0
2
0
| ... | ... |
@@ -565,226 +565,225 @@ |
| 565 | 565 |
/// This function returns the number of covered nodes in the matching. |
| 566 | 566 |
/// |
| 567 | 567 |
/// \pre Either run() or start() must be called before using this function. |
| 568 | 568 |
int matchingSize() const {
|
| 569 | 569 |
int num = 0; |
| 570 | 570 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 571 | 571 |
if ((*_matching)[n] != INVALID) {
|
| 572 | 572 |
++num; |
| 573 | 573 |
} |
| 574 | 574 |
} |
| 575 | 575 |
return num; |
| 576 | 576 |
} |
| 577 | 577 |
|
| 578 | 578 |
/// \brief Returns a const reference to the matching map. |
| 579 | 579 |
/// |
| 580 | 580 |
/// Returns a const reference to the node map storing the found |
| 581 | 581 |
/// fractional matching. This method can be called after |
| 582 | 582 |
/// running the algorithm. |
| 583 | 583 |
/// |
| 584 | 584 |
/// \pre Either \ref run() or \ref init() must be called before |
| 585 | 585 |
/// using this function. |
| 586 | 586 |
const MatchingMap& matchingMap() const {
|
| 587 | 587 |
return *_matching; |
| 588 | 588 |
} |
| 589 | 589 |
|
| 590 | 590 |
/// \brief Return \c true if the given edge is in the matching. |
| 591 | 591 |
/// |
| 592 | 592 |
/// This function returns \c true if the given edge is in the |
| 593 | 593 |
/// found matching. The result is scaled by \ref primalScale |
| 594 | 594 |
/// "primal scale". |
| 595 | 595 |
/// |
| 596 | 596 |
/// \pre Either run() or start() must be called before using this function. |
| 597 | 597 |
int matching(const Edge& edge) const {
|
| 598 | 598 |
return (edge == (*_matching)[_graph.u(edge)] ? 1 : 0) + |
| 599 | 599 |
(edge == (*_matching)[_graph.v(edge)] ? 1 : 0); |
| 600 | 600 |
} |
| 601 | 601 |
|
| 602 | 602 |
/// \brief Return the fractional matching arc (or edge) incident |
| 603 | 603 |
/// to the given node. |
| 604 | 604 |
/// |
| 605 | 605 |
/// This function returns one of the fractional matching arc (or |
| 606 | 606 |
/// edge) incident to the given node in the found matching or \c |
| 607 | 607 |
/// INVALID if the node is not covered by the matching or if the |
| 608 | 608 |
/// node is on an odd length cycle then it is the successor edge |
| 609 | 609 |
/// on the cycle. |
| 610 | 610 |
/// |
| 611 | 611 |
/// \pre Either run() or start() must be called before using this function. |
| 612 | 612 |
Arc matching(const Node& node) const {
|
| 613 | 613 |
return (*_matching)[node]; |
| 614 | 614 |
} |
| 615 | 615 |
|
| 616 | 616 |
/// \brief Returns true if the node is in the barrier |
| 617 | 617 |
/// |
| 618 | 618 |
/// The barrier is a subset of the nodes. If the nodes in the |
| 619 | 619 |
/// barrier have less adjacent nodes than the size of the barrier, |
| 620 | 620 |
/// then at least as much nodes cannot be covered as the |
| 621 | 621 |
/// difference of the two subsets. |
| 622 | 622 |
bool barrier(const Node& node) const {
|
| 623 | 623 |
return (*_level)[node] >= _empty_level; |
| 624 | 624 |
} |
| 625 | 625 |
|
| 626 | 626 |
/// @} |
| 627 | 627 |
|
| 628 | 628 |
}; |
| 629 | 629 |
|
| 630 | 630 |
/// \ingroup matching |
| 631 | 631 |
/// |
| 632 | 632 |
/// \brief Weighted fractional matching in general graphs |
| 633 | 633 |
/// |
| 634 | 634 |
/// This class provides an efficient implementation of fractional |
| 635 | 635 |
/// matching algorithm. The implementation uses priority queues and |
| 636 | 636 |
/// provides \f$O(nm\log n)\f$ time complexity. |
| 637 | 637 |
/// |
| 638 | 638 |
/// The maximum weighted fractional matching is a relaxation of the |
| 639 | 639 |
/// maximum weighted matching problem where the odd set constraints |
| 640 | 640 |
/// are omitted. |
| 641 | 641 |
/// It can be formulated with the following linear program. |
| 642 | 642 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
|
| 643 | 643 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
| 644 | 644 |
/// \f[\max \sum_{e\in E}x_ew_e\f]
|
| 645 | 645 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
| 646 | 646 |
/// \f$X\f$. The result must be the union of a matching with one |
| 647 | 647 |
/// value edges and a set of odd length cycles with half value edges. |
| 648 | 648 |
/// |
| 649 | 649 |
/// The algorithm calculates an optimal fractional matching and a |
| 650 | 650 |
/// proof of the optimality. The solution of the dual problem can be |
| 651 | 651 |
/// used to check the result of the algorithm. The dual linear |
| 652 | 652 |
/// problem is the following. |
| 653 | 653 |
/// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f]
|
| 654 | 654 |
/// \f[y_u \ge 0 \quad \forall u \in V\f] |
| 655 | 655 |
/// \f[\min \sum_{u \in V}y_u \f]
|
| 656 | 656 |
/// |
| 657 | 657 |
/// The algorithm can be executed with the run() function. |
| 658 | 658 |
/// After it the matching (the primal solution) and the dual solution |
| 659 | 659 |
/// can be obtained using the query functions. |
| 660 | 660 |
/// |
| 661 |
/// If the value type is integer, then the primal and the dual |
|
| 662 |
/// solutions are multiplied by |
|
| 663 |
/// \ref MaxWeightedFractionalMatching::primalScale "2" and |
|
| 664 |
/// \ref MaxWeightedFractionalMatching::dualScale "4" respectively. |
|
| 661 |
/// The primal solution is multiplied by |
|
| 662 |
/// \ref MaxWeightedFractionalMatching::primalScale "2". |
|
| 663 |
/// If the value type is integer, then the dual |
|
| 664 |
/// solution is scaled by |
|
| 665 |
/// \ref MaxWeightedFractionalMatching::dualScale "4". |
|
| 665 | 666 |
/// |
| 666 | 667 |
/// \tparam GR The undirected graph type the algorithm runs on. |
| 667 | 668 |
/// \tparam WM The type edge weight map. The default type is |
| 668 | 669 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
| 669 | 670 |
#ifdef DOXYGEN |
| 670 | 671 |
template <typename GR, typename WM> |
| 671 | 672 |
#else |
| 672 | 673 |
template <typename GR, |
| 673 | 674 |
typename WM = typename GR::template EdgeMap<int> > |
| 674 | 675 |
#endif |
| 675 | 676 |
class MaxWeightedFractionalMatching {
|
| 676 | 677 |
public: |
| 677 | 678 |
|
| 678 | 679 |
/// The graph type of the algorithm |
| 679 | 680 |
typedef GR Graph; |
| 680 | 681 |
/// The type of the edge weight map |
| 681 | 682 |
typedef WM WeightMap; |
| 682 | 683 |
/// The value type of the edge weights |
| 683 | 684 |
typedef typename WeightMap::Value Value; |
| 684 | 685 |
|
| 685 | 686 |
/// The type of the matching map |
| 686 | 687 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
| 687 | 688 |
MatchingMap; |
| 688 | 689 |
|
| 689 | 690 |
/// \brief Scaling factor for primal solution |
| 690 | 691 |
/// |
| 691 |
/// Scaling factor for primal solution. It is equal to 2 or 1 |
|
| 692 |
/// according to the value type. |
|
| 693 |
static const int primalScale = |
|
| 694 |
std::numeric_limits<Value>::is_integer ? 2 : 1; |
|
| 692 |
/// Scaling factor for primal solution. |
|
| 693 |
static const int primalScale = 2; |
|
| 695 | 694 |
|
| 696 | 695 |
/// \brief Scaling factor for dual solution |
| 697 | 696 |
/// |
| 698 | 697 |
/// Scaling factor for dual solution. It is equal to 4 or 1 |
| 699 | 698 |
/// according to the value type. |
| 700 | 699 |
static const int dualScale = |
| 701 | 700 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
| 702 | 701 |
|
| 703 | 702 |
private: |
| 704 | 703 |
|
| 705 | 704 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 706 | 705 |
|
| 707 | 706 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
| 708 | 707 |
|
| 709 | 708 |
const Graph& _graph; |
| 710 | 709 |
const WeightMap& _weight; |
| 711 | 710 |
|
| 712 | 711 |
MatchingMap* _matching; |
| 713 | 712 |
NodePotential* _node_potential; |
| 714 | 713 |
|
| 715 | 714 |
int _node_num; |
| 716 | 715 |
bool _allow_loops; |
| 717 | 716 |
|
| 718 | 717 |
enum Status {
|
| 719 | 718 |
EVEN = -1, MATCHED = 0, ODD = 1 |
| 720 | 719 |
}; |
| 721 | 720 |
|
| 722 | 721 |
typedef typename Graph::template NodeMap<Status> StatusMap; |
| 723 | 722 |
StatusMap* _status; |
| 724 | 723 |
|
| 725 | 724 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
| 726 | 725 |
PredMap* _pred; |
| 727 | 726 |
|
| 728 | 727 |
typedef ExtendFindEnum<IntNodeMap> TreeSet; |
| 729 | 728 |
|
| 730 | 729 |
IntNodeMap *_tree_set_index; |
| 731 | 730 |
TreeSet *_tree_set; |
| 732 | 731 |
|
| 733 | 732 |
IntNodeMap *_delta1_index; |
| 734 | 733 |
BinHeap<Value, IntNodeMap> *_delta1; |
| 735 | 734 |
|
| 736 | 735 |
IntNodeMap *_delta2_index; |
| 737 | 736 |
BinHeap<Value, IntNodeMap> *_delta2; |
| 738 | 737 |
|
| 739 | 738 |
IntEdgeMap *_delta3_index; |
| 740 | 739 |
BinHeap<Value, IntEdgeMap> *_delta3; |
| 741 | 740 |
|
| 742 | 741 |
Value _delta_sum; |
| 743 | 742 |
|
| 744 | 743 |
void createStructures() {
|
| 745 | 744 |
_node_num = countNodes(_graph); |
| 746 | 745 |
|
| 747 | 746 |
if (!_matching) {
|
| 748 | 747 |
_matching = new MatchingMap(_graph); |
| 749 | 748 |
} |
| 750 | 749 |
if (!_node_potential) {
|
| 751 | 750 |
_node_potential = new NodePotential(_graph); |
| 752 | 751 |
} |
| 753 | 752 |
if (!_status) {
|
| 754 | 753 |
_status = new StatusMap(_graph); |
| 755 | 754 |
} |
| 756 | 755 |
if (!_pred) {
|
| 757 | 756 |
_pred = new PredMap(_graph); |
| 758 | 757 |
} |
| 759 | 758 |
if (!_tree_set) {
|
| 760 | 759 |
_tree_set_index = new IntNodeMap(_graph); |
| 761 | 760 |
_tree_set = new TreeSet(*_tree_set_index); |
| 762 | 761 |
} |
| 763 | 762 |
if (!_delta1) {
|
| 764 | 763 |
_delta1_index = new IntNodeMap(_graph); |
| 765 | 764 |
_delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index); |
| 766 | 765 |
} |
| 767 | 766 |
if (!_delta2) {
|
| 768 | 767 |
_delta2_index = new IntNodeMap(_graph); |
| 769 | 768 |
_delta2 = new BinHeap<Value, IntNodeMap>(*_delta2_index); |
| 770 | 769 |
} |
| 771 | 770 |
if (!_delta3) {
|
| 772 | 771 |
_delta3_index = new IntEdgeMap(_graph); |
| 773 | 772 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
| 774 | 773 |
} |
| 775 | 774 |
} |
| 776 | 775 |
|
| 777 | 776 |
void destroyStructures() {
|
| 778 | 777 |
if (_matching) {
|
| 779 | 778 |
delete _matching; |
| 780 | 779 |
} |
| 781 | 780 |
if (_node_potential) {
|
| 782 | 781 |
delete _node_potential; |
| 783 | 782 |
} |
| 784 | 783 |
if (_status) {
|
| 785 | 784 |
delete _status; |
| 786 | 785 |
} |
| 787 | 786 |
if (_pred) {
|
| 788 | 787 |
delete _pred; |
| 789 | 788 |
} |
| 790 | 789 |
if (_tree_set) {
|
| ... | ... |
@@ -1236,321 +1235,319 @@ |
| 1236 | 1235 |
--unmatched; |
| 1237 | 1236 |
} else {
|
| 1238 | 1237 |
Node v = _graph.target((*_matching)[n]); |
| 1239 | 1238 |
if ((*_matching)[n] != |
| 1240 | 1239 |
_graph.oppositeArc((*_matching)[v])) {
|
| 1241 | 1240 |
extractCycle(a); |
| 1242 | 1241 |
--unmatched; |
| 1243 | 1242 |
} else {
|
| 1244 | 1243 |
extendOnArc(a); |
| 1245 | 1244 |
} |
| 1246 | 1245 |
} |
| 1247 | 1246 |
} break; |
| 1248 | 1247 |
case D3: |
| 1249 | 1248 |
{
|
| 1250 | 1249 |
Edge e = _delta3->top(); |
| 1251 | 1250 |
|
| 1252 | 1251 |
Node left = _graph.u(e); |
| 1253 | 1252 |
Node right = _graph.v(e); |
| 1254 | 1253 |
|
| 1255 | 1254 |
int left_tree = _tree_set->find(left); |
| 1256 | 1255 |
int right_tree = _tree_set->find(right); |
| 1257 | 1256 |
|
| 1258 | 1257 |
if (left_tree == right_tree) {
|
| 1259 | 1258 |
cycleOnEdge(e, left_tree); |
| 1260 | 1259 |
--unmatched; |
| 1261 | 1260 |
} else {
|
| 1262 | 1261 |
augmentOnEdge(e); |
| 1263 | 1262 |
unmatched -= 2; |
| 1264 | 1263 |
} |
| 1265 | 1264 |
} break; |
| 1266 | 1265 |
} |
| 1267 | 1266 |
} |
| 1268 | 1267 |
} |
| 1269 | 1268 |
|
| 1270 | 1269 |
/// \brief Run the algorithm. |
| 1271 | 1270 |
/// |
| 1272 | 1271 |
/// This method runs the \c %MaxWeightedFractionalMatching algorithm. |
| 1273 | 1272 |
/// |
| 1274 | 1273 |
/// \note mwfm.run() is just a shortcut of the following code. |
| 1275 | 1274 |
/// \code |
| 1276 | 1275 |
/// mwfm.init(); |
| 1277 | 1276 |
/// mwfm.start(); |
| 1278 | 1277 |
/// \endcode |
| 1279 | 1278 |
void run() {
|
| 1280 | 1279 |
init(); |
| 1281 | 1280 |
start(); |
| 1282 | 1281 |
} |
| 1283 | 1282 |
|
| 1284 | 1283 |
/// @} |
| 1285 | 1284 |
|
| 1286 | 1285 |
/// \name Primal Solution |
| 1287 | 1286 |
/// Functions to get the primal solution, i.e. the maximum weighted |
| 1288 | 1287 |
/// matching.\n |
| 1289 | 1288 |
/// Either \ref run() or \ref start() function should be called before |
| 1290 | 1289 |
/// using them. |
| 1291 | 1290 |
|
| 1292 | 1291 |
/// @{
|
| 1293 | 1292 |
|
| 1294 | 1293 |
/// \brief Return the weight of the matching. |
| 1295 | 1294 |
/// |
| 1296 | 1295 |
/// This function returns the weight of the found matching. This |
| 1297 | 1296 |
/// value is scaled by \ref primalScale "primal scale". |
| 1298 | 1297 |
/// |
| 1299 | 1298 |
/// \pre Either run() or start() must be called before using this function. |
| 1300 | 1299 |
Value matchingWeight() const {
|
| 1301 | 1300 |
Value sum = 0; |
| 1302 | 1301 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1303 | 1302 |
if ((*_matching)[n] != INVALID) {
|
| 1304 | 1303 |
sum += _weight[(*_matching)[n]]; |
| 1305 | 1304 |
} |
| 1306 | 1305 |
} |
| 1307 | 1306 |
return sum * primalScale / 2; |
| 1308 | 1307 |
} |
| 1309 | 1308 |
|
| 1310 | 1309 |
/// \brief Return the number of covered nodes in the matching. |
| 1311 | 1310 |
/// |
| 1312 | 1311 |
/// This function returns the number of covered nodes in the matching. |
| 1313 | 1312 |
/// |
| 1314 | 1313 |
/// \pre Either run() or start() must be called before using this function. |
| 1315 | 1314 |
int matchingSize() const {
|
| 1316 | 1315 |
int num = 0; |
| 1317 | 1316 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1318 | 1317 |
if ((*_matching)[n] != INVALID) {
|
| 1319 | 1318 |
++num; |
| 1320 | 1319 |
} |
| 1321 | 1320 |
} |
| 1322 | 1321 |
return num; |
| 1323 | 1322 |
} |
| 1324 | 1323 |
|
| 1325 | 1324 |
/// \brief Return \c true if the given edge is in the matching. |
| 1326 | 1325 |
/// |
| 1327 | 1326 |
/// This function returns \c true if the given edge is in the |
| 1328 | 1327 |
/// found matching. The result is scaled by \ref primalScale |
| 1329 | 1328 |
/// "primal scale". |
| 1330 | 1329 |
/// |
| 1331 | 1330 |
/// \pre Either run() or start() must be called before using this function. |
| 1332 |
Value matching(const Edge& edge) const {
|
|
| 1333 |
return Value(edge == (*_matching)[_graph.u(edge)] ? 1 : 0) |
|
| 1334 |
* primalScale / 2 + Value(edge == (*_matching)[_graph.v(edge)] ? 1 : 0) |
|
| 1335 |
* primalScale / 2; |
|
| 1331 |
int matching(const Edge& edge) const {
|
|
| 1332 |
return (edge == (*_matching)[_graph.u(edge)] ? 1 : 0) |
|
| 1333 |
+ (edge == (*_matching)[_graph.v(edge)] ? 1 : 0); |
|
| 1336 | 1334 |
} |
| 1337 | 1335 |
|
| 1338 | 1336 |
/// \brief Return the fractional matching arc (or edge) incident |
| 1339 | 1337 |
/// to the given node. |
| 1340 | 1338 |
/// |
| 1341 | 1339 |
/// This function returns one of the fractional matching arc (or |
| 1342 | 1340 |
/// edge) incident to the given node in the found matching or \c |
| 1343 | 1341 |
/// INVALID if the node is not covered by the matching or if the |
| 1344 | 1342 |
/// node is on an odd length cycle then it is the successor edge |
| 1345 | 1343 |
/// on the cycle. |
| 1346 | 1344 |
/// |
| 1347 | 1345 |
/// \pre Either run() or start() must be called before using this function. |
| 1348 | 1346 |
Arc matching(const Node& node) const {
|
| 1349 | 1347 |
return (*_matching)[node]; |
| 1350 | 1348 |
} |
| 1351 | 1349 |
|
| 1352 | 1350 |
/// \brief Return a const reference to the matching map. |
| 1353 | 1351 |
/// |
| 1354 | 1352 |
/// This function returns a const reference to a node map that stores |
| 1355 | 1353 |
/// the matching arc (or edge) incident to each node. |
| 1356 | 1354 |
const MatchingMap& matchingMap() const {
|
| 1357 | 1355 |
return *_matching; |
| 1358 | 1356 |
} |
| 1359 | 1357 |
|
| 1360 | 1358 |
/// @} |
| 1361 | 1359 |
|
| 1362 | 1360 |
/// \name Dual Solution |
| 1363 | 1361 |
/// Functions to get the dual solution.\n |
| 1364 | 1362 |
/// Either \ref run() or \ref start() function should be called before |
| 1365 | 1363 |
/// using them. |
| 1366 | 1364 |
|
| 1367 | 1365 |
/// @{
|
| 1368 | 1366 |
|
| 1369 | 1367 |
/// \brief Return the value of the dual solution. |
| 1370 | 1368 |
/// |
| 1371 | 1369 |
/// This function returns the value of the dual solution. |
| 1372 | 1370 |
/// It should be equal to the primal value scaled by \ref dualScale |
| 1373 | 1371 |
/// "dual scale". |
| 1374 | 1372 |
/// |
| 1375 | 1373 |
/// \pre Either run() or start() must be called before using this function. |
| 1376 | 1374 |
Value dualValue() const {
|
| 1377 | 1375 |
Value sum = 0; |
| 1378 | 1376 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1379 | 1377 |
sum += nodeValue(n); |
| 1380 | 1378 |
} |
| 1381 | 1379 |
return sum; |
| 1382 | 1380 |
} |
| 1383 | 1381 |
|
| 1384 | 1382 |
/// \brief Return the dual value (potential) of the given node. |
| 1385 | 1383 |
/// |
| 1386 | 1384 |
/// This function returns the dual value (potential) of the given node. |
| 1387 | 1385 |
/// |
| 1388 | 1386 |
/// \pre Either run() or start() must be called before using this function. |
| 1389 | 1387 |
Value nodeValue(const Node& n) const {
|
| 1390 | 1388 |
return (*_node_potential)[n]; |
| 1391 | 1389 |
} |
| 1392 | 1390 |
|
| 1393 | 1391 |
/// @} |
| 1394 | 1392 |
|
| 1395 | 1393 |
}; |
| 1396 | 1394 |
|
| 1397 | 1395 |
/// \ingroup matching |
| 1398 | 1396 |
/// |
| 1399 | 1397 |
/// \brief Weighted fractional perfect matching in general graphs |
| 1400 | 1398 |
/// |
| 1401 | 1399 |
/// This class provides an efficient implementation of fractional |
| 1402 | 1400 |
/// matching algorithm. The implementation uses priority queues and |
| 1403 | 1401 |
/// provides \f$O(nm\log n)\f$ time complexity. |
| 1404 | 1402 |
/// |
| 1405 | 1403 |
/// The maximum weighted fractional perfect matching is a relaxation |
| 1406 | 1404 |
/// of the maximum weighted perfect matching problem where the odd |
| 1407 | 1405 |
/// set constraints are omitted. |
| 1408 | 1406 |
/// It can be formulated with the following linear program. |
| 1409 | 1407 |
/// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
|
| 1410 | 1408 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
| 1411 | 1409 |
/// \f[\max \sum_{e\in E}x_ew_e\f]
|
| 1412 | 1410 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
| 1413 | 1411 |
/// \f$X\f$. The result must be the union of a matching with one |
| 1414 | 1412 |
/// value edges and a set of odd length cycles with half value edges. |
| 1415 | 1413 |
/// |
| 1416 | 1414 |
/// The algorithm calculates an optimal fractional matching and a |
| 1417 | 1415 |
/// proof of the optimality. The solution of the dual problem can be |
| 1418 | 1416 |
/// used to check the result of the algorithm. The dual linear |
| 1419 | 1417 |
/// problem is the following. |
| 1420 | 1418 |
/// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f]
|
| 1421 | 1419 |
/// \f[\min \sum_{u \in V}y_u \f]
|
| 1422 | 1420 |
/// |
| 1423 | 1421 |
/// The algorithm can be executed with the run() function. |
| 1424 | 1422 |
/// After it the matching (the primal solution) and the dual solution |
| 1425 | 1423 |
/// can be obtained using the query functions. |
| 1426 |
|
|
| 1427 |
/// If the value type is integer, then the primal and the dual |
|
| 1428 |
/// solutions are multiplied by |
|
| 1429 |
/// \ref MaxWeightedPerfectFractionalMatching::primalScale "2" and |
|
| 1430 |
/// |
|
| 1424 |
/// |
|
| 1425 |
/// The primal solution is multiplied by |
|
| 1426 |
/// \ref MaxWeightedPerfectFractionalMatching::primalScale "2". |
|
| 1427 |
/// If the value type is integer, then the dual |
|
| 1428 |
/// solution is scaled by |
|
| 1429 |
/// \ref MaxWeightedPerfectFractionalMatching::dualScale "4". |
|
| 1431 | 1430 |
/// |
| 1432 | 1431 |
/// \tparam GR The undirected graph type the algorithm runs on. |
| 1433 | 1432 |
/// \tparam WM The type edge weight map. The default type is |
| 1434 | 1433 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
| 1435 | 1434 |
#ifdef DOXYGEN |
| 1436 | 1435 |
template <typename GR, typename WM> |
| 1437 | 1436 |
#else |
| 1438 | 1437 |
template <typename GR, |
| 1439 | 1438 |
typename WM = typename GR::template EdgeMap<int> > |
| 1440 | 1439 |
#endif |
| 1441 | 1440 |
class MaxWeightedPerfectFractionalMatching {
|
| 1442 | 1441 |
public: |
| 1443 | 1442 |
|
| 1444 | 1443 |
/// The graph type of the algorithm |
| 1445 | 1444 |
typedef GR Graph; |
| 1446 | 1445 |
/// The type of the edge weight map |
| 1447 | 1446 |
typedef WM WeightMap; |
| 1448 | 1447 |
/// The value type of the edge weights |
| 1449 | 1448 |
typedef typename WeightMap::Value Value; |
| 1450 | 1449 |
|
| 1451 | 1450 |
/// The type of the matching map |
| 1452 | 1451 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
| 1453 | 1452 |
MatchingMap; |
| 1454 | 1453 |
|
| 1455 | 1454 |
/// \brief Scaling factor for primal solution |
| 1456 | 1455 |
/// |
| 1457 |
/// Scaling factor for primal solution. It is equal to 2 or 1 |
|
| 1458 |
/// according to the value type. |
|
| 1459 |
static const int primalScale = |
|
| 1460 |
std::numeric_limits<Value>::is_integer ? 2 : 1; |
|
| 1456 |
/// Scaling factor for primal solution. |
|
| 1457 |
static const int primalScale = 2; |
|
| 1461 | 1458 |
|
| 1462 | 1459 |
/// \brief Scaling factor for dual solution |
| 1463 | 1460 |
/// |
| 1464 | 1461 |
/// Scaling factor for dual solution. It is equal to 4 or 1 |
| 1465 | 1462 |
/// according to the value type. |
| 1466 | 1463 |
static const int dualScale = |
| 1467 | 1464 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
| 1468 | 1465 |
|
| 1469 | 1466 |
private: |
| 1470 | 1467 |
|
| 1471 | 1468 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 1472 | 1469 |
|
| 1473 | 1470 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
| 1474 | 1471 |
|
| 1475 | 1472 |
const Graph& _graph; |
| 1476 | 1473 |
const WeightMap& _weight; |
| 1477 | 1474 |
|
| 1478 | 1475 |
MatchingMap* _matching; |
| 1479 | 1476 |
NodePotential* _node_potential; |
| 1480 | 1477 |
|
| 1481 | 1478 |
int _node_num; |
| 1482 | 1479 |
bool _allow_loops; |
| 1483 | 1480 |
|
| 1484 | 1481 |
enum Status {
|
| 1485 | 1482 |
EVEN = -1, MATCHED = 0, ODD = 1 |
| 1486 | 1483 |
}; |
| 1487 | 1484 |
|
| 1488 | 1485 |
typedef typename Graph::template NodeMap<Status> StatusMap; |
| 1489 | 1486 |
StatusMap* _status; |
| 1490 | 1487 |
|
| 1491 | 1488 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
| 1492 | 1489 |
PredMap* _pred; |
| 1493 | 1490 |
|
| 1494 | 1491 |
typedef ExtendFindEnum<IntNodeMap> TreeSet; |
| 1495 | 1492 |
|
| 1496 | 1493 |
IntNodeMap *_tree_set_index; |
| 1497 | 1494 |
TreeSet *_tree_set; |
| 1498 | 1495 |
|
| 1499 | 1496 |
IntNodeMap *_delta2_index; |
| 1500 | 1497 |
BinHeap<Value, IntNodeMap> *_delta2; |
| 1501 | 1498 |
|
| 1502 | 1499 |
IntEdgeMap *_delta3_index; |
| 1503 | 1500 |
BinHeap<Value, IntEdgeMap> *_delta3; |
| 1504 | 1501 |
|
| 1505 | 1502 |
Value _delta_sum; |
| 1506 | 1503 |
|
| 1507 | 1504 |
void createStructures() {
|
| 1508 | 1505 |
_node_num = countNodes(_graph); |
| 1509 | 1506 |
|
| 1510 | 1507 |
if (!_matching) {
|
| 1511 | 1508 |
_matching = new MatchingMap(_graph); |
| 1512 | 1509 |
} |
| 1513 | 1510 |
if (!_node_potential) {
|
| 1514 | 1511 |
_node_potential = new NodePotential(_graph); |
| 1515 | 1512 |
} |
| 1516 | 1513 |
if (!_status) {
|
| 1517 | 1514 |
_status = new StatusMap(_graph); |
| 1518 | 1515 |
} |
| 1519 | 1516 |
if (!_pred) {
|
| 1520 | 1517 |
_pred = new PredMap(_graph); |
| 1521 | 1518 |
} |
| 1522 | 1519 |
if (!_tree_set) {
|
| 1523 | 1520 |
_tree_set_index = new IntNodeMap(_graph); |
| 1524 | 1521 |
_tree_set = new TreeSet(*_tree_set_index); |
| 1525 | 1522 |
} |
| 1526 | 1523 |
if (!_delta2) {
|
| 1527 | 1524 |
_delta2_index = new IntNodeMap(_graph); |
| 1528 | 1525 |
_delta2 = new BinHeap<Value, IntNodeMap>(*_delta2_index); |
| 1529 | 1526 |
} |
| 1530 | 1527 |
if (!_delta3) {
|
| 1531 | 1528 |
_delta3_index = new IntEdgeMap(_graph); |
| 1532 | 1529 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
| 1533 | 1530 |
} |
| 1534 | 1531 |
} |
| 1535 | 1532 |
|
| 1536 | 1533 |
void destroyStructures() {
|
| 1537 | 1534 |
if (_matching) {
|
| 1538 | 1535 |
delete _matching; |
| 1539 | 1536 |
} |
| 1540 | 1537 |
if (_node_potential) {
|
| 1541 | 1538 |
delete _node_potential; |
| 1542 | 1539 |
} |
| 1543 | 1540 |
if (_status) {
|
| 1544 | 1541 |
delete _status; |
| 1545 | 1542 |
} |
| 1546 | 1543 |
if (_pred) {
|
| 1547 | 1544 |
delete _pred; |
| 1548 | 1545 |
} |
| 1549 | 1546 |
if (_tree_set) {
|
| 1550 | 1547 |
delete _tree_set_index; |
| 1551 | 1548 |
delete _tree_set; |
| 1552 | 1549 |
} |
| 1553 | 1550 |
if (_delta2) {
|
| 1554 | 1551 |
delete _delta2_index; |
| 1555 | 1552 |
delete _delta2; |
| 1556 | 1553 |
} |
| ... | ... |
@@ -1971,164 +1968,163 @@ |
| 1971 | 1968 |
Node v = _graph.target((*_matching)[n]); |
| 1972 | 1969 |
if ((*_matching)[n] != |
| 1973 | 1970 |
_graph.oppositeArc((*_matching)[v])) {
|
| 1974 | 1971 |
extractCycle(a); |
| 1975 | 1972 |
--unmatched; |
| 1976 | 1973 |
} else {
|
| 1977 | 1974 |
extendOnArc(a); |
| 1978 | 1975 |
} |
| 1979 | 1976 |
} |
| 1980 | 1977 |
} break; |
| 1981 | 1978 |
case D3: |
| 1982 | 1979 |
{
|
| 1983 | 1980 |
Edge e = _delta3->top(); |
| 1984 | 1981 |
|
| 1985 | 1982 |
Node left = _graph.u(e); |
| 1986 | 1983 |
Node right = _graph.v(e); |
| 1987 | 1984 |
|
| 1988 | 1985 |
int left_tree = _tree_set->find(left); |
| 1989 | 1986 |
int right_tree = _tree_set->find(right); |
| 1990 | 1987 |
|
| 1991 | 1988 |
if (left_tree == right_tree) {
|
| 1992 | 1989 |
cycleOnEdge(e, left_tree); |
| 1993 | 1990 |
--unmatched; |
| 1994 | 1991 |
} else {
|
| 1995 | 1992 |
augmentOnEdge(e); |
| 1996 | 1993 |
unmatched -= 2; |
| 1997 | 1994 |
} |
| 1998 | 1995 |
} break; |
| 1999 | 1996 |
} |
| 2000 | 1997 |
} |
| 2001 | 1998 |
return true; |
| 2002 | 1999 |
} |
| 2003 | 2000 |
|
| 2004 | 2001 |
/// \brief Run the algorithm. |
| 2005 | 2002 |
/// |
| 2006 | 2003 |
/// This method runs the \c %MaxWeightedPerfectFractionalMatching |
| 2007 | 2004 |
/// algorithm. |
| 2008 | 2005 |
/// |
| 2009 | 2006 |
/// \note mwfm.run() is just a shortcut of the following code. |
| 2010 | 2007 |
/// \code |
| 2011 | 2008 |
/// mwpfm.init(); |
| 2012 | 2009 |
/// mwpfm.start(); |
| 2013 | 2010 |
/// \endcode |
| 2014 | 2011 |
bool run() {
|
| 2015 | 2012 |
init(); |
| 2016 | 2013 |
return start(); |
| 2017 | 2014 |
} |
| 2018 | 2015 |
|
| 2019 | 2016 |
/// @} |
| 2020 | 2017 |
|
| 2021 | 2018 |
/// \name Primal Solution |
| 2022 | 2019 |
/// Functions to get the primal solution, i.e. the maximum weighted |
| 2023 | 2020 |
/// matching.\n |
| 2024 | 2021 |
/// Either \ref run() or \ref start() function should be called before |
| 2025 | 2022 |
/// using them. |
| 2026 | 2023 |
|
| 2027 | 2024 |
/// @{
|
| 2028 | 2025 |
|
| 2029 | 2026 |
/// \brief Return the weight of the matching. |
| 2030 | 2027 |
/// |
| 2031 | 2028 |
/// This function returns the weight of the found matching. This |
| 2032 | 2029 |
/// value is scaled by \ref primalScale "primal scale". |
| 2033 | 2030 |
/// |
| 2034 | 2031 |
/// \pre Either run() or start() must be called before using this function. |
| 2035 | 2032 |
Value matchingWeight() const {
|
| 2036 | 2033 |
Value sum = 0; |
| 2037 | 2034 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 2038 | 2035 |
if ((*_matching)[n] != INVALID) {
|
| 2039 | 2036 |
sum += _weight[(*_matching)[n]]; |
| 2040 | 2037 |
} |
| 2041 | 2038 |
} |
| 2042 | 2039 |
return sum * primalScale / 2; |
| 2043 | 2040 |
} |
| 2044 | 2041 |
|
| 2045 | 2042 |
/// \brief Return the number of covered nodes in the matching. |
| 2046 | 2043 |
/// |
| 2047 | 2044 |
/// This function returns the number of covered nodes in the matching. |
| 2048 | 2045 |
/// |
| 2049 | 2046 |
/// \pre Either run() or start() must be called before using this function. |
| 2050 | 2047 |
int matchingSize() const {
|
| 2051 | 2048 |
int num = 0; |
| 2052 | 2049 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 2053 | 2050 |
if ((*_matching)[n] != INVALID) {
|
| 2054 | 2051 |
++num; |
| 2055 | 2052 |
} |
| 2056 | 2053 |
} |
| 2057 | 2054 |
return num; |
| 2058 | 2055 |
} |
| 2059 | 2056 |
|
| 2060 | 2057 |
/// \brief Return \c true if the given edge is in the matching. |
| 2061 | 2058 |
/// |
| 2062 | 2059 |
/// This function returns \c true if the given edge is in the |
| 2063 | 2060 |
/// found matching. The result is scaled by \ref primalScale |
| 2064 | 2061 |
/// "primal scale". |
| 2065 | 2062 |
/// |
| 2066 | 2063 |
/// \pre Either run() or start() must be called before using this function. |
| 2067 |
Value matching(const Edge& edge) const {
|
|
| 2068 |
return Value(edge == (*_matching)[_graph.u(edge)] ? 1 : 0) |
|
| 2069 |
* primalScale / 2 + Value(edge == (*_matching)[_graph.v(edge)] ? 1 : 0) |
|
| 2070 |
* primalScale / 2; |
|
| 2064 |
int matching(const Edge& edge) const {
|
|
| 2065 |
return (edge == (*_matching)[_graph.u(edge)] ? 1 : 0) |
|
| 2066 |
+ (edge == (*_matching)[_graph.v(edge)] ? 1 : 0); |
|
| 2071 | 2067 |
} |
| 2072 | 2068 |
|
| 2073 | 2069 |
/// \brief Return the fractional matching arc (or edge) incident |
| 2074 | 2070 |
/// to the given node. |
| 2075 | 2071 |
/// |
| 2076 | 2072 |
/// This function returns one of the fractional matching arc (or |
| 2077 | 2073 |
/// edge) incident to the given node in the found matching or \c |
| 2078 | 2074 |
/// INVALID if the node is not covered by the matching or if the |
| 2079 | 2075 |
/// node is on an odd length cycle then it is the successor edge |
| 2080 | 2076 |
/// on the cycle. |
| 2081 | 2077 |
/// |
| 2082 | 2078 |
/// \pre Either run() or start() must be called before using this function. |
| 2083 | 2079 |
Arc matching(const Node& node) const {
|
| 2084 | 2080 |
return (*_matching)[node]; |
| 2085 | 2081 |
} |
| 2086 | 2082 |
|
| 2087 | 2083 |
/// \brief Return a const reference to the matching map. |
| 2088 | 2084 |
/// |
| 2089 | 2085 |
/// This function returns a const reference to a node map that stores |
| 2090 | 2086 |
/// the matching arc (or edge) incident to each node. |
| 2091 | 2087 |
const MatchingMap& matchingMap() const {
|
| 2092 | 2088 |
return *_matching; |
| 2093 | 2089 |
} |
| 2094 | 2090 |
|
| 2095 | 2091 |
/// @} |
| 2096 | 2092 |
|
| 2097 | 2093 |
/// \name Dual Solution |
| 2098 | 2094 |
/// Functions to get the dual solution.\n |
| 2099 | 2095 |
/// Either \ref run() or \ref start() function should be called before |
| 2100 | 2096 |
/// using them. |
| 2101 | 2097 |
|
| 2102 | 2098 |
/// @{
|
| 2103 | 2099 |
|
| 2104 | 2100 |
/// \brief Return the value of the dual solution. |
| 2105 | 2101 |
/// |
| 2106 | 2102 |
/// This function returns the value of the dual solution. |
| 2107 | 2103 |
/// It should be equal to the primal value scaled by \ref dualScale |
| 2108 | 2104 |
/// "dual scale". |
| 2109 | 2105 |
/// |
| 2110 | 2106 |
/// \pre Either run() or start() must be called before using this function. |
| 2111 | 2107 |
Value dualValue() const {
|
| 2112 | 2108 |
Value sum = 0; |
| 2113 | 2109 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 2114 | 2110 |
sum += nodeValue(n); |
| 2115 | 2111 |
} |
| 2116 | 2112 |
return sum; |
| 2117 | 2113 |
} |
| 2118 | 2114 |
|
| 2119 | 2115 |
/// \brief Return the dual value (potential) of the given node. |
| 2120 | 2116 |
/// |
| 2121 | 2117 |
/// This function returns the dual value (potential) of the given node. |
| 2122 | 2118 |
/// |
| 2123 | 2119 |
/// \pre Either run() or start() must be called before using this function. |
| 2124 | 2120 |
Value nodeValue(const Node& n) const {
|
| 2125 | 2121 |
return (*_node_potential)[n]; |
| 2126 | 2122 |
} |
| 2127 | 2123 |
|
| 2128 | 2124 |
/// @} |
| 2129 | 2125 |
|
| 2130 | 2126 |
}; |
| 2131 | 2127 |
|
| 2132 | 2128 |
} //END OF NAMESPACE LEMON |
| 2133 | 2129 |
|
| 2134 | 2130 |
#endif //LEMON_FRACTIONAL_MATCHING_H |
| ... | ... |
@@ -143,347 +143,370 @@ |
| 143 | 143 |
mat_test.runPerfect(); |
| 144 | 144 |
mat_test.runPerfect(true); |
| 145 | 145 |
|
| 146 | 146 |
const_mat_test.matchingSize(); |
| 147 | 147 |
const_mat_test.matching(e); |
| 148 | 148 |
const_mat_test.matching(n); |
| 149 | 149 |
const MaxFractionalMatching<Graph>::MatchingMap& mmap = |
| 150 | 150 |
const_mat_test.matchingMap(); |
| 151 | 151 |
e = mmap[n]; |
| 152 | 152 |
|
| 153 | 153 |
const_mat_test.barrier(n); |
| 154 | 154 |
} |
| 155 | 155 |
|
| 156 | 156 |
void checkMaxWeightedFractionalMatchingCompile() |
| 157 | 157 |
{
|
| 158 | 158 |
typedef concepts::Graph Graph; |
| 159 | 159 |
typedef Graph::Node Node; |
| 160 | 160 |
typedef Graph::Edge Edge; |
| 161 | 161 |
typedef Graph::EdgeMap<int> WeightMap; |
| 162 | 162 |
|
| 163 | 163 |
Graph g; |
| 164 | 164 |
Node n; |
| 165 | 165 |
Edge e; |
| 166 | 166 |
WeightMap w(g); |
| 167 | 167 |
|
| 168 | 168 |
MaxWeightedFractionalMatching<Graph> mat_test(g, w); |
| 169 | 169 |
const MaxWeightedFractionalMatching<Graph>& |
| 170 | 170 |
const_mat_test = mat_test; |
| 171 | 171 |
|
| 172 | 172 |
mat_test.init(); |
| 173 | 173 |
mat_test.start(); |
| 174 | 174 |
mat_test.run(); |
| 175 | 175 |
|
| 176 | 176 |
const_mat_test.matchingWeight(); |
| 177 | 177 |
const_mat_test.matchingSize(); |
| 178 | 178 |
const_mat_test.matching(e); |
| 179 | 179 |
const_mat_test.matching(n); |
| 180 | 180 |
const MaxWeightedFractionalMatching<Graph>::MatchingMap& mmap = |
| 181 | 181 |
const_mat_test.matchingMap(); |
| 182 | 182 |
e = mmap[n]; |
| 183 | 183 |
|
| 184 | 184 |
const_mat_test.dualValue(); |
| 185 | 185 |
const_mat_test.nodeValue(n); |
| 186 | 186 |
} |
| 187 | 187 |
|
| 188 | 188 |
void checkMaxWeightedPerfectFractionalMatchingCompile() |
| 189 | 189 |
{
|
| 190 | 190 |
typedef concepts::Graph Graph; |
| 191 | 191 |
typedef Graph::Node Node; |
| 192 | 192 |
typedef Graph::Edge Edge; |
| 193 | 193 |
typedef Graph::EdgeMap<int> WeightMap; |
| 194 | 194 |
|
| 195 | 195 |
Graph g; |
| 196 | 196 |
Node n; |
| 197 | 197 |
Edge e; |
| 198 | 198 |
WeightMap w(g); |
| 199 | 199 |
|
| 200 | 200 |
MaxWeightedPerfectFractionalMatching<Graph> mat_test(g, w); |
| 201 | 201 |
const MaxWeightedPerfectFractionalMatching<Graph>& |
| 202 | 202 |
const_mat_test = mat_test; |
| 203 | 203 |
|
| 204 | 204 |
mat_test.init(); |
| 205 | 205 |
mat_test.start(); |
| 206 | 206 |
mat_test.run(); |
| 207 | 207 |
|
| 208 | 208 |
const_mat_test.matchingWeight(); |
| 209 | 209 |
const_mat_test.matching(e); |
| 210 | 210 |
const_mat_test.matching(n); |
| 211 | 211 |
const MaxWeightedPerfectFractionalMatching<Graph>::MatchingMap& mmap = |
| 212 | 212 |
const_mat_test.matchingMap(); |
| 213 | 213 |
e = mmap[n]; |
| 214 | 214 |
|
| 215 | 215 |
const_mat_test.dualValue(); |
| 216 | 216 |
const_mat_test.nodeValue(n); |
| 217 | 217 |
} |
| 218 | 218 |
|
| 219 | 219 |
void checkFractionalMatching(const SmartGraph& graph, |
| 220 | 220 |
const MaxFractionalMatching<SmartGraph>& mfm, |
| 221 | 221 |
bool allow_loops = true) {
|
| 222 | 222 |
int pv = 0; |
| 223 | 223 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
| 224 | 224 |
int indeg = 0; |
| 225 | 225 |
for (InArcIt a(graph, n); a != INVALID; ++a) {
|
| 226 | 226 |
if (mfm.matching(graph.source(a)) == a) {
|
| 227 | 227 |
++indeg; |
| 228 | 228 |
} |
| 229 | 229 |
} |
| 230 | 230 |
if (mfm.matching(n) != INVALID) {
|
| 231 | 231 |
check(indeg == 1, "Invalid matching"); |
| 232 | 232 |
++pv; |
| 233 | 233 |
} else {
|
| 234 | 234 |
check(indeg == 0, "Invalid matching"); |
| 235 | 235 |
} |
| 236 | 236 |
} |
| 237 | 237 |
check(pv == mfm.matchingSize(), "Wrong matching size"); |
| 238 | 238 |
|
| 239 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
|
|
| 240 |
check((e == mfm.matching(graph.u(e)) ? 1 : 0) + |
|
| 241 |
(e == mfm.matching(graph.v(e)) ? 1 : 0) == |
|
| 242 |
mfm.matching(e), "Invalid matching"); |
|
| 243 |
} |
|
| 244 |
|
|
| 239 | 245 |
SmartGraph::NodeMap<bool> processed(graph, false); |
| 240 | 246 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
| 241 | 247 |
if (processed[n]) continue; |
| 242 | 248 |
processed[n] = true; |
| 243 | 249 |
if (mfm.matching(n) == INVALID) continue; |
| 244 | 250 |
int num = 1; |
| 245 | 251 |
Node v = graph.target(mfm.matching(n)); |
| 246 | 252 |
while (v != n) {
|
| 247 | 253 |
processed[v] = true; |
| 248 | 254 |
++num; |
| 249 | 255 |
v = graph.target(mfm.matching(v)); |
| 250 | 256 |
} |
| 251 | 257 |
check(num == 2 || num % 2 == 1, "Wrong cycle size"); |
| 252 | 258 |
check(allow_loops || num != 1, "Wrong cycle size"); |
| 253 | 259 |
} |
| 254 | 260 |
|
| 255 | 261 |
int anum = 0, bnum = 0; |
| 256 | 262 |
SmartGraph::NodeMap<bool> neighbours(graph, false); |
| 257 | 263 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
| 258 | 264 |
if (!mfm.barrier(n)) continue; |
| 259 | 265 |
++anum; |
| 260 | 266 |
for (SmartGraph::InArcIt a(graph, n); a != INVALID; ++a) {
|
| 261 | 267 |
Node u = graph.source(a); |
| 262 | 268 |
if (!allow_loops && u == n) continue; |
| 263 | 269 |
if (!neighbours[u]) {
|
| 264 | 270 |
neighbours[u] = true; |
| 265 | 271 |
++bnum; |
| 266 | 272 |
} |
| 267 | 273 |
} |
| 268 | 274 |
} |
| 269 | 275 |
check(anum - bnum + mfm.matchingSize() == countNodes(graph), |
| 270 | 276 |
"Wrong barrier"); |
| 271 | 277 |
} |
| 272 | 278 |
|
| 273 | 279 |
void checkPerfectFractionalMatching(const SmartGraph& graph, |
| 274 | 280 |
const MaxFractionalMatching<SmartGraph>& mfm, |
| 275 | 281 |
bool perfect, bool allow_loops = true) {
|
| 276 | 282 |
if (perfect) {
|
| 277 | 283 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
| 278 | 284 |
int indeg = 0; |
| 279 | 285 |
for (InArcIt a(graph, n); a != INVALID; ++a) {
|
| 280 | 286 |
if (mfm.matching(graph.source(a)) == a) {
|
| 281 | 287 |
++indeg; |
| 282 | 288 |
} |
| 283 | 289 |
} |
| 284 | 290 |
check(mfm.matching(n) != INVALID, "Invalid matching"); |
| 285 | 291 |
check(indeg == 1, "Invalid matching"); |
| 286 | 292 |
} |
| 293 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
|
|
| 294 |
check((e == mfm.matching(graph.u(e)) ? 1 : 0) + |
|
| 295 |
(e == mfm.matching(graph.v(e)) ? 1 : 0) == |
|
| 296 |
mfm.matching(e), "Invalid matching"); |
|
| 297 |
} |
|
| 287 | 298 |
} else {
|
| 288 | 299 |
int anum = 0, bnum = 0; |
| 289 | 300 |
SmartGraph::NodeMap<bool> neighbours(graph, false); |
| 290 | 301 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
| 291 | 302 |
if (!mfm.barrier(n)) continue; |
| 292 | 303 |
++anum; |
| 293 | 304 |
for (SmartGraph::InArcIt a(graph, n); a != INVALID; ++a) {
|
| 294 | 305 |
Node u = graph.source(a); |
| 295 | 306 |
if (!allow_loops && u == n) continue; |
| 296 | 307 |
if (!neighbours[u]) {
|
| 297 | 308 |
neighbours[u] = true; |
| 298 | 309 |
++bnum; |
| 299 | 310 |
} |
| 300 | 311 |
} |
| 301 | 312 |
} |
| 302 | 313 |
check(anum - bnum > 0, "Wrong barrier"); |
| 303 | 314 |
} |
| 304 | 315 |
} |
| 305 | 316 |
|
| 306 | 317 |
void checkWeightedFractionalMatching(const SmartGraph& graph, |
| 307 | 318 |
const SmartGraph::EdgeMap<int>& weight, |
| 308 | 319 |
const MaxWeightedFractionalMatching<SmartGraph>& mwfm, |
| 309 | 320 |
bool allow_loops = true) {
|
| 310 | 321 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
|
| 311 | 322 |
if (graph.u(e) == graph.v(e) && !allow_loops) continue; |
| 312 | 323 |
int rw = mwfm.nodeValue(graph.u(e)) + mwfm.nodeValue(graph.v(e)) |
| 313 | 324 |
- weight[e] * mwfm.dualScale; |
| 314 | 325 |
|
| 315 | 326 |
check(rw >= 0, "Negative reduced weight"); |
| 316 | 327 |
check(rw == 0 || !mwfm.matching(e), |
| 317 | 328 |
"Non-zero reduced weight on matching edge"); |
| 318 | 329 |
} |
| 319 | 330 |
|
| 320 | 331 |
int pv = 0; |
| 321 | 332 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
| 322 | 333 |
int indeg = 0; |
| 323 | 334 |
for (InArcIt a(graph, n); a != INVALID; ++a) {
|
| 324 | 335 |
if (mwfm.matching(graph.source(a)) == a) {
|
| 325 | 336 |
++indeg; |
| 326 | 337 |
} |
| 327 | 338 |
} |
| 328 | 339 |
check(indeg <= 1, "Invalid matching"); |
| 329 | 340 |
if (mwfm.matching(n) != INVALID) {
|
| 330 | 341 |
check(mwfm.nodeValue(n) >= 0, "Invalid node value"); |
| 331 | 342 |
check(indeg == 1, "Invalid matching"); |
| 332 | 343 |
pv += weight[mwfm.matching(n)]; |
| 333 | 344 |
SmartGraph::Node o = graph.target(mwfm.matching(n)); |
| 334 | 345 |
} else {
|
| 335 | 346 |
check(mwfm.nodeValue(n) == 0, "Invalid matching"); |
| 336 | 347 |
check(indeg == 0, "Invalid matching"); |
| 337 | 348 |
} |
| 338 | 349 |
} |
| 339 | 350 |
|
| 351 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
|
|
| 352 |
check((e == mwfm.matching(graph.u(e)) ? 1 : 0) + |
|
| 353 |
(e == mwfm.matching(graph.v(e)) ? 1 : 0) == |
|
| 354 |
mwfm.matching(e), "Invalid matching"); |
|
| 355 |
} |
|
| 356 |
|
|
| 340 | 357 |
int dv = 0; |
| 341 | 358 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
| 342 | 359 |
dv += mwfm.nodeValue(n); |
| 343 | 360 |
} |
| 344 | 361 |
|
| 345 | 362 |
check(pv * mwfm.dualScale == dv * 2, "Wrong duality"); |
| 346 | 363 |
|
| 347 | 364 |
SmartGraph::NodeMap<bool> processed(graph, false); |
| 348 | 365 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
| 349 | 366 |
if (processed[n]) continue; |
| 350 | 367 |
processed[n] = true; |
| 351 | 368 |
if (mwfm.matching(n) == INVALID) continue; |
| 352 | 369 |
int num = 1; |
| 353 | 370 |
Node v = graph.target(mwfm.matching(n)); |
| 354 | 371 |
while (v != n) {
|
| 355 | 372 |
processed[v] = true; |
| 356 | 373 |
++num; |
| 357 | 374 |
v = graph.target(mwfm.matching(v)); |
| 358 | 375 |
} |
| 359 | 376 |
check(num == 2 || num % 2 == 1, "Wrong cycle size"); |
| 360 | 377 |
check(allow_loops || num != 1, "Wrong cycle size"); |
| 361 | 378 |
} |
| 362 | 379 |
|
| 363 | 380 |
return; |
| 364 | 381 |
} |
| 365 | 382 |
|
| 366 | 383 |
void checkWeightedPerfectFractionalMatching(const SmartGraph& graph, |
| 367 | 384 |
const SmartGraph::EdgeMap<int>& weight, |
| 368 | 385 |
const MaxWeightedPerfectFractionalMatching<SmartGraph>& mwpfm, |
| 369 | 386 |
bool allow_loops = true) {
|
| 370 | 387 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
|
| 371 | 388 |
if (graph.u(e) == graph.v(e) && !allow_loops) continue; |
| 372 | 389 |
int rw = mwpfm.nodeValue(graph.u(e)) + mwpfm.nodeValue(graph.v(e)) |
| 373 | 390 |
- weight[e] * mwpfm.dualScale; |
| 374 | 391 |
|
| 375 | 392 |
check(rw >= 0, "Negative reduced weight"); |
| 376 | 393 |
check(rw == 0 || !mwpfm.matching(e), |
| 377 | 394 |
"Non-zero reduced weight on matching edge"); |
| 378 | 395 |
} |
| 379 | 396 |
|
| 380 | 397 |
int pv = 0; |
| 381 | 398 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
| 382 | 399 |
int indeg = 0; |
| 383 | 400 |
for (InArcIt a(graph, n); a != INVALID; ++a) {
|
| 384 | 401 |
if (mwpfm.matching(graph.source(a)) == a) {
|
| 385 | 402 |
++indeg; |
| 386 | 403 |
} |
| 387 | 404 |
} |
| 388 | 405 |
check(mwpfm.matching(n) != INVALID, "Invalid perfect matching"); |
| 389 | 406 |
check(indeg == 1, "Invalid perfect matching"); |
| 390 | 407 |
pv += weight[mwpfm.matching(n)]; |
| 391 | 408 |
SmartGraph::Node o = graph.target(mwpfm.matching(n)); |
| 392 | 409 |
} |
| 393 | 410 |
|
| 411 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
|
|
| 412 |
check((e == mwpfm.matching(graph.u(e)) ? 1 : 0) + |
|
| 413 |
(e == mwpfm.matching(graph.v(e)) ? 1 : 0) == |
|
| 414 |
mwpfm.matching(e), "Invalid matching"); |
|
| 415 |
} |
|
| 416 |
|
|
| 394 | 417 |
int dv = 0; |
| 395 | 418 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
| 396 | 419 |
dv += mwpfm.nodeValue(n); |
| 397 | 420 |
} |
| 398 | 421 |
|
| 399 | 422 |
check(pv * mwpfm.dualScale == dv * 2, "Wrong duality"); |
| 400 | 423 |
|
| 401 | 424 |
SmartGraph::NodeMap<bool> processed(graph, false); |
| 402 | 425 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
| 403 | 426 |
if (processed[n]) continue; |
| 404 | 427 |
processed[n] = true; |
| 405 | 428 |
if (mwpfm.matching(n) == INVALID) continue; |
| 406 | 429 |
int num = 1; |
| 407 | 430 |
Node v = graph.target(mwpfm.matching(n)); |
| 408 | 431 |
while (v != n) {
|
| 409 | 432 |
processed[v] = true; |
| 410 | 433 |
++num; |
| 411 | 434 |
v = graph.target(mwpfm.matching(v)); |
| 412 | 435 |
} |
| 413 | 436 |
check(num == 2 || num % 2 == 1, "Wrong cycle size"); |
| 414 | 437 |
check(allow_loops || num != 1, "Wrong cycle size"); |
| 415 | 438 |
} |
| 416 | 439 |
|
| 417 | 440 |
return; |
| 418 | 441 |
} |
| 419 | 442 |
|
| 420 | 443 |
|
| 421 | 444 |
int main() {
|
| 422 | 445 |
|
| 423 | 446 |
for (int i = 0; i < lgfn; ++i) {
|
| 424 | 447 |
SmartGraph graph; |
| 425 | 448 |
SmartGraph::EdgeMap<int> weight(graph); |
| 426 | 449 |
|
| 427 | 450 |
istringstream lgfs(lgf[i]); |
| 428 | 451 |
graphReader(graph, lgfs). |
| 429 | 452 |
edgeMap("weight", weight).run();
|
| 430 | 453 |
|
| 431 | 454 |
bool perfect_with_loops; |
| 432 | 455 |
{
|
| 433 | 456 |
MaxFractionalMatching<SmartGraph> mfm(graph, true); |
| 434 | 457 |
mfm.run(); |
| 435 | 458 |
checkFractionalMatching(graph, mfm, true); |
| 436 | 459 |
perfect_with_loops = mfm.matchingSize() == countNodes(graph); |
| 437 | 460 |
} |
| 438 | 461 |
|
| 439 | 462 |
bool perfect_without_loops; |
| 440 | 463 |
{
|
| 441 | 464 |
MaxFractionalMatching<SmartGraph> mfm(graph, false); |
| 442 | 465 |
mfm.run(); |
| 443 | 466 |
checkFractionalMatching(graph, mfm, false); |
| 444 | 467 |
perfect_without_loops = mfm.matchingSize() == countNodes(graph); |
| 445 | 468 |
} |
| 446 | 469 |
|
| 447 | 470 |
{
|
| 448 | 471 |
MaxFractionalMatching<SmartGraph> mfm(graph, true); |
| 449 | 472 |
bool result = mfm.runPerfect(); |
| 450 | 473 |
checkPerfectFractionalMatching(graph, mfm, result, true); |
| 451 | 474 |
check(result == perfect_with_loops, "Wrong perfect matching"); |
| 452 | 475 |
} |
| 453 | 476 |
|
| 454 | 477 |
{
|
| 455 | 478 |
MaxFractionalMatching<SmartGraph> mfm(graph, false); |
| 456 | 479 |
bool result = mfm.runPerfect(); |
| 457 | 480 |
checkPerfectFractionalMatching(graph, mfm, result, false); |
| 458 | 481 |
check(result == perfect_without_loops, "Wrong perfect matching"); |
| 459 | 482 |
} |
| 460 | 483 |
|
| 461 | 484 |
{
|
| 462 | 485 |
MaxWeightedFractionalMatching<SmartGraph> mwfm(graph, weight, true); |
| 463 | 486 |
mwfm.run(); |
| 464 | 487 |
checkWeightedFractionalMatching(graph, weight, mwfm, true); |
| 465 | 488 |
} |
| 466 | 489 |
|
| 467 | 490 |
{
|
| 468 | 491 |
MaxWeightedFractionalMatching<SmartGraph> mwfm(graph, weight, false); |
| 469 | 492 |
mwfm.run(); |
| 470 | 493 |
checkWeightedFractionalMatching(graph, weight, mwfm, false); |
| 471 | 494 |
} |
| 472 | 495 |
|
| 473 | 496 |
{
|
| 474 | 497 |
MaxWeightedPerfectFractionalMatching<SmartGraph> mwpfm(graph, weight, |
| 475 | 498 |
true); |
| 476 | 499 |
bool perfect = mwpfm.run(); |
| 477 | 500 |
check(perfect == (mwpfm.matchingSize() == countNodes(graph)), |
| 478 | 501 |
"Perfect matching found"); |
| 479 | 502 |
check(perfect == perfect_with_loops, "Wrong perfect matching"); |
| 480 | 503 |
|
| 481 | 504 |
if (perfect) {
|
| 482 | 505 |
checkWeightedPerfectFractionalMatching(graph, weight, mwpfm, true); |
| 483 | 506 |
} |
| 484 | 507 |
} |
| 485 | 508 |
|
| 486 | 509 |
{
|
| 487 | 510 |
MaxWeightedPerfectFractionalMatching<SmartGraph> mwpfm(graph, weight, |
| 488 | 511 |
false); |
| 489 | 512 |
bool perfect = mwpfm.run(); |
0 comments (0 inline)