| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_EULER_H |
|
| 20 |
#define LEMON_EULER_H |
|
| 21 |
|
|
| 22 |
#include<lemon/core.h> |
|
| 23 |
#include<lemon/adaptors.h> |
|
| 24 |
#include<lemon/connectivity.h> |
|
| 25 |
#include <list> |
|
| 26 |
|
|
| 27 |
/// \ingroup graph_prop |
|
| 28 |
/// \file |
|
| 29 |
/// \brief Euler tour |
|
| 30 |
/// |
|
| 31 |
///This file provides an Euler tour iterator and ways to check |
|
| 32 |
///if a digraph is euler. |
|
| 33 |
|
|
| 34 |
|
|
| 35 |
namespace lemon {
|
|
| 36 |
|
|
| 37 |
///Euler iterator for digraphs. |
|
| 38 |
|
|
| 39 |
/// \ingroup graph_prop |
|
| 40 |
///This iterator converts to the \c Arc type of the digraph and using |
|
| 41 |
///operator ++, it provides an Euler tour of a \e directed |
|
| 42 |
///graph (if there exists). |
|
| 43 |
/// |
|
| 44 |
///For example |
|
| 45 |
///if the given digraph is Euler (i.e it has only one nontrivial component |
|
| 46 |
///and the in-degree is equal to the out-degree for all nodes), |
|
| 47 |
///the following code will put the arcs of \c g |
|
| 48 |
///to the vector \c et according to an |
|
| 49 |
///Euler tour of \c g. |
|
| 50 |
///\code |
|
| 51 |
/// std::vector<ListDigraph::Arc> et; |
|
| 52 |
/// for(DiEulerIt<ListDigraph> e(g),e!=INVALID;++e) |
|
| 53 |
/// et.push_back(e); |
|
| 54 |
///\endcode |
|
| 55 |
///If \c g is not Euler then the resulted tour will not be full or closed. |
|
| 56 |
///\sa EulerIt |
|
| 57 |
///\todo Test required |
|
| 58 |
template<class Digraph> |
|
| 59 |
class DiEulerIt |
|
| 60 |
{
|
|
| 61 |
typedef typename Digraph::Node Node; |
|
| 62 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 63 |
typedef typename Digraph::Arc Arc; |
|
| 64 |
typedef typename Digraph::ArcIt ArcIt; |
|
| 65 |
typedef typename Digraph::OutArcIt OutArcIt; |
|
| 66 |
typedef typename Digraph::InArcIt InArcIt; |
|
| 67 |
|
|
| 68 |
const Digraph &g; |
|
| 69 |
typename Digraph::template NodeMap<OutArcIt> nedge; |
|
| 70 |
std::list<Arc> euler; |
|
| 71 |
|
|
| 72 |
public: |
|
| 73 |
|
|
| 74 |
///Constructor |
|
| 75 |
|
|
| 76 |
///\param _g A digraph. |
|
| 77 |
///\param start The starting point of the tour. If it is not given |
|
| 78 |
/// the tour will start from the first node. |
|
| 79 |
DiEulerIt(const Digraph &_g,typename Digraph::Node start=INVALID) |
|
| 80 |
: g(_g), nedge(g) |
|
| 81 |
{
|
|
| 82 |
if(start==INVALID) start=NodeIt(g); |
|
| 83 |
for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutArcIt(g,n); |
|
| 84 |
while(nedge[start]!=INVALID) {
|
|
| 85 |
euler.push_back(nedge[start]); |
|
| 86 |
Node next=g.target(nedge[start]); |
|
| 87 |
++nedge[start]; |
|
| 88 |
start=next; |
|
| 89 |
} |
|
| 90 |
} |
|
| 91 |
|
|
| 92 |
///Arc Conversion |
|
| 93 |
operator Arc() { return euler.empty()?INVALID:euler.front(); }
|
|
| 94 |
bool operator==(Invalid) { return euler.empty(); }
|
|
| 95 |
bool operator!=(Invalid) { return !euler.empty(); }
|
|
| 96 |
|
|
| 97 |
///Next arc of the tour |
|
| 98 |
DiEulerIt &operator++() {
|
|
| 99 |
Node s=g.target(euler.front()); |
|
| 100 |
euler.pop_front(); |
|
| 101 |
//This produces a warning.Strange. |
|
| 102 |
//std::list<Arc>::iterator next=euler.begin(); |
|
| 103 |
typename std::list<Arc>::iterator next=euler.begin(); |
|
| 104 |
while(nedge[s]!=INVALID) {
|
|
| 105 |
euler.insert(next,nedge[s]); |
|
| 106 |
Node n=g.target(nedge[s]); |
|
| 107 |
++nedge[s]; |
|
| 108 |
s=n; |
|
| 109 |
} |
|
| 110 |
return *this; |
|
| 111 |
} |
|
| 112 |
///Postfix incrementation |
|
| 113 |
|
|
| 114 |
///\warning This incrementation |
|
| 115 |
///returns an \c Arc, not an \ref DiEulerIt, as one may |
|
| 116 |
///expect. |
|
| 117 |
Arc operator++(int) |
|
| 118 |
{
|
|
| 119 |
Arc e=*this; |
|
| 120 |
++(*this); |
|
| 121 |
return e; |
|
| 122 |
} |
|
| 123 |
}; |
|
| 124 |
|
|
| 125 |
///Euler iterator for graphs. |
|
| 126 |
|
|
| 127 |
/// \ingroup graph_prop |
|
| 128 |
///This iterator converts to the \c Arc (or \c Edge) |
|
| 129 |
///type of the digraph and using |
|
| 130 |
///operator ++, it provides an Euler tour of an undirected |
|
| 131 |
///digraph (if there exists). |
|
| 132 |
/// |
|
| 133 |
///For example |
|
| 134 |
///if the given digraph if Euler (i.e it has only one nontrivial component |
|
| 135 |
///and the degree of each node is even), |
|
| 136 |
///the following code will print the arc IDs according to an |
|
| 137 |
///Euler tour of \c g. |
|
| 138 |
///\code |
|
| 139 |
/// for(EulerIt<ListGraph> e(g),e!=INVALID;++e) {
|
|
| 140 |
/// std::cout << g.id(Edge(e)) << std::eol; |
|
| 141 |
/// } |
|
| 142 |
///\endcode |
|
| 143 |
///Although the iterator provides an Euler tour of an graph, |
|
| 144 |
///it still returns Arcs in order to indicate the direction of the tour. |
|
| 145 |
///(But Arc will convert to Edges, of course). |
|
| 146 |
/// |
|
| 147 |
///If \c g is not Euler then the resulted tour will not be full or closed. |
|
| 148 |
///\sa EulerIt |
|
| 149 |
///\todo Test required |
|
| 150 |
template<class Digraph> |
|
| 151 |
class EulerIt |
|
| 152 |
{
|
|
| 153 |
typedef typename Digraph::Node Node; |
|
| 154 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 155 |
typedef typename Digraph::Arc Arc; |
|
| 156 |
typedef typename Digraph::Edge Edge; |
|
| 157 |
typedef typename Digraph::ArcIt ArcIt; |
|
| 158 |
typedef typename Digraph::OutArcIt OutArcIt; |
|
| 159 |
typedef typename Digraph::InArcIt InArcIt; |
|
| 160 |
|
|
| 161 |
const Digraph &g; |
|
| 162 |
typename Digraph::template NodeMap<OutArcIt> nedge; |
|
| 163 |
typename Digraph::template EdgeMap<bool> visited; |
|
| 164 |
std::list<Arc> euler; |
|
| 165 |
|
|
| 166 |
public: |
|
| 167 |
|
|
| 168 |
///Constructor |
|
| 169 |
|
|
| 170 |
///\param _g An graph. |
|
| 171 |
///\param start The starting point of the tour. If it is not given |
|
| 172 |
/// the tour will start from the first node. |
|
| 173 |
EulerIt(const Digraph &_g,typename Digraph::Node start=INVALID) |
|
| 174 |
: g(_g), nedge(g), visited(g,false) |
|
| 175 |
{
|
|
| 176 |
if(start==INVALID) start=NodeIt(g); |
|
| 177 |
for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutArcIt(g,n); |
|
| 178 |
while(nedge[start]!=INVALID) {
|
|
| 179 |
euler.push_back(nedge[start]); |
|
| 180 |
visited[nedge[start]]=true; |
|
| 181 |
Node next=g.target(nedge[start]); |
|
| 182 |
++nedge[start]; |
|
| 183 |
start=next; |
|
| 184 |
while(nedge[start]!=INVALID && visited[nedge[start]]) ++nedge[start]; |
|
| 185 |
} |
|
| 186 |
} |
|
| 187 |
|
|
| 188 |
///Arc Conversion |
|
| 189 |
operator Arc() const { return euler.empty()?INVALID:euler.front(); }
|
|
| 190 |
///Arc Conversion |
|
| 191 |
operator Edge() const { return euler.empty()?INVALID:euler.front(); }
|
|
| 192 |
///\e |
|
| 193 |
bool operator==(Invalid) const { return euler.empty(); }
|
|
| 194 |
///\e |
|
| 195 |
bool operator!=(Invalid) const { return !euler.empty(); }
|
|
| 196 |
|
|
| 197 |
///Next arc of the tour |
|
| 198 |
EulerIt &operator++() {
|
|
| 199 |
Node s=g.target(euler.front()); |
|
| 200 |
euler.pop_front(); |
|
| 201 |
typename std::list<Arc>::iterator next=euler.begin(); |
|
| 202 |
|
|
| 203 |
while(nedge[s]!=INVALID) {
|
|
| 204 |
while(nedge[s]!=INVALID && visited[nedge[s]]) ++nedge[s]; |
|
| 205 |
if(nedge[s]==INVALID) break; |
|
| 206 |
else {
|
|
| 207 |
euler.insert(next,nedge[s]); |
|
| 208 |
visited[nedge[s]]=true; |
|
| 209 |
Node n=g.target(nedge[s]); |
|
| 210 |
++nedge[s]; |
|
| 211 |
s=n; |
|
| 212 |
} |
|
| 213 |
} |
|
| 214 |
return *this; |
|
| 215 |
} |
|
| 216 |
|
|
| 217 |
///Postfix incrementation |
|
| 218 |
|
|
| 219 |
///\warning This incrementation |
|
| 220 |
///returns an \c Arc, not an \ref EulerIt, as one may |
|
| 221 |
///expect. |
|
| 222 |
Arc operator++(int) |
|
| 223 |
{
|
|
| 224 |
Arc e=*this; |
|
| 225 |
++(*this); |
|
| 226 |
return e; |
|
| 227 |
} |
|
| 228 |
}; |
|
| 229 |
|
|
| 230 |
|
|
| 231 |
///Checks if the graph is Euler |
|
| 232 |
|
|
| 233 |
/// \ingroup graph_prop |
|
| 234 |
///Checks if the graph is Euler. It works for both directed and undirected |
|
| 235 |
///graphs. |
|
| 236 |
///\note By definition, a digraph is called \e Euler if |
|
| 237 |
///and only if it is connected and the number of its incoming and outgoing |
|
| 238 |
///arcs are the same for each node. |
|
| 239 |
///Similarly, an undirected graph is called \e Euler if |
|
| 240 |
///and only if it is connected and the number of incident arcs is even |
|
| 241 |
///for each node. <em>Therefore, there are digraphs which are not Euler, but |
|
| 242 |
///still have an Euler tour</em>. |
|
| 243 |
///\todo Test required |
|
| 244 |
template<class Digraph> |
|
| 245 |
#ifdef DOXYGEN |
|
| 246 |
bool |
|
| 247 |
#else |
|
| 248 |
typename enable_if<UndirectedTagIndicator<Digraph>,bool>::type |
|
| 249 |
euler(const Digraph &g) |
|
| 250 |
{
|
|
| 251 |
for(typename Digraph::NodeIt n(g);n!=INVALID;++n) |
|
| 252 |
if(countIncEdges(g,n)%2) return false; |
|
| 253 |
return connected(g); |
|
| 254 |
} |
|
| 255 |
template<class Digraph> |
|
| 256 |
typename disable_if<UndirectedTagIndicator<Digraph>,bool>::type |
|
| 257 |
#endif |
|
| 258 |
euler(const Digraph &g) |
|
| 259 |
{
|
|
| 260 |
for(typename Digraph::NodeIt n(g);n!=INVALID;++n) |
|
| 261 |
if(countInArcs(g,n)!=countOutArcs(g,n)) return false; |
|
| 262 |
return connected(Undirector<const Digraph>(g)); |
|
| 263 |
} |
|
| 264 |
|
|
| 265 |
} |
|
| 266 |
|
|
| 267 |
#endif |
0 comments (0 inline)