap empty. |
|
116 |
/// It does not change the cross reference map. If you want to reuse |
|
117 |
/// a heap that is not surely empty, you should first clear it and |
|
118 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
119 |
/// for each item. |
|
120 |
void clear() {} |
|
102 | 121 |
|
103 |
/// \brief |
|
122 |
/// \brief Insert an item into the heap with the given priority. |
|
104 | 123 |
/// |
105 |
/// |
|
124 |
/// This function inserts the given item into the heap with the |
|
125 |
/// given priority. |
|
106 | 126 |
/// \param i The item to insert. |
107 | 127 |
/// \param p The priority of the item. |
128 |
/// \pre \e i must not be stored in the heap. |
|
108 | 129 |
void push(const Item &i, const Prio &p) {} |
109 | 130 |
|
110 |
/// \brief |
|
131 |
/// \brief Return the item having minimum priority. |
|
111 | 132 |
/// |
112 |
/// |
|
133 |
/// This function returns the item having minimum priority. |
|
113 | 134 |
/// \pre The heap must be non-empty. |
114 | 135 |
Item top() const {} |
115 | 136 |
|
116 | 137 |
/// \brief The minimum priority. |
117 | 138 |
/// |
118 |
/// |
|
139 |
/// This function returns the minimum priority. |
|
119 | 140 |
/// \pre The heap must be non-empty. |
120 | 141 |
Prio prio() const {} |
121 | 142 |
|
122 |
/// \brief |
|
143 |
/// \brief Remove the item having minimum priority. |
|
123 | 144 |
/// |
124 |
/// |
|
145 |
/// This function removes the item having minimum priority. |
|
125 | 146 |
/// \pre The heap must be non-empty. |
126 | 147 |
void pop() {} |
127 | 148 |
|
128 |
/// \brief |
|
149 |
/// \brief Remove the given item from the heap. |
|
129 | 150 |
/// |
130 |
/// |
|
151 |
/// This function removes the given item from the heap if it is |
|
152 |
/// already stored. |
|
131 | 153 |
/// \param i The item to delete. |
154 |
/// \pre \e i must be in the heap. |
|
132 | 155 |
void erase(const Item &i) {} |
133 | 156 |
|
134 |
/// \brief The priority of |
|
157 |
/// \brief The priority of the given item. |
|
135 | 158 |
/// |
136 |
/// |
|
159 |
/// This function returns the priority of the given item. |
|
137 | 160 |
/// \param i The item. |
138 |
/// \pre \ |
|
161 |
/// \pre \e i must be in the heap. |
|
139 | 162 |
Prio operator[](const Item &i) const {} |
140 | 163 |
|
141 |
/// \brief |
|
164 |
/// \brief Set the priority of an item or insert it, if it is |
|
142 | 165 |
/// not stored in the heap. |
143 | 166 |
/// |
144 | 167 |
/// This method sets the priority of the given item if it is |
145 |
/// already stored in the heap. |
|
146 |
/// Otherwise it inserts the given item with the given priority. |
|
168 |
/// already stored in the heap. Otherwise it inserts the given |
|
169 |
/// item into the heap with the given priority. |
|
147 | 170 |
/// |
148 | 171 |
/// \param i The item. |
149 | 172 |
/// \param p The priority. |
150 | 173 |
void set(const Item &i, const Prio &p) {} |
151 | 174 |
|
152 |
/// \brief |
|
175 |
/// \brief Decrease the priority of an item to the given value. |
|
153 | 176 |
/// |
154 |
/// |
|
177 |
/// This function decreases the priority of an item to the given value. |
|
155 | 178 |
/// \param i The item. |
156 | 179 |
/// \param p The priority. |
157 |
/// \pre \ |
|
180 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
158 | 181 |
void decrease(const Item &i, const Prio &p) {} |
159 | 182 |
|
160 |
/// \brief |
|
183 |
/// \brief Increase the priority of an item to the given value. |
|
161 | 184 |
/// |
162 |
/// |
|
185 |
/// This function increases the priority of an item to the given value. |
|
163 | 186 |
/// \param i The item. |
164 | 187 |
/// \param p The priority. |
165 |
/// \pre \ |
|
188 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
166 | 189 |
void increase(const Item &i, const Prio &p) {} |
167 | 190 |
|
168 |
/// \brief Returns if an item is in, has already been in, or has |
|
169 |
/// never been in the heap. |
|
191 |
/// \brief Return the state of an item. |
|
170 | 192 |
/// |
171 | 193 |
/// This method returns \c PRE_HEAP if the given item has never |
172 | 194 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
173 | 195 |
/// and \c POST_HEAP otherwise. |
174 | 196 |
/// In the latter case it is possible that the item will get back |
175 | 197 |
/// to the heap again. |
176 | 198 |
/// \param i The item. |
177 | 199 |
State state(const Item &i) const {} |
178 | 200 |
|
179 |
/// \brief |
|
201 |
/// \brief Set the state of an item in the heap. |
|
180 | 202 |
/// |
181 |
/// Sets the state of the given item in the heap. It can be used |
|
182 |
/// to manually clear the heap when it is important to achive the |
|
183 |
/// |
|
203 |
/// This function sets the state of the given item in the heap. |
|
204 |
/// It can be used to manually clear the heap when it is important |
|
205 |
/// to achive better time complexity. |
|
184 | 206 |
/// \param i The item. |
185 | 207 |
/// \param st The state. It should not be \c IN_HEAP. |
186 | 208 |
void state(const Item& i, State st) {} |
187 | 209 |
|
188 | 210 |
|
189 | 211 |
template <typename _Heap> |
190 | 212 |
struct Constraints { |
191 | 213 |
public: |
192 | 214 |
void constraints() { |
193 | 215 |
typedef typename _Heap::Item OwnItem; |
194 | 216 |
typedef typename _Heap::Prio OwnPrio; |
195 | 217 |
typedef typename _Heap::State OwnState; |
196 | 218 |
|
197 | 219 |
Item item; |
198 | 220 |
Prio prio; |
199 | 221 |
item=Item(); |
200 | 222 |
prio=Prio(); |
201 | 223 |
ignore_unused_variable_warning(item); |
202 | 224 |
ignore_unused_variable_warning(prio); |
203 | 225 |
|
204 | 226 |
OwnItem own_item; |
205 | 227 |
OwnPrio own_prio; |
206 | 228 |
OwnState own_state; |
207 | 229 |
own_item=Item(); |
208 | 230 |
own_prio=Prio(); |
209 | 231 |
ignore_unused_variable_warning(own_item); |
210 | 232 |
ignore_unused_variable_warning(own_prio); |
211 | 233 |
ignore_unused_variable_warning(own_state); |
212 | 234 |
|
213 | 235 |
_Heap heap1(map); |
214 | 236 |
_Heap heap2 = heap1; |
215 | 237 |
ignore_unused_variable_warning(heap1); |
216 | 238 |
ignore_unused_variable_warning(heap2); |
217 | 239 |
|
218 | 240 |
int s = heap.size(); |
219 | 241 |
ignore_unused_variable_warning(s); |
220 | 242 |
bool e = heap.empty(); |
221 | 243 |
ignore_unused_variable_warning(e); |
222 | 244 |
|
223 | 245 |
prio = heap.prio(); |
224 | 246 |
item = heap.top(); |
225 | 247 |
prio = heap[item]; |
226 | 248 |
own_prio = heap.prio(); |
227 | 249 |
own_item = heap.top(); |
228 | 250 |
own_prio = heap[own_item]; |
229 | 251 |
|
230 | 252 |
heap.push(item, prio); |
231 | 253 |
heap.push(own_item, own_prio); |
232 | 254 |
heap.pop(); |
233 | 255 |
|
234 | 256 |
heap.set(item, prio); |
235 | 257 |
heap.decrease(item, prio); |
236 | 258 |
heap.increase(item, prio); |
237 | 259 |
heap.set(own_item, own_prio); |
238 | 260 |
heap.decrease(own_item, own_prio); |
239 | 261 |
heap.increase(own_item, own_prio); |
240 | 262 |
|
241 | 263 |
heap.erase(item); |
242 | 264 |
heap.erase(own_item); |
243 | 265 |
heap.clear(); |
244 | 266 |
|
245 | 267 |
own_state = heap.state(own_item); |
246 | 268 |
heap.state(own_item, own_state); |
247 | 269 |
... | ... |
@@ -121,96 +121,97 @@ |
121 | 121 |
public WriteMap<K,T> |
122 | 122 |
{ |
123 | 123 |
public: |
124 | 124 |
/// The key type of the map. |
125 | 125 |
typedef K Key; |
126 | 126 |
/// \brief The value type of the map. |
127 | 127 |
/// (The type of objects associated with the keys). |
128 | 128 |
typedef T Value; |
129 | 129 |
|
130 | 130 |
/// Returns the value associated with the given key. |
131 | 131 |
Value operator[](const Key &) const { |
132 | 132 |
return *static_cast<Value *>(0); |
133 | 133 |
} |
134 | 134 |
|
135 | 135 |
/// Sets the value associated with the given key. |
136 | 136 |
void set(const Key &, const Value &) {} |
137 | 137 |
|
138 | 138 |
template<typename _ReadWriteMap> |
139 | 139 |
struct Constraints { |
140 | 140 |
void constraints() { |
141 | 141 |
checkConcept<ReadMap<K, T>, _ReadWriteMap >(); |
142 | 142 |
checkConcept<WriteMap<K, T>, _ReadWriteMap >(); |
143 | 143 |
} |
144 | 144 |
}; |
145 | 145 |
}; |
146 | 146 |
|
147 | 147 |
|
148 | 148 |
/// Dereferable map concept |
149 | 149 |
|
150 | 150 |
/// Dereferable map concept. |
151 | 151 |
/// |
152 | 152 |
template<typename K, typename T, typename R, typename CR> |
153 | 153 |
class ReferenceMap : public ReadWriteMap<K,T> |
154 | 154 |
{ |
155 | 155 |
public: |
156 | 156 |
/// Tag for reference maps. |
157 | 157 |
typedef True ReferenceMapTag; |
158 | 158 |
/// The key type of the map. |
159 | 159 |
typedef K Key; |
160 | 160 |
/// \brief The value type of the map. |
161 | 161 |
/// (The type of objects associated with the keys). |
162 | 162 |
typedef T Value; |
163 | 163 |
/// The reference type of the map. |
164 | 164 |
typedef R Reference; |
165 | 165 |
/// The const reference type of the map. |
166 | 166 |
typedef CR ConstReference; |
167 | 167 |
|
168 | 168 |
public: |
169 | 169 |
|
170 | 170 |
/// Returns a reference to the value associated with the given key. |
171 | 171 |
Reference operator[](const Key &) { |
172 | 172 |
return *static_cast<Value *>(0); |
173 | 173 |
} |
174 | 174 |
|
175 | 175 |
/// Returns a const reference to the value associated with the given key. |
176 | 176 |
ConstReference operator[](const Key &) const { |
177 | 177 |
return *static_cast<Value *>(0); |
178 | 178 |
} |
179 | 179 |
|
180 | 180 |
/// Sets the value associated with the given key. |
181 | 181 |
void set(const Key &k,const Value &t) { operator[](k)=t; } |
182 | 182 |
|
183 | 183 |
template<typename _ReferenceMap> |
184 | 184 |
struct Constraints { |
185 |
|
|
185 |
typename enable_if<typename _ReferenceMap::ReferenceMapTag, void>::type |
|
186 |
constraints() { |
|
186 | 187 |
checkConcept<ReadWriteMap<K, T>, _ReferenceMap >(); |
187 | 188 |
ref = m[key]; |
188 | 189 |
m[key] = val; |
189 | 190 |
m[key] = ref; |
190 | 191 |
m[key] = cref; |
191 | 192 |
own_ref = m[own_key]; |
192 | 193 |
m[own_key] = own_val; |
193 | 194 |
m[own_key] = own_ref; |
194 | 195 |
m[own_key] = own_cref; |
195 | 196 |
m[key] = m[own_key]; |
196 | 197 |
m[own_key] = m[key]; |
197 | 198 |
} |
198 | 199 |
const Key& key; |
199 | 200 |
Value& val; |
200 | 201 |
Reference ref; |
201 | 202 |
ConstReference cref; |
202 | 203 |
const typename _ReferenceMap::Key& own_key; |
203 | 204 |
typename _ReferenceMap::Value& own_val; |
204 | 205 |
typename _ReferenceMap::Reference own_ref; |
205 | 206 |
typename _ReferenceMap::ConstReference own_cref; |
206 | 207 |
_ReferenceMap& m; |
207 | 208 |
}; |
208 | 209 |
}; |
209 | 210 |
|
210 | 211 |
// @} |
211 | 212 |
|
212 | 213 |
} //namespace concepts |
213 | 214 |
|
214 | 215 |
} //namespace lemon |
215 | 216 |
|
216 | 217 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DFS_H |
20 | 20 |
#define LEMON_DFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief DFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Dfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Dfs class. |
38 | 38 |
///\tparam GR Digraph type. |
39 | 39 |
template<class GR> |
40 | 40 |
struct DfsDefaultTraits |
41 | 41 |
{ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the %DFS paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the %DFS paths. |
50 |
///It must |
|
50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a \c PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 |
///It must |
|
65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
66 |
///By default it is a NullMap. |
|
66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
67 | 68 |
///Instantiates a \c ProcessedMap. |
68 | 69 |
|
69 | 70 |
///This function instantiates a \ref ProcessedMap. |
70 | 71 |
///\param g is the digraph, to which |
71 | 72 |
///we would like to define the \ref ProcessedMap. |
72 | 73 |
#ifdef DOXYGEN |
73 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
74 | 75 |
#else |
75 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
76 | 77 |
#endif |
77 | 78 |
{ |
78 | 79 |
return new ProcessedMap(); |
79 | 80 |
} |
80 | 81 |
|
81 | 82 |
///The type of the map that indicates which nodes are reached. |
82 | 83 |
|
83 | 84 |
///The type of the map that indicates which nodes are reached. |
84 |
///It must |
|
85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
85 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
86 | 87 |
///Instantiates a \c ReachedMap. |
87 | 88 |
|
88 | 89 |
///This function instantiates a \ref ReachedMap. |
89 | 90 |
///\param g is the digraph, to which |
90 | 91 |
///we would like to define the \ref ReachedMap. |
91 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
92 | 93 |
{ |
93 | 94 |
return new ReachedMap(g); |
94 | 95 |
} |
95 | 96 |
|
96 | 97 |
///The type of the map that stores the distances of the nodes. |
97 | 98 |
|
98 | 99 |
///The type of the map that stores the distances of the nodes. |
99 |
///It must |
|
100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
100 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
101 | 102 |
///Instantiates a \c DistMap. |
102 | 103 |
|
103 | 104 |
///This function instantiates a \ref DistMap. |
104 | 105 |
///\param g is the digraph, to which we would like to define the |
105 | 106 |
///\ref DistMap. |
106 | 107 |
static DistMap *createDistMap(const Digraph &g) |
107 | 108 |
{ |
108 | 109 |
return new DistMap(g); |
109 | 110 |
} |
110 | 111 |
}; |
111 | 112 |
|
112 | 113 |
///%DFS algorithm class. |
113 | 114 |
|
114 | 115 |
///\ingroup search |
115 | 116 |
///This class provides an efficient implementation of the %DFS algorithm. |
116 | 117 |
/// |
117 | 118 |
///There is also a \ref dfs() "function-type interface" for the DFS |
118 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
119 | 120 |
///used easier. |
120 | 121 |
/// |
121 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
122 | 123 |
///The default type is \ref ListDigraph. |
123 | 124 |
#ifdef DOXYGEN |
124 | 125 |
template <typename GR, |
125 | 126 |
typename TR> |
126 | 127 |
#else |
127 | 128 |
template <typename GR=ListDigraph, |
128 | 129 |
typename TR=DfsDefaultTraits<GR> > |
129 | 130 |
#endif |
130 | 131 |
class Dfs { |
131 | 132 |
public: |
132 | 133 |
|
133 | 134 |
///The type of the digraph the algorithm runs on. |
134 | 135 |
typedef typename TR::Digraph Digraph; |
135 | 136 |
|
136 | 137 |
///\brief The type of the map that stores the predecessor arcs of the |
137 | 138 |
///DFS paths. |
138 | 139 |
typedef typename TR::PredMap PredMap; |
139 | 140 |
///The type of the map that stores the distances of the nodes. |
140 | 141 |
typedef typename TR::DistMap DistMap; |
141 | 142 |
///The type of the map that indicates which nodes are reached. |
142 | 143 |
typedef typename TR::ReachedMap ReachedMap; |
143 | 144 |
///The type of the map that indicates which nodes are processed. |
144 | 145 |
typedef typename TR::ProcessedMap ProcessedMap; |
145 | 146 |
///The type of the paths. |
146 | 147 |
typedef PredMapPath<Digraph, PredMap> Path; |
147 | 148 |
|
148 | 149 |
///The \ref DfsDefaultTraits "traits class" of the algorithm. |
149 | 150 |
typedef TR Traits; |
150 | 151 |
|
151 | 152 |
private: |
152 | 153 |
|
153 | 154 |
typedef typename Digraph::Node Node; |
154 | 155 |
typedef typename Digraph::NodeIt NodeIt; |
155 | 156 |
typedef typename Digraph::Arc Arc; |
156 | 157 |
typedef typename Digraph::OutArcIt OutArcIt; |
157 | 158 |
|
158 | 159 |
//Pointer to the underlying digraph. |
159 | 160 |
const Digraph *G; |
160 | 161 |
//Pointer to the map of predecessor arcs. |
161 | 162 |
PredMap *_pred; |
162 | 163 |
//Indicates if _pred is locally allocated (true) or not. |
163 | 164 |
bool local_pred; |
164 | 165 |
//Pointer to the map of distances. |
165 | 166 |
DistMap *_dist; |
166 | 167 |
//Indicates if _dist is locally allocated (true) or not. |
167 | 168 |
bool local_dist; |
168 | 169 |
//Pointer to the map of reached status of the nodes. |
169 | 170 |
ReachedMap *_reached; |
170 | 171 |
//Indicates if _reached is locally allocated (true) or not. |
171 | 172 |
bool local_reached; |
172 | 173 |
//Pointer to the map of processed status of the nodes. |
173 | 174 |
ProcessedMap *_processed; |
174 | 175 |
//Indicates if _processed is locally allocated (true) or not. |
175 | 176 |
bool local_processed; |
176 | 177 |
|
177 | 178 |
std::vector<typename Digraph::OutArcIt> _stack; |
178 | 179 |
int _stack_head; |
179 | 180 |
|
180 | 181 |
//Creates the maps if necessary. |
181 | 182 |
void create_maps() |
182 | 183 |
{ |
183 | 184 |
if(!_pred) { |
184 | 185 |
local_pred = true; |
185 | 186 |
_pred = Traits::createPredMap(*G); |
186 | 187 |
} |
187 | 188 |
if(!_dist) { |
188 | 189 |
local_dist = true; |
189 | 190 |
_dist = Traits::createDistMap(*G); |
190 | 191 |
} |
191 | 192 |
if(!_reached) { |
192 | 193 |
local_reached = true; |
193 | 194 |
_reached = Traits::createReachedMap(*G); |
194 | 195 |
} |
195 | 196 |
if(!_processed) { |
196 | 197 |
local_processed = true; |
197 | 198 |
_processed = Traits::createProcessedMap(*G); |
198 | 199 |
} |
199 | 200 |
} |
200 | 201 |
|
201 | 202 |
protected: |
202 | 203 |
|
203 | 204 |
Dfs() {} |
204 | 205 |
|
205 | 206 |
public: |
206 | 207 |
|
207 | 208 |
typedef Dfs Create; |
208 | 209 |
|
209 | 210 |
///\name Named Template Parameters |
210 | 211 |
|
211 | 212 |
///@{ |
212 | 213 |
|
213 | 214 |
template <class T> |
214 | 215 |
struct SetPredMapTraits : public Traits { |
215 | 216 |
typedef T PredMap; |
216 | 217 |
static PredMap *createPredMap(const Digraph &) |
217 | 218 |
{ |
218 | 219 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
219 | 220 |
return 0; // ignore warnings |
220 | 221 |
} |
221 | 222 |
}; |
222 | 223 |
///\brief \ref named-templ-param "Named parameter" for setting |
223 | 224 |
///\c PredMap type. |
224 | 225 |
/// |
225 | 226 |
///\ref named-templ-param "Named parameter" for setting |
226 | 227 |
///\c PredMap type. |
227 |
///It must |
|
228 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
228 | 229 |
template <class T> |
229 | 230 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > { |
230 | 231 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
231 | 232 |
}; |
232 | 233 |
|
233 | 234 |
template <class T> |
234 | 235 |
struct SetDistMapTraits : public Traits { |
235 | 236 |
typedef T DistMap; |
236 | 237 |
static DistMap *createDistMap(const Digraph &) |
237 | 238 |
{ |
238 | 239 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
239 | 240 |
return 0; // ignore warnings |
240 | 241 |
} |
241 | 242 |
}; |
242 | 243 |
///\brief \ref named-templ-param "Named parameter" for setting |
243 | 244 |
///\c DistMap type. |
244 | 245 |
/// |
245 | 246 |
///\ref named-templ-param "Named parameter" for setting |
246 | 247 |
///\c DistMap type. |
247 |
///It must |
|
248 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
248 | 249 |
template <class T> |
249 | 250 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > { |
250 | 251 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
251 | 252 |
}; |
252 | 253 |
|
253 | 254 |
template <class T> |
254 | 255 |
struct SetReachedMapTraits : public Traits { |
255 | 256 |
typedef T ReachedMap; |
256 | 257 |
static ReachedMap *createReachedMap(const Digraph &) |
257 | 258 |
{ |
258 | 259 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
259 | 260 |
return 0; // ignore warnings |
260 | 261 |
} |
261 | 262 |
}; |
262 | 263 |
///\brief \ref named-templ-param "Named parameter" for setting |
263 | 264 |
///\c ReachedMap type. |
264 | 265 |
/// |
265 | 266 |
///\ref named-templ-param "Named parameter" for setting |
266 | 267 |
///\c ReachedMap type. |
267 |
///It must |
|
268 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
268 | 269 |
template <class T> |
269 | 270 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > { |
270 | 271 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
271 | 272 |
}; |
272 | 273 |
|
273 | 274 |
template <class T> |
274 | 275 |
struct SetProcessedMapTraits : public Traits { |
275 | 276 |
typedef T ProcessedMap; |
276 | 277 |
static ProcessedMap *createProcessedMap(const Digraph &) |
277 | 278 |
{ |
278 | 279 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
279 | 280 |
return 0; // ignore warnings |
280 | 281 |
} |
281 | 282 |
}; |
282 | 283 |
///\brief \ref named-templ-param "Named parameter" for setting |
283 | 284 |
///\c ProcessedMap type. |
284 | 285 |
/// |
285 | 286 |
///\ref named-templ-param "Named parameter" for setting |
286 | 287 |
///\c ProcessedMap type. |
287 |
///It must |
|
288 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
288 | 289 |
template <class T> |
289 | 290 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > { |
290 | 291 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
291 | 292 |
}; |
292 | 293 |
|
293 | 294 |
struct SetStandardProcessedMapTraits : public Traits { |
294 | 295 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
295 | 296 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
296 | 297 |
{ |
297 | 298 |
return new ProcessedMap(g); |
298 | 299 |
} |
299 | 300 |
}; |
300 | 301 |
///\brief \ref named-templ-param "Named parameter" for setting |
301 | 302 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
302 | 303 |
/// |
303 | 304 |
///\ref named-templ-param "Named parameter" for setting |
304 | 305 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
305 | 306 |
///If you don't set it explicitly, it will be automatically allocated. |
306 | 307 |
struct SetStandardProcessedMap : |
307 | 308 |
public Dfs< Digraph, SetStandardProcessedMapTraits > { |
308 | 309 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
309 | 310 |
}; |
310 | 311 |
|
311 | 312 |
///@} |
312 | 313 |
|
313 | 314 |
public: |
314 | 315 |
|
315 | 316 |
///Constructor. |
316 | 317 |
|
317 | 318 |
///Constructor. |
318 | 319 |
///\param g The digraph the algorithm runs on. |
319 | 320 |
Dfs(const Digraph &g) : |
320 | 321 |
G(&g), |
321 | 322 |
_pred(NULL), local_pred(false), |
322 | 323 |
_dist(NULL), local_dist(false), |
323 | 324 |
_reached(NULL), local_reached(false), |
324 | 325 |
_processed(NULL), local_processed(false) |
325 | 326 |
{ } |
326 | 327 |
|
327 | 328 |
///Destructor. |
328 | 329 |
~Dfs() |
329 | 330 |
{ |
330 | 331 |
if(local_pred) delete _pred; |
331 | 332 |
if(local_dist) delete _dist; |
332 | 333 |
if(local_reached) delete _reached; |
333 | 334 |
if(local_processed) delete _processed; |
334 | 335 |
} |
335 | 336 |
|
336 | 337 |
///Sets the map that stores the predecessor arcs. |
337 | 338 |
|
338 | 339 |
///Sets the map that stores the predecessor arcs. |
339 | 340 |
///If you don't use this function before calling \ref run(Node) "run()" |
340 | 341 |
///or \ref init(), an instance will be allocated automatically. |
341 | 342 |
///The destructor deallocates this automatically allocated map, |
342 | 343 |
///of course. |
343 | 344 |
///\return <tt> (*this) </tt> |
344 | 345 |
Dfs &predMap(PredMap &m) |
345 | 346 |
{ |
346 | 347 |
if(local_pred) { |
347 | 348 |
delete _pred; |
348 | 349 |
local_pred=false; |
349 | 350 |
} |
350 | 351 |
_pred = &m; |
351 | 352 |
return *this; |
352 | 353 |
} |
353 | 354 |
|
354 | 355 |
///Sets the map that indicates which nodes are reached. |
355 | 356 |
|
356 | 357 |
///Sets the map that indicates which nodes are reached. |
357 | 358 |
///If you don't use this function before calling \ref run(Node) "run()" |
358 | 359 |
///or \ref init(), an instance will be allocated automatically. |
359 | 360 |
///The destructor deallocates this automatically allocated map, |
360 | 361 |
///of course. |
361 | 362 |
///\return <tt> (*this) </tt> |
362 | 363 |
Dfs &reachedMap(ReachedMap &m) |
363 | 364 |
{ |
364 | 365 |
if(local_reached) { |
365 | 366 |
delete _reached; |
366 | 367 |
local_reached=false; |
367 | 368 |
} |
368 | 369 |
_reached = &m; |
369 | 370 |
return *this; |
370 | 371 |
} |
371 | 372 |
|
372 | 373 |
///Sets the map that indicates which nodes are processed. |
373 | 374 |
|
374 | 375 |
///Sets the map that indicates which nodes are processed. |
375 | 376 |
///If you don't use this function before calling \ref run(Node) "run()" |
376 | 377 |
///or \ref init(), an instance will be allocated automatically. |
377 | 378 |
///The destructor deallocates this automatically allocated map, |
378 | 379 |
///of course. |
379 | 380 |
///\return <tt> (*this) </tt> |
380 | 381 |
Dfs &processedMap(ProcessedMap &m) |
381 | 382 |
{ |
382 | 383 |
if(local_processed) { |
383 | 384 |
delete _processed; |
384 | 385 |
local_processed=false; |
385 | 386 |
} |
386 | 387 |
_processed = &m; |
387 | 388 |
return *this; |
388 | 389 |
} |
389 | 390 |
|
390 | 391 |
///Sets the map that stores the distances of the nodes. |
391 | 392 |
|
392 | 393 |
///Sets the map that stores the distances of the nodes calculated by |
393 | 394 |
///the algorithm. |
394 | 395 |
///If you don't use this function before calling \ref run(Node) "run()" |
395 | 396 |
///or \ref init(), an instance will be allocated automatically. |
396 | 397 |
///The destructor deallocates this automatically allocated map, |
397 | 398 |
///of course. |
398 | 399 |
///\return <tt> (*this) </tt> |
399 | 400 |
Dfs &distMap(DistMap &m) |
400 | 401 |
{ |
401 | 402 |
if(local_dist) { |
402 | 403 |
delete _dist; |
403 | 404 |
local_dist=false; |
404 | 405 |
} |
405 | 406 |
_dist = &m; |
406 | 407 |
return *this; |
407 | 408 |
} |
408 | 409 |
|
409 | 410 |
public: |
410 | 411 |
|
411 | 412 |
///\name Execution Control |
412 | 413 |
///The simplest way to execute the DFS algorithm is to use one of the |
413 | 414 |
///member functions called \ref run(Node) "run()".\n |
414 |
///If you need more control on the execution, first you have to call |
|
415 |
///\ref init(), then you can add a source node with \ref addSource() |
|
415 |
///If you need better control on the execution, you have to call |
|
416 |
///\ref init() first, then you can add a source node with \ref addSource() |
|
416 | 417 |
///and perform the actual computation with \ref start(). |
417 | 418 |
///This procedure can be repeated if there are nodes that have not |
418 | 419 |
///been reached. |
419 | 420 |
|
420 | 421 |
///@{ |
421 | 422 |
|
422 | 423 |
///\brief Initializes the internal data structures. |
423 | 424 |
/// |
424 | 425 |
///Initializes the internal data structures. |
425 | 426 |
void init() |
426 | 427 |
{ |
427 | 428 |
create_maps(); |
428 | 429 |
_stack.resize(countNodes(*G)); |
429 | 430 |
_stack_head=-1; |
430 | 431 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
431 | 432 |
_pred->set(u,INVALID); |
432 | 433 |
_reached->set(u,false); |
433 | 434 |
_processed->set(u,false); |
434 | 435 |
} |
435 | 436 |
} |
436 | 437 |
|
437 | 438 |
///Adds a new source node. |
438 | 439 |
|
439 | 440 |
///Adds a new source node to the set of nodes to be processed. |
440 | 441 |
/// |
441 | 442 |
///\pre The stack must be empty. Otherwise the algorithm gives |
442 | 443 |
///wrong results. (One of the outgoing arcs of all the source nodes |
443 | 444 |
///except for the last one will not be visited and distances will |
444 | 445 |
///also be wrong.) |
445 | 446 |
void addSource(Node s) |
446 | 447 |
{ |
447 | 448 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
448 | 449 |
if(!(*_reached)[s]) |
449 | 450 |
{ |
450 | 451 |
_reached->set(s,true); |
451 | 452 |
_pred->set(s,INVALID); |
452 | 453 |
OutArcIt e(*G,s); |
453 | 454 |
if(e!=INVALID) { |
454 | 455 |
_stack[++_stack_head]=e; |
455 | 456 |
_dist->set(s,_stack_head); |
456 | 457 |
} |
457 | 458 |
else { |
458 | 459 |
_processed->set(s,true); |
459 | 460 |
_dist->set(s,0); |
460 | 461 |
} |
461 | 462 |
} |
462 | 463 |
} |
463 | 464 |
|
464 | 465 |
///Processes the next arc. |
465 | 466 |
|
466 | 467 |
///Processes the next arc. |
467 | 468 |
/// |
468 | 469 |
///\return The processed arc. |
469 | 470 |
/// |
470 | 471 |
///\pre The stack must not be empty. |
471 | 472 |
Arc processNextArc() |
472 | 473 |
{ |
473 | 474 |
Node m; |
474 | 475 |
Arc e=_stack[_stack_head]; |
475 | 476 |
if(!(*_reached)[m=G->target(e)]) { |
476 | 477 |
_pred->set(m,e); |
477 | 478 |
_reached->set(m,true); |
478 | 479 |
++_stack_head; |
479 | 480 |
_stack[_stack_head] = OutArcIt(*G, m); |
... | ... |
@@ -608,517 +609,511 @@ |
608 | 609 |
start(); |
609 | 610 |
} |
610 | 611 |
|
611 | 612 |
///Finds the %DFS path between \c s and \c t. |
612 | 613 |
|
613 | 614 |
///This method runs the %DFS algorithm from node \c s |
614 | 615 |
///in order to compute the DFS path to node \c t |
615 | 616 |
///(it stops searching when \c t is processed) |
616 | 617 |
/// |
617 | 618 |
///\return \c true if \c t is reachable form \c s. |
618 | 619 |
/// |
619 | 620 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is |
620 | 621 |
///just a shortcut of the following code. |
621 | 622 |
///\code |
622 | 623 |
/// d.init(); |
623 | 624 |
/// d.addSource(s); |
624 | 625 |
/// d.start(t); |
625 | 626 |
///\endcode |
626 | 627 |
bool run(Node s,Node t) { |
627 | 628 |
init(); |
628 | 629 |
addSource(s); |
629 | 630 |
start(t); |
630 | 631 |
return reached(t); |
631 | 632 |
} |
632 | 633 |
|
633 | 634 |
///Runs the algorithm to visit all nodes in the digraph. |
634 | 635 |
|
635 | 636 |
///This method runs the %DFS algorithm in order to compute the |
636 | 637 |
///%DFS path to each node. |
637 | 638 |
/// |
638 | 639 |
///The algorithm computes |
639 | 640 |
///- the %DFS tree (forest), |
640 | 641 |
///- the distance of each node from the root(s) in the %DFS tree. |
641 | 642 |
/// |
642 | 643 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
643 | 644 |
///\code |
644 | 645 |
/// d.init(); |
645 | 646 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
646 | 647 |
/// if (!d.reached(n)) { |
647 | 648 |
/// d.addSource(n); |
648 | 649 |
/// d.start(); |
649 | 650 |
/// } |
650 | 651 |
/// } |
651 | 652 |
///\endcode |
652 | 653 |
void run() { |
653 | 654 |
init(); |
654 | 655 |
for (NodeIt it(*G); it != INVALID; ++it) { |
655 | 656 |
if (!reached(it)) { |
656 | 657 |
addSource(it); |
657 | 658 |
start(); |
658 | 659 |
} |
659 | 660 |
} |
660 | 661 |
} |
661 | 662 |
|
662 | 663 |
///@} |
663 | 664 |
|
664 | 665 |
///\name Query Functions |
665 | 666 |
///The results of the DFS algorithm can be obtained using these |
666 | 667 |
///functions.\n |
667 | 668 |
///Either \ref run(Node) "run()" or \ref start() should be called |
668 | 669 |
///before using them. |
669 | 670 |
|
670 | 671 |
///@{ |
671 | 672 |
|
672 |
///The DFS path to |
|
673 |
///The DFS path to the given node. |
|
673 | 674 |
|
674 |
///Returns the DFS path to |
|
675 |
///Returns the DFS path to the given node from the root(s). |
|
675 | 676 |
/// |
676 | 677 |
///\warning \c t should be reached from the root(s). |
677 | 678 |
/// |
678 | 679 |
///\pre Either \ref run(Node) "run()" or \ref init() |
679 | 680 |
///must be called before using this function. |
680 | 681 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
681 | 682 |
|
682 |
///The distance of |
|
683 |
///The distance of the given node from the root(s). |
|
683 | 684 |
|
684 |
///Returns the distance of |
|
685 |
///Returns the distance of the given node from the root(s). |
|
685 | 686 |
/// |
686 | 687 |
///\warning If node \c v is not reached from the root(s), then |
687 | 688 |
///the return value of this function is undefined. |
688 | 689 |
/// |
689 | 690 |
///\pre Either \ref run(Node) "run()" or \ref init() |
690 | 691 |
///must be called before using this function. |
691 | 692 |
int dist(Node v) const { return (*_dist)[v]; } |
692 | 693 |
|
693 |
///Returns the 'previous arc' of the %DFS tree for |
|
694 |
///Returns the 'previous arc' of the %DFS tree for the given node. |
|
694 | 695 |
|
695 | 696 |
///This function returns the 'previous arc' of the %DFS tree for the |
696 | 697 |
///node \c v, i.e. it returns the last arc of a %DFS path from a |
697 | 698 |
///root to \c v. It is \c INVALID if \c v is not reached from the |
698 | 699 |
///root(s) or if \c v is a root. |
699 | 700 |
/// |
700 | 701 |
///The %DFS tree used here is equal to the %DFS tree used in |
701 |
///\ref predNode(). |
|
702 |
///\ref predNode() and \ref predMap(). |
|
702 | 703 |
/// |
703 | 704 |
///\pre Either \ref run(Node) "run()" or \ref init() |
704 | 705 |
///must be called before using this function. |
705 | 706 |
Arc predArc(Node v) const { return (*_pred)[v];} |
706 | 707 |
|
707 |
///Returns the 'previous node' of the %DFS tree. |
|
708 |
///Returns the 'previous node' of the %DFS tree for the given node. |
|
708 | 709 |
|
709 | 710 |
///This function returns the 'previous node' of the %DFS |
710 | 711 |
///tree for the node \c v, i.e. it returns the last but one node |
711 |
/// |
|
712 |
///of a %DFS path from a root to \c v. It is \c INVALID |
|
712 | 713 |
///if \c v is not reached from the root(s) or if \c v is a root. |
713 | 714 |
/// |
714 | 715 |
///The %DFS tree used here is equal to the %DFS tree used in |
715 |
///\ref predArc(). |
|
716 |
///\ref predArc() and \ref predMap(). |
|
716 | 717 |
/// |
717 | 718 |
///\pre Either \ref run(Node) "run()" or \ref init() |
718 | 719 |
///must be called before using this function. |
719 | 720 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
720 | 721 |
G->source((*_pred)[v]); } |
721 | 722 |
|
722 | 723 |
///\brief Returns a const reference to the node map that stores the |
723 | 724 |
///distances of the nodes. |
724 | 725 |
/// |
725 | 726 |
///Returns a const reference to the node map that stores the |
726 | 727 |
///distances of the nodes calculated by the algorithm. |
727 | 728 |
/// |
728 | 729 |
///\pre Either \ref run(Node) "run()" or \ref init() |
729 | 730 |
///must be called before using this function. |
730 | 731 |
const DistMap &distMap() const { return *_dist;} |
731 | 732 |
|
732 | 733 |
///\brief Returns a const reference to the node map that stores the |
733 | 734 |
///predecessor arcs. |
734 | 735 |
/// |
735 | 736 |
///Returns a const reference to the node map that stores the predecessor |
736 |
///arcs, which form the DFS tree. |
|
737 |
///arcs, which form the DFS tree (forest). |
|
737 | 738 |
/// |
738 | 739 |
///\pre Either \ref run(Node) "run()" or \ref init() |
739 | 740 |
///must be called before using this function. |
740 | 741 |
const PredMap &predMap() const { return *_pred;} |
741 | 742 |
|
742 |
///Checks if |
|
743 |
///Checks if the given node. node is reached from the root(s). |
|
743 | 744 |
|
744 | 745 |
///Returns \c true if \c v is reached from the root(s). |
745 | 746 |
/// |
746 | 747 |
///\pre Either \ref run(Node) "run()" or \ref init() |
747 | 748 |
///must be called before using this function. |
748 | 749 |
bool reached(Node v) const { return (*_reached)[v]; } |
749 | 750 |
|
750 | 751 |
///@} |
751 | 752 |
}; |
752 | 753 |
|
753 | 754 |
///Default traits class of dfs() function. |
754 | 755 |
|
755 | 756 |
///Default traits class of dfs() function. |
756 | 757 |
///\tparam GR Digraph type. |
757 | 758 |
template<class GR> |
758 | 759 |
struct DfsWizardDefaultTraits |
759 | 760 |
{ |
760 | 761 |
///The type of the digraph the algorithm runs on. |
761 | 762 |
typedef GR Digraph; |
762 | 763 |
|
763 | 764 |
///\brief The type of the map that stores the predecessor |
764 | 765 |
///arcs of the %DFS paths. |
765 | 766 |
/// |
766 | 767 |
///The type of the map that stores the predecessor |
767 | 768 |
///arcs of the %DFS paths. |
768 |
///It must |
|
769 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
769 | 770 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
770 | 771 |
///Instantiates a PredMap. |
771 | 772 |
|
772 | 773 |
///This function instantiates a PredMap. |
773 | 774 |
///\param g is the digraph, to which we would like to define the |
774 | 775 |
///PredMap. |
775 | 776 |
static PredMap *createPredMap(const Digraph &g) |
776 | 777 |
{ |
777 | 778 |
return new PredMap(g); |
778 | 779 |
} |
779 | 780 |
|
780 | 781 |
///The type of the map that indicates which nodes are processed. |
781 | 782 |
|
782 | 783 |
///The type of the map that indicates which nodes are processed. |
783 |
///It must |
|
784 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
784 | 785 |
///By default it is a NullMap. |
785 | 786 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
786 | 787 |
///Instantiates a ProcessedMap. |
787 | 788 |
|
788 | 789 |
///This function instantiates a ProcessedMap. |
789 | 790 |
///\param g is the digraph, to which |
790 | 791 |
///we would like to define the ProcessedMap. |
791 | 792 |
#ifdef DOXYGEN |
792 | 793 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
793 | 794 |
#else |
794 | 795 |
static ProcessedMap *createProcessedMap(const Digraph &) |
795 | 796 |
#endif |
796 | 797 |
{ |
797 | 798 |
return new ProcessedMap(); |
798 | 799 |
} |
799 | 800 |
|
800 | 801 |
///The type of the map that indicates which nodes are reached. |
801 | 802 |
|
802 | 803 |
///The type of the map that indicates which nodes are reached. |
803 |
///It must |
|
804 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
804 | 805 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
805 | 806 |
///Instantiates a ReachedMap. |
806 | 807 |
|
807 | 808 |
///This function instantiates a ReachedMap. |
808 | 809 |
///\param g is the digraph, to which |
809 | 810 |
///we would like to define the ReachedMap. |
810 | 811 |
static ReachedMap *createReachedMap(const Digraph &g) |
811 | 812 |
{ |
812 | 813 |
return new ReachedMap(g); |
813 | 814 |
} |
814 | 815 |
|
815 | 816 |
///The type of the map that stores the distances of the nodes. |
816 | 817 |
|
817 | 818 |
///The type of the map that stores the distances of the nodes. |
818 |
///It must |
|
819 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
819 | 820 |
typedef typename Digraph::template NodeMap<int> DistMap; |
820 | 821 |
///Instantiates a DistMap. |
821 | 822 |
|
822 | 823 |
///This function instantiates a DistMap. |
823 | 824 |
///\param g is the digraph, to which we would like to define |
824 | 825 |
///the DistMap |
825 | 826 |
static DistMap *createDistMap(const Digraph &g) |
826 | 827 |
{ |
827 | 828 |
return new DistMap(g); |
828 | 829 |
} |
829 | 830 |
|
830 | 831 |
///The type of the DFS paths. |
831 | 832 |
|
832 | 833 |
///The type of the DFS paths. |
833 |
///It must |
|
834 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
834 | 835 |
typedef lemon::Path<Digraph> Path; |
835 | 836 |
}; |
836 | 837 |
|
837 | 838 |
/// Default traits class used by DfsWizard |
838 | 839 |
|
839 |
/// To make it easier to use Dfs algorithm |
|
840 |
/// we have created a wizard class. |
|
841 |
/// This \ref DfsWizard class needs default traits, |
|
842 |
/// as well as the \ref Dfs class. |
|
843 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
|
844 |
/// \ref DfsWizard class. |
|
840 |
/// Default traits class used by DfsWizard. |
|
841 |
/// \tparam GR The type of the digraph. |
|
845 | 842 |
template<class GR> |
846 | 843 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
847 | 844 |
{ |
848 | 845 |
|
849 | 846 |
typedef DfsWizardDefaultTraits<GR> Base; |
850 | 847 |
protected: |
851 | 848 |
//The type of the nodes in the digraph. |
852 | 849 |
typedef typename Base::Digraph::Node Node; |
853 | 850 |
|
854 | 851 |
//Pointer to the digraph the algorithm runs on. |
855 | 852 |
void *_g; |
856 | 853 |
//Pointer to the map of reached nodes. |
857 | 854 |
void *_reached; |
858 | 855 |
//Pointer to the map of processed nodes. |
859 | 856 |
void *_processed; |
860 | 857 |
//Pointer to the map of predecessors arcs. |
861 | 858 |
void *_pred; |
862 | 859 |
//Pointer to the map of distances. |
863 | 860 |
void *_dist; |
864 | 861 |
//Pointer to the DFS path to the target node. |
865 | 862 |
void *_path; |
866 | 863 |
//Pointer to the distance of the target node. |
867 | 864 |
int *_di; |
868 | 865 |
|
869 | 866 |
public: |
870 | 867 |
/// Constructor. |
871 | 868 |
|
872 |
/// This constructor does not require parameters, |
|
869 |
/// This constructor does not require parameters, it initiates |
|
873 | 870 |
/// all of the attributes to \c 0. |
874 | 871 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
875 | 872 |
_dist(0), _path(0), _di(0) {} |
876 | 873 |
|
877 | 874 |
/// Constructor. |
878 | 875 |
|
879 | 876 |
/// This constructor requires one parameter, |
880 | 877 |
/// others are initiated to \c 0. |
881 | 878 |
/// \param g The digraph the algorithm runs on. |
882 | 879 |
DfsWizardBase(const GR &g) : |
883 | 880 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
884 | 881 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
885 | 882 |
|
886 | 883 |
}; |
887 | 884 |
|
888 | 885 |
/// Auxiliary class for the function-type interface of DFS algorithm. |
889 | 886 |
|
890 | 887 |
/// This auxiliary class is created to implement the |
891 | 888 |
/// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
892 | 889 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
893 | 890 |
/// functions and features of the plain \ref Dfs. |
894 | 891 |
/// |
895 | 892 |
/// This class should only be used through the \ref dfs() function, |
896 | 893 |
/// which makes it easier to use the algorithm. |
897 | 894 |
template<class TR> |
898 | 895 |
class DfsWizard : public TR |
899 | 896 |
{ |
900 | 897 |
typedef TR Base; |
901 | 898 |
|
902 |
///The type of the digraph the algorithm runs on. |
|
903 | 899 |
typedef typename TR::Digraph Digraph; |
904 | 900 |
|
905 | 901 |
typedef typename Digraph::Node Node; |
906 | 902 |
typedef typename Digraph::NodeIt NodeIt; |
907 | 903 |
typedef typename Digraph::Arc Arc; |
908 | 904 |
typedef typename Digraph::OutArcIt OutArcIt; |
909 | 905 |
|
910 |
///\brief The type of the map that stores the predecessor |
|
911 |
///arcs of the DFS paths. |
|
912 | 906 |
typedef typename TR::PredMap PredMap; |
913 |
///\brief The type of the map that stores the distances of the nodes. |
|
914 | 907 |
typedef typename TR::DistMap DistMap; |
915 |
///\brief The type of the map that indicates which nodes are reached. |
|
916 | 908 |
typedef typename TR::ReachedMap ReachedMap; |
917 |
///\brief The type of the map that indicates which nodes are processed. |
|
918 | 909 |
typedef typename TR::ProcessedMap ProcessedMap; |
919 |
///The type of the DFS paths |
|
920 | 910 |
typedef typename TR::Path Path; |
921 | 911 |
|
922 | 912 |
public: |
923 | 913 |
|
924 | 914 |
/// Constructor. |
925 | 915 |
DfsWizard() : TR() {} |
926 | 916 |
|
927 | 917 |
/// Constructor that requires parameters. |
928 | 918 |
|
929 | 919 |
/// Constructor that requires parameters. |
930 | 920 |
/// These parameters will be the default values for the traits class. |
931 | 921 |
/// \param g The digraph the algorithm runs on. |
932 | 922 |
DfsWizard(const Digraph &g) : |
933 | 923 |
TR(g) {} |
934 | 924 |
|
935 | 925 |
///Copy constructor |
936 | 926 |
DfsWizard(const TR &b) : TR(b) {} |
937 | 927 |
|
938 | 928 |
~DfsWizard() {} |
939 | 929 |
|
940 | 930 |
///Runs DFS algorithm from the given source node. |
941 | 931 |
|
942 | 932 |
///This method runs DFS algorithm from node \c s |
943 | 933 |
///in order to compute the DFS path to each node. |
944 | 934 |
void run(Node s) |
945 | 935 |
{ |
946 | 936 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
947 | 937 |
if (Base::_pred) |
948 | 938 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
949 | 939 |
if (Base::_dist) |
950 | 940 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
951 | 941 |
if (Base::_reached) |
952 | 942 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
953 | 943 |
if (Base::_processed) |
954 | 944 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
955 | 945 |
if (s!=INVALID) |
956 | 946 |
alg.run(s); |
957 | 947 |
else |
958 | 948 |
alg.run(); |
959 | 949 |
} |
960 | 950 |
|
961 | 951 |
///Finds the DFS path between \c s and \c t. |
962 | 952 |
|
963 | 953 |
///This method runs DFS algorithm from node \c s |
964 | 954 |
///in order to compute the DFS path to node \c t |
965 | 955 |
///(it stops searching when \c t is processed). |
966 | 956 |
/// |
967 | 957 |
///\return \c true if \c t is reachable form \c s. |
968 | 958 |
bool run(Node s, Node t) |
969 | 959 |
{ |
970 | 960 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
971 | 961 |
if (Base::_pred) |
972 | 962 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
973 | 963 |
if (Base::_dist) |
974 | 964 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
975 | 965 |
if (Base::_reached) |
976 | 966 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
977 | 967 |
if (Base::_processed) |
978 | 968 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
979 | 969 |
alg.run(s,t); |
980 | 970 |
if (Base::_path) |
981 | 971 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
982 | 972 |
if (Base::_di) |
983 | 973 |
*Base::_di = alg.dist(t); |
984 | 974 |
return alg.reached(t); |
985 | 975 |
} |
986 | 976 |
|
987 | 977 |
///Runs DFS algorithm to visit all nodes in the digraph. |
988 | 978 |
|
989 | 979 |
///This method runs DFS algorithm in order to compute |
990 | 980 |
///the DFS path to each node. |
991 | 981 |
void run() |
992 | 982 |
{ |
993 | 983 |
run(INVALID); |
994 | 984 |
} |
995 | 985 |
|
996 | 986 |
template<class T> |
997 | 987 |
struct SetPredMapBase : public Base { |
998 | 988 |
typedef T PredMap; |
999 | 989 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1000 | 990 |
SetPredMapBase(const TR &b) : TR(b) {} |
1001 | 991 |
}; |
1002 |
///\brief \ref named-func-param "Named parameter" |
|
1003 |
///for setting PredMap object. |
|
992 |
|
|
993 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
994 |
///the predecessor map. |
|
1004 | 995 |
/// |
1005 |
///\ref named-func-param "Named parameter" |
|
1006 |
///for setting PredMap object. |
|
996 |
///\ref named-templ-param "Named parameter" function for setting |
|
997 |
///the map that stores the predecessor arcs of the nodes. |
|
1007 | 998 |
template<class T> |
1008 | 999 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1009 | 1000 |
{ |
1010 | 1001 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1011 | 1002 |
return DfsWizard<SetPredMapBase<T> >(*this); |
1012 | 1003 |
} |
1013 | 1004 |
|
1014 | 1005 |
template<class T> |
1015 | 1006 |
struct SetReachedMapBase : public Base { |
1016 | 1007 |
typedef T ReachedMap; |
1017 | 1008 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1018 | 1009 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1019 | 1010 |
}; |
1020 |
///\brief \ref named-func-param "Named parameter" |
|
1021 |
///for setting ReachedMap object. |
|
1011 |
|
|
1012 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1013 |
///the reached map. |
|
1022 | 1014 |
/// |
1023 |
/// \ref named-func-param "Named parameter" |
|
1024 |
///for setting ReachedMap object. |
|
1015 |
///\ref named-templ-param "Named parameter" function for setting |
|
1016 |
///the map that indicates which nodes are reached. |
|
1025 | 1017 |
template<class T> |
1026 | 1018 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1027 | 1019 |
{ |
1028 | 1020 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1029 | 1021 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
1030 | 1022 |
} |
1031 | 1023 |
|
1032 | 1024 |
template<class T> |
1033 | 1025 |
struct SetDistMapBase : public Base { |
1034 | 1026 |
typedef T DistMap; |
1035 | 1027 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1036 | 1028 |
SetDistMapBase(const TR &b) : TR(b) {} |
1037 | 1029 |
}; |
1038 |
///\brief \ref named-func-param "Named parameter" |
|
1039 |
///for setting DistMap object. |
|
1030 |
|
|
1031 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1032 |
///the distance map. |
|
1040 | 1033 |
/// |
1041 |
/// \ref named-func-param "Named parameter" |
|
1042 |
///for setting DistMap object. |
|
1034 |
///\ref named-templ-param "Named parameter" function for setting |
|
1035 |
///the map that stores the distances of the nodes calculated |
|
1036 |
///by the algorithm. |
|
1043 | 1037 |
template<class T> |
1044 | 1038 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1045 | 1039 |
{ |
1046 | 1040 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1047 | 1041 |
return DfsWizard<SetDistMapBase<T> >(*this); |
1048 | 1042 |
} |
1049 | 1043 |
|
1050 | 1044 |
template<class T> |
1051 | 1045 |
struct SetProcessedMapBase : public Base { |
1052 | 1046 |
typedef T ProcessedMap; |
1053 | 1047 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1054 | 1048 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1055 | 1049 |
}; |
1056 |
///\brief \ref named-func-param "Named parameter" |
|
1057 |
///for setting ProcessedMap object. |
|
1050 |
|
|
1051 |
///\brief \ref named-func-param "Named parameter" for setting |
|
1052 |
///the processed map. |
|
1058 | 1053 |
/// |
1059 |
/// \ref named-func-param "Named parameter" |
|
1060 |
///for setting ProcessedMap object. |
|
1054 |
///\ref named-templ-param "Named parameter" function for setting |
|
1055 |
///the map that indicates which nodes are processed. |
|
1061 | 1056 |
template<class T> |
1062 | 1057 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1063 | 1058 |
{ |
1064 | 1059 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1065 | 1060 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
1066 | 1061 |
} |
1067 | 1062 |
|
1068 | 1063 |
template<class T> |
1069 | 1064 |
struct SetPathBase : public Base { |
1070 | 1065 |
typedef T Path; |
1071 | 1066 |
SetPathBase(const TR &b) : TR(b) {} |
1072 | 1067 |
}; |
1073 | 1068 |
///\brief \ref named-func-param "Named parameter" |
1074 | 1069 |
///for getting the DFS path to the target node. |
1075 | 1070 |
/// |
1076 | 1071 |
///\ref named-func-param "Named parameter" |
1077 | 1072 |
///for getting the DFS path to the target node. |
1078 | 1073 |
template<class T> |
1079 | 1074 |
DfsWizard<SetPathBase<T> > path(const T &t) |
1080 | 1075 |
{ |
1081 | 1076 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1082 | 1077 |
return DfsWizard<SetPathBase<T> >(*this); |
1083 | 1078 |
} |
1084 | 1079 |
|
1085 | 1080 |
///\brief \ref named-func-param "Named parameter" |
1086 | 1081 |
///for getting the distance of the target node. |
1087 | 1082 |
/// |
1088 | 1083 |
///\ref named-func-param "Named parameter" |
1089 | 1084 |
///for getting the distance of the target node. |
1090 | 1085 |
DfsWizard dist(const int &d) |
1091 | 1086 |
{ |
1092 | 1087 |
Base::_di=const_cast<int*>(&d); |
1093 | 1088 |
return *this; |
1094 | 1089 |
} |
1095 | 1090 |
|
1096 | 1091 |
}; |
1097 | 1092 |
|
1098 | 1093 |
///Function-type interface for DFS algorithm. |
1099 | 1094 |
|
1100 | 1095 |
///\ingroup search |
1101 | 1096 |
///Function-type interface for DFS algorithm. |
1102 | 1097 |
/// |
1103 | 1098 |
///This function also has several \ref named-func-param "named parameters", |
1104 | 1099 |
///they are declared as the members of class \ref DfsWizard. |
1105 | 1100 |
///The following examples show how to use these parameters. |
1106 | 1101 |
///\code |
1107 | 1102 |
/// // Compute the DFS tree |
1108 | 1103 |
/// dfs(g).predMap(preds).distMap(dists).run(s); |
1109 | 1104 |
/// |
1110 | 1105 |
/// // Compute the DFS path from s to t |
1111 | 1106 |
/// bool reached = dfs(g).path(p).dist(d).run(s,t); |
1112 | 1107 |
///\endcode |
1113 | 1108 |
///\warning Don't forget to put the \ref DfsWizard::run(Node) "run()" |
1114 | 1109 |
///to the end of the parameter list. |
1115 | 1110 |
///\sa DfsWizard |
1116 | 1111 |
///\sa Dfs |
1117 | 1112 |
template<class GR> |
1118 | 1113 |
DfsWizard<DfsWizardBase<GR> > |
1119 | 1114 |
dfs(const GR &digraph) |
1120 | 1115 |
{ |
1121 | 1116 |
return DfsWizard<DfsWizardBase<GR> >(digraph); |
1122 | 1117 |
} |
1123 | 1118 |
|
1124 | 1119 |
#ifdef DOXYGEN |
... | ... |
@@ -1147,129 +1142,129 @@ |
1147 | 1142 |
/// |
1148 | 1143 |
/// This function is called when the DFS finds an arc whose target node |
1149 | 1144 |
/// is not reached yet. |
1150 | 1145 |
void discover(const Arc& arc) {} |
1151 | 1146 |
/// \brief Called when an arc is examined but its target node is |
1152 | 1147 |
/// already discovered. |
1153 | 1148 |
/// |
1154 | 1149 |
/// This function is called when an arc is examined but its target node is |
1155 | 1150 |
/// already discovered. |
1156 | 1151 |
void examine(const Arc& arc) {} |
1157 | 1152 |
/// \brief Called when the DFS steps back from a node. |
1158 | 1153 |
/// |
1159 | 1154 |
/// This function is called when the DFS steps back from a node. |
1160 | 1155 |
void leave(const Node& node) {} |
1161 | 1156 |
/// \brief Called when the DFS steps back on an arc. |
1162 | 1157 |
/// |
1163 | 1158 |
/// This function is called when the DFS steps back on an arc. |
1164 | 1159 |
void backtrack(const Arc& arc) {} |
1165 | 1160 |
}; |
1166 | 1161 |
#else |
1167 | 1162 |
template <typename GR> |
1168 | 1163 |
struct DfsVisitor { |
1169 | 1164 |
typedef GR Digraph; |
1170 | 1165 |
typedef typename Digraph::Arc Arc; |
1171 | 1166 |
typedef typename Digraph::Node Node; |
1172 | 1167 |
void start(const Node&) {} |
1173 | 1168 |
void stop(const Node&) {} |
1174 | 1169 |
void reach(const Node&) {} |
1175 | 1170 |
void discover(const Arc&) {} |
1176 | 1171 |
void examine(const Arc&) {} |
1177 | 1172 |
void leave(const Node&) {} |
1178 | 1173 |
void backtrack(const Arc&) {} |
1179 | 1174 |
|
1180 | 1175 |
template <typename _Visitor> |
1181 | 1176 |
struct Constraints { |
1182 | 1177 |
void constraints() { |
1183 | 1178 |
Arc arc; |
1184 | 1179 |
Node node; |
1185 | 1180 |
visitor.start(node); |
1186 | 1181 |
visitor.stop(arc); |
1187 | 1182 |
visitor.reach(node); |
1188 | 1183 |
visitor.discover(arc); |
1189 | 1184 |
visitor.examine(arc); |
1190 | 1185 |
visitor.leave(node); |
1191 | 1186 |
visitor.backtrack(arc); |
1192 | 1187 |
} |
1193 | 1188 |
_Visitor& visitor; |
1194 | 1189 |
}; |
1195 | 1190 |
}; |
1196 | 1191 |
#endif |
1197 | 1192 |
|
1198 | 1193 |
/// \brief Default traits class of DfsVisit class. |
1199 | 1194 |
/// |
1200 | 1195 |
/// Default traits class of DfsVisit class. |
1201 | 1196 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1202 | 1197 |
template<class GR> |
1203 | 1198 |
struct DfsVisitDefaultTraits { |
1204 | 1199 |
|
1205 | 1200 |
/// \brief The type of the digraph the algorithm runs on. |
1206 | 1201 |
typedef GR Digraph; |
1207 | 1202 |
|
1208 | 1203 |
/// \brief The type of the map that indicates which nodes are reached. |
1209 | 1204 |
/// |
1210 | 1205 |
/// The type of the map that indicates which nodes are reached. |
1211 |
/// It must |
|
1206 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
1212 | 1207 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1213 | 1208 |
|
1214 | 1209 |
/// \brief Instantiates a ReachedMap. |
1215 | 1210 |
/// |
1216 | 1211 |
/// This function instantiates a ReachedMap. |
1217 | 1212 |
/// \param digraph is the digraph, to which |
1218 | 1213 |
/// we would like to define the ReachedMap. |
1219 | 1214 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1220 | 1215 |
return new ReachedMap(digraph); |
1221 | 1216 |
} |
1222 | 1217 |
|
1223 | 1218 |
}; |
1224 | 1219 |
|
1225 | 1220 |
/// \ingroup search |
1226 | 1221 |
/// |
1227 | 1222 |
/// \brief DFS algorithm class with visitor interface. |
1228 | 1223 |
/// |
1229 | 1224 |
/// This class provides an efficient implementation of the DFS algorithm |
1230 | 1225 |
/// with visitor interface. |
1231 | 1226 |
/// |
1232 | 1227 |
/// The DfsVisit class provides an alternative interface to the Dfs |
1233 | 1228 |
/// class. It works with callback mechanism, the DfsVisit object calls |
1234 | 1229 |
/// the member functions of the \c Visitor class on every DFS event. |
1235 | 1230 |
/// |
1236 | 1231 |
/// This interface of the DFS algorithm should be used in special cases |
1237 | 1232 |
/// when extra actions have to be performed in connection with certain |
1238 | 1233 |
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs() |
1239 | 1234 |
/// instead. |
1240 | 1235 |
/// |
1241 | 1236 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1242 | 1237 |
/// The default type is \ref ListDigraph. |
1243 | 1238 |
/// The value of GR is not used directly by \ref DfsVisit, |
1244 | 1239 |
/// it is only passed to \ref DfsVisitDefaultTraits. |
1245 | 1240 |
/// \tparam VS The Visitor type that is used by the algorithm. |
1246 | 1241 |
/// \ref DfsVisitor "DfsVisitor<GR>" is an empty visitor, which |
1247 | 1242 |
/// does not observe the DFS events. If you want to observe the DFS |
1248 | 1243 |
/// events, you should implement your own visitor class. |
1249 | 1244 |
/// \tparam TR Traits class to set various data types used by the |
1250 | 1245 |
/// algorithm. The default traits class is |
1251 | 1246 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<GR>". |
1252 | 1247 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
1253 | 1248 |
/// a DFS visit traits class. |
1254 | 1249 |
#ifdef DOXYGEN |
1255 | 1250 |
template <typename GR, typename VS, typename TR> |
1256 | 1251 |
#else |
1257 | 1252 |
template <typename GR = ListDigraph, |
1258 | 1253 |
typename VS = DfsVisitor<GR>, |
1259 | 1254 |
typename TR = DfsVisitDefaultTraits<GR> > |
1260 | 1255 |
#endif |
1261 | 1256 |
class DfsVisit { |
1262 | 1257 |
public: |
1263 | 1258 |
|
1264 | 1259 |
///The traits class. |
1265 | 1260 |
typedef TR Traits; |
1266 | 1261 |
|
1267 | 1262 |
///The type of the digraph the algorithm runs on. |
1268 | 1263 |
typedef typename Traits::Digraph Digraph; |
1269 | 1264 |
|
1270 | 1265 |
///The visitor type used by the algorithm. |
1271 | 1266 |
typedef VS Visitor; |
1272 | 1267 |
|
1273 | 1268 |
///The type of the map that indicates which nodes are reached. |
1274 | 1269 |
typedef typename Traits::ReachedMap ReachedMap; |
1275 | 1270 |
|
... | ... |
@@ -1308,130 +1303,130 @@ |
1308 | 1303 |
|
1309 | 1304 |
typedef DfsVisit Create; |
1310 | 1305 |
|
1311 | 1306 |
/// \name Named Template Parameters |
1312 | 1307 |
|
1313 | 1308 |
///@{ |
1314 | 1309 |
template <class T> |
1315 | 1310 |
struct SetReachedMapTraits : public Traits { |
1316 | 1311 |
typedef T ReachedMap; |
1317 | 1312 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1318 | 1313 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
1319 | 1314 |
return 0; // ignore warnings |
1320 | 1315 |
} |
1321 | 1316 |
}; |
1322 | 1317 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1323 | 1318 |
/// ReachedMap type. |
1324 | 1319 |
/// |
1325 | 1320 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1326 | 1321 |
template <class T> |
1327 | 1322 |
struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
1328 | 1323 |
SetReachedMapTraits<T> > { |
1329 | 1324 |
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1330 | 1325 |
}; |
1331 | 1326 |
///@} |
1332 | 1327 |
|
1333 | 1328 |
public: |
1334 | 1329 |
|
1335 | 1330 |
/// \brief Constructor. |
1336 | 1331 |
/// |
1337 | 1332 |
/// Constructor. |
1338 | 1333 |
/// |
1339 | 1334 |
/// \param digraph The digraph the algorithm runs on. |
1340 | 1335 |
/// \param visitor The visitor object of the algorithm. |
1341 | 1336 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
1342 | 1337 |
: _digraph(&digraph), _visitor(&visitor), |
1343 | 1338 |
_reached(0), local_reached(false) {} |
1344 | 1339 |
|
1345 | 1340 |
/// \brief Destructor. |
1346 | 1341 |
~DfsVisit() { |
1347 | 1342 |
if(local_reached) delete _reached; |
1348 | 1343 |
} |
1349 | 1344 |
|
1350 | 1345 |
/// \brief Sets the map that indicates which nodes are reached. |
1351 | 1346 |
/// |
1352 | 1347 |
/// Sets the map that indicates which nodes are reached. |
1353 | 1348 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1354 | 1349 |
/// or \ref init(), an instance will be allocated automatically. |
1355 | 1350 |
/// The destructor deallocates this automatically allocated map, |
1356 | 1351 |
/// of course. |
1357 | 1352 |
/// \return <tt> (*this) </tt> |
1358 | 1353 |
DfsVisit &reachedMap(ReachedMap &m) { |
1359 | 1354 |
if(local_reached) { |
1360 | 1355 |
delete _reached; |
1361 | 1356 |
local_reached=false; |
1362 | 1357 |
} |
1363 | 1358 |
_reached = &m; |
1364 | 1359 |
return *this; |
1365 | 1360 |
} |
1366 | 1361 |
|
1367 | 1362 |
public: |
1368 | 1363 |
|
1369 | 1364 |
/// \name Execution Control |
1370 | 1365 |
/// The simplest way to execute the DFS algorithm is to use one of the |
1371 | 1366 |
/// member functions called \ref run(Node) "run()".\n |
1372 |
/// If you need more control on the execution, first you have to call |
|
1373 |
/// \ref init(), then you can add a source node with \ref addSource() |
|
1367 |
/// If you need better control on the execution, you have to call |
|
1368 |
/// \ref init() first, then you can add a source node with \ref addSource() |
|
1374 | 1369 |
/// and perform the actual computation with \ref start(). |
1375 | 1370 |
/// This procedure can be repeated if there are nodes that have not |
1376 | 1371 |
/// been reached. |
1377 | 1372 |
|
1378 | 1373 |
/// @{ |
1379 | 1374 |
|
1380 | 1375 |
/// \brief Initializes the internal data structures. |
1381 | 1376 |
/// |
1382 | 1377 |
/// Initializes the internal data structures. |
1383 | 1378 |
void init() { |
1384 | 1379 |
create_maps(); |
1385 | 1380 |
_stack.resize(countNodes(*_digraph)); |
1386 | 1381 |
_stack_head = -1; |
1387 | 1382 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1388 | 1383 |
_reached->set(u, false); |
1389 | 1384 |
} |
1390 | 1385 |
} |
1391 | 1386 |
|
1392 | 1387 |
/// \brief Adds a new source node. |
1393 | 1388 |
/// |
1394 | 1389 |
/// Adds a new source node to the set of nodes to be processed. |
1395 | 1390 |
/// |
1396 | 1391 |
/// \pre The stack must be empty. Otherwise the algorithm gives |
1397 | 1392 |
/// wrong results. (One of the outgoing arcs of all the source nodes |
1398 | 1393 |
/// except for the last one will not be visited and distances will |
1399 | 1394 |
/// also be wrong.) |
1400 | 1395 |
void addSource(Node s) |
1401 | 1396 |
{ |
1402 | 1397 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
1403 | 1398 |
if(!(*_reached)[s]) { |
1404 | 1399 |
_reached->set(s,true); |
1405 | 1400 |
_visitor->start(s); |
1406 | 1401 |
_visitor->reach(s); |
1407 | 1402 |
Arc e; |
1408 | 1403 |
_digraph->firstOut(e, s); |
1409 | 1404 |
if (e != INVALID) { |
1410 | 1405 |
_stack[++_stack_head] = e; |
1411 | 1406 |
} else { |
1412 | 1407 |
_visitor->leave(s); |
1413 | 1408 |
_visitor->stop(s); |
1414 | 1409 |
} |
1415 | 1410 |
} |
1416 | 1411 |
} |
1417 | 1412 |
|
1418 | 1413 |
/// \brief Processes the next arc. |
1419 | 1414 |
/// |
1420 | 1415 |
/// Processes the next arc. |
1421 | 1416 |
/// |
1422 | 1417 |
/// \return The processed arc. |
1423 | 1418 |
/// |
1424 | 1419 |
/// \pre The stack must not be empty. |
1425 | 1420 |
Arc processNextArc() { |
1426 | 1421 |
Arc e = _stack[_stack_head]; |
1427 | 1422 |
Node m = _digraph->target(e); |
1428 | 1423 |
if(!(*_reached)[m]) { |
1429 | 1424 |
_visitor->discover(e); |
1430 | 1425 |
_visitor->reach(m); |
1431 | 1426 |
_reached->set(m, true); |
1432 | 1427 |
_digraph->firstOut(_stack[++_stack_head], m); |
1433 | 1428 |
} else { |
1434 | 1429 |
_visitor->examine(e); |
1435 | 1430 |
m = _digraph->source(e); |
1436 | 1431 |
_digraph->nextOut(_stack[_stack_head]); |
1437 | 1432 |
} |
... | ... |
@@ -1559,79 +1554,79 @@ |
1559 | 1554 |
start(); |
1560 | 1555 |
} |
1561 | 1556 |
|
1562 | 1557 |
/// \brief Finds the %DFS path between \c s and \c t. |
1563 | 1558 |
|
1564 | 1559 |
/// This method runs the %DFS algorithm from node \c s |
1565 | 1560 |
/// in order to compute the DFS path to node \c t |
1566 | 1561 |
/// (it stops searching when \c t is processed). |
1567 | 1562 |
/// |
1568 | 1563 |
/// \return \c true if \c t is reachable form \c s. |
1569 | 1564 |
/// |
1570 | 1565 |
/// \note Apart from the return value, <tt>d.run(s,t)</tt> is |
1571 | 1566 |
/// just a shortcut of the following code. |
1572 | 1567 |
///\code |
1573 | 1568 |
/// d.init(); |
1574 | 1569 |
/// d.addSource(s); |
1575 | 1570 |
/// d.start(t); |
1576 | 1571 |
///\endcode |
1577 | 1572 |
bool run(Node s,Node t) { |
1578 | 1573 |
init(); |
1579 | 1574 |
addSource(s); |
1580 | 1575 |
start(t); |
1581 | 1576 |
return reached(t); |
1582 | 1577 |
} |
1583 | 1578 |
|
1584 | 1579 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1585 | 1580 |
|
1586 | 1581 |
/// This method runs the %DFS algorithm in order to |
1587 | 1582 |
/// compute the %DFS path to each node. |
1588 | 1583 |
/// |
1589 | 1584 |
/// The algorithm computes |
1590 | 1585 |
/// - the %DFS tree (forest), |
1591 | 1586 |
/// - the distance of each node from the root(s) in the %DFS tree. |
1592 | 1587 |
/// |
1593 | 1588 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
1594 | 1589 |
///\code |
1595 | 1590 |
/// d.init(); |
1596 | 1591 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
1597 | 1592 |
/// if (!d.reached(n)) { |
1598 | 1593 |
/// d.addSource(n); |
1599 | 1594 |
/// d.start(); |
1600 | 1595 |
/// } |
1601 | 1596 |
/// } |
1602 | 1597 |
///\endcode |
1603 | 1598 |
void run() { |
1604 | 1599 |
init(); |
1605 | 1600 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1606 | 1601 |
if (!reached(it)) { |
1607 | 1602 |
addSource(it); |
1608 | 1603 |
start(); |
1609 | 1604 |
} |
1610 | 1605 |
} |
1611 | 1606 |
} |
1612 | 1607 |
|
1613 | 1608 |
///@} |
1614 | 1609 |
|
1615 | 1610 |
/// \name Query Functions |
1616 | 1611 |
/// The results of the DFS algorithm can be obtained using these |
1617 | 1612 |
/// functions.\n |
1618 | 1613 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
1619 | 1614 |
/// before using them. |
1620 | 1615 |
|
1621 | 1616 |
///@{ |
1622 | 1617 |
|
1623 |
/// \brief Checks if |
|
1618 |
/// \brief Checks if the given node is reached from the root(s). |
|
1624 | 1619 |
/// |
1625 | 1620 |
/// Returns \c true if \c v is reached from the root(s). |
1626 | 1621 |
/// |
1627 | 1622 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
1628 | 1623 |
/// must be called before using this function. |
1629 | 1624 |
bool reached(Node v) const { return (*_reached)[v]; } |
1630 | 1625 |
|
1631 | 1626 |
///@} |
1632 | 1627 |
|
1633 | 1628 |
}; |
1634 | 1629 |
|
1635 | 1630 |
} //END OF NAMESPACE LEMON |
1636 | 1631 |
|
1637 | 1632 |
#endif |
... | ... |
@@ -9,501 +9,506 @@ |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
20 | 20 |
#define LEMON_DIJKSTRA_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief Dijkstra algorithm. |
25 | 25 |
|
26 | 26 |
#include <limits> |
27 | 27 |
#include <lemon/list_graph.h> |
28 | 28 |
#include <lemon/bin_heap.h> |
29 | 29 |
#include <lemon/bits/path_dump.h> |
30 | 30 |
#include <lemon/core.h> |
31 | 31 |
#include <lemon/error.h> |
32 | 32 |
#include <lemon/maps.h> |
33 | 33 |
#include <lemon/path.h> |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \brief Default operation traits for the Dijkstra algorithm class. |
38 | 38 |
/// |
39 | 39 |
/// This operation traits class defines all computational operations and |
40 | 40 |
/// constants which are used in the Dijkstra algorithm. |
41 | 41 |
template <typename V> |
42 | 42 |
struct DijkstraDefaultOperationTraits { |
43 | 43 |
/// \e |
44 | 44 |
typedef V Value; |
45 | 45 |
/// \brief Gives back the zero value of the type. |
46 | 46 |
static Value zero() { |
47 | 47 |
return static_cast<Value>(0); |
48 | 48 |
} |
49 | 49 |
/// \brief Gives back the sum of the given two elements. |
50 | 50 |
static Value plus(const Value& left, const Value& right) { |
51 | 51 |
return left + right; |
52 | 52 |
} |
53 | 53 |
/// \brief Gives back true only if the first value is less than the second. |
54 | 54 |
static bool less(const Value& left, const Value& right) { |
55 | 55 |
return left < right; |
56 | 56 |
} |
57 | 57 |
}; |
58 | 58 |
|
59 | 59 |
///Default traits class of Dijkstra class. |
60 | 60 |
|
61 | 61 |
///Default traits class of Dijkstra class. |
62 | 62 |
///\tparam GR The type of the digraph. |
63 | 63 |
///\tparam LEN The type of the length map. |
64 | 64 |
template<typename GR, typename LEN> |
65 | 65 |
struct DijkstraDefaultTraits |
66 | 66 |
{ |
67 | 67 |
///The type of the digraph the algorithm runs on. |
68 | 68 |
typedef GR Digraph; |
69 | 69 |
|
70 | 70 |
///The type of the map that stores the arc lengths. |
71 | 71 |
|
72 | 72 |
///The type of the map that stores the arc lengths. |
73 |
///It must |
|
73 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
74 | 74 |
typedef LEN LengthMap; |
75 |
///The type of the |
|
75 |
///The type of the arc lengths. |
|
76 | 76 |
typedef typename LEN::Value Value; |
77 | 77 |
|
78 | 78 |
/// Operation traits for %Dijkstra algorithm. |
79 | 79 |
|
80 | 80 |
/// This class defines the operations that are used in the algorithm. |
81 | 81 |
/// \see DijkstraDefaultOperationTraits |
82 | 82 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
83 | 83 |
|
84 | 84 |
/// The cross reference type used by the heap. |
85 | 85 |
|
86 | 86 |
/// The cross reference type used by the heap. |
87 | 87 |
/// Usually it is \c Digraph::NodeMap<int>. |
88 | 88 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
89 | 89 |
///Instantiates a \c HeapCrossRef. |
90 | 90 |
|
91 | 91 |
///This function instantiates a \ref HeapCrossRef. |
92 | 92 |
/// \param g is the digraph, to which we would like to define the |
93 | 93 |
/// \ref HeapCrossRef. |
94 | 94 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
95 | 95 |
{ |
96 | 96 |
return new HeapCrossRef(g); |
97 | 97 |
} |
98 | 98 |
|
99 | 99 |
///The heap type used by the %Dijkstra algorithm. |
100 | 100 |
|
101 | 101 |
///The heap type used by the Dijkstra algorithm. |
102 | 102 |
/// |
103 | 103 |
///\sa BinHeap |
104 | 104 |
///\sa Dijkstra |
105 | 105 |
typedef BinHeap<typename LEN::Value, HeapCrossRef, std::less<Value> > Heap; |
106 | 106 |
///Instantiates a \c Heap. |
107 | 107 |
|
108 | 108 |
///This function instantiates a \ref Heap. |
109 | 109 |
static Heap *createHeap(HeapCrossRef& r) |
110 | 110 |
{ |
111 | 111 |
return new Heap(r); |
112 | 112 |
} |
113 | 113 |
|
114 | 114 |
///\brief The type of the map that stores the predecessor |
115 | 115 |
///arcs of the shortest paths. |
116 | 116 |
/// |
117 | 117 |
///The type of the map that stores the predecessor |
118 | 118 |
///arcs of the shortest paths. |
119 |
///It must |
|
119 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
120 | 120 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
121 | 121 |
///Instantiates a \c PredMap. |
122 | 122 |
|
123 | 123 |
///This function instantiates a \ref PredMap. |
124 | 124 |
///\param g is the digraph, to which we would like to define the |
125 | 125 |
///\ref PredMap. |
126 | 126 |
static PredMap *createPredMap(const Digraph &g) |
127 | 127 |
{ |
128 | 128 |
return new PredMap(g); |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
///The type of the map that indicates which nodes are processed. |
132 | 132 |
|
133 | 133 |
///The type of the map that indicates which nodes are processed. |
134 |
///It must |
|
134 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
135 | 135 |
///By default it is a NullMap. |
136 | 136 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
137 | 137 |
///Instantiates a \c ProcessedMap. |
138 | 138 |
|
139 | 139 |
///This function instantiates a \ref ProcessedMap. |
140 | 140 |
///\param g is the digraph, to which |
141 | 141 |
///we would like to define the \ref ProcessedMap. |
142 | 142 |
#ifdef DOXYGEN |
143 | 143 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
144 | 144 |
#else |
145 | 145 |
static ProcessedMap *createProcessedMap(const Digraph &) |
146 | 146 |
#endif |
147 | 147 |
{ |
148 | 148 |
return new ProcessedMap(); |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
///The type of the map that stores the distances of the nodes. |
152 | 152 |
|
153 | 153 |
///The type of the map that stores the distances of the nodes. |
154 |
///It must |
|
154 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
155 | 155 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
156 | 156 |
///Instantiates a \c DistMap. |
157 | 157 |
|
158 | 158 |
///This function instantiates a \ref DistMap. |
159 | 159 |
///\param g is the digraph, to which we would like to define |
160 | 160 |
///the \ref DistMap. |
161 | 161 |
static DistMap *createDistMap(const Digraph &g) |
162 | 162 |
{ |
163 | 163 |
return new DistMap(g); |
164 | 164 |
} |
165 | 165 |
}; |
166 | 166 |
|
167 | 167 |
///%Dijkstra algorithm class. |
168 | 168 |
|
169 | 169 |
/// \ingroup shortest_path |
170 | 170 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
171 | 171 |
/// |
172 |
///The %Dijkstra algorithm solves the single-source shortest path problem |
|
173 |
///when all arc lengths are non-negative. If there are negative lengths, |
|
174 |
///the BellmanFord algorithm should be used instead. |
|
175 |
/// |
|
172 | 176 |
///The arc lengths are passed to the algorithm using a |
173 | 177 |
///\ref concepts::ReadMap "ReadMap", |
174 | 178 |
///so it is easy to change it to any kind of length. |
175 | 179 |
///The type of the length is determined by the |
176 | 180 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
177 | 181 |
///It is also possible to change the underlying priority heap. |
178 | 182 |
/// |
179 | 183 |
///There is also a \ref dijkstra() "function-type interface" for the |
180 | 184 |
///%Dijkstra algorithm, which is convenient in the simplier cases and |
181 | 185 |
///it can be used easier. |
182 | 186 |
/// |
183 | 187 |
///\tparam GR The type of the digraph the algorithm runs on. |
184 | 188 |
///The default type is \ref ListDigraph. |
185 | 189 |
///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
186 | 190 |
///the lengths of the arcs. |
187 | 191 |
///It is read once for each arc, so the map may involve in |
188 | 192 |
///relatively time consuming process to compute the arc lengths if |
189 | 193 |
///it is necessary. The default map type is \ref |
190 | 194 |
///concepts::Digraph::ArcMap "GR::ArcMap<int>". |
191 | 195 |
#ifdef DOXYGEN |
192 | 196 |
template <typename GR, typename LEN, typename TR> |
193 | 197 |
#else |
194 | 198 |
template <typename GR=ListDigraph, |
195 | 199 |
typename LEN=typename GR::template ArcMap<int>, |
196 | 200 |
typename TR=DijkstraDefaultTraits<GR,LEN> > |
197 | 201 |
#endif |
198 | 202 |
class Dijkstra { |
199 | 203 |
public: |
200 | 204 |
|
201 | 205 |
///The type of the digraph the algorithm runs on. |
202 | 206 |
typedef typename TR::Digraph Digraph; |
203 | 207 |
|
204 |
///The type of the |
|
208 |
///The type of the arc lengths. |
|
205 | 209 |
typedef typename TR::LengthMap::Value Value; |
206 | 210 |
///The type of the map that stores the arc lengths. |
207 | 211 |
typedef typename TR::LengthMap LengthMap; |
208 | 212 |
///\brief The type of the map that stores the predecessor arcs of the |
209 | 213 |
///shortest paths. |
210 | 214 |
typedef typename TR::PredMap PredMap; |
211 | 215 |
///The type of the map that stores the distances of the nodes. |
212 | 216 |
typedef typename TR::DistMap DistMap; |
213 | 217 |
///The type of the map that indicates which nodes are processed. |
214 | 218 |
typedef typename TR::ProcessedMap ProcessedMap; |
215 | 219 |
///The type of the paths. |
216 | 220 |
typedef PredMapPath<Digraph, PredMap> Path; |
217 | 221 |
///The cross reference type used for the current heap. |
218 | 222 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
219 | 223 |
///The heap type used by the algorithm. |
220 | 224 |
typedef typename TR::Heap Heap; |
221 | 225 |
///\brief The \ref DijkstraDefaultOperationTraits "operation traits class" |
222 | 226 |
///of the algorithm. |
223 | 227 |
typedef typename TR::OperationTraits OperationTraits; |
224 | 228 |
|
225 | 229 |
///The \ref DijkstraDefaultTraits "traits class" of the algorithm. |
226 | 230 |
typedef TR Traits; |
227 | 231 |
|
228 | 232 |
private: |
229 | 233 |
|
230 | 234 |
typedef typename Digraph::Node Node; |
231 | 235 |
typedef typename Digraph::NodeIt NodeIt; |
232 | 236 |
typedef typename Digraph::Arc Arc; |
233 | 237 |
typedef typename Digraph::OutArcIt OutArcIt; |
234 | 238 |
|
235 | 239 |
//Pointer to the underlying digraph. |
236 | 240 |
const Digraph *G; |
237 | 241 |
//Pointer to the length map. |
238 | 242 |
const LengthMap *_length; |
239 | 243 |
//Pointer to the map of predecessors arcs. |
240 | 244 |
PredMap *_pred; |
241 | 245 |
//Indicates if _pred is locally allocated (true) or not. |
242 | 246 |
bool local_pred; |
243 | 247 |
//Pointer to the map of distances. |
244 | 248 |
DistMap *_dist; |
245 | 249 |
//Indicates if _dist is locally allocated (true) or not. |
246 | 250 |
bool local_dist; |
247 | 251 |
//Pointer to the map of processed status of the nodes. |
248 | 252 |
ProcessedMap *_processed; |
249 | 253 |
//Indicates if _processed is locally allocated (true) or not. |
250 | 254 |
bool local_processed; |
251 | 255 |
//Pointer to the heap cross references. |
252 | 256 |
HeapCrossRef *_heap_cross_ref; |
253 | 257 |
//Indicates if _heap_cross_ref is locally allocated (true) or not. |
254 | 258 |
bool local_heap_cross_ref; |
255 | 259 |
//Pointer to the heap. |
256 | 260 |
Heap *_heap; |
257 | 261 |
//Indicates if _heap is locally allocated (true) or not. |
258 | 262 |
bool local_heap; |
259 | 263 |
|
260 | 264 |
//Creates the maps if necessary. |
261 | 265 |
void create_maps() |
262 | 266 |
{ |
263 | 267 |
if(!_pred) { |
264 | 268 |
local_pred = true; |
265 | 269 |
_pred = Traits::createPredMap(*G); |
266 | 270 |
} |
267 | 271 |
if(!_dist) { |
268 | 272 |
local_dist = true; |
269 | 273 |
_dist = Traits::createDistMap(*G); |
270 | 274 |
} |
271 | 275 |
if(!_processed) { |
272 | 276 |
local_processed = true; |
273 | 277 |
_processed = Traits::createProcessedMap(*G); |
274 | 278 |
} |
275 | 279 |
if (!_heap_cross_ref) { |
276 | 280 |
local_heap_cross_ref = true; |
277 | 281 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
278 | 282 |
} |
279 | 283 |
if (!_heap) { |
280 | 284 |
local_heap = true; |
281 | 285 |
_heap = Traits::createHeap(*_heap_cross_ref); |
282 | 286 |
} |
283 | 287 |
} |
284 | 288 |
|
285 | 289 |
public: |
286 | 290 |
|
287 | 291 |
typedef Dijkstra Create; |
288 | 292 |
|
289 | 293 |
///\name Named Template Parameters |
290 | 294 |
|
291 | 295 |
///@{ |
292 | 296 |
|
293 | 297 |
template <class T> |
294 | 298 |
struct SetPredMapTraits : public Traits { |
295 | 299 |
typedef T PredMap; |
296 | 300 |
static PredMap *createPredMap(const Digraph &) |
297 | 301 |
{ |
298 | 302 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
299 | 303 |
return 0; // ignore warnings |
300 | 304 |
} |
301 | 305 |
}; |
302 | 306 |
///\brief \ref named-templ-param "Named parameter" for setting |
303 | 307 |
///\c PredMap type. |
304 | 308 |
/// |
305 | 309 |
///\ref named-templ-param "Named parameter" for setting |
306 | 310 |
///\c PredMap type. |
307 |
///It must |
|
311 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
308 | 312 |
template <class T> |
309 | 313 |
struct SetPredMap |
310 | 314 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > { |
311 | 315 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
312 | 316 |
}; |
313 | 317 |
|
314 | 318 |
template <class T> |
315 | 319 |
struct SetDistMapTraits : public Traits { |
316 | 320 |
typedef T DistMap; |
317 | 321 |
static DistMap *createDistMap(const Digraph &) |
318 | 322 |
{ |
319 | 323 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
320 | 324 |
return 0; // ignore warnings |
321 | 325 |
} |
322 | 326 |
}; |
323 | 327 |
///\brief \ref named-templ-param "Named parameter" for setting |
324 | 328 |
///\c DistMap type. |
325 | 329 |
/// |
326 | 330 |
///\ref named-templ-param "Named parameter" for setting |
327 | 331 |
///\c DistMap type. |
328 |
///It must |
|
332 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
329 | 333 |
template <class T> |
330 | 334 |
struct SetDistMap |
331 | 335 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > { |
332 | 336 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
333 | 337 |
}; |
334 | 338 |
|
335 | 339 |
template <class T> |
336 | 340 |
struct SetProcessedMapTraits : public Traits { |
337 | 341 |
typedef T ProcessedMap; |
338 | 342 |
static ProcessedMap *createProcessedMap(const Digraph &) |
339 | 343 |
{ |
340 | 344 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
341 | 345 |
return 0; // ignore warnings |
342 | 346 |
} |
343 | 347 |
}; |
344 | 348 |
///\brief \ref named-templ-param "Named parameter" for setting |
345 | 349 |
///\c ProcessedMap type. |
346 | 350 |
/// |
347 | 351 |
///\ref named-templ-param "Named parameter" for setting |
348 | 352 |
///\c ProcessedMap type. |
349 |
///It must |
|
353 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
350 | 354 |
template <class T> |
351 | 355 |
struct SetProcessedMap |
352 | 356 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > { |
353 | 357 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
354 | 358 |
}; |
355 | 359 |
|
356 | 360 |
struct SetStandardProcessedMapTraits : public Traits { |
357 | 361 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
358 | 362 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
359 | 363 |
{ |
360 | 364 |
return new ProcessedMap(g); |
361 | 365 |
} |
362 | 366 |
}; |
363 | 367 |
///\brief \ref named-templ-param "Named parameter" for setting |
364 | 368 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
365 | 369 |
/// |
366 | 370 |
///\ref named-templ-param "Named parameter" for setting |
367 | 371 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
368 | 372 |
///If you don't set it explicitly, it will be automatically allocated. |
369 | 373 |
struct SetStandardProcessedMap |
370 | 374 |
: public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > { |
371 | 375 |
typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
372 | 376 |
Create; |
373 | 377 |
}; |
374 | 378 |
|
375 | 379 |
template <class H, class CR> |
376 | 380 |
struct SetHeapTraits : public Traits { |
377 | 381 |
typedef CR HeapCrossRef; |
378 | 382 |
typedef H Heap; |
379 | 383 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) { |
380 | 384 |
LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
381 | 385 |
return 0; // ignore warnings |
382 | 386 |
} |
383 | 387 |
static Heap *createHeap(HeapCrossRef &) |
384 | 388 |
{ |
385 | 389 |
LEMON_ASSERT(false, "Heap is not initialized"); |
386 | 390 |
return 0; // ignore warnings |
387 | 391 |
} |
388 | 392 |
}; |
389 | 393 |
///\brief \ref named-templ-param "Named parameter" for setting |
390 | 394 |
///heap and cross reference types |
391 | 395 |
/// |
392 | 396 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
393 | 397 |
///reference types. If this named parameter is used, then external |
394 | 398 |
///heap and cross reference objects must be passed to the algorithm |
395 | 399 |
///using the \ref heap() function before calling \ref run(Node) "run()" |
396 | 400 |
///or \ref init(). |
397 | 401 |
///\sa SetStandardHeap |
398 | 402 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
399 | 403 |
struct SetHeap |
400 | 404 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > { |
401 | 405 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
402 | 406 |
}; |
403 | 407 |
|
404 | 408 |
template <class H, class CR> |
405 | 409 |
struct SetStandardHeapTraits : public Traits { |
406 | 410 |
typedef CR HeapCrossRef; |
407 | 411 |
typedef H Heap; |
408 | 412 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) { |
409 | 413 |
return new HeapCrossRef(G); |
410 | 414 |
} |
411 | 415 |
static Heap *createHeap(HeapCrossRef &R) |
412 | 416 |
{ |
413 | 417 |
return new Heap(R); |
414 | 418 |
} |
415 | 419 |
}; |
416 | 420 |
///\brief \ref named-templ-param "Named parameter" for setting |
417 | 421 |
///heap and cross reference types with automatic allocation |
418 | 422 |
/// |
419 | 423 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
420 | 424 |
///reference types with automatic allocation. |
421 | 425 |
///They should have standard constructor interfaces to be able to |
422 | 426 |
///automatically created by the algorithm (i.e. the digraph should be |
423 | 427 |
///passed to the constructor of the cross reference and the cross |
424 | 428 |
///reference should be passed to the constructor of the heap). |
425 | 429 |
///However external heap and cross reference objects could also be |
426 | 430 |
///passed to the algorithm using the \ref heap() function before |
427 | 431 |
///calling \ref run(Node) "run()" or \ref init(). |
428 | 432 |
///\sa SetHeap |
429 | 433 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
430 | 434 |
struct SetStandardHeap |
431 | 435 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > { |
432 | 436 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
433 | 437 |
Create; |
434 | 438 |
}; |
435 | 439 |
|
436 | 440 |
template <class T> |
437 | 441 |
struct SetOperationTraitsTraits : public Traits { |
438 | 442 |
typedef T OperationTraits; |
439 | 443 |
}; |
440 | 444 |
|
441 | 445 |
/// \brief \ref named-templ-param "Named parameter" for setting |
442 | 446 |
///\c OperationTraits type |
443 | 447 |
/// |
444 | 448 |
///\ref named-templ-param "Named parameter" for setting |
445 | 449 |
///\c OperationTraits type. |
450 |
/// For more information see \ref DijkstraDefaultOperationTraits. |
|
446 | 451 |
template <class T> |
447 | 452 |
struct SetOperationTraits |
448 | 453 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
449 | 454 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
450 | 455 |
Create; |
451 | 456 |
}; |
452 | 457 |
|
453 | 458 |
///@} |
454 | 459 |
|
455 | 460 |
protected: |
456 | 461 |
|
457 | 462 |
Dijkstra() {} |
458 | 463 |
|
459 | 464 |
public: |
460 | 465 |
|
461 | 466 |
///Constructor. |
462 | 467 |
|
463 | 468 |
///Constructor. |
464 | 469 |
///\param g The digraph the algorithm runs on. |
465 | 470 |
///\param length The length map used by the algorithm. |
466 | 471 |
Dijkstra(const Digraph& g, const LengthMap& length) : |
467 | 472 |
G(&g), _length(&length), |
468 | 473 |
_pred(NULL), local_pred(false), |
469 | 474 |
_dist(NULL), local_dist(false), |
470 | 475 |
_processed(NULL), local_processed(false), |
471 | 476 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
472 | 477 |
_heap(NULL), local_heap(false) |
473 | 478 |
{ } |
474 | 479 |
|
475 | 480 |
///Destructor. |
476 | 481 |
~Dijkstra() |
477 | 482 |
{ |
478 | 483 |
if(local_pred) delete _pred; |
479 | 484 |
if(local_dist) delete _dist; |
480 | 485 |
if(local_processed) delete _processed; |
481 | 486 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
482 | 487 |
if(local_heap) delete _heap; |
483 | 488 |
} |
484 | 489 |
|
485 | 490 |
///Sets the length map. |
486 | 491 |
|
487 | 492 |
///Sets the length map. |
488 | 493 |
///\return <tt> (*this) </tt> |
489 | 494 |
Dijkstra &lengthMap(const LengthMap &m) |
490 | 495 |
{ |
491 | 496 |
_length = &m; |
492 | 497 |
return *this; |
493 | 498 |
} |
494 | 499 |
|
495 | 500 |
///Sets the map that stores the predecessor arcs. |
496 | 501 |
|
497 | 502 |
///Sets the map that stores the predecessor arcs. |
498 | 503 |
///If you don't use this function before calling \ref run(Node) "run()" |
499 | 504 |
///or \ref init(), an instance will be allocated automatically. |
500 | 505 |
///The destructor deallocates this automatically allocated map, |
501 | 506 |
///of course. |
502 | 507 |
///\return <tt> (*this) </tt> |
503 | 508 |
Dijkstra &predMap(PredMap &m) |
504 | 509 |
{ |
505 | 510 |
if(local_pred) { |
506 | 511 |
delete _pred; |
507 | 512 |
local_pred=false; |
508 | 513 |
} |
509 | 514 |
_pred = &m; |
... | ... |
@@ -523,130 +528,130 @@ |
523 | 528 |
if(local_processed) { |
524 | 529 |
delete _processed; |
525 | 530 |
local_processed=false; |
526 | 531 |
} |
527 | 532 |
_processed = &m; |
528 | 533 |
return *this; |
529 | 534 |
} |
530 | 535 |
|
531 | 536 |
///Sets the map that stores the distances of the nodes. |
532 | 537 |
|
533 | 538 |
///Sets the map that stores the distances of the nodes calculated by the |
534 | 539 |
///algorithm. |
535 | 540 |
///If you don't use this function before calling \ref run(Node) "run()" |
536 | 541 |
///or \ref init(), an instance will be allocated automatically. |
537 | 542 |
///The destructor deallocates this automatically allocated map, |
538 | 543 |
///of course. |
539 | 544 |
///\return <tt> (*this) </tt> |
540 | 545 |
Dijkstra &distMap(DistMap &m) |
541 | 546 |
{ |
542 | 547 |
if(local_dist) { |
543 | 548 |
delete _dist; |
544 | 549 |
local_dist=false; |
545 | 550 |
} |
546 | 551 |
_dist = &m; |
547 | 552 |
return *this; |
548 | 553 |
} |
549 | 554 |
|
550 | 555 |
///Sets the heap and the cross reference used by algorithm. |
551 | 556 |
|
552 | 557 |
///Sets the heap and the cross reference used by algorithm. |
553 | 558 |
///If you don't use this function before calling \ref run(Node) "run()" |
554 | 559 |
///or \ref init(), heap and cross reference instances will be |
555 | 560 |
///allocated automatically. |
556 | 561 |
///The destructor deallocates these automatically allocated objects, |
557 | 562 |
///of course. |
558 | 563 |
///\return <tt> (*this) </tt> |
559 | 564 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
560 | 565 |
{ |
561 | 566 |
if(local_heap_cross_ref) { |
562 | 567 |
delete _heap_cross_ref; |
563 | 568 |
local_heap_cross_ref=false; |
564 | 569 |
} |
565 | 570 |
_heap_cross_ref = &cr; |
566 | 571 |
if(local_heap) { |
567 | 572 |
delete _heap; |
568 | 573 |
local_heap=false; |
569 | 574 |
} |
570 | 575 |
_heap = &hp; |
571 | 576 |
return *this; |
572 | 577 |
} |
573 | 578 |
|
574 | 579 |
private: |
575 | 580 |
|
576 | 581 |
void finalizeNodeData(Node v,Value dst) |
577 | 582 |
{ |
578 | 583 |
_processed->set(v,true); |
579 | 584 |
_dist->set(v, dst); |
580 | 585 |
} |
581 | 586 |
|
582 | 587 |
public: |
583 | 588 |
|
584 | 589 |
///\name Execution Control |
585 | 590 |
///The simplest way to execute the %Dijkstra algorithm is to use |
586 | 591 |
///one of the member functions called \ref run(Node) "run()".\n |
587 |
///If you need more control on the execution, first you have to call |
|
588 |
///\ref init(), then you can add several source nodes with |
|
592 |
///If you need better control on the execution, you have to call |
|
593 |
///\ref init() first, then you can add several source nodes with |
|
589 | 594 |
///\ref addSource(). Finally the actual path computation can be |
590 | 595 |
///performed with one of the \ref start() functions. |
591 | 596 |
|
592 | 597 |
///@{ |
593 | 598 |
|
594 | 599 |
///\brief Initializes the internal data structures. |
595 | 600 |
/// |
596 | 601 |
///Initializes the internal data structures. |
597 | 602 |
void init() |
598 | 603 |
{ |
599 | 604 |
create_maps(); |
600 | 605 |
_heap->clear(); |
601 | 606 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
602 | 607 |
_pred->set(u,INVALID); |
603 | 608 |
_processed->set(u,false); |
604 | 609 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
605 | 610 |
} |
606 | 611 |
} |
607 | 612 |
|
608 | 613 |
///Adds a new source node. |
609 | 614 |
|
610 | 615 |
///Adds a new source node to the priority heap. |
611 | 616 |
///The optional second parameter is the initial distance of the node. |
612 | 617 |
/// |
613 | 618 |
///The function checks if the node has already been added to the heap and |
614 | 619 |
///it is pushed to the heap only if either it was not in the heap |
615 | 620 |
///or the shortest path found till then is shorter than \c dst. |
616 | 621 |
void addSource(Node s,Value dst=OperationTraits::zero()) |
617 | 622 |
{ |
618 | 623 |
if(_heap->state(s) != Heap::IN_HEAP) { |
619 | 624 |
_heap->push(s,dst); |
620 | 625 |
} else if(OperationTraits::less((*_heap)[s], dst)) { |
621 | 626 |
_heap->set(s,dst); |
622 | 627 |
_pred->set(s,INVALID); |
623 | 628 |
} |
624 | 629 |
} |
625 | 630 |
|
626 | 631 |
///Processes the next node in the priority heap |
627 | 632 |
|
628 | 633 |
///Processes the next node in the priority heap. |
629 | 634 |
/// |
630 | 635 |
///\return The processed node. |
631 | 636 |
/// |
632 | 637 |
///\warning The priority heap must not be empty. |
633 | 638 |
Node processNextNode() |
634 | 639 |
{ |
635 | 640 |
Node v=_heap->top(); |
636 | 641 |
Value oldvalue=_heap->prio(); |
637 | 642 |
_heap->pop(); |
638 | 643 |
finalizeNodeData(v,oldvalue); |
639 | 644 |
|
640 | 645 |
for(OutArcIt e(*G,v); e!=INVALID; ++e) { |
641 | 646 |
Node w=G->target(e); |
642 | 647 |
switch(_heap->state(w)) { |
643 | 648 |
case Heap::PRE_HEAP: |
644 | 649 |
_heap->push(w,OperationTraits::plus(oldvalue, (*_length)[e])); |
645 | 650 |
_pred->set(w,e); |
646 | 651 |
break; |
647 | 652 |
case Heap::IN_HEAP: |
648 | 653 |
{ |
649 | 654 |
Value newvalue = OperationTraits::plus(oldvalue, (*_length)[e]); |
650 | 655 |
if ( OperationTraits::less(newvalue, (*_heap)[w]) ) { |
651 | 656 |
_heap->decrease(w, newvalue); |
652 | 657 |
_pred->set(w,e); |
... | ... |
@@ -740,556 +745,551 @@ |
740 | 745 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
741 | 746 |
/// |
742 | 747 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
743 | 748 |
///\c INVALID if no such node was found. |
744 | 749 |
/// |
745 | 750 |
///\pre init() must be called and at least one root node should be |
746 | 751 |
///added with addSource() before using this function. |
747 | 752 |
template<class NodeBoolMap> |
748 | 753 |
Node start(const NodeBoolMap &nm) |
749 | 754 |
{ |
750 | 755 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
751 | 756 |
if ( _heap->empty() ) return INVALID; |
752 | 757 |
finalizeNodeData(_heap->top(),_heap->prio()); |
753 | 758 |
return _heap->top(); |
754 | 759 |
} |
755 | 760 |
|
756 | 761 |
///Runs the algorithm from the given source node. |
757 | 762 |
|
758 | 763 |
///This method runs the %Dijkstra algorithm from node \c s |
759 | 764 |
///in order to compute the shortest path to each node. |
760 | 765 |
/// |
761 | 766 |
///The algorithm computes |
762 | 767 |
///- the shortest path tree, |
763 | 768 |
///- the distance of each node from the root. |
764 | 769 |
/// |
765 | 770 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
766 | 771 |
///\code |
767 | 772 |
/// d.init(); |
768 | 773 |
/// d.addSource(s); |
769 | 774 |
/// d.start(); |
770 | 775 |
///\endcode |
771 | 776 |
void run(Node s) { |
772 | 777 |
init(); |
773 | 778 |
addSource(s); |
774 | 779 |
start(); |
775 | 780 |
} |
776 | 781 |
|
777 | 782 |
///Finds the shortest path between \c s and \c t. |
778 | 783 |
|
779 | 784 |
///This method runs the %Dijkstra algorithm from node \c s |
780 | 785 |
///in order to compute the shortest path to node \c t |
781 | 786 |
///(it stops searching when \c t is processed). |
782 | 787 |
/// |
783 | 788 |
///\return \c true if \c t is reachable form \c s. |
784 | 789 |
/// |
785 | 790 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a |
786 | 791 |
///shortcut of the following code. |
787 | 792 |
///\code |
788 | 793 |
/// d.init(); |
789 | 794 |
/// d.addSource(s); |
790 | 795 |
/// d.start(t); |
791 | 796 |
///\endcode |
792 | 797 |
bool run(Node s,Node t) { |
793 | 798 |
init(); |
794 | 799 |
addSource(s); |
795 | 800 |
start(t); |
796 | 801 |
return (*_heap_cross_ref)[t] == Heap::POST_HEAP; |
797 | 802 |
} |
798 | 803 |
|
799 | 804 |
///@} |
800 | 805 |
|
801 | 806 |
///\name Query Functions |
802 | 807 |
///The results of the %Dijkstra algorithm can be obtained using these |
803 | 808 |
///functions.\n |
804 |
///Either \ref run(Node) "run()" or \ref |
|
809 |
///Either \ref run(Node) "run()" or \ref init() should be called |
|
805 | 810 |
///before using them. |
806 | 811 |
|
807 | 812 |
///@{ |
808 | 813 |
|
809 |
///The shortest path to |
|
814 |
///The shortest path to the given node. |
|
810 | 815 |
|
811 |
///Returns the shortest path to |
|
816 |
///Returns the shortest path to the given node from the root(s). |
|
812 | 817 |
/// |
813 | 818 |
///\warning \c t should be reached from the root(s). |
814 | 819 |
/// |
815 | 820 |
///\pre Either \ref run(Node) "run()" or \ref init() |
816 | 821 |
///must be called before using this function. |
817 | 822 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
818 | 823 |
|
819 |
///The distance of |
|
824 |
///The distance of the given node from the root(s). |
|
820 | 825 |
|
821 |
///Returns the distance of |
|
826 |
///Returns the distance of the given node from the root(s). |
|
822 | 827 |
/// |
823 | 828 |
///\warning If node \c v is not reached from the root(s), then |
824 | 829 |
///the return value of this function is undefined. |
825 | 830 |
/// |
826 | 831 |
///\pre Either \ref run(Node) "run()" or \ref init() |
827 | 832 |
///must be called before using this function. |
828 | 833 |
Value dist(Node v) const { return (*_dist)[v]; } |
829 | 834 |
|
830 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
831 |
|
|
835 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
836 |
///the given node. |
|
837 |
/// |
|
832 | 838 |
///This function returns the 'previous arc' of the shortest path |
833 | 839 |
///tree for the node \c v, i.e. it returns the last arc of a |
834 | 840 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
835 | 841 |
///is not reached from the root(s) or if \c v is a root. |
836 | 842 |
/// |
837 | 843 |
///The shortest path tree used here is equal to the shortest path |
838 |
///tree used in \ref predNode(). |
|
844 |
///tree used in \ref predNode() and \ref predMap(). |
|
839 | 845 |
/// |
840 | 846 |
///\pre Either \ref run(Node) "run()" or \ref init() |
841 | 847 |
///must be called before using this function. |
842 | 848 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
843 | 849 |
|
844 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
845 |
|
|
850 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
851 |
///the given node. |
|
852 |
/// |
|
846 | 853 |
///This function returns the 'previous node' of the shortest path |
847 | 854 |
///tree for the node \c v, i.e. it returns the last but one node |
848 |
/// |
|
855 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
849 | 856 |
///if \c v is not reached from the root(s) or if \c v is a root. |
850 | 857 |
/// |
851 | 858 |
///The shortest path tree used here is equal to the shortest path |
852 |
///tree used in \ref predArc(). |
|
859 |
///tree used in \ref predArc() and \ref predMap(). |
|
853 | 860 |
/// |
854 | 861 |
///\pre Either \ref run(Node) "run()" or \ref init() |
855 | 862 |
///must be called before using this function. |
856 | 863 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
857 | 864 |
G->source((*_pred)[v]); } |
858 | 865 |
|
859 | 866 |
///\brief Returns a const reference to the node map that stores the |
860 | 867 |
///distances of the nodes. |
861 | 868 |
/// |
862 | 869 |
///Returns a const reference to the node map that stores the distances |
863 | 870 |
///of the nodes calculated by the algorithm. |
864 | 871 |
/// |
865 | 872 |
///\pre Either \ref run(Node) "run()" or \ref init() |
866 | 873 |
///must be called before using this function. |
867 | 874 |
const DistMap &distMap() const { return *_dist;} |
868 | 875 |
|
869 | 876 |
///\brief Returns a const reference to the node map that stores the |
870 | 877 |
///predecessor arcs. |
871 | 878 |
/// |
872 | 879 |
///Returns a const reference to the node map that stores the predecessor |
873 |
///arcs, which form the shortest path tree. |
|
880 |
///arcs, which form the shortest path tree (forest). |
|
874 | 881 |
/// |
875 | 882 |
///\pre Either \ref run(Node) "run()" or \ref init() |
876 | 883 |
///must be called before using this function. |
877 | 884 |
const PredMap &predMap() const { return *_pred;} |
878 | 885 |
|
879 |
///Checks if |
|
886 |
///Checks if the given node is reached from the root(s). |
|
880 | 887 |
|
881 | 888 |
///Returns \c true if \c v is reached from the root(s). |
882 | 889 |
/// |
883 | 890 |
///\pre Either \ref run(Node) "run()" or \ref init() |
884 | 891 |
///must be called before using this function. |
885 | 892 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] != |
886 | 893 |
Heap::PRE_HEAP; } |
887 | 894 |
|
888 | 895 |
///Checks if a node is processed. |
889 | 896 |
|
890 | 897 |
///Returns \c true if \c v is processed, i.e. the shortest |
891 | 898 |
///path to \c v has already found. |
892 | 899 |
/// |
893 | 900 |
///\pre Either \ref run(Node) "run()" or \ref init() |
894 | 901 |
///must be called before using this function. |
895 | 902 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] == |
896 | 903 |
Heap::POST_HEAP; } |
897 | 904 |
|
898 |
///The current distance of |
|
905 |
///The current distance of the given node from the root(s). |
|
899 | 906 |
|
900 |
///Returns the current distance of |
|
907 |
///Returns the current distance of the given node from the root(s). |
|
901 | 908 |
///It may be decreased in the following processes. |
902 | 909 |
/// |
903 | 910 |
///\pre Either \ref run(Node) "run()" or \ref init() |
904 | 911 |
///must be called before using this function and |
905 | 912 |
///node \c v must be reached but not necessarily processed. |
906 | 913 |
Value currentDist(Node v) const { |
907 | 914 |
return processed(v) ? (*_dist)[v] : (*_heap)[v]; |
908 | 915 |
} |
909 | 916 |
|
910 | 917 |
///@} |
911 | 918 |
}; |
912 | 919 |
|
913 | 920 |
|
914 | 921 |
///Default traits class of dijkstra() function. |
915 | 922 |
|
916 | 923 |
///Default traits class of dijkstra() function. |
917 | 924 |
///\tparam GR The type of the digraph. |
918 | 925 |
///\tparam LEN The type of the length map. |
919 | 926 |
template<class GR, class LEN> |
920 | 927 |
struct DijkstraWizardDefaultTraits |
921 | 928 |
{ |
922 | 929 |
///The type of the digraph the algorithm runs on. |
923 | 930 |
typedef GR Digraph; |
924 | 931 |
///The type of the map that stores the arc lengths. |
925 | 932 |
|
926 | 933 |
///The type of the map that stores the arc lengths. |
927 |
///It must |
|
934 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
928 | 935 |
typedef LEN LengthMap; |
929 |
///The type of the |
|
936 |
///The type of the arc lengths. |
|
930 | 937 |
typedef typename LEN::Value Value; |
931 | 938 |
|
932 | 939 |
/// Operation traits for Dijkstra algorithm. |
933 | 940 |
|
934 | 941 |
/// This class defines the operations that are used in the algorithm. |
935 | 942 |
/// \see DijkstraDefaultOperationTraits |
936 | 943 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
937 | 944 |
|
938 | 945 |
/// The cross reference type used by the heap. |
939 | 946 |
|
940 | 947 |
/// The cross reference type used by the heap. |
941 | 948 |
/// Usually it is \c Digraph::NodeMap<int>. |
942 | 949 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
943 | 950 |
///Instantiates a \ref HeapCrossRef. |
944 | 951 |
|
945 | 952 |
///This function instantiates a \ref HeapCrossRef. |
946 | 953 |
/// \param g is the digraph, to which we would like to define the |
947 | 954 |
/// HeapCrossRef. |
948 | 955 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
949 | 956 |
{ |
950 | 957 |
return new HeapCrossRef(g); |
951 | 958 |
} |
952 | 959 |
|
953 | 960 |
///The heap type used by the Dijkstra algorithm. |
954 | 961 |
|
955 | 962 |
///The heap type used by the Dijkstra algorithm. |
956 | 963 |
/// |
957 | 964 |
///\sa BinHeap |
958 | 965 |
///\sa Dijkstra |
959 | 966 |
typedef BinHeap<Value, typename Digraph::template NodeMap<int>, |
960 | 967 |
std::less<Value> > Heap; |
961 | 968 |
|
962 | 969 |
///Instantiates a \ref Heap. |
963 | 970 |
|
964 | 971 |
///This function instantiates a \ref Heap. |
965 | 972 |
/// \param r is the HeapCrossRef which is used. |
966 | 973 |
static Heap *createHeap(HeapCrossRef& r) |
967 | 974 |
{ |
968 | 975 |
return new Heap(r); |
969 | 976 |
} |
970 | 977 |
|
971 | 978 |
///\brief The type of the map that stores the predecessor |
972 | 979 |
///arcs of the shortest paths. |
973 | 980 |
/// |
974 | 981 |
///The type of the map that stores the predecessor |
975 | 982 |
///arcs of the shortest paths. |
976 |
///It must |
|
983 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
977 | 984 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
978 | 985 |
///Instantiates a PredMap. |
979 | 986 |
|
980 | 987 |
///This function instantiates a PredMap. |
981 | 988 |
///\param g is the digraph, to which we would like to define the |
982 | 989 |
///PredMap. |
983 | 990 |
static PredMap *createPredMap(const Digraph &g) |
984 | 991 |
{ |
985 | 992 |
return new PredMap(g); |
986 | 993 |
} |
987 | 994 |
|
988 | 995 |
///The type of the map that indicates which nodes are processed. |
989 | 996 |
|
990 | 997 |
///The type of the map that indicates which nodes are processed. |
991 |
///It must |
|
998 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
992 | 999 |
///By default it is a NullMap. |
993 | 1000 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
994 | 1001 |
///Instantiates a ProcessedMap. |
995 | 1002 |
|
996 | 1003 |
///This function instantiates a ProcessedMap. |
997 | 1004 |
///\param g is the digraph, to which |
998 | 1005 |
///we would like to define the ProcessedMap. |
999 | 1006 |
#ifdef DOXYGEN |
1000 | 1007 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
1001 | 1008 |
#else |
1002 | 1009 |
static ProcessedMap *createProcessedMap(const Digraph &) |
1003 | 1010 |
#endif |
1004 | 1011 |
{ |
1005 | 1012 |
return new ProcessedMap(); |
1006 | 1013 |
} |
1007 | 1014 |
|
1008 | 1015 |
///The type of the map that stores the distances of the nodes. |
1009 | 1016 |
|
1010 | 1017 |
///The type of the map that stores the distances of the nodes. |
1011 |
///It must |
|
1018 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
1012 | 1019 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
1013 | 1020 |
///Instantiates a DistMap. |
1014 | 1021 |
|
1015 | 1022 |
///This function instantiates a DistMap. |
1016 | 1023 |
///\param g is the digraph, to which we would like to define |
1017 | 1024 |
///the DistMap |
1018 | 1025 |
static DistMap *createDistMap(const Digraph &g) |
1019 | 1026 |
{ |
1020 | 1027 |
return new DistMap(g); |
1021 | 1028 |
} |
1022 | 1029 |
|
1023 | 1030 |
///The type of the shortest paths. |
1024 | 1031 |
|
1025 | 1032 |
///The type of the shortest paths. |
1026 |
///It must |
|
1033 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
1027 | 1034 |
typedef lemon::Path<Digraph> Path; |
1028 | 1035 |
}; |
1029 | 1036 |
|
1030 | 1037 |
/// Default traits class used by DijkstraWizard |
1031 | 1038 |
|
1032 |
/// To make it easier to use Dijkstra algorithm |
|
1033 |
/// we have created a wizard class. |
|
1034 |
/// This \ref DijkstraWizard class needs default traits, |
|
1035 |
/// as well as the \ref Dijkstra class. |
|
1036 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
|
1037 |
/// \ref DijkstraWizard class. |
|
1039 |
/// Default traits class used by DijkstraWizard. |
|
1040 |
/// \tparam GR The type of the digraph. |
|
1041 |
/// \tparam LEN The type of the length map. |
|
1038 | 1042 |
template<typename GR, typename LEN> |
1039 | 1043 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN> |
1040 | 1044 |
{ |
1041 | 1045 |
typedef DijkstraWizardDefaultTraits<GR,LEN> Base; |
1042 | 1046 |
protected: |
1043 | 1047 |
//The type of the nodes in the digraph. |
1044 | 1048 |
typedef typename Base::Digraph::Node Node; |
1045 | 1049 |
|
1046 | 1050 |
//Pointer to the digraph the algorithm runs on. |
1047 | 1051 |
void *_g; |
1048 | 1052 |
//Pointer to the length map. |
1049 | 1053 |
void *_length; |
1050 | 1054 |
//Pointer to the map of processed nodes. |
1051 | 1055 |
void *_processed; |
1052 | 1056 |
//Pointer to the map of predecessors arcs. |
1053 | 1057 |
void *_pred; |
1054 | 1058 |
//Pointer to the map of distances. |
1055 | 1059 |
void *_dist; |
1056 | 1060 |
//Pointer to the shortest path to the target node. |
1057 | 1061 |
void *_path; |
1058 | 1062 |
//Pointer to the distance of the target node. |
1059 | 1063 |
void *_di; |
1060 | 1064 |
|
1061 | 1065 |
public: |
1062 | 1066 |
/// Constructor. |
1063 | 1067 |
|
1064 | 1068 |
/// This constructor does not require parameters, therefore it initiates |
1065 | 1069 |
/// all of the attributes to \c 0. |
1066 | 1070 |
DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0), |
1067 | 1071 |
_dist(0), _path(0), _di(0) {} |
1068 | 1072 |
|
1069 | 1073 |
/// Constructor. |
1070 | 1074 |
|
1071 | 1075 |
/// This constructor requires two parameters, |
1072 | 1076 |
/// others are initiated to \c 0. |
1073 | 1077 |
/// \param g The digraph the algorithm runs on. |
1074 | 1078 |
/// \param l The length map. |
1075 | 1079 |
DijkstraWizardBase(const GR &g,const LEN &l) : |
1076 | 1080 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
1077 | 1081 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&l))), |
1078 | 1082 |
_processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
1079 | 1083 |
|
1080 | 1084 |
}; |
1081 | 1085 |
|
1082 | 1086 |
/// Auxiliary class for the function-type interface of Dijkstra algorithm. |
1083 | 1087 |
|
1084 | 1088 |
/// This auxiliary class is created to implement the |
1085 | 1089 |
/// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm. |
1086 | 1090 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
1087 | 1091 |
/// functions and features of the plain \ref Dijkstra. |
1088 | 1092 |
/// |
1089 | 1093 |
/// This class should only be used through the \ref dijkstra() function, |
1090 | 1094 |
/// which makes it easier to use the algorithm. |
1091 | 1095 |
template<class TR> |
1092 | 1096 |
class DijkstraWizard : public TR |
1093 | 1097 |
{ |
1094 | 1098 |
typedef TR Base; |
1095 | 1099 |
|
1096 |
///The type of the digraph the algorithm runs on. |
|
1097 | 1100 |
typedef typename TR::Digraph Digraph; |
1098 | 1101 |
|
1099 | 1102 |
typedef typename Digraph::Node Node; |
1100 | 1103 |
typedef typename Digraph::NodeIt NodeIt; |
1101 | 1104 |
typedef typename Digraph::Arc Arc; |
1102 | 1105 |
typedef typename Digraph::OutArcIt OutArcIt; |
1103 | 1106 |
|
1104 |
///The type of the map that stores the arc lengths. |
|
1105 | 1107 |
typedef typename TR::LengthMap LengthMap; |
1106 |
///The type of the length of the arcs. |
|
1107 | 1108 |
typedef typename LengthMap::Value Value; |
1108 |
///\brief The type of the map that stores the predecessor |
|
1109 |
///arcs of the shortest paths. |
|
1110 | 1109 |
typedef typename TR::PredMap PredMap; |
1111 |
///The type of the map that stores the distances of the nodes. |
|
1112 | 1110 |
typedef typename TR::DistMap DistMap; |
1113 |
///The type of the map that indicates which nodes are processed. |
|
1114 | 1111 |
typedef typename TR::ProcessedMap ProcessedMap; |
1115 |
///The type of the shortest paths |
|
1116 | 1112 |
typedef typename TR::Path Path; |
1117 |
///The heap type used by the dijkstra algorithm. |
|
1118 | 1113 |
typedef typename TR::Heap Heap; |
1119 | 1114 |
|
1120 | 1115 |
public: |
1121 | 1116 |
|
1122 | 1117 |
/// Constructor. |
1123 | 1118 |
DijkstraWizard() : TR() {} |
1124 | 1119 |
|
1125 | 1120 |
/// Constructor that requires parameters. |
1126 | 1121 |
|
1127 | 1122 |
/// Constructor that requires parameters. |
1128 | 1123 |
/// These parameters will be the default values for the traits class. |
1129 | 1124 |
/// \param g The digraph the algorithm runs on. |
1130 | 1125 |
/// \param l The length map. |
1131 | 1126 |
DijkstraWizard(const Digraph &g, const LengthMap &l) : |
1132 | 1127 |
TR(g,l) {} |
1133 | 1128 |
|
1134 | 1129 |
///Copy constructor |
1135 | 1130 |
DijkstraWizard(const TR &b) : TR(b) {} |
1136 | 1131 |
|
1137 | 1132 |
~DijkstraWizard() {} |
1138 | 1133 |
|
1139 | 1134 |
///Runs Dijkstra algorithm from the given source node. |
1140 | 1135 |
|
1141 | 1136 |
///This method runs %Dijkstra algorithm from the given source node |
1142 | 1137 |
///in order to compute the shortest path to each node. |
1143 | 1138 |
void run(Node s) |
1144 | 1139 |
{ |
1145 | 1140 |
Dijkstra<Digraph,LengthMap,TR> |
1146 | 1141 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
1147 | 1142 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1148 | 1143 |
if (Base::_pred) |
1149 | 1144 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1150 | 1145 |
if (Base::_dist) |
1151 | 1146 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1152 | 1147 |
if (Base::_processed) |
1153 | 1148 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1154 | 1149 |
dijk.run(s); |
1155 | 1150 |
} |
1156 | 1151 |
|
1157 | 1152 |
///Finds the shortest path between \c s and \c t. |
1158 | 1153 |
|
1159 | 1154 |
///This method runs the %Dijkstra algorithm from node \c s |
1160 | 1155 |
///in order to compute the shortest path to node \c t |
1161 | 1156 |
///(it stops searching when \c t is processed). |
1162 | 1157 |
/// |
1163 | 1158 |
///\return \c true if \c t is reachable form \c s. |
1164 | 1159 |
bool run(Node s, Node t) |
1165 | 1160 |
{ |
1166 | 1161 |
Dijkstra<Digraph,LengthMap,TR> |
1167 | 1162 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
1168 | 1163 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1169 | 1164 |
if (Base::_pred) |
1170 | 1165 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1171 | 1166 |
if (Base::_dist) |
1172 | 1167 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1173 | 1168 |
if (Base::_processed) |
1174 | 1169 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1175 | 1170 |
dijk.run(s,t); |
1176 | 1171 |
if (Base::_path) |
1177 | 1172 |
*reinterpret_cast<Path*>(Base::_path) = dijk.path(t); |
1178 | 1173 |
if (Base::_di) |
1179 | 1174 |
*reinterpret_cast<Value*>(Base::_di) = dijk.dist(t); |
1180 | 1175 |
return dijk.reached(t); |
1181 | 1176 |
} |
1182 | 1177 |
|
1183 | 1178 |
template<class T> |
1184 | 1179 |
struct SetPredMapBase : public Base { |
1185 | 1180 |
typedef T PredMap; |
1186 | 1181 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1187 | 1182 |
SetPredMapBase(const TR &b) : TR(b) {} |
1188 | 1183 |
}; |
1189 |
///\brief \ref named-func-param "Named parameter" |
|
1190 |
///for setting PredMap object. |
|
1184 |
|
|
1185 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1186 |
///the predecessor map. |
|
1191 | 1187 |
/// |
1192 |
///\ref named-func-param "Named parameter" |
|
1193 |
///for setting PredMap object. |
|
1188 |
///\ref named-templ-param "Named parameter" function for setting |
|
1189 |
///the map that stores the predecessor arcs of the nodes. |
|
1194 | 1190 |
template<class T> |
1195 | 1191 |
DijkstraWizard<SetPredMapBase<T> > predMap(const T &t) |
1196 | 1192 |
{ |
1197 | 1193 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1198 | 1194 |
return DijkstraWizard<SetPredMapBase<T> >(*this); |
1199 | 1195 |
} |
1200 | 1196 |
|
1201 | 1197 |
template<class T> |
1202 | 1198 |
struct SetDistMapBase : public Base { |
1203 | 1199 |
typedef T DistMap; |
1204 | 1200 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1205 | 1201 |
SetDistMapBase(const TR &b) : TR(b) {} |
1206 | 1202 |
}; |
1207 |
///\brief \ref named-func-param "Named parameter" |
|
1208 |
///for setting DistMap object. |
|
1203 |
|
|
1204 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1205 |
///the distance map. |
|
1209 | 1206 |
/// |
1210 |
///\ref named-func-param "Named parameter" |
|
1211 |
///for setting DistMap object. |
|
1207 |
///\ref named-templ-param "Named parameter" function for setting |
|
1208 |
///the map that stores the distances of the nodes calculated |
|
1209 |
///by the algorithm. |
|
1212 | 1210 |
template<class T> |
1213 | 1211 |
DijkstraWizard<SetDistMapBase<T> > distMap(const T &t) |
1214 | 1212 |
{ |
1215 | 1213 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1216 | 1214 |
return DijkstraWizard<SetDistMapBase<T> >(*this); |
1217 | 1215 |
} |
1218 | 1216 |
|
1219 | 1217 |
template<class T> |
1220 | 1218 |
struct SetProcessedMapBase : public Base { |
1221 | 1219 |
typedef T ProcessedMap; |
1222 | 1220 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1223 | 1221 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1224 | 1222 |
}; |
1225 |
///\brief \ref named-func-param "Named parameter" |
|
1226 |
///for setting ProcessedMap object. |
|
1223 |
|
|
1224 |
///\brief \ref named-func-param "Named parameter" for setting |
|
1225 |
///the processed map. |
|
1227 | 1226 |
/// |
1228 |
/// \ref named-func-param "Named parameter" |
|
1229 |
///for setting ProcessedMap object. |
|
1227 |
///\ref named-templ-param "Named parameter" function for setting |
|
1228 |
///the map that indicates which nodes are processed. |
|
1230 | 1229 |
template<class T> |
1231 | 1230 |
DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1232 | 1231 |
{ |
1233 | 1232 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1234 | 1233 |
return DijkstraWizard<SetProcessedMapBase<T> >(*this); |
1235 | 1234 |
} |
1236 | 1235 |
|
1237 | 1236 |
template<class T> |
1238 | 1237 |
struct SetPathBase : public Base { |
1239 | 1238 |
typedef T Path; |
1240 | 1239 |
SetPathBase(const TR &b) : TR(b) {} |
1241 | 1240 |
}; |
1241 |
|
|
1242 | 1242 |
///\brief \ref named-func-param "Named parameter" |
1243 | 1243 |
///for getting the shortest path to the target node. |
1244 | 1244 |
/// |
1245 | 1245 |
///\ref named-func-param "Named parameter" |
1246 | 1246 |
///for getting the shortest path to the target node. |
1247 | 1247 |
template<class T> |
1248 | 1248 |
DijkstraWizard<SetPathBase<T> > path(const T &t) |
1249 | 1249 |
{ |
1250 | 1250 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1251 | 1251 |
return DijkstraWizard<SetPathBase<T> >(*this); |
1252 | 1252 |
} |
1253 | 1253 |
|
1254 | 1254 |
///\brief \ref named-func-param "Named parameter" |
1255 | 1255 |
///for getting the distance of the target node. |
1256 | 1256 |
/// |
1257 | 1257 |
///\ref named-func-param "Named parameter" |
1258 | 1258 |
///for getting the distance of the target node. |
1259 | 1259 |
DijkstraWizard dist(const Value &d) |
1260 | 1260 |
{ |
1261 | 1261 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
1262 | 1262 |
return *this; |
1263 | 1263 |
} |
1264 | 1264 |
|
1265 | 1265 |
}; |
1266 | 1266 |
|
1267 | 1267 |
///Function-type interface for Dijkstra algorithm. |
1268 | 1268 |
|
1269 | 1269 |
/// \ingroup shortest_path |
1270 | 1270 |
///Function-type interface for Dijkstra algorithm. |
1271 | 1271 |
/// |
1272 | 1272 |
///This function also has several \ref named-func-param "named parameters", |
1273 | 1273 |
///they are declared as the members of class \ref DijkstraWizard. |
1274 | 1274 |
///The following examples show how to use these parameters. |
1275 | 1275 |
///\code |
1276 | 1276 |
/// // Compute shortest path from node s to each node |
1277 | 1277 |
/// dijkstra(g,length).predMap(preds).distMap(dists).run(s); |
1278 | 1278 |
/// |
1279 | 1279 |
/// // Compute shortest path from s to t |
1280 | 1280 |
/// bool reached = dijkstra(g,length).path(p).dist(d).run(s,t); |
1281 | 1281 |
///\endcode |
1282 | 1282 |
///\warning Don't forget to put the \ref DijkstraWizard::run(Node) "run()" |
1283 | 1283 |
///to the end of the parameter list. |
1284 | 1284 |
///\sa DijkstraWizard |
1285 | 1285 |
///\sa Dijkstra |
1286 | 1286 |
template<typename GR, typename LEN> |
1287 | 1287 |
DijkstraWizard<DijkstraWizardBase<GR,LEN> > |
1288 | 1288 |
dijkstra(const GR &digraph, const LEN &length) |
1289 | 1289 |
{ |
1290 | 1290 |
return DijkstraWizard<DijkstraWizardBase<GR,LEN> >(digraph,length); |
1291 | 1291 |
} |
1292 | 1292 |
|
1293 | 1293 |
} //END OF NAMESPACE LEMON |
1294 | 1294 |
|
1295 | 1295 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIM2_H |
20 | 20 |
#define LEMON_DIM2_H |
21 | 21 |
|
22 | 22 |
#include <iostream> |
23 | 23 |
|
24 |
///\ingroup |
|
24 |
///\ingroup geomdat |
|
25 | 25 |
///\file |
26 | 26 |
///\brief A simple two dimensional vector and a bounding box implementation |
27 |
/// |
|
28 |
/// The class \ref lemon::dim2::Point "dim2::Point" implements |
|
29 |
/// a two dimensional vector with the usual operations. |
|
30 |
/// |
|
31 |
/// The class \ref lemon::dim2::Box "dim2::Box" can be used to determine |
|
32 |
/// the rectangular bounding box of a set of |
|
33 |
/// \ref lemon::dim2::Point "dim2::Point"'s. |
|
34 | 27 |
|
35 | 28 |
namespace lemon { |
36 | 29 |
|
37 | 30 |
///Tools for handling two dimensional coordinates |
38 | 31 |
|
39 | 32 |
///This namespace is a storage of several |
40 | 33 |
///tools for handling two dimensional coordinates |
41 | 34 |
namespace dim2 { |
42 | 35 |
|
43 |
/// \addtogroup |
|
36 |
/// \addtogroup geomdat |
|
44 | 37 |
/// @{ |
45 | 38 |
|
46 | 39 |
/// Two dimensional vector (plain vector) |
47 | 40 |
|
48 | 41 |
/// A simple two dimensional vector (plain vector) implementation |
49 | 42 |
/// with the usual vector operations. |
50 | 43 |
template<typename T> |
51 | 44 |
class Point { |
52 | 45 |
|
53 | 46 |
public: |
54 | 47 |
|
55 | 48 |
typedef T Value; |
56 | 49 |
|
57 | 50 |
///First coordinate |
58 | 51 |
T x; |
59 | 52 |
///Second coordinate |
60 | 53 |
T y; |
61 | 54 |
|
62 | 55 |
///Default constructor |
63 | 56 |
Point() {} |
64 | 57 |
|
65 | 58 |
///Construct an instance from coordinates |
66 | 59 |
Point(T a, T b) : x(a), y(b) { } |
67 | 60 |
|
68 | 61 |
///Returns the dimension of the vector (i.e. returns 2). |
69 | 62 |
|
70 | 63 |
///The dimension of the vector. |
71 | 64 |
///This function always returns 2. |
72 | 65 |
int size() const { return 2; } |
73 | 66 |
|
74 | 67 |
///Subscripting operator |
75 | 68 |
|
76 | 69 |
///\c p[0] is \c p.x and \c p[1] is \c p.y |
77 | 70 |
/// |
78 | 71 |
T& operator[](int idx) { return idx == 0 ? x : y; } |
79 | 72 |
|
80 | 73 |
///Const subscripting operator |
81 | 74 |
|
82 | 75 |
///\c p[0] is \c p.x and \c p[1] is \c p.y |
83 | 76 |
/// |
84 | 77 |
const T& operator[](int idx) const { return idx == 0 ? x : y; } |
85 | 78 |
|
86 | 79 |
///Conversion constructor |
87 | 80 |
template<class TT> Point(const Point<TT> &p) : x(p.x), y(p.y) {} |
88 | 81 |
|
89 | 82 |
///Give back the square of the norm of the vector |
90 | 83 |
T normSquare() const { |
91 | 84 |
return x*x+y*y; |
92 | 85 |
} |
93 | 86 |
|
94 | 87 |
///Increment the left hand side by \c u |
95 | 88 |
Point<T>& operator +=(const Point<T>& u) { |
96 | 89 |
x += u.x; |
97 | 90 |
y += u.y; |
98 | 91 |
return *this; |
99 | 92 |
} |
100 | 93 |
|
101 | 94 |
///Decrement the left hand side by \c u |
102 | 95 |
Point<T>& operator -=(const Point<T>& u) { |
103 | 96 |
x -= u.x; |
104 | 97 |
y -= u.y; |
105 | 98 |
return *this; |
106 | 99 |
} |
107 | 100 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_FIB_HEAP_H |
20 | 20 |
#define LEMON_FIB_HEAP_H |
21 | 21 |
|
22 | 22 |
///\file |
23 |
///\ingroup auxdat |
|
24 |
///\brief Fibonacci Heap implementation. |
|
23 |
///\ingroup heaps |
|
24 |
///\brief Fibonacci heap implementation. |
|
25 | 25 |
|
26 | 26 |
#include <vector> |
27 |
#include <utility> |
|
27 | 28 |
#include <functional> |
28 | 29 |
#include <lemon/math.h> |
29 | 30 |
|
30 | 31 |
namespace lemon { |
31 | 32 |
|
32 |
/// \ingroup |
|
33 |
/// \ingroup heaps |
|
33 | 34 |
/// |
34 |
///\brief Fibonacci |
|
35 |
/// \brief Fibonacci heap data structure. |
|
35 | 36 |
/// |
36 |
///This class implements the \e Fibonacci \e heap data structure. A \e heap |
|
37 |
///is a data structure for storing items with specified values called \e |
|
38 |
///priorities in such a way that finding the item with minimum priority is |
|
39 |
///efficient. \c CMP specifies the ordering of the priorities. In a heap |
|
40 |
/// |
|
37 |
/// This class implements the \e Fibonacci \e heap data structure. |
|
38 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
41 | 39 |
/// |
42 |
///The methods \ref increase and \ref erase are not efficient in a Fibonacci |
|
43 |
///heap. In case of many calls to these operations, it is better to use a |
|
44 |
///\ref |
|
40 |
/// The methods \ref increase() and \ref erase() are not efficient in a |
|
41 |
/// Fibonacci heap. In case of many calls of these operations, it is |
|
42 |
/// better to use other heap structure, e.g. \ref BinHeap "binary heap". |
|
45 | 43 |
/// |
46 |
///\param PRIO Type of the priority of the items. |
|
47 |
///\param IM A read and writable Item int map, used internally |
|
48 |
///to handle the cross references. |
|
49 |
///\param CMP A class for the ordering of the priorities. The |
|
50 |
///default is \c std::less<PRIO>. |
|
51 |
/// |
|
52 |
///\sa BinHeap |
|
53 |
///\sa Dijkstra |
|
44 |
/// \tparam PR Type of the priorities of the items. |
|
45 |
/// \tparam IM A read-writable item map with \c int values, used |
|
46 |
/// internally to handle the cross references. |
|
47 |
/// \tparam CMP A functor class for comparing the priorities. |
|
48 |
/// The default is \c std::less<PR>. |
|
54 | 49 |
#ifdef DOXYGEN |
55 |
template <typename |
|
50 |
template <typename PR, typename IM, typename CMP> |
|
56 | 51 |
#else |
57 |
template <typename |
|
52 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
58 | 53 |
#endif |
59 | 54 |
class FibHeap { |
60 | 55 |
public: |
61 |
|
|
56 |
|
|
57 |
/// Type of the item-int map. |
|
62 | 58 |
typedef IM ItemIntMap; |
63 |
///\e |
|
64 |
typedef PRIO Prio; |
|
65 |
/// |
|
59 |
/// Type of the priorities. |
|
60 |
typedef PR Prio; |
|
61 |
/// Type of the items stored in the heap. |
|
66 | 62 |
typedef typename ItemIntMap::Key Item; |
67 |
/// |
|
63 |
/// Type of the item-priority pairs. |
|
68 | 64 |
typedef std::pair<Item,Prio> Pair; |
69 |
/// |
|
65 |
/// Functor type for comparing the priorities. |
|
70 | 66 |
typedef CMP Compare; |
71 | 67 |
|
72 | 68 |
private: |
73 | 69 |
class Store; |
74 | 70 |
|
75 | 71 |
std::vector<Store> _data; |
76 | 72 |
int _minimum; |
77 | 73 |
ItemIntMap &_iim; |
78 | 74 |
Compare _comp; |
79 | 75 |
int _num; |
80 | 76 |
|
81 | 77 |
public: |
82 | 78 |
|
83 |
/// \brief Type to represent the |
|
79 |
/// \brief Type to represent the states of the items. |
|
84 | 80 |
/// |
85 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
86 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
81 |
/// Each item has a state associated to it. It can be "in heap", |
|
82 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
87 | 83 |
/// heap's point of view, but may be useful to the user. |
88 | 84 |
/// |
89 | 85 |
/// The item-int map must be initialized in such way that it assigns |
90 | 86 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
91 | 87 |
enum State { |
92 | 88 |
IN_HEAP = 0, ///< = 0. |
93 | 89 |
PRE_HEAP = -1, ///< = -1. |
94 | 90 |
POST_HEAP = -2 ///< = -2. |
95 | 91 |
}; |
96 | 92 |
|
97 |
/// \brief |
|
93 |
/// \brief Constructor. |
|
98 | 94 |
/// |
99 |
/// \c map should be given to the constructor, since it is |
|
100 |
/// used internally to handle the cross references. |
|
95 |
/// Constructor. |
|
96 |
/// \param map A map that assigns \c int values to the items. |
|
97 |
/// It is used internally to handle the cross references. |
|
98 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
101 | 99 |
explicit FibHeap(ItemIntMap &map) |
102 | 100 |
: _minimum(0), _iim(map), _num() {} |
103 | 101 |
|
104 |
/// \brief |
|
102 |
/// \brief Constructor. |
|
105 | 103 |
/// |
106 |
/// \c map should be given to the constructor, since it is used |
|
107 |
/// internally to handle the cross references. \c comp is an |
|
108 |
/// |
|
104 |
/// Constructor. |
|
105 |
/// \param map A map that assigns \c int values to the items. |
|
106 |
/// It is used internally to handle the cross references. |
|
107 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
108 |
/// \param comp The function object used for comparing the priorities. |
|
109 | 109 |
FibHeap(ItemIntMap &map, const Compare &comp) |
110 | 110 |
: _minimum(0), _iim(map), _comp(comp), _num() {} |
111 | 111 |
|
112 | 112 |
/// \brief The number of items stored in the heap. |
113 | 113 |
/// |
114 |
/// |
|
114 |
/// This function returns the number of items stored in the heap. |
|
115 | 115 |
int size() const { return _num; } |
116 | 116 |
|
117 |
/// \brief |
|
117 |
/// \brief Check if the heap is empty. |
|
118 | 118 |
/// |
119 |
/// |
|
119 |
/// This function returns \c true if the heap is empty. |
|
120 | 120 |
bool empty() const { return _num==0; } |
121 | 121 |
|
122 |
/// \brief Make |
|
122 |
/// \brief Make the heap empty. |
|
123 | 123 |
/// |
124 |
/// Make empty this heap. It does not change the cross reference |
|
125 |
/// map. If you want to reuse a heap what is not surely empty you |
|
126 |
/// should first clear the heap and after that you should set the |
|
127 |
/// cross reference map for each item to \c PRE_HEAP. |
|
124 |
/// This functon makes the heap empty. |
|
125 |
/// It does not change the cross reference map. If you want to reuse |
|
126 |
/// a heap that is not surely empty, you should first clear it and |
|
127 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
128 |
/// for each item. |
|
128 | 129 |
void clear() { |
129 | 130 |
_data.clear(); _minimum = 0; _num = 0; |
130 | 131 |
} |
131 | 132 |
|
132 |
/// \brief \c item gets to the heap with priority \c value independently |
|
133 |
/// if \c item was already there. |
|
133 |
/// \brief Insert an item into the heap with the given priority. |
|
134 | 134 |
/// |
135 |
/// This method calls \ref push(\c item, \c value) if \c item is not |
|
136 |
/// stored in the heap and it calls \ref decrease(\c item, \c value) or |
|
137 |
/// \ref increase(\c item, \c value) otherwise. |
|
138 |
void set (const Item& item, const Prio& value) { |
|
139 |
int i=_iim[item]; |
|
140 |
if ( i >= 0 && _data[i].in ) { |
|
141 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
142 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
143 |
} else push(item, value); |
|
144 |
} |
|
145 |
|
|
146 |
/// \brief Adds \c item to the heap with priority \c value. |
|
147 |
/// |
|
148 |
/// Adds \c item to the heap with priority \c value. |
|
149 |
/// \pre \c item must not be stored in the heap. |
|
150 |
void push (const Item& item, const Prio& value) { |
|
135 |
/// This function inserts the given item into the heap with the |
|
136 |
/// given priority. |
|
137 |
/// \param item The item to insert. |
|
138 |
/// \param prio The priority of the item. |
|
139 |
/// \pre \e item must not be stored in the heap. |
|
140 |
void push (const Item& item, const Prio& prio) { |
|
151 | 141 |
int i=_iim[item]; |
152 | 142 |
if ( i < 0 ) { |
153 | 143 |
int s=_data.size(); |
154 | 144 |
_iim.set( item, s ); |
155 | 145 |
Store st; |
156 | 146 |
st.name=item; |
157 | 147 |
_data.push_back(st); |
158 | 148 |
i=s; |
159 | 149 |
} else { |
160 | 150 |
_data[i].parent=_data[i].child=-1; |
161 | 151 |
_data[i].degree=0; |
162 | 152 |
_data[i].in=true; |
163 | 153 |
_data[i].marked=false; |
164 | 154 |
} |
165 | 155 |
|
166 | 156 |
if ( _num ) { |
167 | 157 |
_data[_data[_minimum].right_neighbor].left_neighbor=i; |
168 | 158 |
_data[i].right_neighbor=_data[_minimum].right_neighbor; |
169 | 159 |
_data[_minimum].right_neighbor=i; |
170 | 160 |
_data[i].left_neighbor=_minimum; |
171 |
if ( _comp( |
|
161 |
if ( _comp( prio, _data[_minimum].prio) ) _minimum=i; |
|
172 | 162 |
} else { |
173 | 163 |
_data[i].right_neighbor=_data[i].left_neighbor=i; |
174 | 164 |
_minimum=i; |
175 | 165 |
} |
176 |
_data[i].prio= |
|
166 |
_data[i].prio=prio; |
|
177 | 167 |
++_num; |
178 | 168 |
} |
179 | 169 |
|
180 |
/// \brief |
|
170 |
/// \brief Return the item having minimum priority. |
|
181 | 171 |
/// |
182 |
/// This method returns the item with minimum priority relative to \c |
|
183 |
/// Compare. |
|
184 |
/// |
|
172 |
/// This function returns the item having minimum priority. |
|
173 |
/// \pre The heap must be non-empty. |
|
185 | 174 |
Item top() const { return _data[_minimum].name; } |
186 | 175 |
|
187 |
/// \brief |
|
176 |
/// \brief The minimum priority. |
|
188 | 177 |
/// |
189 |
/// It returns the minimum priority relative to \c Compare. |
|
190 |
/// \pre The heap must be nonempty. |
|
191 |
|
|
178 |
/// This function returns the minimum priority. |
|
179 |
/// \pre The heap must be non-empty. |
|
180 |
Prio prio() const { return _data[_minimum].prio; } |
|
192 | 181 |
|
193 |
/// \brief |
|
182 |
/// \brief Remove the item having minimum priority. |
|
194 | 183 |
/// |
195 |
/// It returns the priority of \c item. |
|
196 |
/// \pre \c item must be in the heap. |
|
197 |
const Prio& operator[](const Item& item) const { |
|
198 |
return _data[_iim[item]].prio; |
|
199 |
} |
|
200 |
|
|
201 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
|
202 |
/// |
|
203 |
/// This method deletes the item with minimum priority relative to \c |
|
204 |
/// Compare from the heap. |
|
184 |
/// This function removes the item having minimum priority. |
|
205 | 185 |
/// \pre The heap must be non-empty. |
206 | 186 |
void pop() { |
207 | 187 |
/*The first case is that there are only one root.*/ |
208 | 188 |
if ( _data[_minimum].left_neighbor==_minimum ) { |
209 | 189 |
_data[_minimum].in=false; |
210 | 190 |
if ( _data[_minimum].degree!=0 ) { |
211 |
|
|
191 |
makeRoot(_data[_minimum].child); |
|
212 | 192 |
_minimum=_data[_minimum].child; |
213 | 193 |
balance(); |
214 | 194 |
} |
215 | 195 |
} else { |
216 | 196 |
int right=_data[_minimum].right_neighbor; |
217 | 197 |
unlace(_minimum); |
218 | 198 |
_data[_minimum].in=false; |
219 | 199 |
if ( _data[_minimum].degree > 0 ) { |
220 | 200 |
int left=_data[_minimum].left_neighbor; |
221 | 201 |
int child=_data[_minimum].child; |
222 | 202 |
int last_child=_data[child].left_neighbor; |
223 | 203 |
|
224 |
|
|
204 |
makeRoot(child); |
|
225 | 205 |
|
226 | 206 |
_data[left].right_neighbor=child; |
227 | 207 |
_data[child].left_neighbor=left; |
228 | 208 |
_data[right].left_neighbor=last_child; |
229 | 209 |
_data[last_child].right_neighbor=right; |
230 | 210 |
} |
231 | 211 |
_minimum=right; |
232 | 212 |
balance(); |
233 | 213 |
} // the case where there are more roots |
234 | 214 |
--_num; |
235 | 215 |
} |
236 | 216 |
|
237 |
/// \brief |
|
217 |
/// \brief Remove the given item from the heap. |
|
238 | 218 |
/// |
239 |
/// This method deletes \c item from the heap, if \c item was already |
|
240 |
/// stored in the heap. It is quite inefficient in Fibonacci heaps. |
|
219 |
/// This function removes the given item from the heap if it is |
|
220 |
/// already stored. |
|
221 |
/// \param item The item to delete. |
|
222 |
/// \pre \e item must be in the heap. |
|
241 | 223 |
void erase (const Item& item) { |
242 | 224 |
int i=_iim[item]; |
243 | 225 |
|
244 | 226 |
if ( i >= 0 && _data[i].in ) { |
245 | 227 |
if ( _data[i].parent!=-1 ) { |
246 | 228 |
int p=_data[i].parent; |
247 | 229 |
cut(i,p); |
248 | 230 |
cascade(p); |
249 | 231 |
} |
250 | 232 |
_minimum=i; //As if its prio would be -infinity |
251 | 233 |
pop(); |
252 | 234 |
} |
253 | 235 |
} |
254 | 236 |
|
255 |
/// \brief |
|
237 |
/// \brief The priority of the given item. |
|
256 | 238 |
/// |
257 |
/// This method decreases the priority of \c item to \c value. |
|
258 |
/// \pre \c item must be stored in the heap with priority at least \c |
|
259 |
/// value relative to \c Compare. |
|
260 |
void decrease (Item item, const Prio& value) { |
|
239 |
/// This function returns the priority of the given item. |
|
240 |
/// \param item The item. |
|
241 |
/// \pre \e item must be in the heap. |
|
242 |
Prio operator[](const Item& item) const { |
|
243 |
return _data[_iim[item]].prio; |
|
244 |
} |
|
245 |
|
|
246 |
/// \brief Set the priority of an item or insert it, if it is |
|
247 |
/// not stored in the heap. |
|
248 |
/// |
|
249 |
/// This method sets the priority of the given item if it is |
|
250 |
/// already stored in the heap. Otherwise it inserts the given |
|
251 |
/// item into the heap with the given priority. |
|
252 |
/// \param item The item. |
|
253 |
/// \param prio The priority. |
|
254 |
void set (const Item& item, const Prio& prio) { |
|
261 | 255 |
int i=_iim[item]; |
262 |
_data[i]. |
|
256 |
if ( i >= 0 && _data[i].in ) { |
|
257 |
if ( _comp(prio, _data[i].prio) ) decrease(item, prio); |
|
258 |
if ( _comp(_data[i].prio, prio) ) increase(item, prio); |
|
259 |
} else push(item, prio); |
|
260 |
} |
|
261 |
|
|
262 |
/// \brief Decrease the priority of an item to the given value. |
|
263 |
/// |
|
264 |
/// This function decreases the priority of an item to the given value. |
|
265 |
/// \param item The item. |
|
266 |
/// \param prio The priority. |
|
267 |
/// \pre \e item must be stored in the heap with priority at least \e prio. |
|
268 |
void decrease (const Item& item, const Prio& prio) { |
|
269 |
int i=_iim[item]; |
|
270 |
_data[i].prio=prio; |
|
263 | 271 |
int p=_data[i].parent; |
264 | 272 |
|
265 |
if ( p!=-1 && _comp( |
|
273 |
if ( p!=-1 && _comp(prio, _data[p].prio) ) { |
|
266 | 274 |
cut(i,p); |
267 | 275 |
cascade(p); |
268 | 276 |
} |
269 |
if ( _comp( |
|
277 |
if ( _comp(prio, _data[_minimum].prio) ) _minimum=i; |
|
270 | 278 |
} |
271 | 279 |
|
272 |
/// \brief |
|
280 |
/// \brief Increase the priority of an item to the given value. |
|
273 | 281 |
/// |
274 |
/// This method sets the priority of \c item to \c value. Though |
|
275 |
/// there is no precondition on the priority of \c item, this |
|
276 |
/// method should be used only if it is indeed necessary to increase |
|
277 |
/// (relative to \c Compare) the priority of \c item, because this |
|
278 |
/// method is inefficient. |
|
279 |
void increase (Item item, const Prio& value) { |
|
282 |
/// This function increases the priority of an item to the given value. |
|
283 |
/// \param item The item. |
|
284 |
/// \param prio The priority. |
|
285 |
/// \pre \e item must be stored in the heap with priority at most \e prio. |
|
286 |
void increase (const Item& item, const Prio& prio) { |
|
280 | 287 |
erase(item); |
281 |
push(item, |
|
288 |
push(item, prio); |
|
282 | 289 |
} |
283 | 290 |
|
284 |
|
|
285 |
/// \brief Returns if \c item is in, has already been in, or has never |
|
286 |
/// |
|
291 |
/// \brief Return the state of an item. |
|
287 | 292 |
/// |
288 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
289 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
290 |
/// otherwise. In the latter case it is possible that \c item will |
|
291 |
/// get back to the heap again. |
|
293 |
/// This method returns \c PRE_HEAP if the given item has never |
|
294 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
295 |
/// and \c POST_HEAP otherwise. |
|
296 |
/// In the latter case it is possible that the item will get back |
|
297 |
/// to the heap again. |
|
298 |
/// \param item The item. |
|
292 | 299 |
State state(const Item &item) const { |
293 | 300 |
int i=_iim[item]; |
294 | 301 |
if( i>=0 ) { |
295 | 302 |
if ( _data[i].in ) i=0; |
296 | 303 |
else i=-2; |
297 | 304 |
} |
298 | 305 |
return State(i); |
299 | 306 |
} |
300 | 307 |
|
301 |
/// \brief |
|
308 |
/// \brief Set the state of an item in the heap. |
|
302 | 309 |
/// |
303 |
/// Sets the state of the \c item in the heap. It can be used to |
|
304 |
/// manually clear the heap when it is important to achive the |
|
305 |
/// |
|
310 |
/// This function sets the state of the given item in the heap. |
|
311 |
/// It can be used to manually clear the heap when it is important |
|
312 |
/// to achive better time complexity. |
|
306 | 313 |
/// \param i The item. |
307 | 314 |
/// \param st The state. It should not be \c IN_HEAP. |
308 | 315 |
void state(const Item& i, State st) { |
309 | 316 |
switch (st) { |
310 | 317 |
case POST_HEAP: |
311 | 318 |
case PRE_HEAP: |
312 | 319 |
if (state(i) == IN_HEAP) { |
313 | 320 |
erase(i); |
314 | 321 |
} |
315 | 322 |
_iim[i] = st; |
316 | 323 |
break; |
317 | 324 |
case IN_HEAP: |
318 | 325 |
break; |
319 | 326 |
} |
320 | 327 |
} |
321 | 328 |
|
322 | 329 |
private: |
323 | 330 |
|
324 | 331 |
void balance() { |
325 | 332 |
|
326 | 333 |
int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1; |
327 | 334 |
|
328 | 335 |
std::vector<int> A(maxdeg,-1); |
329 | 336 |
|
330 | 337 |
/* |
331 | 338 |
*Recall that now minimum does not point to the minimum prio element. |
332 | 339 |
*We set minimum to this during balance(). |
333 | 340 |
*/ |
334 | 341 |
int anchor=_data[_minimum].left_neighbor; |
335 | 342 |
int next=_minimum; |
336 | 343 |
bool end=false; |
337 | 344 |
|
338 | 345 |
do { |
339 | 346 |
int active=next; |
340 | 347 |
if ( anchor==active ) end=true; |
341 | 348 |
int d=_data[active].degree; |
342 | 349 |
next=_data[active].right_neighbor; |
343 | 350 |
|
344 | 351 |
while (A[d]!=-1) { |
345 | 352 |
if( _comp(_data[active].prio, _data[A[d]].prio) ) { |
346 | 353 |
fuse(active,A[d]); |
347 | 354 |
} else { |
348 | 355 |
fuse(A[d],active); |
349 | 356 |
active=A[d]; |
350 | 357 |
} |
351 | 358 |
A[d]=-1; |
352 | 359 |
++d; |
353 | 360 |
} |
354 | 361 |
A[d]=active; |
355 | 362 |
} while ( !end ); |
356 | 363 |
|
357 | 364 |
|
358 | 365 |
while ( _data[_minimum].parent >=0 ) |
359 | 366 |
_minimum=_data[_minimum].parent; |
360 | 367 |
int s=_minimum; |
361 | 368 |
int m=_minimum; |
362 | 369 |
do { |
363 | 370 |
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; |
364 | 371 |
s=_data[s].right_neighbor; |
365 | 372 |
} while ( s != m ); |
366 | 373 |
} |
367 | 374 |
|
368 |
void |
|
375 |
void makeRoot(int c) { |
|
369 | 376 |
int s=c; |
370 | 377 |
do { |
371 | 378 |
_data[s].parent=-1; |
372 | 379 |
s=_data[s].right_neighbor; |
373 | 380 |
} while ( s != c ); |
374 | 381 |
} |
375 | 382 |
|
376 | 383 |
void cut(int a, int b) { |
377 | 384 |
/* |
378 | 385 |
*Replacing a from the children of b. |
379 | 386 |
*/ |
380 | 387 |
--_data[b].degree; |
381 | 388 |
|
382 | 389 |
if ( _data[b].degree !=0 ) { |
383 | 390 |
int child=_data[b].child; |
384 | 391 |
if ( child==a ) |
385 | 392 |
_data[b].child=_data[child].right_neighbor; |
386 | 393 |
unlace(a); |
387 | 394 |
} |
388 | 395 |
|
389 | 396 |
|
390 | 397 |
/*Lacing a to the roots.*/ |
391 | 398 |
int right=_data[_minimum].right_neighbor; |
392 | 399 |
_data[_minimum].right_neighbor=a; |
393 | 400 |
_data[a].left_neighbor=_minimum; |
394 | 401 |
_data[a].right_neighbor=right; |
395 | 402 |
_data[right].left_neighbor=a; |
396 | 403 |
|
397 | 404 |
_data[a].parent=-1; |
398 | 405 |
_data[a].marked=false; |
399 | 406 |
} |
400 | 407 |
|
401 | 408 |
void cascade(int a) { |
402 | 409 |
if ( _data[a].parent!=-1 ) { |
403 | 410 |
int p=_data[a].parent; |
404 | 411 |
|
405 | 412 |
if ( _data[a].marked==false ) _data[a].marked=true; |
406 | 413 |
else { |
407 | 414 |
cut(a,p); |
408 | 415 |
cascade(p); |
409 | 416 |
} |
410 | 417 |
} |
411 | 418 |
} |
412 | 419 |
|
413 | 420 |
void fuse(int a, int b) { |
414 | 421 |
unlace(b); |
415 | 422 |
|
416 | 423 |
/*Lacing b under a.*/ |
417 | 424 |
_data[b].parent=a; |
418 | 425 |
|
419 | 426 |
if (_data[a].degree==0) { |
420 | 427 |
_data[b].left_neighbor=b; |
421 | 428 |
_data[b].right_neighbor=b; |
422 | 429 |
_data[a].child=b; |
423 | 430 |
} else { |
424 | 431 |
int child=_data[a].child; |
425 | 432 |
int last_child=_data[child].left_neighbor; |
426 | 433 |
_data[child].left_neighbor=b; |
427 | 434 |
_data[b].right_neighbor=child; |
428 | 435 |
_data[last_child].right_neighbor=b; |
429 | 436 |
_data[b].left_neighbor=last_child; |
430 | 437 |
} |
431 | 438 |
|
432 | 439 |
++_data[a].degree; |
... | ... |
@@ -298,229 +298,229 @@ |
298 | 298 |
const Node& t, |
299 | 299 |
///< |
300 | 300 |
CutMap& cutMap |
301 | 301 |
///< |
302 | 302 |
) const { |
303 | 303 |
Node sn = s, tn = t; |
304 | 304 |
bool s_root=false; |
305 | 305 |
Node rn = INVALID; |
306 | 306 |
Value value = std::numeric_limits<Value>::max(); |
307 | 307 |
|
308 | 308 |
while (sn != tn) { |
309 | 309 |
if ((*_order)[sn] < (*_order)[tn]) { |
310 | 310 |
if ((*_weight)[tn] <= value) { |
311 | 311 |
rn = tn; |
312 | 312 |
s_root = false; |
313 | 313 |
value = (*_weight)[tn]; |
314 | 314 |
} |
315 | 315 |
tn = (*_pred)[tn]; |
316 | 316 |
} else { |
317 | 317 |
if ((*_weight)[sn] <= value) { |
318 | 318 |
rn = sn; |
319 | 319 |
s_root = true; |
320 | 320 |
value = (*_weight)[sn]; |
321 | 321 |
} |
322 | 322 |
sn = (*_pred)[sn]; |
323 | 323 |
} |
324 | 324 |
} |
325 | 325 |
|
326 | 326 |
typename Graph::template NodeMap<bool> reached(_graph, false); |
327 | 327 |
reached[_root] = true; |
328 | 328 |
cutMap.set(_root, !s_root); |
329 | 329 |
reached[rn] = true; |
330 | 330 |
cutMap.set(rn, s_root); |
331 | 331 |
|
332 | 332 |
std::vector<Node> st; |
333 | 333 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
334 | 334 |
st.clear(); |
335 | 335 |
Node nn = n; |
336 | 336 |
while (!reached[nn]) { |
337 | 337 |
st.push_back(nn); |
338 | 338 |
nn = (*_pred)[nn]; |
339 | 339 |
} |
340 | 340 |
while (!st.empty()) { |
341 | 341 |
cutMap.set(st.back(), cutMap[nn]); |
342 | 342 |
st.pop_back(); |
343 | 343 |
} |
344 | 344 |
} |
345 | 345 |
|
346 | 346 |
return value; |
347 | 347 |
} |
348 | 348 |
|
349 | 349 |
///@} |
350 | 350 |
|
351 | 351 |
friend class MinCutNodeIt; |
352 | 352 |
|
353 | 353 |
/// Iterate on the nodes of a minimum cut |
354 | 354 |
|
355 | 355 |
/// This iterator class lists the nodes of a minimum cut found by |
356 | 356 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
357 | 357 |
/// and call its \ref GomoryHu::run() "run()" method. |
358 | 358 |
/// |
359 | 359 |
/// This example counts the nodes in the minimum cut separating \c s from |
360 | 360 |
/// \c t. |
361 | 361 |
/// \code |
362 |
/// |
|
362 |
/// GomoryHu<Graph> gom(g, capacities); |
|
363 | 363 |
/// gom.run(); |
364 | 364 |
/// int cnt=0; |
365 |
/// for( |
|
365 |
/// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; |
|
366 | 366 |
/// \endcode |
367 | 367 |
class MinCutNodeIt |
368 | 368 |
{ |
369 | 369 |
bool _side; |
370 | 370 |
typename Graph::NodeIt _node_it; |
371 | 371 |
typename Graph::template NodeMap<bool> _cut; |
372 | 372 |
public: |
373 | 373 |
/// Constructor |
374 | 374 |
|
375 | 375 |
/// Constructor. |
376 | 376 |
/// |
377 | 377 |
MinCutNodeIt(GomoryHu const &gomory, |
378 | 378 |
///< The GomoryHu class. You must call its |
379 | 379 |
/// run() method |
380 | 380 |
/// before initializing this iterator. |
381 | 381 |
const Node& s, ///< The base node. |
382 | 382 |
const Node& t, |
383 | 383 |
///< The node you want to separate from node \c s. |
384 | 384 |
bool side=true |
385 | 385 |
///< If it is \c true (default) then the iterator lists |
386 | 386 |
/// the nodes of the component containing \c s, |
387 | 387 |
/// otherwise it lists the other component. |
388 | 388 |
/// \note As the minimum cut is not always unique, |
389 | 389 |
/// \code |
390 | 390 |
/// MinCutNodeIt(gomory, s, t, true); |
391 | 391 |
/// \endcode |
392 | 392 |
/// and |
393 | 393 |
/// \code |
394 | 394 |
/// MinCutNodeIt(gomory, t, s, false); |
395 | 395 |
/// \endcode |
396 | 396 |
/// does not necessarily give the same set of nodes. |
397 | 397 |
/// However it is ensured that |
398 | 398 |
/// \code |
399 | 399 |
/// MinCutNodeIt(gomory, s, t, true); |
400 | 400 |
/// \endcode |
401 | 401 |
/// and |
402 | 402 |
/// \code |
403 | 403 |
/// MinCutNodeIt(gomory, s, t, false); |
404 | 404 |
/// \endcode |
405 | 405 |
/// together list each node exactly once. |
406 | 406 |
) |
407 | 407 |
: _side(side), _cut(gomory._graph) |
408 | 408 |
{ |
409 | 409 |
gomory.minCutMap(s,t,_cut); |
410 | 410 |
for(_node_it=typename Graph::NodeIt(gomory._graph); |
411 | 411 |
_node_it!=INVALID && _cut[_node_it]!=_side; |
412 | 412 |
++_node_it) {} |
413 | 413 |
} |
414 | 414 |
/// Conversion to \c Node |
415 | 415 |
|
416 | 416 |
/// Conversion to \c Node. |
417 | 417 |
/// |
418 | 418 |
operator typename Graph::Node() const |
419 | 419 |
{ |
420 | 420 |
return _node_it; |
421 | 421 |
} |
422 | 422 |
bool operator==(Invalid) { return _node_it==INVALID; } |
423 | 423 |
bool operator!=(Invalid) { return _node_it!=INVALID; } |
424 | 424 |
/// Next node |
425 | 425 |
|
426 | 426 |
/// Next node. |
427 | 427 |
/// |
428 | 428 |
MinCutNodeIt &operator++() |
429 | 429 |
{ |
430 | 430 |
for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {} |
431 | 431 |
return *this; |
432 | 432 |
} |
433 | 433 |
/// Postfix incrementation |
434 | 434 |
|
435 | 435 |
/// Postfix incrementation. |
436 | 436 |
/// |
437 | 437 |
/// \warning This incrementation |
438 | 438 |
/// returns a \c Node, not a \c MinCutNodeIt, as one may |
439 | 439 |
/// expect. |
440 | 440 |
typename Graph::Node operator++(int) |
441 | 441 |
{ |
442 | 442 |
typename Graph::Node n=*this; |
443 | 443 |
++(*this); |
444 | 444 |
return n; |
445 | 445 |
} |
446 | 446 |
}; |
447 | 447 |
|
448 | 448 |
friend class MinCutEdgeIt; |
449 | 449 |
|
450 | 450 |
/// Iterate on the edges of a minimum cut |
451 | 451 |
|
452 | 452 |
/// This iterator class lists the edges of a minimum cut found by |
453 | 453 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
454 | 454 |
/// and call its \ref GomoryHu::run() "run()" method. |
455 | 455 |
/// |
456 | 456 |
/// This example computes the value of the minimum cut separating \c s from |
457 | 457 |
/// \c t. |
458 | 458 |
/// \code |
459 |
/// |
|
459 |
/// GomoryHu<Graph> gom(g, capacities); |
|
460 | 460 |
/// gom.run(); |
461 | 461 |
/// int value=0; |
462 |
/// for( |
|
462 |
/// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) |
|
463 | 463 |
/// value+=capacities[e]; |
464 | 464 |
/// \endcode |
465 | 465 |
/// The result will be the same as the value returned by |
466 | 466 |
/// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)". |
467 | 467 |
class MinCutEdgeIt |
468 | 468 |
{ |
469 | 469 |
bool _side; |
470 | 470 |
const Graph &_graph; |
471 | 471 |
typename Graph::NodeIt _node_it; |
472 | 472 |
typename Graph::OutArcIt _arc_it; |
473 | 473 |
typename Graph::template NodeMap<bool> _cut; |
474 | 474 |
void step() |
475 | 475 |
{ |
476 | 476 |
++_arc_it; |
477 | 477 |
while(_node_it!=INVALID && _arc_it==INVALID) |
478 | 478 |
{ |
479 | 479 |
for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {} |
480 | 480 |
if(_node_it!=INVALID) |
481 | 481 |
_arc_it=typename Graph::OutArcIt(_graph,_node_it); |
482 | 482 |
} |
483 | 483 |
} |
484 | 484 |
|
485 | 485 |
public: |
486 | 486 |
/// Constructor |
487 | 487 |
|
488 | 488 |
/// Constructor. |
489 | 489 |
/// |
490 | 490 |
MinCutEdgeIt(GomoryHu const &gomory, |
491 | 491 |
///< The GomoryHu class. You must call its |
492 | 492 |
/// run() method |
493 | 493 |
/// before initializing this iterator. |
494 | 494 |
const Node& s, ///< The base node. |
495 | 495 |
const Node& t, |
496 | 496 |
///< The node you want to separate from node \c s. |
497 | 497 |
bool side=true |
498 | 498 |
///< If it is \c true (default) then the listed arcs |
499 | 499 |
/// will be oriented from the |
500 | 500 |
/// nodes of the component containing \c s, |
501 | 501 |
/// otherwise they will be oriented in the opposite |
502 | 502 |
/// direction. |
503 | 503 |
) |
504 | 504 |
: _graph(gomory._graph), _cut(_graph) |
505 | 505 |
{ |
506 | 506 |
gomory.minCutMap(s,t,_cut); |
507 | 507 |
if(!side) |
508 | 508 |
for(typename Graph::NodeIt n(_graph);n!=INVALID;++n) |
509 | 509 |
_cut[n]=!_cut[n]; |
510 | 510 |
|
511 | 511 |
for(_node_it=typename Graph::NodeIt(_graph); |
512 | 512 |
_node_it!=INVALID && !_cut[_node_it]; |
513 | 513 |
++_node_it) {} |
514 | 514 |
_arc_it = _node_it!=INVALID ? |
515 | 515 |
typename Graph::OutArcIt(_graph,_node_it) : INVALID; |
516 | 516 |
while(_node_it!=INVALID && _arc_it == INVALID) |
517 | 517 |
{ |
518 | 518 |
for(++_node_it; _node_it!=INVALID&&!_cut[_node_it]; ++_node_it) {} |
519 | 519 |
if(_node_it!=INVALID) |
520 | 520 |
_arc_it= typename Graph::OutArcIt(_graph,_node_it); |
521 | 521 |
} |
522 | 522 |
while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step(); |
523 | 523 |
} |
524 | 524 |
/// Conversion to \c Arc |
525 | 525 |
|
526 | 526 |
/// Conversion to \c Arc. |
... | ... |
@@ -1728,133 +1728,133 @@ |
1728 | 1728 |
/// assigned elements (in order of the assignment), which can be |
1729 | 1729 |
/// easily done with LoggerBoolMap. |
1730 | 1730 |
/// |
1731 | 1731 |
/// The simplest way of using this map is through the loggerBoolMap() |
1732 | 1732 |
/// function. |
1733 | 1733 |
/// |
1734 | 1734 |
/// \tparam IT The type of the iterator. |
1735 | 1735 |
/// \tparam KEY The key type of the map. The default value set |
1736 | 1736 |
/// according to the iterator type should work in most cases. |
1737 | 1737 |
/// |
1738 | 1738 |
/// \note The container of the iterator must contain enough space |
1739 | 1739 |
/// for the elements or the iterator should be an inserter iterator. |
1740 | 1740 |
#ifdef DOXYGEN |
1741 | 1741 |
template <typename IT, typename KEY> |
1742 | 1742 |
#else |
1743 | 1743 |
template <typename IT, |
1744 | 1744 |
typename KEY = typename _maps_bits::IteratorTraits<IT>::Value> |
1745 | 1745 |
#endif |
1746 | 1746 |
class LoggerBoolMap : public MapBase<KEY, bool> { |
1747 | 1747 |
public: |
1748 | 1748 |
|
1749 | 1749 |
///\e |
1750 | 1750 |
typedef KEY Key; |
1751 | 1751 |
///\e |
1752 | 1752 |
typedef bool Value; |
1753 | 1753 |
///\e |
1754 | 1754 |
typedef IT Iterator; |
1755 | 1755 |
|
1756 | 1756 |
/// Constructor |
1757 | 1757 |
LoggerBoolMap(Iterator it) |
1758 | 1758 |
: _begin(it), _end(it) {} |
1759 | 1759 |
|
1760 | 1760 |
/// Gives back the given iterator set for the first key |
1761 | 1761 |
Iterator begin() const { |
1762 | 1762 |
return _begin; |
1763 | 1763 |
} |
1764 | 1764 |
|
1765 | 1765 |
/// Gives back the the 'after the last' iterator |
1766 | 1766 |
Iterator end() const { |
1767 | 1767 |
return _end; |
1768 | 1768 |
} |
1769 | 1769 |
|
1770 | 1770 |
/// The set function of the map |
1771 | 1771 |
void set(const Key& key, Value value) { |
1772 | 1772 |
if (value) { |
1773 | 1773 |
*_end++ = key; |
1774 | 1774 |
} |
1775 | 1775 |
} |
1776 | 1776 |
|
1777 | 1777 |
private: |
1778 | 1778 |
Iterator _begin; |
1779 | 1779 |
Iterator _end; |
1780 | 1780 |
}; |
1781 | 1781 |
|
1782 | 1782 |
/// Returns a \c LoggerBoolMap class |
1783 | 1783 |
|
1784 | 1784 |
/// This function just returns a \c LoggerBoolMap class. |
1785 | 1785 |
/// |
1786 | 1786 |
/// The most important usage of it is storing certain nodes or arcs |
1787 | 1787 |
/// that were marked \c true by an algorithm. |
1788 | 1788 |
/// For example it makes easier to store the nodes in the processing |
1789 | 1789 |
/// order of Dfs algorithm, as the following examples show. |
1790 | 1790 |
/// \code |
1791 | 1791 |
/// std::vector<Node> v; |
1792 |
/// dfs(g |
|
1792 |
/// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s); |
|
1793 | 1793 |
/// \endcode |
1794 | 1794 |
/// \code |
1795 | 1795 |
/// std::vector<Node> v(countNodes(g)); |
1796 |
/// dfs(g |
|
1796 |
/// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s); |
|
1797 | 1797 |
/// \endcode |
1798 | 1798 |
/// |
1799 | 1799 |
/// \note The container of the iterator must contain enough space |
1800 | 1800 |
/// for the elements or the iterator should be an inserter iterator. |
1801 | 1801 |
/// |
1802 | 1802 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
1803 | 1803 |
/// it cannot be used when a readable map is needed, for example as |
1804 | 1804 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
1805 | 1805 |
/// |
1806 | 1806 |
/// \relates LoggerBoolMap |
1807 | 1807 |
template<typename Iterator> |
1808 | 1808 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
1809 | 1809 |
return LoggerBoolMap<Iterator>(it); |
1810 | 1810 |
} |
1811 | 1811 |
|
1812 | 1812 |
/// @} |
1813 | 1813 |
|
1814 | 1814 |
/// \addtogroup graph_maps |
1815 | 1815 |
/// @{ |
1816 | 1816 |
|
1817 | 1817 |
/// \brief Provides an immutable and unique id for each item in a graph. |
1818 | 1818 |
/// |
1819 | 1819 |
/// IdMap provides a unique and immutable id for each item of the |
1820 | 1820 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
1821 | 1821 |
/// - \b unique: different items get different ids, |
1822 | 1822 |
/// - \b immutable: the id of an item does not change (even if you |
1823 | 1823 |
/// delete other nodes). |
1824 | 1824 |
/// |
1825 | 1825 |
/// Using this map you get access (i.e. can read) the inner id values of |
1826 | 1826 |
/// the items stored in the graph, which is returned by the \c id() |
1827 | 1827 |
/// function of the graph. This map can be inverted with its member |
1828 | 1828 |
/// class \c InverseMap or with the \c operator()() member. |
1829 | 1829 |
/// |
1830 | 1830 |
/// \tparam GR The graph type. |
1831 | 1831 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1832 | 1832 |
/// \c GR::Edge). |
1833 | 1833 |
/// |
1834 | 1834 |
/// \see RangeIdMap |
1835 | 1835 |
template <typename GR, typename K> |
1836 | 1836 |
class IdMap : public MapBase<K, int> { |
1837 | 1837 |
public: |
1838 | 1838 |
/// The graph type of IdMap. |
1839 | 1839 |
typedef GR Graph; |
1840 | 1840 |
typedef GR Digraph; |
1841 | 1841 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1842 | 1842 |
typedef K Item; |
1843 | 1843 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1844 | 1844 |
typedef K Key; |
1845 | 1845 |
/// The value type of IdMap. |
1846 | 1846 |
typedef int Value; |
1847 | 1847 |
|
1848 | 1848 |
/// \brief Constructor. |
1849 | 1849 |
/// |
1850 | 1850 |
/// Constructor of the map. |
1851 | 1851 |
explicit IdMap(const Graph& graph) : _graph(&graph) {} |
1852 | 1852 |
|
1853 | 1853 |
/// \brief Gives back the \e id of the item. |
1854 | 1854 |
/// |
1855 | 1855 |
/// Gives back the immutable and unique \e id of the item. |
1856 | 1856 |
int operator[](const Item& item) const { return _graph->id(item);} |
1857 | 1857 |
|
1858 | 1858 |
/// \brief Gives back the \e item by its id. |
1859 | 1859 |
/// |
1860 | 1860 |
/// Gives back the \e item by its id. |
... | ... |
@@ -427,130 +427,130 @@ |
427 | 427 |
{ |
428 | 428 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
429 | 429 |
return 0; // ignore warnings |
430 | 430 |
} |
431 | 431 |
}; |
432 | 432 |
|
433 | 433 |
/// \brief \ref named-templ-param "Named parameter" for |
434 | 434 |
/// setting \c PredMap type |
435 | 435 |
/// |
436 | 436 |
/// \ref named-templ-param "Named parameter" for setting |
437 | 437 |
/// \c PredMap type. |
438 | 438 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept, |
439 | 439 |
/// and its value type must be the \c Arc type of the digraph. |
440 | 440 |
template <class T> |
441 | 441 |
struct SetPredMap |
442 | 442 |
: public MinCostArborescence<Digraph, CostMap, SetPredMapTraits<T> > { |
443 | 443 |
}; |
444 | 444 |
|
445 | 445 |
/// @} |
446 | 446 |
|
447 | 447 |
/// \brief Constructor. |
448 | 448 |
/// |
449 | 449 |
/// \param digraph The digraph the algorithm will run on. |
450 | 450 |
/// \param cost The cost map used by the algorithm. |
451 | 451 |
MinCostArborescence(const Digraph& digraph, const CostMap& cost) |
452 | 452 |
: _digraph(&digraph), _cost(&cost), _pred(0), local_pred(false), |
453 | 453 |
_arborescence(0), local_arborescence(false), |
454 | 454 |
_arc_order(0), _node_order(0), _cost_arcs(0), |
455 | 455 |
_heap_cross_ref(0), _heap(0) {} |
456 | 456 |
|
457 | 457 |
/// \brief Destructor. |
458 | 458 |
~MinCostArborescence() { |
459 | 459 |
destroyStructures(); |
460 | 460 |
} |
461 | 461 |
|
462 | 462 |
/// \brief Sets the arborescence map. |
463 | 463 |
/// |
464 | 464 |
/// Sets the arborescence map. |
465 | 465 |
/// \return <tt>(*this)</tt> |
466 | 466 |
MinCostArborescence& arborescenceMap(ArborescenceMap& m) { |
467 | 467 |
if (local_arborescence) { |
468 | 468 |
delete _arborescence; |
469 | 469 |
} |
470 | 470 |
local_arborescence = false; |
471 | 471 |
_arborescence = &m; |
472 | 472 |
return *this; |
473 | 473 |
} |
474 | 474 |
|
475 | 475 |
/// \brief Sets the predecessor map. |
476 | 476 |
/// |
477 | 477 |
/// Sets the predecessor map. |
478 | 478 |
/// \return <tt>(*this)</tt> |
479 | 479 |
MinCostArborescence& predMap(PredMap& m) { |
480 | 480 |
if (local_pred) { |
481 | 481 |
delete _pred; |
482 | 482 |
} |
483 | 483 |
local_pred = false; |
484 | 484 |
_pred = &m; |
485 | 485 |
return *this; |
486 | 486 |
} |
487 | 487 |
|
488 | 488 |
/// \name Execution Control |
489 | 489 |
/// The simplest way to execute the algorithm is to use |
490 | 490 |
/// one of the member functions called \c run(...). \n |
491 |
/// If you need more control on the execution, |
|
492 |
/// first you must call \ref init(), then you can add several |
|
491 |
/// If you need better control on the execution, |
|
492 |
/// you have to call \ref init() first, then you can add several |
|
493 | 493 |
/// source nodes with \ref addSource(). |
494 | 494 |
/// Finally \ref start() will perform the arborescence |
495 | 495 |
/// computation. |
496 | 496 |
|
497 | 497 |
///@{ |
498 | 498 |
|
499 | 499 |
/// \brief Initializes the internal data structures. |
500 | 500 |
/// |
501 | 501 |
/// Initializes the internal data structures. |
502 | 502 |
/// |
503 | 503 |
void init() { |
504 | 504 |
createStructures(); |
505 | 505 |
_heap->clear(); |
506 | 506 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
507 | 507 |
(*_cost_arcs)[it].arc = INVALID; |
508 | 508 |
(*_node_order)[it] = -3; |
509 | 509 |
(*_heap_cross_ref)[it] = Heap::PRE_HEAP; |
510 | 510 |
_pred->set(it, INVALID); |
511 | 511 |
} |
512 | 512 |
for (ArcIt it(*_digraph); it != INVALID; ++it) { |
513 | 513 |
_arborescence->set(it, false); |
514 | 514 |
(*_arc_order)[it] = -1; |
515 | 515 |
} |
516 | 516 |
_dual_node_list.clear(); |
517 | 517 |
_dual_variables.clear(); |
518 | 518 |
} |
519 | 519 |
|
520 | 520 |
/// \brief Adds a new source node. |
521 | 521 |
/// |
522 | 522 |
/// Adds a new source node to the algorithm. |
523 | 523 |
void addSource(Node source) { |
524 | 524 |
std::vector<Node> nodes; |
525 | 525 |
nodes.push_back(source); |
526 | 526 |
while (!nodes.empty()) { |
527 | 527 |
Node node = nodes.back(); |
528 | 528 |
nodes.pop_back(); |
529 | 529 |
for (OutArcIt it(*_digraph, node); it != INVALID; ++it) { |
530 | 530 |
Node target = _digraph->target(it); |
531 | 531 |
if ((*_node_order)[target] == -3) { |
532 | 532 |
(*_node_order)[target] = -2; |
533 | 533 |
nodes.push_back(target); |
534 | 534 |
queue.push_back(target); |
535 | 535 |
} |
536 | 536 |
} |
537 | 537 |
} |
538 | 538 |
(*_node_order)[source] = -1; |
539 | 539 |
} |
540 | 540 |
|
541 | 541 |
/// \brief Processes the next node in the priority queue. |
542 | 542 |
/// |
543 | 543 |
/// Processes the next node in the priority queue. |
544 | 544 |
/// |
545 | 545 |
/// \return The processed node. |
546 | 546 |
/// |
547 | 547 |
/// \warning The queue must not be empty. |
548 | 548 |
Node processNextNode() { |
549 | 549 |
Node node = queue.back(); |
550 | 550 |
queue.pop_back(); |
551 | 551 |
if ((*_node_order)[node] == -2) { |
552 | 552 |
Arc arc = prepare(node); |
553 | 553 |
Node source = _digraph->source(arc); |
554 | 554 |
while ((*_node_order)[source] != -1) { |
555 | 555 |
if ((*_node_order)[source] >= 0) { |
556 | 556 |
arc = contract(source); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_PREFLOW_H |
20 | 20 |
#define LEMON_PREFLOW_H |
21 | 21 |
|
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
#include <lemon/elevator.h> |
24 | 24 |
|
25 | 25 |
/// \file |
26 | 26 |
/// \ingroup max_flow |
27 | 27 |
/// \brief Implementation of the preflow algorithm. |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
/// \brief Default traits class of Preflow class. |
32 | 32 |
/// |
33 | 33 |
/// Default traits class of Preflow class. |
34 | 34 |
/// \tparam GR Digraph type. |
35 | 35 |
/// \tparam CAP Capacity map type. |
36 | 36 |
template <typename GR, typename CAP> |
37 | 37 |
struct PreflowDefaultTraits { |
38 | 38 |
|
39 | 39 |
/// \brief The type of the digraph the algorithm runs on. |
40 | 40 |
typedef GR Digraph; |
41 | 41 |
|
42 | 42 |
/// \brief The type of the map that stores the arc capacities. |
43 | 43 |
/// |
44 | 44 |
/// The type of the map that stores the arc capacities. |
45 | 45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
46 | 46 |
typedef CAP CapacityMap; |
47 | 47 |
|
48 | 48 |
/// \brief The type of the flow values. |
49 | 49 |
typedef typename CapacityMap::Value Value; |
50 | 50 |
|
51 | 51 |
/// \brief The type of the map that stores the flow values. |
52 | 52 |
/// |
53 | 53 |
/// The type of the map that stores the flow values. |
54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
55 |
#ifdef DOXYGEN |
|
56 |
typedef GR::ArcMap<Value> FlowMap; |
|
57 |
#else |
|
55 | 58 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
59 |
#endif |
|
56 | 60 |
|
57 | 61 |
/// \brief Instantiates a FlowMap. |
58 | 62 |
/// |
59 | 63 |
/// This function instantiates a \ref FlowMap. |
60 | 64 |
/// \param digraph The digraph for which we would like to define |
61 | 65 |
/// the flow map. |
62 | 66 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
63 | 67 |
return new FlowMap(digraph); |
64 | 68 |
} |
65 | 69 |
|
66 | 70 |
/// \brief The elevator type used by Preflow algorithm. |
67 | 71 |
/// |
68 | 72 |
/// The elevator type used by Preflow algorithm. |
69 | 73 |
/// |
70 |
/// \sa Elevator |
|
71 |
/// \sa LinkedElevator |
|
72 |
|
|
74 |
/// \sa Elevator, LinkedElevator |
|
75 |
#ifdef DOXYGEN |
|
76 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
77 |
#else |
|
78 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
|
79 |
#endif |
|
73 | 80 |
|
74 | 81 |
/// \brief Instantiates an Elevator. |
75 | 82 |
/// |
76 | 83 |
/// This function instantiates an \ref Elevator. |
77 | 84 |
/// \param digraph The digraph for which we would like to define |
78 | 85 |
/// the elevator. |
79 | 86 |
/// \param max_level The maximum level of the elevator. |
80 | 87 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
81 | 88 |
return new Elevator(digraph, max_level); |
82 | 89 |
} |
83 | 90 |
|
84 | 91 |
/// \brief The tolerance used by the algorithm |
85 | 92 |
/// |
86 | 93 |
/// The tolerance used by the algorithm to handle inexact computation. |
87 | 94 |
typedef lemon::Tolerance<Value> Tolerance; |
88 | 95 |
|
89 | 96 |
}; |
90 | 97 |
|
91 | 98 |
|
92 | 99 |
/// \ingroup max_flow |
93 | 100 |
/// |
94 | 101 |
/// \brief %Preflow algorithm class. |
95 | 102 |
/// |
96 | 103 |
/// This class provides an implementation of Goldberg-Tarjan's \e preflow |
97 | 104 |
/// \e push-relabel algorithm producing a \ref max_flow |
98 | 105 |
/// "flow of maximum value" in a digraph. |
99 | 106 |
/// The preflow algorithms are the fastest known maximum |
100 |
/// flow algorithms. The current implementation |
|
107 |
/// flow algorithms. The current implementation uses a mixture of the |
|
101 | 108 |
/// \e "highest label" and the \e "bound decrease" heuristics. |
102 | 109 |
/// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$. |
103 | 110 |
/// |
104 | 111 |
/// The algorithm consists of two phases. After the first phase |
105 | 112 |
/// the maximum flow value and the minimum cut is obtained. The |
106 | 113 |
/// second phase constructs a feasible maximum flow on each arc. |
107 | 114 |
/// |
108 | 115 |
/// \tparam GR The type of the digraph the algorithm runs on. |
109 | 116 |
/// \tparam CAP The type of the capacity map. The default map |
110 | 117 |
/// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
111 | 118 |
#ifdef DOXYGEN |
112 | 119 |
template <typename GR, typename CAP, typename TR> |
113 | 120 |
#else |
114 | 121 |
template <typename GR, |
115 | 122 |
typename CAP = typename GR::template ArcMap<int>, |
116 | 123 |
typename TR = PreflowDefaultTraits<GR, CAP> > |
117 | 124 |
#endif |
118 | 125 |
class Preflow { |
119 | 126 |
public: |
120 | 127 |
|
121 | 128 |
///The \ref PreflowDefaultTraits "traits class" of the algorithm. |
122 | 129 |
typedef TR Traits; |
123 | 130 |
///The type of the digraph the algorithm runs on. |
124 | 131 |
typedef typename Traits::Digraph Digraph; |
125 | 132 |
///The type of the capacity map. |
126 | 133 |
typedef typename Traits::CapacityMap CapacityMap; |
127 | 134 |
///The type of the flow values. |
128 | 135 |
typedef typename Traits::Value Value; |
129 | 136 |
|
130 | 137 |
///The type of the flow map. |
131 | 138 |
typedef typename Traits::FlowMap FlowMap; |
132 | 139 |
///The type of the elevator. |
133 | 140 |
typedef typename Traits::Elevator Elevator; |
134 | 141 |
///The type of the tolerance. |
135 | 142 |
typedef typename Traits::Tolerance Tolerance; |
136 | 143 |
|
137 | 144 |
private: |
138 | 145 |
|
139 | 146 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
140 | 147 |
|
141 | 148 |
const Digraph& _graph; |
142 | 149 |
const CapacityMap* _capacity; |
143 | 150 |
|
144 | 151 |
int _node_num; |
145 | 152 |
|
146 | 153 |
Node _source, _target; |
147 | 154 |
|
148 | 155 |
FlowMap* _flow; |
149 | 156 |
bool _local_flow; |
150 | 157 |
|
151 | 158 |
Elevator* _level; |
152 | 159 |
bool _local_level; |
153 | 160 |
|
154 | 161 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
155 | 162 |
ExcessMap* _excess; |
156 | 163 |
|
157 | 164 |
Tolerance _tolerance; |
158 | 165 |
|
159 | 166 |
bool _phase; |
160 | 167 |
|
161 | 168 |
|
162 | 169 |
void createStructures() { |
163 | 170 |
_node_num = countNodes(_graph); |
164 | 171 |
|
... | ... |
@@ -310,148 +317,150 @@ |
310 | 317 |
} |
311 | 318 |
|
312 | 319 |
/// \brief Sets the flow map. |
313 | 320 |
/// |
314 | 321 |
/// Sets the flow map. |
315 | 322 |
/// If you don't use this function before calling \ref run() or |
316 | 323 |
/// \ref init(), an instance will be allocated automatically. |
317 | 324 |
/// The destructor deallocates this automatically allocated map, |
318 | 325 |
/// of course. |
319 | 326 |
/// \return <tt>(*this)</tt> |
320 | 327 |
Preflow& flowMap(FlowMap& map) { |
321 | 328 |
if (_local_flow) { |
322 | 329 |
delete _flow; |
323 | 330 |
_local_flow = false; |
324 | 331 |
} |
325 | 332 |
_flow = ↦ |
326 | 333 |
return *this; |
327 | 334 |
} |
328 | 335 |
|
329 | 336 |
/// \brief Sets the source node. |
330 | 337 |
/// |
331 | 338 |
/// Sets the source node. |
332 | 339 |
/// \return <tt>(*this)</tt> |
333 | 340 |
Preflow& source(const Node& node) { |
334 | 341 |
_source = node; |
335 | 342 |
return *this; |
336 | 343 |
} |
337 | 344 |
|
338 | 345 |
/// \brief Sets the target node. |
339 | 346 |
/// |
340 | 347 |
/// Sets the target node. |
341 | 348 |
/// \return <tt>(*this)</tt> |
342 | 349 |
Preflow& target(const Node& node) { |
343 | 350 |
_target = node; |
344 | 351 |
return *this; |
345 | 352 |
} |
346 | 353 |
|
347 | 354 |
/// \brief Sets the elevator used by algorithm. |
348 | 355 |
/// |
349 | 356 |
/// Sets the elevator used by algorithm. |
350 | 357 |
/// If you don't use this function before calling \ref run() or |
351 | 358 |
/// \ref init(), an instance will be allocated automatically. |
352 | 359 |
/// The destructor deallocates this automatically allocated elevator, |
353 | 360 |
/// of course. |
354 | 361 |
/// \return <tt>(*this)</tt> |
355 | 362 |
Preflow& elevator(Elevator& elevator) { |
356 | 363 |
if (_local_level) { |
357 | 364 |
delete _level; |
358 | 365 |
_local_level = false; |
359 | 366 |
} |
360 | 367 |
_level = &elevator; |
361 | 368 |
return *this; |
362 | 369 |
} |
363 | 370 |
|
364 | 371 |
/// \brief Returns a const reference to the elevator. |
365 | 372 |
/// |
366 | 373 |
/// Returns a const reference to the elevator. |
367 | 374 |
/// |
368 | 375 |
/// \pre Either \ref run() or \ref init() must be called before |
369 | 376 |
/// using this function. |
370 | 377 |
const Elevator& elevator() const { |
371 | 378 |
return *_level; |
372 | 379 |
} |
373 | 380 |
|
374 |
/// \brief Sets the tolerance used by algorithm. |
|
381 |
/// \brief Sets the tolerance used by the algorithm. |
|
375 | 382 |
/// |
376 |
/// Sets the tolerance used by algorithm. |
|
377 |
Preflow& tolerance(const Tolerance& tolerance) const { |
|
383 |
/// Sets the tolerance object used by the algorithm. |
|
384 |
/// \return <tt>(*this)</tt> |
|
385 |
Preflow& tolerance(const Tolerance& tolerance) { |
|
378 | 386 |
_tolerance = tolerance; |
379 | 387 |
return *this; |
380 | 388 |
} |
381 | 389 |
|
382 | 390 |
/// \brief Returns a const reference to the tolerance. |
383 | 391 |
/// |
384 |
/// Returns a const reference to the tolerance |
|
392 |
/// Returns a const reference to the tolerance object used by |
|
393 |
/// the algorithm. |
|
385 | 394 |
const Tolerance& tolerance() const { |
386 |
return |
|
395 |
return _tolerance; |
|
387 | 396 |
} |
388 | 397 |
|
389 | 398 |
/// \name Execution Control |
390 | 399 |
/// The simplest way to execute the preflow algorithm is to use |
391 | 400 |
/// \ref run() or \ref runMinCut().\n |
392 |
/// If you need more control on the initial solution or the execution, |
|
393 |
/// first you have to call one of the \ref init() functions, then |
|
401 |
/// If you need better control on the initial solution or the execution, |
|
402 |
/// you have to call one of the \ref init() functions first, then |
|
394 | 403 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
395 | 404 |
|
396 | 405 |
///@{ |
397 | 406 |
|
398 | 407 |
/// \brief Initializes the internal data structures. |
399 | 408 |
/// |
400 | 409 |
/// Initializes the internal data structures and sets the initial |
401 | 410 |
/// flow to zero on each arc. |
402 | 411 |
void init() { |
403 | 412 |
createStructures(); |
404 | 413 |
|
405 | 414 |
_phase = true; |
406 | 415 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
407 | 416 |
(*_excess)[n] = 0; |
408 | 417 |
} |
409 | 418 |
|
410 | 419 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
411 | 420 |
_flow->set(e, 0); |
412 | 421 |
} |
413 | 422 |
|
414 | 423 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
415 | 424 |
|
416 | 425 |
_level->initStart(); |
417 | 426 |
_level->initAddItem(_target); |
418 | 427 |
|
419 | 428 |
std::vector<Node> queue; |
420 | 429 |
reached[_source] = true; |
421 | 430 |
|
422 | 431 |
queue.push_back(_target); |
423 | 432 |
reached[_target] = true; |
424 | 433 |
while (!queue.empty()) { |
425 | 434 |
_level->initNewLevel(); |
426 | 435 |
std::vector<Node> nqueue; |
427 | 436 |
for (int i = 0; i < int(queue.size()); ++i) { |
428 | 437 |
Node n = queue[i]; |
429 | 438 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
430 | 439 |
Node u = _graph.source(e); |
431 | 440 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) { |
432 | 441 |
reached[u] = true; |
433 | 442 |
_level->initAddItem(u); |
434 | 443 |
nqueue.push_back(u); |
435 | 444 |
} |
436 | 445 |
} |
437 | 446 |
} |
438 | 447 |
queue.swap(nqueue); |
439 | 448 |
} |
440 | 449 |
_level->initFinish(); |
441 | 450 |
|
442 | 451 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
443 | 452 |
if (_tolerance.positive((*_capacity)[e])) { |
444 | 453 |
Node u = _graph.target(e); |
445 | 454 |
if ((*_level)[u] == _level->maxLevel()) continue; |
446 | 455 |
_flow->set(e, (*_capacity)[e]); |
447 | 456 |
(*_excess)[u] += (*_capacity)[e]; |
448 | 457 |
if (u != _target && !_level->active(u)) { |
449 | 458 |
_level->activate(u); |
450 | 459 |
} |
451 | 460 |
} |
452 | 461 |
} |
453 | 462 |
} |
454 | 463 |
|
455 | 464 |
/// \brief Initializes the internal data structures using the |
456 | 465 |
/// given flow map. |
457 | 466 |
/// |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_RADIX_HEAP_H |
20 | 20 |
#define LEMON_RADIX_HEAP_H |
21 | 21 |
|
22 |
///\ingroup |
|
22 |
///\ingroup heaps |
|
23 | 23 |
///\file |
24 |
///\brief Radix |
|
24 |
///\brief Radix heap implementation. |
|
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <lemon/error.h> |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
|
32 |
/// \ingroup |
|
32 |
/// \ingroup heaps |
|
33 | 33 |
/// |
34 |
/// \brief |
|
34 |
/// \brief Radix heap data structure. |
|
35 | 35 |
/// |
36 |
/// This class implements the \e radix \e heap data structure. A \e heap |
|
37 |
/// is a data structure for storing items with specified values called \e |
|
38 |
/// priorities in such a way that finding the item with minimum priority is |
|
39 |
/// efficient. This heap type can store only items with \e int priority. |
|
40 |
/// In a heap one can change the priority of an item, add or erase an |
|
41 |
/// item, but the priority cannot be decreased under the last removed |
|
42 |
/// |
|
36 |
/// This class implements the \e radix \e heap data structure. |
|
37 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
|
38 |
/// but it has some limitations due its special implementation. |
|
39 |
/// The type of the priorities must be \c int and the priority of an |
|
40 |
/// item cannot be decreased under the priority of the last removed item. |
|
43 | 41 |
/// |
44 |
/// \param IM A read and writable Item int map, used internally |
|
45 |
/// to handle the cross references. |
|
46 |
/// |
|
47 |
/// \see BinHeap |
|
48 |
/// \ |
|
42 |
/// \tparam IM A read-writable item map with \c int values, used |
|
43 |
/// internally to handle the cross references. |
|
49 | 44 |
template <typename IM> |
50 | 45 |
class RadixHeap { |
51 | 46 |
|
52 | 47 |
public: |
53 |
|
|
48 |
|
|
49 |
/// Type of the item-int map. |
|
50 |
typedef IM ItemIntMap; |
|
51 |
/// Type of the priorities. |
|
54 | 52 |
typedef int Prio; |
55 |
|
|
53 |
/// Type of the items stored in the heap. |
|
54 |
typedef typename ItemIntMap::Key Item; |
|
56 | 55 |
|
57 | 56 |
/// \brief Exception thrown by RadixHeap. |
58 | 57 |
/// |
59 |
/// This Exception is thrown when a smaller priority |
|
60 |
/// is inserted into the \e RadixHeap then the last time erased. |
|
58 |
/// This exception is thrown when an item is inserted into a |
|
59 |
/// RadixHeap with a priority smaller than the last erased one. |
|
61 | 60 |
/// \see RadixHeap |
62 |
|
|
63 |
class UnderFlowPriorityError : public Exception { |
|
61 |
class PriorityUnderflowError : public Exception { |
|
64 | 62 |
public: |
65 | 63 |
virtual const char* what() const throw() { |
66 |
return "lemon::RadixHeap:: |
|
64 |
return "lemon::RadixHeap::PriorityUnderflowError"; |
|
67 | 65 |
} |
68 | 66 |
}; |
69 | 67 |
|
70 |
/// \brief Type to represent the |
|
68 |
/// \brief Type to represent the states of the items. |
|
71 | 69 |
/// |
72 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
73 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
70 |
/// Each item has a state associated to it. It can be "in heap", |
|
71 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
74 | 72 |
/// heap's point of view, but may be useful to the user. |
75 | 73 |
/// |
76 |
/// The ItemIntMap \e should be initialized in such way that it maps |
|
77 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
|
74 |
/// The item-int map must be initialized in such way that it assigns |
|
75 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
78 | 76 |
enum State { |
79 |
IN_HEAP = 0, |
|
80 |
PRE_HEAP = -1, |
|
81 |
|
|
77 |
IN_HEAP = 0, ///< = 0. |
|
78 |
PRE_HEAP = -1, ///< = -1. |
|
79 |
POST_HEAP = -2 ///< = -2. |
|
82 | 80 |
}; |
83 | 81 |
|
84 | 82 |
private: |
85 | 83 |
|
86 | 84 |
struct RadixItem { |
87 | 85 |
int prev, next, box; |
88 | 86 |
Item item; |
89 | 87 |
int prio; |
90 | 88 |
RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {} |
91 | 89 |
}; |
92 | 90 |
|
93 | 91 |
struct RadixBox { |
94 | 92 |
int first; |
95 | 93 |
int min, size; |
96 | 94 |
RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {} |
97 | 95 |
}; |
98 | 96 |
|
99 |
std::vector<RadixItem> data; |
|
100 |
std::vector<RadixBox> boxes; |
|
97 |
std::vector<RadixItem> _data; |
|
98 |
std::vector<RadixBox> _boxes; |
|
101 | 99 |
|
102 | 100 |
ItemIntMap &_iim; |
103 | 101 |
|
102 |
public: |
|
104 | 103 |
|
105 |
public: |
|
106 |
/// \brief The constructor. |
|
104 |
/// \brief Constructor. |
|
107 | 105 |
/// |
108 |
/// The constructor. |
|
109 |
/// |
|
110 |
/// \param map It should be given to the constructor, since it is used |
|
111 |
/// internally to handle the cross references. The value of the map |
|
112 |
/// should be PRE_HEAP (-1) for each element. |
|
113 |
/// |
|
114 |
/// \param minimal The initial minimal value of the heap. |
|
115 |
/// \param capacity It determines the initial capacity of the heap. |
|
116 |
RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0) |
|
117 |
: _iim(map) { |
|
118 |
boxes.push_back(RadixBox(minimal, 1)); |
|
119 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
|
120 |
|
|
106 |
/// Constructor. |
|
107 |
/// \param map A map that assigns \c int values to the items. |
|
108 |
/// It is used internally to handle the cross references. |
|
109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
110 |
/// \param minimum The initial minimum value of the heap. |
|
111 |
/// \param capacity The initial capacity of the heap. |
|
112 |
RadixHeap(ItemIntMap &map, int minimum = 0, int capacity = 0) |
|
113 |
: _iim(map) |
|
114 |
{ |
|
115 |
_boxes.push_back(RadixBox(minimum, 1)); |
|
116 |
_boxes.push_back(RadixBox(minimum + 1, 1)); |
|
117 |
while (lower(_boxes.size() - 1, capacity + minimum - 1)) { |
|
121 | 118 |
extend(); |
122 | 119 |
} |
123 | 120 |
} |
124 | 121 |
|
125 |
/// The number of items stored in the heap. |
|
122 |
/// \brief The number of items stored in the heap. |
|
126 | 123 |
/// |
127 |
/// \brief Returns the number of items stored in the heap. |
|
128 |
int size() const { return data.size(); } |
|
129 |
/// |
|
124 |
/// This function returns the number of items stored in the heap. |
|
125 |
int size() const { return _data.size(); } |
|
126 |
|
|
127 |
/// \brief Check if the heap is empty. |
|
130 | 128 |
/// |
131 |
/// Returns \c true if and only if the heap stores no items. |
|
132 |
bool empty() const { return data.empty(); } |
|
129 |
/// This function returns \c true if the heap is empty. |
|
130 |
bool empty() const { return _data.empty(); } |
|
133 | 131 |
|
134 |
/// \brief Make |
|
132 |
/// \brief Make the heap empty. |
|
135 | 133 |
/// |
136 |
/// Make empty this heap. It does not change the cross reference |
|
137 |
/// map. If you want to reuse a heap what is not surely empty you |
|
138 |
/// should first clear the heap and after that you should set the |
|
139 |
/// cross reference map for each item to \c PRE_HEAP. |
|
140 |
void clear(int minimal = 0, int capacity = 0) { |
|
141 |
data.clear(); boxes.clear(); |
|
142 |
boxes.push_back(RadixBox(minimal, 1)); |
|
143 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
|
144 |
|
|
134 |
/// This functon makes the heap empty. |
|
135 |
/// It does not change the cross reference map. If you want to reuse |
|
136 |
/// a heap that is not surely empty, you should first clear it and |
|
137 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
138 |
/// for each item. |
|
139 |
/// \param minimum The minimum value of the heap. |
|
140 |
/// \param capacity The capacity of the heap. |
|
141 |
void clear(int minimum = 0, int capacity = 0) { |
|
142 |
_data.clear(); _boxes.clear(); |
|
143 |
_boxes.push_back(RadixBox(minimum, 1)); |
|
144 |
_boxes.push_back(RadixBox(minimum + 1, 1)); |
|
145 |
while (lower(_boxes.size() - 1, capacity + minimum - 1)) { |
|
145 | 146 |
extend(); |
146 | 147 |
} |
147 | 148 |
} |
148 | 149 |
|
149 | 150 |
private: |
150 | 151 |
|
151 | 152 |
bool upper(int box, Prio pr) { |
152 |
return pr < |
|
153 |
return pr < _boxes[box].min; |
|
153 | 154 |
} |
154 | 155 |
|
155 | 156 |
bool lower(int box, Prio pr) { |
156 |
return pr >= |
|
157 |
return pr >= _boxes[box].min + _boxes[box].size; |
|
157 | 158 |
} |
158 | 159 |
|
159 |
// |
|
160 |
// Remove item from the box list |
|
160 | 161 |
void remove(int index) { |
161 |
if (data[index].prev >= 0) { |
|
162 |
data[data[index].prev].next = data[index].next; |
|
162 |
if (_data[index].prev >= 0) { |
|
163 |
_data[_data[index].prev].next = _data[index].next; |
|
163 | 164 |
} else { |
164 |
|
|
165 |
_boxes[_data[index].box].first = _data[index].next; |
|
165 | 166 |
} |
166 |
if (data[index].next >= 0) { |
|
167 |
data[data[index].next].prev = data[index].prev; |
|
167 |
if (_data[index].next >= 0) { |
|
168 |
_data[_data[index].next].prev = _data[index].prev; |
|
168 | 169 |
} |
169 | 170 |
} |
170 | 171 |
|
171 |
// |
|
172 |
// Insert item into the box list |
|
172 | 173 |
void insert(int box, int index) { |
173 |
if (boxes[box].first == -1) { |
|
174 |
boxes[box].first = index; |
|
175 |
|
|
174 |
if (_boxes[box].first == -1) { |
|
175 |
_boxes[box].first = index; |
|
176 |
_data[index].next = _data[index].prev = -1; |
|
176 | 177 |
} else { |
177 |
data[index].next = boxes[box].first; |
|
178 |
data[boxes[box].first].prev = index; |
|
179 |
data[index].prev = -1; |
|
180 |
boxes[box].first = index; |
|
178 |
_data[index].next = _boxes[box].first; |
|
179 |
_data[_boxes[box].first].prev = index; |
|
180 |
_data[index].prev = -1; |
|
181 |
_boxes[box].first = index; |
|
181 | 182 |
} |
182 |
|
|
183 |
_data[index].box = box; |
|
183 | 184 |
} |
184 | 185 |
|
185 |
// |
|
186 |
// Add a new box to the box list |
|
186 | 187 |
void extend() { |
187 |
int min = boxes.back().min + boxes.back().size; |
|
188 |
int bs = 2 * boxes.back().size; |
|
189 |
|
|
188 |
int min = _boxes.back().min + _boxes.back().size; |
|
189 |
int bs = 2 * _boxes.back().size; |
|
190 |
_boxes.push_back(RadixBox(min, bs)); |
|
190 | 191 |
} |
191 | 192 |
|
192 |
/// \brief Move an item up into the proper box. |
|
193 |
void bubble_up(int index) { |
|
194 |
|
|
193 |
// Move an item up into the proper box. |
|
194 |
void bubbleUp(int index) { |
|
195 |
if (!lower(_data[index].box, _data[index].prio)) return; |
|
195 | 196 |
remove(index); |
196 |
int box = findUp( |
|
197 |
int box = findUp(_data[index].box, _data[index].prio); |
|
197 | 198 |
insert(box, index); |
198 | 199 |
} |
199 | 200 |
|
200 |
// |
|
201 |
// Find up the proper box for the item with the given priority |
|
201 | 202 |
int findUp(int start, int pr) { |
202 | 203 |
while (lower(start, pr)) { |
203 |
if (++start == int( |
|
204 |
if (++start == int(_boxes.size())) { |
|
204 | 205 |
extend(); |
205 | 206 |
} |
206 | 207 |
} |
207 | 208 |
return start; |
208 | 209 |
} |
209 | 210 |
|
210 |
/// \brief Move an item down into the proper box. |
|
211 |
void bubble_down(int index) { |
|
212 |
|
|
211 |
// Move an item down into the proper box |
|
212 |
void bubbleDown(int index) { |
|
213 |
if (!upper(_data[index].box, _data[index].prio)) return; |
|
213 | 214 |
remove(index); |
214 |
int box = findDown( |
|
215 |
int box = findDown(_data[index].box, _data[index].prio); |
|
215 | 216 |
insert(box, index); |
216 | 217 |
} |
217 | 218 |
|
218 |
// |
|
219 |
// Find down the proper box for the item with the given priority |
|
219 | 220 |
int findDown(int start, int pr) { |
220 | 221 |
while (upper(start, pr)) { |
221 |
if (--start < 0) throw |
|
222 |
if (--start < 0) throw PriorityUnderflowError(); |
|
222 | 223 |
} |
223 | 224 |
return start; |
224 | 225 |
} |
225 | 226 |
|
226 |
// |
|
227 |
// Find the first non-empty box |
|
227 | 228 |
int findFirst() { |
228 | 229 |
int first = 0; |
229 |
while ( |
|
230 |
while (_boxes[first].first == -1) ++first; |
|
230 | 231 |
return first; |
231 | 232 |
} |
232 | 233 |
|
233 |
// |
|
234 |
// Gives back the minimum priority of the given box |
|
234 | 235 |
int minValue(int box) { |
235 |
int min = data[boxes[box].first].prio; |
|
236 |
for (int k = boxes[box].first; k != -1; k = data[k].next) { |
|
237 |
|
|
236 |
int min = _data[_boxes[box].first].prio; |
|
237 |
for (int k = _boxes[box].first; k != -1; k = _data[k].next) { |
|
238 |
if (_data[k].prio < min) min = _data[k].prio; |
|
238 | 239 |
} |
239 | 240 |
return min; |
240 | 241 |
} |
241 | 242 |
|
242 |
/// \brief Rearrange the items of the heap and makes the |
|
243 |
/// first box not empty. |
|
243 |
// Rearrange the items of the heap and make the first box non-empty |
|
244 | 244 |
void moveDown() { |
245 | 245 |
int box = findFirst(); |
246 | 246 |
if (box == 0) return; |
247 | 247 |
int min = minValue(box); |
248 | 248 |
for (int i = 0; i <= box; ++i) { |
249 |
boxes[i].min = min; |
|
250 |
min += boxes[i].size; |
|
249 |
_boxes[i].min = min; |
|
250 |
min += _boxes[i].size; |
|
251 | 251 |
} |
252 |
int curr = |
|
252 |
int curr = _boxes[box].first, next; |
|
253 | 253 |
while (curr != -1) { |
254 |
next = data[curr].next; |
|
255 |
bubble_down(curr); |
|
254 |
next = _data[curr].next; |
|
255 |
bubbleDown(curr); |
|
256 | 256 |
curr = next; |
257 | 257 |
} |
258 | 258 |
} |
259 | 259 |
|
260 |
void relocate_last(int index) { |
|
261 |
if (index != int(data.size()) - 1) { |
|
262 |
data[index] = data.back(); |
|
263 |
if (data[index].prev != -1) { |
|
264 |
|
|
260 |
void relocateLast(int index) { |
|
261 |
if (index != int(_data.size()) - 1) { |
|
262 |
_data[index] = _data.back(); |
|
263 |
if (_data[index].prev != -1) { |
|
264 |
_data[_data[index].prev].next = index; |
|
265 | 265 |
} else { |
266 |
|
|
266 |
_boxes[_data[index].box].first = index; |
|
267 | 267 |
} |
268 |
if (data[index].next != -1) { |
|
269 |
data[data[index].next].prev = index; |
|
268 |
if (_data[index].next != -1) { |
|
269 |
_data[_data[index].next].prev = index; |
|
270 | 270 |
} |
271 |
_iim[ |
|
271 |
_iim[_data[index].item] = index; |
|
272 | 272 |
} |
273 |
|
|
273 |
_data.pop_back(); |
|
274 | 274 |
} |
275 | 275 |
|
276 | 276 |
public: |
277 | 277 |
|
278 | 278 |
/// \brief Insert an item into the heap with the given priority. |
279 | 279 |
/// |
280 |
/// |
|
280 |
/// This function inserts the given item into the heap with the |
|
281 |
/// given priority. |
|
281 | 282 |
/// \param i The item to insert. |
282 | 283 |
/// \param p The priority of the item. |
284 |
/// \pre \e i must not be stored in the heap. |
|
285 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
|
283 | 286 |
void push(const Item &i, const Prio &p) { |
284 |
int n = |
|
287 |
int n = _data.size(); |
|
285 | 288 |
_iim.set(i, n); |
286 |
data.push_back(RadixItem(i, p)); |
|
287 |
while (lower(boxes.size() - 1, p)) { |
|
289 |
_data.push_back(RadixItem(i, p)); |
|
290 |
while (lower(_boxes.size() - 1, p)) { |
|
288 | 291 |
extend(); |
289 | 292 |
} |
290 |
int box = findDown( |
|
293 |
int box = findDown(_boxes.size() - 1, p); |
|
291 | 294 |
insert(box, n); |
292 | 295 |
} |
293 | 296 |
|
294 |
/// \brief |
|
297 |
/// \brief Return the item having minimum priority. |
|
295 | 298 |
/// |
296 |
/// This method returns the item with minimum priority. |
|
297 |
/// \pre The heap must be nonempty. |
|
299 |
/// This function returns the item having minimum priority. |
|
300 |
/// \pre The heap must be non-empty. |
|
298 | 301 |
Item top() const { |
299 | 302 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
300 |
return |
|
303 |
return _data[_boxes[0].first].item; |
|
301 | 304 |
} |
302 | 305 |
|
303 |
/// \brief |
|
306 |
/// \brief The minimum priority. |
|
304 | 307 |
/// |
305 |
/// It returns the minimum priority. |
|
306 |
/// \pre The heap must be nonempty. |
|
308 |
/// This function returns the minimum priority. |
|
309 |
/// \pre The heap must be non-empty. |
|
307 | 310 |
Prio prio() const { |
308 | 311 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
309 |
return |
|
312 |
return _data[_boxes[0].first].prio; |
|
310 | 313 |
} |
311 | 314 |
|
312 |
/// \brief |
|
315 |
/// \brief Remove the item having minimum priority. |
|
313 | 316 |
/// |
314 |
/// This |
|
317 |
/// This function removes the item having minimum priority. |
|
315 | 318 |
/// \pre The heap must be non-empty. |
316 | 319 |
void pop() { |
317 | 320 |
moveDown(); |
318 |
int index = boxes[0].first; |
|
319 |
_iim[data[index].item] = POST_HEAP; |
|
321 |
int index = _boxes[0].first; |
|
322 |
_iim[_data[index].item] = POST_HEAP; |
|
320 | 323 |
remove(index); |
321 |
|
|
324 |
relocateLast(index); |
|
322 | 325 |
} |
323 | 326 |
|
324 |
/// \brief |
|
327 |
/// \brief Remove the given item from the heap. |
|
325 | 328 |
/// |
326 |
/// This method deletes item \c i from the heap, if \c i was |
|
327 |
/// already stored in the heap. |
|
328 |
/// |
|
329 |
/// This function removes the given item from the heap if it is |
|
330 |
/// already stored. |
|
331 |
/// \param i The item to delete. |
|
332 |
/// \pre \e i must be in the heap. |
|
329 | 333 |
void erase(const Item &i) { |
330 | 334 |
int index = _iim[i]; |
331 | 335 |
_iim[i] = POST_HEAP; |
332 | 336 |
remove(index); |
333 |
|
|
337 |
relocateLast(index); |
|
334 | 338 |
} |
335 | 339 |
|
336 |
/// \brief |
|
340 |
/// \brief The priority of the given item. |
|
337 | 341 |
/// |
338 |
/// This function returns the priority of item \c i. |
|
339 |
/// \pre \c i must be in the heap. |
|
342 |
/// This function returns the priority of the given item. |
|
340 | 343 |
/// \param i The item. |
344 |
/// \pre \e i must be in the heap. |
|
341 | 345 |
Prio operator[](const Item &i) const { |
342 | 346 |
int idx = _iim[i]; |
343 |
return |
|
347 |
return _data[idx].prio; |
|
344 | 348 |
} |
345 | 349 |
|
346 |
/// \brief \c i gets to the heap with priority \c p independently |
|
347 |
/// if \c i was already there. |
|
350 |
/// \brief Set the priority of an item or insert it, if it is |
|
351 |
/// not stored in the heap. |
|
348 | 352 |
/// |
349 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
350 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
351 |
/// |
|
353 |
/// This method sets the priority of the given item if it is |
|
354 |
/// already stored in the heap. Otherwise it inserts the given |
|
355 |
/// item into the heap with the given priority. |
|
352 | 356 |
/// \param i The item. |
353 | 357 |
/// \param p The priority. |
358 |
/// \pre \e i must be in the heap. |
|
359 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
|
354 | 360 |
void set(const Item &i, const Prio &p) { |
355 | 361 |
int idx = _iim[i]; |
356 | 362 |
if( idx < 0 ) { |
357 | 363 |
push(i, p); |
358 | 364 |
} |
359 |
else if( p >= data[idx].prio ) { |
|
360 |
data[idx].prio = p; |
|
361 |
|
|
365 |
else if( p >= _data[idx].prio ) { |
|
366 |
_data[idx].prio = p; |
|
367 |
bubbleUp(idx); |
|
362 | 368 |
} else { |
363 |
data[idx].prio = p; |
|
364 |
bubble_down(idx); |
|
369 |
_data[idx].prio = p; |
|
370 |
bubbleDown(idx); |
|
365 | 371 |
} |
366 | 372 |
} |
367 | 373 |
|
368 |
|
|
369 |
/// \brief Decreases the priority of \c i to \c p. |
|
374 |
/// \brief Decrease the priority of an item to the given value. |
|
370 | 375 |
/// |
371 |
/// This method decreases the priority of item \c i to \c p. |
|
372 |
/// \pre \c i must be stored in the heap with priority at least \c p, and |
|
373 |
/// |
|
376 |
/// This function decreases the priority of an item to the given value. |
|
374 | 377 |
/// \param i The item. |
375 | 378 |
/// \param p The priority. |
379 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
380 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
|
376 | 381 |
void decrease(const Item &i, const Prio &p) { |
377 | 382 |
int idx = _iim[i]; |
378 |
data[idx].prio = p; |
|
379 |
bubble_down(idx); |
|
383 |
_data[idx].prio = p; |
|
384 |
bubbleDown(idx); |
|
380 | 385 |
} |
381 | 386 |
|
382 |
/// \brief |
|
387 |
/// \brief Increase the priority of an item to the given value. |
|
383 | 388 |
/// |
384 |
/// This method sets the priority of item \c i to \c p. |
|
385 |
/// \pre \c i must be stored in the heap with priority at most \c p |
|
389 |
/// This function increases the priority of an item to the given value. |
|
386 | 390 |
/// \param i The item. |
387 | 391 |
/// \param p The priority. |
392 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
388 | 393 |
void increase(const Item &i, const Prio &p) { |
389 | 394 |
int idx = _iim[i]; |
390 |
data[idx].prio = p; |
|
391 |
bubble_up(idx); |
|
395 |
_data[idx].prio = p; |
|
396 |
bubbleUp(idx); |
|
392 | 397 |
} |
393 | 398 |
|
394 |
/// \brief Returns if \c item is in, has already been in, or has |
|
395 |
/// never been in the heap. |
|
399 |
/// \brief Return the state of an item. |
|
396 | 400 |
/// |
397 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
398 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
399 |
/// otherwise. In the latter case it is possible that \c item will |
|
400 |
/// get back to the heap again. |
|
401 |
/// This method returns \c PRE_HEAP if the given item has never |
|
402 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
403 |
/// and \c POST_HEAP otherwise. |
|
404 |
/// In the latter case it is possible that the item will get back |
|
405 |
/// to the heap again. |
|
401 | 406 |
/// \param i The item. |
402 | 407 |
State state(const Item &i) const { |
403 | 408 |
int s = _iim[i]; |
404 | 409 |
if( s >= 0 ) s = 0; |
405 | 410 |
return State(s); |
406 | 411 |
} |
407 | 412 |
|
408 |
/// \brief |
|
413 |
/// \brief Set the state of an item in the heap. |
|
409 | 414 |
/// |
410 |
/// Sets the state of the \c item in the heap. It can be used to |
|
411 |
/// manually clear the heap when it is important to achive the |
|
412 |
/// |
|
415 |
/// This function sets the state of the given item in the heap. |
|
416 |
/// It can be used to manually clear the heap when it is important |
|
417 |
/// to achive better time complexity. |
|
413 | 418 |
/// \param i The item. |
414 | 419 |
/// \param st The state. It should not be \c IN_HEAP. |
415 | 420 |
void state(const Item& i, State st) { |
416 | 421 |
switch (st) { |
417 | 422 |
case POST_HEAP: |
418 | 423 |
case PRE_HEAP: |
419 | 424 |
if (state(i) == IN_HEAP) { |
420 | 425 |
erase(i); |
421 | 426 |
} |
422 | 427 |
_iim[i] = st; |
423 | 428 |
break; |
424 | 429 |
case IN_HEAP: |
425 | 430 |
break; |
426 | 431 |
} |
427 | 432 |
} |
428 | 433 |
|
429 | 434 |
}; // class RadixHeap |
430 | 435 |
|
431 | 436 |
} // namespace lemon |
432 | 437 |
|
433 | 438 |
#endif // LEMON_RADIX_HEAP_H |
1 | 1 |
INCLUDE_DIRECTORIES( |
2 | 2 |
${PROJECT_SOURCE_DIR} |
3 | 3 |
${PROJECT_BINARY_DIR} |
4 | 4 |
) |
5 | 5 |
|
6 | 6 |
LINK_DIRECTORIES( |
7 | 7 |
${PROJECT_BINARY_DIR}/lemon |
8 | 8 |
) |
9 | 9 |
|
10 | 10 |
SET(TESTS |
11 | 11 |
adaptors_test |
12 |
bellman_ford_test |
|
12 | 13 |
bfs_test |
13 | 14 |
circulation_test |
14 | 15 |
connectivity_test |
15 | 16 |
counter_test |
16 | 17 |
dfs_test |
17 | 18 |
digraph_test |
18 | 19 |
dijkstra_test |
19 | 20 |
dim_test |
20 | 21 |
edge_set_test |
21 | 22 |
error_test |
22 | 23 |
euler_test |
23 | 24 |
gomory_hu_test |
24 | 25 |
graph_copy_test |
25 | 26 |
graph_test |
26 | 27 |
graph_utils_test |
27 | 28 |
hao_orlin_test |
28 | 29 |
heap_test |
29 | 30 |
kruskal_test |
30 | 31 |
maps_test |
31 | 32 |
matching_test |
32 | 33 |
min_cost_arborescence_test |
33 | 34 |
min_cost_flow_test |
34 | 35 |
path_test |
35 | 36 |
preflow_test |
36 | 37 |
radix_sort_test |
37 | 38 |
random_test |
38 | 39 |
suurballe_test |
39 | 40 |
time_measure_test |
40 | 41 |
unionfind_test |
41 | 42 |
) |
42 | 43 |
|
43 | 44 |
IF(LEMON_HAVE_LP) |
44 | 45 |
ADD_EXECUTABLE(lp_test lp_test.cc) |
45 | 46 |
SET(LP_TEST_LIBS lemon) |
46 | 47 |
|
47 | 48 |
IF(LEMON_HAVE_GLPK) |
48 | 49 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${GLPK_LIBRARIES}) |
49 | 50 |
ENDIF() |
50 | 51 |
IF(LEMON_HAVE_CPLEX) |
51 | 52 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${CPLEX_LIBRARIES}) |
52 | 53 |
ENDIF() |
53 | 54 |
IF(LEMON_HAVE_CLP) |
54 | 55 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${COIN_CLP_LIBRARIES}) |
55 | 56 |
ENDIF() |
56 | 57 |
|
57 | 58 |
TARGET_LINK_LIBRARIES(lp_test ${LP_TEST_LIBS}) |
58 | 59 |
ADD_TEST(lp_test lp_test) |
59 | 60 |
|
60 | 61 |
IF(WIN32 AND LEMON_HAVE_GLPK) |
61 | 62 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
62 | 63 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
63 | 64 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
64 | 65 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH} |
65 | 66 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH} |
66 | 67 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH} |
67 | 68 |
) |
68 | 69 |
ENDIF() |
69 | 70 |
|
70 | 71 |
IF(WIN32 AND LEMON_HAVE_CPLEX) |
71 | 72 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
72 | 73 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
73 | 74 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
74 | 75 |
COMMAND ${CMAKE_COMMAND} -E copy ${CPLEX_BIN_DIR}/cplex91.dll ${TARGET_PATH} |
75 | 76 |
) |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
test/CMakeLists.txt |
3 | 3 |
|
4 | 4 |
noinst_HEADERS += \ |
5 | 5 |
test/graph_test.h \ |
6 | 6 |
test/test_tools.h |
7 | 7 |
|
8 | 8 |
check_PROGRAMS += \ |
9 | 9 |
test/adaptors_test \ |
10 |
test/bellman_ford_test \ |
|
10 | 11 |
test/bfs_test \ |
11 | 12 |
test/circulation_test \ |
12 | 13 |
test/connectivity_test \ |
13 | 14 |
test/counter_test \ |
14 | 15 |
test/dfs_test \ |
15 | 16 |
test/digraph_test \ |
16 | 17 |
test/dijkstra_test \ |
17 | 18 |
test/dim_test \ |
18 | 19 |
test/edge_set_test \ |
19 | 20 |
test/error_test \ |
20 | 21 |
test/euler_test \ |
21 | 22 |
test/gomory_hu_test \ |
22 | 23 |
test/graph_copy_test \ |
23 | 24 |
test/graph_test \ |
24 | 25 |
test/graph_utils_test \ |
25 | 26 |
test/hao_orlin_test \ |
26 | 27 |
test/heap_test \ |
27 | 28 |
test/kruskal_test \ |
28 | 29 |
test/maps_test \ |
29 | 30 |
test/matching_test \ |
30 | 31 |
test/min_cost_arborescence_test \ |
31 | 32 |
test/min_cost_flow_test \ |
32 | 33 |
test/path_test \ |
33 | 34 |
test/preflow_test \ |
34 | 35 |
test/radix_sort_test \ |
35 | 36 |
test/random_test \ |
36 | 37 |
test/suurballe_test \ |
37 | 38 |
test/test_tools_fail \ |
38 | 39 |
test/test_tools_pass \ |
39 | 40 |
test/time_measure_test \ |
40 | 41 |
test/unionfind_test |
41 | 42 |
|
42 | 43 |
test_test_tools_pass_DEPENDENCIES = demo |
43 | 44 |
|
44 | 45 |
if HAVE_LP |
45 | 46 |
check_PROGRAMS += test/lp_test |
46 | 47 |
endif HAVE_LP |
47 | 48 |
if HAVE_MIP |
48 | 49 |
check_PROGRAMS += test/mip_test |
49 | 50 |
endif HAVE_MIP |
50 | 51 |
|
51 | 52 |
TESTS += $(check_PROGRAMS) |
52 | 53 |
XFAIL_TESTS += test/test_tools_fail$(EXEEXT) |
53 | 54 |
|
54 | 55 |
test_adaptors_test_SOURCES = test/adaptors_test.cc |
56 |
test_bellman_ford_test_SOURCES = test/bellman_ford_test.cc |
|
55 | 57 |
test_bfs_test_SOURCES = test/bfs_test.cc |
56 | 58 |
test_circulation_test_SOURCES = test/circulation_test.cc |
57 | 59 |
test_counter_test_SOURCES = test/counter_test.cc |
58 | 60 |
test_connectivity_test_SOURCES = test/connectivity_test.cc |
59 | 61 |
test_dfs_test_SOURCES = test/dfs_test.cc |
60 | 62 |
test_digraph_test_SOURCES = test/digraph_test.cc |
61 | 63 |
test_dijkstra_test_SOURCES = test/dijkstra_test.cc |
62 | 64 |
test_dim_test_SOURCES = test/dim_test.cc |
63 | 65 |
test_edge_set_test_SOURCES = test/edge_set_test.cc |
64 | 66 |
test_error_test_SOURCES = test/error_test.cc |
65 | 67 |
test_euler_test_SOURCES = test/euler_test.cc |
66 | 68 |
test_gomory_hu_test_SOURCES = test/gomory_hu_test.cc |
67 | 69 |
test_graph_copy_test_SOURCES = test/graph_copy_test.cc |
68 | 70 |
test_graph_test_SOURCES = test/graph_test.cc |
69 | 71 |
test_graph_utils_test_SOURCES = test/graph_utils_test.cc |
70 | 72 |
test_heap_test_SOURCES = test/heap_test.cc |
71 | 73 |
test_kruskal_test_SOURCES = test/kruskal_test.cc |
72 | 74 |
test_hao_orlin_test_SOURCES = test/hao_orlin_test.cc |
73 | 75 |
test_lp_test_SOURCES = test/lp_test.cc |
74 | 76 |
test_maps_test_SOURCES = test/maps_test.cc |
75 | 77 |
test_mip_test_SOURCES = test/mip_test.cc |
76 | 78 |
test_matching_test_SOURCES = test/matching_test.cc |
77 | 79 |
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc |
78 | 80 |
test_min_cost_flow_test_SOURCES = test/min_cost_flow_test.cc |
79 | 81 |
test_path_test_SOURCES = test/path_test.cc |
80 | 82 |
test_preflow_test_SOURCES = test/preflow_test.cc |
81 | 83 |
test_radix_sort_test_SOURCES = test/radix_sort_test.cc |
82 | 84 |
test_suurballe_test_SOURCES = test/suurballe_test.cc |
83 | 85 |
test_random_test_SOURCES = test/random_test.cc |
84 | 86 |
test_test_tools_fail_SOURCES = test/test_tools_fail.cc |
85 | 87 |
test_test_tools_pass_SOURCES = test/test_tools_pass.cc |
86 | 88 |
test_time_measure_test_SOURCES = test/time_measure_test.cc |
87 | 89 |
test_unionfind_test_SOURCES = test/unionfind_test.cc |
... | ... |
@@ -27,128 +27,133 @@ |
27 | 27 |
|
28 | 28 |
using namespace lemon; |
29 | 29 |
|
30 | 30 |
char test_lgf[] = |
31 | 31 |
"@nodes\n" |
32 | 32 |
"label\n" |
33 | 33 |
"0\n" |
34 | 34 |
"1\n" |
35 | 35 |
"2\n" |
36 | 36 |
"3\n" |
37 | 37 |
"4\n" |
38 | 38 |
"5\n" |
39 | 39 |
"@arcs\n" |
40 | 40 |
" lcap ucap\n" |
41 | 41 |
"0 1 2 10\n" |
42 | 42 |
"0 2 2 6\n" |
43 | 43 |
"1 3 4 7\n" |
44 | 44 |
"1 4 0 5\n" |
45 | 45 |
"2 4 1 3\n" |
46 | 46 |
"3 5 3 8\n" |
47 | 47 |
"4 5 3 7\n" |
48 | 48 |
"@attributes\n" |
49 | 49 |
"source 0\n" |
50 | 50 |
"sink 5\n"; |
51 | 51 |
|
52 | 52 |
void checkCirculationCompile() |
53 | 53 |
{ |
54 | 54 |
typedef int VType; |
55 | 55 |
typedef concepts::Digraph Digraph; |
56 | 56 |
|
57 | 57 |
typedef Digraph::Node Node; |
58 | 58 |
typedef Digraph::Arc Arc; |
59 | 59 |
typedef concepts::ReadMap<Arc,VType> CapMap; |
60 | 60 |
typedef concepts::ReadMap<Node,VType> SupplyMap; |
61 | 61 |
typedef concepts::ReadWriteMap<Arc,VType> FlowMap; |
62 | 62 |
typedef concepts::WriteMap<Node,bool> BarrierMap; |
63 | 63 |
|
64 | 64 |
typedef Elevator<Digraph, Digraph::Node> Elev; |
65 | 65 |
typedef LinkedElevator<Digraph, Digraph::Node> LinkedElev; |
66 | 66 |
|
67 | 67 |
Digraph g; |
68 | 68 |
Node n; |
69 | 69 |
Arc a; |
70 | 70 |
CapMap lcap, ucap; |
71 | 71 |
SupplyMap supply; |
72 | 72 |
FlowMap flow; |
73 | 73 |
BarrierMap bar; |
74 | 74 |
VType v; |
75 | 75 |
bool b; |
76 | 76 |
|
77 | 77 |
typedef Circulation<Digraph, CapMap, CapMap, SupplyMap> |
78 | 78 |
::SetFlowMap<FlowMap> |
79 | 79 |
::SetElevator<Elev> |
80 | 80 |
::SetStandardElevator<LinkedElev> |
81 | 81 |
::Create CirculationType; |
82 | 82 |
CirculationType circ_test(g, lcap, ucap, supply); |
83 | 83 |
const CirculationType& const_circ_test = circ_test; |
84 | 84 |
|
85 | 85 |
circ_test |
86 | 86 |
.lowerMap(lcap) |
87 | 87 |
.upperMap(ucap) |
88 | 88 |
.supplyMap(supply) |
89 | 89 |
.flowMap(flow); |
90 | 90 |
|
91 |
const CirculationType::Elevator& elev = const_circ_test.elevator(); |
|
92 |
circ_test.elevator(const_cast<CirculationType::Elevator&>(elev)); |
|
93 |
CirculationType::Tolerance tol = const_circ_test.tolerance(); |
|
94 |
circ_test.tolerance(tol); |
|
95 |
|
|
91 | 96 |
circ_test.init(); |
92 | 97 |
circ_test.greedyInit(); |
93 | 98 |
circ_test.start(); |
94 | 99 |
circ_test.run(); |
95 | 100 |
|
96 | 101 |
v = const_circ_test.flow(a); |
97 | 102 |
const FlowMap& fm = const_circ_test.flowMap(); |
98 | 103 |
b = const_circ_test.barrier(n); |
99 | 104 |
const_circ_test.barrierMap(bar); |
100 | 105 |
|
101 | 106 |
ignore_unused_variable_warning(fm); |
102 | 107 |
} |
103 | 108 |
|
104 | 109 |
template <class G, class LM, class UM, class DM> |
105 | 110 |
void checkCirculation(const G& g, const LM& lm, const UM& um, |
106 | 111 |
const DM& dm, bool find) |
107 | 112 |
{ |
108 | 113 |
Circulation<G, LM, UM, DM> circ(g, lm, um, dm); |
109 | 114 |
bool ret = circ.run(); |
110 | 115 |
if (find) { |
111 | 116 |
check(ret, "A feasible solution should have been found."); |
112 | 117 |
check(circ.checkFlow(), "The found flow is corrupt."); |
113 | 118 |
check(!circ.checkBarrier(), "A barrier should not have been found."); |
114 | 119 |
} else { |
115 | 120 |
check(!ret, "A feasible solution should not have been found."); |
116 | 121 |
check(circ.checkBarrier(), "The found barrier is corrupt."); |
117 | 122 |
} |
118 | 123 |
} |
119 | 124 |
|
120 | 125 |
int main (int, char*[]) |
121 | 126 |
{ |
122 | 127 |
typedef ListDigraph Digraph; |
123 | 128 |
DIGRAPH_TYPEDEFS(Digraph); |
124 | 129 |
|
125 | 130 |
Digraph g; |
126 | 131 |
IntArcMap lo(g), up(g); |
127 | 132 |
IntNodeMap delta(g, 0); |
128 | 133 |
Node s, t; |
129 | 134 |
|
130 | 135 |
std::istringstream input(test_lgf); |
131 | 136 |
DigraphReader<Digraph>(g,input). |
132 | 137 |
arcMap("lcap", lo). |
133 | 138 |
arcMap("ucap", up). |
134 | 139 |
node("source",s). |
135 | 140 |
node("sink",t). |
136 | 141 |
run(); |
137 | 142 |
|
138 | 143 |
delta[s] = 7; delta[t] = -7; |
139 | 144 |
checkCirculation(g, lo, up, delta, true); |
140 | 145 |
|
141 | 146 |
delta[s] = 13; delta[t] = -13; |
142 | 147 |
checkCirculation(g, lo, up, delta, true); |
143 | 148 |
|
144 | 149 |
delta[s] = 6; delta[t] = -6; |
145 | 150 |
checkCirculation(g, lo, up, delta, false); |
146 | 151 |
|
147 | 152 |
delta[s] = 14; delta[t] = -14; |
148 | 153 |
checkCirculation(g, lo, up, delta, false); |
149 | 154 |
|
150 | 155 |
delta[s] = 7; delta[t] = -13; |
151 | 156 |
checkCirculation(g, lo, up, delta, true); |
152 | 157 |
|
153 | 158 |
delta[s] = 5; delta[t] = -15; |
154 | 159 |
checkCirculation(g, lo, up, delta, true); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <fstream> |
21 | 21 |
#include <string> |
22 | 22 |
#include <vector> |
23 | 23 |
|
24 | 24 |
#include <lemon/concept_check.h> |
25 | 25 |
#include <lemon/concepts/heap.h> |
26 | 26 |
|
27 | 27 |
#include <lemon/smart_graph.h> |
28 |
|
|
29 | 28 |
#include <lemon/lgf_reader.h> |
30 | 29 |
#include <lemon/dijkstra.h> |
31 | 30 |
#include <lemon/maps.h> |
32 | 31 |
|
33 | 32 |
#include <lemon/bin_heap.h> |
33 |
#include <lemon/fourary_heap.h> |
|
34 |
#include <lemon/kary_heap.h> |
|
34 | 35 |
#include <lemon/fib_heap.h> |
36 |
#include <lemon/pairing_heap.h> |
|
35 | 37 |
#include <lemon/radix_heap.h> |
38 |
#include <lemon/binom_heap.h> |
|
36 | 39 |
#include <lemon/bucket_heap.h> |
37 | 40 |
|
38 | 41 |
#include "test_tools.h" |
39 | 42 |
|
40 | 43 |
using namespace lemon; |
41 | 44 |
using namespace lemon::concepts; |
42 | 45 |
|
43 | 46 |
typedef ListDigraph Digraph; |
44 | 47 |
DIGRAPH_TYPEDEFS(Digraph); |
45 | 48 |
|
46 | 49 |
char test_lgf[] = |
47 | 50 |
"@nodes\n" |
48 | 51 |
"label\n" |
49 | 52 |
"0\n" |
50 | 53 |
"1\n" |
51 | 54 |
"2\n" |
52 | 55 |
"3\n" |
53 | 56 |
"4\n" |
54 | 57 |
"5\n" |
55 | 58 |
"6\n" |
56 | 59 |
"7\n" |
57 | 60 |
"8\n" |
58 | 61 |
"9\n" |
59 | 62 |
"@arcs\n" |
60 | 63 |
" label capacity\n" |
61 | 64 |
"0 5 0 94\n" |
62 | 65 |
"3 9 1 11\n" |
63 | 66 |
"8 7 2 83\n" |
64 | 67 |
"1 2 3 94\n" |
65 | 68 |
"5 7 4 35\n" |
66 | 69 |
"7 4 5 84\n" |
67 | 70 |
"9 5 6 38\n" |
68 | 71 |
"0 4 7 96\n" |
69 | 72 |
"6 7 8 6\n" |
70 | 73 |
"3 1 9 27\n" |
71 | 74 |
"5 2 10 77\n" |
72 | 75 |
"5 6 11 69\n" |
73 | 76 |
"6 5 12 41\n" |
74 | 77 |
"4 6 13 70\n" |
75 | 78 |
"3 2 14 45\n" |
76 | 79 |
"7 9 15 93\n" |
77 | 80 |
"5 9 16 50\n" |
78 | 81 |
"9 0 17 94\n" |
79 | 82 |
"9 6 18 67\n" |
80 | 83 |
"0 9 19 86\n" |
81 | 84 |
"@attributes\n" |
82 | 85 |
"source 3\n"; |
83 | 86 |
|
84 | 87 |
int test_seq[] = { 2, 28, 19, 27, 33, 25, 13, 41, 10, 26, 1, 9, 4, 34}; |
85 | 88 |
int test_inc[] = {20, 28, 34, 16, 0, 46, 44, 0, 42, 32, 14, 8, 6, 37}; |
86 | 89 |
|
87 | 90 |
int test_len = sizeof(test_seq) / sizeof(test_seq[0]); |
88 | 91 |
|
89 | 92 |
template <typename Heap> |
90 | 93 |
void heapSortTest() { |
91 | 94 |
RangeMap<int> map(test_len, -1); |
92 |
|
|
93 | 95 |
Heap heap(map); |
94 | 96 |
|
95 | 97 |
std::vector<int> v(test_len); |
96 |
|
|
97 | 98 |
for (int i = 0; i < test_len; ++i) { |
98 | 99 |
v[i] = test_seq[i]; |
99 | 100 |
heap.push(i, v[i]); |
100 | 101 |
} |
101 | 102 |
std::sort(v.begin(), v.end()); |
102 | 103 |
for (int i = 0; i < test_len; ++i) { |
103 | 104 |
check(v[i] == heap.prio() ,"Wrong order in heap sort."); |
104 | 105 |
heap.pop(); |
105 | 106 |
} |
106 | 107 |
} |
107 | 108 |
|
108 | 109 |
template <typename Heap> |
109 | 110 |
void heapIncreaseTest() { |
110 | 111 |
RangeMap<int> map(test_len, -1); |
111 | 112 |
|
112 | 113 |
Heap heap(map); |
113 | 114 |
|
114 | 115 |
std::vector<int> v(test_len); |
115 |
|
|
116 | 116 |
for (int i = 0; i < test_len; ++i) { |
117 | 117 |
v[i] = test_seq[i]; |
118 | 118 |
heap.push(i, v[i]); |
119 | 119 |
} |
120 | 120 |
for (int i = 0; i < test_len; ++i) { |
121 | 121 |
v[i] += test_inc[i]; |
122 | 122 |
heap.increase(i, v[i]); |
123 | 123 |
} |
124 | 124 |
std::sort(v.begin(), v.end()); |
125 | 125 |
for (int i = 0; i < test_len; ++i) { |
126 | 126 |
check(v[i] == heap.prio() ,"Wrong order in heap increase test."); |
127 | 127 |
heap.pop(); |
128 | 128 |
} |
129 | 129 |
} |
130 | 130 |
|
131 |
|
|
132 |
|
|
133 | 131 |
template <typename Heap> |
134 | 132 |
void dijkstraHeapTest(const Digraph& digraph, const IntArcMap& length, |
135 | 133 |
Node source) { |
136 | 134 |
|
137 | 135 |
typename Dijkstra<Digraph, IntArcMap>::template SetStandardHeap<Heap>:: |
138 | 136 |
Create dijkstra(digraph, length); |
139 | 137 |
|
140 | 138 |
dijkstra.run(source); |
141 | 139 |
|
142 | 140 |
for(ArcIt a(digraph); a != INVALID; ++a) { |
143 | 141 |
Node s = digraph.source(a); |
144 | 142 |
Node t = digraph.target(a); |
145 | 143 |
if (dijkstra.reached(s)) { |
146 | 144 |
check( dijkstra.dist(t) - dijkstra.dist(s) <= length[a], |
147 |
"Error in |
|
145 |
"Error in shortest path tree."); |
|
148 | 146 |
} |
149 | 147 |
} |
150 | 148 |
|
151 | 149 |
for(NodeIt n(digraph); n != INVALID; ++n) { |
152 | 150 |
if ( dijkstra.reached(n) && dijkstra.predArc(n) != INVALID ) { |
153 | 151 |
Arc a = dijkstra.predArc(n); |
154 | 152 |
Node s = digraph.source(a); |
155 | 153 |
check( dijkstra.dist(n) - dijkstra.dist(s) == length[a], |
156 |
"Error in |
|
154 |
"Error in shortest path tree."); |
|
157 | 155 |
} |
158 | 156 |
} |
159 | 157 |
|
160 | 158 |
} |
161 | 159 |
|
162 | 160 |
int main() { |
163 | 161 |
|
164 | 162 |
typedef int Item; |
165 | 163 |
typedef int Prio; |
166 | 164 |
typedef RangeMap<int> ItemIntMap; |
167 | 165 |
|
168 | 166 |
Digraph digraph; |
169 | 167 |
IntArcMap length(digraph); |
170 | 168 |
Node source; |
171 | 169 |
|
172 | 170 |
std::istringstream input(test_lgf); |
173 | 171 |
digraphReader(digraph, input). |
174 | 172 |
arcMap("capacity", length). |
175 | 173 |
node("source", source). |
176 | 174 |
run(); |
177 | 175 |
|
176 |
// BinHeap |
|
178 | 177 |
{ |
179 | 178 |
typedef BinHeap<Prio, ItemIntMap> IntHeap; |
180 | 179 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
181 | 180 |
heapSortTest<IntHeap>(); |
182 | 181 |
heapIncreaseTest<IntHeap>(); |
183 | 182 |
|
184 | 183 |
typedef BinHeap<Prio, IntNodeMap > NodeHeap; |
185 | 184 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
186 | 185 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
187 | 186 |
} |
188 | 187 |
|
188 |
// FouraryHeap |
|
189 |
{ |
|
190 |
typedef FouraryHeap<Prio, ItemIntMap> IntHeap; |
|
191 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
192 |
heapSortTest<IntHeap>(); |
|
193 |
heapIncreaseTest<IntHeap>(); |
|
194 |
|
|
195 |
typedef FouraryHeap<Prio, IntNodeMap > NodeHeap; |
|
196 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
197 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
198 |
} |
|
199 |
|
|
200 |
// KaryHeap |
|
201 |
{ |
|
202 |
typedef KaryHeap<Prio, ItemIntMap> IntHeap; |
|
203 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
204 |
heapSortTest<IntHeap>(); |
|
205 |
heapIncreaseTest<IntHeap>(); |
|
206 |
|
|
207 |
typedef KaryHeap<Prio, IntNodeMap > NodeHeap; |
|
208 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
209 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
210 |
} |
|
211 |
|
|
212 |
// FibHeap |
|
189 | 213 |
{ |
190 | 214 |
typedef FibHeap<Prio, ItemIntMap> IntHeap; |
191 | 215 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
192 | 216 |
heapSortTest<IntHeap>(); |
193 | 217 |
heapIncreaseTest<IntHeap>(); |
194 | 218 |
|
195 | 219 |
typedef FibHeap<Prio, IntNodeMap > NodeHeap; |
196 | 220 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
197 | 221 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
198 | 222 |
} |
199 | 223 |
|
224 |
// PairingHeap |
|
225 |
{ |
|
226 |
typedef PairingHeap<Prio, ItemIntMap> IntHeap; |
|
227 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
228 |
heapSortTest<IntHeap>(); |
|
229 |
heapIncreaseTest<IntHeap>(); |
|
230 |
|
|
231 |
typedef PairingHeap<Prio, IntNodeMap > NodeHeap; |
|
232 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
233 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
234 |
} |
|
235 |
|
|
236 |
// RadixHeap |
|
200 | 237 |
{ |
201 | 238 |
typedef RadixHeap<ItemIntMap> IntHeap; |
202 | 239 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
203 | 240 |
heapSortTest<IntHeap>(); |
204 | 241 |
heapIncreaseTest<IntHeap>(); |
205 | 242 |
|
206 | 243 |
typedef RadixHeap<IntNodeMap > NodeHeap; |
207 | 244 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
208 | 245 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
209 | 246 |
} |
210 | 247 |
|
248 |
// BinomHeap |
|
249 |
{ |
|
250 |
typedef BinomHeap<Prio, ItemIntMap> IntHeap; |
|
251 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
252 |
heapSortTest<IntHeap>(); |
|
253 |
heapIncreaseTest<IntHeap>(); |
|
254 |
|
|
255 |
typedef BinomHeap<Prio, IntNodeMap > NodeHeap; |
|
256 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
257 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
258 |
} |
|
259 |
|
|
260 |
// BucketHeap, SimpleBucketHeap |
|
211 | 261 |
{ |
212 | 262 |
typedef BucketHeap<ItemIntMap> IntHeap; |
213 | 263 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
214 | 264 |
heapSortTest<IntHeap>(); |
215 | 265 |
heapIncreaseTest<IntHeap>(); |
216 | 266 |
|
217 | 267 |
typedef BucketHeap<IntNodeMap > NodeHeap; |
218 | 268 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
219 | 269 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
270 |
|
|
271 |
typedef SimpleBucketHeap<ItemIntMap> SimpleIntHeap; |
|
272 |
heapSortTest<SimpleIntHeap>(); |
|
220 | 273 |
} |
221 | 274 |
|
222 |
|
|
223 | 275 |
return 0; |
224 | 276 |
} |
... | ... |
@@ -518,128 +518,162 @@ |
518 | 518 |
DIGRAPH_TYPEDEFS(Graph); |
519 | 519 |
|
520 | 520 |
checkConcept<ReadWriteMap<Node, int>, |
521 | 521 |
CrossRefMap<Graph, Node, int> >(); |
522 | 522 |
checkConcept<ReadWriteMap<Node, bool>, |
523 | 523 |
CrossRefMap<Graph, Node, bool> >(); |
524 | 524 |
checkConcept<ReadWriteMap<Node, double>, |
525 | 525 |
CrossRefMap<Graph, Node, double> >(); |
526 | 526 |
|
527 | 527 |
Graph gr; |
528 | 528 |
typedef CrossRefMap<Graph, Node, char> CRMap; |
529 | 529 |
CRMap map(gr); |
530 | 530 |
|
531 | 531 |
Node n0 = gr.addNode(); |
532 | 532 |
Node n1 = gr.addNode(); |
533 | 533 |
Node n2 = gr.addNode(); |
534 | 534 |
|
535 | 535 |
map.set(n0, 'A'); |
536 | 536 |
map.set(n1, 'B'); |
537 | 537 |
map.set(n2, 'C'); |
538 | 538 |
|
539 | 539 |
check(map[n0] == 'A' && map('A') == n0 && map.inverse()['A'] == n0, |
540 | 540 |
"Wrong CrossRefMap"); |
541 | 541 |
check(map[n1] == 'B' && map('B') == n1 && map.inverse()['B'] == n1, |
542 | 542 |
"Wrong CrossRefMap"); |
543 | 543 |
check(map[n2] == 'C' && map('C') == n2 && map.inverse()['C'] == n2, |
544 | 544 |
"Wrong CrossRefMap"); |
545 | 545 |
check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1, |
546 | 546 |
"Wrong CrossRefMap::count()"); |
547 | 547 |
|
548 | 548 |
CRMap::ValueIt it = map.beginValue(); |
549 | 549 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
550 | 550 |
it == map.endValue(), "Wrong value iterator"); |
551 | 551 |
|
552 | 552 |
map.set(n2, 'A'); |
553 | 553 |
|
554 | 554 |
check(map[n0] == 'A' && map[n1] == 'B' && map[n2] == 'A', |
555 | 555 |
"Wrong CrossRefMap"); |
556 | 556 |
check(map('A') == n0 && map.inverse()['A'] == n0, "Wrong CrossRefMap"); |
557 | 557 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap"); |
558 | 558 |
check(map('C') == INVALID && map.inverse()['C'] == INVALID, |
559 | 559 |
"Wrong CrossRefMap"); |
560 | 560 |
check(map.count('A') == 2 && map.count('B') == 1 && map.count('C') == 0, |
561 | 561 |
"Wrong CrossRefMap::count()"); |
562 | 562 |
|
563 | 563 |
it = map.beginValue(); |
564 | 564 |
check(*it++ == 'A' && *it++ == 'A' && *it++ == 'B' && |
565 | 565 |
it == map.endValue(), "Wrong value iterator"); |
566 | 566 |
|
567 | 567 |
map.set(n0, 'C'); |
568 | 568 |
|
569 | 569 |
check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A', |
570 | 570 |
"Wrong CrossRefMap"); |
571 | 571 |
check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap"); |
572 | 572 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap"); |
573 | 573 |
check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap"); |
574 | 574 |
check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1, |
575 | 575 |
"Wrong CrossRefMap::count()"); |
576 | 576 |
|
577 | 577 |
it = map.beginValue(); |
578 | 578 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
579 | 579 |
it == map.endValue(), "Wrong value iterator"); |
580 | 580 |
} |
581 | 581 |
|
582 |
// CrossRefMap |
|
583 |
{ |
|
584 |
typedef SmartDigraph Graph; |
|
585 |
DIGRAPH_TYPEDEFS(Graph); |
|
586 |
|
|
587 |
checkConcept<ReadWriteMap<Node, int>, |
|
588 |
CrossRefMap<Graph, Node, int> >(); |
|
589 |
|
|
590 |
Graph gr; |
|
591 |
typedef CrossRefMap<Graph, Node, char> CRMap; |
|
592 |
typedef CRMap::ValueIterator ValueIt; |
|
593 |
CRMap map(gr); |
|
594 |
|
|
595 |
Node n0 = gr.addNode(); |
|
596 |
Node n1 = gr.addNode(); |
|
597 |
Node n2 = gr.addNode(); |
|
598 |
|
|
599 |
map.set(n0, 'A'); |
|
600 |
map.set(n1, 'B'); |
|
601 |
map.set(n2, 'C'); |
|
602 |
map.set(n2, 'A'); |
|
603 |
map.set(n0, 'C'); |
|
604 |
|
|
605 |
check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A', |
|
606 |
"Wrong CrossRefMap"); |
|
607 |
check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap"); |
|
608 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap"); |
|
609 |
check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap"); |
|
610 |
|
|
611 |
ValueIt it = map.beginValue(); |
|
612 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
|
613 |
it == map.endValue(), "Wrong value iterator"); |
|
614 |
} |
|
615 |
|
|
582 | 616 |
// Iterable bool map |
583 | 617 |
{ |
584 | 618 |
typedef SmartGraph Graph; |
585 | 619 |
typedef SmartGraph::Node Item; |
586 | 620 |
|
587 | 621 |
typedef IterableBoolMap<SmartGraph, SmartGraph::Node> Ibm; |
588 | 622 |
checkConcept<ReferenceMap<Item, bool, bool&, const bool&>, Ibm>(); |
589 | 623 |
|
590 | 624 |
const int num = 10; |
591 | 625 |
Graph g; |
592 | 626 |
std::vector<Item> items; |
593 | 627 |
for (int i = 0; i < num; ++i) { |
594 | 628 |
items.push_back(g.addNode()); |
595 | 629 |
} |
596 | 630 |
|
597 | 631 |
Ibm map1(g, true); |
598 | 632 |
int n = 0; |
599 | 633 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) { |
600 | 634 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt"); |
601 | 635 |
++n; |
602 | 636 |
} |
603 | 637 |
check(n == num, "Wrong number"); |
604 | 638 |
|
605 | 639 |
n = 0; |
606 | 640 |
for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) { |
607 | 641 |
check(map1[static_cast<Item>(it)], "Wrong ItemIt for true"); |
608 | 642 |
++n; |
609 | 643 |
} |
610 | 644 |
check(n == num, "Wrong number"); |
611 | 645 |
check(Ibm::FalseIt(map1) == INVALID, "Wrong FalseIt"); |
612 | 646 |
check(Ibm::ItemIt(map1, false) == INVALID, "Wrong ItemIt for false"); |
613 | 647 |
|
614 | 648 |
map1[items[5]] = true; |
615 | 649 |
|
616 | 650 |
n = 0; |
617 | 651 |
for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) { |
618 | 652 |
check(map1[static_cast<Item>(it)], "Wrong ItemIt for true"); |
619 | 653 |
++n; |
620 | 654 |
} |
621 | 655 |
check(n == num, "Wrong number"); |
622 | 656 |
|
623 | 657 |
map1[items[num / 2]] = false; |
624 | 658 |
check(map1[items[num / 2]] == false, "Wrong map value"); |
625 | 659 |
|
626 | 660 |
n = 0; |
627 | 661 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) { |
628 | 662 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt for true"); |
629 | 663 |
++n; |
630 | 664 |
} |
631 | 665 |
check(n == num - 1, "Wrong number"); |
632 | 666 |
|
633 | 667 |
n = 0; |
634 | 668 |
for (Ibm::FalseIt it(map1); it != INVALID; ++it) { |
635 | 669 |
check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true"); |
636 | 670 |
++n; |
637 | 671 |
} |
638 | 672 |
check(n == 1, "Wrong number"); |
639 | 673 |
|
640 | 674 |
map1[items[0]] = false; |
641 | 675 |
check(map1[items[0]] == false, "Wrong map value"); |
642 | 676 |
|
643 | 677 |
map1[items[num - 1]] = false; |
644 | 678 |
check(map1[items[num - 1]] == false, "Wrong map value"); |
645 | 679 |
... | ... |
@@ -34,128 +34,133 @@ |
34 | 34 |
"0\n" |
35 | 35 |
"1\n" |
36 | 36 |
"2\n" |
37 | 37 |
"3\n" |
38 | 38 |
"4\n" |
39 | 39 |
"5\n" |
40 | 40 |
"6\n" |
41 | 41 |
"7\n" |
42 | 42 |
"8\n" |
43 | 43 |
"9\n" |
44 | 44 |
"@arcs\n" |
45 | 45 |
" label capacity\n" |
46 | 46 |
"0 1 0 20\n" |
47 | 47 |
"0 2 1 0\n" |
48 | 48 |
"1 1 2 3\n" |
49 | 49 |
"1 2 3 8\n" |
50 | 50 |
"1 3 4 8\n" |
51 | 51 |
"2 5 5 5\n" |
52 | 52 |
"3 2 6 5\n" |
53 | 53 |
"3 5 7 5\n" |
54 | 54 |
"3 6 8 5\n" |
55 | 55 |
"4 3 9 3\n" |
56 | 56 |
"5 7 10 3\n" |
57 | 57 |
"5 6 11 10\n" |
58 | 58 |
"5 8 12 10\n" |
59 | 59 |
"6 8 13 8\n" |
60 | 60 |
"8 9 14 20\n" |
61 | 61 |
"8 1 15 5\n" |
62 | 62 |
"9 5 16 5\n" |
63 | 63 |
"@attributes\n" |
64 | 64 |
"source 1\n" |
65 | 65 |
"target 8\n"; |
66 | 66 |
|
67 | 67 |
void checkPreflowCompile() |
68 | 68 |
{ |
69 | 69 |
typedef int VType; |
70 | 70 |
typedef concepts::Digraph Digraph; |
71 | 71 |
|
72 | 72 |
typedef Digraph::Node Node; |
73 | 73 |
typedef Digraph::Arc Arc; |
74 | 74 |
typedef concepts::ReadMap<Arc,VType> CapMap; |
75 | 75 |
typedef concepts::ReadWriteMap<Arc,VType> FlowMap; |
76 | 76 |
typedef concepts::WriteMap<Node,bool> CutMap; |
77 | 77 |
|
78 | 78 |
typedef Elevator<Digraph, Digraph::Node> Elev; |
79 | 79 |
typedef LinkedElevator<Digraph, Digraph::Node> LinkedElev; |
80 | 80 |
|
81 | 81 |
Digraph g; |
82 | 82 |
Node n; |
83 | 83 |
Arc e; |
84 | 84 |
CapMap cap; |
85 | 85 |
FlowMap flow; |
86 | 86 |
CutMap cut; |
87 | 87 |
VType v; |
88 | 88 |
bool b; |
89 | 89 |
|
90 | 90 |
typedef Preflow<Digraph, CapMap> |
91 | 91 |
::SetFlowMap<FlowMap> |
92 | 92 |
::SetElevator<Elev> |
93 | 93 |
::SetStandardElevator<LinkedElev> |
94 | 94 |
::Create PreflowType; |
95 | 95 |
PreflowType preflow_test(g, cap, n, n); |
96 | 96 |
const PreflowType& const_preflow_test = preflow_test; |
97 | 97 |
|
98 |
const PreflowType::Elevator& elev = const_preflow_test.elevator(); |
|
99 |
preflow_test.elevator(const_cast<PreflowType::Elevator&>(elev)); |
|
100 |
PreflowType::Tolerance tol = const_preflow_test.tolerance(); |
|
101 |
preflow_test.tolerance(tol); |
|
102 |
|
|
98 | 103 |
preflow_test |
99 | 104 |
.capacityMap(cap) |
100 | 105 |
.flowMap(flow) |
101 | 106 |
.source(n) |
102 | 107 |
.target(n); |
103 | 108 |
|
104 | 109 |
preflow_test.init(); |
105 | 110 |
preflow_test.init(cap); |
106 | 111 |
preflow_test.startFirstPhase(); |
107 | 112 |
preflow_test.startSecondPhase(); |
108 | 113 |
preflow_test.run(); |
109 | 114 |
preflow_test.runMinCut(); |
110 | 115 |
|
111 | 116 |
v = const_preflow_test.flowValue(); |
112 | 117 |
v = const_preflow_test.flow(e); |
113 | 118 |
const FlowMap& fm = const_preflow_test.flowMap(); |
114 | 119 |
b = const_preflow_test.minCut(n); |
115 | 120 |
const_preflow_test.minCutMap(cut); |
116 | 121 |
|
117 | 122 |
ignore_unused_variable_warning(fm); |
118 | 123 |
} |
119 | 124 |
|
120 | 125 |
int cutValue (const SmartDigraph& g, |
121 | 126 |
const SmartDigraph::NodeMap<bool>& cut, |
122 | 127 |
const SmartDigraph::ArcMap<int>& cap) { |
123 | 128 |
|
124 | 129 |
int c=0; |
125 | 130 |
for(SmartDigraph::ArcIt e(g); e!=INVALID; ++e) { |
126 | 131 |
if (cut[g.source(e)] && !cut[g.target(e)]) c+=cap[e]; |
127 | 132 |
} |
128 | 133 |
return c; |
129 | 134 |
} |
130 | 135 |
|
131 | 136 |
bool checkFlow(const SmartDigraph& g, |
132 | 137 |
const SmartDigraph::ArcMap<int>& flow, |
133 | 138 |
const SmartDigraph::ArcMap<int>& cap, |
134 | 139 |
SmartDigraph::Node s, SmartDigraph::Node t) { |
135 | 140 |
|
136 | 141 |
for (SmartDigraph::ArcIt e(g); e != INVALID; ++e) { |
137 | 142 |
if (flow[e] < 0 || flow[e] > cap[e]) return false; |
138 | 143 |
} |
139 | 144 |
|
140 | 145 |
for (SmartDigraph::NodeIt n(g); n != INVALID; ++n) { |
141 | 146 |
if (n == s || n == t) continue; |
142 | 147 |
int sum = 0; |
143 | 148 |
for (SmartDigraph::OutArcIt e(g, n); e != INVALID; ++e) { |
144 | 149 |
sum += flow[e]; |
145 | 150 |
} |
146 | 151 |
for (SmartDigraph::InArcIt e(g, n); e != INVALID; ++e) { |
147 | 152 |
sum -= flow[e]; |
148 | 153 |
} |
149 | 154 |
if (sum != 0) return false; |
150 | 155 |
} |
151 | 156 |
return true; |
152 | 157 |
} |
153 | 158 |
|
154 | 159 |
int main() { |
155 | 160 |
|
156 | 161 |
typedef SmartDigraph Digraph; |
157 | 162 |
|
158 | 163 |
typedef Digraph::Node Node; |
159 | 164 |
typedef Digraph::NodeIt NodeIt; |
160 | 165 |
typedef Digraph::ArcIt ArcIt; |
161 | 166 |
typedef Digraph::ArcMap<int> CapMap; |
1 | 1 |
#!/bin/bash |
2 | 2 |
|
3 | 3 |
set -e |
4 | 4 |
|
5 | 5 |
if [ $# -eq 0 -o x$1 = "x-h" -o x$1 = "x-help" -o x$1 = "x--help" ]; then |
6 | 6 |
echo "Usage:" |
7 | 7 |
echo " $0 source-file(s)" |
8 | 8 |
exit |
9 | 9 |
fi |
10 | 10 |
|
11 | 11 |
for i in $@ |
12 | 12 |
do |
13 | 13 |
echo Update $i... |
14 | 14 |
TMP=`mktemp` |
15 | 15 |
sed -e "s/\<undirected graph\>/_gr_aph_label_/g"\ |
16 | 16 |
-e "s/\<undirected graphs\>/_gr_aph_label_s/g"\ |
17 | 17 |
-e "s/\<undirected edge\>/_ed_ge_label_/g"\ |
18 | 18 |
-e "s/\<undirected edges\>/_ed_ge_label_s/g"\ |
19 | 19 |
-e "s/\<directed graph\>/_digr_aph_label_/g"\ |
20 | 20 |
-e "s/\<directed graphs\>/_digr_aph_label_s/g"\ |
21 | 21 |
-e "s/\<directed edge\>/_ar_c_label_/g"\ |
22 | 22 |
-e "s/\<directed edges\>/_ar_c_label_s/g"\ |
23 | 23 |
-e "s/UGraph/_Gr_aph_label_/g"\ |
24 | 24 |
-e "s/u[Gg]raph/_gr_aph_label_/g"\ |
25 | 25 |
-e "s/Graph\>/_Digr_aph_label_/g"\ |
26 | 26 |
-e "s/\<graph\>/_digr_aph_label_/g"\ |
27 | 27 |
-e "s/Graphs\>/_Digr_aph_label_s/g"\ |
28 | 28 |
-e "s/\<graphs\>/_digr_aph_label_s/g"\ |
29 | 29 |
-e "s/\([Gg]\)raph\([a-z]\)/_\1r_aph_label_\2/g"\ |
30 | 30 |
-e "s/\([a-z_]\)graph/\1_gr_aph_label_/g"\ |
31 | 31 |
-e "s/Graph/_Digr_aph_label_/g"\ |
32 | 32 |
-e "s/graph/_digr_aph_label_/g"\ |
33 | 33 |
-e "s/UEdge/_Ed_ge_label_/g"\ |
34 | 34 |
-e "s/u[Ee]dge/_ed_ge_label_/g"\ |
35 | 35 |
-e "s/IncEdgeIt/_In_cEd_geIt_label_/g"\ |
36 | 36 |
-e "s/Edge\>/_Ar_c_label_/g"\ |
37 | 37 |
-e "s/\<edge\>/_ar_c_label_/g"\ |
38 |
-e "s/_edge\>/ |
|
38 |
-e "s/_edge\>/__ar_c_label_/g"\ |
|
39 | 39 |
-e "s/Edges\>/_Ar_c_label_s/g"\ |
40 | 40 |
-e "s/\<edges\>/_ar_c_label_s/g"\ |
41 |
-e "s/_edges\>/ |
|
41 |
-e "s/_edges\>/__ar_c_label_s/g"\ |
|
42 | 42 |
-e "s/\([Ee]\)dge\([a-z]\)/_\1d_ge_label_\2/g"\ |
43 | 43 |
-e "s/\([a-z]\)edge/\1_ed_ge_label_/g"\ |
44 | 44 |
-e "s/Edge/_Ar_c_label_/g"\ |
45 | 45 |
-e "s/edge/_ar_c_label_/g"\ |
46 | 46 |
-e "s/A[Nn]ode/_Re_d_label_/g"\ |
47 | 47 |
-e "s/B[Nn]ode/_Blu_e_label_/g"\ |
48 | 48 |
-e "s/A-[Nn]ode/_Re_d_label_/g"\ |
49 | 49 |
-e "s/B-[Nn]ode/_Blu_e_label_/g"\ |
50 | 50 |
-e "s/a[Nn]ode/_re_d_label_/g"\ |
51 | 51 |
-e "s/b[Nn]ode/_blu_e_label_/g"\ |
52 | 52 |
-e "s/\<UGRAPH_TYPEDEFS\([ \t]*([ \t]*\)typename[ \t]/TEMPLATE__GR_APH_TY_PEDE_FS_label_\1/g"\ |
53 | 53 |
-e "s/\<GRAPH_TYPEDEFS\([ \t]*([ \t]*\)typename[ \t]/TEMPLATE__DIGR_APH_TY_PEDE_FS_label_\1/g"\ |
54 | 54 |
-e "s/\<UGRAPH_TYPEDEFS\>/_GR_APH_TY_PEDE_FS_label_/g"\ |
55 | 55 |
-e "s/\<GRAPH_TYPEDEFS\>/_DIGR_APH_TY_PEDE_FS_label_/g"\ |
56 | 56 |
-e "s/_Digr_aph_label_/Digraph/g"\ |
57 | 57 |
-e "s/_digr_aph_label_/digraph/g"\ |
58 | 58 |
-e "s/_Gr_aph_label_/Graph/g"\ |
59 | 59 |
-e "s/_gr_aph_label_/graph/g"\ |
60 | 60 |
-e "s/_Ar_c_label_/Arc/g"\ |
61 | 61 |
-e "s/_ar_c_label_/arc/g"\ |
62 | 62 |
-e "s/_Ed_ge_label_/Edge/g"\ |
63 | 63 |
-e "s/_ed_ge_label_/edge/g"\ |
64 | 64 |
-e "s/_In_cEd_geIt_label_/IncEdgeIt/g"\ |
65 | 65 |
-e "s/_Re_d_label_/Red/g"\ |
66 | 66 |
-e "s/_Blu_e_label_/Blue/g"\ |
67 | 67 |
-e "s/_re_d_label_/red/g"\ |
68 | 68 |
-e "s/_blu_e_label_/blue/g"\ |
69 | 69 |
-e "s/_GR_APH_TY_PEDE_FS_label_/GRAPH_TYPEDEFS/g"\ |
70 | 70 |
-e "s/_DIGR_APH_TY_PEDE_FS_label_/DIGRAPH_TYPEDEFS/g"\ |
71 |
-e "s/\<digraph_adaptor\.h\>/adaptors.h/g"\ |
|
72 |
-e "s/\<digraph_utils\.h\>/core.h/g"\ |
|
73 |
-e "s/\<digraph_reader\.h\>/lgf_reader.h/g"\ |
|
74 |
-e "s/\<digraph_writer\.h\>/lgf_writer.h/g"\ |
|
75 |
-e "s/\<topology\.h\>/connectivity.h/g"\ |
|
71 | 76 |
-e "s/DigraphToEps/GraphToEps/g"\ |
72 | 77 |
-e "s/digraphToEps/graphToEps/g"\ |
73 | 78 |
-e "s/\<DefPredMap\>/SetPredMap/g"\ |
74 | 79 |
-e "s/\<DefDistMap\>/SetDistMap/g"\ |
75 | 80 |
-e "s/\<DefReachedMap\>/SetReachedMap/g"\ |
76 | 81 |
-e "s/\<DefProcessedMap\>/SetProcessedMap/g"\ |
77 | 82 |
-e "s/\<DefHeap\>/SetHeap/g"\ |
78 | 83 |
-e "s/\<DefStandardHeap\>/SetStandradHeap/g"\ |
79 | 84 |
-e "s/\<DefOperationTraits\>/SetOperationTraits/g"\ |
80 | 85 |
-e "s/\<DefProcessedMapToBeDefaultMap\>/SetStandardProcessedMap/g"\ |
81 | 86 |
-e "s/\<copyGraph\>/graphCopy/g"\ |
82 | 87 |
-e "s/\<copyDigraph\>/digraphCopy/g"\ |
83 | 88 |
-e "s/\<HyperCubeDigraph\>/HypercubeGraph/g"\ |
84 | 89 |
-e "s/\<IntegerMap\>/RangeMap/g"\ |
85 | 90 |
-e "s/\<integerMap\>/rangeMap/g"\ |
86 | 91 |
-e "s/\<\([sS]\)tdMap\>/\1parseMap/g"\ |
87 | 92 |
-e "s/\<\([Ff]\)unctorMap\>/\1unctorToMap/g"\ |
88 | 93 |
-e "s/\<\([Mm]\)apFunctor\>/\1apToFunctor/g"\ |
89 | 94 |
-e "s/\<\([Ff]\)orkWriteMap\>/\1orkMap/g"\ |
90 | 95 |
-e "s/\<StoreBoolMap\>/LoggerBoolMap/g"\ |
91 | 96 |
-e "s/\<storeBoolMap\>/loggerBoolMap/g"\ |
92 | 97 |
-e "s/\<InvertableMap\>/CrossRefMap/g"\ |
93 | 98 |
-e "s/\<invertableMap\>/crossRefMap/g"\ |
94 | 99 |
-e "s/\<DescriptorMap\>/RangeIdMap/g"\ |
95 | 100 |
-e "s/\<descriptorMap\>/rangeIdMap/g"\ |
96 | 101 |
-e "s/\<BoundingBox\>/Box/g"\ |
97 | 102 |
-e "s/\<readNauty\>/readNautyGraph/g"\ |
98 | 103 |
-e "s/\<RevDigraphAdaptor\>/ReverseDigraph/g"\ |
99 | 104 |
-e "s/\<revDigraphAdaptor\>/reverseDigraph/g"\ |
100 | 105 |
-e "s/\<SubDigraphAdaptor\>/SubDigraph/g"\ |
101 | 106 |
-e "s/\<subDigraphAdaptor\>/subDigraph/g"\ |
102 | 107 |
-e "s/\<SubGraphAdaptor\>/SubGraph/g"\ |
103 | 108 |
-e "s/\<subGraphAdaptor\>/subGraph/g"\ |
104 | 109 |
-e "s/\<NodeSubDigraphAdaptor\>/FilterNodes/g"\ |
105 | 110 |
-e "s/\<nodeSubDigraphAdaptor\>/filterNodes/g"\ |
106 | 111 |
-e "s/\<ArcSubDigraphAdaptor\>/FilterArcs/g"\ |
107 | 112 |
-e "s/\<arcSubDigraphAdaptor\>/filterArcs/g"\ |
108 | 113 |
-e "s/\<UndirDigraphAdaptor\>/Undirector/g"\ |
109 | 114 |
-e "s/\<undirDigraphAdaptor\>/undirector/g"\ |
110 | 115 |
-e "s/\<ResDigraphAdaptor\>/ResidualDigraph/g"\ |
111 | 116 |
-e "s/\<resDigraphAdaptor\>/residualDigraph/g"\ |
112 | 117 |
-e "s/\<SplitDigraphAdaptor\>/SplitNodes/g"\ |
113 | 118 |
-e "s/\<splitDigraphAdaptor\>/splitNodes/g"\ |
114 | 119 |
-e "s/\<SubGraphAdaptor\>/SubGraph/g"\ |
115 | 120 |
-e "s/\<subGraphAdaptor\>/subGraph/g"\ |
116 | 121 |
-e "s/\<NodeSubGraphAdaptor\>/FilterNodes/g"\ |
117 | 122 |
-e "s/\<nodeSubGraphAdaptor\>/filterNodes/g"\ |
118 | 123 |
-e "s/\<ArcSubGraphAdaptor\>/FilterEdges/g"\ |
119 | 124 |
-e "s/\<arcSubGraphAdaptor\>/filterEdges/g"\ |
120 | 125 |
-e "s/\<DirGraphAdaptor\>/Orienter/g"\ |
121 | 126 |
-e "s/\<dirGraphAdaptor\>/orienter/g"\ |
122 | 127 |
-e "s/\<LpCplex\>/CplexLp/g"\ |
123 | 128 |
-e "s/\<MipCplex\>/CplexMip/g"\ |
124 | 129 |
-e "s/\<LpGlpk\>/GlpkLp/g"\ |
125 | 130 |
-e "s/\<MipGlpk\>/GlpkMip/g"\ |
126 | 131 |
-e "s/\<LpSoplex\>/SoplexLp/g"\ |
127 | 132 |
<$i > $TMP |
128 | 133 |
mv $TMP $i |
129 | 134 |
done |
0 comments (0 inline)