0
65
9
1100
13
1
135
79
15
9
59
62
110
110
166
139
12
13
168
167
338
318
55
60
60
60
2
9
125
118
61
53
33
39
257
222
18
4
1062
79
6
4
22
12
184
179
168
166
63
11
| 1 |
%%%%% Defining LEMON %%%%% |
|
| 2 |
|
|
| 3 |
@misc{lemon,
|
|
| 4 |
key = {LEMON},
|
|
| 5 |
title = {{LEMON} -- {L}ibrary for {E}fficient {M}odeling and
|
|
| 6 |
{O}ptimization in {N}etworks},
|
|
| 7 |
howpublished = {\url{http://lemon.cs.elte.hu/}},
|
|
| 8 |
year = 2009 |
|
| 9 |
} |
|
| 10 |
|
|
| 11 |
@misc{egres,
|
|
| 12 |
key = {EGRES},
|
|
| 13 |
title = {{EGRES} -- {E}gerv{\'a}ry {R}esearch {G}roup on
|
|
| 14 |
{C}ombinatorial {O}ptimization},
|
|
| 15 |
url = {http://www.cs.elte.hu/egres/}
|
|
| 16 |
} |
|
| 17 |
|
|
| 18 |
@misc{coinor,
|
|
| 19 |
key = {COIN-OR},
|
|
| 20 |
title = {{COIN-OR} -- {C}omputational {I}nfrastructure for
|
|
| 21 |
{O}perations {R}esearch},
|
|
| 22 |
url = {http://www.coin-or.org/}
|
|
| 23 |
} |
|
| 24 |
|
|
| 25 |
|
|
| 26 |
%%%%% Other libraries %%%%%% |
|
| 27 |
|
|
| 28 |
@misc{boost,
|
|
| 29 |
key = {Boost},
|
|
| 30 |
title = {{B}oost {C++} {L}ibraries},
|
|
| 31 |
url = {http://www.boost.org/}
|
|
| 32 |
} |
|
| 33 |
|
|
| 34 |
@book{bglbook,
|
|
| 35 |
author = {Jeremy G. Siek and Lee-Quan Lee and Andrew
|
|
| 36 |
Lumsdaine}, |
|
| 37 |
title = {The Boost Graph Library: User Guide and Reference
|
|
| 38 |
Manual}, |
|
| 39 |
publisher = {Addison-Wesley},
|
|
| 40 |
year = 2002 |
|
| 41 |
} |
|
| 42 |
|
|
| 43 |
@misc{leda,
|
|
| 44 |
key = {LEDA},
|
|
| 45 |
title = {{LEDA} -- {L}ibrary of {E}fficient {D}ata {T}ypes and
|
|
| 46 |
{A}lgorithms},
|
|
| 47 |
url = {http://www.algorithmic-solutions.com/}
|
|
| 48 |
} |
|
| 49 |
|
|
| 50 |
@book{ledabook,
|
|
| 51 |
author = {Kurt Mehlhorn and Stefan N{\"a}her},
|
|
| 52 |
title = {{LEDA}: {A} platform for combinatorial and geometric
|
|
| 53 |
computing}, |
|
| 54 |
isbn = {0-521-56329-1},
|
|
| 55 |
publisher = {Cambridge University Press},
|
|
| 56 |
address = {New York, NY, USA},
|
|
| 57 |
year = 1999 |
|
| 58 |
} |
|
| 59 |
|
|
| 60 |
|
|
| 61 |
%%%%% Tools that LEMON depends on %%%%% |
|
| 62 |
|
|
| 63 |
@misc{cmake,
|
|
| 64 |
key = {CMake},
|
|
| 65 |
title = {{CMake} -- {C}ross {P}latform {M}ake},
|
|
| 66 |
url = {http://www.cmake.org/}
|
|
| 67 |
} |
|
| 68 |
|
|
| 69 |
@misc{doxygen,
|
|
| 70 |
key = {Doxygen},
|
|
| 71 |
title = {{Doxygen} -- {S}ource code documentation generator
|
|
| 72 |
tool}, |
|
| 73 |
url = {http://www.doxygen.org/}
|
|
| 74 |
} |
|
| 75 |
|
|
| 76 |
|
|
| 77 |
%%%%% LP/MIP libraries %%%%% |
|
| 78 |
|
|
| 79 |
@misc{glpk,
|
|
| 80 |
key = {GLPK},
|
|
| 81 |
title = {{GLPK} -- {GNU} {L}inear {P}rogramming {K}it},
|
|
| 82 |
url = {http://www.gnu.org/software/glpk/}
|
|
| 83 |
} |
|
| 84 |
|
|
| 85 |
@misc{clp,
|
|
| 86 |
key = {Clp},
|
|
| 87 |
title = {{Clp} -- {Coin-Or} {L}inear {P}rogramming},
|
|
| 88 |
url = {http://projects.coin-or.org/Clp/}
|
|
| 89 |
} |
|
| 90 |
|
|
| 91 |
@misc{cbc,
|
|
| 92 |
key = {Cbc},
|
|
| 93 |
title = {{Cbc} -- {Coin-Or} {B}ranch and {C}ut},
|
|
| 94 |
url = {http://projects.coin-or.org/Cbc/}
|
|
| 95 |
} |
|
| 96 |
|
|
| 97 |
@misc{cplex,
|
|
| 98 |
key = {CPLEX},
|
|
| 99 |
title = {{ILOG} {CPLEX}},
|
|
| 100 |
url = {http://www.ilog.com/}
|
|
| 101 |
} |
|
| 102 |
|
|
| 103 |
@misc{soplex,
|
|
| 104 |
key = {SoPlex},
|
|
| 105 |
title = {{SoPlex} -- {T}he {S}equential {O}bject-{O}riented
|
|
| 106 |
{S}implex},
|
|
| 107 |
url = {http://soplex.zib.de/}
|
|
| 108 |
} |
|
| 109 |
|
|
| 110 |
|
|
| 111 |
%%%%% General books %%%%% |
|
| 112 |
|
|
| 113 |
@book{amo93networkflows,
|
|
| 114 |
author = {Ravindra K. Ahuja and Thomas L. Magnanti and James
|
|
| 115 |
B. Orlin}, |
|
| 116 |
title = {Network Flows: Theory, Algorithms, and Applications},
|
|
| 117 |
publisher = {Prentice-Hall, Inc.},
|
|
| 118 |
year = 1993, |
|
| 119 |
month = feb, |
|
| 120 |
isbn = {978-0136175490}
|
|
| 121 |
} |
|
| 122 |
|
|
| 123 |
@book{schrijver03combinatorial,
|
|
| 124 |
author = {Alexander Schrijver},
|
|
| 125 |
title = {Combinatorial Optimization: Polyhedra and Efficiency},
|
|
| 126 |
publisher = {Springer-Verlag},
|
|
| 127 |
year = 2003, |
|
| 128 |
isbn = {978-3540443896}
|
|
| 129 |
} |
|
| 130 |
|
|
| 131 |
@book{clrs01algorithms,
|
|
| 132 |
author = {Thomas H. Cormen and Charles E. Leiserson and Ronald
|
|
| 133 |
L. Rivest and Clifford Stein}, |
|
| 134 |
title = {Introduction to Algorithms},
|
|
| 135 |
publisher = {The MIT Press},
|
|
| 136 |
year = 2001, |
|
| 137 |
edition = {2nd}
|
|
| 138 |
} |
|
| 139 |
|
|
| 140 |
@book{stroustrup00cpp,
|
|
| 141 |
author = {Bjarne Stroustrup},
|
|
| 142 |
title = {The C++ Programming Language},
|
|
| 143 |
edition = {3rd},
|
|
| 144 |
publisher = {Addison-Wesley Professional},
|
|
| 145 |
isbn = 0201700735, |
|
| 146 |
month = {February},
|
|
| 147 |
year = 2000 |
|
| 148 |
} |
|
| 149 |
|
|
| 150 |
|
|
| 151 |
%%%%% Maximum flow algorithms %%%%% |
|
| 152 |
|
|
| 153 |
@article{edmondskarp72theoretical,
|
|
| 154 |
author = {Jack Edmonds and Richard M. Karp},
|
|
| 155 |
title = {Theoretical improvements in algorithmic efficiency
|
|
| 156 |
for network flow problems}, |
|
| 157 |
journal = {Journal of the ACM},
|
|
| 158 |
year = 1972, |
|
| 159 |
volume = 19, |
|
| 160 |
number = 2, |
|
| 161 |
pages = {248-264}
|
|
| 162 |
} |
|
| 163 |
|
|
| 164 |
@article{goldberg88newapproach,
|
|
| 165 |
author = {Andrew V. Goldberg and Robert E. Tarjan},
|
|
| 166 |
title = {A new approach to the maximum flow problem},
|
|
| 167 |
journal = {Journal of the ACM},
|
|
| 168 |
year = 1988, |
|
| 169 |
volume = 35, |
|
| 170 |
number = 4, |
|
| 171 |
pages = {921-940}
|
|
| 172 |
} |
|
| 173 |
|
|
| 174 |
@article{dinic70algorithm,
|
|
| 175 |
author = {E. A. Dinic},
|
|
| 176 |
title = {Algorithm for solution of a problem of maximum flow
|
|
| 177 |
in a network with power estimation}, |
|
| 178 |
journal = {Soviet Math. Doklady},
|
|
| 179 |
year = 1970, |
|
| 180 |
volume = 11, |
|
| 181 |
pages = {1277-1280}
|
|
| 182 |
} |
|
| 183 |
|
|
| 184 |
@article{goldberg08partial,
|
|
| 185 |
author = {Andrew V. Goldberg},
|
|
| 186 |
title = {The Partial Augment-Relabel Algorithm for the
|
|
| 187 |
Maximum Flow Problem}, |
|
| 188 |
journal = {16th Annual European Symposium on Algorithms},
|
|
| 189 |
year = 2008, |
|
| 190 |
pages = {466-477}
|
|
| 191 |
} |
|
| 192 |
|
|
| 193 |
@article{sleator83dynamic,
|
|
| 194 |
author = {Daniel D. Sleator and Robert E. Tarjan},
|
|
| 195 |
title = {A data structure for dynamic trees},
|
|
| 196 |
journal = {Journal of Computer and System Sciences},
|
|
| 197 |
year = 1983, |
|
| 198 |
volume = 26, |
|
| 199 |
number = 3, |
|
| 200 |
pages = {362-391}
|
|
| 201 |
} |
|
| 202 |
|
|
| 203 |
|
|
| 204 |
%%%%% Minimum mean cycle algorithms %%%%% |
|
| 205 |
|
|
| 206 |
@article{karp78characterization,
|
|
| 207 |
author = {Richard M. Karp},
|
|
| 208 |
title = {A characterization of the minimum cycle mean in a
|
|
| 209 |
digraph}, |
|
| 210 |
journal = {Discrete Math.},
|
|
| 211 |
year = 1978, |
|
| 212 |
volume = 23, |
|
| 213 |
pages = {309-311}
|
|
| 214 |
} |
|
| 215 |
|
|
| 216 |
@article{dasdan98minmeancycle,
|
|
| 217 |
author = {Ali Dasdan and Rajesh K. Gupta},
|
|
| 218 |
title = {Faster Maximum and Minimum Mean Cycle Alogrithms for
|
|
| 219 |
System Performance Analysis}, |
|
| 220 |
journal = {IEEE Transactions on Computer-Aided Design of
|
|
| 221 |
Integrated Circuits and Systems}, |
|
| 222 |
year = 1998, |
|
| 223 |
volume = 17, |
|
| 224 |
number = 10, |
|
| 225 |
pages = {889-899}
|
|
| 226 |
} |
|
| 227 |
|
|
| 228 |
|
|
| 229 |
%%%%% Minimum cost flow algorithms %%%%% |
|
| 230 |
|
|
| 231 |
@article{klein67primal,
|
|
| 232 |
author = {Morton Klein},
|
|
| 233 |
title = {A primal method for minimal cost flows with
|
|
| 234 |
applications to the assignment and transportation |
|
| 235 |
problems}, |
|
| 236 |
journal = {Management Science},
|
|
| 237 |
year = 1967, |
|
| 238 |
volume = 14, |
|
| 239 |
pages = {205-220}
|
|
| 240 |
} |
|
| 241 |
|
|
| 242 |
@article{goldberg89cyclecanceling,
|
|
| 243 |
author = {Andrew V. Goldberg and Robert E. Tarjan},
|
|
| 244 |
title = {Finding minimum-cost circulations by canceling
|
|
| 245 |
negative cycles}, |
|
| 246 |
journal = {Journal of the ACM},
|
|
| 247 |
year = 1989, |
|
| 248 |
volume = 36, |
|
| 249 |
number = 4, |
|
| 250 |
pages = {873-886}
|
|
| 251 |
} |
|
| 252 |
|
|
| 253 |
@article{goldberg90approximation,
|
|
| 254 |
author = {Andrew V. Goldberg and Robert E. Tarjan},
|
|
| 255 |
title = {Finding Minimum-Cost Circulations by Successive
|
|
| 256 |
Approximation}, |
|
| 257 |
journal = {Mathematics of Operations Research},
|
|
| 258 |
year = 1990, |
|
| 259 |
volume = 15, |
|
| 260 |
number = 3, |
|
| 261 |
pages = {430-466}
|
|
| 262 |
} |
|
| 263 |
|
|
| 264 |
@article{goldberg97efficient,
|
|
| 265 |
author = {Andrew V. Goldberg},
|
|
| 266 |
title = {An Efficient Implementation of a Scaling
|
|
| 267 |
Minimum-Cost Flow Algorithm}, |
|
| 268 |
journal = {Journal of Algorithms},
|
|
| 269 |
year = 1997, |
|
| 270 |
volume = 22, |
|
| 271 |
number = 1, |
|
| 272 |
pages = {1-29}
|
|
| 273 |
} |
|
| 274 |
|
|
| 275 |
@article{bunnagel98efficient,
|
|
| 276 |
author = {Ursula B{\"u}nnagel and Bernhard Korte and Jens
|
|
| 277 |
Vygen}, |
|
| 278 |
title = {Efficient implementation of the {G}oldberg-{T}arjan
|
|
| 279 |
minimum-cost flow algorithm}, |
|
| 280 |
journal = {Optimization Methods and Software},
|
|
| 281 |
year = 1998, |
|
| 282 |
volume = 10, |
|
| 283 |
pages = {157-174}
|
|
| 284 |
} |
|
| 285 |
|
|
| 286 |
@book{dantzig63linearprog,
|
|
| 287 |
author = {George B. Dantzig},
|
|
| 288 |
title = {Linear Programming and Extensions},
|
|
| 289 |
publisher = {Princeton University Press},
|
|
| 290 |
year = 1963 |
|
| 291 |
} |
|
| 292 |
|
|
| 293 |
@mastersthesis{kellyoneill91netsimplex,
|
|
| 294 |
author = {Damian J. Kelly and Garrett M. O'Neill},
|
|
| 295 |
title = {The Minimum Cost Flow Problem and The Network
|
|
| 296 |
Simplex Method}, |
|
| 297 |
school = {University College},
|
|
| 298 |
address = {Dublin, Ireland},
|
|
| 299 |
year = 1991, |
|
| 300 |
month = sep, |
|
| 301 |
} |
| 1 |
/* -*- C++ -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_BELLMAN_FORD_H |
|
| 20 |
#define LEMON_BELLMAN_FORD_H |
|
| 21 |
|
|
| 22 |
/// \ingroup shortest_path |
|
| 23 |
/// \file |
|
| 24 |
/// \brief Bellman-Ford algorithm. |
|
| 25 |
|
|
| 26 |
#include <lemon/bits/path_dump.h> |
|
| 27 |
#include <lemon/core.h> |
|
| 28 |
#include <lemon/error.h> |
|
| 29 |
#include <lemon/maps.h> |
|
| 30 |
#include <lemon/path.h> |
|
| 31 |
|
|
| 32 |
#include <limits> |
|
| 33 |
|
|
| 34 |
namespace lemon {
|
|
| 35 |
|
|
| 36 |
/// \brief Default OperationTraits for the BellmanFord algorithm class. |
|
| 37 |
/// |
|
| 38 |
/// This operation traits class defines all computational operations |
|
| 39 |
/// and constants that are used in the Bellman-Ford algorithm. |
|
| 40 |
/// The default implementation is based on the \c numeric_limits class. |
|
| 41 |
/// If the numeric type does not have infinity value, then the maximum |
|
| 42 |
/// value is used as extremal infinity value. |
|
| 43 |
template < |
|
| 44 |
typename V, |
|
| 45 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
|
| 46 |
struct BellmanFordDefaultOperationTraits {
|
|
| 47 |
/// \e |
|
| 48 |
typedef V Value; |
|
| 49 |
/// \brief Gives back the zero value of the type. |
|
| 50 |
static Value zero() {
|
|
| 51 |
return static_cast<Value>(0); |
|
| 52 |
} |
|
| 53 |
/// \brief Gives back the positive infinity value of the type. |
|
| 54 |
static Value infinity() {
|
|
| 55 |
return std::numeric_limits<Value>::infinity(); |
|
| 56 |
} |
|
| 57 |
/// \brief Gives back the sum of the given two elements. |
|
| 58 |
static Value plus(const Value& left, const Value& right) {
|
|
| 59 |
return left + right; |
|
| 60 |
} |
|
| 61 |
/// \brief Gives back \c true only if the first value is less than |
|
| 62 |
/// the second. |
|
| 63 |
static bool less(const Value& left, const Value& right) {
|
|
| 64 |
return left < right; |
|
| 65 |
} |
|
| 66 |
}; |
|
| 67 |
|
|
| 68 |
template <typename V> |
|
| 69 |
struct BellmanFordDefaultOperationTraits<V, false> {
|
|
| 70 |
typedef V Value; |
|
| 71 |
static Value zero() {
|
|
| 72 |
return static_cast<Value>(0); |
|
| 73 |
} |
|
| 74 |
static Value infinity() {
|
|
| 75 |
return std::numeric_limits<Value>::max(); |
|
| 76 |
} |
|
| 77 |
static Value plus(const Value& left, const Value& right) {
|
|
| 78 |
if (left == infinity() || right == infinity()) return infinity(); |
|
| 79 |
return left + right; |
|
| 80 |
} |
|
| 81 |
static bool less(const Value& left, const Value& right) {
|
|
| 82 |
return left < right; |
|
| 83 |
} |
|
| 84 |
}; |
|
| 85 |
|
|
| 86 |
/// \brief Default traits class of BellmanFord class. |
|
| 87 |
/// |
|
| 88 |
/// Default traits class of BellmanFord class. |
|
| 89 |
/// \param GR The type of the digraph. |
|
| 90 |
/// \param LEN The type of the length map. |
|
| 91 |
template<typename GR, typename LEN> |
|
| 92 |
struct BellmanFordDefaultTraits {
|
|
| 93 |
/// The type of the digraph the algorithm runs on. |
|
| 94 |
typedef GR Digraph; |
|
| 95 |
|
|
| 96 |
/// \brief The type of the map that stores the arc lengths. |
|
| 97 |
/// |
|
| 98 |
/// The type of the map that stores the arc lengths. |
|
| 99 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 100 |
typedef LEN LengthMap; |
|
| 101 |
|
|
| 102 |
/// The type of the arc lengths. |
|
| 103 |
typedef typename LEN::Value Value; |
|
| 104 |
|
|
| 105 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
| 106 |
/// |
|
| 107 |
/// It defines the used operations and the infinity value for the |
|
| 108 |
/// given \c Value type. |
|
| 109 |
/// \see BellmanFordDefaultOperationTraits |
|
| 110 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
| 111 |
|
|
| 112 |
/// \brief The type of the map that stores the last arcs of the |
|
| 113 |
/// shortest paths. |
|
| 114 |
/// |
|
| 115 |
/// The type of the map that stores the last |
|
| 116 |
/// arcs of the shortest paths. |
|
| 117 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 118 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
| 119 |
|
|
| 120 |
/// \brief Instantiates a \c PredMap. |
|
| 121 |
/// |
|
| 122 |
/// This function instantiates a \ref PredMap. |
|
| 123 |
/// \param g is the digraph to which we would like to define the |
|
| 124 |
/// \ref PredMap. |
|
| 125 |
static PredMap *createPredMap(const GR& g) {
|
|
| 126 |
return new PredMap(g); |
|
| 127 |
} |
|
| 128 |
|
|
| 129 |
/// \brief The type of the map that stores the distances of the nodes. |
|
| 130 |
/// |
|
| 131 |
/// The type of the map that stores the distances of the nodes. |
|
| 132 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 133 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
|
| 134 |
|
|
| 135 |
/// \brief Instantiates a \c DistMap. |
|
| 136 |
/// |
|
| 137 |
/// This function instantiates a \ref DistMap. |
|
| 138 |
/// \param g is the digraph to which we would like to define the |
|
| 139 |
/// \ref DistMap. |
|
| 140 |
static DistMap *createDistMap(const GR& g) {
|
|
| 141 |
return new DistMap(g); |
|
| 142 |
} |
|
| 143 |
|
|
| 144 |
}; |
|
| 145 |
|
|
| 146 |
/// \brief %BellmanFord algorithm class. |
|
| 147 |
/// |
|
| 148 |
/// \ingroup shortest_path |
|
| 149 |
/// This class provides an efficient implementation of the Bellman-Ford |
|
| 150 |
/// algorithm. The maximum time complexity of the algorithm is |
|
| 151 |
/// <tt>O(ne)</tt>. |
|
| 152 |
/// |
|
| 153 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
|
| 154 |
/// problem when the arcs can have negative lengths, but the digraph |
|
| 155 |
/// should not contain directed cycles with negative total length. |
|
| 156 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
|
| 157 |
/// algorithm instead, since it is more efficient. |
|
| 158 |
/// |
|
| 159 |
/// The arc lengths are passed to the algorithm using a |
|
| 160 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
| 161 |
/// kind of length. The type of the length values is determined by the |
|
| 162 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
|
| 163 |
/// |
|
| 164 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
|
| 165 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
|
| 166 |
/// it can be used easier. |
|
| 167 |
/// |
|
| 168 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
| 169 |
/// The default type is \ref ListDigraph. |
|
| 170 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
|
| 171 |
/// the lengths of the arcs. The default map type is |
|
| 172 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
| 173 |
#ifdef DOXYGEN |
|
| 174 |
template <typename GR, typename LEN, typename TR> |
|
| 175 |
#else |
|
| 176 |
template <typename GR=ListDigraph, |
|
| 177 |
typename LEN=typename GR::template ArcMap<int>, |
|
| 178 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
|
| 179 |
#endif |
|
| 180 |
class BellmanFord {
|
|
| 181 |
public: |
|
| 182 |
|
|
| 183 |
///The type of the underlying digraph. |
|
| 184 |
typedef typename TR::Digraph Digraph; |
|
| 185 |
|
|
| 186 |
/// \brief The type of the arc lengths. |
|
| 187 |
typedef typename TR::LengthMap::Value Value; |
|
| 188 |
/// \brief The type of the map that stores the arc lengths. |
|
| 189 |
typedef typename TR::LengthMap LengthMap; |
|
| 190 |
/// \brief The type of the map that stores the last |
|
| 191 |
/// arcs of the shortest paths. |
|
| 192 |
typedef typename TR::PredMap PredMap; |
|
| 193 |
/// \brief The type of the map that stores the distances of the nodes. |
|
| 194 |
typedef typename TR::DistMap DistMap; |
|
| 195 |
/// The type of the paths. |
|
| 196 |
typedef PredMapPath<Digraph, PredMap> Path; |
|
| 197 |
///\brief The \ref BellmanFordDefaultOperationTraits |
|
| 198 |
/// "operation traits class" of the algorithm. |
|
| 199 |
typedef typename TR::OperationTraits OperationTraits; |
|
| 200 |
|
|
| 201 |
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
|
| 202 |
typedef TR Traits; |
|
| 203 |
|
|
| 204 |
private: |
|
| 205 |
|
|
| 206 |
typedef typename Digraph::Node Node; |
|
| 207 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 208 |
typedef typename Digraph::Arc Arc; |
|
| 209 |
typedef typename Digraph::OutArcIt OutArcIt; |
|
| 210 |
|
|
| 211 |
// Pointer to the underlying digraph. |
|
| 212 |
const Digraph *_gr; |
|
| 213 |
// Pointer to the length map |
|
| 214 |
const LengthMap *_length; |
|
| 215 |
// Pointer to the map of predecessors arcs. |
|
| 216 |
PredMap *_pred; |
|
| 217 |
// Indicates if _pred is locally allocated (true) or not. |
|
| 218 |
bool _local_pred; |
|
| 219 |
// Pointer to the map of distances. |
|
| 220 |
DistMap *_dist; |
|
| 221 |
// Indicates if _dist is locally allocated (true) or not. |
|
| 222 |
bool _local_dist; |
|
| 223 |
|
|
| 224 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
|
| 225 |
MaskMap *_mask; |
|
| 226 |
|
|
| 227 |
std::vector<Node> _process; |
|
| 228 |
|
|
| 229 |
// Creates the maps if necessary. |
|
| 230 |
void create_maps() {
|
|
| 231 |
if(!_pred) {
|
|
| 232 |
_local_pred = true; |
|
| 233 |
_pred = Traits::createPredMap(*_gr); |
|
| 234 |
} |
|
| 235 |
if(!_dist) {
|
|
| 236 |
_local_dist = true; |
|
| 237 |
_dist = Traits::createDistMap(*_gr); |
|
| 238 |
} |
|
| 239 |
_mask = new MaskMap(*_gr, false); |
|
| 240 |
} |
|
| 241 |
|
|
| 242 |
public : |
|
| 243 |
|
|
| 244 |
typedef BellmanFord Create; |
|
| 245 |
|
|
| 246 |
/// \name Named Template Parameters |
|
| 247 |
|
|
| 248 |
///@{
|
|
| 249 |
|
|
| 250 |
template <class T> |
|
| 251 |
struct SetPredMapTraits : public Traits {
|
|
| 252 |
typedef T PredMap; |
|
| 253 |
static PredMap *createPredMap(const Digraph&) {
|
|
| 254 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
|
| 255 |
return 0; // ignore warnings |
|
| 256 |
} |
|
| 257 |
}; |
|
| 258 |
|
|
| 259 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 260 |
/// \c PredMap type. |
|
| 261 |
/// |
|
| 262 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 263 |
/// \c PredMap type. |
|
| 264 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 265 |
template <class T> |
|
| 266 |
struct SetPredMap |
|
| 267 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
|
|
| 268 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
|
| 269 |
}; |
|
| 270 |
|
|
| 271 |
template <class T> |
|
| 272 |
struct SetDistMapTraits : public Traits {
|
|
| 273 |
typedef T DistMap; |
|
| 274 |
static DistMap *createDistMap(const Digraph&) {
|
|
| 275 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
|
| 276 |
return 0; // ignore warnings |
|
| 277 |
} |
|
| 278 |
}; |
|
| 279 |
|
|
| 280 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 281 |
/// \c DistMap type. |
|
| 282 |
/// |
|
| 283 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 284 |
/// \c DistMap type. |
|
| 285 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 286 |
template <class T> |
|
| 287 |
struct SetDistMap |
|
| 288 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
|
|
| 289 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
|
| 290 |
}; |
|
| 291 |
|
|
| 292 |
template <class T> |
|
| 293 |
struct SetOperationTraitsTraits : public Traits {
|
|
| 294 |
typedef T OperationTraits; |
|
| 295 |
}; |
|
| 296 |
|
|
| 297 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 298 |
/// \c OperationTraits type. |
|
| 299 |
/// |
|
| 300 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 301 |
/// \c OperationTraits type. |
|
| 302 |
/// For more information see \ref BellmanFordDefaultOperationTraits. |
|
| 303 |
template <class T> |
|
| 304 |
struct SetOperationTraits |
|
| 305 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
|
| 306 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
|
| 307 |
Create; |
|
| 308 |
}; |
|
| 309 |
|
|
| 310 |
///@} |
|
| 311 |
|
|
| 312 |
protected: |
|
| 313 |
|
|
| 314 |
BellmanFord() {}
|
|
| 315 |
|
|
| 316 |
public: |
|
| 317 |
|
|
| 318 |
/// \brief Constructor. |
|
| 319 |
/// |
|
| 320 |
/// Constructor. |
|
| 321 |
/// \param g The digraph the algorithm runs on. |
|
| 322 |
/// \param length The length map used by the algorithm. |
|
| 323 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
|
| 324 |
_gr(&g), _length(&length), |
|
| 325 |
_pred(0), _local_pred(false), |
|
| 326 |
_dist(0), _local_dist(false), _mask(0) {}
|
|
| 327 |
|
|
| 328 |
///Destructor. |
|
| 329 |
~BellmanFord() {
|
|
| 330 |
if(_local_pred) delete _pred; |
|
| 331 |
if(_local_dist) delete _dist; |
|
| 332 |
if(_mask) delete _mask; |
|
| 333 |
} |
|
| 334 |
|
|
| 335 |
/// \brief Sets the length map. |
|
| 336 |
/// |
|
| 337 |
/// Sets the length map. |
|
| 338 |
/// \return <tt>(*this)</tt> |
|
| 339 |
BellmanFord &lengthMap(const LengthMap &map) {
|
|
| 340 |
_length = ↦ |
|
| 341 |
return *this; |
|
| 342 |
} |
|
| 343 |
|
|
| 344 |
/// \brief Sets the map that stores the predecessor arcs. |
|
| 345 |
/// |
|
| 346 |
/// Sets the map that stores the predecessor arcs. |
|
| 347 |
/// If you don't use this function before calling \ref run() |
|
| 348 |
/// or \ref init(), an instance will be allocated automatically. |
|
| 349 |
/// The destructor deallocates this automatically allocated map, |
|
| 350 |
/// of course. |
|
| 351 |
/// \return <tt>(*this)</tt> |
|
| 352 |
BellmanFord &predMap(PredMap &map) {
|
|
| 353 |
if(_local_pred) {
|
|
| 354 |
delete _pred; |
|
| 355 |
_local_pred=false; |
|
| 356 |
} |
|
| 357 |
_pred = ↦ |
|
| 358 |
return *this; |
|
| 359 |
} |
|
| 360 |
|
|
| 361 |
/// \brief Sets the map that stores the distances of the nodes. |
|
| 362 |
/// |
|
| 363 |
/// Sets the map that stores the distances of the nodes calculated |
|
| 364 |
/// by the algorithm. |
|
| 365 |
/// If you don't use this function before calling \ref run() |
|
| 366 |
/// or \ref init(), an instance will be allocated automatically. |
|
| 367 |
/// The destructor deallocates this automatically allocated map, |
|
| 368 |
/// of course. |
|
| 369 |
/// \return <tt>(*this)</tt> |
|
| 370 |
BellmanFord &distMap(DistMap &map) {
|
|
| 371 |
if(_local_dist) {
|
|
| 372 |
delete _dist; |
|
| 373 |
_local_dist=false; |
|
| 374 |
} |
|
| 375 |
_dist = ↦ |
|
| 376 |
return *this; |
|
| 377 |
} |
|
| 378 |
|
|
| 379 |
/// \name Execution Control |
|
| 380 |
/// The simplest way to execute the Bellman-Ford algorithm is to use |
|
| 381 |
/// one of the member functions called \ref run().\n |
|
| 382 |
/// If you need better control on the execution, you have to call |
|
| 383 |
/// \ref init() first, then you can add several source nodes |
|
| 384 |
/// with \ref addSource(). Finally the actual path computation can be |
|
| 385 |
/// performed with \ref start(), \ref checkedStart() or |
|
| 386 |
/// \ref limitedStart(). |
|
| 387 |
|
|
| 388 |
///@{
|
|
| 389 |
|
|
| 390 |
/// \brief Initializes the internal data structures. |
|
| 391 |
/// |
|
| 392 |
/// Initializes the internal data structures. The optional parameter |
|
| 393 |
/// is the initial distance of each node. |
|
| 394 |
void init(const Value value = OperationTraits::infinity()) {
|
|
| 395 |
create_maps(); |
|
| 396 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
| 397 |
_pred->set(it, INVALID); |
|
| 398 |
_dist->set(it, value); |
|
| 399 |
} |
|
| 400 |
_process.clear(); |
|
| 401 |
if (OperationTraits::less(value, OperationTraits::infinity())) {
|
|
| 402 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
| 403 |
_process.push_back(it); |
|
| 404 |
_mask->set(it, true); |
|
| 405 |
} |
|
| 406 |
} |
|
| 407 |
} |
|
| 408 |
|
|
| 409 |
/// \brief Adds a new source node. |
|
| 410 |
/// |
|
| 411 |
/// This function adds a new source node. The optional second parameter |
|
| 412 |
/// is the initial distance of the node. |
|
| 413 |
void addSource(Node source, Value dst = OperationTraits::zero()) {
|
|
| 414 |
_dist->set(source, dst); |
|
| 415 |
if (!(*_mask)[source]) {
|
|
| 416 |
_process.push_back(source); |
|
| 417 |
_mask->set(source, true); |
|
| 418 |
} |
|
| 419 |
} |
|
| 420 |
|
|
| 421 |
/// \brief Executes one round from the Bellman-Ford algorithm. |
|
| 422 |
/// |
|
| 423 |
/// If the algoritm calculated the distances in the previous round |
|
| 424 |
/// exactly for the paths of at most \c k arcs, then this function |
|
| 425 |
/// will calculate the distances exactly for the paths of at most |
|
| 426 |
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function |
|
| 427 |
/// calculates the shortest path distances exactly for the paths |
|
| 428 |
/// consisting of at most \c k arcs. |
|
| 429 |
/// |
|
| 430 |
/// \warning The paths with limited arc number cannot be retrieved |
|
| 431 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
| 432 |
/// need the shortest paths and not only the distances, you should |
|
| 433 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
| 434 |
/// and build the path manually. |
|
| 435 |
/// |
|
| 436 |
/// \return \c true when the algorithm have not found more shorter |
|
| 437 |
/// paths. |
|
| 438 |
/// |
|
| 439 |
/// \see ActiveIt |
|
| 440 |
bool processNextRound() {
|
|
| 441 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 442 |
_mask->set(_process[i], false); |
|
| 443 |
} |
|
| 444 |
std::vector<Node> nextProcess; |
|
| 445 |
std::vector<Value> values(_process.size()); |
|
| 446 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 447 |
values[i] = (*_dist)[_process[i]]; |
|
| 448 |
} |
|
| 449 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 450 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
|
| 451 |
Node target = _gr->target(it); |
|
| 452 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
|
| 453 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
|
| 454 |
_pred->set(target, it); |
|
| 455 |
_dist->set(target, relaxed); |
|
| 456 |
if (!(*_mask)[target]) {
|
|
| 457 |
_mask->set(target, true); |
|
| 458 |
nextProcess.push_back(target); |
|
| 459 |
} |
|
| 460 |
} |
|
| 461 |
} |
|
| 462 |
} |
|
| 463 |
_process.swap(nextProcess); |
|
| 464 |
return _process.empty(); |
|
| 465 |
} |
|
| 466 |
|
|
| 467 |
/// \brief Executes one weak round from the Bellman-Ford algorithm. |
|
| 468 |
/// |
|
| 469 |
/// If the algorithm calculated the distances in the previous round |
|
| 470 |
/// at least for the paths of at most \c k arcs, then this function |
|
| 471 |
/// will calculate the distances at least for the paths of at most |
|
| 472 |
/// <tt>k+1</tt> arcs. |
|
| 473 |
/// This function does not make it possible to calculate the shortest |
|
| 474 |
/// path distances exactly for paths consisting of at most \c k arcs, |
|
| 475 |
/// this is why it is called weak round. |
|
| 476 |
/// |
|
| 477 |
/// \return \c true when the algorithm have not found more shorter |
|
| 478 |
/// paths. |
|
| 479 |
/// |
|
| 480 |
/// \see ActiveIt |
|
| 481 |
bool processNextWeakRound() {
|
|
| 482 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 483 |
_mask->set(_process[i], false); |
|
| 484 |
} |
|
| 485 |
std::vector<Node> nextProcess; |
|
| 486 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 487 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
|
| 488 |
Node target = _gr->target(it); |
|
| 489 |
Value relaxed = |
|
| 490 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
|
| 491 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
|
| 492 |
_pred->set(target, it); |
|
| 493 |
_dist->set(target, relaxed); |
|
| 494 |
if (!(*_mask)[target]) {
|
|
| 495 |
_mask->set(target, true); |
|
| 496 |
nextProcess.push_back(target); |
|
| 497 |
} |
|
| 498 |
} |
|
| 499 |
} |
|
| 500 |
} |
|
| 501 |
_process.swap(nextProcess); |
|
| 502 |
return _process.empty(); |
|
| 503 |
} |
|
| 504 |
|
|
| 505 |
/// \brief Executes the algorithm. |
|
| 506 |
/// |
|
| 507 |
/// Executes the algorithm. |
|
| 508 |
/// |
|
| 509 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
| 510 |
/// in order to compute the shortest path to each node. |
|
| 511 |
/// |
|
| 512 |
/// The algorithm computes |
|
| 513 |
/// - the shortest path tree (forest), |
|
| 514 |
/// - the distance of each node from the root(s). |
|
| 515 |
/// |
|
| 516 |
/// \pre init() must be called and at least one root node should be |
|
| 517 |
/// added with addSource() before using this function. |
|
| 518 |
void start() {
|
|
| 519 |
int num = countNodes(*_gr) - 1; |
|
| 520 |
for (int i = 0; i < num; ++i) {
|
|
| 521 |
if (processNextWeakRound()) break; |
|
| 522 |
} |
|
| 523 |
} |
|
| 524 |
|
|
| 525 |
/// \brief Executes the algorithm and checks the negative cycles. |
|
| 526 |
/// |
|
| 527 |
/// Executes the algorithm and checks the negative cycles. |
|
| 528 |
/// |
|
| 529 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
| 530 |
/// in order to compute the shortest path to each node and also checks |
|
| 531 |
/// if the digraph contains cycles with negative total length. |
|
| 532 |
/// |
|
| 533 |
/// The algorithm computes |
|
| 534 |
/// - the shortest path tree (forest), |
|
| 535 |
/// - the distance of each node from the root(s). |
|
| 536 |
/// |
|
| 537 |
/// \return \c false if there is a negative cycle in the digraph. |
|
| 538 |
/// |
|
| 539 |
/// \pre init() must be called and at least one root node should be |
|
| 540 |
/// added with addSource() before using this function. |
|
| 541 |
bool checkedStart() {
|
|
| 542 |
int num = countNodes(*_gr); |
|
| 543 |
for (int i = 0; i < num; ++i) {
|
|
| 544 |
if (processNextWeakRound()) return true; |
|
| 545 |
} |
|
| 546 |
return _process.empty(); |
|
| 547 |
} |
|
| 548 |
|
|
| 549 |
/// \brief Executes the algorithm with arc number limit. |
|
| 550 |
/// |
|
| 551 |
/// Executes the algorithm with arc number limit. |
|
| 552 |
/// |
|
| 553 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
| 554 |
/// in order to compute the shortest path distance for each node |
|
| 555 |
/// using only the paths consisting of at most \c num arcs. |
|
| 556 |
/// |
|
| 557 |
/// The algorithm computes |
|
| 558 |
/// - the limited distance of each node from the root(s), |
|
| 559 |
/// - the predecessor arc for each node. |
|
| 560 |
/// |
|
| 561 |
/// \warning The paths with limited arc number cannot be retrieved |
|
| 562 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
| 563 |
/// need the shortest paths and not only the distances, you should |
|
| 564 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
| 565 |
/// and build the path manually. |
|
| 566 |
/// |
|
| 567 |
/// \pre init() must be called and at least one root node should be |
|
| 568 |
/// added with addSource() before using this function. |
|
| 569 |
void limitedStart(int num) {
|
|
| 570 |
for (int i = 0; i < num; ++i) {
|
|
| 571 |
if (processNextRound()) break; |
|
| 572 |
} |
|
| 573 |
} |
|
| 574 |
|
|
| 575 |
/// \brief Runs the algorithm from the given root node. |
|
| 576 |
/// |
|
| 577 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
| 578 |
/// node \c s in order to compute the shortest path to each node. |
|
| 579 |
/// |
|
| 580 |
/// The algorithm computes |
|
| 581 |
/// - the shortest path tree (forest), |
|
| 582 |
/// - the distance of each node from the root(s). |
|
| 583 |
/// |
|
| 584 |
/// \note bf.run(s) is just a shortcut of the following code. |
|
| 585 |
/// \code |
|
| 586 |
/// bf.init(); |
|
| 587 |
/// bf.addSource(s); |
|
| 588 |
/// bf.start(); |
|
| 589 |
/// \endcode |
|
| 590 |
void run(Node s) {
|
|
| 591 |
init(); |
|
| 592 |
addSource(s); |
|
| 593 |
start(); |
|
| 594 |
} |
|
| 595 |
|
|
| 596 |
/// \brief Runs the algorithm from the given root node with arc |
|
| 597 |
/// number limit. |
|
| 598 |
/// |
|
| 599 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
| 600 |
/// node \c s in order to compute the shortest path distance for each |
|
| 601 |
/// node using only the paths consisting of at most \c num arcs. |
|
| 602 |
/// |
|
| 603 |
/// The algorithm computes |
|
| 604 |
/// - the limited distance of each node from the root(s), |
|
| 605 |
/// - the predecessor arc for each node. |
|
| 606 |
/// |
|
| 607 |
/// \warning The paths with limited arc number cannot be retrieved |
|
| 608 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
| 609 |
/// need the shortest paths and not only the distances, you should |
|
| 610 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
| 611 |
/// and build the path manually. |
|
| 612 |
/// |
|
| 613 |
/// \note bf.run(s, num) is just a shortcut of the following code. |
|
| 614 |
/// \code |
|
| 615 |
/// bf.init(); |
|
| 616 |
/// bf.addSource(s); |
|
| 617 |
/// bf.limitedStart(num); |
|
| 618 |
/// \endcode |
|
| 619 |
void run(Node s, int num) {
|
|
| 620 |
init(); |
|
| 621 |
addSource(s); |
|
| 622 |
limitedStart(num); |
|
| 623 |
} |
|
| 624 |
|
|
| 625 |
///@} |
|
| 626 |
|
|
| 627 |
/// \brief LEMON iterator for getting the active nodes. |
|
| 628 |
/// |
|
| 629 |
/// This class provides a common style LEMON iterator that traverses |
|
| 630 |
/// the active nodes of the Bellman-Ford algorithm after the last |
|
| 631 |
/// phase. These nodes should be checked in the next phase to |
|
| 632 |
/// find augmenting arcs outgoing from them. |
|
| 633 |
class ActiveIt {
|
|
| 634 |
public: |
|
| 635 |
|
|
| 636 |
/// \brief Constructor. |
|
| 637 |
/// |
|
| 638 |
/// Constructor for getting the active nodes of the given BellmanFord |
|
| 639 |
/// instance. |
|
| 640 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
|
| 641 |
{
|
|
| 642 |
_index = _algorithm->_process.size() - 1; |
|
| 643 |
} |
|
| 644 |
|
|
| 645 |
/// \brief Invalid constructor. |
|
| 646 |
/// |
|
| 647 |
/// Invalid constructor. |
|
| 648 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
|
|
| 649 |
|
|
| 650 |
/// \brief Conversion to \c Node. |
|
| 651 |
/// |
|
| 652 |
/// Conversion to \c Node. |
|
| 653 |
operator Node() const {
|
|
| 654 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
|
| 655 |
} |
|
| 656 |
|
|
| 657 |
/// \brief Increment operator. |
|
| 658 |
/// |
|
| 659 |
/// Increment operator. |
|
| 660 |
ActiveIt& operator++() {
|
|
| 661 |
--_index; |
|
| 662 |
return *this; |
|
| 663 |
} |
|
| 664 |
|
|
| 665 |
bool operator==(const ActiveIt& it) const {
|
|
| 666 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
|
| 667 |
} |
|
| 668 |
bool operator!=(const ActiveIt& it) const {
|
|
| 669 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
|
| 670 |
} |
|
| 671 |
bool operator<(const ActiveIt& it) const {
|
|
| 672 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
|
| 673 |
} |
|
| 674 |
|
|
| 675 |
private: |
|
| 676 |
const BellmanFord* _algorithm; |
|
| 677 |
int _index; |
|
| 678 |
}; |
|
| 679 |
|
|
| 680 |
/// \name Query Functions |
|
| 681 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
|
| 682 |
/// functions.\n |
|
| 683 |
/// Either \ref run() or \ref init() should be called before using them. |
|
| 684 |
|
|
| 685 |
///@{
|
|
| 686 |
|
|
| 687 |
/// \brief The shortest path to the given node. |
|
| 688 |
/// |
|
| 689 |
/// Gives back the shortest path to the given node from the root(s). |
|
| 690 |
/// |
|
| 691 |
/// \warning \c t should be reached from the root(s). |
|
| 692 |
/// |
|
| 693 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 694 |
/// using this function. |
|
| 695 |
Path path(Node t) const |
|
| 696 |
{
|
|
| 697 |
return Path(*_gr, *_pred, t); |
|
| 698 |
} |
|
| 699 |
|
|
| 700 |
/// \brief The distance of the given node from the root(s). |
|
| 701 |
/// |
|
| 702 |
/// Returns the distance of the given node from the root(s). |
|
| 703 |
/// |
|
| 704 |
/// \warning If node \c v is not reached from the root(s), then |
|
| 705 |
/// the return value of this function is undefined. |
|
| 706 |
/// |
|
| 707 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 708 |
/// using this function. |
|
| 709 |
Value dist(Node v) const { return (*_dist)[v]; }
|
|
| 710 |
|
|
| 711 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
|
| 712 |
/// the given node. |
|
| 713 |
/// |
|
| 714 |
/// This function returns the 'previous arc' of the shortest path |
|
| 715 |
/// tree for node \c v, i.e. it returns the last arc of a |
|
| 716 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
|
| 717 |
/// is not reached from the root(s) or if \c v is a root. |
|
| 718 |
/// |
|
| 719 |
/// The shortest path tree used here is equal to the shortest path |
|
| 720 |
/// tree used in \ref predNode() and \predMap(). |
|
| 721 |
/// |
|
| 722 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 723 |
/// using this function. |
|
| 724 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
|
| 725 |
|
|
| 726 |
/// \brief Returns the 'previous node' of the shortest path tree for |
|
| 727 |
/// the given node. |
|
| 728 |
/// |
|
| 729 |
/// This function returns the 'previous node' of the shortest path |
|
| 730 |
/// tree for node \c v, i.e. it returns the last but one node of |
|
| 731 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
|
| 732 |
/// is not reached from the root(s) or if \c v is a root. |
|
| 733 |
/// |
|
| 734 |
/// The shortest path tree used here is equal to the shortest path |
|
| 735 |
/// tree used in \ref predArc() and \predMap(). |
|
| 736 |
/// |
|
| 737 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 738 |
/// using this function. |
|
| 739 |
Node predNode(Node v) const {
|
|
| 740 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
|
| 741 |
} |
|
| 742 |
|
|
| 743 |
/// \brief Returns a const reference to the node map that stores the |
|
| 744 |
/// distances of the nodes. |
|
| 745 |
/// |
|
| 746 |
/// Returns a const reference to the node map that stores the distances |
|
| 747 |
/// of the nodes calculated by the algorithm. |
|
| 748 |
/// |
|
| 749 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 750 |
/// using this function. |
|
| 751 |
const DistMap &distMap() const { return *_dist;}
|
|
| 752 |
|
|
| 753 |
/// \brief Returns a const reference to the node map that stores the |
|
| 754 |
/// predecessor arcs. |
|
| 755 |
/// |
|
| 756 |
/// Returns a const reference to the node map that stores the predecessor |
|
| 757 |
/// arcs, which form the shortest path tree (forest). |
|
| 758 |
/// |
|
| 759 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 760 |
/// using this function. |
|
| 761 |
const PredMap &predMap() const { return *_pred; }
|
|
| 762 |
|
|
| 763 |
/// \brief Checks if a node is reached from the root(s). |
|
| 764 |
/// |
|
| 765 |
/// Returns \c true if \c v is reached from the root(s). |
|
| 766 |
/// |
|
| 767 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 768 |
/// using this function. |
|
| 769 |
bool reached(Node v) const {
|
|
| 770 |
return (*_dist)[v] != OperationTraits::infinity(); |
|
| 771 |
} |
|
| 772 |
|
|
| 773 |
/// \brief Gives back a negative cycle. |
|
| 774 |
/// |
|
| 775 |
/// This function gives back a directed cycle with negative total |
|
| 776 |
/// length if the algorithm has already found one. |
|
| 777 |
/// Otherwise it gives back an empty path. |
|
| 778 |
lemon::Path<Digraph> negativeCycle() {
|
|
| 779 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
|
| 780 |
lemon::Path<Digraph> cycle; |
|
| 781 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 782 |
if (state[_process[i]] != -1) continue; |
|
| 783 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
|
| 784 |
v = _gr->source((*_pred)[v])) {
|
|
| 785 |
if (state[v] == i) {
|
|
| 786 |
cycle.addFront((*_pred)[v]); |
|
| 787 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
|
| 788 |
u = _gr->source((*_pred)[u])) {
|
|
| 789 |
cycle.addFront((*_pred)[u]); |
|
| 790 |
} |
|
| 791 |
return cycle; |
|
| 792 |
} |
|
| 793 |
else if (state[v] >= 0) {
|
|
| 794 |
break; |
|
| 795 |
} |
|
| 796 |
state[v] = i; |
|
| 797 |
} |
|
| 798 |
} |
|
| 799 |
return cycle; |
|
| 800 |
} |
|
| 801 |
|
|
| 802 |
///@} |
|
| 803 |
}; |
|
| 804 |
|
|
| 805 |
/// \brief Default traits class of bellmanFord() function. |
|
| 806 |
/// |
|
| 807 |
/// Default traits class of bellmanFord() function. |
|
| 808 |
/// \tparam GR The type of the digraph. |
|
| 809 |
/// \tparam LEN The type of the length map. |
|
| 810 |
template <typename GR, typename LEN> |
|
| 811 |
struct BellmanFordWizardDefaultTraits {
|
|
| 812 |
/// The type of the digraph the algorithm runs on. |
|
| 813 |
typedef GR Digraph; |
|
| 814 |
|
|
| 815 |
/// \brief The type of the map that stores the arc lengths. |
|
| 816 |
/// |
|
| 817 |
/// The type of the map that stores the arc lengths. |
|
| 818 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
| 819 |
typedef LEN LengthMap; |
|
| 820 |
|
|
| 821 |
/// The type of the arc lengths. |
|
| 822 |
typedef typename LEN::Value Value; |
|
| 823 |
|
|
| 824 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
| 825 |
/// |
|
| 826 |
/// It defines the used operations and the infinity value for the |
|
| 827 |
/// given \c Value type. |
|
| 828 |
/// \see BellmanFordDefaultOperationTraits |
|
| 829 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
| 830 |
|
|
| 831 |
/// \brief The type of the map that stores the last |
|
| 832 |
/// arcs of the shortest paths. |
|
| 833 |
/// |
|
| 834 |
/// The type of the map that stores the last arcs of the shortest paths. |
|
| 835 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 836 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
| 837 |
|
|
| 838 |
/// \brief Instantiates a \c PredMap. |
|
| 839 |
/// |
|
| 840 |
/// This function instantiates a \ref PredMap. |
|
| 841 |
/// \param g is the digraph to which we would like to define the |
|
| 842 |
/// \ref PredMap. |
|
| 843 |
static PredMap *createPredMap(const GR &g) {
|
|
| 844 |
return new PredMap(g); |
|
| 845 |
} |
|
| 846 |
|
|
| 847 |
/// \brief The type of the map that stores the distances of the nodes. |
|
| 848 |
/// |
|
| 849 |
/// The type of the map that stores the distances of the nodes. |
|
| 850 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 851 |
typedef typename GR::template NodeMap<Value> DistMap; |
|
| 852 |
|
|
| 853 |
/// \brief Instantiates a \c DistMap. |
|
| 854 |
/// |
|
| 855 |
/// This function instantiates a \ref DistMap. |
|
| 856 |
/// \param g is the digraph to which we would like to define the |
|
| 857 |
/// \ref DistMap. |
|
| 858 |
static DistMap *createDistMap(const GR &g) {
|
|
| 859 |
return new DistMap(g); |
|
| 860 |
} |
|
| 861 |
|
|
| 862 |
///The type of the shortest paths. |
|
| 863 |
|
|
| 864 |
///The type of the shortest paths. |
|
| 865 |
///It must meet the \ref concepts::Path "Path" concept. |
|
| 866 |
typedef lemon::Path<Digraph> Path; |
|
| 867 |
}; |
|
| 868 |
|
|
| 869 |
/// \brief Default traits class used by BellmanFordWizard. |
|
| 870 |
/// |
|
| 871 |
/// Default traits class used by BellmanFordWizard. |
|
| 872 |
/// \tparam GR The type of the digraph. |
|
| 873 |
/// \tparam LEN The type of the length map. |
|
| 874 |
template <typename GR, typename LEN> |
|
| 875 |
class BellmanFordWizardBase |
|
| 876 |
: public BellmanFordWizardDefaultTraits<GR, LEN> {
|
|
| 877 |
|
|
| 878 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
|
| 879 |
protected: |
|
| 880 |
// Type of the nodes in the digraph. |
|
| 881 |
typedef typename Base::Digraph::Node Node; |
|
| 882 |
|
|
| 883 |
// Pointer to the underlying digraph. |
|
| 884 |
void *_graph; |
|
| 885 |
// Pointer to the length map |
|
| 886 |
void *_length; |
|
| 887 |
// Pointer to the map of predecessors arcs. |
|
| 888 |
void *_pred; |
|
| 889 |
// Pointer to the map of distances. |
|
| 890 |
void *_dist; |
|
| 891 |
//Pointer to the shortest path to the target node. |
|
| 892 |
void *_path; |
|
| 893 |
//Pointer to the distance of the target node. |
|
| 894 |
void *_di; |
|
| 895 |
|
|
| 896 |
public: |
|
| 897 |
/// Constructor. |
|
| 898 |
|
|
| 899 |
/// This constructor does not require parameters, it initiates |
|
| 900 |
/// all of the attributes to default values \c 0. |
|
| 901 |
BellmanFordWizardBase() : |
|
| 902 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
|
| 903 |
|
|
| 904 |
/// Constructor. |
|
| 905 |
|
|
| 906 |
/// This constructor requires two parameters, |
|
| 907 |
/// others are initiated to \c 0. |
|
| 908 |
/// \param gr The digraph the algorithm runs on. |
|
| 909 |
/// \param len The length map. |
|
| 910 |
BellmanFordWizardBase(const GR& gr, |
|
| 911 |
const LEN& len) : |
|
| 912 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
|
| 913 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
|
| 914 |
_pred(0), _dist(0), _path(0), _di(0) {}
|
|
| 915 |
|
|
| 916 |
}; |
|
| 917 |
|
|
| 918 |
/// \brief Auxiliary class for the function-type interface of the |
|
| 919 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
| 920 |
/// |
|
| 921 |
/// This auxiliary class is created to implement the |
|
| 922 |
/// \ref bellmanFord() "function-type interface" of the |
|
| 923 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
| 924 |
/// It does not have own \ref run() method, it uses the |
|
| 925 |
/// functions and features of the plain \ref BellmanFord. |
|
| 926 |
/// |
|
| 927 |
/// This class should only be used through the \ref bellmanFord() |
|
| 928 |
/// function, which makes it easier to use the algorithm. |
|
| 929 |
template<class TR> |
|
| 930 |
class BellmanFordWizard : public TR {
|
|
| 931 |
typedef TR Base; |
|
| 932 |
|
|
| 933 |
typedef typename TR::Digraph Digraph; |
|
| 934 |
|
|
| 935 |
typedef typename Digraph::Node Node; |
|
| 936 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 937 |
typedef typename Digraph::Arc Arc; |
|
| 938 |
typedef typename Digraph::OutArcIt ArcIt; |
|
| 939 |
|
|
| 940 |
typedef typename TR::LengthMap LengthMap; |
|
| 941 |
typedef typename LengthMap::Value Value; |
|
| 942 |
typedef typename TR::PredMap PredMap; |
|
| 943 |
typedef typename TR::DistMap DistMap; |
|
| 944 |
typedef typename TR::Path Path; |
|
| 945 |
|
|
| 946 |
public: |
|
| 947 |
/// Constructor. |
|
| 948 |
BellmanFordWizard() : TR() {}
|
|
| 949 |
|
|
| 950 |
/// \brief Constructor that requires parameters. |
|
| 951 |
/// |
|
| 952 |
/// Constructor that requires parameters. |
|
| 953 |
/// These parameters will be the default values for the traits class. |
|
| 954 |
/// \param gr The digraph the algorithm runs on. |
|
| 955 |
/// \param len The length map. |
|
| 956 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
|
| 957 |
: TR(gr, len) {}
|
|
| 958 |
|
|
| 959 |
/// \brief Copy constructor |
|
| 960 |
BellmanFordWizard(const TR &b) : TR(b) {}
|
|
| 961 |
|
|
| 962 |
~BellmanFordWizard() {}
|
|
| 963 |
|
|
| 964 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
|
| 965 |
/// |
|
| 966 |
/// This method runs the Bellman-Ford algorithm from the given source |
|
| 967 |
/// node in order to compute the shortest path to each node. |
|
| 968 |
void run(Node s) {
|
|
| 969 |
BellmanFord<Digraph,LengthMap,TR> |
|
| 970 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
| 971 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
| 972 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
| 973 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
| 974 |
bf.run(s); |
|
| 975 |
} |
|
| 976 |
|
|
| 977 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
|
| 978 |
/// between \c s and \c t. |
|
| 979 |
/// |
|
| 980 |
/// This method runs the Bellman-Ford algorithm from node \c s |
|
| 981 |
/// in order to compute the shortest path to node \c t. |
|
| 982 |
/// Actually, it computes the shortest path to each node, but using |
|
| 983 |
/// this function you can retrieve the distance and the shortest path |
|
| 984 |
/// for a single target node easier. |
|
| 985 |
/// |
|
| 986 |
/// \return \c true if \c t is reachable form \c s. |
|
| 987 |
bool run(Node s, Node t) {
|
|
| 988 |
BellmanFord<Digraph,LengthMap,TR> |
|
| 989 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
| 990 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
| 991 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
| 992 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
| 993 |
bf.run(s); |
|
| 994 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
|
| 995 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
|
| 996 |
return bf.reached(t); |
|
| 997 |
} |
|
| 998 |
|
|
| 999 |
template<class T> |
|
| 1000 |
struct SetPredMapBase : public Base {
|
|
| 1001 |
typedef T PredMap; |
|
| 1002 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
|
| 1003 |
SetPredMapBase(const TR &b) : TR(b) {}
|
|
| 1004 |
}; |
|
| 1005 |
|
|
| 1006 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 1007 |
/// the predecessor map. |
|
| 1008 |
/// |
|
| 1009 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 1010 |
/// the map that stores the predecessor arcs of the nodes. |
|
| 1011 |
template<class T> |
|
| 1012 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
|
|
| 1013 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
| 1014 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
|
| 1015 |
} |
|
| 1016 |
|
|
| 1017 |
template<class T> |
|
| 1018 |
struct SetDistMapBase : public Base {
|
|
| 1019 |
typedef T DistMap; |
|
| 1020 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
|
| 1021 |
SetDistMapBase(const TR &b) : TR(b) {}
|
|
| 1022 |
}; |
|
| 1023 |
|
|
| 1024 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 1025 |
/// the distance map. |
|
| 1026 |
/// |
|
| 1027 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 1028 |
/// the map that stores the distances of the nodes calculated |
|
| 1029 |
/// by the algorithm. |
|
| 1030 |
template<class T> |
|
| 1031 |
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
|
|
| 1032 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
| 1033 |
return BellmanFordWizard<SetDistMapBase<T> >(*this); |
|
| 1034 |
} |
|
| 1035 |
|
|
| 1036 |
template<class T> |
|
| 1037 |
struct SetPathBase : public Base {
|
|
| 1038 |
typedef T Path; |
|
| 1039 |
SetPathBase(const TR &b) : TR(b) {}
|
|
| 1040 |
}; |
|
| 1041 |
|
|
| 1042 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
| 1043 |
/// the shortest path to the target node. |
|
| 1044 |
/// |
|
| 1045 |
/// \ref named-func-param "Named parameter" for getting |
|
| 1046 |
/// the shortest path to the target node. |
|
| 1047 |
template<class T> |
|
| 1048 |
BellmanFordWizard<SetPathBase<T> > path(const T &t) |
|
| 1049 |
{
|
|
| 1050 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
| 1051 |
return BellmanFordWizard<SetPathBase<T> >(*this); |
|
| 1052 |
} |
|
| 1053 |
|
|
| 1054 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
| 1055 |
/// the distance of the target node. |
|
| 1056 |
/// |
|
| 1057 |
/// \ref named-func-param "Named parameter" for getting |
|
| 1058 |
/// the distance of the target node. |
|
| 1059 |
BellmanFordWizard dist(const Value &d) |
|
| 1060 |
{
|
|
| 1061 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
|
| 1062 |
return *this; |
|
| 1063 |
} |
|
| 1064 |
|
|
| 1065 |
}; |
|
| 1066 |
|
|
| 1067 |
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
| 1068 |
/// algorithm. |
|
| 1069 |
/// |
|
| 1070 |
/// \ingroup shortest_path |
|
| 1071 |
/// Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
| 1072 |
/// algorithm. |
|
| 1073 |
/// |
|
| 1074 |
/// This function also has several \ref named-templ-func-param |
|
| 1075 |
/// "named parameters", they are declared as the members of class |
|
| 1076 |
/// \ref BellmanFordWizard. |
|
| 1077 |
/// The following examples show how to use these parameters. |
|
| 1078 |
/// \code |
|
| 1079 |
/// // Compute shortest path from node s to each node |
|
| 1080 |
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s); |
|
| 1081 |
/// |
|
| 1082 |
/// // Compute shortest path from s to t |
|
| 1083 |
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t); |
|
| 1084 |
/// \endcode |
|
| 1085 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
|
| 1086 |
/// to the end of the parameter list. |
|
| 1087 |
/// \sa BellmanFordWizard |
|
| 1088 |
/// \sa BellmanFord |
|
| 1089 |
template<typename GR, typename LEN> |
|
| 1090 |
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> > |
|
| 1091 |
bellmanFord(const GR& digraph, |
|
| 1092 |
const LEN& length) |
|
| 1093 |
{
|
|
| 1094 |
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length); |
|
| 1095 |
} |
|
| 1096 |
|
|
| 1097 |
} //END OF NAMESPACE LEMON |
|
| 1098 |
|
|
| 1099 |
#endif |
|
| 1100 |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_BINOM_HEAP_H |
|
| 20 |
#define LEMON_BINOM_HEAP_H |
|
| 21 |
|
|
| 22 |
///\file |
|
| 23 |
///\ingroup heaps |
|
| 24 |
///\brief Binomial Heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <utility> |
|
| 28 |
#include <functional> |
|
| 29 |
#include <lemon/math.h> |
|
| 30 |
#include <lemon/counter.h> |
|
| 31 |
|
|
| 32 |
namespace lemon {
|
|
| 33 |
|
|
| 34 |
/// \ingroup heaps |
|
| 35 |
/// |
|
| 36 |
///\brief Binomial heap data structure. |
|
| 37 |
/// |
|
| 38 |
/// This class implements the \e binomial \e heap data structure. |
|
| 39 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 40 |
/// |
|
| 41 |
/// The methods \ref increase() and \ref erase() are not efficient |
|
| 42 |
/// in a binomial heap. In case of many calls of these operations, |
|
| 43 |
/// it is better to use other heap structure, e.g. \ref BinHeap |
|
| 44 |
/// "binary heap". |
|
| 45 |
/// |
|
| 46 |
/// \tparam PR Type of the priorities of the items. |
|
| 47 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 48 |
/// internally to handle the cross references. |
|
| 49 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 50 |
/// The default is \c std::less<PR>. |
|
| 51 |
#ifdef DOXYGEN |
|
| 52 |
template <typename PR, typename IM, typename CMP> |
|
| 53 |
#else |
|
| 54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 55 |
#endif |
|
| 56 |
class BinomHeap {
|
|
| 57 |
public: |
|
| 58 |
/// Type of the item-int map. |
|
| 59 |
typedef IM ItemIntMap; |
|
| 60 |
/// Type of the priorities. |
|
| 61 |
typedef PR Prio; |
|
| 62 |
/// Type of the items stored in the heap. |
|
| 63 |
typedef typename ItemIntMap::Key Item; |
|
| 64 |
/// Functor type for comparing the priorities. |
|
| 65 |
typedef CMP Compare; |
|
| 66 |
|
|
| 67 |
/// \brief Type to represent the states of the items. |
|
| 68 |
/// |
|
| 69 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 70 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 71 |
/// heap's point of view, but may be useful to the user. |
|
| 72 |
/// |
|
| 73 |
/// The item-int map must be initialized in such way that it assigns |
|
| 74 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 75 |
enum State {
|
|
| 76 |
IN_HEAP = 0, ///< = 0. |
|
| 77 |
PRE_HEAP = -1, ///< = -1. |
|
| 78 |
POST_HEAP = -2 ///< = -2. |
|
| 79 |
}; |
|
| 80 |
|
|
| 81 |
private: |
|
| 82 |
class Store; |
|
| 83 |
|
|
| 84 |
std::vector<Store> _data; |
|
| 85 |
int _min, _head; |
|
| 86 |
ItemIntMap &_iim; |
|
| 87 |
Compare _comp; |
|
| 88 |
int _num_items; |
|
| 89 |
|
|
| 90 |
public: |
|
| 91 |
/// \brief Constructor. |
|
| 92 |
/// |
|
| 93 |
/// Constructor. |
|
| 94 |
/// \param map A map that assigns \c int values to the items. |
|
| 95 |
/// It is used internally to handle the cross references. |
|
| 96 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 97 |
explicit BinomHeap(ItemIntMap &map) |
|
| 98 |
: _min(0), _head(-1), _iim(map), _num_items(0) {}
|
|
| 99 |
|
|
| 100 |
/// \brief Constructor. |
|
| 101 |
/// |
|
| 102 |
/// Constructor. |
|
| 103 |
/// \param map A map that assigns \c int values to the items. |
|
| 104 |
/// It is used internally to handle the cross references. |
|
| 105 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 106 |
/// \param comp The function object used for comparing the priorities. |
|
| 107 |
BinomHeap(ItemIntMap &map, const Compare &comp) |
|
| 108 |
: _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {}
|
|
| 109 |
|
|
| 110 |
/// \brief The number of items stored in the heap. |
|
| 111 |
/// |
|
| 112 |
/// This function returns the number of items stored in the heap. |
|
| 113 |
int size() const { return _num_items; }
|
|
| 114 |
|
|
| 115 |
/// \brief Check if the heap is empty. |
|
| 116 |
/// |
|
| 117 |
/// This function returns \c true if the heap is empty. |
|
| 118 |
bool empty() const { return _num_items==0; }
|
|
| 119 |
|
|
| 120 |
/// \brief Make the heap empty. |
|
| 121 |
/// |
|
| 122 |
/// This functon makes the heap empty. |
|
| 123 |
/// It does not change the cross reference map. If you want to reuse |
|
| 124 |
/// a heap that is not surely empty, you should first clear it and |
|
| 125 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 126 |
/// for each item. |
|
| 127 |
void clear() {
|
|
| 128 |
_data.clear(); _min=0; _num_items=0; _head=-1; |
|
| 129 |
} |
|
| 130 |
|
|
| 131 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 132 |
/// not stored in the heap. |
|
| 133 |
/// |
|
| 134 |
/// This method sets the priority of the given item if it is |
|
| 135 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 136 |
/// item into the heap with the given priority. |
|
| 137 |
/// \param item The item. |
|
| 138 |
/// \param value The priority. |
|
| 139 |
void set (const Item& item, const Prio& value) {
|
|
| 140 |
int i=_iim[item]; |
|
| 141 |
if ( i >= 0 && _data[i].in ) {
|
|
| 142 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
| 143 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
| 144 |
} else push(item, value); |
|
| 145 |
} |
|
| 146 |
|
|
| 147 |
/// \brief Insert an item into the heap with the given priority. |
|
| 148 |
/// |
|
| 149 |
/// This function inserts the given item into the heap with the |
|
| 150 |
/// given priority. |
|
| 151 |
/// \param item The item to insert. |
|
| 152 |
/// \param value The priority of the item. |
|
| 153 |
/// \pre \e item must not be stored in the heap. |
|
| 154 |
void push (const Item& item, const Prio& value) {
|
|
| 155 |
int i=_iim[item]; |
|
| 156 |
if ( i<0 ) {
|
|
| 157 |
int s=_data.size(); |
|
| 158 |
_iim.set( item,s ); |
|
| 159 |
Store st; |
|
| 160 |
st.name=item; |
|
| 161 |
st.prio=value; |
|
| 162 |
_data.push_back(st); |
|
| 163 |
i=s; |
|
| 164 |
} |
|
| 165 |
else {
|
|
| 166 |
_data[i].parent=_data[i].right_neighbor=_data[i].child=-1; |
|
| 167 |
_data[i].degree=0; |
|
| 168 |
_data[i].in=true; |
|
| 169 |
_data[i].prio=value; |
|
| 170 |
} |
|
| 171 |
|
|
| 172 |
if( 0==_num_items ) {
|
|
| 173 |
_head=i; |
|
| 174 |
_min=i; |
|
| 175 |
} else {
|
|
| 176 |
merge(i); |
|
| 177 |
if( _comp(_data[i].prio, _data[_min].prio) ) _min=i; |
|
| 178 |
} |
|
| 179 |
++_num_items; |
|
| 180 |
} |
|
| 181 |
|
|
| 182 |
/// \brief Return the item having minimum priority. |
|
| 183 |
/// |
|
| 184 |
/// This function returns the item having minimum priority. |
|
| 185 |
/// \pre The heap must be non-empty. |
|
| 186 |
Item top() const { return _data[_min].name; }
|
|
| 187 |
|
|
| 188 |
/// \brief The minimum priority. |
|
| 189 |
/// |
|
| 190 |
/// This function returns the minimum priority. |
|
| 191 |
/// \pre The heap must be non-empty. |
|
| 192 |
Prio prio() const { return _data[_min].prio; }
|
|
| 193 |
|
|
| 194 |
/// \brief The priority of the given item. |
|
| 195 |
/// |
|
| 196 |
/// This function returns the priority of the given item. |
|
| 197 |
/// \param item The item. |
|
| 198 |
/// \pre \e item must be in the heap. |
|
| 199 |
const Prio& operator[](const Item& item) const {
|
|
| 200 |
return _data[_iim[item]].prio; |
|
| 201 |
} |
|
| 202 |
|
|
| 203 |
/// \brief Remove the item having minimum priority. |
|
| 204 |
/// |
|
| 205 |
/// This function removes the item having minimum priority. |
|
| 206 |
/// \pre The heap must be non-empty. |
|
| 207 |
void pop() {
|
|
| 208 |
_data[_min].in=false; |
|
| 209 |
|
|
| 210 |
int head_child=-1; |
|
| 211 |
if ( _data[_min].child!=-1 ) {
|
|
| 212 |
int child=_data[_min].child; |
|
| 213 |
int neighb; |
|
| 214 |
while( child!=-1 ) {
|
|
| 215 |
neighb=_data[child].right_neighbor; |
|
| 216 |
_data[child].parent=-1; |
|
| 217 |
_data[child].right_neighbor=head_child; |
|
| 218 |
head_child=child; |
|
| 219 |
child=neighb; |
|
| 220 |
} |
|
| 221 |
} |
|
| 222 |
|
|
| 223 |
if ( _data[_head].right_neighbor==-1 ) {
|
|
| 224 |
// there was only one root |
|
| 225 |
_head=head_child; |
|
| 226 |
} |
|
| 227 |
else {
|
|
| 228 |
// there were more roots |
|
| 229 |
if( _head!=_min ) { unlace(_min); }
|
|
| 230 |
else { _head=_data[_head].right_neighbor; }
|
|
| 231 |
merge(head_child); |
|
| 232 |
} |
|
| 233 |
_min=findMin(); |
|
| 234 |
--_num_items; |
|
| 235 |
} |
|
| 236 |
|
|
| 237 |
/// \brief Remove the given item from the heap. |
|
| 238 |
/// |
|
| 239 |
/// This function removes the given item from the heap if it is |
|
| 240 |
/// already stored. |
|
| 241 |
/// \param item The item to delete. |
|
| 242 |
/// \pre \e item must be in the heap. |
|
| 243 |
void erase (const Item& item) {
|
|
| 244 |
int i=_iim[item]; |
|
| 245 |
if ( i >= 0 && _data[i].in ) {
|
|
| 246 |
decrease( item, _data[_min].prio-1 ); |
|
| 247 |
pop(); |
|
| 248 |
} |
|
| 249 |
} |
|
| 250 |
|
|
| 251 |
/// \brief Decrease the priority of an item to the given value. |
|
| 252 |
/// |
|
| 253 |
/// This function decreases the priority of an item to the given value. |
|
| 254 |
/// \param item The item. |
|
| 255 |
/// \param value The priority. |
|
| 256 |
/// \pre \e item must be stored in the heap with priority at least \e value. |
|
| 257 |
void decrease (Item item, const Prio& value) {
|
|
| 258 |
int i=_iim[item]; |
|
| 259 |
int p=_data[i].parent; |
|
| 260 |
_data[i].prio=value; |
|
| 261 |
|
|
| 262 |
while( p!=-1 && _comp(value, _data[p].prio) ) {
|
|
| 263 |
_data[i].name=_data[p].name; |
|
| 264 |
_data[i].prio=_data[p].prio; |
|
| 265 |
_data[p].name=item; |
|
| 266 |
_data[p].prio=value; |
|
| 267 |
_iim[_data[i].name]=i; |
|
| 268 |
i=p; |
|
| 269 |
p=_data[p].parent; |
|
| 270 |
} |
|
| 271 |
_iim[item]=i; |
|
| 272 |
if ( _comp(value, _data[_min].prio) ) _min=i; |
|
| 273 |
} |
|
| 274 |
|
|
| 275 |
/// \brief Increase the priority of an item to the given value. |
|
| 276 |
/// |
|
| 277 |
/// This function increases the priority of an item to the given value. |
|
| 278 |
/// \param item The item. |
|
| 279 |
/// \param value The priority. |
|
| 280 |
/// \pre \e item must be stored in the heap with priority at most \e value. |
|
| 281 |
void increase (Item item, const Prio& value) {
|
|
| 282 |
erase(item); |
|
| 283 |
push(item, value); |
|
| 284 |
} |
|
| 285 |
|
|
| 286 |
/// \brief Return the state of an item. |
|
| 287 |
/// |
|
| 288 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 289 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 290 |
/// and \c POST_HEAP otherwise. |
|
| 291 |
/// In the latter case it is possible that the item will get back |
|
| 292 |
/// to the heap again. |
|
| 293 |
/// \param item The item. |
|
| 294 |
State state(const Item &item) const {
|
|
| 295 |
int i=_iim[item]; |
|
| 296 |
if( i>=0 ) {
|
|
| 297 |
if ( _data[i].in ) i=0; |
|
| 298 |
else i=-2; |
|
| 299 |
} |
|
| 300 |
return State(i); |
|
| 301 |
} |
|
| 302 |
|
|
| 303 |
/// \brief Set the state of an item in the heap. |
|
| 304 |
/// |
|
| 305 |
/// This function sets the state of the given item in the heap. |
|
| 306 |
/// It can be used to manually clear the heap when it is important |
|
| 307 |
/// to achive better time complexity. |
|
| 308 |
/// \param i The item. |
|
| 309 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 310 |
void state(const Item& i, State st) {
|
|
| 311 |
switch (st) {
|
|
| 312 |
case POST_HEAP: |
|
| 313 |
case PRE_HEAP: |
|
| 314 |
if (state(i) == IN_HEAP) {
|
|
| 315 |
erase(i); |
|
| 316 |
} |
|
| 317 |
_iim[i] = st; |
|
| 318 |
break; |
|
| 319 |
case IN_HEAP: |
|
| 320 |
break; |
|
| 321 |
} |
|
| 322 |
} |
|
| 323 |
|
|
| 324 |
private: |
|
| 325 |
|
|
| 326 |
// Find the minimum of the roots |
|
| 327 |
int findMin() {
|
|
| 328 |
if( _head!=-1 ) {
|
|
| 329 |
int min_loc=_head, min_val=_data[_head].prio; |
|
| 330 |
for( int x=_data[_head].right_neighbor; x!=-1; |
|
| 331 |
x=_data[x].right_neighbor ) {
|
|
| 332 |
if( _comp( _data[x].prio,min_val ) ) {
|
|
| 333 |
min_val=_data[x].prio; |
|
| 334 |
min_loc=x; |
|
| 335 |
} |
|
| 336 |
} |
|
| 337 |
return min_loc; |
|
| 338 |
} |
|
| 339 |
else return -1; |
|
| 340 |
} |
|
| 341 |
|
|
| 342 |
// Merge the heap with another heap starting at the given position |
|
| 343 |
void merge(int a) {
|
|
| 344 |
if( _head==-1 || a==-1 ) return; |
|
| 345 |
if( _data[a].right_neighbor==-1 && |
|
| 346 |
_data[a].degree<=_data[_head].degree ) {
|
|
| 347 |
_data[a].right_neighbor=_head; |
|
| 348 |
_head=a; |
|
| 349 |
} else {
|
|
| 350 |
interleave(a); |
|
| 351 |
} |
|
| 352 |
if( _data[_head].right_neighbor==-1 ) return; |
|
| 353 |
|
|
| 354 |
int x=_head; |
|
| 355 |
int x_prev=-1, x_next=_data[x].right_neighbor; |
|
| 356 |
while( x_next!=-1 ) {
|
|
| 357 |
if( _data[x].degree!=_data[x_next].degree || |
|
| 358 |
( _data[x_next].right_neighbor!=-1 && |
|
| 359 |
_data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
|
|
| 360 |
x_prev=x; |
|
| 361 |
x=x_next; |
|
| 362 |
} |
|
| 363 |
else {
|
|
| 364 |
if( _comp(_data[x_next].prio,_data[x].prio) ) {
|
|
| 365 |
if( x_prev==-1 ) {
|
|
| 366 |
_head=x_next; |
|
| 367 |
} else {
|
|
| 368 |
_data[x_prev].right_neighbor=x_next; |
|
| 369 |
} |
|
| 370 |
fuse(x,x_next); |
|
| 371 |
x=x_next; |
|
| 372 |
} |
|
| 373 |
else {
|
|
| 374 |
_data[x].right_neighbor=_data[x_next].right_neighbor; |
|
| 375 |
fuse(x_next,x); |
|
| 376 |
} |
|
| 377 |
} |
|
| 378 |
x_next=_data[x].right_neighbor; |
|
| 379 |
} |
|
| 380 |
} |
|
| 381 |
|
|
| 382 |
// Interleave the elements of the given list into the list of the roots |
|
| 383 |
void interleave(int a) {
|
|
| 384 |
int p=_head, q=a; |
|
| 385 |
int curr=_data.size(); |
|
| 386 |
_data.push_back(Store()); |
|
| 387 |
|
|
| 388 |
while( p!=-1 || q!=-1 ) {
|
|
| 389 |
if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) {
|
|
| 390 |
_data[curr].right_neighbor=p; |
|
| 391 |
curr=p; |
|
| 392 |
p=_data[p].right_neighbor; |
|
| 393 |
} |
|
| 394 |
else {
|
|
| 395 |
_data[curr].right_neighbor=q; |
|
| 396 |
curr=q; |
|
| 397 |
q=_data[q].right_neighbor; |
|
| 398 |
} |
|
| 399 |
} |
|
| 400 |
|
|
| 401 |
_head=_data.back().right_neighbor; |
|
| 402 |
_data.pop_back(); |
|
| 403 |
} |
|
| 404 |
|
|
| 405 |
// Lace node a under node b |
|
| 406 |
void fuse(int a, int b) {
|
|
| 407 |
_data[a].parent=b; |
|
| 408 |
_data[a].right_neighbor=_data[b].child; |
|
| 409 |
_data[b].child=a; |
|
| 410 |
|
|
| 411 |
++_data[b].degree; |
|
| 412 |
} |
|
| 413 |
|
|
| 414 |
// Unlace node a (if it has siblings) |
|
| 415 |
void unlace(int a) {
|
|
| 416 |
int neighb=_data[a].right_neighbor; |
|
| 417 |
int other=_head; |
|
| 418 |
|
|
| 419 |
while( _data[other].right_neighbor!=a ) |
|
| 420 |
other=_data[other].right_neighbor; |
|
| 421 |
_data[other].right_neighbor=neighb; |
|
| 422 |
} |
|
| 423 |
|
|
| 424 |
private: |
|
| 425 |
|
|
| 426 |
class Store {
|
|
| 427 |
friend class BinomHeap; |
|
| 428 |
|
|
| 429 |
Item name; |
|
| 430 |
int parent; |
|
| 431 |
int right_neighbor; |
|
| 432 |
int child; |
|
| 433 |
int degree; |
|
| 434 |
bool in; |
|
| 435 |
Prio prio; |
|
| 436 |
|
|
| 437 |
Store() : parent(-1), right_neighbor(-1), child(-1), degree(0), |
|
| 438 |
in(true) {}
|
|
| 439 |
}; |
|
| 440 |
}; |
|
| 441 |
|
|
| 442 |
} //namespace lemon |
|
| 443 |
|
|
| 444 |
#endif //LEMON_BINOM_HEAP_H |
|
| 445 |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_FOURARY_HEAP_H |
|
| 20 |
#define LEMON_FOURARY_HEAP_H |
|
| 21 |
|
|
| 22 |
///\ingroup heaps |
|
| 23 |
///\file |
|
| 24 |
///\brief Fourary heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <utility> |
|
| 28 |
#include <functional> |
|
| 29 |
|
|
| 30 |
namespace lemon {
|
|
| 31 |
|
|
| 32 |
/// \ingroup heaps |
|
| 33 |
/// |
|
| 34 |
///\brief Fourary heap data structure. |
|
| 35 |
/// |
|
| 36 |
/// This class implements the \e fourary \e heap data structure. |
|
| 37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 38 |
/// |
|
| 39 |
/// The fourary heap is a specialization of the \ref KaryHeap "K-ary heap" |
|
| 40 |
/// for <tt>K=4</tt>. It is similar to the \ref BinHeap "binary heap", |
|
| 41 |
/// but its nodes have at most four children, instead of two. |
|
| 42 |
/// |
|
| 43 |
/// \tparam PR Type of the priorities of the items. |
|
| 44 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 45 |
/// internally to handle the cross references. |
|
| 46 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 47 |
/// The default is \c std::less<PR>. |
|
| 48 |
/// |
|
| 49 |
///\sa BinHeap |
|
| 50 |
///\sa KaryHeap |
|
| 51 |
#ifdef DOXYGEN |
|
| 52 |
template <typename PR, typename IM, typename CMP> |
|
| 53 |
#else |
|
| 54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 55 |
#endif |
|
| 56 |
class FouraryHeap {
|
|
| 57 |
public: |
|
| 58 |
/// Type of the item-int map. |
|
| 59 |
typedef IM ItemIntMap; |
|
| 60 |
/// Type of the priorities. |
|
| 61 |
typedef PR Prio; |
|
| 62 |
/// Type of the items stored in the heap. |
|
| 63 |
typedef typename ItemIntMap::Key Item; |
|
| 64 |
/// Type of the item-priority pairs. |
|
| 65 |
typedef std::pair<Item,Prio> Pair; |
|
| 66 |
/// Functor type for comparing the priorities. |
|
| 67 |
typedef CMP Compare; |
|
| 68 |
|
|
| 69 |
/// \brief Type to represent the states of the items. |
|
| 70 |
/// |
|
| 71 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 72 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 73 |
/// heap's point of view, but may be useful to the user. |
|
| 74 |
/// |
|
| 75 |
/// The item-int map must be initialized in such way that it assigns |
|
| 76 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 77 |
enum State {
|
|
| 78 |
IN_HEAP = 0, ///< = 0. |
|
| 79 |
PRE_HEAP = -1, ///< = -1. |
|
| 80 |
POST_HEAP = -2 ///< = -2. |
|
| 81 |
}; |
|
| 82 |
|
|
| 83 |
private: |
|
| 84 |
std::vector<Pair> _data; |
|
| 85 |
Compare _comp; |
|
| 86 |
ItemIntMap &_iim; |
|
| 87 |
|
|
| 88 |
public: |
|
| 89 |
/// \brief Constructor. |
|
| 90 |
/// |
|
| 91 |
/// Constructor. |
|
| 92 |
/// \param map A map that assigns \c int values to the items. |
|
| 93 |
/// It is used internally to handle the cross references. |
|
| 94 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 95 |
explicit FouraryHeap(ItemIntMap &map) : _iim(map) {}
|
|
| 96 |
|
|
| 97 |
/// \brief Constructor. |
|
| 98 |
/// |
|
| 99 |
/// Constructor. |
|
| 100 |
/// \param map A map that assigns \c int values to the items. |
|
| 101 |
/// It is used internally to handle the cross references. |
|
| 102 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 103 |
/// \param comp The function object used for comparing the priorities. |
|
| 104 |
FouraryHeap(ItemIntMap &map, const Compare &comp) |
|
| 105 |
: _iim(map), _comp(comp) {}
|
|
| 106 |
|
|
| 107 |
/// \brief The number of items stored in the heap. |
|
| 108 |
/// |
|
| 109 |
/// This function returns the number of items stored in the heap. |
|
| 110 |
int size() const { return _data.size(); }
|
|
| 111 |
|
|
| 112 |
/// \brief Check if the heap is empty. |
|
| 113 |
/// |
|
| 114 |
/// This function returns \c true if the heap is empty. |
|
| 115 |
bool empty() const { return _data.empty(); }
|
|
| 116 |
|
|
| 117 |
/// \brief Make the heap empty. |
|
| 118 |
/// |
|
| 119 |
/// This functon makes the heap empty. |
|
| 120 |
/// It does not change the cross reference map. If you want to reuse |
|
| 121 |
/// a heap that is not surely empty, you should first clear it and |
|
| 122 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 123 |
/// for each item. |
|
| 124 |
void clear() { _data.clear(); }
|
|
| 125 |
|
|
| 126 |
private: |
|
| 127 |
static int parent(int i) { return (i-1)/4; }
|
|
| 128 |
static int firstChild(int i) { return 4*i+1; }
|
|
| 129 |
|
|
| 130 |
bool less(const Pair &p1, const Pair &p2) const {
|
|
| 131 |
return _comp(p1.second, p2.second); |
|
| 132 |
} |
|
| 133 |
|
|
| 134 |
void bubbleUp(int hole, Pair p) {
|
|
| 135 |
int par = parent(hole); |
|
| 136 |
while( hole>0 && less(p,_data[par]) ) {
|
|
| 137 |
move(_data[par],hole); |
|
| 138 |
hole = par; |
|
| 139 |
par = parent(hole); |
|
| 140 |
} |
|
| 141 |
move(p, hole); |
|
| 142 |
} |
|
| 143 |
|
|
| 144 |
void bubbleDown(int hole, Pair p, int length) {
|
|
| 145 |
if( length>1 ) {
|
|
| 146 |
int child = firstChild(hole); |
|
| 147 |
while( child+3<length ) {
|
|
| 148 |
int min=child; |
|
| 149 |
if( less(_data[++child], _data[min]) ) min=child; |
|
| 150 |
if( less(_data[++child], _data[min]) ) min=child; |
|
| 151 |
if( less(_data[++child], _data[min]) ) min=child; |
|
| 152 |
if( !less(_data[min], p) ) |
|
| 153 |
goto ok; |
|
| 154 |
move(_data[min], hole); |
|
| 155 |
hole = min; |
|
| 156 |
child = firstChild(hole); |
|
| 157 |
} |
|
| 158 |
if ( child<length ) {
|
|
| 159 |
int min = child; |
|
| 160 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
|
| 161 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
|
| 162 |
if( less(_data[min], p) ) {
|
|
| 163 |
move(_data[min], hole); |
|
| 164 |
hole = min; |
|
| 165 |
} |
|
| 166 |
} |
|
| 167 |
} |
|
| 168 |
ok: |
|
| 169 |
move(p, hole); |
|
| 170 |
} |
|
| 171 |
|
|
| 172 |
void move(const Pair &p, int i) {
|
|
| 173 |
_data[i] = p; |
|
| 174 |
_iim.set(p.first, i); |
|
| 175 |
} |
|
| 176 |
|
|
| 177 |
public: |
|
| 178 |
/// \brief Insert a pair of item and priority into the heap. |
|
| 179 |
/// |
|
| 180 |
/// This function inserts \c p.first to the heap with priority |
|
| 181 |
/// \c p.second. |
|
| 182 |
/// \param p The pair to insert. |
|
| 183 |
/// \pre \c p.first must not be stored in the heap. |
|
| 184 |
void push(const Pair &p) {
|
|
| 185 |
int n = _data.size(); |
|
| 186 |
_data.resize(n+1); |
|
| 187 |
bubbleUp(n, p); |
|
| 188 |
} |
|
| 189 |
|
|
| 190 |
/// \brief Insert an item into the heap with the given priority. |
|
| 191 |
/// |
|
| 192 |
/// This function inserts the given item into the heap with the |
|
| 193 |
/// given priority. |
|
| 194 |
/// \param i The item to insert. |
|
| 195 |
/// \param p The priority of the item. |
|
| 196 |
/// \pre \e i must not be stored in the heap. |
|
| 197 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
|
|
| 198 |
|
|
| 199 |
/// \brief Return the item having minimum priority. |
|
| 200 |
/// |
|
| 201 |
/// This function returns the item having minimum priority. |
|
| 202 |
/// \pre The heap must be non-empty. |
|
| 203 |
Item top() const { return _data[0].first; }
|
|
| 204 |
|
|
| 205 |
/// \brief The minimum priority. |
|
| 206 |
/// |
|
| 207 |
/// This function returns the minimum priority. |
|
| 208 |
/// \pre The heap must be non-empty. |
|
| 209 |
Prio prio() const { return _data[0].second; }
|
|
| 210 |
|
|
| 211 |
/// \brief Remove the item having minimum priority. |
|
| 212 |
/// |
|
| 213 |
/// This function removes the item having minimum priority. |
|
| 214 |
/// \pre The heap must be non-empty. |
|
| 215 |
void pop() {
|
|
| 216 |
int n = _data.size()-1; |
|
| 217 |
_iim.set(_data[0].first, POST_HEAP); |
|
| 218 |
if (n>0) bubbleDown(0, _data[n], n); |
|
| 219 |
_data.pop_back(); |
|
| 220 |
} |
|
| 221 |
|
|
| 222 |
/// \brief Remove the given item from the heap. |
|
| 223 |
/// |
|
| 224 |
/// This function removes the given item from the heap if it is |
|
| 225 |
/// already stored. |
|
| 226 |
/// \param i The item to delete. |
|
| 227 |
/// \pre \e i must be in the heap. |
|
| 228 |
void erase(const Item &i) {
|
|
| 229 |
int h = _iim[i]; |
|
| 230 |
int n = _data.size()-1; |
|
| 231 |
_iim.set(_data[h].first, POST_HEAP); |
|
| 232 |
if( h<n ) {
|
|
| 233 |
if( less(_data[parent(h)], _data[n]) ) |
|
| 234 |
bubbleDown(h, _data[n], n); |
|
| 235 |
else |
|
| 236 |
bubbleUp(h, _data[n]); |
|
| 237 |
} |
|
| 238 |
_data.pop_back(); |
|
| 239 |
} |
|
| 240 |
|
|
| 241 |
/// \brief The priority of the given item. |
|
| 242 |
/// |
|
| 243 |
/// This function returns the priority of the given item. |
|
| 244 |
/// \param i The item. |
|
| 245 |
/// \pre \e i must be in the heap. |
|
| 246 |
Prio operator[](const Item &i) const {
|
|
| 247 |
int idx = _iim[i]; |
|
| 248 |
return _data[idx].second; |
|
| 249 |
} |
|
| 250 |
|
|
| 251 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 252 |
/// not stored in the heap. |
|
| 253 |
/// |
|
| 254 |
/// This method sets the priority of the given item if it is |
|
| 255 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 256 |
/// item into the heap with the given priority. |
|
| 257 |
/// \param i The item. |
|
| 258 |
/// \param p The priority. |
|
| 259 |
void set(const Item &i, const Prio &p) {
|
|
| 260 |
int idx = _iim[i]; |
|
| 261 |
if( idx < 0 ) |
|
| 262 |
push(i,p); |
|
| 263 |
else if( _comp(p, _data[idx].second) ) |
|
| 264 |
bubbleUp(idx, Pair(i,p)); |
|
| 265 |
else |
|
| 266 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 267 |
} |
|
| 268 |
|
|
| 269 |
/// \brief Decrease the priority of an item to the given value. |
|
| 270 |
/// |
|
| 271 |
/// This function decreases the priority of an item to the given value. |
|
| 272 |
/// \param i The item. |
|
| 273 |
/// \param p The priority. |
|
| 274 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 275 |
void decrease(const Item &i, const Prio &p) {
|
|
| 276 |
int idx = _iim[i]; |
|
| 277 |
bubbleUp(idx, Pair(i,p)); |
|
| 278 |
} |
|
| 279 |
|
|
| 280 |
/// \brief Increase the priority of an item to the given value. |
|
| 281 |
/// |
|
| 282 |
/// This function increases the priority of an item to the given value. |
|
| 283 |
/// \param i The item. |
|
| 284 |
/// \param p The priority. |
|
| 285 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 286 |
void increase(const Item &i, const Prio &p) {
|
|
| 287 |
int idx = _iim[i]; |
|
| 288 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 289 |
} |
|
| 290 |
|
|
| 291 |
/// \brief Return the state of an item. |
|
| 292 |
/// |
|
| 293 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 294 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 295 |
/// and \c POST_HEAP otherwise. |
|
| 296 |
/// In the latter case it is possible that the item will get back |
|
| 297 |
/// to the heap again. |
|
| 298 |
/// \param i The item. |
|
| 299 |
State state(const Item &i) const {
|
|
| 300 |
int s = _iim[i]; |
|
| 301 |
if (s>=0) s=0; |
|
| 302 |
return State(s); |
|
| 303 |
} |
|
| 304 |
|
|
| 305 |
/// \brief Set the state of an item in the heap. |
|
| 306 |
/// |
|
| 307 |
/// This function sets the state of the given item in the heap. |
|
| 308 |
/// It can be used to manually clear the heap when it is important |
|
| 309 |
/// to achive better time complexity. |
|
| 310 |
/// \param i The item. |
|
| 311 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 312 |
void state(const Item& i, State st) {
|
|
| 313 |
switch (st) {
|
|
| 314 |
case POST_HEAP: |
|
| 315 |
case PRE_HEAP: |
|
| 316 |
if (state(i) == IN_HEAP) erase(i); |
|
| 317 |
_iim[i] = st; |
|
| 318 |
break; |
|
| 319 |
case IN_HEAP: |
|
| 320 |
break; |
|
| 321 |
} |
|
| 322 |
} |
|
| 323 |
|
|
| 324 |
/// \brief Replace an item in the heap. |
|
| 325 |
/// |
|
| 326 |
/// This function replaces item \c i with item \c j. |
|
| 327 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
| 328 |
/// After calling this method, item \c i will be out of the |
|
| 329 |
/// heap and \c j will be in the heap with the same prioriority |
|
| 330 |
/// as item \c i had before. |
|
| 331 |
void replace(const Item& i, const Item& j) {
|
|
| 332 |
int idx = _iim[i]; |
|
| 333 |
_iim.set(i, _iim[j]); |
|
| 334 |
_iim.set(j, idx); |
|
| 335 |
_data[idx].first = j; |
|
| 336 |
} |
|
| 337 |
|
|
| 338 |
}; // class FouraryHeap |
|
| 339 |
|
|
| 340 |
} // namespace lemon |
|
| 341 |
|
|
| 342 |
#endif // LEMON_FOURARY_HEAP_H |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_KARY_HEAP_H |
|
| 20 |
#define LEMON_KARY_HEAP_H |
|
| 21 |
|
|
| 22 |
///\ingroup heaps |
|
| 23 |
///\file |
|
| 24 |
///\brief Fourary heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <utility> |
|
| 28 |
#include <functional> |
|
| 29 |
|
|
| 30 |
namespace lemon {
|
|
| 31 |
|
|
| 32 |
/// \ingroup heaps |
|
| 33 |
/// |
|
| 34 |
///\brief K-ary heap data structure. |
|
| 35 |
/// |
|
| 36 |
/// This class implements the \e K-ary \e heap data structure. |
|
| 37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 38 |
/// |
|
| 39 |
/// The \ref KaryHeap "K-ary heap" is a generalization of the |
|
| 40 |
/// \ref BinHeap "binary heap" structure, its nodes have at most |
|
| 41 |
/// \c K children, instead of two. |
|
| 42 |
/// \ref BinHeap and \ref FouraryHeap are specialized implementations |
|
| 43 |
/// of this structure for <tt>K=2</tt> and <tt>K=4</tt>, respectively. |
|
| 44 |
/// |
|
| 45 |
/// \tparam PR Type of the priorities of the items. |
|
| 46 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 47 |
/// internally to handle the cross references. |
|
| 48 |
/// \tparam K The degree of the heap, each node have at most \e K |
|
| 49 |
/// children. The default is 16. Powers of two are suggested to use |
|
| 50 |
/// so that the multiplications and divisions needed to traverse the |
|
| 51 |
/// nodes of the heap could be performed faster. |
|
| 52 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 53 |
/// The default is \c std::less<PR>. |
|
| 54 |
/// |
|
| 55 |
///\sa BinHeap |
|
| 56 |
///\sa FouraryHeap |
|
| 57 |
#ifdef DOXYGEN |
|
| 58 |
template <typename PR, typename IM, int K, typename CMP> |
|
| 59 |
#else |
|
| 60 |
template <typename PR, typename IM, int K = 16, |
|
| 61 |
typename CMP = std::less<PR> > |
|
| 62 |
#endif |
|
| 63 |
class KaryHeap {
|
|
| 64 |
public: |
|
| 65 |
/// Type of the item-int map. |
|
| 66 |
typedef IM ItemIntMap; |
|
| 67 |
/// Type of the priorities. |
|
| 68 |
typedef PR Prio; |
|
| 69 |
/// Type of the items stored in the heap. |
|
| 70 |
typedef typename ItemIntMap::Key Item; |
|
| 71 |
/// Type of the item-priority pairs. |
|
| 72 |
typedef std::pair<Item,Prio> Pair; |
|
| 73 |
/// Functor type for comparing the priorities. |
|
| 74 |
typedef CMP Compare; |
|
| 75 |
|
|
| 76 |
/// \brief Type to represent the states of the items. |
|
| 77 |
/// |
|
| 78 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 79 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 80 |
/// heap's point of view, but may be useful to the user. |
|
| 81 |
/// |
|
| 82 |
/// The item-int map must be initialized in such way that it assigns |
|
| 83 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 84 |
enum State {
|
|
| 85 |
IN_HEAP = 0, ///< = 0. |
|
| 86 |
PRE_HEAP = -1, ///< = -1. |
|
| 87 |
POST_HEAP = -2 ///< = -2. |
|
| 88 |
}; |
|
| 89 |
|
|
| 90 |
private: |
|
| 91 |
std::vector<Pair> _data; |
|
| 92 |
Compare _comp; |
|
| 93 |
ItemIntMap &_iim; |
|
| 94 |
|
|
| 95 |
public: |
|
| 96 |
/// \brief Constructor. |
|
| 97 |
/// |
|
| 98 |
/// Constructor. |
|
| 99 |
/// \param map A map that assigns \c int values to the items. |
|
| 100 |
/// It is used internally to handle the cross references. |
|
| 101 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 102 |
explicit KaryHeap(ItemIntMap &map) : _iim(map) {}
|
|
| 103 |
|
|
| 104 |
/// \brief Constructor. |
|
| 105 |
/// |
|
| 106 |
/// Constructor. |
|
| 107 |
/// \param map A map that assigns \c int values to the items. |
|
| 108 |
/// It is used internally to handle the cross references. |
|
| 109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 110 |
/// \param comp The function object used for comparing the priorities. |
|
| 111 |
KaryHeap(ItemIntMap &map, const Compare &comp) |
|
| 112 |
: _iim(map), _comp(comp) {}
|
|
| 113 |
|
|
| 114 |
/// \brief The number of items stored in the heap. |
|
| 115 |
/// |
|
| 116 |
/// This function returns the number of items stored in the heap. |
|
| 117 |
int size() const { return _data.size(); }
|
|
| 118 |
|
|
| 119 |
/// \brief Check if the heap is empty. |
|
| 120 |
/// |
|
| 121 |
/// This function returns \c true if the heap is empty. |
|
| 122 |
bool empty() const { return _data.empty(); }
|
|
| 123 |
|
|
| 124 |
/// \brief Make the heap empty. |
|
| 125 |
/// |
|
| 126 |
/// This functon makes the heap empty. |
|
| 127 |
/// It does not change the cross reference map. If you want to reuse |
|
| 128 |
/// a heap that is not surely empty, you should first clear it and |
|
| 129 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 130 |
/// for each item. |
|
| 131 |
void clear() { _data.clear(); }
|
|
| 132 |
|
|
| 133 |
private: |
|
| 134 |
int parent(int i) { return (i-1)/K; }
|
|
| 135 |
int firstChild(int i) { return K*i+1; }
|
|
| 136 |
|
|
| 137 |
bool less(const Pair &p1, const Pair &p2) const {
|
|
| 138 |
return _comp(p1.second, p2.second); |
|
| 139 |
} |
|
| 140 |
|
|
| 141 |
void bubbleUp(int hole, Pair p) {
|
|
| 142 |
int par = parent(hole); |
|
| 143 |
while( hole>0 && less(p,_data[par]) ) {
|
|
| 144 |
move(_data[par],hole); |
|
| 145 |
hole = par; |
|
| 146 |
par = parent(hole); |
|
| 147 |
} |
|
| 148 |
move(p, hole); |
|
| 149 |
} |
|
| 150 |
|
|
| 151 |
void bubbleDown(int hole, Pair p, int length) {
|
|
| 152 |
if( length>1 ) {
|
|
| 153 |
int child = firstChild(hole); |
|
| 154 |
while( child+K<=length ) {
|
|
| 155 |
int min=child; |
|
| 156 |
for (int i=1; i<K; ++i) {
|
|
| 157 |
if( less(_data[child+i], _data[min]) ) |
|
| 158 |
min=child+i; |
|
| 159 |
} |
|
| 160 |
if( !less(_data[min], p) ) |
|
| 161 |
goto ok; |
|
| 162 |
move(_data[min], hole); |
|
| 163 |
hole = min; |
|
| 164 |
child = firstChild(hole); |
|
| 165 |
} |
|
| 166 |
if ( child<length ) {
|
|
| 167 |
int min = child; |
|
| 168 |
while (++child < length) {
|
|
| 169 |
if( less(_data[child], _data[min]) ) |
|
| 170 |
min=child; |
|
| 171 |
} |
|
| 172 |
if( less(_data[min], p) ) {
|
|
| 173 |
move(_data[min], hole); |
|
| 174 |
hole = min; |
|
| 175 |
} |
|
| 176 |
} |
|
| 177 |
} |
|
| 178 |
ok: |
|
| 179 |
move(p, hole); |
|
| 180 |
} |
|
| 181 |
|
|
| 182 |
void move(const Pair &p, int i) {
|
|
| 183 |
_data[i] = p; |
|
| 184 |
_iim.set(p.first, i); |
|
| 185 |
} |
|
| 186 |
|
|
| 187 |
public: |
|
| 188 |
/// \brief Insert a pair of item and priority into the heap. |
|
| 189 |
/// |
|
| 190 |
/// This function inserts \c p.first to the heap with priority |
|
| 191 |
/// \c p.second. |
|
| 192 |
/// \param p The pair to insert. |
|
| 193 |
/// \pre \c p.first must not be stored in the heap. |
|
| 194 |
void push(const Pair &p) {
|
|
| 195 |
int n = _data.size(); |
|
| 196 |
_data.resize(n+1); |
|
| 197 |
bubbleUp(n, p); |
|
| 198 |
} |
|
| 199 |
|
|
| 200 |
/// \brief Insert an item into the heap with the given priority. |
|
| 201 |
/// |
|
| 202 |
/// This function inserts the given item into the heap with the |
|
| 203 |
/// given priority. |
|
| 204 |
/// \param i The item to insert. |
|
| 205 |
/// \param p The priority of the item. |
|
| 206 |
/// \pre \e i must not be stored in the heap. |
|
| 207 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
|
|
| 208 |
|
|
| 209 |
/// \brief Return the item having minimum priority. |
|
| 210 |
/// |
|
| 211 |
/// This function returns the item having minimum priority. |
|
| 212 |
/// \pre The heap must be non-empty. |
|
| 213 |
Item top() const { return _data[0].first; }
|
|
| 214 |
|
|
| 215 |
/// \brief The minimum priority. |
|
| 216 |
/// |
|
| 217 |
/// This function returns the minimum priority. |
|
| 218 |
/// \pre The heap must be non-empty. |
|
| 219 |
Prio prio() const { return _data[0].second; }
|
|
| 220 |
|
|
| 221 |
/// \brief Remove the item having minimum priority. |
|
| 222 |
/// |
|
| 223 |
/// This function removes the item having minimum priority. |
|
| 224 |
/// \pre The heap must be non-empty. |
|
| 225 |
void pop() {
|
|
| 226 |
int n = _data.size()-1; |
|
| 227 |
_iim.set(_data[0].first, POST_HEAP); |
|
| 228 |
if (n>0) bubbleDown(0, _data[n], n); |
|
| 229 |
_data.pop_back(); |
|
| 230 |
} |
|
| 231 |
|
|
| 232 |
/// \brief Remove the given item from the heap. |
|
| 233 |
/// |
|
| 234 |
/// This function removes the given item from the heap if it is |
|
| 235 |
/// already stored. |
|
| 236 |
/// \param i The item to delete. |
|
| 237 |
/// \pre \e i must be in the heap. |
|
| 238 |
void erase(const Item &i) {
|
|
| 239 |
int h = _iim[i]; |
|
| 240 |
int n = _data.size()-1; |
|
| 241 |
_iim.set(_data[h].first, POST_HEAP); |
|
| 242 |
if( h<n ) {
|
|
| 243 |
if( less(_data[parent(h)], _data[n]) ) |
|
| 244 |
bubbleDown(h, _data[n], n); |
|
| 245 |
else |
|
| 246 |
bubbleUp(h, _data[n]); |
|
| 247 |
} |
|
| 248 |
_data.pop_back(); |
|
| 249 |
} |
|
| 250 |
|
|
| 251 |
/// \brief The priority of the given item. |
|
| 252 |
/// |
|
| 253 |
/// This function returns the priority of the given item. |
|
| 254 |
/// \param i The item. |
|
| 255 |
/// \pre \e i must be in the heap. |
|
| 256 |
Prio operator[](const Item &i) const {
|
|
| 257 |
int idx = _iim[i]; |
|
| 258 |
return _data[idx].second; |
|
| 259 |
} |
|
| 260 |
|
|
| 261 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 262 |
/// not stored in the heap. |
|
| 263 |
/// |
|
| 264 |
/// This method sets the priority of the given item if it is |
|
| 265 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 266 |
/// item into the heap with the given priority. |
|
| 267 |
/// \param i The item. |
|
| 268 |
/// \param p The priority. |
|
| 269 |
void set(const Item &i, const Prio &p) {
|
|
| 270 |
int idx = _iim[i]; |
|
| 271 |
if( idx<0 ) |
|
| 272 |
push(i,p); |
|
| 273 |
else if( _comp(p, _data[idx].second) ) |
|
| 274 |
bubbleUp(idx, Pair(i,p)); |
|
| 275 |
else |
|
| 276 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 277 |
} |
|
| 278 |
|
|
| 279 |
/// \brief Decrease the priority of an item to the given value. |
|
| 280 |
/// |
|
| 281 |
/// This function decreases the priority of an item to the given value. |
|
| 282 |
/// \param i The item. |
|
| 283 |
/// \param p The priority. |
|
| 284 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 285 |
void decrease(const Item &i, const Prio &p) {
|
|
| 286 |
int idx = _iim[i]; |
|
| 287 |
bubbleUp(idx, Pair(i,p)); |
|
| 288 |
} |
|
| 289 |
|
|
| 290 |
/// \brief Increase the priority of an item to the given value. |
|
| 291 |
/// |
|
| 292 |
/// This function increases the priority of an item to the given value. |
|
| 293 |
/// \param i The item. |
|
| 294 |
/// \param p The priority. |
|
| 295 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 296 |
void increase(const Item &i, const Prio &p) {
|
|
| 297 |
int idx = _iim[i]; |
|
| 298 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 299 |
} |
|
| 300 |
|
|
| 301 |
/// \brief Return the state of an item. |
|
| 302 |
/// |
|
| 303 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 304 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 305 |
/// and \c POST_HEAP otherwise. |
|
| 306 |
/// In the latter case it is possible that the item will get back |
|
| 307 |
/// to the heap again. |
|
| 308 |
/// \param i The item. |
|
| 309 |
State state(const Item &i) const {
|
|
| 310 |
int s = _iim[i]; |
|
| 311 |
if (s>=0) s=0; |
|
| 312 |
return State(s); |
|
| 313 |
} |
|
| 314 |
|
|
| 315 |
/// \brief Set the state of an item in the heap. |
|
| 316 |
/// |
|
| 317 |
/// This function sets the state of the given item in the heap. |
|
| 318 |
/// It can be used to manually clear the heap when it is important |
|
| 319 |
/// to achive better time complexity. |
|
| 320 |
/// \param i The item. |
|
| 321 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 322 |
void state(const Item& i, State st) {
|
|
| 323 |
switch (st) {
|
|
| 324 |
case POST_HEAP: |
|
| 325 |
case PRE_HEAP: |
|
| 326 |
if (state(i) == IN_HEAP) erase(i); |
|
| 327 |
_iim[i] = st; |
|
| 328 |
break; |
|
| 329 |
case IN_HEAP: |
|
| 330 |
break; |
|
| 331 |
} |
|
| 332 |
} |
|
| 333 |
|
|
| 334 |
/// \brief Replace an item in the heap. |
|
| 335 |
/// |
|
| 336 |
/// This function replaces item \c i with item \c j. |
|
| 337 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
| 338 |
/// After calling this method, item \c i will be out of the |
|
| 339 |
/// heap and \c j will be in the heap with the same prioriority |
|
| 340 |
/// as item \c i had before. |
|
| 341 |
void replace(const Item& i, const Item& j) {
|
|
| 342 |
int idx=_iim[i]; |
|
| 343 |
_iim.set(i, _iim[j]); |
|
| 344 |
_iim.set(j, idx); |
|
| 345 |
_data[idx].first=j; |
|
| 346 |
} |
|
| 347 |
|
|
| 348 |
}; // class KaryHeap |
|
| 349 |
|
|
| 350 |
} // namespace lemon |
|
| 351 |
|
|
| 352 |
#endif // LEMON_KARY_HEAP_H |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_PAIRING_HEAP_H |
|
| 20 |
#define LEMON_PAIRING_HEAP_H |
|
| 21 |
|
|
| 22 |
///\file |
|
| 23 |
///\ingroup heaps |
|
| 24 |
///\brief Pairing heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <utility> |
|
| 28 |
#include <functional> |
|
| 29 |
#include <lemon/math.h> |
|
| 30 |
|
|
| 31 |
namespace lemon {
|
|
| 32 |
|
|
| 33 |
/// \ingroup heaps |
|
| 34 |
/// |
|
| 35 |
///\brief Pairing Heap. |
|
| 36 |
/// |
|
| 37 |
/// This class implements the \e pairing \e heap data structure. |
|
| 38 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 39 |
/// |
|
| 40 |
/// The methods \ref increase() and \ref erase() are not efficient |
|
| 41 |
/// in a pairing heap. In case of many calls of these operations, |
|
| 42 |
/// it is better to use other heap structure, e.g. \ref BinHeap |
|
| 43 |
/// "binary heap". |
|
| 44 |
/// |
|
| 45 |
/// \tparam PR Type of the priorities of the items. |
|
| 46 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 47 |
/// internally to handle the cross references. |
|
| 48 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 49 |
/// The default is \c std::less<PR>. |
|
| 50 |
#ifdef DOXYGEN |
|
| 51 |
template <typename PR, typename IM, typename CMP> |
|
| 52 |
#else |
|
| 53 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 54 |
#endif |
|
| 55 |
class PairingHeap {
|
|
| 56 |
public: |
|
| 57 |
/// Type of the item-int map. |
|
| 58 |
typedef IM ItemIntMap; |
|
| 59 |
/// Type of the priorities. |
|
| 60 |
typedef PR Prio; |
|
| 61 |
/// Type of the items stored in the heap. |
|
| 62 |
typedef typename ItemIntMap::Key Item; |
|
| 63 |
/// Functor type for comparing the priorities. |
|
| 64 |
typedef CMP Compare; |
|
| 65 |
|
|
| 66 |
/// \brief Type to represent the states of the items. |
|
| 67 |
/// |
|
| 68 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 69 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 70 |
/// heap's point of view, but may be useful to the user. |
|
| 71 |
/// |
|
| 72 |
/// The item-int map must be initialized in such way that it assigns |
|
| 73 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 74 |
enum State {
|
|
| 75 |
IN_HEAP = 0, ///< = 0. |
|
| 76 |
PRE_HEAP = -1, ///< = -1. |
|
| 77 |
POST_HEAP = -2 ///< = -2. |
|
| 78 |
}; |
|
| 79 |
|
|
| 80 |
private: |
|
| 81 |
class store; |
|
| 82 |
|
|
| 83 |
std::vector<store> _data; |
|
| 84 |
int _min; |
|
| 85 |
ItemIntMap &_iim; |
|
| 86 |
Compare _comp; |
|
| 87 |
int _num_items; |
|
| 88 |
|
|
| 89 |
public: |
|
| 90 |
/// \brief Constructor. |
|
| 91 |
/// |
|
| 92 |
/// Constructor. |
|
| 93 |
/// \param map A map that assigns \c int values to the items. |
|
| 94 |
/// It is used internally to handle the cross references. |
|
| 95 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 96 |
explicit PairingHeap(ItemIntMap &map) |
|
| 97 |
: _min(0), _iim(map), _num_items(0) {}
|
|
| 98 |
|
|
| 99 |
/// \brief Constructor. |
|
| 100 |
/// |
|
| 101 |
/// Constructor. |
|
| 102 |
/// \param map A map that assigns \c int values to the items. |
|
| 103 |
/// It is used internally to handle the cross references. |
|
| 104 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 105 |
/// \param comp The function object used for comparing the priorities. |
|
| 106 |
PairingHeap(ItemIntMap &map, const Compare &comp) |
|
| 107 |
: _min(0), _iim(map), _comp(comp), _num_items(0) {}
|
|
| 108 |
|
|
| 109 |
/// \brief The number of items stored in the heap. |
|
| 110 |
/// |
|
| 111 |
/// This function returns the number of items stored in the heap. |
|
| 112 |
int size() const { return _num_items; }
|
|
| 113 |
|
|
| 114 |
/// \brief Check if the heap is empty. |
|
| 115 |
/// |
|
| 116 |
/// This function returns \c true if the heap is empty. |
|
| 117 |
bool empty() const { return _num_items==0; }
|
|
| 118 |
|
|
| 119 |
/// \brief Make the heap empty. |
|
| 120 |
/// |
|
| 121 |
/// This functon makes the heap empty. |
|
| 122 |
/// It does not change the cross reference map. If you want to reuse |
|
| 123 |
/// a heap that is not surely empty, you should first clear it and |
|
| 124 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 125 |
/// for each item. |
|
| 126 |
void clear() {
|
|
| 127 |
_data.clear(); |
|
| 128 |
_min = 0; |
|
| 129 |
_num_items = 0; |
|
| 130 |
} |
|
| 131 |
|
|
| 132 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 133 |
/// not stored in the heap. |
|
| 134 |
/// |
|
| 135 |
/// This method sets the priority of the given item if it is |
|
| 136 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 137 |
/// item into the heap with the given priority. |
|
| 138 |
/// \param item The item. |
|
| 139 |
/// \param value The priority. |
|
| 140 |
void set (const Item& item, const Prio& value) {
|
|
| 141 |
int i=_iim[item]; |
|
| 142 |
if ( i>=0 && _data[i].in ) {
|
|
| 143 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
| 144 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
| 145 |
} else push(item, value); |
|
| 146 |
} |
|
| 147 |
|
|
| 148 |
/// \brief Insert an item into the heap with the given priority. |
|
| 149 |
/// |
|
| 150 |
/// This function inserts the given item into the heap with the |
|
| 151 |
/// given priority. |
|
| 152 |
/// \param item The item to insert. |
|
| 153 |
/// \param value The priority of the item. |
|
| 154 |
/// \pre \e item must not be stored in the heap. |
|
| 155 |
void push (const Item& item, const Prio& value) {
|
|
| 156 |
int i=_iim[item]; |
|
| 157 |
if( i<0 ) {
|
|
| 158 |
int s=_data.size(); |
|
| 159 |
_iim.set(item, s); |
|
| 160 |
store st; |
|
| 161 |
st.name=item; |
|
| 162 |
_data.push_back(st); |
|
| 163 |
i=s; |
|
| 164 |
} else {
|
|
| 165 |
_data[i].parent=_data[i].child=-1; |
|
| 166 |
_data[i].left_child=false; |
|
| 167 |
_data[i].degree=0; |
|
| 168 |
_data[i].in=true; |
|
| 169 |
} |
|
| 170 |
|
|
| 171 |
_data[i].prio=value; |
|
| 172 |
|
|
| 173 |
if ( _num_items!=0 ) {
|
|
| 174 |
if ( _comp( value, _data[_min].prio) ) {
|
|
| 175 |
fuse(i,_min); |
|
| 176 |
_min=i; |
|
| 177 |
} |
|
| 178 |
else fuse(_min,i); |
|
| 179 |
} |
|
| 180 |
else _min=i; |
|
| 181 |
|
|
| 182 |
++_num_items; |
|
| 183 |
} |
|
| 184 |
|
|
| 185 |
/// \brief Return the item having minimum priority. |
|
| 186 |
/// |
|
| 187 |
/// This function returns the item having minimum priority. |
|
| 188 |
/// \pre The heap must be non-empty. |
|
| 189 |
Item top() const { return _data[_min].name; }
|
|
| 190 |
|
|
| 191 |
/// \brief The minimum priority. |
|
| 192 |
/// |
|
| 193 |
/// This function returns the minimum priority. |
|
| 194 |
/// \pre The heap must be non-empty. |
|
| 195 |
const Prio& prio() const { return _data[_min].prio; }
|
|
| 196 |
|
|
| 197 |
/// \brief The priority of the given item. |
|
| 198 |
/// |
|
| 199 |
/// This function returns the priority of the given item. |
|
| 200 |
/// \param item The item. |
|
| 201 |
/// \pre \e item must be in the heap. |
|
| 202 |
const Prio& operator[](const Item& item) const {
|
|
| 203 |
return _data[_iim[item]].prio; |
|
| 204 |
} |
|
| 205 |
|
|
| 206 |
/// \brief Remove the item having minimum priority. |
|
| 207 |
/// |
|
| 208 |
/// This function removes the item having minimum priority. |
|
| 209 |
/// \pre The heap must be non-empty. |
|
| 210 |
void pop() {
|
|
| 211 |
std::vector<int> trees; |
|
| 212 |
int i=0, child_right = 0; |
|
| 213 |
_data[_min].in=false; |
|
| 214 |
|
|
| 215 |
if( -1!=_data[_min].child ) {
|
|
| 216 |
i=_data[_min].child; |
|
| 217 |
trees.push_back(i); |
|
| 218 |
_data[i].parent = -1; |
|
| 219 |
_data[_min].child = -1; |
|
| 220 |
|
|
| 221 |
int ch=-1; |
|
| 222 |
while( _data[i].child!=-1 ) {
|
|
| 223 |
ch=_data[i].child; |
|
| 224 |
if( _data[ch].left_child && i==_data[ch].parent ) {
|
|
| 225 |
break; |
|
| 226 |
} else {
|
|
| 227 |
if( _data[ch].left_child ) {
|
|
| 228 |
child_right=_data[ch].parent; |
|
| 229 |
_data[ch].parent = i; |
|
| 230 |
--_data[i].degree; |
|
| 231 |
} |
|
| 232 |
else {
|
|
| 233 |
child_right=ch; |
|
| 234 |
_data[i].child=-1; |
|
| 235 |
_data[i].degree=0; |
|
| 236 |
} |
|
| 237 |
_data[child_right].parent = -1; |
|
| 238 |
trees.push_back(child_right); |
|
| 239 |
i = child_right; |
|
| 240 |
} |
|
| 241 |
} |
|
| 242 |
|
|
| 243 |
int num_child = trees.size(); |
|
| 244 |
int other; |
|
| 245 |
for( i=0; i<num_child-1; i+=2 ) {
|
|
| 246 |
if ( !_comp(_data[trees[i]].prio, _data[trees[i+1]].prio) ) {
|
|
| 247 |
other=trees[i]; |
|
| 248 |
trees[i]=trees[i+1]; |
|
| 249 |
trees[i+1]=other; |
|
| 250 |
} |
|
| 251 |
fuse( trees[i], trees[i+1] ); |
|
| 252 |
} |
|
| 253 |
|
|
| 254 |
i = (0==(num_child % 2)) ? num_child-2 : num_child-1; |
|
| 255 |
while(i>=2) {
|
|
| 256 |
if ( _comp(_data[trees[i]].prio, _data[trees[i-2]].prio) ) {
|
|
| 257 |
other=trees[i]; |
|
| 258 |
trees[i]=trees[i-2]; |
|
| 259 |
trees[i-2]=other; |
|
| 260 |
} |
|
| 261 |
fuse( trees[i-2], trees[i] ); |
|
| 262 |
i-=2; |
|
| 263 |
} |
|
| 264 |
_min = trees[0]; |
|
| 265 |
} |
|
| 266 |
else {
|
|
| 267 |
_min = _data[_min].child; |
|
| 268 |
} |
|
| 269 |
|
|
| 270 |
if (_min >= 0) _data[_min].left_child = false; |
|
| 271 |
--_num_items; |
|
| 272 |
} |
|
| 273 |
|
|
| 274 |
/// \brief Remove the given item from the heap. |
|
| 275 |
/// |
|
| 276 |
/// This function removes the given item from the heap if it is |
|
| 277 |
/// already stored. |
|
| 278 |
/// \param item The item to delete. |
|
| 279 |
/// \pre \e item must be in the heap. |
|
| 280 |
void erase (const Item& item) {
|
|
| 281 |
int i=_iim[item]; |
|
| 282 |
if ( i>=0 && _data[i].in ) {
|
|
| 283 |
decrease( item, _data[_min].prio-1 ); |
|
| 284 |
pop(); |
|
| 285 |
} |
|
| 286 |
} |
|
| 287 |
|
|
| 288 |
/// \brief Decrease the priority of an item to the given value. |
|
| 289 |
/// |
|
| 290 |
/// This function decreases the priority of an item to the given value. |
|
| 291 |
/// \param item The item. |
|
| 292 |
/// \param value The priority. |
|
| 293 |
/// \pre \e item must be stored in the heap with priority at least \e value. |
|
| 294 |
void decrease (Item item, const Prio& value) {
|
|
| 295 |
int i=_iim[item]; |
|
| 296 |
_data[i].prio=value; |
|
| 297 |
int p=_data[i].parent; |
|
| 298 |
|
|
| 299 |
if( _data[i].left_child && i!=_data[p].child ) {
|
|
| 300 |
p=_data[p].parent; |
|
| 301 |
} |
|
| 302 |
|
|
| 303 |
if ( p!=-1 && _comp(value,_data[p].prio) ) {
|
|
| 304 |
cut(i,p); |
|
| 305 |
if ( _comp(_data[_min].prio,value) ) {
|
|
| 306 |
fuse(_min,i); |
|
| 307 |
} else {
|
|
| 308 |
fuse(i,_min); |
|
| 309 |
_min=i; |
|
| 310 |
} |
|
| 311 |
} |
|
| 312 |
} |
|
| 313 |
|
|
| 314 |
/// \brief Increase the priority of an item to the given value. |
|
| 315 |
/// |
|
| 316 |
/// This function increases the priority of an item to the given value. |
|
| 317 |
/// \param item The item. |
|
| 318 |
/// \param value The priority. |
|
| 319 |
/// \pre \e item must be stored in the heap with priority at most \e value. |
|
| 320 |
void increase (Item item, const Prio& value) {
|
|
| 321 |
erase(item); |
|
| 322 |
push(item,value); |
|
| 323 |
} |
|
| 324 |
|
|
| 325 |
/// \brief Return the state of an item. |
|
| 326 |
/// |
|
| 327 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 328 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 329 |
/// and \c POST_HEAP otherwise. |
|
| 330 |
/// In the latter case it is possible that the item will get back |
|
| 331 |
/// to the heap again. |
|
| 332 |
/// \param item The item. |
|
| 333 |
State state(const Item &item) const {
|
|
| 334 |
int i=_iim[item]; |
|
| 335 |
if( i>=0 ) {
|
|
| 336 |
if( _data[i].in ) i=0; |
|
| 337 |
else i=-2; |
|
| 338 |
} |
|
| 339 |
return State(i); |
|
| 340 |
} |
|
| 341 |
|
|
| 342 |
/// \brief Set the state of an item in the heap. |
|
| 343 |
/// |
|
| 344 |
/// This function sets the state of the given item in the heap. |
|
| 345 |
/// It can be used to manually clear the heap when it is important |
|
| 346 |
/// to achive better time complexity. |
|
| 347 |
/// \param i The item. |
|
| 348 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 349 |
void state(const Item& i, State st) {
|
|
| 350 |
switch (st) {
|
|
| 351 |
case POST_HEAP: |
|
| 352 |
case PRE_HEAP: |
|
| 353 |
if (state(i) == IN_HEAP) erase(i); |
|
| 354 |
_iim[i]=st; |
|
| 355 |
break; |
|
| 356 |
case IN_HEAP: |
|
| 357 |
break; |
|
| 358 |
} |
|
| 359 |
} |
|
| 360 |
|
|
| 361 |
private: |
|
| 362 |
|
|
| 363 |
void cut(int a, int b) {
|
|
| 364 |
int child_a; |
|
| 365 |
switch (_data[a].degree) {
|
|
| 366 |
case 2: |
|
| 367 |
child_a = _data[_data[a].child].parent; |
|
| 368 |
if( _data[a].left_child ) {
|
|
| 369 |
_data[child_a].left_child=true; |
|
| 370 |
_data[b].child=child_a; |
|
| 371 |
_data[child_a].parent=_data[a].parent; |
|
| 372 |
} |
|
| 373 |
else {
|
|
| 374 |
_data[child_a].left_child=false; |
|
| 375 |
_data[child_a].parent=b; |
|
| 376 |
if( a!=_data[b].child ) |
|
| 377 |
_data[_data[b].child].parent=child_a; |
|
| 378 |
else |
|
| 379 |
_data[b].child=child_a; |
|
| 380 |
} |
|
| 381 |
--_data[a].degree; |
|
| 382 |
_data[_data[a].child].parent=a; |
|
| 383 |
break; |
|
| 384 |
|
|
| 385 |
case 1: |
|
| 386 |
child_a = _data[a].child; |
|
| 387 |
if( !_data[child_a].left_child ) {
|
|
| 388 |
--_data[a].degree; |
|
| 389 |
if( _data[a].left_child ) {
|
|
| 390 |
_data[child_a].left_child=true; |
|
| 391 |
_data[child_a].parent=_data[a].parent; |
|
| 392 |
_data[b].child=child_a; |
|
| 393 |
} |
|
| 394 |
else {
|
|
| 395 |
_data[child_a].left_child=false; |
|
| 396 |
_data[child_a].parent=b; |
|
| 397 |
if( a!=_data[b].child ) |
|
| 398 |
_data[_data[b].child].parent=child_a; |
|
| 399 |
else |
|
| 400 |
_data[b].child=child_a; |
|
| 401 |
} |
|
| 402 |
_data[a].child=-1; |
|
| 403 |
} |
|
| 404 |
else {
|
|
| 405 |
--_data[b].degree; |
|
| 406 |
if( _data[a].left_child ) {
|
|
| 407 |
_data[b].child = |
|
| 408 |
(1==_data[b].degree) ? _data[a].parent : -1; |
|
| 409 |
} else {
|
|
| 410 |
if (1==_data[b].degree) |
|
| 411 |
_data[_data[b].child].parent=b; |
|
| 412 |
else |
|
| 413 |
_data[b].child=-1; |
|
| 414 |
} |
|
| 415 |
} |
|
| 416 |
break; |
|
| 417 |
|
|
| 418 |
case 0: |
|
| 419 |
--_data[b].degree; |
|
| 420 |
if( _data[a].left_child ) {
|
|
| 421 |
_data[b].child = |
|
| 422 |
(0!=_data[b].degree) ? _data[a].parent : -1; |
|
| 423 |
} else {
|
|
| 424 |
if( 0!=_data[b].degree ) |
|
| 425 |
_data[_data[b].child].parent=b; |
|
| 426 |
else |
|
| 427 |
_data[b].child=-1; |
|
| 428 |
} |
|
| 429 |
break; |
|
| 430 |
} |
|
| 431 |
_data[a].parent=-1; |
|
| 432 |
_data[a].left_child=false; |
|
| 433 |
} |
|
| 434 |
|
|
| 435 |
void fuse(int a, int b) {
|
|
| 436 |
int child_a = _data[a].child; |
|
| 437 |
int child_b = _data[b].child; |
|
| 438 |
_data[a].child=b; |
|
| 439 |
_data[b].parent=a; |
|
| 440 |
_data[b].left_child=true; |
|
| 441 |
|
|
| 442 |
if( -1!=child_a ) {
|
|
| 443 |
_data[b].child=child_a; |
|
| 444 |
_data[child_a].parent=b; |
|
| 445 |
_data[child_a].left_child=false; |
|
| 446 |
++_data[b].degree; |
|
| 447 |
|
|
| 448 |
if( -1!=child_b ) {
|
|
| 449 |
_data[b].child=child_b; |
|
| 450 |
_data[child_b].parent=child_a; |
|
| 451 |
} |
|
| 452 |
} |
|
| 453 |
else { ++_data[a].degree; }
|
|
| 454 |
} |
|
| 455 |
|
|
| 456 |
class store {
|
|
| 457 |
friend class PairingHeap; |
|
| 458 |
|
|
| 459 |
Item name; |
|
| 460 |
int parent; |
|
| 461 |
int child; |
|
| 462 |
bool left_child; |
|
| 463 |
int degree; |
|
| 464 |
bool in; |
|
| 465 |
Prio prio; |
|
| 466 |
|
|
| 467 |
store() : parent(-1), child(-1), left_child(false), degree(0), in(true) {}
|
|
| 468 |
}; |
|
| 469 |
}; |
|
| 470 |
|
|
| 471 |
} //namespace lemon |
|
| 472 |
|
|
| 473 |
#endif //LEMON_PAIRING_HEAP_H |
|
| 474 |
| 1 |
#!/usr/bin/env /usr/local/Python/bin/python2.1 |
|
| 2 |
""" |
|
| 3 |
BibTeX to Doxygen converter |
|
| 4 |
Usage: python bib2dox.py bibfile.bib > bibfile.dox |
|
| 5 |
|
|
| 6 |
This code is the modification of the BibTeX to XML converter |
|
| 7 |
by Vidar Bronken Gundersen et al. See the original copyright notices below. |
|
| 8 |
|
|
| 9 |
********************************************************************** |
|
| 10 |
|
|
| 11 |
Decoder for bibliographic data, BibTeX |
|
| 12 |
Usage: python bibtex2xml.py bibfile.bib > bibfile.xml |
|
| 13 |
|
|
| 14 |
v.8 |
|
| 15 |
(c)2002-06-23 Vidar Bronken Gundersen |
|
| 16 |
http://bibtexml.sf.net/ |
|
| 17 |
Reuse approved as long as this notification is kept. |
|
| 18 |
Licence: GPL. |
|
| 19 |
|
|
| 20 |
Contributions/thanks to: |
|
| 21 |
Egon Willighagen, http://sf.net/projects/jreferences/ |
|
| 22 |
Richard Mahoney (for providing a test case) |
|
| 23 |
|
|
| 24 |
Editted by Sara Sprenkle to be more robust and handle more bibtex features. |
|
| 25 |
(c) 2003-01-15 |
|
| 26 |
|
|
| 27 |
1. Changed bibtex: tags to bibxml: tags. |
|
| 28 |
2. Use xmlns:bibxml="http://bibtexml.sf.net/" |
|
| 29 |
3. Allow spaces between @type and first {
|
|
| 30 |
4. "author" fields with multiple authors split by " and " |
|
| 31 |
are put in separate xml "bibxml:author" tags. |
|
| 32 |
5. Option for Titles: words are capitalized |
|
| 33 |
only if first letter in title or capitalized inside braces |
|
| 34 |
6. Removes braces from within field values |
|
| 35 |
7. Ignores comments in bibtex file (including @comment{ or % )
|
|
| 36 |
8. Replaces some special latex tags, e.g., replaces ~ with ' ' |
|
| 37 |
9. Handles bibtex @string abbreviations |
|
| 38 |
--> includes bibtex's default abbreviations for months |
|
| 39 |
--> does concatenation of abbr # " more " and " more " # abbr |
|
| 40 |
10. Handles @type( ... ) or @type{ ... }
|
|
| 41 |
11. The keywords field is split on , or ; and put into separate xml |
|
| 42 |
"bibxml:keywords" tags |
|
| 43 |
12. Ignores @preamble |
|
| 44 |
|
|
| 45 |
Known Limitations |
|
| 46 |
1. Does not transform Latex encoding like math mode and special |
|
| 47 |
latex symbols. |
|
| 48 |
2. Does not parse author fields into first and last names. |
|
| 49 |
E.g., It does not do anything special to an author whose name is |
|
| 50 |
in the form LAST_NAME, FIRST_NAME |
|
| 51 |
In "author" tag, will show up as |
|
| 52 |
<bibxml:author>LAST_NAME, FIRST_NAME</bibxml:author> |
|
| 53 |
3. Does not handle "crossref" fields other than to print |
|
| 54 |
<bibxml:crossref>...</bibxml:crossref> |
|
| 55 |
4. Does not inform user of the input's format errors. You just won't |
|
| 56 |
be able to transform the file later with XSL |
|
| 57 |
|
|
| 58 |
You will have to manually edit the XML output if you need to handle |
|
| 59 |
these (and unknown) limitations. |
|
| 60 |
|
|
| 61 |
""" |
|
| 62 |
|
|
| 63 |
import string, re |
|
| 64 |
|
|
| 65 |
# set of valid name characters |
|
| 66 |
valid_name_chars = '[\w\-:]' |
|
| 67 |
|
|
| 68 |
# |
|
| 69 |
# define global regular expression variables |
|
| 70 |
# |
|
| 71 |
author_rex = re.compile('\s+and\s+')
|
|
| 72 |
rembraces_rex = re.compile('[{}]')
|
|
| 73 |
capitalize_rex = re.compile('({[^}]*})')
|
|
| 74 |
|
|
| 75 |
# used by bibtexkeywords(data) |
|
| 76 |
keywords_rex = re.compile('[,;]')
|
|
| 77 |
|
|
| 78 |
# used by concat_line(line) |
|
| 79 |
concatsplit_rex = re.compile('\s*#\s*')
|
|
| 80 |
|
|
| 81 |
# split on {, }, or " in verify_out_of_braces
|
|
| 82 |
delimiter_rex = re.compile('([{}"])',re.I)
|
|
| 83 |
|
|
| 84 |
field_rex = re.compile('\s*(\w*)\s*=\s*(.*)')
|
|
| 85 |
data_rex = re.compile('\s*(\w*)\s*=\s*([^,]*),?')
|
|
| 86 |
|
|
| 87 |
url_rex = re.compile('\\\url\{([^}]*)\}')
|
|
| 88 |
|
|
| 89 |
# |
|
| 90 |
# styles for html formatting |
|
| 91 |
# |
|
| 92 |
divstyle = 'margin-top: -4ex; margin-left: 8em;' |
|
| 93 |
|
|
| 94 |
# |
|
| 95 |
# return the string parameter without braces |
|
| 96 |
# |
|
| 97 |
def transformurls(str): |
|
| 98 |
return url_rex.sub(r'<a href="\1">\1</a>', str) |
|
| 99 |
|
|
| 100 |
# |
|
| 101 |
# return the string parameter without braces |
|
| 102 |
# |
|
| 103 |
def removebraces(str): |
|
| 104 |
return rembraces_rex.sub('', str)
|
|
| 105 |
|
|
| 106 |
# |
|
| 107 |
# latex-specific replacements |
|
| 108 |
# (do this after braces were removed) |
|
| 109 |
# |
|
| 110 |
def latexreplacements(line): |
|
| 111 |
line = string.replace(line, '~', ' ') |
|
| 112 |
line = string.replace(line, '\\\'a', 'á') |
|
| 113 |
line = string.replace(line, '\\"a', 'ä') |
|
| 114 |
line = string.replace(line, '\\\'e', 'é') |
|
| 115 |
line = string.replace(line, '\\"e', 'ë') |
|
| 116 |
line = string.replace(line, '\\\'i', 'í') |
|
| 117 |
line = string.replace(line, '\\"i', 'ï') |
|
| 118 |
line = string.replace(line, '\\\'o', 'ó') |
|
| 119 |
line = string.replace(line, '\\"o', 'ö') |
|
| 120 |
line = string.replace(line, '\\\'u', 'ú') |
|
| 121 |
line = string.replace(line, '\\"u', 'ü') |
|
| 122 |
line = string.replace(line, '\\H o', 'õ') |
|
| 123 |
line = string.replace(line, '\\H u', 'ü') # ũ does not exist |
|
| 124 |
line = string.replace(line, '\\\'A', 'Á') |
|
| 125 |
line = string.replace(line, '\\"A', 'Ä') |
|
| 126 |
line = string.replace(line, '\\\'E', 'É') |
|
| 127 |
line = string.replace(line, '\\"E', 'Ë') |
|
| 128 |
line = string.replace(line, '\\\'I', 'Í') |
|
| 129 |
line = string.replace(line, '\\"I', 'Ï') |
|
| 130 |
line = string.replace(line, '\\\'O', 'Ó') |
|
| 131 |
line = string.replace(line, '\\"O', 'Ö') |
|
| 132 |
line = string.replace(line, '\\\'U', 'Ú') |
|
| 133 |
line = string.replace(line, '\\"U', 'Ü') |
|
| 134 |
line = string.replace(line, '\\H O', 'Õ') |
|
| 135 |
line = string.replace(line, '\\H U', 'Ü') # Ũ does not exist |
|
| 136 |
|
|
| 137 |
return line |
|
| 138 |
|
|
| 139 |
# |
|
| 140 |
# copy characters form a string decoding html expressions (&xyz;) |
|
| 141 |
# |
|
| 142 |
def copychars(str, ifrom, count): |
|
| 143 |
result = '' |
|
| 144 |
i = ifrom |
|
| 145 |
c = 0 |
|
| 146 |
html_spec = False |
|
| 147 |
while (i < len(str)) and (c < count): |
|
| 148 |
if str[i] == '&': |
|
| 149 |
html_spec = True; |
|
| 150 |
if i+1 < len(str): |
|
| 151 |
result += str[i+1] |
|
| 152 |
c += 1 |
|
| 153 |
i += 2 |
|
| 154 |
else: |
|
| 155 |
if not html_spec: |
|
| 156 |
if ((str[i] >= 'A') and (str[i] <= 'Z')) or \ |
|
| 157 |
((str[i] >= 'a') and (str[i] <= 'z')): |
|
| 158 |
result += str[i] |
|
| 159 |
c += 1 |
|
| 160 |
elif str[i] == ';': |
|
| 161 |
html_spec = False; |
|
| 162 |
i += 1 |
|
| 163 |
|
|
| 164 |
return result |
|
| 165 |
|
|
| 166 |
|
|
| 167 |
# |
|
| 168 |
# Handle a list of authors (separated by 'and'). |
|
| 169 |
# It gives back an array of the follwing values: |
|
| 170 |
# - num: the number of authors, |
|
| 171 |
# - list: the list of the author names, |
|
| 172 |
# - text: the bibtex text (separated by commas and/or 'and') |
|
| 173 |
# - abbrev: abbreviation that can be used for indicate the |
|
| 174 |
# bibliography entries |
|
| 175 |
# |
|
| 176 |
def bibtexauthor(data): |
|
| 177 |
result = {}
|
|
| 178 |
bibtex = '' |
|
| 179 |
result['list'] = author_rex.split(data) |
|
| 180 |
result['num'] = len(result['list']) |
|
| 181 |
for i, author in enumerate(result['list']): |
|
| 182 |
# general transformations |
|
| 183 |
author = latexreplacements(removebraces(author.strip())) |
|
| 184 |
# transform "Xyz, A. B." to "A. B. Xyz" |
|
| 185 |
pos = author.find(',')
|
|
| 186 |
if pos != -1: |
|
| 187 |
author = author[pos+1:].strip() + ' ' + author[:pos].strip() |
|
| 188 |
result['list'][i] = author |
|
| 189 |
bibtex += author + '#' |
|
| 190 |
bibtex = bibtex[:-1] |
|
| 191 |
if result['num'] > 1: |
|
| 192 |
ix = bibtex.rfind('#')
|
|
| 193 |
if result['num'] == 2: |
|
| 194 |
bibtex = bibtex[:ix] + ' and ' + bibtex[ix+1:] |
|
| 195 |
else: |
|
| 196 |
bibtex = bibtex[:ix] + ', and ' + bibtex[ix+1:] |
|
| 197 |
bibtex = bibtex.replace('#', ', ')
|
|
| 198 |
result['text'] = bibtex |
|
| 199 |
|
|
| 200 |
result['abbrev'] = '' |
|
| 201 |
for author in result['list']: |
|
| 202 |
pos = author.rfind(' ') + 1
|
|
| 203 |
count = 1 |
|
| 204 |
if result['num'] == 1: |
|
| 205 |
count = 3 |
|
| 206 |
result['abbrev'] += copychars(author, pos, count) |
|
| 207 |
|
|
| 208 |
return result |
|
| 209 |
|
|
| 210 |
|
|
| 211 |
# |
|
| 212 |
# data = title string |
|
| 213 |
# @return the capitalized title (first letter is capitalized), rest are capitalized |
|
| 214 |
# only if capitalized inside braces |
|
| 215 |
# |
|
| 216 |
def capitalizetitle(data): |
|
| 217 |
title_list = capitalize_rex.split(data) |
|
| 218 |
title = '' |
|
| 219 |
count = 0 |
|
| 220 |
for phrase in title_list: |
|
| 221 |
check = string.lstrip(phrase) |
|
| 222 |
|
|
| 223 |
# keep phrase's capitalization the same |
|
| 224 |
if check.find('{') == 0:
|
|
| 225 |
title += removebraces(phrase) |
|
| 226 |
else: |
|
| 227 |
# first word --> capitalize first letter (after spaces) |
|
| 228 |
if count == 0: |
|
| 229 |
title += check.capitalize() |
|
| 230 |
else: |
|
| 231 |
title += phrase.lower() |
|
| 232 |
count = count + 1 |
|
| 233 |
|
|
| 234 |
return title |
|
| 235 |
|
|
| 236 |
|
|
| 237 |
# |
|
| 238 |
# @return the bibtex for the title |
|
| 239 |
# @param data --> title string |
|
| 240 |
# braces are removed from title |
|
| 241 |
# |
|
| 242 |
def bibtextitle(data, entrytype): |
|
| 243 |
if entrytype in ('book', 'inbook'):
|
|
| 244 |
title = removebraces(data.strip()) |
|
| 245 |
else: |
|
| 246 |
title = removebraces(capitalizetitle(data.strip())) |
|
| 247 |
bibtex = title |
|
| 248 |
return bibtex |
|
| 249 |
|
|
| 250 |
|
|
| 251 |
# |
|
| 252 |
# function to compare entry lists |
|
| 253 |
# |
|
| 254 |
def entry_cmp(x, y): |
|
| 255 |
return cmp(x[0], y[0]) |
|
| 256 |
|
|
| 257 |
|
|
| 258 |
# |
|
| 259 |
# print the XML for the transformed "filecont_source" |
|
| 260 |
# |
|
| 261 |
def bibtexdecoder(filecont_source): |
|
| 262 |
filecont = [] |
|
| 263 |
file = [] |
|
| 264 |
|
|
| 265 |
# want @<alphanumeric chars><spaces>{<spaces><any chars>,
|
|
| 266 |
pubtype_rex = re.compile('@(\w*)\s*{\s*(.*),')
|
|
| 267 |
endtype_rex = re.compile('}\s*$')
|
|
| 268 |
endtag_rex = re.compile('^\s*}\s*$')
|
|
| 269 |
|
|
| 270 |
bracefield_rex = re.compile('\s*(\w*)\s*=\s*(.*)')
|
|
| 271 |
bracedata_rex = re.compile('\s*(\w*)\s*=\s*{(.*)},?')
|
|
| 272 |
|
|
| 273 |
quotefield_rex = re.compile('\s*(\w*)\s*=\s*(.*)')
|
|
| 274 |
quotedata_rex = re.compile('\s*(\w*)\s*=\s*"(.*)",?')
|
|
| 275 |
|
|
| 276 |
for line in filecont_source: |
|
| 277 |
line = line[:-1] |
|
| 278 |
|
|
| 279 |
# encode character entities |
|
| 280 |
line = string.replace(line, '&', '&') |
|
| 281 |
line = string.replace(line, '<', '<') |
|
| 282 |
line = string.replace(line, '>', '>') |
|
| 283 |
|
|
| 284 |
# start entry: publication type (store for later use) |
|
| 285 |
if pubtype_rex.match(line): |
|
| 286 |
# want @<alphanumeric chars><spaces>{<spaces><any chars>,
|
|
| 287 |
entrycont = {}
|
|
| 288 |
entry = [] |
|
| 289 |
entrytype = pubtype_rex.sub('\g<1>',line)
|
|
| 290 |
entrytype = string.lower(entrytype) |
|
| 291 |
entryid = pubtype_rex.sub('\g<2>', line)
|
|
| 292 |
|
|
| 293 |
# end entry if just a } |
|
| 294 |
elif endtype_rex.match(line): |
|
| 295 |
# generate doxygen code for the entry |
|
| 296 |
|
|
| 297 |
# enty type related formattings |
|
| 298 |
if entrytype in ('book', 'inbook'):
|
|
| 299 |
entrycont['title'] = '<em>' + entrycont['title'] + '</em>' |
|
| 300 |
if not entrycont.has_key('author'):
|
|
| 301 |
entrycont['author'] = entrycont['editor'] |
|
| 302 |
entrycont['author']['text'] += ', editors' |
|
| 303 |
elif entrytype == 'article': |
|
| 304 |
entrycont['journal'] = '<em>' + entrycont['journal'] + '</em>' |
|
| 305 |
elif entrytype in ('inproceedings', 'incollection', 'conference'):
|
|
| 306 |
entrycont['booktitle'] = '<em>' + entrycont['booktitle'] + '</em>' |
|
| 307 |
elif entrytype == 'techreport': |
|
| 308 |
if not entrycont.has_key('type'):
|
|
| 309 |
entrycont['type'] = 'Technical report' |
|
| 310 |
elif entrytype == 'mastersthesis': |
|
| 311 |
entrycont['type'] = 'Master\'s thesis' |
|
| 312 |
elif entrytype == 'phdthesis': |
|
| 313 |
entrycont['type'] = 'PhD thesis' |
|
| 314 |
|
|
| 315 |
for eline in entrycont: |
|
| 316 |
if eline != '': |
|
| 317 |
eline = latexreplacements(eline) |
|
| 318 |
|
|
| 319 |
if entrycont.has_key('pages') and (entrycont['pages'] != ''):
|
|
| 320 |
entrycont['pages'] = string.replace(entrycont['pages'], '--', '-') |
|
| 321 |
|
|
| 322 |
if entrycont.has_key('author') and (entrycont['author'] != ''):
|
|
| 323 |
entry.append(entrycont['author']['text'] + '.') |
|
| 324 |
if entrycont.has_key('title') and (entrycont['title'] != ''):
|
|
| 325 |
entry.append(entrycont['title'] + '.') |
|
| 326 |
if entrycont.has_key('journal') and (entrycont['journal'] != ''):
|
|
| 327 |
entry.append(entrycont['journal'] + ',') |
|
| 328 |
if entrycont.has_key('booktitle') and (entrycont['booktitle'] != ''):
|
|
| 329 |
entry.append('In ' + entrycont['booktitle'] + ',')
|
|
| 330 |
if entrycont.has_key('type') and (entrycont['type'] != ''):
|
|
| 331 |
eline = entrycont['type'] |
|
| 332 |
if entrycont.has_key('number') and (entrycont['number'] != ''):
|
|
| 333 |
eline += ' ' + entrycont['number'] |
|
| 334 |
eline += ',' |
|
| 335 |
entry.append(eline) |
|
| 336 |
if entrycont.has_key('institution') and (entrycont['institution'] != ''):
|
|
| 337 |
entry.append(entrycont['institution'] + ',') |
|
| 338 |
if entrycont.has_key('publisher') and (entrycont['publisher'] != ''):
|
|
| 339 |
entry.append(entrycont['publisher'] + ',') |
|
| 340 |
if entrycont.has_key('school') and (entrycont['school'] != ''):
|
|
| 341 |
entry.append(entrycont['school'] + ',') |
|
| 342 |
if entrycont.has_key('address') and (entrycont['address'] != ''):
|
|
| 343 |
entry.append(entrycont['address'] + ',') |
|
| 344 |
if entrycont.has_key('edition') and (entrycont['edition'] != ''):
|
|
| 345 |
entry.append(entrycont['edition'] + ' edition,') |
|
| 346 |
if entrycont.has_key('howpublished') and (entrycont['howpublished'] != ''):
|
|
| 347 |
entry.append(entrycont['howpublished'] + ',') |
|
| 348 |
if entrycont.has_key('volume') and (entrycont['volume'] != ''):
|
|
| 349 |
eline = entrycont['volume']; |
|
| 350 |
if entrycont.has_key('number') and (entrycont['number'] != ''):
|
|
| 351 |
eline += '(' + entrycont['number'] + ')'
|
|
| 352 |
if entrycont.has_key('pages') and (entrycont['pages'] != ''):
|
|
| 353 |
eline += ':' + entrycont['pages'] |
|
| 354 |
eline += ',' |
|
| 355 |
entry.append(eline) |
|
| 356 |
else: |
|
| 357 |
if entrycont.has_key('pages') and (entrycont['pages'] != ''):
|
|
| 358 |
entry.append('pages ' + entrycont['pages'] + ',')
|
|
| 359 |
if entrycont.has_key('year') and (entrycont['year'] != ''):
|
|
| 360 |
if entrycont.has_key('month') and (entrycont['month'] != ''):
|
|
| 361 |
entry.append(entrycont['month'] + ' ' + entrycont['year'] + '.') |
|
| 362 |
else: |
|
| 363 |
entry.append(entrycont['year'] + '.') |
|
| 364 |
if entrycont.has_key('note') and (entrycont['note'] != ''):
|
|
| 365 |
entry.append(entrycont['note'] + '.') |
|
| 366 |
if entrycont.has_key('url') and (entrycont['url'] != ''):
|
|
| 367 |
entry.append(entrycont['url'] + '.') |
|
| 368 |
|
|
| 369 |
# generate keys for sorting and for the output |
|
| 370 |
sortkey = '' |
|
| 371 |
bibkey = '' |
|
| 372 |
if entrycont.has_key('author'):
|
|
| 373 |
for author in entrycont['author']['list']: |
|
| 374 |
sortkey += copychars(author, author.rfind(' ')+1, len(author))
|
|
| 375 |
bibkey = entrycont['author']['abbrev'] |
|
| 376 |
else: |
|
| 377 |
bibkey = 'x' |
|
| 378 |
if entrycont.has_key('year'):
|
|
| 379 |
sortkey += entrycont['year'] |
|
| 380 |
bibkey += entrycont['year'][-2:] |
|
| 381 |
if entrycont.has_key('title'):
|
|
| 382 |
sortkey += entrycont['title'] |
|
| 383 |
if entrycont.has_key('key'):
|
|
| 384 |
sortkey = entrycont['key'] + sortkey |
|
| 385 |
bibkey = entrycont['key'] |
|
| 386 |
entry.insert(0, sortkey) |
|
| 387 |
entry.insert(1, bibkey) |
|
| 388 |
entry.insert(2, entryid) |
|
| 389 |
|
|
| 390 |
# add the entry to the file contents |
|
| 391 |
filecont.append(entry) |
|
| 392 |
|
|
| 393 |
else: |
|
| 394 |
# field, publication info |
|
| 395 |
field = '' |
|
| 396 |
data = '' |
|
| 397 |
|
|
| 398 |
# field = {data} entries
|
|
| 399 |
if bracedata_rex.match(line): |
|
| 400 |
field = bracefield_rex.sub('\g<1>', line)
|
|
| 401 |
field = string.lower(field) |
|
| 402 |
data = bracedata_rex.sub('\g<2>', line)
|
|
| 403 |
|
|
| 404 |
# field = "data" entries |
|
| 405 |
elif quotedata_rex.match(line): |
|
| 406 |
field = quotefield_rex.sub('\g<1>', line)
|
|
| 407 |
field = string.lower(field) |
|
| 408 |
data = quotedata_rex.sub('\g<2>', line)
|
|
| 409 |
|
|
| 410 |
# field = data entries |
|
| 411 |
elif data_rex.match(line): |
|
| 412 |
field = field_rex.sub('\g<1>', line)
|
|
| 413 |
field = string.lower(field) |
|
| 414 |
data = data_rex.sub('\g<2>', line)
|
|
| 415 |
|
|
| 416 |
if field == 'url': |
|
| 417 |
data = '\\url{' + data.strip() + '}'
|
|
| 418 |
|
|
| 419 |
if field in ('author', 'editor'):
|
|
| 420 |
entrycont[field] = bibtexauthor(data) |
|
| 421 |
line = '' |
|
| 422 |
elif field == 'title': |
|
| 423 |
line = bibtextitle(data, entrytype) |
|
| 424 |
elif field != '': |
|
| 425 |
line = removebraces(transformurls(data.strip())) |
|
| 426 |
|
|
| 427 |
if line != '': |
|
| 428 |
line = latexreplacements(line) |
|
| 429 |
entrycont[field] = line |
|
| 430 |
|
|
| 431 |
|
|
| 432 |
# sort entries |
|
| 433 |
filecont.sort(entry_cmp) |
|
| 434 |
|
|
| 435 |
# count the bibtex keys |
|
| 436 |
keytable = {}
|
|
| 437 |
counttable = {}
|
|
| 438 |
for entry in filecont: |
|
| 439 |
bibkey = entry[1] |
|
| 440 |
if not keytable.has_key(bibkey): |
|
| 441 |
keytable[bibkey] = 1 |
|
| 442 |
else: |
|
| 443 |
keytable[bibkey] += 1 |
|
| 444 |
|
|
| 445 |
for bibkey in keytable.keys(): |
|
| 446 |
counttable[bibkey] = 0 |
|
| 447 |
|
|
| 448 |
# generate output |
|
| 449 |
for entry in filecont: |
|
| 450 |
# generate output key form the bibtex key |
|
| 451 |
bibkey = entry[1] |
|
| 452 |
entryid = entry[2] |
|
| 453 |
if keytable[bibkey] == 1: |
|
| 454 |
outkey = bibkey |
|
| 455 |
else: |
|
| 456 |
outkey = bibkey + chr(97 + counttable[bibkey]) |
|
| 457 |
counttable[bibkey] += 1 |
|
| 458 |
|
|
| 459 |
# append the entry code to the output |
|
| 460 |
file.append('\\section ' + entryid + ' [' + outkey + ']')
|
|
| 461 |
file.append('<div style="' + divstyle + '">')
|
|
| 462 |
for line in entry[3:]: |
|
| 463 |
file.append(line) |
|
| 464 |
file.append('</div>')
|
|
| 465 |
file.append('')
|
|
| 466 |
|
|
| 467 |
return file |
|
| 468 |
|
|
| 469 |
|
|
| 470 |
# |
|
| 471 |
# return 1 iff abbr is in line but not inside braces or quotes |
|
| 472 |
# assumes that abbr appears only once on the line (out of braces and quotes) |
|
| 473 |
# |
|
| 474 |
def verify_out_of_braces(line, abbr): |
|
| 475 |
|
|
| 476 |
phrase_split = delimiter_rex.split(line) |
|
| 477 |
|
|
| 478 |
abbr_rex = re.compile( '\\b' + abbr + '\\b', re.I) |
|
| 479 |
|
|
| 480 |
open_brace = 0 |
|
| 481 |
open_quote = 0 |
|
| 482 |
|
|
| 483 |
for phrase in phrase_split: |
|
| 484 |
if phrase == "{":
|
|
| 485 |
open_brace = open_brace + 1 |
|
| 486 |
elif phrase == "}": |
|
| 487 |
open_brace = open_brace - 1 |
|
| 488 |
elif phrase == '"': |
|
| 489 |
if open_quote == 1: |
|
| 490 |
open_quote = 0 |
|
| 491 |
else: |
|
| 492 |
open_quote = 1 |
|
| 493 |
elif abbr_rex.search(phrase): |
|
| 494 |
if open_brace == 0 and open_quote == 0: |
|
| 495 |
return 1 |
|
| 496 |
|
|
| 497 |
return 0 |
|
| 498 |
|
|
| 499 |
|
|
| 500 |
# |
|
| 501 |
# a line in the form phrase1 # phrase2 # ... # phrasen |
|
| 502 |
# is returned as phrase1 phrase2 ... phrasen |
|
| 503 |
# with the correct punctuation |
|
| 504 |
# Bug: Doesn't always work with multiple abbreviations plugged in |
|
| 505 |
# |
|
| 506 |
def concat_line(line): |
|
| 507 |
# only look at part after equals |
|
| 508 |
field = field_rex.sub('\g<1>',line)
|
|
| 509 |
rest = field_rex.sub('\g<2>',line)
|
|
| 510 |
|
|
| 511 |
concat_line = field + ' =' |
|
| 512 |
|
|
| 513 |
pound_split = concatsplit_rex.split(rest) |
|
| 514 |
|
|
| 515 |
phrase_count = 0 |
|
| 516 |
length = len(pound_split) |
|
| 517 |
|
|
| 518 |
for phrase in pound_split: |
|
| 519 |
phrase = phrase.strip() |
|
| 520 |
if phrase_count != 0: |
|
| 521 |
if phrase.startswith('"') or phrase.startswith('{'):
|
|
| 522 |
phrase = phrase[1:] |
|
| 523 |
elif phrase.startswith('"'):
|
|
| 524 |
phrase = phrase.replace('"','{',1)
|
|
| 525 |
|
|
| 526 |
if phrase_count != length-1: |
|
| 527 |
if phrase.endswith('"') or phrase.endswith('}'):
|
|
| 528 |
phrase = phrase[:-1] |
|
| 529 |
else: |
|
| 530 |
if phrase.endswith('"'):
|
|
| 531 |
phrase = phrase[:-1] |
|
| 532 |
phrase = phrase + "}" |
|
| 533 |
elif phrase.endswith('",'):
|
|
| 534 |
phrase = phrase[:-2] |
|
| 535 |
phrase = phrase + "}," |
|
| 536 |
|
|
| 537 |
# if phrase did have \#, add the \# back |
|
| 538 |
if phrase.endswith('\\'):
|
|
| 539 |
phrase = phrase + "#" |
|
| 540 |
concat_line = concat_line + ' ' + phrase |
|
| 541 |
|
|
| 542 |
phrase_count = phrase_count + 1 |
|
| 543 |
|
|
| 544 |
return concat_line |
|
| 545 |
|
|
| 546 |
|
|
| 547 |
# |
|
| 548 |
# substitute abbreviations into filecont |
|
| 549 |
# @param filecont_source - string of data from file |
|
| 550 |
# |
|
| 551 |
def bibtex_replace_abbreviations(filecont_source): |
|
| 552 |
filecont = filecont_source.splitlines() |
|
| 553 |
|
|
| 554 |
# These are defined in bibtex, so we'll define them too |
|
| 555 |
abbr_list = ['jan','feb','mar','apr','may','jun', |
|
| 556 |
'jul','aug','sep','oct','nov','dec'] |
|
| 557 |
value_list = ['January','February','March','April', |
|
| 558 |
'May','June','July','August','September', |
|
| 559 |
'October','November','December'] |
|
| 560 |
|
|
| 561 |
abbr_rex = [] |
|
| 562 |
total_abbr_count = 0 |
|
| 563 |
|
|
| 564 |
front = '\\b' |
|
| 565 |
back = '(,?)\\b' |
|
| 566 |
|
|
| 567 |
for x in abbr_list: |
|
| 568 |
abbr_rex.append( re.compile( front + abbr_list[total_abbr_count] + back, re.I ) ) |
|
| 569 |
total_abbr_count = total_abbr_count + 1 |
|
| 570 |
|
|
| 571 |
|
|
| 572 |
abbrdef_rex = re.compile('\s*@string\s*{\s*('+ valid_name_chars +'*)\s*=(.*)',
|
|
| 573 |
re.I) |
|
| 574 |
|
|
| 575 |
comment_rex = re.compile('@comment\s*{',re.I)
|
|
| 576 |
preamble_rex = re.compile('@preamble\s*{',re.I)
|
|
| 577 |
|
|
| 578 |
waiting_for_end_string = 0 |
|
| 579 |
i = 0 |
|
| 580 |
filecont2 = '' |
|
| 581 |
|
|
| 582 |
for line in filecont: |
|
| 583 |
if line == ' ' or line == '': |
|
| 584 |
continue |
|
| 585 |
|
|
| 586 |
if waiting_for_end_string: |
|
| 587 |
if re.search('}',line):
|
|
| 588 |
waiting_for_end_string = 0 |
|
| 589 |
continue |
|
| 590 |
|
|
| 591 |
if abbrdef_rex.search(line): |
|
| 592 |
abbr = abbrdef_rex.sub('\g<1>', line)
|
|
| 593 |
|
|
| 594 |
if abbr_list.count(abbr) == 0: |
|
| 595 |
val = abbrdef_rex.sub('\g<2>', line)
|
|
| 596 |
abbr_list.append(abbr) |
|
| 597 |
value_list.append(string.strip(val)) |
|
| 598 |
abbr_rex.append( re.compile( front + abbr_list[total_abbr_count] + back, re.I ) ) |
|
| 599 |
total_abbr_count = total_abbr_count + 1 |
|
| 600 |
waiting_for_end_string = 1 |
|
| 601 |
continue |
|
| 602 |
|
|
| 603 |
if comment_rex.search(line): |
|
| 604 |
waiting_for_end_string = 1 |
|
| 605 |
continue |
|
| 606 |
|
|
| 607 |
if preamble_rex.search(line): |
|
| 608 |
waiting_for_end_string = 1 |
|
| 609 |
continue |
|
| 610 |
|
|
| 611 |
|
|
| 612 |
# replace subsequent abbreviations with the value |
|
| 613 |
abbr_count = 0 |
|
| 614 |
|
|
| 615 |
for x in abbr_list: |
|
| 616 |
|
|
| 617 |
if abbr_rex[abbr_count].search(line): |
|
| 618 |
if verify_out_of_braces(line,abbr_list[abbr_count]) == 1: |
|
| 619 |
line = abbr_rex[abbr_count].sub( value_list[abbr_count] + '\g<1>', line) |
|
| 620 |
# Check for # concatenations |
|
| 621 |
if concatsplit_rex.search(line): |
|
| 622 |
line = concat_line(line) |
|
| 623 |
abbr_count = abbr_count + 1 |
|
| 624 |
|
|
| 625 |
|
|
| 626 |
filecont2 = filecont2 + line + '\n' |
|
| 627 |
i = i+1 |
|
| 628 |
|
|
| 629 |
|
|
| 630 |
# Do one final pass over file |
|
| 631 |
|
|
| 632 |
# make sure that didn't end up with {" or }" after the substitution
|
|
| 633 |
filecont2 = filecont2.replace('{"','{{')
|
|
| 634 |
filecont2 = filecont2.replace('"}','}}')
|
|
| 635 |
|
|
| 636 |
afterquotevalue_rex = re.compile('"\s*,\s*')
|
|
| 637 |
afterbrace_rex = re.compile('"\s*}')
|
|
| 638 |
afterbracevalue_rex = re.compile('(=\s*{[^=]*)},\s*')
|
|
| 639 |
|
|
| 640 |
# add new lines to data that changed because of abbreviation substitutions |
|
| 641 |
filecont2 = afterquotevalue_rex.sub('",\n', filecont2)
|
|
| 642 |
filecont2 = afterbrace_rex.sub('"\n}', filecont2)
|
|
| 643 |
filecont2 = afterbracevalue_rex.sub('\g<1>},\n', filecont2)
|
|
| 644 |
|
|
| 645 |
return filecont2 |
|
| 646 |
|
|
| 647 |
# |
|
| 648 |
# convert @type( ... ) to @type{ ... }
|
|
| 649 |
# |
|
| 650 |
def no_outer_parens(filecont): |
|
| 651 |
|
|
| 652 |
# do checking for open parens |
|
| 653 |
# will convert to braces |
|
| 654 |
paren_split = re.split('([(){}])',filecont)
|
|
| 655 |
|
|
| 656 |
open_paren_count = 0 |
|
| 657 |
open_type = 0 |
|
| 658 |
look_next = 0 |
|
| 659 |
|
|
| 660 |
# rebuild filecont |
|
| 661 |
filecont = '' |
|
| 662 |
|
|
| 663 |
at_rex = re.compile('@\w*')
|
|
| 664 |
|
|
| 665 |
for phrase in paren_split: |
|
| 666 |
if look_next == 1: |
|
| 667 |
if phrase == '(':
|
|
| 668 |
phrase = '{'
|
|
| 669 |
open_paren_count = open_paren_count + 1 |
|
| 670 |
else: |
|
| 671 |
open_type = 0 |
|
| 672 |
look_next = 0 |
|
| 673 |
|
|
| 674 |
if phrase == '(':
|
|
| 675 |
open_paren_count = open_paren_count + 1 |
|
| 676 |
|
|
| 677 |
elif phrase == ')': |
|
| 678 |
open_paren_count = open_paren_count - 1 |
|
| 679 |
if open_type == 1 and open_paren_count == 0: |
|
| 680 |
phrase = '}' |
|
| 681 |
open_type = 0 |
|
| 682 |
|
|
| 683 |
elif at_rex.search( phrase ): |
|
| 684 |
open_type = 1 |
|
| 685 |
look_next = 1 |
|
| 686 |
|
|
| 687 |
filecont = filecont + phrase |
|
| 688 |
|
|
| 689 |
return filecont |
|
| 690 |
|
|
| 691 |
|
|
| 692 |
# |
|
| 693 |
# make all whitespace into just one space |
|
| 694 |
# format the bibtex file into a usable form. |
|
| 695 |
# |
|
| 696 |
def bibtexwasher(filecont_source): |
|
| 697 |
|
|
| 698 |
space_rex = re.compile('\s+')
|
|
| 699 |
comment_rex = re.compile('\s*%')
|
|
| 700 |
|
|
| 701 |
filecont = [] |
|
| 702 |
|
|
| 703 |
# remove trailing and excessive whitespace |
|
| 704 |
# ignore comments |
|
| 705 |
for line in filecont_source: |
|
| 706 |
line = string.strip(line) |
|
| 707 |
line = space_rex.sub(' ', line)
|
|
| 708 |
# ignore comments |
|
| 709 |
if not comment_rex.match(line) and line != '': |
|
| 710 |
filecont.append(' '+ line)
|
|
| 711 |
|
|
| 712 |
filecont = string.join(filecont, '') |
|
| 713 |
|
|
| 714 |
# the file is in one long string |
|
| 715 |
|
|
| 716 |
filecont = no_outer_parens(filecont) |
|
| 717 |
|
|
| 718 |
# |
|
| 719 |
# split lines according to preferred syntax scheme |
|
| 720 |
# |
|
| 721 |
filecont = re.sub('(=\s*{[^=]*)},', '\g<1>},\n', filecont)
|
|
| 722 |
|
|
| 723 |
# add new lines after commas that are after values |
|
| 724 |
filecont = re.sub('"\s*,', '",\n', filecont)
|
|
| 725 |
filecont = re.sub('=\s*([\w\d]+)\s*,', '= \g<1>,\n', filecont)
|
|
| 726 |
filecont = re.sub('(@\w*)\s*({(\s*)[^,\s]*)\s*,',
|
|
| 727 |
'\n\n\g<1>\g<2>,\n', filecont) |
|
| 728 |
|
|
| 729 |
# add new lines after } |
|
| 730 |
filecont = re.sub('"\s*}','"\n}\n', filecont)
|
|
| 731 |
filecont = re.sub('}\s*,','},\n', filecont)
|
|
| 732 |
|
|
| 733 |
|
|
| 734 |
filecont = re.sub('@(\w*)', '\n@\g<1>', filecont)
|
|
| 735 |
|
|
| 736 |
# character encoding, reserved latex characters |
|
| 737 |
filecont = re.sub('{\\\&}', '&', filecont)
|
|
| 738 |
filecont = re.sub('\\\&', '&', filecont)
|
|
| 739 |
|
|
| 740 |
# do checking for open braces to get format correct |
|
| 741 |
open_brace_count = 0 |
|
| 742 |
brace_split = re.split('([{}])',filecont)
|
|
| 743 |
|
|
| 744 |
# rebuild filecont |
|
| 745 |
filecont = '' |
|
| 746 |
|
|
| 747 |
for phrase in brace_split: |
|
| 748 |
if phrase == '{':
|
|
| 749 |
open_brace_count = open_brace_count + 1 |
|
| 750 |
elif phrase == '}': |
|
| 751 |
open_brace_count = open_brace_count - 1 |
|
| 752 |
if open_brace_count == 0: |
|
| 753 |
filecont = filecont + '\n' |
|
| 754 |
|
|
| 755 |
filecont = filecont + phrase |
|
| 756 |
|
|
| 757 |
filecont2 = bibtex_replace_abbreviations(filecont) |
|
| 758 |
|
|
| 759 |
# gather |
|
| 760 |
filecont = filecont2.splitlines() |
|
| 761 |
i=0 |
|
| 762 |
j=0 # count the number of blank lines |
|
| 763 |
for line in filecont: |
|
| 764 |
# ignore blank lines |
|
| 765 |
if line == '' or line == ' ': |
|
| 766 |
j = j+1 |
|
| 767 |
continue |
|
| 768 |
filecont[i] = line + '\n' |
|
| 769 |
i = i+1 |
|
| 770 |
|
|
| 771 |
# get rid of the extra stuff at the end of the array |
|
| 772 |
# (The extra stuff are duplicates that are in the array because |
|
| 773 |
# blank lines were removed.) |
|
| 774 |
length = len( filecont) |
|
| 775 |
filecont[length-j:length] = [] |
|
| 776 |
|
|
| 777 |
return filecont |
|
| 778 |
|
|
| 779 |
|
|
| 780 |
def filehandler(filepath): |
|
| 781 |
try: |
|
| 782 |
fd = open(filepath, 'r') |
|
| 783 |
filecont_source = fd.readlines() |
|
| 784 |
fd.close() |
|
| 785 |
except: |
|
| 786 |
print 'Could not open file:', filepath |
|
| 787 |
washeddata = bibtexwasher(filecont_source) |
|
| 788 |
outdata = bibtexdecoder(washeddata) |
|
| 789 |
print '/**' |
|
| 790 |
print '\page references References' |
|
| 791 |
|
|
| 792 |
for line in outdata: |
|
| 793 |
print line |
|
| 794 |
print '*/' |
|
| 795 |
|
|
| 796 |
|
|
| 797 |
# main program |
|
| 798 |
|
|
| 799 |
def main(): |
|
| 800 |
import sys |
|
| 801 |
if sys.argv[1:]: |
|
| 802 |
filepath = sys.argv[1] |
|
| 803 |
else: |
|
| 804 |
print "No input file" |
|
| 805 |
sys.exit() |
|
| 806 |
filehandler(filepath) |
|
| 807 |
|
|
| 808 |
if __name__ == "__main__": main() |
|
| 809 |
|
|
| 810 |
|
|
| 811 |
# end python script |
| 1 |
#!/bin/bash |
|
| 2 |
# |
|
| 3 |
# This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
# |
|
| 5 |
# Copyright (C) 2003-2009 |
|
| 6 |
# Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
# (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
# |
|
| 9 |
# Permission to use, modify and distribute this software is granted |
|
| 10 |
# provided that this copyright notice appears in all copies. For |
|
| 11 |
# precise terms see the accompanying LICENSE file. |
|
| 12 |
# |
|
| 13 |
# This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
# express or implied, and with no claim as to its suitability for any |
|
| 15 |
# purpose. |
|
| 16 |
|
|
| 17 |
|
|
| 18 |
if [ ! -f ~/.lemon-bootstrap ]; then |
|
| 19 |
echo 'Create ~/.lemon-bootstrap'. |
|
| 20 |
cat >~/.lemon-bootstrap <<EOF |
|
| 21 |
# |
|
| 22 |
# Default settings for bootstraping the LEMON source code repository |
|
| 23 |
# |
|
| 24 |
EOF |
|
| 25 |
fi |
|
| 26 |
|
|
| 27 |
source ~/.lemon-bootstrap |
|
| 28 |
if [ -f ../../../.lemon-bootstrap ]; then source ../../../.lemon-bootstrap; fi |
|
| 29 |
if [ -f ../../.lemon-bootstrap ]; then source ../../.lemon-bootstrap; fi |
|
| 30 |
if [ -f ../.lemon-bootstrap ]; then source ../.lemon-bootstrap; fi |
|
| 31 |
if [ -f ./.lemon-bootstrap ]; then source ./.lemon-bootstrap; fi |
|
| 32 |
|
|
| 33 |
|
|
| 34 |
function augment_config() {
|
|
| 35 |
if [ "x${!1}" == "x" ]; then
|
|
| 36 |
eval $1=$2 |
|
| 37 |
echo Add "'$1'" to '~/.lemon-bootstrap'. |
|
| 38 |
echo >>~/.lemon-bootstrap |
|
| 39 |
echo $3 >>~/.lemon-bootstrap |
|
| 40 |
echo $1=$2 >>~/.lemon-bootstrap |
|
| 41 |
fi |
|
| 42 |
} |
|
| 43 |
|
|
| 44 |
augment_config LEMON_INSTALL_PREFIX /usr/local \ |
|
| 45 |
"# LEMON installation prefix" |
|
| 46 |
|
|
| 47 |
augment_config COIN_OR_PREFIX /usr/local/coin-or \ |
|
| 48 |
"# COIN-OR installation root prefix (used for CLP/CBC)" |
|
| 49 |
|
|
| 50 |
augment_config SOPLEX_PREFIX /usr/local/soplex \ |
|
| 51 |
"# Soplex build prefix" |
|
| 52 |
|
|
| 53 |
|
|
| 54 |
function ask() {
|
|
| 55 |
echo -n "$1 [$2]? " |
|
| 56 |
read _an |
|
| 57 |
if [ "x$_an" == "x" ]; then |
|
| 58 |
ret="$2" |
|
| 59 |
else |
|
| 60 |
ret=$_an |
|
| 61 |
fi |
|
| 62 |
} |
|
| 63 |
|
|
| 64 |
function yesorno() {
|
|
| 65 |
ret='rossz' |
|
| 66 |
while [ "$ret" != "y" -a "$ret" != "n" -a "$ret" != "yes" -a "$ret" != "no" ]; do |
|
| 67 |
ask "$1" "$2" |
|
| 68 |
done |
|
| 69 |
if [ "$ret" != "y" -a "$ret" != "yes" ]; then |
|
| 70 |
return 1 |
|
| 71 |
else |
|
| 72 |
return 0 |
|
| 73 |
fi |
|
| 74 |
} |
|
| 75 |
|
|
| 76 |
if yesorno "External build" "n" |
|
| 77 |
then |
|
| 78 |
CONFIGURE_PATH=".." |
|
| 79 |
else |
|
| 80 |
CONFIGURE_PATH="." |
|
| 81 |
if yesorno "Autoreconf" "y" |
|
| 82 |
then |
|
| 83 |
AUTORE=yes |
|
| 84 |
else |
|
| 85 |
AUTORE=no |
|
| 86 |
fi |
|
| 87 |
fi |
|
| 88 |
|
|
| 89 |
if yesorno "Optimize" "n" |
|
| 90 |
then |
|
| 91 |
opt_flags=' -O2' |
|
| 92 |
else |
|
| 93 |
opt_flags='' |
|
| 94 |
fi |
|
| 95 |
|
|
| 96 |
if yesorno "Stop on warning" "y" |
|
| 97 |
then |
|
| 98 |
werror_flags=' -Werror' |
|
| 99 |
else |
|
| 100 |
werror_flags='' |
|
| 101 |
fi |
|
| 102 |
|
|
| 103 |
cxx_flags="CXXFLAGS=-ggdb$opt_flags$werror_flags" |
|
| 104 |
|
|
| 105 |
if [ -f ${COIN_OR_PREFIX}/include/coin/config_coinutils.h ]; then
|
|
| 106 |
if yesorno "Use COIN-OR (CBC/CLP)" "n" |
|
| 107 |
then |
|
| 108 |
coin_flag="--with-coin=$COIN_OR_PREFIX" |
|
| 109 |
else |
|
| 110 |
coin_flag="" |
|
| 111 |
fi |
|
| 112 |
else |
|
| 113 |
coin_flag="" |
|
| 114 |
fi |
|
| 115 |
|
|
| 116 |
if [ -f ${SOPLEX_PREFIX}/src/soplex.h ]; then
|
|
| 117 |
if yesorno "Use Soplex" "n" |
|
| 118 |
then |
|
| 119 |
soplex_flag="--with-soplex=$SOPLEX_PREFIX" |
|
| 120 |
else |
|
| 121 |
soplex_flag="" |
|
| 122 |
fi |
|
| 123 |
else |
|
| 124 |
soplex_flag="" |
|
| 125 |
fi |
|
| 126 |
|
|
| 127 |
if [ "x$AUTORE" == "xyes" ]; then |
|
| 128 |
autoreconf -vif; |
|
| 129 |
fi |
|
| 130 |
${CONFIGURE_PATH}/configure --prefix=$LEMON_INSTALL_PREFIX \
|
|
| 131 |
"$cxx_flags" \ |
|
| 132 |
$coin_flag \ |
|
| 133 |
$soplex_flag \ |
|
| 134 |
$* |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#include <lemon/concepts/digraph.h> |
|
| 20 |
#include <lemon/smart_graph.h> |
|
| 21 |
#include <lemon/list_graph.h> |
|
| 22 |
#include <lemon/lgf_reader.h> |
|
| 23 |
#include <lemon/bellman_ford.h> |
|
| 24 |
#include <lemon/path.h> |
|
| 25 |
|
|
| 26 |
#include "graph_test.h" |
|
| 27 |
#include "test_tools.h" |
|
| 28 |
|
|
| 29 |
using namespace lemon; |
|
| 30 |
|
|
| 31 |
char test_lgf[] = |
|
| 32 |
"@nodes\n" |
|
| 33 |
"label\n" |
|
| 34 |
"0\n" |
|
| 35 |
"1\n" |
|
| 36 |
"2\n" |
|
| 37 |
"3\n" |
|
| 38 |
"4\n" |
|
| 39 |
"@arcs\n" |
|
| 40 |
" length\n" |
|
| 41 |
"0 1 3\n" |
|
| 42 |
"1 2 -3\n" |
|
| 43 |
"1 2 -5\n" |
|
| 44 |
"1 3 -2\n" |
|
| 45 |
"0 2 -1\n" |
|
| 46 |
"1 2 -4\n" |
|
| 47 |
"0 3 2\n" |
|
| 48 |
"4 2 -5\n" |
|
| 49 |
"2 3 1\n" |
|
| 50 |
"@attributes\n" |
|
| 51 |
"source 0\n" |
|
| 52 |
"target 3\n"; |
|
| 53 |
|
|
| 54 |
|
|
| 55 |
void checkBellmanFordCompile() |
|
| 56 |
{
|
|
| 57 |
typedef int Value; |
|
| 58 |
typedef concepts::Digraph Digraph; |
|
| 59 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
|
| 60 |
typedef BellmanFord<Digraph, LengthMap> BF; |
|
| 61 |
typedef Digraph::Node Node; |
|
| 62 |
typedef Digraph::Arc Arc; |
|
| 63 |
|
|
| 64 |
Digraph gr; |
|
| 65 |
Node s, t, n; |
|
| 66 |
Arc e; |
|
| 67 |
Value l; |
|
| 68 |
int k; |
|
| 69 |
bool b; |
|
| 70 |
BF::DistMap d(gr); |
|
| 71 |
BF::PredMap p(gr); |
|
| 72 |
LengthMap length; |
|
| 73 |
concepts::Path<Digraph> pp; |
|
| 74 |
|
|
| 75 |
{
|
|
| 76 |
BF bf_test(gr,length); |
|
| 77 |
const BF& const_bf_test = bf_test; |
|
| 78 |
|
|
| 79 |
bf_test.run(s); |
|
| 80 |
bf_test.run(s,k); |
|
| 81 |
|
|
| 82 |
bf_test.init(); |
|
| 83 |
bf_test.addSource(s); |
|
| 84 |
bf_test.addSource(s, 1); |
|
| 85 |
b = bf_test.processNextRound(); |
|
| 86 |
b = bf_test.processNextWeakRound(); |
|
| 87 |
|
|
| 88 |
bf_test.start(); |
|
| 89 |
bf_test.checkedStart(); |
|
| 90 |
bf_test.limitedStart(k); |
|
| 91 |
|
|
| 92 |
l = const_bf_test.dist(t); |
|
| 93 |
e = const_bf_test.predArc(t); |
|
| 94 |
s = const_bf_test.predNode(t); |
|
| 95 |
b = const_bf_test.reached(t); |
|
| 96 |
d = const_bf_test.distMap(); |
|
| 97 |
p = const_bf_test.predMap(); |
|
| 98 |
pp = const_bf_test.path(t); |
|
| 99 |
|
|
| 100 |
for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {}
|
|
| 101 |
} |
|
| 102 |
{
|
|
| 103 |
BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
|
| 104 |
::SetDistMap<concepts::ReadWriteMap<Node,Value> > |
|
| 105 |
::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> > |
|
| 106 |
::Create bf_test(gr,length); |
|
| 107 |
|
|
| 108 |
LengthMap length_map; |
|
| 109 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
|
| 110 |
concepts::ReadWriteMap<Node,Value> dist_map; |
|
| 111 |
|
|
| 112 |
bf_test |
|
| 113 |
.lengthMap(length_map) |
|
| 114 |
.predMap(pred_map) |
|
| 115 |
.distMap(dist_map); |
|
| 116 |
|
|
| 117 |
bf_test.run(s); |
|
| 118 |
bf_test.run(s,k); |
|
| 119 |
|
|
| 120 |
bf_test.init(); |
|
| 121 |
bf_test.addSource(s); |
|
| 122 |
bf_test.addSource(s, 1); |
|
| 123 |
b = bf_test.processNextRound(); |
|
| 124 |
b = bf_test.processNextWeakRound(); |
|
| 125 |
|
|
| 126 |
bf_test.start(); |
|
| 127 |
bf_test.checkedStart(); |
|
| 128 |
bf_test.limitedStart(k); |
|
| 129 |
|
|
| 130 |
l = bf_test.dist(t); |
|
| 131 |
e = bf_test.predArc(t); |
|
| 132 |
s = bf_test.predNode(t); |
|
| 133 |
b = bf_test.reached(t); |
|
| 134 |
pp = bf_test.path(t); |
|
| 135 |
} |
|
| 136 |
} |
|
| 137 |
|
|
| 138 |
void checkBellmanFordFunctionCompile() |
|
| 139 |
{
|
|
| 140 |
typedef int Value; |
|
| 141 |
typedef concepts::Digraph Digraph; |
|
| 142 |
typedef Digraph::Arc Arc; |
|
| 143 |
typedef Digraph::Node Node; |
|
| 144 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
|
| 145 |
|
|
| 146 |
Digraph g; |
|
| 147 |
bool b; |
|
| 148 |
bellmanFord(g,LengthMap()).run(Node()); |
|
| 149 |
b = bellmanFord(g,LengthMap()).run(Node(),Node()); |
|
| 150 |
bellmanFord(g,LengthMap()) |
|
| 151 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
|
| 152 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
|
| 153 |
.run(Node()); |
|
| 154 |
b=bellmanFord(g,LengthMap()) |
|
| 155 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
|
| 156 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
|
| 157 |
.path(concepts::Path<Digraph>()) |
|
| 158 |
.dist(Value()) |
|
| 159 |
.run(Node(),Node()); |
|
| 160 |
} |
|
| 161 |
|
|
| 162 |
|
|
| 163 |
template <typename Digraph, typename Value> |
|
| 164 |
void checkBellmanFord() {
|
|
| 165 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
| 166 |
typedef typename Digraph::template ArcMap<Value> LengthMap; |
|
| 167 |
|
|
| 168 |
Digraph gr; |
|
| 169 |
Node s, t; |
|
| 170 |
LengthMap length(gr); |
|
| 171 |
|
|
| 172 |
std::istringstream input(test_lgf); |
|
| 173 |
digraphReader(gr, input). |
|
| 174 |
arcMap("length", length).
|
|
| 175 |
node("source", s).
|
|
| 176 |
node("target", t).
|
|
| 177 |
run(); |
|
| 178 |
|
|
| 179 |
BellmanFord<Digraph, LengthMap> |
|
| 180 |
bf(gr, length); |
|
| 181 |
bf.run(s); |
|
| 182 |
Path<Digraph> p = bf.path(t); |
|
| 183 |
|
|
| 184 |
check(bf.reached(t) && bf.dist(t) == -1, "Bellman-Ford found a wrong path."); |
|
| 185 |
check(p.length() == 3, "path() found a wrong path."); |
|
| 186 |
check(checkPath(gr, p), "path() found a wrong path."); |
|
| 187 |
check(pathSource(gr, p) == s, "path() found a wrong path."); |
|
| 188 |
check(pathTarget(gr, p) == t, "path() found a wrong path."); |
|
| 189 |
|
|
| 190 |
ListPath<Digraph> path; |
|
| 191 |
Value dist; |
|
| 192 |
bool reached = bellmanFord(gr,length).path(path).dist(dist).run(s,t); |
|
| 193 |
|
|
| 194 |
check(reached && dist == -1, "Bellman-Ford found a wrong path."); |
|
| 195 |
check(path.length() == 3, "path() found a wrong path."); |
|
| 196 |
check(checkPath(gr, path), "path() found a wrong path."); |
|
| 197 |
check(pathSource(gr, path) == s, "path() found a wrong path."); |
|
| 198 |
check(pathTarget(gr, path) == t, "path() found a wrong path."); |
|
| 199 |
|
|
| 200 |
for(ArcIt e(gr); e!=INVALID; ++e) {
|
|
| 201 |
Node u=gr.source(e); |
|
| 202 |
Node v=gr.target(e); |
|
| 203 |
check(!bf.reached(u) || (bf.dist(v) - bf.dist(u) <= length[e]), |
|
| 204 |
"Wrong output. dist(target)-dist(source)-arc_length=" << |
|
| 205 |
bf.dist(v) - bf.dist(u) - length[e]); |
|
| 206 |
} |
|
| 207 |
|
|
| 208 |
for(NodeIt v(gr); v!=INVALID; ++v) {
|
|
| 209 |
if (bf.reached(v)) {
|
|
| 210 |
check(v==s || bf.predArc(v)!=INVALID, "Wrong tree."); |
|
| 211 |
if (bf.predArc(v)!=INVALID ) {
|
|
| 212 |
Arc e=bf.predArc(v); |
|
| 213 |
Node u=gr.source(e); |
|
| 214 |
check(u==bf.predNode(v),"Wrong tree."); |
|
| 215 |
check(bf.dist(v) - bf.dist(u) == length[e], |
|
| 216 |
"Wrong distance! Difference: " << |
|
| 217 |
bf.dist(v) - bf.dist(u) - length[e]); |
|
| 218 |
} |
|
| 219 |
} |
|
| 220 |
} |
|
| 221 |
} |
|
| 222 |
|
|
| 223 |
void checkBellmanFordNegativeCycle() {
|
|
| 224 |
DIGRAPH_TYPEDEFS(SmartDigraph); |
|
| 225 |
|
|
| 226 |
SmartDigraph gr; |
|
| 227 |
IntArcMap length(gr); |
|
| 228 |
|
|
| 229 |
Node n1 = gr.addNode(); |
|
| 230 |
Node n2 = gr.addNode(); |
|
| 231 |
Node n3 = gr.addNode(); |
|
| 232 |
Node n4 = gr.addNode(); |
|
| 233 |
|
|
| 234 |
Arc a1 = gr.addArc(n1, n2); |
|
| 235 |
Arc a2 = gr.addArc(n2, n2); |
|
| 236 |
|
|
| 237 |
length[a1] = 2; |
|
| 238 |
length[a2] = -1; |
|
| 239 |
|
|
| 240 |
{
|
|
| 241 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
|
| 242 |
bf.run(n1); |
|
| 243 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
|
| 244 |
check(p.length() == 1 && p.front() == p.back() && p.front() == a2, |
|
| 245 |
"Wrong negative cycle."); |
|
| 246 |
} |
|
| 247 |
|
|
| 248 |
length[a2] = 0; |
|
| 249 |
|
|
| 250 |
{
|
|
| 251 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
|
| 252 |
bf.run(n1); |
|
| 253 |
check(bf.negativeCycle().empty(), |
|
| 254 |
"Negative cycle should not be found."); |
|
| 255 |
} |
|
| 256 |
|
|
| 257 |
length[gr.addArc(n1, n3)] = 5; |
|
| 258 |
length[gr.addArc(n4, n3)] = 1; |
|
| 259 |
length[gr.addArc(n2, n4)] = 2; |
|
| 260 |
length[gr.addArc(n3, n2)] = -4; |
|
| 261 |
|
|
| 262 |
{
|
|
| 263 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
|
| 264 |
bf.init(); |
|
| 265 |
bf.addSource(n1); |
|
| 266 |
for (int i = 0; i < 4; ++i) {
|
|
| 267 |
check(bf.negativeCycle().empty(), |
|
| 268 |
"Negative cycle should not be found."); |
|
| 269 |
bf.processNextRound(); |
|
| 270 |
} |
|
| 271 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
|
| 272 |
check(p.length() == 3, "Wrong negative cycle."); |
|
| 273 |
check(length[p.nth(0)] + length[p.nth(1)] + length[p.nth(2)] == -1, |
|
| 274 |
"Wrong negative cycle."); |
|
| 275 |
} |
|
| 276 |
} |
|
| 277 |
|
|
| 278 |
int main() {
|
|
| 279 |
checkBellmanFord<ListDigraph, int>(); |
|
| 280 |
checkBellmanFord<SmartDigraph, double>(); |
|
| 281 |
checkBellmanFordNegativeCycle(); |
|
| 282 |
return 0; |
|
| 283 |
} |
| 1 | 1 |
CMAKE_MINIMUM_REQUIRED(VERSION 2.6) |
| 2 | 2 |
|
| 3 | 3 |
SET(PROJECT_NAME "LEMON") |
| 4 | 4 |
PROJECT(${PROJECT_NAME})
|
| 5 | 5 |
|
| 6 | 6 |
IF(EXISTS ${PROJECT_SOURCE_DIR}/cmake/version.cmake)
|
| 7 | 7 |
INCLUDE(${PROJECT_SOURCE_DIR}/cmake/version.cmake)
|
| 8 | 8 |
ELSEIF(DEFINED ENV{LEMON_VERSION})
|
| 9 | 9 |
SET(LEMON_VERSION $ENV{LEMON_VERSION} CACHE STRING "LEMON version string.")
|
| 10 | 10 |
ELSE() |
| 11 | 11 |
EXECUTE_PROCESS( |
| 12 | 12 |
COMMAND hg id -i |
| 13 | 13 |
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}
|
| 14 | 14 |
OUTPUT_VARIABLE HG_REVISION |
| 15 | 15 |
ERROR_QUIET |
| 16 | 16 |
OUTPUT_STRIP_TRAILING_WHITESPACE |
| 17 | 17 |
) |
| 18 | 18 |
IF(HG_REVISION STREQUAL "") |
| 19 | 19 |
SET(HG_REVISION "hg-tip") |
| 20 | 20 |
ENDIF() |
| 21 | 21 |
SET(LEMON_VERSION ${HG_REVISION} CACHE STRING "LEMON version string.")
|
| 22 | 22 |
ENDIF() |
| 23 | 23 |
|
| 24 | 24 |
SET(PROJECT_VERSION ${LEMON_VERSION})
|
| 25 | 25 |
|
| 26 | 26 |
SET(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
|
| 27 | 27 |
|
| 28 | 28 |
FIND_PACKAGE(Doxygen) |
| 29 | 29 |
FIND_PACKAGE(Ghostscript) |
| 30 | 30 |
FIND_PACKAGE(GLPK 4.33) |
| 31 | 31 |
FIND_PACKAGE(CPLEX) |
| 32 | 32 |
FIND_PACKAGE(COIN) |
| 33 | 33 |
|
| 34 | 34 |
INCLUDE(CheckTypeSize) |
| 35 | 35 |
CHECK_TYPE_SIZE("long long" LONG_LONG)
|
| 36 | 36 |
SET(LEMON_HAVE_LONG_LONG ${HAVE_LONG_LONG})
|
| 37 | 37 |
|
| 38 |
INCLUDE(FindPythonInterp) |
|
| 39 |
|
|
| 38 | 40 |
ENABLE_TESTING() |
| 39 | 41 |
|
| 40 | 42 |
ADD_SUBDIRECTORY(lemon) |
| 41 | 43 |
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR})
|
| 42 | 44 |
ADD_SUBDIRECTORY(demo) |
| 43 | 45 |
ADD_SUBDIRECTORY(tools) |
| 44 | 46 |
ADD_SUBDIRECTORY(doc) |
| 45 | 47 |
ADD_SUBDIRECTORY(test) |
| 46 | 48 |
ENDIF() |
| 47 | 49 |
|
| 48 | 50 |
CONFIGURE_FILE( |
| 49 | 51 |
${PROJECT_SOURCE_DIR}/cmake/LEMONConfig.cmake.in
|
| 50 | 52 |
${PROJECT_BINARY_DIR}/cmake/LEMONConfig.cmake
|
| 51 | 53 |
@ONLY |
| 52 | 54 |
) |
| 53 | 55 |
IF(UNIX) |
| 54 | 56 |
INSTALL( |
| 55 | 57 |
FILES ${PROJECT_BINARY_DIR}/cmake/LEMONConfig.cmake
|
| 56 | 58 |
DESTINATION share/lemon/cmake |
| 57 | 59 |
) |
| 58 | 60 |
ELSEIF(WIN32) |
| 59 | 61 |
INSTALL( |
| 60 | 62 |
FILES ${PROJECT_BINARY_DIR}/cmake/LEMONConfig.cmake
|
| 61 | 63 |
DESTINATION cmake |
| 62 | 64 |
) |
| 63 | 65 |
ENDIF() |
| 64 | 66 |
|
| 65 | 67 |
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR} AND WIN32)
|
| 66 | 68 |
SET(CPACK_PACKAGE_NAME ${PROJECT_NAME})
|
| 67 | 69 |
SET(CPACK_PACKAGE_VENDOR "EGRES") |
| 68 | 70 |
SET(CPACK_PACKAGE_DESCRIPTION_SUMMARY |
| 69 | 71 |
"LEMON - Library for Efficient Modeling and Optimization in Networks") |
| 70 | 72 |
SET(CPACK_RESOURCE_FILE_LICENSE "${PROJECT_SOURCE_DIR}/LICENSE")
|
| 71 | 73 |
|
| 72 | 74 |
SET(CPACK_PACKAGE_VERSION ${PROJECT_VERSION})
|
| 73 | 75 |
|
| 74 | 76 |
SET(CPACK_PACKAGE_INSTALL_DIRECTORY |
| 75 | 77 |
"${PROJECT_NAME} ${PROJECT_VERSION}")
|
| 76 | 78 |
SET(CPACK_PACKAGE_INSTALL_REGISTRY_KEY |
| 77 | 79 |
"${PROJECT_NAME} ${PROJECT_VERSION}")
|
| 78 | 80 |
|
| 79 | 81 |
SET(CPACK_COMPONENTS_ALL headers library html_documentation bin) |
| 80 | 82 |
|
| 81 | 83 |
SET(CPACK_COMPONENT_HEADERS_DISPLAY_NAME "C++ headers") |
| 82 | 84 |
SET(CPACK_COMPONENT_LIBRARY_DISPLAY_NAME "Dynamic-link library") |
| 83 | 85 |
SET(CPACK_COMPONENT_BIN_DISPLAY_NAME "Command line utilities") |
| 84 | 86 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_DISPLAY_NAME "HTML documentation") |
| 85 | 87 |
|
| 86 | 88 |
SET(CPACK_COMPONENT_HEADERS_DESCRIPTION |
| 87 | 89 |
"C++ header files") |
| 88 | 90 |
SET(CPACK_COMPONENT_LIBRARY_DESCRIPTION |
| 89 | 91 |
"DLL and import library") |
| 90 | 92 |
SET(CPACK_COMPONENT_BIN_DESCRIPTION |
| 91 | 93 |
"Command line utilities") |
| 92 | 94 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_DESCRIPTION |
| 93 | 95 |
"Doxygen generated documentation") |
| 94 | 96 |
|
| 95 | 97 |
SET(CPACK_COMPONENT_HEADERS_DEPENDS library) |
| 96 | 98 |
|
| 97 | 99 |
SET(CPACK_COMPONENT_HEADERS_GROUP "Development") |
| 98 | 100 |
SET(CPACK_COMPONENT_LIBRARY_GROUP "Development") |
| 99 | 101 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_GROUP "Documentation") |
| 100 | 102 |
|
| 101 | 103 |
SET(CPACK_COMPONENT_GROUP_DEVELOPMENT_DESCRIPTION |
| 102 | 104 |
"Components needed to develop software using LEMON") |
| 103 | 105 |
SET(CPACK_COMPONENT_GROUP_DOCUMENTATION_DESCRIPTION |
| 104 | 106 |
"Documentation of LEMON") |
| 105 | 107 |
|
| 106 | 108 |
SET(CPACK_ALL_INSTALL_TYPES Full Developer) |
| 107 | 109 |
|
| 108 | 110 |
SET(CPACK_COMPONENT_HEADERS_INSTALL_TYPES Developer Full) |
| 109 | 111 |
SET(CPACK_COMPONENT_LIBRARY_INSTALL_TYPES Developer Full) |
| 110 | 112 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_INSTALL_TYPES Full) |
| 111 | 113 |
|
| 112 | 114 |
SET(CPACK_GENERATOR "NSIS") |
| 113 | 115 |
SET(CPACK_NSIS_MUI_ICON "${PROJECT_SOURCE_DIR}/cmake/nsis/lemon.ico")
|
| 114 | 116 |
SET(CPACK_NSIS_MUI_UNIICON "${PROJECT_SOURCE_DIR}/cmake/nsis/uninstall.ico")
|
| 115 | 117 |
#SET(CPACK_PACKAGE_ICON "${PROJECT_SOURCE_DIR}/cmake/nsis\\\\installer.bmp")
|
| 116 | 118 |
SET(CPACK_NSIS_INSTALLED_ICON_NAME "bin\\\\lemon.ico") |
| 117 | 119 |
SET(CPACK_NSIS_DISPLAY_NAME "${CPACK_PACKAGE_INSTALL_DIRECTORY} ${PROJECT_NAME}")
|
| 118 | 120 |
SET(CPACK_NSIS_HELP_LINK "http:\\\\\\\\lemon.cs.elte.hu") |
| 119 | 121 |
SET(CPACK_NSIS_URL_INFO_ABOUT "http:\\\\\\\\lemon.cs.elte.hu") |
| 120 | 122 |
SET(CPACK_NSIS_CONTACT "lemon-user@lemon.cs.elte.hu") |
| 121 | 123 |
SET(CPACK_NSIS_CREATE_ICONS_EXTRA " |
| 122 | 124 |
CreateShortCut \\\"$SMPROGRAMS\\\\$STARTMENU_FOLDER\\\\Documentation.lnk\\\" \\\"$INSTDIR\\\\share\\\\doc\\\\index.html\\\" |
| 123 | 125 |
") |
| 124 | 126 |
SET(CPACK_NSIS_DELETE_ICONS_EXTRA " |
| 125 | 127 |
!insertmacro MUI_STARTMENU_GETFOLDER Application $MUI_TEMP |
| 126 | 128 |
Delete \\\"$SMPROGRAMS\\\\$MUI_TEMP\\\\Documentation.lnk\\\" |
| 127 | 129 |
") |
| 128 | 130 |
|
| 129 | 131 |
INCLUDE(CPack) |
| 130 | 132 |
ENDIF() |
| 1 | 1 |
ACLOCAL_AMFLAGS = -I m4 |
| 2 | 2 |
|
| 3 | 3 |
AM_CXXFLAGS = $(WARNINGCXXFLAGS) |
| 4 | 4 |
|
| 5 | 5 |
AM_CPPFLAGS = -I$(top_srcdir) -I$(top_builddir) |
| 6 | 6 |
LDADD = $(top_builddir)/lemon/libemon.la |
| 7 | 7 |
|
| 8 | 8 |
EXTRA_DIST = \ |
| 9 | 9 |
AUTHORS \ |
| 10 | 10 |
LICENSE \ |
| 11 | 11 |
m4/lx_check_cplex.m4 \ |
| 12 | 12 |
m4/lx_check_glpk.m4 \ |
| 13 | 13 |
m4/lx_check_soplex.m4 \ |
| 14 | 14 |
m4/lx_check_coin.m4 \ |
| 15 | 15 |
CMakeLists.txt \ |
| 16 | 16 |
cmake/FindGhostscript.cmake \ |
| 17 | 17 |
cmake/FindCPLEX.cmake \ |
| 18 | 18 |
cmake/FindGLPK.cmake \ |
| 19 | 19 |
cmake/FindCOIN.cmake \ |
| 20 |
cmake/LEMONConfig.cmake.in \ |
|
| 20 | 21 |
cmake/version.cmake.in \ |
| 21 | 22 |
cmake/version.cmake \ |
| 22 | 23 |
cmake/nsis/lemon.ico \ |
| 23 | 24 |
cmake/nsis/uninstall.ico |
| 24 | 25 |
|
| 25 | 26 |
pkgconfigdir = $(libdir)/pkgconfig |
| 26 | 27 |
lemondir = $(pkgincludedir) |
| 27 | 28 |
bitsdir = $(lemondir)/bits |
| 28 | 29 |
conceptdir = $(lemondir)/concepts |
| 29 | 30 |
pkgconfig_DATA = |
| 30 | 31 |
lib_LTLIBRARIES = |
| 31 | 32 |
lemon_HEADERS = |
| 32 | 33 |
bits_HEADERS = |
| 33 | 34 |
concept_HEADERS = |
| 34 | 35 |
noinst_HEADERS = |
| 35 | 36 |
noinst_PROGRAMS = |
| 36 | 37 |
bin_PROGRAMS = |
| 37 | 38 |
check_PROGRAMS = |
| 38 | 39 |
dist_bin_SCRIPTS = |
| 39 | 40 |
TESTS = |
| 40 | 41 |
XFAIL_TESTS = |
| 41 | 42 |
|
| 42 | 43 |
include lemon/Makefile.am |
| 43 | 44 |
include test/Makefile.am |
| 44 | 45 |
include doc/Makefile.am |
| 45 | 46 |
include tools/Makefile.am |
| 46 | 47 |
|
| 47 | 48 |
DIST_SUBDIRS = demo |
| 48 | 49 |
|
| 49 | 50 |
demo: |
| 50 | 51 |
$(MAKE) $(AM_MAKEFLAGS) -C demo |
| 51 | 52 |
|
| 52 | 53 |
MRPROPERFILES = \ |
| 53 | 54 |
aclocal.m4 \ |
| 54 | 55 |
config.h.in \ |
| 55 | 56 |
config.h.in~ \ |
| 56 | 57 |
configure \ |
| 57 | 58 |
Makefile.in \ |
| 58 | 59 |
build-aux/config.guess \ |
| 59 | 60 |
build-aux/config.sub \ |
| 60 | 61 |
build-aux/depcomp \ |
| 61 | 62 |
build-aux/install-sh \ |
| 62 | 63 |
build-aux/ltmain.sh \ |
| 63 | 64 |
build-aux/missing \ |
| 64 | 65 |
doc/doxygen.log |
| 65 | 66 |
|
| 66 | 67 |
mrproper: |
| 67 | 68 |
$(MAKE) $(AM_MAKEFLAGS) maintainer-clean |
| 68 | 69 |
-rm -f $(MRPROPERFILES) |
| 69 | 70 |
|
| 70 | 71 |
dist-bz2: dist |
| 71 | 72 |
zcat $(PACKAGE)-$(VERSION).tar.gz | \ |
| 72 | 73 |
bzip2 --best -c > $(PACKAGE)-$(VERSION).tar.bz2 |
| 73 | 74 |
|
| 74 | 75 |
distcheck-bz2: distcheck |
| 75 | 76 |
zcat $(PACKAGE)-$(VERSION).tar.gz | \ |
| 76 | 77 |
bzip2 --best -c > $(PACKAGE)-$(VERSION).tar.bz2 |
| 77 | 78 |
|
| 78 | 79 |
.PHONY: demo mrproper dist-bz2 distcheck-bz2 |
| 1 | 1 |
dnl Process this file with autoconf to produce a configure script. |
| 2 | 2 |
|
| 3 | 3 |
dnl Version information. |
| 4 | 4 |
m4_define([lemon_version_number], |
| 5 | 5 |
[m4_normalize(esyscmd([echo ${LEMON_VERSION}]))])
|
| 6 | 6 |
dnl m4_define([lemon_version_number], []) |
| 7 | 7 |
m4_define([lemon_hg_path], [m4_normalize(esyscmd([./scripts/chg-len.py]))]) |
| 8 | 8 |
m4_define([lemon_hg_revision], [m4_normalize(esyscmd([hg id -i 2> /dev/null]))]) |
| 9 | 9 |
m4_define([lemon_version], [ifelse(lemon_version_number(), |
| 10 | 10 |
[], |
| 11 | 11 |
[ifelse(lemon_hg_revision(), |
| 12 | 12 |
[], |
| 13 | 13 |
[hg-tip], |
| 14 | 14 |
[lemon_hg_path().lemon_hg_revision()])], |
| 15 | 15 |
[lemon_version_number()])]) |
| 16 | 16 |
|
| 17 | 17 |
AC_PREREQ([2.59]) |
| 18 | 18 |
AC_INIT([LEMON], [lemon_version()], [lemon-user@lemon.cs.elte.hu], [lemon]) |
| 19 | 19 |
AC_CONFIG_AUX_DIR([build-aux]) |
| 20 | 20 |
AC_CONFIG_MACRO_DIR([m4]) |
| 21 | 21 |
AM_INIT_AUTOMAKE([-Wall -Werror foreign subdir-objects nostdinc]) |
| 22 | 22 |
AC_CONFIG_SRCDIR([lemon/list_graph.h]) |
| 23 | 23 |
AC_CONFIG_HEADERS([config.h lemon/config.h]) |
| 24 | 24 |
|
| 25 | 25 |
AC_DEFINE([LEMON_VERSION], [lemon_version()], [The version string]) |
| 26 | 26 |
|
| 27 | 27 |
dnl Do compilation tests using the C++ compiler. |
| 28 | 28 |
AC_LANG([C++]) |
| 29 | 29 |
|
| 30 | 30 |
dnl Check the existence of long long type. |
| 31 | 31 |
AC_CHECK_TYPE(long long, [long_long_found=yes], [long_long_found=no]) |
| 32 | 32 |
if test x"$long_long_found" = x"yes"; then |
| 33 | 33 |
AC_DEFINE([LEMON_HAVE_LONG_LONG], [1], [Define to 1 if you have long long.]) |
| 34 | 34 |
fi |
| 35 | 35 |
|
| 36 | 36 |
dnl Checks for programs. |
| 37 | 37 |
AC_PROG_CXX |
| 38 | 38 |
AC_PROG_CXXCPP |
| 39 | 39 |
AC_PROG_INSTALL |
| 40 | 40 |
AC_DISABLE_SHARED |
| 41 | 41 |
AC_PROG_LIBTOOL |
| 42 | 42 |
|
| 43 | 43 |
AC_CHECK_PROG([doxygen_found],[doxygen],[yes],[no]) |
| 44 |
AC_CHECK_PROG([python_found],[python],[yes],[no]) |
|
| 44 | 45 |
AC_CHECK_PROG([gs_found],[gs],[yes],[no]) |
| 45 | 46 |
|
| 46 | 47 |
dnl Detect Intel compiler. |
| 47 | 48 |
AC_MSG_CHECKING([whether we are using the Intel C++ compiler]) |
| 48 | 49 |
AC_COMPILE_IFELSE([#ifndef __INTEL_COMPILER |
| 49 | 50 |
choke me |
| 50 | 51 |
#endif], [ICC=[yes]], [ICC=[no]]) |
| 51 | 52 |
if test x"$ICC" = x"yes"; then |
| 52 | 53 |
AC_MSG_RESULT([yes]) |
| 53 | 54 |
else |
| 54 | 55 |
AC_MSG_RESULT([no]) |
| 55 | 56 |
fi |
| 56 | 57 |
|
| 57 | 58 |
dnl Set custom compiler flags when using g++. |
| 58 | 59 |
if test "$GXX" = yes -a "$ICC" = no; then |
| 59 | 60 |
WARNINGCXXFLAGS="-Wall -W -Wall -W -Wunused -Wformat=2 -Wctor-dtor-privacy -Wnon-virtual-dtor -Wno-char-subscripts -Wwrite-strings -Wno-char-subscripts -Wreturn-type -Wcast-qual -Wcast-align -Wsign-promo -Woverloaded-virtual -ansi -fno-strict-aliasing -Wold-style-cast -Wno-unknown-pragmas" |
| 60 | 61 |
fi |
| 61 | 62 |
AC_SUBST([WARNINGCXXFLAGS]) |
| 62 | 63 |
|
| 63 | 64 |
dnl Checks for libraries. |
| 64 | 65 |
LX_CHECK_GLPK |
| 65 | 66 |
LX_CHECK_CPLEX |
| 66 | 67 |
LX_CHECK_SOPLEX |
| 67 | 68 |
LX_CHECK_COIN |
| 68 | 69 |
|
| 69 | 70 |
AM_CONDITIONAL([HAVE_LP], [test x"$lx_lp_found" = x"yes"]) |
| 70 | 71 |
AM_CONDITIONAL([HAVE_MIP], [test x"$lx_mip_found" = x"yes"]) |
| 71 | 72 |
|
| 72 | 73 |
dnl Disable/enable building the binary tools. |
| 73 | 74 |
AC_ARG_ENABLE([tools], |
| 74 | 75 |
AS_HELP_STRING([--enable-tools], [build additional tools @<:@default@:>@]) |
| 75 | 76 |
AS_HELP_STRING([--disable-tools], [do not build additional tools]), |
| 76 | 77 |
[], [enable_tools=yes]) |
| 77 | 78 |
AC_MSG_CHECKING([whether to build the additional tools]) |
| 78 | 79 |
if test x"$enable_tools" != x"no"; then |
| 79 | 80 |
AC_MSG_RESULT([yes]) |
| 80 | 81 |
else |
| 81 | 82 |
AC_MSG_RESULT([no]) |
| 82 | 83 |
fi |
| 83 | 84 |
AM_CONDITIONAL([WANT_TOOLS], [test x"$enable_tools" != x"no"]) |
| 84 | 85 |
|
| 85 | 86 |
dnl Checks for header files. |
| 86 | 87 |
AC_CHECK_HEADERS(limits.h sys/time.h sys/times.h unistd.h) |
| 87 | 88 |
|
| 88 | 89 |
dnl Checks for typedefs, structures, and compiler characteristics. |
| 89 | 90 |
AC_C_CONST |
| 90 | 91 |
AC_C_INLINE |
| 91 | 92 |
AC_TYPE_SIZE_T |
| 92 | 93 |
AC_HEADER_TIME |
| 93 | 94 |
AC_STRUCT_TM |
| 94 | 95 |
|
| 95 | 96 |
dnl Checks for library functions. |
| 96 | 97 |
AC_HEADER_STDC |
| 97 | 98 |
AC_CHECK_FUNCS(gettimeofday times ctime_r) |
| 98 | 99 |
|
| 99 | 100 |
dnl Add dependencies on files generated by configure. |
| 100 | 101 |
AC_SUBST([CONFIG_STATUS_DEPENDENCIES], |
| 101 | 102 |
['$(top_srcdir)/doc/Doxyfile.in $(top_srcdir)/lemon/lemon.pc.in $(top_srcdir)/cmake/version.cmake.in']) |
| 102 | 103 |
|
| 103 | 104 |
AC_CONFIG_FILES([ |
| 104 | 105 |
Makefile |
| 105 | 106 |
demo/Makefile |
| 106 | 107 |
cmake/version.cmake |
| 107 | 108 |
doc/Doxyfile |
| 108 | 109 |
lemon/lemon.pc |
| 109 | 110 |
]) |
| 110 | 111 |
|
| 111 | 112 |
AC_OUTPUT |
| 112 | 113 |
|
| 113 | 114 |
echo |
| 114 | 115 |
echo '****************************** SUMMARY ******************************' |
| 115 | 116 |
echo |
| 116 | 117 |
echo Package version............... : $PACKAGE-$VERSION |
| 117 | 118 |
echo |
| 118 | 119 |
echo C++ compiler.................. : $CXX |
| 119 | 120 |
echo C++ compiles flags............ : $WARNINGCXXFLAGS $CXXFLAGS |
| 120 | 121 |
echo |
| 121 | 122 |
echo Compiler supports long long... : $long_long_found |
| 122 | 123 |
echo |
| 123 | 124 |
echo GLPK support.................. : $lx_glpk_found |
| 124 | 125 |
echo CPLEX support................. : $lx_cplex_found |
| 125 | 126 |
echo SOPLEX support................ : $lx_soplex_found |
| 126 | 127 |
echo CLP support................... : $lx_clp_found |
| 127 | 128 |
echo CBC support................... : $lx_cbc_found |
| 128 | 129 |
echo |
| 129 | 130 |
echo Build additional tools........ : $enable_tools |
| 130 | 131 |
echo |
| 131 | 132 |
echo The packace will be installed in |
| 132 | 133 |
echo -n ' ' |
| 133 | 134 |
echo $prefix. |
| 134 | 135 |
echo |
| 135 | 136 |
echo '*********************************************************************' |
| 136 | 137 |
|
| 137 | 138 |
echo |
| 138 | 139 |
echo Configure complete, now type \'make\' and then \'make install\'. |
| 139 | 140 |
echo |
| 1 | 1 |
SET(PACKAGE_NAME ${PROJECT_NAME})
|
| 2 | 2 |
SET(PACKAGE_VERSION ${PROJECT_VERSION})
|
| 3 | 3 |
SET(abs_top_srcdir ${PROJECT_SOURCE_DIR})
|
| 4 | 4 |
SET(abs_top_builddir ${PROJECT_BINARY_DIR})
|
| 5 | 5 |
|
| 6 | 6 |
CONFIGURE_FILE( |
| 7 | 7 |
${PROJECT_SOURCE_DIR}/doc/Doxyfile.in
|
| 8 | 8 |
${PROJECT_BINARY_DIR}/doc/Doxyfile
|
| 9 | 9 |
@ONLY |
| 10 | 10 |
) |
| 11 | 11 |
|
| 12 |
IF(DOXYGEN_EXECUTABLE AND GHOSTSCRIPT_EXECUTABLE) |
|
| 12 |
IF(DOXYGEN_EXECUTABLE AND PYTHONINTERP_FOUND AND GHOSTSCRIPT_EXECUTABLE) |
|
| 13 | 13 |
FILE(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/)
|
| 14 | 14 |
SET(GHOSTSCRIPT_OPTIONS -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha) |
| 15 | 15 |
ADD_CUSTOM_TARGET(html |
| 16 | 16 |
COMMAND ${CMAKE_COMMAND} -E remove_directory gen-images
|
| 17 | 17 |
COMMAND ${CMAKE_COMMAND} -E make_directory gen-images
|
| 18 | 18 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/bipartite_matching.png ${CMAKE_CURRENT_SOURCE_DIR}/images/bipartite_matching.eps
|
| 19 | 19 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/bipartite_partitions.png ${CMAKE_CURRENT_SOURCE_DIR}/images/bipartite_partitions.eps
|
| 20 | 20 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/connected_components.eps
|
| 21 | 21 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/edge_biconnected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/edge_biconnected_components.eps
|
| 22 | 22 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/grid_graph.png ${CMAKE_CURRENT_SOURCE_DIR}/images/grid_graph.eps
|
| 23 | 23 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/node_biconnected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/node_biconnected_components.eps
|
| 24 | 24 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_0.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_0.eps
|
| 25 | 25 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_1.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_1.eps
|
| 26 | 26 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_2.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_2.eps
|
| 27 | 27 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_3.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_3.eps
|
| 28 | 28 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_4.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_4.eps
|
| 29 | 29 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/strongly_connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/strongly_connected_components.eps
|
| 30 | 30 |
COMMAND ${CMAKE_COMMAND} -E remove_directory html
|
| 31 |
COMMAND ${PYTHON_EXECUTABLE} ${PROJECT_SOURCE_DIR}/scripts/bib2dox.py ${CMAKE_CURRENT_SOURCE_DIR}/references.bib >references.dox
|
|
| 31 | 32 |
COMMAND ${DOXYGEN_EXECUTABLE} Doxyfile
|
| 32 | 33 |
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
|
| 33 | 34 |
) |
| 34 | 35 |
|
| 35 | 36 |
SET_TARGET_PROPERTIES(html PROPERTIES PROJECT_LABEL BUILD_DOC) |
| 36 | 37 |
|
| 37 | 38 |
IF(UNIX) |
| 38 | 39 |
INSTALL( |
| 39 | 40 |
DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/
|
| 40 | 41 |
DESTINATION share/doc/lemon/html |
| 41 | 42 |
COMPONENT html_documentation |
| 42 | 43 |
) |
| 43 | 44 |
ELSEIF(WIN32) |
| 44 | 45 |
INSTALL( |
| 45 | 46 |
DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/
|
| 46 | 47 |
DESTINATION doc |
| 47 | 48 |
COMPONENT html_documentation |
| 48 | 49 |
) |
| 49 | 50 |
ENDIF() |
| 50 | 51 |
|
| 51 | 52 |
ENDIF() |
| 1 |
# Doxyfile 1.5. |
|
| 1 |
# Doxyfile 1.5.9 |
|
| 2 | 2 |
|
| 3 | 3 |
#--------------------------------------------------------------------------- |
| 4 | 4 |
# Project related configuration options |
| 5 | 5 |
#--------------------------------------------------------------------------- |
| 6 | 6 |
DOXYFILE_ENCODING = UTF-8 |
| 7 | 7 |
PROJECT_NAME = @PACKAGE_NAME@ |
| 8 | 8 |
PROJECT_NUMBER = @PACKAGE_VERSION@ |
| 9 | 9 |
OUTPUT_DIRECTORY = |
| 10 | 10 |
CREATE_SUBDIRS = NO |
| 11 | 11 |
OUTPUT_LANGUAGE = English |
| 12 | 12 |
BRIEF_MEMBER_DESC = YES |
| 13 | 13 |
REPEAT_BRIEF = NO |
| 14 | 14 |
ABBREVIATE_BRIEF = |
| 15 | 15 |
ALWAYS_DETAILED_SEC = NO |
| 16 | 16 |
INLINE_INHERITED_MEMB = NO |
| 17 | 17 |
FULL_PATH_NAMES = YES |
| 18 | 18 |
STRIP_FROM_PATH = "@abs_top_srcdir@" |
| 19 | 19 |
STRIP_FROM_INC_PATH = "@abs_top_srcdir@" |
| 20 | 20 |
SHORT_NAMES = YES |
| 21 | 21 |
JAVADOC_AUTOBRIEF = NO |
| 22 | 22 |
QT_AUTOBRIEF = NO |
| 23 | 23 |
MULTILINE_CPP_IS_BRIEF = NO |
| 24 |
DETAILS_AT_TOP = YES |
|
| 25 | 24 |
INHERIT_DOCS = NO |
| 26 | 25 |
SEPARATE_MEMBER_PAGES = NO |
| 27 | 26 |
TAB_SIZE = 8 |
| 28 | 27 |
ALIASES = |
| 29 | 28 |
OPTIMIZE_OUTPUT_FOR_C = NO |
| 30 | 29 |
OPTIMIZE_OUTPUT_JAVA = NO |
| 31 | 30 |
OPTIMIZE_FOR_FORTRAN = NO |
| 32 | 31 |
OPTIMIZE_OUTPUT_VHDL = NO |
| 33 | 32 |
BUILTIN_STL_SUPPORT = YES |
| 34 | 33 |
CPP_CLI_SUPPORT = NO |
| 35 | 34 |
SIP_SUPPORT = NO |
| 36 | 35 |
IDL_PROPERTY_SUPPORT = YES |
| 37 | 36 |
DISTRIBUTE_GROUP_DOC = NO |
| 38 | 37 |
SUBGROUPING = YES |
| 39 | 38 |
TYPEDEF_HIDES_STRUCT = NO |
| 40 | 39 |
SYMBOL_CACHE_SIZE = 0 |
| 41 | 40 |
#--------------------------------------------------------------------------- |
| 42 | 41 |
# Build related configuration options |
| 43 | 42 |
#--------------------------------------------------------------------------- |
| 44 | 43 |
EXTRACT_ALL = NO |
| 45 | 44 |
EXTRACT_PRIVATE = YES |
| 46 | 45 |
EXTRACT_STATIC = YES |
| 47 | 46 |
EXTRACT_LOCAL_CLASSES = NO |
| 48 | 47 |
EXTRACT_LOCAL_METHODS = NO |
| 49 | 48 |
EXTRACT_ANON_NSPACES = NO |
| 50 | 49 |
HIDE_UNDOC_MEMBERS = YES |
| 51 | 50 |
HIDE_UNDOC_CLASSES = YES |
| 52 | 51 |
HIDE_FRIEND_COMPOUNDS = NO |
| 53 | 52 |
HIDE_IN_BODY_DOCS = NO |
| 54 | 53 |
INTERNAL_DOCS = NO |
| 55 | 54 |
CASE_SENSE_NAMES = YES |
| 56 | 55 |
HIDE_SCOPE_NAMES = YES |
| 57 | 56 |
SHOW_INCLUDE_FILES = YES |
| 58 | 57 |
INLINE_INFO = YES |
| 59 | 58 |
SORT_MEMBER_DOCS = NO |
| 60 | 59 |
SORT_BRIEF_DOCS = NO |
| 61 | 60 |
SORT_GROUP_NAMES = NO |
| 62 | 61 |
SORT_BY_SCOPE_NAME = NO |
| 63 | 62 |
GENERATE_TODOLIST = YES |
| 64 | 63 |
GENERATE_TESTLIST = YES |
| 65 | 64 |
GENERATE_BUGLIST = YES |
| 66 | 65 |
GENERATE_DEPRECATEDLIST= YES |
| 67 | 66 |
ENABLED_SECTIONS = |
| 68 | 67 |
MAX_INITIALIZER_LINES = 5 |
| 69 | 68 |
SHOW_USED_FILES = NO |
| 70 | 69 |
SHOW_DIRECTORIES = YES |
| 71 | 70 |
SHOW_FILES = YES |
| 72 | 71 |
SHOW_NAMESPACES = YES |
| 73 | 72 |
FILE_VERSION_FILTER = |
| 74 | 73 |
LAYOUT_FILE = DoxygenLayout.xml |
| 75 | 74 |
#--------------------------------------------------------------------------- |
| 76 | 75 |
# configuration options related to warning and progress messages |
| 77 | 76 |
#--------------------------------------------------------------------------- |
| 78 | 77 |
QUIET = NO |
| 79 | 78 |
WARNINGS = YES |
| 80 | 79 |
WARN_IF_UNDOCUMENTED = YES |
| 81 | 80 |
WARN_IF_DOC_ERROR = YES |
| 82 | 81 |
WARN_NO_PARAMDOC = NO |
| 83 | 82 |
WARN_FORMAT = "$file:$line: $text" |
| 84 | 83 |
WARN_LOGFILE = doxygen.log |
| 85 | 84 |
#--------------------------------------------------------------------------- |
| 86 | 85 |
# configuration options related to the input files |
| 87 | 86 |
#--------------------------------------------------------------------------- |
| 88 | 87 |
INPUT = "@abs_top_srcdir@/doc" \ |
| 89 | 88 |
"@abs_top_srcdir@/lemon" \ |
| 90 | 89 |
"@abs_top_srcdir@/lemon/bits" \ |
| 91 | 90 |
"@abs_top_srcdir@/lemon/concepts" \ |
| 92 | 91 |
"@abs_top_srcdir@/demo" \ |
| 93 | 92 |
"@abs_top_srcdir@/tools" \ |
| 94 |
"@abs_top_srcdir@/test/test_tools.h" |
|
| 93 |
"@abs_top_srcdir@/test/test_tools.h" \ |
|
| 94 |
"@abs_top_builddir@/doc/references.dox" |
|
| 95 | 95 |
INPUT_ENCODING = UTF-8 |
| 96 | 96 |
FILE_PATTERNS = *.h \ |
| 97 | 97 |
*.cc \ |
| 98 | 98 |
*.dox |
| 99 | 99 |
RECURSIVE = NO |
| 100 | 100 |
EXCLUDE = |
| 101 | 101 |
EXCLUDE_SYMLINKS = NO |
| 102 | 102 |
EXCLUDE_PATTERNS = |
| 103 | 103 |
EXCLUDE_SYMBOLS = |
| 104 | 104 |
EXAMPLE_PATH = "@abs_top_srcdir@/demo" \ |
| 105 | 105 |
"@abs_top_srcdir@/LICENSE" \ |
| 106 | 106 |
"@abs_top_srcdir@/doc" |
| 107 | 107 |
EXAMPLE_PATTERNS = |
| 108 | 108 |
EXAMPLE_RECURSIVE = NO |
| 109 | 109 |
IMAGE_PATH = "@abs_top_srcdir@/doc/images" \ |
| 110 | 110 |
"@abs_top_builddir@/doc/gen-images" |
| 111 | 111 |
INPUT_FILTER = |
| 112 | 112 |
FILTER_PATTERNS = |
| 113 | 113 |
FILTER_SOURCE_FILES = NO |
| 114 | 114 |
#--------------------------------------------------------------------------- |
| 115 | 115 |
# configuration options related to source browsing |
| 116 | 116 |
#--------------------------------------------------------------------------- |
| 117 | 117 |
SOURCE_BROWSER = NO |
| 118 | 118 |
INLINE_SOURCES = NO |
| 119 | 119 |
STRIP_CODE_COMMENTS = YES |
| 120 | 120 |
REFERENCED_BY_RELATION = NO |
| 121 | 121 |
REFERENCES_RELATION = NO |
| 122 | 122 |
REFERENCES_LINK_SOURCE = YES |
| 123 | 123 |
USE_HTAGS = NO |
| 124 | 124 |
VERBATIM_HEADERS = NO |
| 125 | 125 |
#--------------------------------------------------------------------------- |
| 126 | 126 |
# configuration options related to the alphabetical class index |
| 127 | 127 |
#--------------------------------------------------------------------------- |
| 128 | 128 |
ALPHABETICAL_INDEX = YES |
| 129 | 129 |
COLS_IN_ALPHA_INDEX = 2 |
| 130 | 130 |
IGNORE_PREFIX = |
| 131 | 131 |
#--------------------------------------------------------------------------- |
| 132 | 132 |
# configuration options related to the HTML output |
| 133 | 133 |
#--------------------------------------------------------------------------- |
| 134 | 134 |
GENERATE_HTML = YES |
| 135 | 135 |
HTML_OUTPUT = html |
| 136 | 136 |
HTML_FILE_EXTENSION = .html |
| 137 | 137 |
HTML_HEADER = |
| 138 | 138 |
HTML_FOOTER = |
| 139 | 139 |
HTML_STYLESHEET = |
| 140 | 140 |
HTML_ALIGN_MEMBERS = YES |
| 141 | 141 |
HTML_DYNAMIC_SECTIONS = NO |
| 142 | 142 |
GENERATE_DOCSET = NO |
| 143 | 143 |
DOCSET_FEEDNAME = "Doxygen generated docs" |
| 144 | 144 |
DOCSET_BUNDLE_ID = org.doxygen.Project |
| 145 | 145 |
GENERATE_HTMLHELP = NO |
| 146 | 146 |
CHM_FILE = |
| 147 | 147 |
HHC_LOCATION = |
| 148 | 148 |
GENERATE_CHI = NO |
| 149 | 149 |
CHM_INDEX_ENCODING = |
| 150 | 150 |
BINARY_TOC = NO |
| 151 | 151 |
TOC_EXPAND = NO |
| 152 | 152 |
GENERATE_QHP = NO |
| 153 | 153 |
QCH_FILE = |
| 154 | 154 |
QHP_NAMESPACE = org.doxygen.Project |
| 155 | 155 |
QHP_VIRTUAL_FOLDER = doc |
| 156 | 156 |
QHG_LOCATION = |
| 157 | 157 |
DISABLE_INDEX = NO |
| 158 | 158 |
ENUM_VALUES_PER_LINE = 4 |
| 159 | 159 |
GENERATE_TREEVIEW = NO |
| 160 | 160 |
TREEVIEW_WIDTH = 250 |
| 161 | 161 |
FORMULA_FONTSIZE = 10 |
| 162 | 162 |
#--------------------------------------------------------------------------- |
| 163 | 163 |
# configuration options related to the LaTeX output |
| 164 | 164 |
#--------------------------------------------------------------------------- |
| 165 | 165 |
GENERATE_LATEX = NO |
| 166 | 166 |
LATEX_OUTPUT = latex |
| 167 | 167 |
LATEX_CMD_NAME = latex |
| 168 | 168 |
MAKEINDEX_CMD_NAME = makeindex |
| 169 | 169 |
COMPACT_LATEX = YES |
| 170 | 170 |
PAPER_TYPE = a4wide |
| 171 | 171 |
EXTRA_PACKAGES = amsmath \ |
| 172 | 172 |
amssymb |
| 173 | 173 |
LATEX_HEADER = |
| 174 | 174 |
PDF_HYPERLINKS = YES |
| 175 | 175 |
USE_PDFLATEX = YES |
| 176 | 176 |
LATEX_BATCHMODE = NO |
| 177 | 177 |
LATEX_HIDE_INDICES = NO |
| 178 | 178 |
#--------------------------------------------------------------------------- |
| 179 | 179 |
# configuration options related to the RTF output |
| 180 | 180 |
#--------------------------------------------------------------------------- |
| 181 | 181 |
GENERATE_RTF = NO |
| 182 | 182 |
RTF_OUTPUT = rtf |
| 183 | 183 |
COMPACT_RTF = NO |
| 184 | 184 |
RTF_HYPERLINKS = NO |
| 185 | 185 |
RTF_STYLESHEET_FILE = |
| 186 | 186 |
RTF_EXTENSIONS_FILE = |
| 187 | 187 |
#--------------------------------------------------------------------------- |
| 188 | 188 |
# configuration options related to the man page output |
| 189 | 189 |
#--------------------------------------------------------------------------- |
| 190 | 190 |
GENERATE_MAN = NO |
| 191 | 191 |
MAN_OUTPUT = man |
| 192 | 192 |
MAN_EXTENSION = .3 |
| 193 | 193 |
MAN_LINKS = NO |
| 194 | 194 |
#--------------------------------------------------------------------------- |
| 195 | 195 |
# configuration options related to the XML output |
| 196 | 196 |
#--------------------------------------------------------------------------- |
| 197 | 197 |
GENERATE_XML = NO |
| 198 | 198 |
XML_OUTPUT = xml |
| 199 | 199 |
XML_SCHEMA = |
| 200 | 200 |
XML_DTD = |
| 201 | 201 |
XML_PROGRAMLISTING = YES |
| 202 | 202 |
#--------------------------------------------------------------------------- |
| 203 | 203 |
# configuration options for the AutoGen Definitions output |
| 204 | 204 |
#--------------------------------------------------------------------------- |
| 205 | 205 |
GENERATE_AUTOGEN_DEF = NO |
| 206 | 206 |
#--------------------------------------------------------------------------- |
| 207 | 207 |
# configuration options related to the Perl module output |
| 208 | 208 |
#--------------------------------------------------------------------------- |
| 209 | 209 |
GENERATE_PERLMOD = NO |
| 210 | 210 |
PERLMOD_LATEX = NO |
| 211 | 211 |
PERLMOD_PRETTY = YES |
| 212 | 212 |
PERLMOD_MAKEVAR_PREFIX = |
| 213 | 213 |
#--------------------------------------------------------------------------- |
| 214 | 214 |
# Configuration options related to the preprocessor |
| 215 | 215 |
#--------------------------------------------------------------------------- |
| 216 | 216 |
ENABLE_PREPROCESSING = YES |
| 217 | 217 |
MACRO_EXPANSION = NO |
| 218 | 218 |
EXPAND_ONLY_PREDEF = NO |
| 219 | 219 |
SEARCH_INCLUDES = YES |
| 220 | 220 |
INCLUDE_PATH = |
| 221 | 221 |
INCLUDE_FILE_PATTERNS = |
| 222 | 222 |
PREDEFINED = DOXYGEN |
| 223 | 223 |
EXPAND_AS_DEFINED = |
| 224 | 224 |
SKIP_FUNCTION_MACROS = YES |
| 225 | 225 |
#--------------------------------------------------------------------------- |
| 226 |
# |
|
| 226 |
# Options related to the search engine |
|
| 227 | 227 |
#--------------------------------------------------------------------------- |
| 228 | 228 |
TAGFILES = "@abs_top_srcdir@/doc/libstdc++.tag = http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/ " |
| 229 | 229 |
GENERATE_TAGFILE = html/lemon.tag |
| 230 | 230 |
ALLEXTERNALS = NO |
| 231 | 231 |
EXTERNAL_GROUPS = NO |
| 232 | 232 |
PERL_PATH = /usr/bin/perl |
| 233 | 233 |
#--------------------------------------------------------------------------- |
| 234 | 234 |
# Configuration options related to the dot tool |
| 235 | 235 |
#--------------------------------------------------------------------------- |
| 236 | 236 |
CLASS_DIAGRAMS = YES |
| 237 | 237 |
MSCGEN_PATH = |
| 238 | 238 |
HIDE_UNDOC_RELATIONS = YES |
| 239 | 239 |
HAVE_DOT = YES |
| 240 | 240 |
DOT_FONTNAME = FreeSans |
| 241 | 241 |
DOT_FONTSIZE = 10 |
| 242 | 242 |
DOT_FONTPATH = |
| 243 | 243 |
CLASS_GRAPH = YES |
| 244 | 244 |
COLLABORATION_GRAPH = NO |
| 245 | 245 |
GROUP_GRAPHS = NO |
| 246 | 246 |
UML_LOOK = NO |
| 247 | 247 |
TEMPLATE_RELATIONS = NO |
| 248 | 248 |
INCLUDE_GRAPH = NO |
| 249 | 249 |
INCLUDED_BY_GRAPH = NO |
| 250 | 250 |
CALL_GRAPH = NO |
| 251 | 251 |
CALLER_GRAPH = NO |
| 252 | 252 |
GRAPHICAL_HIERARCHY = NO |
| 253 | 253 |
DIRECTORY_GRAPH = NO |
| 254 | 254 |
DOT_IMAGE_FORMAT = png |
| 255 | 255 |
DOT_PATH = |
| 256 | 256 |
DOTFILE_DIRS = |
| 257 | 257 |
DOT_GRAPH_MAX_NODES = 50 |
| 258 | 258 |
MAX_DOT_GRAPH_DEPTH = 0 |
| 259 | 259 |
DOT_TRANSPARENT = NO |
| 260 | 260 |
DOT_MULTI_TARGETS = NO |
| 261 | 261 |
GENERATE_LEGEND = YES |
| 262 | 262 |
DOT_CLEANUP = YES |
| 263 | 263 |
#--------------------------------------------------------------------------- |
| 264 | 264 |
# Configuration::additions related to the search engine |
| 265 | 265 |
#--------------------------------------------------------------------------- |
| 266 | 266 |
SEARCHENGINE = NO |
| 1 | 1 |
EXTRA_DIST += \ |
| 2 | 2 |
doc/Doxyfile.in \ |
| 3 | 3 |
doc/DoxygenLayout.xml \ |
| 4 | 4 |
doc/coding_style.dox \ |
| 5 | 5 |
doc/dirs.dox \ |
| 6 | 6 |
doc/groups.dox \ |
| 7 | 7 |
doc/lgf.dox \ |
| 8 | 8 |
doc/license.dox \ |
| 9 | 9 |
doc/mainpage.dox \ |
| 10 | 10 |
doc/migration.dox \ |
| 11 | 11 |
doc/min_cost_flow.dox \ |
| 12 | 12 |
doc/named-param.dox \ |
| 13 | 13 |
doc/namespaces.dox \ |
| 14 | 14 |
doc/html \ |
| 15 | 15 |
doc/CMakeLists.txt |
| 16 | 16 |
|
| 17 | 17 |
DOC_EPS_IMAGES18 = \ |
| 18 | 18 |
grid_graph.eps \ |
| 19 | 19 |
nodeshape_0.eps \ |
| 20 | 20 |
nodeshape_1.eps \ |
| 21 | 21 |
nodeshape_2.eps \ |
| 22 | 22 |
nodeshape_3.eps \ |
| 23 | 23 |
nodeshape_4.eps |
| 24 | 24 |
|
| 25 | 25 |
DOC_EPS_IMAGES27 = \ |
| 26 | 26 |
bipartite_matching.eps \ |
| 27 | 27 |
bipartite_partitions.eps \ |
| 28 | 28 |
connected_components.eps \ |
| 29 | 29 |
edge_biconnected_components.eps \ |
| 30 | 30 |
node_biconnected_components.eps \ |
| 31 | 31 |
strongly_connected_components.eps |
| 32 | 32 |
|
| 33 | 33 |
DOC_EPS_IMAGES = \ |
| 34 | 34 |
$(DOC_EPS_IMAGES18) \ |
| 35 | 35 |
$(DOC_EPS_IMAGES27) |
| 36 | 36 |
|
| 37 | 37 |
DOC_PNG_IMAGES = \ |
| 38 | 38 |
$(DOC_EPS_IMAGES:%.eps=doc/gen-images/%.png) |
| 39 | 39 |
|
| 40 | 40 |
EXTRA_DIST += $(DOC_EPS_IMAGES:%=doc/images/%) |
| 41 | 41 |
|
| 42 | 42 |
doc/html: |
| 43 | 43 |
$(MAKE) $(AM_MAKEFLAGS) html |
| 44 | 44 |
|
| 45 | 45 |
GS_COMMAND=gs -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 |
| 46 | 46 |
|
| 47 | 47 |
$(DOC_EPS_IMAGES18:%.eps=doc/gen-images/%.png): doc/gen-images/%.png: doc/images/%.eps |
| 48 | 48 |
-mkdir doc/gen-images |
| 49 | 49 |
if test ${gs_found} = yes; then \
|
| 50 | 50 |
$(GS_COMMAND) -sDEVICE=pngalpha -r18 -sOutputFile=$@ $<; \ |
| 51 | 51 |
else \ |
| 52 | 52 |
echo; \ |
| 53 | 53 |
echo "Ghostscript not found."; \ |
| 54 | 54 |
echo; \ |
| 55 | 55 |
exit 1; \ |
| 56 | 56 |
fi |
| 57 | 57 |
|
| 58 | 58 |
$(DOC_EPS_IMAGES27:%.eps=doc/gen-images/%.png): doc/gen-images/%.png: doc/images/%.eps |
| 59 | 59 |
-mkdir doc/gen-images |
| 60 | 60 |
if test ${gs_found} = yes; then \
|
| 61 | 61 |
$(GS_COMMAND) -sDEVICE=pngalpha -r27 -sOutputFile=$@ $<; \ |
| 62 | 62 |
else \ |
| 63 | 63 |
echo; \ |
| 64 | 64 |
echo "Ghostscript not found."; \ |
| 65 | 65 |
echo; \ |
| 66 | 66 |
exit 1; \ |
| 67 | 67 |
fi |
| 68 | 68 |
|
| 69 |
|
|
| 69 |
references.dox: doc/references.bib |
|
| 70 |
if test ${python_found} = yes; then \
|
|
| 71 |
cd doc; \ |
|
| 72 |
python @abs_top_srcdir@/scripts/bib2dox.py @abs_top_builddir@/$< >$@; \ |
|
| 73 |
cd ..; \ |
|
| 74 |
else \ |
|
| 75 |
echo; \ |
|
| 76 |
echo "Python not found."; \ |
|
| 77 |
echo; \ |
|
| 78 |
exit 1; \ |
|
| 79 |
fi |
|
| 80 |
|
|
| 81 |
html-local: $(DOC_PNG_IMAGES) references.dox |
|
| 70 | 82 |
if test ${doxygen_found} = yes; then \
|
| 71 | 83 |
cd doc; \ |
| 72 | 84 |
doxygen Doxyfile; \ |
| 73 | 85 |
cd ..; \ |
| 74 | 86 |
else \ |
| 75 | 87 |
echo; \ |
| 76 | 88 |
echo "Doxygen not found."; \ |
| 77 | 89 |
echo; \ |
| 78 | 90 |
exit 1; \ |
| 79 | 91 |
fi |
| 80 | 92 |
|
| 81 | 93 |
clean-local: |
| 82 | 94 |
-rm -rf doc/html |
| 83 | 95 |
-rm -f doc/doxygen.log |
| 84 | 96 |
-rm -f $(DOC_PNG_IMAGES) |
| 85 | 97 |
-rm -rf doc/gen-images |
| 86 | 98 |
|
| 87 | 99 |
update-external-tags: |
| 88 | 100 |
wget -O doc/libstdc++.tag.tmp http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/libstdc++.tag && \ |
| 89 | 101 |
mv doc/libstdc++.tag.tmp doc/libstdc++.tag || \ |
| 90 | 102 |
rm doc/libstdc++.tag.tmp |
| 91 | 103 |
|
| 92 | 104 |
install-html-local: doc/html |
| 93 | 105 |
@$(NORMAL_INSTALL) |
| 94 | 106 |
$(mkinstalldirs) $(DESTDIR)$(htmldir)/html |
| 95 | 107 |
for p in doc/html/*.{html,css,png,map,gif,tag} ; do \
|
| 96 | 108 |
f="`echo $$p | sed -e 's|^.*/||'`"; \ |
| 97 | 109 |
echo " $(INSTALL_DATA) $$p $(DESTDIR)$(htmldir)/html/$$f"; \ |
| 98 | 110 |
$(INSTALL_DATA) $$p $(DESTDIR)$(htmldir)/html/$$f; \ |
| 99 | 111 |
done |
| 100 | 112 |
|
| 101 | 113 |
uninstall-local: |
| 102 | 114 |
@$(NORMAL_UNINSTALL) |
| 103 | 115 |
for p in doc/html/*.{html,css,png,map,gif,tag} ; do \
|
| 104 | 116 |
f="`echo $$p | sed -e 's|^.*/||'`"; \ |
| 105 | 117 |
echo " rm -f $(DESTDIR)$(htmldir)/html/$$f"; \ |
| 106 | 118 |
rm -f $(DESTDIR)$(htmldir)/html/$$f; \ |
| 107 | 119 |
done |
| 108 | 120 |
|
| 109 | 121 |
.PHONY: update-external-tags |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
namespace lemon {
|
| 20 | 20 |
|
| 21 | 21 |
/** |
| 22 | 22 |
@defgroup datas Data Structures |
| 23 | 23 |
This group contains the several data structures implemented in LEMON. |
| 24 | 24 |
*/ |
| 25 | 25 |
|
| 26 | 26 |
/** |
| 27 | 27 |
@defgroup graphs Graph Structures |
| 28 | 28 |
@ingroup datas |
| 29 | 29 |
\brief Graph structures implemented in LEMON. |
| 30 | 30 |
|
| 31 | 31 |
The implementation of combinatorial algorithms heavily relies on |
| 32 | 32 |
efficient graph implementations. LEMON offers data structures which are |
| 33 | 33 |
planned to be easily used in an experimental phase of implementation studies, |
| 34 | 34 |
and thereafter the program code can be made efficient by small modifications. |
| 35 | 35 |
|
| 36 | 36 |
The most efficient implementation of diverse applications require the |
| 37 | 37 |
usage of different physical graph implementations. These differences |
| 38 | 38 |
appear in the size of graph we require to handle, memory or time usage |
| 39 | 39 |
limitations or in the set of operations through which the graph can be |
| 40 | 40 |
accessed. LEMON provides several physical graph structures to meet |
| 41 | 41 |
the diverging requirements of the possible users. In order to save on |
| 42 | 42 |
running time or on memory usage, some structures may fail to provide |
| 43 | 43 |
some graph features like arc/edge or node deletion. |
| 44 | 44 |
|
| 45 | 45 |
Alteration of standard containers need a very limited number of |
| 46 | 46 |
operations, these together satisfy the everyday requirements. |
| 47 | 47 |
In the case of graph structures, different operations are needed which do |
| 48 | 48 |
not alter the physical graph, but gives another view. If some nodes or |
| 49 | 49 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
| 50 | 50 |
this is the case. It also may happen that in a flow implementation |
| 51 | 51 |
the residual graph can be accessed by another algorithm, or a node-set |
| 52 | 52 |
is to be shrunk for another algorithm. |
| 53 | 53 |
LEMON also provides a variety of graphs for these requirements called |
| 54 | 54 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
| 55 | 55 |
in conjunction with other graph representations. |
| 56 | 56 |
|
| 57 | 57 |
You are free to use the graph structure that fit your requirements |
| 58 | 58 |
the best, most graph algorithms and auxiliary data structures can be used |
| 59 | 59 |
with any graph structure. |
| 60 | 60 |
|
| 61 | 61 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
| 62 | 62 |
*/ |
| 63 | 63 |
|
| 64 | 64 |
/** |
| 65 | 65 |
@defgroup graph_adaptors Adaptor Classes for Graphs |
| 66 | 66 |
@ingroup graphs |
| 67 | 67 |
\brief Adaptor classes for digraphs and graphs |
| 68 | 68 |
|
| 69 | 69 |
This group contains several useful adaptor classes for digraphs and graphs. |
| 70 | 70 |
|
| 71 | 71 |
The main parts of LEMON are the different graph structures, generic |
| 72 | 72 |
graph algorithms, graph concepts, which couple them, and graph |
| 73 | 73 |
adaptors. While the previous notions are more or less clear, the |
| 74 | 74 |
latter one needs further explanation. Graph adaptors are graph classes |
| 75 | 75 |
which serve for considering graph structures in different ways. |
| 76 | 76 |
|
| 77 | 77 |
A short example makes this much clearer. Suppose that we have an |
| 78 | 78 |
instance \c g of a directed graph type, say ListDigraph and an algorithm |
| 79 | 79 |
\code |
| 80 | 80 |
template <typename Digraph> |
| 81 | 81 |
int algorithm(const Digraph&); |
| 82 | 82 |
\endcode |
| 83 | 83 |
is needed to run on the reverse oriented graph. It may be expensive |
| 84 | 84 |
(in time or in memory usage) to copy \c g with the reversed |
| 85 | 85 |
arcs. In this case, an adaptor class is used, which (according |
| 86 | 86 |
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph. |
| 87 | 87 |
The adaptor uses the original digraph structure and digraph operations when |
| 88 | 88 |
methods of the reversed oriented graph are called. This means that the adaptor |
| 89 | 89 |
have minor memory usage, and do not perform sophisticated algorithmic |
| 90 | 90 |
actions. The purpose of it is to give a tool for the cases when a |
| 91 | 91 |
graph have to be used in a specific alteration. If this alteration is |
| 92 | 92 |
obtained by a usual construction like filtering the node or the arc set or |
| 93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
| 94 | 94 |
To come back to the reverse oriented graph, in this situation |
| 95 | 95 |
\code |
| 96 | 96 |
template<typename Digraph> class ReverseDigraph; |
| 97 | 97 |
\endcode |
| 98 | 98 |
template class can be used. The code looks as follows |
| 99 | 99 |
\code |
| 100 | 100 |
ListDigraph g; |
| 101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
| 102 | 102 |
int result = algorithm(rg); |
| 103 | 103 |
\endcode |
| 104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
| 105 | 105 |
This techniques give rise to an elegant code, and based on stable |
| 106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
| 107 | 107 |
|
| 108 | 108 |
In flow, circulation and matching problems, the residual |
| 109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
| 110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
| 111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
| 112 | 112 |
obtained. For other examples, the interested user is referred to the |
| 113 | 113 |
detailed documentation of particular adaptors. |
| 114 | 114 |
|
| 115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
| 116 | 116 |
capabilities of the original graph while in other cases this would be |
| 117 | 117 |
meaningless. This means that the concepts that they meet depend |
| 118 | 118 |
on the graph adaptor, and the wrapped graph. |
| 119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
| 120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
| 121 | 121 |
adaptor modifies the original digraph. |
| 122 | 122 |
However in case of a residual digraph, this operation has no sense. |
| 123 | 123 |
|
| 124 | 124 |
Let us stand one more example here to simplify your work. |
| 125 | 125 |
ReverseDigraph has constructor |
| 126 | 126 |
\code |
| 127 | 127 |
ReverseDigraph(Digraph& digraph); |
| 128 | 128 |
\endcode |
| 129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
| 130 | 130 |
reference to a graph is given, then it have to be instantiated with |
| 131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
| 132 | 132 |
\code |
| 133 | 133 |
int algorithm1(const ListDigraph& g) {
|
| 134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
| 135 | 135 |
return algorithm2(rg); |
| 136 | 136 |
} |
| 137 | 137 |
\endcode |
| 138 | 138 |
*/ |
| 139 | 139 |
|
| 140 | 140 |
/** |
| 141 | 141 |
@defgroup maps Maps |
| 142 | 142 |
@ingroup datas |
| 143 | 143 |
\brief Map structures implemented in LEMON. |
| 144 | 144 |
|
| 145 | 145 |
This group contains the map structures implemented in LEMON. |
| 146 | 146 |
|
| 147 | 147 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
| 148 | 148 |
new maps from existing ones. |
| 149 | 149 |
|
| 150 | 150 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
| 151 | 151 |
*/ |
| 152 | 152 |
|
| 153 | 153 |
/** |
| 154 | 154 |
@defgroup graph_maps Graph Maps |
| 155 | 155 |
@ingroup maps |
| 156 | 156 |
\brief Special graph-related maps. |
| 157 | 157 |
|
| 158 | 158 |
This group contains maps that are specifically designed to assign |
| 159 | 159 |
values to the nodes and arcs/edges of graphs. |
| 160 | 160 |
|
| 161 | 161 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
| 162 | 162 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
| 163 | 163 |
*/ |
| 164 | 164 |
|
| 165 | 165 |
/** |
| 166 | 166 |
\defgroup map_adaptors Map Adaptors |
| 167 | 167 |
\ingroup maps |
| 168 | 168 |
\brief Tools to create new maps from existing ones |
| 169 | 169 |
|
| 170 | 170 |
This group contains map adaptors that are used to create "implicit" |
| 171 | 171 |
maps from other maps. |
| 172 | 172 |
|
| 173 | 173 |
Most of them are \ref concepts::ReadMap "read-only maps". |
| 174 | 174 |
They can make arithmetic and logical operations between one or two maps |
| 175 | 175 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
| 176 | 176 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
| 177 | 177 |
|
| 178 | 178 |
The typical usage of this classes is passing implicit maps to |
| 179 | 179 |
algorithms. If a function type algorithm is called then the function |
| 180 | 180 |
type map adaptors can be used comfortable. For example let's see the |
| 181 | 181 |
usage of map adaptors with the \c graphToEps() function. |
| 182 | 182 |
\code |
| 183 | 183 |
Color nodeColor(int deg) {
|
| 184 | 184 |
if (deg >= 2) {
|
| 185 | 185 |
return Color(0.5, 0.0, 0.5); |
| 186 | 186 |
} else if (deg == 1) {
|
| 187 | 187 |
return Color(1.0, 0.5, 1.0); |
| 188 | 188 |
} else {
|
| 189 | 189 |
return Color(0.0, 0.0, 0.0); |
| 190 | 190 |
} |
| 191 | 191 |
} |
| 192 | 192 |
|
| 193 | 193 |
Digraph::NodeMap<int> degree_map(graph); |
| 194 | 194 |
|
| 195 | 195 |
graphToEps(graph, "graph.eps") |
| 196 | 196 |
.coords(coords).scaleToA4().undirected() |
| 197 | 197 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
| 198 | 198 |
.run(); |
| 199 | 199 |
\endcode |
| 200 | 200 |
The \c functorToMap() function makes an \c int to \c Color map from the |
| 201 | 201 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
| 202 | 202 |
and the previously created map. The composed map is a proper function to |
| 203 | 203 |
get the color of each node. |
| 204 | 204 |
|
| 205 | 205 |
The usage with class type algorithms is little bit harder. In this |
| 206 | 206 |
case the function type map adaptors can not be used, because the |
| 207 | 207 |
function map adaptors give back temporary objects. |
| 208 | 208 |
\code |
| 209 | 209 |
Digraph graph; |
| 210 | 210 |
|
| 211 | 211 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
| 212 | 212 |
DoubleArcMap length(graph); |
| 213 | 213 |
DoubleArcMap speed(graph); |
| 214 | 214 |
|
| 215 | 215 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
| 216 | 216 |
TimeMap time(length, speed); |
| 217 | 217 |
|
| 218 | 218 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
| 219 | 219 |
dijkstra.run(source, target); |
| 220 | 220 |
\endcode |
| 221 | 221 |
We have a length map and a maximum speed map on the arcs of a digraph. |
| 222 | 222 |
The minimum time to pass the arc can be calculated as the division of |
| 223 | 223 |
the two maps which can be done implicitly with the \c DivMap template |
| 224 | 224 |
class. We use the implicit minimum time map as the length map of the |
| 225 | 225 |
\c Dijkstra algorithm. |
| 226 | 226 |
*/ |
| 227 | 227 |
|
| 228 | 228 |
/** |
| 229 |
@defgroup matrices Matrices |
|
| 230 |
@ingroup datas |
|
| 231 |
\brief Two dimensional data storages implemented in LEMON. |
|
| 232 |
|
|
| 233 |
This group contains two dimensional data storages implemented in LEMON. |
|
| 234 |
*/ |
|
| 235 |
|
|
| 236 |
/** |
|
| 237 | 229 |
@defgroup paths Path Structures |
| 238 | 230 |
@ingroup datas |
| 239 | 231 |
\brief %Path structures implemented in LEMON. |
| 240 | 232 |
|
| 241 | 233 |
This group contains the path structures implemented in LEMON. |
| 242 | 234 |
|
| 243 | 235 |
LEMON provides flexible data structures to work with paths. |
| 244 | 236 |
All of them have similar interfaces and they can be copied easily with |
| 245 | 237 |
assignment operators and copy constructors. This makes it easy and |
| 246 | 238 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
| 247 | 239 |
any kind of path structure. |
| 248 | 240 |
|
| 249 |
\sa |
|
| 241 |
\sa \ref concepts::Path "Path concept" |
|
| 242 |
*/ |
|
| 243 |
|
|
| 244 |
/** |
|
| 245 |
@defgroup heaps Heap Structures |
|
| 246 |
@ingroup datas |
|
| 247 |
\brief %Heap structures implemented in LEMON. |
|
| 248 |
|
|
| 249 |
This group contains the heap structures implemented in LEMON. |
|
| 250 |
|
|
| 251 |
LEMON provides several heap classes. They are efficient implementations |
|
| 252 |
of the abstract data type \e priority \e queue. They store items with |
|
| 253 |
specified values called \e priorities in such a way that finding and |
|
| 254 |
removing the item with minimum priority are efficient. |
|
| 255 |
The basic operations are adding and erasing items, changing the priority |
|
| 256 |
of an item, etc. |
|
| 257 |
|
|
| 258 |
Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
|
| 259 |
The heap implementations have the same interface, thus any of them can be |
|
| 260 |
used easily in such algorithms. |
|
| 261 |
|
|
| 262 |
\sa \ref concepts::Heap "Heap concept" |
|
| 263 |
*/ |
|
| 264 |
|
|
| 265 |
/** |
|
| 266 |
@defgroup matrices Matrices |
|
| 267 |
@ingroup datas |
|
| 268 |
\brief Two dimensional data storages implemented in LEMON. |
|
| 269 |
|
|
| 270 |
This group contains two dimensional data storages implemented in LEMON. |
|
| 250 | 271 |
*/ |
| 251 | 272 |
|
| 252 | 273 |
/** |
| 253 | 274 |
@defgroup auxdat Auxiliary Data Structures |
| 254 | 275 |
@ingroup datas |
| 255 | 276 |
\brief Auxiliary data structures implemented in LEMON. |
| 256 | 277 |
|
| 257 | 278 |
This group contains some data structures implemented in LEMON in |
| 258 | 279 |
order to make it easier to implement combinatorial algorithms. |
| 259 | 280 |
*/ |
| 260 | 281 |
|
| 261 | 282 |
/** |
| 283 |
@defgroup geomdat Geometric Data Structures |
|
| 284 |
@ingroup auxdat |
|
| 285 |
\brief Geometric data structures implemented in LEMON. |
|
| 286 |
|
|
| 287 |
This group contains geometric data structures implemented in LEMON. |
|
| 288 |
|
|
| 289 |
- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional |
|
| 290 |
vector with the usual operations. |
|
| 291 |
- \ref lemon::dim2::Box "dim2::Box" can be used to determine the |
|
| 292 |
rectangular bounding box of a set of \ref lemon::dim2::Point |
|
| 293 |
"dim2::Point"'s. |
|
| 294 |
*/ |
|
| 295 |
|
|
| 296 |
/** |
|
| 297 |
@defgroup matrices Matrices |
|
| 298 |
@ingroup auxdat |
|
| 299 |
\brief Two dimensional data storages implemented in LEMON. |
|
| 300 |
|
|
| 301 |
This group contains two dimensional data storages implemented in LEMON. |
|
| 302 |
*/ |
|
| 303 |
|
|
| 304 |
/** |
|
| 262 | 305 |
@defgroup algs Algorithms |
| 263 | 306 |
\brief This group contains the several algorithms |
| 264 | 307 |
implemented in LEMON. |
| 265 | 308 |
|
| 266 | 309 |
This group contains the several algorithms |
| 267 | 310 |
implemented in LEMON. |
| 268 | 311 |
*/ |
| 269 | 312 |
|
| 270 | 313 |
/** |
| 271 | 314 |
@defgroup search Graph Search |
| 272 | 315 |
@ingroup algs |
| 273 | 316 |
\brief Common graph search algorithms. |
| 274 | 317 |
|
| 275 | 318 |
This group contains the common graph search algorithms, namely |
| 276 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS) |
|
| 319 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS) |
|
| 320 |
\ref clrs01algorithms. |
|
| 277 | 321 |
*/ |
| 278 | 322 |
|
| 279 | 323 |
/** |
| 280 | 324 |
@defgroup shortest_path Shortest Path Algorithms |
| 281 | 325 |
@ingroup algs |
| 282 | 326 |
\brief Algorithms for finding shortest paths. |
| 283 | 327 |
|
| 284 |
This group contains the algorithms for finding shortest paths in digraphs |
|
| 328 |
This group contains the algorithms for finding shortest paths in digraphs |
|
| 329 |
\ref clrs01algorithms. |
|
| 285 | 330 |
|
| 286 | 331 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
| 287 | 332 |
when all arc lengths are non-negative. |
| 288 | 333 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
| 289 | 334 |
from a source node when arc lenghts can be either positive or negative, |
| 290 | 335 |
but the digraph should not contain directed cycles with negative total |
| 291 | 336 |
length. |
| 292 | 337 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
| 293 | 338 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
| 294 | 339 |
lenghts can be either positive or negative, but the digraph should |
| 295 | 340 |
not contain directed cycles with negative total length. |
| 296 | 341 |
- \ref Suurballe A successive shortest path algorithm for finding |
| 297 | 342 |
arc-disjoint paths between two nodes having minimum total length. |
| 298 | 343 |
*/ |
| 299 | 344 |
|
| 300 | 345 |
/** |
| 346 |
@defgroup spantree Minimum Spanning Tree Algorithms |
|
| 347 |
@ingroup algs |
|
| 348 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
|
| 349 |
|
|
| 350 |
This group contains the algorithms for finding minimum cost spanning |
|
| 351 |
trees and arborescences \ref clrs01algorithms. |
|
| 352 |
*/ |
|
| 353 |
|
|
| 354 |
/** |
|
| 301 | 355 |
@defgroup max_flow Maximum Flow Algorithms |
| 302 | 356 |
@ingroup algs |
| 303 | 357 |
\brief Algorithms for finding maximum flows. |
| 304 | 358 |
|
| 305 | 359 |
This group contains the algorithms for finding maximum flows and |
| 306 |
feasible circulations. |
|
| 360 |
feasible circulations \ref clrs01algorithms, \ref amo93networkflows. |
|
| 307 | 361 |
|
| 308 | 362 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
| 309 | 363 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
| 310 | 364 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
|
| 311 | 365 |
\f$s, t \in V\f$ source and target nodes. |
| 312 | 366 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
|
| 313 | 367 |
following optimization problem. |
| 314 | 368 |
|
| 315 | 369 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
|
| 316 | 370 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
|
| 317 | 371 |
\quad \forall u\in V\setminus\{s,t\} \f]
|
| 318 | 372 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
| 319 | 373 |
|
| 320 | 374 |
LEMON contains several algorithms for solving maximum flow problems: |
| 321 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
|
| 322 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
|
| 323 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
|
| 324 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
|
| 375 |
- \ref EdmondsKarp Edmonds-Karp algorithm |
|
| 376 |
\ref edmondskarp72theoretical. |
|
| 377 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm |
|
| 378 |
\ref goldberg88newapproach. |
|
| 379 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees |
|
| 380 |
\ref dinic70algorithm, \ref sleator83dynamic. |
|
| 381 |
- \ref GoldbergTarjan !Preflow push-relabel algorithm with dynamic trees |
|
| 382 |
\ref goldberg88newapproach, \ref sleator83dynamic. |
|
| 325 | 383 |
|
| 326 |
In most cases the \ref Preflow |
|
| 384 |
In most cases the \ref Preflow algorithm provides the |
|
| 327 | 385 |
fastest method for computing a maximum flow. All implementations |
| 328 | 386 |
also provide functions to query the minimum cut, which is the dual |
| 329 | 387 |
problem of maximum flow. |
| 330 | 388 |
|
| 331 | 389 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
| 332 | 390 |
for finding feasible circulations, which is a somewhat different problem, |
| 333 | 391 |
but it is strongly related to maximum flow. |
| 334 | 392 |
For more information, see \ref Circulation. |
| 335 | 393 |
*/ |
| 336 | 394 |
|
| 337 | 395 |
/** |
| 338 | 396 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
| 339 | 397 |
@ingroup algs |
| 340 | 398 |
|
| 341 | 399 |
\brief Algorithms for finding minimum cost flows and circulations. |
| 342 | 400 |
|
| 343 | 401 |
This group contains the algorithms for finding minimum cost flows and |
| 344 |
circulations. For more information about this problem and its dual |
|
| 345 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
|
| 402 |
circulations \ref amo93networkflows. For more information about this |
|
| 403 |
problem and its dual solution, see \ref min_cost_flow |
|
| 404 |
"Minimum Cost Flow Problem". |
|
| 346 | 405 |
|
| 347 | 406 |
LEMON contains several algorithms for this problem. |
| 348 | 407 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
| 349 |
pivot strategies. |
|
| 408 |
pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex. |
|
| 350 | 409 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
| 351 |
cost scaling |
|
| 410 |
cost scaling \ref goldberg90approximation, \ref goldberg97efficient, |
|
| 411 |
\ref bunnagel98efficient. |
|
| 352 | 412 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
| 353 |
capacity scaling. |
|
| 354 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
|
| 355 |
|
|
| 413 |
capacity scaling \ref edmondskarp72theoretical. |
|
| 414 |
- \ref CancelAndTighten The Cancel and Tighten algorithm |
|
| 415 |
\ref goldberg89cyclecanceling. |
|
| 416 |
- \ref CycleCanceling Cycle-Canceling algorithms |
|
| 417 |
\ref klein67primal, \ref goldberg89cyclecanceling. |
|
| 356 | 418 |
|
| 357 | 419 |
In general NetworkSimplex is the most efficient implementation, |
| 358 | 420 |
but in special cases other algorithms could be faster. |
| 359 | 421 |
For example, if the total supply and/or capacities are rather small, |
| 360 | 422 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
| 361 | 423 |
*/ |
| 362 | 424 |
|
| 363 | 425 |
/** |
| 364 | 426 |
@defgroup min_cut Minimum Cut Algorithms |
| 365 | 427 |
@ingroup algs |
| 366 | 428 |
|
| 367 | 429 |
\brief Algorithms for finding minimum cut in graphs. |
| 368 | 430 |
|
| 369 | 431 |
This group contains the algorithms for finding minimum cut in graphs. |
| 370 | 432 |
|
| 371 | 433 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
| 372 | 434 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
| 373 | 435 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
| 374 | 436 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
|
| 375 | 437 |
cut is the \f$X\f$ solution of the next optimization problem: |
| 376 | 438 |
|
| 377 | 439 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
|
| 378 |
\sum_{uv\in A
|
|
| 440 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
|
|
| 379 | 441 |
|
| 380 | 442 |
LEMON contains several algorithms related to minimum cut problems: |
| 381 | 443 |
|
| 382 | 444 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
| 383 | 445 |
in directed graphs. |
| 384 | 446 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
| 385 | 447 |
calculating minimum cut in undirected graphs. |
| 386 | 448 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
| 387 | 449 |
all-pairs minimum cut in undirected graphs. |
| 388 | 450 |
|
| 389 | 451 |
If you want to find minimum cut just between two distinict nodes, |
| 390 | 452 |
see the \ref max_flow "maximum flow problem". |
| 391 | 453 |
*/ |
| 392 | 454 |
|
| 393 | 455 |
/** |
| 394 | 456 |
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms |
| 395 | 457 |
@ingroup algs |
| 396 | 458 |
\brief Algorithms for finding minimum mean cycles. |
| 397 | 459 |
|
| 398 | 460 |
This group contains the algorithms for finding minimum mean cycles. |
| 399 | 461 |
|
| 400 | 462 |
The \e minimum \e mean \e cycle \e problem is to find a directed cycle |
| 401 | 463 |
of minimum mean length (cost) in a digraph. |
| 402 | 464 |
The mean length of a cycle is the average length of its arcs, i.e. the |
| 403 | 465 |
ratio between the total length of the cycle and the number of arcs on it. |
| 404 | 466 |
|
| 405 | 467 |
This problem has an important connection to \e conservative \e length |
| 406 | 468 |
\e functions, too. A length function on the arcs of a digraph is called |
| 407 | 469 |
conservative if and only if there is no directed cycle of negative total |
| 408 | 470 |
length. For an arbitrary length function, the negative of the minimum |
| 409 | 471 |
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the |
| 410 | 472 |
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length |
| 411 | 473 |
function. |
| 412 | 474 |
|
| 413 | 475 |
LEMON contains three algorithms for solving the minimum mean cycle problem: |
| 414 | 476 |
- \ref Karp "Karp"'s original algorithm. |
| 415 | 477 |
- \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved |
| 416 | 478 |
version of Karp's algorithm. |
| 417 | 479 |
- \ref Howard "Howard"'s policy iteration algorithm. |
| 418 | 480 |
|
| 419 | 481 |
In practice, the Howard algorithm proved to be by far the most efficient |
| 420 | 482 |
one, though the best known theoretical bound on its running time is |
| 421 | 483 |
exponential. |
| 422 | 484 |
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space |
| 423 | 485 |
O(n<sup>2</sup>+e), but the latter one is typically faster due to the |
| 424 | 486 |
applied early termination scheme. |
| 425 | 487 |
*/ |
| 426 | 488 |
|
| 427 | 489 |
/** |
| 428 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
| 429 |
@ingroup algs |
|
| 430 |
\brief Algorithms for discovering the graph properties |
|
| 431 |
|
|
| 432 |
This group contains the algorithms for discovering the graph properties |
|
| 433 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
| 434 |
|
|
| 435 |
\image html edge_biconnected_components.png |
|
| 436 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
|
| 437 |
*/ |
|
| 438 |
|
|
| 439 |
/** |
|
| 440 |
@defgroup planar Planarity Embedding and Drawing |
|
| 441 |
@ingroup algs |
|
| 442 |
\brief Algorithms for planarity checking, embedding and drawing |
|
| 443 |
|
|
| 444 |
This group contains the algorithms for planarity checking, |
|
| 445 |
embedding and drawing. |
|
| 446 |
|
|
| 447 |
\image html planar.png |
|
| 448 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
| 449 |
*/ |
|
| 450 |
|
|
| 451 |
/** |
|
| 452 | 490 |
@defgroup matching Matching Algorithms |
| 453 | 491 |
@ingroup algs |
| 454 | 492 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
| 455 | 493 |
|
| 456 | 494 |
This group contains the algorithms for calculating |
| 457 | 495 |
matchings in graphs and bipartite graphs. The general matching problem is |
| 458 | 496 |
finding a subset of the edges for which each node has at most one incident |
| 459 | 497 |
edge. |
| 460 | 498 |
|
| 461 | 499 |
There are several different algorithms for calculate matchings in |
| 462 | 500 |
graphs. The matching problems in bipartite graphs are generally |
| 463 | 501 |
easier than in general graphs. The goal of the matching optimization |
| 464 | 502 |
can be finding maximum cardinality, maximum weight or minimum cost |
| 465 | 503 |
matching. The search can be constrained to find perfect or |
| 466 | 504 |
maximum cardinality matching. |
| 467 | 505 |
|
| 468 | 506 |
The matching algorithms implemented in LEMON: |
| 469 | 507 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
| 470 | 508 |
for calculating maximum cardinality matching in bipartite graphs. |
| 471 | 509 |
- \ref PrBipartiteMatching Push-relabel algorithm |
| 472 | 510 |
for calculating maximum cardinality matching in bipartite graphs. |
| 473 | 511 |
- \ref MaxWeightedBipartiteMatching |
| 474 | 512 |
Successive shortest path algorithm for calculating maximum weighted |
| 475 | 513 |
matching and maximum weighted bipartite matching in bipartite graphs. |
| 476 | 514 |
- \ref MinCostMaxBipartiteMatching |
| 477 | 515 |
Successive shortest path algorithm for calculating minimum cost maximum |
| 478 | 516 |
matching in bipartite graphs. |
| 479 | 517 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
| 480 | 518 |
maximum cardinality matching in general graphs. |
| 481 | 519 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
| 482 | 520 |
maximum weighted matching in general graphs. |
| 483 | 521 |
- \ref MaxWeightedPerfectMatching |
| 484 | 522 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
| 485 | 523 |
perfect matching in general graphs. |
| 486 | 524 |
|
| 487 | 525 |
\image html bipartite_matching.png |
| 488 | 526 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
| 489 | 527 |
*/ |
| 490 | 528 |
|
| 491 | 529 |
/** |
| 492 |
@defgroup |
|
| 530 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
| 493 | 531 |
@ingroup algs |
| 494 |
\brief Algorithms for |
|
| 532 |
\brief Algorithms for discovering the graph properties |
|
| 495 | 533 |
|
| 496 |
This group contains the algorithms for finding minimum cost spanning |
|
| 497 |
trees and arborescences. |
|
| 534 |
This group contains the algorithms for discovering the graph properties |
|
| 535 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
| 536 |
|
|
| 537 |
\image html connected_components.png |
|
| 538 |
\image latex connected_components.eps "Connected components" width=\textwidth |
|
| 539 |
*/ |
|
| 540 |
|
|
| 541 |
/** |
|
| 542 |
@defgroup planar Planarity Embedding and Drawing |
|
| 543 |
@ingroup algs |
|
| 544 |
\brief Algorithms for planarity checking, embedding and drawing |
|
| 545 |
|
|
| 546 |
This group contains the algorithms for planarity checking, |
|
| 547 |
embedding and drawing. |
|
| 548 |
|
|
| 549 |
\image html planar.png |
|
| 550 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
| 551 |
*/ |
|
| 552 |
|
|
| 553 |
/** |
|
| 554 |
@defgroup approx Approximation Algorithms |
|
| 555 |
@ingroup algs |
|
| 556 |
\brief Approximation algorithms. |
|
| 557 |
|
|
| 558 |
This group contains the approximation and heuristic algorithms |
|
| 559 |
implemented in LEMON. |
|
| 498 | 560 |
*/ |
| 499 | 561 |
|
| 500 | 562 |
/** |
| 501 | 563 |
@defgroup auxalg Auxiliary Algorithms |
| 502 | 564 |
@ingroup algs |
| 503 | 565 |
\brief Auxiliary algorithms implemented in LEMON. |
| 504 | 566 |
|
| 505 | 567 |
This group contains some algorithms implemented in LEMON |
| 506 | 568 |
in order to make it easier to implement complex algorithms. |
| 507 | 569 |
*/ |
| 508 | 570 |
|
| 509 | 571 |
/** |
| 510 |
@defgroup approx Approximation Algorithms |
|
| 511 |
@ingroup algs |
|
| 512 |
\brief Approximation algorithms. |
|
| 513 |
|
|
| 514 |
This group contains the approximation and heuristic algorithms |
|
| 515 |
implemented in LEMON. |
|
| 516 |
*/ |
|
| 517 |
|
|
| 518 |
/** |
|
| 519 | 572 |
@defgroup gen_opt_group General Optimization Tools |
| 520 | 573 |
\brief This group contains some general optimization frameworks |
| 521 | 574 |
implemented in LEMON. |
| 522 | 575 |
|
| 523 | 576 |
This group contains some general optimization frameworks |
| 524 | 577 |
implemented in LEMON. |
| 525 | 578 |
*/ |
| 526 | 579 |
|
| 527 | 580 |
/** |
| 528 |
@defgroup lp_group |
|
| 581 |
@defgroup lp_group LP and MIP Solvers |
|
| 529 | 582 |
@ingroup gen_opt_group |
| 530 |
\brief |
|
| 583 |
\brief LP and MIP solver interfaces for LEMON. |
|
| 531 | 584 |
|
| 532 |
This group contains Lp and Mip solver interfaces for LEMON. The |
|
| 533 |
various LP solvers could be used in the same manner with this |
|
| 534 |
|
|
| 585 |
This group contains LP and MIP solver interfaces for LEMON. |
|
| 586 |
Various LP solvers could be used in the same manner with this |
|
| 587 |
high-level interface. |
|
| 588 |
|
|
| 589 |
The currently supported solvers are \ref glpk, \ref clp, \ref cbc, |
|
| 590 |
\ref cplex, \ref soplex. |
|
| 535 | 591 |
*/ |
| 536 | 592 |
|
| 537 | 593 |
/** |
| 538 | 594 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
| 539 | 595 |
@ingroup lp_group |
| 540 | 596 |
\brief Helper tools to the Lp and Mip solvers. |
| 541 | 597 |
|
| 542 | 598 |
This group adds some helper tools to general optimization framework |
| 543 | 599 |
implemented in LEMON. |
| 544 | 600 |
*/ |
| 545 | 601 |
|
| 546 | 602 |
/** |
| 547 | 603 |
@defgroup metah Metaheuristics |
| 548 | 604 |
@ingroup gen_opt_group |
| 549 | 605 |
\brief Metaheuristics for LEMON library. |
| 550 | 606 |
|
| 551 | 607 |
This group contains some metaheuristic optimization tools. |
| 552 | 608 |
*/ |
| 553 | 609 |
|
| 554 | 610 |
/** |
| 555 | 611 |
@defgroup utils Tools and Utilities |
| 556 | 612 |
\brief Tools and utilities for programming in LEMON |
| 557 | 613 |
|
| 558 | 614 |
Tools and utilities for programming in LEMON. |
| 559 | 615 |
*/ |
| 560 | 616 |
|
| 561 | 617 |
/** |
| 562 | 618 |
@defgroup gutils Basic Graph Utilities |
| 563 | 619 |
@ingroup utils |
| 564 | 620 |
\brief Simple basic graph utilities. |
| 565 | 621 |
|
| 566 | 622 |
This group contains some simple basic graph utilities. |
| 567 | 623 |
*/ |
| 568 | 624 |
|
| 569 | 625 |
/** |
| 570 | 626 |
@defgroup misc Miscellaneous Tools |
| 571 | 627 |
@ingroup utils |
| 572 | 628 |
\brief Tools for development, debugging and testing. |
| 573 | 629 |
|
| 574 | 630 |
This group contains several useful tools for development, |
| 575 | 631 |
debugging and testing. |
| 576 | 632 |
*/ |
| 577 | 633 |
|
| 578 | 634 |
/** |
| 579 | 635 |
@defgroup timecount Time Measuring and Counting |
| 580 | 636 |
@ingroup misc |
| 581 | 637 |
\brief Simple tools for measuring the performance of algorithms. |
| 582 | 638 |
|
| 583 | 639 |
This group contains simple tools for measuring the performance |
| 584 | 640 |
of algorithms. |
| 585 | 641 |
*/ |
| 586 | 642 |
|
| 587 | 643 |
/** |
| 588 | 644 |
@defgroup exceptions Exceptions |
| 589 | 645 |
@ingroup utils |
| 590 | 646 |
\brief Exceptions defined in LEMON. |
| 591 | 647 |
|
| 592 | 648 |
This group contains the exceptions defined in LEMON. |
| 593 | 649 |
*/ |
| 594 | 650 |
|
| 595 | 651 |
/** |
| 596 | 652 |
@defgroup io_group Input-Output |
| 597 | 653 |
\brief Graph Input-Output methods |
| 598 | 654 |
|
| 599 | 655 |
This group contains the tools for importing and exporting graphs |
| 600 | 656 |
and graph related data. Now it supports the \ref lgf-format |
| 601 | 657 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
| 602 | 658 |
postscript (EPS) format. |
| 603 | 659 |
*/ |
| 604 | 660 |
|
| 605 | 661 |
/** |
| 606 | 662 |
@defgroup lemon_io LEMON Graph Format |
| 607 | 663 |
@ingroup io_group |
| 608 | 664 |
\brief Reading and writing LEMON Graph Format. |
| 609 | 665 |
|
| 610 | 666 |
This group contains methods for reading and writing |
| 611 | 667 |
\ref lgf-format "LEMON Graph Format". |
| 612 | 668 |
*/ |
| 613 | 669 |
|
| 614 | 670 |
/** |
| 615 | 671 |
@defgroup eps_io Postscript Exporting |
| 616 | 672 |
@ingroup io_group |
| 617 | 673 |
\brief General \c EPS drawer and graph exporter |
| 618 | 674 |
|
| 619 | 675 |
This group contains general \c EPS drawing methods and special |
| 620 | 676 |
graph exporting tools. |
| 621 | 677 |
*/ |
| 622 | 678 |
|
| 623 | 679 |
/** |
| 624 |
@defgroup dimacs_group DIMACS |
|
| 680 |
@defgroup dimacs_group DIMACS Format |
|
| 625 | 681 |
@ingroup io_group |
| 626 | 682 |
\brief Read and write files in DIMACS format |
| 627 | 683 |
|
| 628 | 684 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
| 629 | 685 |
*/ |
| 630 | 686 |
|
| 631 | 687 |
/** |
| 632 | 688 |
@defgroup nauty_group NAUTY Format |
| 633 | 689 |
@ingroup io_group |
| 634 | 690 |
\brief Read \e Nauty format |
| 635 | 691 |
|
| 636 | 692 |
Tool to read graphs from \e Nauty format data. |
| 637 | 693 |
*/ |
| 638 | 694 |
|
| 639 | 695 |
/** |
| 640 | 696 |
@defgroup concept Concepts |
| 641 | 697 |
\brief Skeleton classes and concept checking classes |
| 642 | 698 |
|
| 643 | 699 |
This group contains the data/algorithm skeletons and concept checking |
| 644 | 700 |
classes implemented in LEMON. |
| 645 | 701 |
|
| 646 | 702 |
The purpose of the classes in this group is fourfold. |
| 647 | 703 |
|
| 648 | 704 |
- These classes contain the documentations of the %concepts. In order |
| 649 | 705 |
to avoid document multiplications, an implementation of a concept |
| 650 | 706 |
simply refers to the corresponding concept class. |
| 651 | 707 |
|
| 652 | 708 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
| 653 | 709 |
implementation of the %concepts should provide, however completely |
| 654 | 710 |
without implementations and real data structures behind the |
| 655 | 711 |
interface. On the other hand they should provide nothing else. All |
| 656 | 712 |
the algorithms working on a data structure meeting a certain concept |
| 657 | 713 |
should compile with these classes. (Though it will not run properly, |
| 658 | 714 |
of course.) In this way it is easily to check if an algorithm |
| 659 | 715 |
doesn't use any extra feature of a certain implementation. |
| 660 | 716 |
|
| 661 | 717 |
- The concept descriptor classes also provide a <em>checker class</em> |
| 662 | 718 |
that makes it possible to check whether a certain implementation of a |
| 663 | 719 |
concept indeed provides all the required features. |
| 664 | 720 |
|
| 665 | 721 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
| 666 | 722 |
*/ |
| 667 | 723 |
|
| 668 | 724 |
/** |
| 669 | 725 |
@defgroup graph_concepts Graph Structure Concepts |
| 670 | 726 |
@ingroup concept |
| 671 | 727 |
\brief Skeleton and concept checking classes for graph structures |
| 672 | 728 |
|
| 673 |
This group contains the skeletons and concept checking classes of LEMON's |
|
| 674 |
graph structures and helper classes used to implement these. |
|
| 729 |
This group contains the skeletons and concept checking classes of |
|
| 730 |
graph structures. |
|
| 675 | 731 |
*/ |
| 676 | 732 |
|
| 677 | 733 |
/** |
| 678 | 734 |
@defgroup map_concepts Map Concepts |
| 679 | 735 |
@ingroup concept |
| 680 | 736 |
\brief Skeleton and concept checking classes for maps |
| 681 | 737 |
|
| 682 | 738 |
This group contains the skeletons and concept checking classes of maps. |
| 683 | 739 |
*/ |
| 684 | 740 |
|
| 685 | 741 |
/** |
| 742 |
@defgroup tools Standalone Utility Applications |
|
| 743 |
|
|
| 744 |
Some utility applications are listed here. |
|
| 745 |
|
|
| 746 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
| 747 |
them, as well. |
|
| 748 |
*/ |
|
| 749 |
|
|
| 750 |
/** |
|
| 686 | 751 |
\anchor demoprograms |
| 687 | 752 |
|
| 688 | 753 |
@defgroup demos Demo Programs |
| 689 | 754 |
|
| 690 | 755 |
Some demo programs are listed here. Their full source codes can be found in |
| 691 | 756 |
the \c demo subdirectory of the source tree. |
| 692 | 757 |
|
| 693 | 758 |
In order to compile them, use the <tt>make demo</tt> or the |
| 694 | 759 |
<tt>make check</tt> commands. |
| 695 | 760 |
*/ |
| 696 | 761 |
|
| 697 |
/** |
|
| 698 |
@defgroup tools Standalone Utility Applications |
|
| 699 |
|
|
| 700 |
Some utility applications are listed here. |
|
| 701 |
|
|
| 702 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
| 703 |
them, as well. |
|
| 704 |
*/ |
|
| 705 |
|
|
| 706 | 762 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
/** |
| 20 | 20 |
\mainpage LEMON Documentation |
| 21 | 21 |
|
| 22 | 22 |
\section intro Introduction |
| 23 | 23 |
|
| 24 |
\subsection whatis What is LEMON |
|
| 25 |
|
|
| 26 |
LEMON stands for <b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling |
|
| 27 |
and <b>O</b>ptimization in <b>N</b>etworks. |
|
| 28 |
It is a C++ template |
|
| 29 |
library aimed at combinatorial optimization tasks which |
|
| 30 |
often involve in working |
|
| 31 |
with graphs. |
|
| 24 |
<b>LEMON</b> stands for <i><b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling |
|
| 25 |
and <b>O</b>ptimization in <b>N</b>etworks</i>. |
|
| 26 |
It is a C++ template library providing efficient implementation of common |
|
| 27 |
data structures and algorithms with focus on combinatorial optimization |
|
| 28 |
problems in graphs and networks. |
|
| 32 | 29 |
|
| 33 | 30 |
<b> |
| 34 | 31 |
LEMON is an <a class="el" href="http://opensource.org/">open source</a> |
| 35 | 32 |
project. |
| 36 | 33 |
You are free to use it in your commercial or |
| 37 | 34 |
non-commercial applications under very permissive |
| 38 | 35 |
\ref license "license terms". |
| 39 | 36 |
</b> |
| 40 | 37 |
|
| 41 |
|
|
| 38 |
The project is maintained by the |
|
| 39 |
<a href="http://www.cs.elte.hu/egres/">Egerváry Research Group on |
|
| 40 |
Combinatorial Optimization</a> \ref egres |
|
| 41 |
at the Operations Research Department of the |
|
| 42 |
<a href="http://www.elte.hu/">Eötvös Loránd University, |
|
| 43 |
Budapest</a>, Hungary. |
|
| 44 |
LEMON is also a member of the <a href="http://www.coin-or.org/">COIN-OR</a> |
|
| 45 |
initiative \ref coinor. |
|
| 46 |
|
|
| 47 |
\section howtoread How to Read the Documentation |
|
| 42 | 48 |
|
| 43 | 49 |
If you would like to get to know the library, see |
| 44 | 50 |
<a class="el" href="http://lemon.cs.elte.hu/pub/tutorial/">LEMON Tutorial</a>. |
| 45 | 51 |
|
| 46 | 52 |
If you know what you are looking for, then try to find it under the |
| 47 | 53 |
<a class="el" href="modules.html">Modules</a> section. |
| 48 | 54 |
|
| 49 | 55 |
If you are a user of the old (0.x) series of LEMON, please check out the |
| 50 | 56 |
\ref migration "Migration Guide" for the backward incompatibilities. |
| 51 | 57 |
*/ |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
namespace lemon {
|
| 20 | 20 |
|
| 21 | 21 |
/** |
| 22 | 22 |
\page min_cost_flow Minimum Cost Flow Problem |
| 23 | 23 |
|
| 24 | 24 |
\section mcf_def Definition (GEQ form) |
| 25 | 25 |
|
| 26 | 26 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
| 27 | 27 |
minimum total cost from a set of supply nodes to a set of demand nodes |
| 28 | 28 |
in a network with capacity constraints (lower and upper bounds) |
| 29 |
and arc costs. |
|
| 29 |
and arc costs \ref amo93networkflows. |
|
| 30 | 30 |
|
| 31 | 31 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
|
| 32 | 32 |
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and
|
| 33 | 33 |
upper bounds for the flow values on the arcs, for which |
| 34 | 34 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
| 35 | 35 |
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow
|
| 36 | 36 |
on the arcs and \f$sup: V\rightarrow\mathbf{R}\f$ denotes the
|
| 37 | 37 |
signed supply values of the nodes. |
| 38 | 38 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
| 39 | 39 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
| 40 | 40 |
\f$-sup(u)\f$ demand. |
| 41 | 41 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{R}\f$ solution
|
| 42 | 42 |
of the following optimization problem. |
| 43 | 43 |
|
| 44 | 44 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
| 45 | 45 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
| 46 | 46 |
sup(u) \quad \forall u\in V \f] |
| 47 | 47 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
| 48 | 48 |
|
| 49 | 49 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
| 50 | 50 |
zero or negative in order to have a feasible solution (since the sum |
| 51 | 51 |
of the expressions on the left-hand side of the inequalities is zero). |
| 52 | 52 |
It means that the total demand must be greater or equal to the total |
| 53 | 53 |
supply and all the supplies have to be carried out from the supply nodes, |
| 54 | 54 |
but there could be demands that are not satisfied. |
| 55 | 55 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
|
| 56 | 56 |
constraints have to be satisfied with equality, i.e. all demands |
| 57 | 57 |
have to be satisfied and all supplies have to be used. |
| 58 | 58 |
|
| 59 | 59 |
|
| 60 | 60 |
\section mcf_algs Algorithms |
| 61 | 61 |
|
| 62 | 62 |
LEMON contains several algorithms for solving this problem, for more |
| 63 | 63 |
information see \ref min_cost_flow_algs "Minimum Cost Flow Algorithms". |
| 64 | 64 |
|
| 65 | 65 |
A feasible solution for this problem can be found using \ref Circulation. |
| 66 | 66 |
|
| 67 | 67 |
|
| 68 | 68 |
\section mcf_dual Dual Solution |
| 69 | 69 |
|
| 70 | 70 |
The dual solution of the minimum cost flow problem is represented by |
| 71 | 71 |
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$.
|
| 72 | 72 |
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal
|
| 73 | 73 |
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials
|
| 74 | 74 |
the following \e complementary \e slackness optimality conditions hold. |
| 75 | 75 |
|
| 76 | 76 |
- For all \f$uv\in A\f$ arcs: |
| 77 | 77 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
| 78 | 78 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
| 79 | 79 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
| 80 | 80 |
- For all \f$u\in V\f$ nodes: |
| 81 | 81 |
- \f$\pi(u)<=0\f$; |
| 82 | 82 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
| 83 | 83 |
then \f$\pi(u)=0\f$. |
| 84 | 84 |
|
| 85 | 85 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
| 86 | 86 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
| 87 | 87 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
| 88 | 88 |
|
| 89 | 89 |
All algorithms provide dual solution (node potentials), as well, |
| 90 | 90 |
if an optimal flow is found. |
| 91 | 91 |
|
| 92 | 92 |
|
| 93 | 93 |
\section mcf_eq Equality Form |
| 94 | 94 |
|
| 95 | 95 |
The above \ref mcf_def "definition" is actually more general than the |
| 96 | 96 |
usual formulation of the minimum cost flow problem, in which strict |
| 97 | 97 |
equalities are required in the supply/demand contraints. |
| 98 | 98 |
|
| 99 | 99 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
| 100 | 100 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) =
|
| 101 | 101 |
sup(u) \quad \forall u\in V \f] |
| 102 | 102 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
| 103 | 103 |
|
| 104 | 104 |
However if the sum of the supply values is zero, then these two problems |
| 105 | 105 |
are equivalent. |
| 106 | 106 |
The \ref min_cost_flow_algs "algorithms" in LEMON support the general |
| 107 | 107 |
form, so if you need the equality form, you have to ensure this additional |
| 108 | 108 |
contraint manually. |
| 109 | 109 |
|
| 110 | 110 |
|
| 111 | 111 |
\section mcf_leq Opposite Inequalites (LEQ Form) |
| 112 | 112 |
|
| 113 | 113 |
Another possible definition of the minimum cost flow problem is |
| 114 | 114 |
when there are <em>"less or equal"</em> (LEQ) supply/demand constraints, |
| 115 | 115 |
instead of the <em>"greater or equal"</em> (GEQ) constraints. |
| 116 | 116 |
|
| 117 | 117 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
| 118 | 118 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
|
| 119 | 119 |
sup(u) \quad \forall u\in V \f] |
| 120 | 120 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
| 121 | 121 |
|
| 122 | 122 |
It means that the total demand must be less or equal to the |
| 123 | 123 |
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
| 124 | 124 |
positive) and all the demands have to be satisfied, but there |
| 125 | 125 |
could be supplies that are not carried out from the supply |
| 126 | 126 |
nodes. |
| 127 | 127 |
The equality form is also a special case of this form, of course. |
| 128 | 128 |
|
| 129 | 129 |
You could easily transform this case to the \ref mcf_def "GEQ form" |
| 130 | 130 |
of the problem by reversing the direction of the arcs and taking the |
| 131 | 131 |
negative of the supply values (e.g. using \ref ReverseDigraph and |
| 132 | 132 |
\ref NegMap adaptors). |
| 133 | 133 |
However \ref NetworkSimplex algorithm also supports this form directly |
| 134 | 134 |
for the sake of convenience. |
| 135 | 135 |
|
| 136 | 136 |
Note that the optimality conditions for this supply constraint type are |
| 137 | 137 |
slightly differ from the conditions that are discussed for the GEQ form, |
| 138 | 138 |
namely the potentials have to be non-negative instead of non-positive. |
| 139 | 139 |
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem
|
| 140 | 140 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$
|
| 141 | 141 |
node potentials the following conditions hold. |
| 142 | 142 |
|
| 143 | 143 |
- For all \f$uv\in A\f$ arcs: |
| 144 | 144 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
| 145 | 145 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
| 146 | 146 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
| 147 | 147 |
- For all \f$u\in V\f$ nodes: |
| 148 | 148 |
- \f$\pi(u)>=0\f$; |
| 149 | 149 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
| 150 | 150 |
then \f$\pi(u)=0\f$. |
| 151 | 151 |
|
| 152 | 152 |
*/ |
| 153 | 153 |
} |
| 1 | 1 |
EXTRA_DIST += \ |
| 2 | 2 |
lemon/lemon.pc.in \ |
| 3 | 3 |
lemon/CMakeLists.txt \ |
| 4 | 4 |
lemon/config.h.cmake |
| 5 | 5 |
|
| 6 | 6 |
pkgconfig_DATA += lemon/lemon.pc |
| 7 | 7 |
|
| 8 | 8 |
lib_LTLIBRARIES += lemon/libemon.la |
| 9 | 9 |
|
| 10 | 10 |
lemon_libemon_la_SOURCES = \ |
| 11 | 11 |
lemon/arg_parser.cc \ |
| 12 | 12 |
lemon/base.cc \ |
| 13 | 13 |
lemon/color.cc \ |
| 14 | 14 |
lemon/lp_base.cc \ |
| 15 | 15 |
lemon/lp_skeleton.cc \ |
| 16 | 16 |
lemon/random.cc \ |
| 17 | 17 |
lemon/bits/windows.cc |
| 18 | 18 |
|
| 19 | 19 |
nodist_lemon_HEADERS = lemon/config.h |
| 20 | 20 |
|
| 21 | 21 |
lemon_libemon_la_CXXFLAGS = \ |
| 22 | 22 |
$(AM_CXXFLAGS) \ |
| 23 | 23 |
$(GLPK_CFLAGS) \ |
| 24 | 24 |
$(CPLEX_CFLAGS) \ |
| 25 | 25 |
$(SOPLEX_CXXFLAGS) \ |
| 26 | 26 |
$(CLP_CXXFLAGS) \ |
| 27 | 27 |
$(CBC_CXXFLAGS) |
| 28 | 28 |
|
| 29 | 29 |
lemon_libemon_la_LDFLAGS = \ |
| 30 | 30 |
$(GLPK_LIBS) \ |
| 31 | 31 |
$(CPLEX_LIBS) \ |
| 32 | 32 |
$(SOPLEX_LIBS) \ |
| 33 | 33 |
$(CLP_LIBS) \ |
| 34 | 34 |
$(CBC_LIBS) |
| 35 | 35 |
|
| 36 | 36 |
if HAVE_GLPK |
| 37 | 37 |
lemon_libemon_la_SOURCES += lemon/glpk.cc |
| 38 | 38 |
endif |
| 39 | 39 |
|
| 40 | 40 |
if HAVE_CPLEX |
| 41 | 41 |
lemon_libemon_la_SOURCES += lemon/cplex.cc |
| 42 | 42 |
endif |
| 43 | 43 |
|
| 44 | 44 |
if HAVE_SOPLEX |
| 45 | 45 |
lemon_libemon_la_SOURCES += lemon/soplex.cc |
| 46 | 46 |
endif |
| 47 | 47 |
|
| 48 | 48 |
if HAVE_CLP |
| 49 | 49 |
lemon_libemon_la_SOURCES += lemon/clp.cc |
| 50 | 50 |
endif |
| 51 | 51 |
|
| 52 | 52 |
if HAVE_CBC |
| 53 | 53 |
lemon_libemon_la_SOURCES += lemon/cbc.cc |
| 54 | 54 |
endif |
| 55 | 55 |
|
| 56 | 56 |
lemon_HEADERS += \ |
| 57 | 57 |
lemon/adaptors.h \ |
| 58 | 58 |
lemon/arg_parser.h \ |
| 59 | 59 |
lemon/assert.h \ |
| 60 |
lemon/bellman_ford.h \ |
|
| 60 | 61 |
lemon/bfs.h \ |
| 61 | 62 |
lemon/bin_heap.h \ |
| 63 |
lemon/binom_heap.h \ |
|
| 62 | 64 |
lemon/bucket_heap.h \ |
| 63 | 65 |
lemon/cbc.h \ |
| 64 | 66 |
lemon/circulation.h \ |
| 65 | 67 |
lemon/clp.h \ |
| 66 | 68 |
lemon/color.h \ |
| 67 | 69 |
lemon/concept_check.h \ |
| 68 | 70 |
lemon/connectivity.h \ |
| 69 | 71 |
lemon/counter.h \ |
| 70 | 72 |
lemon/core.h \ |
| 71 | 73 |
lemon/cplex.h \ |
| 72 | 74 |
lemon/dfs.h \ |
| 73 | 75 |
lemon/dijkstra.h \ |
| 74 | 76 |
lemon/dim2.h \ |
| 75 | 77 |
lemon/dimacs.h \ |
| 76 | 78 |
lemon/edge_set.h \ |
| 77 | 79 |
lemon/elevator.h \ |
| 78 | 80 |
lemon/error.h \ |
| 79 | 81 |
lemon/euler.h \ |
| 80 | 82 |
lemon/fib_heap.h \ |
| 83 |
lemon/fourary_heap.h \ |
|
| 81 | 84 |
lemon/full_graph.h \ |
| 82 | 85 |
lemon/glpk.h \ |
| 83 | 86 |
lemon/gomory_hu.h \ |
| 84 | 87 |
lemon/graph_to_eps.h \ |
| 85 | 88 |
lemon/grid_graph.h \ |
| 86 | 89 |
lemon/hartmann_orlin.h \ |
| 87 | 90 |
lemon/howard.h \ |
| 88 | 91 |
lemon/hypercube_graph.h \ |
| 89 | 92 |
lemon/karp.h \ |
| 93 |
lemon/kary_heap.h \ |
|
| 90 | 94 |
lemon/kruskal.h \ |
| 91 | 95 |
lemon/hao_orlin.h \ |
| 92 | 96 |
lemon/lgf_reader.h \ |
| 93 | 97 |
lemon/lgf_writer.h \ |
| 94 | 98 |
lemon/list_graph.h \ |
| 95 | 99 |
lemon/lp.h \ |
| 96 | 100 |
lemon/lp_base.h \ |
| 97 | 101 |
lemon/lp_skeleton.h \ |
| 98 |
lemon/list_graph.h \ |
|
| 99 | 102 |
lemon/maps.h \ |
| 100 | 103 |
lemon/matching.h \ |
| 101 | 104 |
lemon/math.h \ |
| 102 | 105 |
lemon/min_cost_arborescence.h \ |
| 103 | 106 |
lemon/nauty_reader.h \ |
| 104 | 107 |
lemon/network_simplex.h \ |
| 108 |
lemon/pairing_heap.h \ |
|
| 105 | 109 |
lemon/path.h \ |
| 106 | 110 |
lemon/preflow.h \ |
| 107 | 111 |
lemon/radix_heap.h \ |
| 108 | 112 |
lemon/radix_sort.h \ |
| 109 | 113 |
lemon/random.h \ |
| 110 | 114 |
lemon/smart_graph.h \ |
| 111 | 115 |
lemon/soplex.h \ |
| 112 | 116 |
lemon/suurballe.h \ |
| 113 | 117 |
lemon/time_measure.h \ |
| 114 | 118 |
lemon/tolerance.h \ |
| 115 | 119 |
lemon/unionfind.h \ |
| 116 | 120 |
lemon/bits/windows.h |
| 117 | 121 |
|
| 118 | 122 |
bits_HEADERS += \ |
| 119 | 123 |
lemon/bits/alteration_notifier.h \ |
| 120 | 124 |
lemon/bits/array_map.h \ |
| 121 | 125 |
lemon/bits/bezier.h \ |
| 122 | 126 |
lemon/bits/default_map.h \ |
| 123 | 127 |
lemon/bits/edge_set_extender.h \ |
| 124 | 128 |
lemon/bits/enable_if.h \ |
| 125 | 129 |
lemon/bits/graph_adaptor_extender.h \ |
| 126 | 130 |
lemon/bits/graph_extender.h \ |
| 127 | 131 |
lemon/bits/map_extender.h \ |
| 128 | 132 |
lemon/bits/path_dump.h \ |
| 129 | 133 |
lemon/bits/solver_bits.h \ |
| 130 | 134 |
lemon/bits/traits.h \ |
| 131 | 135 |
lemon/bits/variant.h \ |
| 132 | 136 |
lemon/bits/vector_map.h |
| 133 | 137 |
|
| 134 | 138 |
concept_HEADERS += \ |
| 135 | 139 |
lemon/concepts/digraph.h \ |
| 136 | 140 |
lemon/concepts/graph.h \ |
| 137 | 141 |
lemon/concepts/graph_components.h \ |
| 138 | 142 |
lemon/concepts/heap.h \ |
| 139 | 143 |
lemon/concepts/maps.h \ |
| 140 | 144 |
lemon/concepts/path.h |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BFS_H |
| 20 | 20 |
#define LEMON_BFS_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup search |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief BFS algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
#include <lemon/path.h> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
///Default traits class of Bfs class. |
| 36 | 36 |
|
| 37 | 37 |
///Default traits class of Bfs class. |
| 38 | 38 |
///\tparam GR Digraph type. |
| 39 | 39 |
template<class GR> |
| 40 | 40 |
struct BfsDefaultTraits |
| 41 | 41 |
{
|
| 42 | 42 |
///The type of the digraph the algorithm runs on. |
| 43 | 43 |
typedef GR Digraph; |
| 44 | 44 |
|
| 45 | 45 |
///\brief The type of the map that stores the predecessor |
| 46 | 46 |
///arcs of the shortest paths. |
| 47 | 47 |
/// |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the shortest paths. |
| 50 |
///It must |
|
| 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \c PredMap. |
| 53 | 53 |
|
| 54 | 54 |
///This function instantiates a \ref PredMap. |
| 55 | 55 |
///\param g is the digraph, to which we would like to define the |
| 56 | 56 |
///\ref PredMap. |
| 57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
| 58 | 58 |
{
|
| 59 | 59 |
return new PredMap(g); |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 | 62 |
///The type of the map that indicates which nodes are processed. |
| 63 | 63 |
|
| 64 | 64 |
///The type of the map that indicates which nodes are processed. |
| 65 |
///It must |
|
| 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 66 |
///By default it is a NullMap. |
|
| 66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 67 | 68 |
///Instantiates a \c ProcessedMap. |
| 68 | 69 |
|
| 69 | 70 |
///This function instantiates a \ref ProcessedMap. |
| 70 | 71 |
///\param g is the digraph, to which |
| 71 | 72 |
///we would like to define the \ref ProcessedMap |
| 72 | 73 |
#ifdef DOXYGEN |
| 73 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 74 | 75 |
#else |
| 75 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 76 | 77 |
#endif |
| 77 | 78 |
{
|
| 78 | 79 |
return new ProcessedMap(); |
| 79 | 80 |
} |
| 80 | 81 |
|
| 81 | 82 |
///The type of the map that indicates which nodes are reached. |
| 82 | 83 |
|
| 83 | 84 |
///The type of the map that indicates which nodes are reached. |
| 84 |
///It must |
|
| 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 85 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 86 | 87 |
///Instantiates a \c ReachedMap. |
| 87 | 88 |
|
| 88 | 89 |
///This function instantiates a \ref ReachedMap. |
| 89 | 90 |
///\param g is the digraph, to which |
| 90 | 91 |
///we would like to define the \ref ReachedMap. |
| 91 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 92 | 93 |
{
|
| 93 | 94 |
return new ReachedMap(g); |
| 94 | 95 |
} |
| 95 | 96 |
|
| 96 | 97 |
///The type of the map that stores the distances of the nodes. |
| 97 | 98 |
|
| 98 | 99 |
///The type of the map that stores the distances of the nodes. |
| 99 |
///It must |
|
| 100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 100 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 101 | 102 |
///Instantiates a \c DistMap. |
| 102 | 103 |
|
| 103 | 104 |
///This function instantiates a \ref DistMap. |
| 104 | 105 |
///\param g is the digraph, to which we would like to define the |
| 105 | 106 |
///\ref DistMap. |
| 106 | 107 |
static DistMap *createDistMap(const Digraph &g) |
| 107 | 108 |
{
|
| 108 | 109 |
return new DistMap(g); |
| 109 | 110 |
} |
| 110 | 111 |
}; |
| 111 | 112 |
|
| 112 | 113 |
///%BFS algorithm class. |
| 113 | 114 |
|
| 114 | 115 |
///\ingroup search |
| 115 | 116 |
///This class provides an efficient implementation of the %BFS algorithm. |
| 116 | 117 |
/// |
| 117 | 118 |
///There is also a \ref bfs() "function-type interface" for the BFS |
| 118 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
| 119 | 120 |
///used easier. |
| 120 | 121 |
/// |
| 121 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 122 | 123 |
///The default type is \ref ListDigraph. |
| 123 | 124 |
#ifdef DOXYGEN |
| 124 | 125 |
template <typename GR, |
| 125 | 126 |
typename TR> |
| 126 | 127 |
#else |
| 127 | 128 |
template <typename GR=ListDigraph, |
| 128 | 129 |
typename TR=BfsDefaultTraits<GR> > |
| 129 | 130 |
#endif |
| 130 | 131 |
class Bfs {
|
| 131 | 132 |
public: |
| 132 | 133 |
|
| 133 | 134 |
///The type of the digraph the algorithm runs on. |
| 134 | 135 |
typedef typename TR::Digraph Digraph; |
| 135 | 136 |
|
| 136 | 137 |
///\brief The type of the map that stores the predecessor arcs of the |
| 137 | 138 |
///shortest paths. |
| 138 | 139 |
typedef typename TR::PredMap PredMap; |
| 139 | 140 |
///The type of the map that stores the distances of the nodes. |
| 140 | 141 |
typedef typename TR::DistMap DistMap; |
| 141 | 142 |
///The type of the map that indicates which nodes are reached. |
| 142 | 143 |
typedef typename TR::ReachedMap ReachedMap; |
| 143 | 144 |
///The type of the map that indicates which nodes are processed. |
| 144 | 145 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 145 | 146 |
///The type of the paths. |
| 146 | 147 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 147 | 148 |
|
| 148 | 149 |
///The \ref BfsDefaultTraits "traits class" of the algorithm. |
| 149 | 150 |
typedef TR Traits; |
| 150 | 151 |
|
| 151 | 152 |
private: |
| 152 | 153 |
|
| 153 | 154 |
typedef typename Digraph::Node Node; |
| 154 | 155 |
typedef typename Digraph::NodeIt NodeIt; |
| 155 | 156 |
typedef typename Digraph::Arc Arc; |
| 156 | 157 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 157 | 158 |
|
| 158 | 159 |
//Pointer to the underlying digraph. |
| 159 | 160 |
const Digraph *G; |
| 160 | 161 |
//Pointer to the map of predecessor arcs. |
| 161 | 162 |
PredMap *_pred; |
| 162 | 163 |
//Indicates if _pred is locally allocated (true) or not. |
| 163 | 164 |
bool local_pred; |
| 164 | 165 |
//Pointer to the map of distances. |
| 165 | 166 |
DistMap *_dist; |
| 166 | 167 |
//Indicates if _dist is locally allocated (true) or not. |
| 167 | 168 |
bool local_dist; |
| 168 | 169 |
//Pointer to the map of reached status of the nodes. |
| 169 | 170 |
ReachedMap *_reached; |
| 170 | 171 |
//Indicates if _reached is locally allocated (true) or not. |
| 171 | 172 |
bool local_reached; |
| 172 | 173 |
//Pointer to the map of processed status of the nodes. |
| 173 | 174 |
ProcessedMap *_processed; |
| 174 | 175 |
//Indicates if _processed is locally allocated (true) or not. |
| 175 | 176 |
bool local_processed; |
| 176 | 177 |
|
| 177 | 178 |
std::vector<typename Digraph::Node> _queue; |
| 178 | 179 |
int _queue_head,_queue_tail,_queue_next_dist; |
| 179 | 180 |
int _curr_dist; |
| 180 | 181 |
|
| 181 | 182 |
//Creates the maps if necessary. |
| 182 | 183 |
void create_maps() |
| 183 | 184 |
{
|
| 184 | 185 |
if(!_pred) {
|
| 185 | 186 |
local_pred = true; |
| 186 | 187 |
_pred = Traits::createPredMap(*G); |
| 187 | 188 |
} |
| 188 | 189 |
if(!_dist) {
|
| 189 | 190 |
local_dist = true; |
| 190 | 191 |
_dist = Traits::createDistMap(*G); |
| 191 | 192 |
} |
| 192 | 193 |
if(!_reached) {
|
| 193 | 194 |
local_reached = true; |
| 194 | 195 |
_reached = Traits::createReachedMap(*G); |
| 195 | 196 |
} |
| 196 | 197 |
if(!_processed) {
|
| 197 | 198 |
local_processed = true; |
| 198 | 199 |
_processed = Traits::createProcessedMap(*G); |
| 199 | 200 |
} |
| 200 | 201 |
} |
| 201 | 202 |
|
| 202 | 203 |
protected: |
| 203 | 204 |
|
| 204 | 205 |
Bfs() {}
|
| 205 | 206 |
|
| 206 | 207 |
public: |
| 207 | 208 |
|
| 208 | 209 |
typedef Bfs Create; |
| 209 | 210 |
|
| 210 | 211 |
///\name Named Template Parameters |
| 211 | 212 |
|
| 212 | 213 |
///@{
|
| 213 | 214 |
|
| 214 | 215 |
template <class T> |
| 215 | 216 |
struct SetPredMapTraits : public Traits {
|
| 216 | 217 |
typedef T PredMap; |
| 217 | 218 |
static PredMap *createPredMap(const Digraph &) |
| 218 | 219 |
{
|
| 219 | 220 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 220 | 221 |
return 0; // ignore warnings |
| 221 | 222 |
} |
| 222 | 223 |
}; |
| 223 | 224 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 224 | 225 |
///\c PredMap type. |
| 225 | 226 |
/// |
| 226 | 227 |
///\ref named-templ-param "Named parameter" for setting |
| 227 | 228 |
///\c PredMap type. |
| 228 |
///It must |
|
| 229 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 229 | 230 |
template <class T> |
| 230 | 231 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
|
| 231 | 232 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
| 232 | 233 |
}; |
| 233 | 234 |
|
| 234 | 235 |
template <class T> |
| 235 | 236 |
struct SetDistMapTraits : public Traits {
|
| 236 | 237 |
typedef T DistMap; |
| 237 | 238 |
static DistMap *createDistMap(const Digraph &) |
| 238 | 239 |
{
|
| 239 | 240 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 240 | 241 |
return 0; // ignore warnings |
| 241 | 242 |
} |
| 242 | 243 |
}; |
| 243 | 244 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 244 | 245 |
///\c DistMap type. |
| 245 | 246 |
/// |
| 246 | 247 |
///\ref named-templ-param "Named parameter" for setting |
| 247 | 248 |
///\c DistMap type. |
| 248 |
///It must |
|
| 249 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 249 | 250 |
template <class T> |
| 250 | 251 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
|
| 251 | 252 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
| 252 | 253 |
}; |
| 253 | 254 |
|
| 254 | 255 |
template <class T> |
| 255 | 256 |
struct SetReachedMapTraits : public Traits {
|
| 256 | 257 |
typedef T ReachedMap; |
| 257 | 258 |
static ReachedMap *createReachedMap(const Digraph &) |
| 258 | 259 |
{
|
| 259 | 260 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 260 | 261 |
return 0; // ignore warnings |
| 261 | 262 |
} |
| 262 | 263 |
}; |
| 263 | 264 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 264 | 265 |
///\c ReachedMap type. |
| 265 | 266 |
/// |
| 266 | 267 |
///\ref named-templ-param "Named parameter" for setting |
| 267 | 268 |
///\c ReachedMap type. |
| 268 |
///It must |
|
| 269 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 269 | 270 |
template <class T> |
| 270 | 271 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
|
| 271 | 272 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
| 272 | 273 |
}; |
| 273 | 274 |
|
| 274 | 275 |
template <class T> |
| 275 | 276 |
struct SetProcessedMapTraits : public Traits {
|
| 276 | 277 |
typedef T ProcessedMap; |
| 277 | 278 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 278 | 279 |
{
|
| 279 | 280 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
| 280 | 281 |
return 0; // ignore warnings |
| 281 | 282 |
} |
| 282 | 283 |
}; |
| 283 | 284 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 284 | 285 |
///\c ProcessedMap type. |
| 285 | 286 |
/// |
| 286 | 287 |
///\ref named-templ-param "Named parameter" for setting |
| 287 | 288 |
///\c ProcessedMap type. |
| 288 |
///It must |
|
| 289 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 289 | 290 |
template <class T> |
| 290 | 291 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
|
| 291 | 292 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 292 | 293 |
}; |
| 293 | 294 |
|
| 294 | 295 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 295 | 296 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 296 | 297 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 297 | 298 |
{
|
| 298 | 299 |
return new ProcessedMap(g); |
| 299 | 300 |
return 0; // ignore warnings |
| 300 | 301 |
} |
| 301 | 302 |
}; |
| 302 | 303 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 303 | 304 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 304 | 305 |
/// |
| 305 | 306 |
///\ref named-templ-param "Named parameter" for setting |
| 306 | 307 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 307 | 308 |
///If you don't set it explicitly, it will be automatically allocated. |
| 308 | 309 |
struct SetStandardProcessedMap : |
| 309 | 310 |
public Bfs< Digraph, SetStandardProcessedMapTraits > {
|
| 310 | 311 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
| 311 | 312 |
}; |
| 312 | 313 |
|
| 313 | 314 |
///@} |
| 314 | 315 |
|
| 315 | 316 |
public: |
| 316 | 317 |
|
| 317 | 318 |
///Constructor. |
| 318 | 319 |
|
| 319 | 320 |
///Constructor. |
| 320 | 321 |
///\param g The digraph the algorithm runs on. |
| 321 | 322 |
Bfs(const Digraph &g) : |
| 322 | 323 |
G(&g), |
| 323 | 324 |
_pred(NULL), local_pred(false), |
| 324 | 325 |
_dist(NULL), local_dist(false), |
| 325 | 326 |
_reached(NULL), local_reached(false), |
| 326 | 327 |
_processed(NULL), local_processed(false) |
| 327 | 328 |
{ }
|
| 328 | 329 |
|
| 329 | 330 |
///Destructor. |
| 330 | 331 |
~Bfs() |
| 331 | 332 |
{
|
| 332 | 333 |
if(local_pred) delete _pred; |
| 333 | 334 |
if(local_dist) delete _dist; |
| 334 | 335 |
if(local_reached) delete _reached; |
| 335 | 336 |
if(local_processed) delete _processed; |
| 336 | 337 |
} |
| 337 | 338 |
|
| 338 | 339 |
///Sets the map that stores the predecessor arcs. |
| 339 | 340 |
|
| 340 | 341 |
///Sets the map that stores the predecessor arcs. |
| 341 | 342 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 342 | 343 |
///or \ref init(), an instance will be allocated automatically. |
| 343 | 344 |
///The destructor deallocates this automatically allocated map, |
| 344 | 345 |
///of course. |
| 345 | 346 |
///\return <tt> (*this) </tt> |
| 346 | 347 |
Bfs &predMap(PredMap &m) |
| 347 | 348 |
{
|
| 348 | 349 |
if(local_pred) {
|
| 349 | 350 |
delete _pred; |
| 350 | 351 |
local_pred=false; |
| 351 | 352 |
} |
| 352 | 353 |
_pred = &m; |
| 353 | 354 |
return *this; |
| 354 | 355 |
} |
| 355 | 356 |
|
| 356 | 357 |
///Sets the map that indicates which nodes are reached. |
| 357 | 358 |
|
| 358 | 359 |
///Sets the map that indicates which nodes are reached. |
| 359 | 360 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 360 | 361 |
///or \ref init(), an instance will be allocated automatically. |
| 361 | 362 |
///The destructor deallocates this automatically allocated map, |
| 362 | 363 |
///of course. |
| 363 | 364 |
///\return <tt> (*this) </tt> |
| 364 | 365 |
Bfs &reachedMap(ReachedMap &m) |
| 365 | 366 |
{
|
| 366 | 367 |
if(local_reached) {
|
| 367 | 368 |
delete _reached; |
| 368 | 369 |
local_reached=false; |
| 369 | 370 |
} |
| 370 | 371 |
_reached = &m; |
| 371 | 372 |
return *this; |
| 372 | 373 |
} |
| 373 | 374 |
|
| 374 | 375 |
///Sets the map that indicates which nodes are processed. |
| 375 | 376 |
|
| 376 | 377 |
///Sets the map that indicates which nodes are processed. |
| 377 | 378 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 378 | 379 |
///or \ref init(), an instance will be allocated automatically. |
| 379 | 380 |
///The destructor deallocates this automatically allocated map, |
| 380 | 381 |
///of course. |
| 381 | 382 |
///\return <tt> (*this) </tt> |
| 382 | 383 |
Bfs &processedMap(ProcessedMap &m) |
| 383 | 384 |
{
|
| 384 | 385 |
if(local_processed) {
|
| 385 | 386 |
delete _processed; |
| 386 | 387 |
local_processed=false; |
| 387 | 388 |
} |
| 388 | 389 |
_processed = &m; |
| 389 | 390 |
return *this; |
| 390 | 391 |
} |
| 391 | 392 |
|
| 392 | 393 |
///Sets the map that stores the distances of the nodes. |
| 393 | 394 |
|
| 394 | 395 |
///Sets the map that stores the distances of the nodes calculated by |
| 395 | 396 |
///the algorithm. |
| 396 | 397 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 397 | 398 |
///or \ref init(), an instance will be allocated automatically. |
| 398 | 399 |
///The destructor deallocates this automatically allocated map, |
| 399 | 400 |
///of course. |
| 400 | 401 |
///\return <tt> (*this) </tt> |
| 401 | 402 |
Bfs &distMap(DistMap &m) |
| 402 | 403 |
{
|
| 403 | 404 |
if(local_dist) {
|
| 404 | 405 |
delete _dist; |
| 405 | 406 |
local_dist=false; |
| 406 | 407 |
} |
| 407 | 408 |
_dist = &m; |
| 408 | 409 |
return *this; |
| 409 | 410 |
} |
| 410 | 411 |
|
| 411 | 412 |
public: |
| 412 | 413 |
|
| 413 | 414 |
///\name Execution Control |
| 414 | 415 |
///The simplest way to execute the BFS algorithm is to use one of the |
| 415 | 416 |
///member functions called \ref run(Node) "run()".\n |
| 416 |
///If you need more control on the execution, first you have to call |
|
| 417 |
///\ref init(), then you can add several source nodes with |
|
| 417 |
///If you need better control on the execution, you have to call |
|
| 418 |
///\ref init() first, then you can add several source nodes with |
|
| 418 | 419 |
///\ref addSource(). Finally the actual path computation can be |
| 419 | 420 |
///performed with one of the \ref start() functions. |
| 420 | 421 |
|
| 421 | 422 |
///@{
|
| 422 | 423 |
|
| 423 | 424 |
///\brief Initializes the internal data structures. |
| 424 | 425 |
/// |
| 425 | 426 |
///Initializes the internal data structures. |
| 426 | 427 |
void init() |
| 427 | 428 |
{
|
| 428 | 429 |
create_maps(); |
| 429 | 430 |
_queue.resize(countNodes(*G)); |
| 430 | 431 |
_queue_head=_queue_tail=0; |
| 431 | 432 |
_curr_dist=1; |
| 432 | 433 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
| 433 | 434 |
_pred->set(u,INVALID); |
| 434 | 435 |
_reached->set(u,false); |
| 435 | 436 |
_processed->set(u,false); |
| 436 | 437 |
} |
| 437 | 438 |
} |
| 438 | 439 |
|
| 439 | 440 |
///Adds a new source node. |
| 440 | 441 |
|
| 441 | 442 |
///Adds a new source node to the set of nodes to be processed. |
| 442 | 443 |
/// |
| 443 | 444 |
void addSource(Node s) |
| 444 | 445 |
{
|
| 445 | 446 |
if(!(*_reached)[s]) |
| 446 | 447 |
{
|
| 447 | 448 |
_reached->set(s,true); |
| 448 | 449 |
_pred->set(s,INVALID); |
| 449 | 450 |
_dist->set(s,0); |
| 450 | 451 |
_queue[_queue_head++]=s; |
| 451 | 452 |
_queue_next_dist=_queue_head; |
| 452 | 453 |
} |
| 453 | 454 |
} |
| 454 | 455 |
|
| 455 | 456 |
///Processes the next node. |
| 456 | 457 |
|
| 457 | 458 |
///Processes the next node. |
| 458 | 459 |
/// |
| 459 | 460 |
///\return The processed node. |
| 460 | 461 |
/// |
| 461 | 462 |
///\pre The queue must not be empty. |
| 462 | 463 |
Node processNextNode() |
| 463 | 464 |
{
|
| 464 | 465 |
if(_queue_tail==_queue_next_dist) {
|
| 465 | 466 |
_curr_dist++; |
| 466 | 467 |
_queue_next_dist=_queue_head; |
| 467 | 468 |
} |
| 468 | 469 |
Node n=_queue[_queue_tail++]; |
| 469 | 470 |
_processed->set(n,true); |
| 470 | 471 |
Node m; |
| 471 | 472 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 472 | 473 |
if(!(*_reached)[m=G->target(e)]) {
|
| 473 | 474 |
_queue[_queue_head++]=m; |
| 474 | 475 |
_reached->set(m,true); |
| 475 | 476 |
_pred->set(m,e); |
| 476 | 477 |
_dist->set(m,_curr_dist); |
| 477 | 478 |
} |
| 478 | 479 |
return n; |
| 479 | 480 |
} |
| 480 | 481 |
|
| 481 | 482 |
///Processes the next node. |
| 482 | 483 |
|
| 483 | 484 |
///Processes the next node and checks if the given target node |
| 484 | 485 |
///is reached. If the target node is reachable from the processed |
| 485 | 486 |
///node, then the \c reach parameter will be set to \c true. |
| 486 | 487 |
/// |
| 487 | 488 |
///\param target The target node. |
| 488 | 489 |
///\retval reach Indicates if the target node is reached. |
| 489 | 490 |
///It should be initially \c false. |
| 490 | 491 |
/// |
| 491 | 492 |
///\return The processed node. |
| 492 | 493 |
/// |
| 493 | 494 |
///\pre The queue must not be empty. |
| 494 | 495 |
Node processNextNode(Node target, bool& reach) |
| 495 | 496 |
{
|
| 496 | 497 |
if(_queue_tail==_queue_next_dist) {
|
| 497 | 498 |
_curr_dist++; |
| 498 | 499 |
_queue_next_dist=_queue_head; |
| 499 | 500 |
} |
| 500 | 501 |
Node n=_queue[_queue_tail++]; |
| 501 | 502 |
_processed->set(n,true); |
| 502 | 503 |
Node m; |
| 503 | 504 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 504 | 505 |
if(!(*_reached)[m=G->target(e)]) {
|
| 505 | 506 |
_queue[_queue_head++]=m; |
| 506 | 507 |
_reached->set(m,true); |
| 507 | 508 |
_pred->set(m,e); |
| 508 | 509 |
_dist->set(m,_curr_dist); |
| 509 | 510 |
reach = reach || (target == m); |
| 510 | 511 |
} |
| 511 | 512 |
return n; |
| 512 | 513 |
} |
| 513 | 514 |
|
| 514 | 515 |
///Processes the next node. |
| 515 | 516 |
|
| 516 | 517 |
///Processes the next node and checks if at least one of reached |
| 517 | 518 |
///nodes has \c true value in the \c nm node map. If one node |
| 518 | 519 |
///with \c true value is reachable from the processed node, then the |
| 519 | 520 |
///\c rnode parameter will be set to the first of such nodes. |
| 520 | 521 |
/// |
| 521 | 522 |
///\param nm A \c bool (or convertible) node map that indicates the |
| 522 | 523 |
///possible targets. |
| 523 | 524 |
///\retval rnode The reached target node. |
| 524 | 525 |
///It should be initially \c INVALID. |
| 525 | 526 |
/// |
| 526 | 527 |
///\return The processed node. |
| 527 | 528 |
/// |
| 528 | 529 |
///\pre The queue must not be empty. |
| 529 | 530 |
template<class NM> |
| 530 | 531 |
Node processNextNode(const NM& nm, Node& rnode) |
| 531 | 532 |
{
|
| 532 | 533 |
if(_queue_tail==_queue_next_dist) {
|
| 533 | 534 |
_curr_dist++; |
| 534 | 535 |
_queue_next_dist=_queue_head; |
| 535 | 536 |
} |
| 536 | 537 |
Node n=_queue[_queue_tail++]; |
| 537 | 538 |
_processed->set(n,true); |
| 538 | 539 |
Node m; |
| 539 | 540 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 540 | 541 |
if(!(*_reached)[m=G->target(e)]) {
|
| 541 | 542 |
_queue[_queue_head++]=m; |
| 542 | 543 |
_reached->set(m,true); |
| 543 | 544 |
_pred->set(m,e); |
| 544 | 545 |
_dist->set(m,_curr_dist); |
| 545 | 546 |
if (nm[m] && rnode == INVALID) rnode = m; |
| 546 | 547 |
} |
| 547 | 548 |
return n; |
| 548 | 549 |
} |
| 549 | 550 |
|
| 550 | 551 |
///The next node to be processed. |
| 551 | 552 |
|
| 552 | 553 |
///Returns the next node to be processed or \c INVALID if the queue |
| 553 | 554 |
///is empty. |
| 554 | 555 |
Node nextNode() const |
| 555 | 556 |
{
|
| 556 | 557 |
return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID; |
| 557 | 558 |
} |
| 558 | 559 |
|
| 559 | 560 |
///Returns \c false if there are nodes to be processed. |
| 560 | 561 |
|
| 561 | 562 |
///Returns \c false if there are nodes to be processed |
| 562 | 563 |
///in the queue. |
| 563 | 564 |
bool emptyQueue() const { return _queue_tail==_queue_head; }
|
| 564 | 565 |
|
| 565 | 566 |
///Returns the number of the nodes to be processed. |
| 566 | 567 |
|
| 567 | 568 |
///Returns the number of the nodes to be processed |
| 568 | 569 |
///in the queue. |
| 569 | 570 |
int queueSize() const { return _queue_head-_queue_tail; }
|
| 570 | 571 |
|
| 571 | 572 |
///Executes the algorithm. |
| 572 | 573 |
|
| 573 | 574 |
///Executes the algorithm. |
| 574 | 575 |
/// |
| 575 | 576 |
///This method runs the %BFS algorithm from the root node(s) |
| 576 | 577 |
///in order to compute the shortest path to each node. |
| 577 | 578 |
/// |
| 578 | 579 |
///The algorithm computes |
| 579 | 580 |
///- the shortest path tree (forest), |
| 580 | 581 |
///- the distance of each node from the root(s). |
| 581 | 582 |
/// |
| 582 | 583 |
///\pre init() must be called and at least one root node should be |
| 583 | 584 |
///added with addSource() before using this function. |
| 584 | 585 |
/// |
| 585 | 586 |
///\note <tt>b.start()</tt> is just a shortcut of the following code. |
| 586 | 587 |
///\code |
| 587 | 588 |
/// while ( !b.emptyQueue() ) {
|
| 588 | 589 |
/// b.processNextNode(); |
| 589 | 590 |
/// } |
| 590 | 591 |
///\endcode |
| 591 | 592 |
void start() |
| 592 | 593 |
{
|
| 593 | 594 |
while ( !emptyQueue() ) processNextNode(); |
| 594 | 595 |
} |
| 595 | 596 |
|
| 596 | 597 |
///Executes the algorithm until the given target node is reached. |
| 597 | 598 |
|
| 598 | 599 |
///Executes the algorithm until the given target node is reached. |
| 599 | 600 |
/// |
| 600 | 601 |
///This method runs the %BFS algorithm from the root node(s) |
| 601 | 602 |
///in order to compute the shortest path to \c t. |
| 602 | 603 |
/// |
| 603 | 604 |
///The algorithm computes |
| 604 | 605 |
///- the shortest path to \c t, |
| 605 | 606 |
///- the distance of \c t from the root(s). |
| 606 | 607 |
/// |
| 607 | 608 |
///\pre init() must be called and at least one root node should be |
| 608 | 609 |
///added with addSource() before using this function. |
| 609 | 610 |
/// |
| 610 | 611 |
///\note <tt>b.start(t)</tt> is just a shortcut of the following code. |
| 611 | 612 |
///\code |
| 612 | 613 |
/// bool reach = false; |
| 613 | 614 |
/// while ( !b.emptyQueue() && !reach ) {
|
| 614 | 615 |
/// b.processNextNode(t, reach); |
| 615 | 616 |
/// } |
| 616 | 617 |
///\endcode |
| 617 | 618 |
void start(Node t) |
| 618 | 619 |
{
|
| 619 | 620 |
bool reach = false; |
| 620 | 621 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
| 621 | 622 |
} |
| 622 | 623 |
|
| 623 | 624 |
///Executes the algorithm until a condition is met. |
| 624 | 625 |
|
| 625 | 626 |
///Executes the algorithm until a condition is met. |
| 626 | 627 |
/// |
| 627 | 628 |
///This method runs the %BFS algorithm from the root node(s) in |
| 628 | 629 |
///order to compute the shortest path to a node \c v with |
| 629 | 630 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
| 630 | 631 |
/// |
| 631 | 632 |
///\param nm A \c bool (or convertible) node map. The algorithm |
| 632 | 633 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
| 633 | 634 |
/// |
| 634 | 635 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
| 635 | 636 |
///\c INVALID if no such node was found. |
| 636 | 637 |
/// |
| 637 | 638 |
///\pre init() must be called and at least one root node should be |
| 638 | 639 |
///added with addSource() before using this function. |
| 639 | 640 |
/// |
| 640 | 641 |
///\note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
| 641 | 642 |
///\code |
| 642 | 643 |
/// Node rnode = INVALID; |
| 643 | 644 |
/// while ( !b.emptyQueue() && rnode == INVALID ) {
|
| 644 | 645 |
/// b.processNextNode(nm, rnode); |
| 645 | 646 |
/// } |
| 646 | 647 |
/// return rnode; |
| 647 | 648 |
///\endcode |
| 648 | 649 |
template<class NodeBoolMap> |
| 649 | 650 |
Node start(const NodeBoolMap &nm) |
| 650 | 651 |
{
|
| 651 | 652 |
Node rnode = INVALID; |
| 652 | 653 |
while ( !emptyQueue() && rnode == INVALID ) {
|
| 653 | 654 |
processNextNode(nm, rnode); |
| 654 | 655 |
} |
| 655 | 656 |
return rnode; |
| 656 | 657 |
} |
| 657 | 658 |
|
| 658 | 659 |
///Runs the algorithm from the given source node. |
| 659 | 660 |
|
| 660 | 661 |
///This method runs the %BFS algorithm from node \c s |
| 661 | 662 |
///in order to compute the shortest path to each node. |
| 662 | 663 |
/// |
| 663 | 664 |
///The algorithm computes |
| 664 | 665 |
///- the shortest path tree, |
| 665 | 666 |
///- the distance of each node from the root. |
| 666 | 667 |
/// |
| 667 | 668 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 668 | 669 |
///\code |
| 669 | 670 |
/// b.init(); |
| 670 | 671 |
/// b.addSource(s); |
| 671 | 672 |
/// b.start(); |
| 672 | 673 |
///\endcode |
| 673 | 674 |
void run(Node s) {
|
| 674 | 675 |
init(); |
| 675 | 676 |
addSource(s); |
| 676 | 677 |
start(); |
| 677 | 678 |
} |
| 678 | 679 |
|
| 679 | 680 |
///Finds the shortest path between \c s and \c t. |
| 680 | 681 |
|
| 681 | 682 |
///This method runs the %BFS algorithm from node \c s |
| 682 | 683 |
///in order to compute the shortest path to node \c t |
| 683 | 684 |
///(it stops searching when \c t is processed). |
| 684 | 685 |
/// |
| 685 | 686 |
///\return \c true if \c t is reachable form \c s. |
| 686 | 687 |
/// |
| 687 | 688 |
///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
| 688 | 689 |
///shortcut of the following code. |
| 689 | 690 |
///\code |
| 690 | 691 |
/// b.init(); |
| 691 | 692 |
/// b.addSource(s); |
| 692 | 693 |
/// b.start(t); |
| 693 | 694 |
///\endcode |
| 694 | 695 |
bool run(Node s,Node t) {
|
| 695 | 696 |
init(); |
| 696 | 697 |
addSource(s); |
| 697 | 698 |
start(t); |
| 698 | 699 |
return reached(t); |
| 699 | 700 |
} |
| 700 | 701 |
|
| 701 | 702 |
///Runs the algorithm to visit all nodes in the digraph. |
| 702 | 703 |
|
| 703 | 704 |
///This method runs the %BFS algorithm in order to |
| 704 | 705 |
///compute the shortest path to each node. |
| 705 | 706 |
/// |
| 706 | 707 |
///The algorithm computes |
| 707 | 708 |
///- the shortest path tree (forest), |
| 708 | 709 |
///- the distance of each node from the root(s). |
| 709 | 710 |
/// |
| 710 | 711 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 711 | 712 |
///\code |
| 712 | 713 |
/// b.init(); |
| 713 | 714 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 714 | 715 |
/// if (!b.reached(n)) {
|
| 715 | 716 |
/// b.addSource(n); |
| 716 | 717 |
/// b.start(); |
| 717 | 718 |
/// } |
| 718 | 719 |
/// } |
| 719 | 720 |
///\endcode |
| 720 | 721 |
void run() {
|
| 721 | 722 |
init(); |
| 722 | 723 |
for (NodeIt n(*G); n != INVALID; ++n) {
|
| 723 | 724 |
if (!reached(n)) {
|
| 724 | 725 |
addSource(n); |
| 725 | 726 |
start(); |
| 726 | 727 |
} |
| 727 | 728 |
} |
| 728 | 729 |
} |
| 729 | 730 |
|
| 730 | 731 |
///@} |
| 731 | 732 |
|
| 732 | 733 |
///\name Query Functions |
| 733 | 734 |
///The results of the BFS algorithm can be obtained using these |
| 734 | 735 |
///functions.\n |
| 735 | 736 |
///Either \ref run(Node) "run()" or \ref start() should be called |
| 736 | 737 |
///before using them. |
| 737 | 738 |
|
| 738 | 739 |
///@{
|
| 739 | 740 |
|
| 740 |
///The shortest path to |
|
| 741 |
///The shortest path to the given node. |
|
| 741 | 742 |
|
| 742 |
///Returns the shortest path to |
|
| 743 |
///Returns the shortest path to the given node from the root(s). |
|
| 743 | 744 |
/// |
| 744 | 745 |
///\warning \c t should be reached from the root(s). |
| 745 | 746 |
/// |
| 746 | 747 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 747 | 748 |
///must be called before using this function. |
| 748 | 749 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 749 | 750 |
|
| 750 |
///The distance of |
|
| 751 |
///The distance of the given node from the root(s). |
|
| 751 | 752 |
|
| 752 |
///Returns the distance of |
|
| 753 |
///Returns the distance of the given node from the root(s). |
|
| 753 | 754 |
/// |
| 754 | 755 |
///\warning If node \c v is not reached from the root(s), then |
| 755 | 756 |
///the return value of this function is undefined. |
| 756 | 757 |
/// |
| 757 | 758 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 758 | 759 |
///must be called before using this function. |
| 759 | 760 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 760 | 761 |
|
| 761 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
| 762 |
|
|
| 762 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
| 763 |
///the given node. |
|
| 764 |
/// |
|
| 763 | 765 |
///This function returns the 'previous arc' of the shortest path |
| 764 | 766 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 765 | 767 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
| 766 | 768 |
///is not reached from the root(s) or if \c v is a root. |
| 767 | 769 |
/// |
| 768 | 770 |
///The shortest path tree used here is equal to the shortest path |
| 769 |
///tree used in \ref predNode(). |
|
| 771 |
///tree used in \ref predNode() and \ref predMap(). |
|
| 770 | 772 |
/// |
| 771 | 773 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 772 | 774 |
///must be called before using this function. |
| 773 | 775 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 774 | 776 |
|
| 775 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
| 776 |
|
|
| 777 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
| 778 |
///the given node. |
|
| 779 |
/// |
|
| 777 | 780 |
///This function returns the 'previous node' of the shortest path |
| 778 | 781 |
///tree for the node \c v, i.e. it returns the last but one node |
| 779 |
/// |
|
| 782 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
| 780 | 783 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 781 | 784 |
/// |
| 782 | 785 |
///The shortest path tree used here is equal to the shortest path |
| 783 |
///tree used in \ref predArc(). |
|
| 786 |
///tree used in \ref predArc() and \ref predMap(). |
|
| 784 | 787 |
/// |
| 785 | 788 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 786 | 789 |
///must be called before using this function. |
| 787 | 790 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 788 | 791 |
G->source((*_pred)[v]); } |
| 789 | 792 |
|
| 790 | 793 |
///\brief Returns a const reference to the node map that stores the |
| 791 | 794 |
/// distances of the nodes. |
| 792 | 795 |
/// |
| 793 | 796 |
///Returns a const reference to the node map that stores the distances |
| 794 | 797 |
///of the nodes calculated by the algorithm. |
| 795 | 798 |
/// |
| 796 | 799 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 797 | 800 |
///must be called before using this function. |
| 798 | 801 |
const DistMap &distMap() const { return *_dist;}
|
| 799 | 802 |
|
| 800 | 803 |
///\brief Returns a const reference to the node map that stores the |
| 801 | 804 |
///predecessor arcs. |
| 802 | 805 |
/// |
| 803 | 806 |
///Returns a const reference to the node map that stores the predecessor |
| 804 |
///arcs, which form the shortest path tree. |
|
| 807 |
///arcs, which form the shortest path tree (forest). |
|
| 805 | 808 |
/// |
| 806 | 809 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 807 | 810 |
///must be called before using this function. |
| 808 | 811 |
const PredMap &predMap() const { return *_pred;}
|
| 809 | 812 |
|
| 810 |
///Checks if |
|
| 813 |
///Checks if the given node is reached from the root(s). |
|
| 811 | 814 |
|
| 812 | 815 |
///Returns \c true if \c v is reached from the root(s). |
| 813 | 816 |
/// |
| 814 | 817 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 815 | 818 |
///must be called before using this function. |
| 816 | 819 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 817 | 820 |
|
| 818 | 821 |
///@} |
| 819 | 822 |
}; |
| 820 | 823 |
|
| 821 | 824 |
///Default traits class of bfs() function. |
| 822 | 825 |
|
| 823 | 826 |
///Default traits class of bfs() function. |
| 824 | 827 |
///\tparam GR Digraph type. |
| 825 | 828 |
template<class GR> |
| 826 | 829 |
struct BfsWizardDefaultTraits |
| 827 | 830 |
{
|
| 828 | 831 |
///The type of the digraph the algorithm runs on. |
| 829 | 832 |
typedef GR Digraph; |
| 830 | 833 |
|
| 831 | 834 |
///\brief The type of the map that stores the predecessor |
| 832 | 835 |
///arcs of the shortest paths. |
| 833 | 836 |
/// |
| 834 | 837 |
///The type of the map that stores the predecessor |
| 835 | 838 |
///arcs of the shortest paths. |
| 836 |
///It must |
|
| 839 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 837 | 840 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 838 | 841 |
///Instantiates a PredMap. |
| 839 | 842 |
|
| 840 | 843 |
///This function instantiates a PredMap. |
| 841 | 844 |
///\param g is the digraph, to which we would like to define the |
| 842 | 845 |
///PredMap. |
| 843 | 846 |
static PredMap *createPredMap(const Digraph &g) |
| 844 | 847 |
{
|
| 845 | 848 |
return new PredMap(g); |
| 846 | 849 |
} |
| 847 | 850 |
|
| 848 | 851 |
///The type of the map that indicates which nodes are processed. |
| 849 | 852 |
|
| 850 | 853 |
///The type of the map that indicates which nodes are processed. |
| 851 |
///It must |
|
| 854 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 852 | 855 |
///By default it is a NullMap. |
| 853 | 856 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 854 | 857 |
///Instantiates a ProcessedMap. |
| 855 | 858 |
|
| 856 | 859 |
///This function instantiates a ProcessedMap. |
| 857 | 860 |
///\param g is the digraph, to which |
| 858 | 861 |
///we would like to define the ProcessedMap. |
| 859 | 862 |
#ifdef DOXYGEN |
| 860 | 863 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 861 | 864 |
#else |
| 862 | 865 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 863 | 866 |
#endif |
| 864 | 867 |
{
|
| 865 | 868 |
return new ProcessedMap(); |
| 866 | 869 |
} |
| 867 | 870 |
|
| 868 | 871 |
///The type of the map that indicates which nodes are reached. |
| 869 | 872 |
|
| 870 | 873 |
///The type of the map that indicates which nodes are reached. |
| 871 |
///It must |
|
| 874 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 872 | 875 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 873 | 876 |
///Instantiates a ReachedMap. |
| 874 | 877 |
|
| 875 | 878 |
///This function instantiates a ReachedMap. |
| 876 | 879 |
///\param g is the digraph, to which |
| 877 | 880 |
///we would like to define the ReachedMap. |
| 878 | 881 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 879 | 882 |
{
|
| 880 | 883 |
return new ReachedMap(g); |
| 881 | 884 |
} |
| 882 | 885 |
|
| 883 | 886 |
///The type of the map that stores the distances of the nodes. |
| 884 | 887 |
|
| 885 | 888 |
///The type of the map that stores the distances of the nodes. |
| 886 |
///It must |
|
| 889 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 887 | 890 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 888 | 891 |
///Instantiates a DistMap. |
| 889 | 892 |
|
| 890 | 893 |
///This function instantiates a DistMap. |
| 891 | 894 |
///\param g is the digraph, to which we would like to define |
| 892 | 895 |
///the DistMap |
| 893 | 896 |
static DistMap *createDistMap(const Digraph &g) |
| 894 | 897 |
{
|
| 895 | 898 |
return new DistMap(g); |
| 896 | 899 |
} |
| 897 | 900 |
|
| 898 | 901 |
///The type of the shortest paths. |
| 899 | 902 |
|
| 900 | 903 |
///The type of the shortest paths. |
| 901 |
///It must |
|
| 904 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
| 902 | 905 |
typedef lemon::Path<Digraph> Path; |
| 903 | 906 |
}; |
| 904 | 907 |
|
| 905 | 908 |
/// Default traits class used by BfsWizard |
| 906 | 909 |
|
| 907 |
/// To make it easier to use Bfs algorithm |
|
| 908 |
/// we have created a wizard class. |
|
| 909 |
/// This \ref BfsWizard class needs default traits, |
|
| 910 |
/// as well as the \ref Bfs class. |
|
| 911 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
|
| 912 |
/// \ref BfsWizard class. |
|
| 910 |
/// Default traits class used by BfsWizard. |
|
| 911 |
/// \tparam GR The type of the digraph. |
|
| 913 | 912 |
template<class GR> |
| 914 | 913 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
| 915 | 914 |
{
|
| 916 | 915 |
|
| 917 | 916 |
typedef BfsWizardDefaultTraits<GR> Base; |
| 918 | 917 |
protected: |
| 919 | 918 |
//The type of the nodes in the digraph. |
| 920 | 919 |
typedef typename Base::Digraph::Node Node; |
| 921 | 920 |
|
| 922 | 921 |
//Pointer to the digraph the algorithm runs on. |
| 923 | 922 |
void *_g; |
| 924 | 923 |
//Pointer to the map of reached nodes. |
| 925 | 924 |
void *_reached; |
| 926 | 925 |
//Pointer to the map of processed nodes. |
| 927 | 926 |
void *_processed; |
| 928 | 927 |
//Pointer to the map of predecessors arcs. |
| 929 | 928 |
void *_pred; |
| 930 | 929 |
//Pointer to the map of distances. |
| 931 | 930 |
void *_dist; |
| 932 | 931 |
//Pointer to the shortest path to the target node. |
| 933 | 932 |
void *_path; |
| 934 | 933 |
//Pointer to the distance of the target node. |
| 935 | 934 |
int *_di; |
| 936 | 935 |
|
| 937 | 936 |
public: |
| 938 | 937 |
/// Constructor. |
| 939 | 938 |
|
| 940 |
/// This constructor does not require parameters, |
|
| 939 |
/// This constructor does not require parameters, it initiates |
|
| 941 | 940 |
/// all of the attributes to \c 0. |
| 942 | 941 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 943 | 942 |
_dist(0), _path(0), _di(0) {}
|
| 944 | 943 |
|
| 945 | 944 |
/// Constructor. |
| 946 | 945 |
|
| 947 | 946 |
/// This constructor requires one parameter, |
| 948 | 947 |
/// others are initiated to \c 0. |
| 949 | 948 |
/// \param g The digraph the algorithm runs on. |
| 950 | 949 |
BfsWizardBase(const GR &g) : |
| 951 | 950 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 952 | 951 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 953 | 952 |
|
| 954 | 953 |
}; |
| 955 | 954 |
|
| 956 | 955 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
| 957 | 956 |
|
| 958 | 957 |
/// This auxiliary class is created to implement the |
| 959 | 958 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
| 960 | 959 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
| 961 | 960 |
/// functions and features of the plain \ref Bfs. |
| 962 | 961 |
/// |
| 963 | 962 |
/// This class should only be used through the \ref bfs() function, |
| 964 | 963 |
/// which makes it easier to use the algorithm. |
| 965 | 964 |
template<class TR> |
| 966 | 965 |
class BfsWizard : public TR |
| 967 | 966 |
{
|
| 968 | 967 |
typedef TR Base; |
| 969 | 968 |
|
| 970 |
///The type of the digraph the algorithm runs on. |
|
| 971 | 969 |
typedef typename TR::Digraph Digraph; |
| 972 | 970 |
|
| 973 | 971 |
typedef typename Digraph::Node Node; |
| 974 | 972 |
typedef typename Digraph::NodeIt NodeIt; |
| 975 | 973 |
typedef typename Digraph::Arc Arc; |
| 976 | 974 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 977 | 975 |
|
| 978 |
///\brief The type of the map that stores the predecessor |
|
| 979 |
///arcs of the shortest paths. |
|
| 980 | 976 |
typedef typename TR::PredMap PredMap; |
| 981 |
///\brief The type of the map that stores the distances of the nodes. |
|
| 982 | 977 |
typedef typename TR::DistMap DistMap; |
| 983 |
///\brief The type of the map that indicates which nodes are reached. |
|
| 984 | 978 |
typedef typename TR::ReachedMap ReachedMap; |
| 985 |
///\brief The type of the map that indicates which nodes are processed. |
|
| 986 | 979 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 987 |
///The type of the shortest paths |
|
| 988 | 980 |
typedef typename TR::Path Path; |
| 989 | 981 |
|
| 990 | 982 |
public: |
| 991 | 983 |
|
| 992 | 984 |
/// Constructor. |
| 993 | 985 |
BfsWizard() : TR() {}
|
| 994 | 986 |
|
| 995 | 987 |
/// Constructor that requires parameters. |
| 996 | 988 |
|
| 997 | 989 |
/// Constructor that requires parameters. |
| 998 | 990 |
/// These parameters will be the default values for the traits class. |
| 999 | 991 |
/// \param g The digraph the algorithm runs on. |
| 1000 | 992 |
BfsWizard(const Digraph &g) : |
| 1001 | 993 |
TR(g) {}
|
| 1002 | 994 |
|
| 1003 | 995 |
///Copy constructor |
| 1004 | 996 |
BfsWizard(const TR &b) : TR(b) {}
|
| 1005 | 997 |
|
| 1006 | 998 |
~BfsWizard() {}
|
| 1007 | 999 |
|
| 1008 | 1000 |
///Runs BFS algorithm from the given source node. |
| 1009 | 1001 |
|
| 1010 | 1002 |
///This method runs BFS algorithm from node \c s |
| 1011 | 1003 |
///in order to compute the shortest path to each node. |
| 1012 | 1004 |
void run(Node s) |
| 1013 | 1005 |
{
|
| 1014 | 1006 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 1015 | 1007 |
if (Base::_pred) |
| 1016 | 1008 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1017 | 1009 |
if (Base::_dist) |
| 1018 | 1010 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1019 | 1011 |
if (Base::_reached) |
| 1020 | 1012 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 1021 | 1013 |
if (Base::_processed) |
| 1022 | 1014 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1023 | 1015 |
if (s!=INVALID) |
| 1024 | 1016 |
alg.run(s); |
| 1025 | 1017 |
else |
| 1026 | 1018 |
alg.run(); |
| 1027 | 1019 |
} |
| 1028 | 1020 |
|
| 1029 | 1021 |
///Finds the shortest path between \c s and \c t. |
| 1030 | 1022 |
|
| 1031 | 1023 |
///This method runs BFS algorithm from node \c s |
| 1032 | 1024 |
///in order to compute the shortest path to node \c t |
| 1033 | 1025 |
///(it stops searching when \c t is processed). |
| 1034 | 1026 |
/// |
| 1035 | 1027 |
///\return \c true if \c t is reachable form \c s. |
| 1036 | 1028 |
bool run(Node s, Node t) |
| 1037 | 1029 |
{
|
| 1038 | 1030 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 1039 | 1031 |
if (Base::_pred) |
| 1040 | 1032 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1041 | 1033 |
if (Base::_dist) |
| 1042 | 1034 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1043 | 1035 |
if (Base::_reached) |
| 1044 | 1036 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 1045 | 1037 |
if (Base::_processed) |
| 1046 | 1038 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1047 | 1039 |
alg.run(s,t); |
| 1048 | 1040 |
if (Base::_path) |
| 1049 | 1041 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
| 1050 | 1042 |
if (Base::_di) |
| 1051 | 1043 |
*Base::_di = alg.dist(t); |
| 1052 | 1044 |
return alg.reached(t); |
| 1053 | 1045 |
} |
| 1054 | 1046 |
|
| 1055 | 1047 |
///Runs BFS algorithm to visit all nodes in the digraph. |
| 1056 | 1048 |
|
| 1057 | 1049 |
///This method runs BFS algorithm in order to compute |
| 1058 | 1050 |
///the shortest path to each node. |
| 1059 | 1051 |
void run() |
| 1060 | 1052 |
{
|
| 1061 | 1053 |
run(INVALID); |
| 1062 | 1054 |
} |
| 1063 | 1055 |
|
| 1064 | 1056 |
template<class T> |
| 1065 | 1057 |
struct SetPredMapBase : public Base {
|
| 1066 | 1058 |
typedef T PredMap; |
| 1067 | 1059 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1068 | 1060 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1069 | 1061 |
}; |
| 1070 |
///\brief \ref named-func-param "Named parameter" |
|
| 1071 |
///for setting PredMap object. |
|
| 1062 |
|
|
| 1063 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1064 |
///the predecessor map. |
|
| 1072 | 1065 |
/// |
| 1073 |
///\ref named-func-param "Named parameter" |
|
| 1074 |
///for setting PredMap object. |
|
| 1066 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1067 |
///the map that stores the predecessor arcs of the nodes. |
|
| 1075 | 1068 |
template<class T> |
| 1076 | 1069 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1077 | 1070 |
{
|
| 1078 | 1071 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1079 | 1072 |
return BfsWizard<SetPredMapBase<T> >(*this); |
| 1080 | 1073 |
} |
| 1081 | 1074 |
|
| 1082 | 1075 |
template<class T> |
| 1083 | 1076 |
struct SetReachedMapBase : public Base {
|
| 1084 | 1077 |
typedef T ReachedMap; |
| 1085 | 1078 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
|
| 1086 | 1079 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1087 | 1080 |
}; |
| 1088 |
///\brief \ref named-func-param "Named parameter" |
|
| 1089 |
///for setting ReachedMap object. |
|
| 1081 |
|
|
| 1082 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1083 |
///the reached map. |
|
| 1090 | 1084 |
/// |
| 1091 |
/// \ref named-func-param "Named parameter" |
|
| 1092 |
///for setting ReachedMap object. |
|
| 1085 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1086 |
///the map that indicates which nodes are reached. |
|
| 1093 | 1087 |
template<class T> |
| 1094 | 1088 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| 1095 | 1089 |
{
|
| 1096 | 1090 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1097 | 1091 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
| 1098 | 1092 |
} |
| 1099 | 1093 |
|
| 1100 | 1094 |
template<class T> |
| 1101 | 1095 |
struct SetDistMapBase : public Base {
|
| 1102 | 1096 |
typedef T DistMap; |
| 1103 | 1097 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1104 | 1098 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1105 | 1099 |
}; |
| 1106 |
///\brief \ref named-func-param "Named parameter" |
|
| 1107 |
///for setting DistMap object. |
|
| 1100 |
|
|
| 1101 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1102 |
///the distance map. |
|
| 1108 | 1103 |
/// |
| 1109 |
/// \ref named-func-param "Named parameter" |
|
| 1110 |
///for setting DistMap object. |
|
| 1104 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1105 |
///the map that stores the distances of the nodes calculated |
|
| 1106 |
///by the algorithm. |
|
| 1111 | 1107 |
template<class T> |
| 1112 | 1108 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1113 | 1109 |
{
|
| 1114 | 1110 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1115 | 1111 |
return BfsWizard<SetDistMapBase<T> >(*this); |
| 1116 | 1112 |
} |
| 1117 | 1113 |
|
| 1118 | 1114 |
template<class T> |
| 1119 | 1115 |
struct SetProcessedMapBase : public Base {
|
| 1120 | 1116 |
typedef T ProcessedMap; |
| 1121 | 1117 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1122 | 1118 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1123 | 1119 |
}; |
| 1124 |
///\brief \ref named-func-param "Named parameter" |
|
| 1125 |
///for setting ProcessedMap object. |
|
| 1120 |
|
|
| 1121 |
///\brief \ref named-func-param "Named parameter" for setting |
|
| 1122 |
///the processed map. |
|
| 1126 | 1123 |
/// |
| 1127 |
/// \ref named-func-param "Named parameter" |
|
| 1128 |
///for setting ProcessedMap object. |
|
| 1124 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1125 |
///the map that indicates which nodes are processed. |
|
| 1129 | 1126 |
template<class T> |
| 1130 | 1127 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1131 | 1128 |
{
|
| 1132 | 1129 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1133 | 1130 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
| 1134 | 1131 |
} |
| 1135 | 1132 |
|
| 1136 | 1133 |
template<class T> |
| 1137 | 1134 |
struct SetPathBase : public Base {
|
| 1138 | 1135 |
typedef T Path; |
| 1139 | 1136 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1140 | 1137 |
}; |
| 1141 | 1138 |
///\brief \ref named-func-param "Named parameter" |
| 1142 | 1139 |
///for getting the shortest path to the target node. |
| 1143 | 1140 |
/// |
| 1144 | 1141 |
///\ref named-func-param "Named parameter" |
| 1145 | 1142 |
///for getting the shortest path to the target node. |
| 1146 | 1143 |
template<class T> |
| 1147 | 1144 |
BfsWizard<SetPathBase<T> > path(const T &t) |
| 1148 | 1145 |
{
|
| 1149 | 1146 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1150 | 1147 |
return BfsWizard<SetPathBase<T> >(*this); |
| 1151 | 1148 |
} |
| 1152 | 1149 |
|
| 1153 | 1150 |
///\brief \ref named-func-param "Named parameter" |
| 1154 | 1151 |
///for getting the distance of the target node. |
| 1155 | 1152 |
/// |
| 1156 | 1153 |
///\ref named-func-param "Named parameter" |
| 1157 | 1154 |
///for getting the distance of the target node. |
| 1158 | 1155 |
BfsWizard dist(const int &d) |
| 1159 | 1156 |
{
|
| 1160 | 1157 |
Base::_di=const_cast<int*>(&d); |
| 1161 | 1158 |
return *this; |
| 1162 | 1159 |
} |
| 1163 | 1160 |
|
| 1164 | 1161 |
}; |
| 1165 | 1162 |
|
| 1166 | 1163 |
///Function-type interface for BFS algorithm. |
| 1167 | 1164 |
|
| 1168 | 1165 |
/// \ingroup search |
| 1169 | 1166 |
///Function-type interface for BFS algorithm. |
| 1170 | 1167 |
/// |
| 1171 | 1168 |
///This function also has several \ref named-func-param "named parameters", |
| 1172 | 1169 |
///they are declared as the members of class \ref BfsWizard. |
| 1173 | 1170 |
///The following examples show how to use these parameters. |
| 1174 | 1171 |
///\code |
| 1175 | 1172 |
/// // Compute shortest path from node s to each node |
| 1176 | 1173 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
| 1177 | 1174 |
/// |
| 1178 | 1175 |
/// // Compute shortest path from s to t |
| 1179 | 1176 |
/// bool reached = bfs(g).path(p).dist(d).run(s,t); |
| 1180 | 1177 |
///\endcode |
| 1181 | 1178 |
///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()" |
| 1182 | 1179 |
///to the end of the parameter list. |
| 1183 | 1180 |
///\sa BfsWizard |
| 1184 | 1181 |
///\sa Bfs |
| 1185 | 1182 |
template<class GR> |
| 1186 | 1183 |
BfsWizard<BfsWizardBase<GR> > |
| 1187 | 1184 |
bfs(const GR &digraph) |
| 1188 | 1185 |
{
|
| 1189 | 1186 |
return BfsWizard<BfsWizardBase<GR> >(digraph); |
| 1190 | 1187 |
} |
| 1191 | 1188 |
|
| 1192 | 1189 |
#ifdef DOXYGEN |
| 1193 | 1190 |
/// \brief Visitor class for BFS. |
| 1194 | 1191 |
/// |
| 1195 | 1192 |
/// This class defines the interface of the BfsVisit events, and |
| 1196 | 1193 |
/// it could be the base of a real visitor class. |
| 1197 | 1194 |
template <typename GR> |
| 1198 | 1195 |
struct BfsVisitor {
|
| 1199 | 1196 |
typedef GR Digraph; |
| 1200 | 1197 |
typedef typename Digraph::Arc Arc; |
| 1201 | 1198 |
typedef typename Digraph::Node Node; |
| 1202 | 1199 |
/// \brief Called for the source node(s) of the BFS. |
| 1203 | 1200 |
/// |
| 1204 | 1201 |
/// This function is called for the source node(s) of the BFS. |
| 1205 | 1202 |
void start(const Node& node) {}
|
| 1206 | 1203 |
/// \brief Called when a node is reached first time. |
| 1207 | 1204 |
/// |
| 1208 | 1205 |
/// This function is called when a node is reached first time. |
| 1209 | 1206 |
void reach(const Node& node) {}
|
| 1210 | 1207 |
/// \brief Called when a node is processed. |
| 1211 | 1208 |
/// |
| 1212 | 1209 |
/// This function is called when a node is processed. |
| 1213 | 1210 |
void process(const Node& node) {}
|
| 1214 | 1211 |
/// \brief Called when an arc reaches a new node. |
| 1215 | 1212 |
/// |
| 1216 | 1213 |
/// This function is called when the BFS finds an arc whose target node |
| 1217 | 1214 |
/// is not reached yet. |
| 1218 | 1215 |
void discover(const Arc& arc) {}
|
| 1219 | 1216 |
/// \brief Called when an arc is examined but its target node is |
| 1220 | 1217 |
/// already discovered. |
| 1221 | 1218 |
/// |
| 1222 | 1219 |
/// This function is called when an arc is examined but its target node is |
| 1223 | 1220 |
/// already discovered. |
| 1224 | 1221 |
void examine(const Arc& arc) {}
|
| 1225 | 1222 |
}; |
| 1226 | 1223 |
#else |
| 1227 | 1224 |
template <typename GR> |
| 1228 | 1225 |
struct BfsVisitor {
|
| 1229 | 1226 |
typedef GR Digraph; |
| 1230 | 1227 |
typedef typename Digraph::Arc Arc; |
| 1231 | 1228 |
typedef typename Digraph::Node Node; |
| 1232 | 1229 |
void start(const Node&) {}
|
| 1233 | 1230 |
void reach(const Node&) {}
|
| 1234 | 1231 |
void process(const Node&) {}
|
| 1235 | 1232 |
void discover(const Arc&) {}
|
| 1236 | 1233 |
void examine(const Arc&) {}
|
| 1237 | 1234 |
|
| 1238 | 1235 |
template <typename _Visitor> |
| 1239 | 1236 |
struct Constraints {
|
| 1240 | 1237 |
void constraints() {
|
| 1241 | 1238 |
Arc arc; |
| 1242 | 1239 |
Node node; |
| 1243 | 1240 |
visitor.start(node); |
| 1244 | 1241 |
visitor.reach(node); |
| 1245 | 1242 |
visitor.process(node); |
| 1246 | 1243 |
visitor.discover(arc); |
| 1247 | 1244 |
visitor.examine(arc); |
| 1248 | 1245 |
} |
| 1249 | 1246 |
_Visitor& visitor; |
| 1250 | 1247 |
}; |
| 1251 | 1248 |
}; |
| 1252 | 1249 |
#endif |
| 1253 | 1250 |
|
| 1254 | 1251 |
/// \brief Default traits class of BfsVisit class. |
| 1255 | 1252 |
/// |
| 1256 | 1253 |
/// Default traits class of BfsVisit class. |
| 1257 | 1254 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1258 | 1255 |
template<class GR> |
| 1259 | 1256 |
struct BfsVisitDefaultTraits {
|
| 1260 | 1257 |
|
| 1261 | 1258 |
/// \brief The type of the digraph the algorithm runs on. |
| 1262 | 1259 |
typedef GR Digraph; |
| 1263 | 1260 |
|
| 1264 | 1261 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1265 | 1262 |
/// |
| 1266 | 1263 |
/// The type of the map that indicates which nodes are reached. |
| 1267 |
/// It must |
|
| 1264 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 1268 | 1265 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1269 | 1266 |
|
| 1270 | 1267 |
/// \brief Instantiates a ReachedMap. |
| 1271 | 1268 |
/// |
| 1272 | 1269 |
/// This function instantiates a ReachedMap. |
| 1273 | 1270 |
/// \param digraph is the digraph, to which |
| 1274 | 1271 |
/// we would like to define the ReachedMap. |
| 1275 | 1272 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1276 | 1273 |
return new ReachedMap(digraph); |
| 1277 | 1274 |
} |
| 1278 | 1275 |
|
| 1279 | 1276 |
}; |
| 1280 | 1277 |
|
| 1281 | 1278 |
/// \ingroup search |
| 1282 | 1279 |
/// |
| 1283 | 1280 |
/// \brief BFS algorithm class with visitor interface. |
| 1284 | 1281 |
/// |
| 1285 | 1282 |
/// This class provides an efficient implementation of the BFS algorithm |
| 1286 | 1283 |
/// with visitor interface. |
| 1287 | 1284 |
/// |
| 1288 | 1285 |
/// The BfsVisit class provides an alternative interface to the Bfs |
| 1289 | 1286 |
/// class. It works with callback mechanism, the BfsVisit object calls |
| 1290 | 1287 |
/// the member functions of the \c Visitor class on every BFS event. |
| 1291 | 1288 |
/// |
| 1292 | 1289 |
/// This interface of the BFS algorithm should be used in special cases |
| 1293 | 1290 |
/// when extra actions have to be performed in connection with certain |
| 1294 | 1291 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
| 1295 | 1292 |
/// instead. |
| 1296 | 1293 |
/// |
| 1297 | 1294 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1298 | 1295 |
/// The default type is \ref ListDigraph. |
| 1299 | 1296 |
/// The value of GR is not used directly by \ref BfsVisit, |
| 1300 | 1297 |
/// it is only passed to \ref BfsVisitDefaultTraits. |
| 1301 | 1298 |
/// \tparam VS The Visitor type that is used by the algorithm. |
| 1302 | 1299 |
/// \ref BfsVisitor "BfsVisitor<GR>" is an empty visitor, which |
| 1303 | 1300 |
/// does not observe the BFS events. If you want to observe the BFS |
| 1304 | 1301 |
/// events, you should implement your own visitor class. |
| 1305 | 1302 |
/// \tparam TR Traits class to set various data types used by the |
| 1306 | 1303 |
/// algorithm. The default traits class is |
| 1307 | 1304 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<GR>". |
| 1308 | 1305 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
| 1309 | 1306 |
/// a BFS visit traits class. |
| 1310 | 1307 |
#ifdef DOXYGEN |
| 1311 | 1308 |
template <typename GR, typename VS, typename TR> |
| 1312 | 1309 |
#else |
| 1313 | 1310 |
template <typename GR = ListDigraph, |
| 1314 | 1311 |
typename VS = BfsVisitor<GR>, |
| 1315 | 1312 |
typename TR = BfsVisitDefaultTraits<GR> > |
| 1316 | 1313 |
#endif |
| 1317 | 1314 |
class BfsVisit {
|
| 1318 | 1315 |
public: |
| 1319 | 1316 |
|
| 1320 | 1317 |
///The traits class. |
| 1321 | 1318 |
typedef TR Traits; |
| 1322 | 1319 |
|
| 1323 | 1320 |
///The type of the digraph the algorithm runs on. |
| 1324 | 1321 |
typedef typename Traits::Digraph Digraph; |
| 1325 | 1322 |
|
| 1326 | 1323 |
///The visitor type used by the algorithm. |
| 1327 | 1324 |
typedef VS Visitor; |
| 1328 | 1325 |
|
| 1329 | 1326 |
///The type of the map that indicates which nodes are reached. |
| 1330 | 1327 |
typedef typename Traits::ReachedMap ReachedMap; |
| 1331 | 1328 |
|
| 1332 | 1329 |
private: |
| 1333 | 1330 |
|
| 1334 | 1331 |
typedef typename Digraph::Node Node; |
| 1335 | 1332 |
typedef typename Digraph::NodeIt NodeIt; |
| 1336 | 1333 |
typedef typename Digraph::Arc Arc; |
| 1337 | 1334 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1338 | 1335 |
|
| 1339 | 1336 |
//Pointer to the underlying digraph. |
| 1340 | 1337 |
const Digraph *_digraph; |
| 1341 | 1338 |
//Pointer to the visitor object. |
| 1342 | 1339 |
Visitor *_visitor; |
| 1343 | 1340 |
//Pointer to the map of reached status of the nodes. |
| 1344 | 1341 |
ReachedMap *_reached; |
| 1345 | 1342 |
//Indicates if _reached is locally allocated (true) or not. |
| 1346 | 1343 |
bool local_reached; |
| 1347 | 1344 |
|
| 1348 | 1345 |
std::vector<typename Digraph::Node> _list; |
| 1349 | 1346 |
int _list_front, _list_back; |
| 1350 | 1347 |
|
| 1351 | 1348 |
//Creates the maps if necessary. |
| 1352 | 1349 |
void create_maps() {
|
| 1353 | 1350 |
if(!_reached) {
|
| 1354 | 1351 |
local_reached = true; |
| 1355 | 1352 |
_reached = Traits::createReachedMap(*_digraph); |
| 1356 | 1353 |
} |
| 1357 | 1354 |
} |
| 1358 | 1355 |
|
| 1359 | 1356 |
protected: |
| 1360 | 1357 |
|
| 1361 | 1358 |
BfsVisit() {}
|
| 1362 | 1359 |
|
| 1363 | 1360 |
public: |
| 1364 | 1361 |
|
| 1365 | 1362 |
typedef BfsVisit Create; |
| 1366 | 1363 |
|
| 1367 | 1364 |
/// \name Named Template Parameters |
| 1368 | 1365 |
|
| 1369 | 1366 |
///@{
|
| 1370 | 1367 |
template <class T> |
| 1371 | 1368 |
struct SetReachedMapTraits : public Traits {
|
| 1372 | 1369 |
typedef T ReachedMap; |
| 1373 | 1370 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1374 | 1371 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 1375 | 1372 |
return 0; // ignore warnings |
| 1376 | 1373 |
} |
| 1377 | 1374 |
}; |
| 1378 | 1375 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1379 | 1376 |
/// ReachedMap type. |
| 1380 | 1377 |
/// |
| 1381 | 1378 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
| 1382 | 1379 |
template <class T> |
| 1383 | 1380 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
| 1384 | 1381 |
SetReachedMapTraits<T> > {
|
| 1385 | 1382 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
| 1386 | 1383 |
}; |
| 1387 | 1384 |
///@} |
| 1388 | 1385 |
|
| 1389 | 1386 |
public: |
| 1390 | 1387 |
|
| 1391 | 1388 |
/// \brief Constructor. |
| 1392 | 1389 |
/// |
| 1393 | 1390 |
/// Constructor. |
| 1394 | 1391 |
/// |
| 1395 | 1392 |
/// \param digraph The digraph the algorithm runs on. |
| 1396 | 1393 |
/// \param visitor The visitor object of the algorithm. |
| 1397 | 1394 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
| 1398 | 1395 |
: _digraph(&digraph), _visitor(&visitor), |
| 1399 | 1396 |
_reached(0), local_reached(false) {}
|
| 1400 | 1397 |
|
| 1401 | 1398 |
/// \brief Destructor. |
| 1402 | 1399 |
~BfsVisit() {
|
| 1403 | 1400 |
if(local_reached) delete _reached; |
| 1404 | 1401 |
} |
| 1405 | 1402 |
|
| 1406 | 1403 |
/// \brief Sets the map that indicates which nodes are reached. |
| 1407 | 1404 |
/// |
| 1408 | 1405 |
/// Sets the map that indicates which nodes are reached. |
| 1409 | 1406 |
/// If you don't use this function before calling \ref run(Node) "run()" |
| 1410 | 1407 |
/// or \ref init(), an instance will be allocated automatically. |
| 1411 | 1408 |
/// The destructor deallocates this automatically allocated map, |
| 1412 | 1409 |
/// of course. |
| 1413 | 1410 |
/// \return <tt> (*this) </tt> |
| 1414 | 1411 |
BfsVisit &reachedMap(ReachedMap &m) {
|
| 1415 | 1412 |
if(local_reached) {
|
| 1416 | 1413 |
delete _reached; |
| 1417 | 1414 |
local_reached = false; |
| 1418 | 1415 |
} |
| 1419 | 1416 |
_reached = &m; |
| 1420 | 1417 |
return *this; |
| 1421 | 1418 |
} |
| 1422 | 1419 |
|
| 1423 | 1420 |
public: |
| 1424 | 1421 |
|
| 1425 | 1422 |
/// \name Execution Control |
| 1426 | 1423 |
/// The simplest way to execute the BFS algorithm is to use one of the |
| 1427 | 1424 |
/// member functions called \ref run(Node) "run()".\n |
| 1428 |
/// If you need more control on the execution, first you have to call |
|
| 1429 |
/// \ref init(), then you can add several source nodes with |
|
| 1425 |
/// If you need better control on the execution, you have to call |
|
| 1426 |
/// \ref init() first, then you can add several source nodes with |
|
| 1430 | 1427 |
/// \ref addSource(). Finally the actual path computation can be |
| 1431 | 1428 |
/// performed with one of the \ref start() functions. |
| 1432 | 1429 |
|
| 1433 | 1430 |
/// @{
|
| 1434 | 1431 |
|
| 1435 | 1432 |
/// \brief Initializes the internal data structures. |
| 1436 | 1433 |
/// |
| 1437 | 1434 |
/// Initializes the internal data structures. |
| 1438 | 1435 |
void init() {
|
| 1439 | 1436 |
create_maps(); |
| 1440 | 1437 |
_list.resize(countNodes(*_digraph)); |
| 1441 | 1438 |
_list_front = _list_back = -1; |
| 1442 | 1439 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
|
| 1443 | 1440 |
_reached->set(u, false); |
| 1444 | 1441 |
} |
| 1445 | 1442 |
} |
| 1446 | 1443 |
|
| 1447 | 1444 |
/// \brief Adds a new source node. |
| 1448 | 1445 |
/// |
| 1449 | 1446 |
/// Adds a new source node to the set of nodes to be processed. |
| 1450 | 1447 |
void addSource(Node s) {
|
| 1451 | 1448 |
if(!(*_reached)[s]) {
|
| 1452 | 1449 |
_reached->set(s,true); |
| 1453 | 1450 |
_visitor->start(s); |
| 1454 | 1451 |
_visitor->reach(s); |
| 1455 | 1452 |
_list[++_list_back] = s; |
| 1456 | 1453 |
} |
| 1457 | 1454 |
} |
| 1458 | 1455 |
|
| 1459 | 1456 |
/// \brief Processes the next node. |
| 1460 | 1457 |
/// |
| 1461 | 1458 |
/// Processes the next node. |
| 1462 | 1459 |
/// |
| 1463 | 1460 |
/// \return The processed node. |
| 1464 | 1461 |
/// |
| 1465 | 1462 |
/// \pre The queue must not be empty. |
| 1466 | 1463 |
Node processNextNode() {
|
| 1467 | 1464 |
Node n = _list[++_list_front]; |
| 1468 | 1465 |
_visitor->process(n); |
| 1469 | 1466 |
Arc e; |
| 1470 | 1467 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1471 | 1468 |
Node m = _digraph->target(e); |
| 1472 | 1469 |
if (!(*_reached)[m]) {
|
| 1473 | 1470 |
_visitor->discover(e); |
| 1474 | 1471 |
_visitor->reach(m); |
| 1475 | 1472 |
_reached->set(m, true); |
| 1476 | 1473 |
_list[++_list_back] = m; |
| 1477 | 1474 |
} else {
|
| 1478 | 1475 |
_visitor->examine(e); |
| 1479 | 1476 |
} |
| 1480 | 1477 |
} |
| 1481 | 1478 |
return n; |
| 1482 | 1479 |
} |
| 1483 | 1480 |
|
| 1484 | 1481 |
/// \brief Processes the next node. |
| 1485 | 1482 |
/// |
| 1486 | 1483 |
/// Processes the next node and checks if the given target node |
| 1487 | 1484 |
/// is reached. If the target node is reachable from the processed |
| 1488 | 1485 |
/// node, then the \c reach parameter will be set to \c true. |
| 1489 | 1486 |
/// |
| 1490 | 1487 |
/// \param target The target node. |
| 1491 | 1488 |
/// \retval reach Indicates if the target node is reached. |
| 1492 | 1489 |
/// It should be initially \c false. |
| 1493 | 1490 |
/// |
| 1494 | 1491 |
/// \return The processed node. |
| 1495 | 1492 |
/// |
| 1496 | 1493 |
/// \pre The queue must not be empty. |
| 1497 | 1494 |
Node processNextNode(Node target, bool& reach) {
|
| 1498 | 1495 |
Node n = _list[++_list_front]; |
| 1499 | 1496 |
_visitor->process(n); |
| 1500 | 1497 |
Arc e; |
| 1501 | 1498 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1502 | 1499 |
Node m = _digraph->target(e); |
| 1503 | 1500 |
if (!(*_reached)[m]) {
|
| 1504 | 1501 |
_visitor->discover(e); |
| 1505 | 1502 |
_visitor->reach(m); |
| 1506 | 1503 |
_reached->set(m, true); |
| 1507 | 1504 |
_list[++_list_back] = m; |
| 1508 | 1505 |
reach = reach || (target == m); |
| 1509 | 1506 |
} else {
|
| 1510 | 1507 |
_visitor->examine(e); |
| 1511 | 1508 |
} |
| 1512 | 1509 |
} |
| 1513 | 1510 |
return n; |
| 1514 | 1511 |
} |
| 1515 | 1512 |
|
| 1516 | 1513 |
/// \brief Processes the next node. |
| 1517 | 1514 |
/// |
| 1518 | 1515 |
/// Processes the next node and checks if at least one of reached |
| 1519 | 1516 |
/// nodes has \c true value in the \c nm node map. If one node |
| 1520 | 1517 |
/// with \c true value is reachable from the processed node, then the |
| 1521 | 1518 |
/// \c rnode parameter will be set to the first of such nodes. |
| 1522 | 1519 |
/// |
| 1523 | 1520 |
/// \param nm A \c bool (or convertible) node map that indicates the |
| 1524 | 1521 |
/// possible targets. |
| 1525 | 1522 |
/// \retval rnode The reached target node. |
| 1526 | 1523 |
/// It should be initially \c INVALID. |
| 1527 | 1524 |
/// |
| 1528 | 1525 |
/// \return The processed node. |
| 1529 | 1526 |
/// |
| 1530 | 1527 |
/// \pre The queue must not be empty. |
| 1531 | 1528 |
template <typename NM> |
| 1532 | 1529 |
Node processNextNode(const NM& nm, Node& rnode) {
|
| 1533 | 1530 |
Node n = _list[++_list_front]; |
| 1534 | 1531 |
_visitor->process(n); |
| 1535 | 1532 |
Arc e; |
| 1536 | 1533 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1537 | 1534 |
Node m = _digraph->target(e); |
| 1538 | 1535 |
if (!(*_reached)[m]) {
|
| 1539 | 1536 |
_visitor->discover(e); |
| 1540 | 1537 |
_visitor->reach(m); |
| 1541 | 1538 |
_reached->set(m, true); |
| 1542 | 1539 |
_list[++_list_back] = m; |
| 1543 | 1540 |
if (nm[m] && rnode == INVALID) rnode = m; |
| 1544 | 1541 |
} else {
|
| 1545 | 1542 |
_visitor->examine(e); |
| 1546 | 1543 |
} |
| 1547 | 1544 |
} |
| 1548 | 1545 |
return n; |
| 1549 | 1546 |
} |
| 1550 | 1547 |
|
| 1551 | 1548 |
/// \brief The next node to be processed. |
| 1552 | 1549 |
/// |
| 1553 | 1550 |
/// Returns the next node to be processed or \c INVALID if the queue |
| 1554 | 1551 |
/// is empty. |
| 1555 | 1552 |
Node nextNode() const {
|
| 1556 | 1553 |
return _list_front != _list_back ? _list[_list_front + 1] : INVALID; |
| 1557 | 1554 |
} |
| 1558 | 1555 |
|
| 1559 | 1556 |
/// \brief Returns \c false if there are nodes |
| 1560 | 1557 |
/// to be processed. |
| 1561 | 1558 |
/// |
| 1562 | 1559 |
/// Returns \c false if there are nodes |
| 1563 | 1560 |
/// to be processed in the queue. |
| 1564 | 1561 |
bool emptyQueue() const { return _list_front == _list_back; }
|
| 1565 | 1562 |
|
| 1566 | 1563 |
/// \brief Returns the number of the nodes to be processed. |
| 1567 | 1564 |
/// |
| 1568 | 1565 |
/// Returns the number of the nodes to be processed in the queue. |
| 1569 | 1566 |
int queueSize() const { return _list_back - _list_front; }
|
| 1570 | 1567 |
|
| 1571 | 1568 |
/// \brief Executes the algorithm. |
| 1572 | 1569 |
/// |
| 1573 | 1570 |
/// Executes the algorithm. |
| 1574 | 1571 |
/// |
| 1575 | 1572 |
/// This method runs the %BFS algorithm from the root node(s) |
| 1576 | 1573 |
/// in order to compute the shortest path to each node. |
| 1577 | 1574 |
/// |
| 1578 | 1575 |
/// The algorithm computes |
| 1579 | 1576 |
/// - the shortest path tree (forest), |
| 1580 | 1577 |
/// - the distance of each node from the root(s). |
| 1581 | 1578 |
/// |
| 1582 | 1579 |
/// \pre init() must be called and at least one root node should be added |
| 1583 | 1580 |
/// with addSource() before using this function. |
| 1584 | 1581 |
/// |
| 1585 | 1582 |
/// \note <tt>b.start()</tt> is just a shortcut of the following code. |
| 1586 | 1583 |
/// \code |
| 1587 | 1584 |
/// while ( !b.emptyQueue() ) {
|
| 1588 | 1585 |
/// b.processNextNode(); |
| 1589 | 1586 |
/// } |
| 1590 | 1587 |
/// \endcode |
| 1591 | 1588 |
void start() {
|
| 1592 | 1589 |
while ( !emptyQueue() ) processNextNode(); |
| 1593 | 1590 |
} |
| 1594 | 1591 |
|
| 1595 | 1592 |
/// \brief Executes the algorithm until the given target node is reached. |
| 1596 | 1593 |
/// |
| 1597 | 1594 |
/// Executes the algorithm until the given target node is reached. |
| 1598 | 1595 |
/// |
| 1599 | 1596 |
/// This method runs the %BFS algorithm from the root node(s) |
| 1600 | 1597 |
/// in order to compute the shortest path to \c t. |
| 1601 | 1598 |
/// |
| 1602 | 1599 |
/// The algorithm computes |
| 1603 | 1600 |
/// - the shortest path to \c t, |
| 1604 | 1601 |
/// - the distance of \c t from the root(s). |
| 1605 | 1602 |
/// |
| 1606 | 1603 |
/// \pre init() must be called and at least one root node should be |
| 1607 | 1604 |
/// added with addSource() before using this function. |
| 1608 | 1605 |
/// |
| 1609 | 1606 |
/// \note <tt>b.start(t)</tt> is just a shortcut of the following code. |
| 1610 | 1607 |
/// \code |
| 1611 | 1608 |
/// bool reach = false; |
| 1612 | 1609 |
/// while ( !b.emptyQueue() && !reach ) {
|
| 1613 | 1610 |
/// b.processNextNode(t, reach); |
| 1614 | 1611 |
/// } |
| 1615 | 1612 |
/// \endcode |
| 1616 | 1613 |
void start(Node t) {
|
| 1617 | 1614 |
bool reach = false; |
| 1618 | 1615 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
| 1619 | 1616 |
} |
| 1620 | 1617 |
|
| 1621 | 1618 |
/// \brief Executes the algorithm until a condition is met. |
| 1622 | 1619 |
/// |
| 1623 | 1620 |
/// Executes the algorithm until a condition is met. |
| 1624 | 1621 |
/// |
| 1625 | 1622 |
/// This method runs the %BFS algorithm from the root node(s) in |
| 1626 | 1623 |
/// order to compute the shortest path to a node \c v with |
| 1627 | 1624 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
| 1628 | 1625 |
/// |
| 1629 | 1626 |
/// \param nm must be a bool (or convertible) node map. The |
| 1630 | 1627 |
/// algorithm will stop when it reaches a node \c v with |
| 1631 | 1628 |
/// <tt>nm[v]</tt> true. |
| 1632 | 1629 |
/// |
| 1633 | 1630 |
/// \return The reached node \c v with <tt>nm[v]</tt> true or |
| 1634 | 1631 |
/// \c INVALID if no such node was found. |
| 1635 | 1632 |
/// |
| 1636 | 1633 |
/// \pre init() must be called and at least one root node should be |
| 1637 | 1634 |
/// added with addSource() before using this function. |
| 1638 | 1635 |
/// |
| 1639 | 1636 |
/// \note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
| 1640 | 1637 |
/// \code |
| 1641 | 1638 |
/// Node rnode = INVALID; |
| 1642 | 1639 |
/// while ( !b.emptyQueue() && rnode == INVALID ) {
|
| 1643 | 1640 |
/// b.processNextNode(nm, rnode); |
| 1644 | 1641 |
/// } |
| 1645 | 1642 |
/// return rnode; |
| 1646 | 1643 |
/// \endcode |
| 1647 | 1644 |
template <typename NM> |
| 1648 | 1645 |
Node start(const NM &nm) {
|
| 1649 | 1646 |
Node rnode = INVALID; |
| 1650 | 1647 |
while ( !emptyQueue() && rnode == INVALID ) {
|
| 1651 | 1648 |
processNextNode(nm, rnode); |
| 1652 | 1649 |
} |
| 1653 | 1650 |
return rnode; |
| 1654 | 1651 |
} |
| 1655 | 1652 |
|
| 1656 | 1653 |
/// \brief Runs the algorithm from the given source node. |
| 1657 | 1654 |
/// |
| 1658 | 1655 |
/// This method runs the %BFS algorithm from node \c s |
| 1659 | 1656 |
/// in order to compute the shortest path to each node. |
| 1660 | 1657 |
/// |
| 1661 | 1658 |
/// The algorithm computes |
| 1662 | 1659 |
/// - the shortest path tree, |
| 1663 | 1660 |
/// - the distance of each node from the root. |
| 1664 | 1661 |
/// |
| 1665 | 1662 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 1666 | 1663 |
///\code |
| 1667 | 1664 |
/// b.init(); |
| 1668 | 1665 |
/// b.addSource(s); |
| 1669 | 1666 |
/// b.start(); |
| 1670 | 1667 |
///\endcode |
| 1671 | 1668 |
void run(Node s) {
|
| 1672 | 1669 |
init(); |
| 1673 | 1670 |
addSource(s); |
| 1674 | 1671 |
start(); |
| 1675 | 1672 |
} |
| 1676 | 1673 |
|
| 1677 | 1674 |
/// \brief Finds the shortest path between \c s and \c t. |
| 1678 | 1675 |
/// |
| 1679 | 1676 |
/// This method runs the %BFS algorithm from node \c s |
| 1680 | 1677 |
/// in order to compute the shortest path to node \c t |
| 1681 | 1678 |
/// (it stops searching when \c t is processed). |
| 1682 | 1679 |
/// |
| 1683 | 1680 |
/// \return \c true if \c t is reachable form \c s. |
| 1684 | 1681 |
/// |
| 1685 | 1682 |
/// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
| 1686 | 1683 |
/// shortcut of the following code. |
| 1687 | 1684 |
///\code |
| 1688 | 1685 |
/// b.init(); |
| 1689 | 1686 |
/// b.addSource(s); |
| 1690 | 1687 |
/// b.start(t); |
| 1691 | 1688 |
///\endcode |
| 1692 | 1689 |
bool run(Node s,Node t) {
|
| 1693 | 1690 |
init(); |
| 1694 | 1691 |
addSource(s); |
| 1695 | 1692 |
start(t); |
| 1696 | 1693 |
return reached(t); |
| 1697 | 1694 |
} |
| 1698 | 1695 |
|
| 1699 | 1696 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1700 | 1697 |
/// |
| 1701 | 1698 |
/// This method runs the %BFS algorithm in order to |
| 1702 | 1699 |
/// compute the shortest path to each node. |
| 1703 | 1700 |
/// |
| 1704 | 1701 |
/// The algorithm computes |
| 1705 | 1702 |
/// - the shortest path tree (forest), |
| 1706 | 1703 |
/// - the distance of each node from the root(s). |
| 1707 | 1704 |
/// |
| 1708 | 1705 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 1709 | 1706 |
///\code |
| 1710 | 1707 |
/// b.init(); |
| 1711 | 1708 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 1712 | 1709 |
/// if (!b.reached(n)) {
|
| 1713 | 1710 |
/// b.addSource(n); |
| 1714 | 1711 |
/// b.start(); |
| 1715 | 1712 |
/// } |
| 1716 | 1713 |
/// } |
| 1717 | 1714 |
///\endcode |
| 1718 | 1715 |
void run() {
|
| 1719 | 1716 |
init(); |
| 1720 | 1717 |
for (NodeIt it(*_digraph); it != INVALID; ++it) {
|
| 1721 | 1718 |
if (!reached(it)) {
|
| 1722 | 1719 |
addSource(it); |
| 1723 | 1720 |
start(); |
| 1724 | 1721 |
} |
| 1725 | 1722 |
} |
| 1726 | 1723 |
} |
| 1727 | 1724 |
|
| 1728 | 1725 |
///@} |
| 1729 | 1726 |
|
| 1730 | 1727 |
/// \name Query Functions |
| 1731 | 1728 |
/// The results of the BFS algorithm can be obtained using these |
| 1732 | 1729 |
/// functions.\n |
| 1733 | 1730 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
| 1734 | 1731 |
/// before using them. |
| 1735 | 1732 |
|
| 1736 | 1733 |
///@{
|
| 1737 | 1734 |
|
| 1738 |
/// \brief Checks if |
|
| 1735 |
/// \brief Checks if the given node is reached from the root(s). |
|
| 1739 | 1736 |
/// |
| 1740 | 1737 |
/// Returns \c true if \c v is reached from the root(s). |
| 1741 | 1738 |
/// |
| 1742 | 1739 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
| 1743 | 1740 |
/// must be called before using this function. |
| 1744 | 1741 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 1745 | 1742 |
|
| 1746 | 1743 |
///@} |
| 1747 | 1744 |
|
| 1748 | 1745 |
}; |
| 1749 | 1746 |
|
| 1750 | 1747 |
} //END OF NAMESPACE LEMON |
| 1751 | 1748 |
|
| 1752 | 1749 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BIN_HEAP_H |
| 20 | 20 |
#define LEMON_BIN_HEAP_H |
| 21 | 21 |
|
| 22 |
///\ingroup |
|
| 22 |
///\ingroup heaps |
|
| 23 | 23 |
///\file |
| 24 |
///\brief Binary |
|
| 24 |
///\brief Binary heap implementation. |
|
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <utility> |
| 28 | 28 |
#include <functional> |
| 29 | 29 |
|
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 |
///\ingroup |
|
| 32 |
/// \ingroup heaps |
|
| 33 | 33 |
/// |
| 34 |
///\brief |
|
| 34 |
/// \brief Binary heap data structure. |
|
| 35 | 35 |
/// |
| 36 |
///This class implements the \e binary \e heap data structure. |
|
| 36 |
/// This class implements the \e binary \e heap data structure. |
|
| 37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 37 | 38 |
/// |
| 38 |
///A \e heap is a data structure for storing items with specified values |
|
| 39 |
///called \e priorities in such a way that finding the item with minimum |
|
| 40 |
///priority is efficient. \c CMP specifies the ordering of the priorities. |
|
| 41 |
///In a heap one can change the priority of an item, add or erase an |
|
| 42 |
///item, etc. |
|
| 43 |
/// |
|
| 44 |
///\tparam PR Type of the priority of the items. |
|
| 45 |
///\tparam IM A read and writable item map with int values, used internally |
|
| 46 |
///to handle the cross references. |
|
| 47 |
///\tparam CMP A functor class for the ordering of the priorities. |
|
| 48 |
///The default is \c std::less<PR>. |
|
| 49 |
/// |
|
| 50 |
///\sa FibHeap |
|
| 51 |
///\sa Dijkstra |
|
| 39 |
/// \tparam PR Type of the priorities of the items. |
|
| 40 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 41 |
/// internally to handle the cross references. |
|
| 42 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 43 |
/// The default is \c std::less<PR>. |
|
| 44 |
#ifdef DOXYGEN |
|
| 45 |
template <typename PR, typename IM, typename CMP> |
|
| 46 |
#else |
|
| 52 | 47 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
| 48 |
#endif |
|
| 53 | 49 |
class BinHeap {
|
| 50 |
public: |
|
| 54 | 51 |
|
| 55 |
public: |
|
| 56 |
///\e |
|
| 52 |
/// Type of the item-int map. |
|
| 57 | 53 |
typedef IM ItemIntMap; |
| 58 |
/// |
|
| 54 |
/// Type of the priorities. |
|
| 59 | 55 |
typedef PR Prio; |
| 60 |
/// |
|
| 56 |
/// Type of the items stored in the heap. |
|
| 61 | 57 |
typedef typename ItemIntMap::Key Item; |
| 62 |
/// |
|
| 58 |
/// Type of the item-priority pairs. |
|
| 63 | 59 |
typedef std::pair<Item,Prio> Pair; |
| 64 |
/// |
|
| 60 |
/// Functor type for comparing the priorities. |
|
| 65 | 61 |
typedef CMP Compare; |
| 66 | 62 |
|
| 67 |
/// \brief Type to represent the |
|
| 63 |
/// \brief Type to represent the states of the items. |
|
| 68 | 64 |
/// |
| 69 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 70 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 65 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 66 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 71 | 67 |
/// heap's point of view, but may be useful to the user. |
| 72 | 68 |
/// |
| 73 | 69 |
/// The item-int map must be initialized in such way that it assigns |
| 74 | 70 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 75 | 71 |
enum State {
|
| 76 | 72 |
IN_HEAP = 0, ///< = 0. |
| 77 | 73 |
PRE_HEAP = -1, ///< = -1. |
| 78 | 74 |
POST_HEAP = -2 ///< = -2. |
| 79 | 75 |
}; |
| 80 | 76 |
|
| 81 | 77 |
private: |
| 82 | 78 |
std::vector<Pair> _data; |
| 83 | 79 |
Compare _comp; |
| 84 | 80 |
ItemIntMap &_iim; |
| 85 | 81 |
|
| 86 | 82 |
public: |
| 87 |
|
|
| 83 |
|
|
| 84 |
/// \brief Constructor. |
|
| 88 | 85 |
/// |
| 89 |
/// The constructor. |
|
| 90 |
/// \param map should be given to the constructor, since it is used |
|
| 91 |
/// internally to handle the cross references. The value of the map |
|
| 92 |
/// must be \c PRE_HEAP (<tt>-1</tt>) for every item. |
|
| 86 |
/// Constructor. |
|
| 87 |
/// \param map A map that assigns \c int values to the items. |
|
| 88 |
/// It is used internally to handle the cross references. |
|
| 89 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 93 | 90 |
explicit BinHeap(ItemIntMap &map) : _iim(map) {}
|
| 94 | 91 |
|
| 95 |
/// \brief |
|
| 92 |
/// \brief Constructor. |
|
| 96 | 93 |
/// |
| 97 |
/// The constructor. |
|
| 98 |
/// \param map should be given to the constructor, since it is used |
|
| 99 |
/// internally to handle the cross references. The value of the map |
|
| 100 |
/// should be PRE_HEAP (-1) for each element. |
|
| 101 |
/// |
|
| 102 |
/// \param comp The comparator function object. |
|
| 94 |
/// Constructor. |
|
| 95 |
/// \param map A map that assigns \c int values to the items. |
|
| 96 |
/// It is used internally to handle the cross references. |
|
| 97 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 98 |
/// \param comp The function object used for comparing the priorities. |
|
| 103 | 99 |
BinHeap(ItemIntMap &map, const Compare &comp) |
| 104 | 100 |
: _iim(map), _comp(comp) {}
|
| 105 | 101 |
|
| 106 | 102 |
|
| 107 |
/// The number of items stored in the heap. |
|
| 103 |
/// \brief The number of items stored in the heap. |
|
| 108 | 104 |
/// |
| 109 |
/// |
|
| 105 |
/// This function returns the number of items stored in the heap. |
|
| 110 | 106 |
int size() const { return _data.size(); }
|
| 111 | 107 |
|
| 112 |
/// \brief |
|
| 108 |
/// \brief Check if the heap is empty. |
|
| 113 | 109 |
/// |
| 114 |
/// |
|
| 110 |
/// This function returns \c true if the heap is empty. |
|
| 115 | 111 |
bool empty() const { return _data.empty(); }
|
| 116 | 112 |
|
| 117 |
/// \brief Make |
|
| 113 |
/// \brief Make the heap empty. |
|
| 118 | 114 |
/// |
| 119 |
/// Make empty this heap. It does not change the cross reference map. |
|
| 120 |
/// If you want to reuse what is not surely empty you should first clear |
|
| 121 |
/// the heap and after that you should set the cross reference map for |
|
| 122 |
/// each item to \c PRE_HEAP. |
|
| 115 |
/// This functon makes the heap empty. |
|
| 116 |
/// It does not change the cross reference map. If you want to reuse |
|
| 117 |
/// a heap that is not surely empty, you should first clear it and |
|
| 118 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 119 |
/// for each item. |
|
| 123 | 120 |
void clear() {
|
| 124 | 121 |
_data.clear(); |
| 125 | 122 |
} |
| 126 | 123 |
|
| 127 | 124 |
private: |
| 128 | 125 |
static int parent(int i) { return (i-1)/2; }
|
| 129 | 126 |
|
| 130 |
static int |
|
| 127 |
static int secondChild(int i) { return 2*i+2; }
|
|
| 131 | 128 |
bool less(const Pair &p1, const Pair &p2) const {
|
| 132 | 129 |
return _comp(p1.second, p2.second); |
| 133 | 130 |
} |
| 134 | 131 |
|
| 135 |
int |
|
| 132 |
int bubbleUp(int hole, Pair p) {
|
|
| 136 | 133 |
int par = parent(hole); |
| 137 | 134 |
while( hole>0 && less(p,_data[par]) ) {
|
| 138 | 135 |
move(_data[par],hole); |
| 139 | 136 |
hole = par; |
| 140 | 137 |
par = parent(hole); |
| 141 | 138 |
} |
| 142 | 139 |
move(p, hole); |
| 143 | 140 |
return hole; |
| 144 | 141 |
} |
| 145 | 142 |
|
| 146 |
int bubble_down(int hole, Pair p, int length) {
|
|
| 147 |
int child = second_child(hole); |
|
| 143 |
int bubbleDown(int hole, Pair p, int length) {
|
|
| 144 |
int child = secondChild(hole); |
|
| 148 | 145 |
while(child < length) {
|
| 149 | 146 |
if( less(_data[child-1], _data[child]) ) {
|
| 150 | 147 |
--child; |
| 151 | 148 |
} |
| 152 | 149 |
if( !less(_data[child], p) ) |
| 153 | 150 |
goto ok; |
| 154 | 151 |
move(_data[child], hole); |
| 155 | 152 |
hole = child; |
| 156 |
child = |
|
| 153 |
child = secondChild(hole); |
|
| 157 | 154 |
} |
| 158 | 155 |
child--; |
| 159 | 156 |
if( child<length && less(_data[child], p) ) {
|
| 160 | 157 |
move(_data[child], hole); |
| 161 | 158 |
hole=child; |
| 162 | 159 |
} |
| 163 | 160 |
ok: |
| 164 | 161 |
move(p, hole); |
| 165 | 162 |
return hole; |
| 166 | 163 |
} |
| 167 | 164 |
|
| 168 | 165 |
void move(const Pair &p, int i) {
|
| 169 | 166 |
_data[i] = p; |
| 170 | 167 |
_iim.set(p.first, i); |
| 171 | 168 |
} |
| 172 | 169 |
|
| 173 | 170 |
public: |
| 171 |
|
|
| 174 | 172 |
/// \brief Insert a pair of item and priority into the heap. |
| 175 | 173 |
/// |
| 176 |
/// |
|
| 174 |
/// This function inserts \c p.first to the heap with priority |
|
| 175 |
/// \c p.second. |
|
| 177 | 176 |
/// \param p The pair to insert. |
| 177 |
/// \pre \c p.first must not be stored in the heap. |
|
| 178 | 178 |
void push(const Pair &p) {
|
| 179 | 179 |
int n = _data.size(); |
| 180 | 180 |
_data.resize(n+1); |
| 181 |
|
|
| 181 |
bubbleUp(n, p); |
|
| 182 | 182 |
} |
| 183 | 183 |
|
| 184 |
/// \brief Insert an item into the heap with the given |
|
| 184 |
/// \brief Insert an item into the heap with the given priority. |
|
| 185 | 185 |
/// |
| 186 |
/// |
|
| 186 |
/// This function inserts the given item into the heap with the |
|
| 187 |
/// given priority. |
|
| 187 | 188 |
/// \param i The item to insert. |
| 188 | 189 |
/// \param p The priority of the item. |
| 190 |
/// \pre \e i must not be stored in the heap. |
|
| 189 | 191 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
|
| 190 | 192 |
|
| 191 |
/// \brief |
|
| 193 |
/// \brief Return the item having minimum priority. |
|
| 192 | 194 |
/// |
| 193 |
/// This method returns the item with minimum priority relative to \c |
|
| 194 |
/// Compare. |
|
| 195 |
/// |
|
| 195 |
/// This function returns the item having minimum priority. |
|
| 196 |
/// \pre The heap must be non-empty. |
|
| 196 | 197 |
Item top() const {
|
| 197 | 198 |
return _data[0].first; |
| 198 | 199 |
} |
| 199 | 200 |
|
| 200 |
/// \brief |
|
| 201 |
/// \brief The minimum priority. |
|
| 201 | 202 |
/// |
| 202 |
/// It returns the minimum priority relative to \c Compare. |
|
| 203 |
/// \pre The heap must be nonempty. |
|
| 203 |
/// This function returns the minimum priority. |
|
| 204 |
/// \pre The heap must be non-empty. |
|
| 204 | 205 |
Prio prio() const {
|
| 205 | 206 |
return _data[0].second; |
| 206 | 207 |
} |
| 207 | 208 |
|
| 208 |
/// \brief |
|
| 209 |
/// \brief Remove the item having minimum priority. |
|
| 209 | 210 |
/// |
| 210 |
/// This method deletes the item with minimum priority relative to \c |
|
| 211 |
/// Compare from the heap. |
|
| 211 |
/// This function removes the item having minimum priority. |
|
| 212 | 212 |
/// \pre The heap must be non-empty. |
| 213 | 213 |
void pop() {
|
| 214 | 214 |
int n = _data.size()-1; |
| 215 | 215 |
_iim.set(_data[0].first, POST_HEAP); |
| 216 | 216 |
if (n > 0) {
|
| 217 |
|
|
| 217 |
bubbleDown(0, _data[n], n); |
|
| 218 | 218 |
} |
| 219 | 219 |
_data.pop_back(); |
| 220 | 220 |
} |
| 221 | 221 |
|
| 222 |
/// \brief |
|
| 222 |
/// \brief Remove the given item from the heap. |
|
| 223 | 223 |
/// |
| 224 |
/// This method deletes item \c i from the heap. |
|
| 225 |
/// \param i The item to erase. |
|
| 226 |
/// |
|
| 224 |
/// This function removes the given item from the heap if it is |
|
| 225 |
/// already stored. |
|
| 226 |
/// \param i The item to delete. |
|
| 227 |
/// \pre \e i must be in the heap. |
|
| 227 | 228 |
void erase(const Item &i) {
|
| 228 | 229 |
int h = _iim[i]; |
| 229 | 230 |
int n = _data.size()-1; |
| 230 | 231 |
_iim.set(_data[h].first, POST_HEAP); |
| 231 | 232 |
if( h < n ) {
|
| 232 |
if ( bubble_up(h, _data[n]) == h) {
|
|
| 233 |
bubble_down(h, _data[n], n); |
|
| 233 |
if ( bubbleUp(h, _data[n]) == h) {
|
|
| 234 |
bubbleDown(h, _data[n], n); |
|
| 234 | 235 |
} |
| 235 | 236 |
} |
| 236 | 237 |
_data.pop_back(); |
| 237 | 238 |
} |
| 238 | 239 |
|
| 239 |
|
|
| 240 |
/// \brief Returns the priority of \c i. |
|
| 240 |
/// \brief The priority of the given item. |
|
| 241 | 241 |
/// |
| 242 |
/// This function returns the priority of |
|
| 242 |
/// This function returns the priority of the given item. |
|
| 243 | 243 |
/// \param i The item. |
| 244 |
/// \pre \ |
|
| 244 |
/// \pre \e i must be in the heap. |
|
| 245 | 245 |
Prio operator[](const Item &i) const {
|
| 246 | 246 |
int idx = _iim[i]; |
| 247 | 247 |
return _data[idx].second; |
| 248 | 248 |
} |
| 249 | 249 |
|
| 250 |
/// \brief \c i gets to the heap with priority \c p independently |
|
| 251 |
/// if \c i was already there. |
|
| 250 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 251 |
/// not stored in the heap. |
|
| 252 | 252 |
/// |
| 253 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
| 254 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
| 253 |
/// This method sets the priority of the given item if it is |
|
| 254 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 255 |
/// item into the heap with the given priority. |
|
| 255 | 256 |
/// \param i The item. |
| 256 | 257 |
/// \param p The priority. |
| 257 | 258 |
void set(const Item &i, const Prio &p) {
|
| 258 | 259 |
int idx = _iim[i]; |
| 259 | 260 |
if( idx < 0 ) {
|
| 260 | 261 |
push(i,p); |
| 261 | 262 |
} |
| 262 | 263 |
else if( _comp(p, _data[idx].second) ) {
|
| 263 |
|
|
| 264 |
bubbleUp(idx, Pair(i,p)); |
|
| 264 | 265 |
} |
| 265 | 266 |
else {
|
| 266 |
|
|
| 267 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 267 | 268 |
} |
| 268 | 269 |
} |
| 269 | 270 |
|
| 270 |
/// \brief |
|
| 271 |
/// \brief Decrease the priority of an item to the given value. |
|
| 271 | 272 |
/// |
| 272 |
/// This |
|
| 273 |
/// This function decreases the priority of an item to the given value. |
|
| 273 | 274 |
/// \param i The item. |
| 274 | 275 |
/// \param p The priority. |
| 275 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
| 276 |
/// p relative to \c Compare. |
|
| 276 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 277 | 277 |
void decrease(const Item &i, const Prio &p) {
|
| 278 | 278 |
int idx = _iim[i]; |
| 279 |
|
|
| 279 |
bubbleUp(idx, Pair(i,p)); |
|
| 280 | 280 |
} |
| 281 | 281 |
|
| 282 |
/// \brief |
|
| 282 |
/// \brief Increase the priority of an item to the given value. |
|
| 283 | 283 |
/// |
| 284 |
/// This |
|
| 284 |
/// This function increases the priority of an item to the given value. |
|
| 285 | 285 |
/// \param i The item. |
| 286 | 286 |
/// \param p The priority. |
| 287 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
| 288 |
/// p relative to \c Compare. |
|
| 287 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 289 | 288 |
void increase(const Item &i, const Prio &p) {
|
| 290 | 289 |
int idx = _iim[i]; |
| 291 |
|
|
| 290 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 292 | 291 |
} |
| 293 | 292 |
|
| 294 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 295 |
/// never been in the heap. |
|
| 293 |
/// \brief Return the state of an item. |
|
| 296 | 294 |
/// |
| 297 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 298 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 299 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 300 |
/// get back to the heap again. |
|
| 295 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 296 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 297 |
/// and \c POST_HEAP otherwise. |
|
| 298 |
/// In the latter case it is possible that the item will get back |
|
| 299 |
/// to the heap again. |
|
| 301 | 300 |
/// \param i The item. |
| 302 | 301 |
State state(const Item &i) const {
|
| 303 | 302 |
int s = _iim[i]; |
| 304 | 303 |
if( s>=0 ) |
| 305 | 304 |
s=0; |
| 306 | 305 |
return State(s); |
| 307 | 306 |
} |
| 308 | 307 |
|
| 309 |
/// \brief |
|
| 308 |
/// \brief Set the state of an item in the heap. |
|
| 310 | 309 |
/// |
| 311 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 312 |
/// manually clear the heap when it is important to achive the |
|
| 313 |
/// |
|
| 310 |
/// This function sets the state of the given item in the heap. |
|
| 311 |
/// It can be used to manually clear the heap when it is important |
|
| 312 |
/// to achive better time complexity. |
|
| 314 | 313 |
/// \param i The item. |
| 315 | 314 |
/// \param st The state. It should not be \c IN_HEAP. |
| 316 | 315 |
void state(const Item& i, State st) {
|
| 317 | 316 |
switch (st) {
|
| 318 | 317 |
case POST_HEAP: |
| 319 | 318 |
case PRE_HEAP: |
| 320 | 319 |
if (state(i) == IN_HEAP) {
|
| 321 | 320 |
erase(i); |
| 322 | 321 |
} |
| 323 | 322 |
_iim[i] = st; |
| 324 | 323 |
break; |
| 325 | 324 |
case IN_HEAP: |
| 326 | 325 |
break; |
| 327 | 326 |
} |
| 328 | 327 |
} |
| 329 | 328 |
|
| 330 |
/// \brief |
|
| 329 |
/// \brief Replace an item in the heap. |
|
| 331 | 330 |
/// |
| 332 |
/// The \c i item is replaced with \c j item. The \c i item should |
|
| 333 |
/// be in the heap, while the \c j should be out of the heap. The |
|
| 334 |
/// \c i item will out of the heap and \c j will be in the heap |
|
| 335 |
/// with the same prioriority as prevoiusly the \c i item. |
|
| 331 |
/// This function replaces item \c i with item \c j. |
|
| 332 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
| 333 |
/// After calling this method, item \c i will be out of the |
|
| 334 |
/// heap and \c j will be in the heap with the same prioriority |
|
| 335 |
/// as item \c i had before. |
|
| 336 | 336 |
void replace(const Item& i, const Item& j) {
|
| 337 | 337 |
int idx = _iim[i]; |
| 338 | 338 |
_iim.set(i, _iim[j]); |
| 339 | 339 |
_iim.set(j, idx); |
| 340 | 340 |
_data[idx].first = j; |
| 341 | 341 |
} |
| 342 | 342 |
|
| 343 | 343 |
}; // class BinHeap |
| 344 | 344 |
|
| 345 | 345 |
} // namespace lemon |
| 346 | 346 |
|
| 347 | 347 |
#endif // LEMON_BIN_HEAP_H |
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_EDGE_SET_EXTENDER_H |
| 20 | 20 |
#define LEMON_BITS_EDGE_SET_EXTENDER_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/error.h> |
| 24 | 24 |
#include <lemon/bits/default_map.h> |
| 25 | 25 |
#include <lemon/bits/map_extender.h> |
| 26 | 26 |
|
| 27 | 27 |
//\ingroup digraphbits |
| 28 | 28 |
//\file |
| 29 | 29 |
//\brief Extenders for the arc set types |
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
// \ingroup digraphbits |
| 33 | 33 |
// |
| 34 | 34 |
// \brief Extender for the ArcSets |
| 35 | 35 |
template <typename Base> |
| 36 | 36 |
class ArcSetExtender : public Base {
|
| 37 | 37 |
typedef Base Parent; |
| 38 | 38 |
|
| 39 | 39 |
public: |
| 40 | 40 |
|
| 41 | 41 |
typedef ArcSetExtender Digraph; |
| 42 | 42 |
|
| 43 | 43 |
// Base extensions |
| 44 | 44 |
|
| 45 | 45 |
typedef typename Parent::Node Node; |
| 46 | 46 |
typedef typename Parent::Arc Arc; |
| 47 | 47 |
|
| 48 | 48 |
int maxId(Node) const {
|
| 49 | 49 |
return Parent::maxNodeId(); |
| 50 | 50 |
} |
| 51 | 51 |
|
| 52 | 52 |
int maxId(Arc) const {
|
| 53 | 53 |
return Parent::maxArcId(); |
| 54 | 54 |
} |
| 55 | 55 |
|
| 56 | 56 |
Node fromId(int id, Node) const {
|
| 57 | 57 |
return Parent::nodeFromId(id); |
| 58 | 58 |
} |
| 59 | 59 |
|
| 60 | 60 |
Arc fromId(int id, Arc) const {
|
| 61 | 61 |
return Parent::arcFromId(id); |
| 62 | 62 |
} |
| 63 | 63 |
|
| 64 | 64 |
Node oppositeNode(const Node &n, const Arc &e) const {
|
| 65 | 65 |
if (n == Parent::source(e)) |
| 66 | 66 |
return Parent::target(e); |
| 67 | 67 |
else if(n==Parent::target(e)) |
| 68 | 68 |
return Parent::source(e); |
| 69 | 69 |
else |
| 70 | 70 |
return INVALID; |
| 71 | 71 |
} |
| 72 | 72 |
|
| 73 | 73 |
|
| 74 | 74 |
// Alteration notifier extensions |
| 75 | 75 |
|
| 76 | 76 |
// The arc observer registry. |
| 77 | 77 |
typedef AlterationNotifier<ArcSetExtender, Arc> ArcNotifier; |
| 78 | 78 |
|
| 79 | 79 |
protected: |
| 80 | 80 |
|
| 81 | 81 |
mutable ArcNotifier arc_notifier; |
| 82 | 82 |
|
| 83 | 83 |
public: |
| 84 | 84 |
|
| 85 | 85 |
using Parent::notifier; |
| 86 | 86 |
|
| 87 | 87 |
// Gives back the arc alteration notifier. |
| 88 | 88 |
ArcNotifier& notifier(Arc) const {
|
| 89 | 89 |
return arc_notifier; |
| 90 | 90 |
} |
| 91 | 91 |
|
| 92 | 92 |
// Iterable extensions |
| 93 | 93 |
|
| 94 | 94 |
class NodeIt : public Node {
|
| 95 | 95 |
const Digraph* digraph; |
| 96 | 96 |
public: |
| 97 | 97 |
|
| 98 | 98 |
NodeIt() {}
|
| 99 | 99 |
|
| 100 | 100 |
NodeIt(Invalid i) : Node(i) { }
|
| 101 | 101 |
|
| 102 | 102 |
explicit NodeIt(const Digraph& _graph) : digraph(&_graph) {
|
| 103 | 103 |
_graph.first(static_cast<Node&>(*this)); |
| 104 | 104 |
} |
| 105 | 105 |
|
| 106 | 106 |
NodeIt(const Digraph& _graph, const Node& node) |
| 107 | 107 |
: Node(node), digraph(&_graph) {}
|
| 108 | 108 |
|
| 109 | 109 |
NodeIt& operator++() {
|
| 110 | 110 |
digraph->next(*this); |
| 111 | 111 |
return *this; |
| 112 | 112 |
} |
| 113 | 113 |
|
| 114 | 114 |
}; |
| 115 | 115 |
|
| 116 | 116 |
|
| 117 | 117 |
class ArcIt : public Arc {
|
| 118 | 118 |
const Digraph* digraph; |
| 119 | 119 |
public: |
| 120 | 120 |
|
| 121 | 121 |
ArcIt() { }
|
| 122 | 122 |
|
| 123 | 123 |
ArcIt(Invalid i) : Arc(i) { }
|
| 124 | 124 |
|
| 125 | 125 |
explicit ArcIt(const Digraph& _graph) : digraph(&_graph) {
|
| 126 | 126 |
_graph.first(static_cast<Arc&>(*this)); |
| 127 | 127 |
} |
| 128 | 128 |
|
| 129 | 129 |
ArcIt(const Digraph& _graph, const Arc& e) : |
| 130 | 130 |
Arc(e), digraph(&_graph) { }
|
| 131 | 131 |
|
| 132 | 132 |
ArcIt& operator++() {
|
| 133 | 133 |
digraph->next(*this); |
| 134 | 134 |
return *this; |
| 135 | 135 |
} |
| 136 | 136 |
|
| 137 | 137 |
}; |
| 138 | 138 |
|
| 139 | 139 |
|
| 140 | 140 |
class OutArcIt : public Arc {
|
| 141 | 141 |
const Digraph* digraph; |
| 142 | 142 |
public: |
| 143 | 143 |
|
| 144 | 144 |
OutArcIt() { }
|
| 145 | 145 |
|
| 146 | 146 |
OutArcIt(Invalid i) : Arc(i) { }
|
| 147 | 147 |
|
| 148 | 148 |
OutArcIt(const Digraph& _graph, const Node& node) |
| 149 | 149 |
: digraph(&_graph) {
|
| 150 | 150 |
_graph.firstOut(*this, node); |
| 151 | 151 |
} |
| 152 | 152 |
|
| 153 | 153 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
| 154 | 154 |
: Arc(arc), digraph(&_graph) {}
|
| 155 | 155 |
|
| 156 | 156 |
OutArcIt& operator++() {
|
| 157 | 157 |
digraph->nextOut(*this); |
| 158 | 158 |
return *this; |
| 159 | 159 |
} |
| 160 | 160 |
|
| 161 | 161 |
}; |
| 162 | 162 |
|
| 163 | 163 |
|
| 164 | 164 |
class InArcIt : public Arc {
|
| 165 | 165 |
const Digraph* digraph; |
| 166 | 166 |
public: |
| 167 | 167 |
|
| 168 | 168 |
InArcIt() { }
|
| 169 | 169 |
|
| 170 | 170 |
InArcIt(Invalid i) : Arc(i) { }
|
| 171 | 171 |
|
| 172 | 172 |
InArcIt(const Digraph& _graph, const Node& node) |
| 173 | 173 |
: digraph(&_graph) {
|
| 174 | 174 |
_graph.firstIn(*this, node); |
| 175 | 175 |
} |
| 176 | 176 |
|
| 177 | 177 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
| 178 | 178 |
Arc(arc), digraph(&_graph) {}
|
| 179 | 179 |
|
| 180 | 180 |
InArcIt& operator++() {
|
| 181 | 181 |
digraph->nextIn(*this); |
| 182 | 182 |
return *this; |
| 183 | 183 |
} |
| 184 | 184 |
|
| 185 | 185 |
}; |
| 186 | 186 |
|
| 187 | 187 |
// \brief Base node of the iterator |
| 188 | 188 |
// |
| 189 | 189 |
// Returns the base node (ie. the source in this case) of the iterator |
| 190 | 190 |
Node baseNode(const OutArcIt &e) const {
|
| 191 | 191 |
return Parent::source(static_cast<const Arc&>(e)); |
| 192 | 192 |
} |
| 193 | 193 |
// \brief Running node of the iterator |
| 194 | 194 |
// |
| 195 | 195 |
// Returns the running node (ie. the target in this case) of the |
| 196 | 196 |
// iterator |
| 197 | 197 |
Node runningNode(const OutArcIt &e) const {
|
| 198 | 198 |
return Parent::target(static_cast<const Arc&>(e)); |
| 199 | 199 |
} |
| 200 | 200 |
|
| 201 | 201 |
// \brief Base node of the iterator |
| 202 | 202 |
// |
| 203 | 203 |
// Returns the base node (ie. the target in this case) of the iterator |
| 204 | 204 |
Node baseNode(const InArcIt &e) const {
|
| 205 | 205 |
return Parent::target(static_cast<const Arc&>(e)); |
| 206 | 206 |
} |
| 207 | 207 |
// \brief Running node of the iterator |
| 208 | 208 |
// |
| 209 | 209 |
// Returns the running node (ie. the source in this case) of the |
| 210 | 210 |
// iterator |
| 211 | 211 |
Node runningNode(const InArcIt &e) const {
|
| 212 | 212 |
return Parent::source(static_cast<const Arc&>(e)); |
| 213 | 213 |
} |
| 214 | 214 |
|
| 215 | 215 |
using Parent::first; |
| 216 | 216 |
|
| 217 | 217 |
// Mappable extension |
| 218 | 218 |
|
| 219 | 219 |
template <typename _Value> |
| 220 | 220 |
class ArcMap |
| 221 | 221 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > {
|
| 222 | 222 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
| 223 | 223 |
|
| 224 | 224 |
public: |
| 225 | 225 |
explicit ArcMap(const Digraph& _g) |
| 226 | 226 |
: Parent(_g) {}
|
| 227 | 227 |
ArcMap(const Digraph& _g, const _Value& _v) |
| 228 | 228 |
: Parent(_g, _v) {}
|
| 229 | 229 |
|
| 230 | 230 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 231 | 231 |
return operator=<ArcMap>(cmap); |
| 232 | 232 |
} |
| 233 | 233 |
|
| 234 | 234 |
template <typename CMap> |
| 235 | 235 |
ArcMap& operator=(const CMap& cmap) {
|
| 236 | 236 |
Parent::operator=(cmap); |
| 237 | 237 |
return *this; |
| 238 | 238 |
} |
| 239 | 239 |
|
| 240 | 240 |
}; |
| 241 | 241 |
|
| 242 | 242 |
|
| 243 | 243 |
// Alteration extension |
| 244 | 244 |
|
| 245 | 245 |
Arc addArc(const Node& from, const Node& to) {
|
| 246 | 246 |
Arc arc = Parent::addArc(from, to); |
| 247 | 247 |
notifier(Arc()).add(arc); |
| 248 | 248 |
return arc; |
| 249 | 249 |
} |
| 250 | 250 |
|
| 251 | 251 |
void clear() {
|
| 252 | 252 |
notifier(Arc()).clear(); |
| 253 | 253 |
Parent::clear(); |
| 254 | 254 |
} |
| 255 | 255 |
|
| 256 | 256 |
void erase(const Arc& arc) {
|
| 257 | 257 |
notifier(Arc()).erase(arc); |
| 258 | 258 |
Parent::erase(arc); |
| 259 | 259 |
} |
| 260 | 260 |
|
| 261 | 261 |
ArcSetExtender() {
|
| 262 | 262 |
arc_notifier.setContainer(*this); |
| 263 | 263 |
} |
| 264 | 264 |
|
| 265 | 265 |
~ArcSetExtender() {
|
| 266 | 266 |
arc_notifier.clear(); |
| 267 | 267 |
} |
| 268 | 268 |
|
| 269 | 269 |
}; |
| 270 | 270 |
|
| 271 | 271 |
|
| 272 | 272 |
// \ingroup digraphbits |
| 273 | 273 |
// |
| 274 | 274 |
// \brief Extender for the EdgeSets |
| 275 | 275 |
template <typename Base> |
| 276 | 276 |
class EdgeSetExtender : public Base {
|
| 277 | 277 |
typedef Base Parent; |
| 278 | 278 |
|
| 279 | 279 |
public: |
| 280 | 280 |
|
| 281 | 281 |
typedef EdgeSetExtender Graph; |
| 282 | 282 |
|
| 283 | 283 |
typedef typename Parent::Node Node; |
| 284 | 284 |
typedef typename Parent::Arc Arc; |
| 285 | 285 |
typedef typename Parent::Edge Edge; |
| 286 | 286 |
|
| 287 | 287 |
int maxId(Node) const {
|
| 288 | 288 |
return Parent::maxNodeId(); |
| 289 | 289 |
} |
| 290 | 290 |
|
| 291 | 291 |
int maxId(Arc) const {
|
| 292 | 292 |
return Parent::maxArcId(); |
| 293 | 293 |
} |
| 294 | 294 |
|
| 295 | 295 |
int maxId(Edge) const {
|
| 296 | 296 |
return Parent::maxEdgeId(); |
| 297 | 297 |
} |
| 298 | 298 |
|
| 299 | 299 |
Node fromId(int id, Node) const {
|
| 300 | 300 |
return Parent::nodeFromId(id); |
| 301 | 301 |
} |
| 302 | 302 |
|
| 303 | 303 |
Arc fromId(int id, Arc) const {
|
| 304 | 304 |
return Parent::arcFromId(id); |
| 305 | 305 |
} |
| 306 | 306 |
|
| 307 | 307 |
Edge fromId(int id, Edge) const {
|
| 308 | 308 |
return Parent::edgeFromId(id); |
| 309 | 309 |
} |
| 310 | 310 |
|
| 311 | 311 |
Node oppositeNode(const Node &n, const Edge &e) const {
|
| 312 | 312 |
if( n == Parent::u(e)) |
| 313 | 313 |
return Parent::v(e); |
| 314 | 314 |
else if( n == Parent::v(e)) |
| 315 | 315 |
return Parent::u(e); |
| 316 | 316 |
else |
| 317 | 317 |
return INVALID; |
| 318 | 318 |
} |
| 319 | 319 |
|
| 320 | 320 |
Arc oppositeArc(const Arc &e) const {
|
| 321 | 321 |
return Parent::direct(e, !Parent::direction(e)); |
| 322 | 322 |
} |
| 323 | 323 |
|
| 324 | 324 |
using Parent::direct; |
| 325 | 325 |
Arc direct(const Edge &e, const Node &s) const {
|
| 326 | 326 |
return Parent::direct(e, Parent::u(e) == s); |
| 327 | 327 |
} |
| 328 | 328 |
|
| 329 | 329 |
typedef AlterationNotifier<EdgeSetExtender, Arc> ArcNotifier; |
| 330 | 330 |
typedef AlterationNotifier<EdgeSetExtender, Edge> EdgeNotifier; |
| 331 | 331 |
|
| 332 | 332 |
|
| 333 | 333 |
protected: |
| 334 | 334 |
|
| 335 | 335 |
mutable ArcNotifier arc_notifier; |
| 336 | 336 |
mutable EdgeNotifier edge_notifier; |
| 337 | 337 |
|
| 338 | 338 |
public: |
| 339 | 339 |
|
| 340 | 340 |
using Parent::notifier; |
| 341 | 341 |
|
| 342 | 342 |
ArcNotifier& notifier(Arc) const {
|
| 343 | 343 |
return arc_notifier; |
| 344 | 344 |
} |
| 345 | 345 |
|
| 346 | 346 |
EdgeNotifier& notifier(Edge) const {
|
| 347 | 347 |
return edge_notifier; |
| 348 | 348 |
} |
| 349 | 349 |
|
| 350 | 350 |
|
| 351 | 351 |
class NodeIt : public Node {
|
| 352 | 352 |
const Graph* graph; |
| 353 | 353 |
public: |
| 354 | 354 |
|
| 355 | 355 |
NodeIt() {}
|
| 356 | 356 |
|
| 357 | 357 |
NodeIt(Invalid i) : Node(i) { }
|
| 358 | 358 |
|
| 359 | 359 |
explicit NodeIt(const Graph& _graph) : graph(&_graph) {
|
| 360 | 360 |
_graph.first(static_cast<Node&>(*this)); |
| 361 | 361 |
} |
| 362 | 362 |
|
| 363 | 363 |
NodeIt(const Graph& _graph, const Node& node) |
| 364 | 364 |
: Node(node), graph(&_graph) {}
|
| 365 | 365 |
|
| 366 | 366 |
NodeIt& operator++() {
|
| 367 | 367 |
graph->next(*this); |
| 368 | 368 |
return *this; |
| 369 | 369 |
} |
| 370 | 370 |
|
| 371 | 371 |
}; |
| 372 | 372 |
|
| 373 | 373 |
|
| 374 | 374 |
class ArcIt : public Arc {
|
| 375 | 375 |
const Graph* graph; |
| 376 | 376 |
public: |
| 377 | 377 |
|
| 378 | 378 |
ArcIt() { }
|
| 379 | 379 |
|
| 380 | 380 |
ArcIt(Invalid i) : Arc(i) { }
|
| 381 | 381 |
|
| 382 | 382 |
explicit ArcIt(const Graph& _graph) : graph(&_graph) {
|
| 383 | 383 |
_graph.first(static_cast<Arc&>(*this)); |
| 384 | 384 |
} |
| 385 | 385 |
|
| 386 | 386 |
ArcIt(const Graph& _graph, const Arc& e) : |
| 387 | 387 |
Arc(e), graph(&_graph) { }
|
| 388 | 388 |
|
| 389 | 389 |
ArcIt& operator++() {
|
| 390 | 390 |
graph->next(*this); |
| 391 | 391 |
return *this; |
| 392 | 392 |
} |
| 393 | 393 |
|
| 394 | 394 |
}; |
| 395 | 395 |
|
| 396 | 396 |
|
| 397 | 397 |
class OutArcIt : public Arc {
|
| 398 | 398 |
const Graph* graph; |
| 399 | 399 |
public: |
| 400 | 400 |
|
| 401 | 401 |
OutArcIt() { }
|
| 402 | 402 |
|
| 403 | 403 |
OutArcIt(Invalid i) : Arc(i) { }
|
| 404 | 404 |
|
| 405 | 405 |
OutArcIt(const Graph& _graph, const Node& node) |
| 406 | 406 |
: graph(&_graph) {
|
| 407 | 407 |
_graph.firstOut(*this, node); |
| 408 | 408 |
} |
| 409 | 409 |
|
| 410 | 410 |
OutArcIt(const Graph& _graph, const Arc& arc) |
| 411 | 411 |
: Arc(arc), graph(&_graph) {}
|
| 412 | 412 |
|
| 413 | 413 |
OutArcIt& operator++() {
|
| 414 | 414 |
graph->nextOut(*this); |
| 415 | 415 |
return *this; |
| 416 | 416 |
} |
| 417 | 417 |
|
| 418 | 418 |
}; |
| 419 | 419 |
|
| 420 | 420 |
|
| 421 | 421 |
class InArcIt : public Arc {
|
| 422 | 422 |
const Graph* graph; |
| 423 | 423 |
public: |
| 424 | 424 |
|
| 425 | 425 |
InArcIt() { }
|
| 426 | 426 |
|
| 427 | 427 |
InArcIt(Invalid i) : Arc(i) { }
|
| 428 | 428 |
|
| 429 | 429 |
InArcIt(const Graph& _graph, const Node& node) |
| 430 | 430 |
: graph(&_graph) {
|
| 431 | 431 |
_graph.firstIn(*this, node); |
| 432 | 432 |
} |
| 433 | 433 |
|
| 434 | 434 |
InArcIt(const Graph& _graph, const Arc& arc) : |
| 435 | 435 |
Arc(arc), graph(&_graph) {}
|
| 436 | 436 |
|
| 437 | 437 |
InArcIt& operator++() {
|
| 438 | 438 |
graph->nextIn(*this); |
| 439 | 439 |
return *this; |
| 440 | 440 |
} |
| 441 | 441 |
|
| 442 | 442 |
}; |
| 443 | 443 |
|
| 444 | 444 |
|
| 445 | 445 |
class EdgeIt : public Parent::Edge {
|
| 446 | 446 |
const Graph* graph; |
| 447 | 447 |
public: |
| 448 | 448 |
|
| 449 | 449 |
EdgeIt() { }
|
| 450 | 450 |
|
| 451 | 451 |
EdgeIt(Invalid i) : Edge(i) { }
|
| 452 | 452 |
|
| 453 | 453 |
explicit EdgeIt(const Graph& _graph) : graph(&_graph) {
|
| 454 | 454 |
_graph.first(static_cast<Edge&>(*this)); |
| 455 | 455 |
} |
| 456 | 456 |
|
| 457 | 457 |
EdgeIt(const Graph& _graph, const Edge& e) : |
| 458 | 458 |
Edge(e), graph(&_graph) { }
|
| 459 | 459 |
|
| 460 | 460 |
EdgeIt& operator++() {
|
| 461 | 461 |
graph->next(*this); |
| 462 | 462 |
return *this; |
| 463 | 463 |
} |
| 464 | 464 |
|
| 465 | 465 |
}; |
| 466 | 466 |
|
| 467 | 467 |
class IncEdgeIt : public Parent::Edge {
|
| 468 | 468 |
friend class EdgeSetExtender; |
| 469 | 469 |
const Graph* graph; |
| 470 | 470 |
bool direction; |
| 471 | 471 |
public: |
| 472 | 472 |
|
| 473 | 473 |
IncEdgeIt() { }
|
| 474 | 474 |
|
| 475 | 475 |
IncEdgeIt(Invalid i) : Edge(i), direction(false) { }
|
| 476 | 476 |
|
| 477 | 477 |
IncEdgeIt(const Graph& _graph, const Node &n) : graph(&_graph) {
|
| 478 | 478 |
_graph.firstInc(*this, direction, n); |
| 479 | 479 |
} |
| 480 | 480 |
|
| 481 | 481 |
IncEdgeIt(const Graph& _graph, const Edge &ue, const Node &n) |
| 482 | 482 |
: graph(&_graph), Edge(ue) {
|
| 483 | 483 |
direction = (_graph.source(ue) == n); |
| 484 | 484 |
} |
| 485 | 485 |
|
| 486 | 486 |
IncEdgeIt& operator++() {
|
| 487 | 487 |
graph->nextInc(*this, direction); |
| 488 | 488 |
return *this; |
| 489 | 489 |
} |
| 490 | 490 |
}; |
| 491 | 491 |
|
| 492 | 492 |
// \brief Base node of the iterator |
| 493 | 493 |
// |
| 494 | 494 |
// Returns the base node (ie. the source in this case) of the iterator |
| 495 | 495 |
Node baseNode(const OutArcIt &e) const {
|
| 496 | 496 |
return Parent::source(static_cast<const Arc&>(e)); |
| 497 | 497 |
} |
| 498 | 498 |
// \brief Running node of the iterator |
| 499 | 499 |
// |
| 500 | 500 |
// Returns the running node (ie. the target in this case) of the |
| 501 | 501 |
// iterator |
| 502 | 502 |
Node runningNode(const OutArcIt &e) const {
|
| 503 | 503 |
return Parent::target(static_cast<const Arc&>(e)); |
| 504 | 504 |
} |
| 505 | 505 |
|
| 506 | 506 |
// \brief Base node of the iterator |
| 507 | 507 |
// |
| 508 | 508 |
// Returns the base node (ie. the target in this case) of the iterator |
| 509 | 509 |
Node baseNode(const InArcIt &e) const {
|
| 510 | 510 |
return Parent::target(static_cast<const Arc&>(e)); |
| 511 | 511 |
} |
| 512 | 512 |
// \brief Running node of the iterator |
| 513 | 513 |
// |
| 514 | 514 |
// Returns the running node (ie. the source in this case) of the |
| 515 | 515 |
// iterator |
| 516 | 516 |
Node runningNode(const InArcIt &e) const {
|
| 517 | 517 |
return Parent::source(static_cast<const Arc&>(e)); |
| 518 | 518 |
} |
| 519 | 519 |
|
| 520 | 520 |
// Base node of the iterator |
| 521 | 521 |
// |
| 522 | 522 |
// Returns the base node of the iterator |
| 523 | 523 |
Node baseNode(const IncEdgeIt &e) const {
|
| 524 | 524 |
return e.direction ? u(e) : v(e); |
| 525 | 525 |
} |
| 526 | 526 |
// Running node of the iterator |
| 527 | 527 |
// |
| 528 | 528 |
// Returns the running node of the iterator |
| 529 | 529 |
Node runningNode(const IncEdgeIt &e) const {
|
| 530 | 530 |
return e.direction ? v(e) : u(e); |
| 531 | 531 |
} |
| 532 | 532 |
|
| 533 | 533 |
|
| 534 | 534 |
template <typename _Value> |
| 535 | 535 |
class ArcMap |
| 536 | 536 |
: public MapExtender<DefaultMap<Graph, Arc, _Value> > {
|
| 537 | 537 |
typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent; |
| 538 | 538 |
|
| 539 | 539 |
public: |
| 540 |
ArcMap(const Graph& _g) |
|
| 540 |
explicit ArcMap(const Graph& _g) |
|
| 541 | 541 |
: Parent(_g) {}
|
| 542 | 542 |
ArcMap(const Graph& _g, const _Value& _v) |
| 543 | 543 |
: Parent(_g, _v) {}
|
| 544 | 544 |
|
| 545 | 545 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 546 | 546 |
return operator=<ArcMap>(cmap); |
| 547 | 547 |
} |
| 548 | 548 |
|
| 549 | 549 |
template <typename CMap> |
| 550 | 550 |
ArcMap& operator=(const CMap& cmap) {
|
| 551 | 551 |
Parent::operator=(cmap); |
| 552 | 552 |
return *this; |
| 553 | 553 |
} |
| 554 | 554 |
|
| 555 | 555 |
}; |
| 556 | 556 |
|
| 557 | 557 |
|
| 558 | 558 |
template <typename _Value> |
| 559 | 559 |
class EdgeMap |
| 560 | 560 |
: public MapExtender<DefaultMap<Graph, Edge, _Value> > {
|
| 561 | 561 |
typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent; |
| 562 | 562 |
|
| 563 | 563 |
public: |
| 564 |
EdgeMap(const Graph& _g) |
|
| 564 |
explicit EdgeMap(const Graph& _g) |
|
| 565 | 565 |
: Parent(_g) {}
|
| 566 | 566 |
|
| 567 | 567 |
EdgeMap(const Graph& _g, const _Value& _v) |
| 568 | 568 |
: Parent(_g, _v) {}
|
| 569 | 569 |
|
| 570 | 570 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 571 | 571 |
return operator=<EdgeMap>(cmap); |
| 572 | 572 |
} |
| 573 | 573 |
|
| 574 | 574 |
template <typename CMap> |
| 575 | 575 |
EdgeMap& operator=(const CMap& cmap) {
|
| 576 | 576 |
Parent::operator=(cmap); |
| 577 | 577 |
return *this; |
| 578 | 578 |
} |
| 579 | 579 |
|
| 580 | 580 |
}; |
| 581 | 581 |
|
| 582 | 582 |
|
| 583 | 583 |
// Alteration extension |
| 584 | 584 |
|
| 585 | 585 |
Edge addEdge(const Node& from, const Node& to) {
|
| 586 | 586 |
Edge edge = Parent::addEdge(from, to); |
| 587 | 587 |
notifier(Edge()).add(edge); |
| 588 | 588 |
std::vector<Arc> arcs; |
| 589 | 589 |
arcs.push_back(Parent::direct(edge, true)); |
| 590 | 590 |
arcs.push_back(Parent::direct(edge, false)); |
| 591 | 591 |
notifier(Arc()).add(arcs); |
| 592 | 592 |
return edge; |
| 593 | 593 |
} |
| 594 | 594 |
|
| 595 | 595 |
void clear() {
|
| 596 | 596 |
notifier(Arc()).clear(); |
| 597 | 597 |
notifier(Edge()).clear(); |
| 598 | 598 |
Parent::clear(); |
| 599 | 599 |
} |
| 600 | 600 |
|
| 601 | 601 |
void erase(const Edge& edge) {
|
| 602 | 602 |
std::vector<Arc> arcs; |
| 603 | 603 |
arcs.push_back(Parent::direct(edge, true)); |
| 604 | 604 |
arcs.push_back(Parent::direct(edge, false)); |
| 605 | 605 |
notifier(Arc()).erase(arcs); |
| 606 | 606 |
notifier(Edge()).erase(edge); |
| 607 | 607 |
Parent::erase(edge); |
| 608 | 608 |
} |
| 609 | 609 |
|
| 610 | 610 |
|
| 611 | 611 |
EdgeSetExtender() {
|
| 612 | 612 |
arc_notifier.setContainer(*this); |
| 613 | 613 |
edge_notifier.setContainer(*this); |
| 614 | 614 |
} |
| 615 | 615 |
|
| 616 | 616 |
~EdgeSetExtender() {
|
| 617 | 617 |
edge_notifier.clear(); |
| 618 | 618 |
arc_notifier.clear(); |
| 619 | 619 |
} |
| 620 | 620 |
|
| 621 | 621 |
}; |
| 622 | 622 |
|
| 623 | 623 |
} |
| 624 | 624 |
|
| 625 | 625 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_GRAPH_EXTENDER_H |
| 20 | 20 |
#define LEMON_BITS_GRAPH_EXTENDER_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
|
| 24 | 24 |
#include <lemon/bits/map_extender.h> |
| 25 | 25 |
#include <lemon/bits/default_map.h> |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/concept_check.h> |
| 28 | 28 |
#include <lemon/concepts/maps.h> |
| 29 | 29 |
|
| 30 | 30 |
//\ingroup graphbits |
| 31 | 31 |
//\file |
| 32 | 32 |
//\brief Extenders for the graph types |
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
// \ingroup graphbits |
| 36 | 36 |
// |
| 37 | 37 |
// \brief Extender for the digraph implementations |
| 38 | 38 |
template <typename Base> |
| 39 | 39 |
class DigraphExtender : public Base {
|
| 40 | 40 |
typedef Base Parent; |
| 41 | 41 |
|
| 42 | 42 |
public: |
| 43 | 43 |
|
| 44 | 44 |
typedef DigraphExtender Digraph; |
| 45 | 45 |
|
| 46 | 46 |
// Base extensions |
| 47 | 47 |
|
| 48 | 48 |
typedef typename Parent::Node Node; |
| 49 | 49 |
typedef typename Parent::Arc Arc; |
| 50 | 50 |
|
| 51 | 51 |
int maxId(Node) const {
|
| 52 | 52 |
return Parent::maxNodeId(); |
| 53 | 53 |
} |
| 54 | 54 |
|
| 55 | 55 |
int maxId(Arc) const {
|
| 56 | 56 |
return Parent::maxArcId(); |
| 57 | 57 |
} |
| 58 | 58 |
|
| 59 | 59 |
Node fromId(int id, Node) const {
|
| 60 | 60 |
return Parent::nodeFromId(id); |
| 61 | 61 |
} |
| 62 | 62 |
|
| 63 | 63 |
Arc fromId(int id, Arc) const {
|
| 64 | 64 |
return Parent::arcFromId(id); |
| 65 | 65 |
} |
| 66 | 66 |
|
| 67 | 67 |
Node oppositeNode(const Node &node, const Arc &arc) const {
|
| 68 | 68 |
if (node == Parent::source(arc)) |
| 69 | 69 |
return Parent::target(arc); |
| 70 | 70 |
else if(node == Parent::target(arc)) |
| 71 | 71 |
return Parent::source(arc); |
| 72 | 72 |
else |
| 73 | 73 |
return INVALID; |
| 74 | 74 |
} |
| 75 | 75 |
|
| 76 | 76 |
// Alterable extension |
| 77 | 77 |
|
| 78 | 78 |
typedef AlterationNotifier<DigraphExtender, Node> NodeNotifier; |
| 79 | 79 |
typedef AlterationNotifier<DigraphExtender, Arc> ArcNotifier; |
| 80 | 80 |
|
| 81 | 81 |
|
| 82 | 82 |
protected: |
| 83 | 83 |
|
| 84 | 84 |
mutable NodeNotifier node_notifier; |
| 85 | 85 |
mutable ArcNotifier arc_notifier; |
| 86 | 86 |
|
| 87 | 87 |
public: |
| 88 | 88 |
|
| 89 | 89 |
NodeNotifier& notifier(Node) const {
|
| 90 | 90 |
return node_notifier; |
| 91 | 91 |
} |
| 92 | 92 |
|
| 93 | 93 |
ArcNotifier& notifier(Arc) const {
|
| 94 | 94 |
return arc_notifier; |
| 95 | 95 |
} |
| 96 | 96 |
|
| 97 | 97 |
class NodeIt : public Node {
|
| 98 | 98 |
const Digraph* _digraph; |
| 99 | 99 |
public: |
| 100 | 100 |
|
| 101 | 101 |
NodeIt() {}
|
| 102 | 102 |
|
| 103 | 103 |
NodeIt(Invalid i) : Node(i) { }
|
| 104 | 104 |
|
| 105 | 105 |
explicit NodeIt(const Digraph& digraph) : _digraph(&digraph) {
|
| 106 | 106 |
_digraph->first(static_cast<Node&>(*this)); |
| 107 | 107 |
} |
| 108 | 108 |
|
| 109 | 109 |
NodeIt(const Digraph& digraph, const Node& node) |
| 110 | 110 |
: Node(node), _digraph(&digraph) {}
|
| 111 | 111 |
|
| 112 | 112 |
NodeIt& operator++() {
|
| 113 | 113 |
_digraph->next(*this); |
| 114 | 114 |
return *this; |
| 115 | 115 |
} |
| 116 | 116 |
|
| 117 | 117 |
}; |
| 118 | 118 |
|
| 119 | 119 |
|
| 120 | 120 |
class ArcIt : public Arc {
|
| 121 | 121 |
const Digraph* _digraph; |
| 122 | 122 |
public: |
| 123 | 123 |
|
| 124 | 124 |
ArcIt() { }
|
| 125 | 125 |
|
| 126 | 126 |
ArcIt(Invalid i) : Arc(i) { }
|
| 127 | 127 |
|
| 128 | 128 |
explicit ArcIt(const Digraph& digraph) : _digraph(&digraph) {
|
| 129 | 129 |
_digraph->first(static_cast<Arc&>(*this)); |
| 130 | 130 |
} |
| 131 | 131 |
|
| 132 | 132 |
ArcIt(const Digraph& digraph, const Arc& arc) : |
| 133 | 133 |
Arc(arc), _digraph(&digraph) { }
|
| 134 | 134 |
|
| 135 | 135 |
ArcIt& operator++() {
|
| 136 | 136 |
_digraph->next(*this); |
| 137 | 137 |
return *this; |
| 138 | 138 |
} |
| 139 | 139 |
|
| 140 | 140 |
}; |
| 141 | 141 |
|
| 142 | 142 |
|
| 143 | 143 |
class OutArcIt : public Arc {
|
| 144 | 144 |
const Digraph* _digraph; |
| 145 | 145 |
public: |
| 146 | 146 |
|
| 147 | 147 |
OutArcIt() { }
|
| 148 | 148 |
|
| 149 | 149 |
OutArcIt(Invalid i) : Arc(i) { }
|
| 150 | 150 |
|
| 151 | 151 |
OutArcIt(const Digraph& digraph, const Node& node) |
| 152 | 152 |
: _digraph(&digraph) {
|
| 153 | 153 |
_digraph->firstOut(*this, node); |
| 154 | 154 |
} |
| 155 | 155 |
|
| 156 | 156 |
OutArcIt(const Digraph& digraph, const Arc& arc) |
| 157 | 157 |
: Arc(arc), _digraph(&digraph) {}
|
| 158 | 158 |
|
| 159 | 159 |
OutArcIt& operator++() {
|
| 160 | 160 |
_digraph->nextOut(*this); |
| 161 | 161 |
return *this; |
| 162 | 162 |
} |
| 163 | 163 |
|
| 164 | 164 |
}; |
| 165 | 165 |
|
| 166 | 166 |
|
| 167 | 167 |
class InArcIt : public Arc {
|
| 168 | 168 |
const Digraph* _digraph; |
| 169 | 169 |
public: |
| 170 | 170 |
|
| 171 | 171 |
InArcIt() { }
|
| 172 | 172 |
|
| 173 | 173 |
InArcIt(Invalid i) : Arc(i) { }
|
| 174 | 174 |
|
| 175 | 175 |
InArcIt(const Digraph& digraph, const Node& node) |
| 176 | 176 |
: _digraph(&digraph) {
|
| 177 | 177 |
_digraph->firstIn(*this, node); |
| 178 | 178 |
} |
| 179 | 179 |
|
| 180 | 180 |
InArcIt(const Digraph& digraph, const Arc& arc) : |
| 181 | 181 |
Arc(arc), _digraph(&digraph) {}
|
| 182 | 182 |
|
| 183 | 183 |
InArcIt& operator++() {
|
| 184 | 184 |
_digraph->nextIn(*this); |
| 185 | 185 |
return *this; |
| 186 | 186 |
} |
| 187 | 187 |
|
| 188 | 188 |
}; |
| 189 | 189 |
|
| 190 | 190 |
// \brief Base node of the iterator |
| 191 | 191 |
// |
| 192 | 192 |
// Returns the base node (i.e. the source in this case) of the iterator |
| 193 | 193 |
Node baseNode(const OutArcIt &arc) const {
|
| 194 | 194 |
return Parent::source(arc); |
| 195 | 195 |
} |
| 196 | 196 |
// \brief Running node of the iterator |
| 197 | 197 |
// |
| 198 | 198 |
// Returns the running node (i.e. the target in this case) of the |
| 199 | 199 |
// iterator |
| 200 | 200 |
Node runningNode(const OutArcIt &arc) const {
|
| 201 | 201 |
return Parent::target(arc); |
| 202 | 202 |
} |
| 203 | 203 |
|
| 204 | 204 |
// \brief Base node of the iterator |
| 205 | 205 |
// |
| 206 | 206 |
// Returns the base node (i.e. the target in this case) of the iterator |
| 207 | 207 |
Node baseNode(const InArcIt &arc) const {
|
| 208 | 208 |
return Parent::target(arc); |
| 209 | 209 |
} |
| 210 | 210 |
// \brief Running node of the iterator |
| 211 | 211 |
// |
| 212 | 212 |
// Returns the running node (i.e. the source in this case) of the |
| 213 | 213 |
// iterator |
| 214 | 214 |
Node runningNode(const InArcIt &arc) const {
|
| 215 | 215 |
return Parent::source(arc); |
| 216 | 216 |
} |
| 217 | 217 |
|
| 218 | 218 |
|
| 219 | 219 |
template <typename _Value> |
| 220 | 220 |
class NodeMap |
| 221 | 221 |
: public MapExtender<DefaultMap<Digraph, Node, _Value> > {
|
| 222 | 222 |
typedef MapExtender<DefaultMap<Digraph, Node, _Value> > Parent; |
| 223 | 223 |
|
| 224 | 224 |
public: |
| 225 | 225 |
explicit NodeMap(const Digraph& digraph) |
| 226 | 226 |
: Parent(digraph) {}
|
| 227 | 227 |
NodeMap(const Digraph& digraph, const _Value& value) |
| 228 | 228 |
: Parent(digraph, value) {}
|
| 229 | 229 |
|
| 230 | 230 |
private: |
| 231 | 231 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 232 | 232 |
return operator=<NodeMap>(cmap); |
| 233 | 233 |
} |
| 234 | 234 |
|
| 235 | 235 |
template <typename CMap> |
| 236 | 236 |
NodeMap& operator=(const CMap& cmap) {
|
| 237 | 237 |
Parent::operator=(cmap); |
| 238 | 238 |
return *this; |
| 239 | 239 |
} |
| 240 | 240 |
|
| 241 | 241 |
}; |
| 242 | 242 |
|
| 243 | 243 |
template <typename _Value> |
| 244 | 244 |
class ArcMap |
| 245 | 245 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > {
|
| 246 | 246 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
| 247 | 247 |
|
| 248 | 248 |
public: |
| 249 | 249 |
explicit ArcMap(const Digraph& digraph) |
| 250 | 250 |
: Parent(digraph) {}
|
| 251 | 251 |
ArcMap(const Digraph& digraph, const _Value& value) |
| 252 | 252 |
: Parent(digraph, value) {}
|
| 253 | 253 |
|
| 254 | 254 |
private: |
| 255 | 255 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 256 | 256 |
return operator=<ArcMap>(cmap); |
| 257 | 257 |
} |
| 258 | 258 |
|
| 259 | 259 |
template <typename CMap> |
| 260 | 260 |
ArcMap& operator=(const CMap& cmap) {
|
| 261 | 261 |
Parent::operator=(cmap); |
| 262 | 262 |
return *this; |
| 263 | 263 |
} |
| 264 | 264 |
}; |
| 265 | 265 |
|
| 266 | 266 |
|
| 267 | 267 |
Node addNode() {
|
| 268 | 268 |
Node node = Parent::addNode(); |
| 269 | 269 |
notifier(Node()).add(node); |
| 270 | 270 |
return node; |
| 271 | 271 |
} |
| 272 | 272 |
|
| 273 | 273 |
Arc addArc(const Node& from, const Node& to) {
|
| 274 | 274 |
Arc arc = Parent::addArc(from, to); |
| 275 | 275 |
notifier(Arc()).add(arc); |
| 276 | 276 |
return arc; |
| 277 | 277 |
} |
| 278 | 278 |
|
| 279 | 279 |
void clear() {
|
| 280 | 280 |
notifier(Arc()).clear(); |
| 281 | 281 |
notifier(Node()).clear(); |
| 282 | 282 |
Parent::clear(); |
| 283 | 283 |
} |
| 284 | 284 |
|
| 285 | 285 |
template <typename Digraph, typename NodeRefMap, typename ArcRefMap> |
| 286 | 286 |
void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) {
|
| 287 | 287 |
Parent::build(digraph, nodeRef, arcRef); |
| 288 | 288 |
notifier(Node()).build(); |
| 289 | 289 |
notifier(Arc()).build(); |
| 290 | 290 |
} |
| 291 | 291 |
|
| 292 | 292 |
void erase(const Node& node) {
|
| 293 | 293 |
Arc arc; |
| 294 | 294 |
Parent::firstOut(arc, node); |
| 295 | 295 |
while (arc != INVALID ) {
|
| 296 | 296 |
erase(arc); |
| 297 | 297 |
Parent::firstOut(arc, node); |
| 298 | 298 |
} |
| 299 | 299 |
|
| 300 | 300 |
Parent::firstIn(arc, node); |
| 301 | 301 |
while (arc != INVALID ) {
|
| 302 | 302 |
erase(arc); |
| 303 | 303 |
Parent::firstIn(arc, node); |
| 304 | 304 |
} |
| 305 | 305 |
|
| 306 | 306 |
notifier(Node()).erase(node); |
| 307 | 307 |
Parent::erase(node); |
| 308 | 308 |
} |
| 309 | 309 |
|
| 310 | 310 |
void erase(const Arc& arc) {
|
| 311 | 311 |
notifier(Arc()).erase(arc); |
| 312 | 312 |
Parent::erase(arc); |
| 313 | 313 |
} |
| 314 | 314 |
|
| 315 | 315 |
DigraphExtender() {
|
| 316 | 316 |
node_notifier.setContainer(*this); |
| 317 | 317 |
arc_notifier.setContainer(*this); |
| 318 | 318 |
} |
| 319 | 319 |
|
| 320 | 320 |
|
| 321 | 321 |
~DigraphExtender() {
|
| 322 | 322 |
arc_notifier.clear(); |
| 323 | 323 |
node_notifier.clear(); |
| 324 | 324 |
} |
| 325 | 325 |
}; |
| 326 | 326 |
|
| 327 | 327 |
// \ingroup _graphbits |
| 328 | 328 |
// |
| 329 | 329 |
// \brief Extender for the Graphs |
| 330 | 330 |
template <typename Base> |
| 331 | 331 |
class GraphExtender : public Base {
|
| 332 | 332 |
typedef Base Parent; |
| 333 | 333 |
|
| 334 | 334 |
public: |
| 335 | 335 |
|
| 336 | 336 |
typedef GraphExtender Graph; |
| 337 | 337 |
|
| 338 | 338 |
typedef True UndirectedTag; |
| 339 | 339 |
|
| 340 | 340 |
typedef typename Parent::Node Node; |
| 341 | 341 |
typedef typename Parent::Arc Arc; |
| 342 | 342 |
typedef typename Parent::Edge Edge; |
| 343 | 343 |
|
| 344 | 344 |
// Graph extension |
| 345 | 345 |
|
| 346 | 346 |
int maxId(Node) const {
|
| 347 | 347 |
return Parent::maxNodeId(); |
| 348 | 348 |
} |
| 349 | 349 |
|
| 350 | 350 |
int maxId(Arc) const {
|
| 351 | 351 |
return Parent::maxArcId(); |
| 352 | 352 |
} |
| 353 | 353 |
|
| 354 | 354 |
int maxId(Edge) const {
|
| 355 | 355 |
return Parent::maxEdgeId(); |
| 356 | 356 |
} |
| 357 | 357 |
|
| 358 | 358 |
Node fromId(int id, Node) const {
|
| 359 | 359 |
return Parent::nodeFromId(id); |
| 360 | 360 |
} |
| 361 | 361 |
|
| 362 | 362 |
Arc fromId(int id, Arc) const {
|
| 363 | 363 |
return Parent::arcFromId(id); |
| 364 | 364 |
} |
| 365 | 365 |
|
| 366 | 366 |
Edge fromId(int id, Edge) const {
|
| 367 | 367 |
return Parent::edgeFromId(id); |
| 368 | 368 |
} |
| 369 | 369 |
|
| 370 | 370 |
Node oppositeNode(const Node &n, const Edge &e) const {
|
| 371 | 371 |
if( n == Parent::u(e)) |
| 372 | 372 |
return Parent::v(e); |
| 373 | 373 |
else if( n == Parent::v(e)) |
| 374 | 374 |
return Parent::u(e); |
| 375 | 375 |
else |
| 376 | 376 |
return INVALID; |
| 377 | 377 |
} |
| 378 | 378 |
|
| 379 | 379 |
Arc oppositeArc(const Arc &arc) const {
|
| 380 | 380 |
return Parent::direct(arc, !Parent::direction(arc)); |
| 381 | 381 |
} |
| 382 | 382 |
|
| 383 | 383 |
using Parent::direct; |
| 384 | 384 |
Arc direct(const Edge &edge, const Node &node) const {
|
| 385 | 385 |
return Parent::direct(edge, Parent::u(edge) == node); |
| 386 | 386 |
} |
| 387 | 387 |
|
| 388 | 388 |
// Alterable extension |
| 389 | 389 |
|
| 390 | 390 |
typedef AlterationNotifier<GraphExtender, Node> NodeNotifier; |
| 391 | 391 |
typedef AlterationNotifier<GraphExtender, Arc> ArcNotifier; |
| 392 | 392 |
typedef AlterationNotifier<GraphExtender, Edge> EdgeNotifier; |
| 393 | 393 |
|
| 394 | 394 |
|
| 395 | 395 |
protected: |
| 396 | 396 |
|
| 397 | 397 |
mutable NodeNotifier node_notifier; |
| 398 | 398 |
mutable ArcNotifier arc_notifier; |
| 399 | 399 |
mutable EdgeNotifier edge_notifier; |
| 400 | 400 |
|
| 401 | 401 |
public: |
| 402 | 402 |
|
| 403 | 403 |
NodeNotifier& notifier(Node) const {
|
| 404 | 404 |
return node_notifier; |
| 405 | 405 |
} |
| 406 | 406 |
|
| 407 | 407 |
ArcNotifier& notifier(Arc) const {
|
| 408 | 408 |
return arc_notifier; |
| 409 | 409 |
} |
| 410 | 410 |
|
| 411 | 411 |
EdgeNotifier& notifier(Edge) const {
|
| 412 | 412 |
return edge_notifier; |
| 413 | 413 |
} |
| 414 | 414 |
|
| 415 | 415 |
|
| 416 | 416 |
|
| 417 | 417 |
class NodeIt : public Node {
|
| 418 | 418 |
const Graph* _graph; |
| 419 | 419 |
public: |
| 420 | 420 |
|
| 421 | 421 |
NodeIt() {}
|
| 422 | 422 |
|
| 423 | 423 |
NodeIt(Invalid i) : Node(i) { }
|
| 424 | 424 |
|
| 425 | 425 |
explicit NodeIt(const Graph& graph) : _graph(&graph) {
|
| 426 | 426 |
_graph->first(static_cast<Node&>(*this)); |
| 427 | 427 |
} |
| 428 | 428 |
|
| 429 | 429 |
NodeIt(const Graph& graph, const Node& node) |
| 430 | 430 |
: Node(node), _graph(&graph) {}
|
| 431 | 431 |
|
| 432 | 432 |
NodeIt& operator++() {
|
| 433 | 433 |
_graph->next(*this); |
| 434 | 434 |
return *this; |
| 435 | 435 |
} |
| 436 | 436 |
|
| 437 | 437 |
}; |
| 438 | 438 |
|
| 439 | 439 |
|
| 440 | 440 |
class ArcIt : public Arc {
|
| 441 | 441 |
const Graph* _graph; |
| 442 | 442 |
public: |
| 443 | 443 |
|
| 444 | 444 |
ArcIt() { }
|
| 445 | 445 |
|
| 446 | 446 |
ArcIt(Invalid i) : Arc(i) { }
|
| 447 | 447 |
|
| 448 | 448 |
explicit ArcIt(const Graph& graph) : _graph(&graph) {
|
| 449 | 449 |
_graph->first(static_cast<Arc&>(*this)); |
| 450 | 450 |
} |
| 451 | 451 |
|
| 452 | 452 |
ArcIt(const Graph& graph, const Arc& arc) : |
| 453 | 453 |
Arc(arc), _graph(&graph) { }
|
| 454 | 454 |
|
| 455 | 455 |
ArcIt& operator++() {
|
| 456 | 456 |
_graph->next(*this); |
| 457 | 457 |
return *this; |
| 458 | 458 |
} |
| 459 | 459 |
|
| 460 | 460 |
}; |
| 461 | 461 |
|
| 462 | 462 |
|
| 463 | 463 |
class OutArcIt : public Arc {
|
| 464 | 464 |
const Graph* _graph; |
| 465 | 465 |
public: |
| 466 | 466 |
|
| 467 | 467 |
OutArcIt() { }
|
| 468 | 468 |
|
| 469 | 469 |
OutArcIt(Invalid i) : Arc(i) { }
|
| 470 | 470 |
|
| 471 | 471 |
OutArcIt(const Graph& graph, const Node& node) |
| 472 | 472 |
: _graph(&graph) {
|
| 473 | 473 |
_graph->firstOut(*this, node); |
| 474 | 474 |
} |
| 475 | 475 |
|
| 476 | 476 |
OutArcIt(const Graph& graph, const Arc& arc) |
| 477 | 477 |
: Arc(arc), _graph(&graph) {}
|
| 478 | 478 |
|
| 479 | 479 |
OutArcIt& operator++() {
|
| 480 | 480 |
_graph->nextOut(*this); |
| 481 | 481 |
return *this; |
| 482 | 482 |
} |
| 483 | 483 |
|
| 484 | 484 |
}; |
| 485 | 485 |
|
| 486 | 486 |
|
| 487 | 487 |
class InArcIt : public Arc {
|
| 488 | 488 |
const Graph* _graph; |
| 489 | 489 |
public: |
| 490 | 490 |
|
| 491 | 491 |
InArcIt() { }
|
| 492 | 492 |
|
| 493 | 493 |
InArcIt(Invalid i) : Arc(i) { }
|
| 494 | 494 |
|
| 495 | 495 |
InArcIt(const Graph& graph, const Node& node) |
| 496 | 496 |
: _graph(&graph) {
|
| 497 | 497 |
_graph->firstIn(*this, node); |
| 498 | 498 |
} |
| 499 | 499 |
|
| 500 | 500 |
InArcIt(const Graph& graph, const Arc& arc) : |
| 501 | 501 |
Arc(arc), _graph(&graph) {}
|
| 502 | 502 |
|
| 503 | 503 |
InArcIt& operator++() {
|
| 504 | 504 |
_graph->nextIn(*this); |
| 505 | 505 |
return *this; |
| 506 | 506 |
} |
| 507 | 507 |
|
| 508 | 508 |
}; |
| 509 | 509 |
|
| 510 | 510 |
|
| 511 | 511 |
class EdgeIt : public Parent::Edge {
|
| 512 | 512 |
const Graph* _graph; |
| 513 | 513 |
public: |
| 514 | 514 |
|
| 515 | 515 |
EdgeIt() { }
|
| 516 | 516 |
|
| 517 | 517 |
EdgeIt(Invalid i) : Edge(i) { }
|
| 518 | 518 |
|
| 519 | 519 |
explicit EdgeIt(const Graph& graph) : _graph(&graph) {
|
| 520 | 520 |
_graph->first(static_cast<Edge&>(*this)); |
| 521 | 521 |
} |
| 522 | 522 |
|
| 523 | 523 |
EdgeIt(const Graph& graph, const Edge& edge) : |
| 524 | 524 |
Edge(edge), _graph(&graph) { }
|
| 525 | 525 |
|
| 526 | 526 |
EdgeIt& operator++() {
|
| 527 | 527 |
_graph->next(*this); |
| 528 | 528 |
return *this; |
| 529 | 529 |
} |
| 530 | 530 |
|
| 531 | 531 |
}; |
| 532 | 532 |
|
| 533 | 533 |
class IncEdgeIt : public Parent::Edge {
|
| 534 | 534 |
friend class GraphExtender; |
| 535 | 535 |
const Graph* _graph; |
| 536 | 536 |
bool _direction; |
| 537 | 537 |
public: |
| 538 | 538 |
|
| 539 | 539 |
IncEdgeIt() { }
|
| 540 | 540 |
|
| 541 | 541 |
IncEdgeIt(Invalid i) : Edge(i), _direction(false) { }
|
| 542 | 542 |
|
| 543 | 543 |
IncEdgeIt(const Graph& graph, const Node &node) : _graph(&graph) {
|
| 544 | 544 |
_graph->firstInc(*this, _direction, node); |
| 545 | 545 |
} |
| 546 | 546 |
|
| 547 | 547 |
IncEdgeIt(const Graph& graph, const Edge &edge, const Node &node) |
| 548 | 548 |
: _graph(&graph), Edge(edge) {
|
| 549 | 549 |
_direction = (_graph->source(edge) == node); |
| 550 | 550 |
} |
| 551 | 551 |
|
| 552 | 552 |
IncEdgeIt& operator++() {
|
| 553 | 553 |
_graph->nextInc(*this, _direction); |
| 554 | 554 |
return *this; |
| 555 | 555 |
} |
| 556 | 556 |
}; |
| 557 | 557 |
|
| 558 | 558 |
// \brief Base node of the iterator |
| 559 | 559 |
// |
| 560 | 560 |
// Returns the base node (ie. the source in this case) of the iterator |
| 561 | 561 |
Node baseNode(const OutArcIt &arc) const {
|
| 562 | 562 |
return Parent::source(static_cast<const Arc&>(arc)); |
| 563 | 563 |
} |
| 564 | 564 |
// \brief Running node of the iterator |
| 565 | 565 |
// |
| 566 | 566 |
// Returns the running node (ie. the target in this case) of the |
| 567 | 567 |
// iterator |
| 568 | 568 |
Node runningNode(const OutArcIt &arc) const {
|
| 569 | 569 |
return Parent::target(static_cast<const Arc&>(arc)); |
| 570 | 570 |
} |
| 571 | 571 |
|
| 572 | 572 |
// \brief Base node of the iterator |
| 573 | 573 |
// |
| 574 | 574 |
// Returns the base node (ie. the target in this case) of the iterator |
| 575 | 575 |
Node baseNode(const InArcIt &arc) const {
|
| 576 | 576 |
return Parent::target(static_cast<const Arc&>(arc)); |
| 577 | 577 |
} |
| 578 | 578 |
// \brief Running node of the iterator |
| 579 | 579 |
// |
| 580 | 580 |
// Returns the running node (ie. the source in this case) of the |
| 581 | 581 |
// iterator |
| 582 | 582 |
Node runningNode(const InArcIt &arc) const {
|
| 583 | 583 |
return Parent::source(static_cast<const Arc&>(arc)); |
| 584 | 584 |
} |
| 585 | 585 |
|
| 586 | 586 |
// Base node of the iterator |
| 587 | 587 |
// |
| 588 | 588 |
// Returns the base node of the iterator |
| 589 | 589 |
Node baseNode(const IncEdgeIt &edge) const {
|
| 590 | 590 |
return edge._direction ? u(edge) : v(edge); |
| 591 | 591 |
} |
| 592 | 592 |
// Running node of the iterator |
| 593 | 593 |
// |
| 594 | 594 |
// Returns the running node of the iterator |
| 595 | 595 |
Node runningNode(const IncEdgeIt &edge) const {
|
| 596 | 596 |
return edge._direction ? v(edge) : u(edge); |
| 597 | 597 |
} |
| 598 | 598 |
|
| 599 | 599 |
// Mappable extension |
| 600 | 600 |
|
| 601 | 601 |
template <typename _Value> |
| 602 | 602 |
class NodeMap |
| 603 | 603 |
: public MapExtender<DefaultMap<Graph, Node, _Value> > {
|
| 604 | 604 |
typedef MapExtender<DefaultMap<Graph, Node, _Value> > Parent; |
| 605 | 605 |
|
| 606 | 606 |
public: |
| 607 |
NodeMap(const Graph& graph) |
|
| 607 |
explicit NodeMap(const Graph& graph) |
|
| 608 | 608 |
: Parent(graph) {}
|
| 609 | 609 |
NodeMap(const Graph& graph, const _Value& value) |
| 610 | 610 |
: Parent(graph, value) {}
|
| 611 | 611 |
|
| 612 | 612 |
private: |
| 613 | 613 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 614 | 614 |
return operator=<NodeMap>(cmap); |
| 615 | 615 |
} |
| 616 | 616 |
|
| 617 | 617 |
template <typename CMap> |
| 618 | 618 |
NodeMap& operator=(const CMap& cmap) {
|
| 619 | 619 |
Parent::operator=(cmap); |
| 620 | 620 |
return *this; |
| 621 | 621 |
} |
| 622 | 622 |
|
| 623 | 623 |
}; |
| 624 | 624 |
|
| 625 | 625 |
template <typename _Value> |
| 626 | 626 |
class ArcMap |
| 627 | 627 |
: public MapExtender<DefaultMap<Graph, Arc, _Value> > {
|
| 628 | 628 |
typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent; |
| 629 | 629 |
|
| 630 | 630 |
public: |
| 631 |
ArcMap(const Graph& graph) |
|
| 631 |
explicit ArcMap(const Graph& graph) |
|
| 632 | 632 |
: Parent(graph) {}
|
| 633 | 633 |
ArcMap(const Graph& graph, const _Value& value) |
| 634 | 634 |
: Parent(graph, value) {}
|
| 635 | 635 |
|
| 636 | 636 |
private: |
| 637 | 637 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 638 | 638 |
return operator=<ArcMap>(cmap); |
| 639 | 639 |
} |
| 640 | 640 |
|
| 641 | 641 |
template <typename CMap> |
| 642 | 642 |
ArcMap& operator=(const CMap& cmap) {
|
| 643 | 643 |
Parent::operator=(cmap); |
| 644 | 644 |
return *this; |
| 645 | 645 |
} |
| 646 | 646 |
}; |
| 647 | 647 |
|
| 648 | 648 |
|
| 649 | 649 |
template <typename _Value> |
| 650 | 650 |
class EdgeMap |
| 651 | 651 |
: public MapExtender<DefaultMap<Graph, Edge, _Value> > {
|
| 652 | 652 |
typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent; |
| 653 | 653 |
|
| 654 | 654 |
public: |
| 655 |
EdgeMap(const Graph& graph) |
|
| 655 |
explicit EdgeMap(const Graph& graph) |
|
| 656 | 656 |
: Parent(graph) {}
|
| 657 | 657 |
|
| 658 | 658 |
EdgeMap(const Graph& graph, const _Value& value) |
| 659 | 659 |
: Parent(graph, value) {}
|
| 660 | 660 |
|
| 661 | 661 |
private: |
| 662 | 662 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 663 | 663 |
return operator=<EdgeMap>(cmap); |
| 664 | 664 |
} |
| 665 | 665 |
|
| 666 | 666 |
template <typename CMap> |
| 667 | 667 |
EdgeMap& operator=(const CMap& cmap) {
|
| 668 | 668 |
Parent::operator=(cmap); |
| 669 | 669 |
return *this; |
| 670 | 670 |
} |
| 671 | 671 |
|
| 672 | 672 |
}; |
| 673 | 673 |
|
| 674 | 674 |
// Alteration extension |
| 675 | 675 |
|
| 676 | 676 |
Node addNode() {
|
| 677 | 677 |
Node node = Parent::addNode(); |
| 678 | 678 |
notifier(Node()).add(node); |
| 679 | 679 |
return node; |
| 680 | 680 |
} |
| 681 | 681 |
|
| 682 | 682 |
Edge addEdge(const Node& from, const Node& to) {
|
| 683 | 683 |
Edge edge = Parent::addEdge(from, to); |
| 684 | 684 |
notifier(Edge()).add(edge); |
| 685 | 685 |
std::vector<Arc> ev; |
| 686 | 686 |
ev.push_back(Parent::direct(edge, true)); |
| 687 | 687 |
ev.push_back(Parent::direct(edge, false)); |
| 688 | 688 |
notifier(Arc()).add(ev); |
| 689 | 689 |
return edge; |
| 690 | 690 |
} |
| 691 | 691 |
|
| 692 | 692 |
void clear() {
|
| 693 | 693 |
notifier(Arc()).clear(); |
| 694 | 694 |
notifier(Edge()).clear(); |
| 695 | 695 |
notifier(Node()).clear(); |
| 696 | 696 |
Parent::clear(); |
| 697 | 697 |
} |
| 698 | 698 |
|
| 699 | 699 |
template <typename Graph, typename NodeRefMap, typename EdgeRefMap> |
| 700 | 700 |
void build(const Graph& graph, NodeRefMap& nodeRef, |
| 701 | 701 |
EdgeRefMap& edgeRef) {
|
| 702 | 702 |
Parent::build(graph, nodeRef, edgeRef); |
| 703 | 703 |
notifier(Node()).build(); |
| 704 | 704 |
notifier(Edge()).build(); |
| 705 | 705 |
notifier(Arc()).build(); |
| 706 | 706 |
} |
| 707 | 707 |
|
| 708 | 708 |
void erase(const Node& node) {
|
| 709 | 709 |
Arc arc; |
| 710 | 710 |
Parent::firstOut(arc, node); |
| 711 | 711 |
while (arc != INVALID ) {
|
| 712 | 712 |
erase(arc); |
| 713 | 713 |
Parent::firstOut(arc, node); |
| 714 | 714 |
} |
| 715 | 715 |
|
| 716 | 716 |
Parent::firstIn(arc, node); |
| 717 | 717 |
while (arc != INVALID ) {
|
| 718 | 718 |
erase(arc); |
| 719 | 719 |
Parent::firstIn(arc, node); |
| 720 | 720 |
} |
| 721 | 721 |
|
| 722 | 722 |
notifier(Node()).erase(node); |
| 723 | 723 |
Parent::erase(node); |
| 724 | 724 |
} |
| 725 | 725 |
|
| 726 | 726 |
void erase(const Edge& edge) {
|
| 727 | 727 |
std::vector<Arc> av; |
| 728 | 728 |
av.push_back(Parent::direct(edge, true)); |
| 729 | 729 |
av.push_back(Parent::direct(edge, false)); |
| 730 | 730 |
notifier(Arc()).erase(av); |
| 731 | 731 |
notifier(Edge()).erase(edge); |
| 732 | 732 |
Parent::erase(edge); |
| 733 | 733 |
} |
| 734 | 734 |
|
| 735 | 735 |
GraphExtender() {
|
| 736 | 736 |
node_notifier.setContainer(*this); |
| 737 | 737 |
arc_notifier.setContainer(*this); |
| 738 | 738 |
edge_notifier.setContainer(*this); |
| 739 | 739 |
} |
| 740 | 740 |
|
| 741 | 741 |
~GraphExtender() {
|
| 742 | 742 |
edge_notifier.clear(); |
| 743 | 743 |
arc_notifier.clear(); |
| 744 | 744 |
node_notifier.clear(); |
| 745 | 745 |
} |
| 746 | 746 |
|
| 747 | 747 |
}; |
| 748 | 748 |
|
| 749 | 749 |
} |
| 750 | 750 |
|
| 751 | 751 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_MAP_EXTENDER_H |
| 20 | 20 |
#define LEMON_BITS_MAP_EXTENDER_H |
| 21 | 21 |
|
| 22 | 22 |
#include <iterator> |
| 23 | 23 |
|
| 24 | 24 |
#include <lemon/bits/traits.h> |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/concept_check.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
|
| 29 | 29 |
//\file |
| 30 | 30 |
//\brief Extenders for iterable maps. |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
// \ingroup graphbits |
| 35 | 35 |
// |
| 36 | 36 |
// \brief Extender for maps |
| 37 | 37 |
template <typename _Map> |
| 38 | 38 |
class MapExtender : public _Map {
|
| 39 | 39 |
typedef _Map Parent; |
| 40 | 40 |
typedef typename Parent::GraphType GraphType; |
| 41 | 41 |
|
| 42 | 42 |
public: |
| 43 | 43 |
|
| 44 | 44 |
typedef MapExtender Map; |
| 45 | 45 |
typedef typename Parent::Key Item; |
| 46 | 46 |
|
| 47 | 47 |
typedef typename Parent::Key Key; |
| 48 | 48 |
typedef typename Parent::Value Value; |
| 49 | 49 |
typedef typename Parent::Reference Reference; |
| 50 | 50 |
typedef typename Parent::ConstReference ConstReference; |
| 51 | 51 |
|
| 52 |
typedef typename Parent::ReferenceMapTag ReferenceMapTag; |
|
| 53 |
|
|
| 52 | 54 |
class MapIt; |
| 53 | 55 |
class ConstMapIt; |
| 54 | 56 |
|
| 55 | 57 |
friend class MapIt; |
| 56 | 58 |
friend class ConstMapIt; |
| 57 | 59 |
|
| 58 | 60 |
public: |
| 59 | 61 |
|
| 60 | 62 |
MapExtender(const GraphType& graph) |
| 61 | 63 |
: Parent(graph) {}
|
| 62 | 64 |
|
| 63 | 65 |
MapExtender(const GraphType& graph, const Value& value) |
| 64 | 66 |
: Parent(graph, value) {}
|
| 65 | 67 |
|
| 66 | 68 |
private: |
| 67 | 69 |
MapExtender& operator=(const MapExtender& cmap) {
|
| 68 | 70 |
return operator=<MapExtender>(cmap); |
| 69 | 71 |
} |
| 70 | 72 |
|
| 71 | 73 |
template <typename CMap> |
| 72 | 74 |
MapExtender& operator=(const CMap& cmap) {
|
| 73 | 75 |
Parent::operator=(cmap); |
| 74 | 76 |
return *this; |
| 75 | 77 |
} |
| 76 | 78 |
|
| 77 | 79 |
public: |
| 78 | 80 |
class MapIt : public Item {
|
| 79 | 81 |
typedef Item Parent; |
| 80 | 82 |
|
| 81 | 83 |
public: |
| 82 | 84 |
|
| 83 | 85 |
typedef typename Map::Value Value; |
| 84 | 86 |
|
| 85 | 87 |
MapIt() {}
|
| 86 | 88 |
|
| 87 | 89 |
MapIt(Invalid i) : Parent(i) { }
|
| 88 | 90 |
|
| 89 | 91 |
explicit MapIt(Map& _map) : map(_map) {
|
| 90 | 92 |
map.notifier()->first(*this); |
| 91 | 93 |
} |
| 92 | 94 |
|
| 93 | 95 |
MapIt(const Map& _map, const Item& item) |
| 94 | 96 |
: Parent(item), map(_map) {}
|
| 95 | 97 |
|
| 96 | 98 |
MapIt& operator++() {
|
| 97 | 99 |
map.notifier()->next(*this); |
| 98 | 100 |
return *this; |
| 99 | 101 |
} |
| 100 | 102 |
|
| 101 | 103 |
typename MapTraits<Map>::ConstReturnValue operator*() const {
|
| 102 | 104 |
return map[*this]; |
| 103 | 105 |
} |
| 104 | 106 |
|
| 105 | 107 |
typename MapTraits<Map>::ReturnValue operator*() {
|
| 106 | 108 |
return map[*this]; |
| 107 | 109 |
} |
| 108 | 110 |
|
| 109 | 111 |
void set(const Value& value) {
|
| 110 | 112 |
map.set(*this, value); |
| 111 | 113 |
} |
| 112 | 114 |
|
| 113 | 115 |
protected: |
| 114 | 116 |
Map& map; |
| 115 | 117 |
|
| 116 | 118 |
}; |
| 117 | 119 |
|
| 118 | 120 |
class ConstMapIt : public Item {
|
| 119 | 121 |
typedef Item Parent; |
| 120 | 122 |
|
| 121 | 123 |
public: |
| 122 | 124 |
|
| 123 | 125 |
typedef typename Map::Value Value; |
| 124 | 126 |
|
| 125 | 127 |
ConstMapIt() {}
|
| 126 | 128 |
|
| 127 | 129 |
ConstMapIt(Invalid i) : Parent(i) { }
|
| 128 | 130 |
|
| 129 | 131 |
explicit ConstMapIt(Map& _map) : map(_map) {
|
| 130 | 132 |
map.notifier()->first(*this); |
| 131 | 133 |
} |
| 132 | 134 |
|
| 133 | 135 |
ConstMapIt(const Map& _map, const Item& item) |
| 134 | 136 |
: Parent(item), map(_map) {}
|
| 135 | 137 |
|
| 136 | 138 |
ConstMapIt& operator++() {
|
| 137 | 139 |
map.notifier()->next(*this); |
| 138 | 140 |
return *this; |
| 139 | 141 |
} |
| 140 | 142 |
|
| 141 | 143 |
typename MapTraits<Map>::ConstReturnValue operator*() const {
|
| 142 | 144 |
return map[*this]; |
| 143 | 145 |
} |
| 144 | 146 |
|
| 145 | 147 |
protected: |
| 146 | 148 |
const Map& map; |
| 147 | 149 |
}; |
| 148 | 150 |
|
| 149 | 151 |
class ItemIt : public Item {
|
| 150 | 152 |
typedef Item Parent; |
| 151 | 153 |
|
| 152 | 154 |
public: |
| 153 | 155 |
|
| 154 | 156 |
ItemIt() {}
|
| 155 | 157 |
|
| 156 | 158 |
ItemIt(Invalid i) : Parent(i) { }
|
| 157 | 159 |
|
| 158 | 160 |
explicit ItemIt(Map& _map) : map(_map) {
|
| 159 | 161 |
map.notifier()->first(*this); |
| 160 | 162 |
} |
| 161 | 163 |
|
| 162 | 164 |
ItemIt(const Map& _map, const Item& item) |
| 163 | 165 |
: Parent(item), map(_map) {}
|
| 164 | 166 |
|
| 165 | 167 |
ItemIt& operator++() {
|
| 166 | 168 |
map.notifier()->next(*this); |
| 167 | 169 |
return *this; |
| 168 | 170 |
} |
| 169 | 171 |
|
| 170 | 172 |
protected: |
| 171 | 173 |
const Map& map; |
| 172 | 174 |
|
| 173 | 175 |
}; |
| 174 | 176 |
}; |
| 175 | 177 |
|
| 176 | 178 |
// \ingroup graphbits |
| 177 | 179 |
// |
| 178 | 180 |
// \brief Extender for maps which use a subset of the items. |
| 179 | 181 |
template <typename _Graph, typename _Map> |
| 180 | 182 |
class SubMapExtender : public _Map {
|
| 181 | 183 |
typedef _Map Parent; |
| 182 | 184 |
typedef _Graph GraphType; |
| 183 | 185 |
|
| 184 | 186 |
public: |
| 185 | 187 |
|
| 186 | 188 |
typedef SubMapExtender Map; |
| 187 | 189 |
typedef typename Parent::Key Item; |
| 188 | 190 |
|
| 189 | 191 |
typedef typename Parent::Key Key; |
| 190 | 192 |
typedef typename Parent::Value Value; |
| 191 | 193 |
typedef typename Parent::Reference Reference; |
| 192 | 194 |
typedef typename Parent::ConstReference ConstReference; |
| 193 | 195 |
|
| 196 |
typedef typename Parent::ReferenceMapTag ReferenceMapTag; |
|
| 197 |
|
|
| 194 | 198 |
class MapIt; |
| 195 | 199 |
class ConstMapIt; |
| 196 | 200 |
|
| 197 | 201 |
friend class MapIt; |
| 198 | 202 |
friend class ConstMapIt; |
| 199 | 203 |
|
| 200 | 204 |
public: |
| 201 | 205 |
|
| 202 | 206 |
SubMapExtender(const GraphType& _graph) |
| 203 | 207 |
: Parent(_graph), graph(_graph) {}
|
| 204 | 208 |
|
| 205 | 209 |
SubMapExtender(const GraphType& _graph, const Value& _value) |
| 206 | 210 |
: Parent(_graph, _value), graph(_graph) {}
|
| 207 | 211 |
|
| 208 | 212 |
private: |
| 209 | 213 |
SubMapExtender& operator=(const SubMapExtender& cmap) {
|
| 210 | 214 |
return operator=<MapExtender>(cmap); |
| 211 | 215 |
} |
| 212 | 216 |
|
| 213 | 217 |
template <typename CMap> |
| 214 | 218 |
SubMapExtender& operator=(const CMap& cmap) {
|
| 215 | 219 |
checkConcept<concepts::ReadMap<Key, Value>, CMap>(); |
| 216 | 220 |
Item it; |
| 217 | 221 |
for (graph.first(it); it != INVALID; graph.next(it)) {
|
| 218 | 222 |
Parent::set(it, cmap[it]); |
| 219 | 223 |
} |
| 220 | 224 |
return *this; |
| 221 | 225 |
} |
| 222 | 226 |
|
| 223 | 227 |
public: |
| 224 | 228 |
class MapIt : public Item {
|
| 225 | 229 |
typedef Item Parent; |
| 226 | 230 |
|
| 227 | 231 |
public: |
| 228 | 232 |
typedef typename Map::Value Value; |
| 229 | 233 |
|
| 230 | 234 |
MapIt() {}
|
| 231 | 235 |
|
| 232 | 236 |
MapIt(Invalid i) : Parent(i) { }
|
| 233 | 237 |
|
| 234 | 238 |
explicit MapIt(Map& _map) : map(_map) {
|
| 235 | 239 |
map.graph.first(*this); |
| 236 | 240 |
} |
| 237 | 241 |
|
| 238 | 242 |
MapIt(const Map& _map, const Item& item) |
| 239 | 243 |
: Parent(item), map(_map) {}
|
| 240 | 244 |
|
| 241 | 245 |
MapIt& operator++() {
|
| 242 | 246 |
map.graph.next(*this); |
| 243 | 247 |
return *this; |
| 244 | 248 |
} |
| 245 | 249 |
|
| 246 | 250 |
typename MapTraits<Map>::ConstReturnValue operator*() const {
|
| 247 | 251 |
return map[*this]; |
| 248 | 252 |
} |
| 249 | 253 |
|
| 250 | 254 |
typename MapTraits<Map>::ReturnValue operator*() {
|
| 251 | 255 |
return map[*this]; |
| 252 | 256 |
} |
| 253 | 257 |
|
| 254 | 258 |
void set(const Value& value) {
|
| 255 | 259 |
map.set(*this, value); |
| 256 | 260 |
} |
| 257 | 261 |
|
| 258 | 262 |
protected: |
| 259 | 263 |
Map& map; |
| 260 | 264 |
|
| 261 | 265 |
}; |
| 262 | 266 |
|
| 263 | 267 |
class ConstMapIt : public Item {
|
| 264 | 268 |
typedef Item Parent; |
| 265 | 269 |
|
| 266 | 270 |
public: |
| 267 | 271 |
|
| 268 | 272 |
typedef typename Map::Value Value; |
| 269 | 273 |
|
| 270 | 274 |
ConstMapIt() {}
|
| 271 | 275 |
|
| 272 | 276 |
ConstMapIt(Invalid i) : Parent(i) { }
|
| 273 | 277 |
|
| 274 | 278 |
explicit ConstMapIt(Map& _map) : map(_map) {
|
| 275 | 279 |
map.graph.first(*this); |
| 276 | 280 |
} |
| 277 | 281 |
|
| 278 | 282 |
ConstMapIt(const Map& _map, const Item& item) |
| 279 | 283 |
: Parent(item), map(_map) {}
|
| 280 | 284 |
|
| 281 | 285 |
ConstMapIt& operator++() {
|
| 282 | 286 |
map.graph.next(*this); |
| 283 | 287 |
return *this; |
| 284 | 288 |
} |
| 285 | 289 |
|
| 286 | 290 |
typename MapTraits<Map>::ConstReturnValue operator*() const {
|
| 287 | 291 |
return map[*this]; |
| 288 | 292 |
} |
| 289 | 293 |
|
| 290 | 294 |
protected: |
| 291 | 295 |
const Map& map; |
| 292 | 296 |
}; |
| 293 | 297 |
|
| 294 | 298 |
class ItemIt : public Item {
|
| 295 | 299 |
typedef Item Parent; |
| 296 | 300 |
|
| 297 | 301 |
public: |
| 298 | 302 |
|
| 299 | 303 |
ItemIt() {}
|
| 300 | 304 |
|
| 301 | 305 |
ItemIt(Invalid i) : Parent(i) { }
|
| 302 | 306 |
|
| 303 | 307 |
explicit ItemIt(Map& _map) : map(_map) {
|
| 304 | 308 |
map.graph.first(*this); |
| 305 | 309 |
} |
| 306 | 310 |
|
| 307 | 311 |
ItemIt(const Map& _map, const Item& item) |
| 308 | 312 |
: Parent(item), map(_map) {}
|
| 309 | 313 |
|
| 310 | 314 |
ItemIt& operator++() {
|
| 311 | 315 |
map.graph.next(*this); |
| 312 | 316 |
return *this; |
| 313 | 317 |
} |
| 314 | 318 |
|
| 315 | 319 |
protected: |
| 316 | 320 |
const Map& map; |
| 317 | 321 |
|
| 318 | 322 |
}; |
| 319 | 323 |
|
| 320 | 324 |
private: |
| 321 | 325 |
|
| 322 | 326 |
const GraphType& graph; |
| 323 | 327 |
|
| 324 | 328 |
}; |
| 325 | 329 |
|
| 326 | 330 |
} |
| 327 | 331 |
|
| 328 | 332 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BUCKET_HEAP_H |
| 20 | 20 |
#define LEMON_BUCKET_HEAP_H |
| 21 | 21 |
|
| 22 |
///\ingroup |
|
| 22 |
///\ingroup heaps |
|
| 23 | 23 |
///\file |
| 24 |
///\brief Bucket |
|
| 24 |
///\brief Bucket heap implementation. |
|
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <utility> |
| 28 | 28 |
#include <functional> |
| 29 | 29 |
|
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
namespace _bucket_heap_bits {
|
| 33 | 33 |
|
| 34 | 34 |
template <bool MIN> |
| 35 | 35 |
struct DirectionTraits {
|
| 36 | 36 |
static bool less(int left, int right) {
|
| 37 | 37 |
return left < right; |
| 38 | 38 |
} |
| 39 | 39 |
static void increase(int& value) {
|
| 40 | 40 |
++value; |
| 41 | 41 |
} |
| 42 | 42 |
}; |
| 43 | 43 |
|
| 44 | 44 |
template <> |
| 45 | 45 |
struct DirectionTraits<false> {
|
| 46 | 46 |
static bool less(int left, int right) {
|
| 47 | 47 |
return left > right; |
| 48 | 48 |
} |
| 49 | 49 |
static void increase(int& value) {
|
| 50 | 50 |
--value; |
| 51 | 51 |
} |
| 52 | 52 |
}; |
| 53 | 53 |
|
| 54 | 54 |
} |
| 55 | 55 |
|
| 56 |
/// \ingroup |
|
| 56 |
/// \ingroup heaps |
|
| 57 | 57 |
/// |
| 58 |
/// \brief |
|
| 58 |
/// \brief Bucket heap data structure. |
|
| 59 | 59 |
/// |
| 60 |
/// This class implements the \e bucket \e heap data structure. A \e heap |
|
| 61 |
/// is a data structure for storing items with specified values called \e |
|
| 62 |
/// priorities in such a way that finding the item with minimum priority is |
|
| 63 |
/// efficient. The bucket heap is very simple implementation, it can store |
|
| 64 |
/// only integer priorities and it stores for each priority in the |
|
| 65 |
/// \f$ [0..C) \f$ range a list of items. So it should be used only when |
|
| 66 |
/// the |
|
| 60 |
/// This class implements the \e bucket \e heap data structure. |
|
| 61 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
|
| 62 |
/// but it has some limitations. |
|
| 67 | 63 |
/// |
| 68 |
/// \param IM A read and write Item int map, used internally |
|
| 69 |
/// to handle the cross references. |
|
| 70 |
/// \param MIN If the given parameter is false then instead of the |
|
| 71 |
/// minimum value the maximum can be retrivied with the top() and |
|
| 72 |
/// |
|
| 64 |
/// The bucket heap is a very simple structure. It can store only |
|
| 65 |
/// \c int priorities and it maintains a list of items for each priority |
|
| 66 |
/// in the range <tt>[0..C)</tt>. So it should only be used when the |
|
| 67 |
/// priorities are small. It is not intended to use as a Dijkstra heap. |
|
| 68 |
/// |
|
| 69 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 70 |
/// internally to handle the cross references. |
|
| 71 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
|
| 72 |
/// The default is \e min-heap. If this parameter is set to \c false, |
|
| 73 |
/// then the comparison is reversed, so the top(), prio() and pop() |
|
| 74 |
/// functions deal with the item having maximum priority instead of the |
|
| 75 |
/// minimum. |
|
| 76 |
/// |
|
| 77 |
/// \sa SimpleBucketHeap |
|
| 73 | 78 |
template <typename IM, bool MIN = true> |
| 74 | 79 |
class BucketHeap {
|
| 75 | 80 |
|
| 76 | 81 |
public: |
| 77 |
/// \e |
|
| 78 |
typedef typename IM::Key Item; |
|
| 79 |
|
|
| 82 |
|
|
| 83 |
/// Type of the item-int map. |
|
| 84 |
typedef IM ItemIntMap; |
|
| 85 |
/// Type of the priorities. |
|
| 80 | 86 |
typedef int Prio; |
| 81 |
/// \e |
|
| 82 |
typedef std::pair<Item, Prio> Pair; |
|
| 83 |
/// \e |
|
| 84 |
typedef IM ItemIntMap; |
|
| 87 |
/// Type of the items stored in the heap. |
|
| 88 |
typedef typename ItemIntMap::Key Item; |
|
| 89 |
/// Type of the item-priority pairs. |
|
| 90 |
typedef std::pair<Item,Prio> Pair; |
|
| 85 | 91 |
|
| 86 | 92 |
private: |
| 87 | 93 |
|
| 88 | 94 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
| 89 | 95 |
|
| 90 | 96 |
public: |
| 91 | 97 |
|
| 92 |
/// \brief Type to represent the |
|
| 98 |
/// \brief Type to represent the states of the items. |
|
| 93 | 99 |
/// |
| 94 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 95 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 100 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 101 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 96 | 102 |
/// heap's point of view, but may be useful to the user. |
| 97 | 103 |
/// |
| 98 | 104 |
/// The item-int map must be initialized in such way that it assigns |
| 99 | 105 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 100 | 106 |
enum State {
|
| 101 | 107 |
IN_HEAP = 0, ///< = 0. |
| 102 | 108 |
PRE_HEAP = -1, ///< = -1. |
| 103 | 109 |
POST_HEAP = -2 ///< = -2. |
| 104 | 110 |
}; |
| 105 | 111 |
|
| 106 | 112 |
public: |
| 107 |
|
|
| 113 |
|
|
| 114 |
/// \brief Constructor. |
|
| 108 | 115 |
/// |
| 109 |
/// The constructor. |
|
| 110 |
/// \param map should be given to the constructor, since it is used |
|
| 111 |
/// internally to handle the cross references. The value of the map |
|
| 112 |
/// should be PRE_HEAP (-1) for each element. |
|
| 116 |
/// Constructor. |
|
| 117 |
/// \param map A map that assigns \c int values to the items. |
|
| 118 |
/// It is used internally to handle the cross references. |
|
| 119 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 113 | 120 |
explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {}
|
| 114 | 121 |
|
| 115 |
/// The number of items stored in the heap. |
|
| 122 |
/// \brief The number of items stored in the heap. |
|
| 116 | 123 |
/// |
| 117 |
/// |
|
| 124 |
/// This function returns the number of items stored in the heap. |
|
| 118 | 125 |
int size() const { return _data.size(); }
|
| 119 | 126 |
|
| 120 |
/// \brief |
|
| 127 |
/// \brief Check if the heap is empty. |
|
| 121 | 128 |
/// |
| 122 |
/// |
|
| 129 |
/// This function returns \c true if the heap is empty. |
|
| 123 | 130 |
bool empty() const { return _data.empty(); }
|
| 124 | 131 |
|
| 125 |
/// \brief Make |
|
| 132 |
/// \brief Make the heap empty. |
|
| 126 | 133 |
/// |
| 127 |
/// Make empty this heap. It does not change the cross reference |
|
| 128 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 129 |
/// should first clear the heap and after that you should set the |
|
| 130 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 134 |
/// This functon makes the heap empty. |
|
| 135 |
/// It does not change the cross reference map. If you want to reuse |
|
| 136 |
/// a heap that is not surely empty, you should first clear it and |
|
| 137 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 138 |
/// for each item. |
|
| 131 | 139 |
void clear() {
|
| 132 | 140 |
_data.clear(); _first.clear(); _minimum = 0; |
| 133 | 141 |
} |
| 134 | 142 |
|
| 135 | 143 |
private: |
| 136 | 144 |
|
| 137 |
void |
|
| 145 |
void relocateLast(int idx) {
|
|
| 138 | 146 |
if (idx + 1 < int(_data.size())) {
|
| 139 | 147 |
_data[idx] = _data.back(); |
| 140 | 148 |
if (_data[idx].prev != -1) {
|
| 141 | 149 |
_data[_data[idx].prev].next = idx; |
| 142 | 150 |
} else {
|
| 143 | 151 |
_first[_data[idx].value] = idx; |
| 144 | 152 |
} |
| 145 | 153 |
if (_data[idx].next != -1) {
|
| 146 | 154 |
_data[_data[idx].next].prev = idx; |
| 147 | 155 |
} |
| 148 | 156 |
_iim[_data[idx].item] = idx; |
| 149 | 157 |
} |
| 150 | 158 |
_data.pop_back(); |
| 151 | 159 |
} |
| 152 | 160 |
|
| 153 | 161 |
void unlace(int idx) {
|
| 154 | 162 |
if (_data[idx].prev != -1) {
|
| 155 | 163 |
_data[_data[idx].prev].next = _data[idx].next; |
| 156 | 164 |
} else {
|
| 157 | 165 |
_first[_data[idx].value] = _data[idx].next; |
| 158 | 166 |
} |
| 159 | 167 |
if (_data[idx].next != -1) {
|
| 160 | 168 |
_data[_data[idx].next].prev = _data[idx].prev; |
| 161 | 169 |
} |
| 162 | 170 |
} |
| 163 | 171 |
|
| 164 | 172 |
void lace(int idx) {
|
| 165 | 173 |
if (int(_first.size()) <= _data[idx].value) {
|
| 166 | 174 |
_first.resize(_data[idx].value + 1, -1); |
| 167 | 175 |
} |
| 168 | 176 |
_data[idx].next = _first[_data[idx].value]; |
| 169 | 177 |
if (_data[idx].next != -1) {
|
| 170 | 178 |
_data[_data[idx].next].prev = idx; |
| 171 | 179 |
} |
| 172 | 180 |
_first[_data[idx].value] = idx; |
| 173 | 181 |
_data[idx].prev = -1; |
| 174 | 182 |
} |
| 175 | 183 |
|
| 176 | 184 |
public: |
| 185 |
|
|
| 177 | 186 |
/// \brief Insert a pair of item and priority into the heap. |
| 178 | 187 |
/// |
| 179 |
/// |
|
| 188 |
/// This function inserts \c p.first to the heap with priority |
|
| 189 |
/// \c p.second. |
|
| 180 | 190 |
/// \param p The pair to insert. |
| 191 |
/// \pre \c p.first must not be stored in the heap. |
|
| 181 | 192 |
void push(const Pair& p) {
|
| 182 | 193 |
push(p.first, p.second); |
| 183 | 194 |
} |
| 184 | 195 |
|
| 185 | 196 |
/// \brief Insert an item into the heap with the given priority. |
| 186 | 197 |
/// |
| 187 |
/// |
|
| 198 |
/// This function inserts the given item into the heap with the |
|
| 199 |
/// given priority. |
|
| 188 | 200 |
/// \param i The item to insert. |
| 189 | 201 |
/// \param p The priority of the item. |
| 202 |
/// \pre \e i must not be stored in the heap. |
|
| 190 | 203 |
void push(const Item &i, const Prio &p) {
|
| 191 | 204 |
int idx = _data.size(); |
| 192 | 205 |
_iim[i] = idx; |
| 193 | 206 |
_data.push_back(BucketItem(i, p)); |
| 194 | 207 |
lace(idx); |
| 195 | 208 |
if (Direction::less(p, _minimum)) {
|
| 196 | 209 |
_minimum = p; |
| 197 | 210 |
} |
| 198 | 211 |
} |
| 199 | 212 |
|
| 200 |
/// \brief |
|
| 213 |
/// \brief Return the item having minimum priority. |
|
| 201 | 214 |
/// |
| 202 |
/// This method returns the item with minimum priority. |
|
| 203 |
/// \pre The heap must be nonempty. |
|
| 215 |
/// This function returns the item having minimum priority. |
|
| 216 |
/// \pre The heap must be non-empty. |
|
| 204 | 217 |
Item top() const {
|
| 205 | 218 |
while (_first[_minimum] == -1) {
|
| 206 | 219 |
Direction::increase(_minimum); |
| 207 | 220 |
} |
| 208 | 221 |
return _data[_first[_minimum]].item; |
| 209 | 222 |
} |
| 210 | 223 |
|
| 211 |
/// \brief |
|
| 224 |
/// \brief The minimum priority. |
|
| 212 | 225 |
/// |
| 213 |
/// It returns the minimum priority. |
|
| 214 |
/// \pre The heap must be nonempty. |
|
| 226 |
/// This function returns the minimum priority. |
|
| 227 |
/// \pre The heap must be non-empty. |
|
| 215 | 228 |
Prio prio() const {
|
| 216 | 229 |
while (_first[_minimum] == -1) {
|
| 217 | 230 |
Direction::increase(_minimum); |
| 218 | 231 |
} |
| 219 | 232 |
return _minimum; |
| 220 | 233 |
} |
| 221 | 234 |
|
| 222 |
/// \brief |
|
| 235 |
/// \brief Remove the item having minimum priority. |
|
| 223 | 236 |
/// |
| 224 |
/// This |
|
| 237 |
/// This function removes the item having minimum priority. |
|
| 225 | 238 |
/// \pre The heap must be non-empty. |
| 226 | 239 |
void pop() {
|
| 227 | 240 |
while (_first[_minimum] == -1) {
|
| 228 | 241 |
Direction::increase(_minimum); |
| 229 | 242 |
} |
| 230 | 243 |
int idx = _first[_minimum]; |
| 231 | 244 |
_iim[_data[idx].item] = -2; |
| 232 | 245 |
unlace(idx); |
| 233 |
|
|
| 246 |
relocateLast(idx); |
|
| 234 | 247 |
} |
| 235 | 248 |
|
| 236 |
/// \brief |
|
| 249 |
/// \brief Remove the given item from the heap. |
|
| 237 | 250 |
/// |
| 238 |
/// This method deletes item \c i from the heap, if \c i was |
|
| 239 |
/// already stored in the heap. |
|
| 240 |
/// |
|
| 251 |
/// This function removes the given item from the heap if it is |
|
| 252 |
/// already stored. |
|
| 253 |
/// \param i The item to delete. |
|
| 254 |
/// \pre \e i must be in the heap. |
|
| 241 | 255 |
void erase(const Item &i) {
|
| 242 | 256 |
int idx = _iim[i]; |
| 243 | 257 |
_iim[_data[idx].item] = -2; |
| 244 | 258 |
unlace(idx); |
| 245 |
|
|
| 259 |
relocateLast(idx); |
|
| 246 | 260 |
} |
| 247 | 261 |
|
| 248 |
|
|
| 249 |
/// \brief Returns the priority of \c i. |
|
| 262 |
/// \brief The priority of the given item. |
|
| 250 | 263 |
/// |
| 251 |
/// This function returns the priority of item \c i. |
|
| 252 |
/// \pre \c i must be in the heap. |
|
| 264 |
/// This function returns the priority of the given item. |
|
| 253 | 265 |
/// \param i The item. |
| 266 |
/// \pre \e i must be in the heap. |
|
| 254 | 267 |
Prio operator[](const Item &i) const {
|
| 255 | 268 |
int idx = _iim[i]; |
| 256 | 269 |
return _data[idx].value; |
| 257 | 270 |
} |
| 258 | 271 |
|
| 259 |
/// \brief \c i gets to the heap with priority \c p independently |
|
| 260 |
/// if \c i was already there. |
|
| 272 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 273 |
/// not stored in the heap. |
|
| 261 | 274 |
/// |
| 262 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
| 263 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
| 275 |
/// This method sets the priority of the given item if it is |
|
| 276 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 277 |
/// item into the heap with the given priority. |
|
| 264 | 278 |
/// \param i The item. |
| 265 | 279 |
/// \param p The priority. |
| 266 | 280 |
void set(const Item &i, const Prio &p) {
|
| 267 | 281 |
int idx = _iim[i]; |
| 268 | 282 |
if (idx < 0) {
|
| 269 | 283 |
push(i, p); |
| 270 | 284 |
} else if (Direction::less(p, _data[idx].value)) {
|
| 271 | 285 |
decrease(i, p); |
| 272 | 286 |
} else {
|
| 273 | 287 |
increase(i, p); |
| 274 | 288 |
} |
| 275 | 289 |
} |
| 276 | 290 |
|
| 277 |
/// \brief |
|
| 291 |
/// \brief Decrease the priority of an item to the given value. |
|
| 278 | 292 |
/// |
| 279 |
/// This method decreases the priority of item \c i to \c p. |
|
| 280 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
| 281 |
/// |
|
| 293 |
/// This function decreases the priority of an item to the given value. |
|
| 282 | 294 |
/// \param i The item. |
| 283 | 295 |
/// \param p The priority. |
| 296 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 284 | 297 |
void decrease(const Item &i, const Prio &p) {
|
| 285 | 298 |
int idx = _iim[i]; |
| 286 | 299 |
unlace(idx); |
| 287 | 300 |
_data[idx].value = p; |
| 288 | 301 |
if (Direction::less(p, _minimum)) {
|
| 289 | 302 |
_minimum = p; |
| 290 | 303 |
} |
| 291 | 304 |
lace(idx); |
| 292 | 305 |
} |
| 293 | 306 |
|
| 294 |
/// \brief |
|
| 307 |
/// \brief Increase the priority of an item to the given value. |
|
| 295 | 308 |
/// |
| 296 |
/// This method sets the priority of item \c i to \c p. |
|
| 297 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
| 298 |
/// |
|
| 309 |
/// This function increases the priority of an item to the given value. |
|
| 299 | 310 |
/// \param i The item. |
| 300 | 311 |
/// \param p The priority. |
| 312 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 301 | 313 |
void increase(const Item &i, const Prio &p) {
|
| 302 | 314 |
int idx = _iim[i]; |
| 303 | 315 |
unlace(idx); |
| 304 | 316 |
_data[idx].value = p; |
| 305 | 317 |
lace(idx); |
| 306 | 318 |
} |
| 307 | 319 |
|
| 308 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 309 |
/// never been in the heap. |
|
| 320 |
/// \brief Return the state of an item. |
|
| 310 | 321 |
/// |
| 311 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 312 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 313 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 314 |
/// get back to the heap again. |
|
| 322 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 323 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 324 |
/// and \c POST_HEAP otherwise. |
|
| 325 |
/// In the latter case it is possible that the item will get back |
|
| 326 |
/// to the heap again. |
|
| 315 | 327 |
/// \param i The item. |
| 316 | 328 |
State state(const Item &i) const {
|
| 317 | 329 |
int idx = _iim[i]; |
| 318 | 330 |
if (idx >= 0) idx = 0; |
| 319 | 331 |
return State(idx); |
| 320 | 332 |
} |
| 321 | 333 |
|
| 322 |
/// \brief |
|
| 334 |
/// \brief Set the state of an item in the heap. |
|
| 323 | 335 |
/// |
| 324 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 325 |
/// manually clear the heap when it is important to achive the |
|
| 326 |
/// |
|
| 336 |
/// This function sets the state of the given item in the heap. |
|
| 337 |
/// It can be used to manually clear the heap when it is important |
|
| 338 |
/// to achive better time complexity. |
|
| 327 | 339 |
/// \param i The item. |
| 328 | 340 |
/// \param st The state. It should not be \c IN_HEAP. |
| 329 | 341 |
void state(const Item& i, State st) {
|
| 330 | 342 |
switch (st) {
|
| 331 | 343 |
case POST_HEAP: |
| 332 | 344 |
case PRE_HEAP: |
| 333 | 345 |
if (state(i) == IN_HEAP) {
|
| 334 | 346 |
erase(i); |
| 335 | 347 |
} |
| 336 | 348 |
_iim[i] = st; |
| 337 | 349 |
break; |
| 338 | 350 |
case IN_HEAP: |
| 339 | 351 |
break; |
| 340 | 352 |
} |
| 341 | 353 |
} |
| 342 | 354 |
|
| 343 | 355 |
private: |
| 344 | 356 |
|
| 345 | 357 |
struct BucketItem {
|
| 346 | 358 |
BucketItem(const Item& _item, int _value) |
| 347 | 359 |
: item(_item), value(_value) {}
|
| 348 | 360 |
|
| 349 | 361 |
Item item; |
| 350 | 362 |
int value; |
| 351 | 363 |
|
| 352 | 364 |
int prev, next; |
| 353 | 365 |
}; |
| 354 | 366 |
|
| 355 | 367 |
ItemIntMap& _iim; |
| 356 | 368 |
std::vector<int> _first; |
| 357 | 369 |
std::vector<BucketItem> _data; |
| 358 | 370 |
mutable int _minimum; |
| 359 | 371 |
|
| 360 | 372 |
}; // class BucketHeap |
| 361 | 373 |
|
| 362 |
/// \ingroup |
|
| 374 |
/// \ingroup heaps |
|
| 363 | 375 |
/// |
| 364 |
/// \brief |
|
| 376 |
/// \brief Simplified bucket heap data structure. |
|
| 365 | 377 |
/// |
| 366 | 378 |
/// This class implements a simplified \e bucket \e heap data |
| 367 |
/// structure. It does not provide some functionality but it faster |
|
| 368 |
/// and simplier data structure than the BucketHeap. The main |
|
| 369 |
/// difference is that the BucketHeap stores for every key a double |
|
| 370 |
/// linked list while this class stores just simple lists. In the |
|
| 371 |
/// other way it does not support erasing each elements just the |
|
| 372 |
/// minimal and it does not supports key increasing, decreasing. |
|
| 379 |
/// structure. It does not provide some functionality, but it is |
|
| 380 |
/// faster and simpler than BucketHeap. The main difference is |
|
| 381 |
/// that BucketHeap stores a doubly-linked list for each key while |
|
| 382 |
/// this class stores only simply-linked lists. It supports erasing |
|
| 383 |
/// only for the item having minimum priority and it does not support |
|
| 384 |
/// key increasing and decreasing. |
|
| 373 | 385 |
/// |
| 374 |
/// \param IM A read and write Item int map, used internally |
|
| 375 |
/// to handle the cross references. |
|
| 376 |
/// \param MIN If the given parameter is false then instead of the |
|
| 377 |
/// minimum value the maximum can be retrivied with the top() and |
|
| 378 |
/// |
|
| 386 |
/// Note that this implementation does not conform to the |
|
| 387 |
/// \ref concepts::Heap "heap concept" due to the lack of some |
|
| 388 |
/// functionality. |
|
| 389 |
/// |
|
| 390 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 391 |
/// internally to handle the cross references. |
|
| 392 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
|
| 393 |
/// The default is \e min-heap. If this parameter is set to \c false, |
|
| 394 |
/// then the comparison is reversed, so the top(), prio() and pop() |
|
| 395 |
/// functions deal with the item having maximum priority instead of the |
|
| 396 |
/// minimum. |
|
| 379 | 397 |
/// |
| 380 | 398 |
/// \sa BucketHeap |
| 381 | 399 |
template <typename IM, bool MIN = true > |
| 382 | 400 |
class SimpleBucketHeap {
|
| 383 | 401 |
|
| 384 | 402 |
public: |
| 385 |
|
|
| 403 |
|
|
| 404 |
/// Type of the item-int map. |
|
| 405 |
typedef IM ItemIntMap; |
|
| 406 |
/// Type of the priorities. |
|
| 386 | 407 |
typedef int Prio; |
| 387 |
typedef std::pair<Item, Prio> Pair; |
|
| 388 |
typedef IM ItemIntMap; |
|
| 408 |
/// Type of the items stored in the heap. |
|
| 409 |
typedef typename ItemIntMap::Key Item; |
|
| 410 |
/// Type of the item-priority pairs. |
|
| 411 |
typedef std::pair<Item,Prio> Pair; |
|
| 389 | 412 |
|
| 390 | 413 |
private: |
| 391 | 414 |
|
| 392 | 415 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
| 393 | 416 |
|
| 394 | 417 |
public: |
| 395 | 418 |
|
| 396 |
/// \brief Type to represent the |
|
| 419 |
/// \brief Type to represent the states of the items. |
|
| 397 | 420 |
/// |
| 398 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 399 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 421 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 422 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 400 | 423 |
/// heap's point of view, but may be useful to the user. |
| 401 | 424 |
/// |
| 402 | 425 |
/// The item-int map must be initialized in such way that it assigns |
| 403 | 426 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 404 | 427 |
enum State {
|
| 405 | 428 |
IN_HEAP = 0, ///< = 0. |
| 406 | 429 |
PRE_HEAP = -1, ///< = -1. |
| 407 | 430 |
POST_HEAP = -2 ///< = -2. |
| 408 | 431 |
}; |
| 409 | 432 |
|
| 410 | 433 |
public: |
| 411 | 434 |
|
| 412 |
/// \brief |
|
| 435 |
/// \brief Constructor. |
|
| 413 | 436 |
/// |
| 414 |
/// The constructor. |
|
| 415 |
/// \param map should be given to the constructor, since it is used |
|
| 416 |
/// internally to handle the cross references. The value of the map |
|
| 417 |
/// should be PRE_HEAP (-1) for each element. |
|
| 437 |
/// Constructor. |
|
| 438 |
/// \param map A map that assigns \c int values to the items. |
|
| 439 |
/// It is used internally to handle the cross references. |
|
| 440 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 418 | 441 |
explicit SimpleBucketHeap(ItemIntMap &map) |
| 419 | 442 |
: _iim(map), _free(-1), _num(0), _minimum(0) {}
|
| 420 | 443 |
|
| 421 |
/// \brief |
|
| 444 |
/// \brief The number of items stored in the heap. |
|
| 422 | 445 |
/// |
| 423 |
/// |
|
| 446 |
/// This function returns the number of items stored in the heap. |
|
| 424 | 447 |
int size() const { return _num; }
|
| 425 | 448 |
|
| 426 |
/// \brief |
|
| 449 |
/// \brief Check if the heap is empty. |
|
| 427 | 450 |
/// |
| 428 |
/// |
|
| 451 |
/// This function returns \c true if the heap is empty. |
|
| 429 | 452 |
bool empty() const { return _num == 0; }
|
| 430 | 453 |
|
| 431 |
/// \brief Make |
|
| 454 |
/// \brief Make the heap empty. |
|
| 432 | 455 |
/// |
| 433 |
/// Make empty this heap. It does not change the cross reference |
|
| 434 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 435 |
/// should first clear the heap and after that you should set the |
|
| 436 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 456 |
/// This functon makes the heap empty. |
|
| 457 |
/// It does not change the cross reference map. If you want to reuse |
|
| 458 |
/// a heap that is not surely empty, you should first clear it and |
|
| 459 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 460 |
/// for each item. |
|
| 437 | 461 |
void clear() {
|
| 438 | 462 |
_data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0; |
| 439 | 463 |
} |
| 440 | 464 |
|
| 441 | 465 |
/// \brief Insert a pair of item and priority into the heap. |
| 442 | 466 |
/// |
| 443 |
/// |
|
| 467 |
/// This function inserts \c p.first to the heap with priority |
|
| 468 |
/// \c p.second. |
|
| 444 | 469 |
/// \param p The pair to insert. |
| 470 |
/// \pre \c p.first must not be stored in the heap. |
|
| 445 | 471 |
void push(const Pair& p) {
|
| 446 | 472 |
push(p.first, p.second); |
| 447 | 473 |
} |
| 448 | 474 |
|
| 449 | 475 |
/// \brief Insert an item into the heap with the given priority. |
| 450 | 476 |
/// |
| 451 |
/// |
|
| 477 |
/// This function inserts the given item into the heap with the |
|
| 478 |
/// given priority. |
|
| 452 | 479 |
/// \param i The item to insert. |
| 453 | 480 |
/// \param p The priority of the item. |
| 481 |
/// \pre \e i must not be stored in the heap. |
|
| 454 | 482 |
void push(const Item &i, const Prio &p) {
|
| 455 | 483 |
int idx; |
| 456 | 484 |
if (_free == -1) {
|
| 457 | 485 |
idx = _data.size(); |
| 458 | 486 |
_data.push_back(BucketItem(i)); |
| 459 | 487 |
} else {
|
| 460 | 488 |
idx = _free; |
| 461 | 489 |
_free = _data[idx].next; |
| 462 | 490 |
_data[idx].item = i; |
| 463 | 491 |
} |
| 464 | 492 |
_iim[i] = idx; |
| 465 | 493 |
if (p >= int(_first.size())) _first.resize(p + 1, -1); |
| 466 | 494 |
_data[idx].next = _first[p]; |
| 467 | 495 |
_first[p] = idx; |
| 468 | 496 |
if (Direction::less(p, _minimum)) {
|
| 469 | 497 |
_minimum = p; |
| 470 | 498 |
} |
| 471 | 499 |
++_num; |
| 472 | 500 |
} |
| 473 | 501 |
|
| 474 |
/// \brief |
|
| 502 |
/// \brief Return the item having minimum priority. |
|
| 475 | 503 |
/// |
| 476 |
/// This method returns the item with minimum priority. |
|
| 477 |
/// \pre The heap must be nonempty. |
|
| 504 |
/// This function returns the item having minimum priority. |
|
| 505 |
/// \pre The heap must be non-empty. |
|
| 478 | 506 |
Item top() const {
|
| 479 | 507 |
while (_first[_minimum] == -1) {
|
| 480 | 508 |
Direction::increase(_minimum); |
| 481 | 509 |
} |
| 482 | 510 |
return _data[_first[_minimum]].item; |
| 483 | 511 |
} |
| 484 | 512 |
|
| 485 |
/// \brief |
|
| 513 |
/// \brief The minimum priority. |
|
| 486 | 514 |
/// |
| 487 |
/// It returns the minimum priority. |
|
| 488 |
/// \pre The heap must be nonempty. |
|
| 515 |
/// This function returns the minimum priority. |
|
| 516 |
/// \pre The heap must be non-empty. |
|
| 489 | 517 |
Prio prio() const {
|
| 490 | 518 |
while (_first[_minimum] == -1) {
|
| 491 | 519 |
Direction::increase(_minimum); |
| 492 | 520 |
} |
| 493 | 521 |
return _minimum; |
| 494 | 522 |
} |
| 495 | 523 |
|
| 496 |
/// \brief |
|
| 524 |
/// \brief Remove the item having minimum priority. |
|
| 497 | 525 |
/// |
| 498 |
/// This |
|
| 526 |
/// This function removes the item having minimum priority. |
|
| 499 | 527 |
/// \pre The heap must be non-empty. |
| 500 | 528 |
void pop() {
|
| 501 | 529 |
while (_first[_minimum] == -1) {
|
| 502 | 530 |
Direction::increase(_minimum); |
| 503 | 531 |
} |
| 504 | 532 |
int idx = _first[_minimum]; |
| 505 | 533 |
_iim[_data[idx].item] = -2; |
| 506 | 534 |
_first[_minimum] = _data[idx].next; |
| 507 | 535 |
_data[idx].next = _free; |
| 508 | 536 |
_free = idx; |
| 509 | 537 |
--_num; |
| 510 | 538 |
} |
| 511 | 539 |
|
| 512 |
/// \brief |
|
| 540 |
/// \brief The priority of the given item. |
|
| 513 | 541 |
/// |
| 514 |
/// This function returns the priority of item \c i. |
|
| 515 |
/// \warning This operator is not a constant time function |
|
| 516 |
/// because it scans the whole data structure to find the proper |
|
| 517 |
/// value. |
|
| 518 |
/// |
|
| 542 |
/// This function returns the priority of the given item. |
|
| 519 | 543 |
/// \param i The item. |
| 544 |
/// \pre \e i must be in the heap. |
|
| 545 |
/// \warning This operator is not a constant time function because |
|
| 546 |
/// it scans the whole data structure to find the proper value. |
|
| 520 | 547 |
Prio operator[](const Item &i) const {
|
| 521 |
for (int k = 0; k < _first.size(); ++k) {
|
|
| 548 |
for (int k = 0; k < int(_first.size()); ++k) {
|
|
| 522 | 549 |
int idx = _first[k]; |
| 523 | 550 |
while (idx != -1) {
|
| 524 | 551 |
if (_data[idx].item == i) {
|
| 525 | 552 |
return k; |
| 526 | 553 |
} |
| 527 | 554 |
idx = _data[idx].next; |
| 528 | 555 |
} |
| 529 | 556 |
} |
| 530 | 557 |
return -1; |
| 531 | 558 |
} |
| 532 | 559 |
|
| 533 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 534 |
/// never been in the heap. |
|
| 560 |
/// \brief Return the state of an item. |
|
| 535 | 561 |
/// |
| 536 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 537 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 538 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 539 |
/// get back to the heap again. |
|
| 562 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 563 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 564 |
/// and \c POST_HEAP otherwise. |
|
| 565 |
/// In the latter case it is possible that the item will get back |
|
| 566 |
/// to the heap again. |
|
| 540 | 567 |
/// \param i The item. |
| 541 | 568 |
State state(const Item &i) const {
|
| 542 | 569 |
int idx = _iim[i]; |
| 543 | 570 |
if (idx >= 0) idx = 0; |
| 544 | 571 |
return State(idx); |
| 545 | 572 |
} |
| 546 | 573 |
|
| 547 | 574 |
private: |
| 548 | 575 |
|
| 549 | 576 |
struct BucketItem {
|
| 550 | 577 |
BucketItem(const Item& _item) |
| 551 | 578 |
: item(_item) {}
|
| 552 | 579 |
|
| 553 | 580 |
Item item; |
| 554 | 581 |
int next; |
| 555 | 582 |
}; |
| 556 | 583 |
|
| 557 | 584 |
ItemIntMap& _iim; |
| 558 | 585 |
std::vector<int> _first; |
| 559 | 586 |
std::vector<BucketItem> _data; |
| 560 | 587 |
int _free, _num; |
| 561 | 588 |
mutable int _minimum; |
| 562 | 589 |
|
| 563 | 590 |
}; // class SimpleBucketHeap |
| 564 | 591 |
|
| 565 | 592 |
} |
| 566 | 593 |
|
| 567 | 594 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\file |
| 20 | 20 |
///\brief Implementation of the CBC MIP solver interface. |
| 21 | 21 |
|
| 22 | 22 |
#include "cbc.h" |
| 23 | 23 |
|
| 24 | 24 |
#include <coin/CoinModel.hpp> |
| 25 | 25 |
#include <coin/CbcModel.hpp> |
| 26 | 26 |
#include <coin/OsiSolverInterface.hpp> |
| 27 | 27 |
|
| 28 | 28 |
#ifdef COIN_HAS_CLP |
| 29 | 29 |
#include "coin/OsiClpSolverInterface.hpp" |
| 30 | 30 |
#endif |
| 31 | 31 |
#ifdef COIN_HAS_OSL |
| 32 | 32 |
#include "coin/OsiOslSolverInterface.hpp" |
| 33 | 33 |
#endif |
| 34 | 34 |
|
| 35 | 35 |
#include "coin/CbcCutGenerator.hpp" |
| 36 | 36 |
#include "coin/CbcHeuristicLocal.hpp" |
| 37 | 37 |
#include "coin/CbcHeuristicGreedy.hpp" |
| 38 | 38 |
#include "coin/CbcHeuristicFPump.hpp" |
| 39 | 39 |
#include "coin/CbcHeuristicRINS.hpp" |
| 40 | 40 |
|
| 41 | 41 |
#include "coin/CglGomory.hpp" |
| 42 | 42 |
#include "coin/CglProbing.hpp" |
| 43 | 43 |
#include "coin/CglKnapsackCover.hpp" |
| 44 | 44 |
#include "coin/CglOddHole.hpp" |
| 45 | 45 |
#include "coin/CglClique.hpp" |
| 46 | 46 |
#include "coin/CglFlowCover.hpp" |
| 47 | 47 |
#include "coin/CglMixedIntegerRounding.hpp" |
| 48 | 48 |
|
| 49 | 49 |
#include "coin/CbcHeuristic.hpp" |
| 50 | 50 |
|
| 51 | 51 |
namespace lemon {
|
| 52 | 52 |
|
| 53 | 53 |
CbcMip::CbcMip() {
|
| 54 | 54 |
_prob = new CoinModel(); |
| 55 | 55 |
_prob->setProblemName("LEMON");
|
| 56 | 56 |
_osi_solver = 0; |
| 57 | 57 |
_cbc_model = 0; |
| 58 | 58 |
messageLevel(MESSAGE_NOTHING); |
| 59 | 59 |
} |
| 60 | 60 |
|
| 61 | 61 |
CbcMip::CbcMip(const CbcMip& other) {
|
| 62 | 62 |
_prob = new CoinModel(*other._prob); |
| 63 | 63 |
_prob->setProblemName("LEMON");
|
| 64 | 64 |
_osi_solver = 0; |
| 65 | 65 |
_cbc_model = 0; |
| 66 | 66 |
messageLevel(MESSAGE_NOTHING); |
| 67 | 67 |
} |
| 68 | 68 |
|
| 69 | 69 |
CbcMip::~CbcMip() {
|
| 70 | 70 |
delete _prob; |
| 71 | 71 |
if (_osi_solver) delete _osi_solver; |
| 72 | 72 |
if (_cbc_model) delete _cbc_model; |
| 73 | 73 |
} |
| 74 | 74 |
|
| 75 | 75 |
const char* CbcMip::_solverName() const { return "CbcMip"; }
|
| 76 | 76 |
|
| 77 | 77 |
int CbcMip::_addCol() {
|
| 78 | 78 |
_prob->addColumn(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX, 0.0, 0, false); |
| 79 | 79 |
return _prob->numberColumns() - 1; |
| 80 | 80 |
} |
| 81 | 81 |
|
| 82 | 82 |
CbcMip* CbcMip::newSolver() const {
|
| 83 | 83 |
CbcMip* newlp = new CbcMip; |
| 84 | 84 |
return newlp; |
| 85 | 85 |
} |
| 86 | 86 |
|
| 87 | 87 |
CbcMip* CbcMip::cloneSolver() const {
|
| 88 | 88 |
CbcMip* copylp = new CbcMip(*this); |
| 89 | 89 |
return copylp; |
| 90 | 90 |
} |
| 91 | 91 |
|
| 92 | 92 |
int CbcMip::_addRow() {
|
| 93 | 93 |
_prob->addRow(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX); |
| 94 | 94 |
return _prob->numberRows() - 1; |
| 95 | 95 |
} |
| 96 | 96 |
|
| 97 |
int CbcMip::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
|
|
| 98 |
std::vector<int> indexes; |
|
| 99 |
std::vector<Value> values; |
|
| 100 |
|
|
| 101 |
for(ExprIterator it = b; it != e; ++it) {
|
|
| 102 |
indexes.push_back(it->first); |
|
| 103 |
values.push_back(it->second); |
|
| 104 |
} |
|
| 105 |
|
|
| 106 |
_prob->addRow(values.size(), &indexes.front(), &values.front(), l, u); |
|
| 107 |
return _prob->numberRows() - 1; |
|
| 108 |
} |
|
| 97 | 109 |
|
| 98 | 110 |
void CbcMip::_eraseCol(int i) {
|
| 99 | 111 |
_prob->deleteColumn(i); |
| 100 | 112 |
} |
| 101 | 113 |
|
| 102 | 114 |
void CbcMip::_eraseRow(int i) {
|
| 103 | 115 |
_prob->deleteRow(i); |
| 104 | 116 |
} |
| 105 | 117 |
|
| 106 | 118 |
void CbcMip::_eraseColId(int i) {
|
| 107 | 119 |
cols.eraseIndex(i); |
| 108 | 120 |
} |
| 109 | 121 |
|
| 110 | 122 |
void CbcMip::_eraseRowId(int i) {
|
| 111 | 123 |
rows.eraseIndex(i); |
| 112 | 124 |
} |
| 113 | 125 |
|
| 114 | 126 |
void CbcMip::_getColName(int c, std::string& name) const {
|
| 115 | 127 |
name = _prob->getColumnName(c); |
| 116 | 128 |
} |
| 117 | 129 |
|
| 118 | 130 |
void CbcMip::_setColName(int c, const std::string& name) {
|
| 119 | 131 |
_prob->setColumnName(c, name.c_str()); |
| 120 | 132 |
} |
| 121 | 133 |
|
| 122 | 134 |
int CbcMip::_colByName(const std::string& name) const {
|
| 123 | 135 |
return _prob->column(name.c_str()); |
| 124 | 136 |
} |
| 125 | 137 |
|
| 126 | 138 |
void CbcMip::_getRowName(int r, std::string& name) const {
|
| 127 | 139 |
name = _prob->getRowName(r); |
| 128 | 140 |
} |
| 129 | 141 |
|
| 130 | 142 |
void CbcMip::_setRowName(int r, const std::string& name) {
|
| 131 | 143 |
_prob->setRowName(r, name.c_str()); |
| 132 | 144 |
} |
| 133 | 145 |
|
| 134 | 146 |
int CbcMip::_rowByName(const std::string& name) const {
|
| 135 | 147 |
return _prob->row(name.c_str()); |
| 136 | 148 |
} |
| 137 | 149 |
|
| 138 | 150 |
void CbcMip::_setRowCoeffs(int i, ExprIterator b, ExprIterator e) {
|
| 139 | 151 |
for (ExprIterator it = b; it != e; ++it) {
|
| 140 | 152 |
_prob->setElement(i, it->first, it->second); |
| 141 | 153 |
} |
| 142 | 154 |
} |
| 143 | 155 |
|
| 144 | 156 |
void CbcMip::_getRowCoeffs(int ix, InsertIterator b) const {
|
| 145 | 157 |
int length = _prob->numberRows(); |
| 146 | 158 |
|
| 147 | 159 |
std::vector<int> indices(length); |
| 148 | 160 |
std::vector<Value> values(length); |
| 149 | 161 |
|
| 150 | 162 |
length = _prob->getRow(ix, &indices[0], &values[0]); |
| 151 | 163 |
|
| 152 | 164 |
for (int i = 0; i < length; ++i) {
|
| 153 | 165 |
*b = std::make_pair(indices[i], values[i]); |
| 154 | 166 |
++b; |
| 155 | 167 |
} |
| 156 | 168 |
} |
| 157 | 169 |
|
| 158 | 170 |
void CbcMip::_setColCoeffs(int ix, ExprIterator b, ExprIterator e) {
|
| 159 | 171 |
for (ExprIterator it = b; it != e; ++it) {
|
| 160 | 172 |
_prob->setElement(it->first, ix, it->second); |
| 161 | 173 |
} |
| 162 | 174 |
} |
| 163 | 175 |
|
| 164 | 176 |
void CbcMip::_getColCoeffs(int ix, InsertIterator b) const {
|
| 165 | 177 |
int length = _prob->numberColumns(); |
| 166 | 178 |
|
| 167 | 179 |
std::vector<int> indices(length); |
| 168 | 180 |
std::vector<Value> values(length); |
| 169 | 181 |
|
| 170 | 182 |
length = _prob->getColumn(ix, &indices[0], &values[0]); |
| 171 | 183 |
|
| 172 | 184 |
for (int i = 0; i < length; ++i) {
|
| 173 | 185 |
*b = std::make_pair(indices[i], values[i]); |
| 174 | 186 |
++b; |
| 175 | 187 |
} |
| 176 | 188 |
} |
| 177 | 189 |
|
| 178 | 190 |
void CbcMip::_setCoeff(int ix, int jx, Value value) {
|
| 179 | 191 |
_prob->setElement(ix, jx, value); |
| 180 | 192 |
} |
| 181 | 193 |
|
| 182 | 194 |
CbcMip::Value CbcMip::_getCoeff(int ix, int jx) const {
|
| 183 | 195 |
return _prob->getElement(ix, jx); |
| 184 | 196 |
} |
| 185 | 197 |
|
| 186 | 198 |
|
| 187 | 199 |
void CbcMip::_setColLowerBound(int i, Value lo) {
|
| 188 | 200 |
LEMON_ASSERT(lo != INF, "Invalid bound"); |
| 189 | 201 |
_prob->setColumnLower(i, lo == - INF ? - COIN_DBL_MAX : lo); |
| 190 | 202 |
} |
| 191 | 203 |
|
| 192 | 204 |
CbcMip::Value CbcMip::_getColLowerBound(int i) const {
|
| 193 | 205 |
double val = _prob->getColumnLower(i); |
| 194 | 206 |
return val == - COIN_DBL_MAX ? - INF : val; |
| 195 | 207 |
} |
| 196 | 208 |
|
| 197 | 209 |
void CbcMip::_setColUpperBound(int i, Value up) {
|
| 198 | 210 |
LEMON_ASSERT(up != -INF, "Invalid bound"); |
| 199 | 211 |
_prob->setColumnUpper(i, up == INF ? COIN_DBL_MAX : up); |
| 200 | 212 |
} |
| 201 | 213 |
|
| 202 | 214 |
CbcMip::Value CbcMip::_getColUpperBound(int i) const {
|
| 203 | 215 |
double val = _prob->getColumnUpper(i); |
| 204 | 216 |
return val == COIN_DBL_MAX ? INF : val; |
| 205 | 217 |
} |
| 206 | 218 |
|
| 207 | 219 |
void CbcMip::_setRowLowerBound(int i, Value lo) {
|
| 208 | 220 |
LEMON_ASSERT(lo != INF, "Invalid bound"); |
| 209 | 221 |
_prob->setRowLower(i, lo == - INF ? - COIN_DBL_MAX : lo); |
| 210 | 222 |
} |
| 211 | 223 |
|
| 212 | 224 |
CbcMip::Value CbcMip::_getRowLowerBound(int i) const {
|
| 213 | 225 |
double val = _prob->getRowLower(i); |
| 214 | 226 |
return val == - COIN_DBL_MAX ? - INF : val; |
| 215 | 227 |
} |
| 216 | 228 |
|
| 217 | 229 |
void CbcMip::_setRowUpperBound(int i, Value up) {
|
| 218 | 230 |
LEMON_ASSERT(up != -INF, "Invalid bound"); |
| 219 | 231 |
_prob->setRowUpper(i, up == INF ? COIN_DBL_MAX : up); |
| 220 | 232 |
} |
| 221 | 233 |
|
| 222 | 234 |
CbcMip::Value CbcMip::_getRowUpperBound(int i) const {
|
| 223 | 235 |
double val = _prob->getRowUpper(i); |
| 224 | 236 |
return val == COIN_DBL_MAX ? INF : val; |
| 225 | 237 |
} |
| 226 | 238 |
|
| 227 | 239 |
void CbcMip::_setObjCoeffs(ExprIterator b, ExprIterator e) {
|
| 228 | 240 |
int num = _prob->numberColumns(); |
| 229 | 241 |
for (int i = 0; i < num; ++i) {
|
| 230 | 242 |
_prob->setColumnObjective(i, 0.0); |
| 231 | 243 |
} |
| 232 | 244 |
for (ExprIterator it = b; it != e; ++it) {
|
| 233 | 245 |
_prob->setColumnObjective(it->first, it->second); |
| 234 | 246 |
} |
| 235 | 247 |
} |
| 236 | 248 |
|
| 237 | 249 |
void CbcMip::_getObjCoeffs(InsertIterator b) const {
|
| 238 | 250 |
int num = _prob->numberColumns(); |
| 239 | 251 |
for (int i = 0; i < num; ++i) {
|
| 240 | 252 |
Value coef = _prob->getColumnObjective(i); |
| 241 | 253 |
if (coef != 0.0) {
|
| 242 | 254 |
*b = std::make_pair(i, coef); |
| 243 | 255 |
++b; |
| 244 | 256 |
} |
| 245 | 257 |
} |
| 246 | 258 |
} |
| 247 | 259 |
|
| 248 | 260 |
void CbcMip::_setObjCoeff(int i, Value obj_coef) {
|
| 249 | 261 |
_prob->setColumnObjective(i, obj_coef); |
| 250 | 262 |
} |
| 251 | 263 |
|
| 252 | 264 |
CbcMip::Value CbcMip::_getObjCoeff(int i) const {
|
| 253 | 265 |
return _prob->getColumnObjective(i); |
| 254 | 266 |
} |
| 255 | 267 |
|
| 256 | 268 |
CbcMip::SolveExitStatus CbcMip::_solve() {
|
| 257 | 269 |
|
| 258 | 270 |
if (_osi_solver) {
|
| 259 | 271 |
delete _osi_solver; |
| 260 | 272 |
} |
| 261 | 273 |
#ifdef COIN_HAS_CLP |
| 262 | 274 |
_osi_solver = new OsiClpSolverInterface(); |
| 263 | 275 |
#elif COIN_HAS_OSL |
| 264 | 276 |
_osi_solver = new OsiOslSolverInterface(); |
| 265 | 277 |
#else |
| 266 | 278 |
#error Cannot instantiate Osi solver |
| 267 | 279 |
#endif |
| 268 | 280 |
|
| 269 | 281 |
_osi_solver->loadFromCoinModel(*_prob); |
| 270 | 282 |
|
| 271 | 283 |
if (_cbc_model) {
|
| 272 | 284 |
delete _cbc_model; |
| 273 | 285 |
} |
| 274 | 286 |
_cbc_model= new CbcModel(*_osi_solver); |
| 275 | 287 |
|
| 276 | 288 |
_osi_solver->messageHandler()->setLogLevel(_message_level); |
| 277 | 289 |
_cbc_model->setLogLevel(_message_level); |
| 278 | 290 |
|
| 279 | 291 |
_cbc_model->initialSolve(); |
| 280 | 292 |
_cbc_model->solver()->setHintParam(OsiDoReducePrint, true, OsiHintTry); |
| 281 | 293 |
|
| 282 | 294 |
if (!_cbc_model->isInitialSolveAbandoned() && |
| 283 | 295 |
_cbc_model->isInitialSolveProvenOptimal() && |
| 284 | 296 |
!_cbc_model->isInitialSolveProvenPrimalInfeasible() && |
| 285 | 297 |
!_cbc_model->isInitialSolveProvenDualInfeasible()) {
|
| 286 | 298 |
|
| 287 | 299 |
CglProbing generator1; |
| 288 | 300 |
generator1.setUsingObjective(true); |
| 289 | 301 |
generator1.setMaxPass(3); |
| 290 | 302 |
generator1.setMaxProbe(100); |
| 291 | 303 |
generator1.setMaxLook(50); |
| 292 | 304 |
generator1.setRowCuts(3); |
| 293 | 305 |
_cbc_model->addCutGenerator(&generator1, -1, "Probing"); |
| 294 | 306 |
|
| 295 | 307 |
CglGomory generator2; |
| 296 | 308 |
generator2.setLimit(300); |
| 297 | 309 |
_cbc_model->addCutGenerator(&generator2, -1, "Gomory"); |
| 298 | 310 |
|
| 299 | 311 |
CglKnapsackCover generator3; |
| 300 | 312 |
_cbc_model->addCutGenerator(&generator3, -1, "Knapsack"); |
| 301 | 313 |
|
| 302 | 314 |
CglOddHole generator4; |
| 303 | 315 |
generator4.setMinimumViolation(0.005); |
| 304 | 316 |
generator4.setMinimumViolationPer(0.00002); |
| 305 | 317 |
generator4.setMaximumEntries(200); |
| 306 | 318 |
_cbc_model->addCutGenerator(&generator4, -1, "OddHole"); |
| 307 | 319 |
|
| 308 | 320 |
CglClique generator5; |
| 309 | 321 |
generator5.setStarCliqueReport(false); |
| 310 | 322 |
generator5.setRowCliqueReport(false); |
| 311 | 323 |
_cbc_model->addCutGenerator(&generator5, -1, "Clique"); |
| 312 | 324 |
|
| 313 | 325 |
CglMixedIntegerRounding mixedGen; |
| 314 | 326 |
_cbc_model->addCutGenerator(&mixedGen, -1, "MixedIntegerRounding"); |
| 315 | 327 |
|
| 316 | 328 |
CglFlowCover flowGen; |
| 317 | 329 |
_cbc_model->addCutGenerator(&flowGen, -1, "FlowCover"); |
| 318 | 330 |
|
| 319 | 331 |
#ifdef COIN_HAS_CLP |
| 320 | 332 |
OsiClpSolverInterface* osiclp = |
| 321 | 333 |
dynamic_cast<OsiClpSolverInterface*>(_cbc_model->solver()); |
| 322 | 334 |
if (osiclp->getNumRows() < 300 && osiclp->getNumCols() < 500) {
|
| 323 | 335 |
osiclp->setupForRepeatedUse(2, 0); |
| 324 | 336 |
} |
| 325 | 337 |
#endif |
| 326 | 338 |
|
| 327 | 339 |
CbcRounding heuristic1(*_cbc_model); |
| 328 | 340 |
heuristic1.setWhen(3); |
| 329 | 341 |
_cbc_model->addHeuristic(&heuristic1); |
| 330 | 342 |
|
| 331 | 343 |
CbcHeuristicLocal heuristic2(*_cbc_model); |
| 332 | 344 |
heuristic2.setWhen(3); |
| 333 | 345 |
_cbc_model->addHeuristic(&heuristic2); |
| 334 | 346 |
|
| 335 | 347 |
CbcHeuristicGreedyCover heuristic3(*_cbc_model); |
| 336 | 348 |
heuristic3.setAlgorithm(11); |
| 337 | 349 |
heuristic3.setWhen(3); |
| 338 | 350 |
_cbc_model->addHeuristic(&heuristic3); |
| 339 | 351 |
|
| 340 | 352 |
CbcHeuristicFPump heuristic4(*_cbc_model); |
| 341 | 353 |
heuristic4.setWhen(3); |
| 342 | 354 |
_cbc_model->addHeuristic(&heuristic4); |
| 343 | 355 |
|
| 344 | 356 |
CbcHeuristicRINS heuristic5(*_cbc_model); |
| 345 | 357 |
heuristic5.setWhen(3); |
| 346 | 358 |
_cbc_model->addHeuristic(&heuristic5); |
| 347 | 359 |
|
| 348 | 360 |
if (_cbc_model->getNumCols() < 500) {
|
| 349 | 361 |
_cbc_model->setMaximumCutPassesAtRoot(-100); |
| 350 | 362 |
} else if (_cbc_model->getNumCols() < 5000) {
|
| 351 | 363 |
_cbc_model->setMaximumCutPassesAtRoot(100); |
| 352 | 364 |
} else {
|
| 353 | 365 |
_cbc_model->setMaximumCutPassesAtRoot(20); |
| 354 | 366 |
} |
| 355 | 367 |
|
| 356 | 368 |
if (_cbc_model->getNumCols() < 5000) {
|
| 357 | 369 |
_cbc_model->setNumberStrong(10); |
| 358 | 370 |
} |
| 359 | 371 |
|
| 360 | 372 |
_cbc_model->solver()->setIntParam(OsiMaxNumIterationHotStart, 100); |
| 361 | 373 |
_cbc_model->branchAndBound(); |
| 362 | 374 |
} |
| 363 | 375 |
|
| 364 | 376 |
if (_cbc_model->isAbandoned()) {
|
| 365 | 377 |
return UNSOLVED; |
| 366 | 378 |
} else {
|
| 367 | 379 |
return SOLVED; |
| 368 | 380 |
} |
| 369 | 381 |
} |
| 370 | 382 |
|
| 371 | 383 |
CbcMip::Value CbcMip::_getSol(int i) const {
|
| 372 | 384 |
return _cbc_model->getColSolution()[i]; |
| 373 | 385 |
} |
| 374 | 386 |
|
| 375 | 387 |
CbcMip::Value CbcMip::_getSolValue() const {
|
| 376 | 388 |
return _cbc_model->getObjValue(); |
| 377 | 389 |
} |
| 378 | 390 |
|
| 379 | 391 |
CbcMip::ProblemType CbcMip::_getType() const {
|
| 380 | 392 |
if (_cbc_model->isProvenOptimal()) {
|
| 381 | 393 |
return OPTIMAL; |
| 382 | 394 |
} else if (_cbc_model->isContinuousUnbounded()) {
|
| 383 | 395 |
return UNBOUNDED; |
| 384 | 396 |
} |
| 385 | 397 |
return FEASIBLE; |
| 386 | 398 |
} |
| 387 | 399 |
|
| 388 | 400 |
void CbcMip::_setSense(Sense sense) {
|
| 389 | 401 |
switch (sense) {
|
| 390 | 402 |
case MIN: |
| 391 | 403 |
_prob->setOptimizationDirection(1.0); |
| 392 | 404 |
break; |
| 393 | 405 |
case MAX: |
| 394 | 406 |
_prob->setOptimizationDirection(- 1.0); |
| 395 | 407 |
break; |
| 396 | 408 |
} |
| 397 | 409 |
} |
| 398 | 410 |
|
| 399 | 411 |
CbcMip::Sense CbcMip::_getSense() const {
|
| 400 | 412 |
if (_prob->optimizationDirection() > 0.0) {
|
| 401 | 413 |
return MIN; |
| 402 | 414 |
} else if (_prob->optimizationDirection() < 0.0) {
|
| 403 | 415 |
return MAX; |
| 404 | 416 |
} else {
|
| 405 | 417 |
LEMON_ASSERT(false, "Wrong sense"); |
| 406 | 418 |
return CbcMip::Sense(); |
| 407 | 419 |
} |
| 408 | 420 |
} |
| 409 | 421 |
|
| 410 | 422 |
void CbcMip::_setColType(int i, CbcMip::ColTypes col_type) {
|
| 411 | 423 |
switch (col_type){
|
| 412 | 424 |
case INTEGER: |
| 413 | 425 |
_prob->setInteger(i); |
| 414 | 426 |
break; |
| 415 | 427 |
case REAL: |
| 416 | 428 |
_prob->setContinuous(i); |
| 417 | 429 |
break; |
| 418 | 430 |
default:; |
| 419 | 431 |
LEMON_ASSERT(false, "Wrong sense"); |
| 420 | 432 |
} |
| 421 | 433 |
} |
| 422 | 434 |
|
| 423 | 435 |
CbcMip::ColTypes CbcMip::_getColType(int i) const {
|
| 424 | 436 |
return _prob->getColumnIsInteger(i) ? INTEGER : REAL; |
| 425 | 437 |
} |
| 426 | 438 |
|
| 427 | 439 |
void CbcMip::_clear() {
|
| 428 | 440 |
delete _prob; |
| 429 | 441 |
if (_osi_solver) {
|
| 430 | 442 |
delete _osi_solver; |
| 431 | 443 |
_osi_solver = 0; |
| 432 | 444 |
} |
| 433 | 445 |
if (_cbc_model) {
|
| 434 | 446 |
delete _cbc_model; |
| 435 | 447 |
_cbc_model = 0; |
| 436 | 448 |
} |
| 437 | 449 |
|
| 438 | 450 |
_prob = new CoinModel(); |
| 439 | 451 |
rows.clear(); |
| 440 | 452 |
cols.clear(); |
| 441 | 453 |
} |
| 442 | 454 |
|
| 443 | 455 |
void CbcMip::_messageLevel(MessageLevel level) {
|
| 444 | 456 |
switch (level) {
|
| 445 | 457 |
case MESSAGE_NOTHING: |
| 446 | 458 |
_message_level = 0; |
| 447 | 459 |
break; |
| 448 | 460 |
case MESSAGE_ERROR: |
| 449 | 461 |
_message_level = 1; |
| 450 | 462 |
break; |
| 451 | 463 |
case MESSAGE_WARNING: |
| 452 | 464 |
_message_level = 1; |
| 453 | 465 |
break; |
| 454 | 466 |
case MESSAGE_NORMAL: |
| 455 | 467 |
_message_level = 2; |
| 456 | 468 |
break; |
| 457 | 469 |
case MESSAGE_VERBOSE: |
| 458 | 470 |
_message_level = 3; |
| 459 | 471 |
break; |
| 460 | 472 |
} |
| 461 | 473 |
} |
| 462 | 474 |
|
| 463 | 475 |
} //END OF NAMESPACE LEMON |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
// -*- C++ -*- |
| 20 | 20 |
#ifndef LEMON_CBC_H |
| 21 | 21 |
#define LEMON_CBC_H |
| 22 | 22 |
|
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Header of the LEMON-CBC mip solver interface. |
| 25 | 25 |
///\ingroup lp_group |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/lp_base.h> |
| 28 | 28 |
|
| 29 | 29 |
class CoinModel; |
| 30 | 30 |
class OsiSolverInterface; |
| 31 | 31 |
class CbcModel; |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
/// \brief Interface for the CBC MIP solver |
| 36 | 36 |
/// |
| 37 | 37 |
/// This class implements an interface for the CBC MIP solver. |
| 38 | 38 |
///\ingroup lp_group |
| 39 | 39 |
class CbcMip : public MipSolver {
|
| 40 | 40 |
protected: |
| 41 | 41 |
|
| 42 | 42 |
CoinModel *_prob; |
| 43 | 43 |
OsiSolverInterface *_osi_solver; |
| 44 | 44 |
CbcModel *_cbc_model; |
| 45 | 45 |
|
| 46 | 46 |
public: |
| 47 | 47 |
|
| 48 | 48 |
/// \e |
| 49 | 49 |
CbcMip(); |
| 50 | 50 |
/// \e |
| 51 | 51 |
CbcMip(const CbcMip&); |
| 52 | 52 |
/// \e |
| 53 | 53 |
~CbcMip(); |
| 54 | 54 |
/// \e |
| 55 | 55 |
virtual CbcMip* newSolver() const; |
| 56 | 56 |
/// \e |
| 57 | 57 |
virtual CbcMip* cloneSolver() const; |
| 58 | 58 |
|
| 59 | 59 |
protected: |
| 60 | 60 |
|
| 61 | 61 |
virtual const char* _solverName() const; |
| 62 | 62 |
|
| 63 | 63 |
virtual int _addCol(); |
| 64 | 64 |
virtual int _addRow(); |
| 65 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 65 | 66 |
|
| 66 | 67 |
virtual void _eraseCol(int i); |
| 67 | 68 |
virtual void _eraseRow(int i); |
| 68 | 69 |
|
| 69 | 70 |
virtual void _eraseColId(int i); |
| 70 | 71 |
virtual void _eraseRowId(int i); |
| 71 | 72 |
|
| 72 | 73 |
virtual void _getColName(int col, std::string& name) const; |
| 73 | 74 |
virtual void _setColName(int col, const std::string& name); |
| 74 | 75 |
virtual int _colByName(const std::string& name) const; |
| 75 | 76 |
|
| 76 | 77 |
virtual void _getRowName(int row, std::string& name) const; |
| 77 | 78 |
virtual void _setRowName(int row, const std::string& name); |
| 78 | 79 |
virtual int _rowByName(const std::string& name) const; |
| 79 | 80 |
|
| 80 | 81 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
| 81 | 82 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
| 82 | 83 |
|
| 83 | 84 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
| 84 | 85 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
| 85 | 86 |
|
| 86 | 87 |
virtual void _setCoeff(int row, int col, Value value); |
| 87 | 88 |
virtual Value _getCoeff(int row, int col) const; |
| 88 | 89 |
|
| 89 | 90 |
virtual void _setColLowerBound(int i, Value value); |
| 90 | 91 |
virtual Value _getColLowerBound(int i) const; |
| 91 | 92 |
virtual void _setColUpperBound(int i, Value value); |
| 92 | 93 |
virtual Value _getColUpperBound(int i) const; |
| 93 | 94 |
|
| 94 | 95 |
virtual void _setRowLowerBound(int i, Value value); |
| 95 | 96 |
virtual Value _getRowLowerBound(int i) const; |
| 96 | 97 |
virtual void _setRowUpperBound(int i, Value value); |
| 97 | 98 |
virtual Value _getRowUpperBound(int i) const; |
| 98 | 99 |
|
| 99 | 100 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e); |
| 100 | 101 |
virtual void _getObjCoeffs(InsertIterator b) const; |
| 101 | 102 |
|
| 102 | 103 |
virtual void _setObjCoeff(int i, Value obj_coef); |
| 103 | 104 |
virtual Value _getObjCoeff(int i) const; |
| 104 | 105 |
|
| 105 | 106 |
virtual void _setSense(Sense sense); |
| 106 | 107 |
virtual Sense _getSense() const; |
| 107 | 108 |
|
| 108 | 109 |
virtual ColTypes _getColType(int col) const; |
| 109 | 110 |
virtual void _setColType(int col, ColTypes col_type); |
| 110 | 111 |
|
| 111 | 112 |
virtual SolveExitStatus _solve(); |
| 112 | 113 |
virtual ProblemType _getType() const; |
| 113 | 114 |
virtual Value _getSol(int i) const; |
| 114 | 115 |
virtual Value _getSolValue() const; |
| 115 | 116 |
|
| 116 | 117 |
virtual void _clear(); |
| 117 | 118 |
|
| 118 | 119 |
virtual void _messageLevel(MessageLevel level); |
| 119 | 120 |
void _applyMessageLevel(); |
| 120 | 121 |
|
| 121 | 122 |
int _message_level; |
| 122 | 123 |
|
| 123 | 124 |
|
| 124 | 125 |
|
| 125 | 126 |
}; |
| 126 | 127 |
|
| 127 | 128 |
} |
| 128 | 129 |
|
| 129 | 130 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CIRCULATION_H |
| 20 | 20 |
#define LEMON_CIRCULATION_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/tolerance.h> |
| 23 | 23 |
#include <lemon/elevator.h> |
| 24 | 24 |
#include <limits> |
| 25 | 25 |
|
| 26 | 26 |
///\ingroup max_flow |
| 27 | 27 |
///\file |
| 28 | 28 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
| 29 | 29 |
/// |
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
/// \brief Default traits class of Circulation class. |
| 33 | 33 |
/// |
| 34 | 34 |
/// Default traits class of Circulation class. |
| 35 | 35 |
/// |
| 36 | 36 |
/// \tparam GR Type of the digraph the algorithm runs on. |
| 37 | 37 |
/// \tparam LM The type of the lower bound map. |
| 38 | 38 |
/// \tparam UM The type of the upper bound (capacity) map. |
| 39 | 39 |
/// \tparam SM The type of the supply map. |
| 40 | 40 |
template <typename GR, typename LM, |
| 41 | 41 |
typename UM, typename SM> |
| 42 | 42 |
struct CirculationDefaultTraits {
|
| 43 | 43 |
|
| 44 | 44 |
/// \brief The type of the digraph the algorithm runs on. |
| 45 | 45 |
typedef GR Digraph; |
| 46 | 46 |
|
| 47 | 47 |
/// \brief The type of the lower bound map. |
| 48 | 48 |
/// |
| 49 | 49 |
/// The type of the map that stores the lower bounds on the arcs. |
| 50 | 50 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 51 | 51 |
typedef LM LowerMap; |
| 52 | 52 |
|
| 53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
| 54 | 54 |
/// |
| 55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
| 56 | 56 |
/// on the arcs. |
| 57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 58 | 58 |
typedef UM UpperMap; |
| 59 | 59 |
|
| 60 | 60 |
/// \brief The type of supply map. |
| 61 | 61 |
/// |
| 62 | 62 |
/// The type of the map that stores the signed supply values of the |
| 63 | 63 |
/// nodes. |
| 64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 65 | 65 |
typedef SM SupplyMap; |
| 66 | 66 |
|
| 67 | 67 |
/// \brief The type of the flow and supply values. |
| 68 | 68 |
typedef typename SupplyMap::Value Value; |
| 69 | 69 |
|
| 70 | 70 |
/// \brief The type of the map that stores the flow values. |
| 71 | 71 |
/// |
| 72 | 72 |
/// The type of the map that stores the flow values. |
| 73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
| 74 | 74 |
/// concept. |
| 75 |
#ifdef DOXYGEN |
|
| 76 |
typedef GR::ArcMap<Value> FlowMap; |
|
| 77 |
#else |
|
| 75 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 79 |
#endif |
|
| 76 | 80 |
|
| 77 | 81 |
/// \brief Instantiates a FlowMap. |
| 78 | 82 |
/// |
| 79 | 83 |
/// This function instantiates a \ref FlowMap. |
| 80 | 84 |
/// \param digraph The digraph for which we would like to define |
| 81 | 85 |
/// the flow map. |
| 82 | 86 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
| 83 | 87 |
return new FlowMap(digraph); |
| 84 | 88 |
} |
| 85 | 89 |
|
| 86 | 90 |
/// \brief The elevator type used by the algorithm. |
| 87 | 91 |
/// |
| 88 | 92 |
/// The elevator type used by the algorithm. |
| 89 | 93 |
/// |
| 90 |
/// \sa Elevator |
|
| 91 |
/// \sa LinkedElevator |
|
| 94 |
/// \sa Elevator, LinkedElevator |
|
| 95 |
#ifdef DOXYGEN |
|
| 96 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
| 97 |
#else |
|
| 92 | 98 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
| 99 |
#endif |
|
| 93 | 100 |
|
| 94 | 101 |
/// \brief Instantiates an Elevator. |
| 95 | 102 |
/// |
| 96 | 103 |
/// This function instantiates an \ref Elevator. |
| 97 | 104 |
/// \param digraph The digraph for which we would like to define |
| 98 | 105 |
/// the elevator. |
| 99 | 106 |
/// \param max_level The maximum level of the elevator. |
| 100 | 107 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
| 101 | 108 |
return new Elevator(digraph, max_level); |
| 102 | 109 |
} |
| 103 | 110 |
|
| 104 | 111 |
/// \brief The tolerance used by the algorithm |
| 105 | 112 |
/// |
| 106 | 113 |
/// The tolerance used by the algorithm to handle inexact computation. |
| 107 | 114 |
typedef lemon::Tolerance<Value> Tolerance; |
| 108 | 115 |
|
| 109 | 116 |
}; |
| 110 | 117 |
|
| 111 | 118 |
/** |
| 112 | 119 |
\brief Push-relabel algorithm for the network circulation problem. |
| 113 | 120 |
|
| 114 | 121 |
\ingroup max_flow |
| 115 | 122 |
This class implements a push-relabel algorithm for the \e network |
| 116 | 123 |
\e circulation problem. |
| 117 | 124 |
It is to find a feasible circulation when lower and upper bounds |
| 118 | 125 |
are given for the flow values on the arcs and lower bounds are |
| 119 | 126 |
given for the difference between the outgoing and incoming flow |
| 120 | 127 |
at the nodes. |
| 121 | 128 |
|
| 122 | 129 |
The exact formulation of this problem is the following. |
| 123 | 130 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$
|
| 124 | 131 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and
|
| 125 | 132 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
| 126 | 133 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$
|
| 127 | 134 |
denotes the signed supply values of the nodes. |
| 128 | 135 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
| 129 | 136 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
| 130 | 137 |
\f$-sup(u)\f$ demand. |
| 131 | 138 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
|
| 132 | 139 |
solution of the following problem. |
| 133 | 140 |
|
| 134 | 141 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
|
| 135 | 142 |
\geq sup(u) \quad \forall u\in V, \f] |
| 136 | 143 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
| 137 | 144 |
|
| 138 | 145 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
| 139 | 146 |
zero or negative in order to have a feasible solution (since the sum |
| 140 | 147 |
of the expressions on the left-hand side of the inequalities is zero). |
| 141 | 148 |
It means that the total demand must be greater or equal to the total |
| 142 | 149 |
supply and all the supplies have to be carried out from the supply nodes, |
| 143 | 150 |
but there could be demands that are not satisfied. |
| 144 | 151 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
|
| 145 | 152 |
constraints have to be satisfied with equality, i.e. all demands |
| 146 | 153 |
have to be satisfied and all supplies have to be used. |
| 147 | 154 |
|
| 148 | 155 |
If you need the opposite inequalities in the supply/demand constraints |
| 149 | 156 |
(i.e. the total demand is less than the total supply and all the demands |
| 150 | 157 |
have to be satisfied while there could be supplies that are not used), |
| 151 | 158 |
then you could easily transform the problem to the above form by reversing |
| 152 | 159 |
the direction of the arcs and taking the negative of the supply values |
| 153 | 160 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
| 154 | 161 |
|
| 155 | 162 |
This algorithm either calculates a feasible circulation, or provides |
| 156 | 163 |
a \ref barrier() "barrier", which prooves that a feasible soultion |
| 157 | 164 |
cannot exist. |
| 158 | 165 |
|
| 159 | 166 |
Note that this algorithm also provides a feasible solution for the |
| 160 | 167 |
\ref min_cost_flow "minimum cost flow problem". |
| 161 | 168 |
|
| 162 | 169 |
\tparam GR The type of the digraph the algorithm runs on. |
| 163 | 170 |
\tparam LM The type of the lower bound map. The default |
| 164 | 171 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 165 | 172 |
\tparam UM The type of the upper bound (capacity) map. |
| 166 | 173 |
The default map type is \c LM. |
| 167 | 174 |
\tparam SM The type of the supply map. The default map type is |
| 168 | 175 |
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". |
| 169 | 176 |
*/ |
| 170 | 177 |
#ifdef DOXYGEN |
| 171 | 178 |
template< typename GR, |
| 172 | 179 |
typename LM, |
| 173 | 180 |
typename UM, |
| 174 | 181 |
typename SM, |
| 175 | 182 |
typename TR > |
| 176 | 183 |
#else |
| 177 | 184 |
template< typename GR, |
| 178 | 185 |
typename LM = typename GR::template ArcMap<int>, |
| 179 | 186 |
typename UM = LM, |
| 180 | 187 |
typename SM = typename GR::template NodeMap<typename UM::Value>, |
| 181 | 188 |
typename TR = CirculationDefaultTraits<GR, LM, UM, SM> > |
| 182 | 189 |
#endif |
| 183 | 190 |
class Circulation {
|
| 184 | 191 |
public: |
| 185 | 192 |
|
| 186 | 193 |
///The \ref CirculationDefaultTraits "traits class" of the algorithm. |
| 187 | 194 |
typedef TR Traits; |
| 188 | 195 |
///The type of the digraph the algorithm runs on. |
| 189 | 196 |
typedef typename Traits::Digraph Digraph; |
| 190 | 197 |
///The type of the flow and supply values. |
| 191 | 198 |
typedef typename Traits::Value Value; |
| 192 | 199 |
|
| 193 | 200 |
///The type of the lower bound map. |
| 194 | 201 |
typedef typename Traits::LowerMap LowerMap; |
| 195 | 202 |
///The type of the upper bound (capacity) map. |
| 196 | 203 |
typedef typename Traits::UpperMap UpperMap; |
| 197 | 204 |
///The type of the supply map. |
| 198 | 205 |
typedef typename Traits::SupplyMap SupplyMap; |
| 199 | 206 |
///The type of the flow map. |
| 200 | 207 |
typedef typename Traits::FlowMap FlowMap; |
| 201 | 208 |
|
| 202 | 209 |
///The type of the elevator. |
| 203 | 210 |
typedef typename Traits::Elevator Elevator; |
| 204 | 211 |
///The type of the tolerance. |
| 205 | 212 |
typedef typename Traits::Tolerance Tolerance; |
| 206 | 213 |
|
| 207 | 214 |
private: |
| 208 | 215 |
|
| 209 | 216 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 210 | 217 |
|
| 211 | 218 |
const Digraph &_g; |
| 212 | 219 |
int _node_num; |
| 213 | 220 |
|
| 214 | 221 |
const LowerMap *_lo; |
| 215 | 222 |
const UpperMap *_up; |
| 216 | 223 |
const SupplyMap *_supply; |
| 217 | 224 |
|
| 218 | 225 |
FlowMap *_flow; |
| 219 | 226 |
bool _local_flow; |
| 220 | 227 |
|
| 221 | 228 |
Elevator* _level; |
| 222 | 229 |
bool _local_level; |
| 223 | 230 |
|
| 224 | 231 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
| 225 | 232 |
ExcessMap* _excess; |
| 226 | 233 |
|
| 227 | 234 |
Tolerance _tol; |
| 228 | 235 |
int _el; |
| 229 | 236 |
|
| 230 | 237 |
public: |
| 231 | 238 |
|
| 232 | 239 |
typedef Circulation Create; |
| 233 | 240 |
|
| 234 | 241 |
///\name Named Template Parameters |
| 235 | 242 |
|
| 236 | 243 |
///@{
|
| 237 | 244 |
|
| 238 | 245 |
template <typename T> |
| 239 | 246 |
struct SetFlowMapTraits : public Traits {
|
| 240 | 247 |
typedef T FlowMap; |
| 241 | 248 |
static FlowMap *createFlowMap(const Digraph&) {
|
| 242 | 249 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
| 243 | 250 |
return 0; // ignore warnings |
| 244 | 251 |
} |
| 245 | 252 |
}; |
| 246 | 253 |
|
| 247 | 254 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 248 | 255 |
/// FlowMap type |
| 249 | 256 |
/// |
| 250 | 257 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
| 251 | 258 |
/// type. |
| 252 | 259 |
template <typename T> |
| 253 | 260 |
struct SetFlowMap |
| 254 | 261 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 255 | 262 |
SetFlowMapTraits<T> > {
|
| 256 | 263 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 257 | 264 |
SetFlowMapTraits<T> > Create; |
| 258 | 265 |
}; |
| 259 | 266 |
|
| 260 | 267 |
template <typename T> |
| 261 | 268 |
struct SetElevatorTraits : public Traits {
|
| 262 | 269 |
typedef T Elevator; |
| 263 | 270 |
static Elevator *createElevator(const Digraph&, int) {
|
| 264 | 271 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
| 265 | 272 |
return 0; // ignore warnings |
| 266 | 273 |
} |
| 267 | 274 |
}; |
| 268 | 275 |
|
| 269 | 276 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 270 | 277 |
/// Elevator type |
| 271 | 278 |
/// |
| 272 | 279 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 273 | 280 |
/// type. If this named parameter is used, then an external |
| 274 | 281 |
/// elevator object must be passed to the algorithm using the |
| 275 | 282 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
| 276 | 283 |
/// \ref run() or \ref init(). |
| 277 | 284 |
/// \sa SetStandardElevator |
| 278 | 285 |
template <typename T> |
| 279 | 286 |
struct SetElevator |
| 280 | 287 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 281 | 288 |
SetElevatorTraits<T> > {
|
| 282 | 289 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 283 | 290 |
SetElevatorTraits<T> > Create; |
| 284 | 291 |
}; |
| 285 | 292 |
|
| 286 | 293 |
template <typename T> |
| 287 | 294 |
struct SetStandardElevatorTraits : public Traits {
|
| 288 | 295 |
typedef T Elevator; |
| 289 | 296 |
static Elevator *createElevator(const Digraph& digraph, int max_level) {
|
| 290 | 297 |
return new Elevator(digraph, max_level); |
| 291 | 298 |
} |
| 292 | 299 |
}; |
| 293 | 300 |
|
| 294 | 301 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 295 | 302 |
/// Elevator type with automatic allocation |
| 296 | 303 |
/// |
| 297 | 304 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 298 | 305 |
/// type with automatic allocation. |
| 299 | 306 |
/// The Elevator should have standard constructor interface to be |
| 300 | 307 |
/// able to automatically created by the algorithm (i.e. the |
| 301 | 308 |
/// digraph and the maximum level should be passed to it). |
| 302 | 309 |
/// However an external elevator object could also be passed to the |
| 303 | 310 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
| 304 | 311 |
/// before calling \ref run() or \ref init(). |
| 305 | 312 |
/// \sa SetElevator |
| 306 | 313 |
template <typename T> |
| 307 | 314 |
struct SetStandardElevator |
| 308 | 315 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 309 | 316 |
SetStandardElevatorTraits<T> > {
|
| 310 | 317 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 311 | 318 |
SetStandardElevatorTraits<T> > Create; |
| 312 | 319 |
}; |
| 313 | 320 |
|
| 314 | 321 |
/// @} |
| 315 | 322 |
|
| 316 | 323 |
protected: |
| 317 | 324 |
|
| 318 | 325 |
Circulation() {}
|
| 319 | 326 |
|
| 320 | 327 |
public: |
| 321 | 328 |
|
| 322 | 329 |
/// Constructor. |
| 323 | 330 |
|
| 324 | 331 |
/// The constructor of the class. |
| 325 | 332 |
/// |
| 326 | 333 |
/// \param graph The digraph the algorithm runs on. |
| 327 | 334 |
/// \param lower The lower bounds for the flow values on the arcs. |
| 328 | 335 |
/// \param upper The upper bounds (capacities) for the flow values |
| 329 | 336 |
/// on the arcs. |
| 330 | 337 |
/// \param supply The signed supply values of the nodes. |
| 331 | 338 |
Circulation(const Digraph &graph, const LowerMap &lower, |
| 332 | 339 |
const UpperMap &upper, const SupplyMap &supply) |
| 333 | 340 |
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply), |
| 334 | 341 |
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false), |
| 335 | 342 |
_excess(NULL) {}
|
| 336 | 343 |
|
| 337 | 344 |
/// Destructor. |
| 338 | 345 |
~Circulation() {
|
| 339 | 346 |
destroyStructures(); |
| 340 | 347 |
} |
| 341 | 348 |
|
| 342 | 349 |
|
| 343 | 350 |
private: |
| 344 | 351 |
|
| 345 | 352 |
bool checkBoundMaps() {
|
| 346 | 353 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 347 | 354 |
if (_tol.less((*_up)[e], (*_lo)[e])) return false; |
| 348 | 355 |
} |
| 349 | 356 |
return true; |
| 350 | 357 |
} |
| 351 | 358 |
|
| 352 | 359 |
void createStructures() {
|
| 353 | 360 |
_node_num = _el = countNodes(_g); |
| 354 | 361 |
|
| 355 | 362 |
if (!_flow) {
|
| 356 | 363 |
_flow = Traits::createFlowMap(_g); |
| 357 | 364 |
_local_flow = true; |
| 358 | 365 |
} |
| 359 | 366 |
if (!_level) {
|
| 360 | 367 |
_level = Traits::createElevator(_g, _node_num); |
| 361 | 368 |
_local_level = true; |
| 362 | 369 |
} |
| 363 | 370 |
if (!_excess) {
|
| 364 | 371 |
_excess = new ExcessMap(_g); |
| 365 | 372 |
} |
| 366 | 373 |
} |
| 367 | 374 |
|
| 368 | 375 |
void destroyStructures() {
|
| 369 | 376 |
if (_local_flow) {
|
| 370 | 377 |
delete _flow; |
| 371 | 378 |
} |
| 372 | 379 |
if (_local_level) {
|
| 373 | 380 |
delete _level; |
| 374 | 381 |
} |
| 375 | 382 |
if (_excess) {
|
| 376 | 383 |
delete _excess; |
| 377 | 384 |
} |
| 378 | 385 |
} |
| 379 | 386 |
|
| 380 | 387 |
public: |
| 381 | 388 |
|
| 382 | 389 |
/// Sets the lower bound map. |
| 383 | 390 |
|
| 384 | 391 |
/// Sets the lower bound map. |
| 385 | 392 |
/// \return <tt>(*this)</tt> |
| 386 | 393 |
Circulation& lowerMap(const LowerMap& map) {
|
| 387 | 394 |
_lo = ↦ |
| 388 | 395 |
return *this; |
| 389 | 396 |
} |
| 390 | 397 |
|
| 391 | 398 |
/// Sets the upper bound (capacity) map. |
| 392 | 399 |
|
| 393 | 400 |
/// Sets the upper bound (capacity) map. |
| 394 | 401 |
/// \return <tt>(*this)</tt> |
| 395 | 402 |
Circulation& upperMap(const UpperMap& map) {
|
| 396 | 403 |
_up = ↦ |
| 397 | 404 |
return *this; |
| 398 | 405 |
} |
| 399 | 406 |
|
| 400 | 407 |
/// Sets the supply map. |
| 401 | 408 |
|
| 402 | 409 |
/// Sets the supply map. |
| 403 | 410 |
/// \return <tt>(*this)</tt> |
| 404 | 411 |
Circulation& supplyMap(const SupplyMap& map) {
|
| 405 | 412 |
_supply = ↦ |
| 406 | 413 |
return *this; |
| 407 | 414 |
} |
| 408 | 415 |
|
| 409 | 416 |
/// \brief Sets the flow map. |
| 410 | 417 |
/// |
| 411 | 418 |
/// Sets the flow map. |
| 412 | 419 |
/// If you don't use this function before calling \ref run() or |
| 413 | 420 |
/// \ref init(), an instance will be allocated automatically. |
| 414 | 421 |
/// The destructor deallocates this automatically allocated map, |
| 415 | 422 |
/// of course. |
| 416 | 423 |
/// \return <tt>(*this)</tt> |
| 417 | 424 |
Circulation& flowMap(FlowMap& map) {
|
| 418 | 425 |
if (_local_flow) {
|
| 419 | 426 |
delete _flow; |
| 420 | 427 |
_local_flow = false; |
| 421 | 428 |
} |
| 422 | 429 |
_flow = ↦ |
| 423 | 430 |
return *this; |
| 424 | 431 |
} |
| 425 | 432 |
|
| 426 | 433 |
/// \brief Sets the elevator used by algorithm. |
| 427 | 434 |
/// |
| 428 | 435 |
/// Sets the elevator used by algorithm. |
| 429 | 436 |
/// If you don't use this function before calling \ref run() or |
| 430 | 437 |
/// \ref init(), an instance will be allocated automatically. |
| 431 | 438 |
/// The destructor deallocates this automatically allocated elevator, |
| 432 | 439 |
/// of course. |
| 433 | 440 |
/// \return <tt>(*this)</tt> |
| 434 | 441 |
Circulation& elevator(Elevator& elevator) {
|
| 435 | 442 |
if (_local_level) {
|
| 436 | 443 |
delete _level; |
| 437 | 444 |
_local_level = false; |
| 438 | 445 |
} |
| 439 | 446 |
_level = &elevator; |
| 440 | 447 |
return *this; |
| 441 | 448 |
} |
| 442 | 449 |
|
| 443 | 450 |
/// \brief Returns a const reference to the elevator. |
| 444 | 451 |
/// |
| 445 | 452 |
/// Returns a const reference to the elevator. |
| 446 | 453 |
/// |
| 447 | 454 |
/// \pre Either \ref run() or \ref init() must be called before |
| 448 | 455 |
/// using this function. |
| 449 | 456 |
const Elevator& elevator() const {
|
| 450 | 457 |
return *_level; |
| 451 | 458 |
} |
| 452 | 459 |
|
| 453 |
/// \brief Sets the tolerance used by algorithm. |
|
| 460 |
/// \brief Sets the tolerance used by the algorithm. |
|
| 454 | 461 |
/// |
| 455 |
/// Sets the tolerance used by algorithm. |
|
| 456 |
Circulation& tolerance(const Tolerance& tolerance) const {
|
|
| 462 |
/// Sets the tolerance object used by the algorithm. |
|
| 463 |
/// \return <tt>(*this)</tt> |
|
| 464 |
Circulation& tolerance(const Tolerance& tolerance) {
|
|
| 457 | 465 |
_tol = tolerance; |
| 458 | 466 |
return *this; |
| 459 | 467 |
} |
| 460 | 468 |
|
| 461 | 469 |
/// \brief Returns a const reference to the tolerance. |
| 462 | 470 |
/// |
| 463 |
/// Returns a const reference to the tolerance |
|
| 471 |
/// Returns a const reference to the tolerance object used by |
|
| 472 |
/// the algorithm. |
|
| 464 | 473 |
const Tolerance& tolerance() const {
|
| 465 |
return |
|
| 474 |
return _tol; |
|
| 466 | 475 |
} |
| 467 | 476 |
|
| 468 | 477 |
/// \name Execution Control |
| 469 | 478 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
| 470 |
/// If you need more control on the initial solution or the execution, |
|
| 471 |
/// first you have to call one of the \ref init() functions, then |
|
| 479 |
/// If you need better control on the initial solution or the execution, |
|
| 480 |
/// you have to call one of the \ref init() functions first, then |
|
| 472 | 481 |
/// the \ref start() function. |
| 473 | 482 |
|
| 474 | 483 |
///@{
|
| 475 | 484 |
|
| 476 | 485 |
/// Initializes the internal data structures. |
| 477 | 486 |
|
| 478 | 487 |
/// Initializes the internal data structures and sets all flow values |
| 479 | 488 |
/// to the lower bound. |
| 480 | 489 |
void init() |
| 481 | 490 |
{
|
| 482 | 491 |
LEMON_DEBUG(checkBoundMaps(), |
| 483 | 492 |
"Upper bounds must be greater or equal to the lower bounds"); |
| 484 | 493 |
|
| 485 | 494 |
createStructures(); |
| 486 | 495 |
|
| 487 | 496 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
| 488 | 497 |
(*_excess)[n] = (*_supply)[n]; |
| 489 | 498 |
} |
| 490 | 499 |
|
| 491 | 500 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 492 | 501 |
_flow->set(e, (*_lo)[e]); |
| 493 | 502 |
(*_excess)[_g.target(e)] += (*_flow)[e]; |
| 494 | 503 |
(*_excess)[_g.source(e)] -= (*_flow)[e]; |
| 495 | 504 |
} |
| 496 | 505 |
|
| 497 | 506 |
// global relabeling tested, but in general case it provides |
| 498 | 507 |
// worse performance for random digraphs |
| 499 | 508 |
_level->initStart(); |
| 500 | 509 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 501 | 510 |
_level->initAddItem(n); |
| 502 | 511 |
_level->initFinish(); |
| 503 | 512 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 504 | 513 |
if(_tol.positive((*_excess)[n])) |
| 505 | 514 |
_level->activate(n); |
| 506 | 515 |
} |
| 507 | 516 |
|
| 508 | 517 |
/// Initializes the internal data structures using a greedy approach. |
| 509 | 518 |
|
| 510 | 519 |
/// Initializes the internal data structures using a greedy approach |
| 511 | 520 |
/// to construct the initial solution. |
| 512 | 521 |
void greedyInit() |
| 513 | 522 |
{
|
| 514 | 523 |
LEMON_DEBUG(checkBoundMaps(), |
| 515 | 524 |
"Upper bounds must be greater or equal to the lower bounds"); |
| 516 | 525 |
|
| 517 | 526 |
createStructures(); |
| 518 | 527 |
|
| 519 | 528 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
| 520 | 529 |
(*_excess)[n] = (*_supply)[n]; |
| 521 | 530 |
} |
| 522 | 531 |
|
| 523 | 532 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 524 | 533 |
if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) {
|
| 525 | 534 |
_flow->set(e, (*_up)[e]); |
| 526 | 535 |
(*_excess)[_g.target(e)] += (*_up)[e]; |
| 527 | 536 |
(*_excess)[_g.source(e)] -= (*_up)[e]; |
| 528 | 537 |
} else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) {
|
| 529 | 538 |
_flow->set(e, (*_lo)[e]); |
| 530 | 539 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
| 531 | 540 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
| 532 | 541 |
} else {
|
| 533 | 542 |
Value fc = -(*_excess)[_g.target(e)]; |
| 534 | 543 |
_flow->set(e, fc); |
| 535 | 544 |
(*_excess)[_g.target(e)] = 0; |
| 536 | 545 |
(*_excess)[_g.source(e)] -= fc; |
| 537 | 546 |
} |
| 538 | 547 |
} |
| 539 | 548 |
|
| 540 | 549 |
_level->initStart(); |
| 541 | 550 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 542 | 551 |
_level->initAddItem(n); |
| 543 | 552 |
_level->initFinish(); |
| 544 | 553 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 545 | 554 |
if(_tol.positive((*_excess)[n])) |
| 546 | 555 |
_level->activate(n); |
| 547 | 556 |
} |
| 548 | 557 |
|
| 549 | 558 |
///Executes the algorithm |
| 550 | 559 |
|
| 551 | 560 |
///This function executes the algorithm. |
| 552 | 561 |
/// |
| 553 | 562 |
///\return \c true if a feasible circulation is found. |
| 554 | 563 |
/// |
| 555 | 564 |
///\sa barrier() |
| 556 | 565 |
///\sa barrierMap() |
| 557 | 566 |
bool start() |
| 558 | 567 |
{
|
| 559 | 568 |
|
| 560 | 569 |
Node act; |
| 561 | 570 |
Node bact=INVALID; |
| 562 | 571 |
Node last_activated=INVALID; |
| 563 | 572 |
while((act=_level->highestActive())!=INVALID) {
|
| 564 | 573 |
int actlevel=(*_level)[act]; |
| 565 | 574 |
int mlevel=_node_num; |
| 566 | 575 |
Value exc=(*_excess)[act]; |
| 567 | 576 |
|
| 568 | 577 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) {
|
| 569 | 578 |
Node v = _g.target(e); |
| 570 | 579 |
Value fc=(*_up)[e]-(*_flow)[e]; |
| 571 | 580 |
if(!_tol.positive(fc)) continue; |
| 572 | 581 |
if((*_level)[v]<actlevel) {
|
| 573 | 582 |
if(!_tol.less(fc, exc)) {
|
| 574 | 583 |
_flow->set(e, (*_flow)[e] + exc); |
| 575 | 584 |
(*_excess)[v] += exc; |
| 576 | 585 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 577 | 586 |
_level->activate(v); |
| 578 | 587 |
(*_excess)[act] = 0; |
| 579 | 588 |
_level->deactivate(act); |
| 580 | 589 |
goto next_l; |
| 581 | 590 |
} |
| 582 | 591 |
else {
|
| 583 | 592 |
_flow->set(e, (*_up)[e]); |
| 584 | 593 |
(*_excess)[v] += fc; |
| 585 | 594 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 586 | 595 |
_level->activate(v); |
| 587 | 596 |
exc-=fc; |
| 588 | 597 |
} |
| 589 | 598 |
} |
| 590 | 599 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
| 591 | 600 |
} |
| 592 | 601 |
for(InArcIt e(_g,act);e!=INVALID; ++e) {
|
| 593 | 602 |
Node v = _g.source(e); |
| 594 | 603 |
Value fc=(*_flow)[e]-(*_lo)[e]; |
| 595 | 604 |
if(!_tol.positive(fc)) continue; |
| 596 | 605 |
if((*_level)[v]<actlevel) {
|
| 597 | 606 |
if(!_tol.less(fc, exc)) {
|
| 598 | 607 |
_flow->set(e, (*_flow)[e] - exc); |
| 599 | 608 |
(*_excess)[v] += exc; |
| 600 | 609 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 601 | 610 |
_level->activate(v); |
| 602 | 611 |
(*_excess)[act] = 0; |
| 603 | 612 |
_level->deactivate(act); |
| 604 | 613 |
goto next_l; |
| 605 | 614 |
} |
| 606 | 615 |
else {
|
| 607 | 616 |
_flow->set(e, (*_lo)[e]); |
| 608 | 617 |
(*_excess)[v] += fc; |
| 609 | 618 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 610 | 619 |
_level->activate(v); |
| 611 | 620 |
exc-=fc; |
| 612 | 621 |
} |
| 613 | 622 |
} |
| 614 | 623 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
| 615 | 624 |
} |
| 616 | 625 |
|
| 617 | 626 |
(*_excess)[act] = exc; |
| 618 | 627 |
if(!_tol.positive(exc)) _level->deactivate(act); |
| 619 | 628 |
else if(mlevel==_node_num) {
|
| 620 | 629 |
_level->liftHighestActiveToTop(); |
| 621 | 630 |
_el = _node_num; |
| 622 | 631 |
return false; |
| 623 | 632 |
} |
| 624 | 633 |
else {
|
| 625 | 634 |
_level->liftHighestActive(mlevel+1); |
| 626 | 635 |
if(_level->onLevel(actlevel)==0) {
|
| 627 | 636 |
_el = actlevel; |
| 628 | 637 |
return false; |
| 629 | 638 |
} |
| 630 | 639 |
} |
| 631 | 640 |
next_l: |
| 632 | 641 |
; |
| 633 | 642 |
} |
| 634 | 643 |
return true; |
| 635 | 644 |
} |
| 636 | 645 |
|
| 637 | 646 |
/// Runs the algorithm. |
| 638 | 647 |
|
| 639 | 648 |
/// This function runs the algorithm. |
| 640 | 649 |
/// |
| 641 | 650 |
/// \return \c true if a feasible circulation is found. |
| 642 | 651 |
/// |
| 643 | 652 |
/// \note Apart from the return value, c.run() is just a shortcut of |
| 644 | 653 |
/// the following code. |
| 645 | 654 |
/// \code |
| 646 | 655 |
/// c.greedyInit(); |
| 647 | 656 |
/// c.start(); |
| 648 | 657 |
/// \endcode |
| 649 | 658 |
bool run() {
|
| 650 | 659 |
greedyInit(); |
| 651 | 660 |
return start(); |
| 652 | 661 |
} |
| 653 | 662 |
|
| 654 | 663 |
/// @} |
| 655 | 664 |
|
| 656 | 665 |
/// \name Query Functions |
| 657 | 666 |
/// The results of the circulation algorithm can be obtained using |
| 658 | 667 |
/// these functions.\n |
| 659 | 668 |
/// Either \ref run() or \ref start() should be called before |
| 660 | 669 |
/// using them. |
| 661 | 670 |
|
| 662 | 671 |
///@{
|
| 663 | 672 |
|
| 664 | 673 |
/// \brief Returns the flow value on the given arc. |
| 665 | 674 |
/// |
| 666 | 675 |
/// Returns the flow value on the given arc. |
| 667 | 676 |
/// |
| 668 | 677 |
/// \pre Either \ref run() or \ref init() must be called before |
| 669 | 678 |
/// using this function. |
| 670 | 679 |
Value flow(const Arc& arc) const {
|
| 671 | 680 |
return (*_flow)[arc]; |
| 672 | 681 |
} |
| 673 | 682 |
|
| 674 | 683 |
/// \brief Returns a const reference to the flow map. |
| 675 | 684 |
/// |
| 676 | 685 |
/// Returns a const reference to the arc map storing the found flow. |
| 677 | 686 |
/// |
| 678 | 687 |
/// \pre Either \ref run() or \ref init() must be called before |
| 679 | 688 |
/// using this function. |
| 680 | 689 |
const FlowMap& flowMap() const {
|
| 681 | 690 |
return *_flow; |
| 682 | 691 |
} |
| 683 | 692 |
|
| 684 | 693 |
/** |
| 685 | 694 |
\brief Returns \c true if the given node is in a barrier. |
| 686 | 695 |
|
| 687 | 696 |
Barrier is a set \e B of nodes for which |
| 688 | 697 |
|
| 689 | 698 |
\f[ \sum_{uv\in A: u\in B} upper(uv) -
|
| 690 | 699 |
\sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f]
|
| 691 | 700 |
|
| 692 | 701 |
holds. The existence of a set with this property prooves that a |
| 693 | 702 |
feasible circualtion cannot exist. |
| 694 | 703 |
|
| 695 | 704 |
This function returns \c true if the given node is in the found |
| 696 | 705 |
barrier. If a feasible circulation is found, the function |
| 697 | 706 |
gives back \c false for every node. |
| 698 | 707 |
|
| 699 | 708 |
\pre Either \ref run() or \ref init() must be called before |
| 700 | 709 |
using this function. |
| 701 | 710 |
|
| 702 | 711 |
\sa barrierMap() |
| 703 | 712 |
\sa checkBarrier() |
| 704 | 713 |
*/ |
| 705 | 714 |
bool barrier(const Node& node) const |
| 706 | 715 |
{
|
| 707 | 716 |
return (*_level)[node] >= _el; |
| 708 | 717 |
} |
| 709 | 718 |
|
| 710 | 719 |
/// \brief Gives back a barrier. |
| 711 | 720 |
/// |
| 712 | 721 |
/// This function sets \c bar to the characteristic vector of the |
| 713 | 722 |
/// found barrier. \c bar should be a \ref concepts::WriteMap "writable" |
| 714 | 723 |
/// node map with \c bool (or convertible) value type. |
| 715 | 724 |
/// |
| 716 | 725 |
/// If a feasible circulation is found, the function gives back an |
| 717 | 726 |
/// empty set, so \c bar[v] will be \c false for all nodes \c v. |
| 718 | 727 |
/// |
| 719 | 728 |
/// \note This function calls \ref barrier() for each node, |
| 720 | 729 |
/// so it runs in O(n) time. |
| 721 | 730 |
/// |
| 722 | 731 |
/// \pre Either \ref run() or \ref init() must be called before |
| 723 | 732 |
/// using this function. |
| 724 | 733 |
/// |
| 725 | 734 |
/// \sa barrier() |
| 726 | 735 |
/// \sa checkBarrier() |
| 727 | 736 |
template<class BarrierMap> |
| 728 | 737 |
void barrierMap(BarrierMap &bar) const |
| 729 | 738 |
{
|
| 730 | 739 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 731 | 740 |
bar.set(n, (*_level)[n] >= _el); |
| 732 | 741 |
} |
| 733 | 742 |
|
| 734 | 743 |
/// @} |
| 735 | 744 |
|
| 736 | 745 |
/// \name Checker Functions |
| 737 | 746 |
/// The feasibility of the results can be checked using |
| 738 | 747 |
/// these functions.\n |
| 739 | 748 |
/// Either \ref run() or \ref start() should be called before |
| 740 | 749 |
/// using them. |
| 741 | 750 |
|
| 742 | 751 |
///@{
|
| 743 | 752 |
|
| 744 | 753 |
///Check if the found flow is a feasible circulation |
| 745 | 754 |
|
| 746 | 755 |
///Check if the found flow is a feasible circulation, |
| 747 | 756 |
/// |
| 748 | 757 |
bool checkFlow() const {
|
| 749 | 758 |
for(ArcIt e(_g);e!=INVALID;++e) |
| 750 | 759 |
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; |
| 751 | 760 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 752 | 761 |
{
|
| 753 | 762 |
Value dif=-(*_supply)[n]; |
| 754 | 763 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
| 755 | 764 |
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; |
| 756 | 765 |
if(_tol.negative(dif)) return false; |
| 757 | 766 |
} |
| 758 | 767 |
return true; |
| 759 | 768 |
} |
| 760 | 769 |
|
| 761 | 770 |
///Check whether or not the last execution provides a barrier |
| 762 | 771 |
|
| 763 | 772 |
///Check whether or not the last execution provides a barrier. |
| 764 | 773 |
///\sa barrier() |
| 765 | 774 |
///\sa barrierMap() |
| 766 | 775 |
bool checkBarrier() const |
| 767 | 776 |
{
|
| 768 | 777 |
Value delta=0; |
| 769 | 778 |
Value inf_cap = std::numeric_limits<Value>::has_infinity ? |
| 770 | 779 |
std::numeric_limits<Value>::infinity() : |
| 771 | 780 |
std::numeric_limits<Value>::max(); |
| 772 | 781 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 773 | 782 |
if(barrier(n)) |
| 774 | 783 |
delta-=(*_supply)[n]; |
| 775 | 784 |
for(ArcIt e(_g);e!=INVALID;++e) |
| 776 | 785 |
{
|
| 777 | 786 |
Node s=_g.source(e); |
| 778 | 787 |
Node t=_g.target(e); |
| 779 | 788 |
if(barrier(s)&&!barrier(t)) {
|
| 780 | 789 |
if (_tol.less(inf_cap - (*_up)[e], delta)) return false; |
| 781 | 790 |
delta+=(*_up)[e]; |
| 782 | 791 |
} |
| 783 | 792 |
else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e]; |
| 784 | 793 |
} |
| 785 | 794 |
return _tol.negative(delta); |
| 786 | 795 |
} |
| 787 | 796 |
|
| 788 | 797 |
/// @} |
| 789 | 798 |
|
| 790 | 799 |
}; |
| 791 | 800 |
|
| 792 | 801 |
} |
| 793 | 802 |
|
| 794 | 803 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <lemon/clp.h> |
| 20 | 20 |
#include <coin/ClpSimplex.hpp> |
| 21 | 21 |
|
| 22 | 22 |
namespace lemon {
|
| 23 | 23 |
|
| 24 | 24 |
ClpLp::ClpLp() {
|
| 25 | 25 |
_prob = new ClpSimplex(); |
| 26 | 26 |
_init_temporals(); |
| 27 | 27 |
messageLevel(MESSAGE_NOTHING); |
| 28 | 28 |
} |
| 29 | 29 |
|
| 30 | 30 |
ClpLp::ClpLp(const ClpLp& other) {
|
| 31 | 31 |
_prob = new ClpSimplex(*other._prob); |
| 32 | 32 |
rows = other.rows; |
| 33 | 33 |
cols = other.cols; |
| 34 | 34 |
_init_temporals(); |
| 35 | 35 |
messageLevel(MESSAGE_NOTHING); |
| 36 | 36 |
} |
| 37 | 37 |
|
| 38 | 38 |
ClpLp::~ClpLp() {
|
| 39 | 39 |
delete _prob; |
| 40 | 40 |
_clear_temporals(); |
| 41 | 41 |
} |
| 42 | 42 |
|
| 43 | 43 |
void ClpLp::_init_temporals() {
|
| 44 | 44 |
_primal_ray = 0; |
| 45 | 45 |
_dual_ray = 0; |
| 46 | 46 |
} |
| 47 | 47 |
|
| 48 | 48 |
void ClpLp::_clear_temporals() {
|
| 49 | 49 |
if (_primal_ray) {
|
| 50 | 50 |
delete[] _primal_ray; |
| 51 | 51 |
_primal_ray = 0; |
| 52 | 52 |
} |
| 53 | 53 |
if (_dual_ray) {
|
| 54 | 54 |
delete[] _dual_ray; |
| 55 | 55 |
_dual_ray = 0; |
| 56 | 56 |
} |
| 57 | 57 |
} |
| 58 | 58 |
|
| 59 | 59 |
ClpLp* ClpLp::newSolver() const {
|
| 60 | 60 |
ClpLp* newlp = new ClpLp; |
| 61 | 61 |
return newlp; |
| 62 | 62 |
} |
| 63 | 63 |
|
| 64 | 64 |
ClpLp* ClpLp::cloneSolver() const {
|
| 65 | 65 |
ClpLp* copylp = new ClpLp(*this); |
| 66 | 66 |
return copylp; |
| 67 | 67 |
} |
| 68 | 68 |
|
| 69 | 69 |
const char* ClpLp::_solverName() const { return "ClpLp"; }
|
| 70 | 70 |
|
| 71 | 71 |
int ClpLp::_addCol() {
|
| 72 | 72 |
_prob->addColumn(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX, 0.0); |
| 73 | 73 |
return _prob->numberColumns() - 1; |
| 74 | 74 |
} |
| 75 | 75 |
|
| 76 | 76 |
int ClpLp::_addRow() {
|
| 77 | 77 |
_prob->addRow(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX); |
| 78 | 78 |
return _prob->numberRows() - 1; |
| 79 | 79 |
} |
| 80 | 80 |
|
| 81 |
int ClpLp::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
|
|
| 82 |
std::vector<int> indexes; |
|
| 83 |
std::vector<Value> values; |
|
| 84 |
|
|
| 85 |
for(ExprIterator it = b; it != e; ++it) {
|
|
| 86 |
indexes.push_back(it->first); |
|
| 87 |
values.push_back(it->second); |
|
| 88 |
} |
|
| 89 |
|
|
| 90 |
_prob->addRow(values.size(), &indexes.front(), &values.front(), l, u); |
|
| 91 |
return _prob->numberRows() - 1; |
|
| 92 |
} |
|
| 93 |
|
|
| 81 | 94 |
|
| 82 | 95 |
void ClpLp::_eraseCol(int c) {
|
| 83 | 96 |
_col_names_ref.erase(_prob->getColumnName(c)); |
| 84 | 97 |
_prob->deleteColumns(1, &c); |
| 85 | 98 |
} |
| 86 | 99 |
|
| 87 | 100 |
void ClpLp::_eraseRow(int r) {
|
| 88 | 101 |
_row_names_ref.erase(_prob->getRowName(r)); |
| 89 | 102 |
_prob->deleteRows(1, &r); |
| 90 | 103 |
} |
| 91 | 104 |
|
| 92 | 105 |
void ClpLp::_eraseColId(int i) {
|
| 93 | 106 |
cols.eraseIndex(i); |
| 94 | 107 |
cols.shiftIndices(i); |
| 95 | 108 |
} |
| 96 | 109 |
|
| 97 | 110 |
void ClpLp::_eraseRowId(int i) {
|
| 98 | 111 |
rows.eraseIndex(i); |
| 99 | 112 |
rows.shiftIndices(i); |
| 100 | 113 |
} |
| 101 | 114 |
|
| 102 | 115 |
void ClpLp::_getColName(int c, std::string& name) const {
|
| 103 | 116 |
name = _prob->getColumnName(c); |
| 104 | 117 |
} |
| 105 | 118 |
|
| 106 | 119 |
void ClpLp::_setColName(int c, const std::string& name) {
|
| 107 | 120 |
_prob->setColumnName(c, const_cast<std::string&>(name)); |
| 108 | 121 |
_col_names_ref[name] = c; |
| 109 | 122 |
} |
| 110 | 123 |
|
| 111 | 124 |
int ClpLp::_colByName(const std::string& name) const {
|
| 112 | 125 |
std::map<std::string, int>::const_iterator it = _col_names_ref.find(name); |
| 113 | 126 |
return it != _col_names_ref.end() ? it->second : -1; |
| 114 | 127 |
} |
| 115 | 128 |
|
| 116 | 129 |
void ClpLp::_getRowName(int r, std::string& name) const {
|
| 117 | 130 |
name = _prob->getRowName(r); |
| 118 | 131 |
} |
| 119 | 132 |
|
| 120 | 133 |
void ClpLp::_setRowName(int r, const std::string& name) {
|
| 121 | 134 |
_prob->setRowName(r, const_cast<std::string&>(name)); |
| 122 | 135 |
_row_names_ref[name] = r; |
| 123 | 136 |
} |
| 124 | 137 |
|
| 125 | 138 |
int ClpLp::_rowByName(const std::string& name) const {
|
| 126 | 139 |
std::map<std::string, int>::const_iterator it = _row_names_ref.find(name); |
| 127 | 140 |
return it != _row_names_ref.end() ? it->second : -1; |
| 128 | 141 |
} |
| 129 | 142 |
|
| 130 | 143 |
|
| 131 | 144 |
void ClpLp::_setRowCoeffs(int ix, ExprIterator b, ExprIterator e) {
|
| 132 | 145 |
std::map<int, Value> coeffs; |
| 133 | 146 |
|
| 134 | 147 |
int n = _prob->clpMatrix()->getNumCols(); |
| 135 | 148 |
|
| 136 | 149 |
const int* indices = _prob->clpMatrix()->getIndices(); |
| 137 | 150 |
const double* elements = _prob->clpMatrix()->getElements(); |
| 138 | 151 |
|
| 139 | 152 |
for (int i = 0; i < n; ++i) {
|
| 140 | 153 |
CoinBigIndex begin = _prob->clpMatrix()->getVectorStarts()[i]; |
| 141 | 154 |
CoinBigIndex end = begin + _prob->clpMatrix()->getVectorLengths()[i]; |
| 142 | 155 |
|
| 143 | 156 |
const int* it = std::lower_bound(indices + begin, indices + end, ix); |
| 144 | 157 |
if (it != indices + end && *it == ix && elements[it - indices] != 0.0) {
|
| 145 | 158 |
coeffs[i] = 0.0; |
| 146 | 159 |
} |
| 147 | 160 |
} |
| 148 | 161 |
|
| 149 | 162 |
for (ExprIterator it = b; it != e; ++it) {
|
| 150 | 163 |
coeffs[it->first] = it->second; |
| 151 | 164 |
} |
| 152 | 165 |
|
| 153 | 166 |
for (std::map<int, Value>::iterator it = coeffs.begin(); |
| 154 | 167 |
it != coeffs.end(); ++it) {
|
| 155 | 168 |
_prob->modifyCoefficient(ix, it->first, it->second); |
| 156 | 169 |
} |
| 157 | 170 |
} |
| 158 | 171 |
|
| 159 | 172 |
void ClpLp::_getRowCoeffs(int ix, InsertIterator b) const {
|
| 160 | 173 |
int n = _prob->clpMatrix()->getNumCols(); |
| 161 | 174 |
|
| 162 | 175 |
const int* indices = _prob->clpMatrix()->getIndices(); |
| 163 | 176 |
const double* elements = _prob->clpMatrix()->getElements(); |
| 164 | 177 |
|
| 165 | 178 |
for (int i = 0; i < n; ++i) {
|
| 166 | 179 |
CoinBigIndex begin = _prob->clpMatrix()->getVectorStarts()[i]; |
| 167 | 180 |
CoinBigIndex end = begin + _prob->clpMatrix()->getVectorLengths()[i]; |
| 168 | 181 |
|
| 169 | 182 |
const int* it = std::lower_bound(indices + begin, indices + end, ix); |
| 170 | 183 |
if (it != indices + end && *it == ix) {
|
| 171 | 184 |
*b = std::make_pair(i, elements[it - indices]); |
| 172 | 185 |
} |
| 173 | 186 |
} |
| 174 | 187 |
} |
| 175 | 188 |
|
| 176 | 189 |
void ClpLp::_setColCoeffs(int ix, ExprIterator b, ExprIterator e) {
|
| 177 | 190 |
std::map<int, Value> coeffs; |
| 178 | 191 |
|
| 179 | 192 |
CoinBigIndex begin = _prob->clpMatrix()->getVectorStarts()[ix]; |
| 180 | 193 |
CoinBigIndex end = begin + _prob->clpMatrix()->getVectorLengths()[ix]; |
| 181 | 194 |
|
| 182 | 195 |
const int* indices = _prob->clpMatrix()->getIndices(); |
| 183 | 196 |
const double* elements = _prob->clpMatrix()->getElements(); |
| 184 | 197 |
|
| 185 | 198 |
for (CoinBigIndex i = begin; i != end; ++i) {
|
| 186 | 199 |
if (elements[i] != 0.0) {
|
| 187 | 200 |
coeffs[indices[i]] = 0.0; |
| 188 | 201 |
} |
| 189 | 202 |
} |
| 190 | 203 |
for (ExprIterator it = b; it != e; ++it) {
|
| 191 | 204 |
coeffs[it->first] = it->second; |
| 192 | 205 |
} |
| 193 | 206 |
for (std::map<int, Value>::iterator it = coeffs.begin(); |
| 194 | 207 |
it != coeffs.end(); ++it) {
|
| 195 | 208 |
_prob->modifyCoefficient(it->first, ix, it->second); |
| 196 | 209 |
} |
| 197 | 210 |
} |
| 198 | 211 |
|
| 199 | 212 |
void ClpLp::_getColCoeffs(int ix, InsertIterator b) const {
|
| 200 | 213 |
CoinBigIndex begin = _prob->clpMatrix()->getVectorStarts()[ix]; |
| 201 | 214 |
CoinBigIndex end = begin + _prob->clpMatrix()->getVectorLengths()[ix]; |
| 202 | 215 |
|
| 203 | 216 |
const int* indices = _prob->clpMatrix()->getIndices(); |
| 204 | 217 |
const double* elements = _prob->clpMatrix()->getElements(); |
| 205 | 218 |
|
| 206 | 219 |
for (CoinBigIndex i = begin; i != end; ++i) {
|
| 207 | 220 |
*b = std::make_pair(indices[i], elements[i]); |
| 208 | 221 |
++b; |
| 209 | 222 |
} |
| 210 | 223 |
} |
| 211 | 224 |
|
| 212 | 225 |
void ClpLp::_setCoeff(int ix, int jx, Value value) {
|
| 213 | 226 |
_prob->modifyCoefficient(ix, jx, value); |
| 214 | 227 |
} |
| 215 | 228 |
|
| 216 | 229 |
ClpLp::Value ClpLp::_getCoeff(int ix, int jx) const {
|
| 217 | 230 |
CoinBigIndex begin = _prob->clpMatrix()->getVectorStarts()[ix]; |
| 218 | 231 |
CoinBigIndex end = begin + _prob->clpMatrix()->getVectorLengths()[ix]; |
| 219 | 232 |
|
| 220 | 233 |
const int* indices = _prob->clpMatrix()->getIndices(); |
| 221 | 234 |
const double* elements = _prob->clpMatrix()->getElements(); |
| 222 | 235 |
|
| 223 | 236 |
const int* it = std::lower_bound(indices + begin, indices + end, jx); |
| 224 | 237 |
if (it != indices + end && *it == jx) {
|
| 225 | 238 |
return elements[it - indices]; |
| 226 | 239 |
} else {
|
| 227 | 240 |
return 0.0; |
| 228 | 241 |
} |
| 229 | 242 |
} |
| 230 | 243 |
|
| 231 | 244 |
void ClpLp::_setColLowerBound(int i, Value lo) {
|
| 232 | 245 |
_prob->setColumnLower(i, lo == - INF ? - COIN_DBL_MAX : lo); |
| 233 | 246 |
} |
| 234 | 247 |
|
| 235 | 248 |
ClpLp::Value ClpLp::_getColLowerBound(int i) const {
|
| 236 | 249 |
double val = _prob->getColLower()[i]; |
| 237 | 250 |
return val == - COIN_DBL_MAX ? - INF : val; |
| 238 | 251 |
} |
| 239 | 252 |
|
| 240 | 253 |
void ClpLp::_setColUpperBound(int i, Value up) {
|
| 241 | 254 |
_prob->setColumnUpper(i, up == INF ? COIN_DBL_MAX : up); |
| 242 | 255 |
} |
| 243 | 256 |
|
| 244 | 257 |
ClpLp::Value ClpLp::_getColUpperBound(int i) const {
|
| 245 | 258 |
double val = _prob->getColUpper()[i]; |
| 246 | 259 |
return val == COIN_DBL_MAX ? INF : val; |
| 247 | 260 |
} |
| 248 | 261 |
|
| 249 | 262 |
void ClpLp::_setRowLowerBound(int i, Value lo) {
|
| 250 | 263 |
_prob->setRowLower(i, lo == - INF ? - COIN_DBL_MAX : lo); |
| 251 | 264 |
} |
| 252 | 265 |
|
| 253 | 266 |
ClpLp::Value ClpLp::_getRowLowerBound(int i) const {
|
| 254 | 267 |
double val = _prob->getRowLower()[i]; |
| 255 | 268 |
return val == - COIN_DBL_MAX ? - INF : val; |
| 256 | 269 |
} |
| 257 | 270 |
|
| 258 | 271 |
void ClpLp::_setRowUpperBound(int i, Value up) {
|
| 259 | 272 |
_prob->setRowUpper(i, up == INF ? COIN_DBL_MAX : up); |
| 260 | 273 |
} |
| 261 | 274 |
|
| 262 | 275 |
ClpLp::Value ClpLp::_getRowUpperBound(int i) const {
|
| 263 | 276 |
double val = _prob->getRowUpper()[i]; |
| 264 | 277 |
return val == COIN_DBL_MAX ? INF : val; |
| 265 | 278 |
} |
| 266 | 279 |
|
| 267 | 280 |
void ClpLp::_setObjCoeffs(ExprIterator b, ExprIterator e) {
|
| 268 | 281 |
int num = _prob->clpMatrix()->getNumCols(); |
| 269 | 282 |
for (int i = 0; i < num; ++i) {
|
| 270 | 283 |
_prob->setObjectiveCoefficient(i, 0.0); |
| 271 | 284 |
} |
| 272 | 285 |
for (ExprIterator it = b; it != e; ++it) {
|
| 273 | 286 |
_prob->setObjectiveCoefficient(it->first, it->second); |
| 274 | 287 |
} |
| 275 | 288 |
} |
| 276 | 289 |
|
| 277 | 290 |
void ClpLp::_getObjCoeffs(InsertIterator b) const {
|
| 278 | 291 |
int num = _prob->clpMatrix()->getNumCols(); |
| 279 | 292 |
for (int i = 0; i < num; ++i) {
|
| 280 | 293 |
Value coef = _prob->getObjCoefficients()[i]; |
| 281 | 294 |
if (coef != 0.0) {
|
| 282 | 295 |
*b = std::make_pair(i, coef); |
| 283 | 296 |
++b; |
| 284 | 297 |
} |
| 285 | 298 |
} |
| 286 | 299 |
} |
| 287 | 300 |
|
| 288 | 301 |
void ClpLp::_setObjCoeff(int i, Value obj_coef) {
|
| 289 | 302 |
_prob->setObjectiveCoefficient(i, obj_coef); |
| 290 | 303 |
} |
| 291 | 304 |
|
| 292 | 305 |
ClpLp::Value ClpLp::_getObjCoeff(int i) const {
|
| 293 | 306 |
return _prob->getObjCoefficients()[i]; |
| 294 | 307 |
} |
| 295 | 308 |
|
| 296 | 309 |
ClpLp::SolveExitStatus ClpLp::_solve() {
|
| 297 | 310 |
return _prob->primal() >= 0 ? SOLVED : UNSOLVED; |
| 298 | 311 |
} |
| 299 | 312 |
|
| 300 | 313 |
ClpLp::SolveExitStatus ClpLp::solvePrimal() {
|
| 301 | 314 |
return _prob->primal() >= 0 ? SOLVED : UNSOLVED; |
| 302 | 315 |
} |
| 303 | 316 |
|
| 304 | 317 |
ClpLp::SolveExitStatus ClpLp::solveDual() {
|
| 305 | 318 |
return _prob->dual() >= 0 ? SOLVED : UNSOLVED; |
| 306 | 319 |
} |
| 307 | 320 |
|
| 308 | 321 |
ClpLp::SolveExitStatus ClpLp::solveBarrier() {
|
| 309 | 322 |
return _prob->barrier() >= 0 ? SOLVED : UNSOLVED; |
| 310 | 323 |
} |
| 311 | 324 |
|
| 312 | 325 |
ClpLp::Value ClpLp::_getPrimal(int i) const {
|
| 313 | 326 |
return _prob->primalColumnSolution()[i]; |
| 314 | 327 |
} |
| 315 | 328 |
ClpLp::Value ClpLp::_getPrimalValue() const {
|
| 316 | 329 |
return _prob->objectiveValue(); |
| 317 | 330 |
} |
| 318 | 331 |
|
| 319 | 332 |
ClpLp::Value ClpLp::_getDual(int i) const {
|
| 320 | 333 |
return _prob->dualRowSolution()[i]; |
| 321 | 334 |
} |
| 322 | 335 |
|
| 323 | 336 |
ClpLp::Value ClpLp::_getPrimalRay(int i) const {
|
| 324 | 337 |
if (!_primal_ray) {
|
| 325 | 338 |
_primal_ray = _prob->unboundedRay(); |
| 326 | 339 |
LEMON_ASSERT(_primal_ray != 0, "Primal ray is not provided"); |
| 327 | 340 |
} |
| 328 | 341 |
return _primal_ray[i]; |
| 329 | 342 |
} |
| 330 | 343 |
|
| 331 | 344 |
ClpLp::Value ClpLp::_getDualRay(int i) const {
|
| 332 | 345 |
if (!_dual_ray) {
|
| 333 | 346 |
_dual_ray = _prob->infeasibilityRay(); |
| 334 | 347 |
LEMON_ASSERT(_dual_ray != 0, "Dual ray is not provided"); |
| 335 | 348 |
} |
| 336 | 349 |
return _dual_ray[i]; |
| 337 | 350 |
} |
| 338 | 351 |
|
| 339 | 352 |
ClpLp::VarStatus ClpLp::_getColStatus(int i) const {
|
| 340 | 353 |
switch (_prob->getColumnStatus(i)) {
|
| 341 | 354 |
case ClpSimplex::basic: |
| 342 | 355 |
return BASIC; |
| 343 | 356 |
case ClpSimplex::isFree: |
| 344 | 357 |
return FREE; |
| 345 | 358 |
case ClpSimplex::atUpperBound: |
| 346 | 359 |
return UPPER; |
| 347 | 360 |
case ClpSimplex::atLowerBound: |
| 348 | 361 |
return LOWER; |
| 349 | 362 |
case ClpSimplex::isFixed: |
| 350 | 363 |
return FIXED; |
| 351 | 364 |
case ClpSimplex::superBasic: |
| 352 | 365 |
return FREE; |
| 353 | 366 |
default: |
| 354 | 367 |
LEMON_ASSERT(false, "Wrong column status"); |
| 355 | 368 |
return VarStatus(); |
| 356 | 369 |
} |
| 357 | 370 |
} |
| 358 | 371 |
|
| 359 | 372 |
ClpLp::VarStatus ClpLp::_getRowStatus(int i) const {
|
| 360 | 373 |
switch (_prob->getColumnStatus(i)) {
|
| 361 | 374 |
case ClpSimplex::basic: |
| 362 | 375 |
return BASIC; |
| 363 | 376 |
case ClpSimplex::isFree: |
| 364 | 377 |
return FREE; |
| 365 | 378 |
case ClpSimplex::atUpperBound: |
| 366 | 379 |
return UPPER; |
| 367 | 380 |
case ClpSimplex::atLowerBound: |
| 368 | 381 |
return LOWER; |
| 369 | 382 |
case ClpSimplex::isFixed: |
| 370 | 383 |
return FIXED; |
| 371 | 384 |
case ClpSimplex::superBasic: |
| 372 | 385 |
return FREE; |
| 373 | 386 |
default: |
| 374 | 387 |
LEMON_ASSERT(false, "Wrong row status"); |
| 375 | 388 |
return VarStatus(); |
| 376 | 389 |
} |
| 377 | 390 |
} |
| 378 | 391 |
|
| 379 | 392 |
|
| 380 | 393 |
ClpLp::ProblemType ClpLp::_getPrimalType() const {
|
| 381 | 394 |
if (_prob->isProvenOptimal()) {
|
| 382 | 395 |
return OPTIMAL; |
| 383 | 396 |
} else if (_prob->isProvenPrimalInfeasible()) {
|
| 384 | 397 |
return INFEASIBLE; |
| 385 | 398 |
} else if (_prob->isProvenDualInfeasible()) {
|
| 386 | 399 |
return UNBOUNDED; |
| 387 | 400 |
} else {
|
| 388 | 401 |
return UNDEFINED; |
| 389 | 402 |
} |
| 390 | 403 |
} |
| 391 | 404 |
|
| 392 | 405 |
ClpLp::ProblemType ClpLp::_getDualType() const {
|
| 393 | 406 |
if (_prob->isProvenOptimal()) {
|
| 394 | 407 |
return OPTIMAL; |
| 395 | 408 |
} else if (_prob->isProvenDualInfeasible()) {
|
| 396 | 409 |
return INFEASIBLE; |
| 397 | 410 |
} else if (_prob->isProvenPrimalInfeasible()) {
|
| 398 | 411 |
return INFEASIBLE; |
| 399 | 412 |
} else {
|
| 400 | 413 |
return UNDEFINED; |
| 401 | 414 |
} |
| 402 | 415 |
} |
| 403 | 416 |
|
| 404 | 417 |
void ClpLp::_setSense(ClpLp::Sense sense) {
|
| 405 | 418 |
switch (sense) {
|
| 406 | 419 |
case MIN: |
| 407 | 420 |
_prob->setOptimizationDirection(1); |
| 408 | 421 |
break; |
| 409 | 422 |
case MAX: |
| 410 | 423 |
_prob->setOptimizationDirection(-1); |
| 411 | 424 |
break; |
| 412 | 425 |
} |
| 413 | 426 |
} |
| 414 | 427 |
|
| 415 | 428 |
ClpLp::Sense ClpLp::_getSense() const {
|
| 416 | 429 |
double dir = _prob->optimizationDirection(); |
| 417 | 430 |
if (dir > 0.0) {
|
| 418 | 431 |
return MIN; |
| 419 | 432 |
} else {
|
| 420 | 433 |
return MAX; |
| 421 | 434 |
} |
| 422 | 435 |
} |
| 423 | 436 |
|
| 424 | 437 |
void ClpLp::_clear() {
|
| 425 | 438 |
delete _prob; |
| 426 | 439 |
_prob = new ClpSimplex(); |
| 427 | 440 |
rows.clear(); |
| 428 | 441 |
cols.clear(); |
| 429 | 442 |
_col_names_ref.clear(); |
| 430 | 443 |
_clear_temporals(); |
| 431 | 444 |
} |
| 432 | 445 |
|
| 433 | 446 |
void ClpLp::_messageLevel(MessageLevel level) {
|
| 434 | 447 |
switch (level) {
|
| 435 | 448 |
case MESSAGE_NOTHING: |
| 436 | 449 |
_prob->setLogLevel(0); |
| 437 | 450 |
break; |
| 438 | 451 |
case MESSAGE_ERROR: |
| 439 | 452 |
_prob->setLogLevel(1); |
| 440 | 453 |
break; |
| 441 | 454 |
case MESSAGE_WARNING: |
| 442 | 455 |
_prob->setLogLevel(2); |
| 443 | 456 |
break; |
| 444 | 457 |
case MESSAGE_NORMAL: |
| 445 | 458 |
_prob->setLogLevel(3); |
| 446 | 459 |
break; |
| 447 | 460 |
case MESSAGE_VERBOSE: |
| 448 | 461 |
_prob->setLogLevel(4); |
| 449 | 462 |
break; |
| 450 | 463 |
} |
| 451 | 464 |
} |
| 452 | 465 |
|
| 453 | 466 |
} //END OF NAMESPACE LEMON |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CLP_H |
| 20 | 20 |
#define LEMON_CLP_H |
| 21 | 21 |
|
| 22 | 22 |
///\file |
| 23 | 23 |
///\brief Header of the LEMON-CLP lp solver interface. |
| 24 | 24 |
|
| 25 | 25 |
#include <vector> |
| 26 | 26 |
#include <string> |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/lp_base.h> |
| 29 | 29 |
|
| 30 | 30 |
class ClpSimplex; |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
/// \ingroup lp_group |
| 35 | 35 |
/// |
| 36 | 36 |
/// \brief Interface for the CLP solver |
| 37 | 37 |
/// |
| 38 | 38 |
/// This class implements an interface for the Clp LP solver. The |
| 39 | 39 |
/// Clp library is an object oriented lp solver library developed at |
| 40 | 40 |
/// the IBM. The CLP is part of the COIN-OR package and it can be |
| 41 | 41 |
/// used with Common Public License. |
| 42 | 42 |
class ClpLp : public LpSolver {
|
| 43 | 43 |
protected: |
| 44 | 44 |
|
| 45 | 45 |
ClpSimplex* _prob; |
| 46 | 46 |
|
| 47 | 47 |
std::map<std::string, int> _col_names_ref; |
| 48 | 48 |
std::map<std::string, int> _row_names_ref; |
| 49 | 49 |
|
| 50 | 50 |
public: |
| 51 | 51 |
|
| 52 | 52 |
/// \e |
| 53 | 53 |
ClpLp(); |
| 54 | 54 |
/// \e |
| 55 | 55 |
ClpLp(const ClpLp&); |
| 56 | 56 |
/// \e |
| 57 | 57 |
~ClpLp(); |
| 58 | 58 |
|
| 59 | 59 |
/// \e |
| 60 | 60 |
virtual ClpLp* newSolver() const; |
| 61 | 61 |
/// \e |
| 62 | 62 |
virtual ClpLp* cloneSolver() const; |
| 63 | 63 |
|
| 64 | 64 |
protected: |
| 65 | 65 |
|
| 66 | 66 |
mutable double* _primal_ray; |
| 67 | 67 |
mutable double* _dual_ray; |
| 68 | 68 |
|
| 69 | 69 |
void _init_temporals(); |
| 70 | 70 |
void _clear_temporals(); |
| 71 | 71 |
|
| 72 | 72 |
protected: |
| 73 | 73 |
|
| 74 | 74 |
virtual const char* _solverName() const; |
| 75 | 75 |
|
| 76 | 76 |
virtual int _addCol(); |
| 77 | 77 |
virtual int _addRow(); |
| 78 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 78 | 79 |
|
| 79 | 80 |
virtual void _eraseCol(int i); |
| 80 | 81 |
virtual void _eraseRow(int i); |
| 81 | 82 |
|
| 82 | 83 |
virtual void _eraseColId(int i); |
| 83 | 84 |
virtual void _eraseRowId(int i); |
| 84 | 85 |
|
| 85 | 86 |
virtual void _getColName(int col, std::string& name) const; |
| 86 | 87 |
virtual void _setColName(int col, const std::string& name); |
| 87 | 88 |
virtual int _colByName(const std::string& name) const; |
| 88 | 89 |
|
| 89 | 90 |
virtual void _getRowName(int row, std::string& name) const; |
| 90 | 91 |
virtual void _setRowName(int row, const std::string& name); |
| 91 | 92 |
virtual int _rowByName(const std::string& name) const; |
| 92 | 93 |
|
| 93 | 94 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
| 94 | 95 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
| 95 | 96 |
|
| 96 | 97 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
| 97 | 98 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
| 98 | 99 |
|
| 99 | 100 |
virtual void _setCoeff(int row, int col, Value value); |
| 100 | 101 |
virtual Value _getCoeff(int row, int col) const; |
| 101 | 102 |
|
| 102 | 103 |
virtual void _setColLowerBound(int i, Value value); |
| 103 | 104 |
virtual Value _getColLowerBound(int i) const; |
| 104 | 105 |
virtual void _setColUpperBound(int i, Value value); |
| 105 | 106 |
virtual Value _getColUpperBound(int i) const; |
| 106 | 107 |
|
| 107 | 108 |
virtual void _setRowLowerBound(int i, Value value); |
| 108 | 109 |
virtual Value _getRowLowerBound(int i) const; |
| 109 | 110 |
virtual void _setRowUpperBound(int i, Value value); |
| 110 | 111 |
virtual Value _getRowUpperBound(int i) const; |
| 111 | 112 |
|
| 112 | 113 |
virtual void _setObjCoeffs(ExprIterator, ExprIterator); |
| 113 | 114 |
virtual void _getObjCoeffs(InsertIterator) const; |
| 114 | 115 |
|
| 115 | 116 |
virtual void _setObjCoeff(int i, Value obj_coef); |
| 116 | 117 |
virtual Value _getObjCoeff(int i) const; |
| 117 | 118 |
|
| 118 | 119 |
virtual void _setSense(Sense sense); |
| 119 | 120 |
virtual Sense _getSense() const; |
| 120 | 121 |
|
| 121 | 122 |
virtual SolveExitStatus _solve(); |
| 122 | 123 |
|
| 123 | 124 |
virtual Value _getPrimal(int i) const; |
| 124 | 125 |
virtual Value _getDual(int i) const; |
| 125 | 126 |
|
| 126 | 127 |
virtual Value _getPrimalValue() const; |
| 127 | 128 |
|
| 128 | 129 |
virtual Value _getPrimalRay(int i) const; |
| 129 | 130 |
virtual Value _getDualRay(int i) const; |
| 130 | 131 |
|
| 131 | 132 |
virtual VarStatus _getColStatus(int i) const; |
| 132 | 133 |
virtual VarStatus _getRowStatus(int i) const; |
| 133 | 134 |
|
| 134 | 135 |
virtual ProblemType _getPrimalType() const; |
| 135 | 136 |
virtual ProblemType _getDualType() const; |
| 136 | 137 |
|
| 137 | 138 |
virtual void _clear(); |
| 138 | 139 |
|
| 139 | 140 |
virtual void _messageLevel(MessageLevel); |
| 140 | 141 |
|
| 141 | 142 |
public: |
| 142 | 143 |
|
| 143 | 144 |
///Solves LP with primal simplex method. |
| 144 | 145 |
SolveExitStatus solvePrimal(); |
| 145 | 146 |
|
| 146 | 147 |
///Solves LP with dual simplex method. |
| 147 | 148 |
SolveExitStatus solveDual(); |
| 148 | 149 |
|
| 149 | 150 |
///Solves LP with barrier method. |
| 150 | 151 |
SolveExitStatus solveBarrier(); |
| 151 | 152 |
|
| 152 | 153 |
///Returns the constraint identifier understood by CLP. |
| 153 | 154 |
int clpRow(Row r) const { return rows(id(r)); }
|
| 154 | 155 |
|
| 155 | 156 |
///Returns the variable identifier understood by CLP. |
| 156 | 157 |
int clpCol(Col c) const { return cols(id(c)); }
|
| 157 | 158 |
|
| 158 | 159 |
}; |
| 159 | 160 |
|
| 160 | 161 |
} //END OF NAMESPACE LEMON |
| 161 | 162 |
|
| 162 | 163 |
#endif //LEMON_CLP_H |
| 163 | 164 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CONCEPTS_DIGRAPH_H |
| 20 | 20 |
#define LEMON_CONCEPTS_DIGRAPH_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup graph_concepts |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief The concept of directed graphs. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
#include <lemon/concept_check.h> |
| 29 | 29 |
#include <lemon/concepts/graph_components.h> |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
namespace concepts {
|
| 33 | 33 |
|
| 34 | 34 |
/// \ingroup graph_concepts |
| 35 | 35 |
/// |
| 36 | 36 |
/// \brief Class describing the concept of directed graphs. |
| 37 | 37 |
/// |
| 38 |
/// This class describes the \ref concept "concept" of the |
|
| 39 |
/// immutable directed digraphs. |
|
| 38 |
/// This class describes the common interface of all directed |
|
| 39 |
/// graphs (digraphs). |
|
| 40 | 40 |
/// |
| 41 |
/// Note that actual digraph implementation like @ref ListDigraph or |
|
| 42 |
/// @ref SmartDigraph may have several additional functionality. |
|
| 41 |
/// Like all concept classes, it only provides an interface |
|
| 42 |
/// without any sensible implementation. So any general algorithm for |
|
| 43 |
/// directed graphs should compile with this class, but it will not |
|
| 44 |
/// run properly, of course. |
|
| 45 |
/// An actual digraph implementation like \ref ListDigraph or |
|
| 46 |
/// \ref SmartDigraph may have additional functionality. |
|
| 43 | 47 |
/// |
| 44 |
/// \sa |
|
| 48 |
/// \sa Graph |
|
| 45 | 49 |
class Digraph {
|
| 46 | 50 |
private: |
| 47 |
/// |
|
| 51 |
/// Diraphs are \e not copy constructible. Use DigraphCopy instead. |
|
| 52 |
Digraph(const Digraph &) {}
|
|
| 53 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
|
| 54 |
/// Use DigraphCopy instead. |
|
| 55 |
void operator=(const Digraph &) {}
|
|
| 48 | 56 |
|
| 49 |
///Digraphs are \e not copy constructible. Use DigraphCopy() instead. |
|
| 50 |
/// |
|
| 51 |
Digraph(const Digraph &) {};
|
|
| 52 |
///\brief Assignment of \ref Digraph "Digraph"s to another ones are |
|
| 53 |
|
|
| 57 |
public: |
|
| 58 |
/// Default constructor. |
|
| 59 |
Digraph() { }
|
|
| 54 | 60 |
|
| 55 |
///Assignment of \ref Digraph "Digraph"s to another ones are |
|
| 56 |
///\e not allowed. Use DigraphCopy() instead. |
|
| 57 |
|
|
| 58 |
void operator=(const Digraph &) {}
|
|
| 59 |
public: |
|
| 60 |
///\e |
|
| 61 |
|
|
| 62 |
/// Defalult constructor. |
|
| 63 |
|
|
| 64 |
/// Defalult constructor. |
|
| 65 |
/// |
|
| 66 |
Digraph() { }
|
|
| 67 |
/// |
|
| 61 |
/// The node type of the digraph |
|
| 68 | 62 |
|
| 69 | 63 |
/// This class identifies a node of the digraph. It also serves |
| 70 | 64 |
/// as a base class of the node iterators, |
| 71 |
/// thus they |
|
| 65 |
/// thus they convert to this type. |
|
| 72 | 66 |
class Node {
|
| 73 | 67 |
public: |
| 74 | 68 |
/// Default constructor |
| 75 | 69 |
|
| 76 |
/// @warning The default constructor sets the iterator |
|
| 77 |
/// to an undefined value. |
|
| 70 |
/// Default constructor. |
|
| 71 |
/// \warning It sets the object to an undefined value. |
|
| 78 | 72 |
Node() { }
|
| 79 | 73 |
/// Copy constructor. |
| 80 | 74 |
|
| 81 | 75 |
/// Copy constructor. |
| 82 | 76 |
/// |
| 83 | 77 |
Node(const Node&) { }
|
| 84 | 78 |
|
| 85 |
/// Invalid constructor \& conversion. |
|
| 79 |
/// %Invalid constructor \& conversion. |
|
| 86 | 80 |
|
| 87 |
/// |
|
| 81 |
/// Initializes the object to be invalid. |
|
| 88 | 82 |
/// \sa Invalid for more details. |
| 89 | 83 |
Node(Invalid) { }
|
| 90 | 84 |
/// Equality operator |
| 91 | 85 |
|
| 86 |
/// Equality operator. |
|
| 87 |
/// |
|
| 92 | 88 |
/// Two iterators are equal if and only if they point to the |
| 93 |
/// same object or both are |
|
| 89 |
/// same object or both are \c INVALID. |
|
| 94 | 90 |
bool operator==(Node) const { return true; }
|
| 95 | 91 |
|
| 96 | 92 |
/// Inequality operator |
| 97 | 93 |
|
| 98 |
/// \sa operator==(Node n) |
|
| 99 |
/// |
|
| 94 |
/// Inequality operator. |
|
| 100 | 95 |
bool operator!=(Node) const { return true; }
|
| 101 | 96 |
|
| 102 | 97 |
/// Artificial ordering operator. |
| 103 | 98 |
|
| 104 |
/// To allow the use of digraph descriptors as key type in std::map or |
|
| 105 |
/// similar associative container we require this. |
|
| 99 |
/// Artificial ordering operator. |
|
| 106 | 100 |
/// |
| 107 |
/// \note This operator only have to define some strict ordering of |
|
| 108 |
/// the items; this order has nothing to do with the iteration |
|
| 109 |
/// ordering of |
|
| 101 |
/// \note This operator only has to define some strict ordering of |
|
| 102 |
/// the nodes; this order has nothing to do with the iteration |
|
| 103 |
/// ordering of the nodes. |
|
| 110 | 104 |
bool operator<(Node) const { return false; }
|
| 111 |
|
|
| 112 | 105 |
}; |
| 113 | 106 |
|
| 114 |
/// |
|
| 107 |
/// Iterator class for the nodes. |
|
| 115 | 108 |
|
| 116 |
/// This iterator goes through each node. |
|
| 109 |
/// This iterator goes through each node of the digraph. |
|
| 117 | 110 |
/// Its usage is quite simple, for example you can count the number |
| 118 |
/// of nodes in digraph \c g of type \c Digraph like this: |
|
| 111 |
/// of nodes in a digraph \c g of type \c %Digraph like this: |
|
| 119 | 112 |
///\code |
| 120 | 113 |
/// int count=0; |
| 121 | 114 |
/// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count; |
| 122 | 115 |
///\endcode |
| 123 | 116 |
class NodeIt : public Node {
|
| 124 | 117 |
public: |
| 125 | 118 |
/// Default constructor |
| 126 | 119 |
|
| 127 |
/// @warning The default constructor sets the iterator |
|
| 128 |
/// to an undefined value. |
|
| 120 |
/// Default constructor. |
|
| 121 |
/// \warning It sets the iterator to an undefined value. |
|
| 129 | 122 |
NodeIt() { }
|
| 130 | 123 |
/// Copy constructor. |
| 131 | 124 |
|
| 132 | 125 |
/// Copy constructor. |
| 133 | 126 |
/// |
| 134 | 127 |
NodeIt(const NodeIt& n) : Node(n) { }
|
| 135 |
/// Invalid constructor \& conversion. |
|
| 128 |
/// %Invalid constructor \& conversion. |
|
| 136 | 129 |
|
| 137 |
/// |
|
| 130 |
/// Initializes the iterator to be invalid. |
|
| 138 | 131 |
/// \sa Invalid for more details. |
| 139 | 132 |
NodeIt(Invalid) { }
|
| 140 | 133 |
/// Sets the iterator to the first node. |
| 141 | 134 |
|
| 142 |
/// Sets the iterator to the first node of |
|
| 135 |
/// Sets the iterator to the first node of the given digraph. |
|
| 143 | 136 |
/// |
| 144 |
NodeIt(const Digraph&) { }
|
|
| 145 |
/// Node -> NodeIt conversion. |
|
| 137 |
explicit NodeIt(const Digraph&) { }
|
|
| 138 |
/// Sets the iterator to the given node. |
|
| 146 | 139 |
|
| 147 |
/// Sets the iterator to the node of \c the digraph pointed by |
|
| 148 |
/// the trivial iterator. |
|
| 149 |
/// This feature necessitates that each time we |
|
| 150 |
/// iterate the arc-set, the iteration order is the same. |
|
| 140 |
/// Sets the iterator to the given node of the given digraph. |
|
| 141 |
/// |
|
| 151 | 142 |
NodeIt(const Digraph&, const Node&) { }
|
| 152 | 143 |
/// Next node. |
| 153 | 144 |
|
| 154 | 145 |
/// Assign the iterator to the next node. |
| 155 | 146 |
/// |
| 156 | 147 |
NodeIt& operator++() { return *this; }
|
| 157 | 148 |
}; |
| 158 | 149 |
|
| 159 | 150 |
|
| 160 |
/// |
|
| 151 |
/// The arc type of the digraph |
|
| 161 | 152 |
|
| 162 | 153 |
/// This class identifies an arc of the digraph. It also serves |
| 163 | 154 |
/// as a base class of the arc iterators, |
| 164 | 155 |
/// thus they will convert to this type. |
| 165 | 156 |
class Arc {
|
| 166 | 157 |
public: |
| 167 | 158 |
/// Default constructor |
| 168 | 159 |
|
| 169 |
/// @warning The default constructor sets the iterator |
|
| 170 |
/// to an undefined value. |
|
| 160 |
/// Default constructor. |
|
| 161 |
/// \warning It sets the object to an undefined value. |
|
| 171 | 162 |
Arc() { }
|
| 172 | 163 |
/// Copy constructor. |
| 173 | 164 |
|
| 174 | 165 |
/// Copy constructor. |
| 175 | 166 |
/// |
| 176 | 167 |
Arc(const Arc&) { }
|
| 177 |
/// |
|
| 168 |
/// %Invalid constructor \& conversion. |
|
| 178 | 169 |
|
| 179 |
/// Initialize the iterator to be invalid. |
|
| 180 |
/// |
|
| 170 |
/// Initializes the object to be invalid. |
|
| 171 |
/// \sa Invalid for more details. |
|
| 181 | 172 |
Arc(Invalid) { }
|
| 182 | 173 |
/// Equality operator |
| 183 | 174 |
|
| 175 |
/// Equality operator. |
|
| 176 |
/// |
|
| 184 | 177 |
/// Two iterators are equal if and only if they point to the |
| 185 |
/// same object or both are |
|
| 178 |
/// same object or both are \c INVALID. |
|
| 186 | 179 |
bool operator==(Arc) const { return true; }
|
| 187 | 180 |
/// Inequality operator |
| 188 | 181 |
|
| 189 |
/// \sa operator==(Arc n) |
|
| 190 |
/// |
|
| 182 |
/// Inequality operator. |
|
| 191 | 183 |
bool operator!=(Arc) const { return true; }
|
| 192 | 184 |
|
| 193 | 185 |
/// Artificial ordering operator. |
| 194 | 186 |
|
| 195 |
/// To allow the use of digraph descriptors as key type in std::map or |
|
| 196 |
/// similar associative container we require this. |
|
| 187 |
/// Artificial ordering operator. |
|
| 197 | 188 |
/// |
| 198 |
/// \note This operator only have to define some strict ordering of |
|
| 199 |
/// the items; this order has nothing to do with the iteration |
|
| 200 |
/// ordering of |
|
| 189 |
/// \note This operator only has to define some strict ordering of |
|
| 190 |
/// the arcs; this order has nothing to do with the iteration |
|
| 191 |
/// ordering of the arcs. |
|
| 201 | 192 |
bool operator<(Arc) const { return false; }
|
| 202 | 193 |
}; |
| 203 | 194 |
|
| 204 |
/// |
|
| 195 |
/// Iterator class for the outgoing arcs of a node. |
|
| 205 | 196 |
|
| 206 | 197 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
| 207 | 198 |
/// of a digraph. |
| 208 | 199 |
/// Its usage is quite simple, for example you can count the number |
| 209 | 200 |
/// of outgoing arcs of a node \c n |
| 210 |
/// in digraph \c g of type \c Digraph as follows. |
|
| 201 |
/// in a digraph \c g of type \c %Digraph as follows. |
|
| 211 | 202 |
///\code |
| 212 | 203 |
/// int count=0; |
| 213 |
/// for (Digraph::OutArcIt |
|
| 204 |
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
| 214 | 205 |
///\endcode |
| 215 |
|
|
| 216 | 206 |
class OutArcIt : public Arc {
|
| 217 | 207 |
public: |
| 218 | 208 |
/// Default constructor |
| 219 | 209 |
|
| 220 |
/// @warning The default constructor sets the iterator |
|
| 221 |
/// to an undefined value. |
|
| 210 |
/// Default constructor. |
|
| 211 |
/// \warning It sets the iterator to an undefined value. |
|
| 222 | 212 |
OutArcIt() { }
|
| 223 | 213 |
/// Copy constructor. |
| 224 | 214 |
|
| 225 | 215 |
/// Copy constructor. |
| 226 | 216 |
/// |
| 227 | 217 |
OutArcIt(const OutArcIt& e) : Arc(e) { }
|
| 228 |
/// |
|
| 218 |
/// %Invalid constructor \& conversion. |
|
| 229 | 219 |
|
| 230 |
/// |
|
| 220 |
/// Initializes the iterator to be invalid. |
|
| 221 |
/// \sa Invalid for more details. |
|
| 222 |
OutArcIt(Invalid) { }
|
|
| 223 |
/// Sets the iterator to the first outgoing arc. |
|
| 224 |
|
|
| 225 |
/// Sets the iterator to the first outgoing arc of the given node. |
|
| 231 | 226 |
/// |
| 232 |
OutArcIt(Invalid) { }
|
|
| 233 |
/// This constructor sets the iterator to the first outgoing arc. |
|
| 227 |
OutArcIt(const Digraph&, const Node&) { }
|
|
| 228 |
/// Sets the iterator to the given arc. |
|
| 234 | 229 |
|
| 235 |
/// This constructor sets the iterator to the first outgoing arc of |
|
| 236 |
/// the node. |
|
| 237 |
OutArcIt(const Digraph&, const Node&) { }
|
|
| 238 |
/// Arc -> OutArcIt conversion |
|
| 239 |
|
|
| 240 |
/// Sets the iterator to the value of the trivial iterator. |
|
| 241 |
/// This feature necessitates that each time we |
|
| 242 |
/// iterate the arc-set, the iteration order is the same. |
|
| 230 |
/// Sets the iterator to the given arc of the given digraph. |
|
| 231 |
/// |
|
| 243 | 232 |
OutArcIt(const Digraph&, const Arc&) { }
|
| 244 |
///Next outgoing arc |
|
| 233 |
/// Next outgoing arc |
|
| 245 | 234 |
|
| 246 | 235 |
/// Assign the iterator to the next |
| 247 | 236 |
/// outgoing arc of the corresponding node. |
| 248 | 237 |
OutArcIt& operator++() { return *this; }
|
| 249 | 238 |
}; |
| 250 | 239 |
|
| 251 |
/// |
|
| 240 |
/// Iterator class for the incoming arcs of a node. |
|
| 252 | 241 |
|
| 253 | 242 |
/// This iterator goes trough the \e incoming arcs of a certain node |
| 254 | 243 |
/// of a digraph. |
| 255 | 244 |
/// Its usage is quite simple, for example you can count the number |
| 256 |
/// of outgoing arcs of a node \c n |
|
| 257 |
/// in digraph \c g of type \c Digraph as follows. |
|
| 245 |
/// of incoming arcs of a node \c n |
|
| 246 |
/// in a digraph \c g of type \c %Digraph as follows. |
|
| 258 | 247 |
///\code |
| 259 | 248 |
/// int count=0; |
| 260 |
/// for(Digraph::InArcIt |
|
| 249 |
/// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
| 261 | 250 |
///\endcode |
| 262 |
|
|
| 263 | 251 |
class InArcIt : public Arc {
|
| 264 | 252 |
public: |
| 265 | 253 |
/// Default constructor |
| 266 | 254 |
|
| 267 |
/// @warning The default constructor sets the iterator |
|
| 268 |
/// to an undefined value. |
|
| 255 |
/// Default constructor. |
|
| 256 |
/// \warning It sets the iterator to an undefined value. |
|
| 269 | 257 |
InArcIt() { }
|
| 270 | 258 |
/// Copy constructor. |
| 271 | 259 |
|
| 272 | 260 |
/// Copy constructor. |
| 273 | 261 |
/// |
| 274 | 262 |
InArcIt(const InArcIt& e) : Arc(e) { }
|
| 275 |
/// |
|
| 263 |
/// %Invalid constructor \& conversion. |
|
| 276 | 264 |
|
| 277 |
/// |
|
| 265 |
/// Initializes the iterator to be invalid. |
|
| 266 |
/// \sa Invalid for more details. |
|
| 267 |
InArcIt(Invalid) { }
|
|
| 268 |
/// Sets the iterator to the first incoming arc. |
|
| 269 |
|
|
| 270 |
/// Sets the iterator to the first incoming arc of the given node. |
|
| 278 | 271 |
/// |
| 279 |
InArcIt(Invalid) { }
|
|
| 280 |
/// This constructor sets the iterator to first incoming arc. |
|
| 272 |
InArcIt(const Digraph&, const Node&) { }
|
|
| 273 |
/// Sets the iterator to the given arc. |
|
| 281 | 274 |
|
| 282 |
/// This constructor set the iterator to the first incoming arc of |
|
| 283 |
/// the node. |
|
| 284 |
InArcIt(const Digraph&, const Node&) { }
|
|
| 285 |
/// Arc -> InArcIt conversion |
|
| 286 |
|
|
| 287 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 288 |
/// This feature necessitates that each time we |
|
| 289 |
/// iterate the arc-set, the iteration order is the same. |
|
| 275 |
/// Sets the iterator to the given arc of the given digraph. |
|
| 276 |
/// |
|
| 290 | 277 |
InArcIt(const Digraph&, const Arc&) { }
|
| 291 | 278 |
/// Next incoming arc |
| 292 | 279 |
|
| 293 |
/// Assign the iterator to the next inarc of the corresponding node. |
|
| 294 |
/// |
|
| 280 |
/// Assign the iterator to the next |
|
| 281 |
/// incoming arc of the corresponding node. |
|
| 295 | 282 |
InArcIt& operator++() { return *this; }
|
| 296 | 283 |
}; |
| 297 |
/// This iterator goes through each arc. |
|
| 298 | 284 |
|
| 299 |
/// |
|
| 285 |
/// Iterator class for the arcs. |
|
| 286 |
|
|
| 287 |
/// This iterator goes through each arc of the digraph. |
|
| 300 | 288 |
/// Its usage is quite simple, for example you can count the number |
| 301 |
/// of arcs in a digraph \c g of type \c Digraph as follows: |
|
| 289 |
/// of arcs in a digraph \c g of type \c %Digraph as follows: |
|
| 302 | 290 |
///\code |
| 303 | 291 |
/// int count=0; |
| 304 |
/// for(Digraph::ArcIt |
|
| 292 |
/// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count; |
|
| 305 | 293 |
///\endcode |
| 306 | 294 |
class ArcIt : public Arc {
|
| 307 | 295 |
public: |
| 308 | 296 |
/// Default constructor |
| 309 | 297 |
|
| 310 |
/// @warning The default constructor sets the iterator |
|
| 311 |
/// to an undefined value. |
|
| 298 |
/// Default constructor. |
|
| 299 |
/// \warning It sets the iterator to an undefined value. |
|
| 312 | 300 |
ArcIt() { }
|
| 313 | 301 |
/// Copy constructor. |
| 314 | 302 |
|
| 315 | 303 |
/// Copy constructor. |
| 316 | 304 |
/// |
| 317 | 305 |
ArcIt(const ArcIt& e) : Arc(e) { }
|
| 318 |
/// |
|
| 306 |
/// %Invalid constructor \& conversion. |
|
| 319 | 307 |
|
| 320 |
/// |
|
| 308 |
/// Initializes the iterator to be invalid. |
|
| 309 |
/// \sa Invalid for more details. |
|
| 310 |
ArcIt(Invalid) { }
|
|
| 311 |
/// Sets the iterator to the first arc. |
|
| 312 |
|
|
| 313 |
/// Sets the iterator to the first arc of the given digraph. |
|
| 321 | 314 |
/// |
| 322 |
ArcIt(Invalid) { }
|
|
| 323 |
/// This constructor sets the iterator to the first arc. |
|
| 315 |
explicit ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
|
|
| 316 |
/// Sets the iterator to the given arc. |
|
| 324 | 317 |
|
| 325 |
/// This constructor sets the iterator to the first arc of \c g. |
|
| 326 |
///@param g the digraph |
|
| 327 |
ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
|
|
| 328 |
/// Arc -> ArcIt conversion |
|
| 329 |
|
|
| 330 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 331 |
/// This feature necessitates that each time we |
|
| 332 |
/// iterate the arc-set, the iteration order is the same. |
|
| 318 |
/// Sets the iterator to the given arc of the given digraph. |
|
| 319 |
/// |
|
| 333 | 320 |
ArcIt(const Digraph&, const Arc&) { }
|
| 334 |
///Next arc |
|
| 321 |
/// Next arc |
|
| 335 | 322 |
|
| 336 | 323 |
/// Assign the iterator to the next arc. |
| 324 |
/// |
|
| 337 | 325 |
ArcIt& operator++() { return *this; }
|
| 338 | 326 |
}; |
| 339 |
///Gives back the target node of an arc. |
|
| 340 | 327 |
|
| 341 |
/// |
|
| 328 |
/// \brief The source node of the arc. |
|
| 342 | 329 |
/// |
| 343 |
Node target(Arc) const { return INVALID; }
|
|
| 344 |
///Gives back the source node of an arc. |
|
| 345 |
|
|
| 346 |
///Gives back the source node of an arc. |
|
| 347 |
/// |
|
| 330 |
/// Returns the source node of the given arc. |
|
| 348 | 331 |
Node source(Arc) const { return INVALID; }
|
| 349 | 332 |
|
| 350 |
/// \brief |
|
| 333 |
/// \brief The target node of the arc. |
|
| 334 |
/// |
|
| 335 |
/// Returns the target node of the given arc. |
|
| 336 |
Node target(Arc) const { return INVALID; }
|
|
| 337 |
|
|
| 338 |
/// \brief The ID of the node. |
|
| 339 |
/// |
|
| 340 |
/// Returns the ID of the given node. |
|
| 351 | 341 |
int id(Node) const { return -1; }
|
| 352 | 342 |
|
| 353 |
/// \brief |
|
| 343 |
/// \brief The ID of the arc. |
|
| 344 |
/// |
|
| 345 |
/// Returns the ID of the given arc. |
|
| 354 | 346 |
int id(Arc) const { return -1; }
|
| 355 | 347 |
|
| 356 |
/// \brief |
|
| 348 |
/// \brief The node with the given ID. |
|
| 357 | 349 |
/// |
| 358 |
/// |
|
| 350 |
/// Returns the node with the given ID. |
|
| 351 |
/// \pre The argument should be a valid node ID in the digraph. |
|
| 359 | 352 |
Node nodeFromId(int) const { return INVALID; }
|
| 360 | 353 |
|
| 361 |
/// \brief |
|
| 354 |
/// \brief The arc with the given ID. |
|
| 362 | 355 |
/// |
| 363 |
/// |
|
| 356 |
/// Returns the arc with the given ID. |
|
| 357 |
/// \pre The argument should be a valid arc ID in the digraph. |
|
| 364 | 358 |
Arc arcFromId(int) const { return INVALID; }
|
| 365 | 359 |
|
| 366 |
/// \brief |
|
| 360 |
/// \brief An upper bound on the node IDs. |
|
| 361 |
/// |
|
| 362 |
/// Returns an upper bound on the node IDs. |
|
| 367 | 363 |
int maxNodeId() const { return -1; }
|
| 368 | 364 |
|
| 369 |
/// \brief |
|
| 365 |
/// \brief An upper bound on the arc IDs. |
|
| 366 |
/// |
|
| 367 |
/// Returns an upper bound on the arc IDs. |
|
| 370 | 368 |
int maxArcId() const { return -1; }
|
| 371 | 369 |
|
| 372 | 370 |
void first(Node&) const {}
|
| 373 | 371 |
void next(Node&) const {}
|
| 374 | 372 |
|
| 375 | 373 |
void first(Arc&) const {}
|
| 376 | 374 |
void next(Arc&) const {}
|
| 377 | 375 |
|
| 378 | 376 |
|
| 379 | 377 |
void firstIn(Arc&, const Node&) const {}
|
| 380 | 378 |
void nextIn(Arc&) const {}
|
| 381 | 379 |
|
| 382 | 380 |
void firstOut(Arc&, const Node&) const {}
|
| 383 | 381 |
void nextOut(Arc&) const {}
|
| 384 | 382 |
|
| 385 | 383 |
// The second parameter is dummy. |
| 386 | 384 |
Node fromId(int, Node) const { return INVALID; }
|
| 387 | 385 |
// The second parameter is dummy. |
| 388 | 386 |
Arc fromId(int, Arc) const { return INVALID; }
|
| 389 | 387 |
|
| 390 | 388 |
// Dummy parameter. |
| 391 | 389 |
int maxId(Node) const { return -1; }
|
| 392 | 390 |
// Dummy parameter. |
| 393 | 391 |
int maxId(Arc) const { return -1; }
|
| 394 | 392 |
|
| 393 |
/// \brief The opposite node on the arc. |
|
| 394 |
/// |
|
| 395 |
/// Returns the opposite node on the given arc. |
|
| 396 |
Node oppositeNode(Node, Arc) const { return INVALID; }
|
|
| 397 |
|
|
| 395 | 398 |
/// \brief The base node of the iterator. |
| 396 | 399 |
/// |
| 397 |
/// Gives back the base node of the iterator. |
|
| 398 |
/// It is always the target of the pointed arc. |
|
| 399 |
|
|
| 400 |
/// Returns the base node of the given outgoing arc iterator |
|
| 401 |
/// (i.e. the source node of the corresponding arc). |
|
| 402 |
Node baseNode(OutArcIt) const { return INVALID; }
|
|
| 400 | 403 |
|
| 401 | 404 |
/// \brief The running node of the iterator. |
| 402 | 405 |
/// |
| 403 |
/// Gives back the running node of the iterator. |
|
| 404 |
/// It is always the source of the pointed arc. |
|
| 405 |
|
|
| 406 |
/// Returns the running node of the given outgoing arc iterator |
|
| 407 |
/// (i.e. the target node of the corresponding arc). |
|
| 408 |
Node runningNode(OutArcIt) const { return INVALID; }
|
|
| 406 | 409 |
|
| 407 | 410 |
/// \brief The base node of the iterator. |
| 408 | 411 |
/// |
| 409 |
/// Gives back the base node of the iterator. |
|
| 410 |
/// It is always the source of the pointed arc. |
|
| 411 |
|
|
| 412 |
/// Returns the base node of the given incomming arc iterator |
|
| 413 |
/// (i.e. the target node of the corresponding arc). |
|
| 414 |
Node baseNode(InArcIt) const { return INVALID; }
|
|
| 412 | 415 |
|
| 413 | 416 |
/// \brief The running node of the iterator. |
| 414 | 417 |
/// |
| 415 |
/// Gives back the running node of the iterator. |
|
| 416 |
/// It is always the target of the pointed arc. |
|
| 417 |
|
|
| 418 |
/// Returns the running node of the given incomming arc iterator |
|
| 419 |
/// (i.e. the source node of the corresponding arc). |
|
| 420 |
Node runningNode(InArcIt) const { return INVALID; }
|
|
| 418 | 421 |
|
| 419 |
/// \brief |
|
| 422 |
/// \brief Standard graph map type for the nodes. |
|
| 420 | 423 |
/// |
| 421 |
/// Gives back the opposite node on the given arc. |
|
| 422 |
Node oppositeNode(const Node&, const Arc&) const { return INVALID; }
|
|
| 423 |
|
|
| 424 |
/// \brief Reference map of the nodes to type \c T. |
|
| 425 |
/// |
|
| 426 |
/// Reference map of the nodes to type \c T. |
|
| 424 |
/// Standard graph map type for the nodes. |
|
| 425 |
/// It conforms to the ReferenceMap concept. |
|
| 427 | 426 |
template<class T> |
| 428 | 427 |
class NodeMap : public ReferenceMap<Node, T, T&, const T&> {
|
| 429 | 428 |
public: |
| 430 | 429 |
|
| 431 |
///\e |
|
| 432 |
NodeMap(const Digraph&) { }
|
|
| 433 |
/// |
|
| 430 |
/// Constructor |
|
| 431 |
explicit NodeMap(const Digraph&) { }
|
|
| 432 |
/// Constructor with given initial value |
|
| 434 | 433 |
NodeMap(const Digraph&, T) { }
|
| 435 | 434 |
|
| 436 | 435 |
private: |
| 437 | 436 |
///Copy constructor |
| 438 | 437 |
NodeMap(const NodeMap& nm) : |
| 439 | 438 |
ReferenceMap<Node, T, T&, const T&>(nm) { }
|
| 440 | 439 |
///Assignment operator |
| 441 | 440 |
template <typename CMap> |
| 442 | 441 |
NodeMap& operator=(const CMap&) {
|
| 443 | 442 |
checkConcept<ReadMap<Node, T>, CMap>(); |
| 444 | 443 |
return *this; |
| 445 | 444 |
} |
| 446 | 445 |
}; |
| 447 | 446 |
|
| 448 |
/// \brief |
|
| 447 |
/// \brief Standard graph map type for the arcs. |
|
| 449 | 448 |
/// |
| 450 |
/// |
|
| 449 |
/// Standard graph map type for the arcs. |
|
| 450 |
/// It conforms to the ReferenceMap concept. |
|
| 451 | 451 |
template<class T> |
| 452 | 452 |
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> {
|
| 453 | 453 |
public: |
| 454 | 454 |
|
| 455 |
///\e |
|
| 456 |
ArcMap(const Digraph&) { }
|
|
| 457 |
/// |
|
| 455 |
/// Constructor |
|
| 456 |
explicit ArcMap(const Digraph&) { }
|
|
| 457 |
/// Constructor with given initial value |
|
| 458 | 458 |
ArcMap(const Digraph&, T) { }
|
| 459 |
|
|
| 459 | 460 |
private: |
| 460 | 461 |
///Copy constructor |
| 461 | 462 |
ArcMap(const ArcMap& em) : |
| 462 | 463 |
ReferenceMap<Arc, T, T&, const T&>(em) { }
|
| 463 | 464 |
///Assignment operator |
| 464 | 465 |
template <typename CMap> |
| 465 | 466 |
ArcMap& operator=(const CMap&) {
|
| 466 | 467 |
checkConcept<ReadMap<Arc, T>, CMap>(); |
| 467 | 468 |
return *this; |
| 468 | 469 |
} |
| 469 | 470 |
}; |
| 470 | 471 |
|
| 471 | 472 |
template <typename _Digraph> |
| 472 | 473 |
struct Constraints {
|
| 473 | 474 |
void constraints() {
|
| 474 | 475 |
checkConcept<BaseDigraphComponent, _Digraph>(); |
| 475 | 476 |
checkConcept<IterableDigraphComponent<>, _Digraph>(); |
| 476 | 477 |
checkConcept<IDableDigraphComponent<>, _Digraph>(); |
| 477 | 478 |
checkConcept<MappableDigraphComponent<>, _Digraph>(); |
| 478 | 479 |
} |
| 479 | 480 |
}; |
| 480 | 481 |
|
| 481 | 482 |
}; |
| 482 | 483 |
|
| 483 | 484 |
} //namespace concepts |
| 484 | 485 |
} //namespace lemon |
| 485 | 486 |
|
| 486 | 487 |
|
| 487 | 488 |
|
| 488 | 489 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup graph_concepts |
| 20 | 20 |
///\file |
| 21 |
///\brief The concept of |
|
| 21 |
///\brief The concept of undirected graphs. |
|
| 22 | 22 |
|
| 23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_H |
| 24 | 24 |
#define LEMON_CONCEPTS_GRAPH_H |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/concepts/graph_components.h> |
| 27 |
#include <lemon/concepts/maps.h> |
|
| 28 |
#include <lemon/concept_check.h> |
|
| 27 | 29 |
#include <lemon/core.h> |
| 28 | 30 |
|
| 29 | 31 |
namespace lemon {
|
| 30 | 32 |
namespace concepts {
|
| 31 | 33 |
|
| 32 | 34 |
/// \ingroup graph_concepts |
| 33 | 35 |
/// |
| 34 |
/// \brief Class describing the concept of |
|
| 36 |
/// \brief Class describing the concept of undirected graphs. |
|
| 35 | 37 |
/// |
| 36 |
/// This class describes the common interface of all Undirected |
|
| 37 |
/// Graphs. |
|
| 38 |
/// This class describes the common interface of all undirected |
|
| 39 |
/// graphs. |
|
| 38 | 40 |
/// |
| 39 |
/// As all concept describing classes it provides only interface |
|
| 40 |
/// without any sensible implementation. So any algorithm for |
|
| 41 |
/// |
|
| 41 |
/// Like all concept classes, it only provides an interface |
|
| 42 |
/// without any sensible implementation. So any general algorithm for |
|
| 43 |
/// undirected graphs should compile with this class, but it will not |
|
| 42 | 44 |
/// run properly, of course. |
| 45 |
/// An actual graph implementation like \ref ListGraph or |
|
| 46 |
/// \ref SmartGraph may have additional functionality. |
|
| 43 | 47 |
/// |
| 44 |
/// The LEMON undirected graphs also fulfill the concept of |
|
| 45 |
/// directed graphs (\ref lemon::concepts::Digraph "Digraph |
|
| 46 |
/// Concept"). Each edges can be seen as two opposite |
|
| 47 |
/// directed arc and consequently the undirected graph can be |
|
| 48 |
/// seen as the direceted graph of these directed arcs. The |
|
| 49 |
/// Graph has the Edge inner class for the edges and |
|
| 50 |
/// the Arc type for the directed arcs. The Arc type is |
|
| 51 |
/// convertible to Edge or inherited from it so from a directed |
|
| 52 |
/// |
|
| 48 |
/// The undirected graphs also fulfill the concept of \ref Digraph |
|
| 49 |
/// "directed graphs", since each edge can also be regarded as two |
|
| 50 |
/// oppositely directed arcs. |
|
| 51 |
/// Undirected graphs provide an Edge type for the undirected edges and |
|
| 52 |
/// an Arc type for the directed arcs. The Arc type is convertible to |
|
| 53 |
/// Edge or inherited from it, i.e. the corresponding edge can be |
|
| 54 |
/// obtained from an arc. |
|
| 55 |
/// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt |
|
| 56 |
/// and ArcMap classes can be used for the arcs (just like in digraphs). |
|
| 57 |
/// Both InArcIt and OutArcIt iterates on the same edges but with |
|
| 58 |
/// opposite direction. IncEdgeIt also iterates on the same edges |
|
| 59 |
/// as OutArcIt and InArcIt, but it is not convertible to Arc, |
|
| 60 |
/// only to Edge. |
|
| 53 | 61 |
/// |
| 54 |
/// In the sense of the LEMON each edge has a default |
|
| 55 |
/// direction (it should be in every computer implementation, |
|
| 56 |
/// because the order of edge's nodes defines an |
|
| 57 |
/// orientation). With the default orientation we can define that |
|
| 58 |
/// the directed arc is forward or backward directed. With the \c |
|
| 59 |
/// direction() and \c direct() function we can get the direction |
|
| 60 |
/// |
|
| 62 |
/// In LEMON, each undirected edge has an inherent orientation. |
|
| 63 |
/// Thus it can defined if an arc is forward or backward oriented in |
|
| 64 |
/// an undirected graph with respect to this default oriantation of |
|
| 65 |
/// the represented edge. |
|
| 66 |
/// With the direction() and direct() functions the direction |
|
| 67 |
/// of an arc can be obtained and set, respectively. |
|
| 61 | 68 |
/// |
| 62 |
/// The EdgeIt is an iterator for the edges. We can use |
|
| 63 |
/// the EdgeMap to map values for the edges. The InArcIt and |
|
| 64 |
/// OutArcIt iterates on the same edges but with opposite |
|
| 65 |
/// direction. The IncEdgeIt iterates also on the same edges |
|
| 66 |
/// as the OutArcIt and InArcIt but it is not convertible to Arc just |
|
| 67 |
/// to Edge. |
|
| 69 |
/// Only nodes and edges can be added to or removed from an undirected |
|
| 70 |
/// graph and the corresponding arcs are added or removed automatically. |
|
| 71 |
/// |
|
| 72 |
/// \sa Digraph |
|
| 68 | 73 |
class Graph {
|
| 74 |
private: |
|
| 75 |
/// Graphs are \e not copy constructible. Use DigraphCopy instead. |
|
| 76 |
Graph(const Graph&) {}
|
|
| 77 |
/// \brief Assignment of a graph to another one is \e not allowed. |
|
| 78 |
/// Use DigraphCopy instead. |
|
| 79 |
void operator=(const Graph&) {}
|
|
| 80 |
|
|
| 69 | 81 |
public: |
| 70 |
/// \brief The undirected graph should be tagged by the |
|
| 71 |
/// UndirectedTag. |
|
| 82 |
/// Default constructor. |
|
| 83 |
Graph() {}
|
|
| 84 |
|
|
| 85 |
/// \brief Undirected graphs should be tagged with \c UndirectedTag. |
|
| 72 | 86 |
/// |
| 73 |
/// The undirected graph should be tagged by the UndirectedTag. This |
|
| 74 |
/// tag helps the enable_if technics to make compile time |
|
| 87 |
/// Undirected graphs should be tagged with \c UndirectedTag. |
|
| 88 |
/// |
|
| 89 |
/// This tag helps the \c enable_if technics to make compile time |
|
| 75 | 90 |
/// specializations for undirected graphs. |
| 76 | 91 |
typedef True UndirectedTag; |
| 77 | 92 |
|
| 78 |
/// \brief The base type of node iterators, |
|
| 79 |
/// or in other words, the trivial node iterator. |
|
| 80 |
/// |
|
| 81 |
/// This is the base type of each node iterator, |
|
| 82 |
/// thus each kind of node iterator converts to this. |
|
| 83 |
/// More precisely each kind of node iterator should be inherited |
|
| 84 |
/// |
|
| 93 |
/// The node type of the graph |
|
| 94 |
|
|
| 95 |
/// This class identifies a node of the graph. It also serves |
|
| 96 |
/// as a base class of the node iterators, |
|
| 97 |
/// thus they convert to this type. |
|
| 85 | 98 |
class Node {
|
| 86 | 99 |
public: |
| 87 | 100 |
/// Default constructor |
| 88 | 101 |
|
| 89 |
/// @warning The default constructor sets the iterator |
|
| 90 |
/// to an undefined value. |
|
| 102 |
/// Default constructor. |
|
| 103 |
/// \warning It sets the object to an undefined value. |
|
| 91 | 104 |
Node() { }
|
| 92 | 105 |
/// Copy constructor. |
| 93 | 106 |
|
| 94 | 107 |
/// Copy constructor. |
| 95 | 108 |
/// |
| 96 | 109 |
Node(const Node&) { }
|
| 97 | 110 |
|
| 98 |
/// Invalid constructor \& conversion. |
|
| 111 |
/// %Invalid constructor \& conversion. |
|
| 99 | 112 |
|
| 100 |
/// |
|
| 113 |
/// Initializes the object to be invalid. |
|
| 101 | 114 |
/// \sa Invalid for more details. |
| 102 | 115 |
Node(Invalid) { }
|
| 103 | 116 |
/// Equality operator |
| 104 | 117 |
|
| 118 |
/// Equality operator. |
|
| 119 |
/// |
|
| 105 | 120 |
/// Two iterators are equal if and only if they point to the |
| 106 |
/// same object or both are |
|
| 121 |
/// same object or both are \c INVALID. |
|
| 107 | 122 |
bool operator==(Node) const { return true; }
|
| 108 | 123 |
|
| 109 | 124 |
/// Inequality operator |
| 110 | 125 |
|
| 111 |
/// \sa operator==(Node n) |
|
| 112 |
/// |
|
| 126 |
/// Inequality operator. |
|
| 113 | 127 |
bool operator!=(Node) const { return true; }
|
| 114 | 128 |
|
| 115 | 129 |
/// Artificial ordering operator. |
| 116 | 130 |
|
| 117 |
/// To allow the use of graph descriptors as key type in std::map or |
|
| 118 |
/// similar associative container we require this. |
|
| 131 |
/// Artificial ordering operator. |
|
| 119 | 132 |
/// |
| 120 |
/// \note This operator only |
|
| 133 |
/// \note This operator only has to define some strict ordering of |
|
| 121 | 134 |
/// the items; this order has nothing to do with the iteration |
| 122 | 135 |
/// ordering of the items. |
| 123 | 136 |
bool operator<(Node) const { return false; }
|
| 124 | 137 |
|
| 125 | 138 |
}; |
| 126 | 139 |
|
| 127 |
/// |
|
| 140 |
/// Iterator class for the nodes. |
|
| 128 | 141 |
|
| 129 |
/// This iterator goes through each node. |
|
| 142 |
/// This iterator goes through each node of the graph. |
|
| 130 | 143 |
/// Its usage is quite simple, for example you can count the number |
| 131 |
/// of nodes in graph \c g of type \c Graph like this: |
|
| 144 |
/// of nodes in a graph \c g of type \c %Graph like this: |
|
| 132 | 145 |
///\code |
| 133 | 146 |
/// int count=0; |
| 134 | 147 |
/// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; |
| 135 | 148 |
///\endcode |
| 136 | 149 |
class NodeIt : public Node {
|
| 137 | 150 |
public: |
| 138 | 151 |
/// Default constructor |
| 139 | 152 |
|
| 140 |
/// @warning The default constructor sets the iterator |
|
| 141 |
/// to an undefined value. |
|
| 153 |
/// Default constructor. |
|
| 154 |
/// \warning It sets the iterator to an undefined value. |
|
| 142 | 155 |
NodeIt() { }
|
| 143 | 156 |
/// Copy constructor. |
| 144 | 157 |
|
| 145 | 158 |
/// Copy constructor. |
| 146 | 159 |
/// |
| 147 | 160 |
NodeIt(const NodeIt& n) : Node(n) { }
|
| 148 |
/// Invalid constructor \& conversion. |
|
| 161 |
/// %Invalid constructor \& conversion. |
|
| 149 | 162 |
|
| 150 |
/// |
|
| 163 |
/// Initializes the iterator to be invalid. |
|
| 151 | 164 |
/// \sa Invalid for more details. |
| 152 | 165 |
NodeIt(Invalid) { }
|
| 153 | 166 |
/// Sets the iterator to the first node. |
| 154 | 167 |
|
| 155 |
/// Sets the iterator to the first node of |
|
| 168 |
/// Sets the iterator to the first node of the given digraph. |
|
| 156 | 169 |
/// |
| 157 |
NodeIt(const Graph&) { }
|
|
| 158 |
/// Node -> NodeIt conversion. |
|
| 170 |
explicit NodeIt(const Graph&) { }
|
|
| 171 |
/// Sets the iterator to the given node. |
|
| 159 | 172 |
|
| 160 |
/// Sets the iterator to the node of \c the graph pointed by |
|
| 161 |
/// the trivial iterator. |
|
| 162 |
/// This feature necessitates that each time we |
|
| 163 |
/// iterate the arc-set, the iteration order is the same. |
|
| 173 |
/// Sets the iterator to the given node of the given digraph. |
|
| 174 |
/// |
|
| 164 | 175 |
NodeIt(const Graph&, const Node&) { }
|
| 165 | 176 |
/// Next node. |
| 166 | 177 |
|
| 167 | 178 |
/// Assign the iterator to the next node. |
| 168 | 179 |
/// |
| 169 | 180 |
NodeIt& operator++() { return *this; }
|
| 170 | 181 |
}; |
| 171 | 182 |
|
| 172 | 183 |
|
| 173 |
/// The |
|
| 184 |
/// The edge type of the graph |
|
| 174 | 185 |
|
| 175 |
/// The base type of the edge iterators. |
|
| 176 |
/// |
|
| 186 |
/// This class identifies an edge of the graph. It also serves |
|
| 187 |
/// as a base class of the edge iterators, |
|
| 188 |
/// thus they will convert to this type. |
|
| 177 | 189 |
class Edge {
|
| 178 | 190 |
public: |
| 179 | 191 |
/// Default constructor |
| 180 | 192 |
|
| 181 |
/// @warning The default constructor sets the iterator |
|
| 182 |
/// to an undefined value. |
|
| 193 |
/// Default constructor. |
|
| 194 |
/// \warning It sets the object to an undefined value. |
|
| 183 | 195 |
Edge() { }
|
| 184 | 196 |
/// Copy constructor. |
| 185 | 197 |
|
| 186 | 198 |
/// Copy constructor. |
| 187 | 199 |
/// |
| 188 | 200 |
Edge(const Edge&) { }
|
| 189 |
/// |
|
| 201 |
/// %Invalid constructor \& conversion. |
|
| 190 | 202 |
|
| 191 |
/// Initialize the iterator to be invalid. |
|
| 192 |
/// |
|
| 203 |
/// Initializes the object to be invalid. |
|
| 204 |
/// \sa Invalid for more details. |
|
| 193 | 205 |
Edge(Invalid) { }
|
| 194 | 206 |
/// Equality operator |
| 195 | 207 |
|
| 208 |
/// Equality operator. |
|
| 209 |
/// |
|
| 196 | 210 |
/// Two iterators are equal if and only if they point to the |
| 197 |
/// same object or both are |
|
| 211 |
/// same object or both are \c INVALID. |
|
| 198 | 212 |
bool operator==(Edge) const { return true; }
|
| 199 | 213 |
/// Inequality operator |
| 200 | 214 |
|
| 201 |
/// \sa operator==(Edge n) |
|
| 202 |
/// |
|
| 215 |
/// Inequality operator. |
|
| 203 | 216 |
bool operator!=(Edge) const { return true; }
|
| 204 | 217 |
|
| 205 | 218 |
/// Artificial ordering operator. |
| 206 | 219 |
|
| 207 |
/// To allow the use of graph descriptors as key type in std::map or |
|
| 208 |
/// similar associative container we require this. |
|
| 220 |
/// Artificial ordering operator. |
|
| 209 | 221 |
/// |
| 210 |
/// \note This operator only have to define some strict ordering of |
|
| 211 |
/// the items; this order has nothing to do with the iteration |
|
| 212 |
/// ordering of |
|
| 222 |
/// \note This operator only has to define some strict ordering of |
|
| 223 |
/// the edges; this order has nothing to do with the iteration |
|
| 224 |
/// ordering of the edges. |
|
| 213 | 225 |
bool operator<(Edge) const { return false; }
|
| 214 | 226 |
}; |
| 215 | 227 |
|
| 216 |
/// |
|
| 228 |
/// Iterator class for the edges. |
|
| 217 | 229 |
|
| 218 |
/// This iterator goes through each edge of |
|
| 230 |
/// This iterator goes through each edge of the graph. |
|
| 219 | 231 |
/// Its usage is quite simple, for example you can count the number |
| 220 |
/// of edges in a graph \c g of type \c Graph as follows: |
|
| 232 |
/// of edges in a graph \c g of type \c %Graph as follows: |
|
| 221 | 233 |
///\code |
| 222 | 234 |
/// int count=0; |
| 223 | 235 |
/// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; |
| 224 | 236 |
///\endcode |
| 225 | 237 |
class EdgeIt : public Edge {
|
| 226 | 238 |
public: |
| 227 | 239 |
/// Default constructor |
| 228 | 240 |
|
| 229 |
/// @warning The default constructor sets the iterator |
|
| 230 |
/// to an undefined value. |
|
| 241 |
/// Default constructor. |
|
| 242 |
/// \warning It sets the iterator to an undefined value. |
|
| 231 | 243 |
EdgeIt() { }
|
| 232 | 244 |
/// Copy constructor. |
| 233 | 245 |
|
| 234 | 246 |
/// Copy constructor. |
| 235 | 247 |
/// |
| 236 | 248 |
EdgeIt(const EdgeIt& e) : Edge(e) { }
|
| 237 |
/// |
|
| 249 |
/// %Invalid constructor \& conversion. |
|
| 238 | 250 |
|
| 239 |
/// |
|
| 251 |
/// Initializes the iterator to be invalid. |
|
| 252 |
/// \sa Invalid for more details. |
|
| 253 |
EdgeIt(Invalid) { }
|
|
| 254 |
/// Sets the iterator to the first edge. |
|
| 255 |
|
|
| 256 |
/// Sets the iterator to the first edge of the given graph. |
|
| 240 | 257 |
/// |
| 241 |
EdgeIt(Invalid) { }
|
|
| 242 |
/// This constructor sets the iterator to the first edge. |
|
| 258 |
explicit EdgeIt(const Graph&) { }
|
|
| 259 |
/// Sets the iterator to the given edge. |
|
| 243 | 260 |
|
| 244 |
/// This constructor sets the iterator to the first edge. |
|
| 245 |
EdgeIt(const Graph&) { }
|
|
| 246 |
/// Edge -> EdgeIt conversion |
|
| 247 |
|
|
| 248 |
/// Sets the iterator to the value of the trivial iterator. |
|
| 249 |
/// This feature necessitates that each time we |
|
| 250 |
/// iterate the edge-set, the iteration order is the |
|
| 251 |
/// same. |
|
| 261 |
/// Sets the iterator to the given edge of the given graph. |
|
| 262 |
/// |
|
| 252 | 263 |
EdgeIt(const Graph&, const Edge&) { }
|
| 253 | 264 |
/// Next edge |
| 254 | 265 |
|
| 255 | 266 |
/// Assign the iterator to the next edge. |
| 267 |
/// |
|
| 256 | 268 |
EdgeIt& operator++() { return *this; }
|
| 257 | 269 |
}; |
| 258 | 270 |
|
| 259 |
/// \brief This iterator goes trough the incident undirected |
|
| 260 |
/// arcs of a node. |
|
| 261 |
/// |
|
| 262 |
/// This iterator goes trough the incident edges |
|
| 263 |
/// of a certain node of a graph. You should assume that the |
|
| 264 |
/// loop arcs will be iterated twice. |
|
| 265 |
/// |
|
| 271 |
/// Iterator class for the incident edges of a node. |
|
| 272 |
|
|
| 273 |
/// This iterator goes trough the incident undirected edges |
|
| 274 |
/// of a certain node of a graph. |
|
| 266 | 275 |
/// Its usage is quite simple, for example you can compute the |
| 267 |
/// degree (i.e. count the number of incident arcs of a node \c n |
|
| 268 |
/// in graph \c g of type \c Graph as follows. |
|
| 276 |
/// degree (i.e. the number of incident edges) of a node \c n |
|
| 277 |
/// in a graph \c g of type \c %Graph as follows. |
|
| 269 | 278 |
/// |
| 270 | 279 |
///\code |
| 271 | 280 |
/// int count=0; |
| 272 | 281 |
/// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
| 273 | 282 |
///\endcode |
| 283 |
/// |
|
| 284 |
/// \warning Loop edges will be iterated twice. |
|
| 274 | 285 |
class IncEdgeIt : public Edge {
|
| 275 | 286 |
public: |
| 276 | 287 |
/// Default constructor |
| 277 | 288 |
|
| 278 |
/// @warning The default constructor sets the iterator |
|
| 279 |
/// to an undefined value. |
|
| 289 |
/// Default constructor. |
|
| 290 |
/// \warning It sets the iterator to an undefined value. |
|
| 280 | 291 |
IncEdgeIt() { }
|
| 281 | 292 |
/// Copy constructor. |
| 282 | 293 |
|
| 283 | 294 |
/// Copy constructor. |
| 284 | 295 |
/// |
| 285 | 296 |
IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
|
| 286 |
/// |
|
| 297 |
/// %Invalid constructor \& conversion. |
|
| 287 | 298 |
|
| 288 |
/// |
|
| 299 |
/// Initializes the iterator to be invalid. |
|
| 300 |
/// \sa Invalid for more details. |
|
| 301 |
IncEdgeIt(Invalid) { }
|
|
| 302 |
/// Sets the iterator to the first incident edge. |
|
| 303 |
|
|
| 304 |
/// Sets the iterator to the first incident edge of the given node. |
|
| 289 | 305 |
/// |
| 290 |
IncEdgeIt(Invalid) { }
|
|
| 291 |
/// This constructor sets the iterator to first incident arc. |
|
| 306 |
IncEdgeIt(const Graph&, const Node&) { }
|
|
| 307 |
/// Sets the iterator to the given edge. |
|
| 292 | 308 |
|
| 293 |
/// This constructor set the iterator to the first incident arc of |
|
| 294 |
/// the node. |
|
| 295 |
IncEdgeIt(const Graph&, const Node&) { }
|
|
| 296 |
/// Edge -> IncEdgeIt conversion |
|
| 309 |
/// Sets the iterator to the given edge of the given graph. |
|
| 310 |
/// |
|
| 311 |
IncEdgeIt(const Graph&, const Edge&) { }
|
|
| 312 |
/// Next incident edge |
|
| 297 | 313 |
|
| 298 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 299 |
/// This feature necessitates that each time we |
|
| 300 |
/// iterate the arc-set, the iteration order is the same. |
|
| 301 |
IncEdgeIt(const Graph&, const Edge&) { }
|
|
| 302 |
/// Next incident arc |
|
| 303 |
|
|
| 304 |
/// Assign the iterator to the next incident |
|
| 314 |
/// Assign the iterator to the next incident edge |
|
| 305 | 315 |
/// of the corresponding node. |
| 306 | 316 |
IncEdgeIt& operator++() { return *this; }
|
| 307 | 317 |
}; |
| 308 | 318 |
|
| 309 |
/// The |
|
| 319 |
/// The arc type of the graph |
|
| 310 | 320 |
|
| 311 |
/// The directed arc type. It can be converted to the |
|
| 312 |
/// edge or it should be inherited from the undirected |
|
| 313 |
/// |
|
| 321 |
/// This class identifies a directed arc of the graph. It also serves |
|
| 322 |
/// as a base class of the arc iterators, |
|
| 323 |
/// thus they will convert to this type. |
|
| 314 | 324 |
class Arc {
|
| 315 | 325 |
public: |
| 316 | 326 |
/// Default constructor |
| 317 | 327 |
|
| 318 |
/// @warning The default constructor sets the iterator |
|
| 319 |
/// to an undefined value. |
|
| 328 |
/// Default constructor. |
|
| 329 |
/// \warning It sets the object to an undefined value. |
|
| 320 | 330 |
Arc() { }
|
| 321 | 331 |
/// Copy constructor. |
| 322 | 332 |
|
| 323 | 333 |
/// Copy constructor. |
| 324 | 334 |
/// |
| 325 | 335 |
Arc(const Arc&) { }
|
| 326 |
/// |
|
| 336 |
/// %Invalid constructor \& conversion. |
|
| 327 | 337 |
|
| 328 |
/// Initialize the iterator to be invalid. |
|
| 329 |
/// |
|
| 338 |
/// Initializes the object to be invalid. |
|
| 339 |
/// \sa Invalid for more details. |
|
| 330 | 340 |
Arc(Invalid) { }
|
| 331 | 341 |
/// Equality operator |
| 332 | 342 |
|
| 343 |
/// Equality operator. |
|
| 344 |
/// |
|
| 333 | 345 |
/// Two iterators are equal if and only if they point to the |
| 334 |
/// same object or both are |
|
| 346 |
/// same object or both are \c INVALID. |
|
| 335 | 347 |
bool operator==(Arc) const { return true; }
|
| 336 | 348 |
/// Inequality operator |
| 337 | 349 |
|
| 338 |
/// \sa operator==(Arc n) |
|
| 339 |
/// |
|
| 350 |
/// Inequality operator. |
|
| 340 | 351 |
bool operator!=(Arc) const { return true; }
|
| 341 | 352 |
|
| 342 | 353 |
/// Artificial ordering operator. |
| 343 | 354 |
|
| 344 |
/// To allow the use of graph descriptors as key type in std::map or |
|
| 345 |
/// similar associative container we require this. |
|
| 355 |
/// Artificial ordering operator. |
|
| 346 | 356 |
/// |
| 347 |
/// \note This operator only have to define some strict ordering of |
|
| 348 |
/// the items; this order has nothing to do with the iteration |
|
| 349 |
/// ordering of |
|
| 357 |
/// \note This operator only has to define some strict ordering of |
|
| 358 |
/// the arcs; this order has nothing to do with the iteration |
|
| 359 |
/// ordering of the arcs. |
|
| 350 | 360 |
bool operator<(Arc) const { return false; }
|
| 351 | 361 |
|
| 352 |
/// Converison to Edge |
|
| 362 |
/// Converison to \c Edge |
|
| 363 |
|
|
| 364 |
/// Converison to \c Edge. |
|
| 365 |
/// |
|
| 353 | 366 |
operator Edge() const { return Edge(); }
|
| 354 | 367 |
}; |
| 355 |
/// This iterator goes through each directed arc. |
|
| 356 | 368 |
|
| 357 |
/// |
|
| 369 |
/// Iterator class for the arcs. |
|
| 370 |
|
|
| 371 |
/// This iterator goes through each directed arc of the graph. |
|
| 358 | 372 |
/// Its usage is quite simple, for example you can count the number |
| 359 |
/// of arcs in a graph \c g of type \c Graph as follows: |
|
| 373 |
/// of arcs in a graph \c g of type \c %Graph as follows: |
|
| 360 | 374 |
///\code |
| 361 | 375 |
/// int count=0; |
| 362 |
/// for(Graph::ArcIt |
|
| 376 |
/// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count; |
|
| 363 | 377 |
///\endcode |
| 364 | 378 |
class ArcIt : public Arc {
|
| 365 | 379 |
public: |
| 366 | 380 |
/// Default constructor |
| 367 | 381 |
|
| 368 |
/// @warning The default constructor sets the iterator |
|
| 369 |
/// to an undefined value. |
|
| 382 |
/// Default constructor. |
|
| 383 |
/// \warning It sets the iterator to an undefined value. |
|
| 370 | 384 |
ArcIt() { }
|
| 371 | 385 |
/// Copy constructor. |
| 372 | 386 |
|
| 373 | 387 |
/// Copy constructor. |
| 374 | 388 |
/// |
| 375 | 389 |
ArcIt(const ArcIt& e) : Arc(e) { }
|
| 376 |
/// |
|
| 390 |
/// %Invalid constructor \& conversion. |
|
| 377 | 391 |
|
| 378 |
/// |
|
| 392 |
/// Initializes the iterator to be invalid. |
|
| 393 |
/// \sa Invalid for more details. |
|
| 394 |
ArcIt(Invalid) { }
|
|
| 395 |
/// Sets the iterator to the first arc. |
|
| 396 |
|
|
| 397 |
/// Sets the iterator to the first arc of the given graph. |
|
| 379 | 398 |
/// |
| 380 |
ArcIt(Invalid) { }
|
|
| 381 |
/// This constructor sets the iterator to the first arc. |
|
| 399 |
explicit ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
|
|
| 400 |
/// Sets the iterator to the given arc. |
|
| 382 | 401 |
|
| 383 |
/// This constructor sets the iterator to the first arc of \c g. |
|
| 384 |
///@param g the graph |
|
| 385 |
ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
|
|
| 386 |
/// Arc -> ArcIt conversion |
|
| 387 |
|
|
| 388 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 389 |
/// This feature necessitates that each time we |
|
| 390 |
/// iterate the arc-set, the iteration order is the same. |
|
| 402 |
/// Sets the iterator to the given arc of the given graph. |
|
| 403 |
/// |
|
| 391 | 404 |
ArcIt(const Graph&, const Arc&) { }
|
| 392 |
///Next arc |
|
| 405 |
/// Next arc |
|
| 393 | 406 |
|
| 394 | 407 |
/// Assign the iterator to the next arc. |
| 408 |
/// |
|
| 395 | 409 |
ArcIt& operator++() { return *this; }
|
| 396 | 410 |
}; |
| 397 | 411 |
|
| 398 |
/// |
|
| 412 |
/// Iterator class for the outgoing arcs of a node. |
|
| 399 | 413 |
|
| 400 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
|
| 401 |
/// of a graph. |
|
| 414 |
/// This iterator goes trough the \e outgoing directed arcs of a |
|
| 415 |
/// certain node of a graph. |
|
| 402 | 416 |
/// Its usage is quite simple, for example you can count the number |
| 403 | 417 |
/// of outgoing arcs of a node \c n |
| 404 |
/// in graph \c g of type \c Graph as follows. |
|
| 418 |
/// in a graph \c g of type \c %Graph as follows. |
|
| 405 | 419 |
///\code |
| 406 | 420 |
/// int count=0; |
| 407 |
/// for ( |
|
| 421 |
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
| 408 | 422 |
///\endcode |
| 409 |
|
|
| 410 | 423 |
class OutArcIt : public Arc {
|
| 411 | 424 |
public: |
| 412 | 425 |
/// Default constructor |
| 413 | 426 |
|
| 414 |
/// @warning The default constructor sets the iterator |
|
| 415 |
/// to an undefined value. |
|
| 427 |
/// Default constructor. |
|
| 428 |
/// \warning It sets the iterator to an undefined value. |
|
| 416 | 429 |
OutArcIt() { }
|
| 417 | 430 |
/// Copy constructor. |
| 418 | 431 |
|
| 419 | 432 |
/// Copy constructor. |
| 420 | 433 |
/// |
| 421 | 434 |
OutArcIt(const OutArcIt& e) : Arc(e) { }
|
| 422 |
/// |
|
| 435 |
/// %Invalid constructor \& conversion. |
|
| 423 | 436 |
|
| 424 |
/// |
|
| 437 |
/// Initializes the iterator to be invalid. |
|
| 438 |
/// \sa Invalid for more details. |
|
| 439 |
OutArcIt(Invalid) { }
|
|
| 440 |
/// Sets the iterator to the first outgoing arc. |
|
| 441 |
|
|
| 442 |
/// Sets the iterator to the first outgoing arc of the given node. |
|
| 425 | 443 |
/// |
| 426 |
OutArcIt(Invalid) { }
|
|
| 427 |
/// This constructor sets the iterator to the first outgoing arc. |
|
| 428 |
|
|
| 429 |
/// This constructor sets the iterator to the first outgoing arc of |
|
| 430 |
/// the node. |
|
| 431 |
///@param n the node |
|
| 432 |
///@param g the graph |
|
| 433 | 444 |
OutArcIt(const Graph& n, const Node& g) {
|
| 434 | 445 |
ignore_unused_variable_warning(n); |
| 435 | 446 |
ignore_unused_variable_warning(g); |
| 436 | 447 |
} |
| 437 |
/// |
|
| 448 |
/// Sets the iterator to the given arc. |
|
| 438 | 449 |
|
| 439 |
/// Sets the iterator to the value of the trivial iterator. |
|
| 440 |
/// This feature necessitates that each time we |
|
| 441 |
/// |
|
| 450 |
/// Sets the iterator to the given arc of the given graph. |
|
| 451 |
/// |
|
| 442 | 452 |
OutArcIt(const Graph&, const Arc&) { }
|
| 443 |
///Next outgoing arc |
|
| 453 |
/// Next outgoing arc |
|
| 444 | 454 |
|
| 445 | 455 |
/// Assign the iterator to the next |
| 446 | 456 |
/// outgoing arc of the corresponding node. |
| 447 | 457 |
OutArcIt& operator++() { return *this; }
|
| 448 | 458 |
}; |
| 449 | 459 |
|
| 450 |
/// |
|
| 460 |
/// Iterator class for the incoming arcs of a node. |
|
| 451 | 461 |
|
| 452 |
/// This iterator goes trough the \e incoming arcs of a certain node |
|
| 453 |
/// of a graph. |
|
| 462 |
/// This iterator goes trough the \e incoming directed arcs of a |
|
| 463 |
/// certain node of a graph. |
|
| 454 | 464 |
/// Its usage is quite simple, for example you can count the number |
| 455 |
/// of outgoing arcs of a node \c n |
|
| 456 |
/// in graph \c g of type \c Graph as follows. |
|
| 465 |
/// of incoming arcs of a node \c n |
|
| 466 |
/// in a graph \c g of type \c %Graph as follows. |
|
| 457 | 467 |
///\code |
| 458 | 468 |
/// int count=0; |
| 459 |
/// for( |
|
| 469 |
/// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
| 460 | 470 |
///\endcode |
| 461 |
|
|
| 462 | 471 |
class InArcIt : public Arc {
|
| 463 | 472 |
public: |
| 464 | 473 |
/// Default constructor |
| 465 | 474 |
|
| 466 |
/// @warning The default constructor sets the iterator |
|
| 467 |
/// to an undefined value. |
|
| 475 |
/// Default constructor. |
|
| 476 |
/// \warning It sets the iterator to an undefined value. |
|
| 468 | 477 |
InArcIt() { }
|
| 469 | 478 |
/// Copy constructor. |
| 470 | 479 |
|
| 471 | 480 |
/// Copy constructor. |
| 472 | 481 |
/// |
| 473 | 482 |
InArcIt(const InArcIt& e) : Arc(e) { }
|
| 474 |
/// |
|
| 483 |
/// %Invalid constructor \& conversion. |
|
| 475 | 484 |
|
| 476 |
/// |
|
| 485 |
/// Initializes the iterator to be invalid. |
|
| 486 |
/// \sa Invalid for more details. |
|
| 487 |
InArcIt(Invalid) { }
|
|
| 488 |
/// Sets the iterator to the first incoming arc. |
|
| 489 |
|
|
| 490 |
/// Sets the iterator to the first incoming arc of the given node. |
|
| 477 | 491 |
/// |
| 478 |
InArcIt(Invalid) { }
|
|
| 479 |
/// This constructor sets the iterator to first incoming arc. |
|
| 480 |
|
|
| 481 |
/// This constructor set the iterator to the first incoming arc of |
|
| 482 |
/// the node. |
|
| 483 |
///@param n the node |
|
| 484 |
///@param g the graph |
|
| 485 | 492 |
InArcIt(const Graph& g, const Node& n) {
|
| 486 | 493 |
ignore_unused_variable_warning(n); |
| 487 | 494 |
ignore_unused_variable_warning(g); |
| 488 | 495 |
} |
| 489 |
/// |
|
| 496 |
/// Sets the iterator to the given arc. |
|
| 490 | 497 |
|
| 491 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 492 |
/// This feature necessitates that each time we |
|
| 493 |
/// |
|
| 498 |
/// Sets the iterator to the given arc of the given graph. |
|
| 499 |
/// |
|
| 494 | 500 |
InArcIt(const Graph&, const Arc&) { }
|
| 495 | 501 |
/// Next incoming arc |
| 496 | 502 |
|
| 497 |
/// Assign the iterator to the next inarc of the corresponding node. |
|
| 498 |
/// |
|
| 503 |
/// Assign the iterator to the next |
|
| 504 |
/// incoming arc of the corresponding node. |
|
| 499 | 505 |
InArcIt& operator++() { return *this; }
|
| 500 | 506 |
}; |
| 501 | 507 |
|
| 502 |
/// \brief |
|
| 508 |
/// \brief Standard graph map type for the nodes. |
|
| 503 | 509 |
/// |
| 504 |
/// |
|
| 510 |
/// Standard graph map type for the nodes. |
|
| 511 |
/// It conforms to the ReferenceMap concept. |
|
| 505 | 512 |
template<class T> |
| 506 | 513 |
class NodeMap : public ReferenceMap<Node, T, T&, const T&> |
| 507 | 514 |
{
|
| 508 | 515 |
public: |
| 509 | 516 |
|
| 510 |
///\e |
|
| 511 |
NodeMap(const Graph&) { }
|
|
| 512 |
/// |
|
| 517 |
/// Constructor |
|
| 518 |
explicit NodeMap(const Graph&) { }
|
|
| 519 |
/// Constructor with given initial value |
|
| 513 | 520 |
NodeMap(const Graph&, T) { }
|
| 514 | 521 |
|
| 515 | 522 |
private: |
| 516 | 523 |
///Copy constructor |
| 517 | 524 |
NodeMap(const NodeMap& nm) : |
| 518 | 525 |
ReferenceMap<Node, T, T&, const T&>(nm) { }
|
| 519 | 526 |
///Assignment operator |
| 520 | 527 |
template <typename CMap> |
| 521 | 528 |
NodeMap& operator=(const CMap&) {
|
| 522 | 529 |
checkConcept<ReadMap<Node, T>, CMap>(); |
| 523 | 530 |
return *this; |
| 524 | 531 |
} |
| 525 | 532 |
}; |
| 526 | 533 |
|
| 527 |
/// \brief |
|
| 534 |
/// \brief Standard graph map type for the arcs. |
|
| 528 | 535 |
/// |
| 529 |
/// |
|
| 536 |
/// Standard graph map type for the arcs. |
|
| 537 |
/// It conforms to the ReferenceMap concept. |
|
| 530 | 538 |
template<class T> |
| 531 | 539 |
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> |
| 532 | 540 |
{
|
| 533 | 541 |
public: |
| 534 | 542 |
|
| 535 |
///\e |
|
| 536 |
ArcMap(const Graph&) { }
|
|
| 537 |
/// |
|
| 543 |
/// Constructor |
|
| 544 |
explicit ArcMap(const Graph&) { }
|
|
| 545 |
/// Constructor with given initial value |
|
| 538 | 546 |
ArcMap(const Graph&, T) { }
|
| 547 |
|
|
| 539 | 548 |
private: |
| 540 | 549 |
///Copy constructor |
| 541 | 550 |
ArcMap(const ArcMap& em) : |
| 542 | 551 |
ReferenceMap<Arc, T, T&, const T&>(em) { }
|
| 543 | 552 |
///Assignment operator |
| 544 | 553 |
template <typename CMap> |
| 545 | 554 |
ArcMap& operator=(const CMap&) {
|
| 546 | 555 |
checkConcept<ReadMap<Arc, T>, CMap>(); |
| 547 | 556 |
return *this; |
| 548 | 557 |
} |
| 549 | 558 |
}; |
| 550 | 559 |
|
| 551 |
/// Reference map of the edges to type \c T. |
|
| 552 |
|
|
| 553 |
/// |
|
| 560 |
/// \brief Standard graph map type for the edges. |
|
| 561 |
/// |
|
| 562 |
/// Standard graph map type for the edges. |
|
| 563 |
/// It conforms to the ReferenceMap concept. |
|
| 554 | 564 |
template<class T> |
| 555 | 565 |
class EdgeMap : public ReferenceMap<Edge, T, T&, const T&> |
| 556 | 566 |
{
|
| 557 | 567 |
public: |
| 558 | 568 |
|
| 559 |
///\e |
|
| 560 |
EdgeMap(const Graph&) { }
|
|
| 561 |
/// |
|
| 569 |
/// Constructor |
|
| 570 |
explicit EdgeMap(const Graph&) { }
|
|
| 571 |
/// Constructor with given initial value |
|
| 562 | 572 |
EdgeMap(const Graph&, T) { }
|
| 573 |
|
|
| 563 | 574 |
private: |
| 564 | 575 |
///Copy constructor |
| 565 | 576 |
EdgeMap(const EdgeMap& em) : |
| 566 | 577 |
ReferenceMap<Edge, T, T&, const T&>(em) {}
|
| 567 | 578 |
///Assignment operator |
| 568 | 579 |
template <typename CMap> |
| 569 | 580 |
EdgeMap& operator=(const CMap&) {
|
| 570 | 581 |
checkConcept<ReadMap<Edge, T>, CMap>(); |
| 571 | 582 |
return *this; |
| 572 | 583 |
} |
| 573 | 584 |
}; |
| 574 | 585 |
|
| 575 |
/// \brief |
|
| 586 |
/// \brief The first node of the edge. |
|
| 576 | 587 |
/// |
| 577 |
/// Direct the given edge. The returned arc source |
|
| 578 |
/// will be the given node. |
|
| 579 |
Arc direct(const Edge&, const Node&) const {
|
|
| 580 |
return INVALID; |
|
| 581 |
} |
|
| 582 |
|
|
| 583 |
/// |
|
| 588 |
/// Returns the first node of the given edge. |
|
| 584 | 589 |
/// |
| 585 |
/// Direct the given edge. The returned arc |
|
| 586 |
/// represents the given edge and the direction comes |
|
| 587 |
/// from the bool parameter. The source of the edge and |
|
| 588 |
/// the directed arc is the same when the given bool is true. |
|
| 589 |
Arc direct(const Edge&, bool) const {
|
|
| 590 |
return INVALID; |
|
| 591 |
} |
|
| 592 |
|
|
| 593 |
/// \brief Returns true if the arc has default orientation. |
|
| 594 |
/// |
|
| 595 |
/// Returns whether the given directed arc is same orientation as |
|
| 596 |
/// the corresponding edge's default orientation. |
|
| 597 |
bool direction(Arc) const { return true; }
|
|
| 598 |
|
|
| 599 |
/// \brief Returns the opposite directed arc. |
|
| 600 |
/// |
|
| 601 |
/// Returns the opposite directed arc. |
|
| 602 |
Arc oppositeArc(Arc) const { return INVALID; }
|
|
| 603 |
|
|
| 604 |
/// \brief Opposite node on an arc |
|
| 605 |
/// |
|
| 606 |
/// \return The opposite of the given node on the given edge. |
|
| 607 |
Node oppositeNode(Node, Edge) const { return INVALID; }
|
|
| 608 |
|
|
| 609 |
/// \brief First node of the edge. |
|
| 610 |
/// |
|
| 611 |
/// \return The first node of the given edge. |
|
| 612 |
/// |
|
| 613 |
/// Naturally edges don't have direction and thus |
|
| 614 |
/// don't have source and target node. However we use \c u() and \c v() |
|
| 615 |
/// methods to query the two nodes of the arc. The direction of the |
|
| 616 |
/// arc which arises this way is called the inherent direction of the |
|
| 617 |
/// edge, and is used to define the "default" direction |
|
| 618 |
/// of the directed versions of the arcs. |
|
| 590 |
/// Edges don't have source and target nodes, however methods |
|
| 591 |
/// u() and v() are used to query the two end-nodes of an edge. |
|
| 592 |
/// The orientation of an edge that arises this way is called |
|
| 593 |
/// the inherent direction, it is used to define the default |
|
| 594 |
/// direction for the corresponding arcs. |
|
| 619 | 595 |
/// \sa v() |
| 620 | 596 |
/// \sa direction() |
| 621 | 597 |
Node u(Edge) const { return INVALID; }
|
| 622 | 598 |
|
| 623 |
/// \brief |
|
| 599 |
/// \brief The second node of the edge. |
|
| 624 | 600 |
/// |
| 625 |
/// |
|
| 601 |
/// Returns the second node of the given edge. |
|
| 626 | 602 |
/// |
| 627 |
/// Naturally edges don't have direction and thus |
|
| 628 |
/// don't have source and target node. However we use \c u() and \c v() |
|
| 629 |
/// methods to query the two nodes of the arc. The direction of the |
|
| 630 |
/// arc which arises this way is called the inherent direction of the |
|
| 631 |
/// edge, and is used to define the "default" direction |
|
| 632 |
/// of the directed versions of the arcs. |
|
| 603 |
/// Edges don't have source and target nodes, however methods |
|
| 604 |
/// u() and v() are used to query the two end-nodes of an edge. |
|
| 605 |
/// The orientation of an edge that arises this way is called |
|
| 606 |
/// the inherent direction, it is used to define the default |
|
| 607 |
/// direction for the corresponding arcs. |
|
| 633 | 608 |
/// \sa u() |
| 634 | 609 |
/// \sa direction() |
| 635 | 610 |
Node v(Edge) const { return INVALID; }
|
| 636 | 611 |
|
| 637 |
/// \brief |
|
| 612 |
/// \brief The source node of the arc. |
|
| 613 |
/// |
|
| 614 |
/// Returns the source node of the given arc. |
|
| 638 | 615 |
Node source(Arc) const { return INVALID; }
|
| 639 | 616 |
|
| 640 |
/// \brief |
|
| 617 |
/// \brief The target node of the arc. |
|
| 618 |
/// |
|
| 619 |
/// Returns the target node of the given arc. |
|
| 641 | 620 |
Node target(Arc) const { return INVALID; }
|
| 642 | 621 |
|
| 643 |
/// \brief |
|
| 622 |
/// \brief The ID of the node. |
|
| 623 |
/// |
|
| 624 |
/// Returns the ID of the given node. |
|
| 644 | 625 |
int id(Node) const { return -1; }
|
| 645 | 626 |
|
| 646 |
/// \brief |
|
| 627 |
/// \brief The ID of the edge. |
|
| 628 |
/// |
|
| 629 |
/// Returns the ID of the given edge. |
|
| 647 | 630 |
int id(Edge) const { return -1; }
|
| 648 | 631 |
|
| 649 |
/// \brief |
|
| 632 |
/// \brief The ID of the arc. |
|
| 633 |
/// |
|
| 634 |
/// Returns the ID of the given arc. |
|
| 650 | 635 |
int id(Arc) const { return -1; }
|
| 651 | 636 |
|
| 652 |
/// \brief |
|
| 637 |
/// \brief The node with the given ID. |
|
| 653 | 638 |
/// |
| 654 |
/// |
|
| 639 |
/// Returns the node with the given ID. |
|
| 640 |
/// \pre The argument should be a valid node ID in the graph. |
|
| 655 | 641 |
Node nodeFromId(int) const { return INVALID; }
|
| 656 | 642 |
|
| 657 |
/// \brief |
|
| 643 |
/// \brief The edge with the given ID. |
|
| 658 | 644 |
/// |
| 659 |
/// |
|
| 645 |
/// Returns the edge with the given ID. |
|
| 646 |
/// \pre The argument should be a valid edge ID in the graph. |
|
| 660 | 647 |
Edge edgeFromId(int) const { return INVALID; }
|
| 661 | 648 |
|
| 662 |
/// \brief |
|
| 649 |
/// \brief The arc with the given ID. |
|
| 663 | 650 |
/// |
| 664 |
/// |
|
| 651 |
/// Returns the arc with the given ID. |
|
| 652 |
/// \pre The argument should be a valid arc ID in the graph. |
|
| 665 | 653 |
Arc arcFromId(int) const { return INVALID; }
|
| 666 | 654 |
|
| 667 |
/// \brief |
|
| 655 |
/// \brief An upper bound on the node IDs. |
|
| 656 |
/// |
|
| 657 |
/// Returns an upper bound on the node IDs. |
|
| 668 | 658 |
int maxNodeId() const { return -1; }
|
| 669 | 659 |
|
| 670 |
/// \brief |
|
| 660 |
/// \brief An upper bound on the edge IDs. |
|
| 661 |
/// |
|
| 662 |
/// Returns an upper bound on the edge IDs. |
|
| 671 | 663 |
int maxEdgeId() const { return -1; }
|
| 672 | 664 |
|
| 673 |
/// \brief |
|
| 665 |
/// \brief An upper bound on the arc IDs. |
|
| 666 |
/// |
|
| 667 |
/// Returns an upper bound on the arc IDs. |
|
| 674 | 668 |
int maxArcId() const { return -1; }
|
| 675 | 669 |
|
| 670 |
/// \brief The direction of the arc. |
|
| 671 |
/// |
|
| 672 |
/// Returns \c true if the direction of the given arc is the same as |
|
| 673 |
/// the inherent orientation of the represented edge. |
|
| 674 |
bool direction(Arc) const { return true; }
|
|
| 675 |
|
|
| 676 |
/// \brief Direct the edge. |
|
| 677 |
/// |
|
| 678 |
/// Direct the given edge. The returned arc |
|
| 679 |
/// represents the given edge and its direction comes |
|
| 680 |
/// from the bool parameter. If it is \c true, then the direction |
|
| 681 |
/// of the arc is the same as the inherent orientation of the edge. |
|
| 682 |
Arc direct(Edge, bool) const {
|
|
| 683 |
return INVALID; |
|
| 684 |
} |
|
| 685 |
|
|
| 686 |
/// \brief Direct the edge. |
|
| 687 |
/// |
|
| 688 |
/// Direct the given edge. The returned arc represents the given |
|
| 689 |
/// edge and its source node is the given node. |
|
| 690 |
Arc direct(Edge, Node) const {
|
|
| 691 |
return INVALID; |
|
| 692 |
} |
|
| 693 |
|
|
| 694 |
/// \brief The oppositely directed arc. |
|
| 695 |
/// |
|
| 696 |
/// Returns the oppositely directed arc representing the same edge. |
|
| 697 |
Arc oppositeArc(Arc) const { return INVALID; }
|
|
| 698 |
|
|
| 699 |
/// \brief The opposite node on the edge. |
|
| 700 |
/// |
|
| 701 |
/// Returns the opposite node on the given edge. |
|
| 702 |
Node oppositeNode(Node, Edge) const { return INVALID; }
|
|
| 703 |
|
|
| 676 | 704 |
void first(Node&) const {}
|
| 677 | 705 |
void next(Node&) const {}
|
| 678 | 706 |
|
| 679 | 707 |
void first(Edge&) const {}
|
| 680 | 708 |
void next(Edge&) const {}
|
| 681 | 709 |
|
| 682 | 710 |
void first(Arc&) const {}
|
| 683 | 711 |
void next(Arc&) const {}
|
| 684 | 712 |
|
| 685 | 713 |
void firstOut(Arc&, Node) const {}
|
| 686 | 714 |
void nextOut(Arc&) const {}
|
| 687 | 715 |
|
| 688 | 716 |
void firstIn(Arc&, Node) const {}
|
| 689 | 717 |
void nextIn(Arc&) const {}
|
| 690 | 718 |
|
| 691 | 719 |
void firstInc(Edge &, bool &, const Node &) const {}
|
| 692 | 720 |
void nextInc(Edge &, bool &) const {}
|
| 693 | 721 |
|
| 694 | 722 |
// The second parameter is dummy. |
| 695 | 723 |
Node fromId(int, Node) const { return INVALID; }
|
| 696 | 724 |
// The second parameter is dummy. |
| 697 | 725 |
Edge fromId(int, Edge) const { return INVALID; }
|
| 698 | 726 |
// The second parameter is dummy. |
| 699 | 727 |
Arc fromId(int, Arc) const { return INVALID; }
|
| 700 | 728 |
|
| 701 | 729 |
// Dummy parameter. |
| 702 | 730 |
int maxId(Node) const { return -1; }
|
| 703 | 731 |
// Dummy parameter. |
| 704 | 732 |
int maxId(Edge) const { return -1; }
|
| 705 | 733 |
// Dummy parameter. |
| 706 | 734 |
int maxId(Arc) const { return -1; }
|
| 707 | 735 |
|
| 708 |
/// \brief |
|
| 736 |
/// \brief The base node of the iterator. |
|
| 709 | 737 |
/// |
| 710 |
/// Returns the base node (the source in this case) of the iterator |
|
| 711 |
Node baseNode(OutArcIt e) const {
|
|
| 712 |
return source(e); |
|
| 713 |
} |
|
| 714 |
/// |
|
| 738 |
/// Returns the base node of the given incident edge iterator. |
|
| 739 |
Node baseNode(IncEdgeIt) const { return INVALID; }
|
|
| 740 |
|
|
| 741 |
/// \brief The running node of the iterator. |
|
| 715 | 742 |
/// |
| 716 |
/// Returns the running node (the target in this case) of the |
|
| 717 |
/// iterator |
|
| 718 |
Node runningNode(OutArcIt e) const {
|
|
| 719 |
return target(e); |
|
| 720 |
|
|
| 743 |
/// Returns the running node of the given incident edge iterator. |
|
| 744 |
Node runningNode(IncEdgeIt) const { return INVALID; }
|
|
| 721 | 745 |
|
| 722 |
/// \brief |
|
| 746 |
/// \brief The base node of the iterator. |
|
| 723 | 747 |
/// |
| 724 |
/// Returns the base node (the target in this case) of the iterator |
|
| 725 |
Node baseNode(InArcIt e) const {
|
|
| 726 |
return target(e); |
|
| 727 |
} |
|
| 728 |
/// |
|
| 748 |
/// Returns the base node of the given outgoing arc iterator |
|
| 749 |
/// (i.e. the source node of the corresponding arc). |
|
| 750 |
Node baseNode(OutArcIt) const { return INVALID; }
|
|
| 751 |
|
|
| 752 |
/// \brief The running node of the iterator. |
|
| 729 | 753 |
/// |
| 730 |
/// Returns the running node (the source in this case) of the |
|
| 731 |
/// iterator |
|
| 732 |
Node runningNode(InArcIt e) const {
|
|
| 733 |
return source(e); |
|
| 734 |
|
|
| 754 |
/// Returns the running node of the given outgoing arc iterator |
|
| 755 |
/// (i.e. the target node of the corresponding arc). |
|
| 756 |
Node runningNode(OutArcIt) const { return INVALID; }
|
|
| 735 | 757 |
|
| 736 |
/// \brief |
|
| 758 |
/// \brief The base node of the iterator. |
|
| 737 | 759 |
/// |
| 738 |
/// Returns the base node of the iterator |
|
| 739 |
Node baseNode(IncEdgeIt) const {
|
|
| 740 |
return INVALID; |
|
| 741 |
} |
|
| 760 |
/// Returns the base node of the given incomming arc iterator |
|
| 761 |
/// (i.e. the target node of the corresponding arc). |
|
| 762 |
Node baseNode(InArcIt) const { return INVALID; }
|
|
| 742 | 763 |
|
| 743 |
/// \brief |
|
| 764 |
/// \brief The running node of the iterator. |
|
| 744 | 765 |
/// |
| 745 |
/// Returns the running node of the iterator |
|
| 746 |
Node runningNode(IncEdgeIt) const {
|
|
| 747 |
return INVALID; |
|
| 748 |
} |
|
| 766 |
/// Returns the running node of the given incomming arc iterator |
|
| 767 |
/// (i.e. the source node of the corresponding arc). |
|
| 768 |
Node runningNode(InArcIt) const { return INVALID; }
|
|
| 749 | 769 |
|
| 750 | 770 |
template <typename _Graph> |
| 751 | 771 |
struct Constraints {
|
| 752 | 772 |
void constraints() {
|
| 753 | 773 |
checkConcept<BaseGraphComponent, _Graph>(); |
| 754 | 774 |
checkConcept<IterableGraphComponent<>, _Graph>(); |
| 755 | 775 |
checkConcept<IDableGraphComponent<>, _Graph>(); |
| 756 | 776 |
checkConcept<MappableGraphComponent<>, _Graph>(); |
| 757 | 777 |
} |
| 758 | 778 |
}; |
| 759 | 779 |
|
| 760 | 780 |
}; |
| 761 | 781 |
|
| 762 | 782 |
} |
| 763 | 783 |
|
| 764 | 784 |
} |
| 765 | 785 |
|
| 766 | 786 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup graph_concepts |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief The concept of graph components. |
| 22 | 22 |
|
| 23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
| 24 | 24 |
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
|
| 29 | 29 |
#include <lemon/bits/alteration_notifier.h> |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
namespace concepts {
|
| 33 | 33 |
|
| 34 | 34 |
/// \brief Concept class for \c Node, \c Arc and \c Edge types. |
| 35 | 35 |
/// |
| 36 | 36 |
/// This class describes the concept of \c Node, \c Arc and \c Edge |
| 37 | 37 |
/// subtypes of digraph and graph types. |
| 38 | 38 |
/// |
| 39 | 39 |
/// \note This class is a template class so that we can use it to |
| 40 | 40 |
/// create graph skeleton classes. The reason for this is that \c Node |
| 41 | 41 |
/// and \c Arc (or \c Edge) types should \e not derive from the same |
| 42 | 42 |
/// base class. For \c Node you should instantiate it with character |
| 43 | 43 |
/// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'. |
| 44 | 44 |
#ifndef DOXYGEN |
| 45 | 45 |
template <char sel = '0'> |
| 46 | 46 |
#endif |
| 47 | 47 |
class GraphItem {
|
| 48 | 48 |
public: |
| 49 | 49 |
/// \brief Default constructor. |
| 50 | 50 |
/// |
| 51 | 51 |
/// Default constructor. |
| 52 | 52 |
/// \warning The default constructor is not required to set |
| 53 | 53 |
/// the item to some well-defined value. So you should consider it |
| 54 | 54 |
/// as uninitialized. |
| 55 | 55 |
GraphItem() {}
|
| 56 | 56 |
|
| 57 | 57 |
/// \brief Copy constructor. |
| 58 | 58 |
/// |
| 59 | 59 |
/// Copy constructor. |
| 60 | 60 |
GraphItem(const GraphItem &) {}
|
| 61 | 61 |
|
| 62 | 62 |
/// \brief Constructor for conversion from \c INVALID. |
| 63 | 63 |
/// |
| 64 | 64 |
/// Constructor for conversion from \c INVALID. |
| 65 | 65 |
/// It initializes the item to be invalid. |
| 66 | 66 |
/// \sa Invalid for more details. |
| 67 | 67 |
GraphItem(Invalid) {}
|
| 68 | 68 |
|
| 69 | 69 |
/// \brief Assignment operator. |
| 70 | 70 |
/// |
| 71 | 71 |
/// Assignment operator for the item. |
| 72 | 72 |
GraphItem& operator=(const GraphItem&) { return *this; }
|
| 73 | 73 |
|
| 74 | 74 |
/// \brief Assignment operator for INVALID. |
| 75 | 75 |
/// |
| 76 | 76 |
/// This operator makes the item invalid. |
| 77 | 77 |
GraphItem& operator=(Invalid) { return *this; }
|
| 78 | 78 |
|
| 79 | 79 |
/// \brief Equality operator. |
| 80 | 80 |
/// |
| 81 | 81 |
/// Equality operator. |
| 82 | 82 |
bool operator==(const GraphItem&) const { return false; }
|
| 83 | 83 |
|
| 84 | 84 |
/// \brief Inequality operator. |
| 85 | 85 |
/// |
| 86 | 86 |
/// Inequality operator. |
| 87 | 87 |
bool operator!=(const GraphItem&) const { return false; }
|
| 88 | 88 |
|
| 89 | 89 |
/// \brief Ordering operator. |
| 90 | 90 |
/// |
| 91 | 91 |
/// This operator defines an ordering of the items. |
| 92 | 92 |
/// It makes possible to use graph item types as key types in |
| 93 | 93 |
/// associative containers (e.g. \c std::map). |
| 94 | 94 |
/// |
| 95 |
/// \note This operator only |
|
| 95 |
/// \note This operator only has to define some strict ordering of |
|
| 96 | 96 |
/// the items; this order has nothing to do with the iteration |
| 97 | 97 |
/// ordering of the items. |
| 98 | 98 |
bool operator<(const GraphItem&) const { return false; }
|
| 99 | 99 |
|
| 100 | 100 |
template<typename _GraphItem> |
| 101 | 101 |
struct Constraints {
|
| 102 | 102 |
void constraints() {
|
| 103 | 103 |
_GraphItem i1; |
| 104 | 104 |
i1=INVALID; |
| 105 | 105 |
_GraphItem i2 = i1; |
| 106 | 106 |
_GraphItem i3 = INVALID; |
| 107 | 107 |
|
| 108 | 108 |
i1 = i2 = i3; |
| 109 | 109 |
|
| 110 | 110 |
bool b; |
| 111 | 111 |
b = (ia == ib) && (ia != ib); |
| 112 | 112 |
b = (ia == INVALID) && (ib != INVALID); |
| 113 | 113 |
b = (ia < ib); |
| 114 | 114 |
} |
| 115 | 115 |
|
| 116 | 116 |
const _GraphItem &ia; |
| 117 | 117 |
const _GraphItem &ib; |
| 118 | 118 |
}; |
| 119 | 119 |
}; |
| 120 | 120 |
|
| 121 | 121 |
/// \brief Base skeleton class for directed graphs. |
| 122 | 122 |
/// |
| 123 | 123 |
/// This class describes the base interface of directed graph types. |
| 124 | 124 |
/// All digraph %concepts have to conform to this class. |
| 125 | 125 |
/// It just provides types for nodes and arcs and functions |
| 126 | 126 |
/// to get the source and the target nodes of arcs. |
| 127 | 127 |
class BaseDigraphComponent {
|
| 128 | 128 |
public: |
| 129 | 129 |
|
| 130 | 130 |
typedef BaseDigraphComponent Digraph; |
| 131 | 131 |
|
| 132 | 132 |
/// \brief Node class of the digraph. |
| 133 | 133 |
/// |
| 134 | 134 |
/// This class represents the nodes of the digraph. |
| 135 | 135 |
typedef GraphItem<'n'> Node; |
| 136 | 136 |
|
| 137 | 137 |
/// \brief Arc class of the digraph. |
| 138 | 138 |
/// |
| 139 | 139 |
/// This class represents the arcs of the digraph. |
| 140 | 140 |
typedef GraphItem<'a'> Arc; |
| 141 | 141 |
|
| 142 | 142 |
/// \brief Return the source node of an arc. |
| 143 | 143 |
/// |
| 144 | 144 |
/// This function returns the source node of an arc. |
| 145 | 145 |
Node source(const Arc&) const { return INVALID; }
|
| 146 | 146 |
|
| 147 | 147 |
/// \brief Return the target node of an arc. |
| 148 | 148 |
/// |
| 149 | 149 |
/// This function returns the target node of an arc. |
| 150 | 150 |
Node target(const Arc&) const { return INVALID; }
|
| 151 | 151 |
|
| 152 | 152 |
/// \brief Return the opposite node on the given arc. |
| 153 | 153 |
/// |
| 154 | 154 |
/// This function returns the opposite node on the given arc. |
| 155 | 155 |
Node oppositeNode(const Node&, const Arc&) const {
|
| 156 | 156 |
return INVALID; |
| 157 | 157 |
} |
| 158 | 158 |
|
| 159 | 159 |
template <typename _Digraph> |
| 160 | 160 |
struct Constraints {
|
| 161 | 161 |
typedef typename _Digraph::Node Node; |
| 162 | 162 |
typedef typename _Digraph::Arc Arc; |
| 163 | 163 |
|
| 164 | 164 |
void constraints() {
|
| 165 | 165 |
checkConcept<GraphItem<'n'>, Node>(); |
| 166 | 166 |
checkConcept<GraphItem<'a'>, Arc>(); |
| 167 | 167 |
{
|
| 168 | 168 |
Node n; |
| 169 | 169 |
Arc e(INVALID); |
| 170 | 170 |
n = digraph.source(e); |
| 171 | 171 |
n = digraph.target(e); |
| 172 | 172 |
n = digraph.oppositeNode(n, e); |
| 173 | 173 |
} |
| 174 | 174 |
} |
| 175 | 175 |
|
| 176 | 176 |
const _Digraph& digraph; |
| 177 | 177 |
}; |
| 178 | 178 |
}; |
| 179 | 179 |
|
| 180 | 180 |
/// \brief Base skeleton class for undirected graphs. |
| 181 | 181 |
/// |
| 182 | 182 |
/// This class describes the base interface of undirected graph types. |
| 183 | 183 |
/// All graph %concepts have to conform to this class. |
| 184 | 184 |
/// It extends the interface of \ref BaseDigraphComponent with an |
| 185 | 185 |
/// \c Edge type and functions to get the end nodes of edges, |
| 186 | 186 |
/// to convert from arcs to edges and to get both direction of edges. |
| 187 | 187 |
class BaseGraphComponent : public BaseDigraphComponent {
|
| 188 | 188 |
public: |
| 189 | 189 |
|
| 190 | 190 |
typedef BaseGraphComponent Graph; |
| 191 | 191 |
|
| 192 | 192 |
typedef BaseDigraphComponent::Node Node; |
| 193 | 193 |
typedef BaseDigraphComponent::Arc Arc; |
| 194 | 194 |
|
| 195 | 195 |
/// \brief Undirected edge class of the graph. |
| 196 | 196 |
/// |
| 197 | 197 |
/// This class represents the undirected edges of the graph. |
| 198 | 198 |
/// Undirected graphs can be used as directed graphs, each edge is |
| 199 | 199 |
/// represented by two opposite directed arcs. |
| 200 | 200 |
class Edge : public GraphItem<'e'> {
|
| 201 | 201 |
typedef GraphItem<'e'> Parent; |
| 202 | 202 |
|
| 203 | 203 |
public: |
| 204 | 204 |
/// \brief Default constructor. |
| 205 | 205 |
/// |
| 206 | 206 |
/// Default constructor. |
| 207 | 207 |
/// \warning The default constructor is not required to set |
| 208 | 208 |
/// the item to some well-defined value. So you should consider it |
| 209 | 209 |
/// as uninitialized. |
| 210 | 210 |
Edge() {}
|
| 211 | 211 |
|
| 212 | 212 |
/// \brief Copy constructor. |
| 213 | 213 |
/// |
| 214 | 214 |
/// Copy constructor. |
| 215 | 215 |
Edge(const Edge &) : Parent() {}
|
| 216 | 216 |
|
| 217 | 217 |
/// \brief Constructor for conversion from \c INVALID. |
| 218 | 218 |
/// |
| 219 | 219 |
/// Constructor for conversion from \c INVALID. |
| 220 | 220 |
/// It initializes the item to be invalid. |
| 221 | 221 |
/// \sa Invalid for more details. |
| 222 | 222 |
Edge(Invalid) {}
|
| 223 | 223 |
|
| 224 | 224 |
/// \brief Constructor for conversion from an arc. |
| 225 | 225 |
/// |
| 226 | 226 |
/// Constructor for conversion from an arc. |
| 227 | 227 |
/// Besides the core graph item functionality each arc should |
| 228 | 228 |
/// be convertible to the represented edge. |
| 229 | 229 |
Edge(const Arc&) {}
|
| 230 | 230 |
}; |
| 231 | 231 |
|
| 232 | 232 |
/// \brief Return one end node of an edge. |
| 233 | 233 |
/// |
| 234 | 234 |
/// This function returns one end node of an edge. |
| 235 | 235 |
Node u(const Edge&) const { return INVALID; }
|
| 236 | 236 |
|
| 237 | 237 |
/// \brief Return the other end node of an edge. |
| 238 | 238 |
/// |
| 239 | 239 |
/// This function returns the other end node of an edge. |
| 240 | 240 |
Node v(const Edge&) const { return INVALID; }
|
| 241 | 241 |
|
| 242 | 242 |
/// \brief Return a directed arc related to an edge. |
| 243 | 243 |
/// |
| 244 | 244 |
/// This function returns a directed arc from its direction and the |
| 245 | 245 |
/// represented edge. |
| 246 | 246 |
Arc direct(const Edge&, bool) const { return INVALID; }
|
| 247 | 247 |
|
| 248 | 248 |
/// \brief Return a directed arc related to an edge. |
| 249 | 249 |
/// |
| 250 | 250 |
/// This function returns a directed arc from its source node and the |
| 251 | 251 |
/// represented edge. |
| 252 | 252 |
Arc direct(const Edge&, const Node&) const { return INVALID; }
|
| 253 | 253 |
|
| 254 | 254 |
/// \brief Return the direction of the arc. |
| 255 | 255 |
/// |
| 256 | 256 |
/// Returns the direction of the arc. Each arc represents an |
| 257 | 257 |
/// edge with a direction. It gives back the |
| 258 | 258 |
/// direction. |
| 259 | 259 |
bool direction(const Arc&) const { return true; }
|
| 260 | 260 |
|
| 261 | 261 |
/// \brief Return the opposite arc. |
| 262 | 262 |
/// |
| 263 | 263 |
/// This function returns the opposite arc, i.e. the arc representing |
| 264 | 264 |
/// the same edge and has opposite direction. |
| 265 | 265 |
Arc oppositeArc(const Arc&) const { return INVALID; }
|
| 266 | 266 |
|
| 267 | 267 |
template <typename _Graph> |
| 268 | 268 |
struct Constraints {
|
| 269 | 269 |
typedef typename _Graph::Node Node; |
| 270 | 270 |
typedef typename _Graph::Arc Arc; |
| 271 | 271 |
typedef typename _Graph::Edge Edge; |
| 272 | 272 |
|
| 273 | 273 |
void constraints() {
|
| 274 | 274 |
checkConcept<BaseDigraphComponent, _Graph>(); |
| 275 | 275 |
checkConcept<GraphItem<'e'>, Edge>(); |
| 276 | 276 |
{
|
| 277 | 277 |
Node n; |
| 278 | 278 |
Edge ue(INVALID); |
| 279 | 279 |
Arc e; |
| 280 | 280 |
n = graph.u(ue); |
| 281 | 281 |
n = graph.v(ue); |
| 282 | 282 |
e = graph.direct(ue, true); |
| 283 | 283 |
e = graph.direct(ue, false); |
| 284 | 284 |
e = graph.direct(ue, n); |
| 285 | 285 |
e = graph.oppositeArc(e); |
| 286 | 286 |
ue = e; |
| 287 | 287 |
bool d = graph.direction(e); |
| 288 | 288 |
ignore_unused_variable_warning(d); |
| 289 | 289 |
} |
| 290 | 290 |
} |
| 291 | 291 |
|
| 292 | 292 |
const _Graph& graph; |
| 293 | 293 |
}; |
| 294 | 294 |
|
| 295 | 295 |
}; |
| 296 | 296 |
|
| 297 | 297 |
/// \brief Skeleton class for \e idable directed graphs. |
| 298 | 298 |
/// |
| 299 | 299 |
/// This class describes the interface of \e idable directed graphs. |
| 300 | 300 |
/// It extends \ref BaseDigraphComponent with the core ID functions. |
| 301 | 301 |
/// The ids of the items must be unique and immutable. |
| 302 | 302 |
/// This concept is part of the Digraph concept. |
| 303 | 303 |
template <typename BAS = BaseDigraphComponent> |
| 304 | 304 |
class IDableDigraphComponent : public BAS {
|
| 305 | 305 |
public: |
| 306 | 306 |
|
| 307 | 307 |
typedef BAS Base; |
| 308 | 308 |
typedef typename Base::Node Node; |
| 309 | 309 |
typedef typename Base::Arc Arc; |
| 310 | 310 |
|
| 311 | 311 |
/// \brief Return a unique integer id for the given node. |
| 312 | 312 |
/// |
| 313 | 313 |
/// This function returns a unique integer id for the given node. |
| 314 | 314 |
int id(const Node&) const { return -1; }
|
| 315 | 315 |
|
| 316 | 316 |
/// \brief Return the node by its unique id. |
| 317 | 317 |
/// |
| 318 | 318 |
/// This function returns the node by its unique id. |
| 319 | 319 |
/// If the digraph does not contain a node with the given id, |
| 320 | 320 |
/// then the result of the function is undefined. |
| 321 | 321 |
Node nodeFromId(int) const { return INVALID; }
|
| 322 | 322 |
|
| 323 | 323 |
/// \brief Return a unique integer id for the given arc. |
| 324 | 324 |
/// |
| 325 | 325 |
/// This function returns a unique integer id for the given arc. |
| 326 | 326 |
int id(const Arc&) const { return -1; }
|
| 327 | 327 |
|
| 328 | 328 |
/// \brief Return the arc by its unique id. |
| 329 | 329 |
/// |
| 330 | 330 |
/// This function returns the arc by its unique id. |
| 331 | 331 |
/// If the digraph does not contain an arc with the given id, |
| 332 | 332 |
/// then the result of the function is undefined. |
| 333 | 333 |
Arc arcFromId(int) const { return INVALID; }
|
| 334 | 334 |
|
| 335 | 335 |
/// \brief Return an integer greater or equal to the maximum |
| 336 | 336 |
/// node id. |
| 337 | 337 |
/// |
| 338 | 338 |
/// This function returns an integer greater or equal to the |
| 339 | 339 |
/// maximum node id. |
| 340 | 340 |
int maxNodeId() const { return -1; }
|
| 341 | 341 |
|
| 342 | 342 |
/// \brief Return an integer greater or equal to the maximum |
| 343 | 343 |
/// arc id. |
| 344 | 344 |
/// |
| 345 | 345 |
/// This function returns an integer greater or equal to the |
| 346 | 346 |
/// maximum arc id. |
| 347 | 347 |
int maxArcId() const { return -1; }
|
| 348 | 348 |
|
| 349 | 349 |
template <typename _Digraph> |
| 350 | 350 |
struct Constraints {
|
| 351 | 351 |
|
| 352 | 352 |
void constraints() {
|
| 353 | 353 |
checkConcept<Base, _Digraph >(); |
| 354 | 354 |
typename _Digraph::Node node; |
| 355 | 355 |
node=INVALID; |
| 356 | 356 |
int nid = digraph.id(node); |
| 357 | 357 |
nid = digraph.id(node); |
| 358 | 358 |
node = digraph.nodeFromId(nid); |
| 359 | 359 |
typename _Digraph::Arc arc; |
| 360 | 360 |
arc=INVALID; |
| 361 | 361 |
int eid = digraph.id(arc); |
| 362 | 362 |
eid = digraph.id(arc); |
| 363 | 363 |
arc = digraph.arcFromId(eid); |
| 364 | 364 |
|
| 365 | 365 |
nid = digraph.maxNodeId(); |
| 366 | 366 |
ignore_unused_variable_warning(nid); |
| 367 | 367 |
eid = digraph.maxArcId(); |
| 368 | 368 |
ignore_unused_variable_warning(eid); |
| 369 | 369 |
} |
| 370 | 370 |
|
| 371 | 371 |
const _Digraph& digraph; |
| 372 | 372 |
}; |
| 373 | 373 |
}; |
| 374 | 374 |
|
| 375 | 375 |
/// \brief Skeleton class for \e idable undirected graphs. |
| 376 | 376 |
/// |
| 377 | 377 |
/// This class describes the interface of \e idable undirected |
| 378 | 378 |
/// graphs. It extends \ref IDableDigraphComponent with the core ID |
| 379 | 379 |
/// functions of undirected graphs. |
| 380 | 380 |
/// The ids of the items must be unique and immutable. |
| 381 | 381 |
/// This concept is part of the Graph concept. |
| 382 | 382 |
template <typename BAS = BaseGraphComponent> |
| 383 | 383 |
class IDableGraphComponent : public IDableDigraphComponent<BAS> {
|
| 384 | 384 |
public: |
| 385 | 385 |
|
| 386 | 386 |
typedef BAS Base; |
| 387 | 387 |
typedef typename Base::Edge Edge; |
| 388 | 388 |
|
| 389 | 389 |
using IDableDigraphComponent<Base>::id; |
| 390 | 390 |
|
| 391 | 391 |
/// \brief Return a unique integer id for the given edge. |
| 392 | 392 |
/// |
| 393 | 393 |
/// This function returns a unique integer id for the given edge. |
| 394 | 394 |
int id(const Edge&) const { return -1; }
|
| 395 | 395 |
|
| 396 | 396 |
/// \brief Return the edge by its unique id. |
| 397 | 397 |
/// |
| 398 | 398 |
/// This function returns the edge by its unique id. |
| 399 | 399 |
/// If the graph does not contain an edge with the given id, |
| 400 | 400 |
/// then the result of the function is undefined. |
| 401 | 401 |
Edge edgeFromId(int) const { return INVALID; }
|
| 402 | 402 |
|
| 403 | 403 |
/// \brief Return an integer greater or equal to the maximum |
| 404 | 404 |
/// edge id. |
| 405 | 405 |
/// |
| 406 | 406 |
/// This function returns an integer greater or equal to the |
| 407 | 407 |
/// maximum edge id. |
| 408 | 408 |
int maxEdgeId() const { return -1; }
|
| 409 | 409 |
|
| 410 | 410 |
template <typename _Graph> |
| 411 | 411 |
struct Constraints {
|
| 412 | 412 |
|
| 413 | 413 |
void constraints() {
|
| 414 | 414 |
checkConcept<IDableDigraphComponent<Base>, _Graph >(); |
| 415 | 415 |
typename _Graph::Edge edge; |
| 416 | 416 |
int ueid = graph.id(edge); |
| 417 | 417 |
ueid = graph.id(edge); |
| 418 | 418 |
edge = graph.edgeFromId(ueid); |
| 419 | 419 |
ueid = graph.maxEdgeId(); |
| 420 | 420 |
ignore_unused_variable_warning(ueid); |
| 421 | 421 |
} |
| 422 | 422 |
|
| 423 | 423 |
const _Graph& graph; |
| 424 | 424 |
}; |
| 425 | 425 |
}; |
| 426 | 426 |
|
| 427 | 427 |
/// \brief Concept class for \c NodeIt, \c ArcIt and \c EdgeIt types. |
| 428 | 428 |
/// |
| 429 | 429 |
/// This class describes the concept of \c NodeIt, \c ArcIt and |
| 430 | 430 |
/// \c EdgeIt subtypes of digraph and graph types. |
| 431 | 431 |
template <typename GR, typename Item> |
| 432 | 432 |
class GraphItemIt : public Item {
|
| 433 | 433 |
public: |
| 434 | 434 |
/// \brief Default constructor. |
| 435 | 435 |
/// |
| 436 | 436 |
/// Default constructor. |
| 437 | 437 |
/// \warning The default constructor is not required to set |
| 438 | 438 |
/// the iterator to some well-defined value. So you should consider it |
| 439 | 439 |
/// as uninitialized. |
| 440 | 440 |
GraphItemIt() {}
|
| 441 | 441 |
|
| 442 | 442 |
/// \brief Copy constructor. |
| 443 | 443 |
/// |
| 444 | 444 |
/// Copy constructor. |
| 445 | 445 |
GraphItemIt(const GraphItemIt& it) : Item(it) {}
|
| 446 | 446 |
|
| 447 | 447 |
/// \brief Constructor that sets the iterator to the first item. |
| 448 | 448 |
/// |
| 449 | 449 |
/// Constructor that sets the iterator to the first item. |
| 450 | 450 |
explicit GraphItemIt(const GR&) {}
|
| 451 | 451 |
|
| 452 | 452 |
/// \brief Constructor for conversion from \c INVALID. |
| 453 | 453 |
/// |
| 454 | 454 |
/// Constructor for conversion from \c INVALID. |
| 455 | 455 |
/// It initializes the iterator to be invalid. |
| 456 | 456 |
/// \sa Invalid for more details. |
| 457 | 457 |
GraphItemIt(Invalid) {}
|
| 458 | 458 |
|
| 459 | 459 |
/// \brief Assignment operator. |
| 460 | 460 |
/// |
| 461 | 461 |
/// Assignment operator for the iterator. |
| 462 | 462 |
GraphItemIt& operator=(const GraphItemIt&) { return *this; }
|
| 463 | 463 |
|
| 464 | 464 |
/// \brief Increment the iterator. |
| 465 | 465 |
/// |
| 466 | 466 |
/// This operator increments the iterator, i.e. assigns it to the |
| 467 | 467 |
/// next item. |
| 468 | 468 |
GraphItemIt& operator++() { return *this; }
|
| 469 | 469 |
|
| 470 | 470 |
/// \brief Equality operator |
| 471 | 471 |
/// |
| 472 | 472 |
/// Equality operator. |
| 473 | 473 |
/// Two iterators are equal if and only if they point to the |
| 474 | 474 |
/// same object or both are invalid. |
| 475 | 475 |
bool operator==(const GraphItemIt&) const { return true;}
|
| 476 | 476 |
|
| 477 | 477 |
/// \brief Inequality operator |
| 478 | 478 |
/// |
| 479 | 479 |
/// Inequality operator. |
| 480 | 480 |
/// Two iterators are equal if and only if they point to the |
| 481 | 481 |
/// same object or both are invalid. |
| 482 | 482 |
bool operator!=(const GraphItemIt&) const { return true;}
|
| 483 | 483 |
|
| 484 | 484 |
template<typename _GraphItemIt> |
| 485 | 485 |
struct Constraints {
|
| 486 | 486 |
void constraints() {
|
| 487 | 487 |
checkConcept<GraphItem<>, _GraphItemIt>(); |
| 488 | 488 |
_GraphItemIt it1(g); |
| 489 | 489 |
_GraphItemIt it2; |
| 490 | 490 |
_GraphItemIt it3 = it1; |
| 491 | 491 |
_GraphItemIt it4 = INVALID; |
| 492 | 492 |
|
| 493 | 493 |
it2 = ++it1; |
| 494 | 494 |
++it2 = it1; |
| 495 | 495 |
++(++it1); |
| 496 | 496 |
|
| 497 | 497 |
Item bi = it1; |
| 498 | 498 |
bi = it2; |
| 499 | 499 |
} |
| 500 | 500 |
const GR& g; |
| 501 | 501 |
}; |
| 502 | 502 |
}; |
| 503 | 503 |
|
| 504 | 504 |
/// \brief Concept class for \c InArcIt, \c OutArcIt and |
| 505 | 505 |
/// \c IncEdgeIt types. |
| 506 | 506 |
/// |
| 507 | 507 |
/// This class describes the concept of \c InArcIt, \c OutArcIt |
| 508 | 508 |
/// and \c IncEdgeIt subtypes of digraph and graph types. |
| 509 | 509 |
/// |
| 510 | 510 |
/// \note Since these iterator classes do not inherit from the same |
| 511 | 511 |
/// base class, there is an additional template parameter (selector) |
| 512 | 512 |
/// \c sel. For \c InArcIt you should instantiate it with character |
| 513 | 513 |
/// \c 'i', for \c OutArcIt with \c 'o' and for \c IncEdgeIt with \c 'e'. |
| 514 | 514 |
template <typename GR, |
| 515 | 515 |
typename Item = typename GR::Arc, |
| 516 | 516 |
typename Base = typename GR::Node, |
| 517 | 517 |
char sel = '0'> |
| 518 | 518 |
class GraphIncIt : public Item {
|
| 519 | 519 |
public: |
| 520 | 520 |
/// \brief Default constructor. |
| 521 | 521 |
/// |
| 522 | 522 |
/// Default constructor. |
| 523 | 523 |
/// \warning The default constructor is not required to set |
| 524 | 524 |
/// the iterator to some well-defined value. So you should consider it |
| 525 | 525 |
/// as uninitialized. |
| 526 | 526 |
GraphIncIt() {}
|
| 527 | 527 |
|
| 528 | 528 |
/// \brief Copy constructor. |
| 529 | 529 |
/// |
| 530 | 530 |
/// Copy constructor. |
| 531 | 531 |
GraphIncIt(const GraphIncIt& it) : Item(it) {}
|
| 532 | 532 |
|
| 533 | 533 |
/// \brief Constructor that sets the iterator to the first |
| 534 | 534 |
/// incoming or outgoing arc. |
| 535 | 535 |
/// |
| 536 | 536 |
/// Constructor that sets the iterator to the first arc |
| 537 | 537 |
/// incoming to or outgoing from the given node. |
| 538 | 538 |
explicit GraphIncIt(const GR&, const Base&) {}
|
| 539 | 539 |
|
| 540 | 540 |
/// \brief Constructor for conversion from \c INVALID. |
| 541 | 541 |
/// |
| 542 | 542 |
/// Constructor for conversion from \c INVALID. |
| 543 | 543 |
/// It initializes the iterator to be invalid. |
| 544 | 544 |
/// \sa Invalid for more details. |
| 545 | 545 |
GraphIncIt(Invalid) {}
|
| 546 | 546 |
|
| 547 | 547 |
/// \brief Assignment operator. |
| 548 | 548 |
/// |
| 549 | 549 |
/// Assignment operator for the iterator. |
| 550 | 550 |
GraphIncIt& operator=(const GraphIncIt&) { return *this; }
|
| 551 | 551 |
|
| 552 | 552 |
/// \brief Increment the iterator. |
| 553 | 553 |
/// |
| 554 | 554 |
/// This operator increments the iterator, i.e. assigns it to the |
| 555 | 555 |
/// next arc incoming to or outgoing from the given node. |
| 556 | 556 |
GraphIncIt& operator++() { return *this; }
|
| 557 | 557 |
|
| 558 | 558 |
/// \brief Equality operator |
| 559 | 559 |
/// |
| 560 | 560 |
/// Equality operator. |
| 561 | 561 |
/// Two iterators are equal if and only if they point to the |
| 562 | 562 |
/// same object or both are invalid. |
| 563 | 563 |
bool operator==(const GraphIncIt&) const { return true;}
|
| 564 | 564 |
|
| 565 | 565 |
/// \brief Inequality operator |
| 566 | 566 |
/// |
| 567 | 567 |
/// Inequality operator. |
| 568 | 568 |
/// Two iterators are equal if and only if they point to the |
| 569 | 569 |
/// same object or both are invalid. |
| 570 | 570 |
bool operator!=(const GraphIncIt&) const { return true;}
|
| 571 | 571 |
|
| 572 | 572 |
template <typename _GraphIncIt> |
| 573 | 573 |
struct Constraints {
|
| 574 | 574 |
void constraints() {
|
| 575 | 575 |
checkConcept<GraphItem<sel>, _GraphIncIt>(); |
| 576 | 576 |
_GraphIncIt it1(graph, node); |
| 577 | 577 |
_GraphIncIt it2; |
| 578 | 578 |
_GraphIncIt it3 = it1; |
| 579 | 579 |
_GraphIncIt it4 = INVALID; |
| 580 | 580 |
|
| 581 | 581 |
it2 = ++it1; |
| 582 | 582 |
++it2 = it1; |
| 583 | 583 |
++(++it1); |
| 584 | 584 |
Item e = it1; |
| 585 | 585 |
e = it2; |
| 586 | 586 |
} |
| 587 | 587 |
const Base& node; |
| 588 | 588 |
const GR& graph; |
| 589 | 589 |
}; |
| 590 | 590 |
}; |
| 591 | 591 |
|
| 592 | 592 |
/// \brief Skeleton class for iterable directed graphs. |
| 593 | 593 |
/// |
| 594 | 594 |
/// This class describes the interface of iterable directed |
| 595 | 595 |
/// graphs. It extends \ref BaseDigraphComponent with the core |
| 596 | 596 |
/// iterable interface. |
| 597 | 597 |
/// This concept is part of the Digraph concept. |
| 598 | 598 |
template <typename BAS = BaseDigraphComponent> |
| 599 | 599 |
class IterableDigraphComponent : public BAS {
|
| 600 | 600 |
|
| 601 | 601 |
public: |
| 602 | 602 |
|
| 603 | 603 |
typedef BAS Base; |
| 604 | 604 |
typedef typename Base::Node Node; |
| 605 | 605 |
typedef typename Base::Arc Arc; |
| 606 | 606 |
|
| 607 | 607 |
typedef IterableDigraphComponent Digraph; |
| 608 | 608 |
|
| 609 | 609 |
/// \name Base Iteration |
| 610 | 610 |
/// |
| 611 | 611 |
/// This interface provides functions for iteration on digraph items. |
| 612 | 612 |
/// |
| 613 | 613 |
/// @{
|
| 614 | 614 |
|
| 615 | 615 |
/// \brief Return the first node. |
| 616 | 616 |
/// |
| 617 | 617 |
/// This function gives back the first node in the iteration order. |
| 618 | 618 |
void first(Node&) const {}
|
| 619 | 619 |
|
| 620 | 620 |
/// \brief Return the next node. |
| 621 | 621 |
/// |
| 622 | 622 |
/// This function gives back the next node in the iteration order. |
| 623 | 623 |
void next(Node&) const {}
|
| 624 | 624 |
|
| 625 | 625 |
/// \brief Return the first arc. |
| 626 | 626 |
/// |
| 627 | 627 |
/// This function gives back the first arc in the iteration order. |
| 628 | 628 |
void first(Arc&) const {}
|
| 629 | 629 |
|
| 630 | 630 |
/// \brief Return the next arc. |
| 631 | 631 |
/// |
| 632 | 632 |
/// This function gives back the next arc in the iteration order. |
| 633 | 633 |
void next(Arc&) const {}
|
| 634 | 634 |
|
| 635 | 635 |
/// \brief Return the first arc incomming to the given node. |
| 636 | 636 |
/// |
| 637 | 637 |
/// This function gives back the first arc incomming to the |
| 638 | 638 |
/// given node. |
| 639 | 639 |
void firstIn(Arc&, const Node&) const {}
|
| 640 | 640 |
|
| 641 | 641 |
/// \brief Return the next arc incomming to the given node. |
| 642 | 642 |
/// |
| 643 | 643 |
/// This function gives back the next arc incomming to the |
| 644 | 644 |
/// given node. |
| 645 | 645 |
void nextIn(Arc&) const {}
|
| 646 | 646 |
|
| 647 | 647 |
/// \brief Return the first arc outgoing form the given node. |
| 648 | 648 |
/// |
| 649 | 649 |
/// This function gives back the first arc outgoing form the |
| 650 | 650 |
/// given node. |
| 651 | 651 |
void firstOut(Arc&, const Node&) const {}
|
| 652 | 652 |
|
| 653 | 653 |
/// \brief Return the next arc outgoing form the given node. |
| 654 | 654 |
/// |
| 655 | 655 |
/// This function gives back the next arc outgoing form the |
| 656 | 656 |
/// given node. |
| 657 | 657 |
void nextOut(Arc&) const {}
|
| 658 | 658 |
|
| 659 | 659 |
/// @} |
| 660 | 660 |
|
| 661 | 661 |
/// \name Class Based Iteration |
| 662 | 662 |
/// |
| 663 | 663 |
/// This interface provides iterator classes for digraph items. |
| 664 | 664 |
/// |
| 665 | 665 |
/// @{
|
| 666 | 666 |
|
| 667 | 667 |
/// \brief This iterator goes through each node. |
| 668 | 668 |
/// |
| 669 | 669 |
/// This iterator goes through each node. |
| 670 | 670 |
/// |
| 671 | 671 |
typedef GraphItemIt<Digraph, Node> NodeIt; |
| 672 | 672 |
|
| 673 | 673 |
/// \brief This iterator goes through each arc. |
| 674 | 674 |
/// |
| 675 | 675 |
/// This iterator goes through each arc. |
| 676 | 676 |
/// |
| 677 | 677 |
typedef GraphItemIt<Digraph, Arc> ArcIt; |
| 678 | 678 |
|
| 679 | 679 |
/// \brief This iterator goes trough the incoming arcs of a node. |
| 680 | 680 |
/// |
| 681 | 681 |
/// This iterator goes trough the \e incoming arcs of a certain node |
| 682 | 682 |
/// of a digraph. |
| 683 | 683 |
typedef GraphIncIt<Digraph, Arc, Node, 'i'> InArcIt; |
| 684 | 684 |
|
| 685 | 685 |
/// \brief This iterator goes trough the outgoing arcs of a node. |
| 686 | 686 |
/// |
| 687 | 687 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
| 688 | 688 |
/// of a digraph. |
| 689 | 689 |
typedef GraphIncIt<Digraph, Arc, Node, 'o'> OutArcIt; |
| 690 | 690 |
|
| 691 | 691 |
/// \brief The base node of the iterator. |
| 692 | 692 |
/// |
| 693 | 693 |
/// This function gives back the base node of the iterator. |
| 694 | 694 |
/// It is always the target node of the pointed arc. |
| 695 | 695 |
Node baseNode(const InArcIt&) const { return INVALID; }
|
| 696 | 696 |
|
| 697 | 697 |
/// \brief The running node of the iterator. |
| 698 | 698 |
/// |
| 699 | 699 |
/// This function gives back the running node of the iterator. |
| 700 | 700 |
/// It is always the source node of the pointed arc. |
| 701 | 701 |
Node runningNode(const InArcIt&) const { return INVALID; }
|
| 702 | 702 |
|
| 703 | 703 |
/// \brief The base node of the iterator. |
| 704 | 704 |
/// |
| 705 | 705 |
/// This function gives back the base node of the iterator. |
| 706 | 706 |
/// It is always the source node of the pointed arc. |
| 707 | 707 |
Node baseNode(const OutArcIt&) const { return INVALID; }
|
| 708 | 708 |
|
| 709 | 709 |
/// \brief The running node of the iterator. |
| 710 | 710 |
/// |
| 711 | 711 |
/// This function gives back the running node of the iterator. |
| 712 | 712 |
/// It is always the target node of the pointed arc. |
| 713 | 713 |
Node runningNode(const OutArcIt&) const { return INVALID; }
|
| 714 | 714 |
|
| 715 | 715 |
/// @} |
| 716 | 716 |
|
| 717 | 717 |
template <typename _Digraph> |
| 718 | 718 |
struct Constraints {
|
| 719 | 719 |
void constraints() {
|
| 720 | 720 |
checkConcept<Base, _Digraph>(); |
| 721 | 721 |
|
| 722 | 722 |
{
|
| 723 | 723 |
typename _Digraph::Node node(INVALID); |
| 724 | 724 |
typename _Digraph::Arc arc(INVALID); |
| 725 | 725 |
{
|
| 726 | 726 |
digraph.first(node); |
| 727 | 727 |
digraph.next(node); |
| 728 | 728 |
} |
| 729 | 729 |
{
|
| 730 | 730 |
digraph.first(arc); |
| 731 | 731 |
digraph.next(arc); |
| 732 | 732 |
} |
| 733 | 733 |
{
|
| 734 | 734 |
digraph.firstIn(arc, node); |
| 735 | 735 |
digraph.nextIn(arc); |
| 736 | 736 |
} |
| 737 | 737 |
{
|
| 738 | 738 |
digraph.firstOut(arc, node); |
| 739 | 739 |
digraph.nextOut(arc); |
| 740 | 740 |
} |
| 741 | 741 |
} |
| 742 | 742 |
|
| 743 | 743 |
{
|
| 744 | 744 |
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Arc>, |
| 745 | 745 |
typename _Digraph::ArcIt >(); |
| 746 | 746 |
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Node>, |
| 747 | 747 |
typename _Digraph::NodeIt >(); |
| 748 | 748 |
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc, |
| 749 | 749 |
typename _Digraph::Node, 'i'>, typename _Digraph::InArcIt>(); |
| 750 | 750 |
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc, |
| 751 | 751 |
typename _Digraph::Node, 'o'>, typename _Digraph::OutArcIt>(); |
| 752 | 752 |
|
| 753 | 753 |
typename _Digraph::Node n; |
| 754 | 754 |
const typename _Digraph::InArcIt iait(INVALID); |
| 755 | 755 |
const typename _Digraph::OutArcIt oait(INVALID); |
| 756 | 756 |
n = digraph.baseNode(iait); |
| 757 | 757 |
n = digraph.runningNode(iait); |
| 758 | 758 |
n = digraph.baseNode(oait); |
| 759 | 759 |
n = digraph.runningNode(oait); |
| 760 | 760 |
ignore_unused_variable_warning(n); |
| 761 | 761 |
} |
| 762 | 762 |
} |
| 763 | 763 |
|
| 764 | 764 |
const _Digraph& digraph; |
| 765 | 765 |
}; |
| 766 | 766 |
}; |
| 767 | 767 |
|
| 768 | 768 |
/// \brief Skeleton class for iterable undirected graphs. |
| 769 | 769 |
/// |
| 770 | 770 |
/// This class describes the interface of iterable undirected |
| 771 | 771 |
/// graphs. It extends \ref IterableDigraphComponent with the core |
| 772 | 772 |
/// iterable interface of undirected graphs. |
| 773 | 773 |
/// This concept is part of the Graph concept. |
| 774 | 774 |
template <typename BAS = BaseGraphComponent> |
| 775 | 775 |
class IterableGraphComponent : public IterableDigraphComponent<BAS> {
|
| 776 | 776 |
public: |
| 777 | 777 |
|
| 778 | 778 |
typedef BAS Base; |
| 779 | 779 |
typedef typename Base::Node Node; |
| 780 | 780 |
typedef typename Base::Arc Arc; |
| 781 | 781 |
typedef typename Base::Edge Edge; |
| 782 | 782 |
|
| 783 | 783 |
|
| 784 | 784 |
typedef IterableGraphComponent Graph; |
| 785 | 785 |
|
| 786 | 786 |
/// \name Base Iteration |
| 787 | 787 |
/// |
| 788 | 788 |
/// This interface provides functions for iteration on edges. |
| 789 | 789 |
/// |
| 790 | 790 |
/// @{
|
| 791 | 791 |
|
| 792 | 792 |
using IterableDigraphComponent<Base>::first; |
| 793 | 793 |
using IterableDigraphComponent<Base>::next; |
| 794 | 794 |
|
| 795 | 795 |
/// \brief Return the first edge. |
| 796 | 796 |
/// |
| 797 | 797 |
/// This function gives back the first edge in the iteration order. |
| 798 | 798 |
void first(Edge&) const {}
|
| 799 | 799 |
|
| 800 | 800 |
/// \brief Return the next edge. |
| 801 | 801 |
/// |
| 802 | 802 |
/// This function gives back the next edge in the iteration order. |
| 803 | 803 |
void next(Edge&) const {}
|
| 804 | 804 |
|
| 805 | 805 |
/// \brief Return the first edge incident to the given node. |
| 806 | 806 |
/// |
| 807 | 807 |
/// This function gives back the first edge incident to the given |
| 808 | 808 |
/// node. The bool parameter gives back the direction for which the |
| 809 | 809 |
/// source node of the directed arc representing the edge is the |
| 810 | 810 |
/// given node. |
| 811 | 811 |
void firstInc(Edge&, bool&, const Node&) const {}
|
| 812 | 812 |
|
| 813 | 813 |
/// \brief Gives back the next of the edges from the |
| 814 | 814 |
/// given node. |
| 815 | 815 |
/// |
| 816 | 816 |
/// This function gives back the next edge incident to the given |
| 817 | 817 |
/// node. The bool parameter should be used as \c firstInc() use it. |
| 818 | 818 |
void nextInc(Edge&, bool&) const {}
|
| 819 | 819 |
|
| 820 | 820 |
using IterableDigraphComponent<Base>::baseNode; |
| 821 | 821 |
using IterableDigraphComponent<Base>::runningNode; |
| 822 | 822 |
|
| 823 | 823 |
/// @} |
| 824 | 824 |
|
| 825 | 825 |
/// \name Class Based Iteration |
| 826 | 826 |
/// |
| 827 | 827 |
/// This interface provides iterator classes for edges. |
| 828 | 828 |
/// |
| 829 | 829 |
/// @{
|
| 830 | 830 |
|
| 831 | 831 |
/// \brief This iterator goes through each edge. |
| 832 | 832 |
/// |
| 833 | 833 |
/// This iterator goes through each edge. |
| 834 | 834 |
typedef GraphItemIt<Graph, Edge> EdgeIt; |
| 835 | 835 |
|
| 836 | 836 |
/// \brief This iterator goes trough the incident edges of a |
| 837 | 837 |
/// node. |
| 838 | 838 |
/// |
| 839 | 839 |
/// This iterator goes trough the incident edges of a certain |
| 840 | 840 |
/// node of a graph. |
| 841 | 841 |
typedef GraphIncIt<Graph, Edge, Node, 'e'> IncEdgeIt; |
| 842 | 842 |
|
| 843 | 843 |
/// \brief The base node of the iterator. |
| 844 | 844 |
/// |
| 845 | 845 |
/// This function gives back the base node of the iterator. |
| 846 | 846 |
Node baseNode(const IncEdgeIt&) const { return INVALID; }
|
| 847 | 847 |
|
| 848 | 848 |
/// \brief The running node of the iterator. |
| 849 | 849 |
/// |
| 850 | 850 |
/// This function gives back the running node of the iterator. |
| 851 | 851 |
Node runningNode(const IncEdgeIt&) const { return INVALID; }
|
| 852 | 852 |
|
| 853 | 853 |
/// @} |
| 854 | 854 |
|
| 855 | 855 |
template <typename _Graph> |
| 856 | 856 |
struct Constraints {
|
| 857 | 857 |
void constraints() {
|
| 858 | 858 |
checkConcept<IterableDigraphComponent<Base>, _Graph>(); |
| 859 | 859 |
|
| 860 | 860 |
{
|
| 861 | 861 |
typename _Graph::Node node(INVALID); |
| 862 | 862 |
typename _Graph::Edge edge(INVALID); |
| 863 | 863 |
bool dir; |
| 864 | 864 |
{
|
| 865 | 865 |
graph.first(edge); |
| 866 | 866 |
graph.next(edge); |
| 867 | 867 |
} |
| 868 | 868 |
{
|
| 869 | 869 |
graph.firstInc(edge, dir, node); |
| 870 | 870 |
graph.nextInc(edge, dir); |
| 871 | 871 |
} |
| 872 | 872 |
|
| 873 | 873 |
} |
| 874 | 874 |
|
| 875 | 875 |
{
|
| 876 | 876 |
checkConcept<GraphItemIt<_Graph, typename _Graph::Edge>, |
| 877 | 877 |
typename _Graph::EdgeIt >(); |
| 878 | 878 |
checkConcept<GraphIncIt<_Graph, typename _Graph::Edge, |
| 879 | 879 |
typename _Graph::Node, 'e'>, typename _Graph::IncEdgeIt>(); |
| 880 | 880 |
|
| 881 | 881 |
typename _Graph::Node n; |
| 882 | 882 |
const typename _Graph::IncEdgeIt ieit(INVALID); |
| 883 | 883 |
n = graph.baseNode(ieit); |
| 884 | 884 |
n = graph.runningNode(ieit); |
| 885 | 885 |
} |
| 886 | 886 |
} |
| 887 | 887 |
|
| 888 | 888 |
const _Graph& graph; |
| 889 | 889 |
}; |
| 890 | 890 |
}; |
| 891 | 891 |
|
| 892 | 892 |
/// \brief Skeleton class for alterable directed graphs. |
| 893 | 893 |
/// |
| 894 | 894 |
/// This class describes the interface of alterable directed |
| 895 | 895 |
/// graphs. It extends \ref BaseDigraphComponent with the alteration |
| 896 | 896 |
/// notifier interface. It implements |
| 897 | 897 |
/// an observer-notifier pattern for each digraph item. More |
| 898 | 898 |
/// obsevers can be registered into the notifier and whenever an |
| 899 | 899 |
/// alteration occured in the digraph all the observers will be |
| 900 | 900 |
/// notified about it. |
| 901 | 901 |
template <typename BAS = BaseDigraphComponent> |
| 902 | 902 |
class AlterableDigraphComponent : public BAS {
|
| 903 | 903 |
public: |
| 904 | 904 |
|
| 905 | 905 |
typedef BAS Base; |
| 906 | 906 |
typedef typename Base::Node Node; |
| 907 | 907 |
typedef typename Base::Arc Arc; |
| 908 | 908 |
|
| 909 | 909 |
|
| 910 | 910 |
/// Node alteration notifier class. |
| 911 | 911 |
typedef AlterationNotifier<AlterableDigraphComponent, Node> |
| 912 | 912 |
NodeNotifier; |
| 913 | 913 |
/// Arc alteration notifier class. |
| 914 | 914 |
typedef AlterationNotifier<AlterableDigraphComponent, Arc> |
| 915 | 915 |
ArcNotifier; |
| 916 | 916 |
|
| 917 | 917 |
/// \brief Return the node alteration notifier. |
| 918 | 918 |
/// |
| 919 | 919 |
/// This function gives back the node alteration notifier. |
| 920 | 920 |
NodeNotifier& notifier(Node) const {
|
| 921 | 921 |
return NodeNotifier(); |
| 922 | 922 |
} |
| 923 | 923 |
|
| 924 | 924 |
/// \brief Return the arc alteration notifier. |
| 925 | 925 |
/// |
| 926 | 926 |
/// This function gives back the arc alteration notifier. |
| 927 | 927 |
ArcNotifier& notifier(Arc) const {
|
| 928 | 928 |
return ArcNotifier(); |
| 929 | 929 |
} |
| 930 | 930 |
|
| 931 | 931 |
template <typename _Digraph> |
| 932 | 932 |
struct Constraints {
|
| 933 | 933 |
void constraints() {
|
| 934 | 934 |
checkConcept<Base, _Digraph>(); |
| 935 | 935 |
typename _Digraph::NodeNotifier& nn |
| 936 | 936 |
= digraph.notifier(typename _Digraph::Node()); |
| 937 | 937 |
|
| 938 | 938 |
typename _Digraph::ArcNotifier& en |
| 939 | 939 |
= digraph.notifier(typename _Digraph::Arc()); |
| 940 | 940 |
|
| 941 | 941 |
ignore_unused_variable_warning(nn); |
| 942 | 942 |
ignore_unused_variable_warning(en); |
| 943 | 943 |
} |
| 944 | 944 |
|
| 945 | 945 |
const _Digraph& digraph; |
| 946 | 946 |
}; |
| 947 | 947 |
}; |
| 948 | 948 |
|
| 949 | 949 |
/// \brief Skeleton class for alterable undirected graphs. |
| 950 | 950 |
/// |
| 951 | 951 |
/// This class describes the interface of alterable undirected |
| 952 | 952 |
/// graphs. It extends \ref AlterableDigraphComponent with the alteration |
| 953 | 953 |
/// notifier interface of undirected graphs. It implements |
| 954 | 954 |
/// an observer-notifier pattern for the edges. More |
| 955 | 955 |
/// obsevers can be registered into the notifier and whenever an |
| 956 | 956 |
/// alteration occured in the graph all the observers will be |
| 957 | 957 |
/// notified about it. |
| 958 | 958 |
template <typename BAS = BaseGraphComponent> |
| 959 | 959 |
class AlterableGraphComponent : public AlterableDigraphComponent<BAS> {
|
| 960 | 960 |
public: |
| 961 | 961 |
|
| 962 | 962 |
typedef BAS Base; |
| 963 | 963 |
typedef typename Base::Edge Edge; |
| 964 | 964 |
|
| 965 | 965 |
|
| 966 | 966 |
/// Edge alteration notifier class. |
| 967 | 967 |
typedef AlterationNotifier<AlterableGraphComponent, Edge> |
| 968 | 968 |
EdgeNotifier; |
| 969 | 969 |
|
| 970 | 970 |
/// \brief Return the edge alteration notifier. |
| 971 | 971 |
/// |
| 972 | 972 |
/// This function gives back the edge alteration notifier. |
| 973 | 973 |
EdgeNotifier& notifier(Edge) const {
|
| 974 | 974 |
return EdgeNotifier(); |
| 975 | 975 |
} |
| 976 | 976 |
|
| 977 | 977 |
template <typename _Graph> |
| 978 | 978 |
struct Constraints {
|
| 979 | 979 |
void constraints() {
|
| 980 | 980 |
checkConcept<AlterableDigraphComponent<Base>, _Graph>(); |
| 981 | 981 |
typename _Graph::EdgeNotifier& uen |
| 982 | 982 |
= graph.notifier(typename _Graph::Edge()); |
| 983 | 983 |
ignore_unused_variable_warning(uen); |
| 984 | 984 |
} |
| 985 | 985 |
|
| 986 | 986 |
const _Graph& graph; |
| 987 | 987 |
}; |
| 988 | 988 |
}; |
| 989 | 989 |
|
| 990 | 990 |
/// \brief Concept class for standard graph maps. |
| 991 | 991 |
/// |
| 992 | 992 |
/// This class describes the concept of standard graph maps, i.e. |
| 993 | 993 |
/// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and |
| 994 | 994 |
/// graph types, which can be used for associating data to graph items. |
| 995 | 995 |
/// The standard graph maps must conform to the ReferenceMap concept. |
| 996 | 996 |
template <typename GR, typename K, typename V> |
| 997 | 997 |
class GraphMap : public ReferenceMap<K, V, V&, const V&> {
|
| 998 | 998 |
typedef ReferenceMap<K, V, V&, const V&> Parent; |
| 999 | 999 |
|
| 1000 | 1000 |
public: |
| 1001 | 1001 |
|
| 1002 | 1002 |
/// The key type of the map. |
| 1003 | 1003 |
typedef K Key; |
| 1004 | 1004 |
/// The value type of the map. |
| 1005 | 1005 |
typedef V Value; |
| 1006 | 1006 |
/// The reference type of the map. |
| 1007 | 1007 |
typedef Value& Reference; |
| 1008 | 1008 |
/// The const reference type of the map. |
| 1009 | 1009 |
typedef const Value& ConstReference; |
| 1010 | 1010 |
|
| 1011 | 1011 |
// The reference map tag. |
| 1012 | 1012 |
typedef True ReferenceMapTag; |
| 1013 | 1013 |
|
| 1014 | 1014 |
/// \brief Construct a new map. |
| 1015 | 1015 |
/// |
| 1016 | 1016 |
/// Construct a new map for the graph. |
| 1017 | 1017 |
explicit GraphMap(const GR&) {}
|
| 1018 | 1018 |
/// \brief Construct a new map with default value. |
| 1019 | 1019 |
/// |
| 1020 | 1020 |
/// Construct a new map for the graph and initalize the values. |
| 1021 | 1021 |
GraphMap(const GR&, const Value&) {}
|
| 1022 | 1022 |
|
| 1023 | 1023 |
private: |
| 1024 | 1024 |
/// \brief Copy constructor. |
| 1025 | 1025 |
/// |
| 1026 | 1026 |
/// Copy Constructor. |
| 1027 | 1027 |
GraphMap(const GraphMap&) : Parent() {}
|
| 1028 | 1028 |
|
| 1029 | 1029 |
/// \brief Assignment operator. |
| 1030 | 1030 |
/// |
| 1031 | 1031 |
/// Assignment operator. It does not mofify the underlying graph, |
| 1032 | 1032 |
/// it just iterates on the current item set and set the map |
| 1033 | 1033 |
/// with the value returned by the assigned map. |
| 1034 | 1034 |
template <typename CMap> |
| 1035 | 1035 |
GraphMap& operator=(const CMap&) {
|
| 1036 | 1036 |
checkConcept<ReadMap<Key, Value>, CMap>(); |
| 1037 | 1037 |
return *this; |
| 1038 | 1038 |
} |
| 1039 | 1039 |
|
| 1040 | 1040 |
public: |
| 1041 | 1041 |
template<typename _Map> |
| 1042 | 1042 |
struct Constraints {
|
| 1043 | 1043 |
void constraints() {
|
| 1044 | 1044 |
checkConcept |
| 1045 | 1045 |
<ReferenceMap<Key, Value, Value&, const Value&>, _Map>(); |
| 1046 | 1046 |
_Map m1(g); |
| 1047 | 1047 |
_Map m2(g,t); |
| 1048 | 1048 |
|
| 1049 | 1049 |
// Copy constructor |
| 1050 | 1050 |
// _Map m3(m); |
| 1051 | 1051 |
|
| 1052 | 1052 |
// Assignment operator |
| 1053 | 1053 |
// ReadMap<Key, Value> cmap; |
| 1054 | 1054 |
// m3 = cmap; |
| 1055 | 1055 |
|
| 1056 | 1056 |
ignore_unused_variable_warning(m1); |
| 1057 | 1057 |
ignore_unused_variable_warning(m2); |
| 1058 | 1058 |
// ignore_unused_variable_warning(m3); |
| 1059 | 1059 |
} |
| 1060 | 1060 |
|
| 1061 | 1061 |
const _Map &m; |
| 1062 | 1062 |
const GR &g; |
| 1063 | 1063 |
const typename GraphMap::Value &t; |
| 1064 | 1064 |
}; |
| 1065 | 1065 |
|
| 1066 | 1066 |
}; |
| 1067 | 1067 |
|
| 1068 | 1068 |
/// \brief Skeleton class for mappable directed graphs. |
| 1069 | 1069 |
/// |
| 1070 | 1070 |
/// This class describes the interface of mappable directed graphs. |
| 1071 | 1071 |
/// It extends \ref BaseDigraphComponent with the standard digraph |
| 1072 | 1072 |
/// map classes, namely \c NodeMap and \c ArcMap. |
| 1073 | 1073 |
/// This concept is part of the Digraph concept. |
| 1074 | 1074 |
template <typename BAS = BaseDigraphComponent> |
| 1075 | 1075 |
class MappableDigraphComponent : public BAS {
|
| 1076 | 1076 |
public: |
| 1077 | 1077 |
|
| 1078 | 1078 |
typedef BAS Base; |
| 1079 | 1079 |
typedef typename Base::Node Node; |
| 1080 | 1080 |
typedef typename Base::Arc Arc; |
| 1081 | 1081 |
|
| 1082 | 1082 |
typedef MappableDigraphComponent Digraph; |
| 1083 | 1083 |
|
| 1084 | 1084 |
/// \brief Standard graph map for the nodes. |
| 1085 | 1085 |
/// |
| 1086 | 1086 |
/// Standard graph map for the nodes. |
| 1087 | 1087 |
/// It conforms to the ReferenceMap concept. |
| 1088 | 1088 |
template <typename V> |
| 1089 | 1089 |
class NodeMap : public GraphMap<MappableDigraphComponent, Node, V> {
|
| 1090 | 1090 |
typedef GraphMap<MappableDigraphComponent, Node, V> Parent; |
| 1091 | 1091 |
|
| 1092 | 1092 |
public: |
| 1093 | 1093 |
/// \brief Construct a new map. |
| 1094 | 1094 |
/// |
| 1095 | 1095 |
/// Construct a new map for the digraph. |
| 1096 | 1096 |
explicit NodeMap(const MappableDigraphComponent& digraph) |
| 1097 | 1097 |
: Parent(digraph) {}
|
| 1098 | 1098 |
|
| 1099 | 1099 |
/// \brief Construct a new map with default value. |
| 1100 | 1100 |
/// |
| 1101 | 1101 |
/// Construct a new map for the digraph and initalize the values. |
| 1102 | 1102 |
NodeMap(const MappableDigraphComponent& digraph, const V& value) |
| 1103 | 1103 |
: Parent(digraph, value) {}
|
| 1104 | 1104 |
|
| 1105 | 1105 |
private: |
| 1106 | 1106 |
/// \brief Copy constructor. |
| 1107 | 1107 |
/// |
| 1108 | 1108 |
/// Copy Constructor. |
| 1109 | 1109 |
NodeMap(const NodeMap& nm) : Parent(nm) {}
|
| 1110 | 1110 |
|
| 1111 | 1111 |
/// \brief Assignment operator. |
| 1112 | 1112 |
/// |
| 1113 | 1113 |
/// Assignment operator. |
| 1114 | 1114 |
template <typename CMap> |
| 1115 | 1115 |
NodeMap& operator=(const CMap&) {
|
| 1116 | 1116 |
checkConcept<ReadMap<Node, V>, CMap>(); |
| 1117 | 1117 |
return *this; |
| 1118 | 1118 |
} |
| 1119 | 1119 |
|
| 1120 | 1120 |
}; |
| 1121 | 1121 |
|
| 1122 | 1122 |
/// \brief Standard graph map for the arcs. |
| 1123 | 1123 |
/// |
| 1124 | 1124 |
/// Standard graph map for the arcs. |
| 1125 | 1125 |
/// It conforms to the ReferenceMap concept. |
| 1126 | 1126 |
template <typename V> |
| 1127 | 1127 |
class ArcMap : public GraphMap<MappableDigraphComponent, Arc, V> {
|
| 1128 | 1128 |
typedef GraphMap<MappableDigraphComponent, Arc, V> Parent; |
| 1129 | 1129 |
|
| 1130 | 1130 |
public: |
| 1131 | 1131 |
/// \brief Construct a new map. |
| 1132 | 1132 |
/// |
| 1133 | 1133 |
/// Construct a new map for the digraph. |
| 1134 | 1134 |
explicit ArcMap(const MappableDigraphComponent& digraph) |
| 1135 | 1135 |
: Parent(digraph) {}
|
| 1136 | 1136 |
|
| 1137 | 1137 |
/// \brief Construct a new map with default value. |
| 1138 | 1138 |
/// |
| 1139 | 1139 |
/// Construct a new map for the digraph and initalize the values. |
| 1140 | 1140 |
ArcMap(const MappableDigraphComponent& digraph, const V& value) |
| 1141 | 1141 |
: Parent(digraph, value) {}
|
| 1142 | 1142 |
|
| 1143 | 1143 |
private: |
| 1144 | 1144 |
/// \brief Copy constructor. |
| 1145 | 1145 |
/// |
| 1146 | 1146 |
/// Copy Constructor. |
| 1147 | 1147 |
ArcMap(const ArcMap& nm) : Parent(nm) {}
|
| 1148 | 1148 |
|
| 1149 | 1149 |
/// \brief Assignment operator. |
| 1150 | 1150 |
/// |
| 1151 | 1151 |
/// Assignment operator. |
| 1152 | 1152 |
template <typename CMap> |
| 1153 | 1153 |
ArcMap& operator=(const CMap&) {
|
| 1154 | 1154 |
checkConcept<ReadMap<Arc, V>, CMap>(); |
| 1155 | 1155 |
return *this; |
| 1156 | 1156 |
} |
| 1157 | 1157 |
|
| 1158 | 1158 |
}; |
| 1159 | 1159 |
|
| 1160 | 1160 |
|
| 1161 | 1161 |
template <typename _Digraph> |
| 1162 | 1162 |
struct Constraints {
|
| 1163 | 1163 |
|
| 1164 | 1164 |
struct Dummy {
|
| 1165 | 1165 |
int value; |
| 1166 | 1166 |
Dummy() : value(0) {}
|
| 1167 | 1167 |
Dummy(int _v) : value(_v) {}
|
| 1168 | 1168 |
}; |
| 1169 | 1169 |
|
| 1170 | 1170 |
void constraints() {
|
| 1171 | 1171 |
checkConcept<Base, _Digraph>(); |
| 1172 | 1172 |
{ // int map test
|
| 1173 | 1173 |
typedef typename _Digraph::template NodeMap<int> IntNodeMap; |
| 1174 | 1174 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, int>, |
| 1175 | 1175 |
IntNodeMap >(); |
| 1176 | 1176 |
} { // bool map test
|
| 1177 | 1177 |
typedef typename _Digraph::template NodeMap<bool> BoolNodeMap; |
| 1178 | 1178 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, bool>, |
| 1179 | 1179 |
BoolNodeMap >(); |
| 1180 | 1180 |
} { // Dummy map test
|
| 1181 | 1181 |
typedef typename _Digraph::template NodeMap<Dummy> DummyNodeMap; |
| 1182 | 1182 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, Dummy>, |
| 1183 | 1183 |
DummyNodeMap >(); |
| 1184 | 1184 |
} |
| 1185 | 1185 |
|
| 1186 | 1186 |
{ // int map test
|
| 1187 | 1187 |
typedef typename _Digraph::template ArcMap<int> IntArcMap; |
| 1188 | 1188 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, int>, |
| 1189 | 1189 |
IntArcMap >(); |
| 1190 | 1190 |
} { // bool map test
|
| 1191 | 1191 |
typedef typename _Digraph::template ArcMap<bool> BoolArcMap; |
| 1192 | 1192 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, bool>, |
| 1193 | 1193 |
BoolArcMap >(); |
| 1194 | 1194 |
} { // Dummy map test
|
| 1195 | 1195 |
typedef typename _Digraph::template ArcMap<Dummy> DummyArcMap; |
| 1196 | 1196 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, Dummy>, |
| 1197 | 1197 |
DummyArcMap >(); |
| 1198 | 1198 |
} |
| 1199 | 1199 |
} |
| 1200 | 1200 |
|
| 1201 | 1201 |
const _Digraph& digraph; |
| 1202 | 1202 |
}; |
| 1203 | 1203 |
}; |
| 1204 | 1204 |
|
| 1205 | 1205 |
/// \brief Skeleton class for mappable undirected graphs. |
| 1206 | 1206 |
/// |
| 1207 | 1207 |
/// This class describes the interface of mappable undirected graphs. |
| 1208 | 1208 |
/// It extends \ref MappableDigraphComponent with the standard graph |
| 1209 | 1209 |
/// map class for edges (\c EdgeMap). |
| 1210 | 1210 |
/// This concept is part of the Graph concept. |
| 1211 | 1211 |
template <typename BAS = BaseGraphComponent> |
| 1212 | 1212 |
class MappableGraphComponent : public MappableDigraphComponent<BAS> {
|
| 1213 | 1213 |
public: |
| 1214 | 1214 |
|
| 1215 | 1215 |
typedef BAS Base; |
| 1216 | 1216 |
typedef typename Base::Edge Edge; |
| 1217 | 1217 |
|
| 1218 | 1218 |
typedef MappableGraphComponent Graph; |
| 1219 | 1219 |
|
| 1220 | 1220 |
/// \brief Standard graph map for the edges. |
| 1221 | 1221 |
/// |
| 1222 | 1222 |
/// Standard graph map for the edges. |
| 1223 | 1223 |
/// It conforms to the ReferenceMap concept. |
| 1224 | 1224 |
template <typename V> |
| 1225 | 1225 |
class EdgeMap : public GraphMap<MappableGraphComponent, Edge, V> {
|
| 1226 | 1226 |
typedef GraphMap<MappableGraphComponent, Edge, V> Parent; |
| 1227 | 1227 |
|
| 1228 | 1228 |
public: |
| 1229 | 1229 |
/// \brief Construct a new map. |
| 1230 | 1230 |
/// |
| 1231 | 1231 |
/// Construct a new map for the graph. |
| 1232 | 1232 |
explicit EdgeMap(const MappableGraphComponent& graph) |
| 1233 | 1233 |
: Parent(graph) {}
|
| 1234 | 1234 |
|
| 1235 | 1235 |
/// \brief Construct a new map with default value. |
| 1236 | 1236 |
/// |
| 1237 | 1237 |
/// Construct a new map for the graph and initalize the values. |
| 1238 | 1238 |
EdgeMap(const MappableGraphComponent& graph, const V& value) |
| 1239 | 1239 |
: Parent(graph, value) {}
|
| 1240 | 1240 |
|
| 1241 | 1241 |
private: |
| 1242 | 1242 |
/// \brief Copy constructor. |
| 1243 | 1243 |
/// |
| 1244 | 1244 |
/// Copy Constructor. |
| 1245 | 1245 |
EdgeMap(const EdgeMap& nm) : Parent(nm) {}
|
| 1246 | 1246 |
|
| 1247 | 1247 |
/// \brief Assignment operator. |
| 1248 | 1248 |
/// |
| 1249 | 1249 |
/// Assignment operator. |
| 1250 | 1250 |
template <typename CMap> |
| 1251 | 1251 |
EdgeMap& operator=(const CMap&) {
|
| 1252 | 1252 |
checkConcept<ReadMap<Edge, V>, CMap>(); |
| 1253 | 1253 |
return *this; |
| 1254 | 1254 |
} |
| 1255 | 1255 |
|
| 1256 | 1256 |
}; |
| 1257 | 1257 |
|
| 1258 | 1258 |
|
| 1259 | 1259 |
template <typename _Graph> |
| 1260 | 1260 |
struct Constraints {
|
| 1261 | 1261 |
|
| 1262 | 1262 |
struct Dummy {
|
| 1263 | 1263 |
int value; |
| 1264 | 1264 |
Dummy() : value(0) {}
|
| 1265 | 1265 |
Dummy(int _v) : value(_v) {}
|
| 1266 | 1266 |
}; |
| 1267 | 1267 |
|
| 1268 | 1268 |
void constraints() {
|
| 1269 | 1269 |
checkConcept<MappableDigraphComponent<Base>, _Graph>(); |
| 1270 | 1270 |
|
| 1271 | 1271 |
{ // int map test
|
| 1272 | 1272 |
typedef typename _Graph::template EdgeMap<int> IntEdgeMap; |
| 1273 | 1273 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, int>, |
| 1274 | 1274 |
IntEdgeMap >(); |
| 1275 | 1275 |
} { // bool map test
|
| 1276 | 1276 |
typedef typename _Graph::template EdgeMap<bool> BoolEdgeMap; |
| 1277 | 1277 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, bool>, |
| 1278 | 1278 |
BoolEdgeMap >(); |
| 1279 | 1279 |
} { // Dummy map test
|
| 1280 | 1280 |
typedef typename _Graph::template EdgeMap<Dummy> DummyEdgeMap; |
| 1281 | 1281 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, Dummy>, |
| 1282 | 1282 |
DummyEdgeMap >(); |
| 1283 | 1283 |
} |
| 1284 | 1284 |
} |
| 1285 | 1285 |
|
| 1286 | 1286 |
const _Graph& graph; |
| 1287 | 1287 |
}; |
| 1288 | 1288 |
}; |
| 1289 | 1289 |
|
| 1290 | 1290 |
/// \brief Skeleton class for extendable directed graphs. |
| 1291 | 1291 |
/// |
| 1292 | 1292 |
/// This class describes the interface of extendable directed graphs. |
| 1293 | 1293 |
/// It extends \ref BaseDigraphComponent with functions for adding |
| 1294 | 1294 |
/// nodes and arcs to the digraph. |
| 1295 | 1295 |
/// This concept requires \ref AlterableDigraphComponent. |
| 1296 | 1296 |
template <typename BAS = BaseDigraphComponent> |
| 1297 | 1297 |
class ExtendableDigraphComponent : public BAS {
|
| 1298 | 1298 |
public: |
| 1299 | 1299 |
typedef BAS Base; |
| 1300 | 1300 |
|
| 1301 | 1301 |
typedef typename Base::Node Node; |
| 1302 | 1302 |
typedef typename Base::Arc Arc; |
| 1303 | 1303 |
|
| 1304 | 1304 |
/// \brief Add a new node to the digraph. |
| 1305 | 1305 |
/// |
| 1306 | 1306 |
/// This function adds a new node to the digraph. |
| 1307 | 1307 |
Node addNode() {
|
| 1308 | 1308 |
return INVALID; |
| 1309 | 1309 |
} |
| 1310 | 1310 |
|
| 1311 | 1311 |
/// \brief Add a new arc connecting the given two nodes. |
| 1312 | 1312 |
/// |
| 1313 | 1313 |
/// This function adds a new arc connecting the given two nodes |
| 1314 | 1314 |
/// of the digraph. |
| 1315 | 1315 |
Arc addArc(const Node&, const Node&) {
|
| 1316 | 1316 |
return INVALID; |
| 1317 | 1317 |
} |
| 1318 | 1318 |
|
| 1319 | 1319 |
template <typename _Digraph> |
| 1320 | 1320 |
struct Constraints {
|
| 1321 | 1321 |
void constraints() {
|
| 1322 | 1322 |
checkConcept<Base, _Digraph>(); |
| 1323 | 1323 |
typename _Digraph::Node node_a, node_b; |
| 1324 | 1324 |
node_a = digraph.addNode(); |
| 1325 | 1325 |
node_b = digraph.addNode(); |
| 1326 | 1326 |
typename _Digraph::Arc arc; |
| 1327 | 1327 |
arc = digraph.addArc(node_a, node_b); |
| 1328 | 1328 |
} |
| 1329 | 1329 |
|
| 1330 | 1330 |
_Digraph& digraph; |
| 1331 | 1331 |
}; |
| 1332 | 1332 |
}; |
| 1333 | 1333 |
|
| 1334 | 1334 |
/// \brief Skeleton class for extendable undirected graphs. |
| 1335 | 1335 |
/// |
| 1336 | 1336 |
/// This class describes the interface of extendable undirected graphs. |
| 1337 | 1337 |
/// It extends \ref BaseGraphComponent with functions for adding |
| 1338 | 1338 |
/// nodes and edges to the graph. |
| 1339 | 1339 |
/// This concept requires \ref AlterableGraphComponent. |
| 1340 | 1340 |
template <typename BAS = BaseGraphComponent> |
| 1341 | 1341 |
class ExtendableGraphComponent : public BAS {
|
| 1342 | 1342 |
public: |
| 1343 | 1343 |
|
| 1344 | 1344 |
typedef BAS Base; |
| 1345 | 1345 |
typedef typename Base::Node Node; |
| 1346 | 1346 |
typedef typename Base::Edge Edge; |
| 1347 | 1347 |
|
| 1348 | 1348 |
/// \brief Add a new node to the digraph. |
| 1349 | 1349 |
/// |
| 1350 | 1350 |
/// This function adds a new node to the digraph. |
| 1351 | 1351 |
Node addNode() {
|
| 1352 | 1352 |
return INVALID; |
| 1353 | 1353 |
} |
| 1354 | 1354 |
|
| 1355 | 1355 |
/// \brief Add a new edge connecting the given two nodes. |
| 1356 | 1356 |
/// |
| 1357 | 1357 |
/// This function adds a new edge connecting the given two nodes |
| 1358 | 1358 |
/// of the graph. |
| 1359 | 1359 |
Edge addEdge(const Node&, const Node&) {
|
| 1360 | 1360 |
return INVALID; |
| 1361 | 1361 |
} |
| 1362 | 1362 |
|
| 1363 | 1363 |
template <typename _Graph> |
| 1364 | 1364 |
struct Constraints {
|
| 1365 | 1365 |
void constraints() {
|
| 1366 | 1366 |
checkConcept<Base, _Graph>(); |
| 1367 | 1367 |
typename _Graph::Node node_a, node_b; |
| 1368 | 1368 |
node_a = graph.addNode(); |
| 1369 | 1369 |
node_b = graph.addNode(); |
| 1370 | 1370 |
typename _Graph::Edge edge; |
| 1371 | 1371 |
edge = graph.addEdge(node_a, node_b); |
| 1372 | 1372 |
} |
| 1373 | 1373 |
|
| 1374 | 1374 |
_Graph& graph; |
| 1375 | 1375 |
}; |
| 1376 | 1376 |
}; |
| 1377 | 1377 |
|
| 1378 | 1378 |
/// \brief Skeleton class for erasable directed graphs. |
| 1379 | 1379 |
/// |
| 1380 | 1380 |
/// This class describes the interface of erasable directed graphs. |
| 1381 | 1381 |
/// It extends \ref BaseDigraphComponent with functions for removing |
| 1382 | 1382 |
/// nodes and arcs from the digraph. |
| 1383 | 1383 |
/// This concept requires \ref AlterableDigraphComponent. |
| 1384 | 1384 |
template <typename BAS = BaseDigraphComponent> |
| 1385 | 1385 |
class ErasableDigraphComponent : public BAS {
|
| 1386 | 1386 |
public: |
| 1387 | 1387 |
|
| 1388 | 1388 |
typedef BAS Base; |
| 1389 | 1389 |
typedef typename Base::Node Node; |
| 1390 | 1390 |
typedef typename Base::Arc Arc; |
| 1391 | 1391 |
|
| 1392 | 1392 |
/// \brief Erase a node from the digraph. |
| 1393 | 1393 |
/// |
| 1394 | 1394 |
/// This function erases the given node from the digraph and all arcs |
| 1395 | 1395 |
/// connected to the node. |
| 1396 | 1396 |
void erase(const Node&) {}
|
| 1397 | 1397 |
|
| 1398 | 1398 |
/// \brief Erase an arc from the digraph. |
| 1399 | 1399 |
/// |
| 1400 | 1400 |
/// This function erases the given arc from the digraph. |
| 1401 | 1401 |
void erase(const Arc&) {}
|
| 1402 | 1402 |
|
| 1403 | 1403 |
template <typename _Digraph> |
| 1404 | 1404 |
struct Constraints {
|
| 1405 | 1405 |
void constraints() {
|
| 1406 | 1406 |
checkConcept<Base, _Digraph>(); |
| 1407 | 1407 |
const typename _Digraph::Node node(INVALID); |
| 1408 | 1408 |
digraph.erase(node); |
| 1409 | 1409 |
const typename _Digraph::Arc arc(INVALID); |
| 1410 | 1410 |
digraph.erase(arc); |
| 1411 | 1411 |
} |
| 1412 | 1412 |
|
| 1413 | 1413 |
_Digraph& digraph; |
| 1414 | 1414 |
}; |
| 1415 | 1415 |
}; |
| 1416 | 1416 |
|
| 1417 | 1417 |
/// \brief Skeleton class for erasable undirected graphs. |
| 1418 | 1418 |
/// |
| 1419 | 1419 |
/// This class describes the interface of erasable undirected graphs. |
| 1420 | 1420 |
/// It extends \ref BaseGraphComponent with functions for removing |
| 1421 | 1421 |
/// nodes and edges from the graph. |
| 1422 | 1422 |
/// This concept requires \ref AlterableGraphComponent. |
| 1423 | 1423 |
template <typename BAS = BaseGraphComponent> |
| 1424 | 1424 |
class ErasableGraphComponent : public BAS {
|
| 1425 | 1425 |
public: |
| 1426 | 1426 |
|
| 1427 | 1427 |
typedef BAS Base; |
| 1428 | 1428 |
typedef typename Base::Node Node; |
| 1429 | 1429 |
typedef typename Base::Edge Edge; |
| 1430 | 1430 |
|
| 1431 | 1431 |
/// \brief Erase a node from the graph. |
| 1432 | 1432 |
/// |
| 1433 | 1433 |
/// This function erases the given node from the graph and all edges |
| 1434 | 1434 |
/// connected to the node. |
| 1435 | 1435 |
void erase(const Node&) {}
|
| 1436 | 1436 |
|
| 1437 | 1437 |
/// \brief Erase an edge from the digraph. |
| 1438 | 1438 |
/// |
| 1439 | 1439 |
/// This function erases the given edge from the digraph. |
| 1440 | 1440 |
void erase(const Edge&) {}
|
| 1441 | 1441 |
|
| 1442 | 1442 |
template <typename _Graph> |
| 1443 | 1443 |
struct Constraints {
|
| 1444 | 1444 |
void constraints() {
|
| 1445 | 1445 |
checkConcept<Base, _Graph>(); |
| 1446 | 1446 |
const typename _Graph::Node node(INVALID); |
| 1447 | 1447 |
graph.erase(node); |
| 1448 | 1448 |
const typename _Graph::Edge edge(INVALID); |
| 1449 | 1449 |
graph.erase(edge); |
| 1450 | 1450 |
} |
| 1451 | 1451 |
|
| 1452 | 1452 |
_Graph& graph; |
| 1453 | 1453 |
}; |
| 1454 | 1454 |
}; |
| 1455 | 1455 |
|
| 1456 | 1456 |
/// \brief Skeleton class for clearable directed graphs. |
| 1457 | 1457 |
/// |
| 1458 | 1458 |
/// This class describes the interface of clearable directed graphs. |
| 1459 | 1459 |
/// It extends \ref BaseDigraphComponent with a function for clearing |
| 1460 | 1460 |
/// the digraph. |
| 1461 | 1461 |
/// This concept requires \ref AlterableDigraphComponent. |
| 1462 | 1462 |
template <typename BAS = BaseDigraphComponent> |
| 1463 | 1463 |
class ClearableDigraphComponent : public BAS {
|
| 1464 | 1464 |
public: |
| 1465 | 1465 |
|
| 1466 | 1466 |
typedef BAS Base; |
| 1467 | 1467 |
|
| 1468 | 1468 |
/// \brief Erase all nodes and arcs from the digraph. |
| 1469 | 1469 |
/// |
| 1470 | 1470 |
/// This function erases all nodes and arcs from the digraph. |
| 1471 | 1471 |
void clear() {}
|
| 1472 | 1472 |
|
| 1473 | 1473 |
template <typename _Digraph> |
| 1474 | 1474 |
struct Constraints {
|
| 1475 | 1475 |
void constraints() {
|
| 1476 | 1476 |
checkConcept<Base, _Digraph>(); |
| 1477 | 1477 |
digraph.clear(); |
| 1478 | 1478 |
} |
| 1479 | 1479 |
|
| 1480 | 1480 |
_Digraph& digraph; |
| 1481 | 1481 |
}; |
| 1482 | 1482 |
}; |
| 1483 | 1483 |
|
| 1484 | 1484 |
/// \brief Skeleton class for clearable undirected graphs. |
| 1485 | 1485 |
/// |
| 1486 | 1486 |
/// This class describes the interface of clearable undirected graphs. |
| 1487 | 1487 |
/// It extends \ref BaseGraphComponent with a function for clearing |
| 1488 | 1488 |
/// the graph. |
| 1489 | 1489 |
/// This concept requires \ref AlterableGraphComponent. |
| 1490 | 1490 |
template <typename BAS = BaseGraphComponent> |
| 1491 | 1491 |
class ClearableGraphComponent : public ClearableDigraphComponent<BAS> {
|
| 1492 | 1492 |
public: |
| 1493 | 1493 |
|
| 1494 | 1494 |
typedef BAS Base; |
| 1495 | 1495 |
|
| 1496 | 1496 |
/// \brief Erase all nodes and edges from the graph. |
| 1497 | 1497 |
/// |
| 1498 | 1498 |
/// This function erases all nodes and edges from the graph. |
| 1499 | 1499 |
void clear() {}
|
| 1500 | 1500 |
|
| 1501 | 1501 |
template <typename _Graph> |
| 1502 | 1502 |
struct Constraints {
|
| 1503 | 1503 |
void constraints() {
|
| 1504 | 1504 |
checkConcept<Base, _Graph>(); |
| 1505 | 1505 |
graph.clear(); |
| 1506 | 1506 |
} |
| 1507 | 1507 |
|
| 1508 | 1508 |
_Graph& graph; |
| 1509 | 1509 |
}; |
| 1510 | 1510 |
}; |
| 1511 | 1511 |
|
| 1512 | 1512 |
} |
| 1513 | 1513 |
|
| 1514 | 1514 |
} |
| 1515 | 1515 |
|
| 1516 | 1516 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 |
#ifndef LEMON_CONCEPTS_HEAP_H |
|
| 20 |
#define LEMON_CONCEPTS_HEAP_H |
|
| 21 |
|
|
| 19 | 22 |
///\ingroup concept |
| 20 | 23 |
///\file |
| 21 | 24 |
///\brief The concept of heaps. |
| 22 | 25 |
|
| 23 |
#ifndef LEMON_CONCEPTS_HEAP_H |
|
| 24 |
#define LEMON_CONCEPTS_HEAP_H |
|
| 25 |
|
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concept_check.h> |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
namespace concepts {
|
| 32 | 32 |
|
| 33 | 33 |
/// \addtogroup concept |
| 34 | 34 |
/// @{
|
| 35 | 35 |
|
| 36 | 36 |
/// \brief The heap concept. |
| 37 | 37 |
/// |
| 38 |
/// Concept class describing the main interface of heaps. A \e heap |
|
| 39 |
/// is a data structure for storing items with specified values called |
|
| 40 |
/// \e priorities in such a way that finding the item with minimum |
|
| 41 |
/// priority is efficient. In a heap one can change the priority of an |
|
| 42 |
/// |
|
| 38 |
/// This concept class describes the main interface of heaps. |
|
| 39 |
/// The various \ref heaps "heap structures" are efficient |
|
| 40 |
/// implementations of the abstract data type \e priority \e queue. |
|
| 41 |
/// They store items with specified values called \e priorities |
|
| 42 |
/// in such a way that finding and removing the item with minimum |
|
| 43 |
/// priority are efficient. The basic operations are adding and |
|
| 44 |
/// erasing items, changing the priority of an item, etc. |
|
| 43 | 45 |
/// |
| 44 |
/// \tparam PR Type of the priority of the items. |
|
| 45 |
/// \tparam IM A read and writable item map with int values, used |
|
| 46 |
/// Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
|
| 47 |
/// Any class that conforms to this concept can be used easily in such |
|
| 48 |
/// algorithms. |
|
| 49 |
/// |
|
| 50 |
/// \tparam PR Type of the priorities of the items. |
|
| 51 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 46 | 52 |
/// internally to handle the cross references. |
| 47 |
/// \tparam |
|
| 53 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 48 | 54 |
/// The default is \c std::less<PR>. |
| 49 | 55 |
#ifdef DOXYGEN |
| 50 |
template <typename PR, typename IM, typename |
|
| 56 |
template <typename PR, typename IM, typename CMP> |
|
| 51 | 57 |
#else |
| 52 |
template <typename PR, typename IM> |
|
| 58 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 53 | 59 |
#endif |
| 54 | 60 |
class Heap {
|
| 55 | 61 |
public: |
| 56 | 62 |
|
| 57 | 63 |
/// Type of the item-int map. |
| 58 | 64 |
typedef IM ItemIntMap; |
| 59 | 65 |
/// Type of the priorities. |
| 60 | 66 |
typedef PR Prio; |
| 61 | 67 |
/// Type of the items stored in the heap. |
| 62 | 68 |
typedef typename ItemIntMap::Key Item; |
| 63 | 69 |
|
| 64 | 70 |
/// \brief Type to represent the states of the items. |
| 65 | 71 |
/// |
| 66 | 72 |
/// Each item has a state associated to it. It can be "in heap", |
| 67 |
/// "pre heap" or "post heap". The later two are indifferent |
|
| 68 |
/// from the point of view of the heap, but may be useful for |
|
| 69 |
/// |
|
| 73 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 74 |
/// heap's point of view, but may be useful to the user. |
|
| 70 | 75 |
/// |
| 71 | 76 |
/// The item-int map must be initialized in such way that it assigns |
| 72 | 77 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 73 | 78 |
enum State {
|
| 74 | 79 |
IN_HEAP = 0, ///< = 0. The "in heap" state constant. |
| 75 |
PRE_HEAP = -1, ///< = -1. The "pre heap" state constant. |
|
| 76 |
POST_HEAP = -2 ///< = -2. The "post heap" state constant. |
|
| 80 |
PRE_HEAP = -1, ///< = -1. The "pre-heap" state constant. |
|
| 81 |
POST_HEAP = -2 ///< = -2. The "post-heap" state constant. |
|
| 77 | 82 |
}; |
| 78 | 83 |
|
| 79 |
/// \brief |
|
| 84 |
/// \brief Constructor. |
|
| 80 | 85 |
/// |
| 81 |
/// |
|
| 86 |
/// Constructor. |
|
| 82 | 87 |
/// \param map A map that assigns \c int values to keys of type |
| 83 | 88 |
/// \c Item. It is used internally by the heap implementations to |
| 84 | 89 |
/// handle the cross references. The assigned value must be |
| 85 |
/// \c PRE_HEAP (<tt>-1</tt>) for |
|
| 90 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 86 | 91 |
explicit Heap(ItemIntMap &map) {}
|
| 87 | 92 |
|
| 93 |
/// \brief Constructor. |
|
| 94 |
/// |
|
| 95 |
/// Constructor. |
|
| 96 |
/// \param map A map that assigns \c int values to keys of type |
|
| 97 |
/// \c Item. It is used internally by the heap implementations to |
|
| 98 |
/// handle the cross references. The assigned value must be |
|
| 99 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 100 |
/// \param comp The function object used for comparing the priorities. |
|
| 101 |
explicit Heap(ItemIntMap &map, const CMP &comp) {}
|
|
| 102 |
|
|
| 88 | 103 |
/// \brief The number of items stored in the heap. |
| 89 | 104 |
/// |
| 90 |
/// |
|
| 105 |
/// This function returns the number of items stored in the heap. |
|
| 91 | 106 |
int size() const { return 0; }
|
| 92 | 107 |
|
| 93 |
/// \brief |
|
| 108 |
/// \brief Check if the heap is empty. |
|
| 94 | 109 |
/// |
| 95 |
/// |
|
| 110 |
/// This function returns \c true if the heap is empty. |
|
| 96 | 111 |
bool empty() const { return false; }
|
| 97 | 112 |
|
| 98 |
/// \brief |
|
| 113 |
/// \brief Make the heap empty. |
|
| 99 | 114 |
/// |
| 100 |
/// Makes the heap empty. |
|
| 101 |
void clear(); |
|
| 115 |
/// This functon makes the heap empty. |
|
| 116 |
/// It does not change the cross reference map. If you want to reuse |
|
| 117 |
/// a heap that is not surely empty, you should first clear it and |
|
| 118 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 119 |
/// for each item. |
|
| 120 |
void clear() {}
|
|
| 102 | 121 |
|
| 103 |
/// \brief |
|
| 122 |
/// \brief Insert an item into the heap with the given priority. |
|
| 104 | 123 |
/// |
| 105 |
/// |
|
| 124 |
/// This function inserts the given item into the heap with the |
|
| 125 |
/// given priority. |
|
| 106 | 126 |
/// \param i The item to insert. |
| 107 | 127 |
/// \param p The priority of the item. |
| 128 |
/// \pre \e i must not be stored in the heap. |
|
| 108 | 129 |
void push(const Item &i, const Prio &p) {}
|
| 109 | 130 |
|
| 110 |
/// \brief |
|
| 131 |
/// \brief Return the item having minimum priority. |
|
| 111 | 132 |
/// |
| 112 |
/// |
|
| 133 |
/// This function returns the item having minimum priority. |
|
| 113 | 134 |
/// \pre The heap must be non-empty. |
| 114 | 135 |
Item top() const {}
|
| 115 | 136 |
|
| 116 | 137 |
/// \brief The minimum priority. |
| 117 | 138 |
/// |
| 118 |
/// |
|
| 139 |
/// This function returns the minimum priority. |
|
| 119 | 140 |
/// \pre The heap must be non-empty. |
| 120 | 141 |
Prio prio() const {}
|
| 121 | 142 |
|
| 122 |
/// \brief |
|
| 143 |
/// \brief Remove the item having minimum priority. |
|
| 123 | 144 |
/// |
| 124 |
/// |
|
| 145 |
/// This function removes the item having minimum priority. |
|
| 125 | 146 |
/// \pre The heap must be non-empty. |
| 126 | 147 |
void pop() {}
|
| 127 | 148 |
|
| 128 |
/// \brief |
|
| 149 |
/// \brief Remove the given item from the heap. |
|
| 129 | 150 |
/// |
| 130 |
/// |
|
| 151 |
/// This function removes the given item from the heap if it is |
|
| 152 |
/// already stored. |
|
| 131 | 153 |
/// \param i The item to delete. |
| 154 |
/// \pre \e i must be in the heap. |
|
| 132 | 155 |
void erase(const Item &i) {}
|
| 133 | 156 |
|
| 134 |
/// \brief The priority of |
|
| 157 |
/// \brief The priority of the given item. |
|
| 135 | 158 |
/// |
| 136 |
/// |
|
| 159 |
/// This function returns the priority of the given item. |
|
| 137 | 160 |
/// \param i The item. |
| 138 |
/// \pre \ |
|
| 161 |
/// \pre \e i must be in the heap. |
|
| 139 | 162 |
Prio operator[](const Item &i) const {}
|
| 140 | 163 |
|
| 141 |
/// \brief |
|
| 164 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 142 | 165 |
/// not stored in the heap. |
| 143 | 166 |
/// |
| 144 | 167 |
/// This method sets the priority of the given item if it is |
| 145 |
/// already stored in the heap. |
|
| 146 |
/// Otherwise it inserts the given item with the given priority. |
|
| 168 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 169 |
/// item into the heap with the given priority. |
|
| 147 | 170 |
/// |
| 148 | 171 |
/// \param i The item. |
| 149 | 172 |
/// \param p The priority. |
| 150 | 173 |
void set(const Item &i, const Prio &p) {}
|
| 151 | 174 |
|
| 152 |
/// \brief |
|
| 175 |
/// \brief Decrease the priority of an item to the given value. |
|
| 153 | 176 |
/// |
| 154 |
/// |
|
| 177 |
/// This function decreases the priority of an item to the given value. |
|
| 155 | 178 |
/// \param i The item. |
| 156 | 179 |
/// \param p The priority. |
| 157 |
/// \pre \ |
|
| 180 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 158 | 181 |
void decrease(const Item &i, const Prio &p) {}
|
| 159 | 182 |
|
| 160 |
/// \brief |
|
| 183 |
/// \brief Increase the priority of an item to the given value. |
|
| 161 | 184 |
/// |
| 162 |
/// |
|
| 185 |
/// This function increases the priority of an item to the given value. |
|
| 163 | 186 |
/// \param i The item. |
| 164 | 187 |
/// \param p The priority. |
| 165 |
/// \pre \ |
|
| 188 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 166 | 189 |
void increase(const Item &i, const Prio &p) {}
|
| 167 | 190 |
|
| 168 |
/// \brief Returns if an item is in, has already been in, or has |
|
| 169 |
/// never been in the heap. |
|
| 191 |
/// \brief Return the state of an item. |
|
| 170 | 192 |
/// |
| 171 | 193 |
/// This method returns \c PRE_HEAP if the given item has never |
| 172 | 194 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
| 173 | 195 |
/// and \c POST_HEAP otherwise. |
| 174 | 196 |
/// In the latter case it is possible that the item will get back |
| 175 | 197 |
/// to the heap again. |
| 176 | 198 |
/// \param i The item. |
| 177 | 199 |
State state(const Item &i) const {}
|
| 178 | 200 |
|
| 179 |
/// \brief |
|
| 201 |
/// \brief Set the state of an item in the heap. |
|
| 180 | 202 |
/// |
| 181 |
/// Sets the state of the given item in the heap. It can be used |
|
| 182 |
/// to manually clear the heap when it is important to achive the |
|
| 183 |
/// |
|
| 203 |
/// This function sets the state of the given item in the heap. |
|
| 204 |
/// It can be used to manually clear the heap when it is important |
|
| 205 |
/// to achive better time complexity. |
|
| 184 | 206 |
/// \param i The item. |
| 185 | 207 |
/// \param st The state. It should not be \c IN_HEAP. |
| 186 | 208 |
void state(const Item& i, State st) {}
|
| 187 | 209 |
|
| 188 | 210 |
|
| 189 | 211 |
template <typename _Heap> |
| 190 | 212 |
struct Constraints {
|
| 191 | 213 |
public: |
| 192 | 214 |
void constraints() {
|
| 193 | 215 |
typedef typename _Heap::Item OwnItem; |
| 194 | 216 |
typedef typename _Heap::Prio OwnPrio; |
| 195 | 217 |
typedef typename _Heap::State OwnState; |
| 196 | 218 |
|
| 197 | 219 |
Item item; |
| 198 | 220 |
Prio prio; |
| 199 | 221 |
item=Item(); |
| 200 | 222 |
prio=Prio(); |
| 201 | 223 |
ignore_unused_variable_warning(item); |
| 202 | 224 |
ignore_unused_variable_warning(prio); |
| 203 | 225 |
|
| 204 | 226 |
OwnItem own_item; |
| 205 | 227 |
OwnPrio own_prio; |
| 206 | 228 |
OwnState own_state; |
| 207 | 229 |
own_item=Item(); |
| 208 | 230 |
own_prio=Prio(); |
| 209 | 231 |
ignore_unused_variable_warning(own_item); |
| 210 | 232 |
ignore_unused_variable_warning(own_prio); |
| 211 | 233 |
ignore_unused_variable_warning(own_state); |
| 212 | 234 |
|
| 213 | 235 |
_Heap heap1(map); |
| 214 | 236 |
_Heap heap2 = heap1; |
| 215 | 237 |
ignore_unused_variable_warning(heap1); |
| 216 | 238 |
ignore_unused_variable_warning(heap2); |
| 217 | 239 |
|
| 218 | 240 |
int s = heap.size(); |
| 219 | 241 |
ignore_unused_variable_warning(s); |
| 220 | 242 |
bool e = heap.empty(); |
| 221 | 243 |
ignore_unused_variable_warning(e); |
| 222 | 244 |
|
| 223 | 245 |
prio = heap.prio(); |
| 224 | 246 |
item = heap.top(); |
| 225 | 247 |
prio = heap[item]; |
| 226 | 248 |
own_prio = heap.prio(); |
| 227 | 249 |
own_item = heap.top(); |
| 228 | 250 |
own_prio = heap[own_item]; |
| 229 | 251 |
|
| 230 | 252 |
heap.push(item, prio); |
| 231 | 253 |
heap.push(own_item, own_prio); |
| 232 | 254 |
heap.pop(); |
| 233 | 255 |
|
| 234 | 256 |
heap.set(item, prio); |
| 235 | 257 |
heap.decrease(item, prio); |
| 236 | 258 |
heap.increase(item, prio); |
| 237 | 259 |
heap.set(own_item, own_prio); |
| 238 | 260 |
heap.decrease(own_item, own_prio); |
| 239 | 261 |
heap.increase(own_item, own_prio); |
| 240 | 262 |
|
| 241 | 263 |
heap.erase(item); |
| 242 | 264 |
heap.erase(own_item); |
| 243 | 265 |
heap.clear(); |
| 244 | 266 |
|
| 245 | 267 |
own_state = heap.state(own_item); |
| 246 | 268 |
heap.state(own_item, own_state); |
| 247 | 269 |
|
| 248 | 270 |
own_state = _Heap::PRE_HEAP; |
| 249 | 271 |
own_state = _Heap::IN_HEAP; |
| 250 | 272 |
own_state = _Heap::POST_HEAP; |
| 251 | 273 |
} |
| 252 | 274 |
|
| 253 | 275 |
_Heap& heap; |
| 254 | 276 |
ItemIntMap& map; |
| 255 | 277 |
}; |
| 256 | 278 |
}; |
| 257 | 279 |
|
| 258 | 280 |
/// @} |
| 259 | 281 |
} // namespace lemon |
| 260 | 282 |
} |
| 261 | 283 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CONCEPTS_MAPS_H |
| 20 | 20 |
#define LEMON_CONCEPTS_MAPS_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/concept_check.h> |
| 24 | 24 |
|
| 25 | 25 |
///\ingroup map_concepts |
| 26 | 26 |
///\file |
| 27 | 27 |
///\brief The concept of maps. |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
namespace concepts {
|
| 32 | 32 |
|
| 33 | 33 |
/// \addtogroup map_concepts |
| 34 | 34 |
/// @{
|
| 35 | 35 |
|
| 36 | 36 |
/// Readable map concept |
| 37 | 37 |
|
| 38 | 38 |
/// Readable map concept. |
| 39 | 39 |
/// |
| 40 | 40 |
template<typename K, typename T> |
| 41 | 41 |
class ReadMap |
| 42 | 42 |
{
|
| 43 | 43 |
public: |
| 44 | 44 |
/// The key type of the map. |
| 45 | 45 |
typedef K Key; |
| 46 | 46 |
/// \brief The value type of the map. |
| 47 | 47 |
/// (The type of objects associated with the keys). |
| 48 | 48 |
typedef T Value; |
| 49 | 49 |
|
| 50 | 50 |
/// Returns the value associated with the given key. |
| 51 | 51 |
Value operator[](const Key &) const {
|
| 52 | 52 |
return *static_cast<Value *>(0); |
| 53 | 53 |
} |
| 54 | 54 |
|
| 55 | 55 |
template<typename _ReadMap> |
| 56 | 56 |
struct Constraints {
|
| 57 | 57 |
void constraints() {
|
| 58 | 58 |
Value val = m[key]; |
| 59 | 59 |
val = m[key]; |
| 60 | 60 |
typename _ReadMap::Value own_val = m[own_key]; |
| 61 | 61 |
own_val = m[own_key]; |
| 62 | 62 |
|
| 63 | 63 |
ignore_unused_variable_warning(key); |
| 64 | 64 |
ignore_unused_variable_warning(val); |
| 65 | 65 |
ignore_unused_variable_warning(own_key); |
| 66 | 66 |
ignore_unused_variable_warning(own_val); |
| 67 | 67 |
} |
| 68 | 68 |
const Key& key; |
| 69 | 69 |
const typename _ReadMap::Key& own_key; |
| 70 | 70 |
const _ReadMap& m; |
| 71 | 71 |
}; |
| 72 | 72 |
|
| 73 | 73 |
}; |
| 74 | 74 |
|
| 75 | 75 |
|
| 76 | 76 |
/// Writable map concept |
| 77 | 77 |
|
| 78 | 78 |
/// Writable map concept. |
| 79 | 79 |
/// |
| 80 | 80 |
template<typename K, typename T> |
| 81 | 81 |
class WriteMap |
| 82 | 82 |
{
|
| 83 | 83 |
public: |
| 84 | 84 |
/// The key type of the map. |
| 85 | 85 |
typedef K Key; |
| 86 | 86 |
/// \brief The value type of the map. |
| 87 | 87 |
/// (The type of objects associated with the keys). |
| 88 | 88 |
typedef T Value; |
| 89 | 89 |
|
| 90 | 90 |
/// Sets the value associated with the given key. |
| 91 | 91 |
void set(const Key &, const Value &) {}
|
| 92 | 92 |
|
| 93 | 93 |
/// Default constructor. |
| 94 | 94 |
WriteMap() {}
|
| 95 | 95 |
|
| 96 | 96 |
template <typename _WriteMap> |
| 97 | 97 |
struct Constraints {
|
| 98 | 98 |
void constraints() {
|
| 99 | 99 |
m.set(key, val); |
| 100 | 100 |
m.set(own_key, own_val); |
| 101 | 101 |
|
| 102 | 102 |
ignore_unused_variable_warning(key); |
| 103 | 103 |
ignore_unused_variable_warning(val); |
| 104 | 104 |
ignore_unused_variable_warning(own_key); |
| 105 | 105 |
ignore_unused_variable_warning(own_val); |
| 106 | 106 |
} |
| 107 | 107 |
const Key& key; |
| 108 | 108 |
const Value& val; |
| 109 | 109 |
const typename _WriteMap::Key& own_key; |
| 110 | 110 |
const typename _WriteMap::Value& own_val; |
| 111 | 111 |
_WriteMap& m; |
| 112 | 112 |
}; |
| 113 | 113 |
}; |
| 114 | 114 |
|
| 115 | 115 |
/// Read/writable map concept |
| 116 | 116 |
|
| 117 | 117 |
/// Read/writable map concept. |
| 118 | 118 |
/// |
| 119 | 119 |
template<typename K, typename T> |
| 120 | 120 |
class ReadWriteMap : public ReadMap<K,T>, |
| 121 | 121 |
public WriteMap<K,T> |
| 122 | 122 |
{
|
| 123 | 123 |
public: |
| 124 | 124 |
/// The key type of the map. |
| 125 | 125 |
typedef K Key; |
| 126 | 126 |
/// \brief The value type of the map. |
| 127 | 127 |
/// (The type of objects associated with the keys). |
| 128 | 128 |
typedef T Value; |
| 129 | 129 |
|
| 130 | 130 |
/// Returns the value associated with the given key. |
| 131 | 131 |
Value operator[](const Key &) const {
|
| 132 | 132 |
return *static_cast<Value *>(0); |
| 133 | 133 |
} |
| 134 | 134 |
|
| 135 | 135 |
/// Sets the value associated with the given key. |
| 136 | 136 |
void set(const Key &, const Value &) {}
|
| 137 | 137 |
|
| 138 | 138 |
template<typename _ReadWriteMap> |
| 139 | 139 |
struct Constraints {
|
| 140 | 140 |
void constraints() {
|
| 141 | 141 |
checkConcept<ReadMap<K, T>, _ReadWriteMap >(); |
| 142 | 142 |
checkConcept<WriteMap<K, T>, _ReadWriteMap >(); |
| 143 | 143 |
} |
| 144 | 144 |
}; |
| 145 | 145 |
}; |
| 146 | 146 |
|
| 147 | 147 |
|
| 148 | 148 |
/// Dereferable map concept |
| 149 | 149 |
|
| 150 | 150 |
/// Dereferable map concept. |
| 151 | 151 |
/// |
| 152 | 152 |
template<typename K, typename T, typename R, typename CR> |
| 153 | 153 |
class ReferenceMap : public ReadWriteMap<K,T> |
| 154 | 154 |
{
|
| 155 | 155 |
public: |
| 156 | 156 |
/// Tag for reference maps. |
| 157 | 157 |
typedef True ReferenceMapTag; |
| 158 | 158 |
/// The key type of the map. |
| 159 | 159 |
typedef K Key; |
| 160 | 160 |
/// \brief The value type of the map. |
| 161 | 161 |
/// (The type of objects associated with the keys). |
| 162 | 162 |
typedef T Value; |
| 163 | 163 |
/// The reference type of the map. |
| 164 | 164 |
typedef R Reference; |
| 165 | 165 |
/// The const reference type of the map. |
| 166 | 166 |
typedef CR ConstReference; |
| 167 | 167 |
|
| 168 | 168 |
public: |
| 169 | 169 |
|
| 170 | 170 |
/// Returns a reference to the value associated with the given key. |
| 171 | 171 |
Reference operator[](const Key &) {
|
| 172 | 172 |
return *static_cast<Value *>(0); |
| 173 | 173 |
} |
| 174 | 174 |
|
| 175 | 175 |
/// Returns a const reference to the value associated with the given key. |
| 176 | 176 |
ConstReference operator[](const Key &) const {
|
| 177 | 177 |
return *static_cast<Value *>(0); |
| 178 | 178 |
} |
| 179 | 179 |
|
| 180 | 180 |
/// Sets the value associated with the given key. |
| 181 | 181 |
void set(const Key &k,const Value &t) { operator[](k)=t; }
|
| 182 | 182 |
|
| 183 | 183 |
template<typename _ReferenceMap> |
| 184 | 184 |
struct Constraints {
|
| 185 |
|
|
| 185 |
typename enable_if<typename _ReferenceMap::ReferenceMapTag, void>::type |
|
| 186 |
constraints() {
|
|
| 186 | 187 |
checkConcept<ReadWriteMap<K, T>, _ReferenceMap >(); |
| 187 | 188 |
ref = m[key]; |
| 188 | 189 |
m[key] = val; |
| 189 | 190 |
m[key] = ref; |
| 190 | 191 |
m[key] = cref; |
| 191 | 192 |
own_ref = m[own_key]; |
| 192 | 193 |
m[own_key] = own_val; |
| 193 | 194 |
m[own_key] = own_ref; |
| 194 | 195 |
m[own_key] = own_cref; |
| 195 | 196 |
m[key] = m[own_key]; |
| 196 | 197 |
m[own_key] = m[key]; |
| 197 | 198 |
} |
| 198 | 199 |
const Key& key; |
| 199 | 200 |
Value& val; |
| 200 | 201 |
Reference ref; |
| 201 | 202 |
ConstReference cref; |
| 202 | 203 |
const typename _ReferenceMap::Key& own_key; |
| 203 | 204 |
typename _ReferenceMap::Value& own_val; |
| 204 | 205 |
typename _ReferenceMap::Reference own_ref; |
| 205 | 206 |
typename _ReferenceMap::ConstReference own_cref; |
| 206 | 207 |
_ReferenceMap& m; |
| 207 | 208 |
}; |
| 208 | 209 |
}; |
| 209 | 210 |
|
| 210 | 211 |
// @} |
| 211 | 212 |
|
| 212 | 213 |
} //namespace concepts |
| 213 | 214 |
|
| 214 | 215 |
} //namespace lemon |
| 215 | 216 |
|
| 216 | 217 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <iostream> |
| 20 | 20 |
#include <vector> |
| 21 | 21 |
#include <cstring> |
| 22 | 22 |
|
| 23 | 23 |
#include <lemon/cplex.h> |
| 24 | 24 |
|
| 25 | 25 |
extern "C" {
|
| 26 | 26 |
#include <ilcplex/cplex.h> |
| 27 | 27 |
} |
| 28 | 28 |
|
| 29 | 29 |
|
| 30 | 30 |
///\file |
| 31 | 31 |
///\brief Implementation of the LEMON-CPLEX lp solver interface. |
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
CplexEnv::LicenseError::LicenseError(int status) {
|
| 35 | 35 |
if (!CPXgeterrorstring(0, status, _message)) {
|
| 36 | 36 |
std::strcpy(_message, "Cplex unknown error"); |
| 37 | 37 |
} |
| 38 | 38 |
} |
| 39 | 39 |
|
| 40 | 40 |
CplexEnv::CplexEnv() {
|
| 41 | 41 |
int status; |
| 42 | 42 |
_cnt = new int; |
| 43 | 43 |
_env = CPXopenCPLEX(&status); |
| 44 | 44 |
if (_env == 0) {
|
| 45 | 45 |
delete _cnt; |
| 46 | 46 |
_cnt = 0; |
| 47 | 47 |
throw LicenseError(status); |
| 48 | 48 |
} |
| 49 | 49 |
} |
| 50 | 50 |
|
| 51 | 51 |
CplexEnv::CplexEnv(const CplexEnv& other) {
|
| 52 | 52 |
_env = other._env; |
| 53 | 53 |
_cnt = other._cnt; |
| 54 | 54 |
++(*_cnt); |
| 55 | 55 |
} |
| 56 | 56 |
|
| 57 | 57 |
CplexEnv& CplexEnv::operator=(const CplexEnv& other) {
|
| 58 | 58 |
_env = other._env; |
| 59 | 59 |
_cnt = other._cnt; |
| 60 | 60 |
++(*_cnt); |
| 61 | 61 |
return *this; |
| 62 | 62 |
} |
| 63 | 63 |
|
| 64 | 64 |
CplexEnv::~CplexEnv() {
|
| 65 | 65 |
--(*_cnt); |
| 66 | 66 |
if (*_cnt == 0) {
|
| 67 | 67 |
delete _cnt; |
| 68 | 68 |
CPXcloseCPLEX(&_env); |
| 69 | 69 |
} |
| 70 | 70 |
} |
| 71 | 71 |
|
| 72 | 72 |
CplexBase::CplexBase() : LpBase() {
|
| 73 | 73 |
int status; |
| 74 | 74 |
_prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem"); |
| 75 | 75 |
messageLevel(MESSAGE_NOTHING); |
| 76 | 76 |
} |
| 77 | 77 |
|
| 78 | 78 |
CplexBase::CplexBase(const CplexEnv& env) |
| 79 | 79 |
: LpBase(), _env(env) {
|
| 80 | 80 |
int status; |
| 81 | 81 |
_prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem"); |
| 82 | 82 |
messageLevel(MESSAGE_NOTHING); |
| 83 | 83 |
} |
| 84 | 84 |
|
| 85 | 85 |
CplexBase::CplexBase(const CplexBase& cplex) |
| 86 | 86 |
: LpBase() {
|
| 87 | 87 |
int status; |
| 88 | 88 |
_prob = CPXcloneprob(cplexEnv(), cplex._prob, &status); |
| 89 | 89 |
rows = cplex.rows; |
| 90 | 90 |
cols = cplex.cols; |
| 91 | 91 |
messageLevel(MESSAGE_NOTHING); |
| 92 | 92 |
} |
| 93 | 93 |
|
| 94 | 94 |
CplexBase::~CplexBase() {
|
| 95 | 95 |
CPXfreeprob(cplexEnv(),&_prob); |
| 96 | 96 |
} |
| 97 | 97 |
|
| 98 | 98 |
int CplexBase::_addCol() {
|
| 99 | 99 |
int i = CPXgetnumcols(cplexEnv(), _prob); |
| 100 | 100 |
double lb = -INF, ub = INF; |
| 101 | 101 |
CPXnewcols(cplexEnv(), _prob, 1, 0, &lb, &ub, 0, 0); |
| 102 | 102 |
return i; |
| 103 | 103 |
} |
| 104 | 104 |
|
| 105 | 105 |
|
| 106 | 106 |
int CplexBase::_addRow() {
|
| 107 | 107 |
int i = CPXgetnumrows(cplexEnv(), _prob); |
| 108 | 108 |
const double ub = INF; |
| 109 | 109 |
const char s = 'L'; |
| 110 | 110 |
CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0); |
| 111 | 111 |
return i; |
| 112 | 112 |
} |
| 113 | 113 |
|
| 114 |
int CplexBase::_addRow(Value lb, ExprIterator b, |
|
| 115 |
ExprIterator e, Value ub) {
|
|
| 116 |
int i = CPXgetnumrows(cplexEnv(), _prob); |
|
| 117 |
if (lb == -INF) {
|
|
| 118 |
const char s = 'L'; |
|
| 119 |
CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0); |
|
| 120 |
} else if (ub == INF) {
|
|
| 121 |
const char s = 'G'; |
|
| 122 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, 0, 0); |
|
| 123 |
} else if (lb == ub){
|
|
| 124 |
const char s = 'E'; |
|
| 125 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, 0, 0); |
|
| 126 |
} else {
|
|
| 127 |
const char s = 'R'; |
|
| 128 |
double len = ub - lb; |
|
| 129 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, &len, 0); |
|
| 130 |
} |
|
| 131 |
|
|
| 132 |
std::vector<int> indices; |
|
| 133 |
std::vector<int> rowlist; |
|
| 134 |
std::vector<Value> values; |
|
| 135 |
|
|
| 136 |
for(ExprIterator it=b; it!=e; ++it) {
|
|
| 137 |
indices.push_back(it->first); |
|
| 138 |
values.push_back(it->second); |
|
| 139 |
rowlist.push_back(i); |
|
| 140 |
} |
|
| 141 |
|
|
| 142 |
CPXchgcoeflist(cplexEnv(), _prob, values.size(), |
|
| 143 |
&rowlist.front(), &indices.front(), &values.front()); |
|
| 144 |
|
|
| 145 |
return i; |
|
| 146 |
} |
|
| 114 | 147 |
|
| 115 | 148 |
void CplexBase::_eraseCol(int i) {
|
| 116 | 149 |
CPXdelcols(cplexEnv(), _prob, i, i); |
| 117 | 150 |
} |
| 118 | 151 |
|
| 119 | 152 |
void CplexBase::_eraseRow(int i) {
|
| 120 | 153 |
CPXdelrows(cplexEnv(), _prob, i, i); |
| 121 | 154 |
} |
| 122 | 155 |
|
| 123 | 156 |
void CplexBase::_eraseColId(int i) {
|
| 124 | 157 |
cols.eraseIndex(i); |
| 125 | 158 |
cols.shiftIndices(i); |
| 126 | 159 |
} |
| 127 | 160 |
void CplexBase::_eraseRowId(int i) {
|
| 128 | 161 |
rows.eraseIndex(i); |
| 129 | 162 |
rows.shiftIndices(i); |
| 130 | 163 |
} |
| 131 | 164 |
|
| 132 | 165 |
void CplexBase::_getColName(int col, std::string &name) const {
|
| 133 | 166 |
int size; |
| 134 | 167 |
CPXgetcolname(cplexEnv(), _prob, 0, 0, 0, &size, col, col); |
| 135 | 168 |
if (size == 0) {
|
| 136 | 169 |
name.clear(); |
| 137 | 170 |
return; |
| 138 | 171 |
} |
| 139 | 172 |
|
| 140 | 173 |
size *= -1; |
| 141 | 174 |
std::vector<char> buf(size); |
| 142 | 175 |
char *cname; |
| 143 | 176 |
int tmp; |
| 144 | 177 |
CPXgetcolname(cplexEnv(), _prob, &cname, &buf.front(), size, |
| 145 | 178 |
&tmp, col, col); |
| 146 | 179 |
name = cname; |
| 147 | 180 |
} |
| 148 | 181 |
|
| 149 | 182 |
void CplexBase::_setColName(int col, const std::string &name) {
|
| 150 | 183 |
char *cname; |
| 151 | 184 |
cname = const_cast<char*>(name.c_str()); |
| 152 | 185 |
CPXchgcolname(cplexEnv(), _prob, 1, &col, &cname); |
| 153 | 186 |
} |
| 154 | 187 |
|
| 155 | 188 |
int CplexBase::_colByName(const std::string& name) const {
|
| 156 | 189 |
int index; |
| 157 | 190 |
if (CPXgetcolindex(cplexEnv(), _prob, |
| 158 | 191 |
const_cast<char*>(name.c_str()), &index) == 0) {
|
| 159 | 192 |
return index; |
| 160 | 193 |
} |
| 161 | 194 |
return -1; |
| 162 | 195 |
} |
| 163 | 196 |
|
| 164 | 197 |
void CplexBase::_getRowName(int row, std::string &name) const {
|
| 165 | 198 |
int size; |
| 166 | 199 |
CPXgetrowname(cplexEnv(), _prob, 0, 0, 0, &size, row, row); |
| 167 | 200 |
if (size == 0) {
|
| 168 | 201 |
name.clear(); |
| 169 | 202 |
return; |
| 170 | 203 |
} |
| 171 | 204 |
|
| 172 | 205 |
size *= -1; |
| 173 | 206 |
std::vector<char> buf(size); |
| 174 | 207 |
char *cname; |
| 175 | 208 |
int tmp; |
| 176 | 209 |
CPXgetrowname(cplexEnv(), _prob, &cname, &buf.front(), size, |
| 177 | 210 |
&tmp, row, row); |
| 178 | 211 |
name = cname; |
| 179 | 212 |
} |
| 180 | 213 |
|
| 181 | 214 |
void CplexBase::_setRowName(int row, const std::string &name) {
|
| 182 | 215 |
char *cname; |
| 183 | 216 |
cname = const_cast<char*>(name.c_str()); |
| 184 | 217 |
CPXchgrowname(cplexEnv(), _prob, 1, &row, &cname); |
| 185 | 218 |
} |
| 186 | 219 |
|
| 187 | 220 |
int CplexBase::_rowByName(const std::string& name) const {
|
| 188 | 221 |
int index; |
| 189 | 222 |
if (CPXgetrowindex(cplexEnv(), _prob, |
| 190 | 223 |
const_cast<char*>(name.c_str()), &index) == 0) {
|
| 191 | 224 |
return index; |
| 192 | 225 |
} |
| 193 | 226 |
return -1; |
| 194 | 227 |
} |
| 195 | 228 |
|
| 196 | 229 |
void CplexBase::_setRowCoeffs(int i, ExprIterator b, |
| 197 | 230 |
ExprIterator e) |
| 198 | 231 |
{
|
| 199 | 232 |
std::vector<int> indices; |
| 200 | 233 |
std::vector<int> rowlist; |
| 201 | 234 |
std::vector<Value> values; |
| 202 | 235 |
|
| 203 | 236 |
for(ExprIterator it=b; it!=e; ++it) {
|
| 204 | 237 |
indices.push_back(it->first); |
| 205 | 238 |
values.push_back(it->second); |
| 206 | 239 |
rowlist.push_back(i); |
| 207 | 240 |
} |
| 208 | 241 |
|
| 209 | 242 |
CPXchgcoeflist(cplexEnv(), _prob, values.size(), |
| 210 | 243 |
&rowlist.front(), &indices.front(), &values.front()); |
| 211 | 244 |
} |
| 212 | 245 |
|
| 213 | 246 |
void CplexBase::_getRowCoeffs(int i, InsertIterator b) const {
|
| 214 | 247 |
int tmp1, tmp2, tmp3, length; |
| 215 | 248 |
CPXgetrows(cplexEnv(), _prob, &tmp1, &tmp2, 0, 0, 0, &length, i, i); |
| 216 | 249 |
|
| 217 | 250 |
length = -length; |
| 218 | 251 |
std::vector<int> indices(length); |
| 219 | 252 |
std::vector<double> values(length); |
| 220 | 253 |
|
| 221 | 254 |
CPXgetrows(cplexEnv(), _prob, &tmp1, &tmp2, |
| 222 | 255 |
&indices.front(), &values.front(), |
| 223 | 256 |
length, &tmp3, i, i); |
| 224 | 257 |
|
| 225 | 258 |
for (int i = 0; i < length; ++i) {
|
| 226 | 259 |
*b = std::make_pair(indices[i], values[i]); |
| 227 | 260 |
++b; |
| 228 | 261 |
} |
| 229 | 262 |
} |
| 230 | 263 |
|
| 231 | 264 |
void CplexBase::_setColCoeffs(int i, ExprIterator b, ExprIterator e) {
|
| 232 | 265 |
std::vector<int> indices; |
| 233 | 266 |
std::vector<int> collist; |
| 234 | 267 |
std::vector<Value> values; |
| 235 | 268 |
|
| 236 | 269 |
for(ExprIterator it=b; it!=e; ++it) {
|
| 237 | 270 |
indices.push_back(it->first); |
| 238 | 271 |
values.push_back(it->second); |
| 239 | 272 |
collist.push_back(i); |
| 240 | 273 |
} |
| 241 | 274 |
|
| 242 | 275 |
CPXchgcoeflist(cplexEnv(), _prob, values.size(), |
| 243 | 276 |
&indices.front(), &collist.front(), &values.front()); |
| 244 | 277 |
} |
| 245 | 278 |
|
| 246 | 279 |
void CplexBase::_getColCoeffs(int i, InsertIterator b) const {
|
| 247 | 280 |
|
| 248 | 281 |
int tmp1, tmp2, tmp3, length; |
| 249 | 282 |
CPXgetcols(cplexEnv(), _prob, &tmp1, &tmp2, 0, 0, 0, &length, i, i); |
| 250 | 283 |
|
| 251 | 284 |
length = -length; |
| 252 | 285 |
std::vector<int> indices(length); |
| 253 | 286 |
std::vector<double> values(length); |
| 254 | 287 |
|
| 255 | 288 |
CPXgetcols(cplexEnv(), _prob, &tmp1, &tmp2, |
| 256 | 289 |
&indices.front(), &values.front(), |
| 257 | 290 |
length, &tmp3, i, i); |
| 258 | 291 |
|
| 259 | 292 |
for (int i = 0; i < length; ++i) {
|
| 260 | 293 |
*b = std::make_pair(indices[i], values[i]); |
| 261 | 294 |
++b; |
| 262 | 295 |
} |
| 263 | 296 |
|
| 264 | 297 |
} |
| 265 | 298 |
|
| 266 | 299 |
void CplexBase::_setCoeff(int row, int col, Value value) {
|
| 267 | 300 |
CPXchgcoef(cplexEnv(), _prob, row, col, value); |
| 268 | 301 |
} |
| 269 | 302 |
|
| 270 | 303 |
CplexBase::Value CplexBase::_getCoeff(int row, int col) const {
|
| 271 | 304 |
CplexBase::Value value; |
| 272 | 305 |
CPXgetcoef(cplexEnv(), _prob, row, col, &value); |
| 273 | 306 |
return value; |
| 274 | 307 |
} |
| 275 | 308 |
|
| 276 | 309 |
void CplexBase::_setColLowerBound(int i, Value value) {
|
| 277 | 310 |
const char s = 'L'; |
| 278 | 311 |
CPXchgbds(cplexEnv(), _prob, 1, &i, &s, &value); |
| 279 | 312 |
} |
| 280 | 313 |
|
| 281 | 314 |
CplexBase::Value CplexBase::_getColLowerBound(int i) const {
|
| 282 | 315 |
CplexBase::Value res; |
| 283 | 316 |
CPXgetlb(cplexEnv(), _prob, &res, i, i); |
| 284 | 317 |
return res <= -CPX_INFBOUND ? -INF : res; |
| 285 | 318 |
} |
| 286 | 319 |
|
| 287 | 320 |
void CplexBase::_setColUpperBound(int i, Value value) |
| 288 | 321 |
{
|
| 289 | 322 |
const char s = 'U'; |
| 290 | 323 |
CPXchgbds(cplexEnv(), _prob, 1, &i, &s, &value); |
| 291 | 324 |
} |
| 292 | 325 |
|
| 293 | 326 |
CplexBase::Value CplexBase::_getColUpperBound(int i) const {
|
| 294 | 327 |
CplexBase::Value res; |
| 295 | 328 |
CPXgetub(cplexEnv(), _prob, &res, i, i); |
| 296 | 329 |
return res >= CPX_INFBOUND ? INF : res; |
| 297 | 330 |
} |
| 298 | 331 |
|
| 299 | 332 |
CplexBase::Value CplexBase::_getRowLowerBound(int i) const {
|
| 300 | 333 |
char s; |
| 301 | 334 |
CPXgetsense(cplexEnv(), _prob, &s, i, i); |
| 302 | 335 |
CplexBase::Value res; |
| 303 | 336 |
|
| 304 | 337 |
switch (s) {
|
| 305 | 338 |
case 'G': |
| 306 | 339 |
case 'R': |
| 307 | 340 |
case 'E': |
| 308 | 341 |
CPXgetrhs(cplexEnv(), _prob, &res, i, i); |
| 309 | 342 |
return res <= -CPX_INFBOUND ? -INF : res; |
| 310 | 343 |
default: |
| 311 | 344 |
return -INF; |
| 312 | 345 |
} |
| 313 | 346 |
} |
| 314 | 347 |
|
| 315 | 348 |
CplexBase::Value CplexBase::_getRowUpperBound(int i) const {
|
| 316 | 349 |
char s; |
| 317 | 350 |
CPXgetsense(cplexEnv(), _prob, &s, i, i); |
| 318 | 351 |
CplexBase::Value res; |
| 319 | 352 |
|
| 320 | 353 |
switch (s) {
|
| 321 | 354 |
case 'L': |
| 322 | 355 |
case 'E': |
| 323 | 356 |
CPXgetrhs(cplexEnv(), _prob, &res, i, i); |
| 324 | 357 |
return res >= CPX_INFBOUND ? INF : res; |
| 325 | 358 |
case 'R': |
| 326 | 359 |
CPXgetrhs(cplexEnv(), _prob, &res, i, i); |
| 327 | 360 |
{
|
| 328 | 361 |
double rng; |
| 329 | 362 |
CPXgetrngval(cplexEnv(), _prob, &rng, i, i); |
| 330 | 363 |
res += rng; |
| 331 | 364 |
} |
| 332 | 365 |
return res >= CPX_INFBOUND ? INF : res; |
| 333 | 366 |
default: |
| 334 | 367 |
return INF; |
| 335 | 368 |
} |
| 336 | 369 |
} |
| 337 | 370 |
|
| 338 | 371 |
//This is easier to implement |
| 339 | 372 |
void CplexBase::_set_row_bounds(int i, Value lb, Value ub) {
|
| 340 | 373 |
if (lb == -INF) {
|
| 341 | 374 |
const char s = 'L'; |
| 342 | 375 |
CPXchgsense(cplexEnv(), _prob, 1, &i, &s); |
| 343 | 376 |
CPXchgrhs(cplexEnv(), _prob, 1, &i, &ub); |
| 344 | 377 |
} else if (ub == INF) {
|
| 345 | 378 |
const char s = 'G'; |
| 346 | 379 |
CPXchgsense(cplexEnv(), _prob, 1, &i, &s); |
| 347 | 380 |
CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb); |
| 348 | 381 |
} else if (lb == ub){
|
| 349 | 382 |
const char s = 'E'; |
| 350 | 383 |
CPXchgsense(cplexEnv(), _prob, 1, &i, &s); |
| 351 | 384 |
CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb); |
| 352 | 385 |
} else {
|
| 353 | 386 |
const char s = 'R'; |
| 354 | 387 |
CPXchgsense(cplexEnv(), _prob, 1, &i, &s); |
| 355 | 388 |
CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb); |
| 356 | 389 |
double len = ub - lb; |
| 357 | 390 |
CPXchgrngval(cplexEnv(), _prob, 1, &i, &len); |
| 358 | 391 |
} |
| 359 | 392 |
} |
| 360 | 393 |
|
| 361 | 394 |
void CplexBase::_setRowLowerBound(int i, Value lb) |
| 362 | 395 |
{
|
| 363 | 396 |
LEMON_ASSERT(lb != INF, "Invalid bound"); |
| 364 | 397 |
_set_row_bounds(i, lb, CplexBase::_getRowUpperBound(i)); |
| 365 | 398 |
} |
| 366 | 399 |
|
| 367 | 400 |
void CplexBase::_setRowUpperBound(int i, Value ub) |
| 368 | 401 |
{
|
| 369 | 402 |
|
| 370 | 403 |
LEMON_ASSERT(ub != -INF, "Invalid bound"); |
| 371 | 404 |
_set_row_bounds(i, CplexBase::_getRowLowerBound(i), ub); |
| 372 | 405 |
} |
| 373 | 406 |
|
| 374 | 407 |
void CplexBase::_setObjCoeffs(ExprIterator b, ExprIterator e) |
| 375 | 408 |
{
|
| 376 | 409 |
std::vector<int> indices; |
| 377 | 410 |
std::vector<Value> values; |
| 378 | 411 |
for(ExprIterator it=b; it!=e; ++it) {
|
| 379 | 412 |
indices.push_back(it->first); |
| 380 | 413 |
values.push_back(it->second); |
| 381 | 414 |
} |
| 382 | 415 |
CPXchgobj(cplexEnv(), _prob, values.size(), |
| 383 | 416 |
&indices.front(), &values.front()); |
| 384 | 417 |
|
| 385 | 418 |
} |
| 386 | 419 |
|
| 387 | 420 |
void CplexBase::_getObjCoeffs(InsertIterator b) const |
| 388 | 421 |
{
|
| 389 | 422 |
int num = CPXgetnumcols(cplexEnv(), _prob); |
| 390 | 423 |
std::vector<Value> x(num); |
| 391 | 424 |
|
| 392 | 425 |
CPXgetobj(cplexEnv(), _prob, &x.front(), 0, num - 1); |
| 393 | 426 |
for (int i = 0; i < num; ++i) {
|
| 394 | 427 |
if (x[i] != 0.0) {
|
| 395 | 428 |
*b = std::make_pair(i, x[i]); |
| 396 | 429 |
++b; |
| 397 | 430 |
} |
| 398 | 431 |
} |
| 399 | 432 |
} |
| 400 | 433 |
|
| 401 | 434 |
void CplexBase::_setObjCoeff(int i, Value obj_coef) |
| 402 | 435 |
{
|
| 403 | 436 |
CPXchgobj(cplexEnv(), _prob, 1, &i, &obj_coef); |
| 404 | 437 |
} |
| 405 | 438 |
|
| 406 | 439 |
CplexBase::Value CplexBase::_getObjCoeff(int i) const |
| 407 | 440 |
{
|
| 408 | 441 |
Value x; |
| 409 | 442 |
CPXgetobj(cplexEnv(), _prob, &x, i, i); |
| 410 | 443 |
return x; |
| 411 | 444 |
} |
| 412 | 445 |
|
| 413 | 446 |
void CplexBase::_setSense(CplexBase::Sense sense) {
|
| 414 | 447 |
switch (sense) {
|
| 415 | 448 |
case MIN: |
| 416 | 449 |
CPXchgobjsen(cplexEnv(), _prob, CPX_MIN); |
| 417 | 450 |
break; |
| 418 | 451 |
case MAX: |
| 419 | 452 |
CPXchgobjsen(cplexEnv(), _prob, CPX_MAX); |
| 420 | 453 |
break; |
| 421 | 454 |
} |
| 422 | 455 |
} |
| 423 | 456 |
|
| 424 | 457 |
CplexBase::Sense CplexBase::_getSense() const {
|
| 425 | 458 |
switch (CPXgetobjsen(cplexEnv(), _prob)) {
|
| 426 | 459 |
case CPX_MIN: |
| 427 | 460 |
return MIN; |
| 428 | 461 |
case CPX_MAX: |
| 429 | 462 |
return MAX; |
| 430 | 463 |
default: |
| 431 | 464 |
LEMON_ASSERT(false, "Invalid sense"); |
| 432 | 465 |
return CplexBase::Sense(); |
| 433 | 466 |
} |
| 434 | 467 |
} |
| 435 | 468 |
|
| 436 | 469 |
void CplexBase::_clear() {
|
| 437 | 470 |
CPXfreeprob(cplexEnv(),&_prob); |
| 438 | 471 |
int status; |
| 439 | 472 |
_prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem"); |
| 440 | 473 |
rows.clear(); |
| 441 | 474 |
cols.clear(); |
| 442 | 475 |
} |
| 443 | 476 |
|
| 444 | 477 |
void CplexBase::_messageLevel(MessageLevel level) {
|
| 445 | 478 |
switch (level) {
|
| 446 | 479 |
case MESSAGE_NOTHING: |
| 447 | 480 |
_message_enabled = false; |
| 448 | 481 |
break; |
| 449 | 482 |
case MESSAGE_ERROR: |
| 450 | 483 |
case MESSAGE_WARNING: |
| 451 | 484 |
case MESSAGE_NORMAL: |
| 452 | 485 |
case MESSAGE_VERBOSE: |
| 453 | 486 |
_message_enabled = true; |
| 454 | 487 |
break; |
| 455 | 488 |
} |
| 456 | 489 |
} |
| 457 | 490 |
|
| 458 | 491 |
void CplexBase::_applyMessageLevel() {
|
| 459 | 492 |
CPXsetintparam(cplexEnv(), CPX_PARAM_SCRIND, |
| 460 | 493 |
_message_enabled ? CPX_ON : CPX_OFF); |
| 461 | 494 |
} |
| 462 | 495 |
|
| 463 | 496 |
// CplexLp members |
| 464 | 497 |
|
| 465 | 498 |
CplexLp::CplexLp() |
| 466 | 499 |
: LpBase(), LpSolver(), CplexBase() {}
|
| 467 | 500 |
|
| 468 | 501 |
CplexLp::CplexLp(const CplexEnv& env) |
| 469 | 502 |
: LpBase(), LpSolver(), CplexBase(env) {}
|
| 470 | 503 |
|
| 471 | 504 |
CplexLp::CplexLp(const CplexLp& other) |
| 472 | 505 |
: LpBase(), LpSolver(), CplexBase(other) {}
|
| 473 | 506 |
|
| 474 | 507 |
CplexLp::~CplexLp() {}
|
| 475 | 508 |
|
| 476 | 509 |
CplexLp* CplexLp::newSolver() const { return new CplexLp; }
|
| 477 | 510 |
CplexLp* CplexLp::cloneSolver() const {return new CplexLp(*this); }
|
| 478 | 511 |
|
| 479 | 512 |
const char* CplexLp::_solverName() const { return "CplexLp"; }
|
| 480 | 513 |
|
| 481 | 514 |
void CplexLp::_clear_temporals() {
|
| 482 | 515 |
_col_status.clear(); |
| 483 | 516 |
_row_status.clear(); |
| 484 | 517 |
_primal_ray.clear(); |
| 485 | 518 |
_dual_ray.clear(); |
| 486 | 519 |
} |
| 487 | 520 |
|
| 488 | 521 |
// The routine returns zero unless an error occurred during the |
| 489 | 522 |
// optimization. Examples of errors include exhausting available |
| 490 | 523 |
// memory (CPXERR_NO_MEMORY) or encountering invalid data in the |
| 491 | 524 |
// CPLEX problem object (CPXERR_NO_PROBLEM). Exceeding a |
| 492 | 525 |
// user-specified CPLEX limit, or proving the model infeasible or |
| 493 | 526 |
// unbounded, are not considered errors. Note that a zero return |
| 494 | 527 |
// value does not necessarily mean that a solution exists. Use query |
| 495 | 528 |
// routines CPXsolninfo, CPXgetstat, and CPXsolution to obtain |
| 496 | 529 |
// further information about the status of the optimization. |
| 497 | 530 |
CplexLp::SolveExitStatus CplexLp::convertStatus(int status) {
|
| 498 | 531 |
#if CPX_VERSION >= 800 |
| 499 | 532 |
if (status == 0) {
|
| 500 | 533 |
switch (CPXgetstat(cplexEnv(), _prob)) {
|
| 501 | 534 |
case CPX_STAT_OPTIMAL: |
| 502 | 535 |
case CPX_STAT_INFEASIBLE: |
| 503 | 536 |
case CPX_STAT_UNBOUNDED: |
| 504 | 537 |
return SOLVED; |
| 505 | 538 |
default: |
| 506 | 539 |
return UNSOLVED; |
| 507 | 540 |
} |
| 508 | 541 |
} else {
|
| 509 | 542 |
return UNSOLVED; |
| 510 | 543 |
} |
| 511 | 544 |
#else |
| 512 | 545 |
if (status == 0) {
|
| 513 | 546 |
//We want to exclude some cases |
| 514 | 547 |
switch (CPXgetstat(cplexEnv(), _prob)) {
|
| 515 | 548 |
case CPX_OBJ_LIM: |
| 516 | 549 |
case CPX_IT_LIM_FEAS: |
| 517 | 550 |
case CPX_IT_LIM_INFEAS: |
| 518 | 551 |
case CPX_TIME_LIM_FEAS: |
| 519 | 552 |
case CPX_TIME_LIM_INFEAS: |
| 520 | 553 |
return UNSOLVED; |
| 521 | 554 |
default: |
| 522 | 555 |
return SOLVED; |
| 523 | 556 |
} |
| 524 | 557 |
} else {
|
| 525 | 558 |
return UNSOLVED; |
| 526 | 559 |
} |
| 527 | 560 |
#endif |
| 528 | 561 |
} |
| 529 | 562 |
|
| 530 | 563 |
CplexLp::SolveExitStatus CplexLp::_solve() {
|
| 531 | 564 |
_clear_temporals(); |
| 532 | 565 |
_applyMessageLevel(); |
| 533 | 566 |
return convertStatus(CPXlpopt(cplexEnv(), _prob)); |
| 534 | 567 |
} |
| 535 | 568 |
|
| 536 | 569 |
CplexLp::SolveExitStatus CplexLp::solvePrimal() {
|
| 537 | 570 |
_clear_temporals(); |
| 538 | 571 |
_applyMessageLevel(); |
| 539 | 572 |
return convertStatus(CPXprimopt(cplexEnv(), _prob)); |
| 540 | 573 |
} |
| 541 | 574 |
|
| 542 | 575 |
CplexLp::SolveExitStatus CplexLp::solveDual() {
|
| 543 | 576 |
_clear_temporals(); |
| 544 | 577 |
_applyMessageLevel(); |
| 545 | 578 |
return convertStatus(CPXdualopt(cplexEnv(), _prob)); |
| 546 | 579 |
} |
| 547 | 580 |
|
| 548 | 581 |
CplexLp::SolveExitStatus CplexLp::solveBarrier() {
|
| 549 | 582 |
_clear_temporals(); |
| 550 | 583 |
_applyMessageLevel(); |
| 551 | 584 |
return convertStatus(CPXbaropt(cplexEnv(), _prob)); |
| 552 | 585 |
} |
| 553 | 586 |
|
| 554 | 587 |
CplexLp::Value CplexLp::_getPrimal(int i) const {
|
| 555 | 588 |
Value x; |
| 556 | 589 |
CPXgetx(cplexEnv(), _prob, &x, i, i); |
| 557 | 590 |
return x; |
| 558 | 591 |
} |
| 559 | 592 |
|
| 560 | 593 |
CplexLp::Value CplexLp::_getDual(int i) const {
|
| 561 | 594 |
Value y; |
| 562 | 595 |
CPXgetpi(cplexEnv(), _prob, &y, i, i); |
| 563 | 596 |
return y; |
| 564 | 597 |
} |
| 565 | 598 |
|
| 566 | 599 |
CplexLp::Value CplexLp::_getPrimalValue() const {
|
| 567 | 600 |
Value objval; |
| 568 | 601 |
CPXgetobjval(cplexEnv(), _prob, &objval); |
| 569 | 602 |
return objval; |
| 570 | 603 |
} |
| 571 | 604 |
|
| 572 | 605 |
CplexLp::VarStatus CplexLp::_getColStatus(int i) const {
|
| 573 | 606 |
if (_col_status.empty()) {
|
| 574 | 607 |
_col_status.resize(CPXgetnumcols(cplexEnv(), _prob)); |
| 575 | 608 |
CPXgetbase(cplexEnv(), _prob, &_col_status.front(), 0); |
| 576 | 609 |
} |
| 577 | 610 |
switch (_col_status[i]) {
|
| 578 | 611 |
case CPX_BASIC: |
| 579 | 612 |
return BASIC; |
| 580 | 613 |
case CPX_FREE_SUPER: |
| 581 | 614 |
return FREE; |
| 582 | 615 |
case CPX_AT_LOWER: |
| 583 | 616 |
return LOWER; |
| 584 | 617 |
case CPX_AT_UPPER: |
| 585 | 618 |
return UPPER; |
| 586 | 619 |
default: |
| 587 | 620 |
LEMON_ASSERT(false, "Wrong column status"); |
| 588 | 621 |
return CplexLp::VarStatus(); |
| 589 | 622 |
} |
| 590 | 623 |
} |
| 591 | 624 |
|
| 592 | 625 |
CplexLp::VarStatus CplexLp::_getRowStatus(int i) const {
|
| 593 | 626 |
if (_row_status.empty()) {
|
| 594 | 627 |
_row_status.resize(CPXgetnumrows(cplexEnv(), _prob)); |
| 595 | 628 |
CPXgetbase(cplexEnv(), _prob, 0, &_row_status.front()); |
| 596 | 629 |
} |
| 597 | 630 |
switch (_row_status[i]) {
|
| 598 | 631 |
case CPX_BASIC: |
| 599 | 632 |
return BASIC; |
| 600 | 633 |
case CPX_AT_LOWER: |
| 601 | 634 |
{
|
| 602 | 635 |
char s; |
| 603 | 636 |
CPXgetsense(cplexEnv(), _prob, &s, i, i); |
| 604 | 637 |
return s != 'L' ? LOWER : UPPER; |
| 605 | 638 |
} |
| 606 | 639 |
case CPX_AT_UPPER: |
| 607 | 640 |
return UPPER; |
| 608 | 641 |
default: |
| 609 | 642 |
LEMON_ASSERT(false, "Wrong row status"); |
| 610 | 643 |
return CplexLp::VarStatus(); |
| 611 | 644 |
} |
| 612 | 645 |
} |
| 613 | 646 |
|
| 614 | 647 |
CplexLp::Value CplexLp::_getPrimalRay(int i) const {
|
| 615 | 648 |
if (_primal_ray.empty()) {
|
| 616 | 649 |
_primal_ray.resize(CPXgetnumcols(cplexEnv(), _prob)); |
| 617 | 650 |
CPXgetray(cplexEnv(), _prob, &_primal_ray.front()); |
| 618 | 651 |
} |
| 619 | 652 |
return _primal_ray[i]; |
| 620 | 653 |
} |
| 621 | 654 |
|
| 622 | 655 |
CplexLp::Value CplexLp::_getDualRay(int i) const {
|
| 623 | 656 |
if (_dual_ray.empty()) {
|
| 624 | 657 |
|
| 625 | 658 |
} |
| 626 | 659 |
return _dual_ray[i]; |
| 627 | 660 |
} |
| 628 | 661 |
|
| 629 | 662 |
// Cplex 7.0 status values |
| 630 | 663 |
// This table lists the statuses, returned by the CPXgetstat() |
| 631 | 664 |
// routine, for solutions to LP problems or mixed integer problems. If |
| 632 | 665 |
// no solution exists, the return value is zero. |
| 633 | 666 |
|
| 634 | 667 |
// For Simplex, Barrier |
| 635 | 668 |
// 1 CPX_OPTIMAL |
| 636 | 669 |
// Optimal solution found |
| 637 | 670 |
// 2 CPX_INFEASIBLE |
| 638 | 671 |
// Problem infeasible |
| 639 | 672 |
// 3 CPX_UNBOUNDED |
| 640 | 673 |
// Problem unbounded |
| 641 | 674 |
// 4 CPX_OBJ_LIM |
| 642 | 675 |
// Objective limit exceeded in Phase II |
| 643 | 676 |
// 5 CPX_IT_LIM_FEAS |
| 644 | 677 |
// Iteration limit exceeded in Phase II |
| 645 | 678 |
// 6 CPX_IT_LIM_INFEAS |
| 646 | 679 |
// Iteration limit exceeded in Phase I |
| 647 | 680 |
// 7 CPX_TIME_LIM_FEAS |
| 648 | 681 |
// Time limit exceeded in Phase II |
| 649 | 682 |
// 8 CPX_TIME_LIM_INFEAS |
| 650 | 683 |
// Time limit exceeded in Phase I |
| 651 | 684 |
// 9 CPX_NUM_BEST_FEAS |
| 652 | 685 |
// Problem non-optimal, singularities in Phase II |
| 653 | 686 |
// 10 CPX_NUM_BEST_INFEAS |
| 654 | 687 |
// Problem non-optimal, singularities in Phase I |
| 655 | 688 |
// 11 CPX_OPTIMAL_INFEAS |
| 656 | 689 |
// Optimal solution found, unscaled infeasibilities |
| 657 | 690 |
// 12 CPX_ABORT_FEAS |
| 658 | 691 |
// Aborted in Phase II |
| 659 | 692 |
// 13 CPX_ABORT_INFEAS |
| 660 | 693 |
// Aborted in Phase I |
| 661 | 694 |
// 14 CPX_ABORT_DUAL_INFEAS |
| 662 | 695 |
// Aborted in barrier, dual infeasible |
| 663 | 696 |
// 15 CPX_ABORT_PRIM_INFEAS |
| 664 | 697 |
// Aborted in barrier, primal infeasible |
| 665 | 698 |
// 16 CPX_ABORT_PRIM_DUAL_INFEAS |
| 666 | 699 |
// Aborted in barrier, primal and dual infeasible |
| 667 | 700 |
// 17 CPX_ABORT_PRIM_DUAL_FEAS |
| 668 | 701 |
// Aborted in barrier, primal and dual feasible |
| 669 | 702 |
// 18 CPX_ABORT_CROSSOVER |
| 670 | 703 |
// Aborted in crossover |
| 671 | 704 |
// 19 CPX_INForUNBD |
| 672 | 705 |
// Infeasible or unbounded |
| 673 | 706 |
// 20 CPX_PIVOT |
| 674 | 707 |
// User pivot used |
| 675 | 708 |
// |
| 676 | 709 |
// Pending return values |
| 677 | 710 |
// ??case CPX_ABORT_DUAL_INFEAS |
| 678 | 711 |
// ??case CPX_ABORT_CROSSOVER |
| 679 | 712 |
// ??case CPX_INForUNBD |
| 680 | 713 |
// ??case CPX_PIVOT |
| 681 | 714 |
|
| 682 | 715 |
//Some more interesting stuff: |
| 683 | 716 |
|
| 684 | 717 |
// CPX_PARAM_PROBMETHOD 1062 int LPMETHOD |
| 685 | 718 |
// 0 Automatic |
| 686 | 719 |
// 1 Primal Simplex |
| 687 | 720 |
// 2 Dual Simplex |
| 688 | 721 |
// 3 Network Simplex |
| 689 | 722 |
// 4 Standard Barrier |
| 690 | 723 |
// Default: 0 |
| 691 | 724 |
// Description: Method for linear optimization. |
| 692 | 725 |
// Determines which algorithm is used when CPXlpopt() (or "optimize" |
| 693 | 726 |
// in the Interactive Optimizer) is called. Currently the behavior of |
| 694 | 727 |
// the "Automatic" setting is that CPLEX simply invokes the dual |
| 695 | 728 |
// simplex method, but this capability may be expanded in the future |
| 696 | 729 |
// so that CPLEX chooses the method based on problem characteristics |
| 697 | 730 |
#if CPX_VERSION < 900 |
| 698 | 731 |
void statusSwitch(CPXENVptr cplexEnv(),int& stat){
|
| 699 | 732 |
int lpmethod; |
| 700 | 733 |
CPXgetintparam (cplexEnv(),CPX_PARAM_PROBMETHOD,&lpmethod); |
| 701 | 734 |
if (lpmethod==2){
|
| 702 | 735 |
if (stat==CPX_UNBOUNDED){
|
| 703 | 736 |
stat=CPX_INFEASIBLE; |
| 704 | 737 |
} |
| 705 | 738 |
else{
|
| 706 | 739 |
if (stat==CPX_INFEASIBLE) |
| 707 | 740 |
stat=CPX_UNBOUNDED; |
| 708 | 741 |
} |
| 709 | 742 |
} |
| 710 | 743 |
} |
| 711 | 744 |
#else |
| 712 | 745 |
void statusSwitch(CPXENVptr,int&){}
|
| 713 | 746 |
#endif |
| 714 | 747 |
|
| 715 | 748 |
CplexLp::ProblemType CplexLp::_getPrimalType() const {
|
| 716 | 749 |
// Unboundedness not treated well: the following is from cplex 9.0 doc |
| 717 | 750 |
// About Unboundedness |
| 718 | 751 |
|
| 719 | 752 |
// The treatment of models that are unbounded involves a few |
| 720 | 753 |
// subtleties. Specifically, a declaration of unboundedness means that |
| 721 | 754 |
// ILOG CPLEX has determined that the model has an unbounded |
| 722 | 755 |
// ray. Given any feasible solution x with objective z, a multiple of |
| 723 | 756 |
// the unbounded ray can be added to x to give a feasible solution |
| 724 | 757 |
// with objective z-1 (or z+1 for maximization models). Thus, if a |
| 725 | 758 |
// feasible solution exists, then the optimal objective is |
| 726 | 759 |
// unbounded. Note that ILOG CPLEX has not necessarily concluded that |
| 727 | 760 |
// a feasible solution exists. Users can call the routine CPXsolninfo |
| 728 | 761 |
// to determine whether ILOG CPLEX has also concluded that the model |
| 729 | 762 |
// has a feasible solution. |
| 730 | 763 |
|
| 731 | 764 |
int stat = CPXgetstat(cplexEnv(), _prob); |
| 732 | 765 |
#if CPX_VERSION >= 800 |
| 733 | 766 |
switch (stat) |
| 734 | 767 |
{
|
| 735 | 768 |
case CPX_STAT_OPTIMAL: |
| 736 | 769 |
return OPTIMAL; |
| 737 | 770 |
case CPX_STAT_UNBOUNDED: |
| 738 | 771 |
return UNBOUNDED; |
| 739 | 772 |
case CPX_STAT_INFEASIBLE: |
| 740 | 773 |
return INFEASIBLE; |
| 741 | 774 |
default: |
| 742 | 775 |
return UNDEFINED; |
| 743 | 776 |
} |
| 744 | 777 |
#else |
| 745 | 778 |
statusSwitch(cplexEnv(),stat); |
| 746 | 779 |
//CPXgetstat(cplexEnv(), _prob); |
| 747 | 780 |
switch (stat) {
|
| 748 | 781 |
case 0: |
| 749 | 782 |
return UNDEFINED; //Undefined |
| 750 | 783 |
case CPX_OPTIMAL://Optimal |
| 751 | 784 |
return OPTIMAL; |
| 752 | 785 |
case CPX_UNBOUNDED://Unbounded |
| 753 | 786 |
return INFEASIBLE;//In case of dual simplex |
| 754 | 787 |
//return UNBOUNDED; |
| 755 | 788 |
case CPX_INFEASIBLE://Infeasible |
| 756 | 789 |
// case CPX_IT_LIM_INFEAS: |
| 757 | 790 |
// case CPX_TIME_LIM_INFEAS: |
| 758 | 791 |
// case CPX_NUM_BEST_INFEAS: |
| 759 | 792 |
// case CPX_OPTIMAL_INFEAS: |
| 760 | 793 |
// case CPX_ABORT_INFEAS: |
| 761 | 794 |
// case CPX_ABORT_PRIM_INFEAS: |
| 762 | 795 |
// case CPX_ABORT_PRIM_DUAL_INFEAS: |
| 763 | 796 |
return UNBOUNDED;//In case of dual simplex |
| 764 | 797 |
//return INFEASIBLE; |
| 765 | 798 |
// case CPX_OBJ_LIM: |
| 766 | 799 |
// case CPX_IT_LIM_FEAS: |
| 767 | 800 |
// case CPX_TIME_LIM_FEAS: |
| 768 | 801 |
// case CPX_NUM_BEST_FEAS: |
| 769 | 802 |
// case CPX_ABORT_FEAS: |
| 770 | 803 |
// case CPX_ABORT_PRIM_DUAL_FEAS: |
| 771 | 804 |
// return FEASIBLE; |
| 772 | 805 |
default: |
| 773 | 806 |
return UNDEFINED; //Everything else comes here |
| 774 | 807 |
//FIXME error |
| 775 | 808 |
} |
| 776 | 809 |
#endif |
| 777 | 810 |
} |
| 778 | 811 |
|
| 779 | 812 |
// Cplex 9.0 status values |
| 780 | 813 |
// CPX_STAT_ABORT_DUAL_OBJ_LIM |
| 781 | 814 |
// CPX_STAT_ABORT_IT_LIM |
| 782 | 815 |
// CPX_STAT_ABORT_OBJ_LIM |
| 783 | 816 |
// CPX_STAT_ABORT_PRIM_OBJ_LIM |
| 784 | 817 |
// CPX_STAT_ABORT_TIME_LIM |
| 785 | 818 |
// CPX_STAT_ABORT_USER |
| 786 | 819 |
// CPX_STAT_FEASIBLE_RELAXED |
| 787 | 820 |
// CPX_STAT_INFEASIBLE |
| 788 | 821 |
// CPX_STAT_INForUNBD |
| 789 | 822 |
// CPX_STAT_NUM_BEST |
| 790 | 823 |
// CPX_STAT_OPTIMAL |
| 791 | 824 |
// CPX_STAT_OPTIMAL_FACE_UNBOUNDED |
| 792 | 825 |
// CPX_STAT_OPTIMAL_INFEAS |
| 793 | 826 |
// CPX_STAT_OPTIMAL_RELAXED |
| 794 | 827 |
// CPX_STAT_UNBOUNDED |
| 795 | 828 |
|
| 796 | 829 |
CplexLp::ProblemType CplexLp::_getDualType() const {
|
| 797 | 830 |
int stat = CPXgetstat(cplexEnv(), _prob); |
| 798 | 831 |
#if CPX_VERSION >= 800 |
| 799 | 832 |
switch (stat) {
|
| 800 | 833 |
case CPX_STAT_OPTIMAL: |
| 801 | 834 |
return OPTIMAL; |
| 802 | 835 |
case CPX_STAT_UNBOUNDED: |
| 803 | 836 |
return INFEASIBLE; |
| 804 | 837 |
default: |
| 805 | 838 |
return UNDEFINED; |
| 806 | 839 |
} |
| 807 | 840 |
#else |
| 808 | 841 |
statusSwitch(cplexEnv(),stat); |
| 809 | 842 |
switch (stat) {
|
| 810 | 843 |
case 0: |
| 811 | 844 |
return UNDEFINED; //Undefined |
| 812 | 845 |
case CPX_OPTIMAL://Optimal |
| 813 | 846 |
return OPTIMAL; |
| 814 | 847 |
case CPX_UNBOUNDED: |
| 815 | 848 |
return INFEASIBLE; |
| 816 | 849 |
default: |
| 817 | 850 |
return UNDEFINED; //Everything else comes here |
| 818 | 851 |
//FIXME error |
| 819 | 852 |
} |
| 820 | 853 |
#endif |
| 821 | 854 |
} |
| 822 | 855 |
|
| 823 | 856 |
// CplexMip members |
| 824 | 857 |
|
| 825 | 858 |
CplexMip::CplexMip() |
| 826 | 859 |
: LpBase(), MipSolver(), CplexBase() {
|
| 827 | 860 |
|
| 828 | 861 |
#if CPX_VERSION < 800 |
| 829 | 862 |
CPXchgprobtype(cplexEnv(), _prob, CPXPROB_MIP); |
| 830 | 863 |
#else |
| 831 | 864 |
CPXchgprobtype(cplexEnv(), _prob, CPXPROB_MILP); |
| 832 | 865 |
#endif |
| 833 | 866 |
} |
| 834 | 867 |
|
| 835 | 868 |
CplexMip::CplexMip(const CplexEnv& env) |
| 836 | 869 |
: LpBase(), MipSolver(), CplexBase(env) {
|
| 837 | 870 |
|
| 838 | 871 |
#if CPX_VERSION < 800 |
| 839 | 872 |
CPXchgprobtype(cplexEnv(), _prob, CPXPROB_MIP); |
| 840 | 873 |
#else |
| 841 | 874 |
CPXchgprobtype(cplexEnv(), _prob, CPXPROB_MILP); |
| 842 | 875 |
#endif |
| 843 | 876 |
|
| 844 | 877 |
} |
| 845 | 878 |
|
| 846 | 879 |
CplexMip::CplexMip(const CplexMip& other) |
| 847 | 880 |
: LpBase(), MipSolver(), CplexBase(other) {}
|
| 848 | 881 |
|
| 849 | 882 |
CplexMip::~CplexMip() {}
|
| 850 | 883 |
|
| 851 | 884 |
CplexMip* CplexMip::newSolver() const { return new CplexMip; }
|
| 852 | 885 |
CplexMip* CplexMip::cloneSolver() const {return new CplexMip(*this); }
|
| 853 | 886 |
|
| 854 | 887 |
const char* CplexMip::_solverName() const { return "CplexMip"; }
|
| 855 | 888 |
|
| 856 | 889 |
void CplexMip::_setColType(int i, CplexMip::ColTypes col_type) {
|
| 857 | 890 |
|
| 858 | 891 |
// Note If a variable is to be changed to binary, a call to CPXchgbds |
| 859 | 892 |
// should also be made to change the bounds to 0 and 1. |
| 860 | 893 |
|
| 861 | 894 |
switch (col_type){
|
| 862 | 895 |
case INTEGER: {
|
| 863 | 896 |
const char t = 'I'; |
| 864 | 897 |
CPXchgctype (cplexEnv(), _prob, 1, &i, &t); |
| 865 | 898 |
} break; |
| 866 | 899 |
case REAL: {
|
| 867 | 900 |
const char t = 'C'; |
| 868 | 901 |
CPXchgctype (cplexEnv(), _prob, 1, &i, &t); |
| 869 | 902 |
} break; |
| 870 | 903 |
default: |
| 871 | 904 |
break; |
| 872 | 905 |
} |
| 873 | 906 |
} |
| 874 | 907 |
|
| 875 | 908 |
CplexMip::ColTypes CplexMip::_getColType(int i) const {
|
| 876 | 909 |
char t; |
| 877 | 910 |
CPXgetctype (cplexEnv(), _prob, &t, i, i); |
| 878 | 911 |
switch (t) {
|
| 879 | 912 |
case 'I': |
| 880 | 913 |
return INTEGER; |
| 881 | 914 |
case 'C': |
| 882 | 915 |
return REAL; |
| 883 | 916 |
default: |
| 884 | 917 |
LEMON_ASSERT(false, "Invalid column type"); |
| 885 | 918 |
return ColTypes(); |
| 886 | 919 |
} |
| 887 | 920 |
|
| 888 | 921 |
} |
| 889 | 922 |
|
| 890 | 923 |
CplexMip::SolveExitStatus CplexMip::_solve() {
|
| 891 | 924 |
int status; |
| 892 | 925 |
_applyMessageLevel(); |
| 893 | 926 |
status = CPXmipopt (cplexEnv(), _prob); |
| 894 | 927 |
if (status==0) |
| 895 | 928 |
return SOLVED; |
| 896 | 929 |
else |
| 897 | 930 |
return UNSOLVED; |
| 898 | 931 |
|
| 899 | 932 |
} |
| 900 | 933 |
|
| 901 | 934 |
|
| 902 | 935 |
CplexMip::ProblemType CplexMip::_getType() const {
|
| 903 | 936 |
|
| 904 | 937 |
int stat = CPXgetstat(cplexEnv(), _prob); |
| 905 | 938 |
|
| 906 | 939 |
//Fortunately, MIP statuses did not change for cplex 8.0 |
| 907 | 940 |
switch (stat) {
|
| 908 | 941 |
case CPXMIP_OPTIMAL: |
| 909 | 942 |
// Optimal integer solution has been found. |
| 910 | 943 |
case CPXMIP_OPTIMAL_TOL: |
| 911 | 944 |
// Optimal soluton with the tolerance defined by epgap or epagap has |
| 912 | 945 |
// been found. |
| 913 | 946 |
return OPTIMAL; |
| 914 | 947 |
//This also exists in later issues |
| 915 | 948 |
// case CPXMIP_UNBOUNDED: |
| 916 | 949 |
//return UNBOUNDED; |
| 917 | 950 |
case CPXMIP_INFEASIBLE: |
| 918 | 951 |
return INFEASIBLE; |
| 919 | 952 |
default: |
| 920 | 953 |
return UNDEFINED; |
| 921 | 954 |
} |
| 922 | 955 |
//Unboundedness not treated well: the following is from cplex 9.0 doc |
| 923 | 956 |
// About Unboundedness |
| 924 | 957 |
|
| 925 | 958 |
// The treatment of models that are unbounded involves a few |
| 926 | 959 |
// subtleties. Specifically, a declaration of unboundedness means that |
| 927 | 960 |
// ILOG CPLEX has determined that the model has an unbounded |
| 928 | 961 |
// ray. Given any feasible solution x with objective z, a multiple of |
| 929 | 962 |
// the unbounded ray can be added to x to give a feasible solution |
| 930 | 963 |
// with objective z-1 (or z+1 for maximization models). Thus, if a |
| 931 | 964 |
// feasible solution exists, then the optimal objective is |
| 932 | 965 |
// unbounded. Note that ILOG CPLEX has not necessarily concluded that |
| 933 | 966 |
// a feasible solution exists. Users can call the routine CPXsolninfo |
| 934 | 967 |
// to determine whether ILOG CPLEX has also concluded that the model |
| 935 | 968 |
// has a feasible solution. |
| 936 | 969 |
} |
| 937 | 970 |
|
| 938 | 971 |
CplexMip::Value CplexMip::_getSol(int i) const {
|
| 939 | 972 |
Value x; |
| 940 | 973 |
CPXgetmipx(cplexEnv(), _prob, &x, i, i); |
| 941 | 974 |
return x; |
| 942 | 975 |
} |
| 943 | 976 |
|
| 944 | 977 |
CplexMip::Value CplexMip::_getSolValue() const {
|
| 945 | 978 |
Value objval; |
| 946 | 979 |
CPXgetmipobjval(cplexEnv(), _prob, &objval); |
| 947 | 980 |
return objval; |
| 948 | 981 |
} |
| 949 | 982 |
|
| 950 | 983 |
} //namespace lemon |
| 951 | 984 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CPLEX_H |
| 20 | 20 |
#define LEMON_CPLEX_H |
| 21 | 21 |
|
| 22 | 22 |
///\file |
| 23 | 23 |
///\brief Header of the LEMON-CPLEX lp solver interface. |
| 24 | 24 |
|
| 25 | 25 |
#include <lemon/lp_base.h> |
| 26 | 26 |
|
| 27 | 27 |
struct cpxenv; |
| 28 | 28 |
struct cpxlp; |
| 29 | 29 |
|
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
/// \brief Reference counted wrapper around cpxenv pointer |
| 33 | 33 |
/// |
| 34 | 34 |
/// The cplex uses environment object which is responsible for |
| 35 | 35 |
/// checking the proper license usage. This class provides a simple |
| 36 | 36 |
/// interface for share the environment object between different |
| 37 | 37 |
/// problems. |
| 38 | 38 |
class CplexEnv {
|
| 39 | 39 |
friend class CplexBase; |
| 40 | 40 |
private: |
| 41 | 41 |
cpxenv* _env; |
| 42 | 42 |
mutable int* _cnt; |
| 43 | 43 |
|
| 44 | 44 |
public: |
| 45 | 45 |
|
| 46 | 46 |
/// \brief This exception is thrown when the license check is not |
| 47 | 47 |
/// sufficient |
| 48 | 48 |
class LicenseError : public Exception {
|
| 49 | 49 |
friend class CplexEnv; |
| 50 | 50 |
private: |
| 51 | 51 |
|
| 52 | 52 |
LicenseError(int status); |
| 53 | 53 |
char _message[510]; |
| 54 | 54 |
|
| 55 | 55 |
public: |
| 56 | 56 |
|
| 57 | 57 |
/// The short error message |
| 58 | 58 |
virtual const char* what() const throw() {
|
| 59 | 59 |
return _message; |
| 60 | 60 |
} |
| 61 | 61 |
}; |
| 62 | 62 |
|
| 63 | 63 |
/// Constructor |
| 64 | 64 |
CplexEnv(); |
| 65 | 65 |
/// Shallow copy constructor |
| 66 | 66 |
CplexEnv(const CplexEnv&); |
| 67 | 67 |
/// Shallow assignement |
| 68 | 68 |
CplexEnv& operator=(const CplexEnv&); |
| 69 | 69 |
/// Destructor |
| 70 | 70 |
virtual ~CplexEnv(); |
| 71 | 71 |
|
| 72 | 72 |
protected: |
| 73 | 73 |
|
| 74 | 74 |
cpxenv* cplexEnv() { return _env; }
|
| 75 | 75 |
const cpxenv* cplexEnv() const { return _env; }
|
| 76 | 76 |
}; |
| 77 | 77 |
|
| 78 | 78 |
/// \brief Base interface for the CPLEX LP and MIP solver |
| 79 | 79 |
/// |
| 80 | 80 |
/// This class implements the common interface of the CPLEX LP and |
| 81 | 81 |
/// MIP solvers. |
| 82 | 82 |
/// \ingroup lp_group |
| 83 | 83 |
class CplexBase : virtual public LpBase {
|
| 84 | 84 |
protected: |
| 85 | 85 |
|
| 86 | 86 |
CplexEnv _env; |
| 87 | 87 |
cpxlp* _prob; |
| 88 | 88 |
|
| 89 | 89 |
CplexBase(); |
| 90 | 90 |
CplexBase(const CplexEnv&); |
| 91 | 91 |
CplexBase(const CplexBase &); |
| 92 | 92 |
virtual ~CplexBase(); |
| 93 | 93 |
|
| 94 | 94 |
virtual int _addCol(); |
| 95 | 95 |
virtual int _addRow(); |
| 96 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 96 | 97 |
|
| 97 | 98 |
virtual void _eraseCol(int i); |
| 98 | 99 |
virtual void _eraseRow(int i); |
| 99 | 100 |
|
| 100 | 101 |
virtual void _eraseColId(int i); |
| 101 | 102 |
virtual void _eraseRowId(int i); |
| 102 | 103 |
|
| 103 | 104 |
virtual void _getColName(int col, std::string& name) const; |
| 104 | 105 |
virtual void _setColName(int col, const std::string& name); |
| 105 | 106 |
virtual int _colByName(const std::string& name) const; |
| 106 | 107 |
|
| 107 | 108 |
virtual void _getRowName(int row, std::string& name) const; |
| 108 | 109 |
virtual void _setRowName(int row, const std::string& name); |
| 109 | 110 |
virtual int _rowByName(const std::string& name) const; |
| 110 | 111 |
|
| 111 | 112 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
| 112 | 113 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
| 113 | 114 |
|
| 114 | 115 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
| 115 | 116 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
| 116 | 117 |
|
| 117 | 118 |
virtual void _setCoeff(int row, int col, Value value); |
| 118 | 119 |
virtual Value _getCoeff(int row, int col) const; |
| 119 | 120 |
|
| 120 | 121 |
virtual void _setColLowerBound(int i, Value value); |
| 121 | 122 |
virtual Value _getColLowerBound(int i) const; |
| 122 | 123 |
|
| 123 | 124 |
virtual void _setColUpperBound(int i, Value value); |
| 124 | 125 |
virtual Value _getColUpperBound(int i) const; |
| 125 | 126 |
|
| 126 | 127 |
private: |
| 127 | 128 |
void _set_row_bounds(int i, Value lb, Value ub); |
| 128 | 129 |
protected: |
| 129 | 130 |
|
| 130 | 131 |
virtual void _setRowLowerBound(int i, Value value); |
| 131 | 132 |
virtual Value _getRowLowerBound(int i) const; |
| 132 | 133 |
|
| 133 | 134 |
virtual void _setRowUpperBound(int i, Value value); |
| 134 | 135 |
virtual Value _getRowUpperBound(int i) const; |
| 135 | 136 |
|
| 136 | 137 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e); |
| 137 | 138 |
virtual void _getObjCoeffs(InsertIterator b) const; |
| 138 | 139 |
|
| 139 | 140 |
virtual void _setObjCoeff(int i, Value obj_coef); |
| 140 | 141 |
virtual Value _getObjCoeff(int i) const; |
| 141 | 142 |
|
| 142 | 143 |
virtual void _setSense(Sense sense); |
| 143 | 144 |
virtual Sense _getSense() const; |
| 144 | 145 |
|
| 145 | 146 |
virtual void _clear(); |
| 146 | 147 |
|
| 147 | 148 |
virtual void _messageLevel(MessageLevel level); |
| 148 | 149 |
void _applyMessageLevel(); |
| 149 | 150 |
|
| 150 | 151 |
bool _message_enabled; |
| 151 | 152 |
|
| 152 | 153 |
public: |
| 153 | 154 |
|
| 154 | 155 |
/// Returns the used \c CplexEnv instance |
| 155 | 156 |
const CplexEnv& env() const { return _env; }
|
| 156 | 157 |
|
| 157 | 158 |
/// \brief Returns the const cpxenv pointer |
| 158 | 159 |
/// |
| 159 | 160 |
/// \note The cpxenv might be destructed with the solver. |
| 160 | 161 |
const cpxenv* cplexEnv() const { return _env.cplexEnv(); }
|
| 161 | 162 |
|
| 162 | 163 |
/// \brief Returns the const cpxenv pointer |
| 163 | 164 |
/// |
| 164 | 165 |
/// \note The cpxenv might be destructed with the solver. |
| 165 | 166 |
cpxenv* cplexEnv() { return _env.cplexEnv(); }
|
| 166 | 167 |
|
| 167 | 168 |
/// Returns the cplex problem object |
| 168 | 169 |
cpxlp* cplexLp() { return _prob; }
|
| 169 | 170 |
/// Returns the cplex problem object |
| 170 | 171 |
const cpxlp* cplexLp() const { return _prob; }
|
| 171 | 172 |
|
| 172 | 173 |
}; |
| 173 | 174 |
|
| 174 | 175 |
/// \brief Interface for the CPLEX LP solver |
| 175 | 176 |
/// |
| 176 | 177 |
/// This class implements an interface for the CPLEX LP solver. |
| 177 | 178 |
///\ingroup lp_group |
| 178 | 179 |
class CplexLp : public LpSolver, public CplexBase {
|
| 179 | 180 |
public: |
| 180 | 181 |
/// \e |
| 181 | 182 |
CplexLp(); |
| 182 | 183 |
/// \e |
| 183 | 184 |
CplexLp(const CplexEnv&); |
| 184 | 185 |
/// \e |
| 185 | 186 |
CplexLp(const CplexLp&); |
| 186 | 187 |
/// \e |
| 187 | 188 |
virtual ~CplexLp(); |
| 188 | 189 |
|
| 189 | 190 |
/// \e |
| 190 | 191 |
virtual CplexLp* cloneSolver() const; |
| 191 | 192 |
/// \e |
| 192 | 193 |
virtual CplexLp* newSolver() const; |
| 193 | 194 |
|
| 194 | 195 |
private: |
| 195 | 196 |
|
| 196 | 197 |
// these values cannot retrieved element by element |
| 197 | 198 |
mutable std::vector<int> _col_status; |
| 198 | 199 |
mutable std::vector<int> _row_status; |
| 199 | 200 |
|
| 200 | 201 |
mutable std::vector<Value> _primal_ray; |
| 201 | 202 |
mutable std::vector<Value> _dual_ray; |
| 202 | 203 |
|
| 203 | 204 |
void _clear_temporals(); |
| 204 | 205 |
|
| 205 | 206 |
SolveExitStatus convertStatus(int status); |
| 206 | 207 |
|
| 207 | 208 |
protected: |
| 208 | 209 |
|
| 209 | 210 |
virtual const char* _solverName() const; |
| 210 | 211 |
|
| 211 | 212 |
virtual SolveExitStatus _solve(); |
| 212 | 213 |
virtual Value _getPrimal(int i) const; |
| 213 | 214 |
virtual Value _getDual(int i) const; |
| 214 | 215 |
virtual Value _getPrimalValue() const; |
| 215 | 216 |
|
| 216 | 217 |
virtual VarStatus _getColStatus(int i) const; |
| 217 | 218 |
virtual VarStatus _getRowStatus(int i) const; |
| 218 | 219 |
|
| 219 | 220 |
virtual Value _getPrimalRay(int i) const; |
| 220 | 221 |
virtual Value _getDualRay(int i) const; |
| 221 | 222 |
|
| 222 | 223 |
virtual ProblemType _getPrimalType() const; |
| 223 | 224 |
virtual ProblemType _getDualType() const; |
| 224 | 225 |
|
| 225 | 226 |
public: |
| 226 | 227 |
|
| 227 | 228 |
/// Solve with primal simplex method |
| 228 | 229 |
SolveExitStatus solvePrimal(); |
| 229 | 230 |
|
| 230 | 231 |
/// Solve with dual simplex method |
| 231 | 232 |
SolveExitStatus solveDual(); |
| 232 | 233 |
|
| 233 | 234 |
/// Solve with barrier method |
| 234 | 235 |
SolveExitStatus solveBarrier(); |
| 235 | 236 |
|
| 236 | 237 |
}; |
| 237 | 238 |
|
| 238 | 239 |
/// \brief Interface for the CPLEX MIP solver |
| 239 | 240 |
/// |
| 240 | 241 |
/// This class implements an interface for the CPLEX MIP solver. |
| 241 | 242 |
///\ingroup lp_group |
| 242 | 243 |
class CplexMip : public MipSolver, public CplexBase {
|
| 243 | 244 |
public: |
| 244 | 245 |
/// \e |
| 245 | 246 |
CplexMip(); |
| 246 | 247 |
/// \e |
| 247 | 248 |
CplexMip(const CplexEnv&); |
| 248 | 249 |
/// \e |
| 249 | 250 |
CplexMip(const CplexMip&); |
| 250 | 251 |
/// \e |
| 251 | 252 |
virtual ~CplexMip(); |
| 252 | 253 |
|
| 253 | 254 |
/// \e |
| 254 | 255 |
virtual CplexMip* cloneSolver() const; |
| 255 | 256 |
/// \e |
| 256 | 257 |
virtual CplexMip* newSolver() const; |
| 257 | 258 |
|
| 258 | 259 |
protected: |
| 259 | 260 |
|
| 260 | 261 |
|
| 261 | 262 |
virtual const char* _solverName() const; |
| 262 | 263 |
|
| 263 | 264 |
virtual ColTypes _getColType(int col) const; |
| 264 | 265 |
virtual void _setColType(int col, ColTypes col_type); |
| 265 | 266 |
|
| 266 | 267 |
virtual SolveExitStatus _solve(); |
| 267 | 268 |
virtual ProblemType _getType() const; |
| 268 | 269 |
virtual Value _getSol(int i) const; |
| 269 | 270 |
virtual Value _getSolValue() const; |
| 270 | 271 |
|
| 271 | 272 |
}; |
| 272 | 273 |
|
| 273 | 274 |
} //END OF NAMESPACE LEMON |
| 274 | 275 |
|
| 275 | 276 |
#endif //LEMON_CPLEX_H |
| 276 | 277 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DFS_H |
| 20 | 20 |
#define LEMON_DFS_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup search |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief DFS algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
#include <lemon/path.h> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
///Default traits class of Dfs class. |
| 36 | 36 |
|
| 37 | 37 |
///Default traits class of Dfs class. |
| 38 | 38 |
///\tparam GR Digraph type. |
| 39 | 39 |
template<class GR> |
| 40 | 40 |
struct DfsDefaultTraits |
| 41 | 41 |
{
|
| 42 | 42 |
///The type of the digraph the algorithm runs on. |
| 43 | 43 |
typedef GR Digraph; |
| 44 | 44 |
|
| 45 | 45 |
///\brief The type of the map that stores the predecessor |
| 46 | 46 |
///arcs of the %DFS paths. |
| 47 | 47 |
/// |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the %DFS paths. |
| 50 |
///It must |
|
| 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \c PredMap. |
| 53 | 53 |
|
| 54 | 54 |
///This function instantiates a \ref PredMap. |
| 55 | 55 |
///\param g is the digraph, to which we would like to define the |
| 56 | 56 |
///\ref PredMap. |
| 57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
| 58 | 58 |
{
|
| 59 | 59 |
return new PredMap(g); |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 | 62 |
///The type of the map that indicates which nodes are processed. |
| 63 | 63 |
|
| 64 | 64 |
///The type of the map that indicates which nodes are processed. |
| 65 |
///It must |
|
| 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 66 |
///By default it is a NullMap. |
|
| 66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 67 | 68 |
///Instantiates a \c ProcessedMap. |
| 68 | 69 |
|
| 69 | 70 |
///This function instantiates a \ref ProcessedMap. |
| 70 | 71 |
///\param g is the digraph, to which |
| 71 | 72 |
///we would like to define the \ref ProcessedMap. |
| 72 | 73 |
#ifdef DOXYGEN |
| 73 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 74 | 75 |
#else |
| 75 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 76 | 77 |
#endif |
| 77 | 78 |
{
|
| 78 | 79 |
return new ProcessedMap(); |
| 79 | 80 |
} |
| 80 | 81 |
|
| 81 | 82 |
///The type of the map that indicates which nodes are reached. |
| 82 | 83 |
|
| 83 | 84 |
///The type of the map that indicates which nodes are reached. |
| 84 |
///It must |
|
| 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 85 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 86 | 87 |
///Instantiates a \c ReachedMap. |
| 87 | 88 |
|
| 88 | 89 |
///This function instantiates a \ref ReachedMap. |
| 89 | 90 |
///\param g is the digraph, to which |
| 90 | 91 |
///we would like to define the \ref ReachedMap. |
| 91 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 92 | 93 |
{
|
| 93 | 94 |
return new ReachedMap(g); |
| 94 | 95 |
} |
| 95 | 96 |
|
| 96 | 97 |
///The type of the map that stores the distances of the nodes. |
| 97 | 98 |
|
| 98 | 99 |
///The type of the map that stores the distances of the nodes. |
| 99 |
///It must |
|
| 100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 100 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 101 | 102 |
///Instantiates a \c DistMap. |
| 102 | 103 |
|
| 103 | 104 |
///This function instantiates a \ref DistMap. |
| 104 | 105 |
///\param g is the digraph, to which we would like to define the |
| 105 | 106 |
///\ref DistMap. |
| 106 | 107 |
static DistMap *createDistMap(const Digraph &g) |
| 107 | 108 |
{
|
| 108 | 109 |
return new DistMap(g); |
| 109 | 110 |
} |
| 110 | 111 |
}; |
| 111 | 112 |
|
| 112 | 113 |
///%DFS algorithm class. |
| 113 | 114 |
|
| 114 | 115 |
///\ingroup search |
| 115 | 116 |
///This class provides an efficient implementation of the %DFS algorithm. |
| 116 | 117 |
/// |
| 117 | 118 |
///There is also a \ref dfs() "function-type interface" for the DFS |
| 118 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
| 119 | 120 |
///used easier. |
| 120 | 121 |
/// |
| 121 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 122 | 123 |
///The default type is \ref ListDigraph. |
| 123 | 124 |
#ifdef DOXYGEN |
| 124 | 125 |
template <typename GR, |
| 125 | 126 |
typename TR> |
| 126 | 127 |
#else |
| 127 | 128 |
template <typename GR=ListDigraph, |
| 128 | 129 |
typename TR=DfsDefaultTraits<GR> > |
| 129 | 130 |
#endif |
| 130 | 131 |
class Dfs {
|
| 131 | 132 |
public: |
| 132 | 133 |
|
| 133 | 134 |
///The type of the digraph the algorithm runs on. |
| 134 | 135 |
typedef typename TR::Digraph Digraph; |
| 135 | 136 |
|
| 136 | 137 |
///\brief The type of the map that stores the predecessor arcs of the |
| 137 | 138 |
///DFS paths. |
| 138 | 139 |
typedef typename TR::PredMap PredMap; |
| 139 | 140 |
///The type of the map that stores the distances of the nodes. |
| 140 | 141 |
typedef typename TR::DistMap DistMap; |
| 141 | 142 |
///The type of the map that indicates which nodes are reached. |
| 142 | 143 |
typedef typename TR::ReachedMap ReachedMap; |
| 143 | 144 |
///The type of the map that indicates which nodes are processed. |
| 144 | 145 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 145 | 146 |
///The type of the paths. |
| 146 | 147 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 147 | 148 |
|
| 148 | 149 |
///The \ref DfsDefaultTraits "traits class" of the algorithm. |
| 149 | 150 |
typedef TR Traits; |
| 150 | 151 |
|
| 151 | 152 |
private: |
| 152 | 153 |
|
| 153 | 154 |
typedef typename Digraph::Node Node; |
| 154 | 155 |
typedef typename Digraph::NodeIt NodeIt; |
| 155 | 156 |
typedef typename Digraph::Arc Arc; |
| 156 | 157 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 157 | 158 |
|
| 158 | 159 |
//Pointer to the underlying digraph. |
| 159 | 160 |
const Digraph *G; |
| 160 | 161 |
//Pointer to the map of predecessor arcs. |
| 161 | 162 |
PredMap *_pred; |
| 162 | 163 |
//Indicates if _pred is locally allocated (true) or not. |
| 163 | 164 |
bool local_pred; |
| 164 | 165 |
//Pointer to the map of distances. |
| 165 | 166 |
DistMap *_dist; |
| 166 | 167 |
//Indicates if _dist is locally allocated (true) or not. |
| 167 | 168 |
bool local_dist; |
| 168 | 169 |
//Pointer to the map of reached status of the nodes. |
| 169 | 170 |
ReachedMap *_reached; |
| 170 | 171 |
//Indicates if _reached is locally allocated (true) or not. |
| 171 | 172 |
bool local_reached; |
| 172 | 173 |
//Pointer to the map of processed status of the nodes. |
| 173 | 174 |
ProcessedMap *_processed; |
| 174 | 175 |
//Indicates if _processed is locally allocated (true) or not. |
| 175 | 176 |
bool local_processed; |
| 176 | 177 |
|
| 177 | 178 |
std::vector<typename Digraph::OutArcIt> _stack; |
| 178 | 179 |
int _stack_head; |
| 179 | 180 |
|
| 180 | 181 |
//Creates the maps if necessary. |
| 181 | 182 |
void create_maps() |
| 182 | 183 |
{
|
| 183 | 184 |
if(!_pred) {
|
| 184 | 185 |
local_pred = true; |
| 185 | 186 |
_pred = Traits::createPredMap(*G); |
| 186 | 187 |
} |
| 187 | 188 |
if(!_dist) {
|
| 188 | 189 |
local_dist = true; |
| 189 | 190 |
_dist = Traits::createDistMap(*G); |
| 190 | 191 |
} |
| 191 | 192 |
if(!_reached) {
|
| 192 | 193 |
local_reached = true; |
| 193 | 194 |
_reached = Traits::createReachedMap(*G); |
| 194 | 195 |
} |
| 195 | 196 |
if(!_processed) {
|
| 196 | 197 |
local_processed = true; |
| 197 | 198 |
_processed = Traits::createProcessedMap(*G); |
| 198 | 199 |
} |
| 199 | 200 |
} |
| 200 | 201 |
|
| 201 | 202 |
protected: |
| 202 | 203 |
|
| 203 | 204 |
Dfs() {}
|
| 204 | 205 |
|
| 205 | 206 |
public: |
| 206 | 207 |
|
| 207 | 208 |
typedef Dfs Create; |
| 208 | 209 |
|
| 209 | 210 |
///\name Named Template Parameters |
| 210 | 211 |
|
| 211 | 212 |
///@{
|
| 212 | 213 |
|
| 213 | 214 |
template <class T> |
| 214 | 215 |
struct SetPredMapTraits : public Traits {
|
| 215 | 216 |
typedef T PredMap; |
| 216 | 217 |
static PredMap *createPredMap(const Digraph &) |
| 217 | 218 |
{
|
| 218 | 219 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 219 | 220 |
return 0; // ignore warnings |
| 220 | 221 |
} |
| 221 | 222 |
}; |
| 222 | 223 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 223 | 224 |
///\c PredMap type. |
| 224 | 225 |
/// |
| 225 | 226 |
///\ref named-templ-param "Named parameter" for setting |
| 226 | 227 |
///\c PredMap type. |
| 227 |
///It must |
|
| 228 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 228 | 229 |
template <class T> |
| 229 | 230 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
|
| 230 | 231 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
| 231 | 232 |
}; |
| 232 | 233 |
|
| 233 | 234 |
template <class T> |
| 234 | 235 |
struct SetDistMapTraits : public Traits {
|
| 235 | 236 |
typedef T DistMap; |
| 236 | 237 |
static DistMap *createDistMap(const Digraph &) |
| 237 | 238 |
{
|
| 238 | 239 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 239 | 240 |
return 0; // ignore warnings |
| 240 | 241 |
} |
| 241 | 242 |
}; |
| 242 | 243 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 243 | 244 |
///\c DistMap type. |
| 244 | 245 |
/// |
| 245 | 246 |
///\ref named-templ-param "Named parameter" for setting |
| 246 | 247 |
///\c DistMap type. |
| 247 |
///It must |
|
| 248 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 248 | 249 |
template <class T> |
| 249 | 250 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
|
| 250 | 251 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
| 251 | 252 |
}; |
| 252 | 253 |
|
| 253 | 254 |
template <class T> |
| 254 | 255 |
struct SetReachedMapTraits : public Traits {
|
| 255 | 256 |
typedef T ReachedMap; |
| 256 | 257 |
static ReachedMap *createReachedMap(const Digraph &) |
| 257 | 258 |
{
|
| 258 | 259 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 259 | 260 |
return 0; // ignore warnings |
| 260 | 261 |
} |
| 261 | 262 |
}; |
| 262 | 263 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 263 | 264 |
///\c ReachedMap type. |
| 264 | 265 |
/// |
| 265 | 266 |
///\ref named-templ-param "Named parameter" for setting |
| 266 | 267 |
///\c ReachedMap type. |
| 267 |
///It must |
|
| 268 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 268 | 269 |
template <class T> |
| 269 | 270 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
|
| 270 | 271 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
| 271 | 272 |
}; |
| 272 | 273 |
|
| 273 | 274 |
template <class T> |
| 274 | 275 |
struct SetProcessedMapTraits : public Traits {
|
| 275 | 276 |
typedef T ProcessedMap; |
| 276 | 277 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 277 | 278 |
{
|
| 278 | 279 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
| 279 | 280 |
return 0; // ignore warnings |
| 280 | 281 |
} |
| 281 | 282 |
}; |
| 282 | 283 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 283 | 284 |
///\c ProcessedMap type. |
| 284 | 285 |
/// |
| 285 | 286 |
///\ref named-templ-param "Named parameter" for setting |
| 286 | 287 |
///\c ProcessedMap type. |
| 287 |
///It must |
|
| 288 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 288 | 289 |
template <class T> |
| 289 | 290 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
|
| 290 | 291 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 291 | 292 |
}; |
| 292 | 293 |
|
| 293 | 294 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 294 | 295 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 295 | 296 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 296 | 297 |
{
|
| 297 | 298 |
return new ProcessedMap(g); |
| 298 | 299 |
} |
| 299 | 300 |
}; |
| 300 | 301 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 301 | 302 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 302 | 303 |
/// |
| 303 | 304 |
///\ref named-templ-param "Named parameter" for setting |
| 304 | 305 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 305 | 306 |
///If you don't set it explicitly, it will be automatically allocated. |
| 306 | 307 |
struct SetStandardProcessedMap : |
| 307 | 308 |
public Dfs< Digraph, SetStandardProcessedMapTraits > {
|
| 308 | 309 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
| 309 | 310 |
}; |
| 310 | 311 |
|
| 311 | 312 |
///@} |
| 312 | 313 |
|
| 313 | 314 |
public: |
| 314 | 315 |
|
| 315 | 316 |
///Constructor. |
| 316 | 317 |
|
| 317 | 318 |
///Constructor. |
| 318 | 319 |
///\param g The digraph the algorithm runs on. |
| 319 | 320 |
Dfs(const Digraph &g) : |
| 320 | 321 |
G(&g), |
| 321 | 322 |
_pred(NULL), local_pred(false), |
| 322 | 323 |
_dist(NULL), local_dist(false), |
| 323 | 324 |
_reached(NULL), local_reached(false), |
| 324 | 325 |
_processed(NULL), local_processed(false) |
| 325 | 326 |
{ }
|
| 326 | 327 |
|
| 327 | 328 |
///Destructor. |
| 328 | 329 |
~Dfs() |
| 329 | 330 |
{
|
| 330 | 331 |
if(local_pred) delete _pred; |
| 331 | 332 |
if(local_dist) delete _dist; |
| 332 | 333 |
if(local_reached) delete _reached; |
| 333 | 334 |
if(local_processed) delete _processed; |
| 334 | 335 |
} |
| 335 | 336 |
|
| 336 | 337 |
///Sets the map that stores the predecessor arcs. |
| 337 | 338 |
|
| 338 | 339 |
///Sets the map that stores the predecessor arcs. |
| 339 | 340 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 340 | 341 |
///or \ref init(), an instance will be allocated automatically. |
| 341 | 342 |
///The destructor deallocates this automatically allocated map, |
| 342 | 343 |
///of course. |
| 343 | 344 |
///\return <tt> (*this) </tt> |
| 344 | 345 |
Dfs &predMap(PredMap &m) |
| 345 | 346 |
{
|
| 346 | 347 |
if(local_pred) {
|
| 347 | 348 |
delete _pred; |
| 348 | 349 |
local_pred=false; |
| 349 | 350 |
} |
| 350 | 351 |
_pred = &m; |
| 351 | 352 |
return *this; |
| 352 | 353 |
} |
| 353 | 354 |
|
| 354 | 355 |
///Sets the map that indicates which nodes are reached. |
| 355 | 356 |
|
| 356 | 357 |
///Sets the map that indicates which nodes are reached. |
| 357 | 358 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 358 | 359 |
///or \ref init(), an instance will be allocated automatically. |
| 359 | 360 |
///The destructor deallocates this automatically allocated map, |
| 360 | 361 |
///of course. |
| 361 | 362 |
///\return <tt> (*this) </tt> |
| 362 | 363 |
Dfs &reachedMap(ReachedMap &m) |
| 363 | 364 |
{
|
| 364 | 365 |
if(local_reached) {
|
| 365 | 366 |
delete _reached; |
| 366 | 367 |
local_reached=false; |
| 367 | 368 |
} |
| 368 | 369 |
_reached = &m; |
| 369 | 370 |
return *this; |
| 370 | 371 |
} |
| 371 | 372 |
|
| 372 | 373 |
///Sets the map that indicates which nodes are processed. |
| 373 | 374 |
|
| 374 | 375 |
///Sets the map that indicates which nodes are processed. |
| 375 | 376 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 376 | 377 |
///or \ref init(), an instance will be allocated automatically. |
| 377 | 378 |
///The destructor deallocates this automatically allocated map, |
| 378 | 379 |
///of course. |
| 379 | 380 |
///\return <tt> (*this) </tt> |
| 380 | 381 |
Dfs &processedMap(ProcessedMap &m) |
| 381 | 382 |
{
|
| 382 | 383 |
if(local_processed) {
|
| 383 | 384 |
delete _processed; |
| 384 | 385 |
local_processed=false; |
| 385 | 386 |
} |
| 386 | 387 |
_processed = &m; |
| 387 | 388 |
return *this; |
| 388 | 389 |
} |
| 389 | 390 |
|
| 390 | 391 |
///Sets the map that stores the distances of the nodes. |
| 391 | 392 |
|
| 392 | 393 |
///Sets the map that stores the distances of the nodes calculated by |
| 393 | 394 |
///the algorithm. |
| 394 | 395 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 395 | 396 |
///or \ref init(), an instance will be allocated automatically. |
| 396 | 397 |
///The destructor deallocates this automatically allocated map, |
| 397 | 398 |
///of course. |
| 398 | 399 |
///\return <tt> (*this) </tt> |
| 399 | 400 |
Dfs &distMap(DistMap &m) |
| 400 | 401 |
{
|
| 401 | 402 |
if(local_dist) {
|
| 402 | 403 |
delete _dist; |
| 403 | 404 |
local_dist=false; |
| 404 | 405 |
} |
| 405 | 406 |
_dist = &m; |
| 406 | 407 |
return *this; |
| 407 | 408 |
} |
| 408 | 409 |
|
| 409 | 410 |
public: |
| 410 | 411 |
|
| 411 | 412 |
///\name Execution Control |
| 412 | 413 |
///The simplest way to execute the DFS algorithm is to use one of the |
| 413 | 414 |
///member functions called \ref run(Node) "run()".\n |
| 414 |
///If you need more control on the execution, first you have to call |
|
| 415 |
///\ref init(), then you can add a source node with \ref addSource() |
|
| 415 |
///If you need better control on the execution, you have to call |
|
| 416 |
///\ref init() first, then you can add a source node with \ref addSource() |
|
| 416 | 417 |
///and perform the actual computation with \ref start(). |
| 417 | 418 |
///This procedure can be repeated if there are nodes that have not |
| 418 | 419 |
///been reached. |
| 419 | 420 |
|
| 420 | 421 |
///@{
|
| 421 | 422 |
|
| 422 | 423 |
///\brief Initializes the internal data structures. |
| 423 | 424 |
/// |
| 424 | 425 |
///Initializes the internal data structures. |
| 425 | 426 |
void init() |
| 426 | 427 |
{
|
| 427 | 428 |
create_maps(); |
| 428 | 429 |
_stack.resize(countNodes(*G)); |
| 429 | 430 |
_stack_head=-1; |
| 430 | 431 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
| 431 | 432 |
_pred->set(u,INVALID); |
| 432 | 433 |
_reached->set(u,false); |
| 433 | 434 |
_processed->set(u,false); |
| 434 | 435 |
} |
| 435 | 436 |
} |
| 436 | 437 |
|
| 437 | 438 |
///Adds a new source node. |
| 438 | 439 |
|
| 439 | 440 |
///Adds a new source node to the set of nodes to be processed. |
| 440 | 441 |
/// |
| 441 | 442 |
///\pre The stack must be empty. Otherwise the algorithm gives |
| 442 | 443 |
///wrong results. (One of the outgoing arcs of all the source nodes |
| 443 | 444 |
///except for the last one will not be visited and distances will |
| 444 | 445 |
///also be wrong.) |
| 445 | 446 |
void addSource(Node s) |
| 446 | 447 |
{
|
| 447 | 448 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
| 448 | 449 |
if(!(*_reached)[s]) |
| 449 | 450 |
{
|
| 450 | 451 |
_reached->set(s,true); |
| 451 | 452 |
_pred->set(s,INVALID); |
| 452 | 453 |
OutArcIt e(*G,s); |
| 453 | 454 |
if(e!=INVALID) {
|
| 454 | 455 |
_stack[++_stack_head]=e; |
| 455 | 456 |
_dist->set(s,_stack_head); |
| 456 | 457 |
} |
| 457 | 458 |
else {
|
| 458 | 459 |
_processed->set(s,true); |
| 459 | 460 |
_dist->set(s,0); |
| 460 | 461 |
} |
| 461 | 462 |
} |
| 462 | 463 |
} |
| 463 | 464 |
|
| 464 | 465 |
///Processes the next arc. |
| 465 | 466 |
|
| 466 | 467 |
///Processes the next arc. |
| 467 | 468 |
/// |
| 468 | 469 |
///\return The processed arc. |
| 469 | 470 |
/// |
| 470 | 471 |
///\pre The stack must not be empty. |
| 471 | 472 |
Arc processNextArc() |
| 472 | 473 |
{
|
| 473 | 474 |
Node m; |
| 474 | 475 |
Arc e=_stack[_stack_head]; |
| 475 | 476 |
if(!(*_reached)[m=G->target(e)]) {
|
| 476 | 477 |
_pred->set(m,e); |
| 477 | 478 |
_reached->set(m,true); |
| 478 | 479 |
++_stack_head; |
| 479 | 480 |
_stack[_stack_head] = OutArcIt(*G, m); |
| 480 | 481 |
_dist->set(m,_stack_head); |
| 481 | 482 |
} |
| 482 | 483 |
else {
|
| 483 | 484 |
m=G->source(e); |
| 484 | 485 |
++_stack[_stack_head]; |
| 485 | 486 |
} |
| 486 | 487 |
while(_stack_head>=0 && _stack[_stack_head]==INVALID) {
|
| 487 | 488 |
_processed->set(m,true); |
| 488 | 489 |
--_stack_head; |
| 489 | 490 |
if(_stack_head>=0) {
|
| 490 | 491 |
m=G->source(_stack[_stack_head]); |
| 491 | 492 |
++_stack[_stack_head]; |
| 492 | 493 |
} |
| 493 | 494 |
} |
| 494 | 495 |
return e; |
| 495 | 496 |
} |
| 496 | 497 |
|
| 497 | 498 |
///Next arc to be processed. |
| 498 | 499 |
|
| 499 | 500 |
///Next arc to be processed. |
| 500 | 501 |
/// |
| 501 | 502 |
///\return The next arc to be processed or \c INVALID if the stack |
| 502 | 503 |
///is empty. |
| 503 | 504 |
OutArcIt nextArc() const |
| 504 | 505 |
{
|
| 505 | 506 |
return _stack_head>=0?_stack[_stack_head]:INVALID; |
| 506 | 507 |
} |
| 507 | 508 |
|
| 508 | 509 |
///Returns \c false if there are nodes to be processed. |
| 509 | 510 |
|
| 510 | 511 |
///Returns \c false if there are nodes to be processed |
| 511 | 512 |
///in the queue (stack). |
| 512 | 513 |
bool emptyQueue() const { return _stack_head<0; }
|
| 513 | 514 |
|
| 514 | 515 |
///Returns the number of the nodes to be processed. |
| 515 | 516 |
|
| 516 | 517 |
///Returns the number of the nodes to be processed |
| 517 | 518 |
///in the queue (stack). |
| 518 | 519 |
int queueSize() const { return _stack_head+1; }
|
| 519 | 520 |
|
| 520 | 521 |
///Executes the algorithm. |
| 521 | 522 |
|
| 522 | 523 |
///Executes the algorithm. |
| 523 | 524 |
/// |
| 524 | 525 |
///This method runs the %DFS algorithm from the root node |
| 525 | 526 |
///in order to compute the DFS path to each node. |
| 526 | 527 |
/// |
| 527 | 528 |
/// The algorithm computes |
| 528 | 529 |
///- the %DFS tree, |
| 529 | 530 |
///- the distance of each node from the root in the %DFS tree. |
| 530 | 531 |
/// |
| 531 | 532 |
///\pre init() must be called and a root node should be |
| 532 | 533 |
///added with addSource() before using this function. |
| 533 | 534 |
/// |
| 534 | 535 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
| 535 | 536 |
///\code |
| 536 | 537 |
/// while ( !d.emptyQueue() ) {
|
| 537 | 538 |
/// d.processNextArc(); |
| 538 | 539 |
/// } |
| 539 | 540 |
///\endcode |
| 540 | 541 |
void start() |
| 541 | 542 |
{
|
| 542 | 543 |
while ( !emptyQueue() ) processNextArc(); |
| 543 | 544 |
} |
| 544 | 545 |
|
| 545 | 546 |
///Executes the algorithm until the given target node is reached. |
| 546 | 547 |
|
| 547 | 548 |
///Executes the algorithm until the given target node is reached. |
| 548 | 549 |
/// |
| 549 | 550 |
///This method runs the %DFS algorithm from the root node |
| 550 | 551 |
///in order to compute the DFS path to \c t. |
| 551 | 552 |
/// |
| 552 | 553 |
///The algorithm computes |
| 553 | 554 |
///- the %DFS path to \c t, |
| 554 | 555 |
///- the distance of \c t from the root in the %DFS tree. |
| 555 | 556 |
/// |
| 556 | 557 |
///\pre init() must be called and a root node should be |
| 557 | 558 |
///added with addSource() before using this function. |
| 558 | 559 |
void start(Node t) |
| 559 | 560 |
{
|
| 560 | 561 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!=t ) |
| 561 | 562 |
processNextArc(); |
| 562 | 563 |
} |
| 563 | 564 |
|
| 564 | 565 |
///Executes the algorithm until a condition is met. |
| 565 | 566 |
|
| 566 | 567 |
///Executes the algorithm until a condition is met. |
| 567 | 568 |
/// |
| 568 | 569 |
///This method runs the %DFS algorithm from the root node |
| 569 | 570 |
///until an arc \c a with <tt>am[a]</tt> true is found. |
| 570 | 571 |
/// |
| 571 | 572 |
///\param am A \c bool (or convertible) arc map. The algorithm |
| 572 | 573 |
///will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
| 573 | 574 |
/// |
| 574 | 575 |
///\return The reached arc \c a with <tt>am[a]</tt> true or |
| 575 | 576 |
///\c INVALID if no such arc was found. |
| 576 | 577 |
/// |
| 577 | 578 |
///\pre init() must be called and a root node should be |
| 578 | 579 |
///added with addSource() before using this function. |
| 579 | 580 |
/// |
| 580 | 581 |
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
| 581 | 582 |
///not a node map. |
| 582 | 583 |
template<class ArcBoolMap> |
| 583 | 584 |
Arc start(const ArcBoolMap &am) |
| 584 | 585 |
{
|
| 585 | 586 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
| 586 | 587 |
processNextArc(); |
| 587 | 588 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
| 588 | 589 |
} |
| 589 | 590 |
|
| 590 | 591 |
///Runs the algorithm from the given source node. |
| 591 | 592 |
|
| 592 | 593 |
///This method runs the %DFS algorithm from node \c s |
| 593 | 594 |
///in order to compute the DFS path to each node. |
| 594 | 595 |
/// |
| 595 | 596 |
///The algorithm computes |
| 596 | 597 |
///- the %DFS tree, |
| 597 | 598 |
///- the distance of each node from the root in the %DFS tree. |
| 598 | 599 |
/// |
| 599 | 600 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 600 | 601 |
///\code |
| 601 | 602 |
/// d.init(); |
| 602 | 603 |
/// d.addSource(s); |
| 603 | 604 |
/// d.start(); |
| 604 | 605 |
///\endcode |
| 605 | 606 |
void run(Node s) {
|
| 606 | 607 |
init(); |
| 607 | 608 |
addSource(s); |
| 608 | 609 |
start(); |
| 609 | 610 |
} |
| 610 | 611 |
|
| 611 | 612 |
///Finds the %DFS path between \c s and \c t. |
| 612 | 613 |
|
| 613 | 614 |
///This method runs the %DFS algorithm from node \c s |
| 614 | 615 |
///in order to compute the DFS path to node \c t |
| 615 | 616 |
///(it stops searching when \c t is processed) |
| 616 | 617 |
/// |
| 617 | 618 |
///\return \c true if \c t is reachable form \c s. |
| 618 | 619 |
/// |
| 619 | 620 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is |
| 620 | 621 |
///just a shortcut of the following code. |
| 621 | 622 |
///\code |
| 622 | 623 |
/// d.init(); |
| 623 | 624 |
/// d.addSource(s); |
| 624 | 625 |
/// d.start(t); |
| 625 | 626 |
///\endcode |
| 626 | 627 |
bool run(Node s,Node t) {
|
| 627 | 628 |
init(); |
| 628 | 629 |
addSource(s); |
| 629 | 630 |
start(t); |
| 630 | 631 |
return reached(t); |
| 631 | 632 |
} |
| 632 | 633 |
|
| 633 | 634 |
///Runs the algorithm to visit all nodes in the digraph. |
| 634 | 635 |
|
| 635 | 636 |
///This method runs the %DFS algorithm in order to compute the |
| 636 | 637 |
///%DFS path to each node. |
| 637 | 638 |
/// |
| 638 | 639 |
///The algorithm computes |
| 639 | 640 |
///- the %DFS tree (forest), |
| 640 | 641 |
///- the distance of each node from the root(s) in the %DFS tree. |
| 641 | 642 |
/// |
| 642 | 643 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
| 643 | 644 |
///\code |
| 644 | 645 |
/// d.init(); |
| 645 | 646 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 646 | 647 |
/// if (!d.reached(n)) {
|
| 647 | 648 |
/// d.addSource(n); |
| 648 | 649 |
/// d.start(); |
| 649 | 650 |
/// } |
| 650 | 651 |
/// } |
| 651 | 652 |
///\endcode |
| 652 | 653 |
void run() {
|
| 653 | 654 |
init(); |
| 654 | 655 |
for (NodeIt it(*G); it != INVALID; ++it) {
|
| 655 | 656 |
if (!reached(it)) {
|
| 656 | 657 |
addSource(it); |
| 657 | 658 |
start(); |
| 658 | 659 |
} |
| 659 | 660 |
} |
| 660 | 661 |
} |
| 661 | 662 |
|
| 662 | 663 |
///@} |
| 663 | 664 |
|
| 664 | 665 |
///\name Query Functions |
| 665 | 666 |
///The results of the DFS algorithm can be obtained using these |
| 666 | 667 |
///functions.\n |
| 667 | 668 |
///Either \ref run(Node) "run()" or \ref start() should be called |
| 668 | 669 |
///before using them. |
| 669 | 670 |
|
| 670 | 671 |
///@{
|
| 671 | 672 |
|
| 672 |
///The DFS path to |
|
| 673 |
///The DFS path to the given node. |
|
| 673 | 674 |
|
| 674 |
///Returns the DFS path to |
|
| 675 |
///Returns the DFS path to the given node from the root(s). |
|
| 675 | 676 |
/// |
| 676 | 677 |
///\warning \c t should be reached from the root(s). |
| 677 | 678 |
/// |
| 678 | 679 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 679 | 680 |
///must be called before using this function. |
| 680 | 681 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 681 | 682 |
|
| 682 |
///The distance of |
|
| 683 |
///The distance of the given node from the root(s). |
|
| 683 | 684 |
|
| 684 |
///Returns the distance of |
|
| 685 |
///Returns the distance of the given node from the root(s). |
|
| 685 | 686 |
/// |
| 686 | 687 |
///\warning If node \c v is not reached from the root(s), then |
| 687 | 688 |
///the return value of this function is undefined. |
| 688 | 689 |
/// |
| 689 | 690 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 690 | 691 |
///must be called before using this function. |
| 691 | 692 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 692 | 693 |
|
| 693 |
///Returns the 'previous arc' of the %DFS tree for |
|
| 694 |
///Returns the 'previous arc' of the %DFS tree for the given node. |
|
| 694 | 695 |
|
| 695 | 696 |
///This function returns the 'previous arc' of the %DFS tree for the |
| 696 | 697 |
///node \c v, i.e. it returns the last arc of a %DFS path from a |
| 697 | 698 |
///root to \c v. It is \c INVALID if \c v is not reached from the |
| 698 | 699 |
///root(s) or if \c v is a root. |
| 699 | 700 |
/// |
| 700 | 701 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 701 |
///\ref predNode(). |
|
| 702 |
///\ref predNode() and \ref predMap(). |
|
| 702 | 703 |
/// |
| 703 | 704 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 704 | 705 |
///must be called before using this function. |
| 705 | 706 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 706 | 707 |
|
| 707 |
///Returns the 'previous node' of the %DFS tree. |
|
| 708 |
///Returns the 'previous node' of the %DFS tree for the given node. |
|
| 708 | 709 |
|
| 709 | 710 |
///This function returns the 'previous node' of the %DFS |
| 710 | 711 |
///tree for the node \c v, i.e. it returns the last but one node |
| 711 |
/// |
|
| 712 |
///of a %DFS path from a root to \c v. It is \c INVALID |
|
| 712 | 713 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 713 | 714 |
/// |
| 714 | 715 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 715 |
///\ref predArc(). |
|
| 716 |
///\ref predArc() and \ref predMap(). |
|
| 716 | 717 |
/// |
| 717 | 718 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 718 | 719 |
///must be called before using this function. |
| 719 | 720 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 720 | 721 |
G->source((*_pred)[v]); } |
| 721 | 722 |
|
| 722 | 723 |
///\brief Returns a const reference to the node map that stores the |
| 723 | 724 |
///distances of the nodes. |
| 724 | 725 |
/// |
| 725 | 726 |
///Returns a const reference to the node map that stores the |
| 726 | 727 |
///distances of the nodes calculated by the algorithm. |
| 727 | 728 |
/// |
| 728 | 729 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 729 | 730 |
///must be called before using this function. |
| 730 | 731 |
const DistMap &distMap() const { return *_dist;}
|
| 731 | 732 |
|
| 732 | 733 |
///\brief Returns a const reference to the node map that stores the |
| 733 | 734 |
///predecessor arcs. |
| 734 | 735 |
/// |
| 735 | 736 |
///Returns a const reference to the node map that stores the predecessor |
| 736 |
///arcs, which form the DFS tree. |
|
| 737 |
///arcs, which form the DFS tree (forest). |
|
| 737 | 738 |
/// |
| 738 | 739 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 739 | 740 |
///must be called before using this function. |
| 740 | 741 |
const PredMap &predMap() const { return *_pred;}
|
| 741 | 742 |
|
| 742 |
///Checks if |
|
| 743 |
///Checks if the given node. node is reached from the root(s). |
|
| 743 | 744 |
|
| 744 | 745 |
///Returns \c true if \c v is reached from the root(s). |
| 745 | 746 |
/// |
| 746 | 747 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 747 | 748 |
///must be called before using this function. |
| 748 | 749 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 749 | 750 |
|
| 750 | 751 |
///@} |
| 751 | 752 |
}; |
| 752 | 753 |
|
| 753 | 754 |
///Default traits class of dfs() function. |
| 754 | 755 |
|
| 755 | 756 |
///Default traits class of dfs() function. |
| 756 | 757 |
///\tparam GR Digraph type. |
| 757 | 758 |
template<class GR> |
| 758 | 759 |
struct DfsWizardDefaultTraits |
| 759 | 760 |
{
|
| 760 | 761 |
///The type of the digraph the algorithm runs on. |
| 761 | 762 |
typedef GR Digraph; |
| 762 | 763 |
|
| 763 | 764 |
///\brief The type of the map that stores the predecessor |
| 764 | 765 |
///arcs of the %DFS paths. |
| 765 | 766 |
/// |
| 766 | 767 |
///The type of the map that stores the predecessor |
| 767 | 768 |
///arcs of the %DFS paths. |
| 768 |
///It must |
|
| 769 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 769 | 770 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 770 | 771 |
///Instantiates a PredMap. |
| 771 | 772 |
|
| 772 | 773 |
///This function instantiates a PredMap. |
| 773 | 774 |
///\param g is the digraph, to which we would like to define the |
| 774 | 775 |
///PredMap. |
| 775 | 776 |
static PredMap *createPredMap(const Digraph &g) |
| 776 | 777 |
{
|
| 777 | 778 |
return new PredMap(g); |
| 778 | 779 |
} |
| 779 | 780 |
|
| 780 | 781 |
///The type of the map that indicates which nodes are processed. |
| 781 | 782 |
|
| 782 | 783 |
///The type of the map that indicates which nodes are processed. |
| 783 |
///It must |
|
| 784 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 784 | 785 |
///By default it is a NullMap. |
| 785 | 786 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 786 | 787 |
///Instantiates a ProcessedMap. |
| 787 | 788 |
|
| 788 | 789 |
///This function instantiates a ProcessedMap. |
| 789 | 790 |
///\param g is the digraph, to which |
| 790 | 791 |
///we would like to define the ProcessedMap. |
| 791 | 792 |
#ifdef DOXYGEN |
| 792 | 793 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 793 | 794 |
#else |
| 794 | 795 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 795 | 796 |
#endif |
| 796 | 797 |
{
|
| 797 | 798 |
return new ProcessedMap(); |
| 798 | 799 |
} |
| 799 | 800 |
|
| 800 | 801 |
///The type of the map that indicates which nodes are reached. |
| 801 | 802 |
|
| 802 | 803 |
///The type of the map that indicates which nodes are reached. |
| 803 |
///It must |
|
| 804 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 804 | 805 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 805 | 806 |
///Instantiates a ReachedMap. |
| 806 | 807 |
|
| 807 | 808 |
///This function instantiates a ReachedMap. |
| 808 | 809 |
///\param g is the digraph, to which |
| 809 | 810 |
///we would like to define the ReachedMap. |
| 810 | 811 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 811 | 812 |
{
|
| 812 | 813 |
return new ReachedMap(g); |
| 813 | 814 |
} |
| 814 | 815 |
|
| 815 | 816 |
///The type of the map that stores the distances of the nodes. |
| 816 | 817 |
|
| 817 | 818 |
///The type of the map that stores the distances of the nodes. |
| 818 |
///It must |
|
| 819 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 819 | 820 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 820 | 821 |
///Instantiates a DistMap. |
| 821 | 822 |
|
| 822 | 823 |
///This function instantiates a DistMap. |
| 823 | 824 |
///\param g is the digraph, to which we would like to define |
| 824 | 825 |
///the DistMap |
| 825 | 826 |
static DistMap *createDistMap(const Digraph &g) |
| 826 | 827 |
{
|
| 827 | 828 |
return new DistMap(g); |
| 828 | 829 |
} |
| 829 | 830 |
|
| 830 | 831 |
///The type of the DFS paths. |
| 831 | 832 |
|
| 832 | 833 |
///The type of the DFS paths. |
| 833 |
///It must |
|
| 834 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
| 834 | 835 |
typedef lemon::Path<Digraph> Path; |
| 835 | 836 |
}; |
| 836 | 837 |
|
| 837 | 838 |
/// Default traits class used by DfsWizard |
| 838 | 839 |
|
| 839 |
/// To make it easier to use Dfs algorithm |
|
| 840 |
/// we have created a wizard class. |
|
| 841 |
/// This \ref DfsWizard class needs default traits, |
|
| 842 |
/// as well as the \ref Dfs class. |
|
| 843 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
|
| 844 |
/// \ref DfsWizard class. |
|
| 840 |
/// Default traits class used by DfsWizard. |
|
| 841 |
/// \tparam GR The type of the digraph. |
|
| 845 | 842 |
template<class GR> |
| 846 | 843 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
| 847 | 844 |
{
|
| 848 | 845 |
|
| 849 | 846 |
typedef DfsWizardDefaultTraits<GR> Base; |
| 850 | 847 |
protected: |
| 851 | 848 |
//The type of the nodes in the digraph. |
| 852 | 849 |
typedef typename Base::Digraph::Node Node; |
| 853 | 850 |
|
| 854 | 851 |
//Pointer to the digraph the algorithm runs on. |
| 855 | 852 |
void *_g; |
| 856 | 853 |
//Pointer to the map of reached nodes. |
| 857 | 854 |
void *_reached; |
| 858 | 855 |
//Pointer to the map of processed nodes. |
| 859 | 856 |
void *_processed; |
| 860 | 857 |
//Pointer to the map of predecessors arcs. |
| 861 | 858 |
void *_pred; |
| 862 | 859 |
//Pointer to the map of distances. |
| 863 | 860 |
void *_dist; |
| 864 | 861 |
//Pointer to the DFS path to the target node. |
| 865 | 862 |
void *_path; |
| 866 | 863 |
//Pointer to the distance of the target node. |
| 867 | 864 |
int *_di; |
| 868 | 865 |
|
| 869 | 866 |
public: |
| 870 | 867 |
/// Constructor. |
| 871 | 868 |
|
| 872 |
/// This constructor does not require parameters, |
|
| 869 |
/// This constructor does not require parameters, it initiates |
|
| 873 | 870 |
/// all of the attributes to \c 0. |
| 874 | 871 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 875 | 872 |
_dist(0), _path(0), _di(0) {}
|
| 876 | 873 |
|
| 877 | 874 |
/// Constructor. |
| 878 | 875 |
|
| 879 | 876 |
/// This constructor requires one parameter, |
| 880 | 877 |
/// others are initiated to \c 0. |
| 881 | 878 |
/// \param g The digraph the algorithm runs on. |
| 882 | 879 |
DfsWizardBase(const GR &g) : |
| 883 | 880 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 884 | 881 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 885 | 882 |
|
| 886 | 883 |
}; |
| 887 | 884 |
|
| 888 | 885 |
/// Auxiliary class for the function-type interface of DFS algorithm. |
| 889 | 886 |
|
| 890 | 887 |
/// This auxiliary class is created to implement the |
| 891 | 888 |
/// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
| 892 | 889 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
| 893 | 890 |
/// functions and features of the plain \ref Dfs. |
| 894 | 891 |
/// |
| 895 | 892 |
/// This class should only be used through the \ref dfs() function, |
| 896 | 893 |
/// which makes it easier to use the algorithm. |
| 897 | 894 |
template<class TR> |
| 898 | 895 |
class DfsWizard : public TR |
| 899 | 896 |
{
|
| 900 | 897 |
typedef TR Base; |
| 901 | 898 |
|
| 902 |
///The type of the digraph the algorithm runs on. |
|
| 903 | 899 |
typedef typename TR::Digraph Digraph; |
| 904 | 900 |
|
| 905 | 901 |
typedef typename Digraph::Node Node; |
| 906 | 902 |
typedef typename Digraph::NodeIt NodeIt; |
| 907 | 903 |
typedef typename Digraph::Arc Arc; |
| 908 | 904 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 909 | 905 |
|
| 910 |
///\brief The type of the map that stores the predecessor |
|
| 911 |
///arcs of the DFS paths. |
|
| 912 | 906 |
typedef typename TR::PredMap PredMap; |
| 913 |
///\brief The type of the map that stores the distances of the nodes. |
|
| 914 | 907 |
typedef typename TR::DistMap DistMap; |
| 915 |
///\brief The type of the map that indicates which nodes are reached. |
|
| 916 | 908 |
typedef typename TR::ReachedMap ReachedMap; |
| 917 |
///\brief The type of the map that indicates which nodes are processed. |
|
| 918 | 909 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 919 |
///The type of the DFS paths |
|
| 920 | 910 |
typedef typename TR::Path Path; |
| 921 | 911 |
|
| 922 | 912 |
public: |
| 923 | 913 |
|
| 924 | 914 |
/// Constructor. |
| 925 | 915 |
DfsWizard() : TR() {}
|
| 926 | 916 |
|
| 927 | 917 |
/// Constructor that requires parameters. |
| 928 | 918 |
|
| 929 | 919 |
/// Constructor that requires parameters. |
| 930 | 920 |
/// These parameters will be the default values for the traits class. |
| 931 | 921 |
/// \param g The digraph the algorithm runs on. |
| 932 | 922 |
DfsWizard(const Digraph &g) : |
| 933 | 923 |
TR(g) {}
|
| 934 | 924 |
|
| 935 | 925 |
///Copy constructor |
| 936 | 926 |
DfsWizard(const TR &b) : TR(b) {}
|
| 937 | 927 |
|
| 938 | 928 |
~DfsWizard() {}
|
| 939 | 929 |
|
| 940 | 930 |
///Runs DFS algorithm from the given source node. |
| 941 | 931 |
|
| 942 | 932 |
///This method runs DFS algorithm from node \c s |
| 943 | 933 |
///in order to compute the DFS path to each node. |
| 944 | 934 |
void run(Node s) |
| 945 | 935 |
{
|
| 946 | 936 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 947 | 937 |
if (Base::_pred) |
| 948 | 938 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 949 | 939 |
if (Base::_dist) |
| 950 | 940 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 951 | 941 |
if (Base::_reached) |
| 952 | 942 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 953 | 943 |
if (Base::_processed) |
| 954 | 944 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 955 | 945 |
if (s!=INVALID) |
| 956 | 946 |
alg.run(s); |
| 957 | 947 |
else |
| 958 | 948 |
alg.run(); |
| 959 | 949 |
} |
| 960 | 950 |
|
| 961 | 951 |
///Finds the DFS path between \c s and \c t. |
| 962 | 952 |
|
| 963 | 953 |
///This method runs DFS algorithm from node \c s |
| 964 | 954 |
///in order to compute the DFS path to node \c t |
| 965 | 955 |
///(it stops searching when \c t is processed). |
| 966 | 956 |
/// |
| 967 | 957 |
///\return \c true if \c t is reachable form \c s. |
| 968 | 958 |
bool run(Node s, Node t) |
| 969 | 959 |
{
|
| 970 | 960 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 971 | 961 |
if (Base::_pred) |
| 972 | 962 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 973 | 963 |
if (Base::_dist) |
| 974 | 964 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 975 | 965 |
if (Base::_reached) |
| 976 | 966 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 977 | 967 |
if (Base::_processed) |
| 978 | 968 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 979 | 969 |
alg.run(s,t); |
| 980 | 970 |
if (Base::_path) |
| 981 | 971 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
| 982 | 972 |
if (Base::_di) |
| 983 | 973 |
*Base::_di = alg.dist(t); |
| 984 | 974 |
return alg.reached(t); |
| 985 | 975 |
} |
| 986 | 976 |
|
| 987 | 977 |
///Runs DFS algorithm to visit all nodes in the digraph. |
| 988 | 978 |
|
| 989 | 979 |
///This method runs DFS algorithm in order to compute |
| 990 | 980 |
///the DFS path to each node. |
| 991 | 981 |
void run() |
| 992 | 982 |
{
|
| 993 | 983 |
run(INVALID); |
| 994 | 984 |
} |
| 995 | 985 |
|
| 996 | 986 |
template<class T> |
| 997 | 987 |
struct SetPredMapBase : public Base {
|
| 998 | 988 |
typedef T PredMap; |
| 999 | 989 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1000 | 990 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1001 | 991 |
}; |
| 1002 |
///\brief \ref named-func-param "Named parameter" |
|
| 1003 |
///for setting PredMap object. |
|
| 992 |
|
|
| 993 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 994 |
///the predecessor map. |
|
| 1004 | 995 |
/// |
| 1005 |
///\ref named-func-param "Named parameter" |
|
| 1006 |
///for setting PredMap object. |
|
| 996 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 997 |
///the map that stores the predecessor arcs of the nodes. |
|
| 1007 | 998 |
template<class T> |
| 1008 | 999 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1009 | 1000 |
{
|
| 1010 | 1001 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1011 | 1002 |
return DfsWizard<SetPredMapBase<T> >(*this); |
| 1012 | 1003 |
} |
| 1013 | 1004 |
|
| 1014 | 1005 |
template<class T> |
| 1015 | 1006 |
struct SetReachedMapBase : public Base {
|
| 1016 | 1007 |
typedef T ReachedMap; |
| 1017 | 1008 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
|
| 1018 | 1009 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1019 | 1010 |
}; |
| 1020 |
///\brief \ref named-func-param "Named parameter" |
|
| 1021 |
///for setting ReachedMap object. |
|
| 1011 |
|
|
| 1012 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1013 |
///the reached map. |
|
| 1022 | 1014 |
/// |
| 1023 |
/// \ref named-func-param "Named parameter" |
|
| 1024 |
///for setting ReachedMap object. |
|
| 1015 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1016 |
///the map that indicates which nodes are reached. |
|
| 1025 | 1017 |
template<class T> |
| 1026 | 1018 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| 1027 | 1019 |
{
|
| 1028 | 1020 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1029 | 1021 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
| 1030 | 1022 |
} |
| 1031 | 1023 |
|
| 1032 | 1024 |
template<class T> |
| 1033 | 1025 |
struct SetDistMapBase : public Base {
|
| 1034 | 1026 |
typedef T DistMap; |
| 1035 | 1027 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1036 | 1028 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1037 | 1029 |
}; |
| 1038 |
///\brief \ref named-func-param "Named parameter" |
|
| 1039 |
///for setting DistMap object. |
|
| 1030 |
|
|
| 1031 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1032 |
///the distance map. |
|
| 1040 | 1033 |
/// |
| 1041 |
/// \ref named-func-param "Named parameter" |
|
| 1042 |
///for setting DistMap object. |
|
| 1034 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1035 |
///the map that stores the distances of the nodes calculated |
|
| 1036 |
///by the algorithm. |
|
| 1043 | 1037 |
template<class T> |
| 1044 | 1038 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1045 | 1039 |
{
|
| 1046 | 1040 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1047 | 1041 |
return DfsWizard<SetDistMapBase<T> >(*this); |
| 1048 | 1042 |
} |
| 1049 | 1043 |
|
| 1050 | 1044 |
template<class T> |
| 1051 | 1045 |
struct SetProcessedMapBase : public Base {
|
| 1052 | 1046 |
typedef T ProcessedMap; |
| 1053 | 1047 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1054 | 1048 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1055 | 1049 |
}; |
| 1056 |
///\brief \ref named-func-param "Named parameter" |
|
| 1057 |
///for setting ProcessedMap object. |
|
| 1050 |
|
|
| 1051 |
///\brief \ref named-func-param "Named parameter" for setting |
|
| 1052 |
///the processed map. |
|
| 1058 | 1053 |
/// |
| 1059 |
/// \ref named-func-param "Named parameter" |
|
| 1060 |
///for setting ProcessedMap object. |
|
| 1054 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1055 |
///the map that indicates which nodes are processed. |
|
| 1061 | 1056 |
template<class T> |
| 1062 | 1057 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1063 | 1058 |
{
|
| 1064 | 1059 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1065 | 1060 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
| 1066 | 1061 |
} |
| 1067 | 1062 |
|
| 1068 | 1063 |
template<class T> |
| 1069 | 1064 |
struct SetPathBase : public Base {
|
| 1070 | 1065 |
typedef T Path; |
| 1071 | 1066 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1072 | 1067 |
}; |
| 1073 | 1068 |
///\brief \ref named-func-param "Named parameter" |
| 1074 | 1069 |
///for getting the DFS path to the target node. |
| 1075 | 1070 |
/// |
| 1076 | 1071 |
///\ref named-func-param "Named parameter" |
| 1077 | 1072 |
///for getting the DFS path to the target node. |
| 1078 | 1073 |
template<class T> |
| 1079 | 1074 |
DfsWizard<SetPathBase<T> > path(const T &t) |
| 1080 | 1075 |
{
|
| 1081 | 1076 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1082 | 1077 |
return DfsWizard<SetPathBase<T> >(*this); |
| 1083 | 1078 |
} |
| 1084 | 1079 |
|
| 1085 | 1080 |
///\brief \ref named-func-param "Named parameter" |
| 1086 | 1081 |
///for getting the distance of the target node. |
| 1087 | 1082 |
/// |
| 1088 | 1083 |
///\ref named-func-param "Named parameter" |
| 1089 | 1084 |
///for getting the distance of the target node. |
| 1090 | 1085 |
DfsWizard dist(const int &d) |
| 1091 | 1086 |
{
|
| 1092 | 1087 |
Base::_di=const_cast<int*>(&d); |
| 1093 | 1088 |
return *this; |
| 1094 | 1089 |
} |
| 1095 | 1090 |
|
| 1096 | 1091 |
}; |
| 1097 | 1092 |
|
| 1098 | 1093 |
///Function-type interface for DFS algorithm. |
| 1099 | 1094 |
|
| 1100 | 1095 |
///\ingroup search |
| 1101 | 1096 |
///Function-type interface for DFS algorithm. |
| 1102 | 1097 |
/// |
| 1103 | 1098 |
///This function also has several \ref named-func-param "named parameters", |
| 1104 | 1099 |
///they are declared as the members of class \ref DfsWizard. |
| 1105 | 1100 |
///The following examples show how to use these parameters. |
| 1106 | 1101 |
///\code |
| 1107 | 1102 |
/// // Compute the DFS tree |
| 1108 | 1103 |
/// dfs(g).predMap(preds).distMap(dists).run(s); |
| 1109 | 1104 |
/// |
| 1110 | 1105 |
/// // Compute the DFS path from s to t |
| 1111 | 1106 |
/// bool reached = dfs(g).path(p).dist(d).run(s,t); |
| 1112 | 1107 |
///\endcode |
| 1113 | 1108 |
///\warning Don't forget to put the \ref DfsWizard::run(Node) "run()" |
| 1114 | 1109 |
///to the end of the parameter list. |
| 1115 | 1110 |
///\sa DfsWizard |
| 1116 | 1111 |
///\sa Dfs |
| 1117 | 1112 |
template<class GR> |
| 1118 | 1113 |
DfsWizard<DfsWizardBase<GR> > |
| 1119 | 1114 |
dfs(const GR &digraph) |
| 1120 | 1115 |
{
|
| 1121 | 1116 |
return DfsWizard<DfsWizardBase<GR> >(digraph); |
| 1122 | 1117 |
} |
| 1123 | 1118 |
|
| 1124 | 1119 |
#ifdef DOXYGEN |
| 1125 | 1120 |
/// \brief Visitor class for DFS. |
| 1126 | 1121 |
/// |
| 1127 | 1122 |
/// This class defines the interface of the DfsVisit events, and |
| 1128 | 1123 |
/// it could be the base of a real visitor class. |
| 1129 | 1124 |
template <typename GR> |
| 1130 | 1125 |
struct DfsVisitor {
|
| 1131 | 1126 |
typedef GR Digraph; |
| 1132 | 1127 |
typedef typename Digraph::Arc Arc; |
| 1133 | 1128 |
typedef typename Digraph::Node Node; |
| 1134 | 1129 |
/// \brief Called for the source node of the DFS. |
| 1135 | 1130 |
/// |
| 1136 | 1131 |
/// This function is called for the source node of the DFS. |
| 1137 | 1132 |
void start(const Node& node) {}
|
| 1138 | 1133 |
/// \brief Called when the source node is leaved. |
| 1139 | 1134 |
/// |
| 1140 | 1135 |
/// This function is called when the source node is leaved. |
| 1141 | 1136 |
void stop(const Node& node) {}
|
| 1142 | 1137 |
/// \brief Called when a node is reached first time. |
| 1143 | 1138 |
/// |
| 1144 | 1139 |
/// This function is called when a node is reached first time. |
| 1145 | 1140 |
void reach(const Node& node) {}
|
| 1146 | 1141 |
/// \brief Called when an arc reaches a new node. |
| 1147 | 1142 |
/// |
| 1148 | 1143 |
/// This function is called when the DFS finds an arc whose target node |
| 1149 | 1144 |
/// is not reached yet. |
| 1150 | 1145 |
void discover(const Arc& arc) {}
|
| 1151 | 1146 |
/// \brief Called when an arc is examined but its target node is |
| 1152 | 1147 |
/// already discovered. |
| 1153 | 1148 |
/// |
| 1154 | 1149 |
/// This function is called when an arc is examined but its target node is |
| 1155 | 1150 |
/// already discovered. |
| 1156 | 1151 |
void examine(const Arc& arc) {}
|
| 1157 | 1152 |
/// \brief Called when the DFS steps back from a node. |
| 1158 | 1153 |
/// |
| 1159 | 1154 |
/// This function is called when the DFS steps back from a node. |
| 1160 | 1155 |
void leave(const Node& node) {}
|
| 1161 | 1156 |
/// \brief Called when the DFS steps back on an arc. |
| 1162 | 1157 |
/// |
| 1163 | 1158 |
/// This function is called when the DFS steps back on an arc. |
| 1164 | 1159 |
void backtrack(const Arc& arc) {}
|
| 1165 | 1160 |
}; |
| 1166 | 1161 |
#else |
| 1167 | 1162 |
template <typename GR> |
| 1168 | 1163 |
struct DfsVisitor {
|
| 1169 | 1164 |
typedef GR Digraph; |
| 1170 | 1165 |
typedef typename Digraph::Arc Arc; |
| 1171 | 1166 |
typedef typename Digraph::Node Node; |
| 1172 | 1167 |
void start(const Node&) {}
|
| 1173 | 1168 |
void stop(const Node&) {}
|
| 1174 | 1169 |
void reach(const Node&) {}
|
| 1175 | 1170 |
void discover(const Arc&) {}
|
| 1176 | 1171 |
void examine(const Arc&) {}
|
| 1177 | 1172 |
void leave(const Node&) {}
|
| 1178 | 1173 |
void backtrack(const Arc&) {}
|
| 1179 | 1174 |
|
| 1180 | 1175 |
template <typename _Visitor> |
| 1181 | 1176 |
struct Constraints {
|
| 1182 | 1177 |
void constraints() {
|
| 1183 | 1178 |
Arc arc; |
| 1184 | 1179 |
Node node; |
| 1185 | 1180 |
visitor.start(node); |
| 1186 | 1181 |
visitor.stop(arc); |
| 1187 | 1182 |
visitor.reach(node); |
| 1188 | 1183 |
visitor.discover(arc); |
| 1189 | 1184 |
visitor.examine(arc); |
| 1190 | 1185 |
visitor.leave(node); |
| 1191 | 1186 |
visitor.backtrack(arc); |
| 1192 | 1187 |
} |
| 1193 | 1188 |
_Visitor& visitor; |
| 1194 | 1189 |
}; |
| 1195 | 1190 |
}; |
| 1196 | 1191 |
#endif |
| 1197 | 1192 |
|
| 1198 | 1193 |
/// \brief Default traits class of DfsVisit class. |
| 1199 | 1194 |
/// |
| 1200 | 1195 |
/// Default traits class of DfsVisit class. |
| 1201 | 1196 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
| 1202 | 1197 |
template<class GR> |
| 1203 | 1198 |
struct DfsVisitDefaultTraits {
|
| 1204 | 1199 |
|
| 1205 | 1200 |
/// \brief The type of the digraph the algorithm runs on. |
| 1206 | 1201 |
typedef GR Digraph; |
| 1207 | 1202 |
|
| 1208 | 1203 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1209 | 1204 |
/// |
| 1210 | 1205 |
/// The type of the map that indicates which nodes are reached. |
| 1211 |
/// It must |
|
| 1206 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 1212 | 1207 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1213 | 1208 |
|
| 1214 | 1209 |
/// \brief Instantiates a ReachedMap. |
| 1215 | 1210 |
/// |
| 1216 | 1211 |
/// This function instantiates a ReachedMap. |
| 1217 | 1212 |
/// \param digraph is the digraph, to which |
| 1218 | 1213 |
/// we would like to define the ReachedMap. |
| 1219 | 1214 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1220 | 1215 |
return new ReachedMap(digraph); |
| 1221 | 1216 |
} |
| 1222 | 1217 |
|
| 1223 | 1218 |
}; |
| 1224 | 1219 |
|
| 1225 | 1220 |
/// \ingroup search |
| 1226 | 1221 |
/// |
| 1227 | 1222 |
/// \brief DFS algorithm class with visitor interface. |
| 1228 | 1223 |
/// |
| 1229 | 1224 |
/// This class provides an efficient implementation of the DFS algorithm |
| 1230 | 1225 |
/// with visitor interface. |
| 1231 | 1226 |
/// |
| 1232 | 1227 |
/// The DfsVisit class provides an alternative interface to the Dfs |
| 1233 | 1228 |
/// class. It works with callback mechanism, the DfsVisit object calls |
| 1234 | 1229 |
/// the member functions of the \c Visitor class on every DFS event. |
| 1235 | 1230 |
/// |
| 1236 | 1231 |
/// This interface of the DFS algorithm should be used in special cases |
| 1237 | 1232 |
/// when extra actions have to be performed in connection with certain |
| 1238 | 1233 |
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs() |
| 1239 | 1234 |
/// instead. |
| 1240 | 1235 |
/// |
| 1241 | 1236 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1242 | 1237 |
/// The default type is \ref ListDigraph. |
| 1243 | 1238 |
/// The value of GR is not used directly by \ref DfsVisit, |
| 1244 | 1239 |
/// it is only passed to \ref DfsVisitDefaultTraits. |
| 1245 | 1240 |
/// \tparam VS The Visitor type that is used by the algorithm. |
| 1246 | 1241 |
/// \ref DfsVisitor "DfsVisitor<GR>" is an empty visitor, which |
| 1247 | 1242 |
/// does not observe the DFS events. If you want to observe the DFS |
| 1248 | 1243 |
/// events, you should implement your own visitor class. |
| 1249 | 1244 |
/// \tparam TR Traits class to set various data types used by the |
| 1250 | 1245 |
/// algorithm. The default traits class is |
| 1251 | 1246 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<GR>". |
| 1252 | 1247 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
| 1253 | 1248 |
/// a DFS visit traits class. |
| 1254 | 1249 |
#ifdef DOXYGEN |
| 1255 | 1250 |
template <typename GR, typename VS, typename TR> |
| 1256 | 1251 |
#else |
| 1257 | 1252 |
template <typename GR = ListDigraph, |
| 1258 | 1253 |
typename VS = DfsVisitor<GR>, |
| 1259 | 1254 |
typename TR = DfsVisitDefaultTraits<GR> > |
| 1260 | 1255 |
#endif |
| 1261 | 1256 |
class DfsVisit {
|
| 1262 | 1257 |
public: |
| 1263 | 1258 |
|
| 1264 | 1259 |
///The traits class. |
| 1265 | 1260 |
typedef TR Traits; |
| 1266 | 1261 |
|
| 1267 | 1262 |
///The type of the digraph the algorithm runs on. |
| 1268 | 1263 |
typedef typename Traits::Digraph Digraph; |
| 1269 | 1264 |
|
| 1270 | 1265 |
///The visitor type used by the algorithm. |
| 1271 | 1266 |
typedef VS Visitor; |
| 1272 | 1267 |
|
| 1273 | 1268 |
///The type of the map that indicates which nodes are reached. |
| 1274 | 1269 |
typedef typename Traits::ReachedMap ReachedMap; |
| 1275 | 1270 |
|
| 1276 | 1271 |
private: |
| 1277 | 1272 |
|
| 1278 | 1273 |
typedef typename Digraph::Node Node; |
| 1279 | 1274 |
typedef typename Digraph::NodeIt NodeIt; |
| 1280 | 1275 |
typedef typename Digraph::Arc Arc; |
| 1281 | 1276 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1282 | 1277 |
|
| 1283 | 1278 |
//Pointer to the underlying digraph. |
| 1284 | 1279 |
const Digraph *_digraph; |
| 1285 | 1280 |
//Pointer to the visitor object. |
| 1286 | 1281 |
Visitor *_visitor; |
| 1287 | 1282 |
//Pointer to the map of reached status of the nodes. |
| 1288 | 1283 |
ReachedMap *_reached; |
| 1289 | 1284 |
//Indicates if _reached is locally allocated (true) or not. |
| 1290 | 1285 |
bool local_reached; |
| 1291 | 1286 |
|
| 1292 | 1287 |
std::vector<typename Digraph::Arc> _stack; |
| 1293 | 1288 |
int _stack_head; |
| 1294 | 1289 |
|
| 1295 | 1290 |
//Creates the maps if necessary. |
| 1296 | 1291 |
void create_maps() {
|
| 1297 | 1292 |
if(!_reached) {
|
| 1298 | 1293 |
local_reached = true; |
| 1299 | 1294 |
_reached = Traits::createReachedMap(*_digraph); |
| 1300 | 1295 |
} |
| 1301 | 1296 |
} |
| 1302 | 1297 |
|
| 1303 | 1298 |
protected: |
| 1304 | 1299 |
|
| 1305 | 1300 |
DfsVisit() {}
|
| 1306 | 1301 |
|
| 1307 | 1302 |
public: |
| 1308 | 1303 |
|
| 1309 | 1304 |
typedef DfsVisit Create; |
| 1310 | 1305 |
|
| 1311 | 1306 |
/// \name Named Template Parameters |
| 1312 | 1307 |
|
| 1313 | 1308 |
///@{
|
| 1314 | 1309 |
template <class T> |
| 1315 | 1310 |
struct SetReachedMapTraits : public Traits {
|
| 1316 | 1311 |
typedef T ReachedMap; |
| 1317 | 1312 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1318 | 1313 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 1319 | 1314 |
return 0; // ignore warnings |
| 1320 | 1315 |
} |
| 1321 | 1316 |
}; |
| 1322 | 1317 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1323 | 1318 |
/// ReachedMap type. |
| 1324 | 1319 |
/// |
| 1325 | 1320 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
| 1326 | 1321 |
template <class T> |
| 1327 | 1322 |
struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
| 1328 | 1323 |
SetReachedMapTraits<T> > {
|
| 1329 | 1324 |
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
| 1330 | 1325 |
}; |
| 1331 | 1326 |
///@} |
| 1332 | 1327 |
|
| 1333 | 1328 |
public: |
| 1334 | 1329 |
|
| 1335 | 1330 |
/// \brief Constructor. |
| 1336 | 1331 |
/// |
| 1337 | 1332 |
/// Constructor. |
| 1338 | 1333 |
/// |
| 1339 | 1334 |
/// \param digraph The digraph the algorithm runs on. |
| 1340 | 1335 |
/// \param visitor The visitor object of the algorithm. |
| 1341 | 1336 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
| 1342 | 1337 |
: _digraph(&digraph), _visitor(&visitor), |
| 1343 | 1338 |
_reached(0), local_reached(false) {}
|
| 1344 | 1339 |
|
| 1345 | 1340 |
/// \brief Destructor. |
| 1346 | 1341 |
~DfsVisit() {
|
| 1347 | 1342 |
if(local_reached) delete _reached; |
| 1348 | 1343 |
} |
| 1349 | 1344 |
|
| 1350 | 1345 |
/// \brief Sets the map that indicates which nodes are reached. |
| 1351 | 1346 |
/// |
| 1352 | 1347 |
/// Sets the map that indicates which nodes are reached. |
| 1353 | 1348 |
/// If you don't use this function before calling \ref run(Node) "run()" |
| 1354 | 1349 |
/// or \ref init(), an instance will be allocated automatically. |
| 1355 | 1350 |
/// The destructor deallocates this automatically allocated map, |
| 1356 | 1351 |
/// of course. |
| 1357 | 1352 |
/// \return <tt> (*this) </tt> |
| 1358 | 1353 |
DfsVisit &reachedMap(ReachedMap &m) {
|
| 1359 | 1354 |
if(local_reached) {
|
| 1360 | 1355 |
delete _reached; |
| 1361 | 1356 |
local_reached=false; |
| 1362 | 1357 |
} |
| 1363 | 1358 |
_reached = &m; |
| 1364 | 1359 |
return *this; |
| 1365 | 1360 |
} |
| 1366 | 1361 |
|
| 1367 | 1362 |
public: |
| 1368 | 1363 |
|
| 1369 | 1364 |
/// \name Execution Control |
| 1370 | 1365 |
/// The simplest way to execute the DFS algorithm is to use one of the |
| 1371 | 1366 |
/// member functions called \ref run(Node) "run()".\n |
| 1372 |
/// If you need more control on the execution, first you have to call |
|
| 1373 |
/// \ref init(), then you can add a source node with \ref addSource() |
|
| 1367 |
/// If you need better control on the execution, you have to call |
|
| 1368 |
/// \ref init() first, then you can add a source node with \ref addSource() |
|
| 1374 | 1369 |
/// and perform the actual computation with \ref start(). |
| 1375 | 1370 |
/// This procedure can be repeated if there are nodes that have not |
| 1376 | 1371 |
/// been reached. |
| 1377 | 1372 |
|
| 1378 | 1373 |
/// @{
|
| 1379 | 1374 |
|
| 1380 | 1375 |
/// \brief Initializes the internal data structures. |
| 1381 | 1376 |
/// |
| 1382 | 1377 |
/// Initializes the internal data structures. |
| 1383 | 1378 |
void init() {
|
| 1384 | 1379 |
create_maps(); |
| 1385 | 1380 |
_stack.resize(countNodes(*_digraph)); |
| 1386 | 1381 |
_stack_head = -1; |
| 1387 | 1382 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
|
| 1388 | 1383 |
_reached->set(u, false); |
| 1389 | 1384 |
} |
| 1390 | 1385 |
} |
| 1391 | 1386 |
|
| 1392 | 1387 |
/// \brief Adds a new source node. |
| 1393 | 1388 |
/// |
| 1394 | 1389 |
/// Adds a new source node to the set of nodes to be processed. |
| 1395 | 1390 |
/// |
| 1396 | 1391 |
/// \pre The stack must be empty. Otherwise the algorithm gives |
| 1397 | 1392 |
/// wrong results. (One of the outgoing arcs of all the source nodes |
| 1398 | 1393 |
/// except for the last one will not be visited and distances will |
| 1399 | 1394 |
/// also be wrong.) |
| 1400 | 1395 |
void addSource(Node s) |
| 1401 | 1396 |
{
|
| 1402 | 1397 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
| 1403 | 1398 |
if(!(*_reached)[s]) {
|
| 1404 | 1399 |
_reached->set(s,true); |
| 1405 | 1400 |
_visitor->start(s); |
| 1406 | 1401 |
_visitor->reach(s); |
| 1407 | 1402 |
Arc e; |
| 1408 | 1403 |
_digraph->firstOut(e, s); |
| 1409 | 1404 |
if (e != INVALID) {
|
| 1410 | 1405 |
_stack[++_stack_head] = e; |
| 1411 | 1406 |
} else {
|
| 1412 | 1407 |
_visitor->leave(s); |
| 1413 | 1408 |
_visitor->stop(s); |
| 1414 | 1409 |
} |
| 1415 | 1410 |
} |
| 1416 | 1411 |
} |
| 1417 | 1412 |
|
| 1418 | 1413 |
/// \brief Processes the next arc. |
| 1419 | 1414 |
/// |
| 1420 | 1415 |
/// Processes the next arc. |
| 1421 | 1416 |
/// |
| 1422 | 1417 |
/// \return The processed arc. |
| 1423 | 1418 |
/// |
| 1424 | 1419 |
/// \pre The stack must not be empty. |
| 1425 | 1420 |
Arc processNextArc() {
|
| 1426 | 1421 |
Arc e = _stack[_stack_head]; |
| 1427 | 1422 |
Node m = _digraph->target(e); |
| 1428 | 1423 |
if(!(*_reached)[m]) {
|
| 1429 | 1424 |
_visitor->discover(e); |
| 1430 | 1425 |
_visitor->reach(m); |
| 1431 | 1426 |
_reached->set(m, true); |
| 1432 | 1427 |
_digraph->firstOut(_stack[++_stack_head], m); |
| 1433 | 1428 |
} else {
|
| 1434 | 1429 |
_visitor->examine(e); |
| 1435 | 1430 |
m = _digraph->source(e); |
| 1436 | 1431 |
_digraph->nextOut(_stack[_stack_head]); |
| 1437 | 1432 |
} |
| 1438 | 1433 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) {
|
| 1439 | 1434 |
_visitor->leave(m); |
| 1440 | 1435 |
--_stack_head; |
| 1441 | 1436 |
if (_stack_head >= 0) {
|
| 1442 | 1437 |
_visitor->backtrack(_stack[_stack_head]); |
| 1443 | 1438 |
m = _digraph->source(_stack[_stack_head]); |
| 1444 | 1439 |
_digraph->nextOut(_stack[_stack_head]); |
| 1445 | 1440 |
} else {
|
| 1446 | 1441 |
_visitor->stop(m); |
| 1447 | 1442 |
} |
| 1448 | 1443 |
} |
| 1449 | 1444 |
return e; |
| 1450 | 1445 |
} |
| 1451 | 1446 |
|
| 1452 | 1447 |
/// \brief Next arc to be processed. |
| 1453 | 1448 |
/// |
| 1454 | 1449 |
/// Next arc to be processed. |
| 1455 | 1450 |
/// |
| 1456 | 1451 |
/// \return The next arc to be processed or INVALID if the stack is |
| 1457 | 1452 |
/// empty. |
| 1458 | 1453 |
Arc nextArc() const {
|
| 1459 | 1454 |
return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
| 1460 | 1455 |
} |
| 1461 | 1456 |
|
| 1462 | 1457 |
/// \brief Returns \c false if there are nodes |
| 1463 | 1458 |
/// to be processed. |
| 1464 | 1459 |
/// |
| 1465 | 1460 |
/// Returns \c false if there are nodes |
| 1466 | 1461 |
/// to be processed in the queue (stack). |
| 1467 | 1462 |
bool emptyQueue() const { return _stack_head < 0; }
|
| 1468 | 1463 |
|
| 1469 | 1464 |
/// \brief Returns the number of the nodes to be processed. |
| 1470 | 1465 |
/// |
| 1471 | 1466 |
/// Returns the number of the nodes to be processed in the queue (stack). |
| 1472 | 1467 |
int queueSize() const { return _stack_head + 1; }
|
| 1473 | 1468 |
|
| 1474 | 1469 |
/// \brief Executes the algorithm. |
| 1475 | 1470 |
/// |
| 1476 | 1471 |
/// Executes the algorithm. |
| 1477 | 1472 |
/// |
| 1478 | 1473 |
/// This method runs the %DFS algorithm from the root node |
| 1479 | 1474 |
/// in order to compute the %DFS path to each node. |
| 1480 | 1475 |
/// |
| 1481 | 1476 |
/// The algorithm computes |
| 1482 | 1477 |
/// - the %DFS tree, |
| 1483 | 1478 |
/// - the distance of each node from the root in the %DFS tree. |
| 1484 | 1479 |
/// |
| 1485 | 1480 |
/// \pre init() must be called and a root node should be |
| 1486 | 1481 |
/// added with addSource() before using this function. |
| 1487 | 1482 |
/// |
| 1488 | 1483 |
/// \note <tt>d.start()</tt> is just a shortcut of the following code. |
| 1489 | 1484 |
/// \code |
| 1490 | 1485 |
/// while ( !d.emptyQueue() ) {
|
| 1491 | 1486 |
/// d.processNextArc(); |
| 1492 | 1487 |
/// } |
| 1493 | 1488 |
/// \endcode |
| 1494 | 1489 |
void start() {
|
| 1495 | 1490 |
while ( !emptyQueue() ) processNextArc(); |
| 1496 | 1491 |
} |
| 1497 | 1492 |
|
| 1498 | 1493 |
/// \brief Executes the algorithm until the given target node is reached. |
| 1499 | 1494 |
/// |
| 1500 | 1495 |
/// Executes the algorithm until the given target node is reached. |
| 1501 | 1496 |
/// |
| 1502 | 1497 |
/// This method runs the %DFS algorithm from the root node |
| 1503 | 1498 |
/// in order to compute the DFS path to \c t. |
| 1504 | 1499 |
/// |
| 1505 | 1500 |
/// The algorithm computes |
| 1506 | 1501 |
/// - the %DFS path to \c t, |
| 1507 | 1502 |
/// - the distance of \c t from the root in the %DFS tree. |
| 1508 | 1503 |
/// |
| 1509 | 1504 |
/// \pre init() must be called and a root node should be added |
| 1510 | 1505 |
/// with addSource() before using this function. |
| 1511 | 1506 |
void start(Node t) {
|
| 1512 | 1507 |
while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != t ) |
| 1513 | 1508 |
processNextArc(); |
| 1514 | 1509 |
} |
| 1515 | 1510 |
|
| 1516 | 1511 |
/// \brief Executes the algorithm until a condition is met. |
| 1517 | 1512 |
/// |
| 1518 | 1513 |
/// Executes the algorithm until a condition is met. |
| 1519 | 1514 |
/// |
| 1520 | 1515 |
/// This method runs the %DFS algorithm from the root node |
| 1521 | 1516 |
/// until an arc \c a with <tt>am[a]</tt> true is found. |
| 1522 | 1517 |
/// |
| 1523 | 1518 |
/// \param am A \c bool (or convertible) arc map. The algorithm |
| 1524 | 1519 |
/// will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
| 1525 | 1520 |
/// |
| 1526 | 1521 |
/// \return The reached arc \c a with <tt>am[a]</tt> true or |
| 1527 | 1522 |
/// \c INVALID if no such arc was found. |
| 1528 | 1523 |
/// |
| 1529 | 1524 |
/// \pre init() must be called and a root node should be added |
| 1530 | 1525 |
/// with addSource() before using this function. |
| 1531 | 1526 |
/// |
| 1532 | 1527 |
/// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
| 1533 | 1528 |
/// not a node map. |
| 1534 | 1529 |
template <typename AM> |
| 1535 | 1530 |
Arc start(const AM &am) {
|
| 1536 | 1531 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
| 1537 | 1532 |
processNextArc(); |
| 1538 | 1533 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
| 1539 | 1534 |
} |
| 1540 | 1535 |
|
| 1541 | 1536 |
/// \brief Runs the algorithm from the given source node. |
| 1542 | 1537 |
/// |
| 1543 | 1538 |
/// This method runs the %DFS algorithm from node \c s. |
| 1544 | 1539 |
/// in order to compute the DFS path to each node. |
| 1545 | 1540 |
/// |
| 1546 | 1541 |
/// The algorithm computes |
| 1547 | 1542 |
/// - the %DFS tree, |
| 1548 | 1543 |
/// - the distance of each node from the root in the %DFS tree. |
| 1549 | 1544 |
/// |
| 1550 | 1545 |
/// \note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 1551 | 1546 |
///\code |
| 1552 | 1547 |
/// d.init(); |
| 1553 | 1548 |
/// d.addSource(s); |
| 1554 | 1549 |
/// d.start(); |
| 1555 | 1550 |
///\endcode |
| 1556 | 1551 |
void run(Node s) {
|
| 1557 | 1552 |
init(); |
| 1558 | 1553 |
addSource(s); |
| 1559 | 1554 |
start(); |
| 1560 | 1555 |
} |
| 1561 | 1556 |
|
| 1562 | 1557 |
/// \brief Finds the %DFS path between \c s and \c t. |
| 1563 | 1558 |
|
| 1564 | 1559 |
/// This method runs the %DFS algorithm from node \c s |
| 1565 | 1560 |
/// in order to compute the DFS path to node \c t |
| 1566 | 1561 |
/// (it stops searching when \c t is processed). |
| 1567 | 1562 |
/// |
| 1568 | 1563 |
/// \return \c true if \c t is reachable form \c s. |
| 1569 | 1564 |
/// |
| 1570 | 1565 |
/// \note Apart from the return value, <tt>d.run(s,t)</tt> is |
| 1571 | 1566 |
/// just a shortcut of the following code. |
| 1572 | 1567 |
///\code |
| 1573 | 1568 |
/// d.init(); |
| 1574 | 1569 |
/// d.addSource(s); |
| 1575 | 1570 |
/// d.start(t); |
| 1576 | 1571 |
///\endcode |
| 1577 | 1572 |
bool run(Node s,Node t) {
|
| 1578 | 1573 |
init(); |
| 1579 | 1574 |
addSource(s); |
| 1580 | 1575 |
start(t); |
| 1581 | 1576 |
return reached(t); |
| 1582 | 1577 |
} |
| 1583 | 1578 |
|
| 1584 | 1579 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1585 | 1580 |
|
| 1586 | 1581 |
/// This method runs the %DFS algorithm in order to |
| 1587 | 1582 |
/// compute the %DFS path to each node. |
| 1588 | 1583 |
/// |
| 1589 | 1584 |
/// The algorithm computes |
| 1590 | 1585 |
/// - the %DFS tree (forest), |
| 1591 | 1586 |
/// - the distance of each node from the root(s) in the %DFS tree. |
| 1592 | 1587 |
/// |
| 1593 | 1588 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
| 1594 | 1589 |
///\code |
| 1595 | 1590 |
/// d.init(); |
| 1596 | 1591 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 1597 | 1592 |
/// if (!d.reached(n)) {
|
| 1598 | 1593 |
/// d.addSource(n); |
| 1599 | 1594 |
/// d.start(); |
| 1600 | 1595 |
/// } |
| 1601 | 1596 |
/// } |
| 1602 | 1597 |
///\endcode |
| 1603 | 1598 |
void run() {
|
| 1604 | 1599 |
init(); |
| 1605 | 1600 |
for (NodeIt it(*_digraph); it != INVALID; ++it) {
|
| 1606 | 1601 |
if (!reached(it)) {
|
| 1607 | 1602 |
addSource(it); |
| 1608 | 1603 |
start(); |
| 1609 | 1604 |
} |
| 1610 | 1605 |
} |
| 1611 | 1606 |
} |
| 1612 | 1607 |
|
| 1613 | 1608 |
///@} |
| 1614 | 1609 |
|
| 1615 | 1610 |
/// \name Query Functions |
| 1616 | 1611 |
/// The results of the DFS algorithm can be obtained using these |
| 1617 | 1612 |
/// functions.\n |
| 1618 | 1613 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
| 1619 | 1614 |
/// before using them. |
| 1620 | 1615 |
|
| 1621 | 1616 |
///@{
|
| 1622 | 1617 |
|
| 1623 |
/// \brief Checks if |
|
| 1618 |
/// \brief Checks if the given node is reached from the root(s). |
|
| 1624 | 1619 |
/// |
| 1625 | 1620 |
/// Returns \c true if \c v is reached from the root(s). |
| 1626 | 1621 |
/// |
| 1627 | 1622 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
| 1628 | 1623 |
/// must be called before using this function. |
| 1629 | 1624 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 1630 | 1625 |
|
| 1631 | 1626 |
///@} |
| 1632 | 1627 |
|
| 1633 | 1628 |
}; |
| 1634 | 1629 |
|
| 1635 | 1630 |
} //END OF NAMESPACE LEMON |
| 1636 | 1631 |
|
| 1637 | 1632 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
| 20 | 20 |
#define LEMON_DIJKSTRA_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup shortest_path |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Dijkstra algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <limits> |
| 27 | 27 |
#include <lemon/list_graph.h> |
| 28 | 28 |
#include <lemon/bin_heap.h> |
| 29 | 29 |
#include <lemon/bits/path_dump.h> |
| 30 | 30 |
#include <lemon/core.h> |
| 31 | 31 |
#include <lemon/error.h> |
| 32 | 32 |
#include <lemon/maps.h> |
| 33 | 33 |
#include <lemon/path.h> |
| 34 | 34 |
|
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 | 37 |
/// \brief Default operation traits for the Dijkstra algorithm class. |
| 38 | 38 |
/// |
| 39 | 39 |
/// This operation traits class defines all computational operations and |
| 40 | 40 |
/// constants which are used in the Dijkstra algorithm. |
| 41 | 41 |
template <typename V> |
| 42 | 42 |
struct DijkstraDefaultOperationTraits {
|
| 43 | 43 |
/// \e |
| 44 | 44 |
typedef V Value; |
| 45 | 45 |
/// \brief Gives back the zero value of the type. |
| 46 | 46 |
static Value zero() {
|
| 47 | 47 |
return static_cast<Value>(0); |
| 48 | 48 |
} |
| 49 | 49 |
/// \brief Gives back the sum of the given two elements. |
| 50 | 50 |
static Value plus(const Value& left, const Value& right) {
|
| 51 | 51 |
return left + right; |
| 52 | 52 |
} |
| 53 | 53 |
/// \brief Gives back true only if the first value is less than the second. |
| 54 | 54 |
static bool less(const Value& left, const Value& right) {
|
| 55 | 55 |
return left < right; |
| 56 | 56 |
} |
| 57 | 57 |
}; |
| 58 | 58 |
|
| 59 | 59 |
///Default traits class of Dijkstra class. |
| 60 | 60 |
|
| 61 | 61 |
///Default traits class of Dijkstra class. |
| 62 | 62 |
///\tparam GR The type of the digraph. |
| 63 | 63 |
///\tparam LEN The type of the length map. |
| 64 | 64 |
template<typename GR, typename LEN> |
| 65 | 65 |
struct DijkstraDefaultTraits |
| 66 | 66 |
{
|
| 67 | 67 |
///The type of the digraph the algorithm runs on. |
| 68 | 68 |
typedef GR Digraph; |
| 69 | 69 |
|
| 70 | 70 |
///The type of the map that stores the arc lengths. |
| 71 | 71 |
|
| 72 | 72 |
///The type of the map that stores the arc lengths. |
| 73 |
///It must |
|
| 73 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 74 | 74 |
typedef LEN LengthMap; |
| 75 |
///The type of the |
|
| 75 |
///The type of the arc lengths. |
|
| 76 | 76 |
typedef typename LEN::Value Value; |
| 77 | 77 |
|
| 78 | 78 |
/// Operation traits for %Dijkstra algorithm. |
| 79 | 79 |
|
| 80 | 80 |
/// This class defines the operations that are used in the algorithm. |
| 81 | 81 |
/// \see DijkstraDefaultOperationTraits |
| 82 | 82 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
| 83 | 83 |
|
| 84 | 84 |
/// The cross reference type used by the heap. |
| 85 | 85 |
|
| 86 | 86 |
/// The cross reference type used by the heap. |
| 87 | 87 |
/// Usually it is \c Digraph::NodeMap<int>. |
| 88 | 88 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 89 | 89 |
///Instantiates a \c HeapCrossRef. |
| 90 | 90 |
|
| 91 | 91 |
///This function instantiates a \ref HeapCrossRef. |
| 92 | 92 |
/// \param g is the digraph, to which we would like to define the |
| 93 | 93 |
/// \ref HeapCrossRef. |
| 94 | 94 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
| 95 | 95 |
{
|
| 96 | 96 |
return new HeapCrossRef(g); |
| 97 | 97 |
} |
| 98 | 98 |
|
| 99 | 99 |
///The heap type used by the %Dijkstra algorithm. |
| 100 | 100 |
|
| 101 | 101 |
///The heap type used by the Dijkstra algorithm. |
| 102 | 102 |
/// |
| 103 | 103 |
///\sa BinHeap |
| 104 | 104 |
///\sa Dijkstra |
| 105 | 105 |
typedef BinHeap<typename LEN::Value, HeapCrossRef, std::less<Value> > Heap; |
| 106 | 106 |
///Instantiates a \c Heap. |
| 107 | 107 |
|
| 108 | 108 |
///This function instantiates a \ref Heap. |
| 109 | 109 |
static Heap *createHeap(HeapCrossRef& r) |
| 110 | 110 |
{
|
| 111 | 111 |
return new Heap(r); |
| 112 | 112 |
} |
| 113 | 113 |
|
| 114 | 114 |
///\brief The type of the map that stores the predecessor |
| 115 | 115 |
///arcs of the shortest paths. |
| 116 | 116 |
/// |
| 117 | 117 |
///The type of the map that stores the predecessor |
| 118 | 118 |
///arcs of the shortest paths. |
| 119 |
///It must |
|
| 119 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 120 | 120 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 121 | 121 |
///Instantiates a \c PredMap. |
| 122 | 122 |
|
| 123 | 123 |
///This function instantiates a \ref PredMap. |
| 124 | 124 |
///\param g is the digraph, to which we would like to define the |
| 125 | 125 |
///\ref PredMap. |
| 126 | 126 |
static PredMap *createPredMap(const Digraph &g) |
| 127 | 127 |
{
|
| 128 | 128 |
return new PredMap(g); |
| 129 | 129 |
} |
| 130 | 130 |
|
| 131 | 131 |
///The type of the map that indicates which nodes are processed. |
| 132 | 132 |
|
| 133 | 133 |
///The type of the map that indicates which nodes are processed. |
| 134 |
///It must |
|
| 134 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 135 | 135 |
///By default it is a NullMap. |
| 136 | 136 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 137 | 137 |
///Instantiates a \c ProcessedMap. |
| 138 | 138 |
|
| 139 | 139 |
///This function instantiates a \ref ProcessedMap. |
| 140 | 140 |
///\param g is the digraph, to which |
| 141 | 141 |
///we would like to define the \ref ProcessedMap. |
| 142 | 142 |
#ifdef DOXYGEN |
| 143 | 143 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 144 | 144 |
#else |
| 145 | 145 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 146 | 146 |
#endif |
| 147 | 147 |
{
|
| 148 | 148 |
return new ProcessedMap(); |
| 149 | 149 |
} |
| 150 | 150 |
|
| 151 | 151 |
///The type of the map that stores the distances of the nodes. |
| 152 | 152 |
|
| 153 | 153 |
///The type of the map that stores the distances of the nodes. |
| 154 |
///It must |
|
| 154 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 155 | 155 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
| 156 | 156 |
///Instantiates a \c DistMap. |
| 157 | 157 |
|
| 158 | 158 |
///This function instantiates a \ref DistMap. |
| 159 | 159 |
///\param g is the digraph, to which we would like to define |
| 160 | 160 |
///the \ref DistMap. |
| 161 | 161 |
static DistMap *createDistMap(const Digraph &g) |
| 162 | 162 |
{
|
| 163 | 163 |
return new DistMap(g); |
| 164 | 164 |
} |
| 165 | 165 |
}; |
| 166 | 166 |
|
| 167 | 167 |
///%Dijkstra algorithm class. |
| 168 | 168 |
|
| 169 | 169 |
/// \ingroup shortest_path |
| 170 | 170 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
| 171 | 171 |
/// |
| 172 |
///The %Dijkstra algorithm solves the single-source shortest path problem |
|
| 173 |
///when all arc lengths are non-negative. If there are negative lengths, |
|
| 174 |
///the BellmanFord algorithm should be used instead. |
|
| 175 |
/// |
|
| 172 | 176 |
///The arc lengths are passed to the algorithm using a |
| 173 | 177 |
///\ref concepts::ReadMap "ReadMap", |
| 174 | 178 |
///so it is easy to change it to any kind of length. |
| 175 | 179 |
///The type of the length is determined by the |
| 176 | 180 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
| 177 | 181 |
///It is also possible to change the underlying priority heap. |
| 178 | 182 |
/// |
| 179 | 183 |
///There is also a \ref dijkstra() "function-type interface" for the |
| 180 | 184 |
///%Dijkstra algorithm, which is convenient in the simplier cases and |
| 181 | 185 |
///it can be used easier. |
| 182 | 186 |
/// |
| 183 | 187 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 184 | 188 |
///The default type is \ref ListDigraph. |
| 185 | 189 |
///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
| 186 | 190 |
///the lengths of the arcs. |
| 187 | 191 |
///It is read once for each arc, so the map may involve in |
| 188 | 192 |
///relatively time consuming process to compute the arc lengths if |
| 189 | 193 |
///it is necessary. The default map type is \ref |
| 190 | 194 |
///concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 191 | 195 |
#ifdef DOXYGEN |
| 192 | 196 |
template <typename GR, typename LEN, typename TR> |
| 193 | 197 |
#else |
| 194 | 198 |
template <typename GR=ListDigraph, |
| 195 | 199 |
typename LEN=typename GR::template ArcMap<int>, |
| 196 | 200 |
typename TR=DijkstraDefaultTraits<GR,LEN> > |
| 197 | 201 |
#endif |
| 198 | 202 |
class Dijkstra {
|
| 199 | 203 |
public: |
| 200 | 204 |
|
| 201 | 205 |
///The type of the digraph the algorithm runs on. |
| 202 | 206 |
typedef typename TR::Digraph Digraph; |
| 203 | 207 |
|
| 204 |
///The type of the |
|
| 208 |
///The type of the arc lengths. |
|
| 205 | 209 |
typedef typename TR::LengthMap::Value Value; |
| 206 | 210 |
///The type of the map that stores the arc lengths. |
| 207 | 211 |
typedef typename TR::LengthMap LengthMap; |
| 208 | 212 |
///\brief The type of the map that stores the predecessor arcs of the |
| 209 | 213 |
///shortest paths. |
| 210 | 214 |
typedef typename TR::PredMap PredMap; |
| 211 | 215 |
///The type of the map that stores the distances of the nodes. |
| 212 | 216 |
typedef typename TR::DistMap DistMap; |
| 213 | 217 |
///The type of the map that indicates which nodes are processed. |
| 214 | 218 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 215 | 219 |
///The type of the paths. |
| 216 | 220 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 217 | 221 |
///The cross reference type used for the current heap. |
| 218 | 222 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
| 219 | 223 |
///The heap type used by the algorithm. |
| 220 | 224 |
typedef typename TR::Heap Heap; |
| 221 | 225 |
///\brief The \ref DijkstraDefaultOperationTraits "operation traits class" |
| 222 | 226 |
///of the algorithm. |
| 223 | 227 |
typedef typename TR::OperationTraits OperationTraits; |
| 224 | 228 |
|
| 225 | 229 |
///The \ref DijkstraDefaultTraits "traits class" of the algorithm. |
| 226 | 230 |
typedef TR Traits; |
| 227 | 231 |
|
| 228 | 232 |
private: |
| 229 | 233 |
|
| 230 | 234 |
typedef typename Digraph::Node Node; |
| 231 | 235 |
typedef typename Digraph::NodeIt NodeIt; |
| 232 | 236 |
typedef typename Digraph::Arc Arc; |
| 233 | 237 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 234 | 238 |
|
| 235 | 239 |
//Pointer to the underlying digraph. |
| 236 | 240 |
const Digraph *G; |
| 237 | 241 |
//Pointer to the length map. |
| 238 | 242 |
const LengthMap *_length; |
| 239 | 243 |
//Pointer to the map of predecessors arcs. |
| 240 | 244 |
PredMap *_pred; |
| 241 | 245 |
//Indicates if _pred is locally allocated (true) or not. |
| 242 | 246 |
bool local_pred; |
| 243 | 247 |
//Pointer to the map of distances. |
| 244 | 248 |
DistMap *_dist; |
| 245 | 249 |
//Indicates if _dist is locally allocated (true) or not. |
| 246 | 250 |
bool local_dist; |
| 247 | 251 |
//Pointer to the map of processed status of the nodes. |
| 248 | 252 |
ProcessedMap *_processed; |
| 249 | 253 |
//Indicates if _processed is locally allocated (true) or not. |
| 250 | 254 |
bool local_processed; |
| 251 | 255 |
//Pointer to the heap cross references. |
| 252 | 256 |
HeapCrossRef *_heap_cross_ref; |
| 253 | 257 |
//Indicates if _heap_cross_ref is locally allocated (true) or not. |
| 254 | 258 |
bool local_heap_cross_ref; |
| 255 | 259 |
//Pointer to the heap. |
| 256 | 260 |
Heap *_heap; |
| 257 | 261 |
//Indicates if _heap is locally allocated (true) or not. |
| 258 | 262 |
bool local_heap; |
| 259 | 263 |
|
| 260 | 264 |
//Creates the maps if necessary. |
| 261 | 265 |
void create_maps() |
| 262 | 266 |
{
|
| 263 | 267 |
if(!_pred) {
|
| 264 | 268 |
local_pred = true; |
| 265 | 269 |
_pred = Traits::createPredMap(*G); |
| 266 | 270 |
} |
| 267 | 271 |
if(!_dist) {
|
| 268 | 272 |
local_dist = true; |
| 269 | 273 |
_dist = Traits::createDistMap(*G); |
| 270 | 274 |
} |
| 271 | 275 |
if(!_processed) {
|
| 272 | 276 |
local_processed = true; |
| 273 | 277 |
_processed = Traits::createProcessedMap(*G); |
| 274 | 278 |
} |
| 275 | 279 |
if (!_heap_cross_ref) {
|
| 276 | 280 |
local_heap_cross_ref = true; |
| 277 | 281 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
| 278 | 282 |
} |
| 279 | 283 |
if (!_heap) {
|
| 280 | 284 |
local_heap = true; |
| 281 | 285 |
_heap = Traits::createHeap(*_heap_cross_ref); |
| 282 | 286 |
} |
| 283 | 287 |
} |
| 284 | 288 |
|
| 285 | 289 |
public: |
| 286 | 290 |
|
| 287 | 291 |
typedef Dijkstra Create; |
| 288 | 292 |
|
| 289 | 293 |
///\name Named Template Parameters |
| 290 | 294 |
|
| 291 | 295 |
///@{
|
| 292 | 296 |
|
| 293 | 297 |
template <class T> |
| 294 | 298 |
struct SetPredMapTraits : public Traits {
|
| 295 | 299 |
typedef T PredMap; |
| 296 | 300 |
static PredMap *createPredMap(const Digraph &) |
| 297 | 301 |
{
|
| 298 | 302 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 299 | 303 |
return 0; // ignore warnings |
| 300 | 304 |
} |
| 301 | 305 |
}; |
| 302 | 306 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 303 | 307 |
///\c PredMap type. |
| 304 | 308 |
/// |
| 305 | 309 |
///\ref named-templ-param "Named parameter" for setting |
| 306 | 310 |
///\c PredMap type. |
| 307 |
///It must |
|
| 311 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 308 | 312 |
template <class T> |
| 309 | 313 |
struct SetPredMap |
| 310 | 314 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
|
| 311 | 315 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
| 312 | 316 |
}; |
| 313 | 317 |
|
| 314 | 318 |
template <class T> |
| 315 | 319 |
struct SetDistMapTraits : public Traits {
|
| 316 | 320 |
typedef T DistMap; |
| 317 | 321 |
static DistMap *createDistMap(const Digraph &) |
| 318 | 322 |
{
|
| 319 | 323 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 320 | 324 |
return 0; // ignore warnings |
| 321 | 325 |
} |
| 322 | 326 |
}; |
| 323 | 327 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 324 | 328 |
///\c DistMap type. |
| 325 | 329 |
/// |
| 326 | 330 |
///\ref named-templ-param "Named parameter" for setting |
| 327 | 331 |
///\c DistMap type. |
| 328 |
///It must |
|
| 332 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 329 | 333 |
template <class T> |
| 330 | 334 |
struct SetDistMap |
| 331 | 335 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
|
| 332 | 336 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
| 333 | 337 |
}; |
| 334 | 338 |
|
| 335 | 339 |
template <class T> |
| 336 | 340 |
struct SetProcessedMapTraits : public Traits {
|
| 337 | 341 |
typedef T ProcessedMap; |
| 338 | 342 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 339 | 343 |
{
|
| 340 | 344 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
| 341 | 345 |
return 0; // ignore warnings |
| 342 | 346 |
} |
| 343 | 347 |
}; |
| 344 | 348 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 345 | 349 |
///\c ProcessedMap type. |
| 346 | 350 |
/// |
| 347 | 351 |
///\ref named-templ-param "Named parameter" for setting |
| 348 | 352 |
///\c ProcessedMap type. |
| 349 |
///It must |
|
| 353 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 350 | 354 |
template <class T> |
| 351 | 355 |
struct SetProcessedMap |
| 352 | 356 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
|
| 353 | 357 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
| 354 | 358 |
}; |
| 355 | 359 |
|
| 356 | 360 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 357 | 361 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 358 | 362 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 359 | 363 |
{
|
| 360 | 364 |
return new ProcessedMap(g); |
| 361 | 365 |
} |
| 362 | 366 |
}; |
| 363 | 367 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 364 | 368 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 365 | 369 |
/// |
| 366 | 370 |
///\ref named-templ-param "Named parameter" for setting |
| 367 | 371 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 368 | 372 |
///If you don't set it explicitly, it will be automatically allocated. |
| 369 | 373 |
struct SetStandardProcessedMap |
| 370 | 374 |
: public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
|
| 371 | 375 |
typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
| 372 | 376 |
Create; |
| 373 | 377 |
}; |
| 374 | 378 |
|
| 375 | 379 |
template <class H, class CR> |
| 376 | 380 |
struct SetHeapTraits : public Traits {
|
| 377 | 381 |
typedef CR HeapCrossRef; |
| 378 | 382 |
typedef H Heap; |
| 379 | 383 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) {
|
| 380 | 384 |
LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
| 381 | 385 |
return 0; // ignore warnings |
| 382 | 386 |
} |
| 383 | 387 |
static Heap *createHeap(HeapCrossRef &) |
| 384 | 388 |
{
|
| 385 | 389 |
LEMON_ASSERT(false, "Heap is not initialized"); |
| 386 | 390 |
return 0; // ignore warnings |
| 387 | 391 |
} |
| 388 | 392 |
}; |
| 389 | 393 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 390 | 394 |
///heap and cross reference types |
| 391 | 395 |
/// |
| 392 | 396 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
| 393 | 397 |
///reference types. If this named parameter is used, then external |
| 394 | 398 |
///heap and cross reference objects must be passed to the algorithm |
| 395 | 399 |
///using the \ref heap() function before calling \ref run(Node) "run()" |
| 396 | 400 |
///or \ref init(). |
| 397 | 401 |
///\sa SetStandardHeap |
| 398 | 402 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
| 399 | 403 |
struct SetHeap |
| 400 | 404 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
|
| 401 | 405 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
| 402 | 406 |
}; |
| 403 | 407 |
|
| 404 | 408 |
template <class H, class CR> |
| 405 | 409 |
struct SetStandardHeapTraits : public Traits {
|
| 406 | 410 |
typedef CR HeapCrossRef; |
| 407 | 411 |
typedef H Heap; |
| 408 | 412 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
|
| 409 | 413 |
return new HeapCrossRef(G); |
| 410 | 414 |
} |
| 411 | 415 |
static Heap *createHeap(HeapCrossRef &R) |
| 412 | 416 |
{
|
| 413 | 417 |
return new Heap(R); |
| 414 | 418 |
} |
| 415 | 419 |
}; |
| 416 | 420 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 417 | 421 |
///heap and cross reference types with automatic allocation |
| 418 | 422 |
/// |
| 419 | 423 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
| 420 | 424 |
///reference types with automatic allocation. |
| 421 | 425 |
///They should have standard constructor interfaces to be able to |
| 422 | 426 |
///automatically created by the algorithm (i.e. the digraph should be |
| 423 | 427 |
///passed to the constructor of the cross reference and the cross |
| 424 | 428 |
///reference should be passed to the constructor of the heap). |
| 425 | 429 |
///However external heap and cross reference objects could also be |
| 426 | 430 |
///passed to the algorithm using the \ref heap() function before |
| 427 | 431 |
///calling \ref run(Node) "run()" or \ref init(). |
| 428 | 432 |
///\sa SetHeap |
| 429 | 433 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
| 430 | 434 |
struct SetStandardHeap |
| 431 | 435 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
|
| 432 | 436 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
| 433 | 437 |
Create; |
| 434 | 438 |
}; |
| 435 | 439 |
|
| 436 | 440 |
template <class T> |
| 437 | 441 |
struct SetOperationTraitsTraits : public Traits {
|
| 438 | 442 |
typedef T OperationTraits; |
| 439 | 443 |
}; |
| 440 | 444 |
|
| 441 | 445 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 442 | 446 |
///\c OperationTraits type |
| 443 | 447 |
/// |
| 444 | 448 |
///\ref named-templ-param "Named parameter" for setting |
| 445 | 449 |
///\c OperationTraits type. |
| 450 |
/// For more information see \ref DijkstraDefaultOperationTraits. |
|
| 446 | 451 |
template <class T> |
| 447 | 452 |
struct SetOperationTraits |
| 448 | 453 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
| 449 | 454 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
| 450 | 455 |
Create; |
| 451 | 456 |
}; |
| 452 | 457 |
|
| 453 | 458 |
///@} |
| 454 | 459 |
|
| 455 | 460 |
protected: |
| 456 | 461 |
|
| 457 | 462 |
Dijkstra() {}
|
| 458 | 463 |
|
| 459 | 464 |
public: |
| 460 | 465 |
|
| 461 | 466 |
///Constructor. |
| 462 | 467 |
|
| 463 | 468 |
///Constructor. |
| 464 | 469 |
///\param g The digraph the algorithm runs on. |
| 465 | 470 |
///\param length The length map used by the algorithm. |
| 466 | 471 |
Dijkstra(const Digraph& g, const LengthMap& length) : |
| 467 | 472 |
G(&g), _length(&length), |
| 468 | 473 |
_pred(NULL), local_pred(false), |
| 469 | 474 |
_dist(NULL), local_dist(false), |
| 470 | 475 |
_processed(NULL), local_processed(false), |
| 471 | 476 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
| 472 | 477 |
_heap(NULL), local_heap(false) |
| 473 | 478 |
{ }
|
| 474 | 479 |
|
| 475 | 480 |
///Destructor. |
| 476 | 481 |
~Dijkstra() |
| 477 | 482 |
{
|
| 478 | 483 |
if(local_pred) delete _pred; |
| 479 | 484 |
if(local_dist) delete _dist; |
| 480 | 485 |
if(local_processed) delete _processed; |
| 481 | 486 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
| 482 | 487 |
if(local_heap) delete _heap; |
| 483 | 488 |
} |
| 484 | 489 |
|
| 485 | 490 |
///Sets the length map. |
| 486 | 491 |
|
| 487 | 492 |
///Sets the length map. |
| 488 | 493 |
///\return <tt> (*this) </tt> |
| 489 | 494 |
Dijkstra &lengthMap(const LengthMap &m) |
| 490 | 495 |
{
|
| 491 | 496 |
_length = &m; |
| 492 | 497 |
return *this; |
| 493 | 498 |
} |
| 494 | 499 |
|
| 495 | 500 |
///Sets the map that stores the predecessor arcs. |
| 496 | 501 |
|
| 497 | 502 |
///Sets the map that stores the predecessor arcs. |
| 498 | 503 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 499 | 504 |
///or \ref init(), an instance will be allocated automatically. |
| 500 | 505 |
///The destructor deallocates this automatically allocated map, |
| 501 | 506 |
///of course. |
| 502 | 507 |
///\return <tt> (*this) </tt> |
| 503 | 508 |
Dijkstra &predMap(PredMap &m) |
| 504 | 509 |
{
|
| 505 | 510 |
if(local_pred) {
|
| 506 | 511 |
delete _pred; |
| 507 | 512 |
local_pred=false; |
| 508 | 513 |
} |
| 509 | 514 |
_pred = &m; |
| 510 | 515 |
return *this; |
| 511 | 516 |
} |
| 512 | 517 |
|
| 513 | 518 |
///Sets the map that indicates which nodes are processed. |
| 514 | 519 |
|
| 515 | 520 |
///Sets the map that indicates which nodes are processed. |
| 516 | 521 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 517 | 522 |
///or \ref init(), an instance will be allocated automatically. |
| 518 | 523 |
///The destructor deallocates this automatically allocated map, |
| 519 | 524 |
///of course. |
| 520 | 525 |
///\return <tt> (*this) </tt> |
| 521 | 526 |
Dijkstra &processedMap(ProcessedMap &m) |
| 522 | 527 |
{
|
| 523 | 528 |
if(local_processed) {
|
| 524 | 529 |
delete _processed; |
| 525 | 530 |
local_processed=false; |
| 526 | 531 |
} |
| 527 | 532 |
_processed = &m; |
| 528 | 533 |
return *this; |
| 529 | 534 |
} |
| 530 | 535 |
|
| 531 | 536 |
///Sets the map that stores the distances of the nodes. |
| 532 | 537 |
|
| 533 | 538 |
///Sets the map that stores the distances of the nodes calculated by the |
| 534 | 539 |
///algorithm. |
| 535 | 540 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 536 | 541 |
///or \ref init(), an instance will be allocated automatically. |
| 537 | 542 |
///The destructor deallocates this automatically allocated map, |
| 538 | 543 |
///of course. |
| 539 | 544 |
///\return <tt> (*this) </tt> |
| 540 | 545 |
Dijkstra &distMap(DistMap &m) |
| 541 | 546 |
{
|
| 542 | 547 |
if(local_dist) {
|
| 543 | 548 |
delete _dist; |
| 544 | 549 |
local_dist=false; |
| 545 | 550 |
} |
| 546 | 551 |
_dist = &m; |
| 547 | 552 |
return *this; |
| 548 | 553 |
} |
| 549 | 554 |
|
| 550 | 555 |
///Sets the heap and the cross reference used by algorithm. |
| 551 | 556 |
|
| 552 | 557 |
///Sets the heap and the cross reference used by algorithm. |
| 553 | 558 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 554 | 559 |
///or \ref init(), heap and cross reference instances will be |
| 555 | 560 |
///allocated automatically. |
| 556 | 561 |
///The destructor deallocates these automatically allocated objects, |
| 557 | 562 |
///of course. |
| 558 | 563 |
///\return <tt> (*this) </tt> |
| 559 | 564 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
| 560 | 565 |
{
|
| 561 | 566 |
if(local_heap_cross_ref) {
|
| 562 | 567 |
delete _heap_cross_ref; |
| 563 | 568 |
local_heap_cross_ref=false; |
| 564 | 569 |
} |
| 565 | 570 |
_heap_cross_ref = &cr; |
| 566 | 571 |
if(local_heap) {
|
| 567 | 572 |
delete _heap; |
| 568 | 573 |
local_heap=false; |
| 569 | 574 |
} |
| 570 | 575 |
_heap = &hp; |
| 571 | 576 |
return *this; |
| 572 | 577 |
} |
| 573 | 578 |
|
| 574 | 579 |
private: |
| 575 | 580 |
|
| 576 | 581 |
void finalizeNodeData(Node v,Value dst) |
| 577 | 582 |
{
|
| 578 | 583 |
_processed->set(v,true); |
| 579 | 584 |
_dist->set(v, dst); |
| 580 | 585 |
} |
| 581 | 586 |
|
| 582 | 587 |
public: |
| 583 | 588 |
|
| 584 | 589 |
///\name Execution Control |
| 585 | 590 |
///The simplest way to execute the %Dijkstra algorithm is to use |
| 586 | 591 |
///one of the member functions called \ref run(Node) "run()".\n |
| 587 |
///If you need more control on the execution, first you have to call |
|
| 588 |
///\ref init(), then you can add several source nodes with |
|
| 592 |
///If you need better control on the execution, you have to call |
|
| 593 |
///\ref init() first, then you can add several source nodes with |
|
| 589 | 594 |
///\ref addSource(). Finally the actual path computation can be |
| 590 | 595 |
///performed with one of the \ref start() functions. |
| 591 | 596 |
|
| 592 | 597 |
///@{
|
| 593 | 598 |
|
| 594 | 599 |
///\brief Initializes the internal data structures. |
| 595 | 600 |
/// |
| 596 | 601 |
///Initializes the internal data structures. |
| 597 | 602 |
void init() |
| 598 | 603 |
{
|
| 599 | 604 |
create_maps(); |
| 600 | 605 |
_heap->clear(); |
| 601 | 606 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
| 602 | 607 |
_pred->set(u,INVALID); |
| 603 | 608 |
_processed->set(u,false); |
| 604 | 609 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
| 605 | 610 |
} |
| 606 | 611 |
} |
| 607 | 612 |
|
| 608 | 613 |
///Adds a new source node. |
| 609 | 614 |
|
| 610 | 615 |
///Adds a new source node to the priority heap. |
| 611 | 616 |
///The optional second parameter is the initial distance of the node. |
| 612 | 617 |
/// |
| 613 | 618 |
///The function checks if the node has already been added to the heap and |
| 614 | 619 |
///it is pushed to the heap only if either it was not in the heap |
| 615 | 620 |
///or the shortest path found till then is shorter than \c dst. |
| 616 | 621 |
void addSource(Node s,Value dst=OperationTraits::zero()) |
| 617 | 622 |
{
|
| 618 | 623 |
if(_heap->state(s) != Heap::IN_HEAP) {
|
| 619 | 624 |
_heap->push(s,dst); |
| 620 | 625 |
} else if(OperationTraits::less((*_heap)[s], dst)) {
|
| 621 | 626 |
_heap->set(s,dst); |
| 622 | 627 |
_pred->set(s,INVALID); |
| 623 | 628 |
} |
| 624 | 629 |
} |
| 625 | 630 |
|
| 626 | 631 |
///Processes the next node in the priority heap |
| 627 | 632 |
|
| 628 | 633 |
///Processes the next node in the priority heap. |
| 629 | 634 |
/// |
| 630 | 635 |
///\return The processed node. |
| 631 | 636 |
/// |
| 632 | 637 |
///\warning The priority heap must not be empty. |
| 633 | 638 |
Node processNextNode() |
| 634 | 639 |
{
|
| 635 | 640 |
Node v=_heap->top(); |
| 636 | 641 |
Value oldvalue=_heap->prio(); |
| 637 | 642 |
_heap->pop(); |
| 638 | 643 |
finalizeNodeData(v,oldvalue); |
| 639 | 644 |
|
| 640 | 645 |
for(OutArcIt e(*G,v); e!=INVALID; ++e) {
|
| 641 | 646 |
Node w=G->target(e); |
| 642 | 647 |
switch(_heap->state(w)) {
|
| 643 | 648 |
case Heap::PRE_HEAP: |
| 644 | 649 |
_heap->push(w,OperationTraits::plus(oldvalue, (*_length)[e])); |
| 645 | 650 |
_pred->set(w,e); |
| 646 | 651 |
break; |
| 647 | 652 |
case Heap::IN_HEAP: |
| 648 | 653 |
{
|
| 649 | 654 |
Value newvalue = OperationTraits::plus(oldvalue, (*_length)[e]); |
| 650 | 655 |
if ( OperationTraits::less(newvalue, (*_heap)[w]) ) {
|
| 651 | 656 |
_heap->decrease(w, newvalue); |
| 652 | 657 |
_pred->set(w,e); |
| 653 | 658 |
} |
| 654 | 659 |
} |
| 655 | 660 |
break; |
| 656 | 661 |
case Heap::POST_HEAP: |
| 657 | 662 |
break; |
| 658 | 663 |
} |
| 659 | 664 |
} |
| 660 | 665 |
return v; |
| 661 | 666 |
} |
| 662 | 667 |
|
| 663 | 668 |
///The next node to be processed. |
| 664 | 669 |
|
| 665 | 670 |
///Returns the next node to be processed or \c INVALID if the |
| 666 | 671 |
///priority heap is empty. |
| 667 | 672 |
Node nextNode() const |
| 668 | 673 |
{
|
| 669 | 674 |
return !_heap->empty()?_heap->top():INVALID; |
| 670 | 675 |
} |
| 671 | 676 |
|
| 672 | 677 |
///Returns \c false if there are nodes to be processed. |
| 673 | 678 |
|
| 674 | 679 |
///Returns \c false if there are nodes to be processed |
| 675 | 680 |
///in the priority heap. |
| 676 | 681 |
bool emptyQueue() const { return _heap->empty(); }
|
| 677 | 682 |
|
| 678 | 683 |
///Returns the number of the nodes to be processed. |
| 679 | 684 |
|
| 680 | 685 |
///Returns the number of the nodes to be processed |
| 681 | 686 |
///in the priority heap. |
| 682 | 687 |
int queueSize() const { return _heap->size(); }
|
| 683 | 688 |
|
| 684 | 689 |
///Executes the algorithm. |
| 685 | 690 |
|
| 686 | 691 |
///Executes the algorithm. |
| 687 | 692 |
/// |
| 688 | 693 |
///This method runs the %Dijkstra algorithm from the root node(s) |
| 689 | 694 |
///in order to compute the shortest path to each node. |
| 690 | 695 |
/// |
| 691 | 696 |
///The algorithm computes |
| 692 | 697 |
///- the shortest path tree (forest), |
| 693 | 698 |
///- the distance of each node from the root(s). |
| 694 | 699 |
/// |
| 695 | 700 |
///\pre init() must be called and at least one root node should be |
| 696 | 701 |
///added with addSource() before using this function. |
| 697 | 702 |
/// |
| 698 | 703 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
| 699 | 704 |
///\code |
| 700 | 705 |
/// while ( !d.emptyQueue() ) {
|
| 701 | 706 |
/// d.processNextNode(); |
| 702 | 707 |
/// } |
| 703 | 708 |
///\endcode |
| 704 | 709 |
void start() |
| 705 | 710 |
{
|
| 706 | 711 |
while ( !emptyQueue() ) processNextNode(); |
| 707 | 712 |
} |
| 708 | 713 |
|
| 709 | 714 |
///Executes the algorithm until the given target node is processed. |
| 710 | 715 |
|
| 711 | 716 |
///Executes the algorithm until the given target node is processed. |
| 712 | 717 |
/// |
| 713 | 718 |
///This method runs the %Dijkstra algorithm from the root node(s) |
| 714 | 719 |
///in order to compute the shortest path to \c t. |
| 715 | 720 |
/// |
| 716 | 721 |
///The algorithm computes |
| 717 | 722 |
///- the shortest path to \c t, |
| 718 | 723 |
///- the distance of \c t from the root(s). |
| 719 | 724 |
/// |
| 720 | 725 |
///\pre init() must be called and at least one root node should be |
| 721 | 726 |
///added with addSource() before using this function. |
| 722 | 727 |
void start(Node t) |
| 723 | 728 |
{
|
| 724 | 729 |
while ( !_heap->empty() && _heap->top()!=t ) processNextNode(); |
| 725 | 730 |
if ( !_heap->empty() ) {
|
| 726 | 731 |
finalizeNodeData(_heap->top(),_heap->prio()); |
| 727 | 732 |
_heap->pop(); |
| 728 | 733 |
} |
| 729 | 734 |
} |
| 730 | 735 |
|
| 731 | 736 |
///Executes the algorithm until a condition is met. |
| 732 | 737 |
|
| 733 | 738 |
///Executes the algorithm until a condition is met. |
| 734 | 739 |
/// |
| 735 | 740 |
///This method runs the %Dijkstra algorithm from the root node(s) in |
| 736 | 741 |
///order to compute the shortest path to a node \c v with |
| 737 | 742 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
| 738 | 743 |
/// |
| 739 | 744 |
///\param nm A \c bool (or convertible) node map. The algorithm |
| 740 | 745 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
| 741 | 746 |
/// |
| 742 | 747 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
| 743 | 748 |
///\c INVALID if no such node was found. |
| 744 | 749 |
/// |
| 745 | 750 |
///\pre init() must be called and at least one root node should be |
| 746 | 751 |
///added with addSource() before using this function. |
| 747 | 752 |
template<class NodeBoolMap> |
| 748 | 753 |
Node start(const NodeBoolMap &nm) |
| 749 | 754 |
{
|
| 750 | 755 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
| 751 | 756 |
if ( _heap->empty() ) return INVALID; |
| 752 | 757 |
finalizeNodeData(_heap->top(),_heap->prio()); |
| 753 | 758 |
return _heap->top(); |
| 754 | 759 |
} |
| 755 | 760 |
|
| 756 | 761 |
///Runs the algorithm from the given source node. |
| 757 | 762 |
|
| 758 | 763 |
///This method runs the %Dijkstra algorithm from node \c s |
| 759 | 764 |
///in order to compute the shortest path to each node. |
| 760 | 765 |
/// |
| 761 | 766 |
///The algorithm computes |
| 762 | 767 |
///- the shortest path tree, |
| 763 | 768 |
///- the distance of each node from the root. |
| 764 | 769 |
/// |
| 765 | 770 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 766 | 771 |
///\code |
| 767 | 772 |
/// d.init(); |
| 768 | 773 |
/// d.addSource(s); |
| 769 | 774 |
/// d.start(); |
| 770 | 775 |
///\endcode |
| 771 | 776 |
void run(Node s) {
|
| 772 | 777 |
init(); |
| 773 | 778 |
addSource(s); |
| 774 | 779 |
start(); |
| 775 | 780 |
} |
| 776 | 781 |
|
| 777 | 782 |
///Finds the shortest path between \c s and \c t. |
| 778 | 783 |
|
| 779 | 784 |
///This method runs the %Dijkstra algorithm from node \c s |
| 780 | 785 |
///in order to compute the shortest path to node \c t |
| 781 | 786 |
///(it stops searching when \c t is processed). |
| 782 | 787 |
/// |
| 783 | 788 |
///\return \c true if \c t is reachable form \c s. |
| 784 | 789 |
/// |
| 785 | 790 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a |
| 786 | 791 |
///shortcut of the following code. |
| 787 | 792 |
///\code |
| 788 | 793 |
/// d.init(); |
| 789 | 794 |
/// d.addSource(s); |
| 790 | 795 |
/// d.start(t); |
| 791 | 796 |
///\endcode |
| 792 | 797 |
bool run(Node s,Node t) {
|
| 793 | 798 |
init(); |
| 794 | 799 |
addSource(s); |
| 795 | 800 |
start(t); |
| 796 | 801 |
return (*_heap_cross_ref)[t] == Heap::POST_HEAP; |
| 797 | 802 |
} |
| 798 | 803 |
|
| 799 | 804 |
///@} |
| 800 | 805 |
|
| 801 | 806 |
///\name Query Functions |
| 802 | 807 |
///The results of the %Dijkstra algorithm can be obtained using these |
| 803 | 808 |
///functions.\n |
| 804 |
///Either \ref run(Node) "run()" or \ref |
|
| 809 |
///Either \ref run(Node) "run()" or \ref init() should be called |
|
| 805 | 810 |
///before using them. |
| 806 | 811 |
|
| 807 | 812 |
///@{
|
| 808 | 813 |
|
| 809 |
///The shortest path to |
|
| 814 |
///The shortest path to the given node. |
|
| 810 | 815 |
|
| 811 |
///Returns the shortest path to |
|
| 816 |
///Returns the shortest path to the given node from the root(s). |
|
| 812 | 817 |
/// |
| 813 | 818 |
///\warning \c t should be reached from the root(s). |
| 814 | 819 |
/// |
| 815 | 820 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 816 | 821 |
///must be called before using this function. |
| 817 | 822 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 818 | 823 |
|
| 819 |
///The distance of |
|
| 824 |
///The distance of the given node from the root(s). |
|
| 820 | 825 |
|
| 821 |
///Returns the distance of |
|
| 826 |
///Returns the distance of the given node from the root(s). |
|
| 822 | 827 |
/// |
| 823 | 828 |
///\warning If node \c v is not reached from the root(s), then |
| 824 | 829 |
///the return value of this function is undefined. |
| 825 | 830 |
/// |
| 826 | 831 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 827 | 832 |
///must be called before using this function. |
| 828 | 833 |
Value dist(Node v) const { return (*_dist)[v]; }
|
| 829 | 834 |
|
| 830 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
| 831 |
|
|
| 835 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
| 836 |
///the given node. |
|
| 837 |
/// |
|
| 832 | 838 |
///This function returns the 'previous arc' of the shortest path |
| 833 | 839 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 834 | 840 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
| 835 | 841 |
///is not reached from the root(s) or if \c v is a root. |
| 836 | 842 |
/// |
| 837 | 843 |
///The shortest path tree used here is equal to the shortest path |
| 838 |
///tree used in \ref predNode(). |
|
| 844 |
///tree used in \ref predNode() and \ref predMap(). |
|
| 839 | 845 |
/// |
| 840 | 846 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 841 | 847 |
///must be called before using this function. |
| 842 | 848 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
| 843 | 849 |
|
| 844 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
| 845 |
|
|
| 850 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
| 851 |
///the given node. |
|
| 852 |
/// |
|
| 846 | 853 |
///This function returns the 'previous node' of the shortest path |
| 847 | 854 |
///tree for the node \c v, i.e. it returns the last but one node |
| 848 |
/// |
|
| 855 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
| 849 | 856 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 850 | 857 |
/// |
| 851 | 858 |
///The shortest path tree used here is equal to the shortest path |
| 852 |
///tree used in \ref predArc(). |
|
| 859 |
///tree used in \ref predArc() and \ref predMap(). |
|
| 853 | 860 |
/// |
| 854 | 861 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 855 | 862 |
///must be called before using this function. |
| 856 | 863 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 857 | 864 |
G->source((*_pred)[v]); } |
| 858 | 865 |
|
| 859 | 866 |
///\brief Returns a const reference to the node map that stores the |
| 860 | 867 |
///distances of the nodes. |
| 861 | 868 |
/// |
| 862 | 869 |
///Returns a const reference to the node map that stores the distances |
| 863 | 870 |
///of the nodes calculated by the algorithm. |
| 864 | 871 |
/// |
| 865 | 872 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 866 | 873 |
///must be called before using this function. |
| 867 | 874 |
const DistMap &distMap() const { return *_dist;}
|
| 868 | 875 |
|
| 869 | 876 |
///\brief Returns a const reference to the node map that stores the |
| 870 | 877 |
///predecessor arcs. |
| 871 | 878 |
/// |
| 872 | 879 |
///Returns a const reference to the node map that stores the predecessor |
| 873 |
///arcs, which form the shortest path tree. |
|
| 880 |
///arcs, which form the shortest path tree (forest). |
|
| 874 | 881 |
/// |
| 875 | 882 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 876 | 883 |
///must be called before using this function. |
| 877 | 884 |
const PredMap &predMap() const { return *_pred;}
|
| 878 | 885 |
|
| 879 |
///Checks if |
|
| 886 |
///Checks if the given node is reached from the root(s). |
|
| 880 | 887 |
|
| 881 | 888 |
///Returns \c true if \c v is reached from the root(s). |
| 882 | 889 |
/// |
| 883 | 890 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 884 | 891 |
///must be called before using this function. |
| 885 | 892 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
|
| 886 | 893 |
Heap::PRE_HEAP; } |
| 887 | 894 |
|
| 888 | 895 |
///Checks if a node is processed. |
| 889 | 896 |
|
| 890 | 897 |
///Returns \c true if \c v is processed, i.e. the shortest |
| 891 | 898 |
///path to \c v has already found. |
| 892 | 899 |
/// |
| 893 | 900 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 894 | 901 |
///must be called before using this function. |
| 895 | 902 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
|
| 896 | 903 |
Heap::POST_HEAP; } |
| 897 | 904 |
|
| 898 |
///The current distance of |
|
| 905 |
///The current distance of the given node from the root(s). |
|
| 899 | 906 |
|
| 900 |
///Returns the current distance of |
|
| 907 |
///Returns the current distance of the given node from the root(s). |
|
| 901 | 908 |
///It may be decreased in the following processes. |
| 902 | 909 |
/// |
| 903 | 910 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 904 | 911 |
///must be called before using this function and |
| 905 | 912 |
///node \c v must be reached but not necessarily processed. |
| 906 | 913 |
Value currentDist(Node v) const {
|
| 907 | 914 |
return processed(v) ? (*_dist)[v] : (*_heap)[v]; |
| 908 | 915 |
} |
| 909 | 916 |
|
| 910 | 917 |
///@} |
| 911 | 918 |
}; |
| 912 | 919 |
|
| 913 | 920 |
|
| 914 | 921 |
///Default traits class of dijkstra() function. |
| 915 | 922 |
|
| 916 | 923 |
///Default traits class of dijkstra() function. |
| 917 | 924 |
///\tparam GR The type of the digraph. |
| 918 | 925 |
///\tparam LEN The type of the length map. |
| 919 | 926 |
template<class GR, class LEN> |
| 920 | 927 |
struct DijkstraWizardDefaultTraits |
| 921 | 928 |
{
|
| 922 | 929 |
///The type of the digraph the algorithm runs on. |
| 923 | 930 |
typedef GR Digraph; |
| 924 | 931 |
///The type of the map that stores the arc lengths. |
| 925 | 932 |
|
| 926 | 933 |
///The type of the map that stores the arc lengths. |
| 927 |
///It must |
|
| 934 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 928 | 935 |
typedef LEN LengthMap; |
| 929 |
///The type of the |
|
| 936 |
///The type of the arc lengths. |
|
| 930 | 937 |
typedef typename LEN::Value Value; |
| 931 | 938 |
|
| 932 | 939 |
/// Operation traits for Dijkstra algorithm. |
| 933 | 940 |
|
| 934 | 941 |
/// This class defines the operations that are used in the algorithm. |
| 935 | 942 |
/// \see DijkstraDefaultOperationTraits |
| 936 | 943 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
| 937 | 944 |
|
| 938 | 945 |
/// The cross reference type used by the heap. |
| 939 | 946 |
|
| 940 | 947 |
/// The cross reference type used by the heap. |
| 941 | 948 |
/// Usually it is \c Digraph::NodeMap<int>. |
| 942 | 949 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 943 | 950 |
///Instantiates a \ref HeapCrossRef. |
| 944 | 951 |
|
| 945 | 952 |
///This function instantiates a \ref HeapCrossRef. |
| 946 | 953 |
/// \param g is the digraph, to which we would like to define the |
| 947 | 954 |
/// HeapCrossRef. |
| 948 | 955 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
| 949 | 956 |
{
|
| 950 | 957 |
return new HeapCrossRef(g); |
| 951 | 958 |
} |
| 952 | 959 |
|
| 953 | 960 |
///The heap type used by the Dijkstra algorithm. |
| 954 | 961 |
|
| 955 | 962 |
///The heap type used by the Dijkstra algorithm. |
| 956 | 963 |
/// |
| 957 | 964 |
///\sa BinHeap |
| 958 | 965 |
///\sa Dijkstra |
| 959 | 966 |
typedef BinHeap<Value, typename Digraph::template NodeMap<int>, |
| 960 | 967 |
std::less<Value> > Heap; |
| 961 | 968 |
|
| 962 | 969 |
///Instantiates a \ref Heap. |
| 963 | 970 |
|
| 964 | 971 |
///This function instantiates a \ref Heap. |
| 965 | 972 |
/// \param r is the HeapCrossRef which is used. |
| 966 | 973 |
static Heap *createHeap(HeapCrossRef& r) |
| 967 | 974 |
{
|
| 968 | 975 |
return new Heap(r); |
| 969 | 976 |
} |
| 970 | 977 |
|
| 971 | 978 |
///\brief The type of the map that stores the predecessor |
| 972 | 979 |
///arcs of the shortest paths. |
| 973 | 980 |
/// |
| 974 | 981 |
///The type of the map that stores the predecessor |
| 975 | 982 |
///arcs of the shortest paths. |
| 976 |
///It must |
|
| 983 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 977 | 984 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 978 | 985 |
///Instantiates a PredMap. |
| 979 | 986 |
|
| 980 | 987 |
///This function instantiates a PredMap. |
| 981 | 988 |
///\param g is the digraph, to which we would like to define the |
| 982 | 989 |
///PredMap. |
| 983 | 990 |
static PredMap *createPredMap(const Digraph &g) |
| 984 | 991 |
{
|
| 985 | 992 |
return new PredMap(g); |
| 986 | 993 |
} |
| 987 | 994 |
|
| 988 | 995 |
///The type of the map that indicates which nodes are processed. |
| 989 | 996 |
|
| 990 | 997 |
///The type of the map that indicates which nodes are processed. |
| 991 |
///It must |
|
| 998 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 992 | 999 |
///By default it is a NullMap. |
| 993 | 1000 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 994 | 1001 |
///Instantiates a ProcessedMap. |
| 995 | 1002 |
|
| 996 | 1003 |
///This function instantiates a ProcessedMap. |
| 997 | 1004 |
///\param g is the digraph, to which |
| 998 | 1005 |
///we would like to define the ProcessedMap. |
| 999 | 1006 |
#ifdef DOXYGEN |
| 1000 | 1007 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 1001 | 1008 |
#else |
| 1002 | 1009 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 1003 | 1010 |
#endif |
| 1004 | 1011 |
{
|
| 1005 | 1012 |
return new ProcessedMap(); |
| 1006 | 1013 |
} |
| 1007 | 1014 |
|
| 1008 | 1015 |
///The type of the map that stores the distances of the nodes. |
| 1009 | 1016 |
|
| 1010 | 1017 |
///The type of the map that stores the distances of the nodes. |
| 1011 |
///It must |
|
| 1018 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 1012 | 1019 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
| 1013 | 1020 |
///Instantiates a DistMap. |
| 1014 | 1021 |
|
| 1015 | 1022 |
///This function instantiates a DistMap. |
| 1016 | 1023 |
///\param g is the digraph, to which we would like to define |
| 1017 | 1024 |
///the DistMap |
| 1018 | 1025 |
static DistMap *createDistMap(const Digraph &g) |
| 1019 | 1026 |
{
|
| 1020 | 1027 |
return new DistMap(g); |
| 1021 | 1028 |
} |
| 1022 | 1029 |
|
| 1023 | 1030 |
///The type of the shortest paths. |
| 1024 | 1031 |
|
| 1025 | 1032 |
///The type of the shortest paths. |
| 1026 |
///It must |
|
| 1033 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
| 1027 | 1034 |
typedef lemon::Path<Digraph> Path; |
| 1028 | 1035 |
}; |
| 1029 | 1036 |
|
| 1030 | 1037 |
/// Default traits class used by DijkstraWizard |
| 1031 | 1038 |
|
| 1032 |
/// To make it easier to use Dijkstra algorithm |
|
| 1033 |
/// we have created a wizard class. |
|
| 1034 |
/// This \ref DijkstraWizard class needs default traits, |
|
| 1035 |
/// as well as the \ref Dijkstra class. |
|
| 1036 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
|
| 1037 |
/// \ref DijkstraWizard class. |
|
| 1039 |
/// Default traits class used by DijkstraWizard. |
|
| 1040 |
/// \tparam GR The type of the digraph. |
|
| 1041 |
/// \tparam LEN The type of the length map. |
|
| 1038 | 1042 |
template<typename GR, typename LEN> |
| 1039 | 1043 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN> |
| 1040 | 1044 |
{
|
| 1041 | 1045 |
typedef DijkstraWizardDefaultTraits<GR,LEN> Base; |
| 1042 | 1046 |
protected: |
| 1043 | 1047 |
//The type of the nodes in the digraph. |
| 1044 | 1048 |
typedef typename Base::Digraph::Node Node; |
| 1045 | 1049 |
|
| 1046 | 1050 |
//Pointer to the digraph the algorithm runs on. |
| 1047 | 1051 |
void *_g; |
| 1048 | 1052 |
//Pointer to the length map. |
| 1049 | 1053 |
void *_length; |
| 1050 | 1054 |
//Pointer to the map of processed nodes. |
| 1051 | 1055 |
void *_processed; |
| 1052 | 1056 |
//Pointer to the map of predecessors arcs. |
| 1053 | 1057 |
void *_pred; |
| 1054 | 1058 |
//Pointer to the map of distances. |
| 1055 | 1059 |
void *_dist; |
| 1056 | 1060 |
//Pointer to the shortest path to the target node. |
| 1057 | 1061 |
void *_path; |
| 1058 | 1062 |
//Pointer to the distance of the target node. |
| 1059 | 1063 |
void *_di; |
| 1060 | 1064 |
|
| 1061 | 1065 |
public: |
| 1062 | 1066 |
/// Constructor. |
| 1063 | 1067 |
|
| 1064 | 1068 |
/// This constructor does not require parameters, therefore it initiates |
| 1065 | 1069 |
/// all of the attributes to \c 0. |
| 1066 | 1070 |
DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0), |
| 1067 | 1071 |
_dist(0), _path(0), _di(0) {}
|
| 1068 | 1072 |
|
| 1069 | 1073 |
/// Constructor. |
| 1070 | 1074 |
|
| 1071 | 1075 |
/// This constructor requires two parameters, |
| 1072 | 1076 |
/// others are initiated to \c 0. |
| 1073 | 1077 |
/// \param g The digraph the algorithm runs on. |
| 1074 | 1078 |
/// \param l The length map. |
| 1075 | 1079 |
DijkstraWizardBase(const GR &g,const LEN &l) : |
| 1076 | 1080 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 1077 | 1081 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&l))), |
| 1078 | 1082 |
_processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 1079 | 1083 |
|
| 1080 | 1084 |
}; |
| 1081 | 1085 |
|
| 1082 | 1086 |
/// Auxiliary class for the function-type interface of Dijkstra algorithm. |
| 1083 | 1087 |
|
| 1084 | 1088 |
/// This auxiliary class is created to implement the |
| 1085 | 1089 |
/// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm. |
| 1086 | 1090 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
| 1087 | 1091 |
/// functions and features of the plain \ref Dijkstra. |
| 1088 | 1092 |
/// |
| 1089 | 1093 |
/// This class should only be used through the \ref dijkstra() function, |
| 1090 | 1094 |
/// which makes it easier to use the algorithm. |
| 1091 | 1095 |
template<class TR> |
| 1092 | 1096 |
class DijkstraWizard : public TR |
| 1093 | 1097 |
{
|
| 1094 | 1098 |
typedef TR Base; |
| 1095 | 1099 |
|
| 1096 |
///The type of the digraph the algorithm runs on. |
|
| 1097 | 1100 |
typedef typename TR::Digraph Digraph; |
| 1098 | 1101 |
|
| 1099 | 1102 |
typedef typename Digraph::Node Node; |
| 1100 | 1103 |
typedef typename Digraph::NodeIt NodeIt; |
| 1101 | 1104 |
typedef typename Digraph::Arc Arc; |
| 1102 | 1105 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1103 | 1106 |
|
| 1104 |
///The type of the map that stores the arc lengths. |
|
| 1105 | 1107 |
typedef typename TR::LengthMap LengthMap; |
| 1106 |
///The type of the length of the arcs. |
|
| 1107 | 1108 |
typedef typename LengthMap::Value Value; |
| 1108 |
///\brief The type of the map that stores the predecessor |
|
| 1109 |
///arcs of the shortest paths. |
|
| 1110 | 1109 |
typedef typename TR::PredMap PredMap; |
| 1111 |
///The type of the map that stores the distances of the nodes. |
|
| 1112 | 1110 |
typedef typename TR::DistMap DistMap; |
| 1113 |
///The type of the map that indicates which nodes are processed. |
|
| 1114 | 1111 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 1115 |
///The type of the shortest paths |
|
| 1116 | 1112 |
typedef typename TR::Path Path; |
| 1117 |
///The heap type used by the dijkstra algorithm. |
|
| 1118 | 1113 |
typedef typename TR::Heap Heap; |
| 1119 | 1114 |
|
| 1120 | 1115 |
public: |
| 1121 | 1116 |
|
| 1122 | 1117 |
/// Constructor. |
| 1123 | 1118 |
DijkstraWizard() : TR() {}
|
| 1124 | 1119 |
|
| 1125 | 1120 |
/// Constructor that requires parameters. |
| 1126 | 1121 |
|
| 1127 | 1122 |
/// Constructor that requires parameters. |
| 1128 | 1123 |
/// These parameters will be the default values for the traits class. |
| 1129 | 1124 |
/// \param g The digraph the algorithm runs on. |
| 1130 | 1125 |
/// \param l The length map. |
| 1131 | 1126 |
DijkstraWizard(const Digraph &g, const LengthMap &l) : |
| 1132 | 1127 |
TR(g,l) {}
|
| 1133 | 1128 |
|
| 1134 | 1129 |
///Copy constructor |
| 1135 | 1130 |
DijkstraWizard(const TR &b) : TR(b) {}
|
| 1136 | 1131 |
|
| 1137 | 1132 |
~DijkstraWizard() {}
|
| 1138 | 1133 |
|
| 1139 | 1134 |
///Runs Dijkstra algorithm from the given source node. |
| 1140 | 1135 |
|
| 1141 | 1136 |
///This method runs %Dijkstra algorithm from the given source node |
| 1142 | 1137 |
///in order to compute the shortest path to each node. |
| 1143 | 1138 |
void run(Node s) |
| 1144 | 1139 |
{
|
| 1145 | 1140 |
Dijkstra<Digraph,LengthMap,TR> |
| 1146 | 1141 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
| 1147 | 1142 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
| 1148 | 1143 |
if (Base::_pred) |
| 1149 | 1144 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1150 | 1145 |
if (Base::_dist) |
| 1151 | 1146 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1152 | 1147 |
if (Base::_processed) |
| 1153 | 1148 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1154 | 1149 |
dijk.run(s); |
| 1155 | 1150 |
} |
| 1156 | 1151 |
|
| 1157 | 1152 |
///Finds the shortest path between \c s and \c t. |
| 1158 | 1153 |
|
| 1159 | 1154 |
///This method runs the %Dijkstra algorithm from node \c s |
| 1160 | 1155 |
///in order to compute the shortest path to node \c t |
| 1161 | 1156 |
///(it stops searching when \c t is processed). |
| 1162 | 1157 |
/// |
| 1163 | 1158 |
///\return \c true if \c t is reachable form \c s. |
| 1164 | 1159 |
bool run(Node s, Node t) |
| 1165 | 1160 |
{
|
| 1166 | 1161 |
Dijkstra<Digraph,LengthMap,TR> |
| 1167 | 1162 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
| 1168 | 1163 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
| 1169 | 1164 |
if (Base::_pred) |
| 1170 | 1165 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1171 | 1166 |
if (Base::_dist) |
| 1172 | 1167 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1173 | 1168 |
if (Base::_processed) |
| 1174 | 1169 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1175 | 1170 |
dijk.run(s,t); |
| 1176 | 1171 |
if (Base::_path) |
| 1177 | 1172 |
*reinterpret_cast<Path*>(Base::_path) = dijk.path(t); |
| 1178 | 1173 |
if (Base::_di) |
| 1179 | 1174 |
*reinterpret_cast<Value*>(Base::_di) = dijk.dist(t); |
| 1180 | 1175 |
return dijk.reached(t); |
| 1181 | 1176 |
} |
| 1182 | 1177 |
|
| 1183 | 1178 |
template<class T> |
| 1184 | 1179 |
struct SetPredMapBase : public Base {
|
| 1185 | 1180 |
typedef T PredMap; |
| 1186 | 1181 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1187 | 1182 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1188 | 1183 |
}; |
| 1189 |
///\brief \ref named-func-param "Named parameter" |
|
| 1190 |
///for setting PredMap object. |
|
| 1184 |
|
|
| 1185 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1186 |
///the predecessor map. |
|
| 1191 | 1187 |
/// |
| 1192 |
///\ref named-func-param "Named parameter" |
|
| 1193 |
///for setting PredMap object. |
|
| 1188 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1189 |
///the map that stores the predecessor arcs of the nodes. |
|
| 1194 | 1190 |
template<class T> |
| 1195 | 1191 |
DijkstraWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1196 | 1192 |
{
|
| 1197 | 1193 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1198 | 1194 |
return DijkstraWizard<SetPredMapBase<T> >(*this); |
| 1199 | 1195 |
} |
| 1200 | 1196 |
|
| 1201 | 1197 |
template<class T> |
| 1202 | 1198 |
struct SetDistMapBase : public Base {
|
| 1203 | 1199 |
typedef T DistMap; |
| 1204 | 1200 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1205 | 1201 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1206 | 1202 |
}; |
| 1207 |
///\brief \ref named-func-param "Named parameter" |
|
| 1208 |
///for setting DistMap object. |
|
| 1203 |
|
|
| 1204 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1205 |
///the distance map. |
|
| 1209 | 1206 |
/// |
| 1210 |
///\ref named-func-param "Named parameter" |
|
| 1211 |
///for setting DistMap object. |
|
| 1207 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1208 |
///the map that stores the distances of the nodes calculated |
|
| 1209 |
///by the algorithm. |
|
| 1212 | 1210 |
template<class T> |
| 1213 | 1211 |
DijkstraWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1214 | 1212 |
{
|
| 1215 | 1213 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1216 | 1214 |
return DijkstraWizard<SetDistMapBase<T> >(*this); |
| 1217 | 1215 |
} |
| 1218 | 1216 |
|
| 1219 | 1217 |
template<class T> |
| 1220 | 1218 |
struct SetProcessedMapBase : public Base {
|
| 1221 | 1219 |
typedef T ProcessedMap; |
| 1222 | 1220 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1223 | 1221 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1224 | 1222 |
}; |
| 1225 |
///\brief \ref named-func-param "Named parameter" |
|
| 1226 |
///for setting ProcessedMap object. |
|
| 1223 |
|
|
| 1224 |
///\brief \ref named-func-param "Named parameter" for setting |
|
| 1225 |
///the processed map. |
|
| 1227 | 1226 |
/// |
| 1228 |
/// \ref named-func-param "Named parameter" |
|
| 1229 |
///for setting ProcessedMap object. |
|
| 1227 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1228 |
///the map that indicates which nodes are processed. |
|
| 1230 | 1229 |
template<class T> |
| 1231 | 1230 |
DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1232 | 1231 |
{
|
| 1233 | 1232 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1234 | 1233 |
return DijkstraWizard<SetProcessedMapBase<T> >(*this); |
| 1235 | 1234 |
} |
| 1236 | 1235 |
|
| 1237 | 1236 |
template<class T> |
| 1238 | 1237 |
struct SetPathBase : public Base {
|
| 1239 | 1238 |
typedef T Path; |
| 1240 | 1239 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1241 | 1240 |
}; |
| 1241 |
|
|
| 1242 | 1242 |
///\brief \ref named-func-param "Named parameter" |
| 1243 | 1243 |
///for getting the shortest path to the target node. |
| 1244 | 1244 |
/// |
| 1245 | 1245 |
///\ref named-func-param "Named parameter" |
| 1246 | 1246 |
///for getting the shortest path to the target node. |
| 1247 | 1247 |
template<class T> |
| 1248 | 1248 |
DijkstraWizard<SetPathBase<T> > path(const T &t) |
| 1249 | 1249 |
{
|
| 1250 | 1250 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1251 | 1251 |
return DijkstraWizard<SetPathBase<T> >(*this); |
| 1252 | 1252 |
} |
| 1253 | 1253 |
|
| 1254 | 1254 |
///\brief \ref named-func-param "Named parameter" |
| 1255 | 1255 |
///for getting the distance of the target node. |
| 1256 | 1256 |
/// |
| 1257 | 1257 |
///\ref named-func-param "Named parameter" |
| 1258 | 1258 |
///for getting the distance of the target node. |
| 1259 | 1259 |
DijkstraWizard dist(const Value &d) |
| 1260 | 1260 |
{
|
| 1261 | 1261 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
| 1262 | 1262 |
return *this; |
| 1263 | 1263 |
} |
| 1264 | 1264 |
|
| 1265 | 1265 |
}; |
| 1266 | 1266 |
|
| 1267 | 1267 |
///Function-type interface for Dijkstra algorithm. |
| 1268 | 1268 |
|
| 1269 | 1269 |
/// \ingroup shortest_path |
| 1270 | 1270 |
///Function-type interface for Dijkstra algorithm. |
| 1271 | 1271 |
/// |
| 1272 | 1272 |
///This function also has several \ref named-func-param "named parameters", |
| 1273 | 1273 |
///they are declared as the members of class \ref DijkstraWizard. |
| 1274 | 1274 |
///The following examples show how to use these parameters. |
| 1275 | 1275 |
///\code |
| 1276 | 1276 |
/// // Compute shortest path from node s to each node |
| 1277 | 1277 |
/// dijkstra(g,length).predMap(preds).distMap(dists).run(s); |
| 1278 | 1278 |
/// |
| 1279 | 1279 |
/// // Compute shortest path from s to t |
| 1280 | 1280 |
/// bool reached = dijkstra(g,length).path(p).dist(d).run(s,t); |
| 1281 | 1281 |
///\endcode |
| 1282 | 1282 |
///\warning Don't forget to put the \ref DijkstraWizard::run(Node) "run()" |
| 1283 | 1283 |
///to the end of the parameter list. |
| 1284 | 1284 |
///\sa DijkstraWizard |
| 1285 | 1285 |
///\sa Dijkstra |
| 1286 | 1286 |
template<typename GR, typename LEN> |
| 1287 | 1287 |
DijkstraWizard<DijkstraWizardBase<GR,LEN> > |
| 1288 | 1288 |
dijkstra(const GR &digraph, const LEN &length) |
| 1289 | 1289 |
{
|
| 1290 | 1290 |
return DijkstraWizard<DijkstraWizardBase<GR,LEN> >(digraph,length); |
| 1291 | 1291 |
} |
| 1292 | 1292 |
|
| 1293 | 1293 |
} //END OF NAMESPACE LEMON |
| 1294 | 1294 |
|
| 1295 | 1295 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DIM2_H |
| 20 | 20 |
#define LEMON_DIM2_H |
| 21 | 21 |
|
| 22 | 22 |
#include <iostream> |
| 23 | 23 |
|
| 24 |
///\ingroup |
|
| 24 |
///\ingroup geomdat |
|
| 25 | 25 |
///\file |
| 26 | 26 |
///\brief A simple two dimensional vector and a bounding box implementation |
| 27 |
/// |
|
| 28 |
/// The class \ref lemon::dim2::Point "dim2::Point" implements |
|
| 29 |
/// a two dimensional vector with the usual operations. |
|
| 30 |
/// |
|
| 31 |
/// The class \ref lemon::dim2::Box "dim2::Box" can be used to determine |
|
| 32 |
/// the rectangular bounding box of a set of |
|
| 33 |
/// \ref lemon::dim2::Point "dim2::Point"'s. |
|
| 34 | 27 |
|
| 35 | 28 |
namespace lemon {
|
| 36 | 29 |
|
| 37 | 30 |
///Tools for handling two dimensional coordinates |
| 38 | 31 |
|
| 39 | 32 |
///This namespace is a storage of several |
| 40 | 33 |
///tools for handling two dimensional coordinates |
| 41 | 34 |
namespace dim2 {
|
| 42 | 35 |
|
| 43 |
/// \addtogroup |
|
| 36 |
/// \addtogroup geomdat |
|
| 44 | 37 |
/// @{
|
| 45 | 38 |
|
| 46 | 39 |
/// Two dimensional vector (plain vector) |
| 47 | 40 |
|
| 48 | 41 |
/// A simple two dimensional vector (plain vector) implementation |
| 49 | 42 |
/// with the usual vector operations. |
| 50 | 43 |
template<typename T> |
| 51 | 44 |
class Point {
|
| 52 | 45 |
|
| 53 | 46 |
public: |
| 54 | 47 |
|
| 55 | 48 |
typedef T Value; |
| 56 | 49 |
|
| 57 | 50 |
///First coordinate |
| 58 | 51 |
T x; |
| 59 | 52 |
///Second coordinate |
| 60 | 53 |
T y; |
| 61 | 54 |
|
| 62 | 55 |
///Default constructor |
| 63 | 56 |
Point() {}
|
| 64 | 57 |
|
| 65 | 58 |
///Construct an instance from coordinates |
| 66 | 59 |
Point(T a, T b) : x(a), y(b) { }
|
| 67 | 60 |
|
| 68 | 61 |
///Returns the dimension of the vector (i.e. returns 2). |
| 69 | 62 |
|
| 70 | 63 |
///The dimension of the vector. |
| 71 | 64 |
///This function always returns 2. |
| 72 | 65 |
int size() const { return 2; }
|
| 73 | 66 |
|
| 74 | 67 |
///Subscripting operator |
| 75 | 68 |
|
| 76 | 69 |
///\c p[0] is \c p.x and \c p[1] is \c p.y |
| 77 | 70 |
/// |
| 78 | 71 |
T& operator[](int idx) { return idx == 0 ? x : y; }
|
| 79 | 72 |
|
| 80 | 73 |
///Const subscripting operator |
| 81 | 74 |
|
| 82 | 75 |
///\c p[0] is \c p.x and \c p[1] is \c p.y |
| 83 | 76 |
/// |
| 84 | 77 |
const T& operator[](int idx) const { return idx == 0 ? x : y; }
|
| 85 | 78 |
|
| 86 | 79 |
///Conversion constructor |
| 87 | 80 |
template<class TT> Point(const Point<TT> &p) : x(p.x), y(p.y) {}
|
| 88 | 81 |
|
| 89 | 82 |
///Give back the square of the norm of the vector |
| 90 | 83 |
T normSquare() const {
|
| 91 | 84 |
return x*x+y*y; |
| 92 | 85 |
} |
| 93 | 86 |
|
| 94 | 87 |
///Increment the left hand side by \c u |
| 95 | 88 |
Point<T>& operator +=(const Point<T>& u) {
|
| 96 | 89 |
x += u.x; |
| 97 | 90 |
y += u.y; |
| 98 | 91 |
return *this; |
| 99 | 92 |
} |
| 100 | 93 |
|
| 101 | 94 |
///Decrement the left hand side by \c u |
| 102 | 95 |
Point<T>& operator -=(const Point<T>& u) {
|
| 103 | 96 |
x -= u.x; |
| 104 | 97 |
y -= u.y; |
| 105 | 98 |
return *this; |
| 106 | 99 |
} |
| 107 | 100 |
|
| 108 | 101 |
///Multiply the left hand side with a scalar |
| 109 | 102 |
Point<T>& operator *=(const T &u) {
|
| 110 | 103 |
x *= u; |
| 111 | 104 |
y *= u; |
| 112 | 105 |
return *this; |
| 113 | 106 |
} |
| 114 | 107 |
|
| 115 | 108 |
///Divide the left hand side by a scalar |
| 116 | 109 |
Point<T>& operator /=(const T &u) {
|
| 117 | 110 |
x /= u; |
| 118 | 111 |
y /= u; |
| 119 | 112 |
return *this; |
| 120 | 113 |
} |
| 121 | 114 |
|
| 122 | 115 |
///Return the scalar product of two vectors |
| 123 | 116 |
T operator *(const Point<T>& u) const {
|
| 124 | 117 |
return x*u.x+y*u.y; |
| 125 | 118 |
} |
| 126 | 119 |
|
| 127 | 120 |
///Return the sum of two vectors |
| 128 | 121 |
Point<T> operator+(const Point<T> &u) const {
|
| 129 | 122 |
Point<T> b=*this; |
| 130 | 123 |
return b+=u; |
| 131 | 124 |
} |
| 132 | 125 |
|
| 133 | 126 |
///Return the negative of the vector |
| 134 | 127 |
Point<T> operator-() const {
|
| 135 | 128 |
Point<T> b=*this; |
| 136 | 129 |
b.x=-b.x; b.y=-b.y; |
| 137 | 130 |
return b; |
| 138 | 131 |
} |
| 139 | 132 |
|
| 140 | 133 |
///Return the difference of two vectors |
| 141 | 134 |
Point<T> operator-(const Point<T> &u) const {
|
| 142 | 135 |
Point<T> b=*this; |
| 143 | 136 |
return b-=u; |
| 144 | 137 |
} |
| 145 | 138 |
|
| 146 | 139 |
///Return a vector multiplied by a scalar |
| 147 | 140 |
Point<T> operator*(const T &u) const {
|
| 148 | 141 |
Point<T> b=*this; |
| 149 | 142 |
return b*=u; |
| 150 | 143 |
} |
| 151 | 144 |
|
| 152 | 145 |
///Return a vector divided by a scalar |
| 153 | 146 |
Point<T> operator/(const T &u) const {
|
| 154 | 147 |
Point<T> b=*this; |
| 155 | 148 |
return b/=u; |
| 156 | 149 |
} |
| 157 | 150 |
|
| 158 | 151 |
///Test equality |
| 159 | 152 |
bool operator==(const Point<T> &u) const {
|
| 160 | 153 |
return (x==u.x) && (y==u.y); |
| 161 | 154 |
} |
| 162 | 155 |
|
| 163 | 156 |
///Test inequality |
| 164 | 157 |
bool operator!=(Point u) const {
|
| 165 | 158 |
return (x!=u.x) || (y!=u.y); |
| 166 | 159 |
} |
| 167 | 160 |
|
| 168 | 161 |
}; |
| 169 | 162 |
|
| 170 | 163 |
///Return a Point |
| 171 | 164 |
|
| 172 | 165 |
///Return a Point. |
| 173 | 166 |
///\relates Point |
| 174 | 167 |
template <typename T> |
| 175 | 168 |
inline Point<T> makePoint(const T& x, const T& y) {
|
| 176 | 169 |
return Point<T>(x, y); |
| 177 | 170 |
} |
| 178 | 171 |
|
| 179 | 172 |
///Return a vector multiplied by a scalar |
| 180 | 173 |
|
| 181 | 174 |
///Return a vector multiplied by a scalar. |
| 182 | 175 |
///\relates Point |
| 183 | 176 |
template<typename T> Point<T> operator*(const T &u,const Point<T> &x) {
|
| 184 | 177 |
return x*u; |
| 185 | 178 |
} |
| 186 | 179 |
|
| 187 | 180 |
///Read a plain vector from a stream |
| 188 | 181 |
|
| 189 | 182 |
///Read a plain vector from a stream. |
| 190 | 183 |
///\relates Point |
| 191 | 184 |
/// |
| 192 | 185 |
template<typename T> |
| 193 | 186 |
inline std::istream& operator>>(std::istream &is, Point<T> &z) {
|
| 194 | 187 |
char c; |
| 195 | 188 |
if (is >> c) {
|
| 196 | 189 |
if (c != '(') is.putback(c);
|
| 197 | 190 |
} else {
|
| 198 | 191 |
is.clear(); |
| 199 | 192 |
} |
| 200 | 193 |
if (!(is >> z.x)) return is; |
| 201 | 194 |
if (is >> c) {
|
| 202 | 195 |
if (c != ',') is.putback(c); |
| 203 | 196 |
} else {
|
| 204 | 197 |
is.clear(); |
| 205 | 198 |
} |
| 206 | 199 |
if (!(is >> z.y)) return is; |
| 207 | 200 |
if (is >> c) {
|
| 208 | 201 |
if (c != ')') is.putback(c); |
| 209 | 202 |
} else {
|
| 210 | 203 |
is.clear(); |
| 211 | 204 |
} |
| 212 | 205 |
return is; |
| 213 | 206 |
} |
| 214 | 207 |
|
| 215 | 208 |
///Write a plain vector to a stream |
| 216 | 209 |
|
| 217 | 210 |
///Write a plain vector to a stream. |
| 218 | 211 |
///\relates Point |
| 219 | 212 |
/// |
| 220 | 213 |
template<typename T> |
| 221 | 214 |
inline std::ostream& operator<<(std::ostream &os, const Point<T>& z) |
| 222 | 215 |
{
|
| 223 | 216 |
os << "(" << z.x << "," << z.y << ")";
|
| 224 | 217 |
return os; |
| 225 | 218 |
} |
| 226 | 219 |
|
| 227 | 220 |
///Rotate by 90 degrees |
| 228 | 221 |
|
| 229 | 222 |
///Returns the parameter rotated by 90 degrees in positive direction. |
| 230 | 223 |
///\relates Point |
| 231 | 224 |
/// |
| 232 | 225 |
template<typename T> |
| 233 | 226 |
inline Point<T> rot90(const Point<T> &z) |
| 234 | 227 |
{
|
| 235 | 228 |
return Point<T>(-z.y,z.x); |
| 236 | 229 |
} |
| 237 | 230 |
|
| 238 | 231 |
///Rotate by 180 degrees |
| 239 | 232 |
|
| 240 | 233 |
///Returns the parameter rotated by 180 degrees. |
| 241 | 234 |
///\relates Point |
| 242 | 235 |
/// |
| 243 | 236 |
template<typename T> |
| 244 | 237 |
inline Point<T> rot180(const Point<T> &z) |
| 245 | 238 |
{
|
| 246 | 239 |
return Point<T>(-z.x,-z.y); |
| 247 | 240 |
} |
| 248 | 241 |
|
| 249 | 242 |
///Rotate by 270 degrees |
| 250 | 243 |
|
| 251 | 244 |
///Returns the parameter rotated by 90 degrees in negative direction. |
| 252 | 245 |
///\relates Point |
| 253 | 246 |
/// |
| 254 | 247 |
template<typename T> |
| 255 | 248 |
inline Point<T> rot270(const Point<T> &z) |
| 256 | 249 |
{
|
| 257 | 250 |
return Point<T>(z.y,-z.x); |
| 258 | 251 |
} |
| 259 | 252 |
|
| 260 | 253 |
|
| 261 | 254 |
|
| 262 | 255 |
/// Bounding box of plain vectors (points). |
| 263 | 256 |
|
| 264 | 257 |
/// A class to calculate or store the bounding box of plain vectors |
| 265 | 258 |
/// (\ref Point "points"). |
| 266 | 259 |
template<typename T> |
| 267 | 260 |
class Box {
|
| 268 | 261 |
Point<T> _bottom_left, _top_right; |
| 269 | 262 |
bool _empty; |
| 270 | 263 |
public: |
| 271 | 264 |
|
| 272 | 265 |
///Default constructor: creates an empty box |
| 273 | 266 |
Box() { _empty = true; }
|
| 274 | 267 |
|
| 275 | 268 |
///Construct a box from one point |
| 276 | 269 |
Box(Point<T> a) {
|
| 277 | 270 |
_bottom_left = _top_right = a; |
| 278 | 271 |
_empty = false; |
| 279 | 272 |
} |
| 280 | 273 |
|
| 281 | 274 |
///Construct a box from two points |
| 282 | 275 |
|
| 283 | 276 |
///Construct a box from two points. |
| 284 | 277 |
///\param a The bottom left corner. |
| 285 | 278 |
///\param b The top right corner. |
| 286 | 279 |
///\warning The coordinates of the bottom left corner must be no more |
| 287 | 280 |
///than those of the top right one. |
| 288 | 281 |
Box(Point<T> a,Point<T> b) |
| 289 | 282 |
{
|
| 290 | 283 |
_bottom_left = a; |
| 291 | 284 |
_top_right = b; |
| 292 | 285 |
_empty = false; |
| 293 | 286 |
} |
| 294 | 287 |
|
| 295 | 288 |
///Construct a box from four numbers |
| 296 | 289 |
|
| 297 | 290 |
///Construct a box from four numbers. |
| 298 | 291 |
///\param l The left side of the box. |
| 299 | 292 |
///\param b The bottom of the box. |
| 300 | 293 |
///\param r The right side of the box. |
| 301 | 294 |
///\param t The top of the box. |
| 302 | 295 |
///\warning The left side must be no more than the right side and |
| 303 | 296 |
///bottom must be no more than the top. |
| 304 | 297 |
Box(T l,T b,T r,T t) |
| 305 | 298 |
{
|
| 306 | 299 |
_bottom_left=Point<T>(l,b); |
| 307 | 300 |
_top_right=Point<T>(r,t); |
| 308 | 301 |
_empty = false; |
| 309 | 302 |
} |
| 310 | 303 |
|
| 311 | 304 |
///Return \c true if the box is empty. |
| 312 | 305 |
|
| 313 | 306 |
///Return \c true if the box is empty (i.e. return \c false |
| 314 | 307 |
///if at least one point was added to the box or the coordinates of |
| 315 | 308 |
///the box were set). |
| 316 | 309 |
/// |
| 317 | 310 |
///The coordinates of an empty box are not defined. |
| 318 | 311 |
bool empty() const {
|
| 319 | 312 |
return _empty; |
| 320 | 313 |
} |
| 321 | 314 |
|
| 322 | 315 |
///Make the box empty |
| 323 | 316 |
void clear() {
|
| 324 | 317 |
_empty = true; |
| 325 | 318 |
} |
| 326 | 319 |
|
| 327 | 320 |
///Give back the bottom left corner of the box |
| 328 | 321 |
|
| 329 | 322 |
///Give back the bottom left corner of the box. |
| 330 | 323 |
///If the box is empty, then the return value is not defined. |
| 331 | 324 |
Point<T> bottomLeft() const {
|
| 332 | 325 |
return _bottom_left; |
| 333 | 326 |
} |
| 334 | 327 |
|
| 335 | 328 |
///Set the bottom left corner of the box |
| 336 | 329 |
|
| 337 | 330 |
///Set the bottom left corner of the box. |
| 338 | 331 |
///\pre The box must not be empty. |
| 339 | 332 |
void bottomLeft(Point<T> p) {
|
| 340 | 333 |
_bottom_left = p; |
| 341 | 334 |
} |
| 342 | 335 |
|
| 343 | 336 |
///Give back the top right corner of the box |
| 344 | 337 |
|
| 345 | 338 |
///Give back the top right corner of the box. |
| 346 | 339 |
///If the box is empty, then the return value is not defined. |
| 347 | 340 |
Point<T> topRight() const {
|
| 348 | 341 |
return _top_right; |
| 349 | 342 |
} |
| 350 | 343 |
|
| 351 | 344 |
///Set the top right corner of the box |
| 352 | 345 |
|
| 353 | 346 |
///Set the top right corner of the box. |
| 354 | 347 |
///\pre The box must not be empty. |
| 355 | 348 |
void topRight(Point<T> p) {
|
| 356 | 349 |
_top_right = p; |
| 357 | 350 |
} |
| 358 | 351 |
|
| 359 | 352 |
///Give back the bottom right corner of the box |
| 360 | 353 |
|
| 361 | 354 |
///Give back the bottom right corner of the box. |
| 362 | 355 |
///If the box is empty, then the return value is not defined. |
| 363 | 356 |
Point<T> bottomRight() const {
|
| 364 | 357 |
return Point<T>(_top_right.x,_bottom_left.y); |
| 365 | 358 |
} |
| 366 | 359 |
|
| 367 | 360 |
///Set the bottom right corner of the box |
| 368 | 361 |
|
| 369 | 362 |
///Set the bottom right corner of the box. |
| 370 | 363 |
///\pre The box must not be empty. |
| 371 | 364 |
void bottomRight(Point<T> p) {
|
| 372 | 365 |
_top_right.x = p.x; |
| 373 | 366 |
_bottom_left.y = p.y; |
| 374 | 367 |
} |
| 375 | 368 |
|
| 376 | 369 |
///Give back the top left corner of the box |
| 377 | 370 |
|
| 378 | 371 |
///Give back the top left corner of the box. |
| 379 | 372 |
///If the box is empty, then the return value is not defined. |
| 380 | 373 |
Point<T> topLeft() const {
|
| 381 | 374 |
return Point<T>(_bottom_left.x,_top_right.y); |
| 382 | 375 |
} |
| 383 | 376 |
|
| 384 | 377 |
///Set the top left corner of the box |
| 385 | 378 |
|
| 386 | 379 |
///Set the top left corner of the box. |
| 387 | 380 |
///\pre The box must not be empty. |
| 388 | 381 |
void topLeft(Point<T> p) {
|
| 389 | 382 |
_top_right.y = p.y; |
| 390 | 383 |
_bottom_left.x = p.x; |
| 391 | 384 |
} |
| 392 | 385 |
|
| 393 | 386 |
///Give back the bottom of the box |
| 394 | 387 |
|
| 395 | 388 |
///Give back the bottom of the box. |
| 396 | 389 |
///If the box is empty, then the return value is not defined. |
| 397 | 390 |
T bottom() const {
|
| 398 | 391 |
return _bottom_left.y; |
| 399 | 392 |
} |
| 400 | 393 |
|
| 401 | 394 |
///Set the bottom of the box |
| 402 | 395 |
|
| 403 | 396 |
///Set the bottom of the box. |
| 404 | 397 |
///\pre The box must not be empty. |
| 405 | 398 |
void bottom(T t) {
|
| 406 | 399 |
_bottom_left.y = t; |
| 407 | 400 |
} |
| 408 | 401 |
|
| 409 | 402 |
///Give back the top of the box |
| 410 | 403 |
|
| 411 | 404 |
///Give back the top of the box. |
| 412 | 405 |
///If the box is empty, then the return value is not defined. |
| 413 | 406 |
T top() const {
|
| 414 | 407 |
return _top_right.y; |
| 415 | 408 |
} |
| 416 | 409 |
|
| 417 | 410 |
///Set the top of the box |
| 418 | 411 |
|
| 419 | 412 |
///Set the top of the box. |
| 420 | 413 |
///\pre The box must not be empty. |
| 421 | 414 |
void top(T t) {
|
| 422 | 415 |
_top_right.y = t; |
| 423 | 416 |
} |
| 424 | 417 |
|
| 425 | 418 |
///Give back the left side of the box |
| 426 | 419 |
|
| 427 | 420 |
///Give back the left side of the box. |
| 428 | 421 |
///If the box is empty, then the return value is not defined. |
| 429 | 422 |
T left() const {
|
| 430 | 423 |
return _bottom_left.x; |
| 431 | 424 |
} |
| 432 | 425 |
|
| 433 | 426 |
///Set the left side of the box |
| 434 | 427 |
|
| 435 | 428 |
///Set the left side of the box. |
| 436 | 429 |
///\pre The box must not be empty. |
| 437 | 430 |
void left(T t) {
|
| 438 | 431 |
_bottom_left.x = t; |
| 439 | 432 |
} |
| 440 | 433 |
|
| 441 | 434 |
/// Give back the right side of the box |
| 442 | 435 |
|
| 443 | 436 |
/// Give back the right side of the box. |
| 444 | 437 |
///If the box is empty, then the return value is not defined. |
| 445 | 438 |
T right() const {
|
| 446 | 439 |
return _top_right.x; |
| 447 | 440 |
} |
| 448 | 441 |
|
| 449 | 442 |
///Set the right side of the box |
| 450 | 443 |
|
| 451 | 444 |
///Set the right side of the box. |
| 452 | 445 |
///\pre The box must not be empty. |
| 453 | 446 |
void right(T t) {
|
| 454 | 447 |
_top_right.x = t; |
| 455 | 448 |
} |
| 456 | 449 |
|
| 457 | 450 |
///Give back the height of the box |
| 458 | 451 |
|
| 459 | 452 |
///Give back the height of the box. |
| 460 | 453 |
///If the box is empty, then the return value is not defined. |
| 461 | 454 |
T height() const {
|
| 462 | 455 |
return _top_right.y-_bottom_left.y; |
| 463 | 456 |
} |
| 464 | 457 |
|
| 465 | 458 |
///Give back the width of the box |
| 466 | 459 |
|
| 467 | 460 |
///Give back the width of the box. |
| 468 | 461 |
///If the box is empty, then the return value is not defined. |
| 469 | 462 |
T width() const {
|
| 470 | 463 |
return _top_right.x-_bottom_left.x; |
| 471 | 464 |
} |
| 472 | 465 |
|
| 473 | 466 |
///Checks whether a point is inside the box |
| 474 | 467 |
bool inside(const Point<T>& u) const {
|
| 475 | 468 |
if (_empty) |
| 476 | 469 |
return false; |
| 477 | 470 |
else {
|
| 478 | 471 |
return ( (u.x-_bottom_left.x)*(_top_right.x-u.x) >= 0 && |
| 479 | 472 |
(u.y-_bottom_left.y)*(_top_right.y-u.y) >= 0 ); |
| 480 | 473 |
} |
| 481 | 474 |
} |
| 482 | 475 |
|
| 483 | 476 |
///Increments the box with a point |
| 484 | 477 |
|
| 485 | 478 |
///Increments the box with a point. |
| 486 | 479 |
/// |
| 487 | 480 |
Box& add(const Point<T>& u){
|
| 488 | 481 |
if (_empty) {
|
| 489 | 482 |
_bottom_left = _top_right = u; |
| 490 | 483 |
_empty = false; |
| 491 | 484 |
} |
| 492 | 485 |
else {
|
| 493 | 486 |
if (_bottom_left.x > u.x) _bottom_left.x = u.x; |
| 494 | 487 |
if (_bottom_left.y > u.y) _bottom_left.y = u.y; |
| 495 | 488 |
if (_top_right.x < u.x) _top_right.x = u.x; |
| 496 | 489 |
if (_top_right.y < u.y) _top_right.y = u.y; |
| 497 | 490 |
} |
| 498 | 491 |
return *this; |
| 499 | 492 |
} |
| 500 | 493 |
|
| 501 | 494 |
///Increments the box to contain another box |
| 502 | 495 |
|
| 503 | 496 |
///Increments the box to contain another box. |
| 504 | 497 |
/// |
| 505 | 498 |
Box& add(const Box &u){
|
| 506 | 499 |
if ( !u.empty() ){
|
| 507 | 500 |
add(u._bottom_left); |
| 508 | 501 |
add(u._top_right); |
| 509 | 502 |
} |
| 510 | 503 |
return *this; |
| 511 | 504 |
} |
| 512 | 505 |
|
| 513 | 506 |
///Intersection of two boxes |
| 514 | 507 |
|
| 515 | 508 |
///Intersection of two boxes. |
| 516 | 509 |
/// |
| 517 | 510 |
Box operator&(const Box& u) const {
|
| 518 | 511 |
Box b; |
| 519 | 512 |
if (_empty || u._empty) {
|
| 520 | 513 |
b._empty = true; |
| 521 | 514 |
} else {
|
| 522 | 515 |
b._bottom_left.x = std::max(_bottom_left.x, u._bottom_left.x); |
| 523 | 516 |
b._bottom_left.y = std::max(_bottom_left.y, u._bottom_left.y); |
| 524 | 517 |
b._top_right.x = std::min(_top_right.x, u._top_right.x); |
| 525 | 518 |
b._top_right.y = std::min(_top_right.y, u._top_right.y); |
| 526 | 519 |
b._empty = b._bottom_left.x > b._top_right.x || |
| 527 | 520 |
b._bottom_left.y > b._top_right.y; |
| 528 | 521 |
} |
| 529 | 522 |
return b; |
| 530 | 523 |
} |
| 531 | 524 |
|
| 532 | 525 |
};//class Box |
| 533 | 526 |
|
| 534 | 527 |
|
| 535 | 528 |
///Read a box from a stream |
| 536 | 529 |
|
| 537 | 530 |
///Read a box from a stream. |
| 538 | 531 |
///\relates Box |
| 539 | 532 |
template<typename T> |
| 540 | 533 |
inline std::istream& operator>>(std::istream &is, Box<T>& b) {
|
| 541 | 534 |
char c; |
| 542 | 535 |
Point<T> p; |
| 543 | 536 |
if (is >> c) {
|
| 544 | 537 |
if (c != '(') is.putback(c);
|
| 545 | 538 |
} else {
|
| 546 | 539 |
is.clear(); |
| 547 | 540 |
} |
| 548 | 541 |
if (!(is >> p)) return is; |
| 549 | 542 |
b.bottomLeft(p); |
| 550 | 543 |
if (is >> c) {
|
| 551 | 544 |
if (c != ',') is.putback(c); |
| 552 | 545 |
} else {
|
| 553 | 546 |
is.clear(); |
| 554 | 547 |
} |
| 555 | 548 |
if (!(is >> p)) return is; |
| 556 | 549 |
b.topRight(p); |
| 557 | 550 |
if (is >> c) {
|
| 558 | 551 |
if (c != ')') is.putback(c); |
| 559 | 552 |
} else {
|
| 560 | 553 |
is.clear(); |
| 561 | 554 |
} |
| 562 | 555 |
return is; |
| 563 | 556 |
} |
| 564 | 557 |
|
| 565 | 558 |
///Write a box to a stream |
| 566 | 559 |
|
| 567 | 560 |
///Write a box to a stream. |
| 568 | 561 |
///\relates Box |
| 569 | 562 |
template<typename T> |
| 570 | 563 |
inline std::ostream& operator<<(std::ostream &os, const Box<T>& b) |
| 571 | 564 |
{
|
| 572 | 565 |
os << "(" << b.bottomLeft() << "," << b.topRight() << ")";
|
| 573 | 566 |
return os; |
| 574 | 567 |
} |
| 575 | 568 |
|
| 576 | 569 |
///Map of x-coordinates of a <tt>Point</tt>-map |
| 577 | 570 |
|
| 578 | 571 |
///Map of x-coordinates of a \ref Point "Point"-map. |
| 579 | 572 |
/// |
| 580 | 573 |
template<class M> |
| 581 | 574 |
class XMap |
| 582 | 575 |
{
|
| 583 | 576 |
M& _map; |
| 584 | 577 |
public: |
| 585 | 578 |
|
| 586 | 579 |
typedef typename M::Value::Value Value; |
| 587 | 580 |
typedef typename M::Key Key; |
| 588 | 581 |
///\e |
| 589 | 582 |
XMap(M& map) : _map(map) {}
|
| 590 | 583 |
Value operator[](Key k) const {return _map[k].x;}
|
| 591 | 584 |
void set(Key k,Value v) {_map.set(k,typename M::Value(v,_map[k].y));}
|
| 592 | 585 |
}; |
| 593 | 586 |
|
| 594 | 587 |
///Returns an XMap class |
| 595 | 588 |
|
| 596 | 589 |
///This function just returns an XMap class. |
| 597 | 590 |
///\relates XMap |
| 598 | 591 |
template<class M> |
| 599 | 592 |
inline XMap<M> xMap(M &m) |
| 600 | 593 |
{
|
| 601 | 594 |
return XMap<M>(m); |
| 602 | 595 |
} |
| 603 | 596 |
|
| 604 | 597 |
template<class M> |
| 605 | 598 |
inline XMap<M> xMap(const M &m) |
| 606 | 599 |
{
|
| 607 | 600 |
return XMap<M>(m); |
| 608 | 601 |
} |
| 609 | 602 |
|
| 610 | 603 |
///Constant (read only) version of XMap |
| 611 | 604 |
|
| 612 | 605 |
///Constant (read only) version of XMap. |
| 613 | 606 |
/// |
| 614 | 607 |
template<class M> |
| 615 | 608 |
class ConstXMap |
| 616 | 609 |
{
|
| 617 | 610 |
const M& _map; |
| 618 | 611 |
public: |
| 619 | 612 |
|
| 620 | 613 |
typedef typename M::Value::Value Value; |
| 621 | 614 |
typedef typename M::Key Key; |
| 622 | 615 |
///\e |
| 623 | 616 |
ConstXMap(const M &map) : _map(map) {}
|
| 624 | 617 |
Value operator[](Key k) const {return _map[k].x;}
|
| 625 | 618 |
}; |
| 626 | 619 |
|
| 627 | 620 |
///Returns a ConstXMap class |
| 628 | 621 |
|
| 629 | 622 |
///This function just returns a ConstXMap class. |
| 630 | 623 |
///\relates ConstXMap |
| 631 | 624 |
template<class M> |
| 632 | 625 |
inline ConstXMap<M> xMap(const M &m) |
| 633 | 626 |
{
|
| 634 | 627 |
return ConstXMap<M>(m); |
| 635 | 628 |
} |
| 636 | 629 |
|
| 637 | 630 |
///Map of y-coordinates of a <tt>Point</tt>-map |
| 638 | 631 |
|
| 639 | 632 |
///Map of y-coordinates of a \ref Point "Point"-map. |
| 640 | 633 |
/// |
| 641 | 634 |
template<class M> |
| 642 | 635 |
class YMap |
| 643 | 636 |
{
|
| 644 | 637 |
M& _map; |
| 645 | 638 |
public: |
| 646 | 639 |
|
| 647 | 640 |
typedef typename M::Value::Value Value; |
| 648 | 641 |
typedef typename M::Key Key; |
| 649 | 642 |
///\e |
| 650 | 643 |
YMap(M& map) : _map(map) {}
|
| 651 | 644 |
Value operator[](Key k) const {return _map[k].y;}
|
| 652 | 645 |
void set(Key k,Value v) {_map.set(k,typename M::Value(_map[k].x,v));}
|
| 653 | 646 |
}; |
| 654 | 647 |
|
| 655 | 648 |
///Returns a YMap class |
| 656 | 649 |
|
| 657 | 650 |
///This function just returns a YMap class. |
| 658 | 651 |
///\relates YMap |
| 659 | 652 |
template<class M> |
| 660 | 653 |
inline YMap<M> yMap(M &m) |
| 661 | 654 |
{
|
| 662 | 655 |
return YMap<M>(m); |
| 663 | 656 |
} |
| 664 | 657 |
|
| 665 | 658 |
template<class M> |
| 666 | 659 |
inline YMap<M> yMap(const M &m) |
| 667 | 660 |
{
|
| 668 | 661 |
return YMap<M>(m); |
| 669 | 662 |
} |
| 670 | 663 |
|
| 671 | 664 |
///Constant (read only) version of YMap |
| 672 | 665 |
|
| 673 | 666 |
///Constant (read only) version of YMap. |
| 674 | 667 |
/// |
| 675 | 668 |
template<class M> |
| 676 | 669 |
class ConstYMap |
| 677 | 670 |
{
|
| 678 | 671 |
const M& _map; |
| 679 | 672 |
public: |
| 680 | 673 |
|
| 681 | 674 |
typedef typename M::Value::Value Value; |
| 682 | 675 |
typedef typename M::Key Key; |
| 683 | 676 |
///\e |
| 684 | 677 |
ConstYMap(const M &map) : _map(map) {}
|
| 685 | 678 |
Value operator[](Key k) const {return _map[k].y;}
|
| 686 | 679 |
}; |
| 687 | 680 |
|
| 688 | 681 |
///Returns a ConstYMap class |
| 689 | 682 |
|
| 690 | 683 |
///This function just returns a ConstYMap class. |
| 691 | 684 |
///\relates ConstYMap |
| 692 | 685 |
template<class M> |
| 693 | 686 |
inline ConstYMap<M> yMap(const M &m) |
| 694 | 687 |
{
|
| 695 | 688 |
return ConstYMap<M>(m); |
| 696 | 689 |
} |
| 697 | 690 |
|
| 698 | 691 |
|
| 699 | 692 |
///\brief Map of the normSquare() of a <tt>Point</tt>-map |
| 700 | 693 |
/// |
| 701 | 694 |
///Map of the \ref Point::normSquare() "normSquare()" |
| 702 | 695 |
///of a \ref Point "Point"-map. |
| 703 | 696 |
template<class M> |
| 704 | 697 |
class NormSquareMap |
| 705 | 698 |
{
|
| 706 | 699 |
const M& _map; |
| 707 | 700 |
public: |
| 708 | 701 |
|
| 709 | 702 |
typedef typename M::Value::Value Value; |
| 710 | 703 |
typedef typename M::Key Key; |
| 711 | 704 |
///\e |
| 712 | 705 |
NormSquareMap(const M &map) : _map(map) {}
|
| 713 | 706 |
Value operator[](Key k) const {return _map[k].normSquare();}
|
| 714 | 707 |
}; |
| 715 | 708 |
|
| 716 | 709 |
///Returns a NormSquareMap class |
| 717 | 710 |
|
| 718 | 711 |
///This function just returns a NormSquareMap class. |
| 719 | 712 |
///\relates NormSquareMap |
| 720 | 713 |
template<class M> |
| 721 | 714 |
inline NormSquareMap<M> normSquareMap(const M &m) |
| 722 | 715 |
{
|
| 723 | 716 |
return NormSquareMap<M>(m); |
| 724 | 717 |
} |
| 725 | 718 |
|
| 726 | 719 |
/// @} |
| 727 | 720 |
|
| 728 | 721 |
} //namespce dim2 |
| 729 | 722 |
|
| 730 | 723 |
} //namespace lemon |
| 731 | 724 |
|
| 732 | 725 |
#endif //LEMON_DIM2_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_FIB_HEAP_H |
| 20 | 20 |
#define LEMON_FIB_HEAP_H |
| 21 | 21 |
|
| 22 | 22 |
///\file |
| 23 |
///\ingroup auxdat |
|
| 24 |
///\brief Fibonacci Heap implementation. |
|
| 23 |
///\ingroup heaps |
|
| 24 |
///\brief Fibonacci heap implementation. |
|
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 |
#include <utility> |
|
| 27 | 28 |
#include <functional> |
| 28 | 29 |
#include <lemon/math.h> |
| 29 | 30 |
|
| 30 | 31 |
namespace lemon {
|
| 31 | 32 |
|
| 32 |
/// \ingroup |
|
| 33 |
/// \ingroup heaps |
|
| 33 | 34 |
/// |
| 34 |
///\brief Fibonacci |
|
| 35 |
/// \brief Fibonacci heap data structure. |
|
| 35 | 36 |
/// |
| 36 |
///This class implements the \e Fibonacci \e heap data structure. A \e heap |
|
| 37 |
///is a data structure for storing items with specified values called \e |
|
| 38 |
///priorities in such a way that finding the item with minimum priority is |
|
| 39 |
///efficient. \c CMP specifies the ordering of the priorities. In a heap |
|
| 40 |
/// |
|
| 37 |
/// This class implements the \e Fibonacci \e heap data structure. |
|
| 38 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 41 | 39 |
/// |
| 42 |
///The methods \ref increase and \ref erase are not efficient in a Fibonacci |
|
| 43 |
///heap. In case of many calls to these operations, it is better to use a |
|
| 44 |
///\ref |
|
| 40 |
/// The methods \ref increase() and \ref erase() are not efficient in a |
|
| 41 |
/// Fibonacci heap. In case of many calls of these operations, it is |
|
| 42 |
/// better to use other heap structure, e.g. \ref BinHeap "binary heap". |
|
| 45 | 43 |
/// |
| 46 |
///\param PRIO Type of the priority of the items. |
|
| 47 |
///\param IM A read and writable Item int map, used internally |
|
| 48 |
///to handle the cross references. |
|
| 49 |
///\param CMP A class for the ordering of the priorities. The |
|
| 50 |
///default is \c std::less<PRIO>. |
|
| 51 |
/// |
|
| 52 |
///\sa BinHeap |
|
| 53 |
///\sa Dijkstra |
|
| 44 |
/// \tparam PR Type of the priorities of the items. |
|
| 45 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 46 |
/// internally to handle the cross references. |
|
| 47 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 48 |
/// The default is \c std::less<PR>. |
|
| 54 | 49 |
#ifdef DOXYGEN |
| 55 |
template <typename |
|
| 50 |
template <typename PR, typename IM, typename CMP> |
|
| 56 | 51 |
#else |
| 57 |
template <typename |
|
| 52 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 58 | 53 |
#endif |
| 59 | 54 |
class FibHeap {
|
| 60 | 55 |
public: |
| 61 |
|
|
| 56 |
|
|
| 57 |
/// Type of the item-int map. |
|
| 62 | 58 |
typedef IM ItemIntMap; |
| 63 |
///\e |
|
| 64 |
typedef PRIO Prio; |
|
| 65 |
/// |
|
| 59 |
/// Type of the priorities. |
|
| 60 |
typedef PR Prio; |
|
| 61 |
/// Type of the items stored in the heap. |
|
| 66 | 62 |
typedef typename ItemIntMap::Key Item; |
| 67 |
/// |
|
| 63 |
/// Type of the item-priority pairs. |
|
| 68 | 64 |
typedef std::pair<Item,Prio> Pair; |
| 69 |
/// |
|
| 65 |
/// Functor type for comparing the priorities. |
|
| 70 | 66 |
typedef CMP Compare; |
| 71 | 67 |
|
| 72 | 68 |
private: |
| 73 | 69 |
class Store; |
| 74 | 70 |
|
| 75 | 71 |
std::vector<Store> _data; |
| 76 | 72 |
int _minimum; |
| 77 | 73 |
ItemIntMap &_iim; |
| 78 | 74 |
Compare _comp; |
| 79 | 75 |
int _num; |
| 80 | 76 |
|
| 81 | 77 |
public: |
| 82 | 78 |
|
| 83 |
/// \brief Type to represent the |
|
| 79 |
/// \brief Type to represent the states of the items. |
|
| 84 | 80 |
/// |
| 85 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 86 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 81 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 82 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 87 | 83 |
/// heap's point of view, but may be useful to the user. |
| 88 | 84 |
/// |
| 89 | 85 |
/// The item-int map must be initialized in such way that it assigns |
| 90 | 86 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 91 | 87 |
enum State {
|
| 92 | 88 |
IN_HEAP = 0, ///< = 0. |
| 93 | 89 |
PRE_HEAP = -1, ///< = -1. |
| 94 | 90 |
POST_HEAP = -2 ///< = -2. |
| 95 | 91 |
}; |
| 96 | 92 |
|
| 97 |
/// \brief |
|
| 93 |
/// \brief Constructor. |
|
| 98 | 94 |
/// |
| 99 |
/// \c map should be given to the constructor, since it is |
|
| 100 |
/// used internally to handle the cross references. |
|
| 95 |
/// Constructor. |
|
| 96 |
/// \param map A map that assigns \c int values to the items. |
|
| 97 |
/// It is used internally to handle the cross references. |
|
| 98 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 101 | 99 |
explicit FibHeap(ItemIntMap &map) |
| 102 | 100 |
: _minimum(0), _iim(map), _num() {}
|
| 103 | 101 |
|
| 104 |
/// \brief |
|
| 102 |
/// \brief Constructor. |
|
| 105 | 103 |
/// |
| 106 |
/// \c map should be given to the constructor, since it is used |
|
| 107 |
/// internally to handle the cross references. \c comp is an |
|
| 108 |
/// |
|
| 104 |
/// Constructor. |
|
| 105 |
/// \param map A map that assigns \c int values to the items. |
|
| 106 |
/// It is used internally to handle the cross references. |
|
| 107 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 108 |
/// \param comp The function object used for comparing the priorities. |
|
| 109 | 109 |
FibHeap(ItemIntMap &map, const Compare &comp) |
| 110 | 110 |
: _minimum(0), _iim(map), _comp(comp), _num() {}
|
| 111 | 111 |
|
| 112 | 112 |
/// \brief The number of items stored in the heap. |
| 113 | 113 |
/// |
| 114 |
/// |
|
| 114 |
/// This function returns the number of items stored in the heap. |
|
| 115 | 115 |
int size() const { return _num; }
|
| 116 | 116 |
|
| 117 |
/// \brief |
|
| 117 |
/// \brief Check if the heap is empty. |
|
| 118 | 118 |
/// |
| 119 |
/// |
|
| 119 |
/// This function returns \c true if the heap is empty. |
|
| 120 | 120 |
bool empty() const { return _num==0; }
|
| 121 | 121 |
|
| 122 |
/// \brief Make |
|
| 122 |
/// \brief Make the heap empty. |
|
| 123 | 123 |
/// |
| 124 |
/// Make empty this heap. It does not change the cross reference |
|
| 125 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 126 |
/// should first clear the heap and after that you should set the |
|
| 127 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 124 |
/// This functon makes the heap empty. |
|
| 125 |
/// It does not change the cross reference map. If you want to reuse |
|
| 126 |
/// a heap that is not surely empty, you should first clear it and |
|
| 127 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 128 |
/// for each item. |
|
| 128 | 129 |
void clear() {
|
| 129 | 130 |
_data.clear(); _minimum = 0; _num = 0; |
| 130 | 131 |
} |
| 131 | 132 |
|
| 132 |
/// \brief \c item gets to the heap with priority \c value independently |
|
| 133 |
/// if \c item was already there. |
|
| 133 |
/// \brief Insert an item into the heap with the given priority. |
|
| 134 | 134 |
/// |
| 135 |
/// This method calls \ref push(\c item, \c value) if \c item is not |
|
| 136 |
/// stored in the heap and it calls \ref decrease(\c item, \c value) or |
|
| 137 |
/// \ref increase(\c item, \c value) otherwise. |
|
| 138 |
void set (const Item& item, const Prio& value) {
|
|
| 139 |
int i=_iim[item]; |
|
| 140 |
if ( i >= 0 && _data[i].in ) {
|
|
| 141 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
| 142 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
| 143 |
} else push(item, value); |
|
| 144 |
} |
|
| 145 |
|
|
| 146 |
/// \brief Adds \c item to the heap with priority \c value. |
|
| 147 |
/// |
|
| 148 |
/// Adds \c item to the heap with priority \c value. |
|
| 149 |
/// \pre \c item must not be stored in the heap. |
|
| 150 |
void push (const Item& item, const Prio& value) {
|
|
| 135 |
/// This function inserts the given item into the heap with the |
|
| 136 |
/// given priority. |
|
| 137 |
/// \param item The item to insert. |
|
| 138 |
/// \param prio The priority of the item. |
|
| 139 |
/// \pre \e item must not be stored in the heap. |
|
| 140 |
void push (const Item& item, const Prio& prio) {
|
|
| 151 | 141 |
int i=_iim[item]; |
| 152 | 142 |
if ( i < 0 ) {
|
| 153 | 143 |
int s=_data.size(); |
| 154 | 144 |
_iim.set( item, s ); |
| 155 | 145 |
Store st; |
| 156 | 146 |
st.name=item; |
| 157 | 147 |
_data.push_back(st); |
| 158 | 148 |
i=s; |
| 159 | 149 |
} else {
|
| 160 | 150 |
_data[i].parent=_data[i].child=-1; |
| 161 | 151 |
_data[i].degree=0; |
| 162 | 152 |
_data[i].in=true; |
| 163 | 153 |
_data[i].marked=false; |
| 164 | 154 |
} |
| 165 | 155 |
|
| 166 | 156 |
if ( _num ) {
|
| 167 | 157 |
_data[_data[_minimum].right_neighbor].left_neighbor=i; |
| 168 | 158 |
_data[i].right_neighbor=_data[_minimum].right_neighbor; |
| 169 | 159 |
_data[_minimum].right_neighbor=i; |
| 170 | 160 |
_data[i].left_neighbor=_minimum; |
| 171 |
if ( _comp( |
|
| 161 |
if ( _comp( prio, _data[_minimum].prio) ) _minimum=i; |
|
| 172 | 162 |
} else {
|
| 173 | 163 |
_data[i].right_neighbor=_data[i].left_neighbor=i; |
| 174 | 164 |
_minimum=i; |
| 175 | 165 |
} |
| 176 |
_data[i].prio= |
|
| 166 |
_data[i].prio=prio; |
|
| 177 | 167 |
++_num; |
| 178 | 168 |
} |
| 179 | 169 |
|
| 180 |
/// \brief |
|
| 170 |
/// \brief Return the item having minimum priority. |
|
| 181 | 171 |
/// |
| 182 |
/// This method returns the item with minimum priority relative to \c |
|
| 183 |
/// Compare. |
|
| 184 |
/// |
|
| 172 |
/// This function returns the item having minimum priority. |
|
| 173 |
/// \pre The heap must be non-empty. |
|
| 185 | 174 |
Item top() const { return _data[_minimum].name; }
|
| 186 | 175 |
|
| 187 |
/// \brief |
|
| 176 |
/// \brief The minimum priority. |
|
| 188 | 177 |
/// |
| 189 |
/// It returns the minimum priority relative to \c Compare. |
|
| 190 |
/// \pre The heap must be nonempty. |
|
| 191 |
|
|
| 178 |
/// This function returns the minimum priority. |
|
| 179 |
/// \pre The heap must be non-empty. |
|
| 180 |
Prio prio() const { return _data[_minimum].prio; }
|
|
| 192 | 181 |
|
| 193 |
/// \brief |
|
| 182 |
/// \brief Remove the item having minimum priority. |
|
| 194 | 183 |
/// |
| 195 |
/// It returns the priority of \c item. |
|
| 196 |
/// \pre \c item must be in the heap. |
|
| 197 |
const Prio& operator[](const Item& item) const {
|
|
| 198 |
return _data[_iim[item]].prio; |
|
| 199 |
} |
|
| 200 |
|
|
| 201 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
|
| 202 |
/// |
|
| 203 |
/// This method deletes the item with minimum priority relative to \c |
|
| 204 |
/// Compare from the heap. |
|
| 184 |
/// This function removes the item having minimum priority. |
|
| 205 | 185 |
/// \pre The heap must be non-empty. |
| 206 | 186 |
void pop() {
|
| 207 | 187 |
/*The first case is that there are only one root.*/ |
| 208 | 188 |
if ( _data[_minimum].left_neighbor==_minimum ) {
|
| 209 | 189 |
_data[_minimum].in=false; |
| 210 | 190 |
if ( _data[_minimum].degree!=0 ) {
|
| 211 |
|
|
| 191 |
makeRoot(_data[_minimum].child); |
|
| 212 | 192 |
_minimum=_data[_minimum].child; |
| 213 | 193 |
balance(); |
| 214 | 194 |
} |
| 215 | 195 |
} else {
|
| 216 | 196 |
int right=_data[_minimum].right_neighbor; |
| 217 | 197 |
unlace(_minimum); |
| 218 | 198 |
_data[_minimum].in=false; |
| 219 | 199 |
if ( _data[_minimum].degree > 0 ) {
|
| 220 | 200 |
int left=_data[_minimum].left_neighbor; |
| 221 | 201 |
int child=_data[_minimum].child; |
| 222 | 202 |
int last_child=_data[child].left_neighbor; |
| 223 | 203 |
|
| 224 |
|
|
| 204 |
makeRoot(child); |
|
| 225 | 205 |
|
| 226 | 206 |
_data[left].right_neighbor=child; |
| 227 | 207 |
_data[child].left_neighbor=left; |
| 228 | 208 |
_data[right].left_neighbor=last_child; |
| 229 | 209 |
_data[last_child].right_neighbor=right; |
| 230 | 210 |
} |
| 231 | 211 |
_minimum=right; |
| 232 | 212 |
balance(); |
| 233 | 213 |
} // the case where there are more roots |
| 234 | 214 |
--_num; |
| 235 | 215 |
} |
| 236 | 216 |
|
| 237 |
/// \brief |
|
| 217 |
/// \brief Remove the given item from the heap. |
|
| 238 | 218 |
/// |
| 239 |
/// This method deletes \c item from the heap, if \c item was already |
|
| 240 |
/// stored in the heap. It is quite inefficient in Fibonacci heaps. |
|
| 219 |
/// This function removes the given item from the heap if it is |
|
| 220 |
/// already stored. |
|
| 221 |
/// \param item The item to delete. |
|
| 222 |
/// \pre \e item must be in the heap. |
|
| 241 | 223 |
void erase (const Item& item) {
|
| 242 | 224 |
int i=_iim[item]; |
| 243 | 225 |
|
| 244 | 226 |
if ( i >= 0 && _data[i].in ) {
|
| 245 | 227 |
if ( _data[i].parent!=-1 ) {
|
| 246 | 228 |
int p=_data[i].parent; |
| 247 | 229 |
cut(i,p); |
| 248 | 230 |
cascade(p); |
| 249 | 231 |
} |
| 250 | 232 |
_minimum=i; //As if its prio would be -infinity |
| 251 | 233 |
pop(); |
| 252 | 234 |
} |
| 253 | 235 |
} |
| 254 | 236 |
|
| 255 |
/// \brief |
|
| 237 |
/// \brief The priority of the given item. |
|
| 256 | 238 |
/// |
| 257 |
/// This method decreases the priority of \c item to \c value. |
|
| 258 |
/// \pre \c item must be stored in the heap with priority at least \c |
|
| 259 |
/// value relative to \c Compare. |
|
| 260 |
void decrease (Item item, const Prio& value) {
|
|
| 239 |
/// This function returns the priority of the given item. |
|
| 240 |
/// \param item The item. |
|
| 241 |
/// \pre \e item must be in the heap. |
|
| 242 |
Prio operator[](const Item& item) const {
|
|
| 243 |
return _data[_iim[item]].prio; |
|
| 244 |
} |
|
| 245 |
|
|
| 246 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 247 |
/// not stored in the heap. |
|
| 248 |
/// |
|
| 249 |
/// This method sets the priority of the given item if it is |
|
| 250 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 251 |
/// item into the heap with the given priority. |
|
| 252 |
/// \param item The item. |
|
| 253 |
/// \param prio The priority. |
|
| 254 |
void set (const Item& item, const Prio& prio) {
|
|
| 261 | 255 |
int i=_iim[item]; |
| 262 |
_data[i]. |
|
| 256 |
if ( i >= 0 && _data[i].in ) {
|
|
| 257 |
if ( _comp(prio, _data[i].prio) ) decrease(item, prio); |
|
| 258 |
if ( _comp(_data[i].prio, prio) ) increase(item, prio); |
|
| 259 |
} else push(item, prio); |
|
| 260 |
} |
|
| 261 |
|
|
| 262 |
/// \brief Decrease the priority of an item to the given value. |
|
| 263 |
/// |
|
| 264 |
/// This function decreases the priority of an item to the given value. |
|
| 265 |
/// \param item The item. |
|
| 266 |
/// \param prio The priority. |
|
| 267 |
/// \pre \e item must be stored in the heap with priority at least \e prio. |
|
| 268 |
void decrease (const Item& item, const Prio& prio) {
|
|
| 269 |
int i=_iim[item]; |
|
| 270 |
_data[i].prio=prio; |
|
| 263 | 271 |
int p=_data[i].parent; |
| 264 | 272 |
|
| 265 |
if ( p!=-1 && _comp( |
|
| 273 |
if ( p!=-1 && _comp(prio, _data[p].prio) ) {
|
|
| 266 | 274 |
cut(i,p); |
| 267 | 275 |
cascade(p); |
| 268 | 276 |
} |
| 269 |
if ( _comp( |
|
| 277 |
if ( _comp(prio, _data[_minimum].prio) ) _minimum=i; |
|
| 270 | 278 |
} |
| 271 | 279 |
|
| 272 |
/// \brief |
|
| 280 |
/// \brief Increase the priority of an item to the given value. |
|
| 273 | 281 |
/// |
| 274 |
/// This method sets the priority of \c item to \c value. Though |
|
| 275 |
/// there is no precondition on the priority of \c item, this |
|
| 276 |
/// method should be used only if it is indeed necessary to increase |
|
| 277 |
/// (relative to \c Compare) the priority of \c item, because this |
|
| 278 |
/// method is inefficient. |
|
| 279 |
void increase (Item item, const Prio& value) {
|
|
| 282 |
/// This function increases the priority of an item to the given value. |
|
| 283 |
/// \param item The item. |
|
| 284 |
/// \param prio The priority. |
|
| 285 |
/// \pre \e item must be stored in the heap with priority at most \e prio. |
|
| 286 |
void increase (const Item& item, const Prio& prio) {
|
|
| 280 | 287 |
erase(item); |
| 281 |
push(item, |
|
| 288 |
push(item, prio); |
|
| 282 | 289 |
} |
| 283 | 290 |
|
| 284 |
|
|
| 285 |
/// \brief Returns if \c item is in, has already been in, or has never |
|
| 286 |
/// |
|
| 291 |
/// \brief Return the state of an item. |
|
| 287 | 292 |
/// |
| 288 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 289 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 290 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 291 |
/// get back to the heap again. |
|
| 293 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 294 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 295 |
/// and \c POST_HEAP otherwise. |
|
| 296 |
/// In the latter case it is possible that the item will get back |
|
| 297 |
/// to the heap again. |
|
| 298 |
/// \param item The item. |
|
| 292 | 299 |
State state(const Item &item) const {
|
| 293 | 300 |
int i=_iim[item]; |
| 294 | 301 |
if( i>=0 ) {
|
| 295 | 302 |
if ( _data[i].in ) i=0; |
| 296 | 303 |
else i=-2; |
| 297 | 304 |
} |
| 298 | 305 |
return State(i); |
| 299 | 306 |
} |
| 300 | 307 |
|
| 301 |
/// \brief |
|
| 308 |
/// \brief Set the state of an item in the heap. |
|
| 302 | 309 |
/// |
| 303 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 304 |
/// manually clear the heap when it is important to achive the |
|
| 305 |
/// |
|
| 310 |
/// This function sets the state of the given item in the heap. |
|
| 311 |
/// It can be used to manually clear the heap when it is important |
|
| 312 |
/// to achive better time complexity. |
|
| 306 | 313 |
/// \param i The item. |
| 307 | 314 |
/// \param st The state. It should not be \c IN_HEAP. |
| 308 | 315 |
void state(const Item& i, State st) {
|
| 309 | 316 |
switch (st) {
|
| 310 | 317 |
case POST_HEAP: |
| 311 | 318 |
case PRE_HEAP: |
| 312 | 319 |
if (state(i) == IN_HEAP) {
|
| 313 | 320 |
erase(i); |
| 314 | 321 |
} |
| 315 | 322 |
_iim[i] = st; |
| 316 | 323 |
break; |
| 317 | 324 |
case IN_HEAP: |
| 318 | 325 |
break; |
| 319 | 326 |
} |
| 320 | 327 |
} |
| 321 | 328 |
|
| 322 | 329 |
private: |
| 323 | 330 |
|
| 324 | 331 |
void balance() {
|
| 325 | 332 |
|
| 326 | 333 |
int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1; |
| 327 | 334 |
|
| 328 | 335 |
std::vector<int> A(maxdeg,-1); |
| 329 | 336 |
|
| 330 | 337 |
/* |
| 331 | 338 |
*Recall that now minimum does not point to the minimum prio element. |
| 332 | 339 |
*We set minimum to this during balance(). |
| 333 | 340 |
*/ |
| 334 | 341 |
int anchor=_data[_minimum].left_neighbor; |
| 335 | 342 |
int next=_minimum; |
| 336 | 343 |
bool end=false; |
| 337 | 344 |
|
| 338 | 345 |
do {
|
| 339 | 346 |
int active=next; |
| 340 | 347 |
if ( anchor==active ) end=true; |
| 341 | 348 |
int d=_data[active].degree; |
| 342 | 349 |
next=_data[active].right_neighbor; |
| 343 | 350 |
|
| 344 | 351 |
while (A[d]!=-1) {
|
| 345 | 352 |
if( _comp(_data[active].prio, _data[A[d]].prio) ) {
|
| 346 | 353 |
fuse(active,A[d]); |
| 347 | 354 |
} else {
|
| 348 | 355 |
fuse(A[d],active); |
| 349 | 356 |
active=A[d]; |
| 350 | 357 |
} |
| 351 | 358 |
A[d]=-1; |
| 352 | 359 |
++d; |
| 353 | 360 |
} |
| 354 | 361 |
A[d]=active; |
| 355 | 362 |
} while ( !end ); |
| 356 | 363 |
|
| 357 | 364 |
|
| 358 | 365 |
while ( _data[_minimum].parent >=0 ) |
| 359 | 366 |
_minimum=_data[_minimum].parent; |
| 360 | 367 |
int s=_minimum; |
| 361 | 368 |
int m=_minimum; |
| 362 | 369 |
do {
|
| 363 | 370 |
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; |
| 364 | 371 |
s=_data[s].right_neighbor; |
| 365 | 372 |
} while ( s != m ); |
| 366 | 373 |
} |
| 367 | 374 |
|
| 368 |
void |
|
| 375 |
void makeRoot(int c) {
|
|
| 369 | 376 |
int s=c; |
| 370 | 377 |
do {
|
| 371 | 378 |
_data[s].parent=-1; |
| 372 | 379 |
s=_data[s].right_neighbor; |
| 373 | 380 |
} while ( s != c ); |
| 374 | 381 |
} |
| 375 | 382 |
|
| 376 | 383 |
void cut(int a, int b) {
|
| 377 | 384 |
/* |
| 378 | 385 |
*Replacing a from the children of b. |
| 379 | 386 |
*/ |
| 380 | 387 |
--_data[b].degree; |
| 381 | 388 |
|
| 382 | 389 |
if ( _data[b].degree !=0 ) {
|
| 383 | 390 |
int child=_data[b].child; |
| 384 | 391 |
if ( child==a ) |
| 385 | 392 |
_data[b].child=_data[child].right_neighbor; |
| 386 | 393 |
unlace(a); |
| 387 | 394 |
} |
| 388 | 395 |
|
| 389 | 396 |
|
| 390 | 397 |
/*Lacing a to the roots.*/ |
| 391 | 398 |
int right=_data[_minimum].right_neighbor; |
| 392 | 399 |
_data[_minimum].right_neighbor=a; |
| 393 | 400 |
_data[a].left_neighbor=_minimum; |
| 394 | 401 |
_data[a].right_neighbor=right; |
| 395 | 402 |
_data[right].left_neighbor=a; |
| 396 | 403 |
|
| 397 | 404 |
_data[a].parent=-1; |
| 398 | 405 |
_data[a].marked=false; |
| 399 | 406 |
} |
| 400 | 407 |
|
| 401 | 408 |
void cascade(int a) {
|
| 402 | 409 |
if ( _data[a].parent!=-1 ) {
|
| 403 | 410 |
int p=_data[a].parent; |
| 404 | 411 |
|
| 405 | 412 |
if ( _data[a].marked==false ) _data[a].marked=true; |
| 406 | 413 |
else {
|
| 407 | 414 |
cut(a,p); |
| 408 | 415 |
cascade(p); |
| 409 | 416 |
} |
| 410 | 417 |
} |
| 411 | 418 |
} |
| 412 | 419 |
|
| 413 | 420 |
void fuse(int a, int b) {
|
| 414 | 421 |
unlace(b); |
| 415 | 422 |
|
| 416 | 423 |
/*Lacing b under a.*/ |
| 417 | 424 |
_data[b].parent=a; |
| 418 | 425 |
|
| 419 | 426 |
if (_data[a].degree==0) {
|
| 420 | 427 |
_data[b].left_neighbor=b; |
| 421 | 428 |
_data[b].right_neighbor=b; |
| 422 | 429 |
_data[a].child=b; |
| 423 | 430 |
} else {
|
| 424 | 431 |
int child=_data[a].child; |
| 425 | 432 |
int last_child=_data[child].left_neighbor; |
| 426 | 433 |
_data[child].left_neighbor=b; |
| 427 | 434 |
_data[b].right_neighbor=child; |
| 428 | 435 |
_data[last_child].right_neighbor=b; |
| 429 | 436 |
_data[b].left_neighbor=last_child; |
| 430 | 437 |
} |
| 431 | 438 |
|
| 432 | 439 |
++_data[a].degree; |
| 433 | 440 |
|
| 434 | 441 |
_data[b].marked=false; |
| 435 | 442 |
} |
| 436 | 443 |
|
| 437 | 444 |
/* |
| 438 | 445 |
*It is invoked only if a has siblings. |
| 439 | 446 |
*/ |
| 440 | 447 |
void unlace(int a) {
|
| 441 | 448 |
int leftn=_data[a].left_neighbor; |
| 442 | 449 |
int rightn=_data[a].right_neighbor; |
| 443 | 450 |
_data[leftn].right_neighbor=rightn; |
| 444 | 451 |
_data[rightn].left_neighbor=leftn; |
| 445 | 452 |
} |
| 446 | 453 |
|
| 447 | 454 |
|
| 448 | 455 |
class Store {
|
| 449 | 456 |
friend class FibHeap; |
| 450 | 457 |
|
| 451 | 458 |
Item name; |
| 452 | 459 |
int parent; |
| 453 | 460 |
int left_neighbor; |
| 454 | 461 |
int right_neighbor; |
| 455 | 462 |
int child; |
| 456 | 463 |
int degree; |
| 457 | 464 |
bool marked; |
| 458 | 465 |
bool in; |
| 459 | 466 |
Prio prio; |
| 460 | 467 |
|
| 461 | 468 |
Store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
|
| 462 | 469 |
}; |
| 463 | 470 |
}; |
| 464 | 471 |
|
| 465 | 472 |
} //namespace lemon |
| 466 | 473 |
|
| 467 | 474 |
#endif //LEMON_FIB_HEAP_H |
| 468 | 475 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_FULL_GRAPH_H |
| 20 | 20 |
#define LEMON_FULL_GRAPH_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/bits/graph_extender.h> |
| 24 | 24 |
|
| 25 | 25 |
///\ingroup graphs |
| 26 | 26 |
///\file |
| 27 |
///\brief |
|
| 27 |
///\brief FullDigraph and FullGraph classes. |
|
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
class FullDigraphBase {
|
| 32 | 32 |
public: |
| 33 | 33 |
|
| 34 | 34 |
typedef FullDigraphBase Digraph; |
| 35 | 35 |
|
| 36 | 36 |
class Node; |
| 37 | 37 |
class Arc; |
| 38 | 38 |
|
| 39 | 39 |
protected: |
| 40 | 40 |
|
| 41 | 41 |
int _node_num; |
| 42 | 42 |
int _arc_num; |
| 43 | 43 |
|
| 44 | 44 |
FullDigraphBase() {}
|
| 45 | 45 |
|
| 46 | 46 |
void construct(int n) { _node_num = n; _arc_num = n * n; }
|
| 47 | 47 |
|
| 48 | 48 |
public: |
| 49 | 49 |
|
| 50 | 50 |
typedef True NodeNumTag; |
| 51 | 51 |
typedef True ArcNumTag; |
| 52 | 52 |
|
| 53 | 53 |
Node operator()(int ix) const { return Node(ix); }
|
| 54 | 54 |
int index(const Node& node) const { return node._id; }
|
| 55 | 55 |
|
| 56 | 56 |
Arc arc(const Node& s, const Node& t) const {
|
| 57 | 57 |
return Arc(s._id * _node_num + t._id); |
| 58 | 58 |
} |
| 59 | 59 |
|
| 60 | 60 |
int nodeNum() const { return _node_num; }
|
| 61 | 61 |
int arcNum() const { return _arc_num; }
|
| 62 | 62 |
|
| 63 | 63 |
int maxNodeId() const { return _node_num - 1; }
|
| 64 | 64 |
int maxArcId() const { return _arc_num - 1; }
|
| 65 | 65 |
|
| 66 | 66 |
Node source(Arc arc) const { return arc._id / _node_num; }
|
| 67 | 67 |
Node target(Arc arc) const { return arc._id % _node_num; }
|
| 68 | 68 |
|
| 69 | 69 |
static int id(Node node) { return node._id; }
|
| 70 | 70 |
static int id(Arc arc) { return arc._id; }
|
| 71 | 71 |
|
| 72 | 72 |
static Node nodeFromId(int id) { return Node(id);}
|
| 73 | 73 |
static Arc arcFromId(int id) { return Arc(id);}
|
| 74 | 74 |
|
| 75 | 75 |
typedef True FindArcTag; |
| 76 | 76 |
|
| 77 | 77 |
Arc findArc(Node s, Node t, Arc prev = INVALID) const {
|
| 78 | 78 |
return prev == INVALID ? arc(s, t) : INVALID; |
| 79 | 79 |
} |
| 80 | 80 |
|
| 81 | 81 |
class Node {
|
| 82 | 82 |
friend class FullDigraphBase; |
| 83 | 83 |
|
| 84 | 84 |
protected: |
| 85 | 85 |
int _id; |
| 86 | 86 |
Node(int id) : _id(id) {}
|
| 87 | 87 |
public: |
| 88 | 88 |
Node() {}
|
| 89 | 89 |
Node (Invalid) : _id(-1) {}
|
| 90 | 90 |
bool operator==(const Node node) const {return _id == node._id;}
|
| 91 | 91 |
bool operator!=(const Node node) const {return _id != node._id;}
|
| 92 | 92 |
bool operator<(const Node node) const {return _id < node._id;}
|
| 93 | 93 |
}; |
| 94 | 94 |
|
| 95 | 95 |
class Arc {
|
| 96 | 96 |
friend class FullDigraphBase; |
| 97 | 97 |
|
| 98 | 98 |
protected: |
| 99 | 99 |
int _id; // _node_num * source + target; |
| 100 | 100 |
|
| 101 | 101 |
Arc(int id) : _id(id) {}
|
| 102 | 102 |
|
| 103 | 103 |
public: |
| 104 | 104 |
Arc() { }
|
| 105 | 105 |
Arc (Invalid) { _id = -1; }
|
| 106 | 106 |
bool operator==(const Arc arc) const {return _id == arc._id;}
|
| 107 | 107 |
bool operator!=(const Arc arc) const {return _id != arc._id;}
|
| 108 | 108 |
bool operator<(const Arc arc) const {return _id < arc._id;}
|
| 109 | 109 |
}; |
| 110 | 110 |
|
| 111 | 111 |
void first(Node& node) const {
|
| 112 | 112 |
node._id = _node_num - 1; |
| 113 | 113 |
} |
| 114 | 114 |
|
| 115 | 115 |
static void next(Node& node) {
|
| 116 | 116 |
--node._id; |
| 117 | 117 |
} |
| 118 | 118 |
|
| 119 | 119 |
void first(Arc& arc) const {
|
| 120 | 120 |
arc._id = _arc_num - 1; |
| 121 | 121 |
} |
| 122 | 122 |
|
| 123 | 123 |
static void next(Arc& arc) {
|
| 124 | 124 |
--arc._id; |
| 125 | 125 |
} |
| 126 | 126 |
|
| 127 | 127 |
void firstOut(Arc& arc, const Node& node) const {
|
| 128 | 128 |
arc._id = (node._id + 1) * _node_num - 1; |
| 129 | 129 |
} |
| 130 | 130 |
|
| 131 | 131 |
void nextOut(Arc& arc) const {
|
| 132 | 132 |
if (arc._id % _node_num == 0) arc._id = 0; |
| 133 | 133 |
--arc._id; |
| 134 | 134 |
} |
| 135 | 135 |
|
| 136 | 136 |
void firstIn(Arc& arc, const Node& node) const {
|
| 137 | 137 |
arc._id = _arc_num + node._id - _node_num; |
| 138 | 138 |
} |
| 139 | 139 |
|
| 140 | 140 |
void nextIn(Arc& arc) const {
|
| 141 | 141 |
arc._id -= _node_num; |
| 142 | 142 |
if (arc._id < 0) arc._id = -1; |
| 143 | 143 |
} |
| 144 | 144 |
|
| 145 | 145 |
}; |
| 146 | 146 |
|
| 147 | 147 |
typedef DigraphExtender<FullDigraphBase> ExtendedFullDigraphBase; |
| 148 | 148 |
|
| 149 | 149 |
/// \ingroup graphs |
| 150 | 150 |
/// |
| 151 |
/// \brief A full |
|
| 151 |
/// \brief A directed full graph class. |
|
| 152 | 152 |
/// |
| 153 |
/// This is a simple and fast directed full graph implementation. |
|
| 154 |
/// From each node go arcs to each node (including the source node), |
|
| 155 |
/// therefore the number of the arcs in the digraph is the square of |
|
| 156 |
/// the node number. This digraph type is completely static, so you |
|
| 157 |
/// can neither add nor delete either arcs or nodes, and it needs |
|
| 158 |
/// constant space in memory. |
|
| 153 |
/// FullDigraph is a simple and fast implmenetation of directed full |
|
| 154 |
/// (complete) graphs. It contains an arc from each node to each node |
|
| 155 |
/// (including a loop for each node), therefore the number of arcs |
|
| 156 |
/// is the square of the number of nodes. |
|
| 157 |
/// This class is completely static and it needs constant memory space. |
|
| 158 |
/// Thus you can neither add nor delete nodes or arcs, however |
|
| 159 |
/// the structure can be resized using resize(). |
|
| 159 | 160 |
/// |
| 160 |
/// This class fully conforms to the \ref concepts::Digraph |
|
| 161 |
/// "Digraph concept". |
|
| 161 |
/// This type fully conforms to the \ref concepts::Digraph "Digraph concept". |
|
| 162 |
/// Most of its member functions and nested classes are documented |
|
| 163 |
/// only in the concept class. |
|
| 162 | 164 |
/// |
| 163 |
/// |
|
| 165 |
/// \note FullDigraph and FullGraph classes are very similar, |
|
| 164 | 166 |
/// but there are two differences. While this class conforms only |
| 165 |
/// to the \ref concepts::Digraph "Digraph" concept, the \c FullGraph |
|
| 166 |
/// class conforms to the \ref concepts::Graph "Graph" concept, |
|
| 167 |
/// moreover \c FullGraph does not contain a loop arc for each |
|
| 168 |
/// node as \c FullDigraph does. |
|
| 167 |
/// to the \ref concepts::Digraph "Digraph" concept, FullGraph |
|
| 168 |
/// conforms to the \ref concepts::Graph "Graph" concept, |
|
| 169 |
/// moreover FullGraph does not contain a loop for each |
|
| 170 |
/// node as this class does. |
|
| 169 | 171 |
/// |
| 170 | 172 |
/// \sa FullGraph |
| 171 | 173 |
class FullDigraph : public ExtendedFullDigraphBase {
|
| 172 | 174 |
typedef ExtendedFullDigraphBase Parent; |
| 173 | 175 |
|
| 174 | 176 |
public: |
| 175 | 177 |
|
| 176 |
/// \brief |
|
| 178 |
/// \brief Default constructor. |
|
| 179 |
/// |
|
| 180 |
/// Default constructor. The number of nodes and arcs will be zero. |
|
| 177 | 181 |
FullDigraph() { construct(0); }
|
| 178 | 182 |
|
| 179 | 183 |
/// \brief Constructor |
| 180 | 184 |
/// |
| 181 | 185 |
/// Constructor. |
| 182 | 186 |
/// \param n The number of the nodes. |
| 183 | 187 |
FullDigraph(int n) { construct(n); }
|
| 184 | 188 |
|
| 185 | 189 |
/// \brief Resizes the digraph |
| 186 | 190 |
/// |
| 187 |
/// Resizes the digraph. The function will fully destroy and |
|
| 188 |
/// rebuild the digraph. This cause that the maps of the digraph will |
|
| 191 |
/// This function resizes the digraph. It fully destroys and |
|
| 192 |
/// rebuilds the structure, therefore the maps of the digraph will be |
|
| 189 | 193 |
/// reallocated automatically and the previous values will be lost. |
| 190 | 194 |
void resize(int n) {
|
| 191 | 195 |
Parent::notifier(Arc()).clear(); |
| 192 | 196 |
Parent::notifier(Node()).clear(); |
| 193 | 197 |
construct(n); |
| 194 | 198 |
Parent::notifier(Node()).build(); |
| 195 | 199 |
Parent::notifier(Arc()).build(); |
| 196 | 200 |
} |
| 197 | 201 |
|
| 198 | 202 |
/// \brief Returns the node with the given index. |
| 199 | 203 |
/// |
| 200 |
/// Returns the node with the given index. Since it is a static |
|
| 201 |
/// digraph its nodes can be indexed with integers from the range |
|
| 202 |
/// |
|
| 204 |
/// Returns the node with the given index. Since this structure is |
|
| 205 |
/// completely static, the nodes can be indexed with integers from |
|
| 206 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
| 203 | 207 |
/// \sa index() |
| 204 | 208 |
Node operator()(int ix) const { return Parent::operator()(ix); }
|
| 205 | 209 |
|
| 206 | 210 |
/// \brief Returns the index of the given node. |
| 207 | 211 |
/// |
| 208 |
/// Returns the index of the given node. Since it is a static |
|
| 209 |
/// digraph its nodes can be indexed with integers from the range |
|
| 210 |
/// <tt>[0..nodeNum()-1]</tt>. |
|
| 211 |
/// \sa operator() |
|
| 212 |
|
|
| 212 |
/// Returns the index of the given node. Since this structure is |
|
| 213 |
/// completely static, the nodes can be indexed with integers from |
|
| 214 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
| 215 |
/// \sa operator()() |
|
| 216 |
int index(Node node) const { return Parent::index(node); }
|
|
| 213 | 217 |
|
| 214 | 218 |
/// \brief Returns the arc connecting the given nodes. |
| 215 | 219 |
/// |
| 216 | 220 |
/// Returns the arc connecting the given nodes. |
| 217 |
Arc arc( |
|
| 221 |
Arc arc(Node u, Node v) const {
|
|
| 218 | 222 |
return Parent::arc(u, v); |
| 219 | 223 |
} |
| 220 | 224 |
|
| 221 | 225 |
/// \brief Number of nodes. |
| 222 | 226 |
int nodeNum() const { return Parent::nodeNum(); }
|
| 223 | 227 |
/// \brief Number of arcs. |
| 224 | 228 |
int arcNum() const { return Parent::arcNum(); }
|
| 225 | 229 |
}; |
| 226 | 230 |
|
| 227 | 231 |
|
| 228 | 232 |
class FullGraphBase {
|
| 229 | 233 |
public: |
| 230 | 234 |
|
| 231 | 235 |
typedef FullGraphBase Graph; |
| 232 | 236 |
|
| 233 | 237 |
class Node; |
| 234 | 238 |
class Arc; |
| 235 | 239 |
class Edge; |
| 236 | 240 |
|
| 237 | 241 |
protected: |
| 238 | 242 |
|
| 239 | 243 |
int _node_num; |
| 240 | 244 |
int _edge_num; |
| 241 | 245 |
|
| 242 | 246 |
FullGraphBase() {}
|
| 243 | 247 |
|
| 244 | 248 |
void construct(int n) { _node_num = n; _edge_num = n * (n - 1) / 2; }
|
| 245 | 249 |
|
| 246 | 250 |
int _uid(int e) const {
|
| 247 | 251 |
int u = e / _node_num; |
| 248 | 252 |
int v = e % _node_num; |
| 249 | 253 |
return u < v ? u : _node_num - 2 - u; |
| 250 | 254 |
} |
| 251 | 255 |
|
| 252 | 256 |
int _vid(int e) const {
|
| 253 | 257 |
int u = e / _node_num; |
| 254 | 258 |
int v = e % _node_num; |
| 255 | 259 |
return u < v ? v : _node_num - 1 - v; |
| 256 | 260 |
} |
| 257 | 261 |
|
| 258 | 262 |
void _uvid(int e, int& u, int& v) const {
|
| 259 | 263 |
u = e / _node_num; |
| 260 | 264 |
v = e % _node_num; |
| 261 | 265 |
if (u >= v) {
|
| 262 | 266 |
u = _node_num - 2 - u; |
| 263 | 267 |
v = _node_num - 1 - v; |
| 264 | 268 |
} |
| 265 | 269 |
} |
| 266 | 270 |
|
| 267 | 271 |
void _stid(int a, int& s, int& t) const {
|
| 268 | 272 |
if ((a & 1) == 1) {
|
| 269 | 273 |
_uvid(a >> 1, s, t); |
| 270 | 274 |
} else {
|
| 271 | 275 |
_uvid(a >> 1, t, s); |
| 272 | 276 |
} |
| 273 | 277 |
} |
| 274 | 278 |
|
| 275 | 279 |
int _eid(int u, int v) const {
|
| 276 | 280 |
if (u < (_node_num - 1) / 2) {
|
| 277 | 281 |
return u * _node_num + v; |
| 278 | 282 |
} else {
|
| 279 | 283 |
return (_node_num - 1 - u) * _node_num - v - 1; |
| 280 | 284 |
} |
| 281 | 285 |
} |
| 282 | 286 |
|
| 283 | 287 |
public: |
| 284 | 288 |
|
| 285 | 289 |
Node operator()(int ix) const { return Node(ix); }
|
| 286 | 290 |
int index(const Node& node) const { return node._id; }
|
| 287 | 291 |
|
| 288 | 292 |
Edge edge(const Node& u, const Node& v) const {
|
| 289 | 293 |
if (u._id < v._id) {
|
| 290 | 294 |
return Edge(_eid(u._id, v._id)); |
| 291 | 295 |
} else if (u._id != v._id) {
|
| 292 | 296 |
return Edge(_eid(v._id, u._id)); |
| 293 | 297 |
} else {
|
| 294 | 298 |
return INVALID; |
| 295 | 299 |
} |
| 296 | 300 |
} |
| 297 | 301 |
|
| 298 | 302 |
Arc arc(const Node& s, const Node& t) const {
|
| 299 | 303 |
if (s._id < t._id) {
|
| 300 | 304 |
return Arc((_eid(s._id, t._id) << 1) | 1); |
| 301 | 305 |
} else if (s._id != t._id) {
|
| 302 | 306 |
return Arc(_eid(t._id, s._id) << 1); |
| 303 | 307 |
} else {
|
| 304 | 308 |
return INVALID; |
| 305 | 309 |
} |
| 306 | 310 |
} |
| 307 | 311 |
|
| 308 | 312 |
typedef True NodeNumTag; |
| 309 | 313 |
typedef True ArcNumTag; |
| 310 | 314 |
typedef True EdgeNumTag; |
| 311 | 315 |
|
| 312 | 316 |
int nodeNum() const { return _node_num; }
|
| 313 | 317 |
int arcNum() const { return 2 * _edge_num; }
|
| 314 | 318 |
int edgeNum() const { return _edge_num; }
|
| 315 | 319 |
|
| 316 | 320 |
static int id(Node node) { return node._id; }
|
| 317 | 321 |
static int id(Arc arc) { return arc._id; }
|
| 318 | 322 |
static int id(Edge edge) { return edge._id; }
|
| 319 | 323 |
|
| 320 | 324 |
int maxNodeId() const { return _node_num-1; }
|
| 321 | 325 |
int maxArcId() const { return 2 * _edge_num-1; }
|
| 322 | 326 |
int maxEdgeId() const { return _edge_num-1; }
|
| 323 | 327 |
|
| 324 | 328 |
static Node nodeFromId(int id) { return Node(id);}
|
| 325 | 329 |
static Arc arcFromId(int id) { return Arc(id);}
|
| 326 | 330 |
static Edge edgeFromId(int id) { return Edge(id);}
|
| 327 | 331 |
|
| 328 | 332 |
Node u(Edge edge) const {
|
| 329 | 333 |
return Node(_uid(edge._id)); |
| 330 | 334 |
} |
| 331 | 335 |
|
| 332 | 336 |
Node v(Edge edge) const {
|
| 333 | 337 |
return Node(_vid(edge._id)); |
| 334 | 338 |
} |
| 335 | 339 |
|
| 336 | 340 |
Node source(Arc arc) const {
|
| 337 | 341 |
return Node((arc._id & 1) == 1 ? |
| 338 | 342 |
_uid(arc._id >> 1) : _vid(arc._id >> 1)); |
| 339 | 343 |
} |
| 340 | 344 |
|
| 341 | 345 |
Node target(Arc arc) const {
|
| 342 | 346 |
return Node((arc._id & 1) == 1 ? |
| 343 | 347 |
_vid(arc._id >> 1) : _uid(arc._id >> 1)); |
| 344 | 348 |
} |
| 345 | 349 |
|
| 346 | 350 |
typedef True FindEdgeTag; |
| 347 | 351 |
typedef True FindArcTag; |
| 348 | 352 |
|
| 349 | 353 |
Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
|
| 350 | 354 |
return prev != INVALID ? INVALID : edge(u, v); |
| 351 | 355 |
} |
| 352 | 356 |
|
| 353 | 357 |
Arc findArc(Node s, Node t, Arc prev = INVALID) const {
|
| 354 | 358 |
return prev != INVALID ? INVALID : arc(s, t); |
| 355 | 359 |
} |
| 356 | 360 |
|
| 357 | 361 |
class Node {
|
| 358 | 362 |
friend class FullGraphBase; |
| 359 | 363 |
|
| 360 | 364 |
protected: |
| 361 | 365 |
int _id; |
| 362 | 366 |
Node(int id) : _id(id) {}
|
| 363 | 367 |
public: |
| 364 | 368 |
Node() {}
|
| 365 | 369 |
Node (Invalid) { _id = -1; }
|
| 366 | 370 |
bool operator==(const Node node) const {return _id == node._id;}
|
| 367 | 371 |
bool operator!=(const Node node) const {return _id != node._id;}
|
| 368 | 372 |
bool operator<(const Node node) const {return _id < node._id;}
|
| 369 | 373 |
}; |
| 370 | 374 |
|
| 371 | 375 |
class Edge {
|
| 372 | 376 |
friend class FullGraphBase; |
| 373 | 377 |
friend class Arc; |
| 374 | 378 |
|
| 375 | 379 |
protected: |
| 376 | 380 |
int _id; |
| 377 | 381 |
|
| 378 | 382 |
Edge(int id) : _id(id) {}
|
| 379 | 383 |
|
| 380 | 384 |
public: |
| 381 | 385 |
Edge() { }
|
| 382 | 386 |
Edge (Invalid) { _id = -1; }
|
| 383 | 387 |
|
| 384 | 388 |
bool operator==(const Edge edge) const {return _id == edge._id;}
|
| 385 | 389 |
bool operator!=(const Edge edge) const {return _id != edge._id;}
|
| 386 | 390 |
bool operator<(const Edge edge) const {return _id < edge._id;}
|
| 387 | 391 |
}; |
| 388 | 392 |
|
| 389 | 393 |
class Arc {
|
| 390 | 394 |
friend class FullGraphBase; |
| 391 | 395 |
|
| 392 | 396 |
protected: |
| 393 | 397 |
int _id; |
| 394 | 398 |
|
| 395 | 399 |
Arc(int id) : _id(id) {}
|
| 396 | 400 |
|
| 397 | 401 |
public: |
| 398 | 402 |
Arc() { }
|
| 399 | 403 |
Arc (Invalid) { _id = -1; }
|
| 400 | 404 |
|
| 401 | 405 |
operator Edge() const { return Edge(_id != -1 ? (_id >> 1) : -1); }
|
| 402 | 406 |
|
| 403 | 407 |
bool operator==(const Arc arc) const {return _id == arc._id;}
|
| 404 | 408 |
bool operator!=(const Arc arc) const {return _id != arc._id;}
|
| 405 | 409 |
bool operator<(const Arc arc) const {return _id < arc._id;}
|
| 406 | 410 |
}; |
| 407 | 411 |
|
| 408 | 412 |
static bool direction(Arc arc) {
|
| 409 | 413 |
return (arc._id & 1) == 1; |
| 410 | 414 |
} |
| 411 | 415 |
|
| 412 | 416 |
static Arc direct(Edge edge, bool dir) {
|
| 413 | 417 |
return Arc((edge._id << 1) | (dir ? 1 : 0)); |
| 414 | 418 |
} |
| 415 | 419 |
|
| 416 | 420 |
void first(Node& node) const {
|
| 417 | 421 |
node._id = _node_num - 1; |
| 418 | 422 |
} |
| 419 | 423 |
|
| 420 | 424 |
static void next(Node& node) {
|
| 421 | 425 |
--node._id; |
| 422 | 426 |
} |
| 423 | 427 |
|
| 424 | 428 |
void first(Arc& arc) const {
|
| 425 | 429 |
arc._id = (_edge_num << 1) - 1; |
| 426 | 430 |
} |
| 427 | 431 |
|
| 428 | 432 |
static void next(Arc& arc) {
|
| 429 | 433 |
--arc._id; |
| 430 | 434 |
} |
| 431 | 435 |
|
| 432 | 436 |
void first(Edge& edge) const {
|
| 433 | 437 |
edge._id = _edge_num - 1; |
| 434 | 438 |
} |
| 435 | 439 |
|
| 436 | 440 |
static void next(Edge& edge) {
|
| 437 | 441 |
--edge._id; |
| 438 | 442 |
} |
| 439 | 443 |
|
| 440 | 444 |
void firstOut(Arc& arc, const Node& node) const {
|
| 441 | 445 |
int s = node._id, t = _node_num - 1; |
| 442 | 446 |
if (s < t) {
|
| 443 | 447 |
arc._id = (_eid(s, t) << 1) | 1; |
| 444 | 448 |
} else {
|
| 445 | 449 |
--t; |
| 446 | 450 |
arc._id = (t != -1 ? (_eid(t, s) << 1) : -1); |
| 447 | 451 |
} |
| 448 | 452 |
} |
| 449 | 453 |
|
| 450 | 454 |
void nextOut(Arc& arc) const {
|
| 451 | 455 |
int s, t; |
| 452 | 456 |
_stid(arc._id, s, t); |
| 453 | 457 |
--t; |
| 454 | 458 |
if (s < t) {
|
| 455 | 459 |
arc._id = (_eid(s, t) << 1) | 1; |
| 456 | 460 |
} else {
|
| 457 | 461 |
if (s == t) --t; |
| 458 | 462 |
arc._id = (t != -1 ? (_eid(t, s) << 1) : -1); |
| 459 | 463 |
} |
| 460 | 464 |
} |
| 461 | 465 |
|
| 462 | 466 |
void firstIn(Arc& arc, const Node& node) const {
|
| 463 | 467 |
int s = _node_num - 1, t = node._id; |
| 464 | 468 |
if (s > t) {
|
| 465 | 469 |
arc._id = (_eid(t, s) << 1); |
| 466 | 470 |
} else {
|
| 467 | 471 |
--s; |
| 468 | 472 |
arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1); |
| 469 | 473 |
} |
| 470 | 474 |
} |
| 471 | 475 |
|
| 472 | 476 |
void nextIn(Arc& arc) const {
|
| 473 | 477 |
int s, t; |
| 474 | 478 |
_stid(arc._id, s, t); |
| 475 | 479 |
--s; |
| 476 | 480 |
if (s > t) {
|
| 477 | 481 |
arc._id = (_eid(t, s) << 1); |
| 478 | 482 |
} else {
|
| 479 | 483 |
if (s == t) --s; |
| 480 | 484 |
arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1); |
| 481 | 485 |
} |
| 482 | 486 |
} |
| 483 | 487 |
|
| 484 | 488 |
void firstInc(Edge& edge, bool& dir, const Node& node) const {
|
| 485 | 489 |
int u = node._id, v = _node_num - 1; |
| 486 | 490 |
if (u < v) {
|
| 487 | 491 |
edge._id = _eid(u, v); |
| 488 | 492 |
dir = true; |
| 489 | 493 |
} else {
|
| 490 | 494 |
--v; |
| 491 | 495 |
edge._id = (v != -1 ? _eid(v, u) : -1); |
| 492 | 496 |
dir = false; |
| 493 | 497 |
} |
| 494 | 498 |
} |
| 495 | 499 |
|
| 496 | 500 |
void nextInc(Edge& edge, bool& dir) const {
|
| 497 | 501 |
int u, v; |
| 498 | 502 |
if (dir) {
|
| 499 | 503 |
_uvid(edge._id, u, v); |
| 500 | 504 |
--v; |
| 501 | 505 |
if (u < v) {
|
| 502 | 506 |
edge._id = _eid(u, v); |
| 503 | 507 |
} else {
|
| 504 | 508 |
--v; |
| 505 | 509 |
edge._id = (v != -1 ? _eid(v, u) : -1); |
| 506 | 510 |
dir = false; |
| 507 | 511 |
} |
| 508 | 512 |
} else {
|
| 509 | 513 |
_uvid(edge._id, v, u); |
| 510 | 514 |
--v; |
| 511 | 515 |
edge._id = (v != -1 ? _eid(v, u) : -1); |
| 512 | 516 |
} |
| 513 | 517 |
} |
| 514 | 518 |
|
| 515 | 519 |
}; |
| 516 | 520 |
|
| 517 | 521 |
typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase; |
| 518 | 522 |
|
| 519 | 523 |
/// \ingroup graphs |
| 520 | 524 |
/// |
| 521 | 525 |
/// \brief An undirected full graph class. |
| 522 | 526 |
/// |
| 523 |
/// This is a simple and fast undirected full graph |
|
| 524 |
/// implementation. From each node go edge to each other node, |
|
| 525 |
/// therefore the number of edges in the graph is \f$n(n-1)/2\f$. |
|
| 526 |
/// This graph type is completely static, so you can neither |
|
| 527 |
/// add nor delete either edges or nodes, and it needs constant |
|
| 528 |
/// space in memory. |
|
| 527 |
/// FullGraph is a simple and fast implmenetation of undirected full |
|
| 528 |
/// (complete) graphs. It contains an edge between every distinct pair |
|
| 529 |
/// of nodes, therefore the number of edges is <tt>n(n-1)/2</tt>. |
|
| 530 |
/// This class is completely static and it needs constant memory space. |
|
| 531 |
/// Thus you can neither add nor delete nodes or edges, however |
|
| 532 |
/// the structure can be resized using resize(). |
|
| 529 | 533 |
/// |
| 530 |
/// This |
|
| 534 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
|
| 535 |
/// Most of its member functions and nested classes are documented |
|
| 536 |
/// only in the concept class. |
|
| 531 | 537 |
/// |
| 532 |
/// The \c FullGraph and \c FullDigraph classes are very similar, |
|
| 533 |
/// but there are two differences. While the \c FullDigraph class |
|
| 538 |
/// \note FullDigraph and FullGraph classes are very similar, |
|
| 539 |
/// but there are two differences. While FullDigraph |
|
| 534 | 540 |
/// conforms only to the \ref concepts::Digraph "Digraph" concept, |
| 535 | 541 |
/// this class conforms to the \ref concepts::Graph "Graph" concept, |
| 536 |
/// moreover \c FullGraph does not contain a loop arc for each |
|
| 537 |
/// node as \c FullDigraph does. |
|
| 542 |
/// moreover this class does not contain a loop for each |
|
| 543 |
/// node as FullDigraph does. |
|
| 538 | 544 |
/// |
| 539 | 545 |
/// \sa FullDigraph |
| 540 | 546 |
class FullGraph : public ExtendedFullGraphBase {
|
| 541 | 547 |
typedef ExtendedFullGraphBase Parent; |
| 542 | 548 |
|
| 543 | 549 |
public: |
| 544 | 550 |
|
| 545 |
/// \brief |
|
| 551 |
/// \brief Default constructor. |
|
| 552 |
/// |
|
| 553 |
/// Default constructor. The number of nodes and edges will be zero. |
|
| 546 | 554 |
FullGraph() { construct(0); }
|
| 547 | 555 |
|
| 548 | 556 |
/// \brief Constructor |
| 549 | 557 |
/// |
| 550 | 558 |
/// Constructor. |
| 551 | 559 |
/// \param n The number of the nodes. |
| 552 | 560 |
FullGraph(int n) { construct(n); }
|
| 553 | 561 |
|
| 554 | 562 |
/// \brief Resizes the graph |
| 555 | 563 |
/// |
| 556 |
/// Resizes the graph. The function will fully destroy and |
|
| 557 |
/// rebuild the graph. This cause that the maps of the graph will |
|
| 564 |
/// This function resizes the graph. It fully destroys and |
|
| 565 |
/// rebuilds the structure, therefore the maps of the graph will be |
|
| 558 | 566 |
/// reallocated automatically and the previous values will be lost. |
| 559 | 567 |
void resize(int n) {
|
| 560 | 568 |
Parent::notifier(Arc()).clear(); |
| 561 | 569 |
Parent::notifier(Edge()).clear(); |
| 562 | 570 |
Parent::notifier(Node()).clear(); |
| 563 | 571 |
construct(n); |
| 564 | 572 |
Parent::notifier(Node()).build(); |
| 565 | 573 |
Parent::notifier(Edge()).build(); |
| 566 | 574 |
Parent::notifier(Arc()).build(); |
| 567 | 575 |
} |
| 568 | 576 |
|
| 569 | 577 |
/// \brief Returns the node with the given index. |
| 570 | 578 |
/// |
| 571 |
/// Returns the node with the given index. Since it is a static |
|
| 572 |
/// graph its nodes can be indexed with integers from the range |
|
| 573 |
/// |
|
| 579 |
/// Returns the node with the given index. Since this structure is |
|
| 580 |
/// completely static, the nodes can be indexed with integers from |
|
| 581 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
| 574 | 582 |
/// \sa index() |
| 575 | 583 |
Node operator()(int ix) const { return Parent::operator()(ix); }
|
| 576 | 584 |
|
| 577 | 585 |
/// \brief Returns the index of the given node. |
| 578 | 586 |
/// |
| 579 |
/// Returns the index of the given node. Since it is a static |
|
| 580 |
/// graph its nodes can be indexed with integers from the range |
|
| 581 |
/// <tt>[0..nodeNum()-1]</tt>. |
|
| 582 |
/// \sa operator() |
|
| 583 |
|
|
| 587 |
/// Returns the index of the given node. Since this structure is |
|
| 588 |
/// completely static, the nodes can be indexed with integers from |
|
| 589 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
| 590 |
/// \sa operator()() |
|
| 591 |
int index(Node node) const { return Parent::index(node); }
|
|
| 584 | 592 |
|
| 585 | 593 |
/// \brief Returns the arc connecting the given nodes. |
| 586 | 594 |
/// |
| 587 | 595 |
/// Returns the arc connecting the given nodes. |
| 588 |
Arc arc( |
|
| 596 |
Arc arc(Node s, Node t) const {
|
|
| 589 | 597 |
return Parent::arc(s, t); |
| 590 | 598 |
} |
| 591 | 599 |
|
| 592 |
/// \brief Returns the edge |
|
| 600 |
/// \brief Returns the edge connecting the given nodes. |
|
| 593 | 601 |
/// |
| 594 |
/// Returns the edge connects the given nodes. |
|
| 595 |
Edge edge(const Node& u, const Node& v) const {
|
|
| 602 |
/// Returns the edge connecting the given nodes. |
|
| 603 |
Edge edge(Node u, Node v) const {
|
|
| 596 | 604 |
return Parent::edge(u, v); |
| 597 | 605 |
} |
| 598 | 606 |
|
| 599 | 607 |
/// \brief Number of nodes. |
| 600 | 608 |
int nodeNum() const { return Parent::nodeNum(); }
|
| 601 | 609 |
/// \brief Number of arcs. |
| 602 | 610 |
int arcNum() const { return Parent::arcNum(); }
|
| 603 | 611 |
/// \brief Number of edges. |
| 604 | 612 |
int edgeNum() const { return Parent::edgeNum(); }
|
| 605 | 613 |
|
| 606 | 614 |
}; |
| 607 | 615 |
|
| 608 | 616 |
|
| 609 | 617 |
} //namespace lemon |
| 610 | 618 |
|
| 611 | 619 |
|
| 612 | 620 |
#endif //LEMON_FULL_GRAPH_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\file |
| 20 | 20 |
///\brief Implementation of the LEMON GLPK LP and MIP solver interface. |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/glpk.h> |
| 23 | 23 |
#include <glpk.h> |
| 24 | 24 |
|
| 25 | 25 |
#include <lemon/assert.h> |
| 26 | 26 |
|
| 27 | 27 |
namespace lemon {
|
| 28 | 28 |
|
| 29 | 29 |
// GlpkBase members |
| 30 | 30 |
|
| 31 | 31 |
GlpkBase::GlpkBase() : LpBase() {
|
| 32 | 32 |
lp = glp_create_prob(); |
| 33 | 33 |
glp_create_index(lp); |
| 34 | 34 |
messageLevel(MESSAGE_NOTHING); |
| 35 | 35 |
} |
| 36 | 36 |
|
| 37 | 37 |
GlpkBase::GlpkBase(const GlpkBase &other) : LpBase() {
|
| 38 | 38 |
lp = glp_create_prob(); |
| 39 | 39 |
glp_copy_prob(lp, other.lp, GLP_ON); |
| 40 | 40 |
glp_create_index(lp); |
| 41 | 41 |
rows = other.rows; |
| 42 | 42 |
cols = other.cols; |
| 43 | 43 |
messageLevel(MESSAGE_NOTHING); |
| 44 | 44 |
} |
| 45 | 45 |
|
| 46 | 46 |
GlpkBase::~GlpkBase() {
|
| 47 | 47 |
glp_delete_prob(lp); |
| 48 | 48 |
} |
| 49 | 49 |
|
| 50 | 50 |
int GlpkBase::_addCol() {
|
| 51 | 51 |
int i = glp_add_cols(lp, 1); |
| 52 | 52 |
glp_set_col_bnds(lp, i, GLP_FR, 0.0, 0.0); |
| 53 | 53 |
return i; |
| 54 | 54 |
} |
| 55 | 55 |
|
| 56 | 56 |
int GlpkBase::_addRow() {
|
| 57 | 57 |
int i = glp_add_rows(lp, 1); |
| 58 | 58 |
glp_set_row_bnds(lp, i, GLP_FR, 0.0, 0.0); |
| 59 | 59 |
return i; |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 |
int GlpkBase::_addRow(Value lo, ExprIterator b, |
|
| 63 |
ExprIterator e, Value up) {
|
|
| 64 |
int i = glp_add_rows(lp, 1); |
|
| 65 |
|
|
| 66 |
if (lo == -INF) {
|
|
| 67 |
if (up == INF) {
|
|
| 68 |
glp_set_row_bnds(lp, i, GLP_FR, lo, up); |
|
| 69 |
} else {
|
|
| 70 |
glp_set_row_bnds(lp, i, GLP_UP, lo, up); |
|
| 71 |
} |
|
| 72 |
} else {
|
|
| 73 |
if (up == INF) {
|
|
| 74 |
glp_set_row_bnds(lp, i, GLP_LO, lo, up); |
|
| 75 |
} else if (lo != up) {
|
|
| 76 |
glp_set_row_bnds(lp, i, GLP_DB, lo, up); |
|
| 77 |
} else {
|
|
| 78 |
glp_set_row_bnds(lp, i, GLP_FX, lo, up); |
|
| 79 |
} |
|
| 80 |
} |
|
| 81 |
|
|
| 82 |
std::vector<int> indexes; |
|
| 83 |
std::vector<Value> values; |
|
| 84 |
|
|
| 85 |
indexes.push_back(0); |
|
| 86 |
values.push_back(0); |
|
| 87 |
|
|
| 88 |
for(ExprIterator it = b; it != e; ++it) {
|
|
| 89 |
indexes.push_back(it->first); |
|
| 90 |
values.push_back(it->second); |
|
| 91 |
} |
|
| 92 |
|
|
| 93 |
glp_set_mat_row(lp, i, values.size() - 1, |
|
| 94 |
&indexes.front(), &values.front()); |
|
| 95 |
return i; |
|
| 96 |
} |
|
| 97 |
|
|
| 62 | 98 |
void GlpkBase::_eraseCol(int i) {
|
| 63 | 99 |
int ca[2]; |
| 64 | 100 |
ca[1] = i; |
| 65 | 101 |
glp_del_cols(lp, 1, ca); |
| 66 | 102 |
} |
| 67 | 103 |
|
| 68 | 104 |
void GlpkBase::_eraseRow(int i) {
|
| 69 | 105 |
int ra[2]; |
| 70 | 106 |
ra[1] = i; |
| 71 | 107 |
glp_del_rows(lp, 1, ra); |
| 72 | 108 |
} |
| 73 | 109 |
|
| 74 | 110 |
void GlpkBase::_eraseColId(int i) {
|
| 75 | 111 |
cols.eraseIndex(i); |
| 76 | 112 |
cols.shiftIndices(i); |
| 77 | 113 |
} |
| 78 | 114 |
|
| 79 | 115 |
void GlpkBase::_eraseRowId(int i) {
|
| 80 | 116 |
rows.eraseIndex(i); |
| 81 | 117 |
rows.shiftIndices(i); |
| 82 | 118 |
} |
| 83 | 119 |
|
| 84 | 120 |
void GlpkBase::_getColName(int c, std::string& name) const {
|
| 85 | 121 |
const char *str = glp_get_col_name(lp, c); |
| 86 | 122 |
if (str) name = str; |
| 87 | 123 |
else name.clear(); |
| 88 | 124 |
} |
| 89 | 125 |
|
| 90 | 126 |
void GlpkBase::_setColName(int c, const std::string & name) {
|
| 91 | 127 |
glp_set_col_name(lp, c, const_cast<char*>(name.c_str())); |
| 92 | 128 |
|
| 93 | 129 |
} |
| 94 | 130 |
|
| 95 | 131 |
int GlpkBase::_colByName(const std::string& name) const {
|
| 96 | 132 |
int k = glp_find_col(lp, const_cast<char*>(name.c_str())); |
| 97 | 133 |
return k > 0 ? k : -1; |
| 98 | 134 |
} |
| 99 | 135 |
|
| 100 | 136 |
void GlpkBase::_getRowName(int r, std::string& name) const {
|
| 101 | 137 |
const char *str = glp_get_row_name(lp, r); |
| 102 | 138 |
if (str) name = str; |
| 103 | 139 |
else name.clear(); |
| 104 | 140 |
} |
| 105 | 141 |
|
| 106 | 142 |
void GlpkBase::_setRowName(int r, const std::string & name) {
|
| 107 | 143 |
glp_set_row_name(lp, r, const_cast<char*>(name.c_str())); |
| 108 | 144 |
|
| 109 | 145 |
} |
| 110 | 146 |
|
| 111 | 147 |
int GlpkBase::_rowByName(const std::string& name) const {
|
| 112 | 148 |
int k = glp_find_row(lp, const_cast<char*>(name.c_str())); |
| 113 | 149 |
return k > 0 ? k : -1; |
| 114 | 150 |
} |
| 115 | 151 |
|
| 116 | 152 |
void GlpkBase::_setRowCoeffs(int i, ExprIterator b, ExprIterator e) {
|
| 117 | 153 |
std::vector<int> indexes; |
| 118 | 154 |
std::vector<Value> values; |
| 119 | 155 |
|
| 120 | 156 |
indexes.push_back(0); |
| 121 | 157 |
values.push_back(0); |
| 122 | 158 |
|
| 123 | 159 |
for(ExprIterator it = b; it != e; ++it) {
|
| 124 | 160 |
indexes.push_back(it->first); |
| 125 | 161 |
values.push_back(it->second); |
| 126 | 162 |
} |
| 127 | 163 |
|
| 128 | 164 |
glp_set_mat_row(lp, i, values.size() - 1, |
| 129 | 165 |
&indexes.front(), &values.front()); |
| 130 | 166 |
} |
| 131 | 167 |
|
| 132 | 168 |
void GlpkBase::_getRowCoeffs(int ix, InsertIterator b) const {
|
| 133 | 169 |
int length = glp_get_mat_row(lp, ix, 0, 0); |
| 134 | 170 |
|
| 135 | 171 |
std::vector<int> indexes(length + 1); |
| 136 | 172 |
std::vector<Value> values(length + 1); |
| 137 | 173 |
|
| 138 | 174 |
glp_get_mat_row(lp, ix, &indexes.front(), &values.front()); |
| 139 | 175 |
|
| 140 | 176 |
for (int i = 1; i <= length; ++i) {
|
| 141 | 177 |
*b = std::make_pair(indexes[i], values[i]); |
| 142 | 178 |
++b; |
| 143 | 179 |
} |
| 144 | 180 |
} |
| 145 | 181 |
|
| 146 | 182 |
void GlpkBase::_setColCoeffs(int ix, ExprIterator b, |
| 147 | 183 |
ExprIterator e) {
|
| 148 | 184 |
|
| 149 | 185 |
std::vector<int> indexes; |
| 150 | 186 |
std::vector<Value> values; |
| 151 | 187 |
|
| 152 | 188 |
indexes.push_back(0); |
| 153 | 189 |
values.push_back(0); |
| 154 | 190 |
|
| 155 | 191 |
for(ExprIterator it = b; it != e; ++it) {
|
| 156 | 192 |
indexes.push_back(it->first); |
| 157 | 193 |
values.push_back(it->second); |
| 158 | 194 |
} |
| 159 | 195 |
|
| 160 | 196 |
glp_set_mat_col(lp, ix, values.size() - 1, |
| 161 | 197 |
&indexes.front(), &values.front()); |
| 162 | 198 |
} |
| 163 | 199 |
|
| 164 | 200 |
void GlpkBase::_getColCoeffs(int ix, InsertIterator b) const {
|
| 165 | 201 |
int length = glp_get_mat_col(lp, ix, 0, 0); |
| 166 | 202 |
|
| 167 | 203 |
std::vector<int> indexes(length + 1); |
| 168 | 204 |
std::vector<Value> values(length + 1); |
| 169 | 205 |
|
| 170 | 206 |
glp_get_mat_col(lp, ix, &indexes.front(), &values.front()); |
| 171 | 207 |
|
| 172 | 208 |
for (int i = 1; i <= length; ++i) {
|
| 173 | 209 |
*b = std::make_pair(indexes[i], values[i]); |
| 174 | 210 |
++b; |
| 175 | 211 |
} |
| 176 | 212 |
} |
| 177 | 213 |
|
| 178 | 214 |
void GlpkBase::_setCoeff(int ix, int jx, Value value) {
|
| 179 | 215 |
|
| 180 | 216 |
if (glp_get_num_cols(lp) < glp_get_num_rows(lp)) {
|
| 181 | 217 |
|
| 182 | 218 |
int length = glp_get_mat_row(lp, ix, 0, 0); |
| 183 | 219 |
|
| 184 | 220 |
std::vector<int> indexes(length + 2); |
| 185 | 221 |
std::vector<Value> values(length + 2); |
| 186 | 222 |
|
| 187 | 223 |
glp_get_mat_row(lp, ix, &indexes.front(), &values.front()); |
| 188 | 224 |
|
| 189 | 225 |
//The following code does not suppose that the elements of the |
| 190 | 226 |
//array indexes are sorted |
| 191 | 227 |
bool found = false; |
| 192 | 228 |
for (int i = 1; i <= length; ++i) {
|
| 193 | 229 |
if (indexes[i] == jx) {
|
| 194 | 230 |
found = true; |
| 195 | 231 |
values[i] = value; |
| 196 | 232 |
break; |
| 197 | 233 |
} |
| 198 | 234 |
} |
| 199 | 235 |
if (!found) {
|
| 200 | 236 |
++length; |
| 201 | 237 |
indexes[length] = jx; |
| 202 | 238 |
values[length] = value; |
| 203 | 239 |
} |
| 204 | 240 |
|
| 205 | 241 |
glp_set_mat_row(lp, ix, length, &indexes.front(), &values.front()); |
| 206 | 242 |
|
| 207 | 243 |
} else {
|
| 208 | 244 |
|
| 209 | 245 |
int length = glp_get_mat_col(lp, jx, 0, 0); |
| 210 | 246 |
|
| 211 | 247 |
std::vector<int> indexes(length + 2); |
| 212 | 248 |
std::vector<Value> values(length + 2); |
| 213 | 249 |
|
| 214 | 250 |
glp_get_mat_col(lp, jx, &indexes.front(), &values.front()); |
| 215 | 251 |
|
| 216 | 252 |
//The following code does not suppose that the elements of the |
| 217 | 253 |
//array indexes are sorted |
| 218 | 254 |
bool found = false; |
| 219 | 255 |
for (int i = 1; i <= length; ++i) {
|
| 220 | 256 |
if (indexes[i] == ix) {
|
| 221 | 257 |
found = true; |
| 222 | 258 |
values[i] = value; |
| 223 | 259 |
break; |
| 224 | 260 |
} |
| 225 | 261 |
} |
| 226 | 262 |
if (!found) {
|
| 227 | 263 |
++length; |
| 228 | 264 |
indexes[length] = ix; |
| 229 | 265 |
values[length] = value; |
| 230 | 266 |
} |
| 231 | 267 |
|
| 232 | 268 |
glp_set_mat_col(lp, jx, length, &indexes.front(), &values.front()); |
| 233 | 269 |
} |
| 234 | 270 |
|
| 235 | 271 |
} |
| 236 | 272 |
|
| 237 | 273 |
GlpkBase::Value GlpkBase::_getCoeff(int ix, int jx) const {
|
| 238 | 274 |
|
| 239 | 275 |
int length = glp_get_mat_row(lp, ix, 0, 0); |
| 240 | 276 |
|
| 241 | 277 |
std::vector<int> indexes(length + 1); |
| 242 | 278 |
std::vector<Value> values(length + 1); |
| 243 | 279 |
|
| 244 | 280 |
glp_get_mat_row(lp, ix, &indexes.front(), &values.front()); |
| 245 | 281 |
|
| 246 | 282 |
for (int i = 1; i <= length; ++i) {
|
| 247 | 283 |
if (indexes[i] == jx) {
|
| 248 | 284 |
return values[i]; |
| 249 | 285 |
} |
| 250 | 286 |
} |
| 251 | 287 |
|
| 252 | 288 |
return 0; |
| 253 | 289 |
} |
| 254 | 290 |
|
| 255 | 291 |
void GlpkBase::_setColLowerBound(int i, Value lo) {
|
| 256 | 292 |
LEMON_ASSERT(lo != INF, "Invalid bound"); |
| 257 | 293 |
|
| 258 | 294 |
int b = glp_get_col_type(lp, i); |
| 259 | 295 |
double up = glp_get_col_ub(lp, i); |
| 260 | 296 |
if (lo == -INF) {
|
| 261 | 297 |
switch (b) {
|
| 262 | 298 |
case GLP_FR: |
| 263 | 299 |
case GLP_LO: |
| 264 | 300 |
glp_set_col_bnds(lp, i, GLP_FR, lo, up); |
| 265 | 301 |
break; |
| 266 | 302 |
case GLP_UP: |
| 267 | 303 |
break; |
| 268 | 304 |
case GLP_DB: |
| 269 | 305 |
case GLP_FX: |
| 270 | 306 |
glp_set_col_bnds(lp, i, GLP_UP, lo, up); |
| 271 | 307 |
break; |
| 272 | 308 |
default: |
| 273 | 309 |
break; |
| 274 | 310 |
} |
| 275 | 311 |
} else {
|
| 276 | 312 |
switch (b) {
|
| 277 | 313 |
case GLP_FR: |
| 278 | 314 |
case GLP_LO: |
| 279 | 315 |
glp_set_col_bnds(lp, i, GLP_LO, lo, up); |
| 280 | 316 |
break; |
| 281 | 317 |
case GLP_UP: |
| 282 | 318 |
case GLP_DB: |
| 283 | 319 |
case GLP_FX: |
| 284 | 320 |
if (lo == up) |
| 285 | 321 |
glp_set_col_bnds(lp, i, GLP_FX, lo, up); |
| 286 | 322 |
else |
| 287 | 323 |
glp_set_col_bnds(lp, i, GLP_DB, lo, up); |
| 288 | 324 |
break; |
| 289 | 325 |
default: |
| 290 | 326 |
break; |
| 291 | 327 |
} |
| 292 | 328 |
} |
| 293 | 329 |
} |
| 294 | 330 |
|
| 295 | 331 |
GlpkBase::Value GlpkBase::_getColLowerBound(int i) const {
|
| 296 | 332 |
int b = glp_get_col_type(lp, i); |
| 297 | 333 |
switch (b) {
|
| 298 | 334 |
case GLP_LO: |
| 299 | 335 |
case GLP_DB: |
| 300 | 336 |
case GLP_FX: |
| 301 | 337 |
return glp_get_col_lb(lp, i); |
| 302 | 338 |
default: |
| 303 | 339 |
return -INF; |
| 304 | 340 |
} |
| 305 | 341 |
} |
| 306 | 342 |
|
| 307 | 343 |
void GlpkBase::_setColUpperBound(int i, Value up) {
|
| 308 | 344 |
LEMON_ASSERT(up != -INF, "Invalid bound"); |
| 309 | 345 |
|
| 310 | 346 |
int b = glp_get_col_type(lp, i); |
| 311 | 347 |
double lo = glp_get_col_lb(lp, i); |
| 312 | 348 |
if (up == INF) {
|
| 313 | 349 |
switch (b) {
|
| 314 | 350 |
case GLP_FR: |
| 315 | 351 |
case GLP_LO: |
| 316 | 352 |
break; |
| 317 | 353 |
case GLP_UP: |
| 318 | 354 |
glp_set_col_bnds(lp, i, GLP_FR, lo, up); |
| 319 | 355 |
break; |
| 320 | 356 |
case GLP_DB: |
| 321 | 357 |
case GLP_FX: |
| 322 | 358 |
glp_set_col_bnds(lp, i, GLP_LO, lo, up); |
| 323 | 359 |
break; |
| 324 | 360 |
default: |
| 325 | 361 |
break; |
| 326 | 362 |
} |
| 327 | 363 |
} else {
|
| 328 | 364 |
switch (b) {
|
| 329 | 365 |
case GLP_FR: |
| 330 | 366 |
glp_set_col_bnds(lp, i, GLP_UP, lo, up); |
| 331 | 367 |
break; |
| 332 | 368 |
case GLP_UP: |
| 333 | 369 |
glp_set_col_bnds(lp, i, GLP_UP, lo, up); |
| 334 | 370 |
break; |
| 335 | 371 |
case GLP_LO: |
| 336 | 372 |
case GLP_DB: |
| 337 | 373 |
case GLP_FX: |
| 338 | 374 |
if (lo == up) |
| 339 | 375 |
glp_set_col_bnds(lp, i, GLP_FX, lo, up); |
| 340 | 376 |
else |
| 341 | 377 |
glp_set_col_bnds(lp, i, GLP_DB, lo, up); |
| 342 | 378 |
break; |
| 343 | 379 |
default: |
| 344 | 380 |
break; |
| 345 | 381 |
} |
| 346 | 382 |
} |
| 347 | 383 |
|
| 348 | 384 |
} |
| 349 | 385 |
|
| 350 | 386 |
GlpkBase::Value GlpkBase::_getColUpperBound(int i) const {
|
| 351 | 387 |
int b = glp_get_col_type(lp, i); |
| 352 | 388 |
switch (b) {
|
| 353 | 389 |
case GLP_UP: |
| 354 | 390 |
case GLP_DB: |
| 355 | 391 |
case GLP_FX: |
| 356 | 392 |
return glp_get_col_ub(lp, i); |
| 357 | 393 |
default: |
| 358 | 394 |
return INF; |
| 359 | 395 |
} |
| 360 | 396 |
} |
| 361 | 397 |
|
| 362 | 398 |
void GlpkBase::_setRowLowerBound(int i, Value lo) {
|
| 363 | 399 |
LEMON_ASSERT(lo != INF, "Invalid bound"); |
| 364 | 400 |
|
| 365 | 401 |
int b = glp_get_row_type(lp, i); |
| 366 | 402 |
double up = glp_get_row_ub(lp, i); |
| 367 | 403 |
if (lo == -INF) {
|
| 368 | 404 |
switch (b) {
|
| 369 | 405 |
case GLP_FR: |
| 370 | 406 |
case GLP_LO: |
| 371 | 407 |
glp_set_row_bnds(lp, i, GLP_FR, lo, up); |
| 372 | 408 |
break; |
| 373 | 409 |
case GLP_UP: |
| 374 | 410 |
break; |
| 375 | 411 |
case GLP_DB: |
| 376 | 412 |
case GLP_FX: |
| 377 | 413 |
glp_set_row_bnds(lp, i, GLP_UP, lo, up); |
| 378 | 414 |
break; |
| 379 | 415 |
default: |
| 380 | 416 |
break; |
| 381 | 417 |
} |
| 382 | 418 |
} else {
|
| 383 | 419 |
switch (b) {
|
| 384 | 420 |
case GLP_FR: |
| 385 | 421 |
case GLP_LO: |
| 386 | 422 |
glp_set_row_bnds(lp, i, GLP_LO, lo, up); |
| 387 | 423 |
break; |
| 388 | 424 |
case GLP_UP: |
| 389 | 425 |
case GLP_DB: |
| 390 | 426 |
case GLP_FX: |
| 391 | 427 |
if (lo == up) |
| 392 | 428 |
glp_set_row_bnds(lp, i, GLP_FX, lo, up); |
| 393 | 429 |
else |
| 394 | 430 |
glp_set_row_bnds(lp, i, GLP_DB, lo, up); |
| 395 | 431 |
break; |
| 396 | 432 |
default: |
| 397 | 433 |
break; |
| 398 | 434 |
} |
| 399 | 435 |
} |
| 400 | 436 |
|
| 401 | 437 |
} |
| 402 | 438 |
|
| 403 | 439 |
GlpkBase::Value GlpkBase::_getRowLowerBound(int i) const {
|
| 404 | 440 |
int b = glp_get_row_type(lp, i); |
| 405 | 441 |
switch (b) {
|
| 406 | 442 |
case GLP_LO: |
| 407 | 443 |
case GLP_DB: |
| 408 | 444 |
case GLP_FX: |
| 409 | 445 |
return glp_get_row_lb(lp, i); |
| 410 | 446 |
default: |
| 411 | 447 |
return -INF; |
| 412 | 448 |
} |
| 413 | 449 |
} |
| 414 | 450 |
|
| 415 | 451 |
void GlpkBase::_setRowUpperBound(int i, Value up) {
|
| 416 | 452 |
LEMON_ASSERT(up != -INF, "Invalid bound"); |
| 417 | 453 |
|
| 418 | 454 |
int b = glp_get_row_type(lp, i); |
| 419 | 455 |
double lo = glp_get_row_lb(lp, i); |
| 420 | 456 |
if (up == INF) {
|
| 421 | 457 |
switch (b) {
|
| 422 | 458 |
case GLP_FR: |
| 423 | 459 |
case GLP_LO: |
| 424 | 460 |
break; |
| 425 | 461 |
case GLP_UP: |
| 426 | 462 |
glp_set_row_bnds(lp, i, GLP_FR, lo, up); |
| 427 | 463 |
break; |
| 428 | 464 |
case GLP_DB: |
| 429 | 465 |
case GLP_FX: |
| 430 | 466 |
glp_set_row_bnds(lp, i, GLP_LO, lo, up); |
| 431 | 467 |
break; |
| 432 | 468 |
default: |
| 433 | 469 |
break; |
| 434 | 470 |
} |
| 435 | 471 |
} else {
|
| 436 | 472 |
switch (b) {
|
| 437 | 473 |
case GLP_FR: |
| 438 | 474 |
glp_set_row_bnds(lp, i, GLP_UP, lo, up); |
| 439 | 475 |
break; |
| 440 | 476 |
case GLP_UP: |
| 441 | 477 |
glp_set_row_bnds(lp, i, GLP_UP, lo, up); |
| 442 | 478 |
break; |
| 443 | 479 |
case GLP_LO: |
| 444 | 480 |
case GLP_DB: |
| 445 | 481 |
case GLP_FX: |
| 446 | 482 |
if (lo == up) |
| 447 | 483 |
glp_set_row_bnds(lp, i, GLP_FX, lo, up); |
| 448 | 484 |
else |
| 449 | 485 |
glp_set_row_bnds(lp, i, GLP_DB, lo, up); |
| 450 | 486 |
break; |
| 451 | 487 |
default: |
| 452 | 488 |
break; |
| 453 | 489 |
} |
| 454 | 490 |
} |
| 455 | 491 |
} |
| 456 | 492 |
|
| 457 | 493 |
GlpkBase::Value GlpkBase::_getRowUpperBound(int i) const {
|
| 458 | 494 |
int b = glp_get_row_type(lp, i); |
| 459 | 495 |
switch (b) {
|
| 460 | 496 |
case GLP_UP: |
| 461 | 497 |
case GLP_DB: |
| 462 | 498 |
case GLP_FX: |
| 463 | 499 |
return glp_get_row_ub(lp, i); |
| 464 | 500 |
default: |
| 465 | 501 |
return INF; |
| 466 | 502 |
} |
| 467 | 503 |
} |
| 468 | 504 |
|
| 469 | 505 |
void GlpkBase::_setObjCoeffs(ExprIterator b, ExprIterator e) {
|
| 470 | 506 |
for (int i = 1; i <= glp_get_num_cols(lp); ++i) {
|
| 471 | 507 |
glp_set_obj_coef(lp, i, 0.0); |
| 472 | 508 |
} |
| 473 | 509 |
for (ExprIterator it = b; it != e; ++it) {
|
| 474 | 510 |
glp_set_obj_coef(lp, it->first, it->second); |
| 475 | 511 |
} |
| 476 | 512 |
} |
| 477 | 513 |
|
| 478 | 514 |
void GlpkBase::_getObjCoeffs(InsertIterator b) const {
|
| 479 | 515 |
for (int i = 1; i <= glp_get_num_cols(lp); ++i) {
|
| 480 | 516 |
Value val = glp_get_obj_coef(lp, i); |
| 481 | 517 |
if (val != 0.0) {
|
| 482 | 518 |
*b = std::make_pair(i, val); |
| 483 | 519 |
++b; |
| 484 | 520 |
} |
| 485 | 521 |
} |
| 486 | 522 |
} |
| 487 | 523 |
|
| 488 | 524 |
void GlpkBase::_setObjCoeff(int i, Value obj_coef) {
|
| 489 | 525 |
//i = 0 means the constant term (shift) |
| 490 | 526 |
glp_set_obj_coef(lp, i, obj_coef); |
| 491 | 527 |
} |
| 492 | 528 |
|
| 493 | 529 |
GlpkBase::Value GlpkBase::_getObjCoeff(int i) const {
|
| 494 | 530 |
//i = 0 means the constant term (shift) |
| 495 | 531 |
return glp_get_obj_coef(lp, i); |
| 496 | 532 |
} |
| 497 | 533 |
|
| 498 | 534 |
void GlpkBase::_setSense(GlpkBase::Sense sense) {
|
| 499 | 535 |
switch (sense) {
|
| 500 | 536 |
case MIN: |
| 501 | 537 |
glp_set_obj_dir(lp, GLP_MIN); |
| 502 | 538 |
break; |
| 503 | 539 |
case MAX: |
| 504 | 540 |
glp_set_obj_dir(lp, GLP_MAX); |
| 505 | 541 |
break; |
| 506 | 542 |
} |
| 507 | 543 |
} |
| 508 | 544 |
|
| 509 | 545 |
GlpkBase::Sense GlpkBase::_getSense() const {
|
| 510 | 546 |
switch(glp_get_obj_dir(lp)) {
|
| 511 | 547 |
case GLP_MIN: |
| 512 | 548 |
return MIN; |
| 513 | 549 |
case GLP_MAX: |
| 514 | 550 |
return MAX; |
| 515 | 551 |
default: |
| 516 | 552 |
LEMON_ASSERT(false, "Wrong sense"); |
| 517 | 553 |
return GlpkBase::Sense(); |
| 518 | 554 |
} |
| 519 | 555 |
} |
| 520 | 556 |
|
| 521 | 557 |
void GlpkBase::_clear() {
|
| 522 | 558 |
glp_erase_prob(lp); |
| 523 | 559 |
rows.clear(); |
| 524 | 560 |
cols.clear(); |
| 525 | 561 |
} |
| 526 | 562 |
|
| 527 | 563 |
void GlpkBase::freeEnv() {
|
| 528 | 564 |
glp_free_env(); |
| 529 | 565 |
} |
| 530 | 566 |
|
| 531 | 567 |
void GlpkBase::_messageLevel(MessageLevel level) {
|
| 532 | 568 |
switch (level) {
|
| 533 | 569 |
case MESSAGE_NOTHING: |
| 534 | 570 |
_message_level = GLP_MSG_OFF; |
| 535 | 571 |
break; |
| 536 | 572 |
case MESSAGE_ERROR: |
| 537 | 573 |
_message_level = GLP_MSG_ERR; |
| 538 | 574 |
break; |
| 539 | 575 |
case MESSAGE_WARNING: |
| 540 | 576 |
_message_level = GLP_MSG_ERR; |
| 541 | 577 |
break; |
| 542 | 578 |
case MESSAGE_NORMAL: |
| 543 | 579 |
_message_level = GLP_MSG_ON; |
| 544 | 580 |
break; |
| 545 | 581 |
case MESSAGE_VERBOSE: |
| 546 | 582 |
_message_level = GLP_MSG_ALL; |
| 547 | 583 |
break; |
| 548 | 584 |
} |
| 549 | 585 |
} |
| 550 | 586 |
|
| 551 | 587 |
GlpkBase::FreeEnvHelper GlpkBase::freeEnvHelper; |
| 552 | 588 |
|
| 553 | 589 |
// GlpkLp members |
| 554 | 590 |
|
| 555 | 591 |
GlpkLp::GlpkLp() |
| 556 | 592 |
: LpBase(), LpSolver(), GlpkBase() {
|
| 557 | 593 |
presolver(false); |
| 558 | 594 |
} |
| 559 | 595 |
|
| 560 | 596 |
GlpkLp::GlpkLp(const GlpkLp& other) |
| 561 | 597 |
: LpBase(other), LpSolver(other), GlpkBase(other) {
|
| 562 | 598 |
presolver(false); |
| 563 | 599 |
} |
| 564 | 600 |
|
| 565 | 601 |
GlpkLp* GlpkLp::newSolver() const { return new GlpkLp; }
|
| 566 | 602 |
GlpkLp* GlpkLp::cloneSolver() const { return new GlpkLp(*this); }
|
| 567 | 603 |
|
| 568 | 604 |
const char* GlpkLp::_solverName() const { return "GlpkLp"; }
|
| 569 | 605 |
|
| 570 | 606 |
void GlpkLp::_clear_temporals() {
|
| 571 | 607 |
_primal_ray.clear(); |
| 572 | 608 |
_dual_ray.clear(); |
| 573 | 609 |
} |
| 574 | 610 |
|
| 575 | 611 |
GlpkLp::SolveExitStatus GlpkLp::_solve() {
|
| 576 | 612 |
return solvePrimal(); |
| 577 | 613 |
} |
| 578 | 614 |
|
| 579 | 615 |
GlpkLp::SolveExitStatus GlpkLp::solvePrimal() {
|
| 580 | 616 |
_clear_temporals(); |
| 581 | 617 |
|
| 582 | 618 |
glp_smcp smcp; |
| 583 | 619 |
glp_init_smcp(&smcp); |
| 584 | 620 |
|
| 585 | 621 |
smcp.msg_lev = _message_level; |
| 586 | 622 |
smcp.presolve = _presolve; |
| 587 | 623 |
|
| 588 | 624 |
// If the basis is not valid we get an error return value. |
| 589 | 625 |
// In this case we can try to create a new basis. |
| 590 | 626 |
switch (glp_simplex(lp, &smcp)) {
|
| 591 | 627 |
case 0: |
| 592 | 628 |
break; |
| 593 | 629 |
case GLP_EBADB: |
| 594 | 630 |
case GLP_ESING: |
| 595 | 631 |
case GLP_ECOND: |
| 596 | 632 |
glp_term_out(false); |
| 597 | 633 |
glp_adv_basis(lp, 0); |
| 598 | 634 |
glp_term_out(true); |
| 599 | 635 |
if (glp_simplex(lp, &smcp) != 0) return UNSOLVED; |
| 600 | 636 |
break; |
| 601 | 637 |
default: |
| 602 | 638 |
return UNSOLVED; |
| 603 | 639 |
} |
| 604 | 640 |
|
| 605 | 641 |
return SOLVED; |
| 606 | 642 |
} |
| 607 | 643 |
|
| 608 | 644 |
GlpkLp::SolveExitStatus GlpkLp::solveDual() {
|
| 609 | 645 |
_clear_temporals(); |
| 610 | 646 |
|
| 611 | 647 |
glp_smcp smcp; |
| 612 | 648 |
glp_init_smcp(&smcp); |
| 613 | 649 |
|
| 614 | 650 |
smcp.msg_lev = _message_level; |
| 615 | 651 |
smcp.meth = GLP_DUAL; |
| 616 | 652 |
smcp.presolve = _presolve; |
| 617 | 653 |
|
| 618 | 654 |
// If the basis is not valid we get an error return value. |
| 619 | 655 |
// In this case we can try to create a new basis. |
| 620 | 656 |
switch (glp_simplex(lp, &smcp)) {
|
| 621 | 657 |
case 0: |
| 622 | 658 |
break; |
| 623 | 659 |
case GLP_EBADB: |
| 624 | 660 |
case GLP_ESING: |
| 625 | 661 |
case GLP_ECOND: |
| 626 | 662 |
glp_term_out(false); |
| 627 | 663 |
glp_adv_basis(lp, 0); |
| 628 | 664 |
glp_term_out(true); |
| 629 | 665 |
if (glp_simplex(lp, &smcp) != 0) return UNSOLVED; |
| 630 | 666 |
break; |
| 631 | 667 |
default: |
| 632 | 668 |
return UNSOLVED; |
| 633 | 669 |
} |
| 634 | 670 |
return SOLVED; |
| 635 | 671 |
} |
| 636 | 672 |
|
| 637 | 673 |
GlpkLp::Value GlpkLp::_getPrimal(int i) const {
|
| 638 | 674 |
return glp_get_col_prim(lp, i); |
| 639 | 675 |
} |
| 640 | 676 |
|
| 641 | 677 |
GlpkLp::Value GlpkLp::_getDual(int i) const {
|
| 642 | 678 |
return glp_get_row_dual(lp, i); |
| 643 | 679 |
} |
| 644 | 680 |
|
| 645 | 681 |
GlpkLp::Value GlpkLp::_getPrimalValue() const {
|
| 646 | 682 |
return glp_get_obj_val(lp); |
| 647 | 683 |
} |
| 648 | 684 |
|
| 649 | 685 |
GlpkLp::VarStatus GlpkLp::_getColStatus(int i) const {
|
| 650 | 686 |
switch (glp_get_col_stat(lp, i)) {
|
| 651 | 687 |
case GLP_BS: |
| 652 | 688 |
return BASIC; |
| 653 | 689 |
case GLP_UP: |
| 654 | 690 |
return UPPER; |
| 655 | 691 |
case GLP_LO: |
| 656 | 692 |
return LOWER; |
| 657 | 693 |
case GLP_NF: |
| 658 | 694 |
return FREE; |
| 659 | 695 |
case GLP_NS: |
| 660 | 696 |
return FIXED; |
| 661 | 697 |
default: |
| 662 | 698 |
LEMON_ASSERT(false, "Wrong column status"); |
| 663 | 699 |
return GlpkLp::VarStatus(); |
| 664 | 700 |
} |
| 665 | 701 |
} |
| 666 | 702 |
|
| 667 | 703 |
GlpkLp::VarStatus GlpkLp::_getRowStatus(int i) const {
|
| 668 | 704 |
switch (glp_get_row_stat(lp, i)) {
|
| 669 | 705 |
case GLP_BS: |
| 670 | 706 |
return BASIC; |
| 671 | 707 |
case GLP_UP: |
| 672 | 708 |
return UPPER; |
| 673 | 709 |
case GLP_LO: |
| 674 | 710 |
return LOWER; |
| 675 | 711 |
case GLP_NF: |
| 676 | 712 |
return FREE; |
| 677 | 713 |
case GLP_NS: |
| 678 | 714 |
return FIXED; |
| 679 | 715 |
default: |
| 680 | 716 |
LEMON_ASSERT(false, "Wrong row status"); |
| 681 | 717 |
return GlpkLp::VarStatus(); |
| 682 | 718 |
} |
| 683 | 719 |
} |
| 684 | 720 |
|
| 685 | 721 |
GlpkLp::Value GlpkLp::_getPrimalRay(int i) const {
|
| 686 | 722 |
if (_primal_ray.empty()) {
|
| 687 | 723 |
int row_num = glp_get_num_rows(lp); |
| 688 | 724 |
int col_num = glp_get_num_cols(lp); |
| 689 | 725 |
|
| 690 | 726 |
_primal_ray.resize(col_num + 1, 0.0); |
| 691 | 727 |
|
| 692 | 728 |
int index = glp_get_unbnd_ray(lp); |
| 693 | 729 |
if (index != 0) {
|
| 694 | 730 |
// The primal ray is found in primal simplex second phase |
| 695 | 731 |
LEMON_ASSERT((index <= row_num ? glp_get_row_stat(lp, index) : |
| 696 | 732 |
glp_get_col_stat(lp, index - row_num)) != GLP_BS, |
| 697 | 733 |
"Wrong primal ray"); |
| 698 | 734 |
|
| 699 | 735 |
bool negate = glp_get_obj_dir(lp) == GLP_MAX; |
| 700 | 736 |
|
| 701 | 737 |
if (index > row_num) {
|
| 702 | 738 |
_primal_ray[index - row_num] = 1.0; |
| 703 | 739 |
if (glp_get_col_dual(lp, index - row_num) > 0) {
|
| 704 | 740 |
negate = !negate; |
| 705 | 741 |
} |
| 706 | 742 |
} else {
|
| 707 | 743 |
if (glp_get_row_dual(lp, index) > 0) {
|
| 708 | 744 |
negate = !negate; |
| 709 | 745 |
} |
| 710 | 746 |
} |
| 711 | 747 |
|
| 712 | 748 |
std::vector<int> ray_indexes(row_num + 1); |
| 713 | 749 |
std::vector<Value> ray_values(row_num + 1); |
| 714 | 750 |
int ray_length = glp_eval_tab_col(lp, index, &ray_indexes.front(), |
| 715 | 751 |
&ray_values.front()); |
| 716 | 752 |
|
| 717 | 753 |
for (int i = 1; i <= ray_length; ++i) {
|
| 718 | 754 |
if (ray_indexes[i] > row_num) {
|
| 719 | 755 |
_primal_ray[ray_indexes[i] - row_num] = ray_values[i]; |
| 720 | 756 |
} |
| 721 | 757 |
} |
| 722 | 758 |
|
| 723 | 759 |
if (negate) {
|
| 724 | 760 |
for (int i = 1; i <= col_num; ++i) {
|
| 725 | 761 |
_primal_ray[i] = - _primal_ray[i]; |
| 726 | 762 |
} |
| 727 | 763 |
} |
| 728 | 764 |
} else {
|
| 729 | 765 |
for (int i = 1; i <= col_num; ++i) {
|
| 730 | 766 |
_primal_ray[i] = glp_get_col_prim(lp, i); |
| 731 | 767 |
} |
| 732 | 768 |
} |
| 733 | 769 |
} |
| 734 | 770 |
return _primal_ray[i]; |
| 735 | 771 |
} |
| 736 | 772 |
|
| 737 | 773 |
GlpkLp::Value GlpkLp::_getDualRay(int i) const {
|
| 738 | 774 |
if (_dual_ray.empty()) {
|
| 739 | 775 |
int row_num = glp_get_num_rows(lp); |
| 740 | 776 |
|
| 741 | 777 |
_dual_ray.resize(row_num + 1, 0.0); |
| 742 | 778 |
|
| 743 | 779 |
int index = glp_get_unbnd_ray(lp); |
| 744 | 780 |
if (index != 0) {
|
| 745 | 781 |
// The dual ray is found in dual simplex second phase |
| 746 | 782 |
LEMON_ASSERT((index <= row_num ? glp_get_row_stat(lp, index) : |
| 747 | 783 |
glp_get_col_stat(lp, index - row_num)) == GLP_BS, |
| 748 | 784 |
|
| 749 | 785 |
"Wrong dual ray"); |
| 750 | 786 |
|
| 751 | 787 |
int idx; |
| 752 | 788 |
bool negate = false; |
| 753 | 789 |
|
| 754 | 790 |
if (index > row_num) {
|
| 755 | 791 |
idx = glp_get_col_bind(lp, index - row_num); |
| 756 | 792 |
if (glp_get_col_prim(lp, index - row_num) > |
| 757 | 793 |
glp_get_col_ub(lp, index - row_num)) {
|
| 758 | 794 |
negate = true; |
| 759 | 795 |
} |
| 760 | 796 |
} else {
|
| 761 | 797 |
idx = glp_get_row_bind(lp, index); |
| 762 | 798 |
if (glp_get_row_prim(lp, index) > glp_get_row_ub(lp, index)) {
|
| 763 | 799 |
negate = true; |
| 764 | 800 |
} |
| 765 | 801 |
} |
| 766 | 802 |
|
| 767 | 803 |
_dual_ray[idx] = negate ? - 1.0 : 1.0; |
| 768 | 804 |
|
| 769 | 805 |
glp_btran(lp, &_dual_ray.front()); |
| 770 | 806 |
} else {
|
| 771 | 807 |
double eps = 1e-7; |
| 772 | 808 |
// The dual ray is found in primal simplex first phase |
| 773 | 809 |
// We assume that the glpk minimizes the slack to get feasible solution |
| 774 | 810 |
for (int i = 1; i <= row_num; ++i) {
|
| 775 | 811 |
int index = glp_get_bhead(lp, i); |
| 776 | 812 |
if (index <= row_num) {
|
| 777 | 813 |
double res = glp_get_row_prim(lp, index); |
| 778 | 814 |
if (res > glp_get_row_ub(lp, index) + eps) {
|
| 779 | 815 |
_dual_ray[i] = -1; |
| 780 | 816 |
} else if (res < glp_get_row_lb(lp, index) - eps) {
|
| 781 | 817 |
_dual_ray[i] = 1; |
| 782 | 818 |
} else {
|
| 783 | 819 |
_dual_ray[i] = 0; |
| 784 | 820 |
} |
| 785 | 821 |
_dual_ray[i] *= glp_get_rii(lp, index); |
| 786 | 822 |
} else {
|
| 787 | 823 |
double res = glp_get_col_prim(lp, index - row_num); |
| 788 | 824 |
if (res > glp_get_col_ub(lp, index - row_num) + eps) {
|
| 789 | 825 |
_dual_ray[i] = -1; |
| 790 | 826 |
} else if (res < glp_get_col_lb(lp, index - row_num) - eps) {
|
| 791 | 827 |
_dual_ray[i] = 1; |
| 792 | 828 |
} else {
|
| 793 | 829 |
_dual_ray[i] = 0; |
| 794 | 830 |
} |
| 795 | 831 |
_dual_ray[i] /= glp_get_sjj(lp, index - row_num); |
| 796 | 832 |
} |
| 797 | 833 |
} |
| 798 | 834 |
|
| 799 | 835 |
glp_btran(lp, &_dual_ray.front()); |
| 800 | 836 |
|
| 801 | 837 |
for (int i = 1; i <= row_num; ++i) {
|
| 802 | 838 |
_dual_ray[i] /= glp_get_rii(lp, i); |
| 803 | 839 |
} |
| 804 | 840 |
} |
| 805 | 841 |
} |
| 806 | 842 |
return _dual_ray[i]; |
| 807 | 843 |
} |
| 808 | 844 |
|
| 809 | 845 |
GlpkLp::ProblemType GlpkLp::_getPrimalType() const {
|
| 810 | 846 |
if (glp_get_status(lp) == GLP_OPT) |
| 811 | 847 |
return OPTIMAL; |
| 812 | 848 |
switch (glp_get_prim_stat(lp)) {
|
| 813 | 849 |
case GLP_UNDEF: |
| 814 | 850 |
return UNDEFINED; |
| 815 | 851 |
case GLP_FEAS: |
| 816 | 852 |
case GLP_INFEAS: |
| 817 | 853 |
if (glp_get_dual_stat(lp) == GLP_NOFEAS) {
|
| 818 | 854 |
return UNBOUNDED; |
| 819 | 855 |
} else {
|
| 820 | 856 |
return UNDEFINED; |
| 821 | 857 |
} |
| 822 | 858 |
case GLP_NOFEAS: |
| 823 | 859 |
return INFEASIBLE; |
| 824 | 860 |
default: |
| 825 | 861 |
LEMON_ASSERT(false, "Wrong primal type"); |
| 826 | 862 |
return GlpkLp::ProblemType(); |
| 827 | 863 |
} |
| 828 | 864 |
} |
| 829 | 865 |
|
| 830 | 866 |
GlpkLp::ProblemType GlpkLp::_getDualType() const {
|
| 831 | 867 |
if (glp_get_status(lp) == GLP_OPT) |
| 832 | 868 |
return OPTIMAL; |
| 833 | 869 |
switch (glp_get_dual_stat(lp)) {
|
| 834 | 870 |
case GLP_UNDEF: |
| 835 | 871 |
return UNDEFINED; |
| 836 | 872 |
case GLP_FEAS: |
| 837 | 873 |
case GLP_INFEAS: |
| 838 | 874 |
if (glp_get_prim_stat(lp) == GLP_NOFEAS) {
|
| 839 | 875 |
return UNBOUNDED; |
| 840 | 876 |
} else {
|
| 841 | 877 |
return UNDEFINED; |
| 842 | 878 |
} |
| 843 | 879 |
case GLP_NOFEAS: |
| 844 | 880 |
return INFEASIBLE; |
| 845 | 881 |
default: |
| 846 | 882 |
LEMON_ASSERT(false, "Wrong primal type"); |
| 847 | 883 |
return GlpkLp::ProblemType(); |
| 848 | 884 |
} |
| 849 | 885 |
} |
| 850 | 886 |
|
| 851 | 887 |
void GlpkLp::presolver(bool presolve) {
|
| 852 | 888 |
_presolve = presolve; |
| 853 | 889 |
} |
| 854 | 890 |
|
| 855 | 891 |
// GlpkMip members |
| 856 | 892 |
|
| 857 | 893 |
GlpkMip::GlpkMip() |
| 858 | 894 |
: LpBase(), MipSolver(), GlpkBase() {
|
| 859 | 895 |
} |
| 860 | 896 |
|
| 861 | 897 |
GlpkMip::GlpkMip(const GlpkMip& other) |
| 862 | 898 |
: LpBase(), MipSolver(), GlpkBase(other) {
|
| 863 | 899 |
} |
| 864 | 900 |
|
| 865 | 901 |
void GlpkMip::_setColType(int i, GlpkMip::ColTypes col_type) {
|
| 866 | 902 |
switch (col_type) {
|
| 867 | 903 |
case INTEGER: |
| 868 | 904 |
glp_set_col_kind(lp, i, GLP_IV); |
| 869 | 905 |
break; |
| 870 | 906 |
case REAL: |
| 871 | 907 |
glp_set_col_kind(lp, i, GLP_CV); |
| 872 | 908 |
break; |
| 873 | 909 |
} |
| 874 | 910 |
} |
| 875 | 911 |
|
| 876 | 912 |
GlpkMip::ColTypes GlpkMip::_getColType(int i) const {
|
| 877 | 913 |
switch (glp_get_col_kind(lp, i)) {
|
| 878 | 914 |
case GLP_IV: |
| 879 | 915 |
case GLP_BV: |
| 880 | 916 |
return INTEGER; |
| 881 | 917 |
default: |
| 882 | 918 |
return REAL; |
| 883 | 919 |
} |
| 884 | 920 |
|
| 885 | 921 |
} |
| 886 | 922 |
|
| 887 | 923 |
GlpkMip::SolveExitStatus GlpkMip::_solve() {
|
| 888 | 924 |
glp_smcp smcp; |
| 889 | 925 |
glp_init_smcp(&smcp); |
| 890 | 926 |
|
| 891 | 927 |
smcp.msg_lev = _message_level; |
| 892 | 928 |
smcp.meth = GLP_DUAL; |
| 893 | 929 |
|
| 894 | 930 |
// If the basis is not valid we get an error return value. |
| 895 | 931 |
// In this case we can try to create a new basis. |
| 896 | 932 |
switch (glp_simplex(lp, &smcp)) {
|
| 897 | 933 |
case 0: |
| 898 | 934 |
break; |
| 899 | 935 |
case GLP_EBADB: |
| 900 | 936 |
case GLP_ESING: |
| 901 | 937 |
case GLP_ECOND: |
| 902 | 938 |
glp_term_out(false); |
| 903 | 939 |
glp_adv_basis(lp, 0); |
| 904 | 940 |
glp_term_out(true); |
| 905 | 941 |
if (glp_simplex(lp, &smcp) != 0) return UNSOLVED; |
| 906 | 942 |
break; |
| 907 | 943 |
default: |
| 908 | 944 |
return UNSOLVED; |
| 909 | 945 |
} |
| 910 | 946 |
|
| 911 | 947 |
if (glp_get_status(lp) != GLP_OPT) return SOLVED; |
| 912 | 948 |
|
| 913 | 949 |
glp_iocp iocp; |
| 914 | 950 |
glp_init_iocp(&iocp); |
| 915 | 951 |
|
| 916 | 952 |
iocp.msg_lev = _message_level; |
| 917 | 953 |
|
| 918 | 954 |
if (glp_intopt(lp, &iocp) != 0) return UNSOLVED; |
| 919 | 955 |
return SOLVED; |
| 920 | 956 |
} |
| 921 | 957 |
|
| 922 | 958 |
|
| 923 | 959 |
GlpkMip::ProblemType GlpkMip::_getType() const {
|
| 924 | 960 |
switch (glp_get_status(lp)) {
|
| 925 | 961 |
case GLP_OPT: |
| 926 | 962 |
switch (glp_mip_status(lp)) {
|
| 927 | 963 |
case GLP_UNDEF: |
| 928 | 964 |
return UNDEFINED; |
| 929 | 965 |
case GLP_NOFEAS: |
| 930 | 966 |
return INFEASIBLE; |
| 931 | 967 |
case GLP_FEAS: |
| 932 | 968 |
return FEASIBLE; |
| 933 | 969 |
case GLP_OPT: |
| 934 | 970 |
return OPTIMAL; |
| 935 | 971 |
default: |
| 936 | 972 |
LEMON_ASSERT(false, "Wrong problem type."); |
| 937 | 973 |
return GlpkMip::ProblemType(); |
| 938 | 974 |
} |
| 939 | 975 |
case GLP_NOFEAS: |
| 940 | 976 |
return INFEASIBLE; |
| 941 | 977 |
case GLP_INFEAS: |
| 942 | 978 |
case GLP_FEAS: |
| 943 | 979 |
if (glp_get_dual_stat(lp) == GLP_NOFEAS) {
|
| 944 | 980 |
return UNBOUNDED; |
| 945 | 981 |
} else {
|
| 946 | 982 |
return UNDEFINED; |
| 947 | 983 |
} |
| 948 | 984 |
default: |
| 949 | 985 |
LEMON_ASSERT(false, "Wrong problem type."); |
| 950 | 986 |
return GlpkMip::ProblemType(); |
| 951 | 987 |
} |
| 952 | 988 |
} |
| 953 | 989 |
|
| 954 | 990 |
GlpkMip::Value GlpkMip::_getSol(int i) const {
|
| 955 | 991 |
return glp_mip_col_val(lp, i); |
| 956 | 992 |
} |
| 957 | 993 |
|
| 958 | 994 |
GlpkMip::Value GlpkMip::_getSolValue() const {
|
| 959 | 995 |
return glp_mip_obj_val(lp); |
| 960 | 996 |
} |
| 961 | 997 |
|
| 962 | 998 |
GlpkMip* GlpkMip::newSolver() const { return new GlpkMip; }
|
| 963 | 999 |
GlpkMip* GlpkMip::cloneSolver() const {return new GlpkMip(*this); }
|
| 964 | 1000 |
|
| 965 | 1001 |
const char* GlpkMip::_solverName() const { return "GlpkMip"; }
|
| 966 | 1002 |
|
| 967 | 1003 |
} //END OF NAMESPACE LEMON |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_GLPK_H |
| 20 | 20 |
#define LEMON_GLPK_H |
| 21 | 21 |
|
| 22 | 22 |
///\file |
| 23 | 23 |
///\brief Header of the LEMON-GLPK lp solver interface. |
| 24 | 24 |
///\ingroup lp_group |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/lp_base.h> |
| 27 | 27 |
|
| 28 | 28 |
// forward declaration |
| 29 | 29 |
#if !defined _GLP_PROB && !defined GLP_PROB |
| 30 | 30 |
#define _GLP_PROB |
| 31 | 31 |
#define GLP_PROB |
| 32 | 32 |
typedef struct { double _opaque_prob; } glp_prob;
|
| 33 | 33 |
/* LP/MIP problem object */ |
| 34 | 34 |
#endif |
| 35 | 35 |
|
| 36 | 36 |
namespace lemon {
|
| 37 | 37 |
|
| 38 | 38 |
|
| 39 | 39 |
/// \brief Base interface for the GLPK LP and MIP solver |
| 40 | 40 |
/// |
| 41 | 41 |
/// This class implements the common interface of the GLPK LP and MIP solver. |
| 42 | 42 |
/// \ingroup lp_group |
| 43 | 43 |
class GlpkBase : virtual public LpBase {
|
| 44 | 44 |
protected: |
| 45 | 45 |
|
| 46 | 46 |
typedef glp_prob LPX; |
| 47 | 47 |
glp_prob* lp; |
| 48 | 48 |
|
| 49 | 49 |
GlpkBase(); |
| 50 | 50 |
GlpkBase(const GlpkBase&); |
| 51 | 51 |
virtual ~GlpkBase(); |
| 52 | 52 |
|
| 53 | 53 |
protected: |
| 54 | 54 |
|
| 55 | 55 |
virtual int _addCol(); |
| 56 | 56 |
virtual int _addRow(); |
| 57 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 57 | 58 |
|
| 58 | 59 |
virtual void _eraseCol(int i); |
| 59 | 60 |
virtual void _eraseRow(int i); |
| 60 | 61 |
|
| 61 | 62 |
virtual void _eraseColId(int i); |
| 62 | 63 |
virtual void _eraseRowId(int i); |
| 63 | 64 |
|
| 64 | 65 |
virtual void _getColName(int col, std::string& name) const; |
| 65 | 66 |
virtual void _setColName(int col, const std::string& name); |
| 66 | 67 |
virtual int _colByName(const std::string& name) const; |
| 67 | 68 |
|
| 68 | 69 |
virtual void _getRowName(int row, std::string& name) const; |
| 69 | 70 |
virtual void _setRowName(int row, const std::string& name); |
| 70 | 71 |
virtual int _rowByName(const std::string& name) const; |
| 71 | 72 |
|
| 72 | 73 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
| 73 | 74 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
| 74 | 75 |
|
| 75 | 76 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
| 76 | 77 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
| 77 | 78 |
|
| 78 | 79 |
virtual void _setCoeff(int row, int col, Value value); |
| 79 | 80 |
virtual Value _getCoeff(int row, int col) const; |
| 80 | 81 |
|
| 81 | 82 |
virtual void _setColLowerBound(int i, Value value); |
| 82 | 83 |
virtual Value _getColLowerBound(int i) const; |
| 83 | 84 |
|
| 84 | 85 |
virtual void _setColUpperBound(int i, Value value); |
| 85 | 86 |
virtual Value _getColUpperBound(int i) const; |
| 86 | 87 |
|
| 87 | 88 |
virtual void _setRowLowerBound(int i, Value value); |
| 88 | 89 |
virtual Value _getRowLowerBound(int i) const; |
| 89 | 90 |
|
| 90 | 91 |
virtual void _setRowUpperBound(int i, Value value); |
| 91 | 92 |
virtual Value _getRowUpperBound(int i) const; |
| 92 | 93 |
|
| 93 | 94 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e); |
| 94 | 95 |
virtual void _getObjCoeffs(InsertIterator b) const; |
| 95 | 96 |
|
| 96 | 97 |
virtual void _setObjCoeff(int i, Value obj_coef); |
| 97 | 98 |
virtual Value _getObjCoeff(int i) const; |
| 98 | 99 |
|
| 99 | 100 |
virtual void _setSense(Sense); |
| 100 | 101 |
virtual Sense _getSense() const; |
| 101 | 102 |
|
| 102 | 103 |
virtual void _clear(); |
| 103 | 104 |
|
| 104 | 105 |
virtual void _messageLevel(MessageLevel level); |
| 105 | 106 |
|
| 106 | 107 |
private: |
| 107 | 108 |
|
| 108 | 109 |
static void freeEnv(); |
| 109 | 110 |
|
| 110 | 111 |
struct FreeEnvHelper {
|
| 111 | 112 |
~FreeEnvHelper() {
|
| 112 | 113 |
freeEnv(); |
| 113 | 114 |
} |
| 114 | 115 |
}; |
| 115 | 116 |
|
| 116 | 117 |
static FreeEnvHelper freeEnvHelper; |
| 117 | 118 |
|
| 118 | 119 |
protected: |
| 119 | 120 |
|
| 120 | 121 |
int _message_level; |
| 121 | 122 |
|
| 122 | 123 |
public: |
| 123 | 124 |
|
| 124 | 125 |
///Pointer to the underlying GLPK data structure. |
| 125 | 126 |
LPX *lpx() {return lp;}
|
| 126 | 127 |
///Const pointer to the underlying GLPK data structure. |
| 127 | 128 |
const LPX *lpx() const {return lp;}
|
| 128 | 129 |
|
| 129 | 130 |
///Returns the constraint identifier understood by GLPK. |
| 130 | 131 |
int lpxRow(Row r) const { return rows(id(r)); }
|
| 131 | 132 |
|
| 132 | 133 |
///Returns the variable identifier understood by GLPK. |
| 133 | 134 |
int lpxCol(Col c) const { return cols(id(c)); }
|
| 134 | 135 |
|
| 135 | 136 |
}; |
| 136 | 137 |
|
| 137 | 138 |
/// \brief Interface for the GLPK LP solver |
| 138 | 139 |
/// |
| 139 | 140 |
/// This class implements an interface for the GLPK LP solver. |
| 140 | 141 |
///\ingroup lp_group |
| 141 | 142 |
class GlpkLp : public LpSolver, public GlpkBase {
|
| 142 | 143 |
public: |
| 143 | 144 |
|
| 144 | 145 |
///\e |
| 145 | 146 |
GlpkLp(); |
| 146 | 147 |
///\e |
| 147 | 148 |
GlpkLp(const GlpkLp&); |
| 148 | 149 |
|
| 149 | 150 |
///\e |
| 150 | 151 |
virtual GlpkLp* cloneSolver() const; |
| 151 | 152 |
///\e |
| 152 | 153 |
virtual GlpkLp* newSolver() const; |
| 153 | 154 |
|
| 154 | 155 |
private: |
| 155 | 156 |
|
| 156 | 157 |
mutable std::vector<double> _primal_ray; |
| 157 | 158 |
mutable std::vector<double> _dual_ray; |
| 158 | 159 |
|
| 159 | 160 |
void _clear_temporals(); |
| 160 | 161 |
|
| 161 | 162 |
protected: |
| 162 | 163 |
|
| 163 | 164 |
virtual const char* _solverName() const; |
| 164 | 165 |
|
| 165 | 166 |
virtual SolveExitStatus _solve(); |
| 166 | 167 |
virtual Value _getPrimal(int i) const; |
| 167 | 168 |
virtual Value _getDual(int i) const; |
| 168 | 169 |
|
| 169 | 170 |
virtual Value _getPrimalValue() const; |
| 170 | 171 |
|
| 171 | 172 |
virtual VarStatus _getColStatus(int i) const; |
| 172 | 173 |
virtual VarStatus _getRowStatus(int i) const; |
| 173 | 174 |
|
| 174 | 175 |
virtual Value _getPrimalRay(int i) const; |
| 175 | 176 |
virtual Value _getDualRay(int i) const; |
| 176 | 177 |
|
| 177 | 178 |
virtual ProblemType _getPrimalType() const; |
| 178 | 179 |
virtual ProblemType _getDualType() const; |
| 179 | 180 |
|
| 180 | 181 |
public: |
| 181 | 182 |
|
| 182 | 183 |
///Solve with primal simplex |
| 183 | 184 |
SolveExitStatus solvePrimal(); |
| 184 | 185 |
|
| 185 | 186 |
///Solve with dual simplex |
| 186 | 187 |
SolveExitStatus solveDual(); |
| 187 | 188 |
|
| 188 | 189 |
private: |
| 189 | 190 |
|
| 190 | 191 |
bool _presolve; |
| 191 | 192 |
|
| 192 | 193 |
public: |
| 193 | 194 |
|
| 194 | 195 |
///Turns on or off the presolver |
| 195 | 196 |
|
| 196 | 197 |
///Turns on (\c b is \c true) or off (\c b is \c false) the presolver |
| 197 | 198 |
/// |
| 198 | 199 |
///The presolver is off by default. |
| 199 | 200 |
void presolver(bool presolve); |
| 200 | 201 |
|
| 201 | 202 |
}; |
| 202 | 203 |
|
| 203 | 204 |
/// \brief Interface for the GLPK MIP solver |
| 204 | 205 |
/// |
| 205 | 206 |
/// This class implements an interface for the GLPK MIP solver. |
| 206 | 207 |
///\ingroup lp_group |
| 207 | 208 |
class GlpkMip : public MipSolver, public GlpkBase {
|
| 208 | 209 |
public: |
| 209 | 210 |
|
| 210 | 211 |
///\e |
| 211 | 212 |
GlpkMip(); |
| 212 | 213 |
///\e |
| 213 | 214 |
GlpkMip(const GlpkMip&); |
| 214 | 215 |
|
| 215 | 216 |
virtual GlpkMip* cloneSolver() const; |
| 216 | 217 |
virtual GlpkMip* newSolver() const; |
| 217 | 218 |
|
| 218 | 219 |
protected: |
| 219 | 220 |
|
| 220 | 221 |
virtual const char* _solverName() const; |
| 221 | 222 |
|
| 222 | 223 |
virtual ColTypes _getColType(int col) const; |
| 223 | 224 |
virtual void _setColType(int col, ColTypes col_type); |
| 224 | 225 |
|
| 225 | 226 |
virtual SolveExitStatus _solve(); |
| 226 | 227 |
virtual ProblemType _getType() const; |
| 227 | 228 |
virtual Value _getSol(int i) const; |
| 228 | 229 |
virtual Value _getSolValue() const; |
| 229 | 230 |
|
| 230 | 231 |
}; |
| 231 | 232 |
|
| 232 | 233 |
|
| 233 | 234 |
} //END OF NAMESPACE LEMON |
| 234 | 235 |
|
| 235 | 236 |
#endif //LEMON_GLPK_H |
| 236 | 237 |
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_GOMORY_HU_TREE_H |
| 20 | 20 |
#define LEMON_GOMORY_HU_TREE_H |
| 21 | 21 |
|
| 22 | 22 |
#include <limits> |
| 23 | 23 |
|
| 24 | 24 |
#include <lemon/core.h> |
| 25 | 25 |
#include <lemon/preflow.h> |
| 26 | 26 |
#include <lemon/concept_check.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
|
| 29 | 29 |
/// \ingroup min_cut |
| 30 | 30 |
/// \file |
| 31 | 31 |
/// \brief Gomory-Hu cut tree in graphs. |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
/// \ingroup min_cut |
| 36 | 36 |
/// |
| 37 | 37 |
/// \brief Gomory-Hu cut tree algorithm |
| 38 | 38 |
/// |
| 39 | 39 |
/// The Gomory-Hu tree is a tree on the node set of a given graph, but it |
| 40 | 40 |
/// may contain edges which are not in the original graph. It has the |
| 41 | 41 |
/// property that the minimum capacity edge of the path between two nodes |
| 42 | 42 |
/// in this tree has the same weight as the minimum cut in the graph |
| 43 | 43 |
/// between these nodes. Moreover the components obtained by removing |
| 44 | 44 |
/// this edge from the tree determine the corresponding minimum cut. |
| 45 | 45 |
/// Therefore once this tree is computed, the minimum cut between any pair |
| 46 | 46 |
/// of nodes can easily be obtained. |
| 47 | 47 |
/// |
| 48 | 48 |
/// The algorithm calculates \e n-1 distinct minimum cuts (currently with |
| 49 | 49 |
/// the \ref Preflow algorithm), thus it has \f$O(n^3\sqrt{e})\f$ overall
|
| 50 | 50 |
/// time complexity. It calculates a rooted Gomory-Hu tree. |
| 51 | 51 |
/// The structure of the tree and the edge weights can be |
| 52 | 52 |
/// obtained using \c predNode(), \c predValue() and \c rootDist(). |
| 53 | 53 |
/// The functions \c minCutMap() and \c minCutValue() calculate |
| 54 | 54 |
/// the minimum cut and the minimum cut value between any two nodes |
| 55 | 55 |
/// in the graph. You can also list (iterate on) the nodes and the |
| 56 | 56 |
/// edges of the cuts using \c MinCutNodeIt and \c MinCutEdgeIt. |
| 57 | 57 |
/// |
| 58 | 58 |
/// \tparam GR The type of the undirected graph the algorithm runs on. |
| 59 | 59 |
/// \tparam CAP The type of the edge map containing the capacities. |
| 60 | 60 |
/// The default map type is \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
| 61 | 61 |
#ifdef DOXYGEN |
| 62 | 62 |
template <typename GR, |
| 63 | 63 |
typename CAP> |
| 64 | 64 |
#else |
| 65 | 65 |
template <typename GR, |
| 66 | 66 |
typename CAP = typename GR::template EdgeMap<int> > |
| 67 | 67 |
#endif |
| 68 | 68 |
class GomoryHu {
|
| 69 | 69 |
public: |
| 70 | 70 |
|
| 71 | 71 |
/// The graph type of the algorithm |
| 72 | 72 |
typedef GR Graph; |
| 73 | 73 |
/// The capacity map type of the algorithm |
| 74 | 74 |
typedef CAP Capacity; |
| 75 | 75 |
/// The value type of capacities |
| 76 | 76 |
typedef typename Capacity::Value Value; |
| 77 | 77 |
|
| 78 | 78 |
private: |
| 79 | 79 |
|
| 80 | 80 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 81 | 81 |
|
| 82 | 82 |
const Graph& _graph; |
| 83 | 83 |
const Capacity& _capacity; |
| 84 | 84 |
|
| 85 | 85 |
Node _root; |
| 86 | 86 |
typename Graph::template NodeMap<Node>* _pred; |
| 87 | 87 |
typename Graph::template NodeMap<Value>* _weight; |
| 88 | 88 |
typename Graph::template NodeMap<int>* _order; |
| 89 | 89 |
|
| 90 | 90 |
void createStructures() {
|
| 91 | 91 |
if (!_pred) {
|
| 92 | 92 |
_pred = new typename Graph::template NodeMap<Node>(_graph); |
| 93 | 93 |
} |
| 94 | 94 |
if (!_weight) {
|
| 95 | 95 |
_weight = new typename Graph::template NodeMap<Value>(_graph); |
| 96 | 96 |
} |
| 97 | 97 |
if (!_order) {
|
| 98 | 98 |
_order = new typename Graph::template NodeMap<int>(_graph); |
| 99 | 99 |
} |
| 100 | 100 |
} |
| 101 | 101 |
|
| 102 | 102 |
void destroyStructures() {
|
| 103 | 103 |
if (_pred) {
|
| 104 | 104 |
delete _pred; |
| 105 | 105 |
} |
| 106 | 106 |
if (_weight) {
|
| 107 | 107 |
delete _weight; |
| 108 | 108 |
} |
| 109 | 109 |
if (_order) {
|
| 110 | 110 |
delete _order; |
| 111 | 111 |
} |
| 112 | 112 |
} |
| 113 | 113 |
|
| 114 | 114 |
public: |
| 115 | 115 |
|
| 116 | 116 |
/// \brief Constructor |
| 117 | 117 |
/// |
| 118 | 118 |
/// Constructor. |
| 119 | 119 |
/// \param graph The undirected graph the algorithm runs on. |
| 120 | 120 |
/// \param capacity The edge capacity map. |
| 121 | 121 |
GomoryHu(const Graph& graph, const Capacity& capacity) |
| 122 | 122 |
: _graph(graph), _capacity(capacity), |
| 123 | 123 |
_pred(0), _weight(0), _order(0) |
| 124 | 124 |
{
|
| 125 | 125 |
checkConcept<concepts::ReadMap<Edge, Value>, Capacity>(); |
| 126 | 126 |
} |
| 127 | 127 |
|
| 128 | 128 |
|
| 129 | 129 |
/// \brief Destructor |
| 130 | 130 |
/// |
| 131 | 131 |
/// Destructor. |
| 132 | 132 |
~GomoryHu() {
|
| 133 | 133 |
destroyStructures(); |
| 134 | 134 |
} |
| 135 | 135 |
|
| 136 | 136 |
private: |
| 137 | 137 |
|
| 138 | 138 |
// Initialize the internal data structures |
| 139 | 139 |
void init() {
|
| 140 | 140 |
createStructures(); |
| 141 | 141 |
|
| 142 | 142 |
_root = NodeIt(_graph); |
| 143 | 143 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 144 | 144 |
(*_pred)[n] = _root; |
| 145 | 145 |
(*_order)[n] = -1; |
| 146 | 146 |
} |
| 147 | 147 |
(*_pred)[_root] = INVALID; |
| 148 | 148 |
(*_weight)[_root] = std::numeric_limits<Value>::max(); |
| 149 | 149 |
} |
| 150 | 150 |
|
| 151 | 151 |
|
| 152 | 152 |
// Start the algorithm |
| 153 | 153 |
void start() {
|
| 154 | 154 |
Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID); |
| 155 | 155 |
|
| 156 | 156 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 157 | 157 |
if (n == _root) continue; |
| 158 | 158 |
|
| 159 | 159 |
Node pn = (*_pred)[n]; |
| 160 | 160 |
fa.source(n); |
| 161 | 161 |
fa.target(pn); |
| 162 | 162 |
|
| 163 | 163 |
fa.runMinCut(); |
| 164 | 164 |
|
| 165 | 165 |
(*_weight)[n] = fa.flowValue(); |
| 166 | 166 |
|
| 167 | 167 |
for (NodeIt nn(_graph); nn != INVALID; ++nn) {
|
| 168 | 168 |
if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
|
| 169 | 169 |
(*_pred)[nn] = n; |
| 170 | 170 |
} |
| 171 | 171 |
} |
| 172 | 172 |
if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
|
| 173 | 173 |
(*_pred)[n] = (*_pred)[pn]; |
| 174 | 174 |
(*_pred)[pn] = n; |
| 175 | 175 |
(*_weight)[n] = (*_weight)[pn]; |
| 176 | 176 |
(*_weight)[pn] = fa.flowValue(); |
| 177 | 177 |
} |
| 178 | 178 |
} |
| 179 | 179 |
|
| 180 | 180 |
(*_order)[_root] = 0; |
| 181 | 181 |
int index = 1; |
| 182 | 182 |
|
| 183 | 183 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 184 | 184 |
std::vector<Node> st; |
| 185 | 185 |
Node nn = n; |
| 186 | 186 |
while ((*_order)[nn] == -1) {
|
| 187 | 187 |
st.push_back(nn); |
| 188 | 188 |
nn = (*_pred)[nn]; |
| 189 | 189 |
} |
| 190 | 190 |
while (!st.empty()) {
|
| 191 | 191 |
(*_order)[st.back()] = index++; |
| 192 | 192 |
st.pop_back(); |
| 193 | 193 |
} |
| 194 | 194 |
} |
| 195 | 195 |
} |
| 196 | 196 |
|
| 197 | 197 |
public: |
| 198 | 198 |
|
| 199 | 199 |
///\name Execution Control |
| 200 | 200 |
|
| 201 | 201 |
///@{
|
| 202 | 202 |
|
| 203 | 203 |
/// \brief Run the Gomory-Hu algorithm. |
| 204 | 204 |
/// |
| 205 | 205 |
/// This function runs the Gomory-Hu algorithm. |
| 206 | 206 |
void run() {
|
| 207 | 207 |
init(); |
| 208 | 208 |
start(); |
| 209 | 209 |
} |
| 210 | 210 |
|
| 211 | 211 |
/// @} |
| 212 | 212 |
|
| 213 | 213 |
///\name Query Functions |
| 214 | 214 |
///The results of the algorithm can be obtained using these |
| 215 | 215 |
///functions.\n |
| 216 | 216 |
///\ref run() should be called before using them.\n |
| 217 | 217 |
///See also \ref MinCutNodeIt and \ref MinCutEdgeIt. |
| 218 | 218 |
|
| 219 | 219 |
///@{
|
| 220 | 220 |
|
| 221 | 221 |
/// \brief Return the predecessor node in the Gomory-Hu tree. |
| 222 | 222 |
/// |
| 223 | 223 |
/// This function returns the predecessor node of the given node |
| 224 | 224 |
/// in the Gomory-Hu tree. |
| 225 | 225 |
/// If \c node is the root of the tree, then it returns \c INVALID. |
| 226 | 226 |
/// |
| 227 | 227 |
/// \pre \ref run() must be called before using this function. |
| 228 | 228 |
Node predNode(const Node& node) const {
|
| 229 | 229 |
return (*_pred)[node]; |
| 230 | 230 |
} |
| 231 | 231 |
|
| 232 | 232 |
/// \brief Return the weight of the predecessor edge in the |
| 233 | 233 |
/// Gomory-Hu tree. |
| 234 | 234 |
/// |
| 235 | 235 |
/// This function returns the weight of the predecessor edge of the |
| 236 | 236 |
/// given node in the Gomory-Hu tree. |
| 237 | 237 |
/// If \c node is the root of the tree, the result is undefined. |
| 238 | 238 |
/// |
| 239 | 239 |
/// \pre \ref run() must be called before using this function. |
| 240 | 240 |
Value predValue(const Node& node) const {
|
| 241 | 241 |
return (*_weight)[node]; |
| 242 | 242 |
} |
| 243 | 243 |
|
| 244 | 244 |
/// \brief Return the distance from the root node in the Gomory-Hu tree. |
| 245 | 245 |
/// |
| 246 | 246 |
/// This function returns the distance of the given node from the root |
| 247 | 247 |
/// node in the Gomory-Hu tree. |
| 248 | 248 |
/// |
| 249 | 249 |
/// \pre \ref run() must be called before using this function. |
| 250 | 250 |
int rootDist(const Node& node) const {
|
| 251 | 251 |
return (*_order)[node]; |
| 252 | 252 |
} |
| 253 | 253 |
|
| 254 | 254 |
/// \brief Return the minimum cut value between two nodes |
| 255 | 255 |
/// |
| 256 | 256 |
/// This function returns the minimum cut value between the nodes |
| 257 | 257 |
/// \c s and \c t. |
| 258 | 258 |
/// It finds the nearest common ancestor of the given nodes in the |
| 259 | 259 |
/// Gomory-Hu tree and calculates the minimum weight edge on the |
| 260 | 260 |
/// paths to the ancestor. |
| 261 | 261 |
/// |
| 262 | 262 |
/// \pre \ref run() must be called before using this function. |
| 263 | 263 |
Value minCutValue(const Node& s, const Node& t) const {
|
| 264 | 264 |
Node sn = s, tn = t; |
| 265 | 265 |
Value value = std::numeric_limits<Value>::max(); |
| 266 | 266 |
|
| 267 | 267 |
while (sn != tn) {
|
| 268 | 268 |
if ((*_order)[sn] < (*_order)[tn]) {
|
| 269 | 269 |
if ((*_weight)[tn] <= value) value = (*_weight)[tn]; |
| 270 | 270 |
tn = (*_pred)[tn]; |
| 271 | 271 |
} else {
|
| 272 | 272 |
if ((*_weight)[sn] <= value) value = (*_weight)[sn]; |
| 273 | 273 |
sn = (*_pred)[sn]; |
| 274 | 274 |
} |
| 275 | 275 |
} |
| 276 | 276 |
return value; |
| 277 | 277 |
} |
| 278 | 278 |
|
| 279 | 279 |
/// \brief Return the minimum cut between two nodes |
| 280 | 280 |
/// |
| 281 | 281 |
/// This function returns the minimum cut between the nodes \c s and \c t |
| 282 | 282 |
/// in the \c cutMap parameter by setting the nodes in the component of |
| 283 | 283 |
/// \c s to \c true and the other nodes to \c false. |
| 284 | 284 |
/// |
| 285 | 285 |
/// For higher level interfaces see MinCutNodeIt and MinCutEdgeIt. |
| 286 | 286 |
/// |
| 287 | 287 |
/// \param s The base node. |
| 288 | 288 |
/// \param t The node you want to separate from node \c s. |
| 289 | 289 |
/// \param cutMap The cut will be returned in this map. |
| 290 | 290 |
/// It must be a \c bool (or convertible) \ref concepts::ReadWriteMap |
| 291 | 291 |
/// "ReadWriteMap" on the graph nodes. |
| 292 | 292 |
/// |
| 293 | 293 |
/// \return The value of the minimum cut between \c s and \c t. |
| 294 | 294 |
/// |
| 295 | 295 |
/// \pre \ref run() must be called before using this function. |
| 296 | 296 |
template <typename CutMap> |
| 297 | 297 |
Value minCutMap(const Node& s, ///< |
| 298 | 298 |
const Node& t, |
| 299 | 299 |
///< |
| 300 | 300 |
CutMap& cutMap |
| 301 | 301 |
///< |
| 302 | 302 |
) const {
|
| 303 | 303 |
Node sn = s, tn = t; |
| 304 | 304 |
bool s_root=false; |
| 305 | 305 |
Node rn = INVALID; |
| 306 | 306 |
Value value = std::numeric_limits<Value>::max(); |
| 307 | 307 |
|
| 308 | 308 |
while (sn != tn) {
|
| 309 | 309 |
if ((*_order)[sn] < (*_order)[tn]) {
|
| 310 | 310 |
if ((*_weight)[tn] <= value) {
|
| 311 | 311 |
rn = tn; |
| 312 | 312 |
s_root = false; |
| 313 | 313 |
value = (*_weight)[tn]; |
| 314 | 314 |
} |
| 315 | 315 |
tn = (*_pred)[tn]; |
| 316 | 316 |
} else {
|
| 317 | 317 |
if ((*_weight)[sn] <= value) {
|
| 318 | 318 |
rn = sn; |
| 319 | 319 |
s_root = true; |
| 320 | 320 |
value = (*_weight)[sn]; |
| 321 | 321 |
} |
| 322 | 322 |
sn = (*_pred)[sn]; |
| 323 | 323 |
} |
| 324 | 324 |
} |
| 325 | 325 |
|
| 326 | 326 |
typename Graph::template NodeMap<bool> reached(_graph, false); |
| 327 | 327 |
reached[_root] = true; |
| 328 | 328 |
cutMap.set(_root, !s_root); |
| 329 | 329 |
reached[rn] = true; |
| 330 | 330 |
cutMap.set(rn, s_root); |
| 331 | 331 |
|
| 332 | 332 |
std::vector<Node> st; |
| 333 | 333 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 334 | 334 |
st.clear(); |
| 335 | 335 |
Node nn = n; |
| 336 | 336 |
while (!reached[nn]) {
|
| 337 | 337 |
st.push_back(nn); |
| 338 | 338 |
nn = (*_pred)[nn]; |
| 339 | 339 |
} |
| 340 | 340 |
while (!st.empty()) {
|
| 341 | 341 |
cutMap.set(st.back(), cutMap[nn]); |
| 342 | 342 |
st.pop_back(); |
| 343 | 343 |
} |
| 344 | 344 |
} |
| 345 | 345 |
|
| 346 | 346 |
return value; |
| 347 | 347 |
} |
| 348 | 348 |
|
| 349 | 349 |
///@} |
| 350 | 350 |
|
| 351 | 351 |
friend class MinCutNodeIt; |
| 352 | 352 |
|
| 353 | 353 |
/// Iterate on the nodes of a minimum cut |
| 354 | 354 |
|
| 355 | 355 |
/// This iterator class lists the nodes of a minimum cut found by |
| 356 | 356 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
| 357 | 357 |
/// and call its \ref GomoryHu::run() "run()" method. |
| 358 | 358 |
/// |
| 359 | 359 |
/// This example counts the nodes in the minimum cut separating \c s from |
| 360 | 360 |
/// \c t. |
| 361 | 361 |
/// \code |
| 362 |
/// |
|
| 362 |
/// GomoryHu<Graph> gom(g, capacities); |
|
| 363 | 363 |
/// gom.run(); |
| 364 | 364 |
/// int cnt=0; |
| 365 |
/// for( |
|
| 365 |
/// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; |
|
| 366 | 366 |
/// \endcode |
| 367 | 367 |
class MinCutNodeIt |
| 368 | 368 |
{
|
| 369 | 369 |
bool _side; |
| 370 | 370 |
typename Graph::NodeIt _node_it; |
| 371 | 371 |
typename Graph::template NodeMap<bool> _cut; |
| 372 | 372 |
public: |
| 373 | 373 |
/// Constructor |
| 374 | 374 |
|
| 375 | 375 |
/// Constructor. |
| 376 | 376 |
/// |
| 377 | 377 |
MinCutNodeIt(GomoryHu const &gomory, |
| 378 | 378 |
///< The GomoryHu class. You must call its |
| 379 | 379 |
/// run() method |
| 380 | 380 |
/// before initializing this iterator. |
| 381 | 381 |
const Node& s, ///< The base node. |
| 382 | 382 |
const Node& t, |
| 383 | 383 |
///< The node you want to separate from node \c s. |
| 384 | 384 |
bool side=true |
| 385 | 385 |
///< If it is \c true (default) then the iterator lists |
| 386 | 386 |
/// the nodes of the component containing \c s, |
| 387 | 387 |
/// otherwise it lists the other component. |
| 388 | 388 |
/// \note As the minimum cut is not always unique, |
| 389 | 389 |
/// \code |
| 390 | 390 |
/// MinCutNodeIt(gomory, s, t, true); |
| 391 | 391 |
/// \endcode |
| 392 | 392 |
/// and |
| 393 | 393 |
/// \code |
| 394 | 394 |
/// MinCutNodeIt(gomory, t, s, false); |
| 395 | 395 |
/// \endcode |
| 396 | 396 |
/// does not necessarily give the same set of nodes. |
| 397 | 397 |
/// However it is ensured that |
| 398 | 398 |
/// \code |
| 399 | 399 |
/// MinCutNodeIt(gomory, s, t, true); |
| 400 | 400 |
/// \endcode |
| 401 | 401 |
/// and |
| 402 | 402 |
/// \code |
| 403 | 403 |
/// MinCutNodeIt(gomory, s, t, false); |
| 404 | 404 |
/// \endcode |
| 405 | 405 |
/// together list each node exactly once. |
| 406 | 406 |
) |
| 407 | 407 |
: _side(side), _cut(gomory._graph) |
| 408 | 408 |
{
|
| 409 | 409 |
gomory.minCutMap(s,t,_cut); |
| 410 | 410 |
for(_node_it=typename Graph::NodeIt(gomory._graph); |
| 411 | 411 |
_node_it!=INVALID && _cut[_node_it]!=_side; |
| 412 | 412 |
++_node_it) {}
|
| 413 | 413 |
} |
| 414 | 414 |
/// Conversion to \c Node |
| 415 | 415 |
|
| 416 | 416 |
/// Conversion to \c Node. |
| 417 | 417 |
/// |
| 418 | 418 |
operator typename Graph::Node() const |
| 419 | 419 |
{
|
| 420 | 420 |
return _node_it; |
| 421 | 421 |
} |
| 422 | 422 |
bool operator==(Invalid) { return _node_it==INVALID; }
|
| 423 | 423 |
bool operator!=(Invalid) { return _node_it!=INVALID; }
|
| 424 | 424 |
/// Next node |
| 425 | 425 |
|
| 426 | 426 |
/// Next node. |
| 427 | 427 |
/// |
| 428 | 428 |
MinCutNodeIt &operator++() |
| 429 | 429 |
{
|
| 430 | 430 |
for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {}
|
| 431 | 431 |
return *this; |
| 432 | 432 |
} |
| 433 | 433 |
/// Postfix incrementation |
| 434 | 434 |
|
| 435 | 435 |
/// Postfix incrementation. |
| 436 | 436 |
/// |
| 437 | 437 |
/// \warning This incrementation |
| 438 | 438 |
/// returns a \c Node, not a \c MinCutNodeIt, as one may |
| 439 | 439 |
/// expect. |
| 440 | 440 |
typename Graph::Node operator++(int) |
| 441 | 441 |
{
|
| 442 | 442 |
typename Graph::Node n=*this; |
| 443 | 443 |
++(*this); |
| 444 | 444 |
return n; |
| 445 | 445 |
} |
| 446 | 446 |
}; |
| 447 | 447 |
|
| 448 | 448 |
friend class MinCutEdgeIt; |
| 449 | 449 |
|
| 450 | 450 |
/// Iterate on the edges of a minimum cut |
| 451 | 451 |
|
| 452 | 452 |
/// This iterator class lists the edges of a minimum cut found by |
| 453 | 453 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
| 454 | 454 |
/// and call its \ref GomoryHu::run() "run()" method. |
| 455 | 455 |
/// |
| 456 | 456 |
/// This example computes the value of the minimum cut separating \c s from |
| 457 | 457 |
/// \c t. |
| 458 | 458 |
/// \code |
| 459 |
/// |
|
| 459 |
/// GomoryHu<Graph> gom(g, capacities); |
|
| 460 | 460 |
/// gom.run(); |
| 461 | 461 |
/// int value=0; |
| 462 |
/// for( |
|
| 462 |
/// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) |
|
| 463 | 463 |
/// value+=capacities[e]; |
| 464 | 464 |
/// \endcode |
| 465 | 465 |
/// The result will be the same as the value returned by |
| 466 | 466 |
/// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)". |
| 467 | 467 |
class MinCutEdgeIt |
| 468 | 468 |
{
|
| 469 | 469 |
bool _side; |
| 470 | 470 |
const Graph &_graph; |
| 471 | 471 |
typename Graph::NodeIt _node_it; |
| 472 | 472 |
typename Graph::OutArcIt _arc_it; |
| 473 | 473 |
typename Graph::template NodeMap<bool> _cut; |
| 474 | 474 |
void step() |
| 475 | 475 |
{
|
| 476 | 476 |
++_arc_it; |
| 477 | 477 |
while(_node_it!=INVALID && _arc_it==INVALID) |
| 478 | 478 |
{
|
| 479 | 479 |
for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {}
|
| 480 | 480 |
if(_node_it!=INVALID) |
| 481 | 481 |
_arc_it=typename Graph::OutArcIt(_graph,_node_it); |
| 482 | 482 |
} |
| 483 | 483 |
} |
| 484 | 484 |
|
| 485 | 485 |
public: |
| 486 | 486 |
/// Constructor |
| 487 | 487 |
|
| 488 | 488 |
/// Constructor. |
| 489 | 489 |
/// |
| 490 | 490 |
MinCutEdgeIt(GomoryHu const &gomory, |
| 491 | 491 |
///< The GomoryHu class. You must call its |
| 492 | 492 |
/// run() method |
| 493 | 493 |
/// before initializing this iterator. |
| 494 | 494 |
const Node& s, ///< The base node. |
| 495 | 495 |
const Node& t, |
| 496 | 496 |
///< The node you want to separate from node \c s. |
| 497 | 497 |
bool side=true |
| 498 | 498 |
///< If it is \c true (default) then the listed arcs |
| 499 | 499 |
/// will be oriented from the |
| 500 | 500 |
/// nodes of the component containing \c s, |
| 501 | 501 |
/// otherwise they will be oriented in the opposite |
| 502 | 502 |
/// direction. |
| 503 | 503 |
) |
| 504 | 504 |
: _graph(gomory._graph), _cut(_graph) |
| 505 | 505 |
{
|
| 506 | 506 |
gomory.minCutMap(s,t,_cut); |
| 507 | 507 |
if(!side) |
| 508 | 508 |
for(typename Graph::NodeIt n(_graph);n!=INVALID;++n) |
| 509 | 509 |
_cut[n]=!_cut[n]; |
| 510 | 510 |
|
| 511 | 511 |
for(_node_it=typename Graph::NodeIt(_graph); |
| 512 | 512 |
_node_it!=INVALID && !_cut[_node_it]; |
| 513 | 513 |
++_node_it) {}
|
| 514 | 514 |
_arc_it = _node_it!=INVALID ? |
| 515 | 515 |
typename Graph::OutArcIt(_graph,_node_it) : INVALID; |
| 516 | 516 |
while(_node_it!=INVALID && _arc_it == INVALID) |
| 517 | 517 |
{
|
| 518 | 518 |
for(++_node_it; _node_it!=INVALID&&!_cut[_node_it]; ++_node_it) {}
|
| 519 | 519 |
if(_node_it!=INVALID) |
| 520 | 520 |
_arc_it= typename Graph::OutArcIt(_graph,_node_it); |
| 521 | 521 |
} |
| 522 | 522 |
while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step(); |
| 523 | 523 |
} |
| 524 | 524 |
/// Conversion to \c Arc |
| 525 | 525 |
|
| 526 | 526 |
/// Conversion to \c Arc. |
| 527 | 527 |
/// |
| 528 | 528 |
operator typename Graph::Arc() const |
| 529 | 529 |
{
|
| 530 | 530 |
return _arc_it; |
| 531 | 531 |
} |
| 532 | 532 |
/// Conversion to \c Edge |
| 533 | 533 |
|
| 534 | 534 |
/// Conversion to \c Edge. |
| 535 | 535 |
/// |
| 536 | 536 |
operator typename Graph::Edge() const |
| 537 | 537 |
{
|
| 538 | 538 |
return _arc_it; |
| 539 | 539 |
} |
| 540 | 540 |
bool operator==(Invalid) { return _node_it==INVALID; }
|
| 541 | 541 |
bool operator!=(Invalid) { return _node_it!=INVALID; }
|
| 542 | 542 |
/// Next edge |
| 543 | 543 |
|
| 544 | 544 |
/// Next edge. |
| 545 | 545 |
/// |
| 546 | 546 |
MinCutEdgeIt &operator++() |
| 547 | 547 |
{
|
| 548 | 548 |
step(); |
| 549 | 549 |
while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step(); |
| 550 | 550 |
return *this; |
| 551 | 551 |
} |
| 552 | 552 |
/// Postfix incrementation |
| 553 | 553 |
|
| 554 | 554 |
/// Postfix incrementation. |
| 555 | 555 |
/// |
| 556 | 556 |
/// \warning This incrementation |
| 557 | 557 |
/// returns an \c Arc, not a \c MinCutEdgeIt, as one may expect. |
| 558 | 558 |
typename Graph::Arc operator++(int) |
| 559 | 559 |
{
|
| 560 | 560 |
typename Graph::Arc e=*this; |
| 561 | 561 |
++(*this); |
| 562 | 562 |
return e; |
| 563 | 563 |
} |
| 564 | 564 |
}; |
| 565 | 565 |
|
| 566 | 566 |
}; |
| 567 | 567 |
|
| 568 | 568 |
} |
| 569 | 569 |
|
| 570 | 570 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef GRID_GRAPH_H |
| 20 | 20 |
#define GRID_GRAPH_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/bits/graph_extender.h> |
| 24 | 24 |
#include <lemon/dim2.h> |
| 25 | 25 |
#include <lemon/assert.h> |
| 26 | 26 |
|
| 27 | 27 |
///\ingroup graphs |
| 28 | 28 |
///\file |
| 29 | 29 |
///\brief GridGraph class. |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
|
| 33 | 33 |
class GridGraphBase {
|
| 34 | 34 |
|
| 35 | 35 |
public: |
| 36 | 36 |
|
| 37 | 37 |
typedef GridGraphBase Graph; |
| 38 | 38 |
|
| 39 | 39 |
class Node; |
| 40 | 40 |
class Edge; |
| 41 | 41 |
class Arc; |
| 42 | 42 |
|
| 43 | 43 |
public: |
| 44 | 44 |
|
| 45 | 45 |
GridGraphBase() {}
|
| 46 | 46 |
|
| 47 | 47 |
protected: |
| 48 | 48 |
|
| 49 | 49 |
void construct(int width, int height) {
|
| 50 | 50 |
_width = width; _height = height; |
| 51 | 51 |
_node_num = width * height; |
| 52 | 52 |
_edge_num = 2 * _node_num - width - height; |
| 53 | 53 |
_edge_limit = _node_num - _width; |
| 54 | 54 |
} |
| 55 | 55 |
|
| 56 | 56 |
public: |
| 57 | 57 |
|
| 58 | 58 |
Node operator()(int i, int j) const {
|
| 59 | 59 |
LEMON_DEBUG(0 <= i && i < _width && |
| 60 | 60 |
0 <= j && j < _height, "Index out of range"); |
| 61 | 61 |
return Node(i + j * _width); |
| 62 | 62 |
} |
| 63 | 63 |
|
| 64 | 64 |
int col(Node n) const {
|
| 65 | 65 |
return n._id % _width; |
| 66 | 66 |
} |
| 67 | 67 |
|
| 68 | 68 |
int row(Node n) const {
|
| 69 | 69 |
return n._id / _width; |
| 70 | 70 |
} |
| 71 | 71 |
|
| 72 | 72 |
dim2::Point<int> pos(Node n) const {
|
| 73 | 73 |
return dim2::Point<int>(col(n), row(n)); |
| 74 | 74 |
} |
| 75 | 75 |
|
| 76 | 76 |
int width() const {
|
| 77 | 77 |
return _width; |
| 78 | 78 |
} |
| 79 | 79 |
|
| 80 | 80 |
int height() const {
|
| 81 | 81 |
return _height; |
| 82 | 82 |
} |
| 83 | 83 |
|
| 84 | 84 |
typedef True NodeNumTag; |
| 85 | 85 |
typedef True EdgeNumTag; |
| 86 | 86 |
typedef True ArcNumTag; |
| 87 | 87 |
|
| 88 | 88 |
int nodeNum() const { return _node_num; }
|
| 89 | 89 |
int edgeNum() const { return _edge_num; }
|
| 90 | 90 |
int arcNum() const { return 2 * _edge_num; }
|
| 91 | 91 |
|
| 92 | 92 |
Node u(Edge edge) const {
|
| 93 | 93 |
if (edge._id < _edge_limit) {
|
| 94 | 94 |
return edge._id; |
| 95 | 95 |
} else {
|
| 96 | 96 |
return (edge._id - _edge_limit) % (_width - 1) + |
| 97 | 97 |
(edge._id - _edge_limit) / (_width - 1) * _width; |
| 98 | 98 |
} |
| 99 | 99 |
} |
| 100 | 100 |
|
| 101 | 101 |
Node v(Edge edge) const {
|
| 102 | 102 |
if (edge._id < _edge_limit) {
|
| 103 | 103 |
return edge._id + _width; |
| 104 | 104 |
} else {
|
| 105 | 105 |
return (edge._id - _edge_limit) % (_width - 1) + |
| 106 | 106 |
(edge._id - _edge_limit) / (_width - 1) * _width + 1; |
| 107 | 107 |
} |
| 108 | 108 |
} |
| 109 | 109 |
|
| 110 | 110 |
Node source(Arc arc) const {
|
| 111 | 111 |
return (arc._id & 1) == 1 ? u(arc) : v(arc); |
| 112 | 112 |
} |
| 113 | 113 |
|
| 114 | 114 |
Node target(Arc arc) const {
|
| 115 | 115 |
return (arc._id & 1) == 1 ? v(arc) : u(arc); |
| 116 | 116 |
} |
| 117 | 117 |
|
| 118 | 118 |
static int id(Node node) { return node._id; }
|
| 119 | 119 |
static int id(Edge edge) { return edge._id; }
|
| 120 | 120 |
static int id(Arc arc) { return arc._id; }
|
| 121 | 121 |
|
| 122 | 122 |
int maxNodeId() const { return _node_num - 1; }
|
| 123 | 123 |
int maxEdgeId() const { return _edge_num - 1; }
|
| 124 | 124 |
int maxArcId() const { return 2 * _edge_num - 1; }
|
| 125 | 125 |
|
| 126 | 126 |
static Node nodeFromId(int id) { return Node(id);}
|
| 127 | 127 |
static Edge edgeFromId(int id) { return Edge(id);}
|
| 128 | 128 |
static Arc arcFromId(int id) { return Arc(id);}
|
| 129 | 129 |
|
| 130 | 130 |
typedef True FindEdgeTag; |
| 131 | 131 |
typedef True FindArcTag; |
| 132 | 132 |
|
| 133 | 133 |
Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
|
| 134 | 134 |
if (prev != INVALID) return INVALID; |
| 135 | 135 |
if (v._id > u._id) {
|
| 136 | 136 |
if (v._id - u._id == _width) |
| 137 | 137 |
return Edge(u._id); |
| 138 | 138 |
if (v._id - u._id == 1 && u._id % _width < _width - 1) {
|
| 139 | 139 |
return Edge(u._id / _width * (_width - 1) + |
| 140 | 140 |
u._id % _width + _edge_limit); |
| 141 | 141 |
} |
| 142 | 142 |
} else {
|
| 143 | 143 |
if (u._id - v._id == _width) |
| 144 | 144 |
return Edge(v._id); |
| 145 | 145 |
if (u._id - v._id == 1 && v._id % _width < _width - 1) {
|
| 146 | 146 |
return Edge(v._id / _width * (_width - 1) + |
| 147 | 147 |
v._id % _width + _edge_limit); |
| 148 | 148 |
} |
| 149 | 149 |
} |
| 150 | 150 |
return INVALID; |
| 151 | 151 |
} |
| 152 | 152 |
|
| 153 | 153 |
Arc findArc(Node u, Node v, Arc prev = INVALID) const {
|
| 154 | 154 |
if (prev != INVALID) return INVALID; |
| 155 | 155 |
if (v._id > u._id) {
|
| 156 | 156 |
if (v._id - u._id == _width) |
| 157 | 157 |
return Arc((u._id << 1) | 1); |
| 158 | 158 |
if (v._id - u._id == 1 && u._id % _width < _width - 1) {
|
| 159 | 159 |
return Arc(((u._id / _width * (_width - 1) + |
| 160 | 160 |
u._id % _width + _edge_limit) << 1) | 1); |
| 161 | 161 |
} |
| 162 | 162 |
} else {
|
| 163 | 163 |
if (u._id - v._id == _width) |
| 164 | 164 |
return Arc(v._id << 1); |
| 165 | 165 |
if (u._id - v._id == 1 && v._id % _width < _width - 1) {
|
| 166 | 166 |
return Arc((v._id / _width * (_width - 1) + |
| 167 | 167 |
v._id % _width + _edge_limit) << 1); |
| 168 | 168 |
} |
| 169 | 169 |
} |
| 170 | 170 |
return INVALID; |
| 171 | 171 |
} |
| 172 | 172 |
|
| 173 | 173 |
class Node {
|
| 174 | 174 |
friend class GridGraphBase; |
| 175 | 175 |
|
| 176 | 176 |
protected: |
| 177 | 177 |
int _id; |
| 178 | 178 |
Node(int id) : _id(id) {}
|
| 179 | 179 |
public: |
| 180 | 180 |
Node() {}
|
| 181 | 181 |
Node (Invalid) : _id(-1) {}
|
| 182 | 182 |
bool operator==(const Node node) const {return _id == node._id;}
|
| 183 | 183 |
bool operator!=(const Node node) const {return _id != node._id;}
|
| 184 | 184 |
bool operator<(const Node node) const {return _id < node._id;}
|
| 185 | 185 |
}; |
| 186 | 186 |
|
| 187 | 187 |
class Edge {
|
| 188 | 188 |
friend class GridGraphBase; |
| 189 | 189 |
friend class Arc; |
| 190 | 190 |
|
| 191 | 191 |
protected: |
| 192 | 192 |
int _id; |
| 193 | 193 |
|
| 194 | 194 |
Edge(int id) : _id(id) {}
|
| 195 | 195 |
|
| 196 | 196 |
public: |
| 197 | 197 |
Edge() {}
|
| 198 | 198 |
Edge (Invalid) : _id(-1) {}
|
| 199 | 199 |
bool operator==(const Edge edge) const {return _id == edge._id;}
|
| 200 | 200 |
bool operator!=(const Edge edge) const {return _id != edge._id;}
|
| 201 | 201 |
bool operator<(const Edge edge) const {return _id < edge._id;}
|
| 202 | 202 |
}; |
| 203 | 203 |
|
| 204 | 204 |
class Arc {
|
| 205 | 205 |
friend class GridGraphBase; |
| 206 | 206 |
|
| 207 | 207 |
protected: |
| 208 | 208 |
int _id; |
| 209 | 209 |
|
| 210 | 210 |
Arc(int id) : _id(id) {}
|
| 211 | 211 |
|
| 212 | 212 |
public: |
| 213 | 213 |
Arc() {}
|
| 214 | 214 |
Arc (Invalid) : _id(-1) {}
|
| 215 | 215 |
operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; }
|
| 216 | 216 |
bool operator==(const Arc arc) const {return _id == arc._id;}
|
| 217 | 217 |
bool operator!=(const Arc arc) const {return _id != arc._id;}
|
| 218 | 218 |
bool operator<(const Arc arc) const {return _id < arc._id;}
|
| 219 | 219 |
}; |
| 220 | 220 |
|
| 221 | 221 |
static bool direction(Arc arc) {
|
| 222 | 222 |
return (arc._id & 1) == 1; |
| 223 | 223 |
} |
| 224 | 224 |
|
| 225 | 225 |
static Arc direct(Edge edge, bool dir) {
|
| 226 | 226 |
return Arc((edge._id << 1) | (dir ? 1 : 0)); |
| 227 | 227 |
} |
| 228 | 228 |
|
| 229 | 229 |
void first(Node& node) const {
|
| 230 | 230 |
node._id = _node_num - 1; |
| 231 | 231 |
} |
| 232 | 232 |
|
| 233 | 233 |
static void next(Node& node) {
|
| 234 | 234 |
--node._id; |
| 235 | 235 |
} |
| 236 | 236 |
|
| 237 | 237 |
void first(Edge& edge) const {
|
| 238 | 238 |
edge._id = _edge_num - 1; |
| 239 | 239 |
} |
| 240 | 240 |
|
| 241 | 241 |
static void next(Edge& edge) {
|
| 242 | 242 |
--edge._id; |
| 243 | 243 |
} |
| 244 | 244 |
|
| 245 | 245 |
void first(Arc& arc) const {
|
| 246 | 246 |
arc._id = 2 * _edge_num - 1; |
| 247 | 247 |
} |
| 248 | 248 |
|
| 249 | 249 |
static void next(Arc& arc) {
|
| 250 | 250 |
--arc._id; |
| 251 | 251 |
} |
| 252 | 252 |
|
| 253 | 253 |
void firstOut(Arc& arc, const Node& node) const {
|
| 254 | 254 |
if (node._id % _width < _width - 1) {
|
| 255 | 255 |
arc._id = (_edge_limit + node._id % _width + |
| 256 | 256 |
(node._id / _width) * (_width - 1)) << 1 | 1; |
| 257 | 257 |
return; |
| 258 | 258 |
} |
| 259 | 259 |
if (node._id < _node_num - _width) {
|
| 260 | 260 |
arc._id = node._id << 1 | 1; |
| 261 | 261 |
return; |
| 262 | 262 |
} |
| 263 | 263 |
if (node._id % _width > 0) {
|
| 264 | 264 |
arc._id = (_edge_limit + node._id % _width + |
| 265 | 265 |
(node._id / _width) * (_width - 1) - 1) << 1; |
| 266 | 266 |
return; |
| 267 | 267 |
} |
| 268 | 268 |
if (node._id >= _width) {
|
| 269 | 269 |
arc._id = (node._id - _width) << 1; |
| 270 | 270 |
return; |
| 271 | 271 |
} |
| 272 | 272 |
arc._id = -1; |
| 273 | 273 |
} |
| 274 | 274 |
|
| 275 | 275 |
void nextOut(Arc& arc) const {
|
| 276 | 276 |
int nid = arc._id >> 1; |
| 277 | 277 |
if ((arc._id & 1) == 1) {
|
| 278 | 278 |
if (nid >= _edge_limit) {
|
| 279 | 279 |
nid = (nid - _edge_limit) % (_width - 1) + |
| 280 | 280 |
(nid - _edge_limit) / (_width - 1) * _width; |
| 281 | 281 |
if (nid < _node_num - _width) {
|
| 282 | 282 |
arc._id = nid << 1 | 1; |
| 283 | 283 |
return; |
| 284 | 284 |
} |
| 285 | 285 |
} |
| 286 | 286 |
if (nid % _width > 0) {
|
| 287 | 287 |
arc._id = (_edge_limit + nid % _width + |
| 288 | 288 |
(nid / _width) * (_width - 1) - 1) << 1; |
| 289 | 289 |
return; |
| 290 | 290 |
} |
| 291 | 291 |
if (nid >= _width) {
|
| 292 | 292 |
arc._id = (nid - _width) << 1; |
| 293 | 293 |
return; |
| 294 | 294 |
} |
| 295 | 295 |
} else {
|
| 296 | 296 |
if (nid >= _edge_limit) {
|
| 297 | 297 |
nid = (nid - _edge_limit) % (_width - 1) + |
| 298 | 298 |
(nid - _edge_limit) / (_width - 1) * _width + 1; |
| 299 | 299 |
if (nid >= _width) {
|
| 300 | 300 |
arc._id = (nid - _width) << 1; |
| 301 | 301 |
return; |
| 302 | 302 |
} |
| 303 | 303 |
} |
| 304 | 304 |
} |
| 305 | 305 |
arc._id = -1; |
| 306 | 306 |
} |
| 307 | 307 |
|
| 308 | 308 |
void firstIn(Arc& arc, const Node& node) const {
|
| 309 | 309 |
if (node._id % _width < _width - 1) {
|
| 310 | 310 |
arc._id = (_edge_limit + node._id % _width + |
| 311 | 311 |
(node._id / _width) * (_width - 1)) << 1; |
| 312 | 312 |
return; |
| 313 | 313 |
} |
| 314 | 314 |
if (node._id < _node_num - _width) {
|
| 315 | 315 |
arc._id = node._id << 1; |
| 316 | 316 |
return; |
| 317 | 317 |
} |
| 318 | 318 |
if (node._id % _width > 0) {
|
| 319 | 319 |
arc._id = (_edge_limit + node._id % _width + |
| 320 | 320 |
(node._id / _width) * (_width - 1) - 1) << 1 | 1; |
| 321 | 321 |
return; |
| 322 | 322 |
} |
| 323 | 323 |
if (node._id >= _width) {
|
| 324 | 324 |
arc._id = (node._id - _width) << 1 | 1; |
| 325 | 325 |
return; |
| 326 | 326 |
} |
| 327 | 327 |
arc._id = -1; |
| 328 | 328 |
} |
| 329 | 329 |
|
| 330 | 330 |
void nextIn(Arc& arc) const {
|
| 331 | 331 |
int nid = arc._id >> 1; |
| 332 | 332 |
if ((arc._id & 1) == 0) {
|
| 333 | 333 |
if (nid >= _edge_limit) {
|
| 334 | 334 |
nid = (nid - _edge_limit) % (_width - 1) + |
| 335 | 335 |
(nid - _edge_limit) / (_width - 1) * _width; |
| 336 | 336 |
if (nid < _node_num - _width) {
|
| 337 | 337 |
arc._id = nid << 1; |
| 338 | 338 |
return; |
| 339 | 339 |
} |
| 340 | 340 |
} |
| 341 | 341 |
if (nid % _width > 0) {
|
| 342 | 342 |
arc._id = (_edge_limit + nid % _width + |
| 343 | 343 |
(nid / _width) * (_width - 1) - 1) << 1 | 1; |
| 344 | 344 |
return; |
| 345 | 345 |
} |
| 346 | 346 |
if (nid >= _width) {
|
| 347 | 347 |
arc._id = (nid - _width) << 1 | 1; |
| 348 | 348 |
return; |
| 349 | 349 |
} |
| 350 | 350 |
} else {
|
| 351 | 351 |
if (nid >= _edge_limit) {
|
| 352 | 352 |
nid = (nid - _edge_limit) % (_width - 1) + |
| 353 | 353 |
(nid - _edge_limit) / (_width - 1) * _width + 1; |
| 354 | 354 |
if (nid >= _width) {
|
| 355 | 355 |
arc._id = (nid - _width) << 1 | 1; |
| 356 | 356 |
return; |
| 357 | 357 |
} |
| 358 | 358 |
} |
| 359 | 359 |
} |
| 360 | 360 |
arc._id = -1; |
| 361 | 361 |
} |
| 362 | 362 |
|
| 363 | 363 |
void firstInc(Edge& edge, bool& dir, const Node& node) const {
|
| 364 | 364 |
if (node._id % _width < _width - 1) {
|
| 365 | 365 |
edge._id = _edge_limit + node._id % _width + |
| 366 | 366 |
(node._id / _width) * (_width - 1); |
| 367 | 367 |
dir = true; |
| 368 | 368 |
return; |
| 369 | 369 |
} |
| 370 | 370 |
if (node._id < _node_num - _width) {
|
| 371 | 371 |
edge._id = node._id; |
| 372 | 372 |
dir = true; |
| 373 | 373 |
return; |
| 374 | 374 |
} |
| 375 | 375 |
if (node._id % _width > 0) {
|
| 376 | 376 |
edge._id = _edge_limit + node._id % _width + |
| 377 | 377 |
(node._id / _width) * (_width - 1) - 1; |
| 378 | 378 |
dir = false; |
| 379 | 379 |
return; |
| 380 | 380 |
} |
| 381 | 381 |
if (node._id >= _width) {
|
| 382 | 382 |
edge._id = node._id - _width; |
| 383 | 383 |
dir = false; |
| 384 | 384 |
return; |
| 385 | 385 |
} |
| 386 | 386 |
edge._id = -1; |
| 387 | 387 |
dir = true; |
| 388 | 388 |
} |
| 389 | 389 |
|
| 390 | 390 |
void nextInc(Edge& edge, bool& dir) const {
|
| 391 | 391 |
int nid = edge._id; |
| 392 | 392 |
if (dir) {
|
| 393 | 393 |
if (nid >= _edge_limit) {
|
| 394 | 394 |
nid = (nid - _edge_limit) % (_width - 1) + |
| 395 | 395 |
(nid - _edge_limit) / (_width - 1) * _width; |
| 396 | 396 |
if (nid < _node_num - _width) {
|
| 397 | 397 |
edge._id = nid; |
| 398 | 398 |
return; |
| 399 | 399 |
} |
| 400 | 400 |
} |
| 401 | 401 |
if (nid % _width > 0) {
|
| 402 | 402 |
edge._id = _edge_limit + nid % _width + |
| 403 | 403 |
(nid / _width) * (_width - 1) - 1; |
| 404 | 404 |
dir = false; |
| 405 | 405 |
return; |
| 406 | 406 |
} |
| 407 | 407 |
if (nid >= _width) {
|
| 408 | 408 |
edge._id = nid - _width; |
| 409 | 409 |
dir = false; |
| 410 | 410 |
return; |
| 411 | 411 |
} |
| 412 | 412 |
} else {
|
| 413 | 413 |
if (nid >= _edge_limit) {
|
| 414 | 414 |
nid = (nid - _edge_limit) % (_width - 1) + |
| 415 | 415 |
(nid - _edge_limit) / (_width - 1) * _width + 1; |
| 416 | 416 |
if (nid >= _width) {
|
| 417 | 417 |
edge._id = nid - _width; |
| 418 | 418 |
return; |
| 419 | 419 |
} |
| 420 | 420 |
} |
| 421 | 421 |
} |
| 422 | 422 |
edge._id = -1; |
| 423 | 423 |
dir = true; |
| 424 | 424 |
} |
| 425 | 425 |
|
| 426 | 426 |
Arc right(Node n) const {
|
| 427 | 427 |
if (n._id % _width < _width - 1) {
|
| 428 | 428 |
return Arc(((_edge_limit + n._id % _width + |
| 429 | 429 |
(n._id / _width) * (_width - 1)) << 1) | 1); |
| 430 | 430 |
} else {
|
| 431 | 431 |
return INVALID; |
| 432 | 432 |
} |
| 433 | 433 |
} |
| 434 | 434 |
|
| 435 | 435 |
Arc left(Node n) const {
|
| 436 | 436 |
if (n._id % _width > 0) {
|
| 437 | 437 |
return Arc((_edge_limit + n._id % _width + |
| 438 | 438 |
(n._id / _width) * (_width - 1) - 1) << 1); |
| 439 | 439 |
} else {
|
| 440 | 440 |
return INVALID; |
| 441 | 441 |
} |
| 442 | 442 |
} |
| 443 | 443 |
|
| 444 | 444 |
Arc up(Node n) const {
|
| 445 | 445 |
if (n._id < _edge_limit) {
|
| 446 | 446 |
return Arc((n._id << 1) | 1); |
| 447 | 447 |
} else {
|
| 448 | 448 |
return INVALID; |
| 449 | 449 |
} |
| 450 | 450 |
} |
| 451 | 451 |
|
| 452 | 452 |
Arc down(Node n) const {
|
| 453 | 453 |
if (n._id >= _width) {
|
| 454 | 454 |
return Arc((n._id - _width) << 1); |
| 455 | 455 |
} else {
|
| 456 | 456 |
return INVALID; |
| 457 | 457 |
} |
| 458 | 458 |
} |
| 459 | 459 |
|
| 460 | 460 |
private: |
| 461 | 461 |
int _width, _height; |
| 462 | 462 |
int _node_num, _edge_num; |
| 463 | 463 |
int _edge_limit; |
| 464 | 464 |
}; |
| 465 | 465 |
|
| 466 | 466 |
|
| 467 | 467 |
typedef GraphExtender<GridGraphBase> ExtendedGridGraphBase; |
| 468 | 468 |
|
| 469 | 469 |
/// \ingroup graphs |
| 470 | 470 |
/// |
| 471 | 471 |
/// \brief Grid graph class |
| 472 | 472 |
/// |
| 473 |
/// This class implements a special graph type. The nodes of the |
|
| 474 |
/// graph can be indexed by two integer \c (i,j) value where \c i is |
|
| 475 |
/// in the \c [0..width()-1] range and j is in the \c |
|
| 476 |
/// [0..height()-1] range. Two nodes are connected in the graph if |
|
| 477 |
/// the indexes differ exactly on one position and exactly one is |
|
| 478 |
/// the difference. The nodes of the graph can be indexed by position |
|
| 479 |
/// with the \c operator()() function. The positions of the nodes can be |
|
| 480 |
/// get with \c pos(), \c col() and \c row() members. The outgoing |
|
| 473 |
/// GridGraph implements a special graph type. The nodes of the |
|
| 474 |
/// graph can be indexed by two integer values \c (i,j) where \c i is |
|
| 475 |
/// in the range <tt>[0..width()-1]</tt> and j is in the range |
|
| 476 |
/// <tt>[0..height()-1]</tt>. Two nodes are connected in the graph if |
|
| 477 |
/// the indices differ exactly on one position and the difference is |
|
| 478 |
/// also exactly one. The nodes of the graph can be obtained by position |
|
| 479 |
/// using the \c operator()() function and the indices of the nodes can |
|
| 480 |
/// be obtained using \c pos(), \c col() and \c row() members. The outgoing |
|
| 481 | 481 |
/// arcs can be retrieved with the \c right(), \c up(), \c left() |
| 482 | 482 |
/// and \c down() functions, where the bottom-left corner is the |
| 483 | 483 |
/// origin. |
| 484 | 484 |
/// |
| 485 |
/// This class is completely static and it needs constant memory space. |
|
| 486 |
/// Thus you can neither add nor delete nodes or edges, however |
|
| 487 |
/// the structure can be resized using resize(). |
|
| 488 |
/// |
|
| 485 | 489 |
/// \image html grid_graph.png |
| 486 | 490 |
/// \image latex grid_graph.eps "Grid graph" width=\textwidth |
| 487 | 491 |
/// |
| 488 | 492 |
/// A short example about the basic usage: |
| 489 | 493 |
///\code |
| 490 | 494 |
/// GridGraph graph(rows, cols); |
| 491 | 495 |
/// GridGraph::NodeMap<int> val(graph); |
| 492 | 496 |
/// for (int i = 0; i < graph.width(); ++i) {
|
| 493 | 497 |
/// for (int j = 0; j < graph.height(); ++j) {
|
| 494 | 498 |
/// val[graph(i, j)] = i + j; |
| 495 | 499 |
/// } |
| 496 | 500 |
/// } |
| 497 | 501 |
///\endcode |
| 498 | 502 |
/// |
| 499 |
/// This graph type fully conforms to the \ref concepts::Graph |
|
| 500 |
/// "Graph concept". |
|
| 503 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
|
| 504 |
/// Most of its member functions and nested classes are documented |
|
| 505 |
/// only in the concept class. |
|
| 501 | 506 |
class GridGraph : public ExtendedGridGraphBase {
|
| 502 | 507 |
typedef ExtendedGridGraphBase Parent; |
| 503 | 508 |
|
| 504 | 509 |
public: |
| 505 | 510 |
|
| 506 |
/// \brief Map to get the indices of the nodes as dim2::Point |
|
| 511 |
/// \brief Map to get the indices of the nodes as \ref dim2::Point |
|
| 512 |
/// "dim2::Point<int>". |
|
| 507 | 513 |
/// |
| 508 |
/// Map to get the indices of the nodes as dim2::Point |
|
| 514 |
/// Map to get the indices of the nodes as \ref dim2::Point |
|
| 515 |
/// "dim2::Point<int>". |
|
| 509 | 516 |
class IndexMap {
|
| 510 | 517 |
public: |
| 511 | 518 |
/// \brief The key type of the map |
| 512 | 519 |
typedef GridGraph::Node Key; |
| 513 | 520 |
/// \brief The value type of the map |
| 514 | 521 |
typedef dim2::Point<int> Value; |
| 515 | 522 |
|
| 516 | 523 |
/// \brief Constructor |
| 517 |
/// |
|
| 518 |
/// Constructor |
|
| 519 | 524 |
IndexMap(const GridGraph& graph) : _graph(graph) {}
|
| 520 | 525 |
|
| 521 | 526 |
/// \brief The subscript operator |
| 522 |
/// |
|
| 523 |
/// The subscript operator. |
|
| 524 | 527 |
Value operator[](Key key) const {
|
| 525 | 528 |
return _graph.pos(key); |
| 526 | 529 |
} |
| 527 | 530 |
|
| 528 | 531 |
private: |
| 529 | 532 |
const GridGraph& _graph; |
| 530 | 533 |
}; |
| 531 | 534 |
|
| 532 | 535 |
/// \brief Map to get the column of the nodes. |
| 533 | 536 |
/// |
| 534 | 537 |
/// Map to get the column of the nodes. |
| 535 | 538 |
class ColMap {
|
| 536 | 539 |
public: |
| 537 | 540 |
/// \brief The key type of the map |
| 538 | 541 |
typedef GridGraph::Node Key; |
| 539 | 542 |
/// \brief The value type of the map |
| 540 | 543 |
typedef int Value; |
| 541 | 544 |
|
| 542 | 545 |
/// \brief Constructor |
| 543 |
/// |
|
| 544 |
/// Constructor |
|
| 545 | 546 |
ColMap(const GridGraph& graph) : _graph(graph) {}
|
| 546 | 547 |
|
| 547 | 548 |
/// \brief The subscript operator |
| 548 |
/// |
|
| 549 |
/// The subscript operator. |
|
| 550 | 549 |
Value operator[](Key key) const {
|
| 551 | 550 |
return _graph.col(key); |
| 552 | 551 |
} |
| 553 | 552 |
|
| 554 | 553 |
private: |
| 555 | 554 |
const GridGraph& _graph; |
| 556 | 555 |
}; |
| 557 | 556 |
|
| 558 | 557 |
/// \brief Map to get the row of the nodes. |
| 559 | 558 |
/// |
| 560 | 559 |
/// Map to get the row of the nodes. |
| 561 | 560 |
class RowMap {
|
| 562 | 561 |
public: |
| 563 | 562 |
/// \brief The key type of the map |
| 564 | 563 |
typedef GridGraph::Node Key; |
| 565 | 564 |
/// \brief The value type of the map |
| 566 | 565 |
typedef int Value; |
| 567 | 566 |
|
| 568 | 567 |
/// \brief Constructor |
| 569 |
/// |
|
| 570 |
/// Constructor |
|
| 571 | 568 |
RowMap(const GridGraph& graph) : _graph(graph) {}
|
| 572 | 569 |
|
| 573 | 570 |
/// \brief The subscript operator |
| 574 |
/// |
|
| 575 |
/// The subscript operator. |
|
| 576 | 571 |
Value operator[](Key key) const {
|
| 577 | 572 |
return _graph.row(key); |
| 578 | 573 |
} |
| 579 | 574 |
|
| 580 | 575 |
private: |
| 581 | 576 |
const GridGraph& _graph; |
| 582 | 577 |
}; |
| 583 | 578 |
|
| 584 | 579 |
/// \brief Constructor |
| 585 | 580 |
/// |
| 586 |
/// Construct a grid graph with given size. |
|
| 581 |
/// Construct a grid graph with the given size. |
|
| 587 | 582 |
GridGraph(int width, int height) { construct(width, height); }
|
| 588 | 583 |
|
| 589 |
/// \brief |
|
| 584 |
/// \brief Resizes the graph |
|
| 590 | 585 |
/// |
| 591 |
/// Resize the graph. The function will fully destroy and rebuild |
|
| 592 |
/// the graph. This cause that the maps of the graph will |
|
| 593 |
/// reallocated automatically and the previous values will be |
|
| 594 |
/// lost. |
|
| 586 |
/// This function resizes the graph. It fully destroys and |
|
| 587 |
/// rebuilds the structure, therefore the maps of the graph will be |
|
| 588 |
/// reallocated automatically and the previous values will be lost. |
|
| 595 | 589 |
void resize(int width, int height) {
|
| 596 | 590 |
Parent::notifier(Arc()).clear(); |
| 597 | 591 |
Parent::notifier(Edge()).clear(); |
| 598 | 592 |
Parent::notifier(Node()).clear(); |
| 599 | 593 |
construct(width, height); |
| 600 | 594 |
Parent::notifier(Node()).build(); |
| 601 | 595 |
Parent::notifier(Edge()).build(); |
| 602 | 596 |
Parent::notifier(Arc()).build(); |
| 603 | 597 |
} |
| 604 | 598 |
|
| 605 | 599 |
/// \brief The node on the given position. |
| 606 | 600 |
/// |
| 607 | 601 |
/// Gives back the node on the given position. |
| 608 | 602 |
Node operator()(int i, int j) const {
|
| 609 | 603 |
return Parent::operator()(i, j); |
| 610 | 604 |
} |
| 611 | 605 |
|
| 612 |
/// \brief |
|
| 606 |
/// \brief The column index of the node. |
|
| 613 | 607 |
/// |
| 614 | 608 |
/// Gives back the column index of the node. |
| 615 | 609 |
int col(Node n) const {
|
| 616 | 610 |
return Parent::col(n); |
| 617 | 611 |
} |
| 618 | 612 |
|
| 619 |
/// \brief |
|
| 613 |
/// \brief The row index of the node. |
|
| 620 | 614 |
/// |
| 621 | 615 |
/// Gives back the row index of the node. |
| 622 | 616 |
int row(Node n) const {
|
| 623 | 617 |
return Parent::row(n); |
| 624 | 618 |
} |
| 625 | 619 |
|
| 626 |
/// \brief |
|
| 620 |
/// \brief The position of the node. |
|
| 627 | 621 |
/// |
| 628 | 622 |
/// Gives back the position of the node, ie. the <tt>(col,row)</tt> pair. |
| 629 | 623 |
dim2::Point<int> pos(Node n) const {
|
| 630 | 624 |
return Parent::pos(n); |
| 631 | 625 |
} |
| 632 | 626 |
|
| 633 |
/// \brief |
|
| 627 |
/// \brief The number of the columns. |
|
| 634 | 628 |
/// |
| 635 | 629 |
/// Gives back the number of the columns. |
| 636 | 630 |
int width() const {
|
| 637 | 631 |
return Parent::width(); |
| 638 | 632 |
} |
| 639 | 633 |
|
| 640 |
/// \brief |
|
| 634 |
/// \brief The number of the rows. |
|
| 641 | 635 |
/// |
| 642 | 636 |
/// Gives back the number of the rows. |
| 643 | 637 |
int height() const {
|
| 644 | 638 |
return Parent::height(); |
| 645 | 639 |
} |
| 646 | 640 |
|
| 647 |
/// \brief |
|
| 641 |
/// \brief The arc goes right from the node. |
|
| 648 | 642 |
/// |
| 649 | 643 |
/// Gives back the arc goes right from the node. If there is not |
| 650 | 644 |
/// outgoing arc then it gives back INVALID. |
| 651 | 645 |
Arc right(Node n) const {
|
| 652 | 646 |
return Parent::right(n); |
| 653 | 647 |
} |
| 654 | 648 |
|
| 655 |
/// \brief |
|
| 649 |
/// \brief The arc goes left from the node. |
|
| 656 | 650 |
/// |
| 657 | 651 |
/// Gives back the arc goes left from the node. If there is not |
| 658 | 652 |
/// outgoing arc then it gives back INVALID. |
| 659 | 653 |
Arc left(Node n) const {
|
| 660 | 654 |
return Parent::left(n); |
| 661 | 655 |
} |
| 662 | 656 |
|
| 663 |
/// \brief |
|
| 657 |
/// \brief The arc goes up from the node. |
|
| 664 | 658 |
/// |
| 665 | 659 |
/// Gives back the arc goes up from the node. If there is not |
| 666 | 660 |
/// outgoing arc then it gives back INVALID. |
| 667 | 661 |
Arc up(Node n) const {
|
| 668 | 662 |
return Parent::up(n); |
| 669 | 663 |
} |
| 670 | 664 |
|
| 671 |
/// \brief |
|
| 665 |
/// \brief The arc goes down from the node. |
|
| 672 | 666 |
/// |
| 673 | 667 |
/// Gives back the arc goes down from the node. If there is not |
| 674 | 668 |
/// outgoing arc then it gives back INVALID. |
| 675 | 669 |
Arc down(Node n) const {
|
| 676 | 670 |
return Parent::down(n); |
| 677 | 671 |
} |
| 678 | 672 |
|
| 679 | 673 |
/// \brief Index map of the grid graph |
| 680 | 674 |
/// |
| 681 | 675 |
/// Just returns an IndexMap for the grid graph. |
| 682 | 676 |
IndexMap indexMap() const {
|
| 683 | 677 |
return IndexMap(*this); |
| 684 | 678 |
} |
| 685 | 679 |
|
| 686 | 680 |
/// \brief Row map of the grid graph |
| 687 | 681 |
/// |
| 688 | 682 |
/// Just returns a RowMap for the grid graph. |
| 689 | 683 |
RowMap rowMap() const {
|
| 690 | 684 |
return RowMap(*this); |
| 691 | 685 |
} |
| 692 | 686 |
|
| 693 | 687 |
/// \brief Column map of the grid graph |
| 694 | 688 |
/// |
| 695 | 689 |
/// Just returns a ColMap for the grid graph. |
| 696 | 690 |
ColMap colMap() const {
|
| 697 | 691 |
return ColMap(*this); |
| 698 | 692 |
} |
| 699 | 693 |
|
| 700 | 694 |
}; |
| 701 | 695 |
|
| 702 | 696 |
} |
| 703 | 697 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef HYPERCUBE_GRAPH_H |
| 20 | 20 |
#define HYPERCUBE_GRAPH_H |
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
#include <lemon/core.h> |
| 24 | 24 |
#include <lemon/assert.h> |
| 25 | 25 |
#include <lemon/bits/graph_extender.h> |
| 26 | 26 |
|
| 27 | 27 |
///\ingroup graphs |
| 28 | 28 |
///\file |
| 29 | 29 |
///\brief HypercubeGraph class. |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
|
| 33 | 33 |
class HypercubeGraphBase {
|
| 34 | 34 |
|
| 35 | 35 |
public: |
| 36 | 36 |
|
| 37 | 37 |
typedef HypercubeGraphBase Graph; |
| 38 | 38 |
|
| 39 | 39 |
class Node; |
| 40 | 40 |
class Edge; |
| 41 | 41 |
class Arc; |
| 42 | 42 |
|
| 43 | 43 |
public: |
| 44 | 44 |
|
| 45 | 45 |
HypercubeGraphBase() {}
|
| 46 | 46 |
|
| 47 | 47 |
protected: |
| 48 | 48 |
|
| 49 | 49 |
void construct(int dim) {
|
| 50 | 50 |
LEMON_ASSERT(dim >= 1, "The number of dimensions must be at least 1."); |
| 51 | 51 |
_dim = dim; |
| 52 | 52 |
_node_num = 1 << dim; |
| 53 | 53 |
_edge_num = dim * (1 << (dim-1)); |
| 54 | 54 |
} |
| 55 | 55 |
|
| 56 | 56 |
public: |
| 57 | 57 |
|
| 58 | 58 |
typedef True NodeNumTag; |
| 59 | 59 |
typedef True EdgeNumTag; |
| 60 | 60 |
typedef True ArcNumTag; |
| 61 | 61 |
|
| 62 | 62 |
int nodeNum() const { return _node_num; }
|
| 63 | 63 |
int edgeNum() const { return _edge_num; }
|
| 64 | 64 |
int arcNum() const { return 2 * _edge_num; }
|
| 65 | 65 |
|
| 66 | 66 |
int maxNodeId() const { return _node_num - 1; }
|
| 67 | 67 |
int maxEdgeId() const { return _edge_num - 1; }
|
| 68 | 68 |
int maxArcId() const { return 2 * _edge_num - 1; }
|
| 69 | 69 |
|
| 70 | 70 |
static Node nodeFromId(int id) { return Node(id); }
|
| 71 | 71 |
static Edge edgeFromId(int id) { return Edge(id); }
|
| 72 | 72 |
static Arc arcFromId(int id) { return Arc(id); }
|
| 73 | 73 |
|
| 74 | 74 |
static int id(Node node) { return node._id; }
|
| 75 | 75 |
static int id(Edge edge) { return edge._id; }
|
| 76 | 76 |
static int id(Arc arc) { return arc._id; }
|
| 77 | 77 |
|
| 78 | 78 |
Node u(Edge edge) const {
|
| 79 | 79 |
int base = edge._id & ((1 << (_dim-1)) - 1); |
| 80 | 80 |
int k = edge._id >> (_dim-1); |
| 81 | 81 |
return ((base >> k) << (k+1)) | (base & ((1 << k) - 1)); |
| 82 | 82 |
} |
| 83 | 83 |
|
| 84 | 84 |
Node v(Edge edge) const {
|
| 85 | 85 |
int base = edge._id & ((1 << (_dim-1)) - 1); |
| 86 | 86 |
int k = edge._id >> (_dim-1); |
| 87 | 87 |
return ((base >> k) << (k+1)) | (base & ((1 << k) - 1)) | (1 << k); |
| 88 | 88 |
} |
| 89 | 89 |
|
| 90 | 90 |
Node source(Arc arc) const {
|
| 91 | 91 |
return (arc._id & 1) == 1 ? u(arc) : v(arc); |
| 92 | 92 |
} |
| 93 | 93 |
|
| 94 | 94 |
Node target(Arc arc) const {
|
| 95 | 95 |
return (arc._id & 1) == 1 ? v(arc) : u(arc); |
| 96 | 96 |
} |
| 97 | 97 |
|
| 98 | 98 |
typedef True FindEdgeTag; |
| 99 | 99 |
typedef True FindArcTag; |
| 100 | 100 |
|
| 101 | 101 |
Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
|
| 102 | 102 |
if (prev != INVALID) return INVALID; |
| 103 | 103 |
int d = u._id ^ v._id; |
| 104 | 104 |
int k = 0; |
| 105 | 105 |
if (d == 0) return INVALID; |
| 106 | 106 |
for ( ; (d & 1) == 0; d >>= 1) ++k; |
| 107 | 107 |
if (d >> 1 != 0) return INVALID; |
| 108 | 108 |
return (k << (_dim-1)) | ((u._id >> (k+1)) << k) | |
| 109 | 109 |
(u._id & ((1 << k) - 1)); |
| 110 | 110 |
} |
| 111 | 111 |
|
| 112 | 112 |
Arc findArc(Node u, Node v, Arc prev = INVALID) const {
|
| 113 | 113 |
Edge edge = findEdge(u, v, prev); |
| 114 | 114 |
if (edge == INVALID) return INVALID; |
| 115 | 115 |
int k = edge._id >> (_dim-1); |
| 116 | 116 |
return ((u._id >> k) & 1) == 1 ? edge._id << 1 : (edge._id << 1) | 1; |
| 117 | 117 |
} |
| 118 | 118 |
|
| 119 | 119 |
class Node {
|
| 120 | 120 |
friend class HypercubeGraphBase; |
| 121 | 121 |
|
| 122 | 122 |
protected: |
| 123 | 123 |
int _id; |
| 124 | 124 |
Node(int id) : _id(id) {}
|
| 125 | 125 |
public: |
| 126 | 126 |
Node() {}
|
| 127 | 127 |
Node (Invalid) : _id(-1) {}
|
| 128 | 128 |
bool operator==(const Node node) const {return _id == node._id;}
|
| 129 | 129 |
bool operator!=(const Node node) const {return _id != node._id;}
|
| 130 | 130 |
bool operator<(const Node node) const {return _id < node._id;}
|
| 131 | 131 |
}; |
| 132 | 132 |
|
| 133 | 133 |
class Edge {
|
| 134 | 134 |
friend class HypercubeGraphBase; |
| 135 | 135 |
friend class Arc; |
| 136 | 136 |
|
| 137 | 137 |
protected: |
| 138 | 138 |
int _id; |
| 139 | 139 |
|
| 140 | 140 |
Edge(int id) : _id(id) {}
|
| 141 | 141 |
|
| 142 | 142 |
public: |
| 143 | 143 |
Edge() {}
|
| 144 | 144 |
Edge (Invalid) : _id(-1) {}
|
| 145 | 145 |
bool operator==(const Edge edge) const {return _id == edge._id;}
|
| 146 | 146 |
bool operator!=(const Edge edge) const {return _id != edge._id;}
|
| 147 | 147 |
bool operator<(const Edge edge) const {return _id < edge._id;}
|
| 148 | 148 |
}; |
| 149 | 149 |
|
| 150 | 150 |
class Arc {
|
| 151 | 151 |
friend class HypercubeGraphBase; |
| 152 | 152 |
|
| 153 | 153 |
protected: |
| 154 | 154 |
int _id; |
| 155 | 155 |
|
| 156 | 156 |
Arc(int id) : _id(id) {}
|
| 157 | 157 |
|
| 158 | 158 |
public: |
| 159 | 159 |
Arc() {}
|
| 160 | 160 |
Arc (Invalid) : _id(-1) {}
|
| 161 | 161 |
operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; }
|
| 162 | 162 |
bool operator==(const Arc arc) const {return _id == arc._id;}
|
| 163 | 163 |
bool operator!=(const Arc arc) const {return _id != arc._id;}
|
| 164 | 164 |
bool operator<(const Arc arc) const {return _id < arc._id;}
|
| 165 | 165 |
}; |
| 166 | 166 |
|
| 167 | 167 |
void first(Node& node) const {
|
| 168 | 168 |
node._id = _node_num - 1; |
| 169 | 169 |
} |
| 170 | 170 |
|
| 171 | 171 |
static void next(Node& node) {
|
| 172 | 172 |
--node._id; |
| 173 | 173 |
} |
| 174 | 174 |
|
| 175 | 175 |
void first(Edge& edge) const {
|
| 176 | 176 |
edge._id = _edge_num - 1; |
| 177 | 177 |
} |
| 178 | 178 |
|
| 179 | 179 |
static void next(Edge& edge) {
|
| 180 | 180 |
--edge._id; |
| 181 | 181 |
} |
| 182 | 182 |
|
| 183 | 183 |
void first(Arc& arc) const {
|
| 184 | 184 |
arc._id = 2 * _edge_num - 1; |
| 185 | 185 |
} |
| 186 | 186 |
|
| 187 | 187 |
static void next(Arc& arc) {
|
| 188 | 188 |
--arc._id; |
| 189 | 189 |
} |
| 190 | 190 |
|
| 191 | 191 |
void firstInc(Edge& edge, bool& dir, const Node& node) const {
|
| 192 | 192 |
edge._id = node._id >> 1; |
| 193 | 193 |
dir = (node._id & 1) == 0; |
| 194 | 194 |
} |
| 195 | 195 |
|
| 196 | 196 |
void nextInc(Edge& edge, bool& dir) const {
|
| 197 | 197 |
Node n = dir ? u(edge) : v(edge); |
| 198 | 198 |
int k = (edge._id >> (_dim-1)) + 1; |
| 199 | 199 |
if (k < _dim) {
|
| 200 | 200 |
edge._id = (k << (_dim-1)) | |
| 201 | 201 |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); |
| 202 | 202 |
dir = ((n._id >> k) & 1) == 0; |
| 203 | 203 |
} else {
|
| 204 | 204 |
edge._id = -1; |
| 205 | 205 |
dir = true; |
| 206 | 206 |
} |
| 207 | 207 |
} |
| 208 | 208 |
|
| 209 | 209 |
void firstOut(Arc& arc, const Node& node) const {
|
| 210 | 210 |
arc._id = ((node._id >> 1) << 1) | (~node._id & 1); |
| 211 | 211 |
} |
| 212 | 212 |
|
| 213 | 213 |
void nextOut(Arc& arc) const {
|
| 214 | 214 |
Node n = (arc._id & 1) == 1 ? u(arc) : v(arc); |
| 215 | 215 |
int k = (arc._id >> _dim) + 1; |
| 216 | 216 |
if (k < _dim) {
|
| 217 | 217 |
arc._id = (k << (_dim-1)) | |
| 218 | 218 |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); |
| 219 | 219 |
arc._id = (arc._id << 1) | (~(n._id >> k) & 1); |
| 220 | 220 |
} else {
|
| 221 | 221 |
arc._id = -1; |
| 222 | 222 |
} |
| 223 | 223 |
} |
| 224 | 224 |
|
| 225 | 225 |
void firstIn(Arc& arc, const Node& node) const {
|
| 226 | 226 |
arc._id = ((node._id >> 1) << 1) | (node._id & 1); |
| 227 | 227 |
} |
| 228 | 228 |
|
| 229 | 229 |
void nextIn(Arc& arc) const {
|
| 230 | 230 |
Node n = (arc._id & 1) == 1 ? v(arc) : u(arc); |
| 231 | 231 |
int k = (arc._id >> _dim) + 1; |
| 232 | 232 |
if (k < _dim) {
|
| 233 | 233 |
arc._id = (k << (_dim-1)) | |
| 234 | 234 |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); |
| 235 | 235 |
arc._id = (arc._id << 1) | ((n._id >> k) & 1); |
| 236 | 236 |
} else {
|
| 237 | 237 |
arc._id = -1; |
| 238 | 238 |
} |
| 239 | 239 |
} |
| 240 | 240 |
|
| 241 | 241 |
static bool direction(Arc arc) {
|
| 242 | 242 |
return (arc._id & 1) == 1; |
| 243 | 243 |
} |
| 244 | 244 |
|
| 245 | 245 |
static Arc direct(Edge edge, bool dir) {
|
| 246 | 246 |
return Arc((edge._id << 1) | (dir ? 1 : 0)); |
| 247 | 247 |
} |
| 248 | 248 |
|
| 249 | 249 |
int dimension() const {
|
| 250 | 250 |
return _dim; |
| 251 | 251 |
} |
| 252 | 252 |
|
| 253 | 253 |
bool projection(Node node, int n) const {
|
| 254 | 254 |
return static_cast<bool>(node._id & (1 << n)); |
| 255 | 255 |
} |
| 256 | 256 |
|
| 257 | 257 |
int dimension(Edge edge) const {
|
| 258 | 258 |
return edge._id >> (_dim-1); |
| 259 | 259 |
} |
| 260 | 260 |
|
| 261 | 261 |
int dimension(Arc arc) const {
|
| 262 | 262 |
return arc._id >> _dim; |
| 263 | 263 |
} |
| 264 | 264 |
|
| 265 | 265 |
int index(Node node) const {
|
| 266 | 266 |
return node._id; |
| 267 | 267 |
} |
| 268 | 268 |
|
| 269 | 269 |
Node operator()(int ix) const {
|
| 270 | 270 |
return Node(ix); |
| 271 | 271 |
} |
| 272 | 272 |
|
| 273 | 273 |
private: |
| 274 | 274 |
int _dim; |
| 275 | 275 |
int _node_num, _edge_num; |
| 276 | 276 |
}; |
| 277 | 277 |
|
| 278 | 278 |
|
| 279 | 279 |
typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase; |
| 280 | 280 |
|
| 281 | 281 |
/// \ingroup graphs |
| 282 | 282 |
/// |
| 283 | 283 |
/// \brief Hypercube graph class |
| 284 | 284 |
/// |
| 285 |
/// This class implements a special graph type. The nodes of the graph |
|
| 286 |
/// are indiced with integers with at most \c dim binary digits. |
|
| 285 |
/// HypercubeGraph implements a special graph type. The nodes of the |
|
| 286 |
/// graph are indexed with integers having at most \c dim binary digits. |
|
| 287 | 287 |
/// Two nodes are connected in the graph if and only if their indices |
| 288 | 288 |
/// differ only on one position in the binary form. |
| 289 |
/// This class is completely static and it needs constant memory space. |
|
| 290 |
/// Thus you can neither add nor delete nodes or edges, however |
|
| 291 |
/// the structure can be resized using resize(). |
|
| 292 |
/// |
|
| 293 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
|
| 294 |
/// Most of its member functions and nested classes are documented |
|
| 295 |
/// only in the concept class. |
|
| 289 | 296 |
/// |
| 290 | 297 |
/// \note The type of the indices is chosen to \c int for efficiency |
| 291 | 298 |
/// reasons. Thus the maximum dimension of this implementation is 26 |
| 292 | 299 |
/// (assuming that the size of \c int is 32 bit). |
| 293 |
/// |
|
| 294 |
/// This graph type fully conforms to the \ref concepts::Graph |
|
| 295 |
/// "Graph concept". |
|
| 296 | 300 |
class HypercubeGraph : public ExtendedHypercubeGraphBase {
|
| 297 | 301 |
typedef ExtendedHypercubeGraphBase Parent; |
| 298 | 302 |
|
| 299 | 303 |
public: |
| 300 | 304 |
|
| 301 | 305 |
/// \brief Constructs a hypercube graph with \c dim dimensions. |
| 302 | 306 |
/// |
| 303 | 307 |
/// Constructs a hypercube graph with \c dim dimensions. |
| 304 | 308 |
HypercubeGraph(int dim) { construct(dim); }
|
| 305 | 309 |
|
| 310 |
/// \brief Resizes the graph |
|
| 311 |
/// |
|
| 312 |
/// This function resizes the graph. It fully destroys and |
|
| 313 |
/// rebuilds the structure, therefore the maps of the graph will be |
|
| 314 |
/// reallocated automatically and the previous values will be lost. |
|
| 315 |
void resize(int dim) {
|
|
| 316 |
Parent::notifier(Arc()).clear(); |
|
| 317 |
Parent::notifier(Edge()).clear(); |
|
| 318 |
Parent::notifier(Node()).clear(); |
|
| 319 |
construct(dim); |
|
| 320 |
Parent::notifier(Node()).build(); |
|
| 321 |
Parent::notifier(Edge()).build(); |
|
| 322 |
Parent::notifier(Arc()).build(); |
|
| 323 |
} |
|
| 324 |
|
|
| 306 | 325 |
/// \brief The number of dimensions. |
| 307 | 326 |
/// |
| 308 | 327 |
/// Gives back the number of dimensions. |
| 309 | 328 |
int dimension() const {
|
| 310 | 329 |
return Parent::dimension(); |
| 311 | 330 |
} |
| 312 | 331 |
|
| 313 | 332 |
/// \brief Returns \c true if the n'th bit of the node is one. |
| 314 | 333 |
/// |
| 315 | 334 |
/// Returns \c true if the n'th bit of the node is one. |
| 316 | 335 |
bool projection(Node node, int n) const {
|
| 317 | 336 |
return Parent::projection(node, n); |
| 318 | 337 |
} |
| 319 | 338 |
|
| 320 | 339 |
/// \brief The dimension id of an edge. |
| 321 | 340 |
/// |
| 322 | 341 |
/// Gives back the dimension id of the given edge. |
| 323 |
/// It is in the [0..dim-1] |
|
| 342 |
/// It is in the range <tt>[0..dim-1]</tt>. |
|
| 324 | 343 |
int dimension(Edge edge) const {
|
| 325 | 344 |
return Parent::dimension(edge); |
| 326 | 345 |
} |
| 327 | 346 |
|
| 328 | 347 |
/// \brief The dimension id of an arc. |
| 329 | 348 |
/// |
| 330 | 349 |
/// Gives back the dimension id of the given arc. |
| 331 |
/// It is in the [0..dim-1] |
|
| 350 |
/// It is in the range <tt>[0..dim-1]</tt>. |
|
| 332 | 351 |
int dimension(Arc arc) const {
|
| 333 | 352 |
return Parent::dimension(arc); |
| 334 | 353 |
} |
| 335 | 354 |
|
| 336 | 355 |
/// \brief The index of a node. |
| 337 | 356 |
/// |
| 338 | 357 |
/// Gives back the index of the given node. |
| 339 | 358 |
/// The lower bits of the integer describes the node. |
| 340 | 359 |
int index(Node node) const {
|
| 341 | 360 |
return Parent::index(node); |
| 342 | 361 |
} |
| 343 | 362 |
|
| 344 | 363 |
/// \brief Gives back a node by its index. |
| 345 | 364 |
/// |
| 346 | 365 |
/// Gives back a node by its index. |
| 347 | 366 |
Node operator()(int ix) const {
|
| 348 | 367 |
return Parent::operator()(ix); |
| 349 | 368 |
} |
| 350 | 369 |
|
| 351 | 370 |
/// \brief Number of nodes. |
| 352 | 371 |
int nodeNum() const { return Parent::nodeNum(); }
|
| 353 | 372 |
/// \brief Number of edges. |
| 354 | 373 |
int edgeNum() const { return Parent::edgeNum(); }
|
| 355 | 374 |
/// \brief Number of arcs. |
| 356 | 375 |
int arcNum() const { return Parent::arcNum(); }
|
| 357 | 376 |
|
| 358 | 377 |
/// \brief Linear combination map. |
| 359 | 378 |
/// |
| 360 | 379 |
/// This map makes possible to give back a linear combination |
| 361 | 380 |
/// for each node. It works like the \c std::accumulate function, |
| 362 | 381 |
/// so it accumulates the \c bf binary function with the \c fv first |
| 363 | 382 |
/// value. The map accumulates only on that positions (dimensions) |
| 364 | 383 |
/// where the index of the node is one. The values that have to be |
| 365 | 384 |
/// accumulated should be given by the \c begin and \c end iterators |
| 366 | 385 |
/// and the length of this range should be equal to the dimension |
| 367 | 386 |
/// number of the graph. |
| 368 | 387 |
/// |
| 369 | 388 |
///\code |
| 370 | 389 |
/// const int DIM = 3; |
| 371 | 390 |
/// HypercubeGraph graph(DIM); |
| 372 | 391 |
/// dim2::Point<double> base[DIM]; |
| 373 | 392 |
/// for (int k = 0; k < DIM; ++k) {
|
| 374 | 393 |
/// base[k].x = rnd(); |
| 375 | 394 |
/// base[k].y = rnd(); |
| 376 | 395 |
/// } |
| 377 | 396 |
/// HypercubeGraph::HyperMap<dim2::Point<double> > |
| 378 | 397 |
/// pos(graph, base, base + DIM, dim2::Point<double>(0.0, 0.0)); |
| 379 | 398 |
///\endcode |
| 380 | 399 |
/// |
| 381 | 400 |
/// \see HypercubeGraph |
| 382 | 401 |
template <typename T, typename BF = std::plus<T> > |
| 383 | 402 |
class HyperMap {
|
| 384 | 403 |
public: |
| 385 | 404 |
|
| 386 | 405 |
/// \brief The key type of the map |
| 387 | 406 |
typedef Node Key; |
| 388 | 407 |
/// \brief The value type of the map |
| 389 | 408 |
typedef T Value; |
| 390 | 409 |
|
| 391 | 410 |
/// \brief Constructor for HyperMap. |
| 392 | 411 |
/// |
| 393 | 412 |
/// Construct a HyperMap for the given graph. The values that have |
| 394 | 413 |
/// to be accumulated should be given by the \c begin and \c end |
| 395 | 414 |
/// iterators and the length of this range should be equal to the |
| 396 | 415 |
/// dimension number of the graph. |
| 397 | 416 |
/// |
| 398 | 417 |
/// This map accumulates the \c bf binary function with the \c fv |
| 399 | 418 |
/// first value on that positions (dimensions) where the index of |
| 400 | 419 |
/// the node is one. |
| 401 | 420 |
template <typename It> |
| 402 | 421 |
HyperMap(const Graph& graph, It begin, It end, |
| 403 | 422 |
T fv = 0, const BF& bf = BF()) |
| 404 | 423 |
: _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf) |
| 405 | 424 |
{
|
| 406 | 425 |
LEMON_ASSERT(_values.size() == graph.dimension(), |
| 407 | 426 |
"Wrong size of range"); |
| 408 | 427 |
} |
| 409 | 428 |
|
| 410 | 429 |
/// \brief The partial accumulated value. |
| 411 | 430 |
/// |
| 412 | 431 |
/// Gives back the partial accumulated value. |
| 413 | 432 |
Value operator[](const Key& k) const {
|
| 414 | 433 |
Value val = _first_value; |
| 415 | 434 |
int id = _graph.index(k); |
| 416 | 435 |
int n = 0; |
| 417 | 436 |
while (id != 0) {
|
| 418 | 437 |
if (id & 1) {
|
| 419 | 438 |
val = _bin_func(val, _values[n]); |
| 420 | 439 |
} |
| 421 | 440 |
id >>= 1; |
| 422 | 441 |
++n; |
| 423 | 442 |
} |
| 424 | 443 |
return val; |
| 425 | 444 |
} |
| 426 | 445 |
|
| 427 | 446 |
private: |
| 428 | 447 |
const Graph& _graph; |
| 429 | 448 |
std::vector<T> _values; |
| 430 | 449 |
T _first_value; |
| 431 | 450 |
BF _bin_func; |
| 432 | 451 |
}; |
| 433 | 452 |
|
| 434 | 453 |
}; |
| 435 | 454 |
|
| 436 | 455 |
} |
| 437 | 456 |
|
| 438 | 457 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_LIST_GRAPH_H |
| 20 | 20 |
#define LEMON_LIST_GRAPH_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup graphs |
| 23 | 23 |
///\file |
| 24 |
///\brief ListDigraph |
|
| 24 |
///\brief ListDigraph and ListGraph classes. |
|
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/error.h> |
| 28 | 28 |
#include <lemon/bits/graph_extender.h> |
| 29 | 29 |
|
| 30 | 30 |
#include <vector> |
| 31 | 31 |
#include <list> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 |
class ListDigraph; |
|
| 36 |
|
|
| 35 | 37 |
class ListDigraphBase {
|
| 36 | 38 |
|
| 37 | 39 |
protected: |
| 38 | 40 |
struct NodeT {
|
| 39 | 41 |
int first_in, first_out; |
| 40 | 42 |
int prev, next; |
| 41 | 43 |
}; |
| 42 | 44 |
|
| 43 | 45 |
struct ArcT {
|
| 44 | 46 |
int target, source; |
| 45 | 47 |
int prev_in, prev_out; |
| 46 | 48 |
int next_in, next_out; |
| 47 | 49 |
}; |
| 48 | 50 |
|
| 49 | 51 |
std::vector<NodeT> nodes; |
| 50 | 52 |
|
| 51 | 53 |
int first_node; |
| 52 | 54 |
|
| 53 | 55 |
int first_free_node; |
| 54 | 56 |
|
| 55 | 57 |
std::vector<ArcT> arcs; |
| 56 | 58 |
|
| 57 | 59 |
int first_free_arc; |
| 58 | 60 |
|
| 59 | 61 |
public: |
| 60 | 62 |
|
| 61 | 63 |
typedef ListDigraphBase Digraph; |
| 62 | 64 |
|
| 63 | 65 |
class Node {
|
| 64 | 66 |
friend class ListDigraphBase; |
| 67 |
friend class ListDigraph; |
|
| 65 | 68 |
protected: |
| 66 | 69 |
|
| 67 | 70 |
int id; |
| 68 | 71 |
explicit Node(int pid) { id = pid;}
|
| 69 | 72 |
|
| 70 | 73 |
public: |
| 71 | 74 |
Node() {}
|
| 72 | 75 |
Node (Invalid) { id = -1; }
|
| 73 | 76 |
bool operator==(const Node& node) const {return id == node.id;}
|
| 74 | 77 |
bool operator!=(const Node& node) const {return id != node.id;}
|
| 75 | 78 |
bool operator<(const Node& node) const {return id < node.id;}
|
| 76 | 79 |
}; |
| 77 | 80 |
|
| 78 | 81 |
class Arc {
|
| 79 | 82 |
friend class ListDigraphBase; |
| 83 |
friend class ListDigraph; |
|
| 80 | 84 |
protected: |
| 81 | 85 |
|
| 82 | 86 |
int id; |
| 83 | 87 |
explicit Arc(int pid) { id = pid;}
|
| 84 | 88 |
|
| 85 | 89 |
public: |
| 86 | 90 |
Arc() {}
|
| 87 | 91 |
Arc (Invalid) { id = -1; }
|
| 88 | 92 |
bool operator==(const Arc& arc) const {return id == arc.id;}
|
| 89 | 93 |
bool operator!=(const Arc& arc) const {return id != arc.id;}
|
| 90 | 94 |
bool operator<(const Arc& arc) const {return id < arc.id;}
|
| 91 | 95 |
}; |
| 92 | 96 |
|
| 93 | 97 |
|
| 94 | 98 |
|
| 95 | 99 |
ListDigraphBase() |
| 96 | 100 |
: nodes(), first_node(-1), |
| 97 | 101 |
first_free_node(-1), arcs(), first_free_arc(-1) {}
|
| 98 | 102 |
|
| 99 | 103 |
|
| 100 | 104 |
int maxNodeId() const { return nodes.size()-1; }
|
| 101 | 105 |
int maxArcId() const { return arcs.size()-1; }
|
| 102 | 106 |
|
| 103 | 107 |
Node source(Arc e) const { return Node(arcs[e.id].source); }
|
| 104 | 108 |
Node target(Arc e) const { return Node(arcs[e.id].target); }
|
| 105 | 109 |
|
| 106 | 110 |
|
| 107 | 111 |
void first(Node& node) const {
|
| 108 | 112 |
node.id = first_node; |
| 109 | 113 |
} |
| 110 | 114 |
|
| 111 | 115 |
void next(Node& node) const {
|
| 112 | 116 |
node.id = nodes[node.id].next; |
| 113 | 117 |
} |
| 114 | 118 |
|
| 115 | 119 |
|
| 116 | 120 |
void first(Arc& arc) const {
|
| 117 | 121 |
int n; |
| 118 | 122 |
for(n = first_node; |
| 119 |
n!=-1 && nodes[n]. |
|
| 123 |
n != -1 && nodes[n].first_out == -1; |
|
| 120 | 124 |
n = nodes[n].next) {}
|
| 121 |
arc.id = (n == -1) ? -1 : nodes[n]. |
|
| 125 |
arc.id = (n == -1) ? -1 : nodes[n].first_out; |
|
| 122 | 126 |
} |
| 123 | 127 |
|
| 124 | 128 |
void next(Arc& arc) const {
|
| 125 |
if (arcs[arc.id].next_in != -1) {
|
|
| 126 |
arc.id = arcs[arc.id].next_in; |
|
| 129 |
if (arcs[arc.id].next_out != -1) {
|
|
| 130 |
arc.id = arcs[arc.id].next_out; |
|
| 127 | 131 |
} else {
|
| 128 | 132 |
int n; |
| 129 |
for(n = nodes[arcs[arc.id].target].next; |
|
| 130 |
n!=-1 && nodes[n].first_in == -1; |
|
| 133 |
for(n = nodes[arcs[arc.id].source].next; |
|
| 134 |
n != -1 && nodes[n].first_out == -1; |
|
| 131 | 135 |
n = nodes[n].next) {}
|
| 132 |
arc.id = (n == -1) ? -1 : nodes[n]. |
|
| 136 |
arc.id = (n == -1) ? -1 : nodes[n].first_out; |
|
| 133 | 137 |
} |
| 134 | 138 |
} |
| 135 | 139 |
|
| 136 | 140 |
void firstOut(Arc &e, const Node& v) const {
|
| 137 | 141 |
e.id = nodes[v.id].first_out; |
| 138 | 142 |
} |
| 139 | 143 |
void nextOut(Arc &e) const {
|
| 140 | 144 |
e.id=arcs[e.id].next_out; |
| 141 | 145 |
} |
| 142 | 146 |
|
| 143 | 147 |
void firstIn(Arc &e, const Node& v) const {
|
| 144 | 148 |
e.id = nodes[v.id].first_in; |
| 145 | 149 |
} |
| 146 | 150 |
void nextIn(Arc &e) const {
|
| 147 | 151 |
e.id=arcs[e.id].next_in; |
| 148 | 152 |
} |
| 149 | 153 |
|
| 150 | 154 |
|
| 151 | 155 |
static int id(Node v) { return v.id; }
|
| 152 | 156 |
static int id(Arc e) { return e.id; }
|
| 153 | 157 |
|
| 154 | 158 |
static Node nodeFromId(int id) { return Node(id);}
|
| 155 | 159 |
static Arc arcFromId(int id) { return Arc(id);}
|
| 156 | 160 |
|
| 157 | 161 |
bool valid(Node n) const {
|
| 158 | 162 |
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) && |
| 159 | 163 |
nodes[n.id].prev != -2; |
| 160 | 164 |
} |
| 161 | 165 |
|
| 162 | 166 |
bool valid(Arc a) const {
|
| 163 | 167 |
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) && |
| 164 | 168 |
arcs[a.id].prev_in != -2; |
| 165 | 169 |
} |
| 166 | 170 |
|
| 167 | 171 |
Node addNode() {
|
| 168 | 172 |
int n; |
| 169 | 173 |
|
| 170 | 174 |
if(first_free_node==-1) {
|
| 171 | 175 |
n = nodes.size(); |
| 172 | 176 |
nodes.push_back(NodeT()); |
| 173 | 177 |
} else {
|
| 174 | 178 |
n = first_free_node; |
| 175 | 179 |
first_free_node = nodes[n].next; |
| 176 | 180 |
} |
| 177 | 181 |
|
| 178 | 182 |
nodes[n].next = first_node; |
| 179 | 183 |
if(first_node != -1) nodes[first_node].prev = n; |
| 180 | 184 |
first_node = n; |
| 181 | 185 |
nodes[n].prev = -1; |
| 182 | 186 |
|
| 183 | 187 |
nodes[n].first_in = nodes[n].first_out = -1; |
| 184 | 188 |
|
| 185 | 189 |
return Node(n); |
| 186 | 190 |
} |
| 187 | 191 |
|
| 188 | 192 |
Arc addArc(Node u, Node v) {
|
| 189 | 193 |
int n; |
| 190 | 194 |
|
| 191 | 195 |
if (first_free_arc == -1) {
|
| 192 | 196 |
n = arcs.size(); |
| 193 | 197 |
arcs.push_back(ArcT()); |
| 194 | 198 |
} else {
|
| 195 | 199 |
n = first_free_arc; |
| 196 | 200 |
first_free_arc = arcs[n].next_in; |
| 197 | 201 |
} |
| 198 | 202 |
|
| 199 | 203 |
arcs[n].source = u.id; |
| 200 | 204 |
arcs[n].target = v.id; |
| 201 | 205 |
|
| 202 | 206 |
arcs[n].next_out = nodes[u.id].first_out; |
| 203 | 207 |
if(nodes[u.id].first_out != -1) {
|
| 204 | 208 |
arcs[nodes[u.id].first_out].prev_out = n; |
| 205 | 209 |
} |
| 206 | 210 |
|
| 207 | 211 |
arcs[n].next_in = nodes[v.id].first_in; |
| 208 | 212 |
if(nodes[v.id].first_in != -1) {
|
| 209 | 213 |
arcs[nodes[v.id].first_in].prev_in = n; |
| 210 | 214 |
} |
| 211 | 215 |
|
| 212 | 216 |
arcs[n].prev_in = arcs[n].prev_out = -1; |
| 213 | 217 |
|
| 214 | 218 |
nodes[u.id].first_out = nodes[v.id].first_in = n; |
| 215 | 219 |
|
| 216 | 220 |
return Arc(n); |
| 217 | 221 |
} |
| 218 | 222 |
|
| 219 | 223 |
void erase(const Node& node) {
|
| 220 | 224 |
int n = node.id; |
| 221 | 225 |
|
| 222 | 226 |
if(nodes[n].next != -1) {
|
| 223 | 227 |
nodes[nodes[n].next].prev = nodes[n].prev; |
| 224 | 228 |
} |
| 225 | 229 |
|
| 226 | 230 |
if(nodes[n].prev != -1) {
|
| 227 | 231 |
nodes[nodes[n].prev].next = nodes[n].next; |
| 228 | 232 |
} else {
|
| 229 | 233 |
first_node = nodes[n].next; |
| 230 | 234 |
} |
| 231 | 235 |
|
| 232 | 236 |
nodes[n].next = first_free_node; |
| 233 | 237 |
first_free_node = n; |
| 234 | 238 |
nodes[n].prev = -2; |
| 235 | 239 |
|
| 236 | 240 |
} |
| 237 | 241 |
|
| 238 | 242 |
void erase(const Arc& arc) {
|
| 239 | 243 |
int n = arc.id; |
| 240 | 244 |
|
| 241 | 245 |
if(arcs[n].next_in!=-1) {
|
| 242 | 246 |
arcs[arcs[n].next_in].prev_in = arcs[n].prev_in; |
| 243 | 247 |
} |
| 244 | 248 |
|
| 245 | 249 |
if(arcs[n].prev_in!=-1) {
|
| 246 | 250 |
arcs[arcs[n].prev_in].next_in = arcs[n].next_in; |
| 247 | 251 |
} else {
|
| 248 | 252 |
nodes[arcs[n].target].first_in = arcs[n].next_in; |
| 249 | 253 |
} |
| 250 | 254 |
|
| 251 | 255 |
|
| 252 | 256 |
if(arcs[n].next_out!=-1) {
|
| 253 | 257 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
| 254 | 258 |
} |
| 255 | 259 |
|
| 256 | 260 |
if(arcs[n].prev_out!=-1) {
|
| 257 | 261 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
| 258 | 262 |
} else {
|
| 259 | 263 |
nodes[arcs[n].source].first_out = arcs[n].next_out; |
| 260 | 264 |
} |
| 261 | 265 |
|
| 262 | 266 |
arcs[n].next_in = first_free_arc; |
| 263 | 267 |
first_free_arc = n; |
| 264 | 268 |
arcs[n].prev_in = -2; |
| 265 | 269 |
} |
| 266 | 270 |
|
| 267 | 271 |
void clear() {
|
| 268 | 272 |
arcs.clear(); |
| 269 | 273 |
nodes.clear(); |
| 270 | 274 |
first_node = first_free_node = first_free_arc = -1; |
| 271 | 275 |
} |
| 272 | 276 |
|
| 273 | 277 |
protected: |
| 274 | 278 |
void changeTarget(Arc e, Node n) |
| 275 | 279 |
{
|
| 276 | 280 |
if(arcs[e.id].next_in != -1) |
| 277 | 281 |
arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in; |
| 278 | 282 |
if(arcs[e.id].prev_in != -1) |
| 279 | 283 |
arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in; |
| 280 | 284 |
else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in; |
| 281 | 285 |
if (nodes[n.id].first_in != -1) {
|
| 282 | 286 |
arcs[nodes[n.id].first_in].prev_in = e.id; |
| 283 | 287 |
} |
| 284 | 288 |
arcs[e.id].target = n.id; |
| 285 | 289 |
arcs[e.id].prev_in = -1; |
| 286 | 290 |
arcs[e.id].next_in = nodes[n.id].first_in; |
| 287 | 291 |
nodes[n.id].first_in = e.id; |
| 288 | 292 |
} |
| 289 | 293 |
void changeSource(Arc e, Node n) |
| 290 | 294 |
{
|
| 291 | 295 |
if(arcs[e.id].next_out != -1) |
| 292 | 296 |
arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out; |
| 293 | 297 |
if(arcs[e.id].prev_out != -1) |
| 294 | 298 |
arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out; |
| 295 | 299 |
else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out; |
| 296 | 300 |
if (nodes[n.id].first_out != -1) {
|
| 297 | 301 |
arcs[nodes[n.id].first_out].prev_out = e.id; |
| 298 | 302 |
} |
| 299 | 303 |
arcs[e.id].source = n.id; |
| 300 | 304 |
arcs[e.id].prev_out = -1; |
| 301 | 305 |
arcs[e.id].next_out = nodes[n.id].first_out; |
| 302 | 306 |
nodes[n.id].first_out = e.id; |
| 303 | 307 |
} |
| 304 | 308 |
|
| 305 | 309 |
}; |
| 306 | 310 |
|
| 307 | 311 |
typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase; |
| 308 | 312 |
|
| 309 | 313 |
/// \addtogroup graphs |
| 310 | 314 |
/// @{
|
| 311 | 315 |
|
| 312 | 316 |
///A general directed graph structure. |
| 313 | 317 |
|
| 314 |
///\ref ListDigraph is a simple and fast <em>directed graph</em> |
|
| 315 |
///implementation based on static linked lists that are stored in |
|
| 318 |
///\ref ListDigraph is a versatile and fast directed graph |
|
| 319 |
///implementation based on linked lists that are stored in |
|
| 316 | 320 |
///\c std::vector structures. |
| 317 | 321 |
/// |
| 318 |
///It conforms to the \ref concepts::Digraph "Digraph concept" and it |
|
| 319 |
///also provides several useful additional functionalities. |
|
| 320 |
/// |
|
| 322 |
///This type fully conforms to the \ref concepts::Digraph "Digraph concept" |
|
| 323 |
///and it also provides several useful additional functionalities. |
|
| 324 |
///Most of its member functions and nested classes are documented |
|
| 321 | 325 |
///only in the concept class. |
| 322 | 326 |
/// |
| 323 | 327 |
///\sa concepts::Digraph |
| 324 |
|
|
| 328 |
///\sa ListGraph |
|
| 325 | 329 |
class ListDigraph : public ExtendedListDigraphBase {
|
| 326 | 330 |
typedef ExtendedListDigraphBase Parent; |
| 327 | 331 |
|
| 328 | 332 |
private: |
| 329 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
|
| 330 |
|
|
| 331 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
|
| 332 |
/// |
|
| 333 |
/// Digraphs are \e not copy constructible. Use DigraphCopy instead. |
|
| 333 | 334 |
ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {};
|
| 334 |
///\brief Assignment of ListDigraph to another one is \e not allowed. |
|
| 335 |
///Use copyDigraph() instead. |
|
| 336 |
|
|
| 337 |
///Assignment of ListDigraph to another one is \e not allowed. |
|
| 338 |
/// |
|
| 335 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
|
| 336 |
/// Use DigraphCopy instead. |
|
| 339 | 337 |
void operator=(const ListDigraph &) {}
|
| 340 | 338 |
public: |
| 341 | 339 |
|
| 342 | 340 |
/// Constructor |
| 343 | 341 |
|
| 344 | 342 |
/// Constructor. |
| 345 | 343 |
/// |
| 346 | 344 |
ListDigraph() {}
|
| 347 | 345 |
|
| 348 | 346 |
///Add a new node to the digraph. |
| 349 | 347 |
|
| 350 |
/// |
|
| 348 |
///This function adds a new node to the digraph. |
|
| 351 | 349 |
///\return The new node. |
| 352 | 350 |
Node addNode() { return Parent::addNode(); }
|
| 353 | 351 |
|
| 354 | 352 |
///Add a new arc to the digraph. |
| 355 | 353 |
|
| 356 |
/// |
|
| 354 |
///This function adds a new arc to the digraph with source node \c s |
|
| 357 | 355 |
///and target node \c t. |
| 358 | 356 |
///\return The new arc. |
| 359 |
Arc addArc( |
|
| 357 |
Arc addArc(Node s, Node t) {
|
|
| 360 | 358 |
return Parent::addArc(s, t); |
| 361 | 359 |
} |
| 362 | 360 |
|
| 363 | 361 |
///\brief Erase a node from the digraph. |
| 364 | 362 |
/// |
| 365 |
///Erase a node from the digraph. |
|
| 366 |
/// |
|
| 367 |
|
|
| 363 |
///This function erases the given node from the digraph. |
|
| 364 |
void erase(Node n) { Parent::erase(n); }
|
|
| 368 | 365 |
|
| 369 | 366 |
///\brief Erase an arc from the digraph. |
| 370 | 367 |
/// |
| 371 |
///Erase an arc from the digraph. |
|
| 372 |
/// |
|
| 373 |
|
|
| 368 |
///This function erases the given arc from the digraph. |
|
| 369 |
void erase(Arc a) { Parent::erase(a); }
|
|
| 374 | 370 |
|
| 375 | 371 |
/// Node validity check |
| 376 | 372 |
|
| 377 |
/// This function gives back true if the given node is valid, |
|
| 378 |
/// ie. it is a real node of the graph. |
|
| 373 |
/// This function gives back \c true if the given node is valid, |
|
| 374 |
/// i.e. it is a real node of the digraph. |
|
| 379 | 375 |
/// |
| 380 |
/// \warning A Node pointing to a removed item |
|
| 381 |
/// could become valid again later if new nodes are |
|
| 382 |
/// |
|
| 376 |
/// \warning A removed node could become valid again if new nodes are |
|
| 377 |
/// added to the digraph. |
|
| 383 | 378 |
bool valid(Node n) const { return Parent::valid(n); }
|
| 384 | 379 |
|
| 385 | 380 |
/// Arc validity check |
| 386 | 381 |
|
| 387 |
/// This function gives back true if the given arc is valid, |
|
| 388 |
/// ie. it is a real arc of the graph. |
|
| 382 |
/// This function gives back \c true if the given arc is valid, |
|
| 383 |
/// i.e. it is a real arc of the digraph. |
|
| 389 | 384 |
/// |
| 390 |
/// \warning An Arc pointing to a removed item |
|
| 391 |
/// could become valid again later if new nodes are |
|
| 392 |
/// |
|
| 385 |
/// \warning A removed arc could become valid again if new arcs are |
|
| 386 |
/// added to the digraph. |
|
| 393 | 387 |
bool valid(Arc a) const { return Parent::valid(a); }
|
| 394 | 388 |
|
| 395 |
/// Change the target of |
|
| 389 |
/// Change the target node of an arc |
|
| 396 | 390 |
|
| 397 |
/// |
|
| 391 |
/// This function changes the target node of the given arc \c a to \c n. |
|
| 398 | 392 |
/// |
| 399 |
///\note The <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s referencing |
|
| 400 |
///the changed arc remain valid. However <tt>InArcIt</tt>s are |
|
| 401 |
/// |
|
| 393 |
///\note \c ArcIt and \c OutArcIt iterators referencing the changed |
|
| 394 |
///arc remain valid, however \c InArcIt iterators are invalidated. |
|
| 402 | 395 |
/// |
| 403 | 396 |
///\warning This functionality cannot be used together with the Snapshot |
| 404 | 397 |
///feature. |
| 405 | 398 |
void changeTarget(Arc a, Node n) {
|
| 406 | 399 |
Parent::changeTarget(a,n); |
| 407 | 400 |
} |
| 408 |
/// Change the source of |
|
| 401 |
/// Change the source node of an arc |
|
| 409 | 402 |
|
| 410 |
/// |
|
| 403 |
/// This function changes the source node of the given arc \c a to \c n. |
|
| 411 | 404 |
/// |
| 412 |
///\note The <tt>InArcIt</tt>s referencing the changed arc remain |
|
| 413 |
///valid. However the <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s are |
|
| 414 |
/// |
|
| 405 |
///\note \c InArcIt iterators referencing the changed arc remain |
|
| 406 |
///valid, however \c ArcIt and \c OutArcIt iterators are invalidated. |
|
| 415 | 407 |
/// |
| 416 | 408 |
///\warning This functionality cannot be used together with the Snapshot |
| 417 | 409 |
///feature. |
| 418 | 410 |
void changeSource(Arc a, Node n) {
|
| 419 | 411 |
Parent::changeSource(a,n); |
| 420 | 412 |
} |
| 421 | 413 |
|
| 422 |
/// |
|
| 414 |
/// Reverse the direction of an arc. |
|
| 423 | 415 |
|
| 424 |
///\note The <tt>ArcIt</tt>s referencing the changed arc remain |
|
| 425 |
///valid. However <tt>OutArcIt</tt>s and <tt>InArcIt</tt>s are |
|
| 426 |
/// |
|
| 416 |
/// This function reverses the direction of the given arc. |
|
| 417 |
///\note \c ArcIt, \c OutArcIt and \c InArcIt iterators referencing |
|
| 418 |
///the changed arc are invalidated. |
|
| 427 | 419 |
/// |
| 428 | 420 |
///\warning This functionality cannot be used together with the Snapshot |
| 429 | 421 |
///feature. |
| 430 |
void reverseArc(Arc e) {
|
|
| 431 |
Node t=target(e); |
|
| 432 |
changeTarget(e,source(e)); |
|
| 433 |
changeSource(e,t); |
|
| 422 |
void reverseArc(Arc a) {
|
|
| 423 |
Node t=target(a); |
|
| 424 |
changeTarget(a,source(a)); |
|
| 425 |
changeSource(a,t); |
|
| 434 | 426 |
} |
| 435 | 427 |
|
| 436 |
/// Reserve memory for nodes. |
|
| 437 |
|
|
| 438 |
/// Using this function it is possible to avoid the superfluous memory |
|
| 439 |
/// allocation: if you know that the digraph you want to build will |
|
| 440 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
|
| 441 |
/// then it is worth reserving space for this amount before starting |
|
| 442 |
/// to build the digraph. |
|
| 443 |
/// \sa reserveArc |
|
| 444 |
void reserveNode(int n) { nodes.reserve(n); };
|
|
| 445 |
|
|
| 446 |
/// Reserve memory for arcs. |
|
| 447 |
|
|
| 448 |
/// Using this function it is possible to avoid the superfluous memory |
|
| 449 |
/// allocation: if you know that the digraph you want to build will |
|
| 450 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
|
| 451 |
/// then it is worth reserving space for this amount before starting |
|
| 452 |
/// to build the digraph. |
|
| 453 |
/// \sa reserveNode |
|
| 454 |
void reserveArc(int m) { arcs.reserve(m); };
|
|
| 455 |
|
|
| 456 | 428 |
///Contract two nodes. |
| 457 | 429 |
|
| 458 |
///This function contracts two nodes. |
|
| 459 |
///Node \p b will be removed but instead of deleting |
|
| 460 |
///incident arcs, they will be joined to \p a. |
|
| 461 |
///The last parameter \p r controls whether to remove loops. \c true |
|
| 462 |
/// |
|
| 430 |
///This function contracts the given two nodes. |
|
| 431 |
///Node \c v is removed, but instead of deleting its |
|
| 432 |
///incident arcs, they are joined to node \c u. |
|
| 433 |
///If the last parameter \c r is \c true (this is the default value), |
|
| 434 |
///then the newly created loops are removed. |
|
| 463 | 435 |
/// |
| 464 |
///\note The <tt>ArcIt</tt>s referencing a moved arc remain |
|
| 465 |
///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s |
|
| 466 |
/// |
|
| 436 |
///\note The moved arcs are joined to node \c u using changeSource() |
|
| 437 |
///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are |
|
| 438 |
///invalidated for the outgoing arcs of node \c v and \c InArcIt |
|
| 439 |
///iterators are invalidated for the incomming arcs of \c v. |
|
| 440 |
///Moreover all iterators referencing node \c v or the removed |
|
| 441 |
///loops are also invalidated. Other iterators remain valid. |
|
| 467 | 442 |
/// |
| 468 | 443 |
///\warning This functionality cannot be used together with the Snapshot |
| 469 | 444 |
///feature. |
| 470 |
void contract(Node |
|
| 445 |
void contract(Node u, Node v, bool r = true) |
|
| 471 | 446 |
{
|
| 472 |
for(OutArcIt e(*this, |
|
| 447 |
for(OutArcIt e(*this,v);e!=INVALID;) {
|
|
| 473 | 448 |
OutArcIt f=e; |
| 474 | 449 |
++f; |
| 475 |
if(r && target(e)==a) erase(e); |
|
| 476 |
else changeSource(e,a); |
|
| 450 |
if(r && target(e)==u) erase(e); |
|
| 451 |
else changeSource(e,u); |
|
| 477 | 452 |
e=f; |
| 478 | 453 |
} |
| 479 |
for(InArcIt e(*this, |
|
| 454 |
for(InArcIt e(*this,v);e!=INVALID;) {
|
|
| 480 | 455 |
InArcIt f=e; |
| 481 | 456 |
++f; |
| 482 |
if(r && source(e)==a) erase(e); |
|
| 483 |
else changeTarget(e,a); |
|
| 457 |
if(r && source(e)==u) erase(e); |
|
| 458 |
else changeTarget(e,u); |
|
| 484 | 459 |
e=f; |
| 485 | 460 |
} |
| 486 |
erase( |
|
| 461 |
erase(v); |
|
| 487 | 462 |
} |
| 488 | 463 |
|
| 489 | 464 |
///Split a node. |
| 490 | 465 |
|
| 491 |
///This function splits a node. First a new node is added to the digraph, |
|
| 492 |
///then the source of each outgoing arc of \c n is moved to this new node. |
|
| 493 |
///If \c connect is \c true (this is the default value), then a new arc |
|
| 494 |
///from \c n to the newly created node is also added. |
|
| 466 |
///This function splits the given node. First, a new node is added |
|
| 467 |
///to the digraph, then the source of each outgoing arc of node \c n |
|
| 468 |
///is moved to this new node. |
|
| 469 |
///If the second parameter \c connect is \c true (this is the default |
|
| 470 |
///value), then a new arc from node \c n to the newly created node |
|
| 471 |
///is also added. |
|
| 495 | 472 |
///\return The newly created node. |
| 496 | 473 |
/// |
| 497 |
///\note The <tt>ArcIt</tt>s referencing a moved arc remain |
|
| 498 |
///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s may |
|
| 499 |
/// |
|
| 474 |
///\note All iterators remain valid. |
|
| 500 | 475 |
/// |
| 501 |
///\warning This functionality cannot be used |
|
| 476 |
///\warning This functionality cannot be used together with the |
|
| 502 | 477 |
///Snapshot feature. |
| 503 | 478 |
Node split(Node n, bool connect = true) {
|
| 504 | 479 |
Node b = addNode(); |
| 505 |
for(OutArcIt e(*this,n);e!=INVALID;) {
|
|
| 506 |
OutArcIt f=e; |
|
| 507 |
++f; |
|
| 508 |
changeSource(e,b); |
|
| 509 |
|
|
| 480 |
nodes[b.id].first_out=nodes[n.id].first_out; |
|
| 481 |
nodes[n.id].first_out=-1; |
|
| 482 |
for(int i=nodes[b.id].first_out; i!=-1; i=arcs[i].next_out) {
|
|
| 483 |
arcs[i].source=b.id; |
|
| 510 | 484 |
} |
| 511 | 485 |
if (connect) addArc(n,b); |
| 512 | 486 |
return b; |
| 513 | 487 |
} |
| 514 | 488 |
|
| 515 | 489 |
///Split an arc. |
| 516 | 490 |
|
| 517 |
///This function splits an arc. First a new node \c b is added to |
|
| 518 |
///the digraph, then the original arc is re-targeted to \c |
|
| 519 |
/// |
|
| 491 |
///This function splits the given arc. First, a new node \c v is |
|
| 492 |
///added to the digraph, then the target node of the original arc |
|
| 493 |
///is set to \c v. Finally, an arc from \c v to the original target |
|
| 494 |
///is added. |
|
| 495 |
///\return The newly created node. |
|
| 520 | 496 |
/// |
| 521 |
///\ |
|
| 497 |
///\note \c InArcIt iterators referencing the original arc are |
|
| 498 |
///invalidated. Other iterators remain valid. |
|
| 522 | 499 |
/// |
| 523 | 500 |
///\warning This functionality cannot be used together with the |
| 524 | 501 |
///Snapshot feature. |
| 525 |
Node split(Arc e) {
|
|
| 526 |
Node b = addNode(); |
|
| 527 |
addArc(b,target(e)); |
|
| 528 |
changeTarget(e,b); |
|
| 529 |
|
|
| 502 |
Node split(Arc a) {
|
|
| 503 |
Node v = addNode(); |
|
| 504 |
addArc(v,target(a)); |
|
| 505 |
changeTarget(a,v); |
|
| 506 |
return v; |
|
| 530 | 507 |
} |
| 531 | 508 |
|
| 509 |
///Clear the digraph. |
|
| 510 |
|
|
| 511 |
///This function erases all nodes and arcs from the digraph. |
|
| 512 |
/// |
|
| 513 |
void clear() {
|
|
| 514 |
Parent::clear(); |
|
| 515 |
} |
|
| 516 |
|
|
| 517 |
/// Reserve memory for nodes. |
|
| 518 |
|
|
| 519 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 520 |
/// allocation: if you know that the digraph you want to build will |
|
| 521 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
|
| 522 |
/// then it is worth reserving space for this amount before starting |
|
| 523 |
/// to build the digraph. |
|
| 524 |
/// \sa reserveArc() |
|
| 525 |
void reserveNode(int n) { nodes.reserve(n); };
|
|
| 526 |
|
|
| 527 |
/// Reserve memory for arcs. |
|
| 528 |
|
|
| 529 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 530 |
/// allocation: if you know that the digraph you want to build will |
|
| 531 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
|
| 532 |
/// then it is worth reserving space for this amount before starting |
|
| 533 |
/// to build the digraph. |
|
| 534 |
/// \sa reserveNode() |
|
| 535 |
void reserveArc(int m) { arcs.reserve(m); };
|
|
| 536 |
|
|
| 532 | 537 |
/// \brief Class to make a snapshot of the digraph and restore |
| 533 | 538 |
/// it later. |
| 534 | 539 |
/// |
| 535 | 540 |
/// Class to make a snapshot of the digraph and restore it later. |
| 536 | 541 |
/// |
| 537 | 542 |
/// The newly added nodes and arcs can be removed using the |
| 538 | 543 |
/// restore() function. |
| 539 | 544 |
/// |
| 540 |
/// \warning Arc and node deletions and other modifications (e.g. |
|
| 541 |
/// contracting, splitting, reversing arcs or nodes) cannot be |
|
| 545 |
/// \note After a state is restored, you cannot restore a later state, |
|
| 546 |
/// i.e. you cannot add the removed nodes and arcs again using |
|
| 547 |
/// another Snapshot instance. |
|
| 548 |
/// |
|
| 549 |
/// \warning Node and arc deletions and other modifications (e.g. |
|
| 550 |
/// reversing, contracting, splitting arcs or nodes) cannot be |
|
| 542 | 551 |
/// restored. These events invalidate the snapshot. |
| 552 |
/// However the arcs and nodes that were added to the digraph after |
|
| 553 |
/// making the current snapshot can be removed without invalidating it. |
|
| 543 | 554 |
class Snapshot {
|
| 544 | 555 |
protected: |
| 545 | 556 |
|
| 546 | 557 |
typedef Parent::NodeNotifier NodeNotifier; |
| 547 | 558 |
|
| 548 | 559 |
class NodeObserverProxy : public NodeNotifier::ObserverBase {
|
| 549 | 560 |
public: |
| 550 | 561 |
|
| 551 | 562 |
NodeObserverProxy(Snapshot& _snapshot) |
| 552 | 563 |
: snapshot(_snapshot) {}
|
| 553 | 564 |
|
| 554 | 565 |
using NodeNotifier::ObserverBase::attach; |
| 555 | 566 |
using NodeNotifier::ObserverBase::detach; |
| 556 | 567 |
using NodeNotifier::ObserverBase::attached; |
| 557 | 568 |
|
| 558 | 569 |
protected: |
| 559 | 570 |
|
| 560 | 571 |
virtual void add(const Node& node) {
|
| 561 | 572 |
snapshot.addNode(node); |
| 562 | 573 |
} |
| 563 | 574 |
virtual void add(const std::vector<Node>& nodes) {
|
| 564 | 575 |
for (int i = nodes.size() - 1; i >= 0; ++i) {
|
| 565 | 576 |
snapshot.addNode(nodes[i]); |
| 566 | 577 |
} |
| 567 | 578 |
} |
| 568 | 579 |
virtual void erase(const Node& node) {
|
| 569 | 580 |
snapshot.eraseNode(node); |
| 570 | 581 |
} |
| 571 | 582 |
virtual void erase(const std::vector<Node>& nodes) {
|
| 572 | 583 |
for (int i = 0; i < int(nodes.size()); ++i) {
|
| 573 | 584 |
snapshot.eraseNode(nodes[i]); |
| 574 | 585 |
} |
| 575 | 586 |
} |
| 576 | 587 |
virtual void build() {
|
| 577 | 588 |
Node node; |
| 578 | 589 |
std::vector<Node> nodes; |
| 579 | 590 |
for (notifier()->first(node); node != INVALID; |
| 580 | 591 |
notifier()->next(node)) {
|
| 581 | 592 |
nodes.push_back(node); |
| 582 | 593 |
} |
| 583 | 594 |
for (int i = nodes.size() - 1; i >= 0; --i) {
|
| 584 | 595 |
snapshot.addNode(nodes[i]); |
| 585 | 596 |
} |
| 586 | 597 |
} |
| 587 | 598 |
virtual void clear() {
|
| 588 | 599 |
Node node; |
| 589 | 600 |
for (notifier()->first(node); node != INVALID; |
| 590 | 601 |
notifier()->next(node)) {
|
| 591 | 602 |
snapshot.eraseNode(node); |
| 592 | 603 |
} |
| 593 | 604 |
} |
| 594 | 605 |
|
| 595 | 606 |
Snapshot& snapshot; |
| 596 | 607 |
}; |
| 597 | 608 |
|
| 598 | 609 |
class ArcObserverProxy : public ArcNotifier::ObserverBase {
|
| 599 | 610 |
public: |
| 600 | 611 |
|
| 601 | 612 |
ArcObserverProxy(Snapshot& _snapshot) |
| 602 | 613 |
: snapshot(_snapshot) {}
|
| 603 | 614 |
|
| 604 | 615 |
using ArcNotifier::ObserverBase::attach; |
| 605 | 616 |
using ArcNotifier::ObserverBase::detach; |
| 606 | 617 |
using ArcNotifier::ObserverBase::attached; |
| 607 | 618 |
|
| 608 | 619 |
protected: |
| 609 | 620 |
|
| 610 | 621 |
virtual void add(const Arc& arc) {
|
| 611 | 622 |
snapshot.addArc(arc); |
| 612 | 623 |
} |
| 613 | 624 |
virtual void add(const std::vector<Arc>& arcs) {
|
| 614 | 625 |
for (int i = arcs.size() - 1; i >= 0; ++i) {
|
| 615 | 626 |
snapshot.addArc(arcs[i]); |
| 616 | 627 |
} |
| 617 | 628 |
} |
| 618 | 629 |
virtual void erase(const Arc& arc) {
|
| 619 | 630 |
snapshot.eraseArc(arc); |
| 620 | 631 |
} |
| 621 | 632 |
virtual void erase(const std::vector<Arc>& arcs) {
|
| 622 | 633 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 623 | 634 |
snapshot.eraseArc(arcs[i]); |
| 624 | 635 |
} |
| 625 | 636 |
} |
| 626 | 637 |
virtual void build() {
|
| 627 | 638 |
Arc arc; |
| 628 | 639 |
std::vector<Arc> arcs; |
| 629 | 640 |
for (notifier()->first(arc); arc != INVALID; |
| 630 | 641 |
notifier()->next(arc)) {
|
| 631 | 642 |
arcs.push_back(arc); |
| 632 | 643 |
} |
| 633 | 644 |
for (int i = arcs.size() - 1; i >= 0; --i) {
|
| 634 | 645 |
snapshot.addArc(arcs[i]); |
| 635 | 646 |
} |
| 636 | 647 |
} |
| 637 | 648 |
virtual void clear() {
|
| 638 | 649 |
Arc arc; |
| 639 | 650 |
for (notifier()->first(arc); arc != INVALID; |
| 640 | 651 |
notifier()->next(arc)) {
|
| 641 | 652 |
snapshot.eraseArc(arc); |
| 642 | 653 |
} |
| 643 | 654 |
} |
| 644 | 655 |
|
| 645 | 656 |
Snapshot& snapshot; |
| 646 | 657 |
}; |
| 647 | 658 |
|
| 648 | 659 |
ListDigraph *digraph; |
| 649 | 660 |
|
| 650 | 661 |
NodeObserverProxy node_observer_proxy; |
| 651 | 662 |
ArcObserverProxy arc_observer_proxy; |
| 652 | 663 |
|
| 653 | 664 |
std::list<Node> added_nodes; |
| 654 | 665 |
std::list<Arc> added_arcs; |
| 655 | 666 |
|
| 656 | 667 |
|
| 657 | 668 |
void addNode(const Node& node) {
|
| 658 | 669 |
added_nodes.push_front(node); |
| 659 | 670 |
} |
| 660 | 671 |
void eraseNode(const Node& node) {
|
| 661 | 672 |
std::list<Node>::iterator it = |
| 662 | 673 |
std::find(added_nodes.begin(), added_nodes.end(), node); |
| 663 | 674 |
if (it == added_nodes.end()) {
|
| 664 | 675 |
clear(); |
| 665 | 676 |
arc_observer_proxy.detach(); |
| 666 | 677 |
throw NodeNotifier::ImmediateDetach(); |
| 667 | 678 |
} else {
|
| 668 | 679 |
added_nodes.erase(it); |
| 669 | 680 |
} |
| 670 | 681 |
} |
| 671 | 682 |
|
| 672 | 683 |
void addArc(const Arc& arc) {
|
| 673 | 684 |
added_arcs.push_front(arc); |
| 674 | 685 |
} |
| 675 | 686 |
void eraseArc(const Arc& arc) {
|
| 676 | 687 |
std::list<Arc>::iterator it = |
| 677 | 688 |
std::find(added_arcs.begin(), added_arcs.end(), arc); |
| 678 | 689 |
if (it == added_arcs.end()) {
|
| 679 | 690 |
clear(); |
| 680 | 691 |
node_observer_proxy.detach(); |
| 681 | 692 |
throw ArcNotifier::ImmediateDetach(); |
| 682 | 693 |
} else {
|
| 683 | 694 |
added_arcs.erase(it); |
| 684 | 695 |
} |
| 685 | 696 |
} |
| 686 | 697 |
|
| 687 | 698 |
void attach(ListDigraph &_digraph) {
|
| 688 | 699 |
digraph = &_digraph; |
| 689 | 700 |
node_observer_proxy.attach(digraph->notifier(Node())); |
| 690 | 701 |
arc_observer_proxy.attach(digraph->notifier(Arc())); |
| 691 | 702 |
} |
| 692 | 703 |
|
| 693 | 704 |
void detach() {
|
| 694 | 705 |
node_observer_proxy.detach(); |
| 695 | 706 |
arc_observer_proxy.detach(); |
| 696 | 707 |
} |
| 697 | 708 |
|
| 698 | 709 |
bool attached() const {
|
| 699 | 710 |
return node_observer_proxy.attached(); |
| 700 | 711 |
} |
| 701 | 712 |
|
| 702 | 713 |
void clear() {
|
| 703 | 714 |
added_nodes.clear(); |
| 704 | 715 |
added_arcs.clear(); |
| 705 | 716 |
} |
| 706 | 717 |
|
| 707 | 718 |
public: |
| 708 | 719 |
|
| 709 | 720 |
/// \brief Default constructor. |
| 710 | 721 |
/// |
| 711 | 722 |
/// Default constructor. |
| 712 |
/// |
|
| 723 |
/// You have to call save() to actually make a snapshot. |
|
| 713 | 724 |
Snapshot() |
| 714 | 725 |
: digraph(0), node_observer_proxy(*this), |
| 715 | 726 |
arc_observer_proxy(*this) {}
|
| 716 | 727 |
|
| 717 | 728 |
/// \brief Constructor that immediately makes a snapshot. |
| 718 | 729 |
/// |
| 719 |
/// This constructor immediately makes a snapshot of the digraph. |
|
| 720 |
/// \param _digraph The digraph we make a snapshot of. |
|
| 721 |
|
|
| 730 |
/// This constructor immediately makes a snapshot of the given digraph. |
|
| 731 |
Snapshot(ListDigraph &gr) |
|
| 722 | 732 |
: node_observer_proxy(*this), |
| 723 | 733 |
arc_observer_proxy(*this) {
|
| 724 |
attach( |
|
| 734 |
attach(gr); |
|
| 725 | 735 |
} |
| 726 | 736 |
|
| 727 | 737 |
/// \brief Make a snapshot. |
| 728 | 738 |
/// |
| 729 |
/// Make a snapshot of the digraph. |
|
| 730 |
/// |
|
| 731 |
/// This function |
|
| 739 |
/// This function makes a snapshot of the given digraph. |
|
| 740 |
/// It can be called more than once. In case of a repeated |
|
| 732 | 741 |
/// call, the previous snapshot gets lost. |
| 733 |
/// \param _digraph The digraph we make the snapshot of. |
|
| 734 |
void save(ListDigraph &_digraph) {
|
|
| 742 |
void save(ListDigraph &gr) {
|
|
| 735 | 743 |
if (attached()) {
|
| 736 | 744 |
detach(); |
| 737 | 745 |
clear(); |
| 738 | 746 |
} |
| 739 |
attach( |
|
| 747 |
attach(gr); |
|
| 740 | 748 |
} |
| 741 | 749 |
|
| 742 | 750 |
/// \brief Undo the changes until the last snapshot. |
| 743 |
// |
|
| 744 |
/// Undo the changes until the last snapshot created by save(). |
|
| 751 |
/// |
|
| 752 |
/// This function undos the changes until the last snapshot |
|
| 753 |
/// created by save() or Snapshot(ListDigraph&). |
|
| 754 |
/// |
|
| 755 |
/// \warning This method invalidates the snapshot, i.e. repeated |
|
| 756 |
/// restoring is not supported unless you call save() again. |
|
| 745 | 757 |
void restore() {
|
| 746 | 758 |
detach(); |
| 747 | 759 |
for(std::list<Arc>::iterator it = added_arcs.begin(); |
| 748 | 760 |
it != added_arcs.end(); ++it) {
|
| 749 | 761 |
digraph->erase(*it); |
| 750 | 762 |
} |
| 751 | 763 |
for(std::list<Node>::iterator it = added_nodes.begin(); |
| 752 | 764 |
it != added_nodes.end(); ++it) {
|
| 753 | 765 |
digraph->erase(*it); |
| 754 | 766 |
} |
| 755 | 767 |
clear(); |
| 756 | 768 |
} |
| 757 | 769 |
|
| 758 |
/// \brief |
|
| 770 |
/// \brief Returns \c true if the snapshot is valid. |
|
| 759 | 771 |
/// |
| 760 |
/// |
|
| 772 |
/// This function returns \c true if the snapshot is valid. |
|
| 761 | 773 |
bool valid() const {
|
| 762 | 774 |
return attached(); |
| 763 | 775 |
} |
| 764 | 776 |
}; |
| 765 | 777 |
|
| 766 | 778 |
}; |
| 767 | 779 |
|
| 768 | 780 |
///@} |
| 769 | 781 |
|
| 770 | 782 |
class ListGraphBase {
|
| 771 | 783 |
|
| 772 | 784 |
protected: |
| 773 | 785 |
|
| 774 | 786 |
struct NodeT {
|
| 775 | 787 |
int first_out; |
| 776 | 788 |
int prev, next; |
| 777 | 789 |
}; |
| 778 | 790 |
|
| 779 | 791 |
struct ArcT {
|
| 780 | 792 |
int target; |
| 781 | 793 |
int prev_out, next_out; |
| 782 | 794 |
}; |
| 783 | 795 |
|
| 784 | 796 |
std::vector<NodeT> nodes; |
| 785 | 797 |
|
| 786 | 798 |
int first_node; |
| 787 | 799 |
|
| 788 | 800 |
int first_free_node; |
| 789 | 801 |
|
| 790 | 802 |
std::vector<ArcT> arcs; |
| 791 | 803 |
|
| 792 | 804 |
int first_free_arc; |
| 793 | 805 |
|
| 794 | 806 |
public: |
| 795 | 807 |
|
| 796 | 808 |
typedef ListGraphBase Graph; |
| 797 | 809 |
|
| 798 |
class Node; |
|
| 799 |
class Arc; |
|
| 800 |
class Edge; |
|
| 801 |
|
|
| 802 | 810 |
class Node {
|
| 803 | 811 |
friend class ListGraphBase; |
| 804 | 812 |
protected: |
| 805 | 813 |
|
| 806 | 814 |
int id; |
| 807 | 815 |
explicit Node(int pid) { id = pid;}
|
| 808 | 816 |
|
| 809 | 817 |
public: |
| 810 | 818 |
Node() {}
|
| 811 | 819 |
Node (Invalid) { id = -1; }
|
| 812 | 820 |
bool operator==(const Node& node) const {return id == node.id;}
|
| 813 | 821 |
bool operator!=(const Node& node) const {return id != node.id;}
|
| 814 | 822 |
bool operator<(const Node& node) const {return id < node.id;}
|
| 815 | 823 |
}; |
| 816 | 824 |
|
| 817 | 825 |
class Edge {
|
| 818 | 826 |
friend class ListGraphBase; |
| 819 | 827 |
protected: |
| 820 | 828 |
|
| 821 | 829 |
int id; |
| 822 | 830 |
explicit Edge(int pid) { id = pid;}
|
| 823 | 831 |
|
| 824 | 832 |
public: |
| 825 | 833 |
Edge() {}
|
| 826 | 834 |
Edge (Invalid) { id = -1; }
|
| 827 | 835 |
bool operator==(const Edge& edge) const {return id == edge.id;}
|
| 828 | 836 |
bool operator!=(const Edge& edge) const {return id != edge.id;}
|
| 829 | 837 |
bool operator<(const Edge& edge) const {return id < edge.id;}
|
| 830 | 838 |
}; |
| 831 | 839 |
|
| 832 | 840 |
class Arc {
|
| 833 | 841 |
friend class ListGraphBase; |
| 834 | 842 |
protected: |
| 835 | 843 |
|
| 836 | 844 |
int id; |
| 837 | 845 |
explicit Arc(int pid) { id = pid;}
|
| 838 | 846 |
|
| 839 | 847 |
public: |
| 840 | 848 |
operator Edge() const {
|
| 841 | 849 |
return id != -1 ? edgeFromId(id / 2) : INVALID; |
| 842 | 850 |
} |
| 843 | 851 |
|
| 844 | 852 |
Arc() {}
|
| 845 | 853 |
Arc (Invalid) { id = -1; }
|
| 846 | 854 |
bool operator==(const Arc& arc) const {return id == arc.id;}
|
| 847 | 855 |
bool operator!=(const Arc& arc) const {return id != arc.id;}
|
| 848 | 856 |
bool operator<(const Arc& arc) const {return id < arc.id;}
|
| 849 | 857 |
}; |
| 850 | 858 |
|
| 851 |
|
|
| 852 |
|
|
| 853 | 859 |
ListGraphBase() |
| 854 | 860 |
: nodes(), first_node(-1), |
| 855 | 861 |
first_free_node(-1), arcs(), first_free_arc(-1) {}
|
| 856 | 862 |
|
| 857 | 863 |
|
| 858 | 864 |
int maxNodeId() const { return nodes.size()-1; }
|
| 859 | 865 |
int maxEdgeId() const { return arcs.size() / 2 - 1; }
|
| 860 | 866 |
int maxArcId() const { return arcs.size()-1; }
|
| 861 | 867 |
|
| 862 | 868 |
Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); }
|
| 863 | 869 |
Node target(Arc e) const { return Node(arcs[e.id].target); }
|
| 864 | 870 |
|
| 865 | 871 |
Node u(Edge e) const { return Node(arcs[2 * e.id].target); }
|
| 866 | 872 |
Node v(Edge e) const { return Node(arcs[2 * e.id + 1].target); }
|
| 867 | 873 |
|
| 868 | 874 |
static bool direction(Arc e) {
|
| 869 | 875 |
return (e.id & 1) == 1; |
| 870 | 876 |
} |
| 871 | 877 |
|
| 872 | 878 |
static Arc direct(Edge e, bool d) {
|
| 873 | 879 |
return Arc(e.id * 2 + (d ? 1 : 0)); |
| 874 | 880 |
} |
| 875 | 881 |
|
| 876 | 882 |
void first(Node& node) const {
|
| 877 | 883 |
node.id = first_node; |
| 878 | 884 |
} |
| 879 | 885 |
|
| 880 | 886 |
void next(Node& node) const {
|
| 881 | 887 |
node.id = nodes[node.id].next; |
| 882 | 888 |
} |
| 883 | 889 |
|
| 884 | 890 |
void first(Arc& e) const {
|
| 885 | 891 |
int n = first_node; |
| 886 | 892 |
while (n != -1 && nodes[n].first_out == -1) {
|
| 887 | 893 |
n = nodes[n].next; |
| 888 | 894 |
} |
| 889 | 895 |
e.id = (n == -1) ? -1 : nodes[n].first_out; |
| 890 | 896 |
} |
| 891 | 897 |
|
| 892 | 898 |
void next(Arc& e) const {
|
| 893 | 899 |
if (arcs[e.id].next_out != -1) {
|
| 894 | 900 |
e.id = arcs[e.id].next_out; |
| 895 | 901 |
} else {
|
| 896 | 902 |
int n = nodes[arcs[e.id ^ 1].target].next; |
| 897 | 903 |
while(n != -1 && nodes[n].first_out == -1) {
|
| 898 | 904 |
n = nodes[n].next; |
| 899 | 905 |
} |
| 900 | 906 |
e.id = (n == -1) ? -1 : nodes[n].first_out; |
| 901 | 907 |
} |
| 902 | 908 |
} |
| 903 | 909 |
|
| 904 | 910 |
void first(Edge& e) const {
|
| 905 | 911 |
int n = first_node; |
| 906 | 912 |
while (n != -1) {
|
| 907 | 913 |
e.id = nodes[n].first_out; |
| 908 | 914 |
while ((e.id & 1) != 1) {
|
| 909 | 915 |
e.id = arcs[e.id].next_out; |
| 910 | 916 |
} |
| 911 | 917 |
if (e.id != -1) {
|
| 912 | 918 |
e.id /= 2; |
| 913 | 919 |
return; |
| 914 | 920 |
} |
| 915 | 921 |
n = nodes[n].next; |
| 916 | 922 |
} |
| 917 | 923 |
e.id = -1; |
| 918 | 924 |
} |
| 919 | 925 |
|
| 920 | 926 |
void next(Edge& e) const {
|
| 921 | 927 |
int n = arcs[e.id * 2].target; |
| 922 | 928 |
e.id = arcs[(e.id * 2) | 1].next_out; |
| 923 | 929 |
while ((e.id & 1) != 1) {
|
| 924 | 930 |
e.id = arcs[e.id].next_out; |
| 925 | 931 |
} |
| 926 | 932 |
if (e.id != -1) {
|
| 927 | 933 |
e.id /= 2; |
| 928 | 934 |
return; |
| 929 | 935 |
} |
| 930 | 936 |
n = nodes[n].next; |
| 931 | 937 |
while (n != -1) {
|
| 932 | 938 |
e.id = nodes[n].first_out; |
| 933 | 939 |
while ((e.id & 1) != 1) {
|
| 934 | 940 |
e.id = arcs[e.id].next_out; |
| 935 | 941 |
} |
| 936 | 942 |
if (e.id != -1) {
|
| 937 | 943 |
e.id /= 2; |
| 938 | 944 |
return; |
| 939 | 945 |
} |
| 940 | 946 |
n = nodes[n].next; |
| 941 | 947 |
} |
| 942 | 948 |
e.id = -1; |
| 943 | 949 |
} |
| 944 | 950 |
|
| 945 | 951 |
void firstOut(Arc &e, const Node& v) const {
|
| 946 | 952 |
e.id = nodes[v.id].first_out; |
| 947 | 953 |
} |
| 948 | 954 |
void nextOut(Arc &e) const {
|
| 949 | 955 |
e.id = arcs[e.id].next_out; |
| 950 | 956 |
} |
| 951 | 957 |
|
| 952 | 958 |
void firstIn(Arc &e, const Node& v) const {
|
| 953 | 959 |
e.id = ((nodes[v.id].first_out) ^ 1); |
| 954 | 960 |
if (e.id == -2) e.id = -1; |
| 955 | 961 |
} |
| 956 | 962 |
void nextIn(Arc &e) const {
|
| 957 | 963 |
e.id = ((arcs[e.id ^ 1].next_out) ^ 1); |
| 958 | 964 |
if (e.id == -2) e.id = -1; |
| 959 | 965 |
} |
| 960 | 966 |
|
| 961 | 967 |
void firstInc(Edge &e, bool& d, const Node& v) const {
|
| 962 | 968 |
int a = nodes[v.id].first_out; |
| 963 | 969 |
if (a != -1 ) {
|
| 964 | 970 |
e.id = a / 2; |
| 965 | 971 |
d = ((a & 1) == 1); |
| 966 | 972 |
} else {
|
| 967 | 973 |
e.id = -1; |
| 968 | 974 |
d = true; |
| 969 | 975 |
} |
| 970 | 976 |
} |
| 971 | 977 |
void nextInc(Edge &e, bool& d) const {
|
| 972 | 978 |
int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out); |
| 973 | 979 |
if (a != -1 ) {
|
| 974 | 980 |
e.id = a / 2; |
| 975 | 981 |
d = ((a & 1) == 1); |
| 976 | 982 |
} else {
|
| 977 | 983 |
e.id = -1; |
| 978 | 984 |
d = true; |
| 979 | 985 |
} |
| 980 | 986 |
} |
| 981 | 987 |
|
| 982 | 988 |
static int id(Node v) { return v.id; }
|
| 983 | 989 |
static int id(Arc e) { return e.id; }
|
| 984 | 990 |
static int id(Edge e) { return e.id; }
|
| 985 | 991 |
|
| 986 | 992 |
static Node nodeFromId(int id) { return Node(id);}
|
| 987 | 993 |
static Arc arcFromId(int id) { return Arc(id);}
|
| 988 | 994 |
static Edge edgeFromId(int id) { return Edge(id);}
|
| 989 | 995 |
|
| 990 | 996 |
bool valid(Node n) const {
|
| 991 | 997 |
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) && |
| 992 | 998 |
nodes[n.id].prev != -2; |
| 993 | 999 |
} |
| 994 | 1000 |
|
| 995 | 1001 |
bool valid(Arc a) const {
|
| 996 | 1002 |
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) && |
| 997 | 1003 |
arcs[a.id].prev_out != -2; |
| 998 | 1004 |
} |
| 999 | 1005 |
|
| 1000 | 1006 |
bool valid(Edge e) const {
|
| 1001 | 1007 |
return e.id >= 0 && 2 * e.id < static_cast<int>(arcs.size()) && |
| 1002 | 1008 |
arcs[2 * e.id].prev_out != -2; |
| 1003 | 1009 |
} |
| 1004 | 1010 |
|
| 1005 | 1011 |
Node addNode() {
|
| 1006 | 1012 |
int n; |
| 1007 | 1013 |
|
| 1008 | 1014 |
if(first_free_node==-1) {
|
| 1009 | 1015 |
n = nodes.size(); |
| 1010 | 1016 |
nodes.push_back(NodeT()); |
| 1011 | 1017 |
} else {
|
| 1012 | 1018 |
n = first_free_node; |
| 1013 | 1019 |
first_free_node = nodes[n].next; |
| 1014 | 1020 |
} |
| 1015 | 1021 |
|
| 1016 | 1022 |
nodes[n].next = first_node; |
| 1017 | 1023 |
if (first_node != -1) nodes[first_node].prev = n; |
| 1018 | 1024 |
first_node = n; |
| 1019 | 1025 |
nodes[n].prev = -1; |
| 1020 | 1026 |
|
| 1021 | 1027 |
nodes[n].first_out = -1; |
| 1022 | 1028 |
|
| 1023 | 1029 |
return Node(n); |
| 1024 | 1030 |
} |
| 1025 | 1031 |
|
| 1026 | 1032 |
Edge addEdge(Node u, Node v) {
|
| 1027 | 1033 |
int n; |
| 1028 | 1034 |
|
| 1029 | 1035 |
if (first_free_arc == -1) {
|
| 1030 | 1036 |
n = arcs.size(); |
| 1031 | 1037 |
arcs.push_back(ArcT()); |
| 1032 | 1038 |
arcs.push_back(ArcT()); |
| 1033 | 1039 |
} else {
|
| 1034 | 1040 |
n = first_free_arc; |
| 1035 | 1041 |
first_free_arc = arcs[n].next_out; |
| 1036 | 1042 |
} |
| 1037 | 1043 |
|
| 1038 | 1044 |
arcs[n].target = u.id; |
| 1039 | 1045 |
arcs[n | 1].target = v.id; |
| 1040 | 1046 |
|
| 1041 | 1047 |
arcs[n].next_out = nodes[v.id].first_out; |
| 1042 | 1048 |
if (nodes[v.id].first_out != -1) {
|
| 1043 | 1049 |
arcs[nodes[v.id].first_out].prev_out = n; |
| 1044 | 1050 |
} |
| 1045 | 1051 |
arcs[n].prev_out = -1; |
| 1046 | 1052 |
nodes[v.id].first_out = n; |
| 1047 | 1053 |
|
| 1048 | 1054 |
arcs[n | 1].next_out = nodes[u.id].first_out; |
| 1049 | 1055 |
if (nodes[u.id].first_out != -1) {
|
| 1050 | 1056 |
arcs[nodes[u.id].first_out].prev_out = (n | 1); |
| 1051 | 1057 |
} |
| 1052 | 1058 |
arcs[n | 1].prev_out = -1; |
| 1053 | 1059 |
nodes[u.id].first_out = (n | 1); |
| 1054 | 1060 |
|
| 1055 | 1061 |
return Edge(n / 2); |
| 1056 | 1062 |
} |
| 1057 | 1063 |
|
| 1058 | 1064 |
void erase(const Node& node) {
|
| 1059 | 1065 |
int n = node.id; |
| 1060 | 1066 |
|
| 1061 | 1067 |
if(nodes[n].next != -1) {
|
| 1062 | 1068 |
nodes[nodes[n].next].prev = nodes[n].prev; |
| 1063 | 1069 |
} |
| 1064 | 1070 |
|
| 1065 | 1071 |
if(nodes[n].prev != -1) {
|
| 1066 | 1072 |
nodes[nodes[n].prev].next = nodes[n].next; |
| 1067 | 1073 |
} else {
|
| 1068 | 1074 |
first_node = nodes[n].next; |
| 1069 | 1075 |
} |
| 1070 | 1076 |
|
| 1071 | 1077 |
nodes[n].next = first_free_node; |
| 1072 | 1078 |
first_free_node = n; |
| 1073 | 1079 |
nodes[n].prev = -2; |
| 1074 | 1080 |
} |
| 1075 | 1081 |
|
| 1076 | 1082 |
void erase(const Edge& edge) {
|
| 1077 | 1083 |
int n = edge.id * 2; |
| 1078 | 1084 |
|
| 1079 | 1085 |
if (arcs[n].next_out != -1) {
|
| 1080 | 1086 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
| 1081 | 1087 |
} |
| 1082 | 1088 |
|
| 1083 | 1089 |
if (arcs[n].prev_out != -1) {
|
| 1084 | 1090 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
| 1085 | 1091 |
} else {
|
| 1086 | 1092 |
nodes[arcs[n | 1].target].first_out = arcs[n].next_out; |
| 1087 | 1093 |
} |
| 1088 | 1094 |
|
| 1089 | 1095 |
if (arcs[n | 1].next_out != -1) {
|
| 1090 | 1096 |
arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out; |
| 1091 | 1097 |
} |
| 1092 | 1098 |
|
| 1093 | 1099 |
if (arcs[n | 1].prev_out != -1) {
|
| 1094 | 1100 |
arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out; |
| 1095 | 1101 |
} else {
|
| 1096 | 1102 |
nodes[arcs[n].target].first_out = arcs[n | 1].next_out; |
| 1097 | 1103 |
} |
| 1098 | 1104 |
|
| 1099 | 1105 |
arcs[n].next_out = first_free_arc; |
| 1100 | 1106 |
first_free_arc = n; |
| 1101 | 1107 |
arcs[n].prev_out = -2; |
| 1102 | 1108 |
arcs[n | 1].prev_out = -2; |
| 1103 | 1109 |
|
| 1104 | 1110 |
} |
| 1105 | 1111 |
|
| 1106 | 1112 |
void clear() {
|
| 1107 | 1113 |
arcs.clear(); |
| 1108 | 1114 |
nodes.clear(); |
| 1109 | 1115 |
first_node = first_free_node = first_free_arc = -1; |
| 1110 | 1116 |
} |
| 1111 | 1117 |
|
| 1112 | 1118 |
protected: |
| 1113 | 1119 |
|
| 1114 | 1120 |
void changeV(Edge e, Node n) {
|
| 1115 | 1121 |
if(arcs[2 * e.id].next_out != -1) {
|
| 1116 | 1122 |
arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out; |
| 1117 | 1123 |
} |
| 1118 | 1124 |
if(arcs[2 * e.id].prev_out != -1) {
|
| 1119 | 1125 |
arcs[arcs[2 * e.id].prev_out].next_out = |
| 1120 | 1126 |
arcs[2 * e.id].next_out; |
| 1121 | 1127 |
} else {
|
| 1122 | 1128 |
nodes[arcs[(2 * e.id) | 1].target].first_out = |
| 1123 | 1129 |
arcs[2 * e.id].next_out; |
| 1124 | 1130 |
} |
| 1125 | 1131 |
|
| 1126 | 1132 |
if (nodes[n.id].first_out != -1) {
|
| 1127 | 1133 |
arcs[nodes[n.id].first_out].prev_out = 2 * e.id; |
| 1128 | 1134 |
} |
| 1129 | 1135 |
arcs[(2 * e.id) | 1].target = n.id; |
| 1130 | 1136 |
arcs[2 * e.id].prev_out = -1; |
| 1131 | 1137 |
arcs[2 * e.id].next_out = nodes[n.id].first_out; |
| 1132 | 1138 |
nodes[n.id].first_out = 2 * e.id; |
| 1133 | 1139 |
} |
| 1134 | 1140 |
|
| 1135 | 1141 |
void changeU(Edge e, Node n) {
|
| 1136 | 1142 |
if(arcs[(2 * e.id) | 1].next_out != -1) {
|
| 1137 | 1143 |
arcs[arcs[(2 * e.id) | 1].next_out].prev_out = |
| 1138 | 1144 |
arcs[(2 * e.id) | 1].prev_out; |
| 1139 | 1145 |
} |
| 1140 | 1146 |
if(arcs[(2 * e.id) | 1].prev_out != -1) {
|
| 1141 | 1147 |
arcs[arcs[(2 * e.id) | 1].prev_out].next_out = |
| 1142 | 1148 |
arcs[(2 * e.id) | 1].next_out; |
| 1143 | 1149 |
} else {
|
| 1144 | 1150 |
nodes[arcs[2 * e.id].target].first_out = |
| 1145 | 1151 |
arcs[(2 * e.id) | 1].next_out; |
| 1146 | 1152 |
} |
| 1147 | 1153 |
|
| 1148 | 1154 |
if (nodes[n.id].first_out != -1) {
|
| 1149 | 1155 |
arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1); |
| 1150 | 1156 |
} |
| 1151 | 1157 |
arcs[2 * e.id].target = n.id; |
| 1152 | 1158 |
arcs[(2 * e.id) | 1].prev_out = -1; |
| 1153 | 1159 |
arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out; |
| 1154 | 1160 |
nodes[n.id].first_out = ((2 * e.id) | 1); |
| 1155 | 1161 |
} |
| 1156 | 1162 |
|
| 1157 | 1163 |
}; |
| 1158 | 1164 |
|
| 1159 | 1165 |
typedef GraphExtender<ListGraphBase> ExtendedListGraphBase; |
| 1160 | 1166 |
|
| 1161 | 1167 |
|
| 1162 | 1168 |
/// \addtogroup graphs |
| 1163 | 1169 |
/// @{
|
| 1164 | 1170 |
|
| 1165 | 1171 |
///A general undirected graph structure. |
| 1166 | 1172 |
|
| 1167 |
///\ref ListGraph is a simple and fast <em>undirected graph</em> |
|
| 1168 |
///implementation based on static linked lists that are stored in |
|
| 1173 |
///\ref ListGraph is a versatile and fast undirected graph |
|
| 1174 |
///implementation based on linked lists that are stored in |
|
| 1169 | 1175 |
///\c std::vector structures. |
| 1170 | 1176 |
/// |
| 1171 |
///It conforms to the \ref concepts::Graph "Graph concept" and it |
|
| 1172 |
///also provides several useful additional functionalities. |
|
| 1173 |
/// |
|
| 1177 |
///This type fully conforms to the \ref concepts::Graph "Graph concept" |
|
| 1178 |
///and it also provides several useful additional functionalities. |
|
| 1179 |
///Most of its member functions and nested classes are documented |
|
| 1174 | 1180 |
///only in the concept class. |
| 1175 | 1181 |
/// |
| 1176 | 1182 |
///\sa concepts::Graph |
| 1177 |
|
|
| 1183 |
///\sa ListDigraph |
|
| 1178 | 1184 |
class ListGraph : public ExtendedListGraphBase {
|
| 1179 | 1185 |
typedef ExtendedListGraphBase Parent; |
| 1180 | 1186 |
|
| 1181 | 1187 |
private: |
| 1182 |
///ListGraph is \e not copy constructible. Use copyGraph() instead. |
|
| 1183 |
|
|
| 1184 |
///ListGraph is \e not copy constructible. Use copyGraph() instead. |
|
| 1185 |
/// |
|
| 1188 |
/// Graphs are \e not copy constructible. Use GraphCopy instead. |
|
| 1186 | 1189 |
ListGraph(const ListGraph &) :ExtendedListGraphBase() {};
|
| 1187 |
///\brief Assignment of ListGraph to another one is \e not allowed. |
|
| 1188 |
///Use copyGraph() instead. |
|
| 1189 |
|
|
| 1190 |
///Assignment of ListGraph to another one is \e not allowed. |
|
| 1191 |
/// |
|
| 1190 |
/// \brief Assignment of a graph to another one is \e not allowed. |
|
| 1191 |
/// Use GraphCopy instead. |
|
| 1192 | 1192 |
void operator=(const ListGraph &) {}
|
| 1193 | 1193 |
public: |
| 1194 | 1194 |
/// Constructor |
| 1195 | 1195 |
|
| 1196 | 1196 |
/// Constructor. |
| 1197 | 1197 |
/// |
| 1198 | 1198 |
ListGraph() {}
|
| 1199 | 1199 |
|
| 1200 | 1200 |
typedef Parent::OutArcIt IncEdgeIt; |
| 1201 | 1201 |
|
| 1202 | 1202 |
/// \brief Add a new node to the graph. |
| 1203 | 1203 |
/// |
| 1204 |
/// |
|
| 1204 |
/// This function adds a new node to the graph. |
|
| 1205 | 1205 |
/// \return The new node. |
| 1206 | 1206 |
Node addNode() { return Parent::addNode(); }
|
| 1207 | 1207 |
|
| 1208 | 1208 |
/// \brief Add a new edge to the graph. |
| 1209 | 1209 |
/// |
| 1210 |
/// Add a new edge to the graph with source node \c s |
|
| 1211 |
/// and target node \c t. |
|
| 1210 |
/// This function adds a new edge to the graph between nodes |
|
| 1211 |
/// \c u and \c v with inherent orientation from node \c u to |
|
| 1212 |
/// node \c v. |
|
| 1212 | 1213 |
/// \return The new edge. |
| 1213 |
Edge addEdge(const Node& s, const Node& t) {
|
|
| 1214 |
return Parent::addEdge(s, t); |
|
| 1214 |
Edge addEdge(Node u, Node v) {
|
|
| 1215 |
return Parent::addEdge(u, v); |
|
| 1215 | 1216 |
} |
| 1216 | 1217 |
|
| 1217 |
/// |
|
| 1218 |
///\brief Erase a node from the graph. |
|
| 1218 | 1219 |
/// |
| 1219 |
/// |
|
| 1220 |
/// This function erases the given node from the graph. |
|
| 1221 |
void erase(Node n) { Parent::erase(n); }
|
|
| 1222 |
|
|
| 1223 |
///\brief Erase an edge from the graph. |
|
| 1220 | 1224 |
/// |
| 1221 |
void erase(const Node& n) { Parent::erase(n); }
|
|
| 1222 |
|
|
| 1223 |
/// \brief Erase an edge from the graph. |
|
| 1224 |
/// |
|
| 1225 |
/// Erase an edge from the graph. |
|
| 1226 |
/// |
|
| 1227 |
|
|
| 1225 |
/// This function erases the given edge from the graph. |
|
| 1226 |
void erase(Edge e) { Parent::erase(e); }
|
|
| 1228 | 1227 |
/// Node validity check |
| 1229 | 1228 |
|
| 1230 |
/// This function gives back true if the given node is valid, |
|
| 1231 |
/// ie. it is a real node of the graph. |
|
| 1229 |
/// This function gives back \c true if the given node is valid, |
|
| 1230 |
/// i.e. it is a real node of the graph. |
|
| 1232 | 1231 |
/// |
| 1233 |
/// \warning A Node pointing to a removed item |
|
| 1234 |
/// could become valid again later if new nodes are |
|
| 1232 |
/// \warning A removed node could become valid again if new nodes are |
|
| 1235 | 1233 |
/// added to the graph. |
| 1236 | 1234 |
bool valid(Node n) const { return Parent::valid(n); }
|
| 1235 |
/// Edge validity check |
|
| 1236 |
|
|
| 1237 |
/// This function gives back \c true if the given edge is valid, |
|
| 1238 |
/// i.e. it is a real edge of the graph. |
|
| 1239 |
/// |
|
| 1240 |
/// \warning A removed edge could become valid again if new edges are |
|
| 1241 |
/// added to the graph. |
|
| 1242 |
bool valid(Edge e) const { return Parent::valid(e); }
|
|
| 1237 | 1243 |
/// Arc validity check |
| 1238 | 1244 |
|
| 1239 |
/// This function gives back true if the given arc is valid, |
|
| 1240 |
/// ie. it is a real arc of the graph. |
|
| 1245 |
/// This function gives back \c true if the given arc is valid, |
|
| 1246 |
/// i.e. it is a real arc of the graph. |
|
| 1241 | 1247 |
/// |
| 1242 |
/// \warning An Arc pointing to a removed item |
|
| 1243 |
/// could become valid again later if new edges are |
|
| 1248 |
/// \warning A removed arc could become valid again if new edges are |
|
| 1244 | 1249 |
/// added to the graph. |
| 1245 | 1250 |
bool valid(Arc a) const { return Parent::valid(a); }
|
| 1246 |
/// Edge validity check |
|
| 1247 | 1251 |
|
| 1248 |
/// This function gives back true if the given edge is valid, |
|
| 1249 |
/// ie. it is a real arc of the graph. |
|
| 1252 |
/// \brief Change the first node of an edge. |
|
| 1250 | 1253 |
/// |
| 1251 |
/// \warning A Edge pointing to a removed item |
|
| 1252 |
/// could become valid again later if new edges are |
|
| 1253 |
/// added to the graph. |
|
| 1254 |
bool valid(Edge e) const { return Parent::valid(e); }
|
|
| 1255 |
/// |
|
| 1254 |
/// This function changes the first node of the given edge \c e to \c n. |
|
| 1256 | 1255 |
/// |
| 1257 |
/// This function changes the end \c u of \c e to node \c n. |
|
| 1258 |
/// |
|
| 1259 |
///\note The <tt>EdgeIt</tt>s and <tt>ArcIt</tt>s referencing the |
|
| 1260 |
///changed edge are invalidated and if the changed node is the |
|
| 1261 |
///base node of an iterator then this iterator is also |
|
| 1262 |
///invalidated. |
|
| 1256 |
///\note \c EdgeIt and \c ArcIt iterators referencing the |
|
| 1257 |
///changed edge are invalidated and all other iterators whose |
|
| 1258 |
///base node is the changed node are also invalidated. |
|
| 1263 | 1259 |
/// |
| 1264 | 1260 |
///\warning This functionality cannot be used together with the |
| 1265 | 1261 |
///Snapshot feature. |
| 1266 | 1262 |
void changeU(Edge e, Node n) {
|
| 1267 | 1263 |
Parent::changeU(e,n); |
| 1268 | 1264 |
} |
| 1269 |
/// \brief Change the |
|
| 1265 |
/// \brief Change the second node of an edge. |
|
| 1270 | 1266 |
/// |
| 1271 |
/// This function changes the |
|
| 1267 |
/// This function changes the second node of the given edge \c e to \c n. |
|
| 1272 | 1268 |
/// |
| 1273 |
///\note The <tt>EdgeIt</tt>s referencing the changed edge remain |
|
| 1274 |
///valid, however <tt>ArcIt</tt>s and if the changed node is the |
|
| 1275 |
/// |
|
| 1269 |
///\note \c EdgeIt iterators referencing the changed edge remain |
|
| 1270 |
///valid, however \c ArcIt iterators referencing the changed edge and |
|
| 1271 |
///all other iterators whose base node is the changed node are also |
|
| 1272 |
///invalidated. |
|
| 1276 | 1273 |
/// |
| 1277 | 1274 |
///\warning This functionality cannot be used together with the |
| 1278 | 1275 |
///Snapshot feature. |
| 1279 | 1276 |
void changeV(Edge e, Node n) {
|
| 1280 | 1277 |
Parent::changeV(e,n); |
| 1281 | 1278 |
} |
| 1279 |
|
|
| 1282 | 1280 |
/// \brief Contract two nodes. |
| 1283 | 1281 |
/// |
| 1284 |
/// This function contracts two nodes. |
|
| 1285 |
/// Node \p b will be removed but instead of deleting |
|
| 1286 |
/// its neighboring arcs, they will be joined to \p a. |
|
| 1287 |
/// The last parameter \p r controls whether to remove loops. \c true |
|
| 1288 |
/// |
|
| 1282 |
/// This function contracts the given two nodes. |
|
| 1283 |
/// Node \c b is removed, but instead of deleting |
|
| 1284 |
/// its incident edges, they are joined to node \c a. |
|
| 1285 |
/// If the last parameter \c r is \c true (this is the default value), |
|
| 1286 |
/// then the newly created loops are removed. |
|
| 1289 | 1287 |
/// |
| 1290 |
/// \note The <tt>ArcIt</tt>s referencing a moved arc remain |
|
| 1291 |
/// valid. |
|
| 1288 |
/// \note The moved edges are joined to node \c a using changeU() |
|
| 1289 |
/// or changeV(), thus all edge and arc iterators whose base node is |
|
| 1290 |
/// \c b are invalidated. |
|
| 1291 |
/// Moreover all iterators referencing node \c b or the removed |
|
| 1292 |
/// loops are also invalidated. Other iterators remain valid. |
|
| 1292 | 1293 |
/// |
| 1293 | 1294 |
///\warning This functionality cannot be used together with the |
| 1294 | 1295 |
///Snapshot feature. |
| 1295 | 1296 |
void contract(Node a, Node b, bool r = true) {
|
| 1296 | 1297 |
for(IncEdgeIt e(*this, b); e!=INVALID;) {
|
| 1297 | 1298 |
IncEdgeIt f = e; ++f; |
| 1298 | 1299 |
if (r && runningNode(e) == a) {
|
| 1299 | 1300 |
erase(e); |
| 1300 | 1301 |
} else if (u(e) == b) {
|
| 1301 | 1302 |
changeU(e, a); |
| 1302 | 1303 |
} else {
|
| 1303 | 1304 |
changeV(e, a); |
| 1304 | 1305 |
} |
| 1305 | 1306 |
e = f; |
| 1306 | 1307 |
} |
| 1307 | 1308 |
erase(b); |
| 1308 | 1309 |
} |
| 1309 | 1310 |
|
| 1311 |
///Clear the graph. |
|
| 1312 |
|
|
| 1313 |
///This function erases all nodes and arcs from the graph. |
|
| 1314 |
/// |
|
| 1315 |
void clear() {
|
|
| 1316 |
Parent::clear(); |
|
| 1317 |
} |
|
| 1318 |
|
|
| 1319 |
/// Reserve memory for nodes. |
|
| 1320 |
|
|
| 1321 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 1322 |
/// allocation: if you know that the graph you want to build will |
|
| 1323 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
|
| 1324 |
/// then it is worth reserving space for this amount before starting |
|
| 1325 |
/// to build the graph. |
|
| 1326 |
/// \sa reserveEdge() |
|
| 1327 |
void reserveNode(int n) { nodes.reserve(n); };
|
|
| 1328 |
|
|
| 1329 |
/// Reserve memory for edges. |
|
| 1330 |
|
|
| 1331 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 1332 |
/// allocation: if you know that the graph you want to build will |
|
| 1333 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
|
| 1334 |
/// then it is worth reserving space for this amount before starting |
|
| 1335 |
/// to build the graph. |
|
| 1336 |
/// \sa reserveNode() |
|
| 1337 |
void reserveEdge(int m) { arcs.reserve(2 * m); };
|
|
| 1310 | 1338 |
|
| 1311 | 1339 |
/// \brief Class to make a snapshot of the graph and restore |
| 1312 | 1340 |
/// it later. |
| 1313 | 1341 |
/// |
| 1314 | 1342 |
/// Class to make a snapshot of the graph and restore it later. |
| 1315 | 1343 |
/// |
| 1316 | 1344 |
/// The newly added nodes and edges can be removed |
| 1317 | 1345 |
/// using the restore() function. |
| 1318 | 1346 |
/// |
| 1319 |
/// \warning Edge and node deletions and other modifications |
|
| 1320 |
/// (e.g. changing nodes of edges, contracting nodes) cannot be |
|
| 1321 |
/// restored |
|
| 1347 |
/// \note After a state is restored, you cannot restore a later state, |
|
| 1348 |
/// i.e. you cannot add the removed nodes and edges again using |
|
| 1349 |
/// another Snapshot instance. |
|
| 1350 |
/// |
|
| 1351 |
/// \warning Node and edge deletions and other modifications |
|
| 1352 |
/// (e.g. changing the end-nodes of edges or contracting nodes) |
|
| 1353 |
/// cannot be restored. These events invalidate the snapshot. |
|
| 1354 |
/// However the edges and nodes that were added to the graph after |
|
| 1355 |
/// making the current snapshot can be removed without invalidating it. |
|
| 1322 | 1356 |
class Snapshot {
|
| 1323 | 1357 |
protected: |
| 1324 | 1358 |
|
| 1325 | 1359 |
typedef Parent::NodeNotifier NodeNotifier; |
| 1326 | 1360 |
|
| 1327 | 1361 |
class NodeObserverProxy : public NodeNotifier::ObserverBase {
|
| 1328 | 1362 |
public: |
| 1329 | 1363 |
|
| 1330 | 1364 |
NodeObserverProxy(Snapshot& _snapshot) |
| 1331 | 1365 |
: snapshot(_snapshot) {}
|
| 1332 | 1366 |
|
| 1333 | 1367 |
using NodeNotifier::ObserverBase::attach; |
| 1334 | 1368 |
using NodeNotifier::ObserverBase::detach; |
| 1335 | 1369 |
using NodeNotifier::ObserverBase::attached; |
| 1336 | 1370 |
|
| 1337 | 1371 |
protected: |
| 1338 | 1372 |
|
| 1339 | 1373 |
virtual void add(const Node& node) {
|
| 1340 | 1374 |
snapshot.addNode(node); |
| 1341 | 1375 |
} |
| 1342 | 1376 |
virtual void add(const std::vector<Node>& nodes) {
|
| 1343 | 1377 |
for (int i = nodes.size() - 1; i >= 0; ++i) {
|
| 1344 | 1378 |
snapshot.addNode(nodes[i]); |
| 1345 | 1379 |
} |
| 1346 | 1380 |
} |
| 1347 | 1381 |
virtual void erase(const Node& node) {
|
| 1348 | 1382 |
snapshot.eraseNode(node); |
| 1349 | 1383 |
} |
| 1350 | 1384 |
virtual void erase(const std::vector<Node>& nodes) {
|
| 1351 | 1385 |
for (int i = 0; i < int(nodes.size()); ++i) {
|
| 1352 | 1386 |
snapshot.eraseNode(nodes[i]); |
| 1353 | 1387 |
} |
| 1354 | 1388 |
} |
| 1355 | 1389 |
virtual void build() {
|
| 1356 | 1390 |
Node node; |
| 1357 | 1391 |
std::vector<Node> nodes; |
| 1358 | 1392 |
for (notifier()->first(node); node != INVALID; |
| 1359 | 1393 |
notifier()->next(node)) {
|
| 1360 | 1394 |
nodes.push_back(node); |
| 1361 | 1395 |
} |
| 1362 | 1396 |
for (int i = nodes.size() - 1; i >= 0; --i) {
|
| 1363 | 1397 |
snapshot.addNode(nodes[i]); |
| 1364 | 1398 |
} |
| 1365 | 1399 |
} |
| 1366 | 1400 |
virtual void clear() {
|
| 1367 | 1401 |
Node node; |
| 1368 | 1402 |
for (notifier()->first(node); node != INVALID; |
| 1369 | 1403 |
notifier()->next(node)) {
|
| 1370 | 1404 |
snapshot.eraseNode(node); |
| 1371 | 1405 |
} |
| 1372 | 1406 |
} |
| 1373 | 1407 |
|
| 1374 | 1408 |
Snapshot& snapshot; |
| 1375 | 1409 |
}; |
| 1376 | 1410 |
|
| 1377 | 1411 |
class EdgeObserverProxy : public EdgeNotifier::ObserverBase {
|
| 1378 | 1412 |
public: |
| 1379 | 1413 |
|
| 1380 | 1414 |
EdgeObserverProxy(Snapshot& _snapshot) |
| 1381 | 1415 |
: snapshot(_snapshot) {}
|
| 1382 | 1416 |
|
| 1383 | 1417 |
using EdgeNotifier::ObserverBase::attach; |
| 1384 | 1418 |
using EdgeNotifier::ObserverBase::detach; |
| 1385 | 1419 |
using EdgeNotifier::ObserverBase::attached; |
| 1386 | 1420 |
|
| 1387 | 1421 |
protected: |
| 1388 | 1422 |
|
| 1389 | 1423 |
virtual void add(const Edge& edge) {
|
| 1390 | 1424 |
snapshot.addEdge(edge); |
| 1391 | 1425 |
} |
| 1392 | 1426 |
virtual void add(const std::vector<Edge>& edges) {
|
| 1393 | 1427 |
for (int i = edges.size() - 1; i >= 0; ++i) {
|
| 1394 | 1428 |
snapshot.addEdge(edges[i]); |
| 1395 | 1429 |
} |
| 1396 | 1430 |
} |
| 1397 | 1431 |
virtual void erase(const Edge& edge) {
|
| 1398 | 1432 |
snapshot.eraseEdge(edge); |
| 1399 | 1433 |
} |
| 1400 | 1434 |
virtual void erase(const std::vector<Edge>& edges) {
|
| 1401 | 1435 |
for (int i = 0; i < int(edges.size()); ++i) {
|
| 1402 | 1436 |
snapshot.eraseEdge(edges[i]); |
| 1403 | 1437 |
} |
| 1404 | 1438 |
} |
| 1405 | 1439 |
virtual void build() {
|
| 1406 | 1440 |
Edge edge; |
| 1407 | 1441 |
std::vector<Edge> edges; |
| 1408 | 1442 |
for (notifier()->first(edge); edge != INVALID; |
| 1409 | 1443 |
notifier()->next(edge)) {
|
| 1410 | 1444 |
edges.push_back(edge); |
| 1411 | 1445 |
} |
| 1412 | 1446 |
for (int i = edges.size() - 1; i >= 0; --i) {
|
| 1413 | 1447 |
snapshot.addEdge(edges[i]); |
| 1414 | 1448 |
} |
| 1415 | 1449 |
} |
| 1416 | 1450 |
virtual void clear() {
|
| 1417 | 1451 |
Edge edge; |
| 1418 | 1452 |
for (notifier()->first(edge); edge != INVALID; |
| 1419 | 1453 |
notifier()->next(edge)) {
|
| 1420 | 1454 |
snapshot.eraseEdge(edge); |
| 1421 | 1455 |
} |
| 1422 | 1456 |
} |
| 1423 | 1457 |
|
| 1424 | 1458 |
Snapshot& snapshot; |
| 1425 | 1459 |
}; |
| 1426 | 1460 |
|
| 1427 | 1461 |
ListGraph *graph; |
| 1428 | 1462 |
|
| 1429 | 1463 |
NodeObserverProxy node_observer_proxy; |
| 1430 | 1464 |
EdgeObserverProxy edge_observer_proxy; |
| 1431 | 1465 |
|
| 1432 | 1466 |
std::list<Node> added_nodes; |
| 1433 | 1467 |
std::list<Edge> added_edges; |
| 1434 | 1468 |
|
| 1435 | 1469 |
|
| 1436 | 1470 |
void addNode(const Node& node) {
|
| 1437 | 1471 |
added_nodes.push_front(node); |
| 1438 | 1472 |
} |
| 1439 | 1473 |
void eraseNode(const Node& node) {
|
| 1440 | 1474 |
std::list<Node>::iterator it = |
| 1441 | 1475 |
std::find(added_nodes.begin(), added_nodes.end(), node); |
| 1442 | 1476 |
if (it == added_nodes.end()) {
|
| 1443 | 1477 |
clear(); |
| 1444 | 1478 |
edge_observer_proxy.detach(); |
| 1445 | 1479 |
throw NodeNotifier::ImmediateDetach(); |
| 1446 | 1480 |
} else {
|
| 1447 | 1481 |
added_nodes.erase(it); |
| 1448 | 1482 |
} |
| 1449 | 1483 |
} |
| 1450 | 1484 |
|
| 1451 | 1485 |
void addEdge(const Edge& edge) {
|
| 1452 | 1486 |
added_edges.push_front(edge); |
| 1453 | 1487 |
} |
| 1454 | 1488 |
void eraseEdge(const Edge& edge) {
|
| 1455 | 1489 |
std::list<Edge>::iterator it = |
| 1456 | 1490 |
std::find(added_edges.begin(), added_edges.end(), edge); |
| 1457 | 1491 |
if (it == added_edges.end()) {
|
| 1458 | 1492 |
clear(); |
| 1459 | 1493 |
node_observer_proxy.detach(); |
| 1460 | 1494 |
throw EdgeNotifier::ImmediateDetach(); |
| 1461 | 1495 |
} else {
|
| 1462 | 1496 |
added_edges.erase(it); |
| 1463 | 1497 |
} |
| 1464 | 1498 |
} |
| 1465 | 1499 |
|
| 1466 | 1500 |
void attach(ListGraph &_graph) {
|
| 1467 | 1501 |
graph = &_graph; |
| 1468 | 1502 |
node_observer_proxy.attach(graph->notifier(Node())); |
| 1469 | 1503 |
edge_observer_proxy.attach(graph->notifier(Edge())); |
| 1470 | 1504 |
} |
| 1471 | 1505 |
|
| 1472 | 1506 |
void detach() {
|
| 1473 | 1507 |
node_observer_proxy.detach(); |
| 1474 | 1508 |
edge_observer_proxy.detach(); |
| 1475 | 1509 |
} |
| 1476 | 1510 |
|
| 1477 | 1511 |
bool attached() const {
|
| 1478 | 1512 |
return node_observer_proxy.attached(); |
| 1479 | 1513 |
} |
| 1480 | 1514 |
|
| 1481 | 1515 |
void clear() {
|
| 1482 | 1516 |
added_nodes.clear(); |
| 1483 | 1517 |
added_edges.clear(); |
| 1484 | 1518 |
} |
| 1485 | 1519 |
|
| 1486 | 1520 |
public: |
| 1487 | 1521 |
|
| 1488 | 1522 |
/// \brief Default constructor. |
| 1489 | 1523 |
/// |
| 1490 | 1524 |
/// Default constructor. |
| 1491 |
/// |
|
| 1525 |
/// You have to call save() to actually make a snapshot. |
|
| 1492 | 1526 |
Snapshot() |
| 1493 | 1527 |
: graph(0), node_observer_proxy(*this), |
| 1494 | 1528 |
edge_observer_proxy(*this) {}
|
| 1495 | 1529 |
|
| 1496 | 1530 |
/// \brief Constructor that immediately makes a snapshot. |
| 1497 | 1531 |
/// |
| 1498 |
/// This constructor immediately makes a snapshot of the graph. |
|
| 1499 |
/// \param _graph The graph we make a snapshot of. |
|
| 1500 |
|
|
| 1532 |
/// This constructor immediately makes a snapshot of the given graph. |
|
| 1533 |
Snapshot(ListGraph &gr) |
|
| 1501 | 1534 |
: node_observer_proxy(*this), |
| 1502 | 1535 |
edge_observer_proxy(*this) {
|
| 1503 |
attach( |
|
| 1536 |
attach(gr); |
|
| 1504 | 1537 |
} |
| 1505 | 1538 |
|
| 1506 | 1539 |
/// \brief Make a snapshot. |
| 1507 | 1540 |
/// |
| 1508 |
/// Make a snapshot of the graph. |
|
| 1509 |
/// |
|
| 1510 |
/// This function |
|
| 1541 |
/// This function makes a snapshot of the given graph. |
|
| 1542 |
/// It can be called more than once. In case of a repeated |
|
| 1511 | 1543 |
/// call, the previous snapshot gets lost. |
| 1512 |
/// \param _graph The graph we make the snapshot of. |
|
| 1513 |
void save(ListGraph &_graph) {
|
|
| 1544 |
void save(ListGraph &gr) {
|
|
| 1514 | 1545 |
if (attached()) {
|
| 1515 | 1546 |
detach(); |
| 1516 | 1547 |
clear(); |
| 1517 | 1548 |
} |
| 1518 |
attach( |
|
| 1549 |
attach(gr); |
|
| 1519 | 1550 |
} |
| 1520 | 1551 |
|
| 1521 | 1552 |
/// \brief Undo the changes until the last snapshot. |
| 1522 |
// |
|
| 1523 |
/// Undo the changes until the last snapshot created by save(). |
|
| 1553 |
/// |
|
| 1554 |
/// This function undos the changes until the last snapshot |
|
| 1555 |
/// created by save() or Snapshot(ListGraph&). |
|
| 1556 |
/// |
|
| 1557 |
/// \warning This method invalidates the snapshot, i.e. repeated |
|
| 1558 |
/// restoring is not supported unless you call save() again. |
|
| 1524 | 1559 |
void restore() {
|
| 1525 | 1560 |
detach(); |
| 1526 | 1561 |
for(std::list<Edge>::iterator it = added_edges.begin(); |
| 1527 | 1562 |
it != added_edges.end(); ++it) {
|
| 1528 | 1563 |
graph->erase(*it); |
| 1529 | 1564 |
} |
| 1530 | 1565 |
for(std::list<Node>::iterator it = added_nodes.begin(); |
| 1531 | 1566 |
it != added_nodes.end(); ++it) {
|
| 1532 | 1567 |
graph->erase(*it); |
| 1533 | 1568 |
} |
| 1534 | 1569 |
clear(); |
| 1535 | 1570 |
} |
| 1536 | 1571 |
|
| 1537 |
/// \brief |
|
| 1572 |
/// \brief Returns \c true if the snapshot is valid. |
|
| 1538 | 1573 |
/// |
| 1539 |
/// |
|
| 1574 |
/// This function returns \c true if the snapshot is valid. |
|
| 1540 | 1575 |
bool valid() const {
|
| 1541 | 1576 |
return attached(); |
| 1542 | 1577 |
} |
| 1543 | 1578 |
}; |
| 1544 | 1579 |
}; |
| 1545 | 1580 |
|
| 1546 | 1581 |
/// @} |
| 1547 | 1582 |
} //namespace lemon |
| 1548 | 1583 |
|
| 1549 | 1584 |
|
| 1550 | 1585 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_LP_BASE_H |
| 20 | 20 |
#define LEMON_LP_BASE_H |
| 21 | 21 |
|
| 22 | 22 |
#include<iostream> |
| 23 | 23 |
#include<vector> |
| 24 | 24 |
#include<map> |
| 25 | 25 |
#include<limits> |
| 26 | 26 |
#include<lemon/math.h> |
| 27 | 27 |
|
| 28 | 28 |
#include<lemon/error.h> |
| 29 | 29 |
#include<lemon/assert.h> |
| 30 | 30 |
|
| 31 | 31 |
#include<lemon/core.h> |
| 32 | 32 |
#include<lemon/bits/solver_bits.h> |
| 33 | 33 |
|
| 34 | 34 |
///\file |
| 35 | 35 |
///\brief The interface of the LP solver interface. |
| 36 | 36 |
///\ingroup lp_group |
| 37 | 37 |
namespace lemon {
|
| 38 | 38 |
|
| 39 | 39 |
///Common base class for LP and MIP solvers |
| 40 | 40 |
|
| 41 | 41 |
///Usually this class is not used directly, please use one of the concrete |
| 42 | 42 |
///implementations of the solver interface. |
| 43 | 43 |
///\ingroup lp_group |
| 44 | 44 |
class LpBase {
|
| 45 | 45 |
|
| 46 | 46 |
protected: |
| 47 | 47 |
|
| 48 | 48 |
_solver_bits::VarIndex rows; |
| 49 | 49 |
_solver_bits::VarIndex cols; |
| 50 | 50 |
|
| 51 | 51 |
public: |
| 52 | 52 |
|
| 53 | 53 |
///Possible outcomes of an LP solving procedure |
| 54 | 54 |
enum SolveExitStatus {
|
| 55 | 55 |
/// = 0. It means that the problem has been successfully solved: either |
| 56 | 56 |
///an optimal solution has been found or infeasibility/unboundedness |
| 57 | 57 |
///has been proved. |
| 58 | 58 |
SOLVED = 0, |
| 59 | 59 |
/// = 1. Any other case (including the case when some user specified |
| 60 | 60 |
///limit has been exceeded). |
| 61 | 61 |
UNSOLVED = 1 |
| 62 | 62 |
}; |
| 63 | 63 |
|
| 64 | 64 |
///Direction of the optimization |
| 65 | 65 |
enum Sense {
|
| 66 | 66 |
/// Minimization |
| 67 | 67 |
MIN, |
| 68 | 68 |
/// Maximization |
| 69 | 69 |
MAX |
| 70 | 70 |
}; |
| 71 | 71 |
|
| 72 | 72 |
///Enum for \c messageLevel() parameter |
| 73 | 73 |
enum MessageLevel {
|
| 74 | 74 |
/// No output (default value). |
| 75 | 75 |
MESSAGE_NOTHING, |
| 76 | 76 |
/// Error messages only. |
| 77 | 77 |
MESSAGE_ERROR, |
| 78 | 78 |
/// Warnings. |
| 79 | 79 |
MESSAGE_WARNING, |
| 80 | 80 |
/// Normal output. |
| 81 | 81 |
MESSAGE_NORMAL, |
| 82 | 82 |
/// Verbose output. |
| 83 | 83 |
MESSAGE_VERBOSE |
| 84 | 84 |
}; |
| 85 | 85 |
|
| 86 | 86 |
|
| 87 | 87 |
///The floating point type used by the solver |
| 88 | 88 |
typedef double Value; |
| 89 | 89 |
///The infinity constant |
| 90 | 90 |
static const Value INF; |
| 91 | 91 |
///The not a number constant |
| 92 | 92 |
static const Value NaN; |
| 93 | 93 |
|
| 94 | 94 |
friend class Col; |
| 95 | 95 |
friend class ColIt; |
| 96 | 96 |
friend class Row; |
| 97 | 97 |
friend class RowIt; |
| 98 | 98 |
|
| 99 | 99 |
///Refer to a column of the LP. |
| 100 | 100 |
|
| 101 | 101 |
///This type is used to refer to a column of the LP. |
| 102 | 102 |
/// |
| 103 | 103 |
///Its value remains valid and correct even after the addition or erase of |
| 104 | 104 |
///other columns. |
| 105 | 105 |
/// |
| 106 | 106 |
///\note This class is similar to other Item types in LEMON, like |
| 107 | 107 |
///Node and Arc types in digraph. |
| 108 | 108 |
class Col {
|
| 109 | 109 |
friend class LpBase; |
| 110 | 110 |
protected: |
| 111 | 111 |
int _id; |
| 112 | 112 |
explicit Col(int id) : _id(id) {}
|
| 113 | 113 |
public: |
| 114 | 114 |
typedef Value ExprValue; |
| 115 | 115 |
typedef True LpCol; |
| 116 | 116 |
/// Default constructor |
| 117 | 117 |
|
| 118 | 118 |
/// \warning The default constructor sets the Col to an |
| 119 | 119 |
/// undefined value. |
| 120 | 120 |
Col() {}
|
| 121 | 121 |
/// Invalid constructor \& conversion. |
| 122 | 122 |
|
| 123 | 123 |
/// This constructor initializes the Col to be invalid. |
| 124 | 124 |
/// \sa Invalid for more details. |
| 125 | 125 |
Col(const Invalid&) : _id(-1) {}
|
| 126 | 126 |
/// Equality operator |
| 127 | 127 |
|
| 128 | 128 |
/// Two \ref Col "Col"s are equal if and only if they point to |
| 129 | 129 |
/// the same LP column or both are invalid. |
| 130 | 130 |
bool operator==(Col c) const {return _id == c._id;}
|
| 131 | 131 |
/// Inequality operator |
| 132 | 132 |
|
| 133 | 133 |
/// \sa operator==(Col c) |
| 134 | 134 |
/// |
| 135 | 135 |
bool operator!=(Col c) const {return _id != c._id;}
|
| 136 | 136 |
/// Artificial ordering operator. |
| 137 | 137 |
|
| 138 | 138 |
/// To allow the use of this object in std::map or similar |
| 139 | 139 |
/// associative container we require this. |
| 140 | 140 |
/// |
| 141 | 141 |
/// \note This operator only have to define some strict ordering of |
| 142 | 142 |
/// the items; this order has nothing to do with the iteration |
| 143 | 143 |
/// ordering of the items. |
| 144 | 144 |
bool operator<(Col c) const {return _id < c._id;}
|
| 145 | 145 |
}; |
| 146 | 146 |
|
| 147 | 147 |
///Iterator for iterate over the columns of an LP problem |
| 148 | 148 |
|
| 149 | 149 |
/// Its usage is quite simple, for example you can count the number |
| 150 | 150 |
/// of columns in an LP \c lp: |
| 151 | 151 |
///\code |
| 152 | 152 |
/// int count=0; |
| 153 | 153 |
/// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count; |
| 154 | 154 |
///\endcode |
| 155 | 155 |
class ColIt : public Col {
|
| 156 | 156 |
const LpBase *_solver; |
| 157 | 157 |
public: |
| 158 | 158 |
/// Default constructor |
| 159 | 159 |
|
| 160 | 160 |
/// \warning The default constructor sets the iterator |
| 161 | 161 |
/// to an undefined value. |
| 162 | 162 |
ColIt() {}
|
| 163 | 163 |
/// Sets the iterator to the first Col |
| 164 | 164 |
|
| 165 | 165 |
/// Sets the iterator to the first Col. |
| 166 | 166 |
/// |
| 167 | 167 |
ColIt(const LpBase &solver) : _solver(&solver) |
| 168 | 168 |
{
|
| 169 | 169 |
_solver->cols.firstItem(_id); |
| 170 | 170 |
} |
| 171 | 171 |
/// Invalid constructor \& conversion |
| 172 | 172 |
|
| 173 | 173 |
/// Initialize the iterator to be invalid. |
| 174 | 174 |
/// \sa Invalid for more details. |
| 175 | 175 |
ColIt(const Invalid&) : Col(INVALID) {}
|
| 176 | 176 |
/// Next column |
| 177 | 177 |
|
| 178 | 178 |
/// Assign the iterator to the next column. |
| 179 | 179 |
/// |
| 180 | 180 |
ColIt &operator++() |
| 181 | 181 |
{
|
| 182 | 182 |
_solver->cols.nextItem(_id); |
| 183 | 183 |
return *this; |
| 184 | 184 |
} |
| 185 | 185 |
}; |
| 186 | 186 |
|
| 187 | 187 |
/// \brief Returns the ID of the column. |
| 188 | 188 |
static int id(const Col& col) { return col._id; }
|
| 189 | 189 |
/// \brief Returns the column with the given ID. |
| 190 | 190 |
/// |
| 191 | 191 |
/// \pre The argument should be a valid column ID in the LP problem. |
| 192 | 192 |
static Col colFromId(int id) { return Col(id); }
|
| 193 | 193 |
|
| 194 | 194 |
///Refer to a row of the LP. |
| 195 | 195 |
|
| 196 | 196 |
///This type is used to refer to a row of the LP. |
| 197 | 197 |
/// |
| 198 | 198 |
///Its value remains valid and correct even after the addition or erase of |
| 199 | 199 |
///other rows. |
| 200 | 200 |
/// |
| 201 | 201 |
///\note This class is similar to other Item types in LEMON, like |
| 202 | 202 |
///Node and Arc types in digraph. |
| 203 | 203 |
class Row {
|
| 204 | 204 |
friend class LpBase; |
| 205 | 205 |
protected: |
| 206 | 206 |
int _id; |
| 207 | 207 |
explicit Row(int id) : _id(id) {}
|
| 208 | 208 |
public: |
| 209 | 209 |
typedef Value ExprValue; |
| 210 | 210 |
typedef True LpRow; |
| 211 | 211 |
/// Default constructor |
| 212 | 212 |
|
| 213 | 213 |
/// \warning The default constructor sets the Row to an |
| 214 | 214 |
/// undefined value. |
| 215 | 215 |
Row() {}
|
| 216 | 216 |
/// Invalid constructor \& conversion. |
| 217 | 217 |
|
| 218 | 218 |
/// This constructor initializes the Row to be invalid. |
| 219 | 219 |
/// \sa Invalid for more details. |
| 220 | 220 |
Row(const Invalid&) : _id(-1) {}
|
| 221 | 221 |
/// Equality operator |
| 222 | 222 |
|
| 223 | 223 |
/// Two \ref Row "Row"s are equal if and only if they point to |
| 224 | 224 |
/// the same LP row or both are invalid. |
| 225 | 225 |
bool operator==(Row r) const {return _id == r._id;}
|
| 226 | 226 |
/// Inequality operator |
| 227 | 227 |
|
| 228 | 228 |
/// \sa operator==(Row r) |
| 229 | 229 |
/// |
| 230 | 230 |
bool operator!=(Row r) const {return _id != r._id;}
|
| 231 | 231 |
/// Artificial ordering operator. |
| 232 | 232 |
|
| 233 | 233 |
/// To allow the use of this object in std::map or similar |
| 234 | 234 |
/// associative container we require this. |
| 235 | 235 |
/// |
| 236 | 236 |
/// \note This operator only have to define some strict ordering of |
| 237 | 237 |
/// the items; this order has nothing to do with the iteration |
| 238 | 238 |
/// ordering of the items. |
| 239 | 239 |
bool operator<(Row r) const {return _id < r._id;}
|
| 240 | 240 |
}; |
| 241 | 241 |
|
| 242 | 242 |
///Iterator for iterate over the rows of an LP problem |
| 243 | 243 |
|
| 244 | 244 |
/// Its usage is quite simple, for example you can count the number |
| 245 | 245 |
/// of rows in an LP \c lp: |
| 246 | 246 |
///\code |
| 247 | 247 |
/// int count=0; |
| 248 | 248 |
/// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count; |
| 249 | 249 |
///\endcode |
| 250 | 250 |
class RowIt : public Row {
|
| 251 | 251 |
const LpBase *_solver; |
| 252 | 252 |
public: |
| 253 | 253 |
/// Default constructor |
| 254 | 254 |
|
| 255 | 255 |
/// \warning The default constructor sets the iterator |
| 256 | 256 |
/// to an undefined value. |
| 257 | 257 |
RowIt() {}
|
| 258 | 258 |
/// Sets the iterator to the first Row |
| 259 | 259 |
|
| 260 | 260 |
/// Sets the iterator to the first Row. |
| 261 | 261 |
/// |
| 262 | 262 |
RowIt(const LpBase &solver) : _solver(&solver) |
| 263 | 263 |
{
|
| 264 | 264 |
_solver->rows.firstItem(_id); |
| 265 | 265 |
} |
| 266 | 266 |
/// Invalid constructor \& conversion |
| 267 | 267 |
|
| 268 | 268 |
/// Initialize the iterator to be invalid. |
| 269 | 269 |
/// \sa Invalid for more details. |
| 270 | 270 |
RowIt(const Invalid&) : Row(INVALID) {}
|
| 271 | 271 |
/// Next row |
| 272 | 272 |
|
| 273 | 273 |
/// Assign the iterator to the next row. |
| 274 | 274 |
/// |
| 275 | 275 |
RowIt &operator++() |
| 276 | 276 |
{
|
| 277 | 277 |
_solver->rows.nextItem(_id); |
| 278 | 278 |
return *this; |
| 279 | 279 |
} |
| 280 | 280 |
}; |
| 281 | 281 |
|
| 282 | 282 |
/// \brief Returns the ID of the row. |
| 283 | 283 |
static int id(const Row& row) { return row._id; }
|
| 284 | 284 |
/// \brief Returns the row with the given ID. |
| 285 | 285 |
/// |
| 286 | 286 |
/// \pre The argument should be a valid row ID in the LP problem. |
| 287 | 287 |
static Row rowFromId(int id) { return Row(id); }
|
| 288 | 288 |
|
| 289 | 289 |
public: |
| 290 | 290 |
|
| 291 | 291 |
///Linear expression of variables and a constant component |
| 292 | 292 |
|
| 293 | 293 |
///This data structure stores a linear expression of the variables |
| 294 | 294 |
///(\ref Col "Col"s) and also has a constant component. |
| 295 | 295 |
/// |
| 296 | 296 |
///There are several ways to access and modify the contents of this |
| 297 | 297 |
///container. |
| 298 | 298 |
///\code |
| 299 | 299 |
///e[v]=5; |
| 300 | 300 |
///e[v]+=12; |
| 301 | 301 |
///e.erase(v); |
| 302 | 302 |
///\endcode |
| 303 | 303 |
///or you can also iterate through its elements. |
| 304 | 304 |
///\code |
| 305 | 305 |
///double s=0; |
| 306 | 306 |
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) |
| 307 | 307 |
/// s+=*i * primal(i); |
| 308 | 308 |
///\endcode |
| 309 | 309 |
///(This code computes the primal value of the expression). |
| 310 | 310 |
///- Numbers (<tt>double</tt>'s) |
| 311 | 311 |
///and variables (\ref Col "Col"s) directly convert to an |
| 312 | 312 |
///\ref Expr and the usual linear operations are defined, so |
| 313 | 313 |
///\code |
| 314 | 314 |
///v+w |
| 315 | 315 |
///2*v-3.12*(v-w/2)+2 |
| 316 | 316 |
///v*2.1+(3*v+(v*12+w+6)*3)/2 |
| 317 | 317 |
///\endcode |
| 318 | 318 |
///are valid expressions. |
| 319 | 319 |
///The usual assignment operations are also defined. |
| 320 | 320 |
///\code |
| 321 | 321 |
///e=v+w; |
| 322 | 322 |
///e+=2*v-3.12*(v-w/2)+2; |
| 323 | 323 |
///e*=3.4; |
| 324 | 324 |
///e/=5; |
| 325 | 325 |
///\endcode |
| 326 | 326 |
///- The constant member can be set and read by dereference |
| 327 | 327 |
/// operator (unary *) |
| 328 | 328 |
/// |
| 329 | 329 |
///\code |
| 330 | 330 |
///*e=12; |
| 331 | 331 |
///double c=*e; |
| 332 | 332 |
///\endcode |
| 333 | 333 |
/// |
| 334 | 334 |
///\sa Constr |
| 335 | 335 |
class Expr {
|
| 336 | 336 |
friend class LpBase; |
| 337 | 337 |
public: |
| 338 | 338 |
/// The key type of the expression |
| 339 | 339 |
typedef LpBase::Col Key; |
| 340 | 340 |
/// The value type of the expression |
| 341 | 341 |
typedef LpBase::Value Value; |
| 342 | 342 |
|
| 343 | 343 |
protected: |
| 344 | 344 |
Value const_comp; |
| 345 | 345 |
std::map<int, Value> comps; |
| 346 | 346 |
|
| 347 | 347 |
public: |
| 348 | 348 |
typedef True SolverExpr; |
| 349 | 349 |
/// Default constructor |
| 350 | 350 |
|
| 351 | 351 |
/// Construct an empty expression, the coefficients and |
| 352 | 352 |
/// the constant component are initialized to zero. |
| 353 | 353 |
Expr() : const_comp(0) {}
|
| 354 | 354 |
/// Construct an expression from a column |
| 355 | 355 |
|
| 356 | 356 |
/// Construct an expression, which has a term with \c c variable |
| 357 | 357 |
/// and 1.0 coefficient. |
| 358 | 358 |
Expr(const Col &c) : const_comp(0) {
|
| 359 | 359 |
typedef std::map<int, Value>::value_type pair_type; |
| 360 | 360 |
comps.insert(pair_type(id(c), 1)); |
| 361 | 361 |
} |
| 362 | 362 |
/// Construct an expression from a constant |
| 363 | 363 |
|
| 364 | 364 |
/// Construct an expression, which's constant component is \c v. |
| 365 | 365 |
/// |
| 366 | 366 |
Expr(const Value &v) : const_comp(v) {}
|
| 367 | 367 |
/// Returns the coefficient of the column |
| 368 | 368 |
Value operator[](const Col& c) const {
|
| 369 | 369 |
std::map<int, Value>::const_iterator it=comps.find(id(c)); |
| 370 | 370 |
if (it != comps.end()) {
|
| 371 | 371 |
return it->second; |
| 372 | 372 |
} else {
|
| 373 | 373 |
return 0; |
| 374 | 374 |
} |
| 375 | 375 |
} |
| 376 | 376 |
/// Returns the coefficient of the column |
| 377 | 377 |
Value& operator[](const Col& c) {
|
| 378 | 378 |
return comps[id(c)]; |
| 379 | 379 |
} |
| 380 | 380 |
/// Sets the coefficient of the column |
| 381 | 381 |
void set(const Col &c, const Value &v) {
|
| 382 | 382 |
if (v != 0.0) {
|
| 383 | 383 |
typedef std::map<int, Value>::value_type pair_type; |
| 384 | 384 |
comps.insert(pair_type(id(c), v)); |
| 385 | 385 |
} else {
|
| 386 | 386 |
comps.erase(id(c)); |
| 387 | 387 |
} |
| 388 | 388 |
} |
| 389 | 389 |
/// Returns the constant component of the expression |
| 390 | 390 |
Value& operator*() { return const_comp; }
|
| 391 | 391 |
/// Returns the constant component of the expression |
| 392 | 392 |
const Value& operator*() const { return const_comp; }
|
| 393 | 393 |
/// \brief Removes the coefficients which's absolute value does |
| 394 | 394 |
/// not exceed \c epsilon. It also sets to zero the constant |
| 395 | 395 |
/// component, if it does not exceed epsilon in absolute value. |
| 396 | 396 |
void simplify(Value epsilon = 0.0) {
|
| 397 | 397 |
std::map<int, Value>::iterator it=comps.begin(); |
| 398 | 398 |
while (it != comps.end()) {
|
| 399 | 399 |
std::map<int, Value>::iterator jt=it; |
| 400 | 400 |
++jt; |
| 401 | 401 |
if (std::fabs((*it).second) <= epsilon) comps.erase(it); |
| 402 | 402 |
it=jt; |
| 403 | 403 |
} |
| 404 | 404 |
if (std::fabs(const_comp) <= epsilon) const_comp = 0; |
| 405 | 405 |
} |
| 406 | 406 |
|
| 407 | 407 |
void simplify(Value epsilon = 0.0) const {
|
| 408 | 408 |
const_cast<Expr*>(this)->simplify(epsilon); |
| 409 | 409 |
} |
| 410 | 410 |
|
| 411 | 411 |
///Sets all coefficients and the constant component to 0. |
| 412 | 412 |
void clear() {
|
| 413 | 413 |
comps.clear(); |
| 414 | 414 |
const_comp=0; |
| 415 | 415 |
} |
| 416 | 416 |
|
| 417 | 417 |
///Compound assignment |
| 418 | 418 |
Expr &operator+=(const Expr &e) {
|
| 419 | 419 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
| 420 | 420 |
it!=e.comps.end(); ++it) |
| 421 | 421 |
comps[it->first]+=it->second; |
| 422 | 422 |
const_comp+=e.const_comp; |
| 423 | 423 |
return *this; |
| 424 | 424 |
} |
| 425 | 425 |
///Compound assignment |
| 426 | 426 |
Expr &operator-=(const Expr &e) {
|
| 427 | 427 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
| 428 | 428 |
it!=e.comps.end(); ++it) |
| 429 | 429 |
comps[it->first]-=it->second; |
| 430 | 430 |
const_comp-=e.const_comp; |
| 431 | 431 |
return *this; |
| 432 | 432 |
} |
| 433 | 433 |
///Multiply with a constant |
| 434 | 434 |
Expr &operator*=(const Value &v) {
|
| 435 | 435 |
for (std::map<int, Value>::iterator it=comps.begin(); |
| 436 | 436 |
it!=comps.end(); ++it) |
| 437 | 437 |
it->second*=v; |
| 438 | 438 |
const_comp*=v; |
| 439 | 439 |
return *this; |
| 440 | 440 |
} |
| 441 | 441 |
///Division with a constant |
| 442 | 442 |
Expr &operator/=(const Value &c) {
|
| 443 | 443 |
for (std::map<int, Value>::iterator it=comps.begin(); |
| 444 | 444 |
it!=comps.end(); ++it) |
| 445 | 445 |
it->second/=c; |
| 446 | 446 |
const_comp/=c; |
| 447 | 447 |
return *this; |
| 448 | 448 |
} |
| 449 | 449 |
|
| 450 | 450 |
///Iterator over the expression |
| 451 | 451 |
|
| 452 | 452 |
///The iterator iterates over the terms of the expression. |
| 453 | 453 |
/// |
| 454 | 454 |
///\code |
| 455 | 455 |
///double s=0; |
| 456 | 456 |
///for(LpBase::Expr::CoeffIt i(e);i!=INVALID;++i) |
| 457 | 457 |
/// s+= *i * primal(i); |
| 458 | 458 |
///\endcode |
| 459 | 459 |
class CoeffIt {
|
| 460 | 460 |
private: |
| 461 | 461 |
|
| 462 | 462 |
std::map<int, Value>::iterator _it, _end; |
| 463 | 463 |
|
| 464 | 464 |
public: |
| 465 | 465 |
|
| 466 | 466 |
/// Sets the iterator to the first term |
| 467 | 467 |
|
| 468 | 468 |
/// Sets the iterator to the first term of the expression. |
| 469 | 469 |
/// |
| 470 | 470 |
CoeffIt(Expr& e) |
| 471 | 471 |
: _it(e.comps.begin()), _end(e.comps.end()){}
|
| 472 | 472 |
|
| 473 | 473 |
/// Convert the iterator to the column of the term |
| 474 | 474 |
operator Col() const {
|
| 475 | 475 |
return colFromId(_it->first); |
| 476 | 476 |
} |
| 477 | 477 |
|
| 478 | 478 |
/// Returns the coefficient of the term |
| 479 | 479 |
Value& operator*() { return _it->second; }
|
| 480 | 480 |
|
| 481 | 481 |
/// Returns the coefficient of the term |
| 482 | 482 |
const Value& operator*() const { return _it->second; }
|
| 483 | 483 |
/// Next term |
| 484 | 484 |
|
| 485 | 485 |
/// Assign the iterator to the next term. |
| 486 | 486 |
/// |
| 487 | 487 |
CoeffIt& operator++() { ++_it; return *this; }
|
| 488 | 488 |
|
| 489 | 489 |
/// Equality operator |
| 490 | 490 |
bool operator==(Invalid) const { return _it == _end; }
|
| 491 | 491 |
/// Inequality operator |
| 492 | 492 |
bool operator!=(Invalid) const { return _it != _end; }
|
| 493 | 493 |
}; |
| 494 | 494 |
|
| 495 | 495 |
/// Const iterator over the expression |
| 496 | 496 |
|
| 497 | 497 |
///The iterator iterates over the terms of the expression. |
| 498 | 498 |
/// |
| 499 | 499 |
///\code |
| 500 | 500 |
///double s=0; |
| 501 | 501 |
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) |
| 502 | 502 |
/// s+=*i * primal(i); |
| 503 | 503 |
///\endcode |
| 504 | 504 |
class ConstCoeffIt {
|
| 505 | 505 |
private: |
| 506 | 506 |
|
| 507 | 507 |
std::map<int, Value>::const_iterator _it, _end; |
| 508 | 508 |
|
| 509 | 509 |
public: |
| 510 | 510 |
|
| 511 | 511 |
/// Sets the iterator to the first term |
| 512 | 512 |
|
| 513 | 513 |
/// Sets the iterator to the first term of the expression. |
| 514 | 514 |
/// |
| 515 | 515 |
ConstCoeffIt(const Expr& e) |
| 516 | 516 |
: _it(e.comps.begin()), _end(e.comps.end()){}
|
| 517 | 517 |
|
| 518 | 518 |
/// Convert the iterator to the column of the term |
| 519 | 519 |
operator Col() const {
|
| 520 | 520 |
return colFromId(_it->first); |
| 521 | 521 |
} |
| 522 | 522 |
|
| 523 | 523 |
/// Returns the coefficient of the term |
| 524 | 524 |
const Value& operator*() const { return _it->second; }
|
| 525 | 525 |
|
| 526 | 526 |
/// Next term |
| 527 | 527 |
|
| 528 | 528 |
/// Assign the iterator to the next term. |
| 529 | 529 |
/// |
| 530 | 530 |
ConstCoeffIt& operator++() { ++_it; return *this; }
|
| 531 | 531 |
|
| 532 | 532 |
/// Equality operator |
| 533 | 533 |
bool operator==(Invalid) const { return _it == _end; }
|
| 534 | 534 |
/// Inequality operator |
| 535 | 535 |
bool operator!=(Invalid) const { return _it != _end; }
|
| 536 | 536 |
}; |
| 537 | 537 |
|
| 538 | 538 |
}; |
| 539 | 539 |
|
| 540 | 540 |
///Linear constraint |
| 541 | 541 |
|
| 542 | 542 |
///This data stucture represents a linear constraint in the LP. |
| 543 | 543 |
///Basically it is a linear expression with a lower or an upper bound |
| 544 | 544 |
///(or both). These parts of the constraint can be obtained by the member |
| 545 | 545 |
///functions \ref expr(), \ref lowerBound() and \ref upperBound(), |
| 546 | 546 |
///respectively. |
| 547 | 547 |
///There are two ways to construct a constraint. |
| 548 | 548 |
///- You can set the linear expression and the bounds directly |
| 549 | 549 |
/// by the functions above. |
| 550 | 550 |
///- The operators <tt>\<=</tt>, <tt>==</tt> and <tt>\>=</tt> |
| 551 | 551 |
/// are defined between expressions, or even between constraints whenever |
| 552 | 552 |
/// it makes sense. Therefore if \c e and \c f are linear expressions and |
| 553 | 553 |
/// \c s and \c t are numbers, then the followings are valid expressions |
| 554 | 554 |
/// and thus they can be used directly e.g. in \ref addRow() whenever |
| 555 | 555 |
/// it makes sense. |
| 556 | 556 |
///\code |
| 557 | 557 |
/// e<=s |
| 558 | 558 |
/// e<=f |
| 559 | 559 |
/// e==f |
| 560 | 560 |
/// s<=e<=t |
| 561 | 561 |
/// e>=t |
| 562 | 562 |
///\endcode |
| 563 | 563 |
///\warning The validity of a constraint is checked only at run |
| 564 | 564 |
///time, so e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will |
| 565 | 565 |
///compile, but will fail an assertion. |
| 566 | 566 |
class Constr |
| 567 | 567 |
{
|
| 568 | 568 |
public: |
| 569 | 569 |
typedef LpBase::Expr Expr; |
| 570 | 570 |
typedef Expr::Key Key; |
| 571 | 571 |
typedef Expr::Value Value; |
| 572 | 572 |
|
| 573 | 573 |
protected: |
| 574 | 574 |
Expr _expr; |
| 575 | 575 |
Value _lb,_ub; |
| 576 | 576 |
public: |
| 577 | 577 |
///\e |
| 578 | 578 |
Constr() : _expr(), _lb(NaN), _ub(NaN) {}
|
| 579 | 579 |
///\e |
| 580 | 580 |
Constr(Value lb, const Expr &e, Value ub) : |
| 581 | 581 |
_expr(e), _lb(lb), _ub(ub) {}
|
| 582 | 582 |
Constr(const Expr &e) : |
| 583 | 583 |
_expr(e), _lb(NaN), _ub(NaN) {}
|
| 584 | 584 |
///\e |
| 585 | 585 |
void clear() |
| 586 | 586 |
{
|
| 587 | 587 |
_expr.clear(); |
| 588 | 588 |
_lb=_ub=NaN; |
| 589 | 589 |
} |
| 590 | 590 |
|
| 591 | 591 |
///Reference to the linear expression |
| 592 | 592 |
Expr &expr() { return _expr; }
|
| 593 | 593 |
///Cont reference to the linear expression |
| 594 | 594 |
const Expr &expr() const { return _expr; }
|
| 595 | 595 |
///Reference to the lower bound. |
| 596 | 596 |
|
| 597 | 597 |
///\return |
| 598 | 598 |
///- \ref INF "INF": the constraint is lower unbounded. |
| 599 | 599 |
///- \ref NaN "NaN": lower bound has not been set. |
| 600 | 600 |
///- finite number: the lower bound |
| 601 | 601 |
Value &lowerBound() { return _lb; }
|
| 602 | 602 |
///The const version of \ref lowerBound() |
| 603 | 603 |
const Value &lowerBound() const { return _lb; }
|
| 604 | 604 |
///Reference to the upper bound. |
| 605 | 605 |
|
| 606 | 606 |
///\return |
| 607 | 607 |
///- \ref INF "INF": the constraint is upper unbounded. |
| 608 | 608 |
///- \ref NaN "NaN": upper bound has not been set. |
| 609 | 609 |
///- finite number: the upper bound |
| 610 | 610 |
Value &upperBound() { return _ub; }
|
| 611 | 611 |
///The const version of \ref upperBound() |
| 612 | 612 |
const Value &upperBound() const { return _ub; }
|
| 613 | 613 |
///Is the constraint lower bounded? |
| 614 | 614 |
bool lowerBounded() const {
|
| 615 | 615 |
return _lb != -INF && !isNaN(_lb); |
| 616 | 616 |
} |
| 617 | 617 |
///Is the constraint upper bounded? |
| 618 | 618 |
bool upperBounded() const {
|
| 619 | 619 |
return _ub != INF && !isNaN(_ub); |
| 620 | 620 |
} |
| 621 | 621 |
|
| 622 | 622 |
}; |
| 623 | 623 |
|
| 624 | 624 |
///Linear expression of rows |
| 625 | 625 |
|
| 626 | 626 |
///This data structure represents a column of the matrix, |
| 627 | 627 |
///thas is it strores a linear expression of the dual variables |
| 628 | 628 |
///(\ref Row "Row"s). |
| 629 | 629 |
/// |
| 630 | 630 |
///There are several ways to access and modify the contents of this |
| 631 | 631 |
///container. |
| 632 | 632 |
///\code |
| 633 | 633 |
///e[v]=5; |
| 634 | 634 |
///e[v]+=12; |
| 635 | 635 |
///e.erase(v); |
| 636 | 636 |
///\endcode |
| 637 | 637 |
///or you can also iterate through its elements. |
| 638 | 638 |
///\code |
| 639 | 639 |
///double s=0; |
| 640 | 640 |
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) |
| 641 | 641 |
/// s+=*i; |
| 642 | 642 |
///\endcode |
| 643 | 643 |
///(This code computes the sum of all coefficients). |
| 644 | 644 |
///- Numbers (<tt>double</tt>'s) |
| 645 | 645 |
///and variables (\ref Row "Row"s) directly convert to an |
| 646 | 646 |
///\ref DualExpr and the usual linear operations are defined, so |
| 647 | 647 |
///\code |
| 648 | 648 |
///v+w |
| 649 | 649 |
///2*v-3.12*(v-w/2) |
| 650 | 650 |
///v*2.1+(3*v+(v*12+w)*3)/2 |
| 651 | 651 |
///\endcode |
| 652 | 652 |
///are valid \ref DualExpr dual expressions. |
| 653 | 653 |
///The usual assignment operations are also defined. |
| 654 | 654 |
///\code |
| 655 | 655 |
///e=v+w; |
| 656 | 656 |
///e+=2*v-3.12*(v-w/2); |
| 657 | 657 |
///e*=3.4; |
| 658 | 658 |
///e/=5; |
| 659 | 659 |
///\endcode |
| 660 | 660 |
/// |
| 661 | 661 |
///\sa Expr |
| 662 | 662 |
class DualExpr {
|
| 663 | 663 |
friend class LpBase; |
| 664 | 664 |
public: |
| 665 | 665 |
/// The key type of the expression |
| 666 | 666 |
typedef LpBase::Row Key; |
| 667 | 667 |
/// The value type of the expression |
| 668 | 668 |
typedef LpBase::Value Value; |
| 669 | 669 |
|
| 670 | 670 |
protected: |
| 671 | 671 |
std::map<int, Value> comps; |
| 672 | 672 |
|
| 673 | 673 |
public: |
| 674 | 674 |
typedef True SolverExpr; |
| 675 | 675 |
/// Default constructor |
| 676 | 676 |
|
| 677 | 677 |
/// Construct an empty expression, the coefficients are |
| 678 | 678 |
/// initialized to zero. |
| 679 | 679 |
DualExpr() {}
|
| 680 | 680 |
/// Construct an expression from a row |
| 681 | 681 |
|
| 682 | 682 |
/// Construct an expression, which has a term with \c r dual |
| 683 | 683 |
/// variable and 1.0 coefficient. |
| 684 | 684 |
DualExpr(const Row &r) {
|
| 685 | 685 |
typedef std::map<int, Value>::value_type pair_type; |
| 686 | 686 |
comps.insert(pair_type(id(r), 1)); |
| 687 | 687 |
} |
| 688 | 688 |
/// Returns the coefficient of the row |
| 689 | 689 |
Value operator[](const Row& r) const {
|
| 690 | 690 |
std::map<int, Value>::const_iterator it = comps.find(id(r)); |
| 691 | 691 |
if (it != comps.end()) {
|
| 692 | 692 |
return it->second; |
| 693 | 693 |
} else {
|
| 694 | 694 |
return 0; |
| 695 | 695 |
} |
| 696 | 696 |
} |
| 697 | 697 |
/// Returns the coefficient of the row |
| 698 | 698 |
Value& operator[](const Row& r) {
|
| 699 | 699 |
return comps[id(r)]; |
| 700 | 700 |
} |
| 701 | 701 |
/// Sets the coefficient of the row |
| 702 | 702 |
void set(const Row &r, const Value &v) {
|
| 703 | 703 |
if (v != 0.0) {
|
| 704 | 704 |
typedef std::map<int, Value>::value_type pair_type; |
| 705 | 705 |
comps.insert(pair_type(id(r), v)); |
| 706 | 706 |
} else {
|
| 707 | 707 |
comps.erase(id(r)); |
| 708 | 708 |
} |
| 709 | 709 |
} |
| 710 | 710 |
/// \brief Removes the coefficients which's absolute value does |
| 711 | 711 |
/// not exceed \c epsilon. |
| 712 | 712 |
void simplify(Value epsilon = 0.0) {
|
| 713 | 713 |
std::map<int, Value>::iterator it=comps.begin(); |
| 714 | 714 |
while (it != comps.end()) {
|
| 715 | 715 |
std::map<int, Value>::iterator jt=it; |
| 716 | 716 |
++jt; |
| 717 | 717 |
if (std::fabs((*it).second) <= epsilon) comps.erase(it); |
| 718 | 718 |
it=jt; |
| 719 | 719 |
} |
| 720 | 720 |
} |
| 721 | 721 |
|
| 722 | 722 |
void simplify(Value epsilon = 0.0) const {
|
| 723 | 723 |
const_cast<DualExpr*>(this)->simplify(epsilon); |
| 724 | 724 |
} |
| 725 | 725 |
|
| 726 | 726 |
///Sets all coefficients to 0. |
| 727 | 727 |
void clear() {
|
| 728 | 728 |
comps.clear(); |
| 729 | 729 |
} |
| 730 | 730 |
///Compound assignment |
| 731 | 731 |
DualExpr &operator+=(const DualExpr &e) {
|
| 732 | 732 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
| 733 | 733 |
it!=e.comps.end(); ++it) |
| 734 | 734 |
comps[it->first]+=it->second; |
| 735 | 735 |
return *this; |
| 736 | 736 |
} |
| 737 | 737 |
///Compound assignment |
| 738 | 738 |
DualExpr &operator-=(const DualExpr &e) {
|
| 739 | 739 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
| 740 | 740 |
it!=e.comps.end(); ++it) |
| 741 | 741 |
comps[it->first]-=it->second; |
| 742 | 742 |
return *this; |
| 743 | 743 |
} |
| 744 | 744 |
///Multiply with a constant |
| 745 | 745 |
DualExpr &operator*=(const Value &v) {
|
| 746 | 746 |
for (std::map<int, Value>::iterator it=comps.begin(); |
| 747 | 747 |
it!=comps.end(); ++it) |
| 748 | 748 |
it->second*=v; |
| 749 | 749 |
return *this; |
| 750 | 750 |
} |
| 751 | 751 |
///Division with a constant |
| 752 | 752 |
DualExpr &operator/=(const Value &v) {
|
| 753 | 753 |
for (std::map<int, Value>::iterator it=comps.begin(); |
| 754 | 754 |
it!=comps.end(); ++it) |
| 755 | 755 |
it->second/=v; |
| 756 | 756 |
return *this; |
| 757 | 757 |
} |
| 758 | 758 |
|
| 759 | 759 |
///Iterator over the expression |
| 760 | 760 |
|
| 761 | 761 |
///The iterator iterates over the terms of the expression. |
| 762 | 762 |
/// |
| 763 | 763 |
///\code |
| 764 | 764 |
///double s=0; |
| 765 | 765 |
///for(LpBase::DualExpr::CoeffIt i(e);i!=INVALID;++i) |
| 766 | 766 |
/// s+= *i * dual(i); |
| 767 | 767 |
///\endcode |
| 768 | 768 |
class CoeffIt {
|
| 769 | 769 |
private: |
| 770 | 770 |
|
| 771 | 771 |
std::map<int, Value>::iterator _it, _end; |
| 772 | 772 |
|
| 773 | 773 |
public: |
| 774 | 774 |
|
| 775 | 775 |
/// Sets the iterator to the first term |
| 776 | 776 |
|
| 777 | 777 |
/// Sets the iterator to the first term of the expression. |
| 778 | 778 |
/// |
| 779 | 779 |
CoeffIt(DualExpr& e) |
| 780 | 780 |
: _it(e.comps.begin()), _end(e.comps.end()){}
|
| 781 | 781 |
|
| 782 | 782 |
/// Convert the iterator to the row of the term |
| 783 | 783 |
operator Row() const {
|
| 784 | 784 |
return rowFromId(_it->first); |
| 785 | 785 |
} |
| 786 | 786 |
|
| 787 | 787 |
/// Returns the coefficient of the term |
| 788 | 788 |
Value& operator*() { return _it->second; }
|
| 789 | 789 |
|
| 790 | 790 |
/// Returns the coefficient of the term |
| 791 | 791 |
const Value& operator*() const { return _it->second; }
|
| 792 | 792 |
|
| 793 | 793 |
/// Next term |
| 794 | 794 |
|
| 795 | 795 |
/// Assign the iterator to the next term. |
| 796 | 796 |
/// |
| 797 | 797 |
CoeffIt& operator++() { ++_it; return *this; }
|
| 798 | 798 |
|
| 799 | 799 |
/// Equality operator |
| 800 | 800 |
bool operator==(Invalid) const { return _it == _end; }
|
| 801 | 801 |
/// Inequality operator |
| 802 | 802 |
bool operator!=(Invalid) const { return _it != _end; }
|
| 803 | 803 |
}; |
| 804 | 804 |
|
| 805 | 805 |
///Iterator over the expression |
| 806 | 806 |
|
| 807 | 807 |
///The iterator iterates over the terms of the expression. |
| 808 | 808 |
/// |
| 809 | 809 |
///\code |
| 810 | 810 |
///double s=0; |
| 811 | 811 |
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) |
| 812 | 812 |
/// s+= *i * dual(i); |
| 813 | 813 |
///\endcode |
| 814 | 814 |
class ConstCoeffIt {
|
| 815 | 815 |
private: |
| 816 | 816 |
|
| 817 | 817 |
std::map<int, Value>::const_iterator _it, _end; |
| 818 | 818 |
|
| 819 | 819 |
public: |
| 820 | 820 |
|
| 821 | 821 |
/// Sets the iterator to the first term |
| 822 | 822 |
|
| 823 | 823 |
/// Sets the iterator to the first term of the expression. |
| 824 | 824 |
/// |
| 825 | 825 |
ConstCoeffIt(const DualExpr& e) |
| 826 | 826 |
: _it(e.comps.begin()), _end(e.comps.end()){}
|
| 827 | 827 |
|
| 828 | 828 |
/// Convert the iterator to the row of the term |
| 829 | 829 |
operator Row() const {
|
| 830 | 830 |
return rowFromId(_it->first); |
| 831 | 831 |
} |
| 832 | 832 |
|
| 833 | 833 |
/// Returns the coefficient of the term |
| 834 | 834 |
const Value& operator*() const { return _it->second; }
|
| 835 | 835 |
|
| 836 | 836 |
/// Next term |
| 837 | 837 |
|
| 838 | 838 |
/// Assign the iterator to the next term. |
| 839 | 839 |
/// |
| 840 | 840 |
ConstCoeffIt& operator++() { ++_it; return *this; }
|
| 841 | 841 |
|
| 842 | 842 |
/// Equality operator |
| 843 | 843 |
bool operator==(Invalid) const { return _it == _end; }
|
| 844 | 844 |
/// Inequality operator |
| 845 | 845 |
bool operator!=(Invalid) const { return _it != _end; }
|
| 846 | 846 |
}; |
| 847 | 847 |
}; |
| 848 | 848 |
|
| 849 | 849 |
|
| 850 | 850 |
protected: |
| 851 | 851 |
|
| 852 | 852 |
class InsertIterator {
|
| 853 | 853 |
private: |
| 854 | 854 |
|
| 855 | 855 |
std::map<int, Value>& _host; |
| 856 | 856 |
const _solver_bits::VarIndex& _index; |
| 857 | 857 |
|
| 858 | 858 |
public: |
| 859 | 859 |
|
| 860 | 860 |
typedef std::output_iterator_tag iterator_category; |
| 861 | 861 |
typedef void difference_type; |
| 862 | 862 |
typedef void value_type; |
| 863 | 863 |
typedef void reference; |
| 864 | 864 |
typedef void pointer; |
| 865 | 865 |
|
| 866 | 866 |
InsertIterator(std::map<int, Value>& host, |
| 867 | 867 |
const _solver_bits::VarIndex& index) |
| 868 | 868 |
: _host(host), _index(index) {}
|
| 869 | 869 |
|
| 870 | 870 |
InsertIterator& operator=(const std::pair<int, Value>& value) {
|
| 871 | 871 |
typedef std::map<int, Value>::value_type pair_type; |
| 872 | 872 |
_host.insert(pair_type(_index[value.first], value.second)); |
| 873 | 873 |
return *this; |
| 874 | 874 |
} |
| 875 | 875 |
|
| 876 | 876 |
InsertIterator& operator*() { return *this; }
|
| 877 | 877 |
InsertIterator& operator++() { return *this; }
|
| 878 | 878 |
InsertIterator operator++(int) { return *this; }
|
| 879 | 879 |
|
| 880 | 880 |
}; |
| 881 | 881 |
|
| 882 | 882 |
class ExprIterator {
|
| 883 | 883 |
private: |
| 884 | 884 |
std::map<int, Value>::const_iterator _host_it; |
| 885 | 885 |
const _solver_bits::VarIndex& _index; |
| 886 | 886 |
public: |
| 887 | 887 |
|
| 888 | 888 |
typedef std::bidirectional_iterator_tag iterator_category; |
| 889 | 889 |
typedef std::ptrdiff_t difference_type; |
| 890 | 890 |
typedef const std::pair<int, Value> value_type; |
| 891 | 891 |
typedef value_type reference; |
| 892 | 892 |
|
| 893 | 893 |
class pointer {
|
| 894 | 894 |
public: |
| 895 | 895 |
pointer(value_type& _value) : value(_value) {}
|
| 896 | 896 |
value_type* operator->() { return &value; }
|
| 897 | 897 |
private: |
| 898 | 898 |
value_type value; |
| 899 | 899 |
}; |
| 900 | 900 |
|
| 901 | 901 |
ExprIterator(const std::map<int, Value>::const_iterator& host_it, |
| 902 | 902 |
const _solver_bits::VarIndex& index) |
| 903 | 903 |
: _host_it(host_it), _index(index) {}
|
| 904 | 904 |
|
| 905 | 905 |
reference operator*() {
|
| 906 | 906 |
return std::make_pair(_index(_host_it->first), _host_it->second); |
| 907 | 907 |
} |
| 908 | 908 |
|
| 909 | 909 |
pointer operator->() {
|
| 910 | 910 |
return pointer(operator*()); |
| 911 | 911 |
} |
| 912 | 912 |
|
| 913 | 913 |
ExprIterator& operator++() { ++_host_it; return *this; }
|
| 914 | 914 |
ExprIterator operator++(int) {
|
| 915 | 915 |
ExprIterator tmp(*this); ++_host_it; return tmp; |
| 916 | 916 |
} |
| 917 | 917 |
|
| 918 | 918 |
ExprIterator& operator--() { --_host_it; return *this; }
|
| 919 | 919 |
ExprIterator operator--(int) {
|
| 920 | 920 |
ExprIterator tmp(*this); --_host_it; return tmp; |
| 921 | 921 |
} |
| 922 | 922 |
|
| 923 | 923 |
bool operator==(const ExprIterator& it) const {
|
| 924 | 924 |
return _host_it == it._host_it; |
| 925 | 925 |
} |
| 926 | 926 |
|
| 927 | 927 |
bool operator!=(const ExprIterator& it) const {
|
| 928 | 928 |
return _host_it != it._host_it; |
| 929 | 929 |
} |
| 930 | 930 |
|
| 931 | 931 |
}; |
| 932 | 932 |
|
| 933 | 933 |
protected: |
| 934 | 934 |
|
| 935 | 935 |
//Abstract virtual functions |
| 936 | 936 |
|
| 937 | 937 |
virtual int _addColId(int col) { return cols.addIndex(col); }
|
| 938 | 938 |
virtual int _addRowId(int row) { return rows.addIndex(row); }
|
| 939 | 939 |
|
| 940 | 940 |
virtual void _eraseColId(int col) { cols.eraseIndex(col); }
|
| 941 | 941 |
virtual void _eraseRowId(int row) { rows.eraseIndex(row); }
|
| 942 | 942 |
|
| 943 | 943 |
virtual int _addCol() = 0; |
| 944 | 944 |
virtual int _addRow() = 0; |
| 945 | 945 |
|
| 946 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
|
|
| 947 |
int row = _addRow(); |
|
| 948 |
_setRowCoeffs(row, b, e); |
|
| 949 |
_setRowLowerBound(row, l); |
|
| 950 |
_setRowUpperBound(row, u); |
|
| 951 |
return row; |
|
| 952 |
} |
|
| 953 |
|
|
| 946 | 954 |
virtual void _eraseCol(int col) = 0; |
| 947 | 955 |
virtual void _eraseRow(int row) = 0; |
| 948 | 956 |
|
| 949 | 957 |
virtual void _getColName(int col, std::string& name) const = 0; |
| 950 | 958 |
virtual void _setColName(int col, const std::string& name) = 0; |
| 951 | 959 |
virtual int _colByName(const std::string& name) const = 0; |
| 952 | 960 |
|
| 953 | 961 |
virtual void _getRowName(int row, std::string& name) const = 0; |
| 954 | 962 |
virtual void _setRowName(int row, const std::string& name) = 0; |
| 955 | 963 |
virtual int _rowByName(const std::string& name) const = 0; |
| 956 | 964 |
|
| 957 | 965 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e) = 0; |
| 958 | 966 |
virtual void _getRowCoeffs(int i, InsertIterator b) const = 0; |
| 959 | 967 |
|
| 960 | 968 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e) = 0; |
| 961 | 969 |
virtual void _getColCoeffs(int i, InsertIterator b) const = 0; |
| 962 | 970 |
|
| 963 | 971 |
virtual void _setCoeff(int row, int col, Value value) = 0; |
| 964 | 972 |
virtual Value _getCoeff(int row, int col) const = 0; |
| 965 | 973 |
|
| 966 | 974 |
virtual void _setColLowerBound(int i, Value value) = 0; |
| 967 | 975 |
virtual Value _getColLowerBound(int i) const = 0; |
| 968 | 976 |
|
| 969 | 977 |
virtual void _setColUpperBound(int i, Value value) = 0; |
| 970 | 978 |
virtual Value _getColUpperBound(int i) const = 0; |
| 971 | 979 |
|
| 972 | 980 |
virtual void _setRowLowerBound(int i, Value value) = 0; |
| 973 | 981 |
virtual Value _getRowLowerBound(int i) const = 0; |
| 974 | 982 |
|
| 975 | 983 |
virtual void _setRowUpperBound(int i, Value value) = 0; |
| 976 | 984 |
virtual Value _getRowUpperBound(int i) const = 0; |
| 977 | 985 |
|
| 978 | 986 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e) = 0; |
| 979 | 987 |
virtual void _getObjCoeffs(InsertIterator b) const = 0; |
| 980 | 988 |
|
| 981 | 989 |
virtual void _setObjCoeff(int i, Value obj_coef) = 0; |
| 982 | 990 |
virtual Value _getObjCoeff(int i) const = 0; |
| 983 | 991 |
|
| 984 | 992 |
virtual void _setSense(Sense) = 0; |
| 985 | 993 |
virtual Sense _getSense() const = 0; |
| 986 | 994 |
|
| 987 | 995 |
virtual void _clear() = 0; |
| 988 | 996 |
|
| 989 | 997 |
virtual const char* _solverName() const = 0; |
| 990 | 998 |
|
| 991 | 999 |
virtual void _messageLevel(MessageLevel level) = 0; |
| 992 | 1000 |
|
| 993 | 1001 |
//Own protected stuff |
| 994 | 1002 |
|
| 995 | 1003 |
//Constant component of the objective function |
| 996 | 1004 |
Value obj_const_comp; |
| 997 | 1005 |
|
| 998 | 1006 |
LpBase() : rows(), cols(), obj_const_comp(0) {}
|
| 999 | 1007 |
|
| 1000 | 1008 |
public: |
| 1001 | 1009 |
|
| 1002 | 1010 |
/// Virtual destructor |
| 1003 | 1011 |
virtual ~LpBase() {}
|
| 1004 | 1012 |
|
| 1005 | 1013 |
///Gives back the name of the solver. |
| 1006 | 1014 |
const char* solverName() const {return _solverName();}
|
| 1007 | 1015 |
|
| 1008 | 1016 |
///\name Build Up and Modify the LP |
| 1009 | 1017 |
|
| 1010 | 1018 |
///@{
|
| 1011 | 1019 |
|
| 1012 | 1020 |
///Add a new empty column (i.e a new variable) to the LP |
| 1013 | 1021 |
Col addCol() { Col c; c._id = _addColId(_addCol()); return c;}
|
| 1014 | 1022 |
|
| 1015 | 1023 |
///\brief Adds several new columns (i.e variables) at once |
| 1016 | 1024 |
/// |
| 1017 | 1025 |
///This magic function takes a container as its argument and fills |
| 1018 | 1026 |
///its elements with new columns (i.e. variables) |
| 1019 | 1027 |
///\param t can be |
| 1020 | 1028 |
///- a standard STL compatible iterable container with |
| 1021 | 1029 |
///\ref Col as its \c values_type like |
| 1022 | 1030 |
///\code |
| 1023 | 1031 |
///std::vector<LpBase::Col> |
| 1024 | 1032 |
///std::list<LpBase::Col> |
| 1025 | 1033 |
///\endcode |
| 1026 | 1034 |
///- a standard STL compatible iterable container with |
| 1027 | 1035 |
///\ref Col as its \c mapped_type like |
| 1028 | 1036 |
///\code |
| 1029 | 1037 |
///std::map<AnyType,LpBase::Col> |
| 1030 | 1038 |
///\endcode |
| 1031 | 1039 |
///- an iterable lemon \ref concepts::WriteMap "write map" like |
| 1032 | 1040 |
///\code |
| 1033 | 1041 |
///ListGraph::NodeMap<LpBase::Col> |
| 1034 | 1042 |
///ListGraph::ArcMap<LpBase::Col> |
| 1035 | 1043 |
///\endcode |
| 1036 | 1044 |
///\return The number of the created column. |
| 1037 | 1045 |
#ifdef DOXYGEN |
| 1038 | 1046 |
template<class T> |
| 1039 | 1047 |
int addColSet(T &t) { return 0;}
|
| 1040 | 1048 |
#else |
| 1041 | 1049 |
template<class T> |
| 1042 | 1050 |
typename enable_if<typename T::value_type::LpCol,int>::type |
| 1043 | 1051 |
addColSet(T &t,dummy<0> = 0) {
|
| 1044 | 1052 |
int s=0; |
| 1045 | 1053 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
|
| 1046 | 1054 |
return s; |
| 1047 | 1055 |
} |
| 1048 | 1056 |
template<class T> |
| 1049 | 1057 |
typename enable_if<typename T::value_type::second_type::LpCol, |
| 1050 | 1058 |
int>::type |
| 1051 | 1059 |
addColSet(T &t,dummy<1> = 1) {
|
| 1052 | 1060 |
int s=0; |
| 1053 | 1061 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {
|
| 1054 | 1062 |
i->second=addCol(); |
| 1055 | 1063 |
s++; |
| 1056 | 1064 |
} |
| 1057 | 1065 |
return s; |
| 1058 | 1066 |
} |
| 1059 | 1067 |
template<class T> |
| 1060 | 1068 |
typename enable_if<typename T::MapIt::Value::LpCol, |
| 1061 | 1069 |
int>::type |
| 1062 | 1070 |
addColSet(T &t,dummy<2> = 2) {
|
| 1063 | 1071 |
int s=0; |
| 1064 | 1072 |
for(typename T::MapIt i(t); i!=INVALID; ++i) |
| 1065 | 1073 |
{
|
| 1066 | 1074 |
i.set(addCol()); |
| 1067 | 1075 |
s++; |
| 1068 | 1076 |
} |
| 1069 | 1077 |
return s; |
| 1070 | 1078 |
} |
| 1071 | 1079 |
#endif |
| 1072 | 1080 |
|
| 1073 | 1081 |
///Set a column (i.e a dual constraint) of the LP |
| 1074 | 1082 |
|
| 1075 | 1083 |
///\param c is the column to be modified |
| 1076 | 1084 |
///\param e is a dual linear expression (see \ref DualExpr) |
| 1077 | 1085 |
///a better one. |
| 1078 | 1086 |
void col(Col c, const DualExpr &e) {
|
| 1079 | 1087 |
e.simplify(); |
| 1080 | 1088 |
_setColCoeffs(cols(id(c)), ExprIterator(e.comps.begin(), rows), |
| 1081 | 1089 |
ExprIterator(e.comps.end(), rows)); |
| 1082 | 1090 |
} |
| 1083 | 1091 |
|
| 1084 | 1092 |
///Get a column (i.e a dual constraint) of the LP |
| 1085 | 1093 |
|
| 1086 | 1094 |
///\param c is the column to get |
| 1087 | 1095 |
///\return the dual expression associated to the column |
| 1088 | 1096 |
DualExpr col(Col c) const {
|
| 1089 | 1097 |
DualExpr e; |
| 1090 | 1098 |
_getColCoeffs(cols(id(c)), InsertIterator(e.comps, rows)); |
| 1091 | 1099 |
return e; |
| 1092 | 1100 |
} |
| 1093 | 1101 |
|
| 1094 | 1102 |
///Add a new column to the LP |
| 1095 | 1103 |
|
| 1096 | 1104 |
///\param e is a dual linear expression (see \ref DualExpr) |
| 1097 | 1105 |
///\param o is the corresponding component of the objective |
| 1098 | 1106 |
///function. It is 0 by default. |
| 1099 | 1107 |
///\return The created column. |
| 1100 | 1108 |
Col addCol(const DualExpr &e, Value o = 0) {
|
| 1101 | 1109 |
Col c=addCol(); |
| 1102 | 1110 |
col(c,e); |
| 1103 | 1111 |
objCoeff(c,o); |
| 1104 | 1112 |
return c; |
| 1105 | 1113 |
} |
| 1106 | 1114 |
|
| 1107 | 1115 |
///Add a new empty row (i.e a new constraint) to the LP |
| 1108 | 1116 |
|
| 1109 | 1117 |
///This function adds a new empty row (i.e a new constraint) to the LP. |
| 1110 | 1118 |
///\return The created row |
| 1111 | 1119 |
Row addRow() { Row r; r._id = _addRowId(_addRow()); return r;}
|
| 1112 | 1120 |
|
| 1113 | 1121 |
///\brief Add several new rows (i.e constraints) at once |
| 1114 | 1122 |
/// |
| 1115 | 1123 |
///This magic function takes a container as its argument and fills |
| 1116 | 1124 |
///its elements with new row (i.e. variables) |
| 1117 | 1125 |
///\param t can be |
| 1118 | 1126 |
///- a standard STL compatible iterable container with |
| 1119 | 1127 |
///\ref Row as its \c values_type like |
| 1120 | 1128 |
///\code |
| 1121 | 1129 |
///std::vector<LpBase::Row> |
| 1122 | 1130 |
///std::list<LpBase::Row> |
| 1123 | 1131 |
///\endcode |
| 1124 | 1132 |
///- a standard STL compatible iterable container with |
| 1125 | 1133 |
///\ref Row as its \c mapped_type like |
| 1126 | 1134 |
///\code |
| 1127 | 1135 |
///std::map<AnyType,LpBase::Row> |
| 1128 | 1136 |
///\endcode |
| 1129 | 1137 |
///- an iterable lemon \ref concepts::WriteMap "write map" like |
| 1130 | 1138 |
///\code |
| 1131 | 1139 |
///ListGraph::NodeMap<LpBase::Row> |
| 1132 | 1140 |
///ListGraph::ArcMap<LpBase::Row> |
| 1133 | 1141 |
///\endcode |
| 1134 | 1142 |
///\return The number of rows created. |
| 1135 | 1143 |
#ifdef DOXYGEN |
| 1136 | 1144 |
template<class T> |
| 1137 | 1145 |
int addRowSet(T &t) { return 0;}
|
| 1138 | 1146 |
#else |
| 1139 | 1147 |
template<class T> |
| 1140 | 1148 |
typename enable_if<typename T::value_type::LpRow,int>::type |
| 1141 | 1149 |
addRowSet(T &t, dummy<0> = 0) {
|
| 1142 | 1150 |
int s=0; |
| 1143 | 1151 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
|
| 1144 | 1152 |
return s; |
| 1145 | 1153 |
} |
| 1146 | 1154 |
template<class T> |
| 1147 | 1155 |
typename enable_if<typename T::value_type::second_type::LpRow, int>::type |
| 1148 | 1156 |
addRowSet(T &t, dummy<1> = 1) {
|
| 1149 | 1157 |
int s=0; |
| 1150 | 1158 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {
|
| 1151 | 1159 |
i->second=addRow(); |
| 1152 | 1160 |
s++; |
| 1153 | 1161 |
} |
| 1154 | 1162 |
return s; |
| 1155 | 1163 |
} |
| 1156 | 1164 |
template<class T> |
| 1157 | 1165 |
typename enable_if<typename T::MapIt::Value::LpRow, int>::type |
| 1158 | 1166 |
addRowSet(T &t, dummy<2> = 2) {
|
| 1159 | 1167 |
int s=0; |
| 1160 | 1168 |
for(typename T::MapIt i(t); i!=INVALID; ++i) |
| 1161 | 1169 |
{
|
| 1162 | 1170 |
i.set(addRow()); |
| 1163 | 1171 |
s++; |
| 1164 | 1172 |
} |
| 1165 | 1173 |
return s; |
| 1166 | 1174 |
} |
| 1167 | 1175 |
#endif |
| 1168 | 1176 |
|
| 1169 | 1177 |
///Set a row (i.e a constraint) of the LP |
| 1170 | 1178 |
|
| 1171 | 1179 |
///\param r is the row to be modified |
| 1172 | 1180 |
///\param l is lower bound (-\ref INF means no bound) |
| 1173 | 1181 |
///\param e is a linear expression (see \ref Expr) |
| 1174 | 1182 |
///\param u is the upper bound (\ref INF means no bound) |
| 1175 | 1183 |
void row(Row r, Value l, const Expr &e, Value u) {
|
| 1176 | 1184 |
e.simplify(); |
| 1177 | 1185 |
_setRowCoeffs(rows(id(r)), ExprIterator(e.comps.begin(), cols), |
| 1178 | 1186 |
ExprIterator(e.comps.end(), cols)); |
| 1179 | 1187 |
_setRowLowerBound(rows(id(r)),l - *e); |
| 1180 | 1188 |
_setRowUpperBound(rows(id(r)),u - *e); |
| 1181 | 1189 |
} |
| 1182 | 1190 |
|
| 1183 | 1191 |
///Set a row (i.e a constraint) of the LP |
| 1184 | 1192 |
|
| 1185 | 1193 |
///\param r is the row to be modified |
| 1186 | 1194 |
///\param c is a linear expression (see \ref Constr) |
| 1187 | 1195 |
void row(Row r, const Constr &c) {
|
| 1188 | 1196 |
row(r, c.lowerBounded()?c.lowerBound():-INF, |
| 1189 | 1197 |
c.expr(), c.upperBounded()?c.upperBound():INF); |
| 1190 | 1198 |
} |
| 1191 | 1199 |
|
| 1192 | 1200 |
|
| 1193 | 1201 |
///Get a row (i.e a constraint) of the LP |
| 1194 | 1202 |
|
| 1195 | 1203 |
///\param r is the row to get |
| 1196 | 1204 |
///\return the expression associated to the row |
| 1197 | 1205 |
Expr row(Row r) const {
|
| 1198 | 1206 |
Expr e; |
| 1199 | 1207 |
_getRowCoeffs(rows(id(r)), InsertIterator(e.comps, cols)); |
| 1200 | 1208 |
return e; |
| 1201 | 1209 |
} |
| 1202 | 1210 |
|
| 1203 | 1211 |
///Add a new row (i.e a new constraint) to the LP |
| 1204 | 1212 |
|
| 1205 | 1213 |
///\param l is the lower bound (-\ref INF means no bound) |
| 1206 | 1214 |
///\param e is a linear expression (see \ref Expr) |
| 1207 | 1215 |
///\param u is the upper bound (\ref INF means no bound) |
| 1208 | 1216 |
///\return The created row. |
| 1209 | 1217 |
Row addRow(Value l,const Expr &e, Value u) {
|
| 1210 |
Row r=addRow(); |
|
| 1211 |
row(r,l,e,u); |
|
| 1218 |
Row r; |
|
| 1219 |
e.simplify(); |
|
| 1220 |
r._id = _addRowId(_addRow(l - *e, ExprIterator(e.comps.begin(), cols), |
|
| 1221 |
ExprIterator(e.comps.end(), cols), u - *e)); |
|
| 1212 | 1222 |
return r; |
| 1213 | 1223 |
} |
| 1214 | 1224 |
|
| 1215 | 1225 |
///Add a new row (i.e a new constraint) to the LP |
| 1216 | 1226 |
|
| 1217 | 1227 |
///\param c is a linear expression (see \ref Constr) |
| 1218 | 1228 |
///\return The created row. |
| 1219 | 1229 |
Row addRow(const Constr &c) {
|
| 1220 |
Row r=addRow(); |
|
| 1221 |
row(r,c); |
|
| 1230 |
Row r; |
|
| 1231 |
c.expr().simplify(); |
|
| 1232 |
r._id = _addRowId(_addRow(c.lowerBounded()?c.lowerBound():-INF, |
|
| 1233 |
ExprIterator(c.expr().comps.begin(), cols), |
|
| 1234 |
ExprIterator(c.expr().comps.end(), cols), |
|
| 1235 |
c.upperBounded()?c.upperBound():INF)); |
|
| 1222 | 1236 |
return r; |
| 1223 | 1237 |
} |
| 1224 | 1238 |
///Erase a column (i.e a variable) from the LP |
| 1225 | 1239 |
|
| 1226 | 1240 |
///\param c is the column to be deleted |
| 1227 | 1241 |
void erase(Col c) {
|
| 1228 | 1242 |
_eraseCol(cols(id(c))); |
| 1229 | 1243 |
_eraseColId(cols(id(c))); |
| 1230 | 1244 |
} |
| 1231 | 1245 |
///Erase a row (i.e a constraint) from the LP |
| 1232 | 1246 |
|
| 1233 | 1247 |
///\param r is the row to be deleted |
| 1234 | 1248 |
void erase(Row r) {
|
| 1235 | 1249 |
_eraseRow(rows(id(r))); |
| 1236 | 1250 |
_eraseRowId(rows(id(r))); |
| 1237 | 1251 |
} |
| 1238 | 1252 |
|
| 1239 | 1253 |
/// Get the name of a column |
| 1240 | 1254 |
|
| 1241 | 1255 |
///\param c is the coresponding column |
| 1242 | 1256 |
///\return The name of the colunm |
| 1243 | 1257 |
std::string colName(Col c) const {
|
| 1244 | 1258 |
std::string name; |
| 1245 | 1259 |
_getColName(cols(id(c)), name); |
| 1246 | 1260 |
return name; |
| 1247 | 1261 |
} |
| 1248 | 1262 |
|
| 1249 | 1263 |
/// Set the name of a column |
| 1250 | 1264 |
|
| 1251 | 1265 |
///\param c is the coresponding column |
| 1252 | 1266 |
///\param name The name to be given |
| 1253 | 1267 |
void colName(Col c, const std::string& name) {
|
| 1254 | 1268 |
_setColName(cols(id(c)), name); |
| 1255 | 1269 |
} |
| 1256 | 1270 |
|
| 1257 | 1271 |
/// Get the column by its name |
| 1258 | 1272 |
|
| 1259 | 1273 |
///\param name The name of the column |
| 1260 | 1274 |
///\return the proper column or \c INVALID |
| 1261 | 1275 |
Col colByName(const std::string& name) const {
|
| 1262 | 1276 |
int k = _colByName(name); |
| 1263 | 1277 |
return k != -1 ? Col(cols[k]) : Col(INVALID); |
| 1264 | 1278 |
} |
| 1265 | 1279 |
|
| 1266 | 1280 |
/// Get the name of a row |
| 1267 | 1281 |
|
| 1268 | 1282 |
///\param r is the coresponding row |
| 1269 | 1283 |
///\return The name of the row |
| 1270 | 1284 |
std::string rowName(Row r) const {
|
| 1271 | 1285 |
std::string name; |
| 1272 | 1286 |
_getRowName(rows(id(r)), name); |
| 1273 | 1287 |
return name; |
| 1274 | 1288 |
} |
| 1275 | 1289 |
|
| 1276 | 1290 |
/// Set the name of a row |
| 1277 | 1291 |
|
| 1278 | 1292 |
///\param r is the coresponding row |
| 1279 | 1293 |
///\param name The name to be given |
| 1280 | 1294 |
void rowName(Row r, const std::string& name) {
|
| 1281 | 1295 |
_setRowName(rows(id(r)), name); |
| 1282 | 1296 |
} |
| 1283 | 1297 |
|
| 1284 | 1298 |
/// Get the row by its name |
| 1285 | 1299 |
|
| 1286 | 1300 |
///\param name The name of the row |
| 1287 | 1301 |
///\return the proper row or \c INVALID |
| 1288 | 1302 |
Row rowByName(const std::string& name) const {
|
| 1289 | 1303 |
int k = _rowByName(name); |
| 1290 | 1304 |
return k != -1 ? Row(rows[k]) : Row(INVALID); |
| 1291 | 1305 |
} |
| 1292 | 1306 |
|
| 1293 | 1307 |
/// Set an element of the coefficient matrix of the LP |
| 1294 | 1308 |
|
| 1295 | 1309 |
///\param r is the row of the element to be modified |
| 1296 | 1310 |
///\param c is the column of the element to be modified |
| 1297 | 1311 |
///\param val is the new value of the coefficient |
| 1298 | 1312 |
void coeff(Row r, Col c, Value val) {
|
| 1299 | 1313 |
_setCoeff(rows(id(r)),cols(id(c)), val); |
| 1300 | 1314 |
} |
| 1301 | 1315 |
|
| 1302 | 1316 |
/// Get an element of the coefficient matrix of the LP |
| 1303 | 1317 |
|
| 1304 | 1318 |
///\param r is the row of the element |
| 1305 | 1319 |
///\param c is the column of the element |
| 1306 | 1320 |
///\return the corresponding coefficient |
| 1307 | 1321 |
Value coeff(Row r, Col c) const {
|
| 1308 | 1322 |
return _getCoeff(rows(id(r)),cols(id(c))); |
| 1309 | 1323 |
} |
| 1310 | 1324 |
|
| 1311 | 1325 |
/// Set the lower bound of a column (i.e a variable) |
| 1312 | 1326 |
|
| 1313 | 1327 |
/// The lower bound of a variable (column) has to be given by an |
| 1314 | 1328 |
/// extended number of type Value, i.e. a finite number of type |
| 1315 | 1329 |
/// Value or -\ref INF. |
| 1316 | 1330 |
void colLowerBound(Col c, Value value) {
|
| 1317 | 1331 |
_setColLowerBound(cols(id(c)),value); |
| 1318 | 1332 |
} |
| 1319 | 1333 |
|
| 1320 | 1334 |
/// Get the lower bound of a column (i.e a variable) |
| 1321 | 1335 |
|
| 1322 | 1336 |
/// This function returns the lower bound for column (variable) \c c |
| 1323 | 1337 |
/// (this might be -\ref INF as well). |
| 1324 | 1338 |
///\return The lower bound for column \c c |
| 1325 | 1339 |
Value colLowerBound(Col c) const {
|
| 1326 | 1340 |
return _getColLowerBound(cols(id(c))); |
| 1327 | 1341 |
} |
| 1328 | 1342 |
|
| 1329 | 1343 |
///\brief Set the lower bound of several columns |
| 1330 | 1344 |
///(i.e variables) at once |
| 1331 | 1345 |
/// |
| 1332 | 1346 |
///This magic function takes a container as its argument |
| 1333 | 1347 |
///and applies the function on all of its elements. |
| 1334 | 1348 |
///The lower bound of a variable (column) has to be given by an |
| 1335 | 1349 |
///extended number of type Value, i.e. a finite number of type |
| 1336 | 1350 |
///Value or -\ref INF. |
| 1337 | 1351 |
#ifdef DOXYGEN |
| 1338 | 1352 |
template<class T> |
| 1339 | 1353 |
void colLowerBound(T &t, Value value) { return 0;}
|
| 1340 | 1354 |
#else |
| 1341 | 1355 |
template<class T> |
| 1342 | 1356 |
typename enable_if<typename T::value_type::LpCol,void>::type |
| 1343 | 1357 |
colLowerBound(T &t, Value value,dummy<0> = 0) {
|
| 1344 | 1358 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {
|
| 1345 | 1359 |
colLowerBound(*i, value); |
| 1346 | 1360 |
} |
| 1347 | 1361 |
} |
| 1348 | 1362 |
template<class T> |
| 1349 | 1363 |
typename enable_if<typename T::value_type::second_type::LpCol, |
| 1350 | 1364 |
void>::type |
| 1351 | 1365 |
colLowerBound(T &t, Value value,dummy<1> = 1) {
|
| 1352 | 1366 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {
|
| 1353 | 1367 |
colLowerBound(i->second, value); |
| 1354 | 1368 |
} |
| 1355 | 1369 |
} |
| 1356 | 1370 |
template<class T> |
| 1357 | 1371 |
typename enable_if<typename T::MapIt::Value::LpCol, |
| 1358 | 1372 |
void>::type |
| 1359 | 1373 |
colLowerBound(T &t, Value value,dummy<2> = 2) {
|
| 1360 | 1374 |
for(typename T::MapIt i(t); i!=INVALID; ++i){
|
| 1361 | 1375 |
colLowerBound(*i, value); |
| 1362 | 1376 |
} |
| 1363 | 1377 |
} |
| 1364 | 1378 |
#endif |
| 1365 | 1379 |
|
| 1366 | 1380 |
/// Set the upper bound of a column (i.e a variable) |
| 1367 | 1381 |
|
| 1368 | 1382 |
/// The upper bound of a variable (column) has to be given by an |
| 1369 | 1383 |
/// extended number of type Value, i.e. a finite number of type |
| 1370 | 1384 |
/// Value or \ref INF. |
| 1371 | 1385 |
void colUpperBound(Col c, Value value) {
|
| 1372 | 1386 |
_setColUpperBound(cols(id(c)),value); |
| 1373 | 1387 |
}; |
| 1374 | 1388 |
|
| 1375 | 1389 |
/// Get the upper bound of a column (i.e a variable) |
| 1376 | 1390 |
|
| 1377 | 1391 |
/// This function returns the upper bound for column (variable) \c c |
| 1378 | 1392 |
/// (this might be \ref INF as well). |
| 1379 | 1393 |
/// \return The upper bound for column \c c |
| 1380 | 1394 |
Value colUpperBound(Col c) const {
|
| 1381 | 1395 |
return _getColUpperBound(cols(id(c))); |
| 1382 | 1396 |
} |
| 1383 | 1397 |
|
| 1384 | 1398 |
///\brief Set the upper bound of several columns |
| 1385 | 1399 |
///(i.e variables) at once |
| 1386 | 1400 |
/// |
| 1387 | 1401 |
///This magic function takes a container as its argument |
| 1388 | 1402 |
///and applies the function on all of its elements. |
| 1389 | 1403 |
///The upper bound of a variable (column) has to be given by an |
| 1390 | 1404 |
///extended number of type Value, i.e. a finite number of type |
| 1391 | 1405 |
///Value or \ref INF. |
| 1392 | 1406 |
#ifdef DOXYGEN |
| 1393 | 1407 |
template<class T> |
| 1394 | 1408 |
void colUpperBound(T &t, Value value) { return 0;}
|
| 1395 | 1409 |
#else |
| 1396 | 1410 |
template<class T1> |
| 1397 | 1411 |
typename enable_if<typename T1::value_type::LpCol,void>::type |
| 1398 | 1412 |
colUpperBound(T1 &t, Value value,dummy<0> = 0) {
|
| 1399 | 1413 |
for(typename T1::iterator i=t.begin();i!=t.end();++i) {
|
| 1400 | 1414 |
colUpperBound(*i, value); |
| 1401 | 1415 |
} |
| 1402 | 1416 |
} |
| 1403 | 1417 |
template<class T1> |
| 1404 | 1418 |
typename enable_if<typename T1::value_type::second_type::LpCol, |
| 1405 | 1419 |
void>::type |
| 1406 | 1420 |
colUpperBound(T1 &t, Value value,dummy<1> = 1) {
|
| 1407 | 1421 |
for(typename T1::iterator i=t.begin();i!=t.end();++i) {
|
| 1408 | 1422 |
colUpperBound(i->second, value); |
| 1409 | 1423 |
} |
| 1410 | 1424 |
} |
| 1411 | 1425 |
template<class T1> |
| 1412 | 1426 |
typename enable_if<typename T1::MapIt::Value::LpCol, |
| 1413 | 1427 |
void>::type |
| 1414 | 1428 |
colUpperBound(T1 &t, Value value,dummy<2> = 2) {
|
| 1415 | 1429 |
for(typename T1::MapIt i(t); i!=INVALID; ++i){
|
| 1416 | 1430 |
colUpperBound(*i, value); |
| 1417 | 1431 |
} |
| 1418 | 1432 |
} |
| 1419 | 1433 |
#endif |
| 1420 | 1434 |
|
| 1421 | 1435 |
/// Set the lower and the upper bounds of a column (i.e a variable) |
| 1422 | 1436 |
|
| 1423 | 1437 |
/// The lower and the upper bounds of |
| 1424 | 1438 |
/// a variable (column) have to be given by an |
| 1425 | 1439 |
/// extended number of type Value, i.e. a finite number of type |
| 1426 | 1440 |
/// Value, -\ref INF or \ref INF. |
| 1427 | 1441 |
void colBounds(Col c, Value lower, Value upper) {
|
| 1428 | 1442 |
_setColLowerBound(cols(id(c)),lower); |
| 1429 | 1443 |
_setColUpperBound(cols(id(c)),upper); |
| 1430 | 1444 |
} |
| 1431 | 1445 |
|
| 1432 | 1446 |
///\brief Set the lower and the upper bound of several columns |
| 1433 | 1447 |
///(i.e variables) at once |
| 1434 | 1448 |
/// |
| 1435 | 1449 |
///This magic function takes a container as its argument |
| 1436 | 1450 |
///and applies the function on all of its elements. |
| 1437 | 1451 |
/// The lower and the upper bounds of |
| 1438 | 1452 |
/// a variable (column) have to be given by an |
| 1439 | 1453 |
/// extended number of type Value, i.e. a finite number of type |
| 1440 | 1454 |
/// Value, -\ref INF or \ref INF. |
| 1441 | 1455 |
#ifdef DOXYGEN |
| 1442 | 1456 |
template<class T> |
| 1443 | 1457 |
void colBounds(T &t, Value lower, Value upper) { return 0;}
|
| 1444 | 1458 |
#else |
| 1445 | 1459 |
template<class T2> |
| 1446 | 1460 |
typename enable_if<typename T2::value_type::LpCol,void>::type |
| 1447 | 1461 |
colBounds(T2 &t, Value lower, Value upper,dummy<0> = 0) {
|
| 1448 | 1462 |
for(typename T2::iterator i=t.begin();i!=t.end();++i) {
|
| 1449 | 1463 |
colBounds(*i, lower, upper); |
| 1450 | 1464 |
} |
| 1451 | 1465 |
} |
| 1452 | 1466 |
template<class T2> |
| 1453 | 1467 |
typename enable_if<typename T2::value_type::second_type::LpCol, void>::type |
| 1454 | 1468 |
colBounds(T2 &t, Value lower, Value upper,dummy<1> = 1) {
|
| 1455 | 1469 |
for(typename T2::iterator i=t.begin();i!=t.end();++i) {
|
| 1456 | 1470 |
colBounds(i->second, lower, upper); |
| 1457 | 1471 |
} |
| 1458 | 1472 |
} |
| 1459 | 1473 |
template<class T2> |
| 1460 | 1474 |
typename enable_if<typename T2::MapIt::Value::LpCol, void>::type |
| 1461 | 1475 |
colBounds(T2 &t, Value lower, Value upper,dummy<2> = 2) {
|
| 1462 | 1476 |
for(typename T2::MapIt i(t); i!=INVALID; ++i){
|
| 1463 | 1477 |
colBounds(*i, lower, upper); |
| 1464 | 1478 |
} |
| 1465 | 1479 |
} |
| 1466 | 1480 |
#endif |
| 1467 | 1481 |
|
| 1468 | 1482 |
/// Set the lower bound of a row (i.e a constraint) |
| 1469 | 1483 |
|
| 1470 | 1484 |
/// The lower bound of a constraint (row) has to be given by an |
| 1471 | 1485 |
/// extended number of type Value, i.e. a finite number of type |
| 1472 | 1486 |
/// Value or -\ref INF. |
| 1473 | 1487 |
void rowLowerBound(Row r, Value value) {
|
| 1474 | 1488 |
_setRowLowerBound(rows(id(r)),value); |
| 1475 | 1489 |
} |
| 1476 | 1490 |
|
| 1477 | 1491 |
/// Get the lower bound of a row (i.e a constraint) |
| 1478 | 1492 |
|
| 1479 | 1493 |
/// This function returns the lower bound for row (constraint) \c c |
| 1480 | 1494 |
/// (this might be -\ref INF as well). |
| 1481 | 1495 |
///\return The lower bound for row \c r |
| 1482 | 1496 |
Value rowLowerBound(Row r) const {
|
| 1483 | 1497 |
return _getRowLowerBound(rows(id(r))); |
| 1484 | 1498 |
} |
| 1485 | 1499 |
|
| 1486 | 1500 |
/// Set the upper bound of a row (i.e a constraint) |
| 1487 | 1501 |
|
| 1488 | 1502 |
/// The upper bound of a constraint (row) has to be given by an |
| 1489 | 1503 |
/// extended number of type Value, i.e. a finite number of type |
| 1490 | 1504 |
/// Value or -\ref INF. |
| 1491 | 1505 |
void rowUpperBound(Row r, Value value) {
|
| 1492 | 1506 |
_setRowUpperBound(rows(id(r)),value); |
| 1493 | 1507 |
} |
| 1494 | 1508 |
|
| 1495 | 1509 |
/// Get the upper bound of a row (i.e a constraint) |
| 1496 | 1510 |
|
| 1497 | 1511 |
/// This function returns the upper bound for row (constraint) \c c |
| 1498 | 1512 |
/// (this might be -\ref INF as well). |
| 1499 | 1513 |
///\return The upper bound for row \c r |
| 1500 | 1514 |
Value rowUpperBound(Row r) const {
|
| 1501 | 1515 |
return _getRowUpperBound(rows(id(r))); |
| 1502 | 1516 |
} |
| 1503 | 1517 |
|
| 1504 | 1518 |
///Set an element of the objective function |
| 1505 | 1519 |
void objCoeff(Col c, Value v) {_setObjCoeff(cols(id(c)),v); };
|
| 1506 | 1520 |
|
| 1507 | 1521 |
///Get an element of the objective function |
| 1508 | 1522 |
Value objCoeff(Col c) const { return _getObjCoeff(cols(id(c))); };
|
| 1509 | 1523 |
|
| 1510 | 1524 |
///Set the objective function |
| 1511 | 1525 |
|
| 1512 | 1526 |
///\param e is a linear expression of type \ref Expr. |
| 1513 | 1527 |
/// |
| 1514 | 1528 |
void obj(const Expr& e) {
|
| 1515 | 1529 |
_setObjCoeffs(ExprIterator(e.comps.begin(), cols), |
| 1516 | 1530 |
ExprIterator(e.comps.end(), cols)); |
| 1517 | 1531 |
obj_const_comp = *e; |
| 1518 | 1532 |
} |
| 1519 | 1533 |
|
| 1520 | 1534 |
///Get the objective function |
| 1521 | 1535 |
|
| 1522 | 1536 |
///\return the objective function as a linear expression of type |
| 1523 | 1537 |
///Expr. |
| 1524 | 1538 |
Expr obj() const {
|
| 1525 | 1539 |
Expr e; |
| 1526 | 1540 |
_getObjCoeffs(InsertIterator(e.comps, cols)); |
| 1527 | 1541 |
*e = obj_const_comp; |
| 1528 | 1542 |
return e; |
| 1529 | 1543 |
} |
| 1530 | 1544 |
|
| 1531 | 1545 |
|
| 1532 | 1546 |
///Set the direction of optimization |
| 1533 | 1547 |
void sense(Sense sense) { _setSense(sense); }
|
| 1534 | 1548 |
|
| 1535 | 1549 |
///Query the direction of the optimization |
| 1536 | 1550 |
Sense sense() const {return _getSense(); }
|
| 1537 | 1551 |
|
| 1538 | 1552 |
///Set the sense to maximization |
| 1539 | 1553 |
void max() { _setSense(MAX); }
|
| 1540 | 1554 |
|
| 1541 | 1555 |
///Set the sense to maximization |
| 1542 | 1556 |
void min() { _setSense(MIN); }
|
| 1543 | 1557 |
|
| 1544 | 1558 |
///Clears the problem |
| 1545 | 1559 |
void clear() { _clear(); }
|
| 1546 | 1560 |
|
| 1547 | 1561 |
/// Sets the message level of the solver |
| 1548 | 1562 |
void messageLevel(MessageLevel level) { _messageLevel(level); }
|
| 1549 | 1563 |
|
| 1550 | 1564 |
///@} |
| 1551 | 1565 |
|
| 1552 | 1566 |
}; |
| 1553 | 1567 |
|
| 1554 | 1568 |
/// Addition |
| 1555 | 1569 |
|
| 1556 | 1570 |
///\relates LpBase::Expr |
| 1557 | 1571 |
/// |
| 1558 | 1572 |
inline LpBase::Expr operator+(const LpBase::Expr &a, const LpBase::Expr &b) {
|
| 1559 | 1573 |
LpBase::Expr tmp(a); |
| 1560 | 1574 |
tmp+=b; |
| 1561 | 1575 |
return tmp; |
| 1562 | 1576 |
} |
| 1563 | 1577 |
///Substraction |
| 1564 | 1578 |
|
| 1565 | 1579 |
///\relates LpBase::Expr |
| 1566 | 1580 |
/// |
| 1567 | 1581 |
inline LpBase::Expr operator-(const LpBase::Expr &a, const LpBase::Expr &b) {
|
| 1568 | 1582 |
LpBase::Expr tmp(a); |
| 1569 | 1583 |
tmp-=b; |
| 1570 | 1584 |
return tmp; |
| 1571 | 1585 |
} |
| 1572 | 1586 |
///Multiply with constant |
| 1573 | 1587 |
|
| 1574 | 1588 |
///\relates LpBase::Expr |
| 1575 | 1589 |
/// |
| 1576 | 1590 |
inline LpBase::Expr operator*(const LpBase::Expr &a, const LpBase::Value &b) {
|
| 1577 | 1591 |
LpBase::Expr tmp(a); |
| 1578 | 1592 |
tmp*=b; |
| 1579 | 1593 |
return tmp; |
| 1580 | 1594 |
} |
| 1581 | 1595 |
|
| 1582 | 1596 |
///Multiply with constant |
| 1583 | 1597 |
|
| 1584 | 1598 |
///\relates LpBase::Expr |
| 1585 | 1599 |
/// |
| 1586 | 1600 |
inline LpBase::Expr operator*(const LpBase::Value &a, const LpBase::Expr &b) {
|
| 1587 | 1601 |
LpBase::Expr tmp(b); |
| 1588 | 1602 |
tmp*=a; |
| 1589 | 1603 |
return tmp; |
| 1590 | 1604 |
} |
| 1591 | 1605 |
///Divide with constant |
| 1592 | 1606 |
|
| 1593 | 1607 |
///\relates LpBase::Expr |
| 1594 | 1608 |
/// |
| 1595 | 1609 |
inline LpBase::Expr operator/(const LpBase::Expr &a, const LpBase::Value &b) {
|
| 1596 | 1610 |
LpBase::Expr tmp(a); |
| 1597 | 1611 |
tmp/=b; |
| 1598 | 1612 |
return tmp; |
| 1599 | 1613 |
} |
| 1600 | 1614 |
|
| 1601 | 1615 |
///Create constraint |
| 1602 | 1616 |
|
| 1603 | 1617 |
///\relates LpBase::Constr |
| 1604 | 1618 |
/// |
| 1605 | 1619 |
inline LpBase::Constr operator<=(const LpBase::Expr &e, |
| 1606 | 1620 |
const LpBase::Expr &f) {
|
| 1607 | 1621 |
return LpBase::Constr(0, f - e, LpBase::INF); |
| 1608 | 1622 |
} |
| 1609 | 1623 |
|
| 1610 | 1624 |
///Create constraint |
| 1611 | 1625 |
|
| 1612 | 1626 |
///\relates LpBase::Constr |
| 1613 | 1627 |
/// |
| 1614 | 1628 |
inline LpBase::Constr operator<=(const LpBase::Value &e, |
| 1615 | 1629 |
const LpBase::Expr &f) {
|
| 1616 | 1630 |
return LpBase::Constr(e, f, LpBase::NaN); |
| 1617 | 1631 |
} |
| 1618 | 1632 |
|
| 1619 | 1633 |
///Create constraint |
| 1620 | 1634 |
|
| 1621 | 1635 |
///\relates LpBase::Constr |
| 1622 | 1636 |
/// |
| 1623 | 1637 |
inline LpBase::Constr operator<=(const LpBase::Expr &e, |
| 1624 | 1638 |
const LpBase::Value &f) {
|
| 1625 | 1639 |
return LpBase::Constr(- LpBase::INF, e, f); |
| 1626 | 1640 |
} |
| 1627 | 1641 |
|
| 1628 | 1642 |
///Create constraint |
| 1629 | 1643 |
|
| 1630 | 1644 |
///\relates LpBase::Constr |
| 1631 | 1645 |
/// |
| 1632 | 1646 |
inline LpBase::Constr operator>=(const LpBase::Expr &e, |
| 1633 | 1647 |
const LpBase::Expr &f) {
|
| 1634 | 1648 |
return LpBase::Constr(0, e - f, LpBase::INF); |
| 1635 | 1649 |
} |
| 1636 | 1650 |
|
| 1637 | 1651 |
|
| 1638 | 1652 |
///Create constraint |
| 1639 | 1653 |
|
| 1640 | 1654 |
///\relates LpBase::Constr |
| 1641 | 1655 |
/// |
| 1642 | 1656 |
inline LpBase::Constr operator>=(const LpBase::Value &e, |
| 1643 | 1657 |
const LpBase::Expr &f) {
|
| 1644 | 1658 |
return LpBase::Constr(LpBase::NaN, f, e); |
| 1645 | 1659 |
} |
| 1646 | 1660 |
|
| 1647 | 1661 |
|
| 1648 | 1662 |
///Create constraint |
| 1649 | 1663 |
|
| 1650 | 1664 |
///\relates LpBase::Constr |
| 1651 | 1665 |
/// |
| 1652 | 1666 |
inline LpBase::Constr operator>=(const LpBase::Expr &e, |
| 1653 | 1667 |
const LpBase::Value &f) {
|
| 1654 | 1668 |
return LpBase::Constr(f, e, LpBase::INF); |
| 1655 | 1669 |
} |
| 1656 | 1670 |
|
| 1657 | 1671 |
///Create constraint |
| 1658 | 1672 |
|
| 1659 | 1673 |
///\relates LpBase::Constr |
| 1660 | 1674 |
/// |
| 1661 | 1675 |
inline LpBase::Constr operator==(const LpBase::Expr &e, |
| 1662 | 1676 |
const LpBase::Value &f) {
|
| 1663 | 1677 |
return LpBase::Constr(f, e, f); |
| 1664 | 1678 |
} |
| 1665 | 1679 |
|
| 1666 | 1680 |
///Create constraint |
| 1667 | 1681 |
|
| 1668 | 1682 |
///\relates LpBase::Constr |
| 1669 | 1683 |
/// |
| 1670 | 1684 |
inline LpBase::Constr operator==(const LpBase::Expr &e, |
| 1671 | 1685 |
const LpBase::Expr &f) {
|
| 1672 | 1686 |
return LpBase::Constr(0, f - e, 0); |
| 1673 | 1687 |
} |
| 1674 | 1688 |
|
| 1675 | 1689 |
///Create constraint |
| 1676 | 1690 |
|
| 1677 | 1691 |
///\relates LpBase::Constr |
| 1678 | 1692 |
/// |
| 1679 | 1693 |
inline LpBase::Constr operator<=(const LpBase::Value &n, |
| 1680 | 1694 |
const LpBase::Constr &c) {
|
| 1681 | 1695 |
LpBase::Constr tmp(c); |
| 1682 | 1696 |
LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint"); |
| 1683 | 1697 |
tmp.lowerBound()=n; |
| 1684 | 1698 |
return tmp; |
| 1685 | 1699 |
} |
| 1686 | 1700 |
///Create constraint |
| 1687 | 1701 |
|
| 1688 | 1702 |
///\relates LpBase::Constr |
| 1689 | 1703 |
/// |
| 1690 | 1704 |
inline LpBase::Constr operator<=(const LpBase::Constr &c, |
| 1691 | 1705 |
const LpBase::Value &n) |
| 1692 | 1706 |
{
|
| 1693 | 1707 |
LpBase::Constr tmp(c); |
| 1694 | 1708 |
LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint"); |
| 1695 | 1709 |
tmp.upperBound()=n; |
| 1696 | 1710 |
return tmp; |
| 1697 | 1711 |
} |
| 1698 | 1712 |
|
| 1699 | 1713 |
///Create constraint |
| 1700 | 1714 |
|
| 1701 | 1715 |
///\relates LpBase::Constr |
| 1702 | 1716 |
/// |
| 1703 | 1717 |
inline LpBase::Constr operator>=(const LpBase::Value &n, |
| 1704 | 1718 |
const LpBase::Constr &c) {
|
| 1705 | 1719 |
LpBase::Constr tmp(c); |
| 1706 | 1720 |
LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint"); |
| 1707 | 1721 |
tmp.upperBound()=n; |
| 1708 | 1722 |
return tmp; |
| 1709 | 1723 |
} |
| 1710 | 1724 |
///Create constraint |
| 1711 | 1725 |
|
| 1712 | 1726 |
///\relates LpBase::Constr |
| 1713 | 1727 |
/// |
| 1714 | 1728 |
inline LpBase::Constr operator>=(const LpBase::Constr &c, |
| 1715 | 1729 |
const LpBase::Value &n) |
| 1716 | 1730 |
{
|
| 1717 | 1731 |
LpBase::Constr tmp(c); |
| 1718 | 1732 |
LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint"); |
| 1719 | 1733 |
tmp.lowerBound()=n; |
| 1720 | 1734 |
return tmp; |
| 1721 | 1735 |
} |
| 1722 | 1736 |
|
| 1723 | 1737 |
///Addition |
| 1724 | 1738 |
|
| 1725 | 1739 |
///\relates LpBase::DualExpr |
| 1726 | 1740 |
/// |
| 1727 | 1741 |
inline LpBase::DualExpr operator+(const LpBase::DualExpr &a, |
| 1728 | 1742 |
const LpBase::DualExpr &b) {
|
| 1729 | 1743 |
LpBase::DualExpr tmp(a); |
| 1730 | 1744 |
tmp+=b; |
| 1731 | 1745 |
return tmp; |
| 1732 | 1746 |
} |
| 1733 | 1747 |
///Substraction |
| 1734 | 1748 |
|
| 1735 | 1749 |
///\relates LpBase::DualExpr |
| 1736 | 1750 |
/// |
| 1737 | 1751 |
inline LpBase::DualExpr operator-(const LpBase::DualExpr &a, |
| 1738 | 1752 |
const LpBase::DualExpr &b) {
|
| 1739 | 1753 |
LpBase::DualExpr tmp(a); |
| 1740 | 1754 |
tmp-=b; |
| 1741 | 1755 |
return tmp; |
| 1742 | 1756 |
} |
| 1743 | 1757 |
///Multiply with constant |
| 1744 | 1758 |
|
| 1745 | 1759 |
///\relates LpBase::DualExpr |
| 1746 | 1760 |
/// |
| 1747 | 1761 |
inline LpBase::DualExpr operator*(const LpBase::DualExpr &a, |
| 1748 | 1762 |
const LpBase::Value &b) {
|
| 1749 | 1763 |
LpBase::DualExpr tmp(a); |
| 1750 | 1764 |
tmp*=b; |
| 1751 | 1765 |
return tmp; |
| 1752 | 1766 |
} |
| 1753 | 1767 |
|
| 1754 | 1768 |
///Multiply with constant |
| 1755 | 1769 |
|
| 1756 | 1770 |
///\relates LpBase::DualExpr |
| 1757 | 1771 |
/// |
| 1758 | 1772 |
inline LpBase::DualExpr operator*(const LpBase::Value &a, |
| 1759 | 1773 |
const LpBase::DualExpr &b) {
|
| 1760 | 1774 |
LpBase::DualExpr tmp(b); |
| 1761 | 1775 |
tmp*=a; |
| 1762 | 1776 |
return tmp; |
| 1763 | 1777 |
} |
| 1764 | 1778 |
///Divide with constant |
| 1765 | 1779 |
|
| 1766 | 1780 |
///\relates LpBase::DualExpr |
| 1767 | 1781 |
/// |
| 1768 | 1782 |
inline LpBase::DualExpr operator/(const LpBase::DualExpr &a, |
| 1769 | 1783 |
const LpBase::Value &b) {
|
| 1770 | 1784 |
LpBase::DualExpr tmp(a); |
| 1771 | 1785 |
tmp/=b; |
| 1772 | 1786 |
return tmp; |
| 1773 | 1787 |
} |
| 1774 | 1788 |
|
| 1775 | 1789 |
/// \ingroup lp_group |
| 1776 | 1790 |
/// |
| 1777 | 1791 |
/// \brief Common base class for LP solvers |
| 1778 | 1792 |
/// |
| 1779 | 1793 |
/// This class is an abstract base class for LP solvers. This class |
| 1780 | 1794 |
/// provides a full interface for set and modify an LP problem, |
| 1781 | 1795 |
/// solve it and retrieve the solution. You can use one of the |
| 1782 | 1796 |
/// descendants as a concrete implementation, or the \c Lp |
| 1783 | 1797 |
/// default LP solver. However, if you would like to handle LP |
| 1784 | 1798 |
/// solvers as reference or pointer in a generic way, you can use |
| 1785 | 1799 |
/// this class directly. |
| 1786 | 1800 |
class LpSolver : virtual public LpBase {
|
| 1787 | 1801 |
public: |
| 1788 | 1802 |
|
| 1789 | 1803 |
/// The problem types for primal and dual problems |
| 1790 | 1804 |
enum ProblemType {
|
| 1791 | 1805 |
/// = 0. Feasible solution hasn't been found (but may exist). |
| 1792 | 1806 |
UNDEFINED = 0, |
| 1793 | 1807 |
/// = 1. The problem has no feasible solution. |
| 1794 | 1808 |
INFEASIBLE = 1, |
| 1795 | 1809 |
/// = 2. Feasible solution found. |
| 1796 | 1810 |
FEASIBLE = 2, |
| 1797 | 1811 |
/// = 3. Optimal solution exists and found. |
| 1798 | 1812 |
OPTIMAL = 3, |
| 1799 | 1813 |
/// = 4. The cost function is unbounded. |
| 1800 | 1814 |
UNBOUNDED = 4 |
| 1801 | 1815 |
}; |
| 1802 | 1816 |
|
| 1803 | 1817 |
///The basis status of variables |
| 1804 | 1818 |
enum VarStatus {
|
| 1805 | 1819 |
/// The variable is in the basis |
| 1806 | 1820 |
BASIC, |
| 1807 | 1821 |
/// The variable is free, but not basic |
| 1808 | 1822 |
FREE, |
| 1809 | 1823 |
/// The variable has active lower bound |
| 1810 | 1824 |
LOWER, |
| 1811 | 1825 |
/// The variable has active upper bound |
| 1812 | 1826 |
UPPER, |
| 1813 | 1827 |
/// The variable is non-basic and fixed |
| 1814 | 1828 |
FIXED |
| 1815 | 1829 |
}; |
| 1816 | 1830 |
|
| 1817 | 1831 |
protected: |
| 1818 | 1832 |
|
| 1819 | 1833 |
virtual SolveExitStatus _solve() = 0; |
| 1820 | 1834 |
|
| 1821 | 1835 |
virtual Value _getPrimal(int i) const = 0; |
| 1822 | 1836 |
virtual Value _getDual(int i) const = 0; |
| 1823 | 1837 |
|
| 1824 | 1838 |
virtual Value _getPrimalRay(int i) const = 0; |
| 1825 | 1839 |
virtual Value _getDualRay(int i) const = 0; |
| 1826 | 1840 |
|
| 1827 | 1841 |
virtual Value _getPrimalValue() const = 0; |
| 1828 | 1842 |
|
| 1829 | 1843 |
virtual VarStatus _getColStatus(int i) const = 0; |
| 1830 | 1844 |
virtual VarStatus _getRowStatus(int i) const = 0; |
| 1831 | 1845 |
|
| 1832 | 1846 |
virtual ProblemType _getPrimalType() const = 0; |
| 1833 | 1847 |
virtual ProblemType _getDualType() const = 0; |
| 1834 | 1848 |
|
| 1835 | 1849 |
public: |
| 1836 | 1850 |
|
| 1837 | 1851 |
///Allocate a new LP problem instance |
| 1838 | 1852 |
virtual LpSolver* newSolver() const = 0; |
| 1839 | 1853 |
///Make a copy of the LP problem |
| 1840 | 1854 |
virtual LpSolver* cloneSolver() const = 0; |
| 1841 | 1855 |
|
| 1842 | 1856 |
///\name Solve the LP |
| 1843 | 1857 |
|
| 1844 | 1858 |
///@{
|
| 1845 | 1859 |
|
| 1846 | 1860 |
///\e Solve the LP problem at hand |
| 1847 | 1861 |
/// |
| 1848 | 1862 |
///\return The result of the optimization procedure. Possible |
| 1849 | 1863 |
///values and their meanings can be found in the documentation of |
| 1850 | 1864 |
///\ref SolveExitStatus. |
| 1851 | 1865 |
SolveExitStatus solve() { return _solve(); }
|
| 1852 | 1866 |
|
| 1853 | 1867 |
///@} |
| 1854 | 1868 |
|
| 1855 | 1869 |
///\name Obtain the Solution |
| 1856 | 1870 |
|
| 1857 | 1871 |
///@{
|
| 1858 | 1872 |
|
| 1859 | 1873 |
/// The type of the primal problem |
| 1860 | 1874 |
ProblemType primalType() const {
|
| 1861 | 1875 |
return _getPrimalType(); |
| 1862 | 1876 |
} |
| 1863 | 1877 |
|
| 1864 | 1878 |
/// The type of the dual problem |
| 1865 | 1879 |
ProblemType dualType() const {
|
| 1866 | 1880 |
return _getDualType(); |
| 1867 | 1881 |
} |
| 1868 | 1882 |
|
| 1869 | 1883 |
/// Return the primal value of the column |
| 1870 | 1884 |
|
| 1871 | 1885 |
/// Return the primal value of the column. |
| 1872 | 1886 |
/// \pre The problem is solved. |
| 1873 | 1887 |
Value primal(Col c) const { return _getPrimal(cols(id(c))); }
|
| 1874 | 1888 |
|
| 1875 | 1889 |
/// Return the primal value of the expression |
| 1876 | 1890 |
|
| 1877 | 1891 |
/// Return the primal value of the expression, i.e. the dot |
| 1878 | 1892 |
/// product of the primal solution and the expression. |
| 1879 | 1893 |
/// \pre The problem is solved. |
| 1880 | 1894 |
Value primal(const Expr& e) const {
|
| 1881 | 1895 |
double res = *e; |
| 1882 | 1896 |
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
|
| 1883 | 1897 |
res += *c * primal(c); |
| 1884 | 1898 |
} |
| 1885 | 1899 |
return res; |
| 1886 | 1900 |
} |
| 1887 | 1901 |
/// Returns a component of the primal ray |
| 1888 | 1902 |
|
| 1889 | 1903 |
/// The primal ray is solution of the modified primal problem, |
| 1890 | 1904 |
/// where we change each finite bound to 0, and we looking for a |
| 1891 | 1905 |
/// negative objective value in case of minimization, and positive |
| 1892 | 1906 |
/// objective value for maximization. If there is such solution, |
| 1893 | 1907 |
/// that proofs the unsolvability of the dual problem, and if a |
| 1894 | 1908 |
/// feasible primal solution exists, then the unboundness of |
| 1895 | 1909 |
/// primal problem. |
| 1896 | 1910 |
/// |
| 1897 | 1911 |
/// \pre The problem is solved and the dual problem is infeasible. |
| 1898 | 1912 |
/// \note Some solvers does not provide primal ray calculation |
| 1899 | 1913 |
/// functions. |
| 1900 | 1914 |
Value primalRay(Col c) const { return _getPrimalRay(cols(id(c))); }
|
| 1901 | 1915 |
|
| 1902 | 1916 |
/// Return the dual value of the row |
| 1903 | 1917 |
|
| 1904 | 1918 |
/// Return the dual value of the row. |
| 1905 | 1919 |
/// \pre The problem is solved. |
| 1906 | 1920 |
Value dual(Row r) const { return _getDual(rows(id(r))); }
|
| 1907 | 1921 |
|
| 1908 | 1922 |
/// Return the dual value of the dual expression |
| 1909 | 1923 |
|
| 1910 | 1924 |
/// Return the dual value of the dual expression, i.e. the dot |
| 1911 | 1925 |
/// product of the dual solution and the dual expression. |
| 1912 | 1926 |
/// \pre The problem is solved. |
| 1913 | 1927 |
Value dual(const DualExpr& e) const {
|
| 1914 | 1928 |
double res = 0.0; |
| 1915 | 1929 |
for (DualExpr::ConstCoeffIt r(e); r != INVALID; ++r) {
|
| 1916 | 1930 |
res += *r * dual(r); |
| 1917 | 1931 |
} |
| 1918 | 1932 |
return res; |
| 1919 | 1933 |
} |
| 1920 | 1934 |
|
| 1921 | 1935 |
/// Returns a component of the dual ray |
| 1922 | 1936 |
|
| 1923 | 1937 |
/// The dual ray is solution of the modified primal problem, where |
| 1924 | 1938 |
/// we change each finite bound to 0 (i.e. the objective function |
| 1925 | 1939 |
/// coefficients in the primal problem), and we looking for a |
| 1926 | 1940 |
/// ositive objective value. If there is such solution, that |
| 1927 | 1941 |
/// proofs the unsolvability of the primal problem, and if a |
| 1928 | 1942 |
/// feasible dual solution exists, then the unboundness of |
| 1929 | 1943 |
/// dual problem. |
| 1930 | 1944 |
/// |
| 1931 | 1945 |
/// \pre The problem is solved and the primal problem is infeasible. |
| 1932 | 1946 |
/// \note Some solvers does not provide dual ray calculation |
| 1933 | 1947 |
/// functions. |
| 1934 | 1948 |
Value dualRay(Row r) const { return _getDualRay(rows(id(r))); }
|
| 1935 | 1949 |
|
| 1936 | 1950 |
/// Return the basis status of the column |
| 1937 | 1951 |
|
| 1938 | 1952 |
/// \see VarStatus |
| 1939 | 1953 |
VarStatus colStatus(Col c) const { return _getColStatus(cols(id(c))); }
|
| 1940 | 1954 |
|
| 1941 | 1955 |
/// Return the basis status of the row |
| 1942 | 1956 |
|
| 1943 | 1957 |
/// \see VarStatus |
| 1944 | 1958 |
VarStatus rowStatus(Row r) const { return _getRowStatus(rows(id(r))); }
|
| 1945 | 1959 |
|
| 1946 | 1960 |
///The value of the objective function |
| 1947 | 1961 |
|
| 1948 | 1962 |
///\return |
| 1949 | 1963 |
///- \ref INF or -\ref INF means either infeasibility or unboundedness |
| 1950 | 1964 |
/// of the primal problem, depending on whether we minimize or maximize. |
| 1951 | 1965 |
///- \ref NaN if no primal solution is found. |
| 1952 | 1966 |
///- The (finite) objective value if an optimal solution is found. |
| 1953 | 1967 |
Value primal() const { return _getPrimalValue()+obj_const_comp;}
|
| 1954 | 1968 |
///@} |
| 1955 | 1969 |
|
| 1956 | 1970 |
protected: |
| 1957 | 1971 |
|
| 1958 | 1972 |
}; |
| 1959 | 1973 |
|
| 1960 | 1974 |
|
| 1961 | 1975 |
/// \ingroup lp_group |
| 1962 | 1976 |
/// |
| 1963 | 1977 |
/// \brief Common base class for MIP solvers |
| 1964 | 1978 |
/// |
| 1965 | 1979 |
/// This class is an abstract base class for MIP solvers. This class |
| 1966 | 1980 |
/// provides a full interface for set and modify an MIP problem, |
| 1967 | 1981 |
/// solve it and retrieve the solution. You can use one of the |
| 1968 | 1982 |
/// descendants as a concrete implementation, or the \c Lp |
| 1969 | 1983 |
/// default MIP solver. However, if you would like to handle MIP |
| 1970 | 1984 |
/// solvers as reference or pointer in a generic way, you can use |
| 1971 | 1985 |
/// this class directly. |
| 1972 | 1986 |
class MipSolver : virtual public LpBase {
|
| 1973 | 1987 |
public: |
| 1974 | 1988 |
|
| 1975 | 1989 |
/// The problem types for MIP problems |
| 1976 | 1990 |
enum ProblemType {
|
| 1977 | 1991 |
/// = 0. Feasible solution hasn't been found (but may exist). |
| 1978 | 1992 |
UNDEFINED = 0, |
| 1979 | 1993 |
/// = 1. The problem has no feasible solution. |
| 1980 | 1994 |
INFEASIBLE = 1, |
| 1981 | 1995 |
/// = 2. Feasible solution found. |
| 1982 | 1996 |
FEASIBLE = 2, |
| 1983 | 1997 |
/// = 3. Optimal solution exists and found. |
| 1984 | 1998 |
OPTIMAL = 3, |
| 1985 | 1999 |
/// = 4. The cost function is unbounded. |
| 1986 | 2000 |
///The Mip or at least the relaxed problem is unbounded. |
| 1987 | 2001 |
UNBOUNDED = 4 |
| 1988 | 2002 |
}; |
| 1989 | 2003 |
|
| 1990 | 2004 |
///Allocate a new MIP problem instance |
| 1991 | 2005 |
virtual MipSolver* newSolver() const = 0; |
| 1992 | 2006 |
///Make a copy of the MIP problem |
| 1993 | 2007 |
virtual MipSolver* cloneSolver() const = 0; |
| 1994 | 2008 |
|
| 1995 | 2009 |
///\name Solve the MIP |
| 1996 | 2010 |
|
| 1997 | 2011 |
///@{
|
| 1998 | 2012 |
|
| 1999 | 2013 |
/// Solve the MIP problem at hand |
| 2000 | 2014 |
/// |
| 2001 | 2015 |
///\return The result of the optimization procedure. Possible |
| 2002 | 2016 |
///values and their meanings can be found in the documentation of |
| 2003 | 2017 |
///\ref SolveExitStatus. |
| 2004 | 2018 |
SolveExitStatus solve() { return _solve(); }
|
| 2005 | 2019 |
|
| 2006 | 2020 |
///@} |
| 2007 | 2021 |
|
| 2008 | 2022 |
///\name Set Column Type |
| 2009 | 2023 |
///@{
|
| 2010 | 2024 |
|
| 2011 | 2025 |
///Possible variable (column) types (e.g. real, integer, binary etc.) |
| 2012 | 2026 |
enum ColTypes {
|
| 2013 | 2027 |
/// = 0. Continuous variable (default). |
| 2014 | 2028 |
REAL = 0, |
| 2015 | 2029 |
/// = 1. Integer variable. |
| 2016 | 2030 |
INTEGER = 1 |
| 2017 | 2031 |
}; |
| 2018 | 2032 |
|
| 2019 | 2033 |
///Sets the type of the given column to the given type |
| 2020 | 2034 |
|
| 2021 | 2035 |
///Sets the type of the given column to the given type. |
| 2022 | 2036 |
/// |
| 2023 | 2037 |
void colType(Col c, ColTypes col_type) {
|
| 2024 | 2038 |
_setColType(cols(id(c)),col_type); |
| 2025 | 2039 |
} |
| 2026 | 2040 |
|
| 2027 | 2041 |
///Gives back the type of the column. |
| 2028 | 2042 |
|
| 2029 | 2043 |
///Gives back the type of the column. |
| 2030 | 2044 |
/// |
| 2031 | 2045 |
ColTypes colType(Col c) const {
|
| 2032 | 2046 |
return _getColType(cols(id(c))); |
| 2033 | 2047 |
} |
| 2034 | 2048 |
///@} |
| 2035 | 2049 |
|
| 2036 | 2050 |
///\name Obtain the Solution |
| 2037 | 2051 |
|
| 2038 | 2052 |
///@{
|
| 2039 | 2053 |
|
| 2040 | 2054 |
/// The type of the MIP problem |
| 2041 | 2055 |
ProblemType type() const {
|
| 2042 | 2056 |
return _getType(); |
| 2043 | 2057 |
} |
| 2044 | 2058 |
|
| 2045 | 2059 |
/// Return the value of the row in the solution |
| 2046 | 2060 |
|
| 2047 | 2061 |
/// Return the value of the row in the solution. |
| 2048 | 2062 |
/// \pre The problem is solved. |
| 2049 | 2063 |
Value sol(Col c) const { return _getSol(cols(id(c))); }
|
| 2050 | 2064 |
|
| 2051 | 2065 |
/// Return the value of the expression in the solution |
| 2052 | 2066 |
|
| 2053 | 2067 |
/// Return the value of the expression in the solution, i.e. the |
| 2054 | 2068 |
/// dot product of the solution and the expression. |
| 2055 | 2069 |
/// \pre The problem is solved. |
| 2056 | 2070 |
Value sol(const Expr& e) const {
|
| 2057 | 2071 |
double res = *e; |
| 2058 | 2072 |
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
|
| 2059 | 2073 |
res += *c * sol(c); |
| 2060 | 2074 |
} |
| 2061 | 2075 |
return res; |
| 2062 | 2076 |
} |
| 2063 | 2077 |
///The value of the objective function |
| 2064 | 2078 |
|
| 2065 | 2079 |
///\return |
| 2066 | 2080 |
///- \ref INF or -\ref INF means either infeasibility or unboundedness |
| 2067 | 2081 |
/// of the problem, depending on whether we minimize or maximize. |
| 2068 | 2082 |
///- \ref NaN if no primal solution is found. |
| 2069 | 2083 |
///- The (finite) objective value if an optimal solution is found. |
| 2070 | 2084 |
Value solValue() const { return _getSolValue()+obj_const_comp;}
|
| 2071 | 2085 |
///@} |
| 2072 | 2086 |
|
| 2073 | 2087 |
protected: |
| 2074 | 2088 |
|
| 2075 | 2089 |
virtual SolveExitStatus _solve() = 0; |
| 2076 | 2090 |
virtual ColTypes _getColType(int col) const = 0; |
| 2077 | 2091 |
virtual void _setColType(int col, ColTypes col_type) = 0; |
| 2078 | 2092 |
virtual ProblemType _getType() const = 0; |
| 2079 | 2093 |
virtual Value _getSol(int i) const = 0; |
| 2080 | 2094 |
virtual Value _getSolValue() const = 0; |
| 2081 | 2095 |
|
| 2082 | 2096 |
}; |
| 2083 | 2097 |
|
| 2084 | 2098 |
|
| 2085 | 2099 |
|
| 2086 | 2100 |
} //namespace lemon |
| 2087 | 2101 |
|
| 2088 | 2102 |
#endif //LEMON_LP_BASE_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <lemon/lp_skeleton.h> |
| 20 | 20 |
|
| 21 | 21 |
///\file |
| 22 | 22 |
///\brief A skeleton file to implement LP solver interfaces |
| 23 | 23 |
namespace lemon {
|
| 24 | 24 |
|
| 25 | 25 |
int SkeletonSolverBase::_addCol() |
| 26 | 26 |
{
|
| 27 | 27 |
return ++col_num; |
| 28 | 28 |
} |
| 29 | 29 |
|
| 30 | 30 |
int SkeletonSolverBase::_addRow() |
| 31 | 31 |
{
|
| 32 | 32 |
return ++row_num; |
| 33 | 33 |
} |
| 34 | 34 |
|
| 35 |
int SkeletonSolverBase::_addRow(Value, ExprIterator, ExprIterator, Value) |
|
| 36 |
{
|
|
| 37 |
return ++row_num; |
|
| 38 |
} |
|
| 39 |
|
|
| 35 | 40 |
void SkeletonSolverBase::_eraseCol(int) {}
|
| 36 | 41 |
void SkeletonSolverBase::_eraseRow(int) {}
|
| 37 | 42 |
|
| 38 | 43 |
void SkeletonSolverBase::_getColName(int, std::string &) const {}
|
| 39 | 44 |
void SkeletonSolverBase::_setColName(int, const std::string &) {}
|
| 40 | 45 |
int SkeletonSolverBase::_colByName(const std::string&) const { return -1; }
|
| 41 | 46 |
|
| 42 | 47 |
void SkeletonSolverBase::_getRowName(int, std::string &) const {}
|
| 43 | 48 |
void SkeletonSolverBase::_setRowName(int, const std::string &) {}
|
| 44 | 49 |
int SkeletonSolverBase::_rowByName(const std::string&) const { return -1; }
|
| 45 | 50 |
|
| 46 | 51 |
void SkeletonSolverBase::_setRowCoeffs(int, ExprIterator, ExprIterator) {}
|
| 47 | 52 |
void SkeletonSolverBase::_getRowCoeffs(int, InsertIterator) const {}
|
| 48 | 53 |
|
| 49 | 54 |
void SkeletonSolverBase::_setColCoeffs(int, ExprIterator, ExprIterator) {}
|
| 50 | 55 |
void SkeletonSolverBase::_getColCoeffs(int, InsertIterator) const {}
|
| 51 | 56 |
|
| 52 | 57 |
void SkeletonSolverBase::_setCoeff(int, int, Value) {}
|
| 53 | 58 |
SkeletonSolverBase::Value SkeletonSolverBase::_getCoeff(int, int) const |
| 54 | 59 |
{ return 0; }
|
| 55 | 60 |
|
| 56 | 61 |
void SkeletonSolverBase::_setColLowerBound(int, Value) {}
|
| 57 | 62 |
SkeletonSolverBase::Value SkeletonSolverBase::_getColLowerBound(int) const |
| 58 | 63 |
{ return 0; }
|
| 59 | 64 |
|
| 60 | 65 |
void SkeletonSolverBase::_setColUpperBound(int, Value) {}
|
| 61 | 66 |
SkeletonSolverBase::Value SkeletonSolverBase::_getColUpperBound(int) const |
| 62 | 67 |
{ return 0; }
|
| 63 | 68 |
|
| 64 | 69 |
void SkeletonSolverBase::_setRowLowerBound(int, Value) {}
|
| 65 | 70 |
SkeletonSolverBase::Value SkeletonSolverBase::_getRowLowerBound(int) const |
| 66 | 71 |
{ return 0; }
|
| 67 | 72 |
|
| 68 | 73 |
void SkeletonSolverBase::_setRowUpperBound(int, Value) {}
|
| 69 | 74 |
SkeletonSolverBase::Value SkeletonSolverBase::_getRowUpperBound(int) const |
| 70 | 75 |
{ return 0; }
|
| 71 | 76 |
|
| 72 | 77 |
void SkeletonSolverBase::_setObjCoeffs(ExprIterator, ExprIterator) {}
|
| 73 | 78 |
void SkeletonSolverBase::_getObjCoeffs(InsertIterator) const {};
|
| 74 | 79 |
|
| 75 | 80 |
void SkeletonSolverBase::_setObjCoeff(int, Value) {}
|
| 76 | 81 |
SkeletonSolverBase::Value SkeletonSolverBase::_getObjCoeff(int) const |
| 77 | 82 |
{ return 0; }
|
| 78 | 83 |
|
| 79 | 84 |
void SkeletonSolverBase::_setSense(Sense) {}
|
| 80 | 85 |
SkeletonSolverBase::Sense SkeletonSolverBase::_getSense() const |
| 81 | 86 |
{ return MIN; }
|
| 82 | 87 |
|
| 83 | 88 |
void SkeletonSolverBase::_clear() {
|
| 84 | 89 |
row_num = col_num = 0; |
| 85 | 90 |
} |
| 86 | 91 |
|
| 87 | 92 |
void SkeletonSolverBase::_messageLevel(MessageLevel) {}
|
| 88 | 93 |
|
| 89 | 94 |
LpSkeleton::SolveExitStatus LpSkeleton::_solve() { return SOLVED; }
|
| 90 | 95 |
|
| 91 | 96 |
LpSkeleton::Value LpSkeleton::_getPrimal(int) const { return 0; }
|
| 92 | 97 |
LpSkeleton::Value LpSkeleton::_getDual(int) const { return 0; }
|
| 93 | 98 |
LpSkeleton::Value LpSkeleton::_getPrimalValue() const { return 0; }
|
| 94 | 99 |
|
| 95 | 100 |
LpSkeleton::Value LpSkeleton::_getPrimalRay(int) const { return 0; }
|
| 96 | 101 |
LpSkeleton::Value LpSkeleton::_getDualRay(int) const { return 0; }
|
| 97 | 102 |
|
| 98 | 103 |
LpSkeleton::ProblemType LpSkeleton::_getPrimalType() const |
| 99 | 104 |
{ return UNDEFINED; }
|
| 100 | 105 |
|
| 101 | 106 |
LpSkeleton::ProblemType LpSkeleton::_getDualType() const |
| 102 | 107 |
{ return UNDEFINED; }
|
| 103 | 108 |
|
| 104 | 109 |
LpSkeleton::VarStatus LpSkeleton::_getColStatus(int) const |
| 105 | 110 |
{ return BASIC; }
|
| 106 | 111 |
|
| 107 | 112 |
LpSkeleton::VarStatus LpSkeleton::_getRowStatus(int) const |
| 108 | 113 |
{ return BASIC; }
|
| 109 | 114 |
|
| 110 | 115 |
LpSkeleton* LpSkeleton::newSolver() const |
| 111 | 116 |
{ return static_cast<LpSkeleton*>(0); }
|
| 112 | 117 |
|
| 113 | 118 |
LpSkeleton* LpSkeleton::cloneSolver() const |
| 114 | 119 |
{ return static_cast<LpSkeleton*>(0); }
|
| 115 | 120 |
|
| 116 | 121 |
const char* LpSkeleton::_solverName() const { return "LpSkeleton"; }
|
| 117 | 122 |
|
| 118 | 123 |
MipSkeleton::SolveExitStatus MipSkeleton::_solve() |
| 119 | 124 |
{ return SOLVED; }
|
| 120 | 125 |
|
| 121 | 126 |
MipSkeleton::Value MipSkeleton::_getSol(int) const { return 0; }
|
| 122 | 127 |
MipSkeleton::Value MipSkeleton::_getSolValue() const { return 0; }
|
| 123 | 128 |
|
| 124 | 129 |
MipSkeleton::ProblemType MipSkeleton::_getType() const |
| 125 | 130 |
{ return UNDEFINED; }
|
| 126 | 131 |
|
| 127 | 132 |
MipSkeleton* MipSkeleton::newSolver() const |
| 128 | 133 |
{ return static_cast<MipSkeleton*>(0); }
|
| 129 | 134 |
|
| 130 | 135 |
MipSkeleton* MipSkeleton::cloneSolver() const |
| 131 | 136 |
{ return static_cast<MipSkeleton*>(0); }
|
| 132 | 137 |
|
| 133 | 138 |
const char* MipSkeleton::_solverName() const { return "MipSkeleton"; }
|
| 134 | 139 |
|
| 135 | 140 |
} //namespace lemon |
| 136 | 141 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_LP_SKELETON_H |
| 20 | 20 |
#define LEMON_LP_SKELETON_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/lp_base.h> |
| 23 | 23 |
|
| 24 | 24 |
///\file |
| 25 | 25 |
///\brief Skeleton file to implement LP/MIP solver interfaces |
| 26 | 26 |
/// |
| 27 | 27 |
///The classes in this file do nothing, but they can serve as skeletons when |
| 28 | 28 |
///implementing an interface to new solvers. |
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
///A skeleton class to implement LP/MIP solver base interface |
| 32 | 32 |
|
| 33 | 33 |
///This class does nothing, but it can serve as a skeleton when |
| 34 | 34 |
///implementing an interface to new solvers. |
| 35 | 35 |
class SkeletonSolverBase : public virtual LpBase {
|
| 36 | 36 |
int col_num,row_num; |
| 37 | 37 |
|
| 38 | 38 |
protected: |
| 39 | 39 |
|
| 40 | 40 |
SkeletonSolverBase() |
| 41 | 41 |
: col_num(-1), row_num(-1) {}
|
| 42 | 42 |
|
| 43 | 43 |
/// \e |
| 44 | 44 |
virtual int _addCol(); |
| 45 | 45 |
/// \e |
| 46 | 46 |
virtual int _addRow(); |
| 47 | 47 |
/// \e |
| 48 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 49 |
/// \e |
|
| 48 | 50 |
virtual void _eraseCol(int i); |
| 49 | 51 |
/// \e |
| 50 | 52 |
virtual void _eraseRow(int i); |
| 51 | 53 |
|
| 52 | 54 |
/// \e |
| 53 | 55 |
virtual void _getColName(int col, std::string& name) const; |
| 54 | 56 |
/// \e |
| 55 | 57 |
virtual void _setColName(int col, const std::string& name); |
| 56 | 58 |
/// \e |
| 57 | 59 |
virtual int _colByName(const std::string& name) const; |
| 58 | 60 |
|
| 59 | 61 |
/// \e |
| 60 | 62 |
virtual void _getRowName(int row, std::string& name) const; |
| 61 | 63 |
/// \e |
| 62 | 64 |
virtual void _setRowName(int row, const std::string& name); |
| 63 | 65 |
/// \e |
| 64 | 66 |
virtual int _rowByName(const std::string& name) const; |
| 65 | 67 |
|
| 66 | 68 |
/// \e |
| 67 | 69 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
| 68 | 70 |
/// \e |
| 69 | 71 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
| 70 | 72 |
/// \e |
| 71 | 73 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
| 72 | 74 |
/// \e |
| 73 | 75 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
| 74 | 76 |
|
| 75 | 77 |
/// Set one element of the coefficient matrix |
| 76 | 78 |
virtual void _setCoeff(int row, int col, Value value); |
| 77 | 79 |
|
| 78 | 80 |
/// Get one element of the coefficient matrix |
| 79 | 81 |
virtual Value _getCoeff(int row, int col) const; |
| 80 | 82 |
|
| 81 | 83 |
/// The lower bound of a variable (column) have to be given by an |
| 82 | 84 |
/// extended number of type Value, i.e. a finite number of type |
| 83 | 85 |
/// Value or -\ref INF. |
| 84 | 86 |
virtual void _setColLowerBound(int i, Value value); |
| 85 | 87 |
/// \e |
| 86 | 88 |
|
| 87 | 89 |
/// The lower bound of a variable (column) is an |
| 88 | 90 |
/// extended number of type Value, i.e. a finite number of type |
| 89 | 91 |
/// Value or -\ref INF. |
| 90 | 92 |
virtual Value _getColLowerBound(int i) const; |
| 91 | 93 |
|
| 92 | 94 |
/// The upper bound of a variable (column) have to be given by an |
| 93 | 95 |
/// extended number of type Value, i.e. a finite number of type |
| 94 | 96 |
/// Value or \ref INF. |
| 95 | 97 |
virtual void _setColUpperBound(int i, Value value); |
| 96 | 98 |
/// \e |
| 97 | 99 |
|
| 98 | 100 |
/// The upper bound of a variable (column) is an |
| 99 | 101 |
/// extended number of type Value, i.e. a finite number of type |
| 100 | 102 |
/// Value or \ref INF. |
| 101 | 103 |
virtual Value _getColUpperBound(int i) const; |
| 102 | 104 |
|
| 103 | 105 |
/// The lower bound of a constraint (row) have to be given by an |
| 104 | 106 |
/// extended number of type Value, i.e. a finite number of type |
| 105 | 107 |
/// Value or -\ref INF. |
| 106 | 108 |
virtual void _setRowLowerBound(int i, Value value); |
| 107 | 109 |
/// \e |
| 108 | 110 |
|
| 109 | 111 |
/// The lower bound of a constraint (row) is an |
| 110 | 112 |
/// extended number of type Value, i.e. a finite number of type |
| 111 | 113 |
/// Value or -\ref INF. |
| 112 | 114 |
virtual Value _getRowLowerBound(int i) const; |
| 113 | 115 |
|
| 114 | 116 |
/// The upper bound of a constraint (row) have to be given by an |
| 115 | 117 |
/// extended number of type Value, i.e. a finite number of type |
| 116 | 118 |
/// Value or \ref INF. |
| 117 | 119 |
virtual void _setRowUpperBound(int i, Value value); |
| 118 | 120 |
/// \e |
| 119 | 121 |
|
| 120 | 122 |
/// The upper bound of a constraint (row) is an |
| 121 | 123 |
/// extended number of type Value, i.e. a finite number of type |
| 122 | 124 |
/// Value or \ref INF. |
| 123 | 125 |
virtual Value _getRowUpperBound(int i) const; |
| 124 | 126 |
|
| 125 | 127 |
/// \e |
| 126 | 128 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e); |
| 127 | 129 |
/// \e |
| 128 | 130 |
virtual void _getObjCoeffs(InsertIterator b) const; |
| 129 | 131 |
|
| 130 | 132 |
/// \e |
| 131 | 133 |
virtual void _setObjCoeff(int i, Value obj_coef); |
| 132 | 134 |
/// \e |
| 133 | 135 |
virtual Value _getObjCoeff(int i) const; |
| 134 | 136 |
|
| 135 | 137 |
///\e |
| 136 | 138 |
virtual void _setSense(Sense); |
| 137 | 139 |
///\e |
| 138 | 140 |
virtual Sense _getSense() const; |
| 139 | 141 |
|
| 140 | 142 |
///\e |
| 141 | 143 |
virtual void _clear(); |
| 142 | 144 |
|
| 143 | 145 |
///\e |
| 144 | 146 |
virtual void _messageLevel(MessageLevel); |
| 145 | 147 |
}; |
| 146 | 148 |
|
| 147 | 149 |
/// \brief Skeleton class for an LP solver interface |
| 148 | 150 |
/// |
| 149 | 151 |
///This class does nothing, but it can serve as a skeleton when |
| 150 | 152 |
///implementing an interface to new solvers. |
| 151 | 153 |
|
| 152 | 154 |
///\ingroup lp_group |
| 153 | 155 |
class LpSkeleton : public LpSolver, public SkeletonSolverBase {
|
| 154 | 156 |
public: |
| 155 | 157 |
///\e |
| 156 | 158 |
LpSkeleton() : LpSolver(), SkeletonSolverBase() {}
|
| 157 | 159 |
///\e |
| 158 | 160 |
virtual LpSkeleton* newSolver() const; |
| 159 | 161 |
///\e |
| 160 | 162 |
virtual LpSkeleton* cloneSolver() const; |
| 161 | 163 |
protected: |
| 162 | 164 |
|
| 163 | 165 |
///\e |
| 164 | 166 |
virtual SolveExitStatus _solve(); |
| 165 | 167 |
|
| 166 | 168 |
///\e |
| 167 | 169 |
virtual Value _getPrimal(int i) const; |
| 168 | 170 |
///\e |
| 169 | 171 |
virtual Value _getDual(int i) const; |
| 170 | 172 |
|
| 171 | 173 |
///\e |
| 172 | 174 |
virtual Value _getPrimalValue() const; |
| 173 | 175 |
|
| 174 | 176 |
///\e |
| 175 | 177 |
virtual Value _getPrimalRay(int i) const; |
| 176 | 178 |
///\e |
| 177 | 179 |
virtual Value _getDualRay(int i) const; |
| 178 | 180 |
|
| 179 | 181 |
///\e |
| 180 | 182 |
virtual ProblemType _getPrimalType() const; |
| 181 | 183 |
///\e |
| 182 | 184 |
virtual ProblemType _getDualType() const; |
| 183 | 185 |
|
| 184 | 186 |
///\e |
| 185 | 187 |
virtual VarStatus _getColStatus(int i) const; |
| 186 | 188 |
///\e |
| 187 | 189 |
virtual VarStatus _getRowStatus(int i) const; |
| 188 | 190 |
|
| 189 | 191 |
///\e |
| 190 | 192 |
virtual const char* _solverName() const; |
| 191 | 193 |
|
| 192 | 194 |
}; |
| 193 | 195 |
|
| 194 | 196 |
/// \brief Skeleton class for a MIP solver interface |
| 195 | 197 |
/// |
| 196 | 198 |
///This class does nothing, but it can serve as a skeleton when |
| 197 | 199 |
///implementing an interface to new solvers. |
| 198 | 200 |
///\ingroup lp_group |
| 199 | 201 |
class MipSkeleton : public MipSolver, public SkeletonSolverBase {
|
| 200 | 202 |
public: |
| 201 | 203 |
///\e |
| 202 | 204 |
MipSkeleton() : MipSolver(), SkeletonSolverBase() {}
|
| 203 | 205 |
///\e |
| 204 | 206 |
virtual MipSkeleton* newSolver() const; |
| 205 | 207 |
///\e |
| 206 | 208 |
virtual MipSkeleton* cloneSolver() const; |
| 207 | 209 |
|
| 208 | 210 |
protected: |
| 209 | 211 |
///\e |
| 210 | 212 |
virtual SolveExitStatus _solve(); |
| 211 | 213 |
|
| 212 | 214 |
///\e |
| 213 | 215 |
virtual Value _getSol(int i) const; |
| 214 | 216 |
|
| 215 | 217 |
///\e |
| 216 | 218 |
virtual Value _getSolValue() const; |
| 217 | 219 |
|
| 218 | 220 |
///\e |
| 219 | 221 |
virtual ProblemType _getType() const; |
| 220 | 222 |
|
| 221 | 223 |
///\e |
| 222 | 224 |
virtual const char* _solverName() const; |
| 223 | 225 |
}; |
| 224 | 226 |
|
| 225 | 227 |
} //namespace lemon |
| 226 | 228 |
|
| 227 | 229 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_MAPS_H |
| 20 | 20 |
#define LEMON_MAPS_H |
| 21 | 21 |
|
| 22 | 22 |
#include <iterator> |
| 23 | 23 |
#include <functional> |
| 24 | 24 |
#include <vector> |
| 25 |
#include <map> |
|
| 25 | 26 |
|
| 26 | 27 |
#include <lemon/core.h> |
| 27 | 28 |
|
| 28 | 29 |
///\file |
| 29 | 30 |
///\ingroup maps |
| 30 | 31 |
///\brief Miscellaneous property maps |
| 31 | 32 |
|
| 32 |
#include <map> |
|
| 33 |
|
|
| 34 | 33 |
namespace lemon {
|
| 35 | 34 |
|
| 36 | 35 |
/// \addtogroup maps |
| 37 | 36 |
/// @{
|
| 38 | 37 |
|
| 39 | 38 |
/// Base class of maps. |
| 40 | 39 |
|
| 41 | 40 |
/// Base class of maps. It provides the necessary type definitions |
| 42 | 41 |
/// required by the map %concepts. |
| 43 | 42 |
template<typename K, typename V> |
| 44 | 43 |
class MapBase {
|
| 45 | 44 |
public: |
| 46 | 45 |
/// \brief The key type of the map. |
| 47 | 46 |
typedef K Key; |
| 48 | 47 |
/// \brief The value type of the map. |
| 49 | 48 |
/// (The type of objects associated with the keys). |
| 50 | 49 |
typedef V Value; |
| 51 | 50 |
}; |
| 52 | 51 |
|
| 53 | 52 |
|
| 54 | 53 |
/// Null map. (a.k.a. DoNothingMap) |
| 55 | 54 |
|
| 56 | 55 |
/// This map can be used if you have to provide a map only for |
| 57 | 56 |
/// its type definitions, or if you have to provide a writable map, |
| 58 | 57 |
/// but data written to it is not required (i.e. it will be sent to |
| 59 | 58 |
/// <tt>/dev/null</tt>). |
| 60 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 59 |
/// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 61 | 60 |
/// |
| 62 | 61 |
/// \sa ConstMap |
| 63 | 62 |
template<typename K, typename V> |
| 64 | 63 |
class NullMap : public MapBase<K, V> {
|
| 65 | 64 |
public: |
| 66 | 65 |
///\e |
| 67 | 66 |
typedef K Key; |
| 68 | 67 |
///\e |
| 69 | 68 |
typedef V Value; |
| 70 | 69 |
|
| 71 | 70 |
/// Gives back a default constructed element. |
| 72 | 71 |
Value operator[](const Key&) const { return Value(); }
|
| 73 | 72 |
/// Absorbs the value. |
| 74 | 73 |
void set(const Key&, const Value&) {}
|
| 75 | 74 |
}; |
| 76 | 75 |
|
| 77 | 76 |
/// Returns a \c NullMap class |
| 78 | 77 |
|
| 79 | 78 |
/// This function just returns a \c NullMap class. |
| 80 | 79 |
/// \relates NullMap |
| 81 | 80 |
template <typename K, typename V> |
| 82 | 81 |
NullMap<K, V> nullMap() {
|
| 83 | 82 |
return NullMap<K, V>(); |
| 84 | 83 |
} |
| 85 | 84 |
|
| 86 | 85 |
|
| 87 | 86 |
/// Constant map. |
| 88 | 87 |
|
| 89 | 88 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
| 90 | 89 |
/// value to each key. |
| 91 | 90 |
/// |
| 92 | 91 |
/// In other aspects it is equivalent to \c NullMap. |
| 93 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
| 92 |
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
| 94 | 93 |
/// concept, but it absorbs the data written to it. |
| 95 | 94 |
/// |
| 96 | 95 |
/// The simplest way of using this map is through the constMap() |
| 97 | 96 |
/// function. |
| 98 | 97 |
/// |
| 99 | 98 |
/// \sa NullMap |
| 100 | 99 |
/// \sa IdentityMap |
| 101 | 100 |
template<typename K, typename V> |
| 102 | 101 |
class ConstMap : public MapBase<K, V> {
|
| 103 | 102 |
private: |
| 104 | 103 |
V _value; |
| 105 | 104 |
public: |
| 106 | 105 |
///\e |
| 107 | 106 |
typedef K Key; |
| 108 | 107 |
///\e |
| 109 | 108 |
typedef V Value; |
| 110 | 109 |
|
| 111 | 110 |
/// Default constructor |
| 112 | 111 |
|
| 113 | 112 |
/// Default constructor. |
| 114 | 113 |
/// The value of the map will be default constructed. |
| 115 | 114 |
ConstMap() {}
|
| 116 | 115 |
|
| 117 | 116 |
/// Constructor with specified initial value |
| 118 | 117 |
|
| 119 | 118 |
/// Constructor with specified initial value. |
| 120 | 119 |
/// \param v The initial value of the map. |
| 121 | 120 |
ConstMap(const Value &v) : _value(v) {}
|
| 122 | 121 |
|
| 123 | 122 |
/// Gives back the specified value. |
| 124 | 123 |
Value operator[](const Key&) const { return _value; }
|
| 125 | 124 |
|
| 126 | 125 |
/// Absorbs the value. |
| 127 | 126 |
void set(const Key&, const Value&) {}
|
| 128 | 127 |
|
| 129 | 128 |
/// Sets the value that is assigned to each key. |
| 130 | 129 |
void setAll(const Value &v) {
|
| 131 | 130 |
_value = v; |
| 132 | 131 |
} |
| 133 | 132 |
|
| 134 | 133 |
template<typename V1> |
| 135 | 134 |
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
|
| 136 | 135 |
}; |
| 137 | 136 |
|
| 138 | 137 |
/// Returns a \c ConstMap class |
| 139 | 138 |
|
| 140 | 139 |
/// This function just returns a \c ConstMap class. |
| 141 | 140 |
/// \relates ConstMap |
| 142 | 141 |
template<typename K, typename V> |
| 143 | 142 |
inline ConstMap<K, V> constMap(const V &v) {
|
| 144 | 143 |
return ConstMap<K, V>(v); |
| 145 | 144 |
} |
| 146 | 145 |
|
| 147 | 146 |
template<typename K, typename V> |
| 148 | 147 |
inline ConstMap<K, V> constMap() {
|
| 149 | 148 |
return ConstMap<K, V>(); |
| 150 | 149 |
} |
| 151 | 150 |
|
| 152 | 151 |
|
| 153 | 152 |
template<typename T, T v> |
| 154 | 153 |
struct Const {};
|
| 155 | 154 |
|
| 156 | 155 |
/// Constant map with inlined constant value. |
| 157 | 156 |
|
| 158 | 157 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
| 159 | 158 |
/// value to each key. |
| 160 | 159 |
/// |
| 161 | 160 |
/// In other aspects it is equivalent to \c NullMap. |
| 162 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
| 161 |
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
| 163 | 162 |
/// concept, but it absorbs the data written to it. |
| 164 | 163 |
/// |
| 165 | 164 |
/// The simplest way of using this map is through the constMap() |
| 166 | 165 |
/// function. |
| 167 | 166 |
/// |
| 168 | 167 |
/// \sa NullMap |
| 169 | 168 |
/// \sa IdentityMap |
| 170 | 169 |
template<typename K, typename V, V v> |
| 171 | 170 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
|
| 172 | 171 |
public: |
| 173 | 172 |
///\e |
| 174 | 173 |
typedef K Key; |
| 175 | 174 |
///\e |
| 176 | 175 |
typedef V Value; |
| 177 | 176 |
|
| 178 | 177 |
/// Constructor. |
| 179 | 178 |
ConstMap() {}
|
| 180 | 179 |
|
| 181 | 180 |
/// Gives back the specified value. |
| 182 | 181 |
Value operator[](const Key&) const { return v; }
|
| 183 | 182 |
|
| 184 | 183 |
/// Absorbs the value. |
| 185 | 184 |
void set(const Key&, const Value&) {}
|
| 186 | 185 |
}; |
| 187 | 186 |
|
| 188 | 187 |
/// Returns a \c ConstMap class with inlined constant value |
| 189 | 188 |
|
| 190 | 189 |
/// This function just returns a \c ConstMap class with inlined |
| 191 | 190 |
/// constant value. |
| 192 | 191 |
/// \relates ConstMap |
| 193 | 192 |
template<typename K, typename V, V v> |
| 194 | 193 |
inline ConstMap<K, Const<V, v> > constMap() {
|
| 195 | 194 |
return ConstMap<K, Const<V, v> >(); |
| 196 | 195 |
} |
| 197 | 196 |
|
| 198 | 197 |
|
| 199 | 198 |
/// Identity map. |
| 200 | 199 |
|
| 201 | 200 |
/// This \ref concepts::ReadMap "read-only map" gives back the given |
| 202 | 201 |
/// key as value without any modification. |
| 203 | 202 |
/// |
| 204 | 203 |
/// \sa ConstMap |
| 205 | 204 |
template <typename T> |
| 206 | 205 |
class IdentityMap : public MapBase<T, T> {
|
| 207 | 206 |
public: |
| 208 | 207 |
///\e |
| 209 | 208 |
typedef T Key; |
| 210 | 209 |
///\e |
| 211 | 210 |
typedef T Value; |
| 212 | 211 |
|
| 213 | 212 |
/// Gives back the given value without any modification. |
| 214 | 213 |
Value operator[](const Key &k) const {
|
| 215 | 214 |
return k; |
| 216 | 215 |
} |
| 217 | 216 |
}; |
| 218 | 217 |
|
| 219 | 218 |
/// Returns an \c IdentityMap class |
| 220 | 219 |
|
| 221 | 220 |
/// This function just returns an \c IdentityMap class. |
| 222 | 221 |
/// \relates IdentityMap |
| 223 | 222 |
template<typename T> |
| 224 | 223 |
inline IdentityMap<T> identityMap() {
|
| 225 | 224 |
return IdentityMap<T>(); |
| 226 | 225 |
} |
| 227 | 226 |
|
| 228 | 227 |
|
| 229 | 228 |
/// \brief Map for storing values for integer keys from the range |
| 230 | 229 |
/// <tt>[0..size-1]</tt>. |
| 231 | 230 |
/// |
| 232 | 231 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
| 233 | 232 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
| 234 | 233 |
/// It can be used with some data structures, for example |
| 235 | 234 |
/// \c UnionFind, \c BinHeap, when the used items are small |
| 236 |
/// integers. This map conforms the \ref concepts::ReferenceMap |
|
| 235 |
/// integers. This map conforms to the \ref concepts::ReferenceMap |
|
| 237 | 236 |
/// "ReferenceMap" concept. |
| 238 | 237 |
/// |
| 239 | 238 |
/// The simplest way of using this map is through the rangeMap() |
| 240 | 239 |
/// function. |
| 241 | 240 |
template <typename V> |
| 242 | 241 |
class RangeMap : public MapBase<int, V> {
|
| 243 | 242 |
template <typename V1> |
| 244 | 243 |
friend class RangeMap; |
| 245 | 244 |
private: |
| 246 | 245 |
|
| 247 | 246 |
typedef std::vector<V> Vector; |
| 248 | 247 |
Vector _vector; |
| 249 | 248 |
|
| 250 | 249 |
public: |
| 251 | 250 |
|
| 252 | 251 |
/// Key type |
| 253 | 252 |
typedef int Key; |
| 254 | 253 |
/// Value type |
| 255 | 254 |
typedef V Value; |
| 256 | 255 |
/// Reference type |
| 257 | 256 |
typedef typename Vector::reference Reference; |
| 258 | 257 |
/// Const reference type |
| 259 | 258 |
typedef typename Vector::const_reference ConstReference; |
| 260 | 259 |
|
| 261 | 260 |
typedef True ReferenceMapTag; |
| 262 | 261 |
|
| 263 | 262 |
public: |
| 264 | 263 |
|
| 265 | 264 |
/// Constructor with specified default value. |
| 266 | 265 |
RangeMap(int size = 0, const Value &value = Value()) |
| 267 | 266 |
: _vector(size, value) {}
|
| 268 | 267 |
|
| 269 | 268 |
/// Constructs the map from an appropriate \c std::vector. |
| 270 | 269 |
template <typename V1> |
| 271 | 270 |
RangeMap(const std::vector<V1>& vector) |
| 272 | 271 |
: _vector(vector.begin(), vector.end()) {}
|
| 273 | 272 |
|
| 274 | 273 |
/// Constructs the map from another \c RangeMap. |
| 275 | 274 |
template <typename V1> |
| 276 | 275 |
RangeMap(const RangeMap<V1> &c) |
| 277 | 276 |
: _vector(c._vector.begin(), c._vector.end()) {}
|
| 278 | 277 |
|
| 279 | 278 |
/// Returns the size of the map. |
| 280 | 279 |
int size() {
|
| 281 | 280 |
return _vector.size(); |
| 282 | 281 |
} |
| 283 | 282 |
|
| 284 | 283 |
/// Resizes the map. |
| 285 | 284 |
|
| 286 | 285 |
/// Resizes the underlying \c std::vector container, so changes the |
| 287 | 286 |
/// keyset of the map. |
| 288 | 287 |
/// \param size The new size of the map. The new keyset will be the |
| 289 | 288 |
/// range <tt>[0..size-1]</tt>. |
| 290 | 289 |
/// \param value The default value to assign to the new keys. |
| 291 | 290 |
void resize(int size, const Value &value = Value()) {
|
| 292 | 291 |
_vector.resize(size, value); |
| 293 | 292 |
} |
| 294 | 293 |
|
| 295 | 294 |
private: |
| 296 | 295 |
|
| 297 | 296 |
RangeMap& operator=(const RangeMap&); |
| 298 | 297 |
|
| 299 | 298 |
public: |
| 300 | 299 |
|
| 301 | 300 |
///\e |
| 302 | 301 |
Reference operator[](const Key &k) {
|
| 303 | 302 |
return _vector[k]; |
| 304 | 303 |
} |
| 305 | 304 |
|
| 306 | 305 |
///\e |
| 307 | 306 |
ConstReference operator[](const Key &k) const {
|
| 308 | 307 |
return _vector[k]; |
| 309 | 308 |
} |
| 310 | 309 |
|
| 311 | 310 |
///\e |
| 312 | 311 |
void set(const Key &k, const Value &v) {
|
| 313 | 312 |
_vector[k] = v; |
| 314 | 313 |
} |
| 315 | 314 |
}; |
| 316 | 315 |
|
| 317 | 316 |
/// Returns a \c RangeMap class |
| 318 | 317 |
|
| 319 | 318 |
/// This function just returns a \c RangeMap class. |
| 320 | 319 |
/// \relates RangeMap |
| 321 | 320 |
template<typename V> |
| 322 | 321 |
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
|
| 323 | 322 |
return RangeMap<V>(size, value); |
| 324 | 323 |
} |
| 325 | 324 |
|
| 326 | 325 |
/// \brief Returns a \c RangeMap class created from an appropriate |
| 327 | 326 |
/// \c std::vector |
| 328 | 327 |
|
| 329 | 328 |
/// This function just returns a \c RangeMap class created from an |
| 330 | 329 |
/// appropriate \c std::vector. |
| 331 | 330 |
/// \relates RangeMap |
| 332 | 331 |
template<typename V> |
| 333 | 332 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
|
| 334 | 333 |
return RangeMap<V>(vector); |
| 335 | 334 |
} |
| 336 | 335 |
|
| 337 | 336 |
|
| 338 | 337 |
/// Map type based on \c std::map |
| 339 | 338 |
|
| 340 | 339 |
/// This map is essentially a wrapper for \c std::map with addition |
| 341 | 340 |
/// that you can specify a default value for the keys that are not |
| 342 | 341 |
/// stored actually. This value can be different from the default |
| 343 | 342 |
/// contructed value (i.e. \c %Value()). |
| 344 |
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
|
| 343 |
/// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap" |
|
| 345 | 344 |
/// concept. |
| 346 | 345 |
/// |
| 347 | 346 |
/// This map is useful if a default value should be assigned to most of |
| 348 | 347 |
/// the keys and different values should be assigned only to a few |
| 349 | 348 |
/// keys (i.e. the map is "sparse"). |
| 350 | 349 |
/// The name of this type also refers to this important usage. |
| 351 | 350 |
/// |
| 352 | 351 |
/// Apart form that this map can be used in many other cases since it |
| 353 | 352 |
/// is based on \c std::map, which is a general associative container. |
| 354 | 353 |
/// However keep in mind that it is usually not as efficient as other |
| 355 | 354 |
/// maps. |
| 356 | 355 |
/// |
| 357 | 356 |
/// The simplest way of using this map is through the sparseMap() |
| 358 | 357 |
/// function. |
| 359 | 358 |
template <typename K, typename V, typename Comp = std::less<K> > |
| 360 | 359 |
class SparseMap : public MapBase<K, V> {
|
| 361 | 360 |
template <typename K1, typename V1, typename C1> |
| 362 | 361 |
friend class SparseMap; |
| 363 | 362 |
public: |
| 364 | 363 |
|
| 365 | 364 |
/// Key type |
| 366 | 365 |
typedef K Key; |
| 367 | 366 |
/// Value type |
| 368 | 367 |
typedef V Value; |
| 369 | 368 |
/// Reference type |
| 370 | 369 |
typedef Value& Reference; |
| 371 | 370 |
/// Const reference type |
| 372 | 371 |
typedef const Value& ConstReference; |
| 373 | 372 |
|
| 374 | 373 |
typedef True ReferenceMapTag; |
| 375 | 374 |
|
| 376 | 375 |
private: |
| 377 | 376 |
|
| 378 | 377 |
typedef std::map<K, V, Comp> Map; |
| 379 | 378 |
Map _map; |
| 380 | 379 |
Value _value; |
| 381 | 380 |
|
| 382 | 381 |
public: |
| 383 | 382 |
|
| 384 | 383 |
/// \brief Constructor with specified default value. |
| 385 | 384 |
SparseMap(const Value &value = Value()) : _value(value) {}
|
| 386 | 385 |
/// \brief Constructs the map from an appropriate \c std::map, and |
| 387 | 386 |
/// explicitly specifies a default value. |
| 388 | 387 |
template <typename V1, typename Comp1> |
| 389 | 388 |
SparseMap(const std::map<Key, V1, Comp1> &map, |
| 390 | 389 |
const Value &value = Value()) |
| 391 | 390 |
: _map(map.begin(), map.end()), _value(value) {}
|
| 392 | 391 |
|
| 393 | 392 |
/// \brief Constructs the map from another \c SparseMap. |
| 394 | 393 |
template<typename V1, typename Comp1> |
| 395 | 394 |
SparseMap(const SparseMap<Key, V1, Comp1> &c) |
| 396 | 395 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {}
|
| 397 | 396 |
|
| 398 | 397 |
private: |
| 399 | 398 |
|
| 400 | 399 |
SparseMap& operator=(const SparseMap&); |
| 401 | 400 |
|
| 402 | 401 |
public: |
| 403 | 402 |
|
| 404 | 403 |
///\e |
| 405 | 404 |
Reference operator[](const Key &k) {
|
| 406 | 405 |
typename Map::iterator it = _map.lower_bound(k); |
| 407 | 406 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
| 408 | 407 |
return it->second; |
| 409 | 408 |
else |
| 410 | 409 |
return _map.insert(it, std::make_pair(k, _value))->second; |
| 411 | 410 |
} |
| 412 | 411 |
|
| 413 | 412 |
///\e |
| 414 | 413 |
ConstReference operator[](const Key &k) const {
|
| 415 | 414 |
typename Map::const_iterator it = _map.find(k); |
| 416 | 415 |
if (it != _map.end()) |
| 417 | 416 |
return it->second; |
| 418 | 417 |
else |
| 419 | 418 |
return _value; |
| 420 | 419 |
} |
| 421 | 420 |
|
| 422 | 421 |
///\e |
| 423 | 422 |
void set(const Key &k, const Value &v) {
|
| 424 | 423 |
typename Map::iterator it = _map.lower_bound(k); |
| 425 | 424 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
| 426 | 425 |
it->second = v; |
| 427 | 426 |
else |
| 428 | 427 |
_map.insert(it, std::make_pair(k, v)); |
| 429 | 428 |
} |
| 430 | 429 |
|
| 431 | 430 |
///\e |
| 432 | 431 |
void setAll(const Value &v) {
|
| 433 | 432 |
_value = v; |
| 434 | 433 |
_map.clear(); |
| 435 | 434 |
} |
| 436 | 435 |
}; |
| 437 | 436 |
|
| 438 | 437 |
/// Returns a \c SparseMap class |
| 439 | 438 |
|
| 440 | 439 |
/// This function just returns a \c SparseMap class with specified |
| 441 | 440 |
/// default value. |
| 442 | 441 |
/// \relates SparseMap |
| 443 | 442 |
template<typename K, typename V, typename Compare> |
| 444 | 443 |
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
|
| 445 | 444 |
return SparseMap<K, V, Compare>(value); |
| 446 | 445 |
} |
| 447 | 446 |
|
| 448 | 447 |
template<typename K, typename V> |
| 449 | 448 |
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
|
| 450 | 449 |
return SparseMap<K, V, std::less<K> >(value); |
| 451 | 450 |
} |
| 452 | 451 |
|
| 453 | 452 |
/// \brief Returns a \c SparseMap class created from an appropriate |
| 454 | 453 |
/// \c std::map |
| 455 | 454 |
|
| 456 | 455 |
/// This function just returns a \c SparseMap class created from an |
| 457 | 456 |
/// appropriate \c std::map. |
| 458 | 457 |
/// \relates SparseMap |
| 459 | 458 |
template<typename K, typename V, typename Compare> |
| 460 | 459 |
inline SparseMap<K, V, Compare> |
| 461 | 460 |
sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
| 462 | 461 |
{
|
| 463 | 462 |
return SparseMap<K, V, Compare>(map, value); |
| 464 | 463 |
} |
| 465 | 464 |
|
| 466 | 465 |
/// @} |
| 467 | 466 |
|
| 468 | 467 |
/// \addtogroup map_adaptors |
| 469 | 468 |
/// @{
|
| 470 | 469 |
|
| 471 | 470 |
/// Composition of two maps |
| 472 | 471 |
|
| 473 | 472 |
/// This \ref concepts::ReadMap "read-only map" returns the |
| 474 | 473 |
/// composition of two given maps. That is to say, if \c m1 is of |
| 475 | 474 |
/// type \c M1 and \c m2 is of \c M2, then for |
| 476 | 475 |
/// \code |
| 477 | 476 |
/// ComposeMap<M1, M2> cm(m1,m2); |
| 478 | 477 |
/// \endcode |
| 479 | 478 |
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
| 480 | 479 |
/// |
| 481 | 480 |
/// The \c Key type of the map is inherited from \c M2 and the |
| 482 | 481 |
/// \c Value type is from \c M1. |
| 483 | 482 |
/// \c M2::Value must be convertible to \c M1::Key. |
| 484 | 483 |
/// |
| 485 | 484 |
/// The simplest way of using this map is through the composeMap() |
| 486 | 485 |
/// function. |
| 487 | 486 |
/// |
| 488 | 487 |
/// \sa CombineMap |
| 489 | 488 |
template <typename M1, typename M2> |
| 490 | 489 |
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
|
| 491 | 490 |
const M1 &_m1; |
| 492 | 491 |
const M2 &_m2; |
| 493 | 492 |
public: |
| 494 | 493 |
///\e |
| 495 | 494 |
typedef typename M2::Key Key; |
| 496 | 495 |
///\e |
| 497 | 496 |
typedef typename M1::Value Value; |
| 498 | 497 |
|
| 499 | 498 |
/// Constructor |
| 500 | 499 |
ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 501 | 500 |
|
| 502 | 501 |
///\e |
| 503 | 502 |
typename MapTraits<M1>::ConstReturnValue |
| 504 | 503 |
operator[](const Key &k) const { return _m1[_m2[k]]; }
|
| 505 | 504 |
}; |
| 506 | 505 |
|
| 507 | 506 |
/// Returns a \c ComposeMap class |
| 508 | 507 |
|
| 509 | 508 |
/// This function just returns a \c ComposeMap class. |
| 510 | 509 |
/// |
| 511 | 510 |
/// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is |
| 512 | 511 |
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
| 513 | 512 |
/// will be equal to <tt>m1[m2[x]]</tt>. |
| 514 | 513 |
/// |
| 515 | 514 |
/// \relates ComposeMap |
| 516 | 515 |
template <typename M1, typename M2> |
| 517 | 516 |
inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
|
| 518 | 517 |
return ComposeMap<M1, M2>(m1, m2); |
| 519 | 518 |
} |
| 520 | 519 |
|
| 521 | 520 |
|
| 522 | 521 |
/// Combination of two maps using an STL (binary) functor. |
| 523 | 522 |
|
| 524 | 523 |
/// This \ref concepts::ReadMap "read-only map" takes two maps and a |
| 525 | 524 |
/// binary functor and returns the combination of the two given maps |
| 526 | 525 |
/// using the functor. |
| 527 | 526 |
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
| 528 | 527 |
/// and \c f is of \c F, then for |
| 529 | 528 |
/// \code |
| 530 | 529 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
| 531 | 530 |
/// \endcode |
| 532 | 531 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
| 533 | 532 |
/// |
| 534 | 533 |
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
| 535 | 534 |
/// must be convertible to \c M2::Key) and the \c Value type is \c V. |
| 536 | 535 |
/// \c M2::Value and \c M1::Value must be convertible to the |
| 537 | 536 |
/// corresponding input parameter of \c F and the return type of \c F |
| 538 | 537 |
/// must be convertible to \c V. |
| 539 | 538 |
/// |
| 540 | 539 |
/// The simplest way of using this map is through the combineMap() |
| 541 | 540 |
/// function. |
| 542 | 541 |
/// |
| 543 | 542 |
/// \sa ComposeMap |
| 544 | 543 |
template<typename M1, typename M2, typename F, |
| 545 | 544 |
typename V = typename F::result_type> |
| 546 | 545 |
class CombineMap : public MapBase<typename M1::Key, V> {
|
| 547 | 546 |
const M1 &_m1; |
| 548 | 547 |
const M2 &_m2; |
| 549 | 548 |
F _f; |
| 550 | 549 |
public: |
| 551 | 550 |
///\e |
| 552 | 551 |
typedef typename M1::Key Key; |
| 553 | 552 |
///\e |
| 554 | 553 |
typedef V Value; |
| 555 | 554 |
|
| 556 | 555 |
/// Constructor |
| 557 | 556 |
CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) |
| 558 | 557 |
: _m1(m1), _m2(m2), _f(f) {}
|
| 559 | 558 |
///\e |
| 560 | 559 |
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
|
| 561 | 560 |
}; |
| 562 | 561 |
|
| 563 | 562 |
/// Returns a \c CombineMap class |
| 564 | 563 |
|
| 565 | 564 |
/// This function just returns a \c CombineMap class. |
| 566 | 565 |
/// |
| 567 | 566 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
| 568 | 567 |
/// values, then |
| 569 | 568 |
/// \code |
| 570 | 569 |
/// combineMap(m1,m2,std::plus<double>()) |
| 571 | 570 |
/// \endcode |
| 572 | 571 |
/// is equivalent to |
| 573 | 572 |
/// \code |
| 574 | 573 |
/// addMap(m1,m2) |
| 575 | 574 |
/// \endcode |
| 576 | 575 |
/// |
| 577 | 576 |
/// This function is specialized for adaptable binary function |
| 578 | 577 |
/// classes and C++ functions. |
| 579 | 578 |
/// |
| 580 | 579 |
/// \relates CombineMap |
| 581 | 580 |
template<typename M1, typename M2, typename F, typename V> |
| 582 | 581 |
inline CombineMap<M1, M2, F, V> |
| 583 | 582 |
combineMap(const M1 &m1, const M2 &m2, const F &f) {
|
| 584 | 583 |
return CombineMap<M1, M2, F, V>(m1,m2,f); |
| 585 | 584 |
} |
| 586 | 585 |
|
| 587 | 586 |
template<typename M1, typename M2, typename F> |
| 588 | 587 |
inline CombineMap<M1, M2, F, typename F::result_type> |
| 589 | 588 |
combineMap(const M1 &m1, const M2 &m2, const F &f) {
|
| 590 | 589 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
| 591 | 590 |
} |
| 592 | 591 |
|
| 593 | 592 |
template<typename M1, typename M2, typename K1, typename K2, typename V> |
| 594 | 593 |
inline CombineMap<M1, M2, V (*)(K1, K2), V> |
| 595 | 594 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
|
| 596 | 595 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
| 597 | 596 |
} |
| 598 | 597 |
|
| 599 | 598 |
|
| 600 | 599 |
/// Converts an STL style (unary) functor to a map |
| 601 | 600 |
|
| 602 | 601 |
/// This \ref concepts::ReadMap "read-only map" returns the value |
| 603 | 602 |
/// of a given functor. Actually, it just wraps the functor and |
| 604 | 603 |
/// provides the \c Key and \c Value typedefs. |
| 605 | 604 |
/// |
| 606 | 605 |
/// Template parameters \c K and \c V will become its \c Key and |
| 607 | 606 |
/// \c Value. In most cases they have to be given explicitly because |
| 608 | 607 |
/// a functor typically does not provide \c argument_type and |
| 609 | 608 |
/// \c result_type typedefs. |
| 610 | 609 |
/// Parameter \c F is the type of the used functor. |
| 611 | 610 |
/// |
| 612 | 611 |
/// The simplest way of using this map is through the functorToMap() |
| 613 | 612 |
/// function. |
| 614 | 613 |
/// |
| 615 | 614 |
/// \sa MapToFunctor |
| 616 | 615 |
template<typename F, |
| 617 | 616 |
typename K = typename F::argument_type, |
| 618 | 617 |
typename V = typename F::result_type> |
| 619 | 618 |
class FunctorToMap : public MapBase<K, V> {
|
| 620 | 619 |
F _f; |
| 621 | 620 |
public: |
| 622 | 621 |
///\e |
| 623 | 622 |
typedef K Key; |
| 624 | 623 |
///\e |
| 625 | 624 |
typedef V Value; |
| 626 | 625 |
|
| 627 | 626 |
/// Constructor |
| 628 | 627 |
FunctorToMap(const F &f = F()) : _f(f) {}
|
| 629 | 628 |
///\e |
| 630 | 629 |
Value operator[](const Key &k) const { return _f(k); }
|
| 631 | 630 |
}; |
| 632 | 631 |
|
| 633 | 632 |
/// Returns a \c FunctorToMap class |
| 634 | 633 |
|
| 635 | 634 |
/// This function just returns a \c FunctorToMap class. |
| 636 | 635 |
/// |
| 637 | 636 |
/// This function is specialized for adaptable binary function |
| 638 | 637 |
/// classes and C++ functions. |
| 639 | 638 |
/// |
| 640 | 639 |
/// \relates FunctorToMap |
| 641 | 640 |
template<typename K, typename V, typename F> |
| 642 | 641 |
inline FunctorToMap<F, K, V> functorToMap(const F &f) {
|
| 643 | 642 |
return FunctorToMap<F, K, V>(f); |
| 644 | 643 |
} |
| 645 | 644 |
|
| 646 | 645 |
template <typename F> |
| 647 | 646 |
inline FunctorToMap<F, typename F::argument_type, typename F::result_type> |
| 648 | 647 |
functorToMap(const F &f) |
| 649 | 648 |
{
|
| 650 | 649 |
return FunctorToMap<F, typename F::argument_type, |
| 651 | 650 |
typename F::result_type>(f); |
| 652 | 651 |
} |
| 653 | 652 |
|
| 654 | 653 |
template <typename K, typename V> |
| 655 | 654 |
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
|
| 656 | 655 |
return FunctorToMap<V (*)(K), K, V>(f); |
| 657 | 656 |
} |
| 658 | 657 |
|
| 659 | 658 |
|
| 660 | 659 |
/// Converts a map to an STL style (unary) functor |
| 661 | 660 |
|
| 662 | 661 |
/// This class converts a map to an STL style (unary) functor. |
| 663 | 662 |
/// That is it provides an <tt>operator()</tt> to read its values. |
| 664 | 663 |
/// |
| 665 | 664 |
/// For the sake of convenience it also works as a usual |
| 666 | 665 |
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
| 667 | 666 |
/// and the \c Key and \c Value typedefs also exist. |
| 668 | 667 |
/// |
| 669 | 668 |
/// The simplest way of using this map is through the mapToFunctor() |
| 670 | 669 |
/// function. |
| 671 | 670 |
/// |
| 672 | 671 |
///\sa FunctorToMap |
| 673 | 672 |
template <typename M> |
| 674 | 673 |
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
|
| 675 | 674 |
const M &_m; |
| 676 | 675 |
public: |
| 677 | 676 |
///\e |
| 678 | 677 |
typedef typename M::Key Key; |
| 679 | 678 |
///\e |
| 680 | 679 |
typedef typename M::Value Value; |
| 681 | 680 |
|
| 682 | 681 |
typedef typename M::Key argument_type; |
| 683 | 682 |
typedef typename M::Value result_type; |
| 684 | 683 |
|
| 685 | 684 |
/// Constructor |
| 686 | 685 |
MapToFunctor(const M &m) : _m(m) {}
|
| 687 | 686 |
///\e |
| 688 | 687 |
Value operator()(const Key &k) const { return _m[k]; }
|
| 689 | 688 |
///\e |
| 690 | 689 |
Value operator[](const Key &k) const { return _m[k]; }
|
| 691 | 690 |
}; |
| 692 | 691 |
|
| 693 | 692 |
/// Returns a \c MapToFunctor class |
| 694 | 693 |
|
| 695 | 694 |
/// This function just returns a \c MapToFunctor class. |
| 696 | 695 |
/// \relates MapToFunctor |
| 697 | 696 |
template<typename M> |
| 698 | 697 |
inline MapToFunctor<M> mapToFunctor(const M &m) {
|
| 699 | 698 |
return MapToFunctor<M>(m); |
| 700 | 699 |
} |
| 701 | 700 |
|
| 702 | 701 |
|
| 703 | 702 |
/// \brief Map adaptor to convert the \c Value type of a map to |
| 704 | 703 |
/// another type using the default conversion. |
| 705 | 704 |
|
| 706 | 705 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
| 707 | 706 |
/// "readable map" to another type using the default conversion. |
| 708 | 707 |
/// The \c Key type of it is inherited from \c M and the \c Value |
| 709 | 708 |
/// type is \c V. |
| 710 |
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
|
| 709 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 711 | 710 |
/// |
| 712 | 711 |
/// The simplest way of using this map is through the convertMap() |
| 713 | 712 |
/// function. |
| 714 | 713 |
template <typename M, typename V> |
| 715 | 714 |
class ConvertMap : public MapBase<typename M::Key, V> {
|
| 716 | 715 |
const M &_m; |
| 717 | 716 |
public: |
| 718 | 717 |
///\e |
| 719 | 718 |
typedef typename M::Key Key; |
| 720 | 719 |
///\e |
| 721 | 720 |
typedef V Value; |
| 722 | 721 |
|
| 723 | 722 |
/// Constructor |
| 724 | 723 |
|
| 725 | 724 |
/// Constructor. |
| 726 | 725 |
/// \param m The underlying map. |
| 727 | 726 |
ConvertMap(const M &m) : _m(m) {}
|
| 728 | 727 |
|
| 729 | 728 |
///\e |
| 730 | 729 |
Value operator[](const Key &k) const { return _m[k]; }
|
| 731 | 730 |
}; |
| 732 | 731 |
|
| 733 | 732 |
/// Returns a \c ConvertMap class |
| 734 | 733 |
|
| 735 | 734 |
/// This function just returns a \c ConvertMap class. |
| 736 | 735 |
/// \relates ConvertMap |
| 737 | 736 |
template<typename V, typename M> |
| 738 | 737 |
inline ConvertMap<M, V> convertMap(const M &map) {
|
| 739 | 738 |
return ConvertMap<M, V>(map); |
| 740 | 739 |
} |
| 741 | 740 |
|
| 742 | 741 |
|
| 743 | 742 |
/// Applies all map setting operations to two maps |
| 744 | 743 |
|
| 745 | 744 |
/// This map has two \ref concepts::WriteMap "writable map" parameters |
| 746 | 745 |
/// and each write request will be passed to both of them. |
| 747 | 746 |
/// If \c M1 is also \ref concepts::ReadMap "readable", then the read |
| 748 | 747 |
/// operations will return the corresponding values of \c M1. |
| 749 | 748 |
/// |
| 750 | 749 |
/// The \c Key and \c Value types are inherited from \c M1. |
| 751 | 750 |
/// The \c Key and \c Value of \c M2 must be convertible from those |
| 752 | 751 |
/// of \c M1. |
| 753 | 752 |
/// |
| 754 | 753 |
/// The simplest way of using this map is through the forkMap() |
| 755 | 754 |
/// function. |
| 756 | 755 |
template<typename M1, typename M2> |
| 757 | 756 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 758 | 757 |
M1 &_m1; |
| 759 | 758 |
M2 &_m2; |
| 760 | 759 |
public: |
| 761 | 760 |
///\e |
| 762 | 761 |
typedef typename M1::Key Key; |
| 763 | 762 |
///\e |
| 764 | 763 |
typedef typename M1::Value Value; |
| 765 | 764 |
|
| 766 | 765 |
/// Constructor |
| 767 | 766 |
ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
|
| 768 | 767 |
/// Returns the value associated with the given key in the first map. |
| 769 | 768 |
Value operator[](const Key &k) const { return _m1[k]; }
|
| 770 | 769 |
/// Sets the value associated with the given key in both maps. |
| 771 | 770 |
void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
|
| 772 | 771 |
}; |
| 773 | 772 |
|
| 774 | 773 |
/// Returns a \c ForkMap class |
| 775 | 774 |
|
| 776 | 775 |
/// This function just returns a \c ForkMap class. |
| 777 | 776 |
/// \relates ForkMap |
| 778 | 777 |
template <typename M1, typename M2> |
| 779 | 778 |
inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
|
| 780 | 779 |
return ForkMap<M1,M2>(m1,m2); |
| 781 | 780 |
} |
| 782 | 781 |
|
| 783 | 782 |
|
| 784 | 783 |
/// Sum of two maps |
| 785 | 784 |
|
| 786 | 785 |
/// This \ref concepts::ReadMap "read-only map" returns the sum |
| 787 | 786 |
/// of the values of the two given maps. |
| 788 | 787 |
/// Its \c Key and \c Value types are inherited from \c M1. |
| 789 | 788 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
| 790 | 789 |
/// \c M1. |
| 791 | 790 |
/// |
| 792 | 791 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 793 | 792 |
/// \code |
| 794 | 793 |
/// AddMap<M1,M2> am(m1,m2); |
| 795 | 794 |
/// \endcode |
| 796 | 795 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>. |
| 797 | 796 |
/// |
| 798 | 797 |
/// The simplest way of using this map is through the addMap() |
| 799 | 798 |
/// function. |
| 800 | 799 |
/// |
| 801 | 800 |
/// \sa SubMap, MulMap, DivMap |
| 802 | 801 |
/// \sa ShiftMap, ShiftWriteMap |
| 803 | 802 |
template<typename M1, typename M2> |
| 804 | 803 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 805 | 804 |
const M1 &_m1; |
| 806 | 805 |
const M2 &_m2; |
| 807 | 806 |
public: |
| 808 | 807 |
///\e |
| 809 | 808 |
typedef typename M1::Key Key; |
| 810 | 809 |
///\e |
| 811 | 810 |
typedef typename M1::Value Value; |
| 812 | 811 |
|
| 813 | 812 |
/// Constructor |
| 814 | 813 |
AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 815 | 814 |
///\e |
| 816 | 815 |
Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
|
| 817 | 816 |
}; |
| 818 | 817 |
|
| 819 | 818 |
/// Returns an \c AddMap class |
| 820 | 819 |
|
| 821 | 820 |
/// This function just returns an \c AddMap class. |
| 822 | 821 |
/// |
| 823 | 822 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
| 824 | 823 |
/// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to |
| 825 | 824 |
/// <tt>m1[x]+m2[x]</tt>. |
| 826 | 825 |
/// |
| 827 | 826 |
/// \relates AddMap |
| 828 | 827 |
template<typename M1, typename M2> |
| 829 | 828 |
inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
|
| 830 | 829 |
return AddMap<M1, M2>(m1,m2); |
| 831 | 830 |
} |
| 832 | 831 |
|
| 833 | 832 |
|
| 834 | 833 |
/// Difference of two maps |
| 835 | 834 |
|
| 836 | 835 |
/// This \ref concepts::ReadMap "read-only map" returns the difference |
| 837 | 836 |
/// of the values of the two given maps. |
| 838 | 837 |
/// Its \c Key and \c Value types are inherited from \c M1. |
| 839 | 838 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
| 840 | 839 |
/// \c M1. |
| 841 | 840 |
/// |
| 842 | 841 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 843 | 842 |
/// \code |
| 844 | 843 |
/// SubMap<M1,M2> sm(m1,m2); |
| 845 | 844 |
/// \endcode |
| 846 | 845 |
/// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>. |
| 847 | 846 |
/// |
| 848 | 847 |
/// The simplest way of using this map is through the subMap() |
| 849 | 848 |
/// function. |
| 850 | 849 |
/// |
| 851 | 850 |
/// \sa AddMap, MulMap, DivMap |
| 852 | 851 |
template<typename M1, typename M2> |
| 853 | 852 |
class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 854 | 853 |
const M1 &_m1; |
| 855 | 854 |
const M2 &_m2; |
| 856 | 855 |
public: |
| 857 | 856 |
///\e |
| 858 | 857 |
typedef typename M1::Key Key; |
| 859 | 858 |
///\e |
| 860 | 859 |
typedef typename M1::Value Value; |
| 861 | 860 |
|
| 862 | 861 |
/// Constructor |
| 863 | 862 |
SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 864 | 863 |
///\e |
| 865 | 864 |
Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
|
| 866 | 865 |
}; |
| 867 | 866 |
|
| 868 | 867 |
/// Returns a \c SubMap class |
| 869 | 868 |
|
| 870 | 869 |
/// This function just returns a \c SubMap class. |
| 871 | 870 |
/// |
| 872 | 871 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
| 873 | 872 |
/// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to |
| 874 | 873 |
/// <tt>m1[x]-m2[x]</tt>. |
| 875 | 874 |
/// |
| 876 | 875 |
/// \relates SubMap |
| 877 | 876 |
template<typename M1, typename M2> |
| 878 | 877 |
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
|
| 879 | 878 |
return SubMap<M1, M2>(m1,m2); |
| 880 | 879 |
} |
| 881 | 880 |
|
| 882 | 881 |
|
| 883 | 882 |
/// Product of two maps |
| 884 | 883 |
|
| 885 | 884 |
/// This \ref concepts::ReadMap "read-only map" returns the product |
| 886 | 885 |
/// of the values of the two given maps. |
| 887 | 886 |
/// Its \c Key and \c Value types are inherited from \c M1. |
| 888 | 887 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
| 889 | 888 |
/// \c M1. |
| 890 | 889 |
/// |
| 891 | 890 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 892 | 891 |
/// \code |
| 893 | 892 |
/// MulMap<M1,M2> mm(m1,m2); |
| 894 | 893 |
/// \endcode |
| 895 | 894 |
/// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>. |
| 896 | 895 |
/// |
| 897 | 896 |
/// The simplest way of using this map is through the mulMap() |
| 898 | 897 |
/// function. |
| 899 | 898 |
/// |
| 900 | 899 |
/// \sa AddMap, SubMap, DivMap |
| 901 | 900 |
/// \sa ScaleMap, ScaleWriteMap |
| 902 | 901 |
template<typename M1, typename M2> |
| 903 | 902 |
class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 904 | 903 |
const M1 &_m1; |
| 905 | 904 |
const M2 &_m2; |
| 906 | 905 |
public: |
| 907 | 906 |
///\e |
| 908 | 907 |
typedef typename M1::Key Key; |
| 909 | 908 |
///\e |
| 910 | 909 |
typedef typename M1::Value Value; |
| 911 | 910 |
|
| 912 | 911 |
/// Constructor |
| 913 | 912 |
MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 914 | 913 |
///\e |
| 915 | 914 |
Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
|
| 916 | 915 |
}; |
| 917 | 916 |
|
| 918 | 917 |
/// Returns a \c MulMap class |
| 919 | 918 |
|
| 920 | 919 |
/// This function just returns a \c MulMap class. |
| 921 | 920 |
/// |
| 922 | 921 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
| 923 | 922 |
/// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to |
| 924 | 923 |
/// <tt>m1[x]*m2[x]</tt>. |
| 925 | 924 |
/// |
| 926 | 925 |
/// \relates MulMap |
| 927 | 926 |
template<typename M1, typename M2> |
| 928 | 927 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
|
| 929 | 928 |
return MulMap<M1, M2>(m1,m2); |
| 930 | 929 |
} |
| 931 | 930 |
|
| 932 | 931 |
|
| 933 | 932 |
/// Quotient of two maps |
| 934 | 933 |
|
| 935 | 934 |
/// This \ref concepts::ReadMap "read-only map" returns the quotient |
| 936 | 935 |
/// of the values of the two given maps. |
| 937 | 936 |
/// Its \c Key and \c Value types are inherited from \c M1. |
| 938 | 937 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
| 939 | 938 |
/// \c M1. |
| 940 | 939 |
/// |
| 941 | 940 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 942 | 941 |
/// \code |
| 943 | 942 |
/// DivMap<M1,M2> dm(m1,m2); |
| 944 | 943 |
/// \endcode |
| 945 | 944 |
/// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>. |
| 946 | 945 |
/// |
| 947 | 946 |
/// The simplest way of using this map is through the divMap() |
| 948 | 947 |
/// function. |
| 949 | 948 |
/// |
| 950 | 949 |
/// \sa AddMap, SubMap, MulMap |
| 951 | 950 |
template<typename M1, typename M2> |
| 952 | 951 |
class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 953 | 952 |
const M1 &_m1; |
| 954 | 953 |
const M2 &_m2; |
| 955 | 954 |
public: |
| 956 | 955 |
///\e |
| 957 | 956 |
typedef typename M1::Key Key; |
| 958 | 957 |
///\e |
| 959 | 958 |
typedef typename M1::Value Value; |
| 960 | 959 |
|
| 961 | 960 |
/// Constructor |
| 962 | 961 |
DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 963 | 962 |
///\e |
| 964 | 963 |
Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
|
| 965 | 964 |
}; |
| 966 | 965 |
|
| 967 | 966 |
/// Returns a \c DivMap class |
| 968 | 967 |
|
| 969 | 968 |
/// This function just returns a \c DivMap class. |
| 970 | 969 |
/// |
| 971 | 970 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
| 972 | 971 |
/// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to |
| 973 | 972 |
/// <tt>m1[x]/m2[x]</tt>. |
| 974 | 973 |
/// |
| 975 | 974 |
/// \relates DivMap |
| 976 | 975 |
template<typename M1, typename M2> |
| 977 | 976 |
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
|
| 978 | 977 |
return DivMap<M1, M2>(m1,m2); |
| 979 | 978 |
} |
| 980 | 979 |
|
| 981 | 980 |
|
| 982 | 981 |
/// Shifts a map with a constant. |
| 983 | 982 |
|
| 984 | 983 |
/// This \ref concepts::ReadMap "read-only map" returns the sum of |
| 985 | 984 |
/// the given map and a constant value (i.e. it shifts the map with |
| 986 | 985 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
| 987 | 986 |
/// |
| 988 | 987 |
/// Actually, |
| 989 | 988 |
/// \code |
| 990 | 989 |
/// ShiftMap<M> sh(m,v); |
| 991 | 990 |
/// \endcode |
| 992 | 991 |
/// is equivalent to |
| 993 | 992 |
/// \code |
| 994 | 993 |
/// ConstMap<M::Key, M::Value> cm(v); |
| 995 | 994 |
/// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm); |
| 996 | 995 |
/// \endcode |
| 997 | 996 |
/// |
| 998 | 997 |
/// The simplest way of using this map is through the shiftMap() |
| 999 | 998 |
/// function. |
| 1000 | 999 |
/// |
| 1001 | 1000 |
/// \sa ShiftWriteMap |
| 1002 | 1001 |
template<typename M, typename C = typename M::Value> |
| 1003 | 1002 |
class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1004 | 1003 |
const M &_m; |
| 1005 | 1004 |
C _v; |
| 1006 | 1005 |
public: |
| 1007 | 1006 |
///\e |
| 1008 | 1007 |
typedef typename M::Key Key; |
| 1009 | 1008 |
///\e |
| 1010 | 1009 |
typedef typename M::Value Value; |
| 1011 | 1010 |
|
| 1012 | 1011 |
/// Constructor |
| 1013 | 1012 |
|
| 1014 | 1013 |
/// Constructor. |
| 1015 | 1014 |
/// \param m The undelying map. |
| 1016 | 1015 |
/// \param v The constant value. |
| 1017 | 1016 |
ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
|
| 1018 | 1017 |
///\e |
| 1019 | 1018 |
Value operator[](const Key &k) const { return _m[k]+_v; }
|
| 1020 | 1019 |
}; |
| 1021 | 1020 |
|
| 1022 | 1021 |
/// Shifts a map with a constant (read-write version). |
| 1023 | 1022 |
|
| 1024 | 1023 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the sum |
| 1025 | 1024 |
/// of the given map and a constant value (i.e. it shifts the map with |
| 1026 | 1025 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
| 1027 | 1026 |
/// It makes also possible to write the map. |
| 1028 | 1027 |
/// |
| 1029 | 1028 |
/// The simplest way of using this map is through the shiftWriteMap() |
| 1030 | 1029 |
/// function. |
| 1031 | 1030 |
/// |
| 1032 | 1031 |
/// \sa ShiftMap |
| 1033 | 1032 |
template<typename M, typename C = typename M::Value> |
| 1034 | 1033 |
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1035 | 1034 |
M &_m; |
| 1036 | 1035 |
C _v; |
| 1037 | 1036 |
public: |
| 1038 | 1037 |
///\e |
| 1039 | 1038 |
typedef typename M::Key Key; |
| 1040 | 1039 |
///\e |
| 1041 | 1040 |
typedef typename M::Value Value; |
| 1042 | 1041 |
|
| 1043 | 1042 |
/// Constructor |
| 1044 | 1043 |
|
| 1045 | 1044 |
/// Constructor. |
| 1046 | 1045 |
/// \param m The undelying map. |
| 1047 | 1046 |
/// \param v The constant value. |
| 1048 | 1047 |
ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
|
| 1049 | 1048 |
///\e |
| 1050 | 1049 |
Value operator[](const Key &k) const { return _m[k]+_v; }
|
| 1051 | 1050 |
///\e |
| 1052 | 1051 |
void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
|
| 1053 | 1052 |
}; |
| 1054 | 1053 |
|
| 1055 | 1054 |
/// Returns a \c ShiftMap class |
| 1056 | 1055 |
|
| 1057 | 1056 |
/// This function just returns a \c ShiftMap class. |
| 1058 | 1057 |
/// |
| 1059 | 1058 |
/// For example, if \c m is a map with \c double values and \c v is |
| 1060 | 1059 |
/// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to |
| 1061 | 1060 |
/// <tt>m[x]+v</tt>. |
| 1062 | 1061 |
/// |
| 1063 | 1062 |
/// \relates ShiftMap |
| 1064 | 1063 |
template<typename M, typename C> |
| 1065 | 1064 |
inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
|
| 1066 | 1065 |
return ShiftMap<M, C>(m,v); |
| 1067 | 1066 |
} |
| 1068 | 1067 |
|
| 1069 | 1068 |
/// Returns a \c ShiftWriteMap class |
| 1070 | 1069 |
|
| 1071 | 1070 |
/// This function just returns a \c ShiftWriteMap class. |
| 1072 | 1071 |
/// |
| 1073 | 1072 |
/// For example, if \c m is a map with \c double values and \c v is |
| 1074 | 1073 |
/// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to |
| 1075 | 1074 |
/// <tt>m[x]+v</tt>. |
| 1076 | 1075 |
/// Moreover it makes also possible to write the map. |
| 1077 | 1076 |
/// |
| 1078 | 1077 |
/// \relates ShiftWriteMap |
| 1079 | 1078 |
template<typename M, typename C> |
| 1080 | 1079 |
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
|
| 1081 | 1080 |
return ShiftWriteMap<M, C>(m,v); |
| 1082 | 1081 |
} |
| 1083 | 1082 |
|
| 1084 | 1083 |
|
| 1085 | 1084 |
/// Scales a map with a constant. |
| 1086 | 1085 |
|
| 1087 | 1086 |
/// This \ref concepts::ReadMap "read-only map" returns the value of |
| 1088 | 1087 |
/// the given map multiplied from the left side with a constant value. |
| 1089 | 1088 |
/// Its \c Key and \c Value are inherited from \c M. |
| 1090 | 1089 |
/// |
| 1091 | 1090 |
/// Actually, |
| 1092 | 1091 |
/// \code |
| 1093 | 1092 |
/// ScaleMap<M> sc(m,v); |
| 1094 | 1093 |
/// \endcode |
| 1095 | 1094 |
/// is equivalent to |
| 1096 | 1095 |
/// \code |
| 1097 | 1096 |
/// ConstMap<M::Key, M::Value> cm(v); |
| 1098 | 1097 |
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m); |
| 1099 | 1098 |
/// \endcode |
| 1100 | 1099 |
/// |
| 1101 | 1100 |
/// The simplest way of using this map is through the scaleMap() |
| 1102 | 1101 |
/// function. |
| 1103 | 1102 |
/// |
| 1104 | 1103 |
/// \sa ScaleWriteMap |
| 1105 | 1104 |
template<typename M, typename C = typename M::Value> |
| 1106 | 1105 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1107 | 1106 |
const M &_m; |
| 1108 | 1107 |
C _v; |
| 1109 | 1108 |
public: |
| 1110 | 1109 |
///\e |
| 1111 | 1110 |
typedef typename M::Key Key; |
| 1112 | 1111 |
///\e |
| 1113 | 1112 |
typedef typename M::Value Value; |
| 1114 | 1113 |
|
| 1115 | 1114 |
/// Constructor |
| 1116 | 1115 |
|
| 1117 | 1116 |
/// Constructor. |
| 1118 | 1117 |
/// \param m The undelying map. |
| 1119 | 1118 |
/// \param v The constant value. |
| 1120 | 1119 |
ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
|
| 1121 | 1120 |
///\e |
| 1122 | 1121 |
Value operator[](const Key &k) const { return _v*_m[k]; }
|
| 1123 | 1122 |
}; |
| 1124 | 1123 |
|
| 1125 | 1124 |
/// Scales a map with a constant (read-write version). |
| 1126 | 1125 |
|
| 1127 | 1126 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the value of |
| 1128 | 1127 |
/// the given map multiplied from the left side with a constant value. |
| 1129 | 1128 |
/// Its \c Key and \c Value are inherited from \c M. |
| 1130 | 1129 |
/// It can also be used as write map if the \c / operator is defined |
| 1131 | 1130 |
/// between \c Value and \c C and the given multiplier is not zero. |
| 1132 | 1131 |
/// |
| 1133 | 1132 |
/// The simplest way of using this map is through the scaleWriteMap() |
| 1134 | 1133 |
/// function. |
| 1135 | 1134 |
/// |
| 1136 | 1135 |
/// \sa ScaleMap |
| 1137 | 1136 |
template<typename M, typename C = typename M::Value> |
| 1138 | 1137 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1139 | 1138 |
M &_m; |
| 1140 | 1139 |
C _v; |
| 1141 | 1140 |
public: |
| 1142 | 1141 |
///\e |
| 1143 | 1142 |
typedef typename M::Key Key; |
| 1144 | 1143 |
///\e |
| 1145 | 1144 |
typedef typename M::Value Value; |
| 1146 | 1145 |
|
| 1147 | 1146 |
/// Constructor |
| 1148 | 1147 |
|
| 1149 | 1148 |
/// Constructor. |
| 1150 | 1149 |
/// \param m The undelying map. |
| 1151 | 1150 |
/// \param v The constant value. |
| 1152 | 1151 |
ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
|
| 1153 | 1152 |
///\e |
| 1154 | 1153 |
Value operator[](const Key &k) const { return _v*_m[k]; }
|
| 1155 | 1154 |
///\e |
| 1156 | 1155 |
void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
|
| 1157 | 1156 |
}; |
| 1158 | 1157 |
|
| 1159 | 1158 |
/// Returns a \c ScaleMap class |
| 1160 | 1159 |
|
| 1161 | 1160 |
/// This function just returns a \c ScaleMap class. |
| 1162 | 1161 |
/// |
| 1163 | 1162 |
/// For example, if \c m is a map with \c double values and \c v is |
| 1164 | 1163 |
/// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to |
| 1165 | 1164 |
/// <tt>v*m[x]</tt>. |
| 1166 | 1165 |
/// |
| 1167 | 1166 |
/// \relates ScaleMap |
| 1168 | 1167 |
template<typename M, typename C> |
| 1169 | 1168 |
inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
|
| 1170 | 1169 |
return ScaleMap<M, C>(m,v); |
| 1171 | 1170 |
} |
| 1172 | 1171 |
|
| 1173 | 1172 |
/// Returns a \c ScaleWriteMap class |
| 1174 | 1173 |
|
| 1175 | 1174 |
/// This function just returns a \c ScaleWriteMap class. |
| 1176 | 1175 |
/// |
| 1177 | 1176 |
/// For example, if \c m is a map with \c double values and \c v is |
| 1178 | 1177 |
/// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to |
| 1179 | 1178 |
/// <tt>v*m[x]</tt>. |
| 1180 | 1179 |
/// Moreover it makes also possible to write the map. |
| 1181 | 1180 |
/// |
| 1182 | 1181 |
/// \relates ScaleWriteMap |
| 1183 | 1182 |
template<typename M, typename C> |
| 1184 | 1183 |
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
|
| 1185 | 1184 |
return ScaleWriteMap<M, C>(m,v); |
| 1186 | 1185 |
} |
| 1187 | 1186 |
|
| 1188 | 1187 |
|
| 1189 | 1188 |
/// Negative of a map |
| 1190 | 1189 |
|
| 1191 | 1190 |
/// This \ref concepts::ReadMap "read-only map" returns the negative |
| 1192 | 1191 |
/// of the values of the given map (using the unary \c - operator). |
| 1193 | 1192 |
/// Its \c Key and \c Value are inherited from \c M. |
| 1194 | 1193 |
/// |
| 1195 | 1194 |
/// If M::Value is \c int, \c double etc., then |
| 1196 | 1195 |
/// \code |
| 1197 | 1196 |
/// NegMap<M> neg(m); |
| 1198 | 1197 |
/// \endcode |
| 1199 | 1198 |
/// is equivalent to |
| 1200 | 1199 |
/// \code |
| 1201 | 1200 |
/// ScaleMap<M> neg(m,-1); |
| 1202 | 1201 |
/// \endcode |
| 1203 | 1202 |
/// |
| 1204 | 1203 |
/// The simplest way of using this map is through the negMap() |
| 1205 | 1204 |
/// function. |
| 1206 | 1205 |
/// |
| 1207 | 1206 |
/// \sa NegWriteMap |
| 1208 | 1207 |
template<typename M> |
| 1209 | 1208 |
class NegMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1210 | 1209 |
const M& _m; |
| 1211 | 1210 |
public: |
| 1212 | 1211 |
///\e |
| 1213 | 1212 |
typedef typename M::Key Key; |
| 1214 | 1213 |
///\e |
| 1215 | 1214 |
typedef typename M::Value Value; |
| 1216 | 1215 |
|
| 1217 | 1216 |
/// Constructor |
| 1218 | 1217 |
NegMap(const M &m) : _m(m) {}
|
| 1219 | 1218 |
///\e |
| 1220 | 1219 |
Value operator[](const Key &k) const { return -_m[k]; }
|
| 1221 | 1220 |
}; |
| 1222 | 1221 |
|
| 1223 | 1222 |
/// Negative of a map (read-write version) |
| 1224 | 1223 |
|
| 1225 | 1224 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
| 1226 | 1225 |
/// negative of the values of the given map (using the unary \c - |
| 1227 | 1226 |
/// operator). |
| 1228 | 1227 |
/// Its \c Key and \c Value are inherited from \c M. |
| 1229 | 1228 |
/// It makes also possible to write the map. |
| 1230 | 1229 |
/// |
| 1231 | 1230 |
/// If M::Value is \c int, \c double etc., then |
| 1232 | 1231 |
/// \code |
| 1233 | 1232 |
/// NegWriteMap<M> neg(m); |
| 1234 | 1233 |
/// \endcode |
| 1235 | 1234 |
/// is equivalent to |
| 1236 | 1235 |
/// \code |
| 1237 | 1236 |
/// ScaleWriteMap<M> neg(m,-1); |
| 1238 | 1237 |
/// \endcode |
| 1239 | 1238 |
/// |
| 1240 | 1239 |
/// The simplest way of using this map is through the negWriteMap() |
| 1241 | 1240 |
/// function. |
| 1242 | 1241 |
/// |
| 1243 | 1242 |
/// \sa NegMap |
| 1244 | 1243 |
template<typename M> |
| 1245 | 1244 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1246 | 1245 |
M &_m; |
| 1247 | 1246 |
public: |
| 1248 | 1247 |
///\e |
| 1249 | 1248 |
typedef typename M::Key Key; |
| 1250 | 1249 |
///\e |
| 1251 | 1250 |
typedef typename M::Value Value; |
| 1252 | 1251 |
|
| 1253 | 1252 |
/// Constructor |
| 1254 | 1253 |
NegWriteMap(M &m) : _m(m) {}
|
| 1255 | 1254 |
///\e |
| 1256 | 1255 |
Value operator[](const Key &k) const { return -_m[k]; }
|
| 1257 | 1256 |
///\e |
| 1258 | 1257 |
void set(const Key &k, const Value &v) { _m.set(k, -v); }
|
| 1259 | 1258 |
}; |
| 1260 | 1259 |
|
| 1261 | 1260 |
/// Returns a \c NegMap class |
| 1262 | 1261 |
|
| 1263 | 1262 |
/// This function just returns a \c NegMap class. |
| 1264 | 1263 |
/// |
| 1265 | 1264 |
/// For example, if \c m is a map with \c double values, then |
| 1266 | 1265 |
/// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
| 1267 | 1266 |
/// |
| 1268 | 1267 |
/// \relates NegMap |
| 1269 | 1268 |
template <typename M> |
| 1270 | 1269 |
inline NegMap<M> negMap(const M &m) {
|
| 1271 | 1270 |
return NegMap<M>(m); |
| 1272 | 1271 |
} |
| 1273 | 1272 |
|
| 1274 | 1273 |
/// Returns a \c NegWriteMap class |
| 1275 | 1274 |
|
| 1276 | 1275 |
/// This function just returns a \c NegWriteMap class. |
| 1277 | 1276 |
/// |
| 1278 | 1277 |
/// For example, if \c m is a map with \c double values, then |
| 1279 | 1278 |
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
| 1280 | 1279 |
/// Moreover it makes also possible to write the map. |
| 1281 | 1280 |
/// |
| 1282 | 1281 |
/// \relates NegWriteMap |
| 1283 | 1282 |
template <typename M> |
| 1284 | 1283 |
inline NegWriteMap<M> negWriteMap(M &m) {
|
| 1285 | 1284 |
return NegWriteMap<M>(m); |
| 1286 | 1285 |
} |
| 1287 | 1286 |
|
| 1288 | 1287 |
|
| 1289 | 1288 |
/// Absolute value of a map |
| 1290 | 1289 |
|
| 1291 | 1290 |
/// This \ref concepts::ReadMap "read-only map" returns the absolute |
| 1292 | 1291 |
/// value of the values of the given map. |
| 1293 | 1292 |
/// Its \c Key and \c Value are inherited from \c M. |
| 1294 | 1293 |
/// \c Value must be comparable to \c 0 and the unary \c - |
| 1295 | 1294 |
/// operator must be defined for it, of course. |
| 1296 | 1295 |
/// |
| 1297 | 1296 |
/// The simplest way of using this map is through the absMap() |
| 1298 | 1297 |
/// function. |
| 1299 | 1298 |
template<typename M> |
| 1300 | 1299 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1301 | 1300 |
const M &_m; |
| 1302 | 1301 |
public: |
| 1303 | 1302 |
///\e |
| 1304 | 1303 |
typedef typename M::Key Key; |
| 1305 | 1304 |
///\e |
| 1306 | 1305 |
typedef typename M::Value Value; |
| 1307 | 1306 |
|
| 1308 | 1307 |
/// Constructor |
| 1309 | 1308 |
AbsMap(const M &m) : _m(m) {}
|
| 1310 | 1309 |
///\e |
| 1311 | 1310 |
Value operator[](const Key &k) const {
|
| 1312 | 1311 |
Value tmp = _m[k]; |
| 1313 | 1312 |
return tmp >= 0 ? tmp : -tmp; |
| 1314 | 1313 |
} |
| 1315 | 1314 |
|
| 1316 | 1315 |
}; |
| 1317 | 1316 |
|
| 1318 | 1317 |
/// Returns an \c AbsMap class |
| 1319 | 1318 |
|
| 1320 | 1319 |
/// This function just returns an \c AbsMap class. |
| 1321 | 1320 |
/// |
| 1322 | 1321 |
/// For example, if \c m is a map with \c double values, then |
| 1323 | 1322 |
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if |
| 1324 | 1323 |
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is |
| 1325 | 1324 |
/// negative. |
| 1326 | 1325 |
/// |
| 1327 | 1326 |
/// \relates AbsMap |
| 1328 | 1327 |
template<typename M> |
| 1329 | 1328 |
inline AbsMap<M> absMap(const M &m) {
|
| 1330 | 1329 |
return AbsMap<M>(m); |
| 1331 | 1330 |
} |
| 1332 | 1331 |
|
| 1333 | 1332 |
/// @} |
| 1334 | 1333 |
|
| 1335 | 1334 |
// Logical maps and map adaptors: |
| 1336 | 1335 |
|
| 1337 | 1336 |
/// \addtogroup maps |
| 1338 | 1337 |
/// @{
|
| 1339 | 1338 |
|
| 1340 | 1339 |
/// Constant \c true map. |
| 1341 | 1340 |
|
| 1342 | 1341 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
| 1343 | 1342 |
/// each key. |
| 1344 | 1343 |
/// |
| 1345 | 1344 |
/// Note that |
| 1346 | 1345 |
/// \code |
| 1347 | 1346 |
/// TrueMap<K> tm; |
| 1348 | 1347 |
/// \endcode |
| 1349 | 1348 |
/// is equivalent to |
| 1350 | 1349 |
/// \code |
| 1351 | 1350 |
/// ConstMap<K,bool> tm(true); |
| 1352 | 1351 |
/// \endcode |
| 1353 | 1352 |
/// |
| 1354 | 1353 |
/// \sa FalseMap |
| 1355 | 1354 |
/// \sa ConstMap |
| 1356 | 1355 |
template <typename K> |
| 1357 | 1356 |
class TrueMap : public MapBase<K, bool> {
|
| 1358 | 1357 |
public: |
| 1359 | 1358 |
///\e |
| 1360 | 1359 |
typedef K Key; |
| 1361 | 1360 |
///\e |
| 1362 | 1361 |
typedef bool Value; |
| 1363 | 1362 |
|
| 1364 | 1363 |
/// Gives back \c true. |
| 1365 | 1364 |
Value operator[](const Key&) const { return true; }
|
| 1366 | 1365 |
}; |
| 1367 | 1366 |
|
| 1368 | 1367 |
/// Returns a \c TrueMap class |
| 1369 | 1368 |
|
| 1370 | 1369 |
/// This function just returns a \c TrueMap class. |
| 1371 | 1370 |
/// \relates TrueMap |
| 1372 | 1371 |
template<typename K> |
| 1373 | 1372 |
inline TrueMap<K> trueMap() {
|
| 1374 | 1373 |
return TrueMap<K>(); |
| 1375 | 1374 |
} |
| 1376 | 1375 |
|
| 1377 | 1376 |
|
| 1378 | 1377 |
/// Constant \c false map. |
| 1379 | 1378 |
|
| 1380 | 1379 |
/// This \ref concepts::ReadMap "read-only map" assigns \c false to |
| 1381 | 1380 |
/// each key. |
| 1382 | 1381 |
/// |
| 1383 | 1382 |
/// Note that |
| 1384 | 1383 |
/// \code |
| 1385 | 1384 |
/// FalseMap<K> fm; |
| 1386 | 1385 |
/// \endcode |
| 1387 | 1386 |
/// is equivalent to |
| 1388 | 1387 |
/// \code |
| 1389 | 1388 |
/// ConstMap<K,bool> fm(false); |
| 1390 | 1389 |
/// \endcode |
| 1391 | 1390 |
/// |
| 1392 | 1391 |
/// \sa TrueMap |
| 1393 | 1392 |
/// \sa ConstMap |
| 1394 | 1393 |
template <typename K> |
| 1395 | 1394 |
class FalseMap : public MapBase<K, bool> {
|
| 1396 | 1395 |
public: |
| 1397 | 1396 |
///\e |
| 1398 | 1397 |
typedef K Key; |
| 1399 | 1398 |
///\e |
| 1400 | 1399 |
typedef bool Value; |
| 1401 | 1400 |
|
| 1402 | 1401 |
/// Gives back \c false. |
| 1403 | 1402 |
Value operator[](const Key&) const { return false; }
|
| 1404 | 1403 |
}; |
| 1405 | 1404 |
|
| 1406 | 1405 |
/// Returns a \c FalseMap class |
| 1407 | 1406 |
|
| 1408 | 1407 |
/// This function just returns a \c FalseMap class. |
| 1409 | 1408 |
/// \relates FalseMap |
| 1410 | 1409 |
template<typename K> |
| 1411 | 1410 |
inline FalseMap<K> falseMap() {
|
| 1412 | 1411 |
return FalseMap<K>(); |
| 1413 | 1412 |
} |
| 1414 | 1413 |
|
| 1415 | 1414 |
/// @} |
| 1416 | 1415 |
|
| 1417 | 1416 |
/// \addtogroup map_adaptors |
| 1418 | 1417 |
/// @{
|
| 1419 | 1418 |
|
| 1420 | 1419 |
/// Logical 'and' of two maps |
| 1421 | 1420 |
|
| 1422 | 1421 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
| 1423 | 1422 |
/// 'and' of the values of the two given maps. |
| 1424 | 1423 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
| 1425 | 1424 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
| 1426 | 1425 |
/// |
| 1427 | 1426 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 1428 | 1427 |
/// \code |
| 1429 | 1428 |
/// AndMap<M1,M2> am(m1,m2); |
| 1430 | 1429 |
/// \endcode |
| 1431 | 1430 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>. |
| 1432 | 1431 |
/// |
| 1433 | 1432 |
/// The simplest way of using this map is through the andMap() |
| 1434 | 1433 |
/// function. |
| 1435 | 1434 |
/// |
| 1436 | 1435 |
/// \sa OrMap |
| 1437 | 1436 |
/// \sa NotMap, NotWriteMap |
| 1438 | 1437 |
template<typename M1, typename M2> |
| 1439 | 1438 |
class AndMap : public MapBase<typename M1::Key, bool> {
|
| 1440 | 1439 |
const M1 &_m1; |
| 1441 | 1440 |
const M2 &_m2; |
| 1442 | 1441 |
public: |
| 1443 | 1442 |
///\e |
| 1444 | 1443 |
typedef typename M1::Key Key; |
| 1445 | 1444 |
///\e |
| 1446 | 1445 |
typedef bool Value; |
| 1447 | 1446 |
|
| 1448 | 1447 |
/// Constructor |
| 1449 | 1448 |
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1450 | 1449 |
///\e |
| 1451 | 1450 |
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
|
| 1452 | 1451 |
}; |
| 1453 | 1452 |
|
| 1454 | 1453 |
/// Returns an \c AndMap class |
| 1455 | 1454 |
|
| 1456 | 1455 |
/// This function just returns an \c AndMap class. |
| 1457 | 1456 |
/// |
| 1458 | 1457 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
| 1459 | 1458 |
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to |
| 1460 | 1459 |
/// <tt>m1[x]&&m2[x]</tt>. |
| 1461 | 1460 |
/// |
| 1462 | 1461 |
/// \relates AndMap |
| 1463 | 1462 |
template<typename M1, typename M2> |
| 1464 | 1463 |
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
|
| 1465 | 1464 |
return AndMap<M1, M2>(m1,m2); |
| 1466 | 1465 |
} |
| 1467 | 1466 |
|
| 1468 | 1467 |
|
| 1469 | 1468 |
/// Logical 'or' of two maps |
| 1470 | 1469 |
|
| 1471 | 1470 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
| 1472 | 1471 |
/// 'or' of the values of the two given maps. |
| 1473 | 1472 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
| 1474 | 1473 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
| 1475 | 1474 |
/// |
| 1476 | 1475 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 1477 | 1476 |
/// \code |
| 1478 | 1477 |
/// OrMap<M1,M2> om(m1,m2); |
| 1479 | 1478 |
/// \endcode |
| 1480 | 1479 |
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>. |
| 1481 | 1480 |
/// |
| 1482 | 1481 |
/// The simplest way of using this map is through the orMap() |
| 1483 | 1482 |
/// function. |
| 1484 | 1483 |
/// |
| 1485 | 1484 |
/// \sa AndMap |
| 1486 | 1485 |
/// \sa NotMap, NotWriteMap |
| 1487 | 1486 |
template<typename M1, typename M2> |
| 1488 | 1487 |
class OrMap : public MapBase<typename M1::Key, bool> {
|
| 1489 | 1488 |
const M1 &_m1; |
| 1490 | 1489 |
const M2 &_m2; |
| 1491 | 1490 |
public: |
| 1492 | 1491 |
///\e |
| 1493 | 1492 |
typedef typename M1::Key Key; |
| 1494 | 1493 |
///\e |
| 1495 | 1494 |
typedef bool Value; |
| 1496 | 1495 |
|
| 1497 | 1496 |
/// Constructor |
| 1498 | 1497 |
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1499 | 1498 |
///\e |
| 1500 | 1499 |
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
|
| 1501 | 1500 |
}; |
| 1502 | 1501 |
|
| 1503 | 1502 |
/// Returns an \c OrMap class |
| 1504 | 1503 |
|
| 1505 | 1504 |
/// This function just returns an \c OrMap class. |
| 1506 | 1505 |
/// |
| 1507 | 1506 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
| 1508 | 1507 |
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to |
| 1509 | 1508 |
/// <tt>m1[x]||m2[x]</tt>. |
| 1510 | 1509 |
/// |
| 1511 | 1510 |
/// \relates OrMap |
| 1512 | 1511 |
template<typename M1, typename M2> |
| 1513 | 1512 |
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
|
| 1514 | 1513 |
return OrMap<M1, M2>(m1,m2); |
| 1515 | 1514 |
} |
| 1516 | 1515 |
|
| 1517 | 1516 |
|
| 1518 | 1517 |
/// Logical 'not' of a map |
| 1519 | 1518 |
|
| 1520 | 1519 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
| 1521 | 1520 |
/// negation of the values of the given map. |
| 1522 | 1521 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
| 1523 | 1522 |
/// |
| 1524 | 1523 |
/// The simplest way of using this map is through the notMap() |
| 1525 | 1524 |
/// function. |
| 1526 | 1525 |
/// |
| 1527 | 1526 |
/// \sa NotWriteMap |
| 1528 | 1527 |
template <typename M> |
| 1529 | 1528 |
class NotMap : public MapBase<typename M::Key, bool> {
|
| 1530 | 1529 |
const M &_m; |
| 1531 | 1530 |
public: |
| 1532 | 1531 |
///\e |
| 1533 | 1532 |
typedef typename M::Key Key; |
| 1534 | 1533 |
///\e |
| 1535 | 1534 |
typedef bool Value; |
| 1536 | 1535 |
|
| 1537 | 1536 |
/// Constructor |
| 1538 | 1537 |
NotMap(const M &m) : _m(m) {}
|
| 1539 | 1538 |
///\e |
| 1540 | 1539 |
Value operator[](const Key &k) const { return !_m[k]; }
|
| 1541 | 1540 |
}; |
| 1542 | 1541 |
|
| 1543 | 1542 |
/// Logical 'not' of a map (read-write version) |
| 1544 | 1543 |
|
| 1545 | 1544 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
| 1546 | 1545 |
/// logical negation of the values of the given map. |
| 1547 | 1546 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
| 1548 | 1547 |
/// It makes also possible to write the map. When a value is set, |
| 1549 | 1548 |
/// the opposite value is set to the original map. |
| 1550 | 1549 |
/// |
| 1551 | 1550 |
/// The simplest way of using this map is through the notWriteMap() |
| 1552 | 1551 |
/// function. |
| 1553 | 1552 |
/// |
| 1554 | 1553 |
/// \sa NotMap |
| 1555 | 1554 |
template <typename M> |
| 1556 | 1555 |
class NotWriteMap : public MapBase<typename M::Key, bool> {
|
| 1557 | 1556 |
M &_m; |
| 1558 | 1557 |
public: |
| 1559 | 1558 |
///\e |
| 1560 | 1559 |
typedef typename M::Key Key; |
| 1561 | 1560 |
///\e |
| 1562 | 1561 |
typedef bool Value; |
| 1563 | 1562 |
|
| 1564 | 1563 |
/// Constructor |
| 1565 | 1564 |
NotWriteMap(M &m) : _m(m) {}
|
| 1566 | 1565 |
///\e |
| 1567 | 1566 |
Value operator[](const Key &k) const { return !_m[k]; }
|
| 1568 | 1567 |
///\e |
| 1569 | 1568 |
void set(const Key &k, bool v) { _m.set(k, !v); }
|
| 1570 | 1569 |
}; |
| 1571 | 1570 |
|
| 1572 | 1571 |
/// Returns a \c NotMap class |
| 1573 | 1572 |
|
| 1574 | 1573 |
/// This function just returns a \c NotMap class. |
| 1575 | 1574 |
/// |
| 1576 | 1575 |
/// For example, if \c m is a map with \c bool values, then |
| 1577 | 1576 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
| 1578 | 1577 |
/// |
| 1579 | 1578 |
/// \relates NotMap |
| 1580 | 1579 |
template <typename M> |
| 1581 | 1580 |
inline NotMap<M> notMap(const M &m) {
|
| 1582 | 1581 |
return NotMap<M>(m); |
| 1583 | 1582 |
} |
| 1584 | 1583 |
|
| 1585 | 1584 |
/// Returns a \c NotWriteMap class |
| 1586 | 1585 |
|
| 1587 | 1586 |
/// This function just returns a \c NotWriteMap class. |
| 1588 | 1587 |
/// |
| 1589 | 1588 |
/// For example, if \c m is a map with \c bool values, then |
| 1590 | 1589 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
| 1591 | 1590 |
/// Moreover it makes also possible to write the map. |
| 1592 | 1591 |
/// |
| 1593 | 1592 |
/// \relates NotWriteMap |
| 1594 | 1593 |
template <typename M> |
| 1595 | 1594 |
inline NotWriteMap<M> notWriteMap(M &m) {
|
| 1596 | 1595 |
return NotWriteMap<M>(m); |
| 1597 | 1596 |
} |
| 1598 | 1597 |
|
| 1599 | 1598 |
|
| 1600 | 1599 |
/// Combination of two maps using the \c == operator |
| 1601 | 1600 |
|
| 1602 | 1601 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
| 1603 | 1602 |
/// the keys for which the corresponding values of the two maps are |
| 1604 | 1603 |
/// equal. |
| 1605 | 1604 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
| 1606 | 1605 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
| 1607 | 1606 |
/// |
| 1608 | 1607 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 1609 | 1608 |
/// \code |
| 1610 | 1609 |
/// EqualMap<M1,M2> em(m1,m2); |
| 1611 | 1610 |
/// \endcode |
| 1612 | 1611 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
| 1613 | 1612 |
/// |
| 1614 | 1613 |
/// The simplest way of using this map is through the equalMap() |
| 1615 | 1614 |
/// function. |
| 1616 | 1615 |
/// |
| 1617 | 1616 |
/// \sa LessMap |
| 1618 | 1617 |
template<typename M1, typename M2> |
| 1619 | 1618 |
class EqualMap : public MapBase<typename M1::Key, bool> {
|
| 1620 | 1619 |
const M1 &_m1; |
| 1621 | 1620 |
const M2 &_m2; |
| 1622 | 1621 |
public: |
| 1623 | 1622 |
///\e |
| 1624 | 1623 |
typedef typename M1::Key Key; |
| 1625 | 1624 |
///\e |
| 1626 | 1625 |
typedef bool Value; |
| 1627 | 1626 |
|
| 1628 | 1627 |
/// Constructor |
| 1629 | 1628 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1630 | 1629 |
///\e |
| 1631 | 1630 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
|
| 1632 | 1631 |
}; |
| 1633 | 1632 |
|
| 1634 | 1633 |
/// Returns an \c EqualMap class |
| 1635 | 1634 |
|
| 1636 | 1635 |
/// This function just returns an \c EqualMap class. |
| 1637 | 1636 |
/// |
| 1638 | 1637 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
| 1639 | 1638 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
| 1640 | 1639 |
/// <tt>m1[x]==m2[x]</tt>. |
| 1641 | 1640 |
/// |
| 1642 | 1641 |
/// \relates EqualMap |
| 1643 | 1642 |
template<typename M1, typename M2> |
| 1644 | 1643 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
|
| 1645 | 1644 |
return EqualMap<M1, M2>(m1,m2); |
| 1646 | 1645 |
} |
| 1647 | 1646 |
|
| 1648 | 1647 |
|
| 1649 | 1648 |
/// Combination of two maps using the \c < operator |
| 1650 | 1649 |
|
| 1651 | 1650 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
| 1652 | 1651 |
/// the keys for which the corresponding value of the first map is |
| 1653 | 1652 |
/// less then the value of the second map. |
| 1654 | 1653 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
| 1655 | 1654 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
| 1656 | 1655 |
/// |
| 1657 | 1656 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 1658 | 1657 |
/// \code |
| 1659 | 1658 |
/// LessMap<M1,M2> lm(m1,m2); |
| 1660 | 1659 |
/// \endcode |
| 1661 | 1660 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
| 1662 | 1661 |
/// |
| 1663 | 1662 |
/// The simplest way of using this map is through the lessMap() |
| 1664 | 1663 |
/// function. |
| 1665 | 1664 |
/// |
| 1666 | 1665 |
/// \sa EqualMap |
| 1667 | 1666 |
template<typename M1, typename M2> |
| 1668 | 1667 |
class LessMap : public MapBase<typename M1::Key, bool> {
|
| 1669 | 1668 |
const M1 &_m1; |
| 1670 | 1669 |
const M2 &_m2; |
| 1671 | 1670 |
public: |
| 1672 | 1671 |
///\e |
| 1673 | 1672 |
typedef typename M1::Key Key; |
| 1674 | 1673 |
///\e |
| 1675 | 1674 |
typedef bool Value; |
| 1676 | 1675 |
|
| 1677 | 1676 |
/// Constructor |
| 1678 | 1677 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1679 | 1678 |
///\e |
| 1680 | 1679 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
|
| 1681 | 1680 |
}; |
| 1682 | 1681 |
|
| 1683 | 1682 |
/// Returns an \c LessMap class |
| 1684 | 1683 |
|
| 1685 | 1684 |
/// This function just returns an \c LessMap class. |
| 1686 | 1685 |
/// |
| 1687 | 1686 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
| 1688 | 1687 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
| 1689 | 1688 |
/// <tt>m1[x]<m2[x]</tt>. |
| 1690 | 1689 |
/// |
| 1691 | 1690 |
/// \relates LessMap |
| 1692 | 1691 |
template<typename M1, typename M2> |
| 1693 | 1692 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
|
| 1694 | 1693 |
return LessMap<M1, M2>(m1,m2); |
| 1695 | 1694 |
} |
| 1696 | 1695 |
|
| 1697 | 1696 |
namespace _maps_bits {
|
| 1698 | 1697 |
|
| 1699 | 1698 |
template <typename _Iterator, typename Enable = void> |
| 1700 | 1699 |
struct IteratorTraits {
|
| 1701 | 1700 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
| 1702 | 1701 |
}; |
| 1703 | 1702 |
|
| 1704 | 1703 |
template <typename _Iterator> |
| 1705 | 1704 |
struct IteratorTraits<_Iterator, |
| 1706 | 1705 |
typename exists<typename _Iterator::container_type>::type> |
| 1707 | 1706 |
{
|
| 1708 | 1707 |
typedef typename _Iterator::container_type::value_type Value; |
| 1709 | 1708 |
}; |
| 1710 | 1709 |
|
| 1711 | 1710 |
} |
| 1712 | 1711 |
|
| 1713 | 1712 |
/// @} |
| 1714 | 1713 |
|
| 1715 | 1714 |
/// \addtogroup maps |
| 1716 | 1715 |
/// @{
|
| 1717 | 1716 |
|
| 1718 | 1717 |
/// \brief Writable bool map for logging each \c true assigned element |
| 1719 | 1718 |
/// |
| 1720 | 1719 |
/// A \ref concepts::WriteMap "writable" bool map for logging |
| 1721 | 1720 |
/// each \c true assigned element, i.e it copies subsequently each |
| 1722 | 1721 |
/// keys set to \c true to the given iterator. |
| 1723 | 1722 |
/// The most important usage of it is storing certain nodes or arcs |
| 1724 | 1723 |
/// that were marked \c true by an algorithm. |
| 1725 | 1724 |
/// |
| 1726 | 1725 |
/// There are several algorithms that provide solutions through bool |
| 1727 | 1726 |
/// maps and most of them assign \c true at most once for each key. |
| 1728 | 1727 |
/// In these cases it is a natural request to store each \c true |
| 1729 | 1728 |
/// assigned elements (in order of the assignment), which can be |
| 1730 | 1729 |
/// easily done with LoggerBoolMap. |
| 1731 | 1730 |
/// |
| 1732 | 1731 |
/// The simplest way of using this map is through the loggerBoolMap() |
| 1733 | 1732 |
/// function. |
| 1734 | 1733 |
/// |
| 1735 | 1734 |
/// \tparam IT The type of the iterator. |
| 1736 | 1735 |
/// \tparam KEY The key type of the map. The default value set |
| 1737 | 1736 |
/// according to the iterator type should work in most cases. |
| 1738 | 1737 |
/// |
| 1739 | 1738 |
/// \note The container of the iterator must contain enough space |
| 1740 | 1739 |
/// for the elements or the iterator should be an inserter iterator. |
| 1741 | 1740 |
#ifdef DOXYGEN |
| 1742 | 1741 |
template <typename IT, typename KEY> |
| 1743 | 1742 |
#else |
| 1744 | 1743 |
template <typename IT, |
| 1745 | 1744 |
typename KEY = typename _maps_bits::IteratorTraits<IT>::Value> |
| 1746 | 1745 |
#endif |
| 1747 | 1746 |
class LoggerBoolMap : public MapBase<KEY, bool> {
|
| 1748 | 1747 |
public: |
| 1749 | 1748 |
|
| 1750 | 1749 |
///\e |
| 1751 | 1750 |
typedef KEY Key; |
| 1752 | 1751 |
///\e |
| 1753 | 1752 |
typedef bool Value; |
| 1754 | 1753 |
///\e |
| 1755 | 1754 |
typedef IT Iterator; |
| 1756 | 1755 |
|
| 1757 | 1756 |
/// Constructor |
| 1758 | 1757 |
LoggerBoolMap(Iterator it) |
| 1759 | 1758 |
: _begin(it), _end(it) {}
|
| 1760 | 1759 |
|
| 1761 | 1760 |
/// Gives back the given iterator set for the first key |
| 1762 | 1761 |
Iterator begin() const {
|
| 1763 | 1762 |
return _begin; |
| 1764 | 1763 |
} |
| 1765 | 1764 |
|
| 1766 | 1765 |
/// Gives back the the 'after the last' iterator |
| 1767 | 1766 |
Iterator end() const {
|
| 1768 | 1767 |
return _end; |
| 1769 | 1768 |
} |
| 1770 | 1769 |
|
| 1771 | 1770 |
/// The set function of the map |
| 1772 | 1771 |
void set(const Key& key, Value value) {
|
| 1773 | 1772 |
if (value) {
|
| 1774 | 1773 |
*_end++ = key; |
| 1775 | 1774 |
} |
| 1776 | 1775 |
} |
| 1777 | 1776 |
|
| 1778 | 1777 |
private: |
| 1779 | 1778 |
Iterator _begin; |
| 1780 | 1779 |
Iterator _end; |
| 1781 | 1780 |
}; |
| 1782 | 1781 |
|
| 1783 | 1782 |
/// Returns a \c LoggerBoolMap class |
| 1784 | 1783 |
|
| 1785 | 1784 |
/// This function just returns a \c LoggerBoolMap class. |
| 1786 | 1785 |
/// |
| 1787 | 1786 |
/// The most important usage of it is storing certain nodes or arcs |
| 1788 | 1787 |
/// that were marked \c true by an algorithm. |
| 1789 | 1788 |
/// For example it makes easier to store the nodes in the processing |
| 1790 | 1789 |
/// order of Dfs algorithm, as the following examples show. |
| 1791 | 1790 |
/// \code |
| 1792 | 1791 |
/// std::vector<Node> v; |
| 1793 |
/// dfs(g |
|
| 1792 |
/// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s); |
|
| 1794 | 1793 |
/// \endcode |
| 1795 | 1794 |
/// \code |
| 1796 | 1795 |
/// std::vector<Node> v(countNodes(g)); |
| 1797 |
/// dfs(g |
|
| 1796 |
/// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s); |
|
| 1798 | 1797 |
/// \endcode |
| 1799 | 1798 |
/// |
| 1800 | 1799 |
/// \note The container of the iterator must contain enough space |
| 1801 | 1800 |
/// for the elements or the iterator should be an inserter iterator. |
| 1802 | 1801 |
/// |
| 1803 | 1802 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
| 1804 | 1803 |
/// it cannot be used when a readable map is needed, for example as |
| 1805 | 1804 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
| 1806 | 1805 |
/// |
| 1807 | 1806 |
/// \relates LoggerBoolMap |
| 1808 | 1807 |
template<typename Iterator> |
| 1809 | 1808 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
|
| 1810 | 1809 |
return LoggerBoolMap<Iterator>(it); |
| 1811 | 1810 |
} |
| 1812 | 1811 |
|
| 1813 | 1812 |
/// @} |
| 1814 | 1813 |
|
| 1815 | 1814 |
/// \addtogroup graph_maps |
| 1816 | 1815 |
/// @{
|
| 1817 | 1816 |
|
| 1818 | 1817 |
/// \brief Provides an immutable and unique id for each item in a graph. |
| 1819 | 1818 |
/// |
| 1820 | 1819 |
/// IdMap provides a unique and immutable id for each item of the |
| 1821 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
|
| 1820 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
|
| 1822 | 1821 |
/// - \b unique: different items get different ids, |
| 1823 | 1822 |
/// - \b immutable: the id of an item does not change (even if you |
| 1824 | 1823 |
/// delete other nodes). |
| 1825 | 1824 |
/// |
| 1826 | 1825 |
/// Using this map you get access (i.e. can read) the inner id values of |
| 1827 | 1826 |
/// the items stored in the graph, which is returned by the \c id() |
| 1828 | 1827 |
/// function of the graph. This map can be inverted with its member |
| 1829 |
/// class \c InverseMap or with the \c operator() member. |
|
| 1828 |
/// class \c InverseMap or with the \c operator()() member. |
|
| 1830 | 1829 |
/// |
| 1831 | 1830 |
/// \tparam GR The graph type. |
| 1832 | 1831 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| 1833 | 1832 |
/// \c GR::Edge). |
| 1834 | 1833 |
/// |
| 1835 | 1834 |
/// \see RangeIdMap |
| 1836 | 1835 |
template <typename GR, typename K> |
| 1837 | 1836 |
class IdMap : public MapBase<K, int> {
|
| 1838 | 1837 |
public: |
| 1839 | 1838 |
/// The graph type of IdMap. |
| 1840 | 1839 |
typedef GR Graph; |
| 1841 | 1840 |
typedef GR Digraph; |
| 1842 | 1841 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
| 1843 | 1842 |
typedef K Item; |
| 1844 | 1843 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
| 1845 | 1844 |
typedef K Key; |
| 1846 | 1845 |
/// The value type of IdMap. |
| 1847 | 1846 |
typedef int Value; |
| 1848 | 1847 |
|
| 1849 | 1848 |
/// \brief Constructor. |
| 1850 | 1849 |
/// |
| 1851 | 1850 |
/// Constructor of the map. |
| 1852 | 1851 |
explicit IdMap(const Graph& graph) : _graph(&graph) {}
|
| 1853 | 1852 |
|
| 1854 | 1853 |
/// \brief Gives back the \e id of the item. |
| 1855 | 1854 |
/// |
| 1856 | 1855 |
/// Gives back the immutable and unique \e id of the item. |
| 1857 | 1856 |
int operator[](const Item& item) const { return _graph->id(item);}
|
| 1858 | 1857 |
|
| 1859 | 1858 |
/// \brief Gives back the \e item by its id. |
| 1860 | 1859 |
/// |
| 1861 | 1860 |
/// Gives back the \e item by its id. |
| 1862 | 1861 |
Item operator()(int id) { return _graph->fromId(id, Item()); }
|
| 1863 | 1862 |
|
| 1864 | 1863 |
private: |
| 1865 | 1864 |
const Graph* _graph; |
| 1866 | 1865 |
|
| 1867 | 1866 |
public: |
| 1868 | 1867 |
|
| 1869 |
/// \brief |
|
| 1868 |
/// \brief The inverse map type of IdMap. |
|
| 1870 | 1869 |
/// |
| 1871 |
/// |
|
| 1870 |
/// The inverse map type of IdMap. The subscript operator gives back |
|
| 1871 |
/// an item by its id. |
|
| 1872 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 1872 | 1873 |
/// \see inverse() |
| 1873 | 1874 |
class InverseMap {
|
| 1874 | 1875 |
public: |
| 1875 | 1876 |
|
| 1876 | 1877 |
/// \brief Constructor. |
| 1877 | 1878 |
/// |
| 1878 | 1879 |
/// Constructor for creating an id-to-item map. |
| 1879 | 1880 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {}
|
| 1880 | 1881 |
|
| 1881 | 1882 |
/// \brief Constructor. |
| 1882 | 1883 |
/// |
| 1883 | 1884 |
/// Constructor for creating an id-to-item map. |
| 1884 | 1885 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
|
| 1885 | 1886 |
|
| 1886 |
/// \brief Gives back |
|
| 1887 |
/// \brief Gives back an item by its id. |
|
| 1887 | 1888 |
/// |
| 1888 |
/// Gives back |
|
| 1889 |
/// Gives back an item by its id. |
|
| 1889 | 1890 |
Item operator[](int id) const { return _graph->fromId(id, Item());}
|
| 1890 | 1891 |
|
| 1891 | 1892 |
private: |
| 1892 | 1893 |
const Graph* _graph; |
| 1893 | 1894 |
}; |
| 1894 | 1895 |
|
| 1895 | 1896 |
/// \brief Gives back the inverse of the map. |
| 1896 | 1897 |
/// |
| 1897 | 1898 |
/// Gives back the inverse of the IdMap. |
| 1898 | 1899 |
InverseMap inverse() const { return InverseMap(*_graph);}
|
| 1899 | 1900 |
}; |
| 1900 | 1901 |
|
| 1902 |
/// \brief Returns an \c IdMap class. |
|
| 1903 |
/// |
|
| 1904 |
/// This function just returns an \c IdMap class. |
|
| 1905 |
/// \relates IdMap |
|
| 1906 |
template <typename K, typename GR> |
|
| 1907 |
inline IdMap<GR, K> idMap(const GR& graph) {
|
|
| 1908 |
return IdMap<GR, K>(graph); |
|
| 1909 |
} |
|
| 1901 | 1910 |
|
| 1902 | 1911 |
/// \brief General cross reference graph map type. |
| 1903 | 1912 |
|
| 1904 | 1913 |
/// This class provides simple invertable graph maps. |
| 1905 |
/// It wraps an arbitrary \ref concepts::ReadWriteMap "ReadWriteMap" |
|
| 1906 |
/// and if a key is set to a new value then store it |
|
| 1907 |
/// |
|
| 1914 |
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) |
|
| 1915 |
/// and if a key is set to a new value, then stores it in the inverse map. |
|
| 1916 |
/// The graph items can be accessed by their values either using |
|
| 1917 |
/// \c InverseMap or \c operator()(), and the values of the map can be |
|
| 1918 |
/// accessed with an STL compatible forward iterator (\c ValueIt). |
|
| 1919 |
/// |
|
| 1920 |
/// This map is intended to be used when all associated values are |
|
| 1921 |
/// different (the map is actually invertable) or there are only a few |
|
| 1922 |
/// items with the same value. |
|
| 1923 |
/// Otherwise consider to use \c IterableValueMap, which is more |
|
| 1924 |
/// suitable and more efficient for such cases. It provides iterators |
|
| 1925 |
/// to traverse the items with the same associated value, however |
|
| 1926 |
/// it does not have \c InverseMap. |
|
| 1908 | 1927 |
/// |
| 1909 |
/// The values of the map can be accessed |
|
| 1910 |
/// with stl compatible forward iterator. |
|
| 1928 |
/// This type is not reference map, so it cannot be modified with |
|
| 1929 |
/// the subscript operator. |
|
| 1911 | 1930 |
/// |
| 1912 | 1931 |
/// \tparam GR The graph type. |
| 1913 | 1932 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| 1914 | 1933 |
/// \c GR::Edge). |
| 1915 | 1934 |
/// \tparam V The value type of the map. |
| 1916 | 1935 |
/// |
| 1917 | 1936 |
/// \see IterableValueMap |
| 1918 | 1937 |
template <typename GR, typename K, typename V> |
| 1919 | 1938 |
class CrossRefMap |
| 1920 | 1939 |
: protected ItemSetTraits<GR, K>::template Map<V>::Type {
|
| 1921 | 1940 |
private: |
| 1922 | 1941 |
|
| 1923 | 1942 |
typedef typename ItemSetTraits<GR, K>:: |
| 1924 | 1943 |
template Map<V>::Type Map; |
| 1925 | 1944 |
|
| 1926 |
typedef std:: |
|
| 1945 |
typedef std::multimap<V, K> Container; |
|
| 1927 | 1946 |
Container _inv_map; |
| 1928 | 1947 |
|
| 1929 | 1948 |
public: |
| 1930 | 1949 |
|
| 1931 | 1950 |
/// The graph type of CrossRefMap. |
| 1932 | 1951 |
typedef GR Graph; |
| 1933 | 1952 |
typedef GR Digraph; |
| 1934 | 1953 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
| 1935 | 1954 |
typedef K Item; |
| 1936 | 1955 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
| 1937 | 1956 |
typedef K Key; |
| 1938 | 1957 |
/// The value type of CrossRefMap. |
| 1939 | 1958 |
typedef V Value; |
| 1940 | 1959 |
|
| 1941 | 1960 |
/// \brief Constructor. |
| 1942 | 1961 |
/// |
| 1943 | 1962 |
/// Construct a new CrossRefMap for the given graph. |
| 1944 | 1963 |
explicit CrossRefMap(const Graph& graph) : Map(graph) {}
|
| 1945 | 1964 |
|
| 1946 | 1965 |
/// \brief Forward iterator for values. |
| 1947 | 1966 |
/// |
| 1948 |
/// This iterator is an |
|
| 1967 |
/// This iterator is an STL compatible forward |
|
| 1949 | 1968 |
/// iterator on the values of the map. The values can |
| 1950 | 1969 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
| 1951 |
|
|
| 1970 |
/// They are considered with multiplicity, so each value is |
|
| 1971 |
/// traversed for each item it is assigned to. |
|
| 1972 |
class ValueIt |
|
| 1952 | 1973 |
: public std::iterator<std::forward_iterator_tag, Value> {
|
| 1953 | 1974 |
friend class CrossRefMap; |
| 1954 | 1975 |
private: |
| 1955 |
|
|
| 1976 |
ValueIt(typename Container::const_iterator _it) |
|
| 1956 | 1977 |
: it(_it) {}
|
| 1957 | 1978 |
public: |
| 1958 | 1979 |
|
| 1959 |
ValueIterator() {}
|
|
| 1960 |
|
|
| 1961 |
ValueIterator& operator++() { ++it; return *this; }
|
|
| 1962 |
ValueIterator operator++(int) {
|
|
| 1963 |
|
|
| 1980 |
/// Constructor |
|
| 1981 |
ValueIt() {}
|
|
| 1982 |
|
|
| 1983 |
/// \e |
|
| 1984 |
ValueIt& operator++() { ++it; return *this; }
|
|
| 1985 |
/// \e |
|
| 1986 |
ValueIt operator++(int) {
|
|
| 1987 |
ValueIt tmp(*this); |
|
| 1964 | 1988 |
operator++(); |
| 1965 | 1989 |
return tmp; |
| 1966 | 1990 |
} |
| 1967 | 1991 |
|
| 1992 |
/// \e |
|
| 1968 | 1993 |
const Value& operator*() const { return it->first; }
|
| 1994 |
/// \e |
|
| 1969 | 1995 |
const Value* operator->() const { return &(it->first); }
|
| 1970 | 1996 |
|
| 1971 |
bool operator==(ValueIterator jt) const { return it == jt.it; }
|
|
| 1972 |
bool operator!=(ValueIterator jt) const { return it != jt.it; }
|
|
| 1997 |
/// \e |
|
| 1998 |
bool operator==(ValueIt jt) const { return it == jt.it; }
|
|
| 1999 |
/// \e |
|
| 2000 |
bool operator!=(ValueIt jt) const { return it != jt.it; }
|
|
| 1973 | 2001 |
|
| 1974 | 2002 |
private: |
| 1975 | 2003 |
typename Container::const_iterator it; |
| 1976 | 2004 |
}; |
| 2005 |
|
|
| 2006 |
/// Alias for \c ValueIt |
|
| 2007 |
typedef ValueIt ValueIterator; |
|
| 1977 | 2008 |
|
| 1978 | 2009 |
/// \brief Returns an iterator to the first value. |
| 1979 | 2010 |
/// |
| 1980 |
/// Returns an |
|
| 2011 |
/// Returns an STL compatible iterator to the |
|
| 1981 | 2012 |
/// first value of the map. The values of the |
| 1982 | 2013 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
| 1983 | 2014 |
/// range. |
| 1984 |
ValueIterator beginValue() const {
|
|
| 1985 |
return ValueIterator(_inv_map.begin()); |
|
| 2015 |
ValueIt beginValue() const {
|
|
| 2016 |
return ValueIt(_inv_map.begin()); |
|
| 1986 | 2017 |
} |
| 1987 | 2018 |
|
| 1988 | 2019 |
/// \brief Returns an iterator after the last value. |
| 1989 | 2020 |
/// |
| 1990 |
/// Returns an |
|
| 2021 |
/// Returns an STL compatible iterator after the |
|
| 1991 | 2022 |
/// last value of the map. The values of the |
| 1992 | 2023 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
| 1993 | 2024 |
/// range. |
| 1994 |
ValueIterator endValue() const {
|
|
| 1995 |
return ValueIterator(_inv_map.end()); |
|
| 2025 |
ValueIt endValue() const {
|
|
| 2026 |
return ValueIt(_inv_map.end()); |
|
| 1996 | 2027 |
} |
| 1997 | 2028 |
|
| 1998 | 2029 |
/// \brief Sets the value associated with the given key. |
| 1999 | 2030 |
/// |
| 2000 | 2031 |
/// Sets the value associated with the given key. |
| 2001 | 2032 |
void set(const Key& key, const Value& val) {
|
| 2002 | 2033 |
Value oldval = Map::operator[](key); |
| 2003 |
typename Container::iterator it = _inv_map.find(oldval); |
|
| 2004 |
if (it != _inv_map.end() && it->second == key) {
|
|
| 2005 |
|
|
| 2034 |
typename Container::iterator it; |
|
| 2035 |
for (it = _inv_map.equal_range(oldval).first; |
|
| 2036 |
it != _inv_map.equal_range(oldval).second; ++it) {
|
|
| 2037 |
if (it->second == key) {
|
|
| 2038 |
_inv_map.erase(it); |
|
| 2039 |
break; |
|
| 2040 |
} |
|
| 2006 | 2041 |
} |
| 2007 |
_inv_map.insert(make_pair(val, key)); |
|
| 2042 |
_inv_map.insert(std::make_pair(val, key)); |
|
| 2008 | 2043 |
Map::set(key, val); |
| 2009 | 2044 |
} |
| 2010 | 2045 |
|
| 2011 | 2046 |
/// \brief Returns the value associated with the given key. |
| 2012 | 2047 |
/// |
| 2013 | 2048 |
/// Returns the value associated with the given key. |
| 2014 | 2049 |
typename MapTraits<Map>::ConstReturnValue |
| 2015 | 2050 |
operator[](const Key& key) const {
|
| 2016 | 2051 |
return Map::operator[](key); |
| 2017 | 2052 |
} |
| 2018 | 2053 |
|
| 2019 |
/// \brief Gives back |
|
| 2054 |
/// \brief Gives back an item by its value. |
|
| 2020 | 2055 |
/// |
| 2021 |
/// Gives back the item by its value. |
|
| 2022 |
Key operator()(const Value& key) const {
|
|
| 2023 |
|
|
| 2056 |
/// This function gives back an item that is assigned to |
|
| 2057 |
/// the given value or \c INVALID if no such item exists. |
|
| 2058 |
/// If there are more items with the same associated value, |
|
| 2059 |
/// only one of them is returned. |
|
| 2060 |
Key operator()(const Value& val) const {
|
|
| 2061 |
typename Container::const_iterator it = _inv_map.find(val); |
|
| 2024 | 2062 |
return it != _inv_map.end() ? it->second : INVALID; |
| 2025 | 2063 |
} |
| 2064 |
|
|
| 2065 |
/// \brief Returns the number of items with the given value. |
|
| 2066 |
/// |
|
| 2067 |
/// This function returns the number of items with the given value |
|
| 2068 |
/// associated with it. |
|
| 2069 |
int count(const Value &val) const {
|
|
| 2070 |
return _inv_map.count(val); |
|
| 2071 |
} |
|
| 2026 | 2072 |
|
| 2027 | 2073 |
protected: |
| 2028 | 2074 |
|
| 2029 | 2075 |
/// \brief Erase the key from the map and the inverse map. |
| 2030 | 2076 |
/// |
| 2031 | 2077 |
/// Erase the key from the map and the inverse map. It is called by the |
| 2032 | 2078 |
/// \c AlterationNotifier. |
| 2033 | 2079 |
virtual void erase(const Key& key) {
|
| 2034 | 2080 |
Value val = Map::operator[](key); |
| 2035 |
typename Container::iterator it = _inv_map.find(val); |
|
| 2036 |
if (it != _inv_map.end() && it->second == key) {
|
|
| 2037 |
|
|
| 2081 |
typename Container::iterator it; |
|
| 2082 |
for (it = _inv_map.equal_range(val).first; |
|
| 2083 |
it != _inv_map.equal_range(val).second; ++it) {
|
|
| 2084 |
if (it->second == key) {
|
|
| 2085 |
_inv_map.erase(it); |
|
| 2086 |
break; |
|
| 2087 |
} |
|
| 2038 | 2088 |
} |
| 2039 | 2089 |
Map::erase(key); |
| 2040 | 2090 |
} |
| 2041 | 2091 |
|
| 2042 | 2092 |
/// \brief Erase more keys from the map and the inverse map. |
| 2043 | 2093 |
/// |
| 2044 | 2094 |
/// Erase more keys from the map and the inverse map. It is called by the |
| 2045 | 2095 |
/// \c AlterationNotifier. |
| 2046 | 2096 |
virtual void erase(const std::vector<Key>& keys) {
|
| 2047 | 2097 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 2048 | 2098 |
Value val = Map::operator[](keys[i]); |
| 2049 |
typename Container::iterator it = _inv_map.find(val); |
|
| 2050 |
if (it != _inv_map.end() && it->second == keys[i]) {
|
|
| 2051 |
|
|
| 2099 |
typename Container::iterator it; |
|
| 2100 |
for (it = _inv_map.equal_range(val).first; |
|
| 2101 |
it != _inv_map.equal_range(val).second; ++it) {
|
|
| 2102 |
if (it->second == keys[i]) {
|
|
| 2103 |
_inv_map.erase(it); |
|
| 2104 |
break; |
|
| 2105 |
} |
|
| 2052 | 2106 |
} |
| 2053 | 2107 |
} |
| 2054 | 2108 |
Map::erase(keys); |
| 2055 | 2109 |
} |
| 2056 | 2110 |
|
| 2057 | 2111 |
/// \brief Clear the keys from the map and the inverse map. |
| 2058 | 2112 |
/// |
| 2059 | 2113 |
/// Clear the keys from the map and the inverse map. It is called by the |
| 2060 | 2114 |
/// \c AlterationNotifier. |
| 2061 | 2115 |
virtual void clear() {
|
| 2062 | 2116 |
_inv_map.clear(); |
| 2063 | 2117 |
Map::clear(); |
| 2064 | 2118 |
} |
| 2065 | 2119 |
|
| 2066 | 2120 |
public: |
| 2067 | 2121 |
|
| 2068 |
/// \brief The inverse map type. |
|
| 2122 |
/// \brief The inverse map type of CrossRefMap. |
|
| 2069 | 2123 |
/// |
| 2070 |
/// The inverse of this map. The subscript operator of the map |
|
| 2071 |
/// gives back the item that was last assigned to the value. |
|
| 2124 |
/// The inverse map type of CrossRefMap. The subscript operator gives |
|
| 2125 |
/// back an item by its value. |
|
| 2126 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 2127 |
/// \see inverse() |
|
| 2072 | 2128 |
class InverseMap {
|
| 2073 | 2129 |
public: |
| 2074 | 2130 |
/// \brief Constructor |
| 2075 | 2131 |
/// |
| 2076 | 2132 |
/// Constructor of the InverseMap. |
| 2077 | 2133 |
explicit InverseMap(const CrossRefMap& inverted) |
| 2078 | 2134 |
: _inverted(inverted) {}
|
| 2079 | 2135 |
|
| 2080 | 2136 |
/// The value type of the InverseMap. |
| 2081 | 2137 |
typedef typename CrossRefMap::Key Value; |
| 2082 | 2138 |
/// The key type of the InverseMap. |
| 2083 | 2139 |
typedef typename CrossRefMap::Value Key; |
| 2084 | 2140 |
|
| 2085 | 2141 |
/// \brief Subscript operator. |
| 2086 | 2142 |
/// |
| 2087 |
/// Subscript operator. It gives back the item |
|
| 2088 |
/// that was last assigned to the given value. |
|
| 2143 |
/// Subscript operator. It gives back an item |
|
| 2144 |
/// that is assigned to the given value or \c INVALID |
|
| 2145 |
/// if no such item exists. |
|
| 2089 | 2146 |
Value operator[](const Key& key) const {
|
| 2090 | 2147 |
return _inverted(key); |
| 2091 | 2148 |
} |
| 2092 | 2149 |
|
| 2093 | 2150 |
private: |
| 2094 | 2151 |
const CrossRefMap& _inverted; |
| 2095 | 2152 |
}; |
| 2096 | 2153 |
|
| 2097 |
/// \brief |
|
| 2154 |
/// \brief Gives back the inverse of the map. |
|
| 2098 | 2155 |
/// |
| 2099 |
/// |
|
| 2156 |
/// Gives back the inverse of the CrossRefMap. |
|
| 2100 | 2157 |
InverseMap inverse() const {
|
| 2101 | 2158 |
return InverseMap(*this); |
| 2102 | 2159 |
} |
| 2103 | 2160 |
|
| 2104 | 2161 |
}; |
| 2105 | 2162 |
|
| 2106 |
/// \brief Provides continuous and unique |
|
| 2163 |
/// \brief Provides continuous and unique id for the |
|
| 2107 | 2164 |
/// items of a graph. |
| 2108 | 2165 |
/// |
| 2109 | 2166 |
/// RangeIdMap provides a unique and continuous |
| 2110 |
/// |
|
| 2167 |
/// id for each item of a given type (\c Node, \c Arc or |
|
| 2111 | 2168 |
/// \c Edge) in a graph. This id is |
| 2112 | 2169 |
/// - \b unique: different items get different ids, |
| 2113 | 2170 |
/// - \b continuous: the range of the ids is the set of integers |
| 2114 | 2171 |
/// between 0 and \c n-1, where \c n is the number of the items of |
| 2115 | 2172 |
/// this type (\c Node, \c Arc or \c Edge). |
| 2116 | 2173 |
/// - So, the ids can change when deleting an item of the same type. |
| 2117 | 2174 |
/// |
| 2118 | 2175 |
/// Thus this id is not (necessarily) the same as what can get using |
| 2119 | 2176 |
/// the \c id() function of the graph or \ref IdMap. |
| 2120 | 2177 |
/// This map can be inverted with its member class \c InverseMap, |
| 2121 |
/// or with the \c operator() member. |
|
| 2178 |
/// or with the \c operator()() member. |
|
| 2122 | 2179 |
/// |
| 2123 | 2180 |
/// \tparam GR The graph type. |
| 2124 | 2181 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| 2125 | 2182 |
/// \c GR::Edge). |
| 2126 | 2183 |
/// |
| 2127 | 2184 |
/// \see IdMap |
| 2128 | 2185 |
template <typename GR, typename K> |
| 2129 | 2186 |
class RangeIdMap |
| 2130 | 2187 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type {
|
| 2131 | 2188 |
|
| 2132 | 2189 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map; |
| 2133 | 2190 |
|
| 2134 | 2191 |
public: |
| 2135 | 2192 |
/// The graph type of RangeIdMap. |
| 2136 | 2193 |
typedef GR Graph; |
| 2137 | 2194 |
typedef GR Digraph; |
| 2138 | 2195 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
| 2139 | 2196 |
typedef K Item; |
| 2140 | 2197 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
| 2141 | 2198 |
typedef K Key; |
| 2142 | 2199 |
/// The value type of RangeIdMap. |
| 2143 | 2200 |
typedef int Value; |
| 2144 | 2201 |
|
| 2145 | 2202 |
/// \brief Constructor. |
| 2146 | 2203 |
/// |
| 2147 | 2204 |
/// Constructor. |
| 2148 | 2205 |
explicit RangeIdMap(const Graph& gr) : Map(gr) {
|
| 2149 | 2206 |
Item it; |
| 2150 | 2207 |
const typename Map::Notifier* nf = Map::notifier(); |
| 2151 | 2208 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2152 | 2209 |
Map::set(it, _inv_map.size()); |
| 2153 | 2210 |
_inv_map.push_back(it); |
| 2154 | 2211 |
} |
| 2155 | 2212 |
} |
| 2156 | 2213 |
|
| 2157 | 2214 |
protected: |
| 2158 | 2215 |
|
| 2159 | 2216 |
/// \brief Adds a new key to the map. |
| 2160 | 2217 |
/// |
| 2161 | 2218 |
/// Add a new key to the map. It is called by the |
| 2162 | 2219 |
/// \c AlterationNotifier. |
| 2163 | 2220 |
virtual void add(const Item& item) {
|
| 2164 | 2221 |
Map::add(item); |
| 2165 | 2222 |
Map::set(item, _inv_map.size()); |
| 2166 | 2223 |
_inv_map.push_back(item); |
| 2167 | 2224 |
} |
| 2168 | 2225 |
|
| 2169 | 2226 |
/// \brief Add more new keys to the map. |
| 2170 | 2227 |
/// |
| 2171 | 2228 |
/// Add more new keys to the map. It is called by the |
| 2172 | 2229 |
/// \c AlterationNotifier. |
| 2173 | 2230 |
virtual void add(const std::vector<Item>& items) {
|
| 2174 | 2231 |
Map::add(items); |
| 2175 | 2232 |
for (int i = 0; i < int(items.size()); ++i) {
|
| 2176 | 2233 |
Map::set(items[i], _inv_map.size()); |
| 2177 | 2234 |
_inv_map.push_back(items[i]); |
| 2178 | 2235 |
} |
| 2179 | 2236 |
} |
| 2180 | 2237 |
|
| 2181 | 2238 |
/// \brief Erase the key from the map. |
| 2182 | 2239 |
/// |
| 2183 | 2240 |
/// Erase the key from the map. It is called by the |
| 2184 | 2241 |
/// \c AlterationNotifier. |
| 2185 | 2242 |
virtual void erase(const Item& item) {
|
| 2186 | 2243 |
Map::set(_inv_map.back(), Map::operator[](item)); |
| 2187 | 2244 |
_inv_map[Map::operator[](item)] = _inv_map.back(); |
| 2188 | 2245 |
_inv_map.pop_back(); |
| 2189 | 2246 |
Map::erase(item); |
| 2190 | 2247 |
} |
| 2191 | 2248 |
|
| 2192 | 2249 |
/// \brief Erase more keys from the map. |
| 2193 | 2250 |
/// |
| 2194 | 2251 |
/// Erase more keys from the map. It is called by the |
| 2195 | 2252 |
/// \c AlterationNotifier. |
| 2196 | 2253 |
virtual void erase(const std::vector<Item>& items) {
|
| 2197 | 2254 |
for (int i = 0; i < int(items.size()); ++i) {
|
| 2198 | 2255 |
Map::set(_inv_map.back(), Map::operator[](items[i])); |
| 2199 | 2256 |
_inv_map[Map::operator[](items[i])] = _inv_map.back(); |
| 2200 | 2257 |
_inv_map.pop_back(); |
| 2201 | 2258 |
} |
| 2202 | 2259 |
Map::erase(items); |
| 2203 | 2260 |
} |
| 2204 | 2261 |
|
| 2205 | 2262 |
/// \brief Build the unique map. |
| 2206 | 2263 |
/// |
| 2207 | 2264 |
/// Build the unique map. It is called by the |
| 2208 | 2265 |
/// \c AlterationNotifier. |
| 2209 | 2266 |
virtual void build() {
|
| 2210 | 2267 |
Map::build(); |
| 2211 | 2268 |
Item it; |
| 2212 | 2269 |
const typename Map::Notifier* nf = Map::notifier(); |
| 2213 | 2270 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2214 | 2271 |
Map::set(it, _inv_map.size()); |
| 2215 | 2272 |
_inv_map.push_back(it); |
| 2216 | 2273 |
} |
| 2217 | 2274 |
} |
| 2218 | 2275 |
|
| 2219 | 2276 |
/// \brief Clear the keys from the map. |
| 2220 | 2277 |
/// |
| 2221 | 2278 |
/// Clear the keys from the map. It is called by the |
| 2222 | 2279 |
/// \c AlterationNotifier. |
| 2223 | 2280 |
virtual void clear() {
|
| 2224 | 2281 |
_inv_map.clear(); |
| 2225 | 2282 |
Map::clear(); |
| 2226 | 2283 |
} |
| 2227 | 2284 |
|
| 2228 | 2285 |
public: |
| 2229 | 2286 |
|
| 2230 | 2287 |
/// \brief Returns the maximal value plus one. |
| 2231 | 2288 |
/// |
| 2232 | 2289 |
/// Returns the maximal value plus one in the map. |
| 2233 | 2290 |
unsigned int size() const {
|
| 2234 | 2291 |
return _inv_map.size(); |
| 2235 | 2292 |
} |
| 2236 | 2293 |
|
| 2237 | 2294 |
/// \brief Swaps the position of the two items in the map. |
| 2238 | 2295 |
/// |
| 2239 | 2296 |
/// Swaps the position of the two items in the map. |
| 2240 | 2297 |
void swap(const Item& p, const Item& q) {
|
| 2241 | 2298 |
int pi = Map::operator[](p); |
| 2242 | 2299 |
int qi = Map::operator[](q); |
| 2243 | 2300 |
Map::set(p, qi); |
| 2244 | 2301 |
_inv_map[qi] = p; |
| 2245 | 2302 |
Map::set(q, pi); |
| 2246 | 2303 |
_inv_map[pi] = q; |
| 2247 | 2304 |
} |
| 2248 | 2305 |
|
| 2249 |
/// \brief Gives back the \e |
|
| 2306 |
/// \brief Gives back the \e range \e id of the item |
|
| 2250 | 2307 |
/// |
| 2251 |
/// Gives back the \e |
|
| 2308 |
/// Gives back the \e range \e id of the item. |
|
| 2252 | 2309 |
int operator[](const Item& item) const {
|
| 2253 | 2310 |
return Map::operator[](item); |
| 2254 | 2311 |
} |
| 2255 | 2312 |
|
| 2256 |
/// \brief Gives back the item belonging to a \e RangeId |
|
| 2257 |
/// |
|
| 2258 |
/// Gives back the item belonging to a \e |
|
| 2313 |
/// \brief Gives back the item belonging to a \e range \e id |
|
| 2314 |
/// |
|
| 2315 |
/// Gives back the item belonging to the given \e range \e id. |
|
| 2259 | 2316 |
Item operator()(int id) const {
|
| 2260 | 2317 |
return _inv_map[id]; |
| 2261 | 2318 |
} |
| 2262 | 2319 |
|
| 2263 | 2320 |
private: |
| 2264 | 2321 |
|
| 2265 | 2322 |
typedef std::vector<Item> Container; |
| 2266 | 2323 |
Container _inv_map; |
| 2267 | 2324 |
|
| 2268 | 2325 |
public: |
| 2269 | 2326 |
|
| 2270 | 2327 |
/// \brief The inverse map type of RangeIdMap. |
| 2271 | 2328 |
/// |
| 2272 |
/// The inverse map type of RangeIdMap. |
|
| 2329 |
/// The inverse map type of RangeIdMap. The subscript operator gives |
|
| 2330 |
/// back an item by its \e range \e id. |
|
| 2331 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 2273 | 2332 |
class InverseMap {
|
| 2274 | 2333 |
public: |
| 2275 | 2334 |
/// \brief Constructor |
| 2276 | 2335 |
/// |
| 2277 | 2336 |
/// Constructor of the InverseMap. |
| 2278 | 2337 |
explicit InverseMap(const RangeIdMap& inverted) |
| 2279 | 2338 |
: _inverted(inverted) {}
|
| 2280 | 2339 |
|
| 2281 | 2340 |
|
| 2282 | 2341 |
/// The value type of the InverseMap. |
| 2283 | 2342 |
typedef typename RangeIdMap::Key Value; |
| 2284 | 2343 |
/// The key type of the InverseMap. |
| 2285 | 2344 |
typedef typename RangeIdMap::Value Key; |
| 2286 | 2345 |
|
| 2287 | 2346 |
/// \brief Subscript operator. |
| 2288 | 2347 |
/// |
| 2289 | 2348 |
/// Subscript operator. It gives back the item |
| 2290 |
/// that the |
|
| 2349 |
/// that the given \e range \e id currently belongs to. |
|
| 2291 | 2350 |
Value operator[](const Key& key) const {
|
| 2292 | 2351 |
return _inverted(key); |
| 2293 | 2352 |
} |
| 2294 | 2353 |
|
| 2295 | 2354 |
/// \brief Size of the map. |
| 2296 | 2355 |
/// |
| 2297 | 2356 |
/// Returns the size of the map. |
| 2298 | 2357 |
unsigned int size() const {
|
| 2299 | 2358 |
return _inverted.size(); |
| 2300 | 2359 |
} |
| 2301 | 2360 |
|
| 2302 | 2361 |
private: |
| 2303 | 2362 |
const RangeIdMap& _inverted; |
| 2304 | 2363 |
}; |
| 2305 | 2364 |
|
| 2306 | 2365 |
/// \brief Gives back the inverse of the map. |
| 2307 | 2366 |
/// |
| 2308 |
/// Gives back the inverse of the |
|
| 2367 |
/// Gives back the inverse of the RangeIdMap. |
|
| 2309 | 2368 |
const InverseMap inverse() const {
|
| 2310 | 2369 |
return InverseMap(*this); |
| 2311 | 2370 |
} |
| 2312 | 2371 |
}; |
| 2313 | 2372 |
|
| 2373 |
/// \brief Returns a \c RangeIdMap class. |
|
| 2374 |
/// |
|
| 2375 |
/// This function just returns an \c RangeIdMap class. |
|
| 2376 |
/// \relates RangeIdMap |
|
| 2377 |
template <typename K, typename GR> |
|
| 2378 |
inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) {
|
|
| 2379 |
return RangeIdMap<GR, K>(graph); |
|
| 2380 |
} |
|
| 2381 |
|
|
| 2382 |
/// \brief Dynamic iterable \c bool map. |
|
| 2383 |
/// |
|
| 2384 |
/// This class provides a special graph map type which can store a |
|
| 2385 |
/// \c bool value for graph items (\c Node, \c Arc or \c Edge). |
|
| 2386 |
/// For both \c true and \c false values it is possible to iterate on |
|
| 2387 |
/// the keys mapped to the value. |
|
| 2388 |
/// |
|
| 2389 |
/// This type is a reference map, so it can be modified with the |
|
| 2390 |
/// subscript operator. |
|
| 2391 |
/// |
|
| 2392 |
/// \tparam GR The graph type. |
|
| 2393 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
| 2394 |
/// \c GR::Edge). |
|
| 2395 |
/// |
|
| 2396 |
/// \see IterableIntMap, IterableValueMap |
|
| 2397 |
/// \see CrossRefMap |
|
| 2398 |
template <typename GR, typename K> |
|
| 2399 |
class IterableBoolMap |
|
| 2400 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type {
|
|
| 2401 |
private: |
|
| 2402 |
typedef GR Graph; |
|
| 2403 |
|
|
| 2404 |
typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt; |
|
| 2405 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent; |
|
| 2406 |
|
|
| 2407 |
std::vector<K> _array; |
|
| 2408 |
int _sep; |
|
| 2409 |
|
|
| 2410 |
public: |
|
| 2411 |
|
|
| 2412 |
/// Indicates that the map is reference map. |
|
| 2413 |
typedef True ReferenceMapTag; |
|
| 2414 |
|
|
| 2415 |
/// The key type |
|
| 2416 |
typedef K Key; |
|
| 2417 |
/// The value type |
|
| 2418 |
typedef bool Value; |
|
| 2419 |
/// The const reference type. |
|
| 2420 |
typedef const Value& ConstReference; |
|
| 2421 |
|
|
| 2422 |
private: |
|
| 2423 |
|
|
| 2424 |
int position(const Key& key) const {
|
|
| 2425 |
return Parent::operator[](key); |
|
| 2426 |
} |
|
| 2427 |
|
|
| 2428 |
public: |
|
| 2429 |
|
|
| 2430 |
/// \brief Reference to the value of the map. |
|
| 2431 |
/// |
|
| 2432 |
/// This class is similar to the \c bool type. It can be converted to |
|
| 2433 |
/// \c bool and it provides the same operators. |
|
| 2434 |
class Reference {
|
|
| 2435 |
friend class IterableBoolMap; |
|
| 2436 |
private: |
|
| 2437 |
Reference(IterableBoolMap& map, const Key& key) |
|
| 2438 |
: _key(key), _map(map) {}
|
|
| 2439 |
public: |
|
| 2440 |
|
|
| 2441 |
Reference& operator=(const Reference& value) {
|
|
| 2442 |
_map.set(_key, static_cast<bool>(value)); |
|
| 2443 |
return *this; |
|
| 2444 |
} |
|
| 2445 |
|
|
| 2446 |
operator bool() const {
|
|
| 2447 |
return static_cast<const IterableBoolMap&>(_map)[_key]; |
|
| 2448 |
} |
|
| 2449 |
|
|
| 2450 |
Reference& operator=(bool value) {
|
|
| 2451 |
_map.set(_key, value); |
|
| 2452 |
return *this; |
|
| 2453 |
} |
|
| 2454 |
Reference& operator&=(bool value) {
|
|
| 2455 |
_map.set(_key, _map[_key] & value); |
|
| 2456 |
return *this; |
|
| 2457 |
} |
|
| 2458 |
Reference& operator|=(bool value) {
|
|
| 2459 |
_map.set(_key, _map[_key] | value); |
|
| 2460 |
return *this; |
|
| 2461 |
} |
|
| 2462 |
Reference& operator^=(bool value) {
|
|
| 2463 |
_map.set(_key, _map[_key] ^ value); |
|
| 2464 |
return *this; |
|
| 2465 |
} |
|
| 2466 |
private: |
|
| 2467 |
Key _key; |
|
| 2468 |
IterableBoolMap& _map; |
|
| 2469 |
}; |
|
| 2470 |
|
|
| 2471 |
/// \brief Constructor of the map with a default value. |
|
| 2472 |
/// |
|
| 2473 |
/// Constructor of the map with a default value. |
|
| 2474 |
explicit IterableBoolMap(const Graph& graph, bool def = false) |
|
| 2475 |
: Parent(graph) {
|
|
| 2476 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
| 2477 |
Key it; |
|
| 2478 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
|
| 2479 |
Parent::set(it, _array.size()); |
|
| 2480 |
_array.push_back(it); |
|
| 2481 |
} |
|
| 2482 |
_sep = (def ? _array.size() : 0); |
|
| 2483 |
} |
|
| 2484 |
|
|
| 2485 |
/// \brief Const subscript operator of the map. |
|
| 2486 |
/// |
|
| 2487 |
/// Const subscript operator of the map. |
|
| 2488 |
bool operator[](const Key& key) const {
|
|
| 2489 |
return position(key) < _sep; |
|
| 2490 |
} |
|
| 2491 |
|
|
| 2492 |
/// \brief Subscript operator of the map. |
|
| 2493 |
/// |
|
| 2494 |
/// Subscript operator of the map. |
|
| 2495 |
Reference operator[](const Key& key) {
|
|
| 2496 |
return Reference(*this, key); |
|
| 2497 |
} |
|
| 2498 |
|
|
| 2499 |
/// \brief Set operation of the map. |
|
| 2500 |
/// |
|
| 2501 |
/// Set operation of the map. |
|
| 2502 |
void set(const Key& key, bool value) {
|
|
| 2503 |
int pos = position(key); |
|
| 2504 |
if (value) {
|
|
| 2505 |
if (pos < _sep) return; |
|
| 2506 |
Key tmp = _array[_sep]; |
|
| 2507 |
_array[_sep] = key; |
|
| 2508 |
Parent::set(key, _sep); |
|
| 2509 |
_array[pos] = tmp; |
|
| 2510 |
Parent::set(tmp, pos); |
|
| 2511 |
++_sep; |
|
| 2512 |
} else {
|
|
| 2513 |
if (pos >= _sep) return; |
|
| 2514 |
--_sep; |
|
| 2515 |
Key tmp = _array[_sep]; |
|
| 2516 |
_array[_sep] = key; |
|
| 2517 |
Parent::set(key, _sep); |
|
| 2518 |
_array[pos] = tmp; |
|
| 2519 |
Parent::set(tmp, pos); |
|
| 2520 |
} |
|
| 2521 |
} |
|
| 2522 |
|
|
| 2523 |
/// \brief Set all items. |
|
| 2524 |
/// |
|
| 2525 |
/// Set all items in the map. |
|
| 2526 |
/// \note Constant time operation. |
|
| 2527 |
void setAll(bool value) {
|
|
| 2528 |
_sep = (value ? _array.size() : 0); |
|
| 2529 |
} |
|
| 2530 |
|
|
| 2531 |
/// \brief Returns the number of the keys mapped to \c true. |
|
| 2532 |
/// |
|
| 2533 |
/// Returns the number of the keys mapped to \c true. |
|
| 2534 |
int trueNum() const {
|
|
| 2535 |
return _sep; |
|
| 2536 |
} |
|
| 2537 |
|
|
| 2538 |
/// \brief Returns the number of the keys mapped to \c false. |
|
| 2539 |
/// |
|
| 2540 |
/// Returns the number of the keys mapped to \c false. |
|
| 2541 |
int falseNum() const {
|
|
| 2542 |
return _array.size() - _sep; |
|
| 2543 |
} |
|
| 2544 |
|
|
| 2545 |
/// \brief Iterator for the keys mapped to \c true. |
|
| 2546 |
/// |
|
| 2547 |
/// Iterator for the keys mapped to \c true. It works |
|
| 2548 |
/// like a graph item iterator, it can be converted to |
|
| 2549 |
/// the key type of the map, incremented with \c ++ operator, and |
|
| 2550 |
/// if the iterator leaves the last valid key, it will be equal to |
|
| 2551 |
/// \c INVALID. |
|
| 2552 |
class TrueIt : public Key {
|
|
| 2553 |
public: |
|
| 2554 |
typedef Key Parent; |
|
| 2555 |
|
|
| 2556 |
/// \brief Creates an iterator. |
|
| 2557 |
/// |
|
| 2558 |
/// Creates an iterator. It iterates on the |
|
| 2559 |
/// keys mapped to \c true. |
|
| 2560 |
/// \param map The IterableBoolMap. |
|
| 2561 |
explicit TrueIt(const IterableBoolMap& map) |
|
| 2562 |
: Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID), |
|
| 2563 |
_map(&map) {}
|
|
| 2564 |
|
|
| 2565 |
/// \brief Invalid constructor \& conversion. |
|
| 2566 |
/// |
|
| 2567 |
/// This constructor initializes the iterator to be invalid. |
|
| 2568 |
/// \sa Invalid for more details. |
|
| 2569 |
TrueIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 2570 |
|
|
| 2571 |
/// \brief Increment operator. |
|
| 2572 |
/// |
|
| 2573 |
/// Increment operator. |
|
| 2574 |
TrueIt& operator++() {
|
|
| 2575 |
int pos = _map->position(*this); |
|
| 2576 |
Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID); |
|
| 2577 |
return *this; |
|
| 2578 |
} |
|
| 2579 |
|
|
| 2580 |
private: |
|
| 2581 |
const IterableBoolMap* _map; |
|
| 2582 |
}; |
|
| 2583 |
|
|
| 2584 |
/// \brief Iterator for the keys mapped to \c false. |
|
| 2585 |
/// |
|
| 2586 |
/// Iterator for the keys mapped to \c false. It works |
|
| 2587 |
/// like a graph item iterator, it can be converted to |
|
| 2588 |
/// the key type of the map, incremented with \c ++ operator, and |
|
| 2589 |
/// if the iterator leaves the last valid key, it will be equal to |
|
| 2590 |
/// \c INVALID. |
|
| 2591 |
class FalseIt : public Key {
|
|
| 2592 |
public: |
|
| 2593 |
typedef Key Parent; |
|
| 2594 |
|
|
| 2595 |
/// \brief Creates an iterator. |
|
| 2596 |
/// |
|
| 2597 |
/// Creates an iterator. It iterates on the |
|
| 2598 |
/// keys mapped to \c false. |
|
| 2599 |
/// \param map The IterableBoolMap. |
|
| 2600 |
explicit FalseIt(const IterableBoolMap& map) |
|
| 2601 |
: Parent(map._sep < int(map._array.size()) ? |
|
| 2602 |
map._array.back() : INVALID), _map(&map) {}
|
|
| 2603 |
|
|
| 2604 |
/// \brief Invalid constructor \& conversion. |
|
| 2605 |
/// |
|
| 2606 |
/// This constructor initializes the iterator to be invalid. |
|
| 2607 |
/// \sa Invalid for more details. |
|
| 2608 |
FalseIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 2609 |
|
|
| 2610 |
/// \brief Increment operator. |
|
| 2611 |
/// |
|
| 2612 |
/// Increment operator. |
|
| 2613 |
FalseIt& operator++() {
|
|
| 2614 |
int pos = _map->position(*this); |
|
| 2615 |
Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID); |
|
| 2616 |
return *this; |
|
| 2617 |
} |
|
| 2618 |
|
|
| 2619 |
private: |
|
| 2620 |
const IterableBoolMap* _map; |
|
| 2621 |
}; |
|
| 2622 |
|
|
| 2623 |
/// \brief Iterator for the keys mapped to a given value. |
|
| 2624 |
/// |
|
| 2625 |
/// Iterator for the keys mapped to a given value. It works |
|
| 2626 |
/// like a graph item iterator, it can be converted to |
|
| 2627 |
/// the key type of the map, incremented with \c ++ operator, and |
|
| 2628 |
/// if the iterator leaves the last valid key, it will be equal to |
|
| 2629 |
/// \c INVALID. |
|
| 2630 |
class ItemIt : public Key {
|
|
| 2631 |
public: |
|
| 2632 |
typedef Key Parent; |
|
| 2633 |
|
|
| 2634 |
/// \brief Creates an iterator with a value. |
|
| 2635 |
/// |
|
| 2636 |
/// Creates an iterator with a value. It iterates on the |
|
| 2637 |
/// keys mapped to the given value. |
|
| 2638 |
/// \param map The IterableBoolMap. |
|
| 2639 |
/// \param value The value. |
|
| 2640 |
ItemIt(const IterableBoolMap& map, bool value) |
|
| 2641 |
: Parent(value ? |
|
| 2642 |
(map._sep > 0 ? |
|
| 2643 |
map._array[map._sep - 1] : INVALID) : |
|
| 2644 |
(map._sep < int(map._array.size()) ? |
|
| 2645 |
map._array.back() : INVALID)), _map(&map) {}
|
|
| 2646 |
|
|
| 2647 |
/// \brief Invalid constructor \& conversion. |
|
| 2648 |
/// |
|
| 2649 |
/// This constructor initializes the iterator to be invalid. |
|
| 2650 |
/// \sa Invalid for more details. |
|
| 2651 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 2652 |
|
|
| 2653 |
/// \brief Increment operator. |
|
| 2654 |
/// |
|
| 2655 |
/// Increment operator. |
|
| 2656 |
ItemIt& operator++() {
|
|
| 2657 |
int pos = _map->position(*this); |
|
| 2658 |
int _sep = pos >= _map->_sep ? _map->_sep : 0; |
|
| 2659 |
Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID); |
|
| 2660 |
return *this; |
|
| 2661 |
} |
|
| 2662 |
|
|
| 2663 |
private: |
|
| 2664 |
const IterableBoolMap* _map; |
|
| 2665 |
}; |
|
| 2666 |
|
|
| 2667 |
protected: |
|
| 2668 |
|
|
| 2669 |
virtual void add(const Key& key) {
|
|
| 2670 |
Parent::add(key); |
|
| 2671 |
Parent::set(key, _array.size()); |
|
| 2672 |
_array.push_back(key); |
|
| 2673 |
} |
|
| 2674 |
|
|
| 2675 |
virtual void add(const std::vector<Key>& keys) {
|
|
| 2676 |
Parent::add(keys); |
|
| 2677 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 2678 |
Parent::set(keys[i], _array.size()); |
|
| 2679 |
_array.push_back(keys[i]); |
|
| 2680 |
} |
|
| 2681 |
} |
|
| 2682 |
|
|
| 2683 |
virtual void erase(const Key& key) {
|
|
| 2684 |
int pos = position(key); |
|
| 2685 |
if (pos < _sep) {
|
|
| 2686 |
--_sep; |
|
| 2687 |
Parent::set(_array[_sep], pos); |
|
| 2688 |
_array[pos] = _array[_sep]; |
|
| 2689 |
Parent::set(_array.back(), _sep); |
|
| 2690 |
_array[_sep] = _array.back(); |
|
| 2691 |
_array.pop_back(); |
|
| 2692 |
} else {
|
|
| 2693 |
Parent::set(_array.back(), pos); |
|
| 2694 |
_array[pos] = _array.back(); |
|
| 2695 |
_array.pop_back(); |
|
| 2696 |
} |
|
| 2697 |
Parent::erase(key); |
|
| 2698 |
} |
|
| 2699 |
|
|
| 2700 |
virtual void erase(const std::vector<Key>& keys) {
|
|
| 2701 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 2702 |
int pos = position(keys[i]); |
|
| 2703 |
if (pos < _sep) {
|
|
| 2704 |
--_sep; |
|
| 2705 |
Parent::set(_array[_sep], pos); |
|
| 2706 |
_array[pos] = _array[_sep]; |
|
| 2707 |
Parent::set(_array.back(), _sep); |
|
| 2708 |
_array[_sep] = _array.back(); |
|
| 2709 |
_array.pop_back(); |
|
| 2710 |
} else {
|
|
| 2711 |
Parent::set(_array.back(), pos); |
|
| 2712 |
_array[pos] = _array.back(); |
|
| 2713 |
_array.pop_back(); |
|
| 2714 |
} |
|
| 2715 |
} |
|
| 2716 |
Parent::erase(keys); |
|
| 2717 |
} |
|
| 2718 |
|
|
| 2719 |
virtual void build() {
|
|
| 2720 |
Parent::build(); |
|
| 2721 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
| 2722 |
Key it; |
|
| 2723 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
|
| 2724 |
Parent::set(it, _array.size()); |
|
| 2725 |
_array.push_back(it); |
|
| 2726 |
} |
|
| 2727 |
_sep = 0; |
|
| 2728 |
} |
|
| 2729 |
|
|
| 2730 |
virtual void clear() {
|
|
| 2731 |
_array.clear(); |
|
| 2732 |
_sep = 0; |
|
| 2733 |
Parent::clear(); |
|
| 2734 |
} |
|
| 2735 |
|
|
| 2736 |
}; |
|
| 2737 |
|
|
| 2738 |
|
|
| 2739 |
namespace _maps_bits {
|
|
| 2740 |
template <typename Item> |
|
| 2741 |
struct IterableIntMapNode {
|
|
| 2742 |
IterableIntMapNode() : value(-1) {}
|
|
| 2743 |
IterableIntMapNode(int _value) : value(_value) {}
|
|
| 2744 |
Item prev, next; |
|
| 2745 |
int value; |
|
| 2746 |
}; |
|
| 2747 |
} |
|
| 2748 |
|
|
| 2749 |
/// \brief Dynamic iterable integer map. |
|
| 2750 |
/// |
|
| 2751 |
/// This class provides a special graph map type which can store an |
|
| 2752 |
/// integer value for graph items (\c Node, \c Arc or \c Edge). |
|
| 2753 |
/// For each non-negative value it is possible to iterate on the keys |
|
| 2754 |
/// mapped to the value. |
|
| 2755 |
/// |
|
| 2756 |
/// This map is intended to be used with small integer values, for which |
|
| 2757 |
/// it is efficient, and supports iteration only for non-negative values. |
|
| 2758 |
/// If you need large values and/or iteration for negative integers, |
|
| 2759 |
/// consider to use \ref IterableValueMap instead. |
|
| 2760 |
/// |
|
| 2761 |
/// This type is a reference map, so it can be modified with the |
|
| 2762 |
/// subscript operator. |
|
| 2763 |
/// |
|
| 2764 |
/// \note The size of the data structure depends on the largest |
|
| 2765 |
/// value in the map. |
|
| 2766 |
/// |
|
| 2767 |
/// \tparam GR The graph type. |
|
| 2768 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
| 2769 |
/// \c GR::Edge). |
|
| 2770 |
/// |
|
| 2771 |
/// \see IterableBoolMap, IterableValueMap |
|
| 2772 |
/// \see CrossRefMap |
|
| 2773 |
template <typename GR, typename K> |
|
| 2774 |
class IterableIntMap |
|
| 2775 |
: protected ItemSetTraits<GR, K>:: |
|
| 2776 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type {
|
|
| 2777 |
public: |
|
| 2778 |
typedef typename ItemSetTraits<GR, K>:: |
|
| 2779 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent; |
|
| 2780 |
|
|
| 2781 |
/// The key type |
|
| 2782 |
typedef K Key; |
|
| 2783 |
/// The value type |
|
| 2784 |
typedef int Value; |
|
| 2785 |
/// The graph type |
|
| 2786 |
typedef GR Graph; |
|
| 2787 |
|
|
| 2788 |
/// \brief Constructor of the map. |
|
| 2789 |
/// |
|
| 2790 |
/// Constructor of the map. It sets all values to -1. |
|
| 2791 |
explicit IterableIntMap(const Graph& graph) |
|
| 2792 |
: Parent(graph) {}
|
|
| 2793 |
|
|
| 2794 |
/// \brief Constructor of the map with a given value. |
|
| 2795 |
/// |
|
| 2796 |
/// Constructor of the map with a given value. |
|
| 2797 |
explicit IterableIntMap(const Graph& graph, int value) |
|
| 2798 |
: Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
|
|
| 2799 |
if (value >= 0) {
|
|
| 2800 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
|
|
| 2801 |
lace(it); |
|
| 2802 |
} |
|
| 2803 |
} |
|
| 2804 |
} |
|
| 2805 |
|
|
| 2806 |
private: |
|
| 2807 |
|
|
| 2808 |
void unlace(const Key& key) {
|
|
| 2809 |
typename Parent::Value& node = Parent::operator[](key); |
|
| 2810 |
if (node.value < 0) return; |
|
| 2811 |
if (node.prev != INVALID) {
|
|
| 2812 |
Parent::operator[](node.prev).next = node.next; |
|
| 2813 |
} else {
|
|
| 2814 |
_first[node.value] = node.next; |
|
| 2815 |
} |
|
| 2816 |
if (node.next != INVALID) {
|
|
| 2817 |
Parent::operator[](node.next).prev = node.prev; |
|
| 2818 |
} |
|
| 2819 |
while (!_first.empty() && _first.back() == INVALID) {
|
|
| 2820 |
_first.pop_back(); |
|
| 2821 |
} |
|
| 2822 |
} |
|
| 2823 |
|
|
| 2824 |
void lace(const Key& key) {
|
|
| 2825 |
typename Parent::Value& node = Parent::operator[](key); |
|
| 2826 |
if (node.value < 0) return; |
|
| 2827 |
if (node.value >= int(_first.size())) {
|
|
| 2828 |
_first.resize(node.value + 1, INVALID); |
|
| 2829 |
} |
|
| 2830 |
node.prev = INVALID; |
|
| 2831 |
node.next = _first[node.value]; |
|
| 2832 |
if (node.next != INVALID) {
|
|
| 2833 |
Parent::operator[](node.next).prev = key; |
|
| 2834 |
} |
|
| 2835 |
_first[node.value] = key; |
|
| 2836 |
} |
|
| 2837 |
|
|
| 2838 |
public: |
|
| 2839 |
|
|
| 2840 |
/// Indicates that the map is reference map. |
|
| 2841 |
typedef True ReferenceMapTag; |
|
| 2842 |
|
|
| 2843 |
/// \brief Reference to the value of the map. |
|
| 2844 |
/// |
|
| 2845 |
/// This class is similar to the \c int type. It can |
|
| 2846 |
/// be converted to \c int and it has the same operators. |
|
| 2847 |
class Reference {
|
|
| 2848 |
friend class IterableIntMap; |
|
| 2849 |
private: |
|
| 2850 |
Reference(IterableIntMap& map, const Key& key) |
|
| 2851 |
: _key(key), _map(map) {}
|
|
| 2852 |
public: |
|
| 2853 |
|
|
| 2854 |
Reference& operator=(const Reference& value) {
|
|
| 2855 |
_map.set(_key, static_cast<const int&>(value)); |
|
| 2856 |
return *this; |
|
| 2857 |
} |
|
| 2858 |
|
|
| 2859 |
operator const int&() const {
|
|
| 2860 |
return static_cast<const IterableIntMap&>(_map)[_key]; |
|
| 2861 |
} |
|
| 2862 |
|
|
| 2863 |
Reference& operator=(int value) {
|
|
| 2864 |
_map.set(_key, value); |
|
| 2865 |
return *this; |
|
| 2866 |
} |
|
| 2867 |
Reference& operator++() {
|
|
| 2868 |
_map.set(_key, _map[_key] + 1); |
|
| 2869 |
return *this; |
|
| 2870 |
} |
|
| 2871 |
int operator++(int) {
|
|
| 2872 |
int value = _map[_key]; |
|
| 2873 |
_map.set(_key, value + 1); |
|
| 2874 |
return value; |
|
| 2875 |
} |
|
| 2876 |
Reference& operator--() {
|
|
| 2877 |
_map.set(_key, _map[_key] - 1); |
|
| 2878 |
return *this; |
|
| 2879 |
} |
|
| 2880 |
int operator--(int) {
|
|
| 2881 |
int value = _map[_key]; |
|
| 2882 |
_map.set(_key, value - 1); |
|
| 2883 |
return value; |
|
| 2884 |
} |
|
| 2885 |
Reference& operator+=(int value) {
|
|
| 2886 |
_map.set(_key, _map[_key] + value); |
|
| 2887 |
return *this; |
|
| 2888 |
} |
|
| 2889 |
Reference& operator-=(int value) {
|
|
| 2890 |
_map.set(_key, _map[_key] - value); |
|
| 2891 |
return *this; |
|
| 2892 |
} |
|
| 2893 |
Reference& operator*=(int value) {
|
|
| 2894 |
_map.set(_key, _map[_key] * value); |
|
| 2895 |
return *this; |
|
| 2896 |
} |
|
| 2897 |
Reference& operator/=(int value) {
|
|
| 2898 |
_map.set(_key, _map[_key] / value); |
|
| 2899 |
return *this; |
|
| 2900 |
} |
|
| 2901 |
Reference& operator%=(int value) {
|
|
| 2902 |
_map.set(_key, _map[_key] % value); |
|
| 2903 |
return *this; |
|
| 2904 |
} |
|
| 2905 |
Reference& operator&=(int value) {
|
|
| 2906 |
_map.set(_key, _map[_key] & value); |
|
| 2907 |
return *this; |
|
| 2908 |
} |
|
| 2909 |
Reference& operator|=(int value) {
|
|
| 2910 |
_map.set(_key, _map[_key] | value); |
|
| 2911 |
return *this; |
|
| 2912 |
} |
|
| 2913 |
Reference& operator^=(int value) {
|
|
| 2914 |
_map.set(_key, _map[_key] ^ value); |
|
| 2915 |
return *this; |
|
| 2916 |
} |
|
| 2917 |
Reference& operator<<=(int value) {
|
|
| 2918 |
_map.set(_key, _map[_key] << value); |
|
| 2919 |
return *this; |
|
| 2920 |
} |
|
| 2921 |
Reference& operator>>=(int value) {
|
|
| 2922 |
_map.set(_key, _map[_key] >> value); |
|
| 2923 |
return *this; |
|
| 2924 |
} |
|
| 2925 |
|
|
| 2926 |
private: |
|
| 2927 |
Key _key; |
|
| 2928 |
IterableIntMap& _map; |
|
| 2929 |
}; |
|
| 2930 |
|
|
| 2931 |
/// The const reference type. |
|
| 2932 |
typedef const Value& ConstReference; |
|
| 2933 |
|
|
| 2934 |
/// \brief Gives back the maximal value plus one. |
|
| 2935 |
/// |
|
| 2936 |
/// Gives back the maximal value plus one. |
|
| 2937 |
int size() const {
|
|
| 2938 |
return _first.size(); |
|
| 2939 |
} |
|
| 2940 |
|
|
| 2941 |
/// \brief Set operation of the map. |
|
| 2942 |
/// |
|
| 2943 |
/// Set operation of the map. |
|
| 2944 |
void set(const Key& key, const Value& value) {
|
|
| 2945 |
unlace(key); |
|
| 2946 |
Parent::operator[](key).value = value; |
|
| 2947 |
lace(key); |
|
| 2948 |
} |
|
| 2949 |
|
|
| 2950 |
/// \brief Const subscript operator of the map. |
|
| 2951 |
/// |
|
| 2952 |
/// Const subscript operator of the map. |
|
| 2953 |
const Value& operator[](const Key& key) const {
|
|
| 2954 |
return Parent::operator[](key).value; |
|
| 2955 |
} |
|
| 2956 |
|
|
| 2957 |
/// \brief Subscript operator of the map. |
|
| 2958 |
/// |
|
| 2959 |
/// Subscript operator of the map. |
|
| 2960 |
Reference operator[](const Key& key) {
|
|
| 2961 |
return Reference(*this, key); |
|
| 2962 |
} |
|
| 2963 |
|
|
| 2964 |
/// \brief Iterator for the keys with the same value. |
|
| 2965 |
/// |
|
| 2966 |
/// Iterator for the keys with the same value. It works |
|
| 2967 |
/// like a graph item iterator, it can be converted to |
|
| 2968 |
/// the item type of the map, incremented with \c ++ operator, and |
|
| 2969 |
/// if the iterator leaves the last valid item, it will be equal to |
|
| 2970 |
/// \c INVALID. |
|
| 2971 |
class ItemIt : public Key {
|
|
| 2972 |
public: |
|
| 2973 |
typedef Key Parent; |
|
| 2974 |
|
|
| 2975 |
/// \brief Invalid constructor \& conversion. |
|
| 2976 |
/// |
|
| 2977 |
/// This constructor initializes the iterator to be invalid. |
|
| 2978 |
/// \sa Invalid for more details. |
|
| 2979 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 2980 |
|
|
| 2981 |
/// \brief Creates an iterator with a value. |
|
| 2982 |
/// |
|
| 2983 |
/// Creates an iterator with a value. It iterates on the |
|
| 2984 |
/// keys mapped to the given value. |
|
| 2985 |
/// \param map The IterableIntMap. |
|
| 2986 |
/// \param value The value. |
|
| 2987 |
ItemIt(const IterableIntMap& map, int value) : _map(&map) {
|
|
| 2988 |
if (value < 0 || value >= int(_map->_first.size())) {
|
|
| 2989 |
Parent::operator=(INVALID); |
|
| 2990 |
} else {
|
|
| 2991 |
Parent::operator=(_map->_first[value]); |
|
| 2992 |
} |
|
| 2993 |
} |
|
| 2994 |
|
|
| 2995 |
/// \brief Increment operator. |
|
| 2996 |
/// |
|
| 2997 |
/// Increment operator. |
|
| 2998 |
ItemIt& operator++() {
|
|
| 2999 |
Parent::operator=(_map->IterableIntMap::Parent:: |
|
| 3000 |
operator[](static_cast<Parent&>(*this)).next); |
|
| 3001 |
return *this; |
|
| 3002 |
} |
|
| 3003 |
|
|
| 3004 |
private: |
|
| 3005 |
const IterableIntMap* _map; |
|
| 3006 |
}; |
|
| 3007 |
|
|
| 3008 |
protected: |
|
| 3009 |
|
|
| 3010 |
virtual void erase(const Key& key) {
|
|
| 3011 |
unlace(key); |
|
| 3012 |
Parent::erase(key); |
|
| 3013 |
} |
|
| 3014 |
|
|
| 3015 |
virtual void erase(const std::vector<Key>& keys) {
|
|
| 3016 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 3017 |
unlace(keys[i]); |
|
| 3018 |
} |
|
| 3019 |
Parent::erase(keys); |
|
| 3020 |
} |
|
| 3021 |
|
|
| 3022 |
virtual void clear() {
|
|
| 3023 |
_first.clear(); |
|
| 3024 |
Parent::clear(); |
|
| 3025 |
} |
|
| 3026 |
|
|
| 3027 |
private: |
|
| 3028 |
std::vector<Key> _first; |
|
| 3029 |
}; |
|
| 3030 |
|
|
| 3031 |
namespace _maps_bits {
|
|
| 3032 |
template <typename Item, typename Value> |
|
| 3033 |
struct IterableValueMapNode {
|
|
| 3034 |
IterableValueMapNode(Value _value = Value()) : value(_value) {}
|
|
| 3035 |
Item prev, next; |
|
| 3036 |
Value value; |
|
| 3037 |
}; |
|
| 3038 |
} |
|
| 3039 |
|
|
| 3040 |
/// \brief Dynamic iterable map for comparable values. |
|
| 3041 |
/// |
|
| 3042 |
/// This class provides a special graph map type which can store a |
|
| 3043 |
/// comparable value for graph items (\c Node, \c Arc or \c Edge). |
|
| 3044 |
/// For each value it is possible to iterate on the keys mapped to |
|
| 3045 |
/// the value (\c ItemIt), and the values of the map can be accessed |
|
| 3046 |
/// with an STL compatible forward iterator (\c ValueIt). |
|
| 3047 |
/// The map stores a linked list for each value, which contains |
|
| 3048 |
/// the items mapped to the value, and the used values are stored |
|
| 3049 |
/// in balanced binary tree (\c std::map). |
|
| 3050 |
/// |
|
| 3051 |
/// \ref IterableBoolMap and \ref IterableIntMap are similar classes |
|
| 3052 |
/// specialized for \c bool and \c int values, respectively. |
|
| 3053 |
/// |
|
| 3054 |
/// This type is not reference map, so it cannot be modified with |
|
| 3055 |
/// the subscript operator. |
|
| 3056 |
/// |
|
| 3057 |
/// \tparam GR The graph type. |
|
| 3058 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
| 3059 |
/// \c GR::Edge). |
|
| 3060 |
/// \tparam V The value type of the map. It can be any comparable |
|
| 3061 |
/// value type. |
|
| 3062 |
/// |
|
| 3063 |
/// \see IterableBoolMap, IterableIntMap |
|
| 3064 |
/// \see CrossRefMap |
|
| 3065 |
template <typename GR, typename K, typename V> |
|
| 3066 |
class IterableValueMap |
|
| 3067 |
: protected ItemSetTraits<GR, K>:: |
|
| 3068 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
|
|
| 3069 |
public: |
|
| 3070 |
typedef typename ItemSetTraits<GR, K>:: |
|
| 3071 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent; |
|
| 3072 |
|
|
| 3073 |
/// The key type |
|
| 3074 |
typedef K Key; |
|
| 3075 |
/// The value type |
|
| 3076 |
typedef V Value; |
|
| 3077 |
/// The graph type |
|
| 3078 |
typedef GR Graph; |
|
| 3079 |
|
|
| 3080 |
public: |
|
| 3081 |
|
|
| 3082 |
/// \brief Constructor of the map with a given value. |
|
| 3083 |
/// |
|
| 3084 |
/// Constructor of the map with a given value. |
|
| 3085 |
explicit IterableValueMap(const Graph& graph, |
|
| 3086 |
const Value& value = Value()) |
|
| 3087 |
: Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
|
|
| 3088 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
|
|
| 3089 |
lace(it); |
|
| 3090 |
} |
|
| 3091 |
} |
|
| 3092 |
|
|
| 3093 |
protected: |
|
| 3094 |
|
|
| 3095 |
void unlace(const Key& key) {
|
|
| 3096 |
typename Parent::Value& node = Parent::operator[](key); |
|
| 3097 |
if (node.prev != INVALID) {
|
|
| 3098 |
Parent::operator[](node.prev).next = node.next; |
|
| 3099 |
} else {
|
|
| 3100 |
if (node.next != INVALID) {
|
|
| 3101 |
_first[node.value] = node.next; |
|
| 3102 |
} else {
|
|
| 3103 |
_first.erase(node.value); |
|
| 3104 |
} |
|
| 3105 |
} |
|
| 3106 |
if (node.next != INVALID) {
|
|
| 3107 |
Parent::operator[](node.next).prev = node.prev; |
|
| 3108 |
} |
|
| 3109 |
} |
|
| 3110 |
|
|
| 3111 |
void lace(const Key& key) {
|
|
| 3112 |
typename Parent::Value& node = Parent::operator[](key); |
|
| 3113 |
typename std::map<Value, Key>::iterator it = _first.find(node.value); |
|
| 3114 |
if (it == _first.end()) {
|
|
| 3115 |
node.prev = node.next = INVALID; |
|
| 3116 |
_first.insert(std::make_pair(node.value, key)); |
|
| 3117 |
} else {
|
|
| 3118 |
node.prev = INVALID; |
|
| 3119 |
node.next = it->second; |
|
| 3120 |
if (node.next != INVALID) {
|
|
| 3121 |
Parent::operator[](node.next).prev = key; |
|
| 3122 |
} |
|
| 3123 |
it->second = key; |
|
| 3124 |
} |
|
| 3125 |
} |
|
| 3126 |
|
|
| 3127 |
public: |
|
| 3128 |
|
|
| 3129 |
/// \brief Forward iterator for values. |
|
| 3130 |
/// |
|
| 3131 |
/// This iterator is an STL compatible forward |
|
| 3132 |
/// iterator on the values of the map. The values can |
|
| 3133 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
|
| 3134 |
class ValueIt |
|
| 3135 |
: public std::iterator<std::forward_iterator_tag, Value> {
|
|
| 3136 |
friend class IterableValueMap; |
|
| 3137 |
private: |
|
| 3138 |
ValueIt(typename std::map<Value, Key>::const_iterator _it) |
|
| 3139 |
: it(_it) {}
|
|
| 3140 |
public: |
|
| 3141 |
|
|
| 3142 |
/// Constructor |
|
| 3143 |
ValueIt() {}
|
|
| 3144 |
|
|
| 3145 |
/// \e |
|
| 3146 |
ValueIt& operator++() { ++it; return *this; }
|
|
| 3147 |
/// \e |
|
| 3148 |
ValueIt operator++(int) {
|
|
| 3149 |
ValueIt tmp(*this); |
|
| 3150 |
operator++(); |
|
| 3151 |
return tmp; |
|
| 3152 |
} |
|
| 3153 |
|
|
| 3154 |
/// \e |
|
| 3155 |
const Value& operator*() const { return it->first; }
|
|
| 3156 |
/// \e |
|
| 3157 |
const Value* operator->() const { return &(it->first); }
|
|
| 3158 |
|
|
| 3159 |
/// \e |
|
| 3160 |
bool operator==(ValueIt jt) const { return it == jt.it; }
|
|
| 3161 |
/// \e |
|
| 3162 |
bool operator!=(ValueIt jt) const { return it != jt.it; }
|
|
| 3163 |
|
|
| 3164 |
private: |
|
| 3165 |
typename std::map<Value, Key>::const_iterator it; |
|
| 3166 |
}; |
|
| 3167 |
|
|
| 3168 |
/// \brief Returns an iterator to the first value. |
|
| 3169 |
/// |
|
| 3170 |
/// Returns an STL compatible iterator to the |
|
| 3171 |
/// first value of the map. The values of the |
|
| 3172 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|
| 3173 |
/// range. |
|
| 3174 |
ValueIt beginValue() const {
|
|
| 3175 |
return ValueIt(_first.begin()); |
|
| 3176 |
} |
|
| 3177 |
|
|
| 3178 |
/// \brief Returns an iterator after the last value. |
|
| 3179 |
/// |
|
| 3180 |
/// Returns an STL compatible iterator after the |
|
| 3181 |
/// last value of the map. The values of the |
|
| 3182 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|
| 3183 |
/// range. |
|
| 3184 |
ValueIt endValue() const {
|
|
| 3185 |
return ValueIt(_first.end()); |
|
| 3186 |
} |
|
| 3187 |
|
|
| 3188 |
/// \brief Set operation of the map. |
|
| 3189 |
/// |
|
| 3190 |
/// Set operation of the map. |
|
| 3191 |
void set(const Key& key, const Value& value) {
|
|
| 3192 |
unlace(key); |
|
| 3193 |
Parent::operator[](key).value = value; |
|
| 3194 |
lace(key); |
|
| 3195 |
} |
|
| 3196 |
|
|
| 3197 |
/// \brief Const subscript operator of the map. |
|
| 3198 |
/// |
|
| 3199 |
/// Const subscript operator of the map. |
|
| 3200 |
const Value& operator[](const Key& key) const {
|
|
| 3201 |
return Parent::operator[](key).value; |
|
| 3202 |
} |
|
| 3203 |
|
|
| 3204 |
/// \brief Iterator for the keys with the same value. |
|
| 3205 |
/// |
|
| 3206 |
/// Iterator for the keys with the same value. It works |
|
| 3207 |
/// like a graph item iterator, it can be converted to |
|
| 3208 |
/// the item type of the map, incremented with \c ++ operator, and |
|
| 3209 |
/// if the iterator leaves the last valid item, it will be equal to |
|
| 3210 |
/// \c INVALID. |
|
| 3211 |
class ItemIt : public Key {
|
|
| 3212 |
public: |
|
| 3213 |
typedef Key Parent; |
|
| 3214 |
|
|
| 3215 |
/// \brief Invalid constructor \& conversion. |
|
| 3216 |
/// |
|
| 3217 |
/// This constructor initializes the iterator to be invalid. |
|
| 3218 |
/// \sa Invalid for more details. |
|
| 3219 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 3220 |
|
|
| 3221 |
/// \brief Creates an iterator with a value. |
|
| 3222 |
/// |
|
| 3223 |
/// Creates an iterator with a value. It iterates on the |
|
| 3224 |
/// keys which have the given value. |
|
| 3225 |
/// \param map The IterableValueMap |
|
| 3226 |
/// \param value The value |
|
| 3227 |
ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
|
|
| 3228 |
typename std::map<Value, Key>::const_iterator it = |
|
| 3229 |
map._first.find(value); |
|
| 3230 |
if (it == map._first.end()) {
|
|
| 3231 |
Parent::operator=(INVALID); |
|
| 3232 |
} else {
|
|
| 3233 |
Parent::operator=(it->second); |
|
| 3234 |
} |
|
| 3235 |
} |
|
| 3236 |
|
|
| 3237 |
/// \brief Increment operator. |
|
| 3238 |
/// |
|
| 3239 |
/// Increment Operator. |
|
| 3240 |
ItemIt& operator++() {
|
|
| 3241 |
Parent::operator=(_map->IterableValueMap::Parent:: |
|
| 3242 |
operator[](static_cast<Parent&>(*this)).next); |
|
| 3243 |
return *this; |
|
| 3244 |
} |
|
| 3245 |
|
|
| 3246 |
|
|
| 3247 |
private: |
|
| 3248 |
const IterableValueMap* _map; |
|
| 3249 |
}; |
|
| 3250 |
|
|
| 3251 |
protected: |
|
| 3252 |
|
|
| 3253 |
virtual void add(const Key& key) {
|
|
| 3254 |
Parent::add(key); |
|
| 3255 |
unlace(key); |
|
| 3256 |
} |
|
| 3257 |
|
|
| 3258 |
virtual void add(const std::vector<Key>& keys) {
|
|
| 3259 |
Parent::add(keys); |
|
| 3260 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 3261 |
lace(keys[i]); |
|
| 3262 |
} |
|
| 3263 |
} |
|
| 3264 |
|
|
| 3265 |
virtual void erase(const Key& key) {
|
|
| 3266 |
unlace(key); |
|
| 3267 |
Parent::erase(key); |
|
| 3268 |
} |
|
| 3269 |
|
|
| 3270 |
virtual void erase(const std::vector<Key>& keys) {
|
|
| 3271 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 3272 |
unlace(keys[i]); |
|
| 3273 |
} |
|
| 3274 |
Parent::erase(keys); |
|
| 3275 |
} |
|
| 3276 |
|
|
| 3277 |
virtual void build() {
|
|
| 3278 |
Parent::build(); |
|
| 3279 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
|
|
| 3280 |
lace(it); |
|
| 3281 |
} |
|
| 3282 |
} |
|
| 3283 |
|
|
| 3284 |
virtual void clear() {
|
|
| 3285 |
_first.clear(); |
|
| 3286 |
Parent::clear(); |
|
| 3287 |
} |
|
| 3288 |
|
|
| 3289 |
private: |
|
| 3290 |
std::map<Value, Key> _first; |
|
| 3291 |
}; |
|
| 3292 |
|
|
| 2314 | 3293 |
/// \brief Map of the source nodes of arcs in a digraph. |
| 2315 | 3294 |
/// |
| 2316 | 3295 |
/// SourceMap provides access for the source node of each arc in a digraph, |
| 2317 | 3296 |
/// which is returned by the \c source() function of the digraph. |
| 2318 | 3297 |
/// \tparam GR The digraph type. |
| 2319 | 3298 |
/// \see TargetMap |
| 2320 | 3299 |
template <typename GR> |
| 2321 | 3300 |
class SourceMap {
|
| 2322 | 3301 |
public: |
| 2323 | 3302 |
|
| 2324 |
///\ |
|
| 3303 |
/// The key type (the \c Arc type of the digraph). |
|
| 2325 | 3304 |
typedef typename GR::Arc Key; |
| 2326 |
///\ |
|
| 3305 |
/// The value type (the \c Node type of the digraph). |
|
| 2327 | 3306 |
typedef typename GR::Node Value; |
| 2328 | 3307 |
|
| 2329 | 3308 |
/// \brief Constructor |
| 2330 | 3309 |
/// |
| 2331 | 3310 |
/// Constructor. |
| 2332 | 3311 |
/// \param digraph The digraph that the map belongs to. |
| 2333 | 3312 |
explicit SourceMap(const GR& digraph) : _graph(digraph) {}
|
| 2334 | 3313 |
|
| 2335 | 3314 |
/// \brief Returns the source node of the given arc. |
| 2336 | 3315 |
/// |
| 2337 | 3316 |
/// Returns the source node of the given arc. |
| 2338 | 3317 |
Value operator[](const Key& arc) const {
|
| 2339 | 3318 |
return _graph.source(arc); |
| 2340 | 3319 |
} |
| 2341 | 3320 |
|
| 2342 | 3321 |
private: |
| 2343 | 3322 |
const GR& _graph; |
| 2344 | 3323 |
}; |
| 2345 | 3324 |
|
| 2346 | 3325 |
/// \brief Returns a \c SourceMap class. |
| 2347 | 3326 |
/// |
| 2348 | 3327 |
/// This function just returns an \c SourceMap class. |
| 2349 | 3328 |
/// \relates SourceMap |
| 2350 | 3329 |
template <typename GR> |
| 2351 | 3330 |
inline SourceMap<GR> sourceMap(const GR& graph) {
|
| 2352 | 3331 |
return SourceMap<GR>(graph); |
| 2353 | 3332 |
} |
| 2354 | 3333 |
|
| 2355 | 3334 |
/// \brief Map of the target nodes of arcs in a digraph. |
| 2356 | 3335 |
/// |
| 2357 | 3336 |
/// TargetMap provides access for the target node of each arc in a digraph, |
| 2358 | 3337 |
/// which is returned by the \c target() function of the digraph. |
| 2359 | 3338 |
/// \tparam GR The digraph type. |
| 2360 | 3339 |
/// \see SourceMap |
| 2361 | 3340 |
template <typename GR> |
| 2362 | 3341 |
class TargetMap {
|
| 2363 | 3342 |
public: |
| 2364 | 3343 |
|
| 2365 |
///\ |
|
| 3344 |
/// The key type (the \c Arc type of the digraph). |
|
| 2366 | 3345 |
typedef typename GR::Arc Key; |
| 2367 |
///\ |
|
| 3346 |
/// The value type (the \c Node type of the digraph). |
|
| 2368 | 3347 |
typedef typename GR::Node Value; |
| 2369 | 3348 |
|
| 2370 | 3349 |
/// \brief Constructor |
| 2371 | 3350 |
/// |
| 2372 | 3351 |
/// Constructor. |
| 2373 | 3352 |
/// \param digraph The digraph that the map belongs to. |
| 2374 | 3353 |
explicit TargetMap(const GR& digraph) : _graph(digraph) {}
|
| 2375 | 3354 |
|
| 2376 | 3355 |
/// \brief Returns the target node of the given arc. |
| 2377 | 3356 |
/// |
| 2378 | 3357 |
/// Returns the target node of the given arc. |
| 2379 | 3358 |
Value operator[](const Key& e) const {
|
| 2380 | 3359 |
return _graph.target(e); |
| 2381 | 3360 |
} |
| 2382 | 3361 |
|
| 2383 | 3362 |
private: |
| 2384 | 3363 |
const GR& _graph; |
| 2385 | 3364 |
}; |
| 2386 | 3365 |
|
| 2387 | 3366 |
/// \brief Returns a \c TargetMap class. |
| 2388 | 3367 |
/// |
| 2389 | 3368 |
/// This function just returns a \c TargetMap class. |
| 2390 | 3369 |
/// \relates TargetMap |
| 2391 | 3370 |
template <typename GR> |
| 2392 | 3371 |
inline TargetMap<GR> targetMap(const GR& graph) {
|
| 2393 | 3372 |
return TargetMap<GR>(graph); |
| 2394 | 3373 |
} |
| 2395 | 3374 |
|
| 2396 | 3375 |
/// \brief Map of the "forward" directed arc view of edges in a graph. |
| 2397 | 3376 |
/// |
| 2398 | 3377 |
/// ForwardMap provides access for the "forward" directed arc view of |
| 2399 | 3378 |
/// each edge in a graph, which is returned by the \c direct() function |
| 2400 | 3379 |
/// of the graph with \c true parameter. |
| 2401 | 3380 |
/// \tparam GR The graph type. |
| 2402 | 3381 |
/// \see BackwardMap |
| 2403 | 3382 |
template <typename GR> |
| 2404 | 3383 |
class ForwardMap {
|
| 2405 | 3384 |
public: |
| 2406 | 3385 |
|
| 3386 |
/// The key type (the \c Edge type of the digraph). |
|
| 3387 |
typedef typename GR::Edge Key; |
|
| 3388 |
/// The value type (the \c Arc type of the digraph). |
|
| 2407 | 3389 |
typedef typename GR::Arc Value; |
| 2408 |
typedef typename GR::Edge Key; |
|
| 2409 | 3390 |
|
| 2410 | 3391 |
/// \brief Constructor |
| 2411 | 3392 |
/// |
| 2412 | 3393 |
/// Constructor. |
| 2413 | 3394 |
/// \param graph The graph that the map belongs to. |
| 2414 | 3395 |
explicit ForwardMap(const GR& graph) : _graph(graph) {}
|
| 2415 | 3396 |
|
| 2416 | 3397 |
/// \brief Returns the "forward" directed arc view of the given edge. |
| 2417 | 3398 |
/// |
| 2418 | 3399 |
/// Returns the "forward" directed arc view of the given edge. |
| 2419 | 3400 |
Value operator[](const Key& key) const {
|
| 2420 | 3401 |
return _graph.direct(key, true); |
| 2421 | 3402 |
} |
| 2422 | 3403 |
|
| 2423 | 3404 |
private: |
| 2424 | 3405 |
const GR& _graph; |
| 2425 | 3406 |
}; |
| 2426 | 3407 |
|
| 2427 | 3408 |
/// \brief Returns a \c ForwardMap class. |
| 2428 | 3409 |
/// |
| 2429 | 3410 |
/// This function just returns an \c ForwardMap class. |
| 2430 | 3411 |
/// \relates ForwardMap |
| 2431 | 3412 |
template <typename GR> |
| 2432 | 3413 |
inline ForwardMap<GR> forwardMap(const GR& graph) {
|
| 2433 | 3414 |
return ForwardMap<GR>(graph); |
| 2434 | 3415 |
} |
| 2435 | 3416 |
|
| 2436 | 3417 |
/// \brief Map of the "backward" directed arc view of edges in a graph. |
| 2437 | 3418 |
/// |
| 2438 | 3419 |
/// BackwardMap provides access for the "backward" directed arc view of |
| 2439 | 3420 |
/// each edge in a graph, which is returned by the \c direct() function |
| 2440 | 3421 |
/// of the graph with \c false parameter. |
| 2441 | 3422 |
/// \tparam GR The graph type. |
| 2442 | 3423 |
/// \see ForwardMap |
| 2443 | 3424 |
template <typename GR> |
| 2444 | 3425 |
class BackwardMap {
|
| 2445 | 3426 |
public: |
| 2446 | 3427 |
|
| 3428 |
/// The key type (the \c Edge type of the digraph). |
|
| 3429 |
typedef typename GR::Edge Key; |
|
| 3430 |
/// The value type (the \c Arc type of the digraph). |
|
| 2447 | 3431 |
typedef typename GR::Arc Value; |
| 2448 |
typedef typename GR::Edge Key; |
|
| 2449 | 3432 |
|
| 2450 | 3433 |
/// \brief Constructor |
| 2451 | 3434 |
/// |
| 2452 | 3435 |
/// Constructor. |
| 2453 | 3436 |
/// \param graph The graph that the map belongs to. |
| 2454 | 3437 |
explicit BackwardMap(const GR& graph) : _graph(graph) {}
|
| 2455 | 3438 |
|
| 2456 | 3439 |
/// \brief Returns the "backward" directed arc view of the given edge. |
| 2457 | 3440 |
/// |
| 2458 | 3441 |
/// Returns the "backward" directed arc view of the given edge. |
| 2459 | 3442 |
Value operator[](const Key& key) const {
|
| 2460 | 3443 |
return _graph.direct(key, false); |
| 2461 | 3444 |
} |
| 2462 | 3445 |
|
| 2463 | 3446 |
private: |
| 2464 | 3447 |
const GR& _graph; |
| 2465 | 3448 |
}; |
| 2466 | 3449 |
|
| 2467 | 3450 |
/// \brief Returns a \c BackwardMap class |
| 2468 | 3451 |
|
| 2469 | 3452 |
/// This function just returns a \c BackwardMap class. |
| 2470 | 3453 |
/// \relates BackwardMap |
| 2471 | 3454 |
template <typename GR> |
| 2472 | 3455 |
inline BackwardMap<GR> backwardMap(const GR& graph) {
|
| 2473 | 3456 |
return BackwardMap<GR>(graph); |
| 2474 | 3457 |
} |
| 2475 | 3458 |
|
| 2476 | 3459 |
/// \brief Map of the in-degrees of nodes in a digraph. |
| 2477 | 3460 |
/// |
| 2478 | 3461 |
/// This map returns the in-degree of a node. Once it is constructed, |
| 2479 | 3462 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
| 2480 | 3463 |
/// in constant time. On the other hand, the values are updated automatically |
| 2481 | 3464 |
/// whenever the digraph changes. |
| 2482 | 3465 |
/// |
| 2483 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
| 3466 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
| 2484 | 3467 |
/// may provide alternative ways to modify the digraph. |
| 2485 | 3468 |
/// The correct behavior of InDegMap is not guarantied if these additional |
| 2486 | 3469 |
/// features are used. For example the functions |
| 2487 | 3470 |
/// \ref ListDigraph::changeSource() "changeSource()", |
| 2488 | 3471 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
| 2489 | 3472 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
| 2490 | 3473 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
| 2491 | 3474 |
/// |
| 2492 | 3475 |
/// \sa OutDegMap |
| 2493 | 3476 |
template <typename GR> |
| 2494 | 3477 |
class InDegMap |
| 2495 | 3478 |
: protected ItemSetTraits<GR, typename GR::Arc> |
| 2496 | 3479 |
::ItemNotifier::ObserverBase {
|
| 2497 | 3480 |
|
| 2498 | 3481 |
public: |
| 2499 |
|
|
| 3482 |
|
|
| 2500 | 3483 |
/// The graph type of InDegMap |
| 2501 | 3484 |
typedef GR Graph; |
| 2502 | 3485 |
typedef GR Digraph; |
| 2503 | 3486 |
/// The key type |
| 2504 | 3487 |
typedef typename Digraph::Node Key; |
| 2505 | 3488 |
/// The value type |
| 2506 | 3489 |
typedef int Value; |
| 2507 | 3490 |
|
| 2508 | 3491 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
| 2509 | 3492 |
::ItemNotifier::ObserverBase Parent; |
| 2510 | 3493 |
|
| 2511 | 3494 |
private: |
| 2512 | 3495 |
|
| 2513 | 3496 |
class AutoNodeMap |
| 2514 | 3497 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
|
| 2515 | 3498 |
public: |
| 2516 | 3499 |
|
| 2517 | 3500 |
typedef typename ItemSetTraits<Digraph, Key>:: |
| 2518 | 3501 |
template Map<int>::Type Parent; |
| 2519 | 3502 |
|
| 2520 | 3503 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
|
| 2521 | 3504 |
|
| 2522 | 3505 |
virtual void add(const Key& key) {
|
| 2523 | 3506 |
Parent::add(key); |
| 2524 | 3507 |
Parent::set(key, 0); |
| 2525 | 3508 |
} |
| 2526 | 3509 |
|
| 2527 | 3510 |
virtual void add(const std::vector<Key>& keys) {
|
| 2528 | 3511 |
Parent::add(keys); |
| 2529 | 3512 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 2530 | 3513 |
Parent::set(keys[i], 0); |
| 2531 | 3514 |
} |
| 2532 | 3515 |
} |
| 2533 | 3516 |
|
| 2534 | 3517 |
virtual void build() {
|
| 2535 | 3518 |
Parent::build(); |
| 2536 | 3519 |
Key it; |
| 2537 | 3520 |
typename Parent::Notifier* nf = Parent::notifier(); |
| 2538 | 3521 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2539 | 3522 |
Parent::set(it, 0); |
| 2540 | 3523 |
} |
| 2541 | 3524 |
} |
| 2542 | 3525 |
}; |
| 2543 | 3526 |
|
| 2544 | 3527 |
public: |
| 2545 | 3528 |
|
| 2546 | 3529 |
/// \brief Constructor. |
| 2547 | 3530 |
/// |
| 2548 | 3531 |
/// Constructor for creating an in-degree map. |
| 2549 | 3532 |
explicit InDegMap(const Digraph& graph) |
| 2550 | 3533 |
: _digraph(graph), _deg(graph) {
|
| 2551 | 3534 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
| 2552 | 3535 |
|
| 2553 | 3536 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2554 | 3537 |
_deg[it] = countInArcs(_digraph, it); |
| 2555 | 3538 |
} |
| 2556 | 3539 |
} |
| 2557 | 3540 |
|
| 2558 | 3541 |
/// \brief Gives back the in-degree of a Node. |
| 2559 | 3542 |
/// |
| 2560 | 3543 |
/// Gives back the in-degree of a Node. |
| 2561 | 3544 |
int operator[](const Key& key) const {
|
| 2562 | 3545 |
return _deg[key]; |
| 2563 | 3546 |
} |
| 2564 | 3547 |
|
| 2565 | 3548 |
protected: |
| 2566 | 3549 |
|
| 2567 | 3550 |
typedef typename Digraph::Arc Arc; |
| 2568 | 3551 |
|
| 2569 | 3552 |
virtual void add(const Arc& arc) {
|
| 2570 | 3553 |
++_deg[_digraph.target(arc)]; |
| 2571 | 3554 |
} |
| 2572 | 3555 |
|
| 2573 | 3556 |
virtual void add(const std::vector<Arc>& arcs) {
|
| 2574 | 3557 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2575 | 3558 |
++_deg[_digraph.target(arcs[i])]; |
| 2576 | 3559 |
} |
| 2577 | 3560 |
} |
| 2578 | 3561 |
|
| 2579 | 3562 |
virtual void erase(const Arc& arc) {
|
| 2580 | 3563 |
--_deg[_digraph.target(arc)]; |
| 2581 | 3564 |
} |
| 2582 | 3565 |
|
| 2583 | 3566 |
virtual void erase(const std::vector<Arc>& arcs) {
|
| 2584 | 3567 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2585 | 3568 |
--_deg[_digraph.target(arcs[i])]; |
| 2586 | 3569 |
} |
| 2587 | 3570 |
} |
| 2588 | 3571 |
|
| 2589 | 3572 |
virtual void build() {
|
| 2590 | 3573 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2591 | 3574 |
_deg[it] = countInArcs(_digraph, it); |
| 2592 | 3575 |
} |
| 2593 | 3576 |
} |
| 2594 | 3577 |
|
| 2595 | 3578 |
virtual void clear() {
|
| 2596 | 3579 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2597 | 3580 |
_deg[it] = 0; |
| 2598 | 3581 |
} |
| 2599 | 3582 |
} |
| 2600 | 3583 |
private: |
| 2601 | 3584 |
|
| 2602 | 3585 |
const Digraph& _digraph; |
| 2603 | 3586 |
AutoNodeMap _deg; |
| 2604 | 3587 |
}; |
| 2605 | 3588 |
|
| 2606 | 3589 |
/// \brief Map of the out-degrees of nodes in a digraph. |
| 2607 | 3590 |
/// |
| 2608 | 3591 |
/// This map returns the out-degree of a node. Once it is constructed, |
| 2609 | 3592 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
| 2610 | 3593 |
/// in constant time. On the other hand, the values are updated automatically |
| 2611 | 3594 |
/// whenever the digraph changes. |
| 2612 | 3595 |
/// |
| 2613 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
| 3596 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
| 2614 | 3597 |
/// may provide alternative ways to modify the digraph. |
| 2615 | 3598 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
| 2616 | 3599 |
/// features are used. For example the functions |
| 2617 | 3600 |
/// \ref ListDigraph::changeSource() "changeSource()", |
| 2618 | 3601 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
| 2619 | 3602 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
| 2620 | 3603 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
| 2621 | 3604 |
/// |
| 2622 | 3605 |
/// \sa InDegMap |
| 2623 | 3606 |
template <typename GR> |
| 2624 | 3607 |
class OutDegMap |
| 2625 | 3608 |
: protected ItemSetTraits<GR, typename GR::Arc> |
| 2626 | 3609 |
::ItemNotifier::ObserverBase {
|
| 2627 | 3610 |
|
| 2628 | 3611 |
public: |
| 2629 | 3612 |
|
| 2630 | 3613 |
/// The graph type of OutDegMap |
| 2631 | 3614 |
typedef GR Graph; |
| 2632 | 3615 |
typedef GR Digraph; |
| 2633 | 3616 |
/// The key type |
| 2634 | 3617 |
typedef typename Digraph::Node Key; |
| 2635 | 3618 |
/// The value type |
| 2636 | 3619 |
typedef int Value; |
| 2637 | 3620 |
|
| 2638 | 3621 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
| 2639 | 3622 |
::ItemNotifier::ObserverBase Parent; |
| 2640 | 3623 |
|
| 2641 | 3624 |
private: |
| 2642 | 3625 |
|
| 2643 | 3626 |
class AutoNodeMap |
| 2644 | 3627 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
|
| 2645 | 3628 |
public: |
| 2646 | 3629 |
|
| 2647 | 3630 |
typedef typename ItemSetTraits<Digraph, Key>:: |
| 2648 | 3631 |
template Map<int>::Type Parent; |
| 2649 | 3632 |
|
| 2650 | 3633 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
|
| 2651 | 3634 |
|
| 2652 | 3635 |
virtual void add(const Key& key) {
|
| 2653 | 3636 |
Parent::add(key); |
| 2654 | 3637 |
Parent::set(key, 0); |
| 2655 | 3638 |
} |
| 2656 | 3639 |
virtual void add(const std::vector<Key>& keys) {
|
| 2657 | 3640 |
Parent::add(keys); |
| 2658 | 3641 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 2659 | 3642 |
Parent::set(keys[i], 0); |
| 2660 | 3643 |
} |
| 2661 | 3644 |
} |
| 2662 | 3645 |
virtual void build() {
|
| 2663 | 3646 |
Parent::build(); |
| 2664 | 3647 |
Key it; |
| 2665 | 3648 |
typename Parent::Notifier* nf = Parent::notifier(); |
| 2666 | 3649 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2667 | 3650 |
Parent::set(it, 0); |
| 2668 | 3651 |
} |
| 2669 | 3652 |
} |
| 2670 | 3653 |
}; |
| 2671 | 3654 |
|
| 2672 | 3655 |
public: |
| 2673 | 3656 |
|
| 2674 | 3657 |
/// \brief Constructor. |
| 2675 | 3658 |
/// |
| 2676 | 3659 |
/// Constructor for creating an out-degree map. |
| 2677 | 3660 |
explicit OutDegMap(const Digraph& graph) |
| 2678 | 3661 |
: _digraph(graph), _deg(graph) {
|
| 2679 | 3662 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
| 2680 | 3663 |
|
| 2681 | 3664 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2682 | 3665 |
_deg[it] = countOutArcs(_digraph, it); |
| 2683 | 3666 |
} |
| 2684 | 3667 |
} |
| 2685 | 3668 |
|
| 2686 | 3669 |
/// \brief Gives back the out-degree of a Node. |
| 2687 | 3670 |
/// |
| 2688 | 3671 |
/// Gives back the out-degree of a Node. |
| 2689 | 3672 |
int operator[](const Key& key) const {
|
| 2690 | 3673 |
return _deg[key]; |
| 2691 | 3674 |
} |
| 2692 | 3675 |
|
| 2693 | 3676 |
protected: |
| 2694 | 3677 |
|
| 2695 | 3678 |
typedef typename Digraph::Arc Arc; |
| 2696 | 3679 |
|
| 2697 | 3680 |
virtual void add(const Arc& arc) {
|
| 2698 | 3681 |
++_deg[_digraph.source(arc)]; |
| 2699 | 3682 |
} |
| 2700 | 3683 |
|
| 2701 | 3684 |
virtual void add(const std::vector<Arc>& arcs) {
|
| 2702 | 3685 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2703 | 3686 |
++_deg[_digraph.source(arcs[i])]; |
| 2704 | 3687 |
} |
| 2705 | 3688 |
} |
| 2706 | 3689 |
|
| 2707 | 3690 |
virtual void erase(const Arc& arc) {
|
| 2708 | 3691 |
--_deg[_digraph.source(arc)]; |
| 2709 | 3692 |
} |
| 2710 | 3693 |
|
| 2711 | 3694 |
virtual void erase(const std::vector<Arc>& arcs) {
|
| 2712 | 3695 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2713 | 3696 |
--_deg[_digraph.source(arcs[i])]; |
| 2714 | 3697 |
} |
| 2715 | 3698 |
} |
| 2716 | 3699 |
|
| 2717 | 3700 |
virtual void build() {
|
| 2718 | 3701 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2719 | 3702 |
_deg[it] = countOutArcs(_digraph, it); |
| 2720 | 3703 |
} |
| 2721 | 3704 |
} |
| 2722 | 3705 |
|
| 2723 | 3706 |
virtual void clear() {
|
| 2724 | 3707 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2725 | 3708 |
_deg[it] = 0; |
| 2726 | 3709 |
} |
| 2727 | 3710 |
} |
| 2728 | 3711 |
private: |
| 2729 | 3712 |
|
| 2730 | 3713 |
const Digraph& _digraph; |
| 2731 | 3714 |
AutoNodeMap _deg; |
| 2732 | 3715 |
}; |
| 2733 | 3716 |
|
| 2734 | 3717 |
/// \brief Potential difference map |
| 2735 | 3718 |
/// |
| 2736 | 3719 |
/// PotentialDifferenceMap returns the difference between the potentials of |
| 2737 | 3720 |
/// the source and target nodes of each arc in a digraph, i.e. it returns |
| 2738 | 3721 |
/// \code |
| 2739 | 3722 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
| 2740 | 3723 |
/// \endcode |
| 2741 | 3724 |
/// \tparam GR The digraph type. |
| 2742 | 3725 |
/// \tparam POT A node map storing the potentials. |
| 2743 | 3726 |
template <typename GR, typename POT> |
| 2744 | 3727 |
class PotentialDifferenceMap {
|
| 2745 | 3728 |
public: |
| 2746 | 3729 |
/// Key type |
| 2747 | 3730 |
typedef typename GR::Arc Key; |
| 2748 | 3731 |
/// Value type |
| 2749 | 3732 |
typedef typename POT::Value Value; |
| 2750 | 3733 |
|
| 2751 | 3734 |
/// \brief Constructor |
| 2752 | 3735 |
/// |
| 2753 | 3736 |
/// Contructor of the map. |
| 2754 | 3737 |
explicit PotentialDifferenceMap(const GR& gr, |
| 2755 | 3738 |
const POT& potential) |
| 2756 | 3739 |
: _digraph(gr), _potential(potential) {}
|
| 2757 | 3740 |
|
| 2758 | 3741 |
/// \brief Returns the potential difference for the given arc. |
| 2759 | 3742 |
/// |
| 2760 | 3743 |
/// Returns the potential difference for the given arc, i.e. |
| 2761 | 3744 |
/// \code |
| 2762 | 3745 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
| 2763 | 3746 |
/// \endcode |
| 2764 | 3747 |
Value operator[](const Key& arc) const {
|
| 2765 | 3748 |
return _potential[_digraph.target(arc)] - |
| 2766 | 3749 |
_potential[_digraph.source(arc)]; |
| 2767 | 3750 |
} |
| 2768 | 3751 |
|
| 2769 | 3752 |
private: |
| 2770 | 3753 |
const GR& _digraph; |
| 2771 | 3754 |
const POT& _potential; |
| 2772 | 3755 |
}; |
| 2773 | 3756 |
|
| 2774 | 3757 |
/// \brief Returns a PotentialDifferenceMap. |
| 2775 | 3758 |
/// |
| 2776 | 3759 |
/// This function just returns a PotentialDifferenceMap. |
| 2777 | 3760 |
/// \relates PotentialDifferenceMap |
| 2778 | 3761 |
template <typename GR, typename POT> |
| 2779 | 3762 |
PotentialDifferenceMap<GR, POT> |
| 2780 | 3763 |
potentialDifferenceMap(const GR& gr, const POT& potential) {
|
| 2781 | 3764 |
return PotentialDifferenceMap<GR, POT>(gr, potential); |
| 2782 | 3765 |
} |
| 2783 | 3766 |
|
| 2784 | 3767 |
/// @} |
| 2785 | 3768 |
} |
| 2786 | 3769 |
|
| 2787 | 3770 |
#endif // LEMON_MAPS_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_MIN_COST_ARBORESCENCE_H |
| 20 | 20 |
#define LEMON_MIN_COST_ARBORESCENCE_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup spantree |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Minimum Cost Arborescence algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/list_graph.h> |
| 29 | 29 |
#include <lemon/bin_heap.h> |
| 30 | 30 |
#include <lemon/assert.h> |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
|
| 35 | 35 |
/// \brief Default traits class for MinCostArborescence class. |
| 36 | 36 |
/// |
| 37 | 37 |
/// Default traits class for MinCostArborescence class. |
| 38 | 38 |
/// \param GR Digraph type. |
| 39 | 39 |
/// \param CM Type of the cost map. |
| 40 | 40 |
template <class GR, class CM> |
| 41 | 41 |
struct MinCostArborescenceDefaultTraits{
|
| 42 | 42 |
|
| 43 | 43 |
/// \brief The digraph type the algorithm runs on. |
| 44 | 44 |
typedef GR Digraph; |
| 45 | 45 |
|
| 46 | 46 |
/// \brief The type of the map that stores the arc costs. |
| 47 | 47 |
/// |
| 48 | 48 |
/// The type of the map that stores the arc costs. |
| 49 | 49 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 50 | 50 |
typedef CM CostMap; |
| 51 | 51 |
|
| 52 | 52 |
/// \brief The value type of the costs. |
| 53 | 53 |
/// |
| 54 | 54 |
/// The value type of the costs. |
| 55 | 55 |
typedef typename CostMap::Value Value; |
| 56 | 56 |
|
| 57 | 57 |
/// \brief The type of the map that stores which arcs are in the |
| 58 | 58 |
/// arborescence. |
| 59 | 59 |
/// |
| 60 | 60 |
/// The type of the map that stores which arcs are in the |
| 61 | 61 |
/// arborescence. It must conform to the \ref concepts::WriteMap |
| 62 | 62 |
/// "WriteMap" concept, and its value type must be \c bool |
| 63 | 63 |
/// (or convertible). Initially it will be set to \c false on each |
| 64 | 64 |
/// arc, then it will be set on each arborescence arc once. |
| 65 | 65 |
typedef typename Digraph::template ArcMap<bool> ArborescenceMap; |
| 66 | 66 |
|
| 67 | 67 |
/// \brief Instantiates a \c ArborescenceMap. |
| 68 | 68 |
/// |
| 69 | 69 |
/// This function instantiates a \c ArborescenceMap. |
| 70 | 70 |
/// \param digraph The digraph to which we would like to calculate |
| 71 | 71 |
/// the \c ArborescenceMap. |
| 72 | 72 |
static ArborescenceMap *createArborescenceMap(const Digraph &digraph){
|
| 73 | 73 |
return new ArborescenceMap(digraph); |
| 74 | 74 |
} |
| 75 | 75 |
|
| 76 | 76 |
/// \brief The type of the \c PredMap |
| 77 | 77 |
/// |
| 78 | 78 |
/// The type of the \c PredMap. It must confrom to the |
| 79 | 79 |
/// \ref concepts::WriteMap "WriteMap" concept, and its value type |
| 80 | 80 |
/// must be the \c Arc type of the digraph. |
| 81 | 81 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 82 | 82 |
|
| 83 | 83 |
/// \brief Instantiates a \c PredMap. |
| 84 | 84 |
/// |
| 85 | 85 |
/// This function instantiates a \c PredMap. |
| 86 | 86 |
/// \param digraph The digraph to which we would like to define the |
| 87 | 87 |
/// \c PredMap. |
| 88 | 88 |
static PredMap *createPredMap(const Digraph &digraph){
|
| 89 | 89 |
return new PredMap(digraph); |
| 90 | 90 |
} |
| 91 | 91 |
|
| 92 | 92 |
}; |
| 93 | 93 |
|
| 94 | 94 |
/// \ingroup spantree |
| 95 | 95 |
/// |
| 96 | 96 |
/// \brief Minimum Cost Arborescence algorithm class. |
| 97 | 97 |
/// |
| 98 | 98 |
/// This class provides an efficient implementation of the |
| 99 | 99 |
/// Minimum Cost Arborescence algorithm. The arborescence is a tree |
| 100 | 100 |
/// which is directed from a given source node of the digraph. One or |
| 101 | 101 |
/// more sources should be given to the algorithm and it will calculate |
| 102 | 102 |
/// the minimum cost subgraph that is the union of arborescences with the |
| 103 | 103 |
/// given sources and spans all the nodes which are reachable from the |
| 104 | 104 |
/// sources. The time complexity of the algorithm is O(n<sup>2</sup>+e). |
| 105 | 105 |
/// |
| 106 | 106 |
/// The algorithm also provides an optimal dual solution, therefore |
| 107 | 107 |
/// the optimality of the solution can be checked. |
| 108 | 108 |
/// |
| 109 | 109 |
/// \param GR The digraph type the algorithm runs on. |
| 110 | 110 |
/// \param CM A read-only arc map storing the costs of the |
| 111 | 111 |
/// arcs. It is read once for each arc, so the map may involve in |
| 112 | 112 |
/// relatively time consuming process to compute the arc costs if |
| 113 | 113 |
/// it is necessary. The default map type is \ref |
| 114 | 114 |
/// concepts::Digraph::ArcMap "Digraph::ArcMap<int>". |
| 115 | 115 |
/// \param TR Traits class to set various data types used |
| 116 | 116 |
/// by the algorithm. The default traits class is |
| 117 | 117 |
/// \ref MinCostArborescenceDefaultTraits |
| 118 | 118 |
/// "MinCostArborescenceDefaultTraits<GR, CM>". |
| 119 | 119 |
#ifndef DOXYGEN |
| 120 | 120 |
template <typename GR, |
| 121 | 121 |
typename CM = typename GR::template ArcMap<int>, |
| 122 | 122 |
typename TR = |
| 123 | 123 |
MinCostArborescenceDefaultTraits<GR, CM> > |
| 124 | 124 |
#else |
| 125 | 125 |
template <typename GR, typename CM, typedef TR> |
| 126 | 126 |
#endif |
| 127 | 127 |
class MinCostArborescence {
|
| 128 | 128 |
public: |
| 129 | 129 |
|
| 130 | 130 |
/// \brief The \ref MinCostArborescenceDefaultTraits "traits class" |
| 131 | 131 |
/// of the algorithm. |
| 132 | 132 |
typedef TR Traits; |
| 133 | 133 |
/// The type of the underlying digraph. |
| 134 | 134 |
typedef typename Traits::Digraph Digraph; |
| 135 | 135 |
/// The type of the map that stores the arc costs. |
| 136 | 136 |
typedef typename Traits::CostMap CostMap; |
| 137 | 137 |
///The type of the costs of the arcs. |
| 138 | 138 |
typedef typename Traits::Value Value; |
| 139 | 139 |
///The type of the predecessor map. |
| 140 | 140 |
typedef typename Traits::PredMap PredMap; |
| 141 | 141 |
///The type of the map that stores which arcs are in the arborescence. |
| 142 | 142 |
typedef typename Traits::ArborescenceMap ArborescenceMap; |
| 143 | 143 |
|
| 144 | 144 |
typedef MinCostArborescence Create; |
| 145 | 145 |
|
| 146 | 146 |
private: |
| 147 | 147 |
|
| 148 | 148 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 149 | 149 |
|
| 150 | 150 |
struct CostArc {
|
| 151 | 151 |
|
| 152 | 152 |
Arc arc; |
| 153 | 153 |
Value value; |
| 154 | 154 |
|
| 155 | 155 |
CostArc() {}
|
| 156 | 156 |
CostArc(Arc _arc, Value _value) : arc(_arc), value(_value) {}
|
| 157 | 157 |
|
| 158 | 158 |
}; |
| 159 | 159 |
|
| 160 | 160 |
const Digraph *_digraph; |
| 161 | 161 |
const CostMap *_cost; |
| 162 | 162 |
|
| 163 | 163 |
PredMap *_pred; |
| 164 | 164 |
bool local_pred; |
| 165 | 165 |
|
| 166 | 166 |
ArborescenceMap *_arborescence; |
| 167 | 167 |
bool local_arborescence; |
| 168 | 168 |
|
| 169 | 169 |
typedef typename Digraph::template ArcMap<int> ArcOrder; |
| 170 | 170 |
ArcOrder *_arc_order; |
| 171 | 171 |
|
| 172 | 172 |
typedef typename Digraph::template NodeMap<int> NodeOrder; |
| 173 | 173 |
NodeOrder *_node_order; |
| 174 | 174 |
|
| 175 | 175 |
typedef typename Digraph::template NodeMap<CostArc> CostArcMap; |
| 176 | 176 |
CostArcMap *_cost_arcs; |
| 177 | 177 |
|
| 178 | 178 |
struct StackLevel {
|
| 179 | 179 |
|
| 180 | 180 |
std::vector<CostArc> arcs; |
| 181 | 181 |
int node_level; |
| 182 | 182 |
|
| 183 | 183 |
}; |
| 184 | 184 |
|
| 185 | 185 |
std::vector<StackLevel> level_stack; |
| 186 | 186 |
std::vector<Node> queue; |
| 187 | 187 |
|
| 188 | 188 |
typedef std::vector<typename Digraph::Node> DualNodeList; |
| 189 | 189 |
|
| 190 | 190 |
DualNodeList _dual_node_list; |
| 191 | 191 |
|
| 192 | 192 |
struct DualVariable {
|
| 193 | 193 |
int begin, end; |
| 194 | 194 |
Value value; |
| 195 | 195 |
|
| 196 | 196 |
DualVariable(int _begin, int _end, Value _value) |
| 197 | 197 |
: begin(_begin), end(_end), value(_value) {}
|
| 198 | 198 |
|
| 199 | 199 |
}; |
| 200 | 200 |
|
| 201 | 201 |
typedef std::vector<DualVariable> DualVariables; |
| 202 | 202 |
|
| 203 | 203 |
DualVariables _dual_variables; |
| 204 | 204 |
|
| 205 | 205 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 206 | 206 |
|
| 207 | 207 |
HeapCrossRef *_heap_cross_ref; |
| 208 | 208 |
|
| 209 | 209 |
typedef BinHeap<int, HeapCrossRef> Heap; |
| 210 | 210 |
|
| 211 | 211 |
Heap *_heap; |
| 212 | 212 |
|
| 213 | 213 |
protected: |
| 214 | 214 |
|
| 215 | 215 |
MinCostArborescence() {}
|
| 216 | 216 |
|
| 217 | 217 |
private: |
| 218 | 218 |
|
| 219 | 219 |
void createStructures() {
|
| 220 | 220 |
if (!_pred) {
|
| 221 | 221 |
local_pred = true; |
| 222 | 222 |
_pred = Traits::createPredMap(*_digraph); |
| 223 | 223 |
} |
| 224 | 224 |
if (!_arborescence) {
|
| 225 | 225 |
local_arborescence = true; |
| 226 | 226 |
_arborescence = Traits::createArborescenceMap(*_digraph); |
| 227 | 227 |
} |
| 228 | 228 |
if (!_arc_order) {
|
| 229 | 229 |
_arc_order = new ArcOrder(*_digraph); |
| 230 | 230 |
} |
| 231 | 231 |
if (!_node_order) {
|
| 232 | 232 |
_node_order = new NodeOrder(*_digraph); |
| 233 | 233 |
} |
| 234 | 234 |
if (!_cost_arcs) {
|
| 235 | 235 |
_cost_arcs = new CostArcMap(*_digraph); |
| 236 | 236 |
} |
| 237 | 237 |
if (!_heap_cross_ref) {
|
| 238 | 238 |
_heap_cross_ref = new HeapCrossRef(*_digraph, -1); |
| 239 | 239 |
} |
| 240 | 240 |
if (!_heap) {
|
| 241 | 241 |
_heap = new Heap(*_heap_cross_ref); |
| 242 | 242 |
} |
| 243 | 243 |
} |
| 244 | 244 |
|
| 245 | 245 |
void destroyStructures() {
|
| 246 | 246 |
if (local_arborescence) {
|
| 247 | 247 |
delete _arborescence; |
| 248 | 248 |
} |
| 249 | 249 |
if (local_pred) {
|
| 250 | 250 |
delete _pred; |
| 251 | 251 |
} |
| 252 | 252 |
if (_arc_order) {
|
| 253 | 253 |
delete _arc_order; |
| 254 | 254 |
} |
| 255 | 255 |
if (_node_order) {
|
| 256 | 256 |
delete _node_order; |
| 257 | 257 |
} |
| 258 | 258 |
if (_cost_arcs) {
|
| 259 | 259 |
delete _cost_arcs; |
| 260 | 260 |
} |
| 261 | 261 |
if (_heap) {
|
| 262 | 262 |
delete _heap; |
| 263 | 263 |
} |
| 264 | 264 |
if (_heap_cross_ref) {
|
| 265 | 265 |
delete _heap_cross_ref; |
| 266 | 266 |
} |
| 267 | 267 |
} |
| 268 | 268 |
|
| 269 | 269 |
Arc prepare(Node node) {
|
| 270 | 270 |
std::vector<Node> nodes; |
| 271 | 271 |
(*_node_order)[node] = _dual_node_list.size(); |
| 272 | 272 |
StackLevel level; |
| 273 | 273 |
level.node_level = _dual_node_list.size(); |
| 274 | 274 |
_dual_node_list.push_back(node); |
| 275 | 275 |
for (InArcIt it(*_digraph, node); it != INVALID; ++it) {
|
| 276 | 276 |
Arc arc = it; |
| 277 | 277 |
Node source = _digraph->source(arc); |
| 278 | 278 |
Value value = (*_cost)[it]; |
| 279 | 279 |
if (source == node || (*_node_order)[source] == -3) continue; |
| 280 | 280 |
if ((*_cost_arcs)[source].arc == INVALID) {
|
| 281 | 281 |
(*_cost_arcs)[source].arc = arc; |
| 282 | 282 |
(*_cost_arcs)[source].value = value; |
| 283 | 283 |
nodes.push_back(source); |
| 284 | 284 |
} else {
|
| 285 | 285 |
if ((*_cost_arcs)[source].value > value) {
|
| 286 | 286 |
(*_cost_arcs)[source].arc = arc; |
| 287 | 287 |
(*_cost_arcs)[source].value = value; |
| 288 | 288 |
} |
| 289 | 289 |
} |
| 290 | 290 |
} |
| 291 | 291 |
CostArc minimum = (*_cost_arcs)[nodes[0]]; |
| 292 | 292 |
for (int i = 1; i < int(nodes.size()); ++i) {
|
| 293 | 293 |
if ((*_cost_arcs)[nodes[i]].value < minimum.value) {
|
| 294 | 294 |
minimum = (*_cost_arcs)[nodes[i]]; |
| 295 | 295 |
} |
| 296 | 296 |
} |
| 297 | 297 |
(*_arc_order)[minimum.arc] = _dual_variables.size(); |
| 298 | 298 |
DualVariable var(_dual_node_list.size() - 1, |
| 299 | 299 |
_dual_node_list.size(), minimum.value); |
| 300 | 300 |
_dual_variables.push_back(var); |
| 301 | 301 |
for (int i = 0; i < int(nodes.size()); ++i) {
|
| 302 | 302 |
(*_cost_arcs)[nodes[i]].value -= minimum.value; |
| 303 | 303 |
level.arcs.push_back((*_cost_arcs)[nodes[i]]); |
| 304 | 304 |
(*_cost_arcs)[nodes[i]].arc = INVALID; |
| 305 | 305 |
} |
| 306 | 306 |
level_stack.push_back(level); |
| 307 | 307 |
return minimum.arc; |
| 308 | 308 |
} |
| 309 | 309 |
|
| 310 | 310 |
Arc contract(Node node) {
|
| 311 | 311 |
int node_bottom = bottom(node); |
| 312 | 312 |
std::vector<Node> nodes; |
| 313 | 313 |
while (!level_stack.empty() && |
| 314 | 314 |
level_stack.back().node_level >= node_bottom) {
|
| 315 | 315 |
for (int i = 0; i < int(level_stack.back().arcs.size()); ++i) {
|
| 316 | 316 |
Arc arc = level_stack.back().arcs[i].arc; |
| 317 | 317 |
Node source = _digraph->source(arc); |
| 318 | 318 |
Value value = level_stack.back().arcs[i].value; |
| 319 | 319 |
if ((*_node_order)[source] >= node_bottom) continue; |
| 320 | 320 |
if ((*_cost_arcs)[source].arc == INVALID) {
|
| 321 | 321 |
(*_cost_arcs)[source].arc = arc; |
| 322 | 322 |
(*_cost_arcs)[source].value = value; |
| 323 | 323 |
nodes.push_back(source); |
| 324 | 324 |
} else {
|
| 325 | 325 |
if ((*_cost_arcs)[source].value > value) {
|
| 326 | 326 |
(*_cost_arcs)[source].arc = arc; |
| 327 | 327 |
(*_cost_arcs)[source].value = value; |
| 328 | 328 |
} |
| 329 | 329 |
} |
| 330 | 330 |
} |
| 331 | 331 |
level_stack.pop_back(); |
| 332 | 332 |
} |
| 333 | 333 |
CostArc minimum = (*_cost_arcs)[nodes[0]]; |
| 334 | 334 |
for (int i = 1; i < int(nodes.size()); ++i) {
|
| 335 | 335 |
if ((*_cost_arcs)[nodes[i]].value < minimum.value) {
|
| 336 | 336 |
minimum = (*_cost_arcs)[nodes[i]]; |
| 337 | 337 |
} |
| 338 | 338 |
} |
| 339 | 339 |
(*_arc_order)[minimum.arc] = _dual_variables.size(); |
| 340 | 340 |
DualVariable var(node_bottom, _dual_node_list.size(), minimum.value); |
| 341 | 341 |
_dual_variables.push_back(var); |
| 342 | 342 |
StackLevel level; |
| 343 | 343 |
level.node_level = node_bottom; |
| 344 | 344 |
for (int i = 0; i < int(nodes.size()); ++i) {
|
| 345 | 345 |
(*_cost_arcs)[nodes[i]].value -= minimum.value; |
| 346 | 346 |
level.arcs.push_back((*_cost_arcs)[nodes[i]]); |
| 347 | 347 |
(*_cost_arcs)[nodes[i]].arc = INVALID; |
| 348 | 348 |
} |
| 349 | 349 |
level_stack.push_back(level); |
| 350 | 350 |
return minimum.arc; |
| 351 | 351 |
} |
| 352 | 352 |
|
| 353 | 353 |
int bottom(Node node) {
|
| 354 | 354 |
int k = level_stack.size() - 1; |
| 355 | 355 |
while (level_stack[k].node_level > (*_node_order)[node]) {
|
| 356 | 356 |
--k; |
| 357 | 357 |
} |
| 358 | 358 |
return level_stack[k].node_level; |
| 359 | 359 |
} |
| 360 | 360 |
|
| 361 | 361 |
void finalize(Arc arc) {
|
| 362 | 362 |
Node node = _digraph->target(arc); |
| 363 | 363 |
_heap->push(node, (*_arc_order)[arc]); |
| 364 | 364 |
_pred->set(node, arc); |
| 365 | 365 |
while (!_heap->empty()) {
|
| 366 | 366 |
Node source = _heap->top(); |
| 367 | 367 |
_heap->pop(); |
| 368 | 368 |
(*_node_order)[source] = -1; |
| 369 | 369 |
for (OutArcIt it(*_digraph, source); it != INVALID; ++it) {
|
| 370 | 370 |
if ((*_arc_order)[it] < 0) continue; |
| 371 | 371 |
Node target = _digraph->target(it); |
| 372 | 372 |
switch(_heap->state(target)) {
|
| 373 | 373 |
case Heap::PRE_HEAP: |
| 374 | 374 |
_heap->push(target, (*_arc_order)[it]); |
| 375 | 375 |
_pred->set(target, it); |
| 376 | 376 |
break; |
| 377 | 377 |
case Heap::IN_HEAP: |
| 378 | 378 |
if ((*_arc_order)[it] < (*_heap)[target]) {
|
| 379 | 379 |
_heap->decrease(target, (*_arc_order)[it]); |
| 380 | 380 |
_pred->set(target, it); |
| 381 | 381 |
} |
| 382 | 382 |
break; |
| 383 | 383 |
case Heap::POST_HEAP: |
| 384 | 384 |
break; |
| 385 | 385 |
} |
| 386 | 386 |
} |
| 387 | 387 |
_arborescence->set((*_pred)[source], true); |
| 388 | 388 |
} |
| 389 | 389 |
} |
| 390 | 390 |
|
| 391 | 391 |
|
| 392 | 392 |
public: |
| 393 | 393 |
|
| 394 | 394 |
/// \name Named Template Parameters |
| 395 | 395 |
|
| 396 | 396 |
/// @{
|
| 397 | 397 |
|
| 398 | 398 |
template <class T> |
| 399 | 399 |
struct SetArborescenceMapTraits : public Traits {
|
| 400 | 400 |
typedef T ArborescenceMap; |
| 401 | 401 |
static ArborescenceMap *createArborescenceMap(const Digraph &) |
| 402 | 402 |
{
|
| 403 | 403 |
LEMON_ASSERT(false, "ArborescenceMap is not initialized"); |
| 404 | 404 |
return 0; // ignore warnings |
| 405 | 405 |
} |
| 406 | 406 |
}; |
| 407 | 407 |
|
| 408 | 408 |
/// \brief \ref named-templ-param "Named parameter" for |
| 409 | 409 |
/// setting \c ArborescenceMap type |
| 410 | 410 |
/// |
| 411 | 411 |
/// \ref named-templ-param "Named parameter" for setting |
| 412 | 412 |
/// \c ArborescenceMap type. |
| 413 | 413 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept, |
| 414 | 414 |
/// and its value type must be \c bool (or convertible). |
| 415 | 415 |
/// Initially it will be set to \c false on each arc, |
| 416 | 416 |
/// then it will be set on each arborescence arc once. |
| 417 | 417 |
template <class T> |
| 418 | 418 |
struct SetArborescenceMap |
| 419 | 419 |
: public MinCostArborescence<Digraph, CostMap, |
| 420 | 420 |
SetArborescenceMapTraits<T> > {
|
| 421 | 421 |
}; |
| 422 | 422 |
|
| 423 | 423 |
template <class T> |
| 424 | 424 |
struct SetPredMapTraits : public Traits {
|
| 425 | 425 |
typedef T PredMap; |
| 426 | 426 |
static PredMap *createPredMap(const Digraph &) |
| 427 | 427 |
{
|
| 428 | 428 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 429 | 429 |
return 0; // ignore warnings |
| 430 | 430 |
} |
| 431 | 431 |
}; |
| 432 | 432 |
|
| 433 | 433 |
/// \brief \ref named-templ-param "Named parameter" for |
| 434 | 434 |
/// setting \c PredMap type |
| 435 | 435 |
/// |
| 436 | 436 |
/// \ref named-templ-param "Named parameter" for setting |
| 437 | 437 |
/// \c PredMap type. |
| 438 | 438 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept, |
| 439 | 439 |
/// and its value type must be the \c Arc type of the digraph. |
| 440 | 440 |
template <class T> |
| 441 | 441 |
struct SetPredMap |
| 442 | 442 |
: public MinCostArborescence<Digraph, CostMap, SetPredMapTraits<T> > {
|
| 443 | 443 |
}; |
| 444 | 444 |
|
| 445 | 445 |
/// @} |
| 446 | 446 |
|
| 447 | 447 |
/// \brief Constructor. |
| 448 | 448 |
/// |
| 449 | 449 |
/// \param digraph The digraph the algorithm will run on. |
| 450 | 450 |
/// \param cost The cost map used by the algorithm. |
| 451 | 451 |
MinCostArborescence(const Digraph& digraph, const CostMap& cost) |
| 452 | 452 |
: _digraph(&digraph), _cost(&cost), _pred(0), local_pred(false), |
| 453 | 453 |
_arborescence(0), local_arborescence(false), |
| 454 | 454 |
_arc_order(0), _node_order(0), _cost_arcs(0), |
| 455 | 455 |
_heap_cross_ref(0), _heap(0) {}
|
| 456 | 456 |
|
| 457 | 457 |
/// \brief Destructor. |
| 458 | 458 |
~MinCostArborescence() {
|
| 459 | 459 |
destroyStructures(); |
| 460 | 460 |
} |
| 461 | 461 |
|
| 462 | 462 |
/// \brief Sets the arborescence map. |
| 463 | 463 |
/// |
| 464 | 464 |
/// Sets the arborescence map. |
| 465 | 465 |
/// \return <tt>(*this)</tt> |
| 466 | 466 |
MinCostArborescence& arborescenceMap(ArborescenceMap& m) {
|
| 467 | 467 |
if (local_arborescence) {
|
| 468 | 468 |
delete _arborescence; |
| 469 | 469 |
} |
| 470 | 470 |
local_arborescence = false; |
| 471 | 471 |
_arborescence = &m; |
| 472 | 472 |
return *this; |
| 473 | 473 |
} |
| 474 | 474 |
|
| 475 | 475 |
/// \brief Sets the predecessor map. |
| 476 | 476 |
/// |
| 477 | 477 |
/// Sets the predecessor map. |
| 478 | 478 |
/// \return <tt>(*this)</tt> |
| 479 | 479 |
MinCostArborescence& predMap(PredMap& m) {
|
| 480 | 480 |
if (local_pred) {
|
| 481 | 481 |
delete _pred; |
| 482 | 482 |
} |
| 483 | 483 |
local_pred = false; |
| 484 | 484 |
_pred = &m; |
| 485 | 485 |
return *this; |
| 486 | 486 |
} |
| 487 | 487 |
|
| 488 | 488 |
/// \name Execution Control |
| 489 | 489 |
/// The simplest way to execute the algorithm is to use |
| 490 | 490 |
/// one of the member functions called \c run(...). \n |
| 491 |
/// If you need more control on the execution, |
|
| 492 |
/// first you must call \ref init(), then you can add several |
|
| 491 |
/// If you need better control on the execution, |
|
| 492 |
/// you have to call \ref init() first, then you can add several |
|
| 493 | 493 |
/// source nodes with \ref addSource(). |
| 494 | 494 |
/// Finally \ref start() will perform the arborescence |
| 495 | 495 |
/// computation. |
| 496 | 496 |
|
| 497 | 497 |
///@{
|
| 498 | 498 |
|
| 499 | 499 |
/// \brief Initializes the internal data structures. |
| 500 | 500 |
/// |
| 501 | 501 |
/// Initializes the internal data structures. |
| 502 | 502 |
/// |
| 503 | 503 |
void init() {
|
| 504 | 504 |
createStructures(); |
| 505 | 505 |
_heap->clear(); |
| 506 | 506 |
for (NodeIt it(*_digraph); it != INVALID; ++it) {
|
| 507 | 507 |
(*_cost_arcs)[it].arc = INVALID; |
| 508 | 508 |
(*_node_order)[it] = -3; |
| 509 | 509 |
(*_heap_cross_ref)[it] = Heap::PRE_HEAP; |
| 510 | 510 |
_pred->set(it, INVALID); |
| 511 | 511 |
} |
| 512 | 512 |
for (ArcIt it(*_digraph); it != INVALID; ++it) {
|
| 513 | 513 |
_arborescence->set(it, false); |
| 514 | 514 |
(*_arc_order)[it] = -1; |
| 515 | 515 |
} |
| 516 | 516 |
_dual_node_list.clear(); |
| 517 | 517 |
_dual_variables.clear(); |
| 518 | 518 |
} |
| 519 | 519 |
|
| 520 | 520 |
/// \brief Adds a new source node. |
| 521 | 521 |
/// |
| 522 | 522 |
/// Adds a new source node to the algorithm. |
| 523 | 523 |
void addSource(Node source) {
|
| 524 | 524 |
std::vector<Node> nodes; |
| 525 | 525 |
nodes.push_back(source); |
| 526 | 526 |
while (!nodes.empty()) {
|
| 527 | 527 |
Node node = nodes.back(); |
| 528 | 528 |
nodes.pop_back(); |
| 529 | 529 |
for (OutArcIt it(*_digraph, node); it != INVALID; ++it) {
|
| 530 | 530 |
Node target = _digraph->target(it); |
| 531 | 531 |
if ((*_node_order)[target] == -3) {
|
| 532 | 532 |
(*_node_order)[target] = -2; |
| 533 | 533 |
nodes.push_back(target); |
| 534 | 534 |
queue.push_back(target); |
| 535 | 535 |
} |
| 536 | 536 |
} |
| 537 | 537 |
} |
| 538 | 538 |
(*_node_order)[source] = -1; |
| 539 | 539 |
} |
| 540 | 540 |
|
| 541 | 541 |
/// \brief Processes the next node in the priority queue. |
| 542 | 542 |
/// |
| 543 | 543 |
/// Processes the next node in the priority queue. |
| 544 | 544 |
/// |
| 545 | 545 |
/// \return The processed node. |
| 546 | 546 |
/// |
| 547 | 547 |
/// \warning The queue must not be empty. |
| 548 | 548 |
Node processNextNode() {
|
| 549 | 549 |
Node node = queue.back(); |
| 550 | 550 |
queue.pop_back(); |
| 551 | 551 |
if ((*_node_order)[node] == -2) {
|
| 552 | 552 |
Arc arc = prepare(node); |
| 553 | 553 |
Node source = _digraph->source(arc); |
| 554 | 554 |
while ((*_node_order)[source] != -1) {
|
| 555 | 555 |
if ((*_node_order)[source] >= 0) {
|
| 556 | 556 |
arc = contract(source); |
| 557 | 557 |
} else {
|
| 558 | 558 |
arc = prepare(source); |
| 559 | 559 |
} |
| 560 | 560 |
source = _digraph->source(arc); |
| 561 | 561 |
} |
| 562 | 562 |
finalize(arc); |
| 563 | 563 |
level_stack.clear(); |
| 564 | 564 |
} |
| 565 | 565 |
return node; |
| 566 | 566 |
} |
| 567 | 567 |
|
| 568 | 568 |
/// \brief Returns the number of the nodes to be processed. |
| 569 | 569 |
/// |
| 570 | 570 |
/// Returns the number of the nodes to be processed in the priority |
| 571 | 571 |
/// queue. |
| 572 | 572 |
int queueSize() const {
|
| 573 | 573 |
return queue.size(); |
| 574 | 574 |
} |
| 575 | 575 |
|
| 576 | 576 |
/// \brief Returns \c false if there are nodes to be processed. |
| 577 | 577 |
/// |
| 578 | 578 |
/// Returns \c false if there are nodes to be processed. |
| 579 | 579 |
bool emptyQueue() const {
|
| 580 | 580 |
return queue.empty(); |
| 581 | 581 |
} |
| 582 | 582 |
|
| 583 | 583 |
/// \brief Executes the algorithm. |
| 584 | 584 |
/// |
| 585 | 585 |
/// Executes the algorithm. |
| 586 | 586 |
/// |
| 587 | 587 |
/// \pre init() must be called and at least one node should be added |
| 588 | 588 |
/// with addSource() before using this function. |
| 589 | 589 |
/// |
| 590 | 590 |
///\note mca.start() is just a shortcut of the following code. |
| 591 | 591 |
///\code |
| 592 | 592 |
///while (!mca.emptyQueue()) {
|
| 593 | 593 |
/// mca.processNextNode(); |
| 594 | 594 |
///} |
| 595 | 595 |
///\endcode |
| 596 | 596 |
void start() {
|
| 597 | 597 |
while (!emptyQueue()) {
|
| 598 | 598 |
processNextNode(); |
| 599 | 599 |
} |
| 600 | 600 |
} |
| 601 | 601 |
|
| 602 | 602 |
/// \brief Runs %MinCostArborescence algorithm from node \c s. |
| 603 | 603 |
/// |
| 604 | 604 |
/// This method runs the %MinCostArborescence algorithm from |
| 605 | 605 |
/// a root node \c s. |
| 606 | 606 |
/// |
| 607 | 607 |
/// \note mca.run(s) is just a shortcut of the following code. |
| 608 | 608 |
/// \code |
| 609 | 609 |
/// mca.init(); |
| 610 | 610 |
/// mca.addSource(s); |
| 611 | 611 |
/// mca.start(); |
| 612 | 612 |
/// \endcode |
| 613 | 613 |
void run(Node s) {
|
| 614 | 614 |
init(); |
| 615 | 615 |
addSource(s); |
| 616 | 616 |
start(); |
| 617 | 617 |
} |
| 618 | 618 |
|
| 619 | 619 |
///@} |
| 620 | 620 |
|
| 621 | 621 |
/// \name Query Functions |
| 622 | 622 |
/// The result of the %MinCostArborescence algorithm can be obtained |
| 623 | 623 |
/// using these functions.\n |
| 624 | 624 |
/// Either run() or start() must be called before using them. |
| 625 | 625 |
|
| 626 | 626 |
/// @{
|
| 627 | 627 |
|
| 628 | 628 |
/// \brief Returns the cost of the arborescence. |
| 629 | 629 |
/// |
| 630 | 630 |
/// Returns the cost of the arborescence. |
| 631 | 631 |
Value arborescenceCost() const {
|
| 632 | 632 |
Value sum = 0; |
| 633 | 633 |
for (ArcIt it(*_digraph); it != INVALID; ++it) {
|
| 634 | 634 |
if (arborescence(it)) {
|
| 635 | 635 |
sum += (*_cost)[it]; |
| 636 | 636 |
} |
| 637 | 637 |
} |
| 638 | 638 |
return sum; |
| 639 | 639 |
} |
| 640 | 640 |
|
| 641 | 641 |
/// \brief Returns \c true if the arc is in the arborescence. |
| 642 | 642 |
/// |
| 643 | 643 |
/// Returns \c true if the given arc is in the arborescence. |
| 644 | 644 |
/// \param arc An arc of the digraph. |
| 645 | 645 |
/// \pre \ref run() must be called before using this function. |
| 646 | 646 |
bool arborescence(Arc arc) const {
|
| 647 | 647 |
return (*_pred)[_digraph->target(arc)] == arc; |
| 648 | 648 |
} |
| 649 | 649 |
|
| 650 | 650 |
/// \brief Returns a const reference to the arborescence map. |
| 651 | 651 |
/// |
| 652 | 652 |
/// Returns a const reference to the arborescence map. |
| 653 | 653 |
/// \pre \ref run() must be called before using this function. |
| 654 | 654 |
const ArborescenceMap& arborescenceMap() const {
|
| 655 | 655 |
return *_arborescence; |
| 656 | 656 |
} |
| 657 | 657 |
|
| 658 | 658 |
/// \brief Returns the predecessor arc of the given node. |
| 659 | 659 |
/// |
| 660 | 660 |
/// Returns the predecessor arc of the given node. |
| 661 | 661 |
/// \pre \ref run() must be called before using this function. |
| 662 | 662 |
Arc pred(Node node) const {
|
| 663 | 663 |
return (*_pred)[node]; |
| 664 | 664 |
} |
| 665 | 665 |
|
| 666 | 666 |
/// \brief Returns a const reference to the pred map. |
| 667 | 667 |
/// |
| 668 | 668 |
/// Returns a const reference to the pred map. |
| 669 | 669 |
/// \pre \ref run() must be called before using this function. |
| 670 | 670 |
const PredMap& predMap() const {
|
| 671 | 671 |
return *_pred; |
| 672 | 672 |
} |
| 673 | 673 |
|
| 674 | 674 |
/// \brief Indicates that a node is reachable from the sources. |
| 675 | 675 |
/// |
| 676 | 676 |
/// Indicates that a node is reachable from the sources. |
| 677 | 677 |
bool reached(Node node) const {
|
| 678 | 678 |
return (*_node_order)[node] != -3; |
| 679 | 679 |
} |
| 680 | 680 |
|
| 681 | 681 |
/// \brief Indicates that a node is processed. |
| 682 | 682 |
/// |
| 683 | 683 |
/// Indicates that a node is processed. The arborescence path exists |
| 684 | 684 |
/// from the source to the given node. |
| 685 | 685 |
bool processed(Node node) const {
|
| 686 | 686 |
return (*_node_order)[node] == -1; |
| 687 | 687 |
} |
| 688 | 688 |
|
| 689 | 689 |
/// \brief Returns the number of the dual variables in basis. |
| 690 | 690 |
/// |
| 691 | 691 |
/// Returns the number of the dual variables in basis. |
| 692 | 692 |
int dualNum() const {
|
| 693 | 693 |
return _dual_variables.size(); |
| 694 | 694 |
} |
| 695 | 695 |
|
| 696 | 696 |
/// \brief Returns the value of the dual solution. |
| 697 | 697 |
/// |
| 698 | 698 |
/// Returns the value of the dual solution. It should be |
| 699 | 699 |
/// equal to the arborescence value. |
| 700 | 700 |
Value dualValue() const {
|
| 701 | 701 |
Value sum = 0; |
| 702 | 702 |
for (int i = 0; i < int(_dual_variables.size()); ++i) {
|
| 703 | 703 |
sum += _dual_variables[i].value; |
| 704 | 704 |
} |
| 705 | 705 |
return sum; |
| 706 | 706 |
} |
| 707 | 707 |
|
| 708 | 708 |
/// \brief Returns the number of the nodes in the dual variable. |
| 709 | 709 |
/// |
| 710 | 710 |
/// Returns the number of the nodes in the dual variable. |
| 711 | 711 |
int dualSize(int k) const {
|
| 712 | 712 |
return _dual_variables[k].end - _dual_variables[k].begin; |
| 713 | 713 |
} |
| 714 | 714 |
|
| 715 | 715 |
/// \brief Returns the value of the dual variable. |
| 716 | 716 |
/// |
| 717 | 717 |
/// Returns the the value of the dual variable. |
| 718 | 718 |
Value dualValue(int k) const {
|
| 719 | 719 |
return _dual_variables[k].value; |
| 720 | 720 |
} |
| 721 | 721 |
|
| 722 | 722 |
/// \brief LEMON iterator for getting a dual variable. |
| 723 | 723 |
/// |
| 724 | 724 |
/// This class provides a common style LEMON iterator for getting a |
| 725 | 725 |
/// dual variable of \ref MinCostArborescence algorithm. |
| 726 | 726 |
/// It iterates over a subset of the nodes. |
| 727 | 727 |
class DualIt {
|
| 728 | 728 |
public: |
| 729 | 729 |
|
| 730 | 730 |
/// \brief Constructor. |
| 731 | 731 |
/// |
| 732 | 732 |
/// Constructor for getting the nodeset of the dual variable |
| 733 | 733 |
/// of \ref MinCostArborescence algorithm. |
| 734 | 734 |
DualIt(const MinCostArborescence& algorithm, int variable) |
| 735 | 735 |
: _algorithm(&algorithm) |
| 736 | 736 |
{
|
| 737 | 737 |
_index = _algorithm->_dual_variables[variable].begin; |
| 738 | 738 |
_last = _algorithm->_dual_variables[variable].end; |
| 739 | 739 |
} |
| 740 | 740 |
|
| 741 | 741 |
/// \brief Conversion to \c Node. |
| 742 | 742 |
/// |
| 743 | 743 |
/// Conversion to \c Node. |
| 744 | 744 |
operator Node() const {
|
| 745 | 745 |
return _algorithm->_dual_node_list[_index]; |
| 746 | 746 |
} |
| 747 | 747 |
|
| 748 | 748 |
/// \brief Increment operator. |
| 749 | 749 |
/// |
| 750 | 750 |
/// Increment operator. |
| 751 | 751 |
DualIt& operator++() {
|
| 752 | 752 |
++_index; |
| 753 | 753 |
return *this; |
| 754 | 754 |
} |
| 755 | 755 |
|
| 756 | 756 |
/// \brief Validity checking |
| 757 | 757 |
/// |
| 758 | 758 |
/// Checks whether the iterator is invalid. |
| 759 | 759 |
bool operator==(Invalid) const {
|
| 760 | 760 |
return _index == _last; |
| 761 | 761 |
} |
| 762 | 762 |
|
| 763 | 763 |
/// \brief Validity checking |
| 764 | 764 |
/// |
| 765 | 765 |
/// Checks whether the iterator is valid. |
| 766 | 766 |
bool operator!=(Invalid) const {
|
| 767 | 767 |
return _index != _last; |
| 768 | 768 |
} |
| 769 | 769 |
|
| 770 | 770 |
private: |
| 771 | 771 |
const MinCostArborescence* _algorithm; |
| 772 | 772 |
int _index, _last; |
| 773 | 773 |
}; |
| 774 | 774 |
|
| 775 | 775 |
/// @} |
| 776 | 776 |
|
| 777 | 777 |
}; |
| 778 | 778 |
|
| 779 | 779 |
/// \ingroup spantree |
| 780 | 780 |
/// |
| 781 | 781 |
/// \brief Function type interface for MinCostArborescence algorithm. |
| 782 | 782 |
/// |
| 783 | 783 |
/// Function type interface for MinCostArborescence algorithm. |
| 784 | 784 |
/// \param digraph The digraph the algorithm runs on. |
| 785 | 785 |
/// \param cost An arc map storing the costs. |
| 786 | 786 |
/// \param source The source node of the arborescence. |
| 787 | 787 |
/// \retval arborescence An arc map with \c bool (or convertible) value |
| 788 | 788 |
/// type that stores the arborescence. |
| 789 | 789 |
/// \return The total cost of the arborescence. |
| 790 | 790 |
/// |
| 791 | 791 |
/// \sa MinCostArborescence |
| 792 | 792 |
template <typename Digraph, typename CostMap, typename ArborescenceMap> |
| 793 | 793 |
typename CostMap::Value minCostArborescence(const Digraph& digraph, |
| 794 | 794 |
const CostMap& cost, |
| 795 | 795 |
typename Digraph::Node source, |
| 796 | 796 |
ArborescenceMap& arborescence) {
|
| 797 | 797 |
typename MinCostArborescence<Digraph, CostMap> |
| 798 | 798 |
::template SetArborescenceMap<ArborescenceMap> |
| 799 | 799 |
::Create mca(digraph, cost); |
| 800 | 800 |
mca.arborescenceMap(arborescence); |
| 801 | 801 |
mca.run(source); |
| 802 | 802 |
return mca.arborescenceCost(); |
| 803 | 803 |
} |
| 804 | 804 |
|
| 805 | 805 |
} |
| 806 | 806 |
|
| 807 | 807 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
| 20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup min_cost_flow_algs |
| 23 | 23 |
/// |
| 24 | 24 |
/// \file |
| 25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
| 26 | 26 |
|
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <limits> |
| 29 | 29 |
#include <algorithm> |
| 30 | 30 |
|
| 31 | 31 |
#include <lemon/core.h> |
| 32 | 32 |
#include <lemon/math.h> |
| 33 | 33 |
|
| 34 | 34 |
namespace lemon {
|
| 35 | 35 |
|
| 36 | 36 |
/// \addtogroup min_cost_flow_algs |
| 37 | 37 |
/// @{
|
| 38 | 38 |
|
| 39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
| 40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 41 | 41 |
/// |
| 42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
| 43 |
/// for finding a \ref min_cost_flow "minimum cost flow" |
|
| 43 |
/// for finding a \ref min_cost_flow "minimum cost flow" |
|
| 44 |
/// \ref amo93networkflows, \ref dantzig63linearprog, |
|
| 45 |
/// \ref kellyoneill91netsimplex. |
|
| 44 | 46 |
/// This algorithm is a specialized version of the linear programming |
| 45 | 47 |
/// simplex method directly for the minimum cost flow problem. |
| 46 | 48 |
/// It is one of the most efficient solution methods. |
| 47 | 49 |
/// |
| 48 | 50 |
/// In general this class is the fastest implementation available |
| 49 | 51 |
/// in LEMON for the minimum cost flow problem. |
| 50 | 52 |
/// Moreover it supports both directions of the supply/demand inequality |
| 51 | 53 |
/// constraints. For more information see \ref SupplyType. |
| 52 | 54 |
/// |
| 53 | 55 |
/// Most of the parameters of the problem (except for the digraph) |
| 54 | 56 |
/// can be given using separate functions, and the algorithm can be |
| 55 | 57 |
/// executed using the \ref run() function. If some parameters are not |
| 56 | 58 |
/// specified, then default values will be used. |
| 57 | 59 |
/// |
| 58 | 60 |
/// \tparam GR The digraph type the algorithm runs on. |
| 59 | 61 |
/// \tparam V The value type used for flow amounts, capacity bounds |
| 60 | 62 |
/// and supply values in the algorithm. By default it is \c int. |
| 61 | 63 |
/// \tparam C The value type used for costs and potentials in the |
| 62 | 64 |
/// algorithm. By default it is the same as \c V. |
| 63 | 65 |
/// |
| 64 | 66 |
/// \warning Both value types must be signed and all input data must |
| 65 | 67 |
/// be integer. |
| 66 | 68 |
/// |
| 67 | 69 |
/// \note %NetworkSimplex provides five different pivot rule |
| 68 | 70 |
/// implementations, from which the most efficient one is used |
| 69 | 71 |
/// by default. For more information see \ref PivotRule. |
| 70 | 72 |
template <typename GR, typename V = int, typename C = V> |
| 71 | 73 |
class NetworkSimplex |
| 72 | 74 |
{
|
| 73 | 75 |
public: |
| 74 | 76 |
|
| 75 | 77 |
/// The type of the flow amounts, capacity bounds and supply values |
| 76 | 78 |
typedef V Value; |
| 77 | 79 |
/// The type of the arc costs |
| 78 | 80 |
typedef C Cost; |
| 79 | 81 |
|
| 80 | 82 |
public: |
| 81 | 83 |
|
| 82 | 84 |
/// \brief Problem type constants for the \c run() function. |
| 83 | 85 |
/// |
| 84 | 86 |
/// Enum type containing the problem type constants that can be |
| 85 | 87 |
/// returned by the \ref run() function of the algorithm. |
| 86 | 88 |
enum ProblemType {
|
| 87 | 89 |
/// The problem has no feasible solution (flow). |
| 88 | 90 |
INFEASIBLE, |
| 89 | 91 |
/// The problem has optimal solution (i.e. it is feasible and |
| 90 | 92 |
/// bounded), and the algorithm has found optimal flow and node |
| 91 | 93 |
/// potentials (primal and dual solutions). |
| 92 | 94 |
OPTIMAL, |
| 93 | 95 |
/// The objective function of the problem is unbounded, i.e. |
| 94 | 96 |
/// there is a directed cycle having negative total cost and |
| 95 | 97 |
/// infinite upper bound. |
| 96 | 98 |
UNBOUNDED |
| 97 | 99 |
}; |
| 98 | 100 |
|
| 99 | 101 |
/// \brief Constants for selecting the type of the supply constraints. |
| 100 | 102 |
/// |
| 101 | 103 |
/// Enum type containing constants for selecting the supply type, |
| 102 | 104 |
/// i.e. the direction of the inequalities in the supply/demand |
| 103 | 105 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
| 104 | 106 |
/// |
| 105 | 107 |
/// The default supply type is \c GEQ, the \c LEQ type can be |
| 106 | 108 |
/// selected using \ref supplyType(). |
| 107 | 109 |
/// The equality form is a special case of both supply types. |
| 108 | 110 |
enum SupplyType {
|
| 109 | 111 |
/// This option means that there are <em>"greater or equal"</em> |
| 110 | 112 |
/// supply/demand constraints in the definition of the problem. |
| 111 | 113 |
GEQ, |
| 112 | 114 |
/// This option means that there are <em>"less or equal"</em> |
| 113 | 115 |
/// supply/demand constraints in the definition of the problem. |
| 114 | 116 |
LEQ |
| 115 | 117 |
}; |
| 116 | 118 |
|
| 117 | 119 |
/// \brief Constants for selecting the pivot rule. |
| 118 | 120 |
/// |
| 119 | 121 |
/// Enum type containing constants for selecting the pivot rule for |
| 120 | 122 |
/// the \ref run() function. |
| 121 | 123 |
/// |
| 122 | 124 |
/// \ref NetworkSimplex provides five different pivot rule |
| 123 | 125 |
/// implementations that significantly affect the running time |
| 124 | 126 |
/// of the algorithm. |
| 125 | 127 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
| 126 | 128 |
/// proved to be the most efficient and the most robust on various |
| 127 | 129 |
/// test inputs according to our benchmark tests. |
| 128 | 130 |
/// However another pivot rule can be selected using the \ref run() |
| 129 | 131 |
/// function with the proper parameter. |
| 130 | 132 |
enum PivotRule {
|
| 131 | 133 |
|
| 132 | 134 |
/// The First Eligible pivot rule. |
| 133 | 135 |
/// The next eligible arc is selected in a wraparound fashion |
| 134 | 136 |
/// in every iteration. |
| 135 | 137 |
FIRST_ELIGIBLE, |
| 136 | 138 |
|
| 137 | 139 |
/// The Best Eligible pivot rule. |
| 138 | 140 |
/// The best eligible arc is selected in every iteration. |
| 139 | 141 |
BEST_ELIGIBLE, |
| 140 | 142 |
|
| 141 | 143 |
/// The Block Search pivot rule. |
| 142 | 144 |
/// A specified number of arcs are examined in every iteration |
| 143 | 145 |
/// in a wraparound fashion and the best eligible arc is selected |
| 144 | 146 |
/// from this block. |
| 145 | 147 |
BLOCK_SEARCH, |
| 146 | 148 |
|
| 147 | 149 |
/// The Candidate List pivot rule. |
| 148 | 150 |
/// In a major iteration a candidate list is built from eligible arcs |
| 149 | 151 |
/// in a wraparound fashion and in the following minor iterations |
| 150 | 152 |
/// the best eligible arc is selected from this list. |
| 151 | 153 |
CANDIDATE_LIST, |
| 152 | 154 |
|
| 153 | 155 |
/// The Altering Candidate List pivot rule. |
| 154 | 156 |
/// It is a modified version of the Candidate List method. |
| 155 | 157 |
/// It keeps only the several best eligible arcs from the former |
| 156 | 158 |
/// candidate list and extends this list in every iteration. |
| 157 | 159 |
ALTERING_LIST |
| 158 | 160 |
}; |
| 159 | 161 |
|
| 160 | 162 |
private: |
| 161 | 163 |
|
| 162 | 164 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 163 | 165 |
|
| 164 |
typedef std::vector<Arc> ArcVector; |
|
| 165 |
typedef std::vector<Node> NodeVector; |
|
| 166 | 166 |
typedef std::vector<int> IntVector; |
| 167 | 167 |
typedef std::vector<bool> BoolVector; |
| 168 | 168 |
typedef std::vector<Value> ValueVector; |
| 169 | 169 |
typedef std::vector<Cost> CostVector; |
| 170 | 170 |
|
| 171 | 171 |
// State constants for arcs |
| 172 | 172 |
enum ArcStateEnum {
|
| 173 | 173 |
STATE_UPPER = -1, |
| 174 | 174 |
STATE_TREE = 0, |
| 175 | 175 |
STATE_LOWER = 1 |
| 176 | 176 |
}; |
| 177 | 177 |
|
| 178 | 178 |
private: |
| 179 | 179 |
|
| 180 | 180 |
// Data related to the underlying digraph |
| 181 | 181 |
const GR &_graph; |
| 182 | 182 |
int _node_num; |
| 183 | 183 |
int _arc_num; |
| 184 | 184 |
int _all_arc_num; |
| 185 | 185 |
int _search_arc_num; |
| 186 | 186 |
|
| 187 | 187 |
// Parameters of the problem |
| 188 | 188 |
bool _have_lower; |
| 189 | 189 |
SupplyType _stype; |
| 190 | 190 |
Value _sum_supply; |
| 191 | 191 |
|
| 192 | 192 |
// Data structures for storing the digraph |
| 193 | 193 |
IntNodeMap _node_id; |
| 194 | 194 |
IntArcMap _arc_id; |
| 195 | 195 |
IntVector _source; |
| 196 | 196 |
IntVector _target; |
| 197 | 197 |
|
| 198 | 198 |
// Node and arc data |
| 199 | 199 |
ValueVector _lower; |
| 200 | 200 |
ValueVector _upper; |
| 201 | 201 |
ValueVector _cap; |
| 202 | 202 |
CostVector _cost; |
| 203 | 203 |
ValueVector _supply; |
| 204 | 204 |
ValueVector _flow; |
| 205 | 205 |
CostVector _pi; |
| 206 | 206 |
|
| 207 | 207 |
// Data for storing the spanning tree structure |
| 208 | 208 |
IntVector _parent; |
| 209 | 209 |
IntVector _pred; |
| 210 | 210 |
IntVector _thread; |
| 211 | 211 |
IntVector _rev_thread; |
| 212 | 212 |
IntVector _succ_num; |
| 213 | 213 |
IntVector _last_succ; |
| 214 | 214 |
IntVector _dirty_revs; |
| 215 | 215 |
BoolVector _forward; |
| 216 | 216 |
IntVector _state; |
| 217 | 217 |
int _root; |
| 218 | 218 |
|
| 219 | 219 |
// Temporary data used in the current pivot iteration |
| 220 | 220 |
int in_arc, join, u_in, v_in, u_out, v_out; |
| 221 | 221 |
int first, second, right, last; |
| 222 | 222 |
int stem, par_stem, new_stem; |
| 223 | 223 |
Value delta; |
| 224 | 224 |
|
| 225 | 225 |
public: |
| 226 | 226 |
|
| 227 | 227 |
/// \brief Constant for infinite upper bounds (capacities). |
| 228 | 228 |
/// |
| 229 | 229 |
/// Constant for infinite upper bounds (capacities). |
| 230 | 230 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
| 231 | 231 |
/// \c std::numeric_limits<Value>::max() otherwise. |
| 232 | 232 |
const Value INF; |
| 233 | 233 |
|
| 234 | 234 |
private: |
| 235 | 235 |
|
| 236 | 236 |
// Implementation of the First Eligible pivot rule |
| 237 | 237 |
class FirstEligiblePivotRule |
| 238 | 238 |
{
|
| 239 | 239 |
private: |
| 240 | 240 |
|
| 241 | 241 |
// References to the NetworkSimplex class |
| 242 | 242 |
const IntVector &_source; |
| 243 | 243 |
const IntVector &_target; |
| 244 | 244 |
const CostVector &_cost; |
| 245 | 245 |
const IntVector &_state; |
| 246 | 246 |
const CostVector &_pi; |
| 247 | 247 |
int &_in_arc; |
| 248 | 248 |
int _search_arc_num; |
| 249 | 249 |
|
| 250 | 250 |
// Pivot rule data |
| 251 | 251 |
int _next_arc; |
| 252 | 252 |
|
| 253 | 253 |
public: |
| 254 | 254 |
|
| 255 | 255 |
// Constructor |
| 256 | 256 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
| 257 | 257 |
_source(ns._source), _target(ns._target), |
| 258 | 258 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 259 | 259 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 260 | 260 |
_next_arc(0) |
| 261 | 261 |
{}
|
| 262 | 262 |
|
| 263 | 263 |
// Find next entering arc |
| 264 | 264 |
bool findEnteringArc() {
|
| 265 | 265 |
Cost c; |
| 266 | 266 |
for (int e = _next_arc; e < _search_arc_num; ++e) {
|
| 267 | 267 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 268 | 268 |
if (c < 0) {
|
| 269 | 269 |
_in_arc = e; |
| 270 | 270 |
_next_arc = e + 1; |
| 271 | 271 |
return true; |
| 272 | 272 |
} |
| 273 | 273 |
} |
| 274 | 274 |
for (int e = 0; e < _next_arc; ++e) {
|
| 275 | 275 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 276 | 276 |
if (c < 0) {
|
| 277 | 277 |
_in_arc = e; |
| 278 | 278 |
_next_arc = e + 1; |
| 279 | 279 |
return true; |
| 280 | 280 |
} |
| 281 | 281 |
} |
| 282 | 282 |
return false; |
| 283 | 283 |
} |
| 284 | 284 |
|
| 285 | 285 |
}; //class FirstEligiblePivotRule |
| 286 | 286 |
|
| 287 | 287 |
|
| 288 | 288 |
// Implementation of the Best Eligible pivot rule |
| 289 | 289 |
class BestEligiblePivotRule |
| 290 | 290 |
{
|
| 291 | 291 |
private: |
| 292 | 292 |
|
| 293 | 293 |
// References to the NetworkSimplex class |
| 294 | 294 |
const IntVector &_source; |
| 295 | 295 |
const IntVector &_target; |
| 296 | 296 |
const CostVector &_cost; |
| 297 | 297 |
const IntVector &_state; |
| 298 | 298 |
const CostVector &_pi; |
| 299 | 299 |
int &_in_arc; |
| 300 | 300 |
int _search_arc_num; |
| 301 | 301 |
|
| 302 | 302 |
public: |
| 303 | 303 |
|
| 304 | 304 |
// Constructor |
| 305 | 305 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
| 306 | 306 |
_source(ns._source), _target(ns._target), |
| 307 | 307 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 308 | 308 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) |
| 309 | 309 |
{}
|
| 310 | 310 |
|
| 311 | 311 |
// Find next entering arc |
| 312 | 312 |
bool findEnteringArc() {
|
| 313 | 313 |
Cost c, min = 0; |
| 314 | 314 |
for (int e = 0; e < _search_arc_num; ++e) {
|
| 315 | 315 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 316 | 316 |
if (c < min) {
|
| 317 | 317 |
min = c; |
| 318 | 318 |
_in_arc = e; |
| 319 | 319 |
} |
| 320 | 320 |
} |
| 321 | 321 |
return min < 0; |
| 322 | 322 |
} |
| 323 | 323 |
|
| 324 | 324 |
}; //class BestEligiblePivotRule |
| 325 | 325 |
|
| 326 | 326 |
|
| 327 | 327 |
// Implementation of the Block Search pivot rule |
| 328 | 328 |
class BlockSearchPivotRule |
| 329 | 329 |
{
|
| 330 | 330 |
private: |
| 331 | 331 |
|
| 332 | 332 |
// References to the NetworkSimplex class |
| 333 | 333 |
const IntVector &_source; |
| 334 | 334 |
const IntVector &_target; |
| 335 | 335 |
const CostVector &_cost; |
| 336 | 336 |
const IntVector &_state; |
| 337 | 337 |
const CostVector &_pi; |
| 338 | 338 |
int &_in_arc; |
| 339 | 339 |
int _search_arc_num; |
| 340 | 340 |
|
| 341 | 341 |
// Pivot rule data |
| 342 | 342 |
int _block_size; |
| 343 | 343 |
int _next_arc; |
| 344 | 344 |
|
| 345 | 345 |
public: |
| 346 | 346 |
|
| 347 | 347 |
// Constructor |
| 348 | 348 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
| 349 | 349 |
_source(ns._source), _target(ns._target), |
| 350 | 350 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 351 | 351 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 352 | 352 |
_next_arc(0) |
| 353 | 353 |
{
|
| 354 | 354 |
// The main parameters of the pivot rule |
| 355 | 355 |
const double BLOCK_SIZE_FACTOR = 0.5; |
| 356 | 356 |
const int MIN_BLOCK_SIZE = 10; |
| 357 | 357 |
|
| 358 | 358 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
| 359 | 359 |
std::sqrt(double(_search_arc_num))), |
| 360 | 360 |
MIN_BLOCK_SIZE ); |
| 361 | 361 |
} |
| 362 | 362 |
|
| 363 | 363 |
// Find next entering arc |
| 364 | 364 |
bool findEnteringArc() {
|
| 365 | 365 |
Cost c, min = 0; |
| 366 | 366 |
int cnt = _block_size; |
| 367 |
int e |
|
| 367 |
int e; |
|
| 368 | 368 |
for (e = _next_arc; e < _search_arc_num; ++e) {
|
| 369 | 369 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 370 | 370 |
if (c < min) {
|
| 371 | 371 |
min = c; |
| 372 |
|
|
| 372 |
_in_arc = e; |
|
| 373 | 373 |
} |
| 374 | 374 |
if (--cnt == 0) {
|
| 375 |
if (min < 0) |
|
| 375 |
if (min < 0) goto search_end; |
|
| 376 | 376 |
cnt = _block_size; |
| 377 | 377 |
} |
| 378 | 378 |
} |
| 379 |
if (min == 0 || cnt > 0) {
|
|
| 380 |
for (e = 0; e < _next_arc; ++e) {
|
|
| 381 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 382 |
if (c < min) {
|
|
| 383 |
min = c; |
|
| 384 |
min_arc = e; |
|
| 385 |
} |
|
| 386 |
if (--cnt == 0) {
|
|
| 387 |
if (min < 0) break; |
|
| 388 |
cnt = _block_size; |
|
| 389 |
|
|
| 379 |
for (e = 0; e < _next_arc; ++e) {
|
|
| 380 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 381 |
if (c < min) {
|
|
| 382 |
min = c; |
|
| 383 |
_in_arc = e; |
|
| 384 |
} |
|
| 385 |
if (--cnt == 0) {
|
|
| 386 |
if (min < 0) goto search_end; |
|
| 387 |
cnt = _block_size; |
|
| 390 | 388 |
} |
| 391 | 389 |
} |
| 392 | 390 |
if (min >= 0) return false; |
| 393 |
|
|
| 391 |
|
|
| 392 |
search_end: |
|
| 394 | 393 |
_next_arc = e; |
| 395 | 394 |
return true; |
| 396 | 395 |
} |
| 397 | 396 |
|
| 398 | 397 |
}; //class BlockSearchPivotRule |
| 399 | 398 |
|
| 400 | 399 |
|
| 401 | 400 |
// Implementation of the Candidate List pivot rule |
| 402 | 401 |
class CandidateListPivotRule |
| 403 | 402 |
{
|
| 404 | 403 |
private: |
| 405 | 404 |
|
| 406 | 405 |
// References to the NetworkSimplex class |
| 407 | 406 |
const IntVector &_source; |
| 408 | 407 |
const IntVector &_target; |
| 409 | 408 |
const CostVector &_cost; |
| 410 | 409 |
const IntVector &_state; |
| 411 | 410 |
const CostVector &_pi; |
| 412 | 411 |
int &_in_arc; |
| 413 | 412 |
int _search_arc_num; |
| 414 | 413 |
|
| 415 | 414 |
// Pivot rule data |
| 416 | 415 |
IntVector _candidates; |
| 417 | 416 |
int _list_length, _minor_limit; |
| 418 | 417 |
int _curr_length, _minor_count; |
| 419 | 418 |
int _next_arc; |
| 420 | 419 |
|
| 421 | 420 |
public: |
| 422 | 421 |
|
| 423 | 422 |
/// Constructor |
| 424 | 423 |
CandidateListPivotRule(NetworkSimplex &ns) : |
| 425 | 424 |
_source(ns._source), _target(ns._target), |
| 426 | 425 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 427 | 426 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 428 | 427 |
_next_arc(0) |
| 429 | 428 |
{
|
| 430 | 429 |
// The main parameters of the pivot rule |
| 431 |
const double LIST_LENGTH_FACTOR = |
|
| 430 |
const double LIST_LENGTH_FACTOR = 0.25; |
|
| 432 | 431 |
const int MIN_LIST_LENGTH = 10; |
| 433 | 432 |
const double MINOR_LIMIT_FACTOR = 0.1; |
| 434 | 433 |
const int MIN_MINOR_LIMIT = 3; |
| 435 | 434 |
|
| 436 | 435 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
| 437 | 436 |
std::sqrt(double(_search_arc_num))), |
| 438 | 437 |
MIN_LIST_LENGTH ); |
| 439 | 438 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
| 440 | 439 |
MIN_MINOR_LIMIT ); |
| 441 | 440 |
_curr_length = _minor_count = 0; |
| 442 | 441 |
_candidates.resize(_list_length); |
| 443 | 442 |
} |
| 444 | 443 |
|
| 445 | 444 |
/// Find next entering arc |
| 446 | 445 |
bool findEnteringArc() {
|
| 447 | 446 |
Cost min, c; |
| 448 |
int e |
|
| 447 |
int e; |
|
| 449 | 448 |
if (_curr_length > 0 && _minor_count < _minor_limit) {
|
| 450 | 449 |
// Minor iteration: select the best eligible arc from the |
| 451 | 450 |
// current candidate list |
| 452 | 451 |
++_minor_count; |
| 453 | 452 |
min = 0; |
| 454 | 453 |
for (int i = 0; i < _curr_length; ++i) {
|
| 455 | 454 |
e = _candidates[i]; |
| 456 | 455 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 457 | 456 |
if (c < min) {
|
| 458 | 457 |
min = c; |
| 459 |
|
|
| 458 |
_in_arc = e; |
|
| 460 | 459 |
} |
| 461 |
if (c >= 0) {
|
|
| 460 |
else if (c >= 0) {
|
|
| 462 | 461 |
_candidates[i--] = _candidates[--_curr_length]; |
| 463 | 462 |
} |
| 464 | 463 |
} |
| 465 |
if (min < 0) {
|
|
| 466 |
_in_arc = min_arc; |
|
| 467 |
return true; |
|
| 468 |
} |
|
| 464 |
if (min < 0) return true; |
|
| 469 | 465 |
} |
| 470 | 466 |
|
| 471 | 467 |
// Major iteration: build a new candidate list |
| 472 | 468 |
min = 0; |
| 473 | 469 |
_curr_length = 0; |
| 474 | 470 |
for (e = _next_arc; e < _search_arc_num; ++e) {
|
| 475 | 471 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 476 | 472 |
if (c < 0) {
|
| 477 | 473 |
_candidates[_curr_length++] = e; |
| 478 | 474 |
if (c < min) {
|
| 479 | 475 |
min = c; |
| 480 |
|
|
| 476 |
_in_arc = e; |
|
| 481 | 477 |
} |
| 482 |
if (_curr_length == _list_length) |
|
| 478 |
if (_curr_length == _list_length) goto search_end; |
|
| 483 | 479 |
} |
| 484 | 480 |
} |
| 485 |
if (_curr_length < _list_length) {
|
|
| 486 |
for (e = 0; e < _next_arc; ++e) {
|
|
| 487 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 488 |
if (c < 0) {
|
|
| 489 |
_candidates[_curr_length++] = e; |
|
| 490 |
if (c < min) {
|
|
| 491 |
min = c; |
|
| 492 |
min_arc = e; |
|
| 493 |
} |
|
| 494 |
if (_curr_length == _list_length) break; |
|
| 481 |
for (e = 0; e < _next_arc; ++e) {
|
|
| 482 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 483 |
if (c < 0) {
|
|
| 484 |
_candidates[_curr_length++] = e; |
|
| 485 |
if (c < min) {
|
|
| 486 |
min = c; |
|
| 487 |
_in_arc = e; |
|
| 495 | 488 |
} |
| 489 |
if (_curr_length == _list_length) goto search_end; |
|
| 496 | 490 |
} |
| 497 | 491 |
} |
| 498 | 492 |
if (_curr_length == 0) return false; |
| 493 |
|
|
| 494 |
search_end: |
|
| 499 | 495 |
_minor_count = 1; |
| 500 |
_in_arc = min_arc; |
|
| 501 | 496 |
_next_arc = e; |
| 502 | 497 |
return true; |
| 503 | 498 |
} |
| 504 | 499 |
|
| 505 | 500 |
}; //class CandidateListPivotRule |
| 506 | 501 |
|
| 507 | 502 |
|
| 508 | 503 |
// Implementation of the Altering Candidate List pivot rule |
| 509 | 504 |
class AlteringListPivotRule |
| 510 | 505 |
{
|
| 511 | 506 |
private: |
| 512 | 507 |
|
| 513 | 508 |
// References to the NetworkSimplex class |
| 514 | 509 |
const IntVector &_source; |
| 515 | 510 |
const IntVector &_target; |
| 516 | 511 |
const CostVector &_cost; |
| 517 | 512 |
const IntVector &_state; |
| 518 | 513 |
const CostVector &_pi; |
| 519 | 514 |
int &_in_arc; |
| 520 | 515 |
int _search_arc_num; |
| 521 | 516 |
|
| 522 | 517 |
// Pivot rule data |
| 523 | 518 |
int _block_size, _head_length, _curr_length; |
| 524 | 519 |
int _next_arc; |
| 525 | 520 |
IntVector _candidates; |
| 526 | 521 |
CostVector _cand_cost; |
| 527 | 522 |
|
| 528 | 523 |
// Functor class to compare arcs during sort of the candidate list |
| 529 | 524 |
class SortFunc |
| 530 | 525 |
{
|
| 531 | 526 |
private: |
| 532 | 527 |
const CostVector &_map; |
| 533 | 528 |
public: |
| 534 | 529 |
SortFunc(const CostVector &map) : _map(map) {}
|
| 535 | 530 |
bool operator()(int left, int right) {
|
| 536 | 531 |
return _map[left] > _map[right]; |
| 537 | 532 |
} |
| 538 | 533 |
}; |
| 539 | 534 |
|
| 540 | 535 |
SortFunc _sort_func; |
| 541 | 536 |
|
| 542 | 537 |
public: |
| 543 | 538 |
|
| 544 | 539 |
// Constructor |
| 545 | 540 |
AlteringListPivotRule(NetworkSimplex &ns) : |
| 546 | 541 |
_source(ns._source), _target(ns._target), |
| 547 | 542 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 548 | 543 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 549 | 544 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
| 550 | 545 |
{
|
| 551 | 546 |
// The main parameters of the pivot rule |
| 552 |
const double BLOCK_SIZE_FACTOR = 1. |
|
| 547 |
const double BLOCK_SIZE_FACTOR = 1.0; |
|
| 553 | 548 |
const int MIN_BLOCK_SIZE = 10; |
| 554 | 549 |
const double HEAD_LENGTH_FACTOR = 0.1; |
| 555 | 550 |
const int MIN_HEAD_LENGTH = 3; |
| 556 | 551 |
|
| 557 | 552 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
| 558 | 553 |
std::sqrt(double(_search_arc_num))), |
| 559 | 554 |
MIN_BLOCK_SIZE ); |
| 560 | 555 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
| 561 | 556 |
MIN_HEAD_LENGTH ); |
| 562 | 557 |
_candidates.resize(_head_length + _block_size); |
| 563 | 558 |
_curr_length = 0; |
| 564 | 559 |
} |
| 565 | 560 |
|
| 566 | 561 |
// Find next entering arc |
| 567 | 562 |
bool findEnteringArc() {
|
| 568 | 563 |
// Check the current candidate list |
| 569 | 564 |
int e; |
| 570 | 565 |
for (int i = 0; i < _curr_length; ++i) {
|
| 571 | 566 |
e = _candidates[i]; |
| 572 | 567 |
_cand_cost[e] = _state[e] * |
| 573 | 568 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 574 | 569 |
if (_cand_cost[e] >= 0) {
|
| 575 | 570 |
_candidates[i--] = _candidates[--_curr_length]; |
| 576 | 571 |
} |
| 577 | 572 |
} |
| 578 | 573 |
|
| 579 | 574 |
// Extend the list |
| 580 | 575 |
int cnt = _block_size; |
| 581 |
int last_arc = 0; |
|
| 582 | 576 |
int limit = _head_length; |
| 583 | 577 |
|
| 584 |
for ( |
|
| 578 |
for (e = _next_arc; e < _search_arc_num; ++e) {
|
|
| 585 | 579 |
_cand_cost[e] = _state[e] * |
| 586 | 580 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 587 | 581 |
if (_cand_cost[e] < 0) {
|
| 588 | 582 |
_candidates[_curr_length++] = e; |
| 589 |
last_arc = e; |
|
| 590 | 583 |
} |
| 591 | 584 |
if (--cnt == 0) {
|
| 592 |
if (_curr_length > limit) |
|
| 585 |
if (_curr_length > limit) goto search_end; |
|
| 593 | 586 |
limit = 0; |
| 594 | 587 |
cnt = _block_size; |
| 595 | 588 |
} |
| 596 | 589 |
} |
| 597 |
if (_curr_length <= limit) {
|
|
| 598 |
for (int e = 0; e < _next_arc; ++e) {
|
|
| 599 |
_cand_cost[e] = _state[e] * |
|
| 600 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 601 |
if (_cand_cost[e] < 0) {
|
|
| 602 |
_candidates[_curr_length++] = e; |
|
| 603 |
last_arc = e; |
|
| 604 |
} |
|
| 605 |
if (--cnt == 0) {
|
|
| 606 |
if (_curr_length > limit) break; |
|
| 607 |
limit = 0; |
|
| 608 |
cnt = _block_size; |
|
| 609 |
|
|
| 590 |
for (e = 0; e < _next_arc; ++e) {
|
|
| 591 |
_cand_cost[e] = _state[e] * |
|
| 592 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 593 |
if (_cand_cost[e] < 0) {
|
|
| 594 |
_candidates[_curr_length++] = e; |
|
| 595 |
} |
|
| 596 |
if (--cnt == 0) {
|
|
| 597 |
if (_curr_length > limit) goto search_end; |
|
| 598 |
limit = 0; |
|
| 599 |
cnt = _block_size; |
|
| 610 | 600 |
} |
| 611 | 601 |
} |
| 612 | 602 |
if (_curr_length == 0) return false; |
| 613 |
|
|
| 603 |
|
|
| 604 |
search_end: |
|
| 614 | 605 |
|
| 615 | 606 |
// Make heap of the candidate list (approximating a partial sort) |
| 616 | 607 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
| 617 | 608 |
_sort_func ); |
| 618 | 609 |
|
| 619 | 610 |
// Pop the first element of the heap |
| 620 | 611 |
_in_arc = _candidates[0]; |
| 612 |
_next_arc = e; |
|
| 621 | 613 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
| 622 | 614 |
_sort_func ); |
| 623 | 615 |
_curr_length = std::min(_head_length, _curr_length - 1); |
| 624 | 616 |
return true; |
| 625 | 617 |
} |
| 626 | 618 |
|
| 627 | 619 |
}; //class AlteringListPivotRule |
| 628 | 620 |
|
| 629 | 621 |
public: |
| 630 | 622 |
|
| 631 | 623 |
/// \brief Constructor. |
| 632 | 624 |
/// |
| 633 | 625 |
/// The constructor of the class. |
| 634 | 626 |
/// |
| 635 | 627 |
/// \param graph The digraph the algorithm runs on. |
| 636 |
|
|
| 628 |
/// \param arc_mixing Indicate if the arcs have to be stored in a |
|
| 629 |
/// mixed order in the internal data structure. |
|
| 630 |
/// In special cases, it could lead to better overall performance, |
|
| 631 |
/// but it is usually slower. Therefore it is disabled by default. |
|
| 632 |
NetworkSimplex(const GR& graph, bool arc_mixing = false) : |
|
| 637 | 633 |
_graph(graph), _node_id(graph), _arc_id(graph), |
| 638 | 634 |
INF(std::numeric_limits<Value>::has_infinity ? |
| 639 | 635 |
std::numeric_limits<Value>::infinity() : |
| 640 | 636 |
std::numeric_limits<Value>::max()) |
| 641 | 637 |
{
|
| 642 | 638 |
// Check the value types |
| 643 | 639 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
| 644 | 640 |
"The flow type of NetworkSimplex must be signed"); |
| 645 | 641 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
| 646 | 642 |
"The cost type of NetworkSimplex must be signed"); |
| 647 | 643 |
|
| 648 | 644 |
// Resize vectors |
| 649 | 645 |
_node_num = countNodes(_graph); |
| 650 | 646 |
_arc_num = countArcs(_graph); |
| 651 | 647 |
int all_node_num = _node_num + 1; |
| 652 | 648 |
int max_arc_num = _arc_num + 2 * _node_num; |
| 653 | 649 |
|
| 654 | 650 |
_source.resize(max_arc_num); |
| 655 | 651 |
_target.resize(max_arc_num); |
| 656 | 652 |
|
| 657 | 653 |
_lower.resize(_arc_num); |
| 658 | 654 |
_upper.resize(_arc_num); |
| 659 | 655 |
_cap.resize(max_arc_num); |
| 660 | 656 |
_cost.resize(max_arc_num); |
| 661 | 657 |
_supply.resize(all_node_num); |
| 662 | 658 |
_flow.resize(max_arc_num); |
| 663 | 659 |
_pi.resize(all_node_num); |
| 664 | 660 |
|
| 665 | 661 |
_parent.resize(all_node_num); |
| 666 | 662 |
_pred.resize(all_node_num); |
| 667 | 663 |
_forward.resize(all_node_num); |
| 668 | 664 |
_thread.resize(all_node_num); |
| 669 | 665 |
_rev_thread.resize(all_node_num); |
| 670 | 666 |
_succ_num.resize(all_node_num); |
| 671 | 667 |
_last_succ.resize(all_node_num); |
| 672 | 668 |
_state.resize(max_arc_num); |
| 673 | 669 |
|
| 674 |
// Copy the graph |
|
| 670 |
// Copy the graph |
|
| 675 | 671 |
int i = 0; |
| 676 | 672 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 677 | 673 |
_node_id[n] = i; |
| 678 | 674 |
} |
| 679 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
| 680 |
i = 0; |
|
| 681 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 682 |
_arc_id[a] = i; |
|
| 683 |
_source[i] = _node_id[_graph.source(a)]; |
|
| 684 |
_target[i] = _node_id[_graph.target(a)]; |
|
| 685 |
|
|
| 675 |
if (arc_mixing) {
|
|
| 676 |
// Store the arcs in a mixed order |
|
| 677 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
| 678 |
int i = 0, j = 0; |
|
| 679 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 680 |
_arc_id[a] = i; |
|
| 681 |
_source[i] = _node_id[_graph.source(a)]; |
|
| 682 |
_target[i] = _node_id[_graph.target(a)]; |
|
| 683 |
if ((i += k) >= _arc_num) i = ++j; |
|
| 684 |
} |
|
| 685 |
} else {
|
|
| 686 |
// Store the arcs in the original order |
|
| 687 |
int i = 0; |
|
| 688 |
for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
|
|
| 689 |
_arc_id[a] = i; |
|
| 690 |
_source[i] = _node_id[_graph.source(a)]; |
|
| 691 |
_target[i] = _node_id[_graph.target(a)]; |
|
| 692 |
} |
|
| 686 | 693 |
} |
| 687 | 694 |
|
| 688 |
// Initialize maps |
|
| 689 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 690 |
_supply[i] = 0; |
|
| 691 |
} |
|
| 692 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 693 |
_lower[i] = 0; |
|
| 694 |
_upper[i] = INF; |
|
| 695 |
_cost[i] = 1; |
|
| 696 |
} |
|
| 697 |
_have_lower = false; |
|
| 698 |
|
|
| 695 |
// Reset parameters |
|
| 696 |
reset(); |
|
| 699 | 697 |
} |
| 700 | 698 |
|
| 701 | 699 |
/// \name Parameters |
| 702 | 700 |
/// The parameters of the algorithm can be specified using these |
| 703 | 701 |
/// functions. |
| 704 | 702 |
|
| 705 | 703 |
/// @{
|
| 706 | 704 |
|
| 707 | 705 |
/// \brief Set the lower bounds on the arcs. |
| 708 | 706 |
/// |
| 709 | 707 |
/// This function sets the lower bounds on the arcs. |
| 710 | 708 |
/// If it is not used before calling \ref run(), the lower bounds |
| 711 | 709 |
/// will be set to zero on all arcs. |
| 712 | 710 |
/// |
| 713 | 711 |
/// \param map An arc map storing the lower bounds. |
| 714 | 712 |
/// Its \c Value type must be convertible to the \c Value type |
| 715 | 713 |
/// of the algorithm. |
| 716 | 714 |
/// |
| 717 | 715 |
/// \return <tt>(*this)</tt> |
| 718 | 716 |
template <typename LowerMap> |
| 719 | 717 |
NetworkSimplex& lowerMap(const LowerMap& map) {
|
| 720 | 718 |
_have_lower = true; |
| 721 | 719 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 722 | 720 |
_lower[_arc_id[a]] = map[a]; |
| 723 | 721 |
} |
| 724 | 722 |
return *this; |
| 725 | 723 |
} |
| 726 | 724 |
|
| 727 | 725 |
/// \brief Set the upper bounds (capacities) on the arcs. |
| 728 | 726 |
/// |
| 729 | 727 |
/// This function sets the upper bounds (capacities) on the arcs. |
| 730 | 728 |
/// If it is not used before calling \ref run(), the upper bounds |
| 731 | 729 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
| 732 | 730 |
/// unbounded from above on each arc). |
| 733 | 731 |
/// |
| 734 | 732 |
/// \param map An arc map storing the upper bounds. |
| 735 | 733 |
/// Its \c Value type must be convertible to the \c Value type |
| 736 | 734 |
/// of the algorithm. |
| 737 | 735 |
/// |
| 738 | 736 |
/// \return <tt>(*this)</tt> |
| 739 | 737 |
template<typename UpperMap> |
| 740 | 738 |
NetworkSimplex& upperMap(const UpperMap& map) {
|
| 741 | 739 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 742 | 740 |
_upper[_arc_id[a]] = map[a]; |
| 743 | 741 |
} |
| 744 | 742 |
return *this; |
| 745 | 743 |
} |
| 746 | 744 |
|
| 747 | 745 |
/// \brief Set the costs of the arcs. |
| 748 | 746 |
/// |
| 749 | 747 |
/// This function sets the costs of the arcs. |
| 750 | 748 |
/// If it is not used before calling \ref run(), the costs |
| 751 | 749 |
/// will be set to \c 1 on all arcs. |
| 752 | 750 |
/// |
| 753 | 751 |
/// \param map An arc map storing the costs. |
| 754 | 752 |
/// Its \c Value type must be convertible to the \c Cost type |
| 755 | 753 |
/// of the algorithm. |
| 756 | 754 |
/// |
| 757 | 755 |
/// \return <tt>(*this)</tt> |
| 758 | 756 |
template<typename CostMap> |
| 759 | 757 |
NetworkSimplex& costMap(const CostMap& map) {
|
| 760 | 758 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 761 | 759 |
_cost[_arc_id[a]] = map[a]; |
| 762 | 760 |
} |
| 763 | 761 |
return *this; |
| 764 | 762 |
} |
| 765 | 763 |
|
| 766 | 764 |
/// \brief Set the supply values of the nodes. |
| 767 | 765 |
/// |
| 768 | 766 |
/// This function sets the supply values of the nodes. |
| 769 | 767 |
/// If neither this function nor \ref stSupply() is used before |
| 770 | 768 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 771 |
/// (It makes sense only if non-zero lower bounds are given.) |
|
| 772 | 769 |
/// |
| 773 | 770 |
/// \param map A node map storing the supply values. |
| 774 | 771 |
/// Its \c Value type must be convertible to the \c Value type |
| 775 | 772 |
/// of the algorithm. |
| 776 | 773 |
/// |
| 777 | 774 |
/// \return <tt>(*this)</tt> |
| 778 | 775 |
template<typename SupplyMap> |
| 779 | 776 |
NetworkSimplex& supplyMap(const SupplyMap& map) {
|
| 780 | 777 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 781 | 778 |
_supply[_node_id[n]] = map[n]; |
| 782 | 779 |
} |
| 783 | 780 |
return *this; |
| 784 | 781 |
} |
| 785 | 782 |
|
| 786 | 783 |
/// \brief Set single source and target nodes and a supply value. |
| 787 | 784 |
/// |
| 788 | 785 |
/// This function sets a single source node and a single target node |
| 789 | 786 |
/// and the required flow value. |
| 790 | 787 |
/// If neither this function nor \ref supplyMap() is used before |
| 791 | 788 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 792 |
/// (It makes sense only if non-zero lower bounds are given.) |
|
| 793 | 789 |
/// |
| 794 | 790 |
/// Using this function has the same effect as using \ref supplyMap() |
| 795 | 791 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
| 796 | 792 |
/// assigned to \c t and all other nodes have zero supply value. |
| 797 | 793 |
/// |
| 798 | 794 |
/// \param s The source node. |
| 799 | 795 |
/// \param t The target node. |
| 800 | 796 |
/// \param k The required amount of flow from node \c s to node \c t |
| 801 | 797 |
/// (i.e. the supply of \c s and the demand of \c t). |
| 802 | 798 |
/// |
| 803 | 799 |
/// \return <tt>(*this)</tt> |
| 804 | 800 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
|
| 805 | 801 |
for (int i = 0; i != _node_num; ++i) {
|
| 806 | 802 |
_supply[i] = 0; |
| 807 | 803 |
} |
| 808 | 804 |
_supply[_node_id[s]] = k; |
| 809 | 805 |
_supply[_node_id[t]] = -k; |
| 810 | 806 |
return *this; |
| 811 | 807 |
} |
| 812 | 808 |
|
| 813 | 809 |
/// \brief Set the type of the supply constraints. |
| 814 | 810 |
/// |
| 815 | 811 |
/// This function sets the type of the supply/demand constraints. |
| 816 | 812 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
| 817 | 813 |
/// type will be used. |
| 818 | 814 |
/// |
| 819 | 815 |
/// For more information see \ref SupplyType. |
| 820 | 816 |
/// |
| 821 | 817 |
/// \return <tt>(*this)</tt> |
| 822 | 818 |
NetworkSimplex& supplyType(SupplyType supply_type) {
|
| 823 | 819 |
_stype = supply_type; |
| 824 | 820 |
return *this; |
| 825 | 821 |
} |
| 826 | 822 |
|
| 827 | 823 |
/// @} |
| 828 | 824 |
|
| 829 | 825 |
/// \name Execution Control |
| 830 | 826 |
/// The algorithm can be executed using \ref run(). |
| 831 | 827 |
|
| 832 | 828 |
/// @{
|
| 833 | 829 |
|
| 834 | 830 |
/// \brief Run the algorithm. |
| 835 | 831 |
/// |
| 836 | 832 |
/// This function runs the algorithm. |
| 837 | 833 |
/// The paramters can be specified using functions \ref lowerMap(), |
| 838 | 834 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
| 839 | 835 |
/// \ref supplyType(). |
| 840 | 836 |
/// For example, |
| 841 | 837 |
/// \code |
| 842 | 838 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 843 | 839 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
| 844 | 840 |
/// .supplyMap(sup).run(); |
| 845 | 841 |
/// \endcode |
| 846 | 842 |
/// |
| 847 | 843 |
/// This function can be called more than once. All the parameters |
| 848 | 844 |
/// that have been given are kept for the next call, unless |
| 849 | 845 |
/// \ref reset() is called, thus only the modified parameters |
| 850 | 846 |
/// have to be set again. See \ref reset() for examples. |
| 851 | 847 |
/// However the underlying digraph must not be modified after this |
| 852 | 848 |
/// class have been constructed, since it copies and extends the graph. |
| 853 | 849 |
/// |
| 854 | 850 |
/// \param pivot_rule The pivot rule that will be used during the |
| 855 | 851 |
/// algorithm. For more information see \ref PivotRule. |
| 856 | 852 |
/// |
| 857 | 853 |
/// \return \c INFEASIBLE if no feasible flow exists, |
| 858 | 854 |
/// \n \c OPTIMAL if the problem has optimal solution |
| 859 | 855 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
| 860 | 856 |
/// optimal flow and node potentials (primal and dual solutions), |
| 861 | 857 |
/// \n \c UNBOUNDED if the objective function of the problem is |
| 862 | 858 |
/// unbounded, i.e. there is a directed cycle having negative total |
| 863 | 859 |
/// cost and infinite upper bound. |
| 864 | 860 |
/// |
| 865 | 861 |
/// \see ProblemType, PivotRule |
| 866 | 862 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
|
| 867 | 863 |
if (!init()) return INFEASIBLE; |
| 868 | 864 |
return start(pivot_rule); |
| 869 | 865 |
} |
| 870 | 866 |
|
| 871 | 867 |
/// \brief Reset all the parameters that have been given before. |
| 872 | 868 |
/// |
| 873 | 869 |
/// This function resets all the paramaters that have been given |
| 874 | 870 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
| 875 | 871 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
| 876 | 872 |
/// |
| 877 | 873 |
/// It is useful for multiple run() calls. If this function is not |
| 878 | 874 |
/// used, all the parameters given before are kept for the next |
| 879 | 875 |
/// \ref run() call. |
| 880 | 876 |
/// However the underlying digraph must not be modified after this |
| 881 | 877 |
/// class have been constructed, since it copies and extends the graph. |
| 882 | 878 |
/// |
| 883 | 879 |
/// For example, |
| 884 | 880 |
/// \code |
| 885 | 881 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 886 | 882 |
/// |
| 887 | 883 |
/// // First run |
| 888 | 884 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
| 889 | 885 |
/// .supplyMap(sup).run(); |
| 890 | 886 |
/// |
| 891 | 887 |
/// // Run again with modified cost map (reset() is not called, |
| 892 | 888 |
/// // so only the cost map have to be set again) |
| 893 | 889 |
/// cost[e] += 100; |
| 894 | 890 |
/// ns.costMap(cost).run(); |
| 895 | 891 |
/// |
| 896 | 892 |
/// // Run again from scratch using reset() |
| 897 | 893 |
/// // (the lower bounds will be set to zero on all arcs) |
| 898 | 894 |
/// ns.reset(); |
| 899 | 895 |
/// ns.upperMap(capacity).costMap(cost) |
| 900 | 896 |
/// .supplyMap(sup).run(); |
| 901 | 897 |
/// \endcode |
| 902 | 898 |
/// |
| 903 | 899 |
/// \return <tt>(*this)</tt> |
| 904 | 900 |
NetworkSimplex& reset() {
|
| 905 | 901 |
for (int i = 0; i != _node_num; ++i) {
|
| 906 | 902 |
_supply[i] = 0; |
| 907 | 903 |
} |
| 908 | 904 |
for (int i = 0; i != _arc_num; ++i) {
|
| 909 | 905 |
_lower[i] = 0; |
| 910 | 906 |
_upper[i] = INF; |
| 911 | 907 |
_cost[i] = 1; |
| 912 | 908 |
} |
| 913 | 909 |
_have_lower = false; |
| 914 | 910 |
_stype = GEQ; |
| 915 | 911 |
return *this; |
| 916 | 912 |
} |
| 917 | 913 |
|
| 918 | 914 |
/// @} |
| 919 | 915 |
|
| 920 | 916 |
/// \name Query Functions |
| 921 | 917 |
/// The results of the algorithm can be obtained using these |
| 922 | 918 |
/// functions.\n |
| 923 | 919 |
/// The \ref run() function must be called before using them. |
| 924 | 920 |
|
| 925 | 921 |
/// @{
|
| 926 | 922 |
|
| 927 | 923 |
/// \brief Return the total cost of the found flow. |
| 928 | 924 |
/// |
| 929 | 925 |
/// This function returns the total cost of the found flow. |
| 930 | 926 |
/// Its complexity is O(e). |
| 931 | 927 |
/// |
| 932 | 928 |
/// \note The return type of the function can be specified as a |
| 933 | 929 |
/// template parameter. For example, |
| 934 | 930 |
/// \code |
| 935 | 931 |
/// ns.totalCost<double>(); |
| 936 | 932 |
/// \endcode |
| 937 | 933 |
/// It is useful if the total cost cannot be stored in the \c Cost |
| 938 | 934 |
/// type of the algorithm, which is the default return type of the |
| 939 | 935 |
/// function. |
| 940 | 936 |
/// |
| 941 | 937 |
/// \pre \ref run() must be called before using this function. |
| 942 | 938 |
template <typename Number> |
| 943 | 939 |
Number totalCost() const {
|
| 944 | 940 |
Number c = 0; |
| 945 | 941 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 946 | 942 |
int i = _arc_id[a]; |
| 947 | 943 |
c += Number(_flow[i]) * Number(_cost[i]); |
| 948 | 944 |
} |
| 949 | 945 |
return c; |
| 950 | 946 |
} |
| 951 | 947 |
|
| 952 | 948 |
#ifndef DOXYGEN |
| 953 | 949 |
Cost totalCost() const {
|
| 954 | 950 |
return totalCost<Cost>(); |
| 955 | 951 |
} |
| 956 | 952 |
#endif |
| 957 | 953 |
|
| 958 | 954 |
/// \brief Return the flow on the given arc. |
| 959 | 955 |
/// |
| 960 | 956 |
/// This function returns the flow on the given arc. |
| 961 | 957 |
/// |
| 962 | 958 |
/// \pre \ref run() must be called before using this function. |
| 963 | 959 |
Value flow(const Arc& a) const {
|
| 964 | 960 |
return _flow[_arc_id[a]]; |
| 965 | 961 |
} |
| 966 | 962 |
|
| 967 | 963 |
/// \brief Return the flow map (the primal solution). |
| 968 | 964 |
/// |
| 969 | 965 |
/// This function copies the flow value on each arc into the given |
| 970 | 966 |
/// map. The \c Value type of the algorithm must be convertible to |
| 971 | 967 |
/// the \c Value type of the map. |
| 972 | 968 |
/// |
| 973 | 969 |
/// \pre \ref run() must be called before using this function. |
| 974 | 970 |
template <typename FlowMap> |
| 975 | 971 |
void flowMap(FlowMap &map) const {
|
| 976 | 972 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 977 | 973 |
map.set(a, _flow[_arc_id[a]]); |
| 978 | 974 |
} |
| 979 | 975 |
} |
| 980 | 976 |
|
| 981 | 977 |
/// \brief Return the potential (dual value) of the given node. |
| 982 | 978 |
/// |
| 983 | 979 |
/// This function returns the potential (dual value) of the |
| 984 | 980 |
/// given node. |
| 985 | 981 |
/// |
| 986 | 982 |
/// \pre \ref run() must be called before using this function. |
| 987 | 983 |
Cost potential(const Node& n) const {
|
| 988 | 984 |
return _pi[_node_id[n]]; |
| 989 | 985 |
} |
| 990 | 986 |
|
| 991 | 987 |
/// \brief Return the potential map (the dual solution). |
| 992 | 988 |
/// |
| 993 | 989 |
/// This function copies the potential (dual value) of each node |
| 994 | 990 |
/// into the given map. |
| 995 | 991 |
/// The \c Cost type of the algorithm must be convertible to the |
| 996 | 992 |
/// \c Value type of the map. |
| 997 | 993 |
/// |
| 998 | 994 |
/// \pre \ref run() must be called before using this function. |
| 999 | 995 |
template <typename PotentialMap> |
| 1000 | 996 |
void potentialMap(PotentialMap &map) const {
|
| 1001 | 997 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1002 | 998 |
map.set(n, _pi[_node_id[n]]); |
| 1003 | 999 |
} |
| 1004 | 1000 |
} |
| 1005 | 1001 |
|
| 1006 | 1002 |
/// @} |
| 1007 | 1003 |
|
| 1008 | 1004 |
private: |
| 1009 | 1005 |
|
| 1010 | 1006 |
// Initialize internal data structures |
| 1011 | 1007 |
bool init() {
|
| 1012 | 1008 |
if (_node_num == 0) return false; |
| 1013 | 1009 |
|
| 1014 | 1010 |
// Check the sum of supply values |
| 1015 | 1011 |
_sum_supply = 0; |
| 1016 | 1012 |
for (int i = 0; i != _node_num; ++i) {
|
| 1017 | 1013 |
_sum_supply += _supply[i]; |
| 1018 | 1014 |
} |
| 1019 | 1015 |
if ( !((_stype == GEQ && _sum_supply <= 0) || |
| 1020 | 1016 |
(_stype == LEQ && _sum_supply >= 0)) ) return false; |
| 1021 | 1017 |
|
| 1022 | 1018 |
// Remove non-zero lower bounds |
| 1023 | 1019 |
if (_have_lower) {
|
| 1024 | 1020 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1025 | 1021 |
Value c = _lower[i]; |
| 1026 | 1022 |
if (c >= 0) {
|
| 1027 | 1023 |
_cap[i] = _upper[i] < INF ? _upper[i] - c : INF; |
| 1028 | 1024 |
} else {
|
| 1029 | 1025 |
_cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF; |
| 1030 | 1026 |
} |
| 1031 | 1027 |
_supply[_source[i]] -= c; |
| 1032 | 1028 |
_supply[_target[i]] += c; |
| 1033 | 1029 |
} |
| 1034 | 1030 |
} else {
|
| 1035 | 1031 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1036 | 1032 |
_cap[i] = _upper[i]; |
| 1037 | 1033 |
} |
| 1038 | 1034 |
} |
| 1039 | 1035 |
|
| 1040 | 1036 |
// Initialize artifical cost |
| 1041 | 1037 |
Cost ART_COST; |
| 1042 | 1038 |
if (std::numeric_limits<Cost>::is_exact) {
|
| 1043 | 1039 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
| 1044 | 1040 |
} else {
|
| 1045 | 1041 |
ART_COST = std::numeric_limits<Cost>::min(); |
| 1046 | 1042 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1047 | 1043 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
| 1048 | 1044 |
} |
| 1049 | 1045 |
ART_COST = (ART_COST + 1) * _node_num; |
| 1050 | 1046 |
} |
| 1051 | 1047 |
|
| 1052 | 1048 |
// Initialize arc maps |
| 1053 | 1049 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1054 | 1050 |
_flow[i] = 0; |
| 1055 | 1051 |
_state[i] = STATE_LOWER; |
| 1056 | 1052 |
} |
| 1057 | 1053 |
|
| 1058 | 1054 |
// Set data for the artificial root node |
| 1059 | 1055 |
_root = _node_num; |
| 1060 | 1056 |
_parent[_root] = -1; |
| 1061 | 1057 |
_pred[_root] = -1; |
| 1062 | 1058 |
_thread[_root] = 0; |
| 1063 | 1059 |
_rev_thread[0] = _root; |
| 1064 | 1060 |
_succ_num[_root] = _node_num + 1; |
| 1065 | 1061 |
_last_succ[_root] = _root - 1; |
| 1066 | 1062 |
_supply[_root] = -_sum_supply; |
| 1067 | 1063 |
_pi[_root] = 0; |
| 1068 | 1064 |
|
| 1069 | 1065 |
// Add artificial arcs and initialize the spanning tree data structure |
| 1070 | 1066 |
if (_sum_supply == 0) {
|
| 1071 | 1067 |
// EQ supply constraints |
| 1072 | 1068 |
_search_arc_num = _arc_num; |
| 1073 | 1069 |
_all_arc_num = _arc_num + _node_num; |
| 1074 | 1070 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1075 | 1071 |
_parent[u] = _root; |
| 1076 | 1072 |
_pred[u] = e; |
| 1077 | 1073 |
_thread[u] = u + 1; |
| 1078 | 1074 |
_rev_thread[u + 1] = u; |
| 1079 | 1075 |
_succ_num[u] = 1; |
| 1080 | 1076 |
_last_succ[u] = u; |
| 1081 | 1077 |
_cap[e] = INF; |
| 1082 | 1078 |
_state[e] = STATE_TREE; |
| 1083 | 1079 |
if (_supply[u] >= 0) {
|
| 1084 | 1080 |
_forward[u] = true; |
| 1085 | 1081 |
_pi[u] = 0; |
| 1086 | 1082 |
_source[e] = u; |
| 1087 | 1083 |
_target[e] = _root; |
| 1088 | 1084 |
_flow[e] = _supply[u]; |
| 1089 | 1085 |
_cost[e] = 0; |
| 1090 | 1086 |
} else {
|
| 1091 | 1087 |
_forward[u] = false; |
| 1092 | 1088 |
_pi[u] = ART_COST; |
| 1093 | 1089 |
_source[e] = _root; |
| 1094 | 1090 |
_target[e] = u; |
| 1095 | 1091 |
_flow[e] = -_supply[u]; |
| 1096 | 1092 |
_cost[e] = ART_COST; |
| 1097 | 1093 |
} |
| 1098 | 1094 |
} |
| 1099 | 1095 |
} |
| 1100 | 1096 |
else if (_sum_supply > 0) {
|
| 1101 | 1097 |
// LEQ supply constraints |
| 1102 | 1098 |
_search_arc_num = _arc_num + _node_num; |
| 1103 | 1099 |
int f = _arc_num + _node_num; |
| 1104 | 1100 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1105 | 1101 |
_parent[u] = _root; |
| 1106 | 1102 |
_thread[u] = u + 1; |
| 1107 | 1103 |
_rev_thread[u + 1] = u; |
| 1108 | 1104 |
_succ_num[u] = 1; |
| 1109 | 1105 |
_last_succ[u] = u; |
| 1110 | 1106 |
if (_supply[u] >= 0) {
|
| 1111 | 1107 |
_forward[u] = true; |
| 1112 | 1108 |
_pi[u] = 0; |
| 1113 | 1109 |
_pred[u] = e; |
| 1114 | 1110 |
_source[e] = u; |
| 1115 | 1111 |
_target[e] = _root; |
| 1116 | 1112 |
_cap[e] = INF; |
| 1117 | 1113 |
_flow[e] = _supply[u]; |
| 1118 | 1114 |
_cost[e] = 0; |
| 1119 | 1115 |
_state[e] = STATE_TREE; |
| 1120 | 1116 |
} else {
|
| 1121 | 1117 |
_forward[u] = false; |
| 1122 | 1118 |
_pi[u] = ART_COST; |
| 1123 | 1119 |
_pred[u] = f; |
| 1124 | 1120 |
_source[f] = _root; |
| 1125 | 1121 |
_target[f] = u; |
| 1126 | 1122 |
_cap[f] = INF; |
| 1127 | 1123 |
_flow[f] = -_supply[u]; |
| 1128 | 1124 |
_cost[f] = ART_COST; |
| 1129 | 1125 |
_state[f] = STATE_TREE; |
| 1130 | 1126 |
_source[e] = u; |
| 1131 | 1127 |
_target[e] = _root; |
| 1132 | 1128 |
_cap[e] = INF; |
| 1133 | 1129 |
_flow[e] = 0; |
| 1134 | 1130 |
_cost[e] = 0; |
| 1135 | 1131 |
_state[e] = STATE_LOWER; |
| 1136 | 1132 |
++f; |
| 1137 | 1133 |
} |
| 1138 | 1134 |
} |
| 1139 | 1135 |
_all_arc_num = f; |
| 1140 | 1136 |
} |
| 1141 | 1137 |
else {
|
| 1142 | 1138 |
// GEQ supply constraints |
| 1143 | 1139 |
_search_arc_num = _arc_num + _node_num; |
| 1144 | 1140 |
int f = _arc_num + _node_num; |
| 1145 | 1141 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1146 | 1142 |
_parent[u] = _root; |
| 1147 | 1143 |
_thread[u] = u + 1; |
| 1148 | 1144 |
_rev_thread[u + 1] = u; |
| 1149 | 1145 |
_succ_num[u] = 1; |
| 1150 | 1146 |
_last_succ[u] = u; |
| 1151 | 1147 |
if (_supply[u] <= 0) {
|
| 1152 | 1148 |
_forward[u] = false; |
| 1153 | 1149 |
_pi[u] = 0; |
| 1154 | 1150 |
_pred[u] = e; |
| 1155 | 1151 |
_source[e] = _root; |
| 1156 | 1152 |
_target[e] = u; |
| 1157 | 1153 |
_cap[e] = INF; |
| 1158 | 1154 |
_flow[e] = -_supply[u]; |
| 1159 | 1155 |
_cost[e] = 0; |
| 1160 | 1156 |
_state[e] = STATE_TREE; |
| 1161 | 1157 |
} else {
|
| 1162 | 1158 |
_forward[u] = true; |
| 1163 | 1159 |
_pi[u] = -ART_COST; |
| 1164 | 1160 |
_pred[u] = f; |
| 1165 | 1161 |
_source[f] = u; |
| 1166 | 1162 |
_target[f] = _root; |
| 1167 | 1163 |
_cap[f] = INF; |
| 1168 | 1164 |
_flow[f] = _supply[u]; |
| 1169 | 1165 |
_state[f] = STATE_TREE; |
| 1170 | 1166 |
_cost[f] = ART_COST; |
| 1171 | 1167 |
_source[e] = _root; |
| 1172 | 1168 |
_target[e] = u; |
| 1173 | 1169 |
_cap[e] = INF; |
| 1174 | 1170 |
_flow[e] = 0; |
| 1175 | 1171 |
_cost[e] = 0; |
| 1176 | 1172 |
_state[e] = STATE_LOWER; |
| 1177 | 1173 |
++f; |
| 1178 | 1174 |
} |
| 1179 | 1175 |
} |
| 1180 | 1176 |
_all_arc_num = f; |
| 1181 | 1177 |
} |
| 1182 | 1178 |
|
| 1183 | 1179 |
return true; |
| 1184 | 1180 |
} |
| 1185 | 1181 |
|
| 1186 | 1182 |
// Find the join node |
| 1187 | 1183 |
void findJoinNode() {
|
| 1188 | 1184 |
int u = _source[in_arc]; |
| 1189 | 1185 |
int v = _target[in_arc]; |
| 1190 | 1186 |
while (u != v) {
|
| 1191 | 1187 |
if (_succ_num[u] < _succ_num[v]) {
|
| 1192 | 1188 |
u = _parent[u]; |
| 1193 | 1189 |
} else {
|
| 1194 | 1190 |
v = _parent[v]; |
| 1195 | 1191 |
} |
| 1196 | 1192 |
} |
| 1197 | 1193 |
join = u; |
| 1198 | 1194 |
} |
| 1199 | 1195 |
|
| 1200 | 1196 |
// Find the leaving arc of the cycle and returns true if the |
| 1201 | 1197 |
// leaving arc is not the same as the entering arc |
| 1202 | 1198 |
bool findLeavingArc() {
|
| 1203 | 1199 |
// Initialize first and second nodes according to the direction |
| 1204 | 1200 |
// of the cycle |
| 1205 | 1201 |
if (_state[in_arc] == STATE_LOWER) {
|
| 1206 | 1202 |
first = _source[in_arc]; |
| 1207 | 1203 |
second = _target[in_arc]; |
| 1208 | 1204 |
} else {
|
| 1209 | 1205 |
first = _target[in_arc]; |
| 1210 | 1206 |
second = _source[in_arc]; |
| 1211 | 1207 |
} |
| 1212 | 1208 |
delta = _cap[in_arc]; |
| 1213 | 1209 |
int result = 0; |
| 1214 | 1210 |
Value d; |
| 1215 | 1211 |
int e; |
| 1216 | 1212 |
|
| 1217 | 1213 |
// Search the cycle along the path form the first node to the root |
| 1218 | 1214 |
for (int u = first; u != join; u = _parent[u]) {
|
| 1219 | 1215 |
e = _pred[u]; |
| 1220 | 1216 |
d = _forward[u] ? |
| 1221 | 1217 |
_flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]); |
| 1222 | 1218 |
if (d < delta) {
|
| 1223 | 1219 |
delta = d; |
| 1224 | 1220 |
u_out = u; |
| 1225 | 1221 |
result = 1; |
| 1226 | 1222 |
} |
| 1227 | 1223 |
} |
| 1228 | 1224 |
// Search the cycle along the path form the second node to the root |
| 1229 | 1225 |
for (int u = second; u != join; u = _parent[u]) {
|
| 1230 | 1226 |
e = _pred[u]; |
| 1231 | 1227 |
d = _forward[u] ? |
| 1232 | 1228 |
(_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e]; |
| 1233 | 1229 |
if (d <= delta) {
|
| 1234 | 1230 |
delta = d; |
| 1235 | 1231 |
u_out = u; |
| 1236 | 1232 |
result = 2; |
| 1237 | 1233 |
} |
| 1238 | 1234 |
} |
| 1239 | 1235 |
|
| 1240 | 1236 |
if (result == 1) {
|
| 1241 | 1237 |
u_in = first; |
| 1242 | 1238 |
v_in = second; |
| 1243 | 1239 |
} else {
|
| 1244 | 1240 |
u_in = second; |
| 1245 | 1241 |
v_in = first; |
| 1246 | 1242 |
} |
| 1247 | 1243 |
return result != 0; |
| 1248 | 1244 |
} |
| 1249 | 1245 |
|
| 1250 | 1246 |
// Change _flow and _state vectors |
| 1251 | 1247 |
void changeFlow(bool change) {
|
| 1252 | 1248 |
// Augment along the cycle |
| 1253 | 1249 |
if (delta > 0) {
|
| 1254 | 1250 |
Value val = _state[in_arc] * delta; |
| 1255 | 1251 |
_flow[in_arc] += val; |
| 1256 | 1252 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) {
|
| 1257 | 1253 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
| 1258 | 1254 |
} |
| 1259 | 1255 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) {
|
| 1260 | 1256 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
| 1261 | 1257 |
} |
| 1262 | 1258 |
} |
| 1263 | 1259 |
// Update the state of the entering and leaving arcs |
| 1264 | 1260 |
if (change) {
|
| 1265 | 1261 |
_state[in_arc] = STATE_TREE; |
| 1266 | 1262 |
_state[_pred[u_out]] = |
| 1267 | 1263 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
| 1268 | 1264 |
} else {
|
| 1269 | 1265 |
_state[in_arc] = -_state[in_arc]; |
| 1270 | 1266 |
} |
| 1271 | 1267 |
} |
| 1272 | 1268 |
|
| 1273 | 1269 |
// Update the tree structure |
| 1274 | 1270 |
void updateTreeStructure() {
|
| 1275 | 1271 |
int u, w; |
| 1276 | 1272 |
int old_rev_thread = _rev_thread[u_out]; |
| 1277 | 1273 |
int old_succ_num = _succ_num[u_out]; |
| 1278 | 1274 |
int old_last_succ = _last_succ[u_out]; |
| 1279 | 1275 |
v_out = _parent[u_out]; |
| 1280 | 1276 |
|
| 1281 | 1277 |
u = _last_succ[u_in]; // the last successor of u_in |
| 1282 | 1278 |
right = _thread[u]; // the node after it |
| 1283 | 1279 |
|
| 1284 | 1280 |
// Handle the case when old_rev_thread equals to v_in |
| 1285 | 1281 |
// (it also means that join and v_out coincide) |
| 1286 | 1282 |
if (old_rev_thread == v_in) {
|
| 1287 | 1283 |
last = _thread[_last_succ[u_out]]; |
| 1288 | 1284 |
} else {
|
| 1289 | 1285 |
last = _thread[v_in]; |
| 1290 | 1286 |
} |
| 1291 | 1287 |
|
| 1292 | 1288 |
// Update _thread and _parent along the stem nodes (i.e. the nodes |
| 1293 | 1289 |
// between u_in and u_out, whose parent have to be changed) |
| 1294 | 1290 |
_thread[v_in] = stem = u_in; |
| 1295 | 1291 |
_dirty_revs.clear(); |
| 1296 | 1292 |
_dirty_revs.push_back(v_in); |
| 1297 | 1293 |
par_stem = v_in; |
| 1298 | 1294 |
while (stem != u_out) {
|
| 1299 | 1295 |
// Insert the next stem node into the thread list |
| 1300 | 1296 |
new_stem = _parent[stem]; |
| 1301 | 1297 |
_thread[u] = new_stem; |
| 1302 | 1298 |
_dirty_revs.push_back(u); |
| 1303 | 1299 |
|
| 1304 | 1300 |
// Remove the subtree of stem from the thread list |
| 1305 | 1301 |
w = _rev_thread[stem]; |
| 1306 | 1302 |
_thread[w] = right; |
| 1307 | 1303 |
_rev_thread[right] = w; |
| 1308 | 1304 |
|
| 1309 | 1305 |
// Change the parent node and shift stem nodes |
| 1310 | 1306 |
_parent[stem] = par_stem; |
| 1311 | 1307 |
par_stem = stem; |
| 1312 | 1308 |
stem = new_stem; |
| 1313 | 1309 |
|
| 1314 | 1310 |
// Update u and right |
| 1315 | 1311 |
u = _last_succ[stem] == _last_succ[par_stem] ? |
| 1316 | 1312 |
_rev_thread[par_stem] : _last_succ[stem]; |
| 1317 | 1313 |
right = _thread[u]; |
| 1318 | 1314 |
} |
| 1319 | 1315 |
_parent[u_out] = par_stem; |
| 1320 | 1316 |
_thread[u] = last; |
| 1321 | 1317 |
_rev_thread[last] = u; |
| 1322 | 1318 |
_last_succ[u_out] = u; |
| 1323 | 1319 |
|
| 1324 | 1320 |
// Remove the subtree of u_out from the thread list except for |
| 1325 | 1321 |
// the case when old_rev_thread equals to v_in |
| 1326 | 1322 |
// (it also means that join and v_out coincide) |
| 1327 | 1323 |
if (old_rev_thread != v_in) {
|
| 1328 | 1324 |
_thread[old_rev_thread] = right; |
| 1329 | 1325 |
_rev_thread[right] = old_rev_thread; |
| 1330 | 1326 |
} |
| 1331 | 1327 |
|
| 1332 | 1328 |
// Update _rev_thread using the new _thread values |
| 1333 | 1329 |
for (int i = 0; i < int(_dirty_revs.size()); ++i) {
|
| 1334 | 1330 |
u = _dirty_revs[i]; |
| 1335 | 1331 |
_rev_thread[_thread[u]] = u; |
| 1336 | 1332 |
} |
| 1337 | 1333 |
|
| 1338 | 1334 |
// Update _pred, _forward, _last_succ and _succ_num for the |
| 1339 | 1335 |
// stem nodes from u_out to u_in |
| 1340 | 1336 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
| 1341 | 1337 |
u = u_out; |
| 1342 | 1338 |
while (u != u_in) {
|
| 1343 | 1339 |
w = _parent[u]; |
| 1344 | 1340 |
_pred[u] = _pred[w]; |
| 1345 | 1341 |
_forward[u] = !_forward[w]; |
| 1346 | 1342 |
tmp_sc += _succ_num[u] - _succ_num[w]; |
| 1347 | 1343 |
_succ_num[u] = tmp_sc; |
| 1348 | 1344 |
_last_succ[w] = tmp_ls; |
| 1349 | 1345 |
u = w; |
| 1350 | 1346 |
} |
| 1351 | 1347 |
_pred[u_in] = in_arc; |
| 1352 | 1348 |
_forward[u_in] = (u_in == _source[in_arc]); |
| 1353 | 1349 |
_succ_num[u_in] = old_succ_num; |
| 1354 | 1350 |
|
| 1355 | 1351 |
// Set limits for updating _last_succ form v_in and v_out |
| 1356 | 1352 |
// towards the root |
| 1357 | 1353 |
int up_limit_in = -1; |
| 1358 | 1354 |
int up_limit_out = -1; |
| 1359 | 1355 |
if (_last_succ[join] == v_in) {
|
| 1360 | 1356 |
up_limit_out = join; |
| 1361 | 1357 |
} else {
|
| 1362 | 1358 |
up_limit_in = join; |
| 1363 | 1359 |
} |
| 1364 | 1360 |
|
| 1365 | 1361 |
// Update _last_succ from v_in towards the root |
| 1366 | 1362 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
| 1367 | 1363 |
u = _parent[u]) {
|
| 1368 | 1364 |
_last_succ[u] = _last_succ[u_out]; |
| 1369 | 1365 |
} |
| 1370 | 1366 |
// Update _last_succ from v_out towards the root |
| 1371 | 1367 |
if (join != old_rev_thread && v_in != old_rev_thread) {
|
| 1372 | 1368 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
| 1373 | 1369 |
u = _parent[u]) {
|
| 1374 | 1370 |
_last_succ[u] = old_rev_thread; |
| 1375 | 1371 |
} |
| 1376 | 1372 |
} else {
|
| 1377 | 1373 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
| 1378 | 1374 |
u = _parent[u]) {
|
| 1379 | 1375 |
_last_succ[u] = _last_succ[u_out]; |
| 1380 | 1376 |
} |
| 1381 | 1377 |
} |
| 1382 | 1378 |
|
| 1383 | 1379 |
// Update _succ_num from v_in to join |
| 1384 | 1380 |
for (u = v_in; u != join; u = _parent[u]) {
|
| 1385 | 1381 |
_succ_num[u] += old_succ_num; |
| 1386 | 1382 |
} |
| 1387 | 1383 |
// Update _succ_num from v_out to join |
| 1388 | 1384 |
for (u = v_out; u != join; u = _parent[u]) {
|
| 1389 | 1385 |
_succ_num[u] -= old_succ_num; |
| 1390 | 1386 |
} |
| 1391 | 1387 |
} |
| 1392 | 1388 |
|
| 1393 | 1389 |
// Update potentials |
| 1394 | 1390 |
void updatePotential() {
|
| 1395 | 1391 |
Cost sigma = _forward[u_in] ? |
| 1396 | 1392 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
| 1397 | 1393 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
| 1398 | 1394 |
// Update potentials in the subtree, which has been moved |
| 1399 | 1395 |
int end = _thread[_last_succ[u_in]]; |
| 1400 | 1396 |
for (int u = u_in; u != end; u = _thread[u]) {
|
| 1401 | 1397 |
_pi[u] += sigma; |
| 1402 | 1398 |
} |
| 1403 | 1399 |
} |
| 1404 | 1400 |
|
| 1405 | 1401 |
// Execute the algorithm |
| 1406 | 1402 |
ProblemType start(PivotRule pivot_rule) {
|
| 1407 | 1403 |
// Select the pivot rule implementation |
| 1408 | 1404 |
switch (pivot_rule) {
|
| 1409 | 1405 |
case FIRST_ELIGIBLE: |
| 1410 | 1406 |
return start<FirstEligiblePivotRule>(); |
| 1411 | 1407 |
case BEST_ELIGIBLE: |
| 1412 | 1408 |
return start<BestEligiblePivotRule>(); |
| 1413 | 1409 |
case BLOCK_SEARCH: |
| 1414 | 1410 |
return start<BlockSearchPivotRule>(); |
| 1415 | 1411 |
case CANDIDATE_LIST: |
| 1416 | 1412 |
return start<CandidateListPivotRule>(); |
| 1417 | 1413 |
case ALTERING_LIST: |
| 1418 | 1414 |
return start<AlteringListPivotRule>(); |
| 1419 | 1415 |
} |
| 1420 | 1416 |
return INFEASIBLE; // avoid warning |
| 1421 | 1417 |
} |
| 1422 | 1418 |
|
| 1423 | 1419 |
template <typename PivotRuleImpl> |
| 1424 | 1420 |
ProblemType start() {
|
| 1425 | 1421 |
PivotRuleImpl pivot(*this); |
| 1426 | 1422 |
|
| 1427 | 1423 |
// Execute the Network Simplex algorithm |
| 1428 | 1424 |
while (pivot.findEnteringArc()) {
|
| 1429 | 1425 |
findJoinNode(); |
| 1430 | 1426 |
bool change = findLeavingArc(); |
| 1431 | 1427 |
if (delta >= INF) return UNBOUNDED; |
| 1432 | 1428 |
changeFlow(change); |
| 1433 | 1429 |
if (change) {
|
| 1434 | 1430 |
updateTreeStructure(); |
| 1435 | 1431 |
updatePotential(); |
| 1436 | 1432 |
} |
| 1437 | 1433 |
} |
| 1438 | 1434 |
|
| 1439 | 1435 |
// Check feasibility |
| 1440 | 1436 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) {
|
| 1441 | 1437 |
if (_flow[e] != 0) return INFEASIBLE; |
| 1442 | 1438 |
} |
| 1443 | 1439 |
|
| 1444 | 1440 |
// Transform the solution and the supply map to the original form |
| 1445 | 1441 |
if (_have_lower) {
|
| 1446 | 1442 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1447 | 1443 |
Value c = _lower[i]; |
| 1448 | 1444 |
if (c != 0) {
|
| 1449 | 1445 |
_flow[i] += c; |
| 1450 | 1446 |
_supply[_source[i]] += c; |
| 1451 | 1447 |
_supply[_target[i]] -= c; |
| 1452 | 1448 |
} |
| 1453 | 1449 |
} |
| 1454 | 1450 |
} |
| 1455 | 1451 |
|
| 1456 | 1452 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
| 1457 | 1453 |
// optimality conditions |
| 1458 | 1454 |
if (_sum_supply == 0) {
|
| 1459 | 1455 |
if (_stype == GEQ) {
|
| 1460 | 1456 |
Cost max_pot = std::numeric_limits<Cost>::min(); |
| 1461 | 1457 |
for (int i = 0; i != _node_num; ++i) {
|
| 1462 | 1458 |
if (_pi[i] > max_pot) max_pot = _pi[i]; |
| 1463 | 1459 |
} |
| 1464 | 1460 |
if (max_pot > 0) {
|
| 1465 | 1461 |
for (int i = 0; i != _node_num; ++i) |
| 1466 | 1462 |
_pi[i] -= max_pot; |
| 1467 | 1463 |
} |
| 1468 | 1464 |
} else {
|
| 1469 | 1465 |
Cost min_pot = std::numeric_limits<Cost>::max(); |
| 1470 | 1466 |
for (int i = 0; i != _node_num; ++i) {
|
| 1471 | 1467 |
if (_pi[i] < min_pot) min_pot = _pi[i]; |
| 1472 | 1468 |
} |
| 1473 | 1469 |
if (min_pot < 0) {
|
| 1474 | 1470 |
for (int i = 0; i != _node_num; ++i) |
| 1475 | 1471 |
_pi[i] -= min_pot; |
| 1476 | 1472 |
} |
| 1477 | 1473 |
} |
| 1478 | 1474 |
} |
| 1479 | 1475 |
|
| 1480 | 1476 |
return OPTIMAL; |
| 1481 | 1477 |
} |
| 1482 | 1478 |
|
| 1483 | 1479 |
}; //class NetworkSimplex |
| 1484 | 1480 |
|
| 1485 | 1481 |
///@} |
| 1486 | 1482 |
|
| 1487 | 1483 |
} //namespace lemon |
| 1488 | 1484 |
|
| 1489 | 1485 |
#endif //LEMON_NETWORK_SIMPLEX_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup paths |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief Classes for representing paths in digraphs. |
| 22 | 22 |
/// |
| 23 | 23 |
|
| 24 | 24 |
#ifndef LEMON_PATH_H |
| 25 | 25 |
#define LEMON_PATH_H |
| 26 | 26 |
|
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <algorithm> |
| 29 | 29 |
|
| 30 | 30 |
#include <lemon/error.h> |
| 31 | 31 |
#include <lemon/core.h> |
| 32 | 32 |
#include <lemon/concepts/path.h> |
| 33 | 33 |
|
| 34 | 34 |
namespace lemon {
|
| 35 | 35 |
|
| 36 | 36 |
/// \addtogroup paths |
| 37 | 37 |
/// @{
|
| 38 | 38 |
|
| 39 | 39 |
|
| 40 | 40 |
/// \brief A structure for representing directed paths in a digraph. |
| 41 | 41 |
/// |
| 42 | 42 |
/// A structure for representing directed path in a digraph. |
| 43 | 43 |
/// \tparam GR The digraph type in which the path is. |
| 44 | 44 |
/// |
| 45 | 45 |
/// In a sense, the path can be treated as a list of arcs. The |
| 46 | 46 |
/// lemon path type stores just this list. As a consequence, it |
| 47 | 47 |
/// cannot enumerate the nodes of the path and the source node of |
| 48 | 48 |
/// a zero length path is undefined. |
| 49 | 49 |
/// |
| 50 | 50 |
/// This implementation is a back and front insertable and erasable |
| 51 | 51 |
/// path type. It can be indexed in O(1) time. The front and back |
| 52 | 52 |
/// insertion and erase is done in O(1) (amortized) time. The |
| 53 | 53 |
/// implementation uses two vectors for storing the front and back |
| 54 | 54 |
/// insertions. |
| 55 | 55 |
template <typename GR> |
| 56 | 56 |
class Path {
|
| 57 | 57 |
public: |
| 58 | 58 |
|
| 59 | 59 |
typedef GR Digraph; |
| 60 | 60 |
typedef typename Digraph::Arc Arc; |
| 61 | 61 |
|
| 62 | 62 |
/// \brief Default constructor |
| 63 | 63 |
/// |
| 64 | 64 |
/// Default constructor |
| 65 | 65 |
Path() {}
|
| 66 | 66 |
|
| 67 | 67 |
/// \brief Template copy constructor |
| 68 | 68 |
/// |
| 69 | 69 |
/// This constuctor initializes the path from any other path type. |
| 70 | 70 |
/// It simply makes a copy of the given path. |
| 71 | 71 |
template <typename CPath> |
| 72 | 72 |
Path(const CPath& cpath) {
|
| 73 | 73 |
copyPath(*this, cpath); |
| 74 | 74 |
} |
| 75 | 75 |
|
| 76 | 76 |
/// \brief Template copy assignment |
| 77 | 77 |
/// |
| 78 | 78 |
/// This operator makes a copy of a path of any other type. |
| 79 | 79 |
template <typename CPath> |
| 80 | 80 |
Path& operator=(const CPath& cpath) {
|
| 81 | 81 |
copyPath(*this, cpath); |
| 82 | 82 |
return *this; |
| 83 | 83 |
} |
| 84 | 84 |
|
| 85 | 85 |
/// \brief LEMON style iterator for path arcs |
| 86 | 86 |
/// |
| 87 | 87 |
/// This class is used to iterate on the arcs of the paths. |
| 88 | 88 |
class ArcIt {
|
| 89 | 89 |
friend class Path; |
| 90 | 90 |
public: |
| 91 | 91 |
/// \brief Default constructor |
| 92 | 92 |
ArcIt() {}
|
| 93 | 93 |
/// \brief Invalid constructor |
| 94 | 94 |
ArcIt(Invalid) : path(0), idx(-1) {}
|
| 95 | 95 |
/// \brief Initializate the iterator to the first arc of path |
| 96 | 96 |
ArcIt(const Path &_path) |
| 97 | 97 |
: path(&_path), idx(_path.empty() ? -1 : 0) {}
|
| 98 | 98 |
|
| 99 | 99 |
private: |
| 100 | 100 |
|
| 101 | 101 |
ArcIt(const Path &_path, int _idx) |
| 102 | 102 |
: path(&_path), idx(_idx) {}
|
| 103 | 103 |
|
| 104 | 104 |
public: |
| 105 | 105 |
|
| 106 | 106 |
/// \brief Conversion to Arc |
| 107 | 107 |
operator const Arc&() const {
|
| 108 | 108 |
return path->nth(idx); |
| 109 | 109 |
} |
| 110 | 110 |
|
| 111 | 111 |
/// \brief Next arc |
| 112 | 112 |
ArcIt& operator++() {
|
| 113 | 113 |
++idx; |
| 114 | 114 |
if (idx >= path->length()) idx = -1; |
| 115 | 115 |
return *this; |
| 116 | 116 |
} |
| 117 | 117 |
|
| 118 | 118 |
/// \brief Comparison operator |
| 119 | 119 |
bool operator==(const ArcIt& e) const { return idx==e.idx; }
|
| 120 | 120 |
/// \brief Comparison operator |
| 121 | 121 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
|
| 122 | 122 |
/// \brief Comparison operator |
| 123 | 123 |
bool operator<(const ArcIt& e) const { return idx<e.idx; }
|
| 124 | 124 |
|
| 125 | 125 |
private: |
| 126 | 126 |
const Path *path; |
| 127 | 127 |
int idx; |
| 128 | 128 |
}; |
| 129 | 129 |
|
| 130 | 130 |
/// \brief Length of the path. |
| 131 | 131 |
int length() const { return head.size() + tail.size(); }
|
| 132 | 132 |
/// \brief Return whether the path is empty. |
| 133 | 133 |
bool empty() const { return head.empty() && tail.empty(); }
|
| 134 | 134 |
|
| 135 | 135 |
/// \brief Reset the path to an empty one. |
| 136 | 136 |
void clear() { head.clear(); tail.clear(); }
|
| 137 | 137 |
|
| 138 | 138 |
/// \brief The nth arc. |
| 139 | 139 |
/// |
| 140 | 140 |
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
| 141 | 141 |
const Arc& nth(int n) const {
|
| 142 | 142 |
return n < int(head.size()) ? *(head.rbegin() + n) : |
| 143 | 143 |
*(tail.begin() + (n - head.size())); |
| 144 | 144 |
} |
| 145 | 145 |
|
| 146 | 146 |
/// \brief Initialize arc iterator to point to the nth arc |
| 147 | 147 |
/// |
| 148 | 148 |
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
| 149 | 149 |
ArcIt nthIt(int n) const {
|
| 150 | 150 |
return ArcIt(*this, n); |
| 151 | 151 |
} |
| 152 | 152 |
|
| 153 | 153 |
/// \brief The first arc of the path |
| 154 | 154 |
const Arc& front() const {
|
| 155 | 155 |
return head.empty() ? tail.front() : head.back(); |
| 156 | 156 |
} |
| 157 | 157 |
|
| 158 | 158 |
/// \brief Add a new arc before the current path |
| 159 | 159 |
void addFront(const Arc& arc) {
|
| 160 | 160 |
head.push_back(arc); |
| 161 | 161 |
} |
| 162 | 162 |
|
| 163 | 163 |
/// \brief Erase the first arc of the path |
| 164 | 164 |
void eraseFront() {
|
| 165 | 165 |
if (!head.empty()) {
|
| 166 | 166 |
head.pop_back(); |
| 167 | 167 |
} else {
|
| 168 | 168 |
head.clear(); |
| 169 | 169 |
int halfsize = tail.size() / 2; |
| 170 | 170 |
head.resize(halfsize); |
| 171 | 171 |
std::copy(tail.begin() + 1, tail.begin() + halfsize + 1, |
| 172 | 172 |
head.rbegin()); |
| 173 | 173 |
std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin()); |
| 174 | 174 |
tail.resize(tail.size() - halfsize - 1); |
| 175 | 175 |
} |
| 176 | 176 |
} |
| 177 | 177 |
|
| 178 | 178 |
/// \brief The last arc of the path |
| 179 | 179 |
const Arc& back() const {
|
| 180 | 180 |
return tail.empty() ? head.front() : tail.back(); |
| 181 | 181 |
} |
| 182 | 182 |
|
| 183 | 183 |
/// \brief Add a new arc behind the current path |
| 184 | 184 |
void addBack(const Arc& arc) {
|
| 185 | 185 |
tail.push_back(arc); |
| 186 | 186 |
} |
| 187 | 187 |
|
| 188 | 188 |
/// \brief Erase the last arc of the path |
| 189 | 189 |
void eraseBack() {
|
| 190 | 190 |
if (!tail.empty()) {
|
| 191 | 191 |
tail.pop_back(); |
| 192 | 192 |
} else {
|
| 193 | 193 |
int halfsize = head.size() / 2; |
| 194 | 194 |
tail.resize(halfsize); |
| 195 | 195 |
std::copy(head.begin() + 1, head.begin() + halfsize + 1, |
| 196 | 196 |
tail.rbegin()); |
| 197 | 197 |
std::copy(head.begin() + halfsize + 1, head.end(), head.begin()); |
| 198 | 198 |
head.resize(head.size() - halfsize - 1); |
| 199 | 199 |
} |
| 200 | 200 |
} |
| 201 | 201 |
|
| 202 | 202 |
typedef True BuildTag; |
| 203 | 203 |
|
| 204 | 204 |
template <typename CPath> |
| 205 | 205 |
void build(const CPath& path) {
|
| 206 | 206 |
int len = path.length(); |
| 207 | 207 |
tail.reserve(len); |
| 208 | 208 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
|
| 209 | 209 |
tail.push_back(it); |
| 210 | 210 |
} |
| 211 | 211 |
} |
| 212 | 212 |
|
| 213 | 213 |
template <typename CPath> |
| 214 | 214 |
void buildRev(const CPath& path) {
|
| 215 | 215 |
int len = path.length(); |
| 216 | 216 |
head.reserve(len); |
| 217 | 217 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
|
| 218 | 218 |
head.push_back(it); |
| 219 | 219 |
} |
| 220 | 220 |
} |
| 221 | 221 |
|
| 222 | 222 |
protected: |
| 223 | 223 |
typedef std::vector<Arc> Container; |
| 224 | 224 |
Container head, tail; |
| 225 | 225 |
|
| 226 | 226 |
}; |
| 227 | 227 |
|
| 228 | 228 |
/// \brief A structure for representing directed paths in a digraph. |
| 229 | 229 |
/// |
| 230 | 230 |
/// A structure for representing directed path in a digraph. |
| 231 | 231 |
/// \tparam GR The digraph type in which the path is. |
| 232 | 232 |
/// |
| 233 | 233 |
/// In a sense, the path can be treated as a list of arcs. The |
| 234 | 234 |
/// lemon path type stores just this list. As a consequence it |
| 235 | 235 |
/// cannot enumerate the nodes in the path and the zero length paths |
| 236 | 236 |
/// cannot store the source. |
| 237 | 237 |
/// |
| 238 | 238 |
/// This implementation is a just back insertable and erasable path |
| 239 | 239 |
/// type. It can be indexed in O(1) time. The back insertion and |
| 240 | 240 |
/// erasure is amortized O(1) time. This implementation is faster |
| 241 | 241 |
/// then the \c Path type because it use just one vector for the |
| 242 | 242 |
/// arcs. |
| 243 | 243 |
template <typename GR> |
| 244 | 244 |
class SimplePath {
|
| 245 | 245 |
public: |
| 246 | 246 |
|
| 247 | 247 |
typedef GR Digraph; |
| 248 | 248 |
typedef typename Digraph::Arc Arc; |
| 249 | 249 |
|
| 250 | 250 |
/// \brief Default constructor |
| 251 | 251 |
/// |
| 252 | 252 |
/// Default constructor |
| 253 | 253 |
SimplePath() {}
|
| 254 | 254 |
|
| 255 | 255 |
/// \brief Template copy constructor |
| 256 | 256 |
/// |
| 257 | 257 |
/// This path can be initialized with any other path type. It just |
| 258 | 258 |
/// makes a copy of the given path. |
| 259 | 259 |
template <typename CPath> |
| 260 | 260 |
SimplePath(const CPath& cpath) {
|
| 261 | 261 |
copyPath(*this, cpath); |
| 262 | 262 |
} |
| 263 | 263 |
|
| 264 | 264 |
/// \brief Template copy assignment |
| 265 | 265 |
/// |
| 266 | 266 |
/// This path can be initialized with any other path type. It just |
| 267 | 267 |
/// makes a copy of the given path. |
| 268 | 268 |
template <typename CPath> |
| 269 | 269 |
SimplePath& operator=(const CPath& cpath) {
|
| 270 | 270 |
copyPath(*this, cpath); |
| 271 | 271 |
return *this; |
| 272 | 272 |
} |
| 273 | 273 |
|
| 274 | 274 |
/// \brief Iterator class to iterate on the arcs of the paths |
| 275 | 275 |
/// |
| 276 | 276 |
/// This class is used to iterate on the arcs of the paths |
| 277 | 277 |
/// |
| 278 | 278 |
/// Of course it converts to Digraph::Arc |
| 279 | 279 |
class ArcIt {
|
| 280 | 280 |
friend class SimplePath; |
| 281 | 281 |
public: |
| 282 | 282 |
/// Default constructor |
| 283 | 283 |
ArcIt() {}
|
| 284 | 284 |
/// Invalid constructor |
| 285 | 285 |
ArcIt(Invalid) : path(0), idx(-1) {}
|
| 286 | 286 |
/// \brief Initializate the constructor to the first arc of path |
| 287 | 287 |
ArcIt(const SimplePath &_path) |
| 288 | 288 |
: path(&_path), idx(_path.empty() ? -1 : 0) {}
|
| 289 | 289 |
|
| 290 | 290 |
private: |
| 291 | 291 |
|
| 292 | 292 |
/// Constructor with starting point |
| 293 | 293 |
ArcIt(const SimplePath &_path, int _idx) |
| 294 | 294 |
: idx(_idx), path(&_path) {}
|
| 295 | 295 |
|
| 296 | 296 |
public: |
| 297 | 297 |
|
| 298 | 298 |
///Conversion to Digraph::Arc |
| 299 | 299 |
operator const Arc&() const {
|
| 300 | 300 |
return path->nth(idx); |
| 301 | 301 |
} |
| 302 | 302 |
|
| 303 | 303 |
/// Next arc |
| 304 | 304 |
ArcIt& operator++() {
|
| 305 | 305 |
++idx; |
| 306 | 306 |
if (idx >= path->length()) idx = -1; |
| 307 | 307 |
return *this; |
| 308 | 308 |
} |
| 309 | 309 |
|
| 310 | 310 |
/// Comparison operator |
| 311 | 311 |
bool operator==(const ArcIt& e) const { return idx==e.idx; }
|
| 312 | 312 |
/// Comparison operator |
| 313 | 313 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
|
| 314 | 314 |
/// Comparison operator |
| 315 | 315 |
bool operator<(const ArcIt& e) const { return idx<e.idx; }
|
| 316 | 316 |
|
| 317 | 317 |
private: |
| 318 | 318 |
const SimplePath *path; |
| 319 | 319 |
int idx; |
| 320 | 320 |
}; |
| 321 | 321 |
|
| 322 | 322 |
/// \brief Length of the path. |
| 323 | 323 |
int length() const { return data.size(); }
|
| 324 | 324 |
/// \brief Return true if the path is empty. |
| 325 | 325 |
bool empty() const { return data.empty(); }
|
| 326 | 326 |
|
| 327 | 327 |
/// \brief Reset the path to an empty one. |
| 328 | 328 |
void clear() { data.clear(); }
|
| 329 | 329 |
|
| 330 | 330 |
/// \brief The nth arc. |
| 331 | 331 |
/// |
| 332 | 332 |
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
| 333 | 333 |
const Arc& nth(int n) const {
|
| 334 | 334 |
return data[n]; |
| 335 | 335 |
} |
| 336 | 336 |
|
| 337 | 337 |
/// \brief Initializes arc iterator to point to the nth arc. |
| 338 | 338 |
ArcIt nthIt(int n) const {
|
| 339 | 339 |
return ArcIt(*this, n); |
| 340 | 340 |
} |
| 341 | 341 |
|
| 342 | 342 |
/// \brief The first arc of the path. |
| 343 | 343 |
const Arc& front() const {
|
| 344 | 344 |
return data.front(); |
| 345 | 345 |
} |
| 346 | 346 |
|
| 347 | 347 |
/// \brief The last arc of the path. |
| 348 | 348 |
const Arc& back() const {
|
| 349 | 349 |
return data.back(); |
| 350 | 350 |
} |
| 351 | 351 |
|
| 352 | 352 |
/// \brief Add a new arc behind the current path. |
| 353 | 353 |
void addBack(const Arc& arc) {
|
| 354 | 354 |
data.push_back(arc); |
| 355 | 355 |
} |
| 356 | 356 |
|
| 357 | 357 |
/// \brief Erase the last arc of the path |
| 358 | 358 |
void eraseBack() {
|
| 359 | 359 |
data.pop_back(); |
| 360 | 360 |
} |
| 361 | 361 |
|
| 362 | 362 |
typedef True BuildTag; |
| 363 | 363 |
|
| 364 | 364 |
template <typename CPath> |
| 365 | 365 |
void build(const CPath& path) {
|
| 366 | 366 |
int len = path.length(); |
| 367 | 367 |
data.resize(len); |
| 368 | 368 |
int index = 0; |
| 369 | 369 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
|
| 370 | 370 |
data[index] = it;; |
| 371 | 371 |
++index; |
| 372 | 372 |
} |
| 373 | 373 |
} |
| 374 | 374 |
|
| 375 | 375 |
template <typename CPath> |
| 376 | 376 |
void buildRev(const CPath& path) {
|
| 377 | 377 |
int len = path.length(); |
| 378 | 378 |
data.resize(len); |
| 379 | 379 |
int index = len; |
| 380 | 380 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
|
| 381 | 381 |
--index; |
| 382 | 382 |
data[index] = it;; |
| 383 | 383 |
} |
| 384 | 384 |
} |
| 385 | 385 |
|
| 386 | 386 |
protected: |
| 387 | 387 |
typedef std::vector<Arc> Container; |
| 388 | 388 |
Container data; |
| 389 | 389 |
|
| 390 | 390 |
}; |
| 391 | 391 |
|
| 392 | 392 |
/// \brief A structure for representing directed paths in a digraph. |
| 393 | 393 |
/// |
| 394 | 394 |
/// A structure for representing directed path in a digraph. |
| 395 | 395 |
/// \tparam GR The digraph type in which the path is. |
| 396 | 396 |
/// |
| 397 | 397 |
/// In a sense, the path can be treated as a list of arcs. The |
| 398 | 398 |
/// lemon path type stores just this list. As a consequence it |
| 399 | 399 |
/// cannot enumerate the nodes in the path and the zero length paths |
| 400 | 400 |
/// cannot store the source. |
| 401 | 401 |
/// |
| 402 | 402 |
/// This implementation is a back and front insertable and erasable |
| 403 | 403 |
/// path type. It can be indexed in O(k) time, where k is the rank |
| 404 | 404 |
/// of the arc in the path. The length can be computed in O(n) |
| 405 | 405 |
/// time. The front and back insertion and erasure is O(1) time |
| 406 | 406 |
/// and it can be splited and spliced in O(1) time. |
| 407 | 407 |
template <typename GR> |
| 408 | 408 |
class ListPath {
|
| 409 | 409 |
public: |
| 410 | 410 |
|
| 411 | 411 |
typedef GR Digraph; |
| 412 | 412 |
typedef typename Digraph::Arc Arc; |
| 413 | 413 |
|
| 414 | 414 |
protected: |
| 415 | 415 |
|
| 416 | 416 |
// the std::list<> is incompatible |
| 417 | 417 |
// hard to create invalid iterator |
| 418 | 418 |
struct Node {
|
| 419 | 419 |
Arc arc; |
| 420 | 420 |
Node *next, *prev; |
| 421 | 421 |
}; |
| 422 | 422 |
|
| 423 | 423 |
Node *first, *last; |
| 424 | 424 |
|
| 425 | 425 |
std::allocator<Node> alloc; |
| 426 | 426 |
|
| 427 | 427 |
public: |
| 428 | 428 |
|
| 429 | 429 |
/// \brief Default constructor |
| 430 | 430 |
/// |
| 431 | 431 |
/// Default constructor |
| 432 | 432 |
ListPath() : first(0), last(0) {}
|
| 433 | 433 |
|
| 434 | 434 |
/// \brief Template copy constructor |
| 435 | 435 |
/// |
| 436 | 436 |
/// This path can be initialized with any other path type. It just |
| 437 | 437 |
/// makes a copy of the given path. |
| 438 | 438 |
template <typename CPath> |
| 439 | 439 |
ListPath(const CPath& cpath) : first(0), last(0) {
|
| 440 | 440 |
copyPath(*this, cpath); |
| 441 | 441 |
} |
| 442 | 442 |
|
| 443 | 443 |
/// \brief Destructor of the path |
| 444 | 444 |
/// |
| 445 | 445 |
/// Destructor of the path |
| 446 | 446 |
~ListPath() {
|
| 447 | 447 |
clear(); |
| 448 | 448 |
} |
| 449 | 449 |
|
| 450 | 450 |
/// \brief Template copy assignment |
| 451 | 451 |
/// |
| 452 | 452 |
/// This path can be initialized with any other path type. It just |
| 453 | 453 |
/// makes a copy of the given path. |
| 454 | 454 |
template <typename CPath> |
| 455 | 455 |
ListPath& operator=(const CPath& cpath) {
|
| 456 | 456 |
copyPath(*this, cpath); |
| 457 | 457 |
return *this; |
| 458 | 458 |
} |
| 459 | 459 |
|
| 460 | 460 |
/// \brief Iterator class to iterate on the arcs of the paths |
| 461 | 461 |
/// |
| 462 | 462 |
/// This class is used to iterate on the arcs of the paths |
| 463 | 463 |
/// |
| 464 | 464 |
/// Of course it converts to Digraph::Arc |
| 465 | 465 |
class ArcIt {
|
| 466 | 466 |
friend class ListPath; |
| 467 | 467 |
public: |
| 468 | 468 |
/// Default constructor |
| 469 | 469 |
ArcIt() {}
|
| 470 | 470 |
/// Invalid constructor |
| 471 | 471 |
ArcIt(Invalid) : path(0), node(0) {}
|
| 472 | 472 |
/// \brief Initializate the constructor to the first arc of path |
| 473 | 473 |
ArcIt(const ListPath &_path) |
| 474 | 474 |
: path(&_path), node(_path.first) {}
|
| 475 | 475 |
|
| 476 | 476 |
protected: |
| 477 | 477 |
|
| 478 | 478 |
ArcIt(const ListPath &_path, Node *_node) |
| 479 | 479 |
: path(&_path), node(_node) {}
|
| 480 | 480 |
|
| 481 | 481 |
|
| 482 | 482 |
public: |
| 483 | 483 |
|
| 484 | 484 |
///Conversion to Digraph::Arc |
| 485 | 485 |
operator const Arc&() const {
|
| 486 | 486 |
return node->arc; |
| 487 | 487 |
} |
| 488 | 488 |
|
| 489 | 489 |
/// Next arc |
| 490 | 490 |
ArcIt& operator++() {
|
| 491 | 491 |
node = node->next; |
| 492 | 492 |
return *this; |
| 493 | 493 |
} |
| 494 | 494 |
|
| 495 | 495 |
/// Comparison operator |
| 496 | 496 |
bool operator==(const ArcIt& e) const { return node==e.node; }
|
| 497 | 497 |
/// Comparison operator |
| 498 | 498 |
bool operator!=(const ArcIt& e) const { return node!=e.node; }
|
| 499 | 499 |
/// Comparison operator |
| 500 | 500 |
bool operator<(const ArcIt& e) const { return node<e.node; }
|
| 501 | 501 |
|
| 502 | 502 |
private: |
| 503 | 503 |
const ListPath *path; |
| 504 | 504 |
Node *node; |
| 505 | 505 |
}; |
| 506 | 506 |
|
| 507 | 507 |
/// \brief The nth arc. |
| 508 | 508 |
/// |
| 509 | 509 |
/// This function looks for the nth arc in O(n) time. |
| 510 | 510 |
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
| 511 | 511 |
const Arc& nth(int n) const {
|
| 512 | 512 |
Node *node = first; |
| 513 | 513 |
for (int i = 0; i < n; ++i) {
|
| 514 | 514 |
node = node->next; |
| 515 | 515 |
} |
| 516 | 516 |
return node->arc; |
| 517 | 517 |
} |
| 518 | 518 |
|
| 519 | 519 |
/// \brief Initializes arc iterator to point to the nth arc. |
| 520 | 520 |
ArcIt nthIt(int n) const {
|
| 521 | 521 |
Node *node = first; |
| 522 | 522 |
for (int i = 0; i < n; ++i) {
|
| 523 | 523 |
node = node->next; |
| 524 | 524 |
} |
| 525 | 525 |
return ArcIt(*this, node); |
| 526 | 526 |
} |
| 527 | 527 |
|
| 528 | 528 |
/// \brief Length of the path. |
| 529 | 529 |
int length() const {
|
| 530 | 530 |
int len = 0; |
| 531 | 531 |
Node *node = first; |
| 532 | 532 |
while (node != 0) {
|
| 533 | 533 |
node = node->next; |
| 534 | 534 |
++len; |
| 535 | 535 |
} |
| 536 | 536 |
return len; |
| 537 | 537 |
} |
| 538 | 538 |
|
| 539 | 539 |
/// \brief Return true if the path is empty. |
| 540 | 540 |
bool empty() const { return first == 0; }
|
| 541 | 541 |
|
| 542 | 542 |
/// \brief Reset the path to an empty one. |
| 543 | 543 |
void clear() {
|
| 544 | 544 |
while (first != 0) {
|
| 545 | 545 |
last = first->next; |
| 546 | 546 |
alloc.destroy(first); |
| 547 | 547 |
alloc.deallocate(first, 1); |
| 548 | 548 |
first = last; |
| 549 | 549 |
} |
| 550 | 550 |
} |
| 551 | 551 |
|
| 552 | 552 |
/// \brief The first arc of the path |
| 553 | 553 |
const Arc& front() const {
|
| 554 | 554 |
return first->arc; |
| 555 | 555 |
} |
| 556 | 556 |
|
| 557 | 557 |
/// \brief Add a new arc before the current path |
| 558 | 558 |
void addFront(const Arc& arc) {
|
| 559 | 559 |
Node *node = alloc.allocate(1); |
| 560 | 560 |
alloc.construct(node, Node()); |
| 561 | 561 |
node->prev = 0; |
| 562 | 562 |
node->next = first; |
| 563 | 563 |
node->arc = arc; |
| 564 | 564 |
if (first) {
|
| 565 | 565 |
first->prev = node; |
| 566 | 566 |
first = node; |
| 567 | 567 |
} else {
|
| 568 | 568 |
first = last = node; |
| 569 | 569 |
} |
| 570 | 570 |
} |
| 571 | 571 |
|
| 572 | 572 |
/// \brief Erase the first arc of the path |
| 573 | 573 |
void eraseFront() {
|
| 574 | 574 |
Node *node = first; |
| 575 | 575 |
first = first->next; |
| 576 | 576 |
if (first) {
|
| 577 | 577 |
first->prev = 0; |
| 578 | 578 |
} else {
|
| 579 | 579 |
last = 0; |
| 580 | 580 |
} |
| 581 | 581 |
alloc.destroy(node); |
| 582 | 582 |
alloc.deallocate(node, 1); |
| 583 | 583 |
} |
| 584 | 584 |
|
| 585 | 585 |
/// \brief The last arc of the path. |
| 586 | 586 |
const Arc& back() const {
|
| 587 | 587 |
return last->arc; |
| 588 | 588 |
} |
| 589 | 589 |
|
| 590 | 590 |
/// \brief Add a new arc behind the current path. |
| 591 | 591 |
void addBack(const Arc& arc) {
|
| 592 | 592 |
Node *node = alloc.allocate(1); |
| 593 | 593 |
alloc.construct(node, Node()); |
| 594 | 594 |
node->next = 0; |
| 595 | 595 |
node->prev = last; |
| 596 | 596 |
node->arc = arc; |
| 597 | 597 |
if (last) {
|
| 598 | 598 |
last->next = node; |
| 599 | 599 |
last = node; |
| 600 | 600 |
} else {
|
| 601 | 601 |
last = first = node; |
| 602 | 602 |
} |
| 603 | 603 |
} |
| 604 | 604 |
|
| 605 | 605 |
/// \brief Erase the last arc of the path |
| 606 | 606 |
void eraseBack() {
|
| 607 | 607 |
Node *node = last; |
| 608 | 608 |
last = last->prev; |
| 609 | 609 |
if (last) {
|
| 610 | 610 |
last->next = 0; |
| 611 | 611 |
} else {
|
| 612 | 612 |
first = 0; |
| 613 | 613 |
} |
| 614 | 614 |
alloc.destroy(node); |
| 615 | 615 |
alloc.deallocate(node, 1); |
| 616 | 616 |
} |
| 617 | 617 |
|
| 618 | 618 |
/// \brief Splice a path to the back of the current path. |
| 619 | 619 |
/// |
| 620 | 620 |
/// It splices \c tpath to the back of the current path and \c |
| 621 | 621 |
/// tpath becomes empty. The time complexity of this function is |
| 622 | 622 |
/// O(1). |
| 623 | 623 |
void spliceBack(ListPath& tpath) {
|
| 624 | 624 |
if (first) {
|
| 625 | 625 |
if (tpath.first) {
|
| 626 | 626 |
last->next = tpath.first; |
| 627 | 627 |
tpath.first->prev = last; |
| 628 | 628 |
last = tpath.last; |
| 629 | 629 |
} |
| 630 | 630 |
} else {
|
| 631 | 631 |
first = tpath.first; |
| 632 | 632 |
last = tpath.last; |
| 633 | 633 |
} |
| 634 | 634 |
tpath.first = tpath.last = 0; |
| 635 | 635 |
} |
| 636 | 636 |
|
| 637 | 637 |
/// \brief Splice a path to the front of the current path. |
| 638 | 638 |
/// |
| 639 | 639 |
/// It splices \c tpath before the current path and \c tpath |
| 640 | 640 |
/// becomes empty. The time complexity of this function |
| 641 | 641 |
/// is O(1). |
| 642 | 642 |
void spliceFront(ListPath& tpath) {
|
| 643 | 643 |
if (first) {
|
| 644 | 644 |
if (tpath.first) {
|
| 645 | 645 |
first->prev = tpath.last; |
| 646 | 646 |
tpath.last->next = first; |
| 647 | 647 |
first = tpath.first; |
| 648 | 648 |
} |
| 649 | 649 |
} else {
|
| 650 | 650 |
first = tpath.first; |
| 651 | 651 |
last = tpath.last; |
| 652 | 652 |
} |
| 653 | 653 |
tpath.first = tpath.last = 0; |
| 654 | 654 |
} |
| 655 | 655 |
|
| 656 | 656 |
/// \brief Splice a path into the current path. |
| 657 | 657 |
/// |
| 658 | 658 |
/// It splices the \c tpath into the current path before the |
| 659 | 659 |
/// position of \c it iterator and \c tpath becomes empty. The |
| 660 | 660 |
/// time complexity of this function is O(1). If the \c it is |
| 661 | 661 |
/// \c INVALID then it will splice behind the current path. |
| 662 | 662 |
void splice(ArcIt it, ListPath& tpath) {
|
| 663 | 663 |
if (it.node) {
|
| 664 | 664 |
if (tpath.first) {
|
| 665 | 665 |
tpath.first->prev = it.node->prev; |
| 666 | 666 |
if (it.node->prev) {
|
| 667 | 667 |
it.node->prev->next = tpath.first; |
| 668 | 668 |
} else {
|
| 669 | 669 |
first = tpath.first; |
| 670 | 670 |
} |
| 671 | 671 |
it.node->prev = tpath.last; |
| 672 | 672 |
tpath.last->next = it.node; |
| 673 | 673 |
} |
| 674 | 674 |
} else {
|
| 675 | 675 |
if (first) {
|
| 676 | 676 |
if (tpath.first) {
|
| 677 | 677 |
last->next = tpath.first; |
| 678 | 678 |
tpath.first->prev = last; |
| 679 | 679 |
last = tpath.last; |
| 680 | 680 |
} |
| 681 | 681 |
} else {
|
| 682 | 682 |
first = tpath.first; |
| 683 | 683 |
last = tpath.last; |
| 684 | 684 |
} |
| 685 | 685 |
} |
| 686 | 686 |
tpath.first = tpath.last = 0; |
| 687 | 687 |
} |
| 688 | 688 |
|
| 689 | 689 |
/// \brief Split the current path. |
| 690 | 690 |
/// |
| 691 | 691 |
/// It splits the current path into two parts. The part before |
| 692 | 692 |
/// the iterator \c it will remain in the current path and the part |
| 693 | 693 |
/// starting with |
| 694 | 694 |
/// \c it will put into \c tpath. If \c tpath have arcs |
| 695 | 695 |
/// before the operation they are removed first. The time |
| 696 | 696 |
/// complexity of this function is O(1) plus the the time of emtying |
| 697 | 697 |
/// \c tpath. If \c it is \c INVALID then it just clears \c tpath |
| 698 | 698 |
void split(ArcIt it, ListPath& tpath) {
|
| 699 | 699 |
tpath.clear(); |
| 700 | 700 |
if (it.node) {
|
| 701 | 701 |
tpath.first = it.node; |
| 702 | 702 |
tpath.last = last; |
| 703 | 703 |
if (it.node->prev) {
|
| 704 | 704 |
last = it.node->prev; |
| 705 | 705 |
last->next = 0; |
| 706 | 706 |
} else {
|
| 707 | 707 |
first = last = 0; |
| 708 | 708 |
} |
| 709 | 709 |
it.node->prev = 0; |
| 710 | 710 |
} |
| 711 | 711 |
} |
| 712 | 712 |
|
| 713 | 713 |
|
| 714 | 714 |
typedef True BuildTag; |
| 715 | 715 |
|
| 716 | 716 |
template <typename CPath> |
| 717 | 717 |
void build(const CPath& path) {
|
| 718 | 718 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
|
| 719 | 719 |
addBack(it); |
| 720 | 720 |
} |
| 721 | 721 |
} |
| 722 | 722 |
|
| 723 | 723 |
template <typename CPath> |
| 724 | 724 |
void buildRev(const CPath& path) {
|
| 725 | 725 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
|
| 726 | 726 |
addFront(it); |
| 727 | 727 |
} |
| 728 | 728 |
} |
| 729 | 729 |
|
| 730 | 730 |
}; |
| 731 | 731 |
|
| 732 | 732 |
/// \brief A structure for representing directed paths in a digraph. |
| 733 | 733 |
/// |
| 734 | 734 |
/// A structure for representing directed path in a digraph. |
| 735 | 735 |
/// \tparam GR The digraph type in which the path is. |
| 736 | 736 |
/// |
| 737 | 737 |
/// In a sense, the path can be treated as a list of arcs. The |
| 738 | 738 |
/// lemon path type stores just this list. As a consequence it |
| 739 | 739 |
/// cannot enumerate the nodes in the path and the source node of |
| 740 | 740 |
/// a zero length path is undefined. |
| 741 | 741 |
/// |
| 742 | 742 |
/// This implementation is completly static, i.e. it can be copy constucted |
| 743 | 743 |
/// or copy assigned from another path, but otherwise it cannot be |
| 744 | 744 |
/// modified. |
| 745 | 745 |
/// |
| 746 | 746 |
/// Being the the most memory efficient path type in LEMON, |
| 747 | 747 |
/// it is intented to be |
| 748 | 748 |
/// used when you want to store a large number of paths. |
| 749 | 749 |
template <typename GR> |
| 750 | 750 |
class StaticPath {
|
| 751 | 751 |
public: |
| 752 | 752 |
|
| 753 | 753 |
typedef GR Digraph; |
| 754 | 754 |
typedef typename Digraph::Arc Arc; |
| 755 | 755 |
|
| 756 | 756 |
/// \brief Default constructor |
| 757 | 757 |
/// |
| 758 | 758 |
/// Default constructor |
| 759 | 759 |
StaticPath() : len(0), arcs(0) {}
|
| 760 | 760 |
|
| 761 | 761 |
/// \brief Template copy constructor |
| 762 | 762 |
/// |
| 763 | 763 |
/// This path can be initialized from any other path type. |
| 764 | 764 |
template <typename CPath> |
| 765 | 765 |
StaticPath(const CPath& cpath) : arcs(0) {
|
| 766 | 766 |
copyPath(*this, cpath); |
| 767 | 767 |
} |
| 768 | 768 |
|
| 769 | 769 |
/// \brief Destructor of the path |
| 770 | 770 |
/// |
| 771 | 771 |
/// Destructor of the path |
| 772 | 772 |
~StaticPath() {
|
| 773 | 773 |
if (arcs) delete[] arcs; |
| 774 | 774 |
} |
| 775 | 775 |
|
| 776 | 776 |
/// \brief Template copy assignment |
| 777 | 777 |
/// |
| 778 | 778 |
/// This path can be made equal to any other path type. It simply |
| 779 | 779 |
/// makes a copy of the given path. |
| 780 | 780 |
template <typename CPath> |
| 781 | 781 |
StaticPath& operator=(const CPath& cpath) {
|
| 782 | 782 |
copyPath(*this, cpath); |
| 783 | 783 |
return *this; |
| 784 | 784 |
} |
| 785 | 785 |
|
| 786 | 786 |
/// \brief Iterator class to iterate on the arcs of the paths |
| 787 | 787 |
/// |
| 788 | 788 |
/// This class is used to iterate on the arcs of the paths |
| 789 | 789 |
/// |
| 790 | 790 |
/// Of course it converts to Digraph::Arc |
| 791 | 791 |
class ArcIt {
|
| 792 | 792 |
friend class StaticPath; |
| 793 | 793 |
public: |
| 794 | 794 |
/// Default constructor |
| 795 | 795 |
ArcIt() {}
|
| 796 | 796 |
/// Invalid constructor |
| 797 | 797 |
ArcIt(Invalid) : path(0), idx(-1) {}
|
| 798 | 798 |
/// Initializate the constructor to the first arc of path |
| 799 | 799 |
ArcIt(const StaticPath &_path) |
| 800 | 800 |
: path(&_path), idx(_path.empty() ? -1 : 0) {}
|
| 801 | 801 |
|
| 802 | 802 |
private: |
| 803 | 803 |
|
| 804 | 804 |
/// Constructor with starting point |
| 805 | 805 |
ArcIt(const StaticPath &_path, int _idx) |
| 806 | 806 |
: idx(_idx), path(&_path) {}
|
| 807 | 807 |
|
| 808 | 808 |
public: |
| 809 | 809 |
|
| 810 | 810 |
///Conversion to Digraph::Arc |
| 811 | 811 |
operator const Arc&() const {
|
| 812 | 812 |
return path->nth(idx); |
| 813 | 813 |
} |
| 814 | 814 |
|
| 815 | 815 |
/// Next arc |
| 816 | 816 |
ArcIt& operator++() {
|
| 817 | 817 |
++idx; |
| 818 | 818 |
if (idx >= path->length()) idx = -1; |
| 819 | 819 |
return *this; |
| 820 | 820 |
} |
| 821 | 821 |
|
| 822 | 822 |
/// Comparison operator |
| 823 | 823 |
bool operator==(const ArcIt& e) const { return idx==e.idx; }
|
| 824 | 824 |
/// Comparison operator |
| 825 | 825 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
|
| 826 | 826 |
/// Comparison operator |
| 827 | 827 |
bool operator<(const ArcIt& e) const { return idx<e.idx; }
|
| 828 | 828 |
|
| 829 | 829 |
private: |
| 830 | 830 |
const StaticPath *path; |
| 831 | 831 |
int idx; |
| 832 | 832 |
}; |
| 833 | 833 |
|
| 834 | 834 |
/// \brief The nth arc. |
| 835 | 835 |
/// |
| 836 | 836 |
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
| 837 | 837 |
const Arc& nth(int n) const {
|
| 838 | 838 |
return arcs[n]; |
| 839 | 839 |
} |
| 840 | 840 |
|
| 841 | 841 |
/// \brief The arc iterator pointing to the nth arc. |
| 842 | 842 |
ArcIt nthIt(int n) const {
|
| 843 | 843 |
return ArcIt(*this, n); |
| 844 | 844 |
} |
| 845 | 845 |
|
| 846 | 846 |
/// \brief The length of the path. |
| 847 | 847 |
int length() const { return len; }
|
| 848 | 848 |
|
| 849 | 849 |
/// \brief Return true when the path is empty. |
| 850 | 850 |
int empty() const { return len == 0; }
|
| 851 | 851 |
|
| 852 | 852 |
/// \brief Erase all arcs in the digraph. |
| 853 | 853 |
void clear() {
|
| 854 | 854 |
len = 0; |
| 855 | 855 |
if (arcs) delete[] arcs; |
| 856 | 856 |
arcs = 0; |
| 857 | 857 |
} |
| 858 | 858 |
|
| 859 | 859 |
/// \brief The first arc of the path. |
| 860 | 860 |
const Arc& front() const {
|
| 861 | 861 |
return arcs[0]; |
| 862 | 862 |
} |
| 863 | 863 |
|
| 864 | 864 |
/// \brief The last arc of the path. |
| 865 | 865 |
const Arc& back() const {
|
| 866 | 866 |
return arcs[len - 1]; |
| 867 | 867 |
} |
| 868 | 868 |
|
| 869 | 869 |
|
| 870 | 870 |
typedef True BuildTag; |
| 871 | 871 |
|
| 872 | 872 |
template <typename CPath> |
| 873 | 873 |
void build(const CPath& path) {
|
| 874 | 874 |
len = path.length(); |
| 875 | 875 |
arcs = new Arc[len]; |
| 876 | 876 |
int index = 0; |
| 877 | 877 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
|
| 878 | 878 |
arcs[index] = it; |
| 879 | 879 |
++index; |
| 880 | 880 |
} |
| 881 | 881 |
} |
| 882 | 882 |
|
| 883 | 883 |
template <typename CPath> |
| 884 | 884 |
void buildRev(const CPath& path) {
|
| 885 | 885 |
len = path.length(); |
| 886 | 886 |
arcs = new Arc[len]; |
| 887 | 887 |
int index = len; |
| 888 | 888 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
|
| 889 | 889 |
--index; |
| 890 | 890 |
arcs[index] = it; |
| 891 | 891 |
} |
| 892 | 892 |
} |
| 893 | 893 |
|
| 894 | 894 |
private: |
| 895 | 895 |
int len; |
| 896 | 896 |
Arc* arcs; |
| 897 | 897 |
}; |
| 898 | 898 |
|
| 899 | 899 |
/////////////////////////////////////////////////////////////////////// |
| 900 | 900 |
// Additional utilities |
| 901 | 901 |
/////////////////////////////////////////////////////////////////////// |
| 902 | 902 |
|
| 903 | 903 |
namespace _path_bits {
|
| 904 | 904 |
|
| 905 | 905 |
template <typename Path, typename Enable = void> |
| 906 | 906 |
struct RevPathTagIndicator {
|
| 907 | 907 |
static const bool value = false; |
| 908 | 908 |
}; |
| 909 | 909 |
|
| 910 | 910 |
template <typename Path> |
| 911 | 911 |
struct RevPathTagIndicator< |
| 912 | 912 |
Path, |
| 913 | 913 |
typename enable_if<typename Path::RevPathTag, void>::type |
| 914 | 914 |
> {
|
| 915 | 915 |
static const bool value = true; |
| 916 | 916 |
}; |
| 917 | 917 |
|
| 918 | 918 |
template <typename Path, typename Enable = void> |
| 919 | 919 |
struct BuildTagIndicator {
|
| 920 | 920 |
static const bool value = false; |
| 921 | 921 |
}; |
| 922 | 922 |
|
| 923 | 923 |
template <typename Path> |
| 924 | 924 |
struct BuildTagIndicator< |
| 925 | 925 |
Path, |
| 926 | 926 |
typename enable_if<typename Path::BuildTag, void>::type |
| 927 | 927 |
> {
|
| 928 | 928 |
static const bool value = true; |
| 929 | 929 |
}; |
| 930 | 930 |
|
| 931 | 931 |
template <typename Target, typename Source, |
| 932 | 932 |
bool buildEnable = BuildTagIndicator<Target>::value> |
| 933 | 933 |
struct PathCopySelectorForward {
|
| 934 | 934 |
static void copy(Target& target, const Source& source) {
|
| 935 | 935 |
target.clear(); |
| 936 | 936 |
for (typename Source::ArcIt it(source); it != INVALID; ++it) {
|
| 937 | 937 |
target.addBack(it); |
| 938 | 938 |
} |
| 939 | 939 |
} |
| 940 | 940 |
}; |
| 941 | 941 |
|
| 942 | 942 |
template <typename Target, typename Source> |
| 943 | 943 |
struct PathCopySelectorForward<Target, Source, true> {
|
| 944 | 944 |
static void copy(Target& target, const Source& source) {
|
| 945 | 945 |
target.clear(); |
| 946 | 946 |
target.build(source); |
| 947 | 947 |
} |
| 948 | 948 |
}; |
| 949 | 949 |
|
| 950 | 950 |
template <typename Target, typename Source, |
| 951 | 951 |
bool buildEnable = BuildTagIndicator<Target>::value> |
| 952 | 952 |
struct PathCopySelectorBackward {
|
| 953 | 953 |
static void copy(Target& target, const Source& source) {
|
| 954 | 954 |
target.clear(); |
| 955 | 955 |
for (typename Source::RevArcIt it(source); it != INVALID; ++it) {
|
| 956 | 956 |
target.addFront(it); |
| 957 | 957 |
} |
| 958 | 958 |
} |
| 959 | 959 |
}; |
| 960 | 960 |
|
| 961 | 961 |
template <typename Target, typename Source> |
| 962 | 962 |
struct PathCopySelectorBackward<Target, Source, true> {
|
| 963 | 963 |
static void copy(Target& target, const Source& source) {
|
| 964 | 964 |
target.clear(); |
| 965 | 965 |
target.buildRev(source); |
| 966 | 966 |
} |
| 967 | 967 |
}; |
| 968 | 968 |
|
| 969 | 969 |
|
| 970 | 970 |
template <typename Target, typename Source, |
| 971 | 971 |
bool revEnable = RevPathTagIndicator<Source>::value> |
| 972 | 972 |
struct PathCopySelector {
|
| 973 | 973 |
static void copy(Target& target, const Source& source) {
|
| 974 | 974 |
PathCopySelectorForward<Target, Source>::copy(target, source); |
| 975 | 975 |
} |
| 976 | 976 |
}; |
| 977 | 977 |
|
| 978 | 978 |
template <typename Target, typename Source> |
| 979 | 979 |
struct PathCopySelector<Target, Source, true> {
|
| 980 | 980 |
static void copy(Target& target, const Source& source) {
|
| 981 | 981 |
PathCopySelectorBackward<Target, Source>::copy(target, source); |
| 982 | 982 |
} |
| 983 | 983 |
}; |
| 984 | 984 |
|
| 985 | 985 |
} |
| 986 | 986 |
|
| 987 | 987 |
|
| 988 | 988 |
/// \brief Make a copy of a path. |
| 989 | 989 |
/// |
| 990 | 990 |
/// This function makes a copy of a path. |
| 991 | 991 |
template <typename Target, typename Source> |
| 992 | 992 |
void copyPath(Target& target, const Source& source) {
|
| 993 | 993 |
checkConcept<concepts::PathDumper<typename Source::Digraph>, Source>(); |
| 994 | 994 |
_path_bits::PathCopySelector<Target, Source>::copy(target, source); |
| 995 | 995 |
} |
| 996 | 996 |
|
| 997 | 997 |
/// \brief Check the consistency of a path. |
| 998 | 998 |
/// |
| 999 | 999 |
/// This function checks that the target of each arc is the same |
| 1000 | 1000 |
/// as the source of the next one. |
| 1001 | 1001 |
/// |
| 1002 | 1002 |
template <typename Digraph, typename Path> |
| 1003 | 1003 |
bool checkPath(const Digraph& digraph, const Path& path) {
|
| 1004 | 1004 |
typename Path::ArcIt it(path); |
| 1005 | 1005 |
if (it == INVALID) return true; |
| 1006 | 1006 |
typename Digraph::Node node = digraph.target(it); |
| 1007 | 1007 |
++it; |
| 1008 | 1008 |
while (it != INVALID) {
|
| 1009 | 1009 |
if (digraph.source(it) != node) return false; |
| 1010 | 1010 |
node = digraph.target(it); |
| 1011 | 1011 |
++it; |
| 1012 | 1012 |
} |
| 1013 | 1013 |
return true; |
| 1014 | 1014 |
} |
| 1015 | 1015 |
|
| 1016 | 1016 |
/// \brief The source of a path |
| 1017 | 1017 |
/// |
| 1018 |
/// This function returns the source of the given path. |
|
| 1018 |
/// This function returns the source node of the given path. |
|
| 1019 |
/// If the path is empty, then it returns \c INVALID. |
|
| 1019 | 1020 |
template <typename Digraph, typename Path> |
| 1020 | 1021 |
typename Digraph::Node pathSource(const Digraph& digraph, const Path& path) {
|
| 1021 |
return digraph.source(path.front()); |
|
| 1022 |
return path.empty() ? INVALID : digraph.source(path.front()); |
|
| 1022 | 1023 |
} |
| 1023 | 1024 |
|
| 1024 | 1025 |
/// \brief The target of a path |
| 1025 | 1026 |
/// |
| 1026 |
/// This function returns the target of the given path. |
|
| 1027 |
/// This function returns the target node of the given path. |
|
| 1028 |
/// If the path is empty, then it returns \c INVALID. |
|
| 1027 | 1029 |
template <typename Digraph, typename Path> |
| 1028 | 1030 |
typename Digraph::Node pathTarget(const Digraph& digraph, const Path& path) {
|
| 1029 |
return digraph.target(path.back()); |
|
| 1031 |
return path.empty() ? INVALID : digraph.target(path.back()); |
|
| 1030 | 1032 |
} |
| 1031 | 1033 |
|
| 1032 | 1034 |
/// \brief Class which helps to iterate through the nodes of a path |
| 1033 | 1035 |
/// |
| 1034 | 1036 |
/// In a sense, the path can be treated as a list of arcs. The |
| 1035 | 1037 |
/// lemon path type stores only this list. As a consequence, it |
| 1036 | 1038 |
/// cannot enumerate the nodes in the path and the zero length paths |
| 1037 | 1039 |
/// cannot have a source node. |
| 1038 | 1040 |
/// |
| 1039 | 1041 |
/// This class implements the node iterator of a path structure. To |
| 1040 | 1042 |
/// provide this feature, the underlying digraph should be passed to |
| 1041 | 1043 |
/// the constructor of the iterator. |
| 1042 | 1044 |
template <typename Path> |
| 1043 | 1045 |
class PathNodeIt {
|
| 1044 | 1046 |
private: |
| 1045 | 1047 |
const typename Path::Digraph *_digraph; |
| 1046 | 1048 |
typename Path::ArcIt _it; |
| 1047 | 1049 |
typename Path::Digraph::Node _nd; |
| 1048 | 1050 |
|
| 1049 | 1051 |
public: |
| 1050 | 1052 |
|
| 1051 | 1053 |
typedef typename Path::Digraph Digraph; |
| 1052 | 1054 |
typedef typename Digraph::Node Node; |
| 1053 | 1055 |
|
| 1054 | 1056 |
/// Default constructor |
| 1055 | 1057 |
PathNodeIt() {}
|
| 1056 | 1058 |
/// Invalid constructor |
| 1057 | 1059 |
PathNodeIt(Invalid) |
| 1058 | 1060 |
: _digraph(0), _it(INVALID), _nd(INVALID) {}
|
| 1059 | 1061 |
/// Constructor |
| 1060 | 1062 |
PathNodeIt(const Digraph& digraph, const Path& path) |
| 1061 | 1063 |
: _digraph(&digraph), _it(path) {
|
| 1062 | 1064 |
_nd = (_it != INVALID ? _digraph->source(_it) : INVALID); |
| 1063 | 1065 |
} |
| 1064 | 1066 |
/// Constructor |
| 1065 | 1067 |
PathNodeIt(const Digraph& digraph, const Path& path, const Node& src) |
| 1066 | 1068 |
: _digraph(&digraph), _it(path), _nd(src) {}
|
| 1067 | 1069 |
|
| 1068 | 1070 |
///Conversion to Digraph::Node |
| 1069 | 1071 |
operator Node() const {
|
| 1070 | 1072 |
return _nd; |
| 1071 | 1073 |
} |
| 1072 | 1074 |
|
| 1073 | 1075 |
/// Next node |
| 1074 | 1076 |
PathNodeIt& operator++() {
|
| 1075 | 1077 |
if (_it == INVALID) _nd = INVALID; |
| 1076 | 1078 |
else {
|
| 1077 | 1079 |
_nd = _digraph->target(_it); |
| 1078 | 1080 |
++_it; |
| 1079 | 1081 |
} |
| 1080 | 1082 |
return *this; |
| 1081 | 1083 |
} |
| 1082 | 1084 |
|
| 1083 | 1085 |
/// Comparison operator |
| 1084 | 1086 |
bool operator==(const PathNodeIt& n) const {
|
| 1085 | 1087 |
return _it == n._it && _nd == n._nd; |
| 1086 | 1088 |
} |
| 1087 | 1089 |
/// Comparison operator |
| 1088 | 1090 |
bool operator!=(const PathNodeIt& n) const {
|
| 1089 | 1091 |
return _it != n._it || _nd != n._nd; |
| 1090 | 1092 |
} |
| 1091 | 1093 |
/// Comparison operator |
| 1092 | 1094 |
bool operator<(const PathNodeIt& n) const {
|
| 1093 | 1095 |
return (_it < n._it && _nd != INVALID); |
| 1094 | 1096 |
} |
| 1095 | 1097 |
|
| 1096 | 1098 |
}; |
| 1097 | 1099 |
|
| 1098 | 1100 |
///@} |
| 1099 | 1101 |
|
| 1100 | 1102 |
} // namespace lemon |
| 1101 | 1103 |
|
| 1102 | 1104 |
#endif // LEMON_PATH_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_PREFLOW_H |
| 20 | 20 |
#define LEMON_PREFLOW_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/tolerance.h> |
| 23 | 23 |
#include <lemon/elevator.h> |
| 24 | 24 |
|
| 25 | 25 |
/// \file |
| 26 | 26 |
/// \ingroup max_flow |
| 27 | 27 |
/// \brief Implementation of the preflow algorithm. |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
/// \brief Default traits class of Preflow class. |
| 32 | 32 |
/// |
| 33 | 33 |
/// Default traits class of Preflow class. |
| 34 | 34 |
/// \tparam GR Digraph type. |
| 35 | 35 |
/// \tparam CAP Capacity map type. |
| 36 | 36 |
template <typename GR, typename CAP> |
| 37 | 37 |
struct PreflowDefaultTraits {
|
| 38 | 38 |
|
| 39 | 39 |
/// \brief The type of the digraph the algorithm runs on. |
| 40 | 40 |
typedef GR Digraph; |
| 41 | 41 |
|
| 42 | 42 |
/// \brief The type of the map that stores the arc capacities. |
| 43 | 43 |
/// |
| 44 | 44 |
/// The type of the map that stores the arc capacities. |
| 45 | 45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 46 | 46 |
typedef CAP CapacityMap; |
| 47 | 47 |
|
| 48 | 48 |
/// \brief The type of the flow values. |
| 49 | 49 |
typedef typename CapacityMap::Value Value; |
| 50 | 50 |
|
| 51 | 51 |
/// \brief The type of the map that stores the flow values. |
| 52 | 52 |
/// |
| 53 | 53 |
/// The type of the map that stores the flow values. |
| 54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 55 |
#ifdef DOXYGEN |
|
| 56 |
typedef GR::ArcMap<Value> FlowMap; |
|
| 57 |
#else |
|
| 55 | 58 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 59 |
#endif |
|
| 56 | 60 |
|
| 57 | 61 |
/// \brief Instantiates a FlowMap. |
| 58 | 62 |
/// |
| 59 | 63 |
/// This function instantiates a \ref FlowMap. |
| 60 | 64 |
/// \param digraph The digraph for which we would like to define |
| 61 | 65 |
/// the flow map. |
| 62 | 66 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
| 63 | 67 |
return new FlowMap(digraph); |
| 64 | 68 |
} |
| 65 | 69 |
|
| 66 | 70 |
/// \brief The elevator type used by Preflow algorithm. |
| 67 | 71 |
/// |
| 68 | 72 |
/// The elevator type used by Preflow algorithm. |
| 69 | 73 |
/// |
| 70 |
/// \sa Elevator |
|
| 71 |
/// \sa LinkedElevator |
|
| 72 |
|
|
| 74 |
/// \sa Elevator, LinkedElevator |
|
| 75 |
#ifdef DOXYGEN |
|
| 76 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
| 77 |
#else |
|
| 78 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
|
| 79 |
#endif |
|
| 73 | 80 |
|
| 74 | 81 |
/// \brief Instantiates an Elevator. |
| 75 | 82 |
/// |
| 76 | 83 |
/// This function instantiates an \ref Elevator. |
| 77 | 84 |
/// \param digraph The digraph for which we would like to define |
| 78 | 85 |
/// the elevator. |
| 79 | 86 |
/// \param max_level The maximum level of the elevator. |
| 80 | 87 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
| 81 | 88 |
return new Elevator(digraph, max_level); |
| 82 | 89 |
} |
| 83 | 90 |
|
| 84 | 91 |
/// \brief The tolerance used by the algorithm |
| 85 | 92 |
/// |
| 86 | 93 |
/// The tolerance used by the algorithm to handle inexact computation. |
| 87 | 94 |
typedef lemon::Tolerance<Value> Tolerance; |
| 88 | 95 |
|
| 89 | 96 |
}; |
| 90 | 97 |
|
| 91 | 98 |
|
| 92 | 99 |
/// \ingroup max_flow |
| 93 | 100 |
/// |
| 94 | 101 |
/// \brief %Preflow algorithm class. |
| 95 | 102 |
/// |
| 96 | 103 |
/// This class provides an implementation of Goldberg-Tarjan's \e preflow |
| 97 | 104 |
/// \e push-relabel algorithm producing a \ref max_flow |
| 98 |
/// "flow of maximum value" in a digraph |
|
| 105 |
/// "flow of maximum value" in a digraph \ref clrs01algorithms, |
|
| 106 |
/// \ref amo93networkflows, \ref goldberg88newapproach. |
|
| 99 | 107 |
/// The preflow algorithms are the fastest known maximum |
| 100 |
/// flow algorithms. The current implementation |
|
| 108 |
/// flow algorithms. The current implementation uses a mixture of the |
|
| 101 | 109 |
/// \e "highest label" and the \e "bound decrease" heuristics. |
| 102 | 110 |
/// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
|
| 103 | 111 |
/// |
| 104 | 112 |
/// The algorithm consists of two phases. After the first phase |
| 105 | 113 |
/// the maximum flow value and the minimum cut is obtained. The |
| 106 | 114 |
/// second phase constructs a feasible maximum flow on each arc. |
| 107 | 115 |
/// |
| 108 | 116 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 109 | 117 |
/// \tparam CAP The type of the capacity map. The default map |
| 110 | 118 |
/// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 111 | 119 |
#ifdef DOXYGEN |
| 112 | 120 |
template <typename GR, typename CAP, typename TR> |
| 113 | 121 |
#else |
| 114 | 122 |
template <typename GR, |
| 115 | 123 |
typename CAP = typename GR::template ArcMap<int>, |
| 116 | 124 |
typename TR = PreflowDefaultTraits<GR, CAP> > |
| 117 | 125 |
#endif |
| 118 | 126 |
class Preflow {
|
| 119 | 127 |
public: |
| 120 | 128 |
|
| 121 | 129 |
///The \ref PreflowDefaultTraits "traits class" of the algorithm. |
| 122 | 130 |
typedef TR Traits; |
| 123 | 131 |
///The type of the digraph the algorithm runs on. |
| 124 | 132 |
typedef typename Traits::Digraph Digraph; |
| 125 | 133 |
///The type of the capacity map. |
| 126 | 134 |
typedef typename Traits::CapacityMap CapacityMap; |
| 127 | 135 |
///The type of the flow values. |
| 128 | 136 |
typedef typename Traits::Value Value; |
| 129 | 137 |
|
| 130 | 138 |
///The type of the flow map. |
| 131 | 139 |
typedef typename Traits::FlowMap FlowMap; |
| 132 | 140 |
///The type of the elevator. |
| 133 | 141 |
typedef typename Traits::Elevator Elevator; |
| 134 | 142 |
///The type of the tolerance. |
| 135 | 143 |
typedef typename Traits::Tolerance Tolerance; |
| 136 | 144 |
|
| 137 | 145 |
private: |
| 138 | 146 |
|
| 139 | 147 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 140 | 148 |
|
| 141 | 149 |
const Digraph& _graph; |
| 142 | 150 |
const CapacityMap* _capacity; |
| 143 | 151 |
|
| 144 | 152 |
int _node_num; |
| 145 | 153 |
|
| 146 | 154 |
Node _source, _target; |
| 147 | 155 |
|
| 148 | 156 |
FlowMap* _flow; |
| 149 | 157 |
bool _local_flow; |
| 150 | 158 |
|
| 151 | 159 |
Elevator* _level; |
| 152 | 160 |
bool _local_level; |
| 153 | 161 |
|
| 154 | 162 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
| 155 | 163 |
ExcessMap* _excess; |
| 156 | 164 |
|
| 157 | 165 |
Tolerance _tolerance; |
| 158 | 166 |
|
| 159 | 167 |
bool _phase; |
| 160 | 168 |
|
| 161 | 169 |
|
| 162 | 170 |
void createStructures() {
|
| 163 | 171 |
_node_num = countNodes(_graph); |
| 164 | 172 |
|
| 165 | 173 |
if (!_flow) {
|
| 166 | 174 |
_flow = Traits::createFlowMap(_graph); |
| 167 | 175 |
_local_flow = true; |
| 168 | 176 |
} |
| 169 | 177 |
if (!_level) {
|
| 170 | 178 |
_level = Traits::createElevator(_graph, _node_num); |
| 171 | 179 |
_local_level = true; |
| 172 | 180 |
} |
| 173 | 181 |
if (!_excess) {
|
| 174 | 182 |
_excess = new ExcessMap(_graph); |
| 175 | 183 |
} |
| 176 | 184 |
} |
| 177 | 185 |
|
| 178 | 186 |
void destroyStructures() {
|
| 179 | 187 |
if (_local_flow) {
|
| 180 | 188 |
delete _flow; |
| 181 | 189 |
} |
| 182 | 190 |
if (_local_level) {
|
| 183 | 191 |
delete _level; |
| 184 | 192 |
} |
| 185 | 193 |
if (_excess) {
|
| 186 | 194 |
delete _excess; |
| 187 | 195 |
} |
| 188 | 196 |
} |
| 189 | 197 |
|
| 190 | 198 |
public: |
| 191 | 199 |
|
| 192 | 200 |
typedef Preflow Create; |
| 193 | 201 |
|
| 194 | 202 |
///\name Named Template Parameters |
| 195 | 203 |
|
| 196 | 204 |
///@{
|
| 197 | 205 |
|
| 198 | 206 |
template <typename T> |
| 199 | 207 |
struct SetFlowMapTraits : public Traits {
|
| 200 | 208 |
typedef T FlowMap; |
| 201 | 209 |
static FlowMap *createFlowMap(const Digraph&) {
|
| 202 | 210 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
| 203 | 211 |
return 0; // ignore warnings |
| 204 | 212 |
} |
| 205 | 213 |
}; |
| 206 | 214 |
|
| 207 | 215 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 208 | 216 |
/// FlowMap type |
| 209 | 217 |
/// |
| 210 | 218 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
| 211 | 219 |
/// type. |
| 212 | 220 |
template <typename T> |
| 213 | 221 |
struct SetFlowMap |
| 214 | 222 |
: public Preflow<Digraph, CapacityMap, SetFlowMapTraits<T> > {
|
| 215 | 223 |
typedef Preflow<Digraph, CapacityMap, |
| 216 | 224 |
SetFlowMapTraits<T> > Create; |
| 217 | 225 |
}; |
| 218 | 226 |
|
| 219 | 227 |
template <typename T> |
| 220 | 228 |
struct SetElevatorTraits : public Traits {
|
| 221 | 229 |
typedef T Elevator; |
| 222 | 230 |
static Elevator *createElevator(const Digraph&, int) {
|
| 223 | 231 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
| 224 | 232 |
return 0; // ignore warnings |
| 225 | 233 |
} |
| 226 | 234 |
}; |
| 227 | 235 |
|
| 228 | 236 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 229 | 237 |
/// Elevator type |
| 230 | 238 |
/// |
| 231 | 239 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 232 | 240 |
/// type. If this named parameter is used, then an external |
| 233 | 241 |
/// elevator object must be passed to the algorithm using the |
| 234 | 242 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
| 235 | 243 |
/// \ref run() or \ref init(). |
| 236 | 244 |
/// \sa SetStandardElevator |
| 237 | 245 |
template <typename T> |
| 238 | 246 |
struct SetElevator |
| 239 | 247 |
: public Preflow<Digraph, CapacityMap, SetElevatorTraits<T> > {
|
| 240 | 248 |
typedef Preflow<Digraph, CapacityMap, |
| 241 | 249 |
SetElevatorTraits<T> > Create; |
| 242 | 250 |
}; |
| 243 | 251 |
|
| 244 | 252 |
template <typename T> |
| 245 | 253 |
struct SetStandardElevatorTraits : public Traits {
|
| 246 | 254 |
typedef T Elevator; |
| 247 | 255 |
static Elevator *createElevator(const Digraph& digraph, int max_level) {
|
| 248 | 256 |
return new Elevator(digraph, max_level); |
| 249 | 257 |
} |
| 250 | 258 |
}; |
| 251 | 259 |
|
| 252 | 260 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 253 | 261 |
/// Elevator type with automatic allocation |
| 254 | 262 |
/// |
| 255 | 263 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 256 | 264 |
/// type with automatic allocation. |
| 257 | 265 |
/// The Elevator should have standard constructor interface to be |
| 258 | 266 |
/// able to automatically created by the algorithm (i.e. the |
| 259 | 267 |
/// digraph and the maximum level should be passed to it). |
| 260 | 268 |
/// However an external elevator object could also be passed to the |
| 261 | 269 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
| 262 | 270 |
/// before calling \ref run() or \ref init(). |
| 263 | 271 |
/// \sa SetElevator |
| 264 | 272 |
template <typename T> |
| 265 | 273 |
struct SetStandardElevator |
| 266 | 274 |
: public Preflow<Digraph, CapacityMap, |
| 267 | 275 |
SetStandardElevatorTraits<T> > {
|
| 268 | 276 |
typedef Preflow<Digraph, CapacityMap, |
| 269 | 277 |
SetStandardElevatorTraits<T> > Create; |
| 270 | 278 |
}; |
| 271 | 279 |
|
| 272 | 280 |
/// @} |
| 273 | 281 |
|
| 274 | 282 |
protected: |
| 275 | 283 |
|
| 276 | 284 |
Preflow() {}
|
| 277 | 285 |
|
| 278 | 286 |
public: |
| 279 | 287 |
|
| 280 | 288 |
|
| 281 | 289 |
/// \brief The constructor of the class. |
| 282 | 290 |
/// |
| 283 | 291 |
/// The constructor of the class. |
| 284 | 292 |
/// \param digraph The digraph the algorithm runs on. |
| 285 | 293 |
/// \param capacity The capacity of the arcs. |
| 286 | 294 |
/// \param source The source node. |
| 287 | 295 |
/// \param target The target node. |
| 288 | 296 |
Preflow(const Digraph& digraph, const CapacityMap& capacity, |
| 289 | 297 |
Node source, Node target) |
| 290 | 298 |
: _graph(digraph), _capacity(&capacity), |
| 291 | 299 |
_node_num(0), _source(source), _target(target), |
| 292 | 300 |
_flow(0), _local_flow(false), |
| 293 | 301 |
_level(0), _local_level(false), |
| 294 | 302 |
_excess(0), _tolerance(), _phase() {}
|
| 295 | 303 |
|
| 296 | 304 |
/// \brief Destructor. |
| 297 | 305 |
/// |
| 298 | 306 |
/// Destructor. |
| 299 | 307 |
~Preflow() {
|
| 300 | 308 |
destroyStructures(); |
| 301 | 309 |
} |
| 302 | 310 |
|
| 303 | 311 |
/// \brief Sets the capacity map. |
| 304 | 312 |
/// |
| 305 | 313 |
/// Sets the capacity map. |
| 306 | 314 |
/// \return <tt>(*this)</tt> |
| 307 | 315 |
Preflow& capacityMap(const CapacityMap& map) {
|
| 308 | 316 |
_capacity = ↦ |
| 309 | 317 |
return *this; |
| 310 | 318 |
} |
| 311 | 319 |
|
| 312 | 320 |
/// \brief Sets the flow map. |
| 313 | 321 |
/// |
| 314 | 322 |
/// Sets the flow map. |
| 315 | 323 |
/// If you don't use this function before calling \ref run() or |
| 316 | 324 |
/// \ref init(), an instance will be allocated automatically. |
| 317 | 325 |
/// The destructor deallocates this automatically allocated map, |
| 318 | 326 |
/// of course. |
| 319 | 327 |
/// \return <tt>(*this)</tt> |
| 320 | 328 |
Preflow& flowMap(FlowMap& map) {
|
| 321 | 329 |
if (_local_flow) {
|
| 322 | 330 |
delete _flow; |
| 323 | 331 |
_local_flow = false; |
| 324 | 332 |
} |
| 325 | 333 |
_flow = ↦ |
| 326 | 334 |
return *this; |
| 327 | 335 |
} |
| 328 | 336 |
|
| 329 | 337 |
/// \brief Sets the source node. |
| 330 | 338 |
/// |
| 331 | 339 |
/// Sets the source node. |
| 332 | 340 |
/// \return <tt>(*this)</tt> |
| 333 | 341 |
Preflow& source(const Node& node) {
|
| 334 | 342 |
_source = node; |
| 335 | 343 |
return *this; |
| 336 | 344 |
} |
| 337 | 345 |
|
| 338 | 346 |
/// \brief Sets the target node. |
| 339 | 347 |
/// |
| 340 | 348 |
/// Sets the target node. |
| 341 | 349 |
/// \return <tt>(*this)</tt> |
| 342 | 350 |
Preflow& target(const Node& node) {
|
| 343 | 351 |
_target = node; |
| 344 | 352 |
return *this; |
| 345 | 353 |
} |
| 346 | 354 |
|
| 347 | 355 |
/// \brief Sets the elevator used by algorithm. |
| 348 | 356 |
/// |
| 349 | 357 |
/// Sets the elevator used by algorithm. |
| 350 | 358 |
/// If you don't use this function before calling \ref run() or |
| 351 | 359 |
/// \ref init(), an instance will be allocated automatically. |
| 352 | 360 |
/// The destructor deallocates this automatically allocated elevator, |
| 353 | 361 |
/// of course. |
| 354 | 362 |
/// \return <tt>(*this)</tt> |
| 355 | 363 |
Preflow& elevator(Elevator& elevator) {
|
| 356 | 364 |
if (_local_level) {
|
| 357 | 365 |
delete _level; |
| 358 | 366 |
_local_level = false; |
| 359 | 367 |
} |
| 360 | 368 |
_level = &elevator; |
| 361 | 369 |
return *this; |
| 362 | 370 |
} |
| 363 | 371 |
|
| 364 | 372 |
/// \brief Returns a const reference to the elevator. |
| 365 | 373 |
/// |
| 366 | 374 |
/// Returns a const reference to the elevator. |
| 367 | 375 |
/// |
| 368 | 376 |
/// \pre Either \ref run() or \ref init() must be called before |
| 369 | 377 |
/// using this function. |
| 370 | 378 |
const Elevator& elevator() const {
|
| 371 | 379 |
return *_level; |
| 372 | 380 |
} |
| 373 | 381 |
|
| 374 |
/// \brief Sets the tolerance used by algorithm. |
|
| 382 |
/// \brief Sets the tolerance used by the algorithm. |
|
| 375 | 383 |
/// |
| 376 |
/// Sets the tolerance used by algorithm. |
|
| 377 |
Preflow& tolerance(const Tolerance& tolerance) const {
|
|
| 384 |
/// Sets the tolerance object used by the algorithm. |
|
| 385 |
/// \return <tt>(*this)</tt> |
|
| 386 |
Preflow& tolerance(const Tolerance& tolerance) {
|
|
| 378 | 387 |
_tolerance = tolerance; |
| 379 | 388 |
return *this; |
| 380 | 389 |
} |
| 381 | 390 |
|
| 382 | 391 |
/// \brief Returns a const reference to the tolerance. |
| 383 | 392 |
/// |
| 384 |
/// Returns a const reference to the tolerance |
|
| 393 |
/// Returns a const reference to the tolerance object used by |
|
| 394 |
/// the algorithm. |
|
| 385 | 395 |
const Tolerance& tolerance() const {
|
| 386 |
return |
|
| 396 |
return _tolerance; |
|
| 387 | 397 |
} |
| 388 | 398 |
|
| 389 | 399 |
/// \name Execution Control |
| 390 | 400 |
/// The simplest way to execute the preflow algorithm is to use |
| 391 | 401 |
/// \ref run() or \ref runMinCut().\n |
| 392 |
/// If you need more control on the initial solution or the execution, |
|
| 393 |
/// first you have to call one of the \ref init() functions, then |
|
| 402 |
/// If you need better control on the initial solution or the execution, |
|
| 403 |
/// you have to call one of the \ref init() functions first, then |
|
| 394 | 404 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
| 395 | 405 |
|
| 396 | 406 |
///@{
|
| 397 | 407 |
|
| 398 | 408 |
/// \brief Initializes the internal data structures. |
| 399 | 409 |
/// |
| 400 | 410 |
/// Initializes the internal data structures and sets the initial |
| 401 | 411 |
/// flow to zero on each arc. |
| 402 | 412 |
void init() {
|
| 403 | 413 |
createStructures(); |
| 404 | 414 |
|
| 405 | 415 |
_phase = true; |
| 406 | 416 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 407 | 417 |
(*_excess)[n] = 0; |
| 408 | 418 |
} |
| 409 | 419 |
|
| 410 | 420 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 411 | 421 |
_flow->set(e, 0); |
| 412 | 422 |
} |
| 413 | 423 |
|
| 414 | 424 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
| 415 | 425 |
|
| 416 | 426 |
_level->initStart(); |
| 417 | 427 |
_level->initAddItem(_target); |
| 418 | 428 |
|
| 419 | 429 |
std::vector<Node> queue; |
| 420 | 430 |
reached[_source] = true; |
| 421 | 431 |
|
| 422 | 432 |
queue.push_back(_target); |
| 423 | 433 |
reached[_target] = true; |
| 424 | 434 |
while (!queue.empty()) {
|
| 425 | 435 |
_level->initNewLevel(); |
| 426 | 436 |
std::vector<Node> nqueue; |
| 427 | 437 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 428 | 438 |
Node n = queue[i]; |
| 429 | 439 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 430 | 440 |
Node u = _graph.source(e); |
| 431 | 441 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
|
| 432 | 442 |
reached[u] = true; |
| 433 | 443 |
_level->initAddItem(u); |
| 434 | 444 |
nqueue.push_back(u); |
| 435 | 445 |
} |
| 436 | 446 |
} |
| 437 | 447 |
} |
| 438 | 448 |
queue.swap(nqueue); |
| 439 | 449 |
} |
| 440 | 450 |
_level->initFinish(); |
| 441 | 451 |
|
| 442 | 452 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 443 | 453 |
if (_tolerance.positive((*_capacity)[e])) {
|
| 444 | 454 |
Node u = _graph.target(e); |
| 445 | 455 |
if ((*_level)[u] == _level->maxLevel()) continue; |
| 446 | 456 |
_flow->set(e, (*_capacity)[e]); |
| 447 | 457 |
(*_excess)[u] += (*_capacity)[e]; |
| 448 | 458 |
if (u != _target && !_level->active(u)) {
|
| 449 | 459 |
_level->activate(u); |
| 450 | 460 |
} |
| 451 | 461 |
} |
| 452 | 462 |
} |
| 453 | 463 |
} |
| 454 | 464 |
|
| 455 | 465 |
/// \brief Initializes the internal data structures using the |
| 456 | 466 |
/// given flow map. |
| 457 | 467 |
/// |
| 458 | 468 |
/// Initializes the internal data structures and sets the initial |
| 459 | 469 |
/// flow to the given \c flowMap. The \c flowMap should contain a |
| 460 | 470 |
/// flow or at least a preflow, i.e. at each node excluding the |
| 461 | 471 |
/// source node the incoming flow should greater or equal to the |
| 462 | 472 |
/// outgoing flow. |
| 463 | 473 |
/// \return \c false if the given \c flowMap is not a preflow. |
| 464 | 474 |
template <typename FlowMap> |
| 465 | 475 |
bool init(const FlowMap& flowMap) {
|
| 466 | 476 |
createStructures(); |
| 467 | 477 |
|
| 468 | 478 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 469 | 479 |
_flow->set(e, flowMap[e]); |
| 470 | 480 |
} |
| 471 | 481 |
|
| 472 | 482 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 473 | 483 |
Value excess = 0; |
| 474 | 484 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 475 | 485 |
excess += (*_flow)[e]; |
| 476 | 486 |
} |
| 477 | 487 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 478 | 488 |
excess -= (*_flow)[e]; |
| 479 | 489 |
} |
| 480 | 490 |
if (excess < 0 && n != _source) return false; |
| 481 | 491 |
(*_excess)[n] = excess; |
| 482 | 492 |
} |
| 483 | 493 |
|
| 484 | 494 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
| 485 | 495 |
|
| 486 | 496 |
_level->initStart(); |
| 487 | 497 |
_level->initAddItem(_target); |
| 488 | 498 |
|
| 489 | 499 |
std::vector<Node> queue; |
| 490 | 500 |
reached[_source] = true; |
| 491 | 501 |
|
| 492 | 502 |
queue.push_back(_target); |
| 493 | 503 |
reached[_target] = true; |
| 494 | 504 |
while (!queue.empty()) {
|
| 495 | 505 |
_level->initNewLevel(); |
| 496 | 506 |
std::vector<Node> nqueue; |
| 497 | 507 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 498 | 508 |
Node n = queue[i]; |
| 499 | 509 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 500 | 510 |
Node u = _graph.source(e); |
| 501 | 511 |
if (!reached[u] && |
| 502 | 512 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
|
| 503 | 513 |
reached[u] = true; |
| 504 | 514 |
_level->initAddItem(u); |
| 505 | 515 |
nqueue.push_back(u); |
| 506 | 516 |
} |
| 507 | 517 |
} |
| 508 | 518 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 509 | 519 |
Node v = _graph.target(e); |
| 510 | 520 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) {
|
| 511 | 521 |
reached[v] = true; |
| 512 | 522 |
_level->initAddItem(v); |
| 513 | 523 |
nqueue.push_back(v); |
| 514 | 524 |
} |
| 515 | 525 |
} |
| 516 | 526 |
} |
| 517 | 527 |
queue.swap(nqueue); |
| 518 | 528 |
} |
| 519 | 529 |
_level->initFinish(); |
| 520 | 530 |
|
| 521 | 531 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 522 | 532 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 523 | 533 |
if (_tolerance.positive(rem)) {
|
| 524 | 534 |
Node u = _graph.target(e); |
| 525 | 535 |
if ((*_level)[u] == _level->maxLevel()) continue; |
| 526 | 536 |
_flow->set(e, (*_capacity)[e]); |
| 527 | 537 |
(*_excess)[u] += rem; |
| 528 | 538 |
if (u != _target && !_level->active(u)) {
|
| 529 | 539 |
_level->activate(u); |
| 530 | 540 |
} |
| 531 | 541 |
} |
| 532 | 542 |
} |
| 533 | 543 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 534 | 544 |
Value rem = (*_flow)[e]; |
| 535 | 545 |
if (_tolerance.positive(rem)) {
|
| 536 | 546 |
Node v = _graph.source(e); |
| 537 | 547 |
if ((*_level)[v] == _level->maxLevel()) continue; |
| 538 | 548 |
_flow->set(e, 0); |
| 539 | 549 |
(*_excess)[v] += rem; |
| 540 | 550 |
if (v != _target && !_level->active(v)) {
|
| 541 | 551 |
_level->activate(v); |
| 542 | 552 |
} |
| 543 | 553 |
} |
| 544 | 554 |
} |
| 545 | 555 |
return true; |
| 546 | 556 |
} |
| 547 | 557 |
|
| 548 | 558 |
/// \brief Starts the first phase of the preflow algorithm. |
| 549 | 559 |
/// |
| 550 | 560 |
/// The preflow algorithm consists of two phases, this method runs |
| 551 | 561 |
/// the first phase. After the first phase the maximum flow value |
| 552 | 562 |
/// and a minimum value cut can already be computed, although a |
| 553 | 563 |
/// maximum flow is not yet obtained. So after calling this method |
| 554 | 564 |
/// \ref flowValue() returns the value of a maximum flow and \ref |
| 555 | 565 |
/// minCut() returns a minimum cut. |
| 556 | 566 |
/// \pre One of the \ref init() functions must be called before |
| 557 | 567 |
/// using this function. |
| 558 | 568 |
void startFirstPhase() {
|
| 559 | 569 |
_phase = true; |
| 560 | 570 |
|
| 561 | 571 |
Node n = _level->highestActive(); |
| 562 | 572 |
int level = _level->highestActiveLevel(); |
| 563 | 573 |
while (n != INVALID) {
|
| 564 | 574 |
int num = _node_num; |
| 565 | 575 |
|
| 566 | 576 |
while (num > 0 && n != INVALID) {
|
| 567 | 577 |
Value excess = (*_excess)[n]; |
| 568 | 578 |
int new_level = _level->maxLevel(); |
| 569 | 579 |
|
| 570 | 580 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 571 | 581 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 572 | 582 |
if (!_tolerance.positive(rem)) continue; |
| 573 | 583 |
Node v = _graph.target(e); |
| 574 | 584 |
if ((*_level)[v] < level) {
|
| 575 | 585 |
if (!_level->active(v) && v != _target) {
|
| 576 | 586 |
_level->activate(v); |
| 577 | 587 |
} |
| 578 | 588 |
if (!_tolerance.less(rem, excess)) {
|
| 579 | 589 |
_flow->set(e, (*_flow)[e] + excess); |
| 580 | 590 |
(*_excess)[v] += excess; |
| 581 | 591 |
excess = 0; |
| 582 | 592 |
goto no_more_push_1; |
| 583 | 593 |
} else {
|
| 584 | 594 |
excess -= rem; |
| 585 | 595 |
(*_excess)[v] += rem; |
| 586 | 596 |
_flow->set(e, (*_capacity)[e]); |
| 587 | 597 |
} |
| 588 | 598 |
} else if (new_level > (*_level)[v]) {
|
| 589 | 599 |
new_level = (*_level)[v]; |
| 590 | 600 |
} |
| 591 | 601 |
} |
| 592 | 602 |
|
| 593 | 603 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 594 | 604 |
Value rem = (*_flow)[e]; |
| 595 | 605 |
if (!_tolerance.positive(rem)) continue; |
| 596 | 606 |
Node v = _graph.source(e); |
| 597 | 607 |
if ((*_level)[v] < level) {
|
| 598 | 608 |
if (!_level->active(v) && v != _target) {
|
| 599 | 609 |
_level->activate(v); |
| 600 | 610 |
} |
| 601 | 611 |
if (!_tolerance.less(rem, excess)) {
|
| 602 | 612 |
_flow->set(e, (*_flow)[e] - excess); |
| 603 | 613 |
(*_excess)[v] += excess; |
| 604 | 614 |
excess = 0; |
| 605 | 615 |
goto no_more_push_1; |
| 606 | 616 |
} else {
|
| 607 | 617 |
excess -= rem; |
| 608 | 618 |
(*_excess)[v] += rem; |
| 609 | 619 |
_flow->set(e, 0); |
| 610 | 620 |
} |
| 611 | 621 |
} else if (new_level > (*_level)[v]) {
|
| 612 | 622 |
new_level = (*_level)[v]; |
| 613 | 623 |
} |
| 614 | 624 |
} |
| 615 | 625 |
|
| 616 | 626 |
no_more_push_1: |
| 617 | 627 |
|
| 618 | 628 |
(*_excess)[n] = excess; |
| 619 | 629 |
|
| 620 | 630 |
if (excess != 0) {
|
| 621 | 631 |
if (new_level + 1 < _level->maxLevel()) {
|
| 622 | 632 |
_level->liftHighestActive(new_level + 1); |
| 623 | 633 |
} else {
|
| 624 | 634 |
_level->liftHighestActiveToTop(); |
| 625 | 635 |
} |
| 626 | 636 |
if (_level->emptyLevel(level)) {
|
| 627 | 637 |
_level->liftToTop(level); |
| 628 | 638 |
} |
| 629 | 639 |
} else {
|
| 630 | 640 |
_level->deactivate(n); |
| 631 | 641 |
} |
| 632 | 642 |
|
| 633 | 643 |
n = _level->highestActive(); |
| 634 | 644 |
level = _level->highestActiveLevel(); |
| 635 | 645 |
--num; |
| 636 | 646 |
} |
| 637 | 647 |
|
| 638 | 648 |
num = _node_num * 20; |
| 639 | 649 |
while (num > 0 && n != INVALID) {
|
| 640 | 650 |
Value excess = (*_excess)[n]; |
| 641 | 651 |
int new_level = _level->maxLevel(); |
| 642 | 652 |
|
| 643 | 653 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 644 | 654 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 645 | 655 |
if (!_tolerance.positive(rem)) continue; |
| 646 | 656 |
Node v = _graph.target(e); |
| 647 | 657 |
if ((*_level)[v] < level) {
|
| 648 | 658 |
if (!_level->active(v) && v != _target) {
|
| 649 | 659 |
_level->activate(v); |
| 650 | 660 |
} |
| 651 | 661 |
if (!_tolerance.less(rem, excess)) {
|
| 652 | 662 |
_flow->set(e, (*_flow)[e] + excess); |
| 653 | 663 |
(*_excess)[v] += excess; |
| 654 | 664 |
excess = 0; |
| 655 | 665 |
goto no_more_push_2; |
| 656 | 666 |
} else {
|
| 657 | 667 |
excess -= rem; |
| 658 | 668 |
(*_excess)[v] += rem; |
| 659 | 669 |
_flow->set(e, (*_capacity)[e]); |
| 660 | 670 |
} |
| 661 | 671 |
} else if (new_level > (*_level)[v]) {
|
| 662 | 672 |
new_level = (*_level)[v]; |
| 663 | 673 |
} |
| 664 | 674 |
} |
| 665 | 675 |
|
| 666 | 676 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 667 | 677 |
Value rem = (*_flow)[e]; |
| 668 | 678 |
if (!_tolerance.positive(rem)) continue; |
| 669 | 679 |
Node v = _graph.source(e); |
| 670 | 680 |
if ((*_level)[v] < level) {
|
| 671 | 681 |
if (!_level->active(v) && v != _target) {
|
| 672 | 682 |
_level->activate(v); |
| 673 | 683 |
} |
| 674 | 684 |
if (!_tolerance.less(rem, excess)) {
|
| 675 | 685 |
_flow->set(e, (*_flow)[e] - excess); |
| 676 | 686 |
(*_excess)[v] += excess; |
| 677 | 687 |
excess = 0; |
| 678 | 688 |
goto no_more_push_2; |
| 679 | 689 |
} else {
|
| 680 | 690 |
excess -= rem; |
| 681 | 691 |
(*_excess)[v] += rem; |
| 682 | 692 |
_flow->set(e, 0); |
| 683 | 693 |
} |
| 684 | 694 |
} else if (new_level > (*_level)[v]) {
|
| 685 | 695 |
new_level = (*_level)[v]; |
| 686 | 696 |
} |
| 687 | 697 |
} |
| 688 | 698 |
|
| 689 | 699 |
no_more_push_2: |
| 690 | 700 |
|
| 691 | 701 |
(*_excess)[n] = excess; |
| 692 | 702 |
|
| 693 | 703 |
if (excess != 0) {
|
| 694 | 704 |
if (new_level + 1 < _level->maxLevel()) {
|
| 695 | 705 |
_level->liftActiveOn(level, new_level + 1); |
| 696 | 706 |
} else {
|
| 697 | 707 |
_level->liftActiveToTop(level); |
| 698 | 708 |
} |
| 699 | 709 |
if (_level->emptyLevel(level)) {
|
| 700 | 710 |
_level->liftToTop(level); |
| 701 | 711 |
} |
| 702 | 712 |
} else {
|
| 703 | 713 |
_level->deactivate(n); |
| 704 | 714 |
} |
| 705 | 715 |
|
| 706 | 716 |
while (level >= 0 && _level->activeFree(level)) {
|
| 707 | 717 |
--level; |
| 708 | 718 |
} |
| 709 | 719 |
if (level == -1) {
|
| 710 | 720 |
n = _level->highestActive(); |
| 711 | 721 |
level = _level->highestActiveLevel(); |
| 712 | 722 |
} else {
|
| 713 | 723 |
n = _level->activeOn(level); |
| 714 | 724 |
} |
| 715 | 725 |
--num; |
| 716 | 726 |
} |
| 717 | 727 |
} |
| 718 | 728 |
} |
| 719 | 729 |
|
| 720 | 730 |
/// \brief Starts the second phase of the preflow algorithm. |
| 721 | 731 |
/// |
| 722 | 732 |
/// The preflow algorithm consists of two phases, this method runs |
| 723 | 733 |
/// the second phase. After calling one of the \ref init() functions |
| 724 | 734 |
/// and \ref startFirstPhase() and then \ref startSecondPhase(), |
| 725 | 735 |
/// \ref flowMap() returns a maximum flow, \ref flowValue() returns the |
| 726 | 736 |
/// value of a maximum flow, \ref minCut() returns a minimum cut |
| 727 | 737 |
/// \pre One of the \ref init() functions and \ref startFirstPhase() |
| 728 | 738 |
/// must be called before using this function. |
| 729 | 739 |
void startSecondPhase() {
|
| 730 | 740 |
_phase = false; |
| 731 | 741 |
|
| 732 | 742 |
typename Digraph::template NodeMap<bool> reached(_graph); |
| 733 | 743 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 734 | 744 |
reached[n] = (*_level)[n] < _level->maxLevel(); |
| 735 | 745 |
} |
| 736 | 746 |
|
| 737 | 747 |
_level->initStart(); |
| 738 | 748 |
_level->initAddItem(_source); |
| 739 | 749 |
|
| 740 | 750 |
std::vector<Node> queue; |
| 741 | 751 |
queue.push_back(_source); |
| 742 | 752 |
reached[_source] = true; |
| 743 | 753 |
|
| 744 | 754 |
while (!queue.empty()) {
|
| 745 | 755 |
_level->initNewLevel(); |
| 746 | 756 |
std::vector<Node> nqueue; |
| 747 | 757 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 748 | 758 |
Node n = queue[i]; |
| 749 | 759 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 750 | 760 |
Node v = _graph.target(e); |
| 751 | 761 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) {
|
| 752 | 762 |
reached[v] = true; |
| 753 | 763 |
_level->initAddItem(v); |
| 754 | 764 |
nqueue.push_back(v); |
| 755 | 765 |
} |
| 756 | 766 |
} |
| 757 | 767 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 758 | 768 |
Node u = _graph.source(e); |
| 759 | 769 |
if (!reached[u] && |
| 760 | 770 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
|
| 761 | 771 |
reached[u] = true; |
| 762 | 772 |
_level->initAddItem(u); |
| 763 | 773 |
nqueue.push_back(u); |
| 764 | 774 |
} |
| 765 | 775 |
} |
| 766 | 776 |
} |
| 767 | 777 |
queue.swap(nqueue); |
| 768 | 778 |
} |
| 769 | 779 |
_level->initFinish(); |
| 770 | 780 |
|
| 771 | 781 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 772 | 782 |
if (!reached[n]) {
|
| 773 | 783 |
_level->dirtyTopButOne(n); |
| 774 | 784 |
} else if ((*_excess)[n] > 0 && _target != n) {
|
| 775 | 785 |
_level->activate(n); |
| 776 | 786 |
} |
| 777 | 787 |
} |
| 778 | 788 |
|
| 779 | 789 |
Node n; |
| 780 | 790 |
while ((n = _level->highestActive()) != INVALID) {
|
| 781 | 791 |
Value excess = (*_excess)[n]; |
| 782 | 792 |
int level = _level->highestActiveLevel(); |
| 783 | 793 |
int new_level = _level->maxLevel(); |
| 784 | 794 |
|
| 785 | 795 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 786 | 796 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 787 | 797 |
if (!_tolerance.positive(rem)) continue; |
| 788 | 798 |
Node v = _graph.target(e); |
| 789 | 799 |
if ((*_level)[v] < level) {
|
| 790 | 800 |
if (!_level->active(v) && v != _source) {
|
| 791 | 801 |
_level->activate(v); |
| 792 | 802 |
} |
| 793 | 803 |
if (!_tolerance.less(rem, excess)) {
|
| 794 | 804 |
_flow->set(e, (*_flow)[e] + excess); |
| 795 | 805 |
(*_excess)[v] += excess; |
| 796 | 806 |
excess = 0; |
| 797 | 807 |
goto no_more_push; |
| 798 | 808 |
} else {
|
| 799 | 809 |
excess -= rem; |
| 800 | 810 |
(*_excess)[v] += rem; |
| 801 | 811 |
_flow->set(e, (*_capacity)[e]); |
| 802 | 812 |
} |
| 803 | 813 |
} else if (new_level > (*_level)[v]) {
|
| 804 | 814 |
new_level = (*_level)[v]; |
| 805 | 815 |
} |
| 806 | 816 |
} |
| 807 | 817 |
|
| 808 | 818 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 809 | 819 |
Value rem = (*_flow)[e]; |
| 810 | 820 |
if (!_tolerance.positive(rem)) continue; |
| 811 | 821 |
Node v = _graph.source(e); |
| 812 | 822 |
if ((*_level)[v] < level) {
|
| 813 | 823 |
if (!_level->active(v) && v != _source) {
|
| 814 | 824 |
_level->activate(v); |
| 815 | 825 |
} |
| 816 | 826 |
if (!_tolerance.less(rem, excess)) {
|
| 817 | 827 |
_flow->set(e, (*_flow)[e] - excess); |
| 818 | 828 |
(*_excess)[v] += excess; |
| 819 | 829 |
excess = 0; |
| 820 | 830 |
goto no_more_push; |
| 821 | 831 |
} else {
|
| 822 | 832 |
excess -= rem; |
| 823 | 833 |
(*_excess)[v] += rem; |
| 824 | 834 |
_flow->set(e, 0); |
| 825 | 835 |
} |
| 826 | 836 |
} else if (new_level > (*_level)[v]) {
|
| 827 | 837 |
new_level = (*_level)[v]; |
| 828 | 838 |
} |
| 829 | 839 |
} |
| 830 | 840 |
|
| 831 | 841 |
no_more_push: |
| 832 | 842 |
|
| 833 | 843 |
(*_excess)[n] = excess; |
| 834 | 844 |
|
| 835 | 845 |
if (excess != 0) {
|
| 836 | 846 |
if (new_level + 1 < _level->maxLevel()) {
|
| 837 | 847 |
_level->liftHighestActive(new_level + 1); |
| 838 | 848 |
} else {
|
| 839 | 849 |
// Calculation error |
| 840 | 850 |
_level->liftHighestActiveToTop(); |
| 841 | 851 |
} |
| 842 | 852 |
if (_level->emptyLevel(level)) {
|
| 843 | 853 |
// Calculation error |
| 844 | 854 |
_level->liftToTop(level); |
| 845 | 855 |
} |
| 846 | 856 |
} else {
|
| 847 | 857 |
_level->deactivate(n); |
| 848 | 858 |
} |
| 849 | 859 |
|
| 850 | 860 |
} |
| 851 | 861 |
} |
| 852 | 862 |
|
| 853 | 863 |
/// \brief Runs the preflow algorithm. |
| 854 | 864 |
/// |
| 855 | 865 |
/// Runs the preflow algorithm. |
| 856 | 866 |
/// \note pf.run() is just a shortcut of the following code. |
| 857 | 867 |
/// \code |
| 858 | 868 |
/// pf.init(); |
| 859 | 869 |
/// pf.startFirstPhase(); |
| 860 | 870 |
/// pf.startSecondPhase(); |
| 861 | 871 |
/// \endcode |
| 862 | 872 |
void run() {
|
| 863 | 873 |
init(); |
| 864 | 874 |
startFirstPhase(); |
| 865 | 875 |
startSecondPhase(); |
| 866 | 876 |
} |
| 867 | 877 |
|
| 868 | 878 |
/// \brief Runs the preflow algorithm to compute the minimum cut. |
| 869 | 879 |
/// |
| 870 | 880 |
/// Runs the preflow algorithm to compute the minimum cut. |
| 871 | 881 |
/// \note pf.runMinCut() is just a shortcut of the following code. |
| 872 | 882 |
/// \code |
| 873 | 883 |
/// pf.init(); |
| 874 | 884 |
/// pf.startFirstPhase(); |
| 875 | 885 |
/// \endcode |
| 876 | 886 |
void runMinCut() {
|
| 877 | 887 |
init(); |
| 878 | 888 |
startFirstPhase(); |
| 879 | 889 |
} |
| 880 | 890 |
|
| 881 | 891 |
/// @} |
| 882 | 892 |
|
| 883 | 893 |
/// \name Query Functions |
| 884 | 894 |
/// The results of the preflow algorithm can be obtained using these |
| 885 | 895 |
/// functions.\n |
| 886 | 896 |
/// Either one of the \ref run() "run*()" functions or one of the |
| 887 | 897 |
/// \ref startFirstPhase() "start*()" functions should be called |
| 888 | 898 |
/// before using them. |
| 889 | 899 |
|
| 890 | 900 |
///@{
|
| 891 | 901 |
|
| 892 | 902 |
/// \brief Returns the value of the maximum flow. |
| 893 | 903 |
/// |
| 894 | 904 |
/// Returns the value of the maximum flow by returning the excess |
| 895 | 905 |
/// of the target node. This value equals to the value of |
| 896 | 906 |
/// the maximum flow already after the first phase of the algorithm. |
| 897 | 907 |
/// |
| 898 | 908 |
/// \pre Either \ref run() or \ref init() must be called before |
| 899 | 909 |
/// using this function. |
| 900 | 910 |
Value flowValue() const {
|
| 901 | 911 |
return (*_excess)[_target]; |
| 902 | 912 |
} |
| 903 | 913 |
|
| 904 | 914 |
/// \brief Returns the flow value on the given arc. |
| 905 | 915 |
/// |
| 906 | 916 |
/// Returns the flow value on the given arc. This method can |
| 907 | 917 |
/// be called after the second phase of the algorithm. |
| 908 | 918 |
/// |
| 909 | 919 |
/// \pre Either \ref run() or \ref init() must be called before |
| 910 | 920 |
/// using this function. |
| 911 | 921 |
Value flow(const Arc& arc) const {
|
| 912 | 922 |
return (*_flow)[arc]; |
| 913 | 923 |
} |
| 914 | 924 |
|
| 915 | 925 |
/// \brief Returns a const reference to the flow map. |
| 916 | 926 |
/// |
| 917 | 927 |
/// Returns a const reference to the arc map storing the found flow. |
| 918 | 928 |
/// This method can be called after the second phase of the algorithm. |
| 919 | 929 |
/// |
| 920 | 930 |
/// \pre Either \ref run() or \ref init() must be called before |
| 921 | 931 |
/// using this function. |
| 922 | 932 |
const FlowMap& flowMap() const {
|
| 923 | 933 |
return *_flow; |
| 924 | 934 |
} |
| 925 | 935 |
|
| 926 | 936 |
/// \brief Returns \c true when the node is on the source side of the |
| 927 | 937 |
/// minimum cut. |
| 928 | 938 |
/// |
| 929 | 939 |
/// Returns true when the node is on the source side of the found |
| 930 | 940 |
/// minimum cut. This method can be called both after running \ref |
| 931 | 941 |
/// startFirstPhase() and \ref startSecondPhase(). |
| 932 | 942 |
/// |
| 933 | 943 |
/// \pre Either \ref run() or \ref init() must be called before |
| 934 | 944 |
/// using this function. |
| 935 | 945 |
bool minCut(const Node& node) const {
|
| 936 | 946 |
return ((*_level)[node] == _level->maxLevel()) == _phase; |
| 937 | 947 |
} |
| 938 | 948 |
|
| 939 | 949 |
/// \brief Gives back a minimum value cut. |
| 940 | 950 |
/// |
| 941 | 951 |
/// Sets \c cutMap to the characteristic vector of a minimum value |
| 942 | 952 |
/// cut. \c cutMap should be a \ref concepts::WriteMap "writable" |
| 943 | 953 |
/// node map with \c bool (or convertible) value type. |
| 944 | 954 |
/// |
| 945 | 955 |
/// This method can be called both after running \ref startFirstPhase() |
| 946 | 956 |
/// and \ref startSecondPhase(). The result after the second phase |
| 947 | 957 |
/// could be slightly different if inexact computation is used. |
| 948 | 958 |
/// |
| 949 | 959 |
/// \note This function calls \ref minCut() for each node, so it runs in |
| 950 | 960 |
/// O(n) time. |
| 951 | 961 |
/// |
| 952 | 962 |
/// \pre Either \ref run() or \ref init() must be called before |
| 953 | 963 |
/// using this function. |
| 954 | 964 |
template <typename CutMap> |
| 955 | 965 |
void minCutMap(CutMap& cutMap) const {
|
| 956 | 966 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 957 | 967 |
cutMap.set(n, minCut(n)); |
| 958 | 968 |
} |
| 959 | 969 |
} |
| 960 | 970 |
|
| 961 | 971 |
/// @} |
| 962 | 972 |
}; |
| 963 | 973 |
} |
| 964 | 974 |
|
| 965 | 975 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_RADIX_HEAP_H |
| 20 | 20 |
#define LEMON_RADIX_HEAP_H |
| 21 | 21 |
|
| 22 |
///\ingroup |
|
| 22 |
///\ingroup heaps |
|
| 23 | 23 |
///\file |
| 24 |
///\brief Radix |
|
| 24 |
///\brief Radix heap implementation. |
|
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <lemon/error.h> |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
|
| 32 |
/// \ingroup |
|
| 32 |
/// \ingroup heaps |
|
| 33 | 33 |
/// |
| 34 |
/// \brief |
|
| 34 |
/// \brief Radix heap data structure. |
|
| 35 | 35 |
/// |
| 36 |
/// This class implements the \e radix \e heap data structure. A \e heap |
|
| 37 |
/// is a data structure for storing items with specified values called \e |
|
| 38 |
/// priorities in such a way that finding the item with minimum priority is |
|
| 39 |
/// efficient. This heap type can store only items with \e int priority. |
|
| 40 |
/// In a heap one can change the priority of an item, add or erase an |
|
| 41 |
/// item, but the priority cannot be decreased under the last removed |
|
| 42 |
/// |
|
| 36 |
/// This class implements the \e radix \e heap data structure. |
|
| 37 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
|
| 38 |
/// but it has some limitations due its special implementation. |
|
| 39 |
/// The type of the priorities must be \c int and the priority of an |
|
| 40 |
/// item cannot be decreased under the priority of the last removed item. |
|
| 43 | 41 |
/// |
| 44 |
/// \param IM A read and writable Item int map, used internally |
|
| 45 |
/// to handle the cross references. |
|
| 46 |
/// |
|
| 47 |
/// \see BinHeap |
|
| 48 |
/// \ |
|
| 42 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 43 |
/// internally to handle the cross references. |
|
| 49 | 44 |
template <typename IM> |
| 50 | 45 |
class RadixHeap {
|
| 51 | 46 |
|
| 52 | 47 |
public: |
| 53 |
|
|
| 48 |
|
|
| 49 |
/// Type of the item-int map. |
|
| 50 |
typedef IM ItemIntMap; |
|
| 51 |
/// Type of the priorities. |
|
| 54 | 52 |
typedef int Prio; |
| 55 |
|
|
| 53 |
/// Type of the items stored in the heap. |
|
| 54 |
typedef typename ItemIntMap::Key Item; |
|
| 56 | 55 |
|
| 57 | 56 |
/// \brief Exception thrown by RadixHeap. |
| 58 | 57 |
/// |
| 59 |
/// This Exception is thrown when a smaller priority |
|
| 60 |
/// is inserted into the \e RadixHeap then the last time erased. |
|
| 58 |
/// This exception is thrown when an item is inserted into a |
|
| 59 |
/// RadixHeap with a priority smaller than the last erased one. |
|
| 61 | 60 |
/// \see RadixHeap |
| 62 |
|
|
| 63 |
class UnderFlowPriorityError : public Exception {
|
|
| 61 |
class PriorityUnderflowError : public Exception {
|
|
| 64 | 62 |
public: |
| 65 | 63 |
virtual const char* what() const throw() {
|
| 66 |
return "lemon::RadixHeap:: |
|
| 64 |
return "lemon::RadixHeap::PriorityUnderflowError"; |
|
| 67 | 65 |
} |
| 68 | 66 |
}; |
| 69 | 67 |
|
| 70 |
/// \brief Type to represent the |
|
| 68 |
/// \brief Type to represent the states of the items. |
|
| 71 | 69 |
/// |
| 72 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 73 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 70 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 71 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 74 | 72 |
/// heap's point of view, but may be useful to the user. |
| 75 | 73 |
/// |
| 76 |
/// The ItemIntMap \e should be initialized in such way that it maps |
|
| 77 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
|
| 74 |
/// The item-int map must be initialized in such way that it assigns |
|
| 75 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 78 | 76 |
enum State {
|
| 79 |
IN_HEAP = 0, |
|
| 80 |
PRE_HEAP = -1, |
|
| 81 |
|
|
| 77 |
IN_HEAP = 0, ///< = 0. |
|
| 78 |
PRE_HEAP = -1, ///< = -1. |
|
| 79 |
POST_HEAP = -2 ///< = -2. |
|
| 82 | 80 |
}; |
| 83 | 81 |
|
| 84 | 82 |
private: |
| 85 | 83 |
|
| 86 | 84 |
struct RadixItem {
|
| 87 | 85 |
int prev, next, box; |
| 88 | 86 |
Item item; |
| 89 | 87 |
int prio; |
| 90 | 88 |
RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {}
|
| 91 | 89 |
}; |
| 92 | 90 |
|
| 93 | 91 |
struct RadixBox {
|
| 94 | 92 |
int first; |
| 95 | 93 |
int min, size; |
| 96 | 94 |
RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
|
| 97 | 95 |
}; |
| 98 | 96 |
|
| 99 |
std::vector<RadixItem> data; |
|
| 100 |
std::vector<RadixBox> boxes; |
|
| 97 |
std::vector<RadixItem> _data; |
|
| 98 |
std::vector<RadixBox> _boxes; |
|
| 101 | 99 |
|
| 102 | 100 |
ItemIntMap &_iim; |
| 103 | 101 |
|
| 102 |
public: |
|
| 104 | 103 |
|
| 105 |
public: |
|
| 106 |
/// \brief The constructor. |
|
| 104 |
/// \brief Constructor. |
|
| 107 | 105 |
/// |
| 108 |
/// The constructor. |
|
| 109 |
/// |
|
| 110 |
/// \param map It should be given to the constructor, since it is used |
|
| 111 |
/// internally to handle the cross references. The value of the map |
|
| 112 |
/// should be PRE_HEAP (-1) for each element. |
|
| 113 |
/// |
|
| 114 |
/// \param minimal The initial minimal value of the heap. |
|
| 115 |
/// \param capacity It determines the initial capacity of the heap. |
|
| 116 |
RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0) |
|
| 117 |
: _iim(map) {
|
|
| 118 |
boxes.push_back(RadixBox(minimal, 1)); |
|
| 119 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
|
| 120 |
|
|
| 106 |
/// Constructor. |
|
| 107 |
/// \param map A map that assigns \c int values to the items. |
|
| 108 |
/// It is used internally to handle the cross references. |
|
| 109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 110 |
/// \param minimum The initial minimum value of the heap. |
|
| 111 |
/// \param capacity The initial capacity of the heap. |
|
| 112 |
RadixHeap(ItemIntMap &map, int minimum = 0, int capacity = 0) |
|
| 113 |
: _iim(map) |
|
| 114 |
{
|
|
| 115 |
_boxes.push_back(RadixBox(minimum, 1)); |
|
| 116 |
_boxes.push_back(RadixBox(minimum + 1, 1)); |
|
| 117 |
while (lower(_boxes.size() - 1, capacity + minimum - 1)) {
|
|
| 121 | 118 |
extend(); |
| 122 | 119 |
} |
| 123 | 120 |
} |
| 124 | 121 |
|
| 125 |
/// The number of items stored in the heap. |
|
| 122 |
/// \brief The number of items stored in the heap. |
|
| 126 | 123 |
/// |
| 127 |
/// \brief Returns the number of items stored in the heap. |
|
| 128 |
int size() const { return data.size(); }
|
|
| 129 |
/// |
|
| 124 |
/// This function returns the number of items stored in the heap. |
|
| 125 |
int size() const { return _data.size(); }
|
|
| 126 |
|
|
| 127 |
/// \brief Check if the heap is empty. |
|
| 130 | 128 |
/// |
| 131 |
/// Returns \c true if and only if the heap stores no items. |
|
| 132 |
bool empty() const { return data.empty(); }
|
|
| 129 |
/// This function returns \c true if the heap is empty. |
|
| 130 |
bool empty() const { return _data.empty(); }
|
|
| 133 | 131 |
|
| 134 |
/// \brief Make |
|
| 132 |
/// \brief Make the heap empty. |
|
| 135 | 133 |
/// |
| 136 |
/// Make empty this heap. It does not change the cross reference |
|
| 137 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 138 |
/// should first clear the heap and after that you should set the |
|
| 139 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 140 |
void clear(int minimal = 0, int capacity = 0) {
|
|
| 141 |
data.clear(); boxes.clear(); |
|
| 142 |
boxes.push_back(RadixBox(minimal, 1)); |
|
| 143 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
|
| 144 |
|
|
| 134 |
/// This functon makes the heap empty. |
|
| 135 |
/// It does not change the cross reference map. If you want to reuse |
|
| 136 |
/// a heap that is not surely empty, you should first clear it and |
|
| 137 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 138 |
/// for each item. |
|
| 139 |
/// \param minimum The minimum value of the heap. |
|
| 140 |
/// \param capacity The capacity of the heap. |
|
| 141 |
void clear(int minimum = 0, int capacity = 0) {
|
|
| 142 |
_data.clear(); _boxes.clear(); |
|
| 143 |
_boxes.push_back(RadixBox(minimum, 1)); |
|
| 144 |
_boxes.push_back(RadixBox(minimum + 1, 1)); |
|
| 145 |
while (lower(_boxes.size() - 1, capacity + minimum - 1)) {
|
|
| 145 | 146 |
extend(); |
| 146 | 147 |
} |
| 147 | 148 |
} |
| 148 | 149 |
|
| 149 | 150 |
private: |
| 150 | 151 |
|
| 151 | 152 |
bool upper(int box, Prio pr) {
|
| 152 |
return pr < |
|
| 153 |
return pr < _boxes[box].min; |
|
| 153 | 154 |
} |
| 154 | 155 |
|
| 155 | 156 |
bool lower(int box, Prio pr) {
|
| 156 |
return pr >= |
|
| 157 |
return pr >= _boxes[box].min + _boxes[box].size; |
|
| 157 | 158 |
} |
| 158 | 159 |
|
| 159 |
// |
|
| 160 |
// Remove item from the box list |
|
| 160 | 161 |
void remove(int index) {
|
| 161 |
if (data[index].prev >= 0) {
|
|
| 162 |
data[data[index].prev].next = data[index].next; |
|
| 162 |
if (_data[index].prev >= 0) {
|
|
| 163 |
_data[_data[index].prev].next = _data[index].next; |
|
| 163 | 164 |
} else {
|
| 164 |
|
|
| 165 |
_boxes[_data[index].box].first = _data[index].next; |
|
| 165 | 166 |
} |
| 166 |
if (data[index].next >= 0) {
|
|
| 167 |
data[data[index].next].prev = data[index].prev; |
|
| 167 |
if (_data[index].next >= 0) {
|
|
| 168 |
_data[_data[index].next].prev = _data[index].prev; |
|
| 168 | 169 |
} |
| 169 | 170 |
} |
| 170 | 171 |
|
| 171 |
// |
|
| 172 |
// Insert item into the box list |
|
| 172 | 173 |
void insert(int box, int index) {
|
| 173 |
if (boxes[box].first == -1) {
|
|
| 174 |
boxes[box].first = index; |
|
| 175 |
|
|
| 174 |
if (_boxes[box].first == -1) {
|
|
| 175 |
_boxes[box].first = index; |
|
| 176 |
_data[index].next = _data[index].prev = -1; |
|
| 176 | 177 |
} else {
|
| 177 |
data[index].next = boxes[box].first; |
|
| 178 |
data[boxes[box].first].prev = index; |
|
| 179 |
data[index].prev = -1; |
|
| 180 |
boxes[box].first = index; |
|
| 178 |
_data[index].next = _boxes[box].first; |
|
| 179 |
_data[_boxes[box].first].prev = index; |
|
| 180 |
_data[index].prev = -1; |
|
| 181 |
_boxes[box].first = index; |
|
| 181 | 182 |
} |
| 182 |
|
|
| 183 |
_data[index].box = box; |
|
| 183 | 184 |
} |
| 184 | 185 |
|
| 185 |
// |
|
| 186 |
// Add a new box to the box list |
|
| 186 | 187 |
void extend() {
|
| 187 |
int min = boxes.back().min + boxes.back().size; |
|
| 188 |
int bs = 2 * boxes.back().size; |
|
| 189 |
|
|
| 188 |
int min = _boxes.back().min + _boxes.back().size; |
|
| 189 |
int bs = 2 * _boxes.back().size; |
|
| 190 |
_boxes.push_back(RadixBox(min, bs)); |
|
| 190 | 191 |
} |
| 191 | 192 |
|
| 192 |
/// \brief Move an item up into the proper box. |
|
| 193 |
void bubble_up(int index) {
|
|
| 194 |
|
|
| 193 |
// Move an item up into the proper box. |
|
| 194 |
void bubbleUp(int index) {
|
|
| 195 |
if (!lower(_data[index].box, _data[index].prio)) return; |
|
| 195 | 196 |
remove(index); |
| 196 |
int box = findUp( |
|
| 197 |
int box = findUp(_data[index].box, _data[index].prio); |
|
| 197 | 198 |
insert(box, index); |
| 198 | 199 |
} |
| 199 | 200 |
|
| 200 |
// |
|
| 201 |
// Find up the proper box for the item with the given priority |
|
| 201 | 202 |
int findUp(int start, int pr) {
|
| 202 | 203 |
while (lower(start, pr)) {
|
| 203 |
if (++start == int( |
|
| 204 |
if (++start == int(_boxes.size())) {
|
|
| 204 | 205 |
extend(); |
| 205 | 206 |
} |
| 206 | 207 |
} |
| 207 | 208 |
return start; |
| 208 | 209 |
} |
| 209 | 210 |
|
| 210 |
/// \brief Move an item down into the proper box. |
|
| 211 |
void bubble_down(int index) {
|
|
| 212 |
|
|
| 211 |
// Move an item down into the proper box |
|
| 212 |
void bubbleDown(int index) {
|
|
| 213 |
if (!upper(_data[index].box, _data[index].prio)) return; |
|
| 213 | 214 |
remove(index); |
| 214 |
int box = findDown( |
|
| 215 |
int box = findDown(_data[index].box, _data[index].prio); |
|
| 215 | 216 |
insert(box, index); |
| 216 | 217 |
} |
| 217 | 218 |
|
| 218 |
// |
|
| 219 |
// Find down the proper box for the item with the given priority |
|
| 219 | 220 |
int findDown(int start, int pr) {
|
| 220 | 221 |
while (upper(start, pr)) {
|
| 221 |
if (--start < 0) throw |
|
| 222 |
if (--start < 0) throw PriorityUnderflowError(); |
|
| 222 | 223 |
} |
| 223 | 224 |
return start; |
| 224 | 225 |
} |
| 225 | 226 |
|
| 226 |
// |
|
| 227 |
// Find the first non-empty box |
|
| 227 | 228 |
int findFirst() {
|
| 228 | 229 |
int first = 0; |
| 229 |
while ( |
|
| 230 |
while (_boxes[first].first == -1) ++first; |
|
| 230 | 231 |
return first; |
| 231 | 232 |
} |
| 232 | 233 |
|
| 233 |
// |
|
| 234 |
// Gives back the minimum priority of the given box |
|
| 234 | 235 |
int minValue(int box) {
|
| 235 |
int min = data[boxes[box].first].prio; |
|
| 236 |
for (int k = boxes[box].first; k != -1; k = data[k].next) {
|
|
| 237 |
|
|
| 236 |
int min = _data[_boxes[box].first].prio; |
|
| 237 |
for (int k = _boxes[box].first; k != -1; k = _data[k].next) {
|
|
| 238 |
if (_data[k].prio < min) min = _data[k].prio; |
|
| 238 | 239 |
} |
| 239 | 240 |
return min; |
| 240 | 241 |
} |
| 241 | 242 |
|
| 242 |
/// \brief Rearrange the items of the heap and makes the |
|
| 243 |
/// first box not empty. |
|
| 243 |
// Rearrange the items of the heap and make the first box non-empty |
|
| 244 | 244 |
void moveDown() {
|
| 245 | 245 |
int box = findFirst(); |
| 246 | 246 |
if (box == 0) return; |
| 247 | 247 |
int min = minValue(box); |
| 248 | 248 |
for (int i = 0; i <= box; ++i) {
|
| 249 |
boxes[i].min = min; |
|
| 250 |
min += boxes[i].size; |
|
| 249 |
_boxes[i].min = min; |
|
| 250 |
min += _boxes[i].size; |
|
| 251 | 251 |
} |
| 252 |
int curr = |
|
| 252 |
int curr = _boxes[box].first, next; |
|
| 253 | 253 |
while (curr != -1) {
|
| 254 |
next = data[curr].next; |
|
| 255 |
bubble_down(curr); |
|
| 254 |
next = _data[curr].next; |
|
| 255 |
bubbleDown(curr); |
|
| 256 | 256 |
curr = next; |
| 257 | 257 |
} |
| 258 | 258 |
} |
| 259 | 259 |
|
| 260 |
void relocate_last(int index) {
|
|
| 261 |
if (index != int(data.size()) - 1) {
|
|
| 262 |
data[index] = data.back(); |
|
| 263 |
if (data[index].prev != -1) {
|
|
| 264 |
|
|
| 260 |
void relocateLast(int index) {
|
|
| 261 |
if (index != int(_data.size()) - 1) {
|
|
| 262 |
_data[index] = _data.back(); |
|
| 263 |
if (_data[index].prev != -1) {
|
|
| 264 |
_data[_data[index].prev].next = index; |
|
| 265 | 265 |
} else {
|
| 266 |
|
|
| 266 |
_boxes[_data[index].box].first = index; |
|
| 267 | 267 |
} |
| 268 |
if (data[index].next != -1) {
|
|
| 269 |
data[data[index].next].prev = index; |
|
| 268 |
if (_data[index].next != -1) {
|
|
| 269 |
_data[_data[index].next].prev = index; |
|
| 270 | 270 |
} |
| 271 |
_iim[ |
|
| 271 |
_iim[_data[index].item] = index; |
|
| 272 | 272 |
} |
| 273 |
|
|
| 273 |
_data.pop_back(); |
|
| 274 | 274 |
} |
| 275 | 275 |
|
| 276 | 276 |
public: |
| 277 | 277 |
|
| 278 | 278 |
/// \brief Insert an item into the heap with the given priority. |
| 279 | 279 |
/// |
| 280 |
/// |
|
| 280 |
/// This function inserts the given item into the heap with the |
|
| 281 |
/// given priority. |
|
| 281 | 282 |
/// \param i The item to insert. |
| 282 | 283 |
/// \param p The priority of the item. |
| 284 |
/// \pre \e i must not be stored in the heap. |
|
| 285 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
|
| 283 | 286 |
void push(const Item &i, const Prio &p) {
|
| 284 |
int n = |
|
| 287 |
int n = _data.size(); |
|
| 285 | 288 |
_iim.set(i, n); |
| 286 |
data.push_back(RadixItem(i, p)); |
|
| 287 |
while (lower(boxes.size() - 1, p)) {
|
|
| 289 |
_data.push_back(RadixItem(i, p)); |
|
| 290 |
while (lower(_boxes.size() - 1, p)) {
|
|
| 288 | 291 |
extend(); |
| 289 | 292 |
} |
| 290 |
int box = findDown( |
|
| 293 |
int box = findDown(_boxes.size() - 1, p); |
|
| 291 | 294 |
insert(box, n); |
| 292 | 295 |
} |
| 293 | 296 |
|
| 294 |
/// \brief |
|
| 297 |
/// \brief Return the item having minimum priority. |
|
| 295 | 298 |
/// |
| 296 |
/// This method returns the item with minimum priority. |
|
| 297 |
/// \pre The heap must be nonempty. |
|
| 299 |
/// This function returns the item having minimum priority. |
|
| 300 |
/// \pre The heap must be non-empty. |
|
| 298 | 301 |
Item top() const {
|
| 299 | 302 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
| 300 |
return |
|
| 303 |
return _data[_boxes[0].first].item; |
|
| 301 | 304 |
} |
| 302 | 305 |
|
| 303 |
/// \brief |
|
| 306 |
/// \brief The minimum priority. |
|
| 304 | 307 |
/// |
| 305 |
/// It returns the minimum priority. |
|
| 306 |
/// \pre The heap must be nonempty. |
|
| 308 |
/// This function returns the minimum priority. |
|
| 309 |
/// \pre The heap must be non-empty. |
|
| 307 | 310 |
Prio prio() const {
|
| 308 | 311 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
| 309 |
return |
|
| 312 |
return _data[_boxes[0].first].prio; |
|
| 310 | 313 |
} |
| 311 | 314 |
|
| 312 |
/// \brief |
|
| 315 |
/// \brief Remove the item having minimum priority. |
|
| 313 | 316 |
/// |
| 314 |
/// This |
|
| 317 |
/// This function removes the item having minimum priority. |
|
| 315 | 318 |
/// \pre The heap must be non-empty. |
| 316 | 319 |
void pop() {
|
| 317 | 320 |
moveDown(); |
| 318 |
int index = boxes[0].first; |
|
| 319 |
_iim[data[index].item] = POST_HEAP; |
|
| 321 |
int index = _boxes[0].first; |
|
| 322 |
_iim[_data[index].item] = POST_HEAP; |
|
| 320 | 323 |
remove(index); |
| 321 |
|
|
| 324 |
relocateLast(index); |
|
| 322 | 325 |
} |
| 323 | 326 |
|
| 324 |
/// \brief |
|
| 327 |
/// \brief Remove the given item from the heap. |
|
| 325 | 328 |
/// |
| 326 |
/// This method deletes item \c i from the heap, if \c i was |
|
| 327 |
/// already stored in the heap. |
|
| 328 |
/// |
|
| 329 |
/// This function removes the given item from the heap if it is |
|
| 330 |
/// already stored. |
|
| 331 |
/// \param i The item to delete. |
|
| 332 |
/// \pre \e i must be in the heap. |
|
| 329 | 333 |
void erase(const Item &i) {
|
| 330 | 334 |
int index = _iim[i]; |
| 331 | 335 |
_iim[i] = POST_HEAP; |
| 332 | 336 |
remove(index); |
| 333 |
|
|
| 337 |
relocateLast(index); |
|
| 334 | 338 |
} |
| 335 | 339 |
|
| 336 |
/// \brief |
|
| 340 |
/// \brief The priority of the given item. |
|
| 337 | 341 |
/// |
| 338 |
/// This function returns the priority of item \c i. |
|
| 339 |
/// \pre \c i must be in the heap. |
|
| 342 |
/// This function returns the priority of the given item. |
|
| 340 | 343 |
/// \param i The item. |
| 344 |
/// \pre \e i must be in the heap. |
|
| 341 | 345 |
Prio operator[](const Item &i) const {
|
| 342 | 346 |
int idx = _iim[i]; |
| 343 |
return |
|
| 347 |
return _data[idx].prio; |
|
| 344 | 348 |
} |
| 345 | 349 |
|
| 346 |
/// \brief \c i gets to the heap with priority \c p independently |
|
| 347 |
/// if \c i was already there. |
|
| 350 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 351 |
/// not stored in the heap. |
|
| 348 | 352 |
/// |
| 349 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
| 350 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
| 351 |
/// |
|
| 353 |
/// This method sets the priority of the given item if it is |
|
| 354 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 355 |
/// item into the heap with the given priority. |
|
| 352 | 356 |
/// \param i The item. |
| 353 | 357 |
/// \param p The priority. |
| 358 |
/// \pre \e i must be in the heap. |
|
| 359 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
|
| 354 | 360 |
void set(const Item &i, const Prio &p) {
|
| 355 | 361 |
int idx = _iim[i]; |
| 356 | 362 |
if( idx < 0 ) {
|
| 357 | 363 |
push(i, p); |
| 358 | 364 |
} |
| 359 |
else if( p >= data[idx].prio ) {
|
|
| 360 |
data[idx].prio = p; |
|
| 361 |
|
|
| 365 |
else if( p >= _data[idx].prio ) {
|
|
| 366 |
_data[idx].prio = p; |
|
| 367 |
bubbleUp(idx); |
|
| 362 | 368 |
} else {
|
| 363 |
data[idx].prio = p; |
|
| 364 |
bubble_down(idx); |
|
| 369 |
_data[idx].prio = p; |
|
| 370 |
bubbleDown(idx); |
|
| 365 | 371 |
} |
| 366 | 372 |
} |
| 367 | 373 |
|
| 368 |
|
|
| 369 |
/// \brief Decreases the priority of \c i to \c p. |
|
| 374 |
/// \brief Decrease the priority of an item to the given value. |
|
| 370 | 375 |
/// |
| 371 |
/// This method decreases the priority of item \c i to \c p. |
|
| 372 |
/// \pre \c i must be stored in the heap with priority at least \c p, and |
|
| 373 |
/// |
|
| 376 |
/// This function decreases the priority of an item to the given value. |
|
| 374 | 377 |
/// \param i The item. |
| 375 | 378 |
/// \param p The priority. |
| 379 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 380 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
|
| 376 | 381 |
void decrease(const Item &i, const Prio &p) {
|
| 377 | 382 |
int idx = _iim[i]; |
| 378 |
data[idx].prio = p; |
|
| 379 |
bubble_down(idx); |
|
| 383 |
_data[idx].prio = p; |
|
| 384 |
bubbleDown(idx); |
|
| 380 | 385 |
} |
| 381 | 386 |
|
| 382 |
/// \brief |
|
| 387 |
/// \brief Increase the priority of an item to the given value. |
|
| 383 | 388 |
/// |
| 384 |
/// This method sets the priority of item \c i to \c p. |
|
| 385 |
/// \pre \c i must be stored in the heap with priority at most \c p |
|
| 389 |
/// This function increases the priority of an item to the given value. |
|
| 386 | 390 |
/// \param i The item. |
| 387 | 391 |
/// \param p The priority. |
| 392 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 388 | 393 |
void increase(const Item &i, const Prio &p) {
|
| 389 | 394 |
int idx = _iim[i]; |
| 390 |
data[idx].prio = p; |
|
| 391 |
bubble_up(idx); |
|
| 395 |
_data[idx].prio = p; |
|
| 396 |
bubbleUp(idx); |
|
| 392 | 397 |
} |
| 393 | 398 |
|
| 394 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 395 |
/// never been in the heap. |
|
| 399 |
/// \brief Return the state of an item. |
|
| 396 | 400 |
/// |
| 397 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 398 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 399 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 400 |
/// get back to the heap again. |
|
| 401 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 402 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 403 |
/// and \c POST_HEAP otherwise. |
|
| 404 |
/// In the latter case it is possible that the item will get back |
|
| 405 |
/// to the heap again. |
|
| 401 | 406 |
/// \param i The item. |
| 402 | 407 |
State state(const Item &i) const {
|
| 403 | 408 |
int s = _iim[i]; |
| 404 | 409 |
if( s >= 0 ) s = 0; |
| 405 | 410 |
return State(s); |
| 406 | 411 |
} |
| 407 | 412 |
|
| 408 |
/// \brief |
|
| 413 |
/// \brief Set the state of an item in the heap. |
|
| 409 | 414 |
/// |
| 410 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 411 |
/// manually clear the heap when it is important to achive the |
|
| 412 |
/// |
|
| 415 |
/// This function sets the state of the given item in the heap. |
|
| 416 |
/// It can be used to manually clear the heap when it is important |
|
| 417 |
/// to achive better time complexity. |
|
| 413 | 418 |
/// \param i The item. |
| 414 | 419 |
/// \param st The state. It should not be \c IN_HEAP. |
| 415 | 420 |
void state(const Item& i, State st) {
|
| 416 | 421 |
switch (st) {
|
| 417 | 422 |
case POST_HEAP: |
| 418 | 423 |
case PRE_HEAP: |
| 419 | 424 |
if (state(i) == IN_HEAP) {
|
| 420 | 425 |
erase(i); |
| 421 | 426 |
} |
| 422 | 427 |
_iim[i] = st; |
| 423 | 428 |
break; |
| 424 | 429 |
case IN_HEAP: |
| 425 | 430 |
break; |
| 426 | 431 |
} |
| 427 | 432 |
} |
| 428 | 433 |
|
| 429 | 434 |
}; // class RadixHeap |
| 430 | 435 |
|
| 431 | 436 |
} // namespace lemon |
| 432 | 437 |
|
| 433 | 438 |
#endif // LEMON_RADIX_HEAP_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_SMART_GRAPH_H |
| 20 | 20 |
#define LEMON_SMART_GRAPH_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup graphs |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief SmartDigraph and SmartGraph classes. |
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/bits/graph_extender.h> |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
class SmartDigraph; |
| 35 |
///Base of SmartDigraph |
|
| 36 | 35 |
|
| 37 |
///Base of SmartDigraph |
|
| 38 |
/// |
|
| 39 | 36 |
class SmartDigraphBase {
|
| 40 | 37 |
protected: |
| 41 | 38 |
|
| 42 | 39 |
struct NodeT |
| 43 | 40 |
{
|
| 44 | 41 |
int first_in, first_out; |
| 45 | 42 |
NodeT() {}
|
| 46 | 43 |
}; |
| 47 | 44 |
struct ArcT |
| 48 | 45 |
{
|
| 49 | 46 |
int target, source, next_in, next_out; |
| 50 | 47 |
ArcT() {}
|
| 51 | 48 |
}; |
| 52 | 49 |
|
| 53 | 50 |
std::vector<NodeT> nodes; |
| 54 | 51 |
std::vector<ArcT> arcs; |
| 55 | 52 |
|
| 56 | 53 |
public: |
| 57 | 54 |
|
| 58 | 55 |
typedef SmartDigraphBase Digraph; |
| 59 | 56 |
|
| 60 | 57 |
class Node; |
| 61 | 58 |
class Arc; |
| 62 | 59 |
|
| 63 | 60 |
public: |
| 64 | 61 |
|
| 65 | 62 |
SmartDigraphBase() : nodes(), arcs() { }
|
| 66 | 63 |
SmartDigraphBase(const SmartDigraphBase &_g) |
| 67 | 64 |
: nodes(_g.nodes), arcs(_g.arcs) { }
|
| 68 | 65 |
|
| 69 | 66 |
typedef True NodeNumTag; |
| 70 | 67 |
typedef True ArcNumTag; |
| 71 | 68 |
|
| 72 | 69 |
int nodeNum() const { return nodes.size(); }
|
| 73 | 70 |
int arcNum() const { return arcs.size(); }
|
| 74 | 71 |
|
| 75 | 72 |
int maxNodeId() const { return nodes.size()-1; }
|
| 76 | 73 |
int maxArcId() const { return arcs.size()-1; }
|
| 77 | 74 |
|
| 78 | 75 |
Node addNode() {
|
| 79 | 76 |
int n = nodes.size(); |
| 80 | 77 |
nodes.push_back(NodeT()); |
| 81 | 78 |
nodes[n].first_in = -1; |
| 82 | 79 |
nodes[n].first_out = -1; |
| 83 | 80 |
return Node(n); |
| 84 | 81 |
} |
| 85 | 82 |
|
| 86 | 83 |
Arc addArc(Node u, Node v) {
|
| 87 | 84 |
int n = arcs.size(); |
| 88 | 85 |
arcs.push_back(ArcT()); |
| 89 | 86 |
arcs[n].source = u._id; |
| 90 | 87 |
arcs[n].target = v._id; |
| 91 | 88 |
arcs[n].next_out = nodes[u._id].first_out; |
| 92 | 89 |
arcs[n].next_in = nodes[v._id].first_in; |
| 93 | 90 |
nodes[u._id].first_out = nodes[v._id].first_in = n; |
| 94 | 91 |
|
| 95 | 92 |
return Arc(n); |
| 96 | 93 |
} |
| 97 | 94 |
|
| 98 | 95 |
void clear() {
|
| 99 | 96 |
arcs.clear(); |
| 100 | 97 |
nodes.clear(); |
| 101 | 98 |
} |
| 102 | 99 |
|
| 103 | 100 |
Node source(Arc a) const { return Node(arcs[a._id].source); }
|
| 104 | 101 |
Node target(Arc a) const { return Node(arcs[a._id].target); }
|
| 105 | 102 |
|
| 106 | 103 |
static int id(Node v) { return v._id; }
|
| 107 | 104 |
static int id(Arc a) { return a._id; }
|
| 108 | 105 |
|
| 109 | 106 |
static Node nodeFromId(int id) { return Node(id);}
|
| 110 | 107 |
static Arc arcFromId(int id) { return Arc(id);}
|
| 111 | 108 |
|
| 112 | 109 |
bool valid(Node n) const {
|
| 113 | 110 |
return n._id >= 0 && n._id < static_cast<int>(nodes.size()); |
| 114 | 111 |
} |
| 115 | 112 |
bool valid(Arc a) const {
|
| 116 | 113 |
return a._id >= 0 && a._id < static_cast<int>(arcs.size()); |
| 117 | 114 |
} |
| 118 | 115 |
|
| 119 | 116 |
class Node {
|
| 120 | 117 |
friend class SmartDigraphBase; |
| 121 | 118 |
friend class SmartDigraph; |
| 122 | 119 |
|
| 123 | 120 |
protected: |
| 124 | 121 |
int _id; |
| 125 | 122 |
explicit Node(int id) : _id(id) {}
|
| 126 | 123 |
public: |
| 127 | 124 |
Node() {}
|
| 128 | 125 |
Node (Invalid) : _id(-1) {}
|
| 129 | 126 |
bool operator==(const Node i) const {return _id == i._id;}
|
| 130 | 127 |
bool operator!=(const Node i) const {return _id != i._id;}
|
| 131 | 128 |
bool operator<(const Node i) const {return _id < i._id;}
|
| 132 | 129 |
}; |
| 133 | 130 |
|
| 134 | 131 |
|
| 135 | 132 |
class Arc {
|
| 136 | 133 |
friend class SmartDigraphBase; |
| 137 | 134 |
friend class SmartDigraph; |
| 138 | 135 |
|
| 139 | 136 |
protected: |
| 140 | 137 |
int _id; |
| 141 | 138 |
explicit Arc(int id) : _id(id) {}
|
| 142 | 139 |
public: |
| 143 | 140 |
Arc() { }
|
| 144 | 141 |
Arc (Invalid) : _id(-1) {}
|
| 145 | 142 |
bool operator==(const Arc i) const {return _id == i._id;}
|
| 146 | 143 |
bool operator!=(const Arc i) const {return _id != i._id;}
|
| 147 | 144 |
bool operator<(const Arc i) const {return _id < i._id;}
|
| 148 | 145 |
}; |
| 149 | 146 |
|
| 150 | 147 |
void first(Node& node) const {
|
| 151 | 148 |
node._id = nodes.size() - 1; |
| 152 | 149 |
} |
| 153 | 150 |
|
| 154 | 151 |
static void next(Node& node) {
|
| 155 | 152 |
--node._id; |
| 156 | 153 |
} |
| 157 | 154 |
|
| 158 | 155 |
void first(Arc& arc) const {
|
| 159 | 156 |
arc._id = arcs.size() - 1; |
| 160 | 157 |
} |
| 161 | 158 |
|
| 162 | 159 |
static void next(Arc& arc) {
|
| 163 | 160 |
--arc._id; |
| 164 | 161 |
} |
| 165 | 162 |
|
| 166 | 163 |
void firstOut(Arc& arc, const Node& node) const {
|
| 167 | 164 |
arc._id = nodes[node._id].first_out; |
| 168 | 165 |
} |
| 169 | 166 |
|
| 170 | 167 |
void nextOut(Arc& arc) const {
|
| 171 | 168 |
arc._id = arcs[arc._id].next_out; |
| 172 | 169 |
} |
| 173 | 170 |
|
| 174 | 171 |
void firstIn(Arc& arc, const Node& node) const {
|
| 175 | 172 |
arc._id = nodes[node._id].first_in; |
| 176 | 173 |
} |
| 177 | 174 |
|
| 178 | 175 |
void nextIn(Arc& arc) const {
|
| 179 | 176 |
arc._id = arcs[arc._id].next_in; |
| 180 | 177 |
} |
| 181 | 178 |
|
| 182 | 179 |
}; |
| 183 | 180 |
|
| 184 | 181 |
typedef DigraphExtender<SmartDigraphBase> ExtendedSmartDigraphBase; |
| 185 | 182 |
|
| 186 | 183 |
///\ingroup graphs |
| 187 | 184 |
/// |
| 188 | 185 |
///\brief A smart directed graph class. |
| 189 | 186 |
/// |
| 190 |
///This is a simple and fast digraph implementation. |
|
| 191 |
///It is also quite memory efficient, but at the price |
|
| 192 |
///that <b> it does support only limited (only stack-like) |
|
| 193 |
///node and arc deletions</b>. |
|
| 194 |
/// |
|
| 187 |
///\ref SmartDigraph is a simple and fast digraph implementation. |
|
| 188 |
///It is also quite memory efficient but at the price |
|
| 189 |
///that it does not support node and arc deletion |
|
| 190 |
///(except for the Snapshot feature). |
|
| 195 | 191 |
/// |
| 196 |
///\ |
|
| 192 |
///This type fully conforms to the \ref concepts::Digraph "Digraph concept" |
|
| 193 |
///and it also provides some additional functionalities. |
|
| 194 |
///Most of its member functions and nested classes are documented |
|
| 195 |
///only in the concept class. |
|
| 196 |
/// |
|
| 197 |
///\sa concepts::Digraph |
|
| 198 |
///\sa SmartGraph |
|
| 197 | 199 |
class SmartDigraph : public ExtendedSmartDigraphBase {
|
| 198 | 200 |
typedef ExtendedSmartDigraphBase Parent; |
| 199 | 201 |
|
| 200 | 202 |
private: |
| 201 |
|
|
| 202 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
|
| 203 |
|
|
| 204 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
|
| 205 |
/// |
|
| 203 |
/// Digraphs are \e not copy constructible. Use DigraphCopy instead. |
|
| 206 | 204 |
SmartDigraph(const SmartDigraph &) : ExtendedSmartDigraphBase() {};
|
| 207 |
///\brief Assignment of SmartDigraph to another one is \e not allowed. |
|
| 208 |
///Use DigraphCopy() instead. |
|
| 209 |
|
|
| 210 |
///Assignment of SmartDigraph to another one is \e not allowed. |
|
| 211 |
/// |
|
| 205 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
|
| 206 |
/// Use DigraphCopy instead. |
|
| 212 | 207 |
void operator=(const SmartDigraph &) {}
|
| 213 | 208 |
|
| 214 | 209 |
public: |
| 215 | 210 |
|
| 216 | 211 |
/// Constructor |
| 217 | 212 |
|
| 218 | 213 |
/// Constructor. |
| 219 | 214 |
/// |
| 220 | 215 |
SmartDigraph() {};
|
| 221 | 216 |
|
| 222 | 217 |
///Add a new node to the digraph. |
| 223 | 218 |
|
| 224 |
/// Add a new node to the digraph. |
|
| 225 |
/// \return The new node. |
|
| 219 |
///This function adds a new node to the digraph. |
|
| 220 |
///\return The new node. |
|
| 226 | 221 |
Node addNode() { return Parent::addNode(); }
|
| 227 | 222 |
|
| 228 | 223 |
///Add a new arc to the digraph. |
| 229 | 224 |
|
| 230 |
/// |
|
| 225 |
///This function adds a new arc to the digraph with source node \c s |
|
| 231 | 226 |
///and target node \c t. |
| 232 | 227 |
///\return The new arc. |
| 233 |
Arc addArc( |
|
| 228 |
Arc addArc(Node s, Node t) {
|
|
| 234 | 229 |
return Parent::addArc(s, t); |
| 235 | 230 |
} |
| 236 | 231 |
|
| 237 |
/// \brief Using this it is possible to avoid the superfluous memory |
|
| 238 |
/// allocation. |
|
| 239 |
|
|
| 240 |
/// Using this it is possible to avoid the superfluous memory |
|
| 241 |
/// allocation: if you know that the digraph you want to build will |
|
| 242 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
|
| 243 |
/// then it is worth reserving space for this amount before starting |
|
| 244 |
/// to build the digraph. |
|
| 245 |
/// \sa reserveArc |
|
| 246 |
void reserveNode(int n) { nodes.reserve(n); };
|
|
| 247 |
|
|
| 248 |
/// \brief Using this it is possible to avoid the superfluous memory |
|
| 249 |
/// allocation. |
|
| 250 |
|
|
| 251 |
/// Using this it is possible to avoid the superfluous memory |
|
| 252 |
/// allocation: if you know that the digraph you want to build will |
|
| 253 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
|
| 254 |
/// then it is worth reserving space for this amount before starting |
|
| 255 |
/// to build the digraph. |
|
| 256 |
/// \sa reserveNode |
|
| 257 |
void reserveArc(int m) { arcs.reserve(m); };
|
|
| 258 |
|
|
| 259 | 232 |
/// \brief Node validity check |
| 260 | 233 |
/// |
| 261 |
/// This function gives back true if the given node is valid, |
|
| 262 |
/// ie. it is a real node of the graph. |
|
| 234 |
/// This function gives back \c true if the given node is valid, |
|
| 235 |
/// i.e. it is a real node of the digraph. |
|
| 263 | 236 |
/// |
| 264 | 237 |
/// \warning A removed node (using Snapshot) could become valid again |
| 265 |
/// |
|
| 238 |
/// if new nodes are added to the digraph. |
|
| 266 | 239 |
bool valid(Node n) const { return Parent::valid(n); }
|
| 267 | 240 |
|
| 268 | 241 |
/// \brief Arc validity check |
| 269 | 242 |
/// |
| 270 |
/// This function gives back true if the given arc is valid, |
|
| 271 |
/// ie. it is a real arc of the graph. |
|
| 243 |
/// This function gives back \c true if the given arc is valid, |
|
| 244 |
/// i.e. it is a real arc of the digraph. |
|
| 272 | 245 |
/// |
| 273 | 246 |
/// \warning A removed arc (using Snapshot) could become valid again |
| 274 |
/// |
|
| 247 |
/// if new arcs are added to the graph. |
|
| 275 | 248 |
bool valid(Arc a) const { return Parent::valid(a); }
|
| 276 | 249 |
|
| 277 |
///Clear the digraph. |
|
| 278 |
|
|
| 279 |
///Erase all the nodes and arcs from the digraph. |
|
| 280 |
/// |
|
| 281 |
void clear() {
|
|
| 282 |
Parent::clear(); |
|
| 283 |
} |
|
| 284 |
|
|
| 285 | 250 |
///Split a node. |
| 286 | 251 |
|
| 287 |
///This function splits a node. First a new node is added to the digraph, |
|
| 288 |
///then the source of each outgoing arc of \c n is moved to this new node. |
|
| 289 |
///If \c connect is \c true (this is the default value), then a new arc |
|
| 290 |
///from \c n to the newly created node is also added. |
|
| 252 |
///This function splits the given node. First, a new node is added |
|
| 253 |
///to the digraph, then the source of each outgoing arc of node \c n |
|
| 254 |
///is moved to this new node. |
|
| 255 |
///If the second parameter \c connect is \c true (this is the default |
|
| 256 |
///value), then a new arc from node \c n to the newly created node |
|
| 257 |
///is also added. |
|
| 291 | 258 |
///\return The newly created node. |
| 292 | 259 |
/// |
| 293 |
///\note The <tt>Arc</tt>s |
|
| 294 |
///referencing a moved arc remain |
|
| 295 |
///valid. However <tt>InArc</tt>'s and <tt>OutArc</tt>'s |
|
| 296 |
///may be invalidated. |
|
| 260 |
///\note All iterators remain valid. |
|
| 261 |
/// |
|
| 297 | 262 |
///\warning This functionality cannot be used together with the Snapshot |
| 298 | 263 |
///feature. |
| 299 | 264 |
Node split(Node n, bool connect = true) |
| 300 | 265 |
{
|
| 301 | 266 |
Node b = addNode(); |
| 302 | 267 |
nodes[b._id].first_out=nodes[n._id].first_out; |
| 303 | 268 |
nodes[n._id].first_out=-1; |
| 304 | 269 |
for(int i=nodes[b._id].first_out; i!=-1; i=arcs[i].next_out) {
|
| 305 | 270 |
arcs[i].source=b._id; |
| 306 | 271 |
} |
| 307 | 272 |
if(connect) addArc(n,b); |
| 308 | 273 |
return b; |
| 309 | 274 |
} |
| 310 | 275 |
|
| 276 |
///Clear the digraph. |
|
| 277 |
|
|
| 278 |
///This function erases all nodes and arcs from the digraph. |
|
| 279 |
/// |
|
| 280 |
void clear() {
|
|
| 281 |
Parent::clear(); |
|
| 282 |
} |
|
| 283 |
|
|
| 284 |
/// Reserve memory for nodes. |
|
| 285 |
|
|
| 286 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 287 |
/// allocation: if you know that the digraph you want to build will |
|
| 288 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
|
| 289 |
/// then it is worth reserving space for this amount before starting |
|
| 290 |
/// to build the digraph. |
|
| 291 |
/// \sa reserveArc() |
|
| 292 |
void reserveNode(int n) { nodes.reserve(n); };
|
|
| 293 |
|
|
| 294 |
/// Reserve memory for arcs. |
|
| 295 |
|
|
| 296 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 297 |
/// allocation: if you know that the digraph you want to build will |
|
| 298 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
|
| 299 |
/// then it is worth reserving space for this amount before starting |
|
| 300 |
/// to build the digraph. |
|
| 301 |
/// \sa reserveNode() |
|
| 302 |
void reserveArc(int m) { arcs.reserve(m); };
|
|
| 303 |
|
|
| 311 | 304 |
public: |
| 312 | 305 |
|
| 313 | 306 |
class Snapshot; |
| 314 | 307 |
|
| 315 | 308 |
protected: |
| 316 | 309 |
|
| 317 | 310 |
void restoreSnapshot(const Snapshot &s) |
| 318 | 311 |
{
|
| 319 | 312 |
while(s.arc_num<arcs.size()) {
|
| 320 | 313 |
Arc arc = arcFromId(arcs.size()-1); |
| 321 | 314 |
Parent::notifier(Arc()).erase(arc); |
| 322 | 315 |
nodes[arcs.back().source].first_out=arcs.back().next_out; |
| 323 | 316 |
nodes[arcs.back().target].first_in=arcs.back().next_in; |
| 324 | 317 |
arcs.pop_back(); |
| 325 | 318 |
} |
| 326 | 319 |
while(s.node_num<nodes.size()) {
|
| 327 | 320 |
Node node = nodeFromId(nodes.size()-1); |
| 328 | 321 |
Parent::notifier(Node()).erase(node); |
| 329 | 322 |
nodes.pop_back(); |
| 330 | 323 |
} |
| 331 | 324 |
} |
| 332 | 325 |
|
| 333 | 326 |
public: |
| 334 | 327 |
|
| 335 |
///Class to make a snapshot of the digraph and to |
|
| 328 |
///Class to make a snapshot of the digraph and to restore it later. |
|
| 336 | 329 |
|
| 337 |
///Class to make a snapshot of the digraph and to |
|
| 330 |
///Class to make a snapshot of the digraph and to restore it later. |
|
| 338 | 331 |
/// |
| 339 | 332 |
///The newly added nodes and arcs can be removed using the |
| 340 |
///restore() function. |
|
| 341 |
///\note After you restore a state, you cannot restore |
|
| 342 |
///a later state, in other word you cannot add again the arcs deleted |
|
| 343 |
///by restore() using another one Snapshot instance. |
|
| 333 |
///restore() function. This is the only way for deleting nodes and/or |
|
| 334 |
///arcs from a SmartDigraph structure. |
|
| 344 | 335 |
/// |
| 345 |
///\warning If you do not use correctly the snapshot that can cause |
|
| 346 |
///either broken program, invalid state of the digraph, valid but |
|
| 347 |
///not the restored digraph or no change. Because the runtime performance |
|
| 348 |
///the validity of the snapshot is not stored. |
|
| 336 |
///\note After a state is restored, you cannot restore a later state, |
|
| 337 |
///i.e. you cannot add the removed nodes and arcs again using |
|
| 338 |
///another Snapshot instance. |
|
| 339 |
/// |
|
| 340 |
///\warning Node splitting cannot be restored. |
|
| 341 |
///\warning The validity of the snapshot is not stored due to |
|
| 342 |
///performance reasons. If you do not use the snapshot correctly, |
|
| 343 |
///it can cause broken program, invalid or not restored state of |
|
| 344 |
///the digraph or no change. |
|
| 349 | 345 |
class Snapshot |
| 350 | 346 |
{
|
| 351 | 347 |
SmartDigraph *_graph; |
| 352 | 348 |
protected: |
| 353 | 349 |
friend class SmartDigraph; |
| 354 | 350 |
unsigned int node_num; |
| 355 | 351 |
unsigned int arc_num; |
| 356 | 352 |
public: |
| 357 | 353 |
///Default constructor. |
| 358 | 354 |
|
| 359 | 355 |
///Default constructor. |
| 360 |
///To actually make a snapshot you must call save(). |
|
| 361 |
/// |
|
| 356 |
///You have to call save() to actually make a snapshot. |
|
| 362 | 357 |
Snapshot() : _graph(0) {}
|
| 363 | 358 |
///Constructor that immediately makes a snapshot |
| 364 | 359 |
|
| 365 |
///This constructor immediately makes a snapshot of the digraph. |
|
| 366 |
///\param graph The digraph we make a snapshot of. |
|
| 367 |
|
|
| 360 |
///This constructor immediately makes a snapshot of the given digraph. |
|
| 361 |
/// |
|
| 362 |
Snapshot(SmartDigraph &gr) : _graph(&gr) {
|
|
| 368 | 363 |
node_num=_graph->nodes.size(); |
| 369 | 364 |
arc_num=_graph->arcs.size(); |
| 370 | 365 |
} |
| 371 | 366 |
|
| 372 | 367 |
///Make a snapshot. |
| 373 | 368 |
|
| 374 |
///Make a snapshot of the digraph. |
|
| 375 |
/// |
|
| 376 |
///This function |
|
| 369 |
///This function makes a snapshot of the given digraph. |
|
| 370 |
///It can be called more than once. In case of a repeated |
|
| 377 | 371 |
///call, the previous snapshot gets lost. |
| 378 |
///\param graph The digraph we make the snapshot of. |
|
| 379 |
void save(SmartDigraph &graph) |
|
| 380 |
{
|
|
| 381 |
_graph=&graph; |
|
| 372 |
void save(SmartDigraph &gr) {
|
|
| 373 |
_graph=&gr; |
|
| 382 | 374 |
node_num=_graph->nodes.size(); |
| 383 | 375 |
arc_num=_graph->arcs.size(); |
| 384 | 376 |
} |
| 385 | 377 |
|
| 386 | 378 |
///Undo the changes until a snapshot. |
| 387 | 379 |
|
| 388 |
///Undo the changes until a snapshot created by save(). |
|
| 389 |
/// |
|
| 390 |
///\note After you restored a state, you cannot restore |
|
| 391 |
///a later state, in other word you cannot add again the arcs deleted |
|
| 392 |
/// |
|
| 380 |
///This function undos the changes until the last snapshot |
|
| 381 |
///created by save() or Snapshot(SmartDigraph&). |
|
| 393 | 382 |
void restore() |
| 394 | 383 |
{
|
| 395 | 384 |
_graph->restoreSnapshot(*this); |
| 396 | 385 |
} |
| 397 | 386 |
}; |
| 398 | 387 |
}; |
| 399 | 388 |
|
| 400 | 389 |
|
| 401 | 390 |
class SmartGraphBase {
|
| 402 | 391 |
|
| 403 | 392 |
protected: |
| 404 | 393 |
|
| 405 | 394 |
struct NodeT {
|
| 406 | 395 |
int first_out; |
| 407 | 396 |
}; |
| 408 | 397 |
|
| 409 | 398 |
struct ArcT {
|
| 410 | 399 |
int target; |
| 411 | 400 |
int next_out; |
| 412 | 401 |
}; |
| 413 | 402 |
|
| 414 | 403 |
std::vector<NodeT> nodes; |
| 415 | 404 |
std::vector<ArcT> arcs; |
| 416 | 405 |
|
| 417 | 406 |
int first_free_arc; |
| 418 | 407 |
|
| 419 | 408 |
public: |
| 420 | 409 |
|
| 421 | 410 |
typedef SmartGraphBase Graph; |
| 422 | 411 |
|
| 423 | 412 |
class Node; |
| 424 | 413 |
class Arc; |
| 425 | 414 |
class Edge; |
| 426 | 415 |
|
| 427 | 416 |
class Node {
|
| 428 | 417 |
friend class SmartGraphBase; |
| 429 | 418 |
protected: |
| 430 | 419 |
|
| 431 | 420 |
int _id; |
| 432 | 421 |
explicit Node(int id) { _id = id;}
|
| 433 | 422 |
|
| 434 | 423 |
public: |
| 435 | 424 |
Node() {}
|
| 436 | 425 |
Node (Invalid) { _id = -1; }
|
| 437 | 426 |
bool operator==(const Node& node) const {return _id == node._id;}
|
| 438 | 427 |
bool operator!=(const Node& node) const {return _id != node._id;}
|
| 439 | 428 |
bool operator<(const Node& node) const {return _id < node._id;}
|
| 440 | 429 |
}; |
| 441 | 430 |
|
| 442 | 431 |
class Edge {
|
| 443 | 432 |
friend class SmartGraphBase; |
| 444 | 433 |
protected: |
| 445 | 434 |
|
| 446 | 435 |
int _id; |
| 447 | 436 |
explicit Edge(int id) { _id = id;}
|
| 448 | 437 |
|
| 449 | 438 |
public: |
| 450 | 439 |
Edge() {}
|
| 451 | 440 |
Edge (Invalid) { _id = -1; }
|
| 452 | 441 |
bool operator==(const Edge& arc) const {return _id == arc._id;}
|
| 453 | 442 |
bool operator!=(const Edge& arc) const {return _id != arc._id;}
|
| 454 | 443 |
bool operator<(const Edge& arc) const {return _id < arc._id;}
|
| 455 | 444 |
}; |
| 456 | 445 |
|
| 457 | 446 |
class Arc {
|
| 458 | 447 |
friend class SmartGraphBase; |
| 459 | 448 |
protected: |
| 460 | 449 |
|
| 461 | 450 |
int _id; |
| 462 | 451 |
explicit Arc(int id) { _id = id;}
|
| 463 | 452 |
|
| 464 | 453 |
public: |
| 465 | 454 |
operator Edge() const {
|
| 466 | 455 |
return _id != -1 ? edgeFromId(_id / 2) : INVALID; |
| 467 | 456 |
} |
| 468 | 457 |
|
| 469 | 458 |
Arc() {}
|
| 470 | 459 |
Arc (Invalid) { _id = -1; }
|
| 471 | 460 |
bool operator==(const Arc& arc) const {return _id == arc._id;}
|
| 472 | 461 |
bool operator!=(const Arc& arc) const {return _id != arc._id;}
|
| 473 | 462 |
bool operator<(const Arc& arc) const {return _id < arc._id;}
|
| 474 | 463 |
}; |
| 475 | 464 |
|
| 476 | 465 |
|
| 477 | 466 |
|
| 478 | 467 |
SmartGraphBase() |
| 479 | 468 |
: nodes(), arcs() {}
|
| 480 | 469 |
|
| 481 | 470 |
typedef True NodeNumTag; |
| 482 | 471 |
typedef True EdgeNumTag; |
| 483 | 472 |
typedef True ArcNumTag; |
| 484 | 473 |
|
| 485 | 474 |
int nodeNum() const { return nodes.size(); }
|
| 486 | 475 |
int edgeNum() const { return arcs.size() / 2; }
|
| 487 | 476 |
int arcNum() const { return arcs.size(); }
|
| 488 | 477 |
|
| 489 | 478 |
int maxNodeId() const { return nodes.size()-1; }
|
| 490 | 479 |
int maxEdgeId() const { return arcs.size() / 2 - 1; }
|
| 491 | 480 |
int maxArcId() const { return arcs.size()-1; }
|
| 492 | 481 |
|
| 493 | 482 |
Node source(Arc e) const { return Node(arcs[e._id ^ 1].target); }
|
| 494 | 483 |
Node target(Arc e) const { return Node(arcs[e._id].target); }
|
| 495 | 484 |
|
| 496 | 485 |
Node u(Edge e) const { return Node(arcs[2 * e._id].target); }
|
| 497 | 486 |
Node v(Edge e) const { return Node(arcs[2 * e._id + 1].target); }
|
| 498 | 487 |
|
| 499 | 488 |
static bool direction(Arc e) {
|
| 500 | 489 |
return (e._id & 1) == 1; |
| 501 | 490 |
} |
| 502 | 491 |
|
| 503 | 492 |
static Arc direct(Edge e, bool d) {
|
| 504 | 493 |
return Arc(e._id * 2 + (d ? 1 : 0)); |
| 505 | 494 |
} |
| 506 | 495 |
|
| 507 | 496 |
void first(Node& node) const {
|
| 508 | 497 |
node._id = nodes.size() - 1; |
| 509 | 498 |
} |
| 510 | 499 |
|
| 511 | 500 |
void next(Node& node) const {
|
| 512 | 501 |
--node._id; |
| 513 | 502 |
} |
| 514 | 503 |
|
| 515 | 504 |
void first(Arc& arc) const {
|
| 516 | 505 |
arc._id = arcs.size() - 1; |
| 517 | 506 |
} |
| 518 | 507 |
|
| 519 | 508 |
void next(Arc& arc) const {
|
| 520 | 509 |
--arc._id; |
| 521 | 510 |
} |
| 522 | 511 |
|
| 523 | 512 |
void first(Edge& arc) const {
|
| 524 | 513 |
arc._id = arcs.size() / 2 - 1; |
| 525 | 514 |
} |
| 526 | 515 |
|
| 527 | 516 |
void next(Edge& arc) const {
|
| 528 | 517 |
--arc._id; |
| 529 | 518 |
} |
| 530 | 519 |
|
| 531 | 520 |
void firstOut(Arc &arc, const Node& v) const {
|
| 532 | 521 |
arc._id = nodes[v._id].first_out; |
| 533 | 522 |
} |
| 534 | 523 |
void nextOut(Arc &arc) const {
|
| 535 | 524 |
arc._id = arcs[arc._id].next_out; |
| 536 | 525 |
} |
| 537 | 526 |
|
| 538 | 527 |
void firstIn(Arc &arc, const Node& v) const {
|
| 539 | 528 |
arc._id = ((nodes[v._id].first_out) ^ 1); |
| 540 | 529 |
if (arc._id == -2) arc._id = -1; |
| 541 | 530 |
} |
| 542 | 531 |
void nextIn(Arc &arc) const {
|
| 543 | 532 |
arc._id = ((arcs[arc._id ^ 1].next_out) ^ 1); |
| 544 | 533 |
if (arc._id == -2) arc._id = -1; |
| 545 | 534 |
} |
| 546 | 535 |
|
| 547 | 536 |
void firstInc(Edge &arc, bool& d, const Node& v) const {
|
| 548 | 537 |
int de = nodes[v._id].first_out; |
| 549 | 538 |
if (de != -1) {
|
| 550 | 539 |
arc._id = de / 2; |
| 551 | 540 |
d = ((de & 1) == 1); |
| 552 | 541 |
} else {
|
| 553 | 542 |
arc._id = -1; |
| 554 | 543 |
d = true; |
| 555 | 544 |
} |
| 556 | 545 |
} |
| 557 | 546 |
void nextInc(Edge &arc, bool& d) const {
|
| 558 | 547 |
int de = (arcs[(arc._id * 2) | (d ? 1 : 0)].next_out); |
| 559 | 548 |
if (de != -1) {
|
| 560 | 549 |
arc._id = de / 2; |
| 561 | 550 |
d = ((de & 1) == 1); |
| 562 | 551 |
} else {
|
| 563 | 552 |
arc._id = -1; |
| 564 | 553 |
d = true; |
| 565 | 554 |
} |
| 566 | 555 |
} |
| 567 | 556 |
|
| 568 | 557 |
static int id(Node v) { return v._id; }
|
| 569 | 558 |
static int id(Arc e) { return e._id; }
|
| 570 | 559 |
static int id(Edge e) { return e._id; }
|
| 571 | 560 |
|
| 572 | 561 |
static Node nodeFromId(int id) { return Node(id);}
|
| 573 | 562 |
static Arc arcFromId(int id) { return Arc(id);}
|
| 574 | 563 |
static Edge edgeFromId(int id) { return Edge(id);}
|
| 575 | 564 |
|
| 576 | 565 |
bool valid(Node n) const {
|
| 577 | 566 |
return n._id >= 0 && n._id < static_cast<int>(nodes.size()); |
| 578 | 567 |
} |
| 579 | 568 |
bool valid(Arc a) const {
|
| 580 | 569 |
return a._id >= 0 && a._id < static_cast<int>(arcs.size()); |
| 581 | 570 |
} |
| 582 | 571 |
bool valid(Edge e) const {
|
| 583 | 572 |
return e._id >= 0 && 2 * e._id < static_cast<int>(arcs.size()); |
| 584 | 573 |
} |
| 585 | 574 |
|
| 586 | 575 |
Node addNode() {
|
| 587 | 576 |
int n = nodes.size(); |
| 588 | 577 |
nodes.push_back(NodeT()); |
| 589 | 578 |
nodes[n].first_out = -1; |
| 590 | 579 |
|
| 591 | 580 |
return Node(n); |
| 592 | 581 |
} |
| 593 | 582 |
|
| 594 | 583 |
Edge addEdge(Node u, Node v) {
|
| 595 | 584 |
int n = arcs.size(); |
| 596 | 585 |
arcs.push_back(ArcT()); |
| 597 | 586 |
arcs.push_back(ArcT()); |
| 598 | 587 |
|
| 599 | 588 |
arcs[n].target = u._id; |
| 600 | 589 |
arcs[n | 1].target = v._id; |
| 601 | 590 |
|
| 602 | 591 |
arcs[n].next_out = nodes[v._id].first_out; |
| 603 | 592 |
nodes[v._id].first_out = n; |
| 604 | 593 |
|
| 605 | 594 |
arcs[n | 1].next_out = nodes[u._id].first_out; |
| 606 | 595 |
nodes[u._id].first_out = (n | 1); |
| 607 | 596 |
|
| 608 | 597 |
return Edge(n / 2); |
| 609 | 598 |
} |
| 610 | 599 |
|
| 611 | 600 |
void clear() {
|
| 612 | 601 |
arcs.clear(); |
| 613 | 602 |
nodes.clear(); |
| 614 | 603 |
} |
| 615 | 604 |
|
| 616 | 605 |
}; |
| 617 | 606 |
|
| 618 | 607 |
typedef GraphExtender<SmartGraphBase> ExtendedSmartGraphBase; |
| 619 | 608 |
|
| 620 | 609 |
/// \ingroup graphs |
| 621 | 610 |
/// |
| 622 | 611 |
/// \brief A smart undirected graph class. |
| 623 | 612 |
/// |
| 624 |
/// This is a simple and fast graph implementation. |
|
| 625 |
/// It is also quite memory efficient, but at the price |
|
| 626 |
/// that <b> it does support only limited (only stack-like) |
|
| 627 |
/// node and arc deletions</b>. |
|
| 628 |
/// |
|
| 613 |
/// \ref SmartGraph is a simple and fast graph implementation. |
|
| 614 |
/// It is also quite memory efficient but at the price |
|
| 615 |
/// that it does not support node and edge deletion |
|
| 616 |
/// (except for the Snapshot feature). |
|
| 629 | 617 |
/// |
| 630 |
/// \ |
|
| 618 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept" |
|
| 619 |
/// and it also provides some additional functionalities. |
|
| 620 |
/// Most of its member functions and nested classes are documented |
|
| 621 |
/// only in the concept class. |
|
| 622 |
/// |
|
| 623 |
/// \sa concepts::Graph |
|
| 624 |
/// \sa SmartDigraph |
|
| 631 | 625 |
class SmartGraph : public ExtendedSmartGraphBase {
|
| 632 | 626 |
typedef ExtendedSmartGraphBase Parent; |
| 633 | 627 |
|
| 634 | 628 |
private: |
| 635 |
|
|
| 636 |
///SmartGraph is \e not copy constructible. Use GraphCopy() instead. |
|
| 637 |
|
|
| 638 |
///SmartGraph is \e not copy constructible. Use GraphCopy() instead. |
|
| 639 |
/// |
|
| 629 |
/// Graphs are \e not copy constructible. Use GraphCopy instead. |
|
| 640 | 630 |
SmartGraph(const SmartGraph &) : ExtendedSmartGraphBase() {};
|
| 641 |
|
|
| 642 |
///\brief Assignment of SmartGraph to another one is \e not allowed. |
|
| 643 |
///Use GraphCopy() instead. |
|
| 644 |
|
|
| 645 |
///Assignment of SmartGraph to another one is \e not allowed. |
|
| 646 |
///Use GraphCopy() instead. |
|
| 631 |
/// \brief Assignment of a graph to another one is \e not allowed. |
|
| 632 |
/// Use GraphCopy instead. |
|
| 647 | 633 |
void operator=(const SmartGraph &) {}
|
| 648 | 634 |
|
| 649 | 635 |
public: |
| 650 | 636 |
|
| 651 | 637 |
/// Constructor |
| 652 | 638 |
|
| 653 | 639 |
/// Constructor. |
| 654 | 640 |
/// |
| 655 | 641 |
SmartGraph() {}
|
| 656 | 642 |
|
| 657 |
///Add a new node to the graph. |
|
| 658 |
|
|
| 659 |
/// Add a new node to the graph. |
|
| 643 |
/// \brief Add a new node to the graph. |
|
| 644 |
/// |
|
| 645 |
/// This function adds a new node to the graph. |
|
| 660 | 646 |
/// \return The new node. |
| 661 | 647 |
Node addNode() { return Parent::addNode(); }
|
| 662 | 648 |
|
| 663 |
///Add a new edge to the graph. |
|
| 664 |
|
|
| 665 |
///Add a new edge to the graph with node \c s |
|
| 666 |
///and \c t. |
|
| 667 |
///\return The new edge. |
|
| 668 |
Edge addEdge(const Node& s, const Node& t) {
|
|
| 669 |
|
|
| 649 |
/// \brief Add a new edge to the graph. |
|
| 650 |
/// |
|
| 651 |
/// This function adds a new edge to the graph between nodes |
|
| 652 |
/// \c u and \c v with inherent orientation from node \c u to |
|
| 653 |
/// node \c v. |
|
| 654 |
/// \return The new edge. |
|
| 655 |
Edge addEdge(Node u, Node v) {
|
|
| 656 |
return Parent::addEdge(u, v); |
|
| 670 | 657 |
} |
| 671 | 658 |
|
| 672 | 659 |
/// \brief Node validity check |
| 673 | 660 |
/// |
| 674 |
/// This function gives back true if the given node is valid, |
|
| 675 |
/// ie. it is a real node of the graph. |
|
| 661 |
/// This function gives back \c true if the given node is valid, |
|
| 662 |
/// i.e. it is a real node of the graph. |
|
| 676 | 663 |
/// |
| 677 | 664 |
/// \warning A removed node (using Snapshot) could become valid again |
| 678 |
/// |
|
| 665 |
/// if new nodes are added to the graph. |
|
| 679 | 666 |
bool valid(Node n) const { return Parent::valid(n); }
|
| 680 | 667 |
|
| 668 |
/// \brief Edge validity check |
|
| 669 |
/// |
|
| 670 |
/// This function gives back \c true if the given edge is valid, |
|
| 671 |
/// i.e. it is a real edge of the graph. |
|
| 672 |
/// |
|
| 673 |
/// \warning A removed edge (using Snapshot) could become valid again |
|
| 674 |
/// if new edges are added to the graph. |
|
| 675 |
bool valid(Edge e) const { return Parent::valid(e); }
|
|
| 676 |
|
|
| 681 | 677 |
/// \brief Arc validity check |
| 682 | 678 |
/// |
| 683 |
/// This function gives back true if the given arc is valid, |
|
| 684 |
/// ie. it is a real arc of the graph. |
|
| 679 |
/// This function gives back \c true if the given arc is valid, |
|
| 680 |
/// i.e. it is a real arc of the graph. |
|
| 685 | 681 |
/// |
| 686 | 682 |
/// \warning A removed arc (using Snapshot) could become valid again |
| 687 |
/// |
|
| 683 |
/// if new edges are added to the graph. |
|
| 688 | 684 |
bool valid(Arc a) const { return Parent::valid(a); }
|
| 689 | 685 |
|
| 690 |
/// \brief Edge validity check |
|
| 691 |
/// |
|
| 692 |
/// This function gives back true if the given edge is valid, |
|
| 693 |
/// ie. it is a real edge of the graph. |
|
| 694 |
/// |
|
| 695 |
/// \warning A removed edge (using Snapshot) could become valid again |
|
| 696 |
/// when new edges are added to the graph. |
|
| 697 |
bool valid(Edge e) const { return Parent::valid(e); }
|
|
| 698 |
|
|
| 699 | 686 |
///Clear the graph. |
| 700 | 687 |
|
| 701 |
/// |
|
| 688 |
///This function erases all nodes and arcs from the graph. |
|
| 702 | 689 |
/// |
| 703 | 690 |
void clear() {
|
| 704 | 691 |
Parent::clear(); |
| 705 | 692 |
} |
| 706 | 693 |
|
| 694 |
/// Reserve memory for nodes. |
|
| 695 |
|
|
| 696 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 697 |
/// allocation: if you know that the graph you want to build will |
|
| 698 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
|
| 699 |
/// then it is worth reserving space for this amount before starting |
|
| 700 |
/// to build the graph. |
|
| 701 |
/// \sa reserveEdge() |
|
| 702 |
void reserveNode(int n) { nodes.reserve(n); };
|
|
| 703 |
|
|
| 704 |
/// Reserve memory for edges. |
|
| 705 |
|
|
| 706 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 707 |
/// allocation: if you know that the graph you want to build will |
|
| 708 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
|
| 709 |
/// then it is worth reserving space for this amount before starting |
|
| 710 |
/// to build the graph. |
|
| 711 |
/// \sa reserveNode() |
|
| 712 |
void reserveEdge(int m) { arcs.reserve(2 * m); };
|
|
| 713 |
|
|
| 707 | 714 |
public: |
| 708 | 715 |
|
| 709 | 716 |
class Snapshot; |
| 710 | 717 |
|
| 711 | 718 |
protected: |
| 712 | 719 |
|
| 713 | 720 |
void saveSnapshot(Snapshot &s) |
| 714 | 721 |
{
|
| 715 | 722 |
s._graph = this; |
| 716 | 723 |
s.node_num = nodes.size(); |
| 717 | 724 |
s.arc_num = arcs.size(); |
| 718 | 725 |
} |
| 719 | 726 |
|
| 720 | 727 |
void restoreSnapshot(const Snapshot &s) |
| 721 | 728 |
{
|
| 722 | 729 |
while(s.arc_num<arcs.size()) {
|
| 723 | 730 |
int n=arcs.size()-1; |
| 724 | 731 |
Edge arc=edgeFromId(n/2); |
| 725 | 732 |
Parent::notifier(Edge()).erase(arc); |
| 726 | 733 |
std::vector<Arc> dir; |
| 727 | 734 |
dir.push_back(arcFromId(n)); |
| 728 | 735 |
dir.push_back(arcFromId(n-1)); |
| 729 | 736 |
Parent::notifier(Arc()).erase(dir); |
| 730 | 737 |
nodes[arcs[n-1].target].first_out=arcs[n].next_out; |
| 731 | 738 |
nodes[arcs[n].target].first_out=arcs[n-1].next_out; |
| 732 | 739 |
arcs.pop_back(); |
| 733 | 740 |
arcs.pop_back(); |
| 734 | 741 |
} |
| 735 | 742 |
while(s.node_num<nodes.size()) {
|
| 736 | 743 |
int n=nodes.size()-1; |
| 737 | 744 |
Node node = nodeFromId(n); |
| 738 | 745 |
Parent::notifier(Node()).erase(node); |
| 739 | 746 |
nodes.pop_back(); |
| 740 | 747 |
} |
| 741 | 748 |
} |
| 742 | 749 |
|
| 743 | 750 |
public: |
| 744 | 751 |
|
| 745 |
///Class to make a snapshot of the |
|
| 752 |
///Class to make a snapshot of the graph and to restore it later. |
|
| 746 | 753 |
|
| 747 |
///Class to make a snapshot of the |
|
| 754 |
///Class to make a snapshot of the graph and to restore it later. |
|
| 748 | 755 |
/// |
| 749 |
///The newly added nodes and arcs can be removed using the |
|
| 750 |
///restore() function. |
|
| 756 |
///The newly added nodes and edges can be removed using the |
|
| 757 |
///restore() function. This is the only way for deleting nodes and/or |
|
| 758 |
///edges from a SmartGraph structure. |
|
| 751 | 759 |
/// |
| 752 |
///\note After you restore a state, you cannot restore |
|
| 753 |
///a later state, in other word you cannot add again the arcs deleted |
|
| 754 |
/// |
|
| 760 |
///\note After a state is restored, you cannot restore a later state, |
|
| 761 |
///i.e. you cannot add the removed nodes and edges again using |
|
| 762 |
///another Snapshot instance. |
|
| 755 | 763 |
/// |
| 756 |
///\warning If you do not use correctly the snapshot that can cause |
|
| 757 |
///either broken program, invalid state of the digraph, valid but |
|
| 758 |
///not the restored digraph or no change. Because the runtime performance |
|
| 759 |
///the validity of the snapshot is not stored. |
|
| 764 |
///\warning The validity of the snapshot is not stored due to |
|
| 765 |
///performance reasons. If you do not use the snapshot correctly, |
|
| 766 |
///it can cause broken program, invalid or not restored state of |
|
| 767 |
///the graph or no change. |
|
| 760 | 768 |
class Snapshot |
| 761 | 769 |
{
|
| 762 | 770 |
SmartGraph *_graph; |
| 763 | 771 |
protected: |
| 764 | 772 |
friend class SmartGraph; |
| 765 | 773 |
unsigned int node_num; |
| 766 | 774 |
unsigned int arc_num; |
| 767 | 775 |
public: |
| 768 | 776 |
///Default constructor. |
| 769 | 777 |
|
| 770 | 778 |
///Default constructor. |
| 771 |
///To actually make a snapshot you must call save(). |
|
| 772 |
/// |
|
| 779 |
///You have to call save() to actually make a snapshot. |
|
| 773 | 780 |
Snapshot() : _graph(0) {}
|
| 774 | 781 |
///Constructor that immediately makes a snapshot |
| 775 | 782 |
|
| 776 |
///This constructor immediately makes a snapshot of the digraph. |
|
| 777 |
///\param graph The digraph we make a snapshot of. |
|
| 778 |
Snapshot(SmartGraph &graph) {
|
|
| 779 |
graph.saveSnapshot(*this); |
|
| 783 |
/// This constructor immediately makes a snapshot of the given graph. |
|
| 784 |
/// |
|
| 785 |
Snapshot(SmartGraph &gr) {
|
|
| 786 |
gr.saveSnapshot(*this); |
|
| 780 | 787 |
} |
| 781 | 788 |
|
| 782 | 789 |
///Make a snapshot. |
| 783 | 790 |
|
| 784 |
///Make a snapshot of the graph. |
|
| 785 |
/// |
|
| 786 |
///This function |
|
| 791 |
///This function makes a snapshot of the given graph. |
|
| 792 |
///It can be called more than once. In case of a repeated |
|
| 787 | 793 |
///call, the previous snapshot gets lost. |
| 788 |
///\param graph The digraph we make the snapshot of. |
|
| 789 |
void save(SmartGraph &graph) |
|
| 794 |
void save(SmartGraph &gr) |
|
| 790 | 795 |
{
|
| 791 |
|
|
| 796 |
gr.saveSnapshot(*this); |
|
| 792 | 797 |
} |
| 793 | 798 |
|
| 794 |
///Undo the changes until |
|
| 799 |
///Undo the changes until the last snapshot. |
|
| 795 | 800 |
|
| 796 |
///Undo the changes until a snapshot created by save(). |
|
| 797 |
/// |
|
| 798 |
///\note After you restored a state, you cannot restore |
|
| 799 |
///a later state, in other word you cannot add again the arcs deleted |
|
| 800 |
/// |
|
| 801 |
///This function undos the changes until the last snapshot |
|
| 802 |
///created by save() or Snapshot(SmartGraph&). |
|
| 801 | 803 |
void restore() |
| 802 | 804 |
{
|
| 803 | 805 |
_graph->restoreSnapshot(*this); |
| 804 | 806 |
} |
| 805 | 807 |
}; |
| 806 | 808 |
}; |
| 807 | 809 |
|
| 808 | 810 |
} //namespace lemon |
| 809 | 811 |
|
| 810 | 812 |
|
| 811 | 813 |
#endif //LEMON_SMART_GRAPH_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <iostream> |
| 20 | 20 |
#include <lemon/soplex.h> |
| 21 | 21 |
|
| 22 | 22 |
#include <soplex.h> |
| 23 | 23 |
#include <spxout.h> |
| 24 | 24 |
|
| 25 | 25 |
|
| 26 | 26 |
///\file |
| 27 | 27 |
///\brief Implementation of the LEMON-SOPLEX lp solver interface. |
| 28 | 28 |
namespace lemon {
|
| 29 | 29 |
|
| 30 | 30 |
SoplexLp::SoplexLp() {
|
| 31 | 31 |
soplex = new soplex::SoPlex; |
| 32 | 32 |
messageLevel(MESSAGE_NOTHING); |
| 33 | 33 |
} |
| 34 | 34 |
|
| 35 | 35 |
SoplexLp::~SoplexLp() {
|
| 36 | 36 |
delete soplex; |
| 37 | 37 |
} |
| 38 | 38 |
|
| 39 | 39 |
SoplexLp::SoplexLp(const SoplexLp& lp) {
|
| 40 | 40 |
rows = lp.rows; |
| 41 | 41 |
cols = lp.cols; |
| 42 | 42 |
|
| 43 | 43 |
soplex = new soplex::SoPlex; |
| 44 | 44 |
(*static_cast<soplex::SPxLP*>(soplex)) = *(lp.soplex); |
| 45 | 45 |
|
| 46 | 46 |
_col_names = lp._col_names; |
| 47 | 47 |
_col_names_ref = lp._col_names_ref; |
| 48 | 48 |
|
| 49 | 49 |
_row_names = lp._row_names; |
| 50 | 50 |
_row_names_ref = lp._row_names_ref; |
| 51 | 51 |
|
| 52 | 52 |
messageLevel(MESSAGE_NOTHING); |
| 53 | 53 |
} |
| 54 | 54 |
|
| 55 | 55 |
void SoplexLp::_clear_temporals() {
|
| 56 | 56 |
_primal_values.clear(); |
| 57 | 57 |
_dual_values.clear(); |
| 58 | 58 |
} |
| 59 | 59 |
|
| 60 | 60 |
SoplexLp* SoplexLp::newSolver() const {
|
| 61 | 61 |
SoplexLp* newlp = new SoplexLp(); |
| 62 | 62 |
return newlp; |
| 63 | 63 |
} |
| 64 | 64 |
|
| 65 | 65 |
SoplexLp* SoplexLp::cloneSolver() const {
|
| 66 | 66 |
SoplexLp* newlp = new SoplexLp(*this); |
| 67 | 67 |
return newlp; |
| 68 | 68 |
} |
| 69 | 69 |
|
| 70 | 70 |
const char* SoplexLp::_solverName() const { return "SoplexLp"; }
|
| 71 | 71 |
|
| 72 | 72 |
int SoplexLp::_addCol() {
|
| 73 | 73 |
soplex::LPCol c; |
| 74 | 74 |
c.setLower(-soplex::infinity); |
| 75 | 75 |
c.setUpper(soplex::infinity); |
| 76 | 76 |
soplex->addCol(c); |
| 77 | 77 |
|
| 78 | 78 |
_col_names.push_back(std::string()); |
| 79 | 79 |
|
| 80 | 80 |
return soplex->nCols() - 1; |
| 81 | 81 |
} |
| 82 | 82 |
|
| 83 | 83 |
int SoplexLp::_addRow() {
|
| 84 | 84 |
soplex::LPRow r; |
| 85 | 85 |
r.setLhs(-soplex::infinity); |
| 86 | 86 |
r.setRhs(soplex::infinity); |
| 87 | 87 |
soplex->addRow(r); |
| 88 | 88 |
|
| 89 | 89 |
_row_names.push_back(std::string()); |
| 90 | 90 |
|
| 91 | 91 |
return soplex->nRows() - 1; |
| 92 | 92 |
} |
| 93 | 93 |
|
| 94 |
int SoplexLp::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
|
|
| 95 |
soplex::DSVector v; |
|
| 96 |
for (ExprIterator it = b; it != e; ++it) {
|
|
| 97 |
v.add(it->first, it->second); |
|
| 98 |
} |
|
| 99 |
soplex::LPRow r(l, v, u); |
|
| 100 |
soplex->addRow(r); |
|
| 101 |
|
|
| 102 |
_row_names.push_back(std::string()); |
|
| 103 |
|
|
| 104 |
return soplex->nRows() - 1; |
|
| 105 |
} |
|
| 106 |
|
|
| 94 | 107 |
|
| 95 | 108 |
void SoplexLp::_eraseCol(int i) {
|
| 96 | 109 |
soplex->removeCol(i); |
| 97 | 110 |
_col_names_ref.erase(_col_names[i]); |
| 98 | 111 |
_col_names[i] = _col_names.back(); |
| 99 | 112 |
_col_names_ref[_col_names.back()] = i; |
| 100 | 113 |
_col_names.pop_back(); |
| 101 | 114 |
} |
| 102 | 115 |
|
| 103 | 116 |
void SoplexLp::_eraseRow(int i) {
|
| 104 | 117 |
soplex->removeRow(i); |
| 105 | 118 |
_row_names_ref.erase(_row_names[i]); |
| 106 | 119 |
_row_names[i] = _row_names.back(); |
| 107 | 120 |
_row_names_ref[_row_names.back()] = i; |
| 108 | 121 |
_row_names.pop_back(); |
| 109 | 122 |
} |
| 110 | 123 |
|
| 111 | 124 |
void SoplexLp::_eraseColId(int i) {
|
| 112 | 125 |
cols.eraseIndex(i); |
| 113 | 126 |
cols.relocateIndex(i, cols.maxIndex()); |
| 114 | 127 |
} |
| 115 | 128 |
void SoplexLp::_eraseRowId(int i) {
|
| 116 | 129 |
rows.eraseIndex(i); |
| 117 | 130 |
rows.relocateIndex(i, rows.maxIndex()); |
| 118 | 131 |
} |
| 119 | 132 |
|
| 120 | 133 |
void SoplexLp::_getColName(int c, std::string &name) const {
|
| 121 | 134 |
name = _col_names[c]; |
| 122 | 135 |
} |
| 123 | 136 |
|
| 124 | 137 |
void SoplexLp::_setColName(int c, const std::string &name) {
|
| 125 | 138 |
_col_names_ref.erase(_col_names[c]); |
| 126 | 139 |
_col_names[c] = name; |
| 127 | 140 |
if (!name.empty()) {
|
| 128 | 141 |
_col_names_ref.insert(std::make_pair(name, c)); |
| 129 | 142 |
} |
| 130 | 143 |
} |
| 131 | 144 |
|
| 132 | 145 |
int SoplexLp::_colByName(const std::string& name) const {
|
| 133 | 146 |
std::map<std::string, int>::const_iterator it = |
| 134 | 147 |
_col_names_ref.find(name); |
| 135 | 148 |
if (it != _col_names_ref.end()) {
|
| 136 | 149 |
return it->second; |
| 137 | 150 |
} else {
|
| 138 | 151 |
return -1; |
| 139 | 152 |
} |
| 140 | 153 |
} |
| 141 | 154 |
|
| 142 | 155 |
void SoplexLp::_getRowName(int r, std::string &name) const {
|
| 143 | 156 |
name = _row_names[r]; |
| 144 | 157 |
} |
| 145 | 158 |
|
| 146 | 159 |
void SoplexLp::_setRowName(int r, const std::string &name) {
|
| 147 | 160 |
_row_names_ref.erase(_row_names[r]); |
| 148 | 161 |
_row_names[r] = name; |
| 149 | 162 |
if (!name.empty()) {
|
| 150 | 163 |
_row_names_ref.insert(std::make_pair(name, r)); |
| 151 | 164 |
} |
| 152 | 165 |
} |
| 153 | 166 |
|
| 154 | 167 |
int SoplexLp::_rowByName(const std::string& name) const {
|
| 155 | 168 |
std::map<std::string, int>::const_iterator it = |
| 156 | 169 |
_row_names_ref.find(name); |
| 157 | 170 |
if (it != _row_names_ref.end()) {
|
| 158 | 171 |
return it->second; |
| 159 | 172 |
} else {
|
| 160 | 173 |
return -1; |
| 161 | 174 |
} |
| 162 | 175 |
} |
| 163 | 176 |
|
| 164 | 177 |
|
| 165 | 178 |
void SoplexLp::_setRowCoeffs(int i, ExprIterator b, ExprIterator e) {
|
| 166 | 179 |
for (int j = 0; j < soplex->nCols(); ++j) {
|
| 167 | 180 |
soplex->changeElement(i, j, 0.0); |
| 168 | 181 |
} |
| 169 | 182 |
for(ExprIterator it = b; it != e; ++it) {
|
| 170 | 183 |
soplex->changeElement(i, it->first, it->second); |
| 171 | 184 |
} |
| 172 | 185 |
} |
| 173 | 186 |
|
| 174 | 187 |
void SoplexLp::_getRowCoeffs(int i, InsertIterator b) const {
|
| 175 | 188 |
const soplex::SVector& vec = soplex->rowVector(i); |
| 176 | 189 |
for (int k = 0; k < vec.size(); ++k) {
|
| 177 | 190 |
*b = std::make_pair(vec.index(k), vec.value(k)); |
| 178 | 191 |
++b; |
| 179 | 192 |
} |
| 180 | 193 |
} |
| 181 | 194 |
|
| 182 | 195 |
void SoplexLp::_setColCoeffs(int j, ExprIterator b, ExprIterator e) {
|
| 183 | 196 |
for (int i = 0; i < soplex->nRows(); ++i) {
|
| 184 | 197 |
soplex->changeElement(i, j, 0.0); |
| 185 | 198 |
} |
| 186 | 199 |
for(ExprIterator it = b; it != e; ++it) {
|
| 187 | 200 |
soplex->changeElement(it->first, j, it->second); |
| 188 | 201 |
} |
| 189 | 202 |
} |
| 190 | 203 |
|
| 191 | 204 |
void SoplexLp::_getColCoeffs(int i, InsertIterator b) const {
|
| 192 | 205 |
const soplex::SVector& vec = soplex->colVector(i); |
| 193 | 206 |
for (int k = 0; k < vec.size(); ++k) {
|
| 194 | 207 |
*b = std::make_pair(vec.index(k), vec.value(k)); |
| 195 | 208 |
++b; |
| 196 | 209 |
} |
| 197 | 210 |
} |
| 198 | 211 |
|
| 199 | 212 |
void SoplexLp::_setCoeff(int i, int j, Value value) {
|
| 200 | 213 |
soplex->changeElement(i, j, value); |
| 201 | 214 |
} |
| 202 | 215 |
|
| 203 | 216 |
SoplexLp::Value SoplexLp::_getCoeff(int i, int j) const {
|
| 204 | 217 |
return soplex->rowVector(i)[j]; |
| 205 | 218 |
} |
| 206 | 219 |
|
| 207 | 220 |
void SoplexLp::_setColLowerBound(int i, Value value) {
|
| 208 | 221 |
LEMON_ASSERT(value != INF, "Invalid bound"); |
| 209 | 222 |
soplex->changeLower(i, value != -INF ? value : -soplex::infinity); |
| 210 | 223 |
} |
| 211 | 224 |
|
| 212 | 225 |
SoplexLp::Value SoplexLp::_getColLowerBound(int i) const {
|
| 213 | 226 |
double value = soplex->lower(i); |
| 214 | 227 |
return value != -soplex::infinity ? value : -INF; |
| 215 | 228 |
} |
| 216 | 229 |
|
| 217 | 230 |
void SoplexLp::_setColUpperBound(int i, Value value) {
|
| 218 | 231 |
LEMON_ASSERT(value != -INF, "Invalid bound"); |
| 219 | 232 |
soplex->changeUpper(i, value != INF ? value : soplex::infinity); |
| 220 | 233 |
} |
| 221 | 234 |
|
| 222 | 235 |
SoplexLp::Value SoplexLp::_getColUpperBound(int i) const {
|
| 223 | 236 |
double value = soplex->upper(i); |
| 224 | 237 |
return value != soplex::infinity ? value : INF; |
| 225 | 238 |
} |
| 226 | 239 |
|
| 227 | 240 |
void SoplexLp::_setRowLowerBound(int i, Value lb) {
|
| 228 | 241 |
LEMON_ASSERT(lb != INF, "Invalid bound"); |
| 229 | 242 |
soplex->changeRange(i, lb != -INF ? lb : -soplex::infinity, soplex->rhs(i)); |
| 230 | 243 |
} |
| 231 | 244 |
|
| 232 | 245 |
SoplexLp::Value SoplexLp::_getRowLowerBound(int i) const {
|
| 233 | 246 |
double res = soplex->lhs(i); |
| 234 | 247 |
return res == -soplex::infinity ? -INF : res; |
| 235 | 248 |
} |
| 236 | 249 |
|
| 237 | 250 |
void SoplexLp::_setRowUpperBound(int i, Value ub) {
|
| 238 | 251 |
LEMON_ASSERT(ub != -INF, "Invalid bound"); |
| 239 | 252 |
soplex->changeRange(i, soplex->lhs(i), ub != INF ? ub : soplex::infinity); |
| 240 | 253 |
} |
| 241 | 254 |
|
| 242 | 255 |
SoplexLp::Value SoplexLp::_getRowUpperBound(int i) const {
|
| 243 | 256 |
double res = soplex->rhs(i); |
| 244 | 257 |
return res == soplex::infinity ? INF : res; |
| 245 | 258 |
} |
| 246 | 259 |
|
| 247 | 260 |
void SoplexLp::_setObjCoeffs(ExprIterator b, ExprIterator e) {
|
| 248 | 261 |
for (int j = 0; j < soplex->nCols(); ++j) {
|
| 249 | 262 |
soplex->changeObj(j, 0.0); |
| 250 | 263 |
} |
| 251 | 264 |
for (ExprIterator it = b; it != e; ++it) {
|
| 252 | 265 |
soplex->changeObj(it->first, it->second); |
| 253 | 266 |
} |
| 254 | 267 |
} |
| 255 | 268 |
|
| 256 | 269 |
void SoplexLp::_getObjCoeffs(InsertIterator b) const {
|
| 257 | 270 |
for (int j = 0; j < soplex->nCols(); ++j) {
|
| 258 | 271 |
Value coef = soplex->obj(j); |
| 259 | 272 |
if (coef != 0.0) {
|
| 260 | 273 |
*b = std::make_pair(j, coef); |
| 261 | 274 |
++b; |
| 262 | 275 |
} |
| 263 | 276 |
} |
| 264 | 277 |
} |
| 265 | 278 |
|
| 266 | 279 |
void SoplexLp::_setObjCoeff(int i, Value obj_coef) {
|
| 267 | 280 |
soplex->changeObj(i, obj_coef); |
| 268 | 281 |
} |
| 269 | 282 |
|
| 270 | 283 |
SoplexLp::Value SoplexLp::_getObjCoeff(int i) const {
|
| 271 | 284 |
return soplex->obj(i); |
| 272 | 285 |
} |
| 273 | 286 |
|
| 274 | 287 |
SoplexLp::SolveExitStatus SoplexLp::_solve() {
|
| 275 | 288 |
|
| 276 | 289 |
_clear_temporals(); |
| 277 | 290 |
|
| 278 | 291 |
_applyMessageLevel(); |
| 279 | 292 |
|
| 280 | 293 |
soplex::SPxSolver::Status status = soplex->solve(); |
| 281 | 294 |
|
| 282 | 295 |
switch (status) {
|
| 283 | 296 |
case soplex::SPxSolver::OPTIMAL: |
| 284 | 297 |
case soplex::SPxSolver::INFEASIBLE: |
| 285 | 298 |
case soplex::SPxSolver::UNBOUNDED: |
| 286 | 299 |
return SOLVED; |
| 287 | 300 |
default: |
| 288 | 301 |
return UNSOLVED; |
| 289 | 302 |
} |
| 290 | 303 |
} |
| 291 | 304 |
|
| 292 | 305 |
SoplexLp::Value SoplexLp::_getPrimal(int i) const {
|
| 293 | 306 |
if (_primal_values.empty()) {
|
| 294 | 307 |
_primal_values.resize(soplex->nCols()); |
| 295 | 308 |
soplex::Vector pv(_primal_values.size(), &_primal_values.front()); |
| 296 | 309 |
soplex->getPrimal(pv); |
| 297 | 310 |
} |
| 298 | 311 |
return _primal_values[i]; |
| 299 | 312 |
} |
| 300 | 313 |
|
| 301 | 314 |
SoplexLp::Value SoplexLp::_getDual(int i) const {
|
| 302 | 315 |
if (_dual_values.empty()) {
|
| 303 | 316 |
_dual_values.resize(soplex->nRows()); |
| 304 | 317 |
soplex::Vector dv(_dual_values.size(), &_dual_values.front()); |
| 305 | 318 |
soplex->getDual(dv); |
| 306 | 319 |
} |
| 307 | 320 |
return _dual_values[i]; |
| 308 | 321 |
} |
| 309 | 322 |
|
| 310 | 323 |
SoplexLp::Value SoplexLp::_getPrimalValue() const {
|
| 311 | 324 |
return soplex->objValue(); |
| 312 | 325 |
} |
| 313 | 326 |
|
| 314 | 327 |
SoplexLp::VarStatus SoplexLp::_getColStatus(int i) const {
|
| 315 | 328 |
switch (soplex->getBasisColStatus(i)) {
|
| 316 | 329 |
case soplex::SPxSolver::BASIC: |
| 317 | 330 |
return BASIC; |
| 318 | 331 |
case soplex::SPxSolver::ON_UPPER: |
| 319 | 332 |
return UPPER; |
| 320 | 333 |
case soplex::SPxSolver::ON_LOWER: |
| 321 | 334 |
return LOWER; |
| 322 | 335 |
case soplex::SPxSolver::FIXED: |
| 323 | 336 |
return FIXED; |
| 324 | 337 |
case soplex::SPxSolver::ZERO: |
| 325 | 338 |
return FREE; |
| 326 | 339 |
default: |
| 327 | 340 |
LEMON_ASSERT(false, "Wrong column status"); |
| 328 | 341 |
return VarStatus(); |
| 329 | 342 |
} |
| 330 | 343 |
} |
| 331 | 344 |
|
| 332 | 345 |
SoplexLp::VarStatus SoplexLp::_getRowStatus(int i) const {
|
| 333 | 346 |
switch (soplex->getBasisRowStatus(i)) {
|
| 334 | 347 |
case soplex::SPxSolver::BASIC: |
| 335 | 348 |
return BASIC; |
| 336 | 349 |
case soplex::SPxSolver::ON_UPPER: |
| 337 | 350 |
return UPPER; |
| 338 | 351 |
case soplex::SPxSolver::ON_LOWER: |
| 339 | 352 |
return LOWER; |
| 340 | 353 |
case soplex::SPxSolver::FIXED: |
| 341 | 354 |
return FIXED; |
| 342 | 355 |
case soplex::SPxSolver::ZERO: |
| 343 | 356 |
return FREE; |
| 344 | 357 |
default: |
| 345 | 358 |
LEMON_ASSERT(false, "Wrong row status"); |
| 346 | 359 |
return VarStatus(); |
| 347 | 360 |
} |
| 348 | 361 |
} |
| 349 | 362 |
|
| 350 | 363 |
SoplexLp::Value SoplexLp::_getPrimalRay(int i) const {
|
| 351 | 364 |
if (_primal_ray.empty()) {
|
| 352 | 365 |
_primal_ray.resize(soplex->nCols()); |
| 353 | 366 |
soplex::Vector pv(_primal_ray.size(), &_primal_ray.front()); |
| 354 | 367 |
soplex->getDualfarkas(pv); |
| 355 | 368 |
} |
| 356 | 369 |
return _primal_ray[i]; |
| 357 | 370 |
} |
| 358 | 371 |
|
| 359 | 372 |
SoplexLp::Value SoplexLp::_getDualRay(int i) const {
|
| 360 | 373 |
if (_dual_ray.empty()) {
|
| 361 | 374 |
_dual_ray.resize(soplex->nRows()); |
| 362 | 375 |
soplex::Vector dv(_dual_ray.size(), &_dual_ray.front()); |
| 363 | 376 |
soplex->getDualfarkas(dv); |
| 364 | 377 |
} |
| 365 | 378 |
return _dual_ray[i]; |
| 366 | 379 |
} |
| 367 | 380 |
|
| 368 | 381 |
SoplexLp::ProblemType SoplexLp::_getPrimalType() const {
|
| 369 | 382 |
switch (soplex->status()) {
|
| 370 | 383 |
case soplex::SPxSolver::OPTIMAL: |
| 371 | 384 |
return OPTIMAL; |
| 372 | 385 |
case soplex::SPxSolver::UNBOUNDED: |
| 373 | 386 |
return UNBOUNDED; |
| 374 | 387 |
case soplex::SPxSolver::INFEASIBLE: |
| 375 | 388 |
return INFEASIBLE; |
| 376 | 389 |
default: |
| 377 | 390 |
return UNDEFINED; |
| 378 | 391 |
} |
| 379 | 392 |
} |
| 380 | 393 |
|
| 381 | 394 |
SoplexLp::ProblemType SoplexLp::_getDualType() const {
|
| 382 | 395 |
switch (soplex->status()) {
|
| 383 | 396 |
case soplex::SPxSolver::OPTIMAL: |
| 384 | 397 |
return OPTIMAL; |
| 385 | 398 |
case soplex::SPxSolver::UNBOUNDED: |
| 386 | 399 |
return UNBOUNDED; |
| 387 | 400 |
case soplex::SPxSolver::INFEASIBLE: |
| 388 | 401 |
return INFEASIBLE; |
| 389 | 402 |
default: |
| 390 | 403 |
return UNDEFINED; |
| 391 | 404 |
} |
| 392 | 405 |
} |
| 393 | 406 |
|
| 394 | 407 |
void SoplexLp::_setSense(Sense sense) {
|
| 395 | 408 |
switch (sense) {
|
| 396 | 409 |
case MIN: |
| 397 | 410 |
soplex->changeSense(soplex::SPxSolver::MINIMIZE); |
| 398 | 411 |
break; |
| 399 | 412 |
case MAX: |
| 400 | 413 |
soplex->changeSense(soplex::SPxSolver::MAXIMIZE); |
| 401 | 414 |
} |
| 402 | 415 |
} |
| 403 | 416 |
|
| 404 | 417 |
SoplexLp::Sense SoplexLp::_getSense() const {
|
| 405 | 418 |
switch (soplex->spxSense()) {
|
| 406 | 419 |
case soplex::SPxSolver::MAXIMIZE: |
| 407 | 420 |
return MAX; |
| 408 | 421 |
case soplex::SPxSolver::MINIMIZE: |
| 409 | 422 |
return MIN; |
| 410 | 423 |
default: |
| 411 | 424 |
LEMON_ASSERT(false, "Wrong sense."); |
| 412 | 425 |
return SoplexLp::Sense(); |
| 413 | 426 |
} |
| 414 | 427 |
} |
| 415 | 428 |
|
| 416 | 429 |
void SoplexLp::_clear() {
|
| 417 | 430 |
soplex->clear(); |
| 418 | 431 |
_col_names.clear(); |
| 419 | 432 |
_col_names_ref.clear(); |
| 420 | 433 |
_row_names.clear(); |
| 421 | 434 |
_row_names_ref.clear(); |
| 422 | 435 |
cols.clear(); |
| 423 | 436 |
rows.clear(); |
| 424 | 437 |
_clear_temporals(); |
| 425 | 438 |
} |
| 426 | 439 |
|
| 427 | 440 |
void SoplexLp::_messageLevel(MessageLevel level) {
|
| 428 | 441 |
switch (level) {
|
| 429 | 442 |
case MESSAGE_NOTHING: |
| 430 | 443 |
_message_level = -1; |
| 431 | 444 |
break; |
| 432 | 445 |
case MESSAGE_ERROR: |
| 433 | 446 |
_message_level = soplex::SPxOut::ERROR; |
| 434 | 447 |
break; |
| 435 | 448 |
case MESSAGE_WARNING: |
| 436 | 449 |
_message_level = soplex::SPxOut::WARNING; |
| 437 | 450 |
break; |
| 438 | 451 |
case MESSAGE_NORMAL: |
| 439 | 452 |
_message_level = soplex::SPxOut::INFO2; |
| 440 | 453 |
break; |
| 441 | 454 |
case MESSAGE_VERBOSE: |
| 442 | 455 |
_message_level = soplex::SPxOut::DEBUG; |
| 443 | 456 |
break; |
| 444 | 457 |
} |
| 445 | 458 |
} |
| 446 | 459 |
|
| 447 | 460 |
void SoplexLp::_applyMessageLevel() {
|
| 448 | 461 |
soplex::Param::setVerbose(_message_level); |
| 449 | 462 |
} |
| 450 | 463 |
|
| 451 | 464 |
} //namespace lemon |
| 452 | 465 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_SOPLEX_H |
| 20 | 20 |
#define LEMON_SOPLEX_H |
| 21 | 21 |
|
| 22 | 22 |
///\file |
| 23 | 23 |
///\brief Header of the LEMON-SOPLEX lp solver interface. |
| 24 | 24 |
|
| 25 | 25 |
#include <vector> |
| 26 | 26 |
#include <string> |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/lp_base.h> |
| 29 | 29 |
|
| 30 | 30 |
// Forward declaration |
| 31 | 31 |
namespace soplex {
|
| 32 | 32 |
class SoPlex; |
| 33 | 33 |
} |
| 34 | 34 |
|
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 | 37 |
/// \ingroup lp_group |
| 38 | 38 |
/// |
| 39 | 39 |
/// \brief Interface for the SOPLEX solver |
| 40 | 40 |
/// |
| 41 | 41 |
/// This class implements an interface for the SoPlex LP solver. |
| 42 | 42 |
/// The SoPlex library is an object oriented lp solver library |
| 43 | 43 |
/// developed at the Konrad-Zuse-Zentrum f�r Informationstechnik |
| 44 | 44 |
/// Berlin (ZIB). You can find detailed information about it at the |
| 45 | 45 |
/// <tt>http://soplex.zib.de</tt> address. |
| 46 | 46 |
class SoplexLp : public LpSolver {
|
| 47 | 47 |
private: |
| 48 | 48 |
|
| 49 | 49 |
soplex::SoPlex* soplex; |
| 50 | 50 |
|
| 51 | 51 |
std::vector<std::string> _col_names; |
| 52 | 52 |
std::map<std::string, int> _col_names_ref; |
| 53 | 53 |
|
| 54 | 54 |
std::vector<std::string> _row_names; |
| 55 | 55 |
std::map<std::string, int> _row_names_ref; |
| 56 | 56 |
|
| 57 | 57 |
private: |
| 58 | 58 |
|
| 59 | 59 |
// these values cannot be retrieved element by element |
| 60 | 60 |
mutable std::vector<Value> _primal_values; |
| 61 | 61 |
mutable std::vector<Value> _dual_values; |
| 62 | 62 |
|
| 63 | 63 |
mutable std::vector<Value> _primal_ray; |
| 64 | 64 |
mutable std::vector<Value> _dual_ray; |
| 65 | 65 |
|
| 66 | 66 |
void _clear_temporals(); |
| 67 | 67 |
|
| 68 | 68 |
public: |
| 69 | 69 |
|
| 70 | 70 |
/// \e |
| 71 | 71 |
SoplexLp(); |
| 72 | 72 |
/// \e |
| 73 | 73 |
SoplexLp(const SoplexLp&); |
| 74 | 74 |
/// \e |
| 75 | 75 |
~SoplexLp(); |
| 76 | 76 |
/// \e |
| 77 | 77 |
virtual SoplexLp* newSolver() const; |
| 78 | 78 |
/// \e |
| 79 | 79 |
virtual SoplexLp* cloneSolver() const; |
| 80 | 80 |
|
| 81 | 81 |
protected: |
| 82 | 82 |
|
| 83 | 83 |
virtual const char* _solverName() const; |
| 84 | 84 |
|
| 85 | 85 |
virtual int _addCol(); |
| 86 | 86 |
virtual int _addRow(); |
| 87 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 87 | 88 |
|
| 88 | 89 |
virtual void _eraseCol(int i); |
| 89 | 90 |
virtual void _eraseRow(int i); |
| 90 | 91 |
|
| 91 | 92 |
virtual void _eraseColId(int i); |
| 92 | 93 |
virtual void _eraseRowId(int i); |
| 93 | 94 |
|
| 94 | 95 |
virtual void _getColName(int col, std::string& name) const; |
| 95 | 96 |
virtual void _setColName(int col, const std::string& name); |
| 96 | 97 |
virtual int _colByName(const std::string& name) const; |
| 97 | 98 |
|
| 98 | 99 |
virtual void _getRowName(int row, std::string& name) const; |
| 99 | 100 |
virtual void _setRowName(int row, const std::string& name); |
| 100 | 101 |
virtual int _rowByName(const std::string& name) const; |
| 101 | 102 |
|
| 102 | 103 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
| 103 | 104 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
| 104 | 105 |
|
| 105 | 106 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
| 106 | 107 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
| 107 | 108 |
|
| 108 | 109 |
virtual void _setCoeff(int row, int col, Value value); |
| 109 | 110 |
virtual Value _getCoeff(int row, int col) const; |
| 110 | 111 |
|
| 111 | 112 |
virtual void _setColLowerBound(int i, Value value); |
| 112 | 113 |
virtual Value _getColLowerBound(int i) const; |
| 113 | 114 |
virtual void _setColUpperBound(int i, Value value); |
| 114 | 115 |
virtual Value _getColUpperBound(int i) const; |
| 115 | 116 |
|
| 116 | 117 |
virtual void _setRowLowerBound(int i, Value value); |
| 117 | 118 |
virtual Value _getRowLowerBound(int i) const; |
| 118 | 119 |
virtual void _setRowUpperBound(int i, Value value); |
| 119 | 120 |
virtual Value _getRowUpperBound(int i) const; |
| 120 | 121 |
|
| 121 | 122 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e); |
| 122 | 123 |
virtual void _getObjCoeffs(InsertIterator b) const; |
| 123 | 124 |
|
| 124 | 125 |
virtual void _setObjCoeff(int i, Value obj_coef); |
| 125 | 126 |
virtual Value _getObjCoeff(int i) const; |
| 126 | 127 |
|
| 127 | 128 |
virtual void _setSense(Sense sense); |
| 128 | 129 |
virtual Sense _getSense() const; |
| 129 | 130 |
|
| 130 | 131 |
virtual SolveExitStatus _solve(); |
| 131 | 132 |
virtual Value _getPrimal(int i) const; |
| 132 | 133 |
virtual Value _getDual(int i) const; |
| 133 | 134 |
|
| 134 | 135 |
virtual Value _getPrimalValue() const; |
| 135 | 136 |
|
| 136 | 137 |
virtual Value _getPrimalRay(int i) const; |
| 137 | 138 |
virtual Value _getDualRay(int i) const; |
| 138 | 139 |
|
| 139 | 140 |
virtual VarStatus _getColStatus(int i) const; |
| 140 | 141 |
virtual VarStatus _getRowStatus(int i) const; |
| 141 | 142 |
|
| 142 | 143 |
virtual ProblemType _getPrimalType() const; |
| 143 | 144 |
virtual ProblemType _getDualType() const; |
| 144 | 145 |
|
| 145 | 146 |
virtual void _clear(); |
| 146 | 147 |
|
| 147 | 148 |
void _messageLevel(MessageLevel m); |
| 148 | 149 |
void _applyMessageLevel(); |
| 149 | 150 |
|
| 150 | 151 |
int _message_level; |
| 151 | 152 |
|
| 152 | 153 |
}; |
| 153 | 154 |
|
| 154 | 155 |
} //END OF NAMESPACE LEMON |
| 155 | 156 |
|
| 156 | 157 |
#endif //LEMON_SOPLEX_H |
| 157 | 158 |
| 1 | 1 |
AC_DEFUN([LX_CHECK_COIN], |
| 2 | 2 |
[ |
| 3 | 3 |
AC_ARG_WITH([coin], |
| 4 | 4 |
AS_HELP_STRING([--with-coin@<:@=PREFIX@:>@], [search for CLP under PREFIX or under the default search paths if PREFIX is not given @<:@default@:>@]) |
| 5 | 5 |
AS_HELP_STRING([--without-coin], [disable checking for CLP]), |
| 6 | 6 |
[], [with_coin=yes]) |
| 7 | 7 |
|
| 8 | 8 |
AC_ARG_WITH([coin-includedir], |
| 9 | 9 |
AS_HELP_STRING([--with-coin-includedir=DIR], [search for CLP headers in DIR]), |
| 10 | 10 |
[], [with_coin_includedir=no]) |
| 11 | 11 |
|
| 12 | 12 |
AC_ARG_WITH([coin-libdir], |
| 13 | 13 |
AS_HELP_STRING([--with-coin-libdir=DIR], [search for CLP libraries in DIR]), |
| 14 | 14 |
[], [with_coin_libdir=no]) |
| 15 | 15 |
|
| 16 | 16 |
lx_clp_found=no |
| 17 | 17 |
if test x"$with_coin" != x"no"; then |
| 18 | 18 |
AC_MSG_CHECKING([for CLP]) |
| 19 | 19 |
|
| 20 | 20 |
if test x"$with_coin_includedir" != x"no"; then |
| 21 | 21 |
CLP_CXXFLAGS="-I$with_coin_includedir" |
| 22 | 22 |
elif test x"$with_coin" != x"yes"; then |
| 23 | 23 |
CLP_CXXFLAGS="-I$with_coin/include" |
| 24 | 24 |
fi |
| 25 | 25 |
|
| 26 | 26 |
if test x"$with_coin_libdir" != x"no"; then |
| 27 | 27 |
CLP_LDFLAGS="-L$with_coin_libdir" |
| 28 | 28 |
elif test x"$with_coin" != x"yes"; then |
| 29 | 29 |
CLP_LDFLAGS="-L$with_coin/lib" |
| 30 | 30 |
fi |
| 31 | 31 |
CLP_LIBS="-lClp -lCoinUtils -lm" |
| 32 | 32 |
|
| 33 | 33 |
lx_save_cxxflags="$CXXFLAGS" |
| 34 | 34 |
lx_save_ldflags="$LDFLAGS" |
| 35 | 35 |
lx_save_libs="$LIBS" |
| 36 | 36 |
CXXFLAGS="$CLP_CXXFLAGS" |
| 37 | 37 |
LDFLAGS="$CLP_LDFLAGS" |
| 38 | 38 |
LIBS="$CLP_LIBS" |
| 39 | 39 |
|
| 40 | 40 |
lx_clp_test_prog=' |
| 41 | 41 |
#include <coin/ClpModel.hpp> |
| 42 | 42 |
|
| 43 | 43 |
int main(int argc, char** argv) |
| 44 | 44 |
{
|
| 45 | 45 |
ClpModel clp; |
| 46 | 46 |
return 0; |
| 47 | 47 |
}' |
| 48 | 48 |
|
| 49 | 49 |
AC_LANG_PUSH(C++) |
| 50 | 50 |
AC_LINK_IFELSE([$lx_clp_test_prog], [lx_clp_found=yes], [lx_clp_found=no]) |
| 51 | 51 |
AC_LANG_POP(C++) |
| 52 | 52 |
|
| 53 | 53 |
CXXFLAGS="$lx_save_cxxflags" |
| 54 | 54 |
LDFLAGS="$lx_save_ldflags" |
| 55 | 55 |
LIBS="$lx_save_libs" |
| 56 | 56 |
|
| 57 | 57 |
if test x"$lx_clp_found" = x"yes"; then |
| 58 | 58 |
AC_DEFINE([LEMON_HAVE_CLP], [1], [Define to 1 if you have CLP.]) |
| 59 | 59 |
lx_lp_found=yes |
| 60 | 60 |
AC_DEFINE([LEMON_HAVE_LP], [1], [Define to 1 if you have any LP solver.]) |
| 61 | 61 |
AC_MSG_RESULT([yes]) |
| 62 | 62 |
else |
| 63 | 63 |
CLP_CXXFLAGS="" |
| 64 | 64 |
CLP_LDFLAGS="" |
| 65 | 65 |
CLP_LIBS="" |
| 66 | 66 |
AC_MSG_RESULT([no]) |
| 67 | 67 |
fi |
| 68 | 68 |
fi |
| 69 | 69 |
CLP_LIBS="$CLP_LDFLAGS $CLP_LIBS" |
| 70 | 70 |
AC_SUBST(CLP_CXXFLAGS) |
| 71 | 71 |
AC_SUBST(CLP_LIBS) |
| 72 | 72 |
AM_CONDITIONAL([HAVE_CLP], [test x"$lx_clp_found" = x"yes"]) |
| 73 | 73 |
|
| 74 | 74 |
|
| 75 | 75 |
lx_cbc_found=no |
| 76 | 76 |
if test x"$lx_clp_found" = x"yes"; then |
| 77 | 77 |
if test x"$with_coin" != x"no"; then |
| 78 | 78 |
AC_MSG_CHECKING([for CBC]) |
| 79 | 79 |
|
| 80 | 80 |
if test x"$with_coin_includedir" != x"no"; then |
| 81 | 81 |
CBC_CXXFLAGS="-I$with_coin_includedir" |
| 82 | 82 |
elif test x"$with_coin" != x"yes"; then |
| 83 | 83 |
CBC_CXXFLAGS="-I$with_coin/include" |
| 84 | 84 |
fi |
| 85 | 85 |
|
| 86 | 86 |
if test x"$with_coin_libdir" != x"no"; then |
| 87 | 87 |
CBC_LDFLAGS="-L$with_coin_libdir" |
| 88 | 88 |
elif test x"$with_coin" != x"yes"; then |
| 89 | 89 |
CBC_LDFLAGS="-L$with_coin/lib" |
| 90 | 90 |
fi |
| 91 |
CBC_LIBS="-lOsi -lCbc |
|
| 91 |
CBC_LIBS="-lOsi -lCbc -lCbcSolver -lClp -lOsiClp -lCoinUtils -lVol -lOsiVol -lCgl -lm -llapack -lblas" |
|
| 92 | 92 |
|
| 93 | 93 |
lx_save_cxxflags="$CXXFLAGS" |
| 94 | 94 |
lx_save_ldflags="$LDFLAGS" |
| 95 | 95 |
lx_save_libs="$LIBS" |
| 96 | 96 |
CXXFLAGS="$CBC_CXXFLAGS" |
| 97 | 97 |
LDFLAGS="$CBC_LDFLAGS" |
| 98 | 98 |
LIBS="$CBC_LIBS" |
| 99 | 99 |
|
| 100 | 100 |
lx_cbc_test_prog=' |
| 101 | 101 |
#include <coin/CbcModel.hpp> |
| 102 | 102 |
|
| 103 | 103 |
int main(int argc, char** argv) |
| 104 | 104 |
{
|
| 105 | 105 |
CbcModel cbc; |
| 106 | 106 |
return 0; |
| 107 | 107 |
}' |
| 108 | 108 |
|
| 109 | 109 |
AC_LANG_PUSH(C++) |
| 110 | 110 |
AC_LINK_IFELSE([$lx_cbc_test_prog], [lx_cbc_found=yes], [lx_cbc_found=no]) |
| 111 | 111 |
AC_LANG_POP(C++) |
| 112 | 112 |
|
| 113 | 113 |
CXXFLAGS="$lx_save_cxxflags" |
| 114 | 114 |
LDFLAGS="$lx_save_ldflags" |
| 115 | 115 |
LIBS="$lx_save_libs" |
| 116 | 116 |
|
| 117 | 117 |
if test x"$lx_cbc_found" = x"yes"; then |
| 118 | 118 |
AC_DEFINE([LEMON_HAVE_CBC], [1], [Define to 1 if you have CBC.]) |
| 119 | 119 |
lx_lp_found=yes |
| 120 | 120 |
AC_DEFINE([LEMON_HAVE_LP], [1], [Define to 1 if you have any LP solver.]) |
| 121 | 121 |
lx_mip_found=yes |
| 122 | 122 |
AC_DEFINE([LEMON_HAVE_MIP], [1], [Define to 1 if you have any MIP solver.]) |
| 123 | 123 |
AC_MSG_RESULT([yes]) |
| 124 | 124 |
else |
| 125 | 125 |
CBC_CXXFLAGS="" |
| 126 | 126 |
CBC_LDFLAGS="" |
| 127 | 127 |
CBC_LIBS="" |
| 128 | 128 |
AC_MSG_RESULT([no]) |
| 129 | 129 |
fi |
| 130 | 130 |
fi |
| 131 | 131 |
fi |
| 132 | 132 |
CBC_LIBS="$CBC_LDFLAGS $CBC_LIBS" |
| 133 | 133 |
AC_SUBST(CBC_CXXFLAGS) |
| 134 | 134 |
AC_SUBST(CBC_LIBS) |
| 135 | 135 |
AM_CONDITIONAL([HAVE_CBC], [test x"$lx_cbc_found" = x"yes"]) |
| 136 | 136 |
]) |
| 1 | 1 |
#! /usr/bin/env python |
| 2 |
# |
|
| 3 |
# This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
# |
|
| 5 |
# Copyright (C) 2003-2009 |
|
| 6 |
# Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
# (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
# |
|
| 9 |
# Permission to use, modify and distribute this software is granted |
|
| 10 |
# provided that this copyright notice appears in all copies. For |
|
| 11 |
# precise terms see the accompanying LICENSE file. |
|
| 12 |
# |
|
| 13 |
# This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
# express or implied, and with no claim as to its suitability for any |
|
| 15 |
# purpose. |
|
| 2 | 16 |
|
| 3 | 17 |
import sys |
| 4 | 18 |
|
| 5 | 19 |
from mercurial import ui, hg |
| 6 | 20 |
from mercurial import util |
| 7 | 21 |
|
| 8 | 22 |
util.rcpath = lambda : [] |
| 9 | 23 |
|
| 10 | 24 |
if len(sys.argv)>1 and sys.argv[1] in ["-h","--help"]: |
| 11 | 25 |
print """ |
| 12 | 26 |
This utility just prints the length of the longest path |
| 13 | 27 |
in the revision graph from revison 0 to the current one. |
| 14 | 28 |
""" |
| 15 | 29 |
exit(0) |
| 16 | 30 |
|
| 17 | 31 |
u = ui.ui() |
| 18 | 32 |
r = hg.repository(u, ".") |
| 19 | 33 |
N = r.changectx(".").rev()
|
| 20 | 34 |
lengths=[0]*(N+1) |
| 21 | 35 |
for i in range(N+1): |
| 22 | 36 |
p=r.changectx(i).parents() |
| 23 | 37 |
if p[0]: |
| 24 | 38 |
p0=lengths[p[0].rev()] |
| 25 | 39 |
else: |
| 26 | 40 |
p0=-1 |
| 27 | 41 |
if len(p)>1 and p[1]: |
| 28 | 42 |
p1=lengths[p[1].rev()] |
| 29 | 43 |
else: |
| 30 | 44 |
p1=-1 |
| 31 | 45 |
lengths[i]=max(p0,p1)+1 |
| 32 | 46 |
print lengths[N] |
| 1 | 1 |
#!/bin/bash |
| 2 |
# |
|
| 3 |
# This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
# |
|
| 5 |
# Copyright (C) 2003-2009 |
|
| 6 |
# Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
# (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
# |
|
| 9 |
# Permission to use, modify and distribute this software is granted |
|
| 10 |
# provided that this copyright notice appears in all copies. For |
|
| 11 |
# precise terms see the accompanying LICENSE file. |
|
| 12 |
# |
|
| 13 |
# This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
# express or implied, and with no claim as to its suitability for any |
|
| 15 |
# purpose. |
|
| 2 | 16 |
|
| 3 | 17 |
set -e |
| 4 | 18 |
|
| 5 | 19 |
if [ $# = 0 ]; then |
| 6 | 20 |
echo "Usage: $0 release-id" |
| 7 | 21 |
exit 1 |
| 8 | 22 |
else |
| 9 | 23 |
export LEMON_VERSION=$1 |
| 10 | 24 |
fi |
| 11 | 25 |
|
| 12 | 26 |
echo '*****************************************************************' |
| 13 | 27 |
echo ' Start making release tarballs for version '${LEMON_VERSION}
|
| 14 | 28 |
echo '*****************************************************************' |
| 15 | 29 |
|
| 16 | 30 |
autoreconf -vif |
| 17 | 31 |
./configure |
| 18 | 32 |
|
| 19 | 33 |
make |
| 20 | 34 |
make html |
| 21 | 35 |
make distcheck |
| 22 | 36 |
tar xf lemon-${LEMON_VERSION}.tar.gz
|
| 23 | 37 |
zip -r lemon-${LEMON_VERSION}.zip lemon-${LEMON_VERSION}
|
| 24 | 38 |
mv lemon-${LEMON_VERSION}/doc/html lemon-doc-${LEMON_VERSION}
|
| 25 | 39 |
tar czf lemon-doc-${LEMON_VERSION}.tar.gz lemon-doc-${LEMON_VERSION}
|
| 26 | 40 |
zip -r lemon-doc-${LEMON_VERSION}.zip lemon-doc-${LEMON_VERSION}
|
| 27 | 41 |
tar czf lemon-nodoc-${LEMON_VERSION}.tar.gz lemon-${LEMON_VERSION}
|
| 28 | 42 |
zip -r lemon-nodoc-${LEMON_VERSION}.zip lemon-${LEMON_VERSION}
|
| 29 | 43 |
hg tag -m 'LEMON '${LEMON_VERSION}' released ('$(hg par --template="{node|short}")' tagged as r'${LEMON_VERSION}')' r${LEMON_VERSION}
|
| 30 | 44 |
|
| 31 | 45 |
rm -rf lemon-${LEMON_VERSION} lemon-doc-${LEMON_VERSION}
|
| 32 | 46 |
|
| 33 | 47 |
echo '*****************************************************************' |
| 34 | 48 |
echo ' Release '${LEMON_VERSION}' has been created'
|
| 35 | 49 |
echo '*****************************************************************' |
| 1 | 1 |
#!/bin/bash |
| 2 |
# |
|
| 3 |
# This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
# |
|
| 5 |
# Copyright (C) 2003-2009 |
|
| 6 |
# Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
# (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
# |
|
| 9 |
# Permission to use, modify and distribute this software is granted |
|
| 10 |
# provided that this copyright notice appears in all copies. For |
|
| 11 |
# precise terms see the accompanying LICENSE file. |
|
| 12 |
# |
|
| 13 |
# This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
# express or implied, and with no claim as to its suitability for any |
|
| 15 |
# purpose. |
|
| 2 | 16 |
|
| 3 | 17 |
YEAR=`date +%Y` |
| 4 | 18 |
HGROOT=`hg root` |
| 5 | 19 |
|
| 6 | 20 |
function hg_year() {
|
| 7 | 21 |
if [ -n "$(hg st $1)" ]; then |
| 8 | 22 |
echo $YEAR |
| 9 | 23 |
else |
| 10 | 24 |
hg log -l 1 --template='{date|isodate}\n' $1 |
|
| 11 | 25 |
cut -d '-' -f 1 |
| 12 | 26 |
fi |
| 13 | 27 |
} |
| 14 | 28 |
|
| 15 | 29 |
# file enumaration modes |
| 16 | 30 |
|
| 17 | 31 |
function all_files() {
|
| 18 | 32 |
hg status -a -m -c | |
| 19 | 33 |
cut -d ' ' -f 2 | grep -E '(\.(cc|h|dox)$|Makefile\.am$)' | |
| 20 | 34 |
while read file; do echo $HGROOT/$file; done |
| 21 | 35 |
} |
| 22 | 36 |
|
| 23 | 37 |
function modified_files() {
|
| 24 | 38 |
hg status -a -m | |
| 25 | 39 |
cut -d ' ' -f 2 | grep -E '(\.(cc|h|dox)$|Makefile\.am$)' | |
| 26 | 40 |
while read file; do echo $HGROOT/$file; done |
| 27 | 41 |
} |
| 28 | 42 |
|
| 29 | 43 |
function changed_files() {
|
| 30 | 44 |
{
|
| 31 | 45 |
if [ -n "$HG_PARENT1" ] |
| 32 | 46 |
then |
| 33 | 47 |
hg status --rev $HG_PARENT1:$HG_NODE -a -m |
| 34 | 48 |
fi |
| 35 | 49 |
if [ -n "$HG_PARENT2" ] |
| 36 | 50 |
then |
| 37 | 51 |
hg status --rev $HG_PARENT2:$HG_NODE -a -m |
| 38 | 52 |
fi |
| 39 | 53 |
} | cut -d ' ' -f 2 | grep -E '(\.(cc|h|dox)$|Makefile\.am$)' | |
| 40 | 54 |
sort | uniq | |
| 41 | 55 |
while read file; do echo $HGROOT/$file; done |
| 42 | 56 |
} |
| 43 | 57 |
|
| 44 | 58 |
function given_files() {
|
| 45 | 59 |
for file in $GIVEN_FILES |
| 46 | 60 |
do |
| 47 | 61 |
echo $file |
| 48 | 62 |
done |
| 49 | 63 |
} |
| 50 | 64 |
|
| 51 | 65 |
# actions |
| 52 | 66 |
|
| 53 | 67 |
function update_action() {
|
| 54 | 68 |
if ! diff -q $1 $2 >/dev/null |
| 55 | 69 |
then |
| 56 | 70 |
echo -n " [$3 updated]" |
| 57 | 71 |
rm $2 |
| 58 | 72 |
mv $1 $2 |
| 59 | 73 |
CHANGED=YES |
| 60 | 74 |
fi |
| 61 | 75 |
} |
| 62 | 76 |
|
| 63 | 77 |
function update_warning() {
|
| 64 | 78 |
echo -n " [$2 warning]" |
| 65 | 79 |
WARNED=YES |
| 66 | 80 |
} |
| 67 | 81 |
|
| 68 | 82 |
function update_init() {
|
| 69 | 83 |
echo Update source files... |
| 70 | 84 |
TOTAL_FILES=0 |
| 71 | 85 |
CHANGED_FILES=0 |
| 72 | 86 |
WARNED_FILES=0 |
| 73 | 87 |
} |
| 74 | 88 |
|
| 75 | 89 |
function update_done() {
|
| 76 | 90 |
echo $CHANGED_FILES out of $TOTAL_FILES files has been changed. |
| 77 | 91 |
echo $WARNED_FILES out of $TOTAL_FILES files triggered warnings. |
| 78 | 92 |
} |
| 79 | 93 |
|
| 80 | 94 |
function update_begin() {
|
| 81 | 95 |
((TOTAL_FILES++)) |
| 82 | 96 |
CHANGED=NO |
| 83 | 97 |
WARNED=NO |
| 84 | 98 |
} |
| 85 | 99 |
|
| 86 | 100 |
function update_end() {
|
| 87 | 101 |
if [ $CHANGED == YES ] |
| 88 | 102 |
then |
| 89 | 103 |
((++CHANGED_FILES)) |
| 90 | 104 |
fi |
| 91 | 105 |
if [ $WARNED == YES ] |
| 92 | 106 |
then |
| 93 | 107 |
((++WARNED_FILES)) |
| 94 | 108 |
fi |
| 95 | 109 |
} |
| 96 | 110 |
|
| 97 | 111 |
function check_action() {
|
| 98 | 112 |
if [ "$3" == 'tabs' ] |
| 99 | 113 |
then |
| 100 | 114 |
if echo $2 | grep -q -v -E 'Makefile\.am$' |
| 101 | 115 |
then |
| 102 | 116 |
PATTERN=$(echo -e '\t') |
| 103 | 117 |
else |
| 104 | 118 |
PATTERN=' ' |
| 105 | 119 |
fi |
| 106 | 120 |
elif [ "$3" == 'trailing spaces' ] |
| 107 | 121 |
then |
| 108 | 122 |
PATTERN='\ +$' |
| 109 | 123 |
else |
| 110 | 124 |
PATTERN='*' |
| 111 | 125 |
fi |
| 112 | 126 |
|
| 113 | 127 |
if ! diff -q $1 $2 >/dev/null |
| 114 | 128 |
then |
| 115 | 129 |
if [ "$PATTERN" == '*' ] |
| 116 | 130 |
then |
| 117 | 131 |
diff $1 $2 | grep '^[0-9]' | sed "s|^\(.*\)c.*$|$2:\1: check failed: $3|g" | |
| 118 | 132 |
sed "s/:\([0-9]*\),\([0-9]*\):\(.*\)$/:\1:\3 (until line \2)/g" |
| 119 | 133 |
else |
| 120 | 134 |
grep -n -E "$PATTERN" $2 | sed "s|^\([0-9]*\):.*$|$2:\1: check failed: $3|g" |
| 121 | 135 |
fi |
| 122 | 136 |
FAILED=YES |
| 123 | 137 |
fi |
| 124 | 138 |
} |
| 125 | 139 |
|
| 126 | 140 |
function check_warning() {
|
| 127 | 141 |
if [ "$2" == 'long lines' ] |
| 128 | 142 |
then |
| 129 | 143 |
grep -n -E '.{81,}' $1 | sed "s|^\([0-9]*\):.*$|$1:\1: warning: $2|g"
|
| 130 | 144 |
else |
| 131 | 145 |
echo "$1: warning: $2" |
| 132 | 146 |
fi |
| 133 | 147 |
WARNED=YES |
| 134 | 148 |
} |
| 135 | 149 |
|
| 136 | 150 |
function check_init() {
|
| 137 | 151 |
echo Check source files... |
| 138 | 152 |
FAILED_FILES=0 |
| 139 | 153 |
WARNED_FILES=0 |
| 140 | 154 |
TOTAL_FILES=0 |
| 141 | 155 |
} |
| 142 | 156 |
|
| 143 | 157 |
function check_done() {
|
| 144 | 158 |
echo $FAILED_FILES out of $TOTAL_FILES files has been failed. |
| 145 | 159 |
echo $WARNED_FILES out of $TOTAL_FILES files triggered warnings. |
| 146 | 160 |
|
| 147 | 161 |
if [ $WARNED_FILES -gt 0 -o $FAILED_FILES -gt 0 ] |
| 148 | 162 |
then |
| 149 | 163 |
if [ "$WARNING" == 'INTERACTIVE' ] |
| 150 | 164 |
then |
| 151 | 165 |
echo -n "Are the files with errors/warnings acceptable? (yes/no) " |
| 152 | 166 |
while read answer |
| 153 | 167 |
do |
| 154 | 168 |
if [ "$answer" == 'yes' ] |
| 155 | 169 |
then |
| 156 | 170 |
return 0 |
| 157 | 171 |
elif [ "$answer" == 'no' ] |
| 158 | 172 |
then |
| 159 | 173 |
return 1 |
| 160 | 174 |
fi |
| 161 | 175 |
echo -n "Are the files with errors/warnings acceptable? (yes/no) " |
| 162 | 176 |
done |
| 163 | 177 |
elif [ "$WARNING" == 'WERROR' ] |
| 164 | 178 |
then |
| 165 | 179 |
return 1 |
| 166 | 180 |
fi |
| 167 | 181 |
fi |
| 168 | 182 |
} |
| 169 | 183 |
|
| 170 | 184 |
function check_begin() {
|
| 171 | 185 |
((TOTAL_FILES++)) |
| 172 | 186 |
FAILED=NO |
| 173 | 187 |
WARNED=NO |
| 174 | 188 |
} |
| 175 | 189 |
|
| 176 | 190 |
function check_end() {
|
| 177 | 191 |
if [ $FAILED == YES ] |
| 178 | 192 |
then |
| 179 | 193 |
((++FAILED_FILES)) |
| 180 | 194 |
fi |
| 181 | 195 |
if [ $WARNED == YES ] |
| 182 | 196 |
then |
| 183 | 197 |
((++WARNED_FILES)) |
| 184 | 198 |
fi |
| 185 | 199 |
} |
| 186 | 200 |
|
| 187 | 201 |
|
| 188 | 202 |
|
| 189 | 203 |
# checks |
| 190 | 204 |
|
| 191 | 205 |
function header_check() {
|
| 192 | 206 |
if echo $1 | grep -q -E 'Makefile\.am$' |
| 193 | 207 |
then |
| 194 | 208 |
return |
| 195 | 209 |
fi |
| 196 | 210 |
|
| 197 | 211 |
TMP_FILE=`mktemp` |
| 198 | 212 |
|
| 199 | 213 |
(echo "/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 200 | 214 |
* |
| 201 | 215 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 202 | 216 |
* |
| 203 | 217 |
* Copyright (C) 2003-"$(hg_year $1)" |
| 204 | 218 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 205 | 219 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 206 | 220 |
* |
| 207 | 221 |
* Permission to use, modify and distribute this software is granted |
| 208 | 222 |
* provided that this copyright notice appears in all copies. For |
| 209 | 223 |
* precise terms see the accompanying LICENSE file. |
| 210 | 224 |
* |
| 211 | 225 |
* This software is provided \"AS IS\" with no warranty of any kind, |
| 212 | 226 |
* express or implied, and with no claim as to its suitability for any |
| 213 | 227 |
* purpose. |
| 214 | 228 |
* |
| 215 | 229 |
*/ |
| 216 | 230 |
" |
| 217 | 231 |
awk 'BEGIN { pm=0; }
|
| 218 | 232 |
pm==3 { print }
|
| 219 | 233 |
/\/\* / && pm==0 { pm=1;}
|
| 220 | 234 |
/[^:blank:]/ && (pm==0 || pm==2) { pm=3; print;}
|
| 221 | 235 |
/\*\// && pm==1 { pm=2;}
|
| 222 | 236 |
' $1 |
| 223 | 237 |
) >$TMP_FILE |
| 224 | 238 |
|
| 225 | 239 |
"$ACTION"_action "$TMP_FILE" "$1" header |
| 226 | 240 |
} |
| 227 | 241 |
|
| 228 | 242 |
function tabs_check() {
|
| 229 | 243 |
if echo $1 | grep -q -v -E 'Makefile\.am$' |
| 230 | 244 |
then |
| 231 | 245 |
OLD_PATTERN=$(echo -e '\t') |
| 232 | 246 |
NEW_PATTERN=' ' |
| 233 | 247 |
else |
| 234 | 248 |
OLD_PATTERN=' ' |
| 235 | 249 |
NEW_PATTERN=$(echo -e '\t') |
| 236 | 250 |
fi |
| 237 | 251 |
TMP_FILE=`mktemp` |
| 238 | 252 |
cat $1 | sed -e "s/$OLD_PATTERN/$NEW_PATTERN/g" >$TMP_FILE |
| 239 | 253 |
|
| 240 | 254 |
"$ACTION"_action "$TMP_FILE" "$1" 'tabs' |
| 241 | 255 |
} |
| 242 | 256 |
|
| 243 | 257 |
function spaces_check() {
|
| 244 | 258 |
TMP_FILE=`mktemp` |
| 245 | 259 |
cat $1 | sed -e 's/ \+$//g' >$TMP_FILE |
| 246 | 260 |
|
| 247 | 261 |
"$ACTION"_action "$TMP_FILE" "$1" 'trailing spaces' |
| 248 | 262 |
} |
| 249 | 263 |
|
| 250 | 264 |
function long_lines_check() {
|
| 251 | 265 |
if cat $1 | grep -q -E '.{81,}'
|
| 252 | 266 |
then |
| 253 | 267 |
"$ACTION"_warning $1 'long lines' |
| 254 | 268 |
fi |
| 255 | 269 |
} |
| 256 | 270 |
|
| 257 | 271 |
# process the file |
| 258 | 272 |
|
| 259 | 273 |
function process_file() {
|
| 260 | 274 |
if [ "$ACTION" == 'update' ] |
| 261 | 275 |
then |
| 262 | 276 |
echo -n " $ACTION $1..." |
| 263 | 277 |
else |
| 264 | 278 |
echo " $ACTION $1..." |
| 265 | 279 |
fi |
| 266 | 280 |
|
| 267 | 281 |
CHECKING="header tabs spaces long_lines" |
| 268 | 282 |
|
| 269 | 283 |
"$ACTION"_begin $1 |
| 270 | 284 |
for check in $CHECKING |
| 271 | 285 |
do |
| 272 | 286 |
"$check"_check $1 |
| 273 | 287 |
done |
| 274 | 288 |
"$ACTION"_end $1 |
| 275 | 289 |
if [ "$ACTION" == 'update' ] |
| 276 | 290 |
then |
| 277 | 291 |
echo |
| 278 | 292 |
fi |
| 279 | 293 |
} |
| 280 | 294 |
|
| 281 | 295 |
function process_all {
|
| 282 | 296 |
"$ACTION"_init |
| 283 | 297 |
while read file |
| 284 | 298 |
do |
| 285 | 299 |
process_file $file |
| 286 | 300 |
done < <($FILES) |
| 287 | 301 |
"$ACTION"_done |
| 288 | 302 |
} |
| 289 | 303 |
|
| 290 | 304 |
while [ $# -gt 0 ] |
| 291 | 305 |
do |
| 292 | 306 |
|
| 293 | 307 |
if [ "$1" == '--help' ] || [ "$1" == '-h' ] |
| 294 | 308 |
then |
| 295 | 309 |
echo -n \ |
| 296 | 310 |
"Usage: |
| 297 | 311 |
$0 [OPTIONS] [files] |
| 298 | 312 |
Options: |
| 299 | 313 |
--dry-run|-n |
| 300 | 314 |
Check the files, but do not modify them. |
| 301 | 315 |
--interactive|-i |
| 302 | 316 |
If --dry-run is specified and the checker emits warnings, |
| 303 | 317 |
then the user is asked if the warnings should be considered |
| 304 | 318 |
errors. |
| 305 | 319 |
--werror|-w |
| 306 | 320 |
Make all warnings into errors. |
| 307 | 321 |
--all|-a |
| 308 | 322 |
Check all source files in the repository. |
| 309 | 323 |
--modified|-m |
| 310 | 324 |
Check only the modified (and new) source files. This option is |
| 311 | 325 |
useful to check the modification before making a commit. |
| 312 | 326 |
--changed|-c |
| 313 | 327 |
Check only the changed source files compared to the parent(s) of |
| 314 | 328 |
the current hg node. This option is useful as hg hook script. |
| 315 | 329 |
To automatically check all your changes before making a commit, |
| 316 | 330 |
add the following section to the appropriate .hg/hgrc file. |
| 317 | 331 |
|
| 318 | 332 |
[hooks] |
| 319 | 333 |
pretxncommit.checksources = scripts/unify-sources.sh -c -n -i |
| 320 | 334 |
|
| 321 | 335 |
--help|-h |
| 322 | 336 |
Print this help message. |
| 323 | 337 |
files |
| 324 | 338 |
The files to check/unify. If no file names are given, the modified |
| 325 | 339 |
source files will be checked/unified (just like using the |
| 326 | 340 |
--modified|-m option). |
| 327 | 341 |
" |
| 328 | 342 |
exit 0 |
| 329 | 343 |
elif [ "$1" == '--dry-run' ] || [ "$1" == '-n' ] |
| 330 | 344 |
then |
| 331 | 345 |
[ -n "$ACTION" ] && echo "Conflicting action options" >&2 && exit 1 |
| 332 | 346 |
ACTION=check |
| 333 | 347 |
elif [ "$1" == "--all" ] || [ "$1" == '-a' ] |
| 334 | 348 |
then |
| 335 | 349 |
[ -n "$FILES" ] && echo "Conflicting target options" >&2 && exit 1 |
| 336 | 350 |
FILES=all_files |
| 337 | 351 |
elif [ "$1" == "--changed" ] || [ "$1" == '-c' ] |
| 338 | 352 |
then |
| 339 | 353 |
[ -n "$FILES" ] && echo "Conflicting target options" >&2 && exit 1 |
| 340 | 354 |
FILES=changed_files |
| 341 | 355 |
elif [ "$1" == "--modified" ] || [ "$1" == '-m' ] |
| 342 | 356 |
then |
| 343 | 357 |
[ -n "$FILES" ] && echo "Conflicting target options" >&2 && exit 1 |
| 344 | 358 |
FILES=modified_files |
| 345 | 359 |
elif [ "$1" == "--interactive" ] || [ "$1" == "-i" ] |
| 346 | 360 |
then |
| 347 | 361 |
[ -n "$WARNING" ] && echo "Conflicting warning options" >&2 && exit 1 |
| 348 | 362 |
WARNING='INTERACTIVE' |
| 349 | 363 |
elif [ "$1" == "--werror" ] || [ "$1" == "-w" ] |
| 350 | 364 |
then |
| 351 | 365 |
[ -n "$WARNING" ] && echo "Conflicting warning options" >&2 && exit 1 |
| 352 | 366 |
WARNING='WERROR' |
| 353 | 367 |
elif [ $(echo x$1 | cut -c 2) == '-' ] |
| 354 | 368 |
then |
| 355 | 369 |
echo "Invalid option $1" >&2 && exit 1 |
| 356 | 370 |
else |
| 357 | 371 |
[ -n "$FILES" ] && echo "Invalid option $1" >&2 && exit 1 |
| 358 | 372 |
GIVEN_FILES=$@ |
| 359 | 373 |
FILES=given_files |
| 360 | 374 |
break |
| 361 | 375 |
fi |
| 362 | 376 |
|
| 363 | 377 |
shift |
| 364 | 378 |
done |
| 365 | 379 |
|
| 366 | 380 |
if [ -z $FILES ] |
| 367 | 381 |
then |
| 368 | 382 |
FILES=modified_files |
| 369 | 383 |
fi |
| 370 | 384 |
|
| 371 | 385 |
if [ -z $ACTION ] |
| 372 | 386 |
then |
| 373 | 387 |
ACTION=update |
| 374 | 388 |
fi |
| 375 | 389 |
|
| 376 | 390 |
process_all |
| 1 | 1 |
INCLUDE_DIRECTORIES( |
| 2 | 2 |
${PROJECT_SOURCE_DIR}
|
| 3 | 3 |
${PROJECT_BINARY_DIR}
|
| 4 | 4 |
) |
| 5 | 5 |
|
| 6 | 6 |
LINK_DIRECTORIES( |
| 7 | 7 |
${PROJECT_BINARY_DIR}/lemon
|
| 8 | 8 |
) |
| 9 | 9 |
|
| 10 | 10 |
SET(TESTS |
| 11 | 11 |
adaptors_test |
| 12 |
bellman_ford_test |
|
| 12 | 13 |
bfs_test |
| 13 | 14 |
circulation_test |
| 14 | 15 |
connectivity_test |
| 15 | 16 |
counter_test |
| 16 | 17 |
dfs_test |
| 17 | 18 |
digraph_test |
| 18 | 19 |
dijkstra_test |
| 19 | 20 |
dim_test |
| 20 | 21 |
edge_set_test |
| 21 | 22 |
error_test |
| 22 | 23 |
euler_test |
| 23 | 24 |
gomory_hu_test |
| 24 | 25 |
graph_copy_test |
| 25 | 26 |
graph_test |
| 26 | 27 |
graph_utils_test |
| 27 | 28 |
hao_orlin_test |
| 28 | 29 |
heap_test |
| 29 | 30 |
kruskal_test |
| 30 | 31 |
maps_test |
| 31 | 32 |
matching_test |
| 32 | 33 |
min_cost_arborescence_test |
| 33 | 34 |
min_cost_flow_test |
| 34 | 35 |
min_mean_cycle_test |
| 35 | 36 |
path_test |
| 36 | 37 |
preflow_test |
| 37 | 38 |
radix_sort_test |
| 38 | 39 |
random_test |
| 39 | 40 |
suurballe_test |
| 40 | 41 |
time_measure_test |
| 41 | 42 |
unionfind_test |
| 42 | 43 |
) |
| 43 | 44 |
|
| 44 | 45 |
IF(LEMON_HAVE_LP) |
| 45 | 46 |
ADD_EXECUTABLE(lp_test lp_test.cc) |
| 46 | 47 |
SET(LP_TEST_LIBS lemon) |
| 47 | 48 |
|
| 48 | 49 |
IF(LEMON_HAVE_GLPK) |
| 49 | 50 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${GLPK_LIBRARIES})
|
| 50 | 51 |
ENDIF() |
| 51 | 52 |
IF(LEMON_HAVE_CPLEX) |
| 52 | 53 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${CPLEX_LIBRARIES})
|
| 53 | 54 |
ENDIF() |
| 54 | 55 |
IF(LEMON_HAVE_CLP) |
| 55 | 56 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${COIN_CLP_LIBRARIES})
|
| 56 | 57 |
ENDIF() |
| 57 | 58 |
|
| 58 | 59 |
TARGET_LINK_LIBRARIES(lp_test ${LP_TEST_LIBS})
|
| 59 | 60 |
ADD_TEST(lp_test lp_test) |
| 60 | 61 |
|
| 61 | 62 |
IF(WIN32 AND LEMON_HAVE_GLPK) |
| 62 | 63 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
| 63 | 64 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH)
|
| 64 | 65 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
| 65 | 66 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH}
|
| 66 | 67 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH}
|
| 67 | 68 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH}
|
| 68 | 69 |
) |
| 69 | 70 |
ENDIF() |
| 70 | 71 |
|
| 71 | 72 |
IF(WIN32 AND LEMON_HAVE_CPLEX) |
| 72 | 73 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
| 73 | 74 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH)
|
| 74 | 75 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
| 75 | 76 |
COMMAND ${CMAKE_COMMAND} -E copy ${CPLEX_BIN_DIR}/cplex91.dll ${TARGET_PATH}
|
| 76 | 77 |
) |
| 77 | 78 |
ENDIF() |
| 78 | 79 |
ENDIF() |
| 79 | 80 |
|
| 80 | 81 |
IF(LEMON_HAVE_MIP) |
| 81 | 82 |
ADD_EXECUTABLE(mip_test mip_test.cc) |
| 82 | 83 |
SET(MIP_TEST_LIBS lemon) |
| 83 | 84 |
|
| 84 | 85 |
IF(LEMON_HAVE_GLPK) |
| 85 | 86 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${GLPK_LIBRARIES})
|
| 86 | 87 |
ENDIF() |
| 87 | 88 |
IF(LEMON_HAVE_CPLEX) |
| 88 | 89 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${CPLEX_LIBRARIES})
|
| 89 | 90 |
ENDIF() |
| 90 | 91 |
IF(LEMON_HAVE_CBC) |
| 91 | 92 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${COIN_CBC_LIBRARIES})
|
| 92 | 93 |
ENDIF() |
| 93 | 94 |
|
| 94 | 95 |
TARGET_LINK_LIBRARIES(mip_test ${MIP_TEST_LIBS})
|
| 95 | 96 |
ADD_TEST(mip_test mip_test) |
| 96 | 97 |
|
| 97 | 98 |
IF(WIN32 AND LEMON_HAVE_GLPK) |
| 98 | 99 |
GET_TARGET_PROPERTY(TARGET_LOC mip_test LOCATION) |
| 99 | 100 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH)
|
| 100 | 101 |
ADD_CUSTOM_COMMAND(TARGET mip_test POST_BUILD |
| 101 | 102 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH}
|
| 102 | 103 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH}
|
| 103 | 104 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH}
|
| 104 | 105 |
) |
| 105 | 106 |
ENDIF() |
| 106 | 107 |
|
| 107 | 108 |
IF(WIN32 AND LEMON_HAVE_CPLEX) |
| 108 | 109 |
GET_TARGET_PROPERTY(TARGET_LOC mip_test LOCATION) |
| 109 | 110 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH)
|
| 110 | 111 |
ADD_CUSTOM_COMMAND(TARGET mip_test POST_BUILD |
| 111 | 112 |
COMMAND ${CMAKE_COMMAND} -E copy ${CPLEX_BIN_DIR}/cplex91.dll ${TARGET_PATH}
|
| 112 | 113 |
) |
| 113 | 114 |
ENDIF() |
| 114 | 115 |
ENDIF() |
| 115 | 116 |
|
| 116 | 117 |
FOREACH(TEST_NAME ${TESTS})
|
| 117 | 118 |
ADD_EXECUTABLE(${TEST_NAME} ${TEST_NAME}.cc)
|
| 118 | 119 |
TARGET_LINK_LIBRARIES(${TEST_NAME} lemon)
|
| 119 | 120 |
ADD_TEST(${TEST_NAME} ${TEST_NAME})
|
| 120 | 121 |
ENDFOREACH() |
| 1 | 1 |
EXTRA_DIST += \ |
| 2 | 2 |
test/CMakeLists.txt |
| 3 | 3 |
|
| 4 | 4 |
noinst_HEADERS += \ |
| 5 | 5 |
test/graph_test.h \ |
| 6 | 6 |
test/test_tools.h |
| 7 | 7 |
|
| 8 | 8 |
check_PROGRAMS += \ |
| 9 | 9 |
test/adaptors_test \ |
| 10 |
test/bellman_ford_test \ |
|
| 10 | 11 |
test/bfs_test \ |
| 11 | 12 |
test/circulation_test \ |
| 12 | 13 |
test/connectivity_test \ |
| 13 | 14 |
test/counter_test \ |
| 14 | 15 |
test/dfs_test \ |
| 15 | 16 |
test/digraph_test \ |
| 16 | 17 |
test/dijkstra_test \ |
| 17 | 18 |
test/dim_test \ |
| 18 | 19 |
test/edge_set_test \ |
| 19 | 20 |
test/error_test \ |
| 20 | 21 |
test/euler_test \ |
| 21 | 22 |
test/gomory_hu_test \ |
| 22 | 23 |
test/graph_copy_test \ |
| 23 | 24 |
test/graph_test \ |
| 24 | 25 |
test/graph_utils_test \ |
| 25 | 26 |
test/hao_orlin_test \ |
| 26 | 27 |
test/heap_test \ |
| 27 | 28 |
test/kruskal_test \ |
| 28 | 29 |
test/maps_test \ |
| 29 | 30 |
test/matching_test \ |
| 30 | 31 |
test/min_cost_arborescence_test \ |
| 31 | 32 |
test/min_cost_flow_test \ |
| 32 | 33 |
test/min_mean_cycle_test \ |
| 33 | 34 |
test/path_test \ |
| 34 | 35 |
test/preflow_test \ |
| 35 | 36 |
test/radix_sort_test \ |
| 36 | 37 |
test/random_test \ |
| 37 | 38 |
test/suurballe_test \ |
| 38 | 39 |
test/test_tools_fail \ |
| 39 | 40 |
test/test_tools_pass \ |
| 40 | 41 |
test/time_measure_test \ |
| 41 | 42 |
test/unionfind_test |
| 42 | 43 |
|
| 43 | 44 |
test_test_tools_pass_DEPENDENCIES = demo |
| 44 | 45 |
|
| 45 | 46 |
if HAVE_LP |
| 46 | 47 |
check_PROGRAMS += test/lp_test |
| 47 | 48 |
endif HAVE_LP |
| 48 | 49 |
if HAVE_MIP |
| 49 | 50 |
check_PROGRAMS += test/mip_test |
| 50 | 51 |
endif HAVE_MIP |
| 51 | 52 |
|
| 52 | 53 |
TESTS += $(check_PROGRAMS) |
| 53 | 54 |
XFAIL_TESTS += test/test_tools_fail$(EXEEXT) |
| 54 | 55 |
|
| 55 | 56 |
test_adaptors_test_SOURCES = test/adaptors_test.cc |
| 57 |
test_bellman_ford_test_SOURCES = test/bellman_ford_test.cc |
|
| 56 | 58 |
test_bfs_test_SOURCES = test/bfs_test.cc |
| 57 | 59 |
test_circulation_test_SOURCES = test/circulation_test.cc |
| 58 | 60 |
test_counter_test_SOURCES = test/counter_test.cc |
| 59 | 61 |
test_connectivity_test_SOURCES = test/connectivity_test.cc |
| 60 | 62 |
test_dfs_test_SOURCES = test/dfs_test.cc |
| 61 | 63 |
test_digraph_test_SOURCES = test/digraph_test.cc |
| 62 | 64 |
test_dijkstra_test_SOURCES = test/dijkstra_test.cc |
| 63 | 65 |
test_dim_test_SOURCES = test/dim_test.cc |
| 64 | 66 |
test_edge_set_test_SOURCES = test/edge_set_test.cc |
| 65 | 67 |
test_error_test_SOURCES = test/error_test.cc |
| 66 | 68 |
test_euler_test_SOURCES = test/euler_test.cc |
| 67 | 69 |
test_gomory_hu_test_SOURCES = test/gomory_hu_test.cc |
| 68 | 70 |
test_graph_copy_test_SOURCES = test/graph_copy_test.cc |
| 69 | 71 |
test_graph_test_SOURCES = test/graph_test.cc |
| 70 | 72 |
test_graph_utils_test_SOURCES = test/graph_utils_test.cc |
| 71 | 73 |
test_heap_test_SOURCES = test/heap_test.cc |
| 72 | 74 |
test_kruskal_test_SOURCES = test/kruskal_test.cc |
| 73 | 75 |
test_hao_orlin_test_SOURCES = test/hao_orlin_test.cc |
| 74 | 76 |
test_lp_test_SOURCES = test/lp_test.cc |
| 75 | 77 |
test_maps_test_SOURCES = test/maps_test.cc |
| 76 | 78 |
test_mip_test_SOURCES = test/mip_test.cc |
| 77 | 79 |
test_matching_test_SOURCES = test/matching_test.cc |
| 78 | 80 |
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc |
| 79 | 81 |
test_min_cost_flow_test_SOURCES = test/min_cost_flow_test.cc |
| 80 | 82 |
test_min_mean_cycle_test_SOURCES = test/min_mean_cycle_test.cc |
| 81 | 83 |
test_path_test_SOURCES = test/path_test.cc |
| 82 | 84 |
test_preflow_test_SOURCES = test/preflow_test.cc |
| 83 | 85 |
test_radix_sort_test_SOURCES = test/radix_sort_test.cc |
| 84 | 86 |
test_suurballe_test_SOURCES = test/suurballe_test.cc |
| 85 | 87 |
test_random_test_SOURCES = test/random_test.cc |
| 86 | 88 |
test_test_tools_fail_SOURCES = test/test_tools_fail.cc |
| 87 | 89 |
test_test_tools_pass_SOURCES = test/test_tools_pass.cc |
| 88 | 90 |
test_time_measure_test_SOURCES = test/time_measure_test.cc |
| 89 | 91 |
test_unionfind_test_SOURCES = test/unionfind_test.cc |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <iostream> |
| 20 | 20 |
|
| 21 | 21 |
#include "test_tools.h" |
| 22 | 22 |
#include <lemon/list_graph.h> |
| 23 | 23 |
#include <lemon/circulation.h> |
| 24 | 24 |
#include <lemon/lgf_reader.h> |
| 25 | 25 |
#include <lemon/concepts/digraph.h> |
| 26 | 26 |
#include <lemon/concepts/maps.h> |
| 27 | 27 |
|
| 28 | 28 |
using namespace lemon; |
| 29 | 29 |
|
| 30 | 30 |
char test_lgf[] = |
| 31 | 31 |
"@nodes\n" |
| 32 | 32 |
"label\n" |
| 33 | 33 |
"0\n" |
| 34 | 34 |
"1\n" |
| 35 | 35 |
"2\n" |
| 36 | 36 |
"3\n" |
| 37 | 37 |
"4\n" |
| 38 | 38 |
"5\n" |
| 39 | 39 |
"@arcs\n" |
| 40 | 40 |
" lcap ucap\n" |
| 41 | 41 |
"0 1 2 10\n" |
| 42 | 42 |
"0 2 2 6\n" |
| 43 | 43 |
"1 3 4 7\n" |
| 44 | 44 |
"1 4 0 5\n" |
| 45 | 45 |
"2 4 1 3\n" |
| 46 | 46 |
"3 5 3 8\n" |
| 47 | 47 |
"4 5 3 7\n" |
| 48 | 48 |
"@attributes\n" |
| 49 | 49 |
"source 0\n" |
| 50 | 50 |
"sink 5\n"; |
| 51 | 51 |
|
| 52 | 52 |
void checkCirculationCompile() |
| 53 | 53 |
{
|
| 54 | 54 |
typedef int VType; |
| 55 | 55 |
typedef concepts::Digraph Digraph; |
| 56 | 56 |
|
| 57 | 57 |
typedef Digraph::Node Node; |
| 58 | 58 |
typedef Digraph::Arc Arc; |
| 59 | 59 |
typedef concepts::ReadMap<Arc,VType> CapMap; |
| 60 | 60 |
typedef concepts::ReadMap<Node,VType> SupplyMap; |
| 61 | 61 |
typedef concepts::ReadWriteMap<Arc,VType> FlowMap; |
| 62 | 62 |
typedef concepts::WriteMap<Node,bool> BarrierMap; |
| 63 | 63 |
|
| 64 | 64 |
typedef Elevator<Digraph, Digraph::Node> Elev; |
| 65 | 65 |
typedef LinkedElevator<Digraph, Digraph::Node> LinkedElev; |
| 66 | 66 |
|
| 67 | 67 |
Digraph g; |
| 68 | 68 |
Node n; |
| 69 | 69 |
Arc a; |
| 70 | 70 |
CapMap lcap, ucap; |
| 71 | 71 |
SupplyMap supply; |
| 72 | 72 |
FlowMap flow; |
| 73 | 73 |
BarrierMap bar; |
| 74 | 74 |
VType v; |
| 75 | 75 |
bool b; |
| 76 | 76 |
|
| 77 | 77 |
typedef Circulation<Digraph, CapMap, CapMap, SupplyMap> |
| 78 | 78 |
::SetFlowMap<FlowMap> |
| 79 | 79 |
::SetElevator<Elev> |
| 80 | 80 |
::SetStandardElevator<LinkedElev> |
| 81 | 81 |
::Create CirculationType; |
| 82 | 82 |
CirculationType circ_test(g, lcap, ucap, supply); |
| 83 | 83 |
const CirculationType& const_circ_test = circ_test; |
| 84 | 84 |
|
| 85 | 85 |
circ_test |
| 86 | 86 |
.lowerMap(lcap) |
| 87 | 87 |
.upperMap(ucap) |
| 88 | 88 |
.supplyMap(supply) |
| 89 | 89 |
.flowMap(flow); |
| 90 |
|
|
| 91 |
const CirculationType::Elevator& elev = const_circ_test.elevator(); |
|
| 92 |
circ_test.elevator(const_cast<CirculationType::Elevator&>(elev)); |
|
| 93 |
CirculationType::Tolerance tol = const_circ_test.tolerance(); |
|
| 94 |
circ_test.tolerance(tol); |
|
| 90 | 95 |
|
| 91 | 96 |
circ_test.init(); |
| 92 | 97 |
circ_test.greedyInit(); |
| 93 | 98 |
circ_test.start(); |
| 94 | 99 |
circ_test.run(); |
| 95 | 100 |
|
| 96 | 101 |
v = const_circ_test.flow(a); |
| 97 | 102 |
const FlowMap& fm = const_circ_test.flowMap(); |
| 98 | 103 |
b = const_circ_test.barrier(n); |
| 99 | 104 |
const_circ_test.barrierMap(bar); |
| 100 | 105 |
|
| 101 | 106 |
ignore_unused_variable_warning(fm); |
| 102 | 107 |
} |
| 103 | 108 |
|
| 104 | 109 |
template <class G, class LM, class UM, class DM> |
| 105 | 110 |
void checkCirculation(const G& g, const LM& lm, const UM& um, |
| 106 | 111 |
const DM& dm, bool find) |
| 107 | 112 |
{
|
| 108 | 113 |
Circulation<G, LM, UM, DM> circ(g, lm, um, dm); |
| 109 | 114 |
bool ret = circ.run(); |
| 110 | 115 |
if (find) {
|
| 111 | 116 |
check(ret, "A feasible solution should have been found."); |
| 112 | 117 |
check(circ.checkFlow(), "The found flow is corrupt."); |
| 113 | 118 |
check(!circ.checkBarrier(), "A barrier should not have been found."); |
| 114 | 119 |
} else {
|
| 115 | 120 |
check(!ret, "A feasible solution should not have been found."); |
| 116 | 121 |
check(circ.checkBarrier(), "The found barrier is corrupt."); |
| 117 | 122 |
} |
| 118 | 123 |
} |
| 119 | 124 |
|
| 120 | 125 |
int main (int, char*[]) |
| 121 | 126 |
{
|
| 122 | 127 |
typedef ListDigraph Digraph; |
| 123 | 128 |
DIGRAPH_TYPEDEFS(Digraph); |
| 124 | 129 |
|
| 125 | 130 |
Digraph g; |
| 126 | 131 |
IntArcMap lo(g), up(g); |
| 127 | 132 |
IntNodeMap delta(g, 0); |
| 128 | 133 |
Node s, t; |
| 129 | 134 |
|
| 130 | 135 |
std::istringstream input(test_lgf); |
| 131 | 136 |
DigraphReader<Digraph>(g,input). |
| 132 | 137 |
arcMap("lcap", lo).
|
| 133 | 138 |
arcMap("ucap", up).
|
| 134 | 139 |
node("source",s).
|
| 135 | 140 |
node("sink",t).
|
| 136 | 141 |
run(); |
| 137 | 142 |
|
| 138 | 143 |
delta[s] = 7; delta[t] = -7; |
| 139 | 144 |
checkCirculation(g, lo, up, delta, true); |
| 140 | 145 |
|
| 141 | 146 |
delta[s] = 13; delta[t] = -13; |
| 142 | 147 |
checkCirculation(g, lo, up, delta, true); |
| 143 | 148 |
|
| 144 | 149 |
delta[s] = 6; delta[t] = -6; |
| 145 | 150 |
checkCirculation(g, lo, up, delta, false); |
| 146 | 151 |
|
| 147 | 152 |
delta[s] = 14; delta[t] = -14; |
| 148 | 153 |
checkCirculation(g, lo, up, delta, false); |
| 149 | 154 |
|
| 150 | 155 |
delta[s] = 7; delta[t] = -13; |
| 151 | 156 |
checkCirculation(g, lo, up, delta, true); |
| 152 | 157 |
|
| 153 | 158 |
delta[s] = 5; delta[t] = -15; |
| 154 | 159 |
checkCirculation(g, lo, up, delta, true); |
| 155 | 160 |
|
| 156 | 161 |
delta[s] = 10; delta[t] = -11; |
| 157 | 162 |
checkCirculation(g, lo, up, delta, true); |
| 158 | 163 |
|
| 159 | 164 |
delta[s] = 11; delta[t] = -10; |
| 160 | 165 |
checkCirculation(g, lo, up, delta, false); |
| 161 | 166 |
|
| 162 | 167 |
return 0; |
| 163 | 168 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <lemon/concepts/digraph.h> |
| 20 | 20 |
#include <lemon/list_graph.h> |
| 21 | 21 |
#include <lemon/smart_graph.h> |
| 22 | 22 |
#include <lemon/full_graph.h> |
| 23 | 23 |
|
| 24 | 24 |
#include "test_tools.h" |
| 25 | 25 |
#include "graph_test.h" |
| 26 | 26 |
|
| 27 | 27 |
using namespace lemon; |
| 28 | 28 |
using namespace lemon::concepts; |
| 29 | 29 |
|
| 30 | 30 |
template <class Digraph> |
| 31 | 31 |
void checkDigraphBuild() {
|
| 32 | 32 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 33 | 33 |
Digraph G; |
| 34 | 34 |
|
| 35 | 35 |
checkGraphNodeList(G, 0); |
| 36 | 36 |
checkGraphArcList(G, 0); |
| 37 | 37 |
|
| 38 |
G.reserveNode(3); |
|
| 39 |
G.reserveArc(4); |
|
| 40 |
|
|
| 38 | 41 |
Node |
| 39 | 42 |
n1 = G.addNode(), |
| 40 | 43 |
n2 = G.addNode(), |
| 41 | 44 |
n3 = G.addNode(); |
| 42 | 45 |
checkGraphNodeList(G, 3); |
| 43 | 46 |
checkGraphArcList(G, 0); |
| 44 | 47 |
|
| 45 | 48 |
Arc a1 = G.addArc(n1, n2); |
| 46 | 49 |
check(G.source(a1) == n1 && G.target(a1) == n2, "Wrong arc"); |
| 47 | 50 |
checkGraphNodeList(G, 3); |
| 48 | 51 |
checkGraphArcList(G, 1); |
| 49 | 52 |
|
| 50 | 53 |
checkGraphOutArcList(G, n1, 1); |
| 51 | 54 |
checkGraphOutArcList(G, n2, 0); |
| 52 | 55 |
checkGraphOutArcList(G, n3, 0); |
| 53 | 56 |
|
| 54 | 57 |
checkGraphInArcList(G, n1, 0); |
| 55 | 58 |
checkGraphInArcList(G, n2, 1); |
| 56 | 59 |
checkGraphInArcList(G, n3, 0); |
| 57 | 60 |
|
| 58 | 61 |
checkGraphConArcList(G, 1); |
| 59 | 62 |
|
| 60 | 63 |
Arc a2 = G.addArc(n2, n1), |
| 61 | 64 |
a3 = G.addArc(n2, n3), |
| 62 | 65 |
a4 = G.addArc(n2, n3); |
| 63 | 66 |
|
| 64 | 67 |
checkGraphNodeList(G, 3); |
| 65 | 68 |
checkGraphArcList(G, 4); |
| 66 | 69 |
|
| 67 | 70 |
checkGraphOutArcList(G, n1, 1); |
| 68 | 71 |
checkGraphOutArcList(G, n2, 3); |
| 69 | 72 |
checkGraphOutArcList(G, n3, 0); |
| 70 | 73 |
|
| 71 | 74 |
checkGraphInArcList(G, n1, 1); |
| 72 | 75 |
checkGraphInArcList(G, n2, 1); |
| 73 | 76 |
checkGraphInArcList(G, n3, 2); |
| 74 | 77 |
|
| 75 | 78 |
checkGraphConArcList(G, 4); |
| 76 | 79 |
|
| 77 | 80 |
checkNodeIds(G); |
| 78 | 81 |
checkArcIds(G); |
| 79 | 82 |
checkGraphNodeMap(G); |
| 80 | 83 |
checkGraphArcMap(G); |
| 81 | 84 |
} |
| 82 | 85 |
|
| 83 | 86 |
template <class Digraph> |
| 84 | 87 |
void checkDigraphSplit() {
|
| 85 | 88 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 86 | 89 |
|
| 87 | 90 |
Digraph G; |
| 88 | 91 |
Node n1 = G.addNode(), n2 = G.addNode(), n3 = G.addNode(); |
| 89 | 92 |
Arc a1 = G.addArc(n1, n2), a2 = G.addArc(n2, n1), |
| 90 | 93 |
a3 = G.addArc(n2, n3), a4 = G.addArc(n2, n3); |
| 91 | 94 |
|
| 92 | 95 |
Node n4 = G.split(n2); |
| 93 | 96 |
|
| 94 | 97 |
check(G.target(OutArcIt(G, n2)) == n4 && |
| 95 | 98 |
G.source(InArcIt(G, n4)) == n2, |
| 96 | 99 |
"Wrong split."); |
| 97 | 100 |
|
| 98 | 101 |
checkGraphNodeList(G, 4); |
| 99 | 102 |
checkGraphArcList(G, 5); |
| 100 | 103 |
|
| 101 | 104 |
checkGraphOutArcList(G, n1, 1); |
| 102 | 105 |
checkGraphOutArcList(G, n2, 1); |
| 103 | 106 |
checkGraphOutArcList(G, n3, 0); |
| 104 | 107 |
checkGraphOutArcList(G, n4, 3); |
| 105 | 108 |
|
| 106 | 109 |
checkGraphInArcList(G, n1, 1); |
| 107 | 110 |
checkGraphInArcList(G, n2, 1); |
| 108 | 111 |
checkGraphInArcList(G, n3, 2); |
| 109 | 112 |
checkGraphInArcList(G, n4, 1); |
| 110 | 113 |
|
| 111 | 114 |
checkGraphConArcList(G, 5); |
| 112 | 115 |
} |
| 113 | 116 |
|
| 114 | 117 |
template <class Digraph> |
| 115 | 118 |
void checkDigraphAlter() {
|
| 116 | 119 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 117 | 120 |
|
| 118 | 121 |
Digraph G; |
| 119 | 122 |
Node n1 = G.addNode(), n2 = G.addNode(), |
| 120 | 123 |
n3 = G.addNode(), n4 = G.addNode(); |
| 121 | 124 |
Arc a1 = G.addArc(n1, n2), a2 = G.addArc(n4, n1), |
| 122 | 125 |
a3 = G.addArc(n4, n3), a4 = G.addArc(n4, n3), |
| 123 | 126 |
a5 = G.addArc(n2, n4); |
| 124 | 127 |
|
| 125 | 128 |
checkGraphNodeList(G, 4); |
| 126 | 129 |
checkGraphArcList(G, 5); |
| 127 | 130 |
|
| 128 | 131 |
// Check changeSource() and changeTarget() |
| 129 | 132 |
G.changeTarget(a4, n1); |
| 130 | 133 |
|
| 131 | 134 |
checkGraphNodeList(G, 4); |
| 132 | 135 |
checkGraphArcList(G, 5); |
| 133 | 136 |
|
| 134 | 137 |
checkGraphOutArcList(G, n1, 1); |
| 135 | 138 |
checkGraphOutArcList(G, n2, 1); |
| 136 | 139 |
checkGraphOutArcList(G, n3, 0); |
| 137 | 140 |
checkGraphOutArcList(G, n4, 3); |
| 138 | 141 |
|
| 139 | 142 |
checkGraphInArcList(G, n1, 2); |
| 140 | 143 |
checkGraphInArcList(G, n2, 1); |
| 141 | 144 |
checkGraphInArcList(G, n3, 1); |
| 142 | 145 |
checkGraphInArcList(G, n4, 1); |
| 143 | 146 |
|
| 144 | 147 |
checkGraphConArcList(G, 5); |
| 145 | 148 |
|
| 146 | 149 |
G.changeSource(a4, n3); |
| 147 | 150 |
|
| 148 | 151 |
checkGraphNodeList(G, 4); |
| 149 | 152 |
checkGraphArcList(G, 5); |
| 150 | 153 |
|
| 151 | 154 |
checkGraphOutArcList(G, n1, 1); |
| 152 | 155 |
checkGraphOutArcList(G, n2, 1); |
| 153 | 156 |
checkGraphOutArcList(G, n3, 1); |
| 154 | 157 |
checkGraphOutArcList(G, n4, 2); |
| 155 | 158 |
|
| 156 | 159 |
checkGraphInArcList(G, n1, 2); |
| 157 | 160 |
checkGraphInArcList(G, n2, 1); |
| 158 | 161 |
checkGraphInArcList(G, n3, 1); |
| 159 | 162 |
checkGraphInArcList(G, n4, 1); |
| 160 | 163 |
|
| 161 | 164 |
checkGraphConArcList(G, 5); |
| 162 | 165 |
|
| 163 | 166 |
// Check contract() |
| 164 | 167 |
G.contract(n2, n4, false); |
| 165 | 168 |
|
| 166 | 169 |
checkGraphNodeList(G, 3); |
| 167 | 170 |
checkGraphArcList(G, 5); |
| 168 | 171 |
|
| 169 | 172 |
checkGraphOutArcList(G, n1, 1); |
| 170 | 173 |
checkGraphOutArcList(G, n2, 3); |
| 171 | 174 |
checkGraphOutArcList(G, n3, 1); |
| 172 | 175 |
|
| 173 | 176 |
checkGraphInArcList(G, n1, 2); |
| 174 | 177 |
checkGraphInArcList(G, n2, 2); |
| 175 | 178 |
checkGraphInArcList(G, n3, 1); |
| 176 | 179 |
|
| 177 | 180 |
checkGraphConArcList(G, 5); |
| 178 | 181 |
|
| 179 | 182 |
G.contract(n2, n1); |
| 180 | 183 |
|
| 181 | 184 |
checkGraphNodeList(G, 2); |
| 182 | 185 |
checkGraphArcList(G, 3); |
| 183 | 186 |
|
| 184 | 187 |
checkGraphOutArcList(G, n2, 2); |
| 185 | 188 |
checkGraphOutArcList(G, n3, 1); |
| 186 | 189 |
|
| 187 | 190 |
checkGraphInArcList(G, n2, 2); |
| 188 | 191 |
checkGraphInArcList(G, n3, 1); |
| 189 | 192 |
|
| 190 | 193 |
checkGraphConArcList(G, 3); |
| 191 | 194 |
} |
| 192 | 195 |
|
| 193 | 196 |
template <class Digraph> |
| 194 | 197 |
void checkDigraphErase() {
|
| 195 | 198 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 196 | 199 |
|
| 197 | 200 |
Digraph G; |
| 198 | 201 |
Node n1 = G.addNode(), n2 = G.addNode(), |
| 199 | 202 |
n3 = G.addNode(), n4 = G.addNode(); |
| 200 | 203 |
Arc a1 = G.addArc(n1, n2), a2 = G.addArc(n4, n1), |
| 201 | 204 |
a3 = G.addArc(n4, n3), a4 = G.addArc(n3, n1), |
| 202 | 205 |
a5 = G.addArc(n2, n4); |
| 203 | 206 |
|
| 204 | 207 |
// Check arc deletion |
| 205 | 208 |
G.erase(a1); |
| 206 | 209 |
|
| 207 | 210 |
checkGraphNodeList(G, 4); |
| 208 | 211 |
checkGraphArcList(G, 4); |
| 209 | 212 |
|
| 210 | 213 |
checkGraphOutArcList(G, n1, 0); |
| 211 | 214 |
checkGraphOutArcList(G, n2, 1); |
| 212 | 215 |
checkGraphOutArcList(G, n3, 1); |
| 213 | 216 |
checkGraphOutArcList(G, n4, 2); |
| 214 | 217 |
|
| 215 | 218 |
checkGraphInArcList(G, n1, 2); |
| 216 | 219 |
checkGraphInArcList(G, n2, 0); |
| 217 | 220 |
checkGraphInArcList(G, n3, 1); |
| 218 | 221 |
checkGraphInArcList(G, n4, 1); |
| 219 | 222 |
|
| 220 | 223 |
checkGraphConArcList(G, 4); |
| 221 | 224 |
|
| 222 | 225 |
// Check node deletion |
| 223 | 226 |
G.erase(n4); |
| 224 | 227 |
|
| 225 | 228 |
checkGraphNodeList(G, 3); |
| 226 | 229 |
checkGraphArcList(G, 1); |
| 227 | 230 |
|
| 228 | 231 |
checkGraphOutArcList(G, n1, 0); |
| 229 | 232 |
checkGraphOutArcList(G, n2, 0); |
| 230 | 233 |
checkGraphOutArcList(G, n3, 1); |
| 231 | 234 |
checkGraphOutArcList(G, n4, 0); |
| 232 | 235 |
|
| 233 | 236 |
checkGraphInArcList(G, n1, 1); |
| 234 | 237 |
checkGraphInArcList(G, n2, 0); |
| 235 | 238 |
checkGraphInArcList(G, n3, 0); |
| 236 | 239 |
checkGraphInArcList(G, n4, 0); |
| 237 | 240 |
|
| 238 | 241 |
checkGraphConArcList(G, 1); |
| 239 | 242 |
} |
| 240 | 243 |
|
| 241 | 244 |
|
| 242 | 245 |
template <class Digraph> |
| 243 | 246 |
void checkDigraphSnapshot() {
|
| 244 | 247 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 245 | 248 |
|
| 246 | 249 |
Digraph G; |
| 247 | 250 |
Node n1 = G.addNode(), n2 = G.addNode(), n3 = G.addNode(); |
| 248 | 251 |
Arc a1 = G.addArc(n1, n2), a2 = G.addArc(n2, n1), |
| 249 | 252 |
a3 = G.addArc(n2, n3), a4 = G.addArc(n2, n3); |
| 250 | 253 |
|
| 251 | 254 |
typename Digraph::Snapshot snapshot(G); |
| 252 | 255 |
|
| 253 | 256 |
Node n = G.addNode(); |
| 254 | 257 |
G.addArc(n3, n); |
| 255 | 258 |
G.addArc(n, n3); |
| 256 | 259 |
|
| 257 | 260 |
checkGraphNodeList(G, 4); |
| 258 | 261 |
checkGraphArcList(G, 6); |
| 259 | 262 |
|
| 260 | 263 |
snapshot.restore(); |
| 261 | 264 |
|
| 262 | 265 |
checkGraphNodeList(G, 3); |
| 263 | 266 |
checkGraphArcList(G, 4); |
| 264 | 267 |
|
| 265 | 268 |
checkGraphOutArcList(G, n1, 1); |
| 266 | 269 |
checkGraphOutArcList(G, n2, 3); |
| 267 | 270 |
checkGraphOutArcList(G, n3, 0); |
| 268 | 271 |
|
| 269 | 272 |
checkGraphInArcList(G, n1, 1); |
| 270 | 273 |
checkGraphInArcList(G, n2, 1); |
| 271 | 274 |
checkGraphInArcList(G, n3, 2); |
| 272 | 275 |
|
| 273 | 276 |
checkGraphConArcList(G, 4); |
| 274 | 277 |
|
| 275 | 278 |
checkNodeIds(G); |
| 276 | 279 |
checkArcIds(G); |
| 277 | 280 |
checkGraphNodeMap(G); |
| 278 | 281 |
checkGraphArcMap(G); |
| 279 | 282 |
|
| 280 | 283 |
G.addNode(); |
| 281 | 284 |
snapshot.save(G); |
| 282 | 285 |
|
| 283 | 286 |
G.addArc(G.addNode(), G.addNode()); |
| 284 | 287 |
|
| 285 | 288 |
snapshot.restore(); |
| 289 |
snapshot.save(G); |
|
| 290 |
|
|
| 291 |
checkGraphNodeList(G, 4); |
|
| 292 |
checkGraphArcList(G, 4); |
|
| 293 |
|
|
| 294 |
G.addArc(G.addNode(), G.addNode()); |
|
| 295 |
|
|
| 296 |
snapshot.restore(); |
|
| 286 | 297 |
|
| 287 | 298 |
checkGraphNodeList(G, 4); |
| 288 | 299 |
checkGraphArcList(G, 4); |
| 289 | 300 |
} |
| 290 | 301 |
|
| 291 | 302 |
void checkConcepts() {
|
| 292 | 303 |
{ // Checking digraph components
|
| 293 | 304 |
checkConcept<BaseDigraphComponent, BaseDigraphComponent >(); |
| 294 | 305 |
|
| 295 | 306 |
checkConcept<IDableDigraphComponent<>, |
| 296 | 307 |
IDableDigraphComponent<> >(); |
| 297 | 308 |
|
| 298 | 309 |
checkConcept<IterableDigraphComponent<>, |
| 299 | 310 |
IterableDigraphComponent<> >(); |
| 300 | 311 |
|
| 301 | 312 |
checkConcept<MappableDigraphComponent<>, |
| 302 | 313 |
MappableDigraphComponent<> >(); |
| 303 | 314 |
} |
| 304 | 315 |
{ // Checking skeleton digraph
|
| 305 | 316 |
checkConcept<Digraph, Digraph>(); |
| 306 | 317 |
} |
| 307 | 318 |
{ // Checking ListDigraph
|
| 308 | 319 |
checkConcept<Digraph, ListDigraph>(); |
| 309 | 320 |
checkConcept<AlterableDigraphComponent<>, ListDigraph>(); |
| 310 | 321 |
checkConcept<ExtendableDigraphComponent<>, ListDigraph>(); |
| 311 | 322 |
checkConcept<ClearableDigraphComponent<>, ListDigraph>(); |
| 312 | 323 |
checkConcept<ErasableDigraphComponent<>, ListDigraph>(); |
| 313 | 324 |
} |
| 314 | 325 |
{ // Checking SmartDigraph
|
| 315 | 326 |
checkConcept<Digraph, SmartDigraph>(); |
| 316 | 327 |
checkConcept<AlterableDigraphComponent<>, SmartDigraph>(); |
| 317 | 328 |
checkConcept<ExtendableDigraphComponent<>, SmartDigraph>(); |
| 318 | 329 |
checkConcept<ClearableDigraphComponent<>, SmartDigraph>(); |
| 319 | 330 |
} |
| 320 | 331 |
{ // Checking FullDigraph
|
| 321 | 332 |
checkConcept<Digraph, FullDigraph>(); |
| 322 | 333 |
} |
| 323 | 334 |
} |
| 324 | 335 |
|
| 325 | 336 |
template <typename Digraph> |
| 326 | 337 |
void checkDigraphValidity() {
|
| 327 | 338 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 328 | 339 |
Digraph g; |
| 329 | 340 |
|
| 330 | 341 |
Node |
| 331 | 342 |
n1 = g.addNode(), |
| 332 | 343 |
n2 = g.addNode(), |
| 333 | 344 |
n3 = g.addNode(); |
| 334 | 345 |
|
| 335 | 346 |
Arc |
| 336 | 347 |
e1 = g.addArc(n1, n2), |
| 337 | 348 |
e2 = g.addArc(n2, n3); |
| 338 | 349 |
|
| 339 | 350 |
check(g.valid(n1), "Wrong validity check"); |
| 340 | 351 |
check(g.valid(e1), "Wrong validity check"); |
| 341 | 352 |
|
| 342 | 353 |
check(!g.valid(g.nodeFromId(-1)), "Wrong validity check"); |
| 343 | 354 |
check(!g.valid(g.arcFromId(-1)), "Wrong validity check"); |
| 344 | 355 |
} |
| 345 | 356 |
|
| 346 | 357 |
template <typename Digraph> |
| 347 | 358 |
void checkDigraphValidityErase() {
|
| 348 | 359 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 349 | 360 |
Digraph g; |
| 350 | 361 |
|
| 351 | 362 |
Node |
| 352 | 363 |
n1 = g.addNode(), |
| 353 | 364 |
n2 = g.addNode(), |
| 354 | 365 |
n3 = g.addNode(); |
| 355 | 366 |
|
| 356 | 367 |
Arc |
| 357 | 368 |
e1 = g.addArc(n1, n2), |
| 358 | 369 |
e2 = g.addArc(n2, n3); |
| 359 | 370 |
|
| 360 | 371 |
check(g.valid(n1), "Wrong validity check"); |
| 361 | 372 |
check(g.valid(e1), "Wrong validity check"); |
| 362 | 373 |
|
| 363 | 374 |
g.erase(n1); |
| 364 | 375 |
|
| 365 | 376 |
check(!g.valid(n1), "Wrong validity check"); |
| 366 | 377 |
check(g.valid(n2), "Wrong validity check"); |
| 367 | 378 |
check(g.valid(n3), "Wrong validity check"); |
| 368 | 379 |
check(!g.valid(e1), "Wrong validity check"); |
| 369 | 380 |
check(g.valid(e2), "Wrong validity check"); |
| 370 | 381 |
|
| 371 | 382 |
check(!g.valid(g.nodeFromId(-1)), "Wrong validity check"); |
| 372 | 383 |
check(!g.valid(g.arcFromId(-1)), "Wrong validity check"); |
| 373 | 384 |
} |
| 374 | 385 |
|
| 375 | 386 |
void checkFullDigraph(int num) {
|
| 376 | 387 |
typedef FullDigraph Digraph; |
| 377 | 388 |
DIGRAPH_TYPEDEFS(Digraph); |
| 389 |
|
|
| 378 | 390 |
Digraph G(num); |
| 391 |
check(G.nodeNum() == num && G.arcNum() == num * num, "Wrong size"); |
|
| 392 |
|
|
| 393 |
G.resize(num); |
|
| 394 |
check(G.nodeNum() == num && G.arcNum() == num * num, "Wrong size"); |
|
| 379 | 395 |
|
| 380 | 396 |
checkGraphNodeList(G, num); |
| 381 | 397 |
checkGraphArcList(G, num * num); |
| 382 | 398 |
|
| 383 | 399 |
for (NodeIt n(G); n != INVALID; ++n) {
|
| 384 | 400 |
checkGraphOutArcList(G, n, num); |
| 385 | 401 |
checkGraphInArcList(G, n, num); |
| 386 | 402 |
} |
| 387 | 403 |
|
| 388 | 404 |
checkGraphConArcList(G, num * num); |
| 389 | 405 |
|
| 390 | 406 |
checkNodeIds(G); |
| 391 | 407 |
checkArcIds(G); |
| 392 | 408 |
checkGraphNodeMap(G); |
| 393 | 409 |
checkGraphArcMap(G); |
| 394 | 410 |
|
| 395 | 411 |
for (int i = 0; i < G.nodeNum(); ++i) {
|
| 396 | 412 |
check(G.index(G(i)) == i, "Wrong index"); |
| 397 | 413 |
} |
| 398 | 414 |
|
| 399 | 415 |
for (NodeIt s(G); s != INVALID; ++s) {
|
| 400 | 416 |
for (NodeIt t(G); t != INVALID; ++t) {
|
| 401 | 417 |
Arc a = G.arc(s, t); |
| 402 | 418 |
check(G.source(a) == s && G.target(a) == t, "Wrong arc lookup"); |
| 403 | 419 |
} |
| 404 | 420 |
} |
| 405 | 421 |
} |
| 406 | 422 |
|
| 407 | 423 |
void checkDigraphs() {
|
| 408 | 424 |
{ // Checking ListDigraph
|
| 409 | 425 |
checkDigraphBuild<ListDigraph>(); |
| 410 | 426 |
checkDigraphSplit<ListDigraph>(); |
| 411 | 427 |
checkDigraphAlter<ListDigraph>(); |
| 412 | 428 |
checkDigraphErase<ListDigraph>(); |
| 413 | 429 |
checkDigraphSnapshot<ListDigraph>(); |
| 414 | 430 |
checkDigraphValidityErase<ListDigraph>(); |
| 415 | 431 |
} |
| 416 | 432 |
{ // Checking SmartDigraph
|
| 417 | 433 |
checkDigraphBuild<SmartDigraph>(); |
| 418 | 434 |
checkDigraphSplit<SmartDigraph>(); |
| 419 | 435 |
checkDigraphSnapshot<SmartDigraph>(); |
| 420 | 436 |
checkDigraphValidity<SmartDigraph>(); |
| 421 | 437 |
} |
| 422 | 438 |
{ // Checking FullDigraph
|
| 423 | 439 |
checkFullDigraph(8); |
| 424 | 440 |
} |
| 425 | 441 |
} |
| 426 | 442 |
|
| 427 | 443 |
int main() {
|
| 428 | 444 |
checkDigraphs(); |
| 429 | 445 |
checkConcepts(); |
| 430 | 446 |
return 0; |
| 431 | 447 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <lemon/concepts/graph.h> |
| 20 | 20 |
#include <lemon/list_graph.h> |
| 21 | 21 |
#include <lemon/smart_graph.h> |
| 22 | 22 |
#include <lemon/full_graph.h> |
| 23 | 23 |
#include <lemon/grid_graph.h> |
| 24 | 24 |
#include <lemon/hypercube_graph.h> |
| 25 | 25 |
|
| 26 | 26 |
#include "test_tools.h" |
| 27 | 27 |
#include "graph_test.h" |
| 28 | 28 |
|
| 29 | 29 |
using namespace lemon; |
| 30 | 30 |
using namespace lemon::concepts; |
| 31 | 31 |
|
| 32 | 32 |
template <class Graph> |
| 33 | 33 |
void checkGraphBuild() {
|
| 34 | 34 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 35 | 35 |
|
| 36 | 36 |
Graph G; |
| 37 | 37 |
checkGraphNodeList(G, 0); |
| 38 | 38 |
checkGraphEdgeList(G, 0); |
| 39 | 39 |
checkGraphArcList(G, 0); |
| 40 | 40 |
|
| 41 |
G.reserveNode(3); |
|
| 42 |
G.reserveEdge(3); |
|
| 43 |
|
|
| 41 | 44 |
Node |
| 42 | 45 |
n1 = G.addNode(), |
| 43 | 46 |
n2 = G.addNode(), |
| 44 | 47 |
n3 = G.addNode(); |
| 45 | 48 |
checkGraphNodeList(G, 3); |
| 46 | 49 |
checkGraphEdgeList(G, 0); |
| 47 | 50 |
checkGraphArcList(G, 0); |
| 48 | 51 |
|
| 49 | 52 |
Edge e1 = G.addEdge(n1, n2); |
| 50 | 53 |
check((G.u(e1) == n1 && G.v(e1) == n2) || (G.u(e1) == n2 && G.v(e1) == n1), |
| 51 | 54 |
"Wrong edge"); |
| 52 | 55 |
|
| 53 | 56 |
checkGraphNodeList(G, 3); |
| 54 | 57 |
checkGraphEdgeList(G, 1); |
| 55 | 58 |
checkGraphArcList(G, 2); |
| 56 | 59 |
|
| 57 | 60 |
checkGraphIncEdgeArcLists(G, n1, 1); |
| 58 | 61 |
checkGraphIncEdgeArcLists(G, n2, 1); |
| 59 | 62 |
checkGraphIncEdgeArcLists(G, n3, 0); |
| 60 | 63 |
|
| 61 | 64 |
checkGraphConEdgeList(G, 1); |
| 62 | 65 |
checkGraphConArcList(G, 2); |
| 63 | 66 |
|
| 64 | 67 |
Edge e2 = G.addEdge(n2, n1), |
| 65 | 68 |
e3 = G.addEdge(n2, n3); |
| 66 | 69 |
|
| 67 | 70 |
checkGraphNodeList(G, 3); |
| 68 | 71 |
checkGraphEdgeList(G, 3); |
| 69 | 72 |
checkGraphArcList(G, 6); |
| 70 | 73 |
|
| 71 | 74 |
checkGraphIncEdgeArcLists(G, n1, 2); |
| 72 | 75 |
checkGraphIncEdgeArcLists(G, n2, 3); |
| 73 | 76 |
checkGraphIncEdgeArcLists(G, n3, 1); |
| 74 | 77 |
|
| 75 | 78 |
checkGraphConEdgeList(G, 3); |
| 76 | 79 |
checkGraphConArcList(G, 6); |
| 77 | 80 |
|
| 78 | 81 |
checkArcDirections(G); |
| 79 | 82 |
|
| 80 | 83 |
checkNodeIds(G); |
| 81 | 84 |
checkArcIds(G); |
| 82 | 85 |
checkEdgeIds(G); |
| 83 | 86 |
checkGraphNodeMap(G); |
| 84 | 87 |
checkGraphArcMap(G); |
| 85 | 88 |
checkGraphEdgeMap(G); |
| 86 | 89 |
} |
| 87 | 90 |
|
| 88 | 91 |
template <class Graph> |
| 89 | 92 |
void checkGraphAlter() {
|
| 90 | 93 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 91 | 94 |
|
| 92 | 95 |
Graph G; |
| 93 | 96 |
Node n1 = G.addNode(), n2 = G.addNode(), |
| 94 | 97 |
n3 = G.addNode(), n4 = G.addNode(); |
| 95 | 98 |
Edge e1 = G.addEdge(n1, n2), e2 = G.addEdge(n2, n1), |
| 96 | 99 |
e3 = G.addEdge(n2, n3), e4 = G.addEdge(n1, n4), |
| 97 | 100 |
e5 = G.addEdge(n4, n3); |
| 98 | 101 |
|
| 99 | 102 |
checkGraphNodeList(G, 4); |
| 100 | 103 |
checkGraphEdgeList(G, 5); |
| 101 | 104 |
checkGraphArcList(G, 10); |
| 102 | 105 |
|
| 103 | 106 |
// Check changeU() and changeV() |
| 104 | 107 |
if (G.u(e2) == n2) {
|
| 105 | 108 |
G.changeU(e2, n3); |
| 106 | 109 |
} else {
|
| 107 | 110 |
G.changeV(e2, n3); |
| 108 | 111 |
} |
| 109 | 112 |
|
| 110 | 113 |
checkGraphNodeList(G, 4); |
| 111 | 114 |
checkGraphEdgeList(G, 5); |
| 112 | 115 |
checkGraphArcList(G, 10); |
| 113 | 116 |
|
| 114 | 117 |
checkGraphIncEdgeArcLists(G, n1, 3); |
| 115 | 118 |
checkGraphIncEdgeArcLists(G, n2, 2); |
| 116 | 119 |
checkGraphIncEdgeArcLists(G, n3, 3); |
| 117 | 120 |
checkGraphIncEdgeArcLists(G, n4, 2); |
| 118 | 121 |
|
| 119 | 122 |
checkGraphConEdgeList(G, 5); |
| 120 | 123 |
checkGraphConArcList(G, 10); |
| 121 | 124 |
|
| 122 | 125 |
if (G.u(e2) == n1) {
|
| 123 | 126 |
G.changeU(e2, n2); |
| 124 | 127 |
} else {
|
| 125 | 128 |
G.changeV(e2, n2); |
| 126 | 129 |
} |
| 127 | 130 |
|
| 128 | 131 |
checkGraphNodeList(G, 4); |
| 129 | 132 |
checkGraphEdgeList(G, 5); |
| 130 | 133 |
checkGraphArcList(G, 10); |
| 131 | 134 |
|
| 132 | 135 |
checkGraphIncEdgeArcLists(G, n1, 2); |
| 133 | 136 |
checkGraphIncEdgeArcLists(G, n2, 3); |
| 134 | 137 |
checkGraphIncEdgeArcLists(G, n3, 3); |
| 135 | 138 |
checkGraphIncEdgeArcLists(G, n4, 2); |
| 136 | 139 |
|
| 137 | 140 |
checkGraphConEdgeList(G, 5); |
| 138 | 141 |
checkGraphConArcList(G, 10); |
| 139 | 142 |
|
| 140 | 143 |
// Check contract() |
| 141 | 144 |
G.contract(n1, n4, false); |
| 142 | 145 |
|
| 143 | 146 |
checkGraphNodeList(G, 3); |
| 144 | 147 |
checkGraphEdgeList(G, 5); |
| 145 | 148 |
checkGraphArcList(G, 10); |
| 146 | 149 |
|
| 147 | 150 |
checkGraphIncEdgeArcLists(G, n1, 4); |
| 148 | 151 |
checkGraphIncEdgeArcLists(G, n2, 3); |
| 149 | 152 |
checkGraphIncEdgeArcLists(G, n3, 3); |
| 150 | 153 |
|
| 151 | 154 |
checkGraphConEdgeList(G, 5); |
| 152 | 155 |
checkGraphConArcList(G, 10); |
| 153 | 156 |
|
| 154 | 157 |
G.contract(n2, n3); |
| 155 | 158 |
|
| 156 | 159 |
checkGraphNodeList(G, 2); |
| 157 | 160 |
checkGraphEdgeList(G, 3); |
| 158 | 161 |
checkGraphArcList(G, 6); |
| 159 | 162 |
|
| 160 | 163 |
checkGraphIncEdgeArcLists(G, n1, 4); |
| 161 | 164 |
checkGraphIncEdgeArcLists(G, n2, 2); |
| 162 | 165 |
|
| 163 | 166 |
checkGraphConEdgeList(G, 3); |
| 164 | 167 |
checkGraphConArcList(G, 6); |
| 165 | 168 |
} |
| 166 | 169 |
|
| 167 | 170 |
template <class Graph> |
| 168 | 171 |
void checkGraphErase() {
|
| 169 | 172 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 170 | 173 |
|
| 171 | 174 |
Graph G; |
| 172 | 175 |
Node n1 = G.addNode(), n2 = G.addNode(), |
| 173 | 176 |
n3 = G.addNode(), n4 = G.addNode(); |
| 174 | 177 |
Edge e1 = G.addEdge(n1, n2), e2 = G.addEdge(n2, n1), |
| 175 | 178 |
e3 = G.addEdge(n2, n3), e4 = G.addEdge(n1, n4), |
| 176 | 179 |
e5 = G.addEdge(n4, n3); |
| 177 | 180 |
|
| 178 | 181 |
// Check edge deletion |
| 179 | 182 |
G.erase(e2); |
| 180 | 183 |
|
| 181 | 184 |
checkGraphNodeList(G, 4); |
| 182 | 185 |
checkGraphEdgeList(G, 4); |
| 183 | 186 |
checkGraphArcList(G, 8); |
| 184 | 187 |
|
| 185 | 188 |
checkGraphIncEdgeArcLists(G, n1, 2); |
| 186 | 189 |
checkGraphIncEdgeArcLists(G, n2, 2); |
| 187 | 190 |
checkGraphIncEdgeArcLists(G, n3, 2); |
| 188 | 191 |
checkGraphIncEdgeArcLists(G, n4, 2); |
| 189 | 192 |
|
| 190 | 193 |
checkGraphConEdgeList(G, 4); |
| 191 | 194 |
checkGraphConArcList(G, 8); |
| 192 | 195 |
|
| 193 | 196 |
// Check node deletion |
| 194 | 197 |
G.erase(n3); |
| 195 | 198 |
|
| 196 | 199 |
checkGraphNodeList(G, 3); |
| 197 | 200 |
checkGraphEdgeList(G, 2); |
| 198 | 201 |
checkGraphArcList(G, 4); |
| 199 | 202 |
|
| 200 | 203 |
checkGraphIncEdgeArcLists(G, n1, 2); |
| 201 | 204 |
checkGraphIncEdgeArcLists(G, n2, 1); |
| 202 | 205 |
checkGraphIncEdgeArcLists(G, n4, 1); |
| 203 | 206 |
|
| 204 | 207 |
checkGraphConEdgeList(G, 2); |
| 205 | 208 |
checkGraphConArcList(G, 4); |
| 206 | 209 |
} |
| 207 | 210 |
|
| 208 | 211 |
|
| 209 | 212 |
template <class Graph> |
| 210 | 213 |
void checkGraphSnapshot() {
|
| 211 | 214 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 212 | 215 |
|
| 213 | 216 |
Graph G; |
| 214 | 217 |
Node n1 = G.addNode(), n2 = G.addNode(), n3 = G.addNode(); |
| 215 | 218 |
Edge e1 = G.addEdge(n1, n2), e2 = G.addEdge(n2, n1), |
| 216 | 219 |
e3 = G.addEdge(n2, n3); |
| 217 | 220 |
|
| 218 | 221 |
checkGraphNodeList(G, 3); |
| 219 | 222 |
checkGraphEdgeList(G, 3); |
| 220 | 223 |
checkGraphArcList(G, 6); |
| 221 | 224 |
|
| 222 | 225 |
typename Graph::Snapshot snapshot(G); |
| 223 | 226 |
|
| 224 | 227 |
Node n = G.addNode(); |
| 225 | 228 |
G.addEdge(n3, n); |
| 226 | 229 |
G.addEdge(n, n3); |
| 227 | 230 |
G.addEdge(n3, n2); |
| 228 | 231 |
|
| 229 | 232 |
checkGraphNodeList(G, 4); |
| 230 | 233 |
checkGraphEdgeList(G, 6); |
| 231 | 234 |
checkGraphArcList(G, 12); |
| 232 | 235 |
|
| 233 | 236 |
snapshot.restore(); |
| 234 | 237 |
|
| 235 | 238 |
checkGraphNodeList(G, 3); |
| 236 | 239 |
checkGraphEdgeList(G, 3); |
| 237 | 240 |
checkGraphArcList(G, 6); |
| 238 | 241 |
|
| 239 | 242 |
checkGraphIncEdgeArcLists(G, n1, 2); |
| 240 | 243 |
checkGraphIncEdgeArcLists(G, n2, 3); |
| 241 | 244 |
checkGraphIncEdgeArcLists(G, n3, 1); |
| 242 | 245 |
|
| 243 | 246 |
checkGraphConEdgeList(G, 3); |
| 244 | 247 |
checkGraphConArcList(G, 6); |
| 245 | 248 |
|
| 246 | 249 |
checkNodeIds(G); |
| 247 | 250 |
checkEdgeIds(G); |
| 248 | 251 |
checkArcIds(G); |
| 249 | 252 |
checkGraphNodeMap(G); |
| 250 | 253 |
checkGraphEdgeMap(G); |
| 251 | 254 |
checkGraphArcMap(G); |
| 252 | 255 |
|
| 253 | 256 |
G.addNode(); |
| 254 | 257 |
snapshot.save(G); |
| 255 | 258 |
|
| 256 | 259 |
G.addEdge(G.addNode(), G.addNode()); |
| 257 | 260 |
|
| 258 | 261 |
snapshot.restore(); |
| 262 |
snapshot.save(G); |
|
| 263 |
|
|
| 264 |
checkGraphNodeList(G, 4); |
|
| 265 |
checkGraphEdgeList(G, 3); |
|
| 266 |
checkGraphArcList(G, 6); |
|
| 267 |
|
|
| 268 |
G.addEdge(G.addNode(), G.addNode()); |
|
| 269 |
|
|
| 270 |
snapshot.restore(); |
|
| 259 | 271 |
|
| 260 | 272 |
checkGraphNodeList(G, 4); |
| 261 | 273 |
checkGraphEdgeList(G, 3); |
| 262 | 274 |
checkGraphArcList(G, 6); |
| 263 | 275 |
} |
| 264 | 276 |
|
| 265 | 277 |
void checkFullGraph(int num) {
|
| 266 | 278 |
typedef FullGraph Graph; |
| 267 | 279 |
GRAPH_TYPEDEFS(Graph); |
| 268 | 280 |
|
| 269 | 281 |
Graph G(num); |
| 282 |
check(G.nodeNum() == num && G.edgeNum() == num * (num - 1) / 2, |
|
| 283 |
"Wrong size"); |
|
| 284 |
|
|
| 285 |
G.resize(num); |
|
| 286 |
check(G.nodeNum() == num && G.edgeNum() == num * (num - 1) / 2, |
|
| 287 |
"Wrong size"); |
|
| 288 |
|
|
| 270 | 289 |
checkGraphNodeList(G, num); |
| 271 | 290 |
checkGraphEdgeList(G, num * (num - 1) / 2); |
| 272 | 291 |
|
| 273 | 292 |
for (NodeIt n(G); n != INVALID; ++n) {
|
| 274 | 293 |
checkGraphOutArcList(G, n, num - 1); |
| 275 | 294 |
checkGraphInArcList(G, n, num - 1); |
| 276 | 295 |
checkGraphIncEdgeList(G, n, num - 1); |
| 277 | 296 |
} |
| 278 | 297 |
|
| 279 | 298 |
checkGraphConArcList(G, num * (num - 1)); |
| 280 | 299 |
checkGraphConEdgeList(G, num * (num - 1) / 2); |
| 281 | 300 |
|
| 282 | 301 |
checkArcDirections(G); |
| 283 | 302 |
|
| 284 | 303 |
checkNodeIds(G); |
| 285 | 304 |
checkArcIds(G); |
| 286 | 305 |
checkEdgeIds(G); |
| 287 | 306 |
checkGraphNodeMap(G); |
| 288 | 307 |
checkGraphArcMap(G); |
| 289 | 308 |
checkGraphEdgeMap(G); |
| 290 | 309 |
|
| 291 | 310 |
|
| 292 | 311 |
for (int i = 0; i < G.nodeNum(); ++i) {
|
| 293 | 312 |
check(G.index(G(i)) == i, "Wrong index"); |
| 294 | 313 |
} |
| 295 | 314 |
|
| 296 | 315 |
for (NodeIt u(G); u != INVALID; ++u) {
|
| 297 | 316 |
for (NodeIt v(G); v != INVALID; ++v) {
|
| 298 | 317 |
Edge e = G.edge(u, v); |
| 299 | 318 |
Arc a = G.arc(u, v); |
| 300 | 319 |
if (u == v) {
|
| 301 | 320 |
check(e == INVALID, "Wrong edge lookup"); |
| 302 | 321 |
check(a == INVALID, "Wrong arc lookup"); |
| 303 | 322 |
} else {
|
| 304 | 323 |
check((G.u(e) == u && G.v(e) == v) || |
| 305 | 324 |
(G.u(e) == v && G.v(e) == u), "Wrong edge lookup"); |
| 306 | 325 |
check(G.source(a) == u && G.target(a) == v, "Wrong arc lookup"); |
| 307 | 326 |
} |
| 308 | 327 |
} |
| 309 | 328 |
} |
| 310 | 329 |
} |
| 311 | 330 |
|
| 312 | 331 |
void checkConcepts() {
|
| 313 | 332 |
{ // Checking graph components
|
| 314 | 333 |
checkConcept<BaseGraphComponent, BaseGraphComponent >(); |
| 315 | 334 |
|
| 316 | 335 |
checkConcept<IDableGraphComponent<>, |
| 317 | 336 |
IDableGraphComponent<> >(); |
| 318 | 337 |
|
| 319 | 338 |
checkConcept<IterableGraphComponent<>, |
| 320 | 339 |
IterableGraphComponent<> >(); |
| 321 | 340 |
|
| 322 | 341 |
checkConcept<MappableGraphComponent<>, |
| 323 | 342 |
MappableGraphComponent<> >(); |
| 324 | 343 |
} |
| 325 | 344 |
{ // Checking skeleton graph
|
| 326 | 345 |
checkConcept<Graph, Graph>(); |
| 327 | 346 |
} |
| 328 | 347 |
{ // Checking ListGraph
|
| 329 | 348 |
checkConcept<Graph, ListGraph>(); |
| 330 | 349 |
checkConcept<AlterableGraphComponent<>, ListGraph>(); |
| 331 | 350 |
checkConcept<ExtendableGraphComponent<>, ListGraph>(); |
| 332 | 351 |
checkConcept<ClearableGraphComponent<>, ListGraph>(); |
| 333 | 352 |
checkConcept<ErasableGraphComponent<>, ListGraph>(); |
| 334 | 353 |
} |
| 335 | 354 |
{ // Checking SmartGraph
|
| 336 | 355 |
checkConcept<Graph, SmartGraph>(); |
| 337 | 356 |
checkConcept<AlterableGraphComponent<>, SmartGraph>(); |
| 338 | 357 |
checkConcept<ExtendableGraphComponent<>, SmartGraph>(); |
| 339 | 358 |
checkConcept<ClearableGraphComponent<>, SmartGraph>(); |
| 340 | 359 |
} |
| 341 | 360 |
{ // Checking FullGraph
|
| 342 | 361 |
checkConcept<Graph, FullGraph>(); |
| 343 | 362 |
} |
| 344 | 363 |
{ // Checking GridGraph
|
| 345 | 364 |
checkConcept<Graph, GridGraph>(); |
| 346 | 365 |
} |
| 347 | 366 |
{ // Checking HypercubeGraph
|
| 348 | 367 |
checkConcept<Graph, HypercubeGraph>(); |
| 349 | 368 |
} |
| 350 | 369 |
} |
| 351 | 370 |
|
| 352 | 371 |
template <typename Graph> |
| 353 | 372 |
void checkGraphValidity() {
|
| 354 | 373 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 355 | 374 |
Graph g; |
| 356 | 375 |
|
| 357 | 376 |
Node |
| 358 | 377 |
n1 = g.addNode(), |
| 359 | 378 |
n2 = g.addNode(), |
| 360 | 379 |
n3 = g.addNode(); |
| 361 | 380 |
|
| 362 | 381 |
Edge |
| 363 | 382 |
e1 = g.addEdge(n1, n2), |
| 364 | 383 |
e2 = g.addEdge(n2, n3); |
| 365 | 384 |
|
| 366 | 385 |
check(g.valid(n1), "Wrong validity check"); |
| 367 | 386 |
check(g.valid(e1), "Wrong validity check"); |
| 368 | 387 |
check(g.valid(g.direct(e1, true)), "Wrong validity check"); |
| 369 | 388 |
|
| 370 | 389 |
check(!g.valid(g.nodeFromId(-1)), "Wrong validity check"); |
| 371 | 390 |
check(!g.valid(g.edgeFromId(-1)), "Wrong validity check"); |
| 372 | 391 |
check(!g.valid(g.arcFromId(-1)), "Wrong validity check"); |
| 373 | 392 |
} |
| 374 | 393 |
|
| 375 | 394 |
template <typename Graph> |
| 376 | 395 |
void checkGraphValidityErase() {
|
| 377 | 396 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 378 | 397 |
Graph g; |
| 379 | 398 |
|
| 380 | 399 |
Node |
| 381 | 400 |
n1 = g.addNode(), |
| 382 | 401 |
n2 = g.addNode(), |
| 383 | 402 |
n3 = g.addNode(); |
| 384 | 403 |
|
| 385 | 404 |
Edge |
| 386 | 405 |
e1 = g.addEdge(n1, n2), |
| 387 | 406 |
e2 = g.addEdge(n2, n3); |
| 388 | 407 |
|
| 389 | 408 |
check(g.valid(n1), "Wrong validity check"); |
| 390 | 409 |
check(g.valid(e1), "Wrong validity check"); |
| 391 | 410 |
check(g.valid(g.direct(e1, true)), "Wrong validity check"); |
| 392 | 411 |
|
| 393 | 412 |
g.erase(n1); |
| 394 | 413 |
|
| 395 | 414 |
check(!g.valid(n1), "Wrong validity check"); |
| 396 | 415 |
check(g.valid(n2), "Wrong validity check"); |
| 397 | 416 |
check(g.valid(n3), "Wrong validity check"); |
| 398 | 417 |
check(!g.valid(e1), "Wrong validity check"); |
| 399 | 418 |
check(g.valid(e2), "Wrong validity check"); |
| 400 | 419 |
|
| 401 | 420 |
check(!g.valid(g.nodeFromId(-1)), "Wrong validity check"); |
| 402 | 421 |
check(!g.valid(g.edgeFromId(-1)), "Wrong validity check"); |
| 403 | 422 |
check(!g.valid(g.arcFromId(-1)), "Wrong validity check"); |
| 404 | 423 |
} |
| 405 | 424 |
|
| 406 | 425 |
void checkGridGraph(int width, int height) {
|
| 407 | 426 |
typedef GridGraph Graph; |
| 408 | 427 |
GRAPH_TYPEDEFS(Graph); |
| 409 | 428 |
Graph G(width, height); |
| 410 | 429 |
|
| 411 | 430 |
check(G.width() == width, "Wrong column number"); |
| 412 | 431 |
check(G.height() == height, "Wrong row number"); |
| 413 | 432 |
|
| 433 |
G.resize(width, height); |
|
| 434 |
check(G.width() == width, "Wrong column number"); |
|
| 435 |
check(G.height() == height, "Wrong row number"); |
|
| 436 |
|
|
| 414 | 437 |
for (int i = 0; i < width; ++i) {
|
| 415 | 438 |
for (int j = 0; j < height; ++j) {
|
| 416 | 439 |
check(G.col(G(i, j)) == i, "Wrong column"); |
| 417 | 440 |
check(G.row(G(i, j)) == j, "Wrong row"); |
| 418 | 441 |
check(G.pos(G(i, j)).x == i, "Wrong column"); |
| 419 | 442 |
check(G.pos(G(i, j)).y == j, "Wrong row"); |
| 420 | 443 |
} |
| 421 | 444 |
} |
| 422 | 445 |
|
| 423 | 446 |
for (int j = 0; j < height; ++j) {
|
| 424 | 447 |
for (int i = 0; i < width - 1; ++i) {
|
| 425 | 448 |
check(G.source(G.right(G(i, j))) == G(i, j), "Wrong right"); |
| 426 | 449 |
check(G.target(G.right(G(i, j))) == G(i + 1, j), "Wrong right"); |
| 427 | 450 |
} |
| 428 | 451 |
check(G.right(G(width - 1, j)) == INVALID, "Wrong right"); |
| 429 | 452 |
} |
| 430 | 453 |
|
| 431 | 454 |
for (int j = 0; j < height; ++j) {
|
| 432 | 455 |
for (int i = 1; i < width; ++i) {
|
| 433 | 456 |
check(G.source(G.left(G(i, j))) == G(i, j), "Wrong left"); |
| 434 | 457 |
check(G.target(G.left(G(i, j))) == G(i - 1, j), "Wrong left"); |
| 435 | 458 |
} |
| 436 | 459 |
check(G.left(G(0, j)) == INVALID, "Wrong left"); |
| 437 | 460 |
} |
| 438 | 461 |
|
| 439 | 462 |
for (int i = 0; i < width; ++i) {
|
| 440 | 463 |
for (int j = 0; j < height - 1; ++j) {
|
| 441 | 464 |
check(G.source(G.up(G(i, j))) == G(i, j), "Wrong up"); |
| 442 | 465 |
check(G.target(G.up(G(i, j))) == G(i, j + 1), "Wrong up"); |
| 443 | 466 |
} |
| 444 | 467 |
check(G.up(G(i, height - 1)) == INVALID, "Wrong up"); |
| 445 | 468 |
} |
| 446 | 469 |
|
| 447 | 470 |
for (int i = 0; i < width; ++i) {
|
| 448 | 471 |
for (int j = 1; j < height; ++j) {
|
| 449 | 472 |
check(G.source(G.down(G(i, j))) == G(i, j), "Wrong down"); |
| 450 | 473 |
check(G.target(G.down(G(i, j))) == G(i, j - 1), "Wrong down"); |
| 451 | 474 |
} |
| 452 | 475 |
check(G.down(G(i, 0)) == INVALID, "Wrong down"); |
| 453 | 476 |
} |
| 454 | 477 |
|
| 455 | 478 |
checkGraphNodeList(G, width * height); |
| 456 | 479 |
checkGraphEdgeList(G, width * (height - 1) + (width - 1) * height); |
| 457 | 480 |
checkGraphArcList(G, 2 * (width * (height - 1) + (width - 1) * height)); |
| 458 | 481 |
|
| 459 | 482 |
for (NodeIt n(G); n != INVALID; ++n) {
|
| 460 | 483 |
int nb = 4; |
| 461 | 484 |
if (G.col(n) == 0) --nb; |
| 462 | 485 |
if (G.col(n) == width - 1) --nb; |
| 463 | 486 |
if (G.row(n) == 0) --nb; |
| 464 | 487 |
if (G.row(n) == height - 1) --nb; |
| 465 | 488 |
|
| 466 | 489 |
checkGraphOutArcList(G, n, nb); |
| 467 | 490 |
checkGraphInArcList(G, n, nb); |
| 468 | 491 |
checkGraphIncEdgeList(G, n, nb); |
| 469 | 492 |
} |
| 470 | 493 |
|
| 471 | 494 |
checkArcDirections(G); |
| 472 | 495 |
|
| 473 | 496 |
checkGraphConArcList(G, 2 * (width * (height - 1) + (width - 1) * height)); |
| 474 | 497 |
checkGraphConEdgeList(G, width * (height - 1) + (width - 1) * height); |
| 475 | 498 |
|
| 476 | 499 |
checkNodeIds(G); |
| 477 | 500 |
checkArcIds(G); |
| 478 | 501 |
checkEdgeIds(G); |
| 479 | 502 |
checkGraphNodeMap(G); |
| 480 | 503 |
checkGraphArcMap(G); |
| 481 | 504 |
checkGraphEdgeMap(G); |
| 482 | 505 |
|
| 483 | 506 |
} |
| 484 | 507 |
|
| 485 | 508 |
void checkHypercubeGraph(int dim) {
|
| 486 | 509 |
GRAPH_TYPEDEFS(HypercubeGraph); |
| 487 | 510 |
|
| 488 | 511 |
HypercubeGraph G(dim); |
| 512 |
check(G.dimension() == dim, "Wrong dimension"); |
|
| 513 |
|
|
| 514 |
G.resize(dim); |
|
| 515 |
check(G.dimension() == dim, "Wrong dimension"); |
|
| 516 |
|
|
| 489 | 517 |
checkGraphNodeList(G, 1 << dim); |
| 490 | 518 |
checkGraphEdgeList(G, dim * (1 << (dim-1))); |
| 491 | 519 |
checkGraphArcList(G, dim * (1 << dim)); |
| 492 | 520 |
|
| 493 | 521 |
Node n = G.nodeFromId(dim); |
| 494 | 522 |
|
| 495 | 523 |
for (NodeIt n(G); n != INVALID; ++n) {
|
| 496 | 524 |
checkGraphIncEdgeList(G, n, dim); |
| 497 | 525 |
for (IncEdgeIt e(G, n); e != INVALID; ++e) {
|
| 498 | 526 |
check( (G.u(e) == n && |
| 499 | 527 |
G.id(G.v(e)) == (G.id(n) ^ (1 << G.dimension(e)))) || |
| 500 | 528 |
(G.v(e) == n && |
| 501 | 529 |
G.id(G.u(e)) == (G.id(n) ^ (1 << G.dimension(e)))), |
| 502 | 530 |
"Wrong edge or wrong dimension"); |
| 503 | 531 |
} |
| 504 | 532 |
|
| 505 | 533 |
checkGraphOutArcList(G, n, dim); |
| 506 | 534 |
for (OutArcIt a(G, n); a != INVALID; ++a) {
|
| 507 | 535 |
check(G.source(a) == n && |
| 508 | 536 |
G.id(G.target(a)) == (G.id(n) ^ (1 << G.dimension(a))), |
| 509 | 537 |
"Wrong arc or wrong dimension"); |
| 510 | 538 |
} |
| 511 | 539 |
|
| 512 | 540 |
checkGraphInArcList(G, n, dim); |
| 513 | 541 |
for (InArcIt a(G, n); a != INVALID; ++a) {
|
| 514 | 542 |
check(G.target(a) == n && |
| 515 | 543 |
G.id(G.source(a)) == (G.id(n) ^ (1 << G.dimension(a))), |
| 516 | 544 |
"Wrong arc or wrong dimension"); |
| 517 | 545 |
} |
| 518 | 546 |
} |
| 519 | 547 |
|
| 520 | 548 |
checkGraphConArcList(G, (1 << dim) * dim); |
| 521 | 549 |
checkGraphConEdgeList(G, dim * (1 << (dim-1))); |
| 522 | 550 |
|
| 523 | 551 |
checkArcDirections(G); |
| 524 | 552 |
|
| 525 | 553 |
checkNodeIds(G); |
| 526 | 554 |
checkArcIds(G); |
| 527 | 555 |
checkEdgeIds(G); |
| 528 | 556 |
checkGraphNodeMap(G); |
| 529 | 557 |
checkGraphArcMap(G); |
| 530 | 558 |
checkGraphEdgeMap(G); |
| 531 | 559 |
} |
| 532 | 560 |
|
| 533 | 561 |
void checkGraphs() {
|
| 534 | 562 |
{ // Checking ListGraph
|
| 535 | 563 |
checkGraphBuild<ListGraph>(); |
| 536 | 564 |
checkGraphAlter<ListGraph>(); |
| 537 | 565 |
checkGraphErase<ListGraph>(); |
| 538 | 566 |
checkGraphSnapshot<ListGraph>(); |
| 539 | 567 |
checkGraphValidityErase<ListGraph>(); |
| 540 | 568 |
} |
| 541 | 569 |
{ // Checking SmartGraph
|
| 542 | 570 |
checkGraphBuild<SmartGraph>(); |
| 543 | 571 |
checkGraphSnapshot<SmartGraph>(); |
| 544 | 572 |
checkGraphValidity<SmartGraph>(); |
| 545 | 573 |
} |
| 546 | 574 |
{ // Checking FullGraph
|
| 547 | 575 |
checkFullGraph(7); |
| 548 | 576 |
checkFullGraph(8); |
| 549 | 577 |
} |
| 550 | 578 |
{ // Checking GridGraph
|
| 551 | 579 |
checkGridGraph(5, 8); |
| 552 | 580 |
checkGridGraph(8, 5); |
| 553 | 581 |
checkGridGraph(5, 5); |
| 554 | 582 |
checkGridGraph(0, 0); |
| 555 | 583 |
checkGridGraph(1, 1); |
| 556 | 584 |
} |
| 557 | 585 |
{ // Checking HypercubeGraph
|
| 558 | 586 |
checkHypercubeGraph(1); |
| 559 | 587 |
checkHypercubeGraph(2); |
| 560 | 588 |
checkHypercubeGraph(3); |
| 561 | 589 |
checkHypercubeGraph(4); |
| 562 | 590 |
} |
| 563 | 591 |
} |
| 564 | 592 |
|
| 565 | 593 |
int main() {
|
| 566 | 594 |
checkConcepts(); |
| 567 | 595 |
checkGraphs(); |
| 568 | 596 |
return 0; |
| 569 | 597 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <iostream> |
| 20 | 20 |
#include <fstream> |
| 21 | 21 |
#include <string> |
| 22 | 22 |
#include <vector> |
| 23 | 23 |
|
| 24 | 24 |
#include <lemon/concept_check.h> |
| 25 | 25 |
#include <lemon/concepts/heap.h> |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/smart_graph.h> |
| 28 |
|
|
| 29 | 28 |
#include <lemon/lgf_reader.h> |
| 30 | 29 |
#include <lemon/dijkstra.h> |
| 31 | 30 |
#include <lemon/maps.h> |
| 32 | 31 |
|
| 33 | 32 |
#include <lemon/bin_heap.h> |
| 33 |
#include <lemon/fourary_heap.h> |
|
| 34 |
#include <lemon/kary_heap.h> |
|
| 34 | 35 |
#include <lemon/fib_heap.h> |
| 36 |
#include <lemon/pairing_heap.h> |
|
| 35 | 37 |
#include <lemon/radix_heap.h> |
| 38 |
#include <lemon/binom_heap.h> |
|
| 36 | 39 |
#include <lemon/bucket_heap.h> |
| 37 | 40 |
|
| 38 | 41 |
#include "test_tools.h" |
| 39 | 42 |
|
| 40 | 43 |
using namespace lemon; |
| 41 | 44 |
using namespace lemon::concepts; |
| 42 | 45 |
|
| 43 | 46 |
typedef ListDigraph Digraph; |
| 44 | 47 |
DIGRAPH_TYPEDEFS(Digraph); |
| 45 | 48 |
|
| 46 | 49 |
char test_lgf[] = |
| 47 | 50 |
"@nodes\n" |
| 48 | 51 |
"label\n" |
| 49 | 52 |
"0\n" |
| 50 | 53 |
"1\n" |
| 51 | 54 |
"2\n" |
| 52 | 55 |
"3\n" |
| 53 | 56 |
"4\n" |
| 54 | 57 |
"5\n" |
| 55 | 58 |
"6\n" |
| 56 | 59 |
"7\n" |
| 57 | 60 |
"8\n" |
| 58 | 61 |
"9\n" |
| 59 | 62 |
"@arcs\n" |
| 60 | 63 |
" label capacity\n" |
| 61 | 64 |
"0 5 0 94\n" |
| 62 | 65 |
"3 9 1 11\n" |
| 63 | 66 |
"8 7 2 83\n" |
| 64 | 67 |
"1 2 3 94\n" |
| 65 | 68 |
"5 7 4 35\n" |
| 66 | 69 |
"7 4 5 84\n" |
| 67 | 70 |
"9 5 6 38\n" |
| 68 | 71 |
"0 4 7 96\n" |
| 69 | 72 |
"6 7 8 6\n" |
| 70 | 73 |
"3 1 9 27\n" |
| 71 | 74 |
"5 2 10 77\n" |
| 72 | 75 |
"5 6 11 69\n" |
| 73 | 76 |
"6 5 12 41\n" |
| 74 | 77 |
"4 6 13 70\n" |
| 75 | 78 |
"3 2 14 45\n" |
| 76 | 79 |
"7 9 15 93\n" |
| 77 | 80 |
"5 9 16 50\n" |
| 78 | 81 |
"9 0 17 94\n" |
| 79 | 82 |
"9 6 18 67\n" |
| 80 | 83 |
"0 9 19 86\n" |
| 81 | 84 |
"@attributes\n" |
| 82 | 85 |
"source 3\n"; |
| 83 | 86 |
|
| 84 | 87 |
int test_seq[] = { 2, 28, 19, 27, 33, 25, 13, 41, 10, 26, 1, 9, 4, 34};
|
| 85 | 88 |
int test_inc[] = {20, 28, 34, 16, 0, 46, 44, 0, 42, 32, 14, 8, 6, 37};
|
| 86 | 89 |
|
| 87 | 90 |
int test_len = sizeof(test_seq) / sizeof(test_seq[0]); |
| 88 | 91 |
|
| 89 | 92 |
template <typename Heap> |
| 90 | 93 |
void heapSortTest() {
|
| 91 | 94 |
RangeMap<int> map(test_len, -1); |
| 92 |
|
|
| 93 | 95 |
Heap heap(map); |
| 94 | 96 |
|
| 95 | 97 |
std::vector<int> v(test_len); |
| 96 |
|
|
| 97 | 98 |
for (int i = 0; i < test_len; ++i) {
|
| 98 | 99 |
v[i] = test_seq[i]; |
| 99 | 100 |
heap.push(i, v[i]); |
| 100 | 101 |
} |
| 101 | 102 |
std::sort(v.begin(), v.end()); |
| 102 | 103 |
for (int i = 0; i < test_len; ++i) {
|
| 103 |
check(v[i] == heap.prio() |
|
| 104 |
check(v[i] == heap.prio(), "Wrong order in heap sort."); |
|
| 104 | 105 |
heap.pop(); |
| 105 | 106 |
} |
| 106 | 107 |
} |
| 107 | 108 |
|
| 108 | 109 |
template <typename Heap> |
| 109 | 110 |
void heapIncreaseTest() {
|
| 110 | 111 |
RangeMap<int> map(test_len, -1); |
| 111 | 112 |
|
| 112 | 113 |
Heap heap(map); |
| 113 | 114 |
|
| 114 | 115 |
std::vector<int> v(test_len); |
| 115 |
|
|
| 116 | 116 |
for (int i = 0; i < test_len; ++i) {
|
| 117 | 117 |
v[i] = test_seq[i]; |
| 118 | 118 |
heap.push(i, v[i]); |
| 119 | 119 |
} |
| 120 | 120 |
for (int i = 0; i < test_len; ++i) {
|
| 121 | 121 |
v[i] += test_inc[i]; |
| 122 | 122 |
heap.increase(i, v[i]); |
| 123 | 123 |
} |
| 124 | 124 |
std::sort(v.begin(), v.end()); |
| 125 | 125 |
for (int i = 0; i < test_len; ++i) {
|
| 126 |
check(v[i] == heap.prio() |
|
| 126 |
check(v[i] == heap.prio(), "Wrong order in heap increase test."); |
|
| 127 | 127 |
heap.pop(); |
| 128 | 128 |
} |
| 129 | 129 |
} |
| 130 | 130 |
|
| 131 |
|
|
| 132 |
|
|
| 133 | 131 |
template <typename Heap> |
| 134 | 132 |
void dijkstraHeapTest(const Digraph& digraph, const IntArcMap& length, |
| 135 | 133 |
Node source) {
|
| 136 | 134 |
|
| 137 | 135 |
typename Dijkstra<Digraph, IntArcMap>::template SetStandardHeap<Heap>:: |
| 138 | 136 |
Create dijkstra(digraph, length); |
| 139 | 137 |
|
| 140 | 138 |
dijkstra.run(source); |
| 141 | 139 |
|
| 142 | 140 |
for(ArcIt a(digraph); a != INVALID; ++a) {
|
| 143 | 141 |
Node s = digraph.source(a); |
| 144 | 142 |
Node t = digraph.target(a); |
| 145 | 143 |
if (dijkstra.reached(s)) {
|
| 146 | 144 |
check( dijkstra.dist(t) - dijkstra.dist(s) <= length[a], |
| 147 |
"Error in |
|
| 145 |
"Error in shortest path tree."); |
|
| 148 | 146 |
} |
| 149 | 147 |
} |
| 150 | 148 |
|
| 151 | 149 |
for(NodeIt n(digraph); n != INVALID; ++n) {
|
| 152 | 150 |
if ( dijkstra.reached(n) && dijkstra.predArc(n) != INVALID ) {
|
| 153 | 151 |
Arc a = dijkstra.predArc(n); |
| 154 | 152 |
Node s = digraph.source(a); |
| 155 | 153 |
check( dijkstra.dist(n) - dijkstra.dist(s) == length[a], |
| 156 |
"Error in |
|
| 154 |
"Error in shortest path tree."); |
|
| 157 | 155 |
} |
| 158 | 156 |
} |
| 159 | 157 |
|
| 160 | 158 |
} |
| 161 | 159 |
|
| 162 | 160 |
int main() {
|
| 163 | 161 |
|
| 164 | 162 |
typedef int Item; |
| 165 | 163 |
typedef int Prio; |
| 166 | 164 |
typedef RangeMap<int> ItemIntMap; |
| 167 | 165 |
|
| 168 | 166 |
Digraph digraph; |
| 169 | 167 |
IntArcMap length(digraph); |
| 170 | 168 |
Node source; |
| 171 | 169 |
|
| 172 | 170 |
std::istringstream input(test_lgf); |
| 173 | 171 |
digraphReader(digraph, input). |
| 174 | 172 |
arcMap("capacity", length).
|
| 175 | 173 |
node("source", source).
|
| 176 | 174 |
run(); |
| 177 | 175 |
|
| 176 |
// BinHeap |
|
| 178 | 177 |
{
|
| 179 | 178 |
typedef BinHeap<Prio, ItemIntMap> IntHeap; |
| 180 | 179 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
| 181 | 180 |
heapSortTest<IntHeap>(); |
| 182 | 181 |
heapIncreaseTest<IntHeap>(); |
| 183 | 182 |
|
| 184 | 183 |
typedef BinHeap<Prio, IntNodeMap > NodeHeap; |
| 185 | 184 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
| 186 | 185 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
| 187 | 186 |
} |
| 188 | 187 |
|
| 188 |
// FouraryHeap |
|
| 189 |
{
|
|
| 190 |
typedef FouraryHeap<Prio, ItemIntMap> IntHeap; |
|
| 191 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
| 192 |
heapSortTest<IntHeap>(); |
|
| 193 |
heapIncreaseTest<IntHeap>(); |
|
| 194 |
|
|
| 195 |
typedef FouraryHeap<Prio, IntNodeMap > NodeHeap; |
|
| 196 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
| 197 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
| 198 |
} |
|
| 199 |
|
|
| 200 |
// KaryHeap |
|
| 201 |
{
|
|
| 202 |
typedef KaryHeap<Prio, ItemIntMap> IntHeap; |
|
| 203 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
| 204 |
heapSortTest<IntHeap>(); |
|
| 205 |
heapIncreaseTest<IntHeap>(); |
|
| 206 |
|
|
| 207 |
typedef KaryHeap<Prio, IntNodeMap > NodeHeap; |
|
| 208 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
| 209 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
| 210 |
} |
|
| 211 |
|
|
| 212 |
// FibHeap |
|
| 189 | 213 |
{
|
| 190 | 214 |
typedef FibHeap<Prio, ItemIntMap> IntHeap; |
| 191 | 215 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
| 192 | 216 |
heapSortTest<IntHeap>(); |
| 193 | 217 |
heapIncreaseTest<IntHeap>(); |
| 194 | 218 |
|
| 195 | 219 |
typedef FibHeap<Prio, IntNodeMap > NodeHeap; |
| 196 | 220 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
| 197 | 221 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
| 198 | 222 |
} |
| 199 | 223 |
|
| 224 |
// PairingHeap |
|
| 225 |
{
|
|
| 226 |
typedef PairingHeap<Prio, ItemIntMap> IntHeap; |
|
| 227 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
| 228 |
heapSortTest<IntHeap>(); |
|
| 229 |
heapIncreaseTest<IntHeap>(); |
|
| 230 |
|
|
| 231 |
typedef PairingHeap<Prio, IntNodeMap > NodeHeap; |
|
| 232 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
| 233 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
| 234 |
} |
|
| 235 |
|
|
| 236 |
// RadixHeap |
|
| 200 | 237 |
{
|
| 201 | 238 |
typedef RadixHeap<ItemIntMap> IntHeap; |
| 202 | 239 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
| 203 | 240 |
heapSortTest<IntHeap>(); |
| 204 | 241 |
heapIncreaseTest<IntHeap>(); |
| 205 | 242 |
|
| 206 | 243 |
typedef RadixHeap<IntNodeMap > NodeHeap; |
| 207 | 244 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
| 208 | 245 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
| 209 | 246 |
} |
| 210 | 247 |
|
| 248 |
// BinomHeap |
|
| 249 |
{
|
|
| 250 |
typedef BinomHeap<Prio, ItemIntMap> IntHeap; |
|
| 251 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
| 252 |
heapSortTest<IntHeap>(); |
|
| 253 |
heapIncreaseTest<IntHeap>(); |
|
| 254 |
|
|
| 255 |
typedef BinomHeap<Prio, IntNodeMap > NodeHeap; |
|
| 256 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
| 257 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
| 258 |
} |
|
| 259 |
|
|
| 260 |
// BucketHeap, SimpleBucketHeap |
|
| 211 | 261 |
{
|
| 212 | 262 |
typedef BucketHeap<ItemIntMap> IntHeap; |
| 213 | 263 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
| 214 | 264 |
heapSortTest<IntHeap>(); |
| 215 | 265 |
heapIncreaseTest<IntHeap>(); |
| 216 | 266 |
|
| 217 | 267 |
typedef BucketHeap<IntNodeMap > NodeHeap; |
| 218 | 268 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
| 219 | 269 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
| 270 |
|
|
| 271 |
typedef SimpleBucketHeap<ItemIntMap> SimpleIntHeap; |
|
| 272 |
heapSortTest<SimpleIntHeap>(); |
|
| 220 | 273 |
} |
| 221 | 274 |
|
| 222 |
|
|
| 223 | 275 |
return 0; |
| 224 | 276 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <deque> |
| 20 | 20 |
#include <set> |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/concept_check.h> |
| 23 | 23 |
#include <lemon/concepts/maps.h> |
| 24 | 24 |
#include <lemon/maps.h> |
| 25 |
#include <lemon/list_graph.h> |
|
| 26 |
#include <lemon/smart_graph.h> |
|
| 27 |
#include <lemon/adaptors.h> |
|
| 28 |
#include <lemon/dfs.h> |
|
| 25 | 29 |
|
| 26 | 30 |
#include "test_tools.h" |
| 27 | 31 |
|
| 28 | 32 |
using namespace lemon; |
| 29 | 33 |
using namespace lemon::concepts; |
| 30 | 34 |
|
| 31 | 35 |
struct A {};
|
| 32 | 36 |
inline bool operator<(A, A) { return true; }
|
| 33 | 37 |
struct B {};
|
| 34 | 38 |
|
| 35 | 39 |
class C {
|
| 36 | 40 |
int x; |
| 37 | 41 |
public: |
| 38 | 42 |
C(int _x) : x(_x) {}
|
| 39 | 43 |
}; |
| 40 | 44 |
|
| 41 | 45 |
class F {
|
| 42 | 46 |
public: |
| 43 | 47 |
typedef A argument_type; |
| 44 | 48 |
typedef B result_type; |
| 45 | 49 |
|
| 46 | 50 |
B operator()(const A&) const { return B(); }
|
| 47 | 51 |
private: |
| 48 | 52 |
F& operator=(const F&); |
| 49 | 53 |
}; |
| 50 | 54 |
|
| 51 | 55 |
int func(A) { return 3; }
|
| 52 | 56 |
|
| 53 | 57 |
int binc(int a, B) { return a+1; }
|
| 54 | 58 |
|
| 55 | 59 |
typedef ReadMap<A, double> DoubleMap; |
| 56 | 60 |
typedef ReadWriteMap<A, double> DoubleWriteMap; |
| 57 | 61 |
typedef ReferenceMap<A, double, double&, const double&> DoubleRefMap; |
| 58 | 62 |
|
| 59 | 63 |
typedef ReadMap<A, bool> BoolMap; |
| 60 | 64 |
typedef ReadWriteMap<A, bool> BoolWriteMap; |
| 61 | 65 |
typedef ReferenceMap<A, bool, bool&, const bool&> BoolRefMap; |
| 62 | 66 |
|
| 67 |
template<typename Map1, typename Map2, typename ItemIt> |
|
| 68 |
void compareMap(const Map1& map1, const Map2& map2, ItemIt it) {
|
|
| 69 |
for (; it != INVALID; ++it) |
|
| 70 |
check(map1[it] == map2[it], "The maps are not equal"); |
|
| 71 |
} |
|
| 72 |
|
|
| 63 | 73 |
int main() |
| 64 | 74 |
{
|
| 65 | 75 |
// Map concepts |
| 66 | 76 |
checkConcept<ReadMap<A,B>, ReadMap<A,B> >(); |
| 67 | 77 |
checkConcept<ReadMap<A,C>, ReadMap<A,C> >(); |
| 68 | 78 |
checkConcept<WriteMap<A,B>, WriteMap<A,B> >(); |
| 69 | 79 |
checkConcept<WriteMap<A,C>, WriteMap<A,C> >(); |
| 70 | 80 |
checkConcept<ReadWriteMap<A,B>, ReadWriteMap<A,B> >(); |
| 71 | 81 |
checkConcept<ReadWriteMap<A,C>, ReadWriteMap<A,C> >(); |
| 72 | 82 |
checkConcept<ReferenceMap<A,B,B&,const B&>, ReferenceMap<A,B,B&,const B&> >(); |
| 73 | 83 |
checkConcept<ReferenceMap<A,C,C&,const C&>, ReferenceMap<A,C,C&,const C&> >(); |
| 74 | 84 |
|
| 75 | 85 |
// NullMap |
| 76 | 86 |
{
|
| 77 | 87 |
checkConcept<ReadWriteMap<A,B>, NullMap<A,B> >(); |
| 78 | 88 |
NullMap<A,B> map1; |
| 79 | 89 |
NullMap<A,B> map2 = map1; |
| 80 | 90 |
map1 = nullMap<A,B>(); |
| 81 | 91 |
} |
| 82 | 92 |
|
| 83 | 93 |
// ConstMap |
| 84 | 94 |
{
|
| 85 | 95 |
checkConcept<ReadWriteMap<A,B>, ConstMap<A,B> >(); |
| 86 | 96 |
checkConcept<ReadWriteMap<A,C>, ConstMap<A,C> >(); |
| 87 | 97 |
ConstMap<A,B> map1; |
| 88 | 98 |
ConstMap<A,B> map2 = B(); |
| 89 | 99 |
ConstMap<A,B> map3 = map1; |
| 90 | 100 |
map1 = constMap<A>(B()); |
| 91 | 101 |
map1 = constMap<A,B>(); |
| 92 | 102 |
map1.setAll(B()); |
| 93 | 103 |
ConstMap<A,C> map4(C(1)); |
| 94 | 104 |
ConstMap<A,C> map5 = map4; |
| 95 | 105 |
map4 = constMap<A>(C(2)); |
| 96 | 106 |
map4.setAll(C(3)); |
| 97 | 107 |
|
| 98 | 108 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,int> >(); |
| 99 | 109 |
check(constMap<A>(10)[A()] == 10, "Something is wrong with ConstMap"); |
| 100 | 110 |
|
| 101 | 111 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,Const<int,10> > >(); |
| 102 | 112 |
ConstMap<A,Const<int,10> > map6; |
| 103 | 113 |
ConstMap<A,Const<int,10> > map7 = map6; |
| 104 | 114 |
map6 = constMap<A,int,10>(); |
| 105 | 115 |
map7 = constMap<A,Const<int,10> >(); |
| 106 | 116 |
check(map6[A()] == 10 && map7[A()] == 10, |
| 107 | 117 |
"Something is wrong with ConstMap"); |
| 108 | 118 |
} |
| 109 | 119 |
|
| 110 | 120 |
// IdentityMap |
| 111 | 121 |
{
|
| 112 | 122 |
checkConcept<ReadMap<A,A>, IdentityMap<A> >(); |
| 113 | 123 |
IdentityMap<A> map1; |
| 114 | 124 |
IdentityMap<A> map2 = map1; |
| 115 | 125 |
map1 = identityMap<A>(); |
| 116 | 126 |
|
| 117 | 127 |
checkConcept<ReadMap<double,double>, IdentityMap<double> >(); |
| 118 | 128 |
check(identityMap<double>()[1.0] == 1.0 && |
| 119 | 129 |
identityMap<double>()[3.14] == 3.14, |
| 120 | 130 |
"Something is wrong with IdentityMap"); |
| 121 | 131 |
} |
| 122 | 132 |
|
| 123 | 133 |
// RangeMap |
| 124 | 134 |
{
|
| 125 | 135 |
checkConcept<ReferenceMap<int,B,B&,const B&>, RangeMap<B> >(); |
| 126 | 136 |
RangeMap<B> map1; |
| 127 | 137 |
RangeMap<B> map2(10); |
| 128 | 138 |
RangeMap<B> map3(10,B()); |
| 129 | 139 |
RangeMap<B> map4 = map1; |
| 130 | 140 |
RangeMap<B> map5 = rangeMap<B>(); |
| 131 | 141 |
RangeMap<B> map6 = rangeMap<B>(10); |
| 132 | 142 |
RangeMap<B> map7 = rangeMap(10,B()); |
| 133 | 143 |
|
| 134 | 144 |
checkConcept< ReferenceMap<int, double, double&, const double&>, |
| 135 | 145 |
RangeMap<double> >(); |
| 136 | 146 |
std::vector<double> v(10, 0); |
| 137 | 147 |
v[5] = 100; |
| 138 | 148 |
RangeMap<double> map8(v); |
| 139 | 149 |
RangeMap<double> map9 = rangeMap(v); |
| 140 | 150 |
check(map9.size() == 10 && map9[2] == 0 && map9[5] == 100, |
| 141 | 151 |
"Something is wrong with RangeMap"); |
| 142 | 152 |
} |
| 143 | 153 |
|
| 144 | 154 |
// SparseMap |
| 145 | 155 |
{
|
| 146 | 156 |
checkConcept<ReferenceMap<A,B,B&,const B&>, SparseMap<A,B> >(); |
| 147 | 157 |
SparseMap<A,B> map1; |
| 148 | 158 |
SparseMap<A,B> map2 = B(); |
| 149 | 159 |
SparseMap<A,B> map3 = sparseMap<A,B>(); |
| 150 | 160 |
SparseMap<A,B> map4 = sparseMap<A>(B()); |
| 151 | 161 |
|
| 152 | 162 |
checkConcept< ReferenceMap<double, int, int&, const int&>, |
| 153 | 163 |
SparseMap<double, int> >(); |
| 154 | 164 |
std::map<double, int> m; |
| 155 | 165 |
SparseMap<double, int> map5(m); |
| 156 | 166 |
SparseMap<double, int> map6(m,10); |
| 157 | 167 |
SparseMap<double, int> map7 = sparseMap(m); |
| 158 | 168 |
SparseMap<double, int> map8 = sparseMap(m,10); |
| 159 | 169 |
|
| 160 | 170 |
check(map5[1.0] == 0 && map5[3.14] == 0 && |
| 161 | 171 |
map6[1.0] == 10 && map6[3.14] == 10, |
| 162 | 172 |
"Something is wrong with SparseMap"); |
| 163 | 173 |
map5[1.0] = map6[3.14] = 100; |
| 164 | 174 |
check(map5[1.0] == 100 && map5[3.14] == 0 && |
| 165 | 175 |
map6[1.0] == 10 && map6[3.14] == 100, |
| 166 | 176 |
"Something is wrong with SparseMap"); |
| 167 | 177 |
} |
| 168 | 178 |
|
| 169 | 179 |
// ComposeMap |
| 170 | 180 |
{
|
| 171 | 181 |
typedef ComposeMap<DoubleMap, ReadMap<B,A> > CompMap; |
| 172 | 182 |
checkConcept<ReadMap<B,double>, CompMap>(); |
| 173 | 183 |
CompMap map1 = CompMap(DoubleMap(),ReadMap<B,A>()); |
| 174 | 184 |
CompMap map2 = composeMap(DoubleMap(), ReadMap<B,A>()); |
| 175 | 185 |
|
| 176 | 186 |
SparseMap<double, bool> m1(false); m1[3.14] = true; |
| 177 | 187 |
RangeMap<double> m2(2); m2[0] = 3.0; m2[1] = 3.14; |
| 178 | 188 |
check(!composeMap(m1,m2)[0] && composeMap(m1,m2)[1], |
| 179 | 189 |
"Something is wrong with ComposeMap") |
| 180 | 190 |
} |
| 181 | 191 |
|
| 182 | 192 |
// CombineMap |
| 183 | 193 |
{
|
| 184 | 194 |
typedef CombineMap<DoubleMap, DoubleMap, std::plus<double> > CombMap; |
| 185 | 195 |
checkConcept<ReadMap<A,double>, CombMap>(); |
| 186 | 196 |
CombMap map1 = CombMap(DoubleMap(), DoubleMap()); |
| 187 | 197 |
CombMap map2 = combineMap(DoubleMap(), DoubleMap(), std::plus<double>()); |
| 188 | 198 |
|
| 189 | 199 |
check(combineMap(constMap<B,int,2>(), identityMap<B>(), &binc)[B()] == 3, |
| 190 | 200 |
"Something is wrong with CombineMap"); |
| 191 | 201 |
} |
| 192 | 202 |
|
| 193 | 203 |
// FunctorToMap, MapToFunctor |
| 194 | 204 |
{
|
| 195 | 205 |
checkConcept<ReadMap<A,B>, FunctorToMap<F,A,B> >(); |
| 196 | 206 |
checkConcept<ReadMap<A,B>, FunctorToMap<F> >(); |
| 197 | 207 |
FunctorToMap<F> map1; |
| 198 | 208 |
FunctorToMap<F> map2 = FunctorToMap<F>(F()); |
| 199 | 209 |
B b = functorToMap(F())[A()]; |
| 200 | 210 |
|
| 201 | 211 |
checkConcept<ReadMap<A,B>, MapToFunctor<ReadMap<A,B> > >(); |
| 202 | 212 |
MapToFunctor<ReadMap<A,B> > map = MapToFunctor<ReadMap<A,B> >(ReadMap<A,B>()); |
| 203 | 213 |
|
| 204 | 214 |
check(functorToMap(&func)[A()] == 3, |
| 205 | 215 |
"Something is wrong with FunctorToMap"); |
| 206 | 216 |
check(mapToFunctor(constMap<A,int>(2))(A()) == 2, |
| 207 | 217 |
"Something is wrong with MapToFunctor"); |
| 208 | 218 |
check(mapToFunctor(functorToMap(&func))(A()) == 3 && |
| 209 | 219 |
mapToFunctor(functorToMap(&func))[A()] == 3, |
| 210 | 220 |
"Something is wrong with FunctorToMap or MapToFunctor"); |
| 211 | 221 |
check(functorToMap(mapToFunctor(constMap<A,int>(2)))[A()] == 2, |
| 212 | 222 |
"Something is wrong with FunctorToMap or MapToFunctor"); |
| 213 | 223 |
} |
| 214 | 224 |
|
| 215 | 225 |
// ConvertMap |
| 216 | 226 |
{
|
| 217 | 227 |
checkConcept<ReadMap<double,double>, |
| 218 | 228 |
ConvertMap<ReadMap<double, int>, double> >(); |
| 219 | 229 |
ConvertMap<RangeMap<bool>, int> map1(rangeMap(1, true)); |
| 220 | 230 |
ConvertMap<RangeMap<bool>, int> map2 = convertMap<int>(rangeMap(2, false)); |
| 221 | 231 |
} |
| 222 | 232 |
|
| 223 | 233 |
// ForkMap |
| 224 | 234 |
{
|
| 225 | 235 |
checkConcept<DoubleWriteMap, ForkMap<DoubleWriteMap, DoubleWriteMap> >(); |
| 226 | 236 |
|
| 227 | 237 |
typedef RangeMap<double> RM; |
| 228 | 238 |
typedef SparseMap<int, double> SM; |
| 229 | 239 |
RM m1(10, -1); |
| 230 | 240 |
SM m2(-1); |
| 231 | 241 |
checkConcept<ReadWriteMap<int, double>, ForkMap<RM, SM> >(); |
| 232 | 242 |
checkConcept<ReadWriteMap<int, double>, ForkMap<SM, RM> >(); |
| 233 | 243 |
ForkMap<RM, SM> map1(m1,m2); |
| 234 | 244 |
ForkMap<SM, RM> map2 = forkMap(m2,m1); |
| 235 | 245 |
map2.set(5, 10); |
| 236 | 246 |
check(m1[1] == -1 && m1[5] == 10 && m2[1] == -1 && |
| 237 | 247 |
m2[5] == 10 && map2[1] == -1 && map2[5] == 10, |
| 238 | 248 |
"Something is wrong with ForkMap"); |
| 239 | 249 |
} |
| 240 | 250 |
|
| 241 | 251 |
// Arithmetic maps: |
| 242 | 252 |
// - AddMap, SubMap, MulMap, DivMap |
| 243 | 253 |
// - ShiftMap, ShiftWriteMap, ScaleMap, ScaleWriteMap |
| 244 | 254 |
// - NegMap, NegWriteMap, AbsMap |
| 245 | 255 |
{
|
| 246 | 256 |
checkConcept<DoubleMap, AddMap<DoubleMap,DoubleMap> >(); |
| 247 | 257 |
checkConcept<DoubleMap, SubMap<DoubleMap,DoubleMap> >(); |
| 248 | 258 |
checkConcept<DoubleMap, MulMap<DoubleMap,DoubleMap> >(); |
| 249 | 259 |
checkConcept<DoubleMap, DivMap<DoubleMap,DoubleMap> >(); |
| 250 | 260 |
|
| 251 | 261 |
ConstMap<int, double> c1(1.0), c2(3.14); |
| 252 | 262 |
IdentityMap<int> im; |
| 253 | 263 |
ConvertMap<IdentityMap<int>, double> id(im); |
| 254 | 264 |
check(addMap(c1,id)[0] == 1.0 && addMap(c1,id)[10] == 11.0, |
| 255 | 265 |
"Something is wrong with AddMap"); |
| 256 | 266 |
check(subMap(id,c1)[0] == -1.0 && subMap(id,c1)[10] == 9.0, |
| 257 | 267 |
"Something is wrong with SubMap"); |
| 258 | 268 |
check(mulMap(id,c2)[0] == 0 && mulMap(id,c2)[2] == 6.28, |
| 259 | 269 |
"Something is wrong with MulMap"); |
| 260 | 270 |
check(divMap(c2,id)[1] == 3.14 && divMap(c2,id)[2] == 1.57, |
| 261 | 271 |
"Something is wrong with DivMap"); |
| 262 | 272 |
|
| 263 | 273 |
checkConcept<DoubleMap, ShiftMap<DoubleMap> >(); |
| 264 | 274 |
checkConcept<DoubleWriteMap, ShiftWriteMap<DoubleWriteMap> >(); |
| 265 | 275 |
checkConcept<DoubleMap, ScaleMap<DoubleMap> >(); |
| 266 | 276 |
checkConcept<DoubleWriteMap, ScaleWriteMap<DoubleWriteMap> >(); |
| 267 | 277 |
checkConcept<DoubleMap, NegMap<DoubleMap> >(); |
| 268 | 278 |
checkConcept<DoubleWriteMap, NegWriteMap<DoubleWriteMap> >(); |
| 269 | 279 |
checkConcept<DoubleMap, AbsMap<DoubleMap> >(); |
| 270 | 280 |
|
| 271 | 281 |
check(shiftMap(id, 2.0)[1] == 3.0 && shiftMap(id, 2.0)[10] == 12.0, |
| 272 | 282 |
"Something is wrong with ShiftMap"); |
| 273 | 283 |
check(shiftWriteMap(id, 2.0)[1] == 3.0 && |
| 274 | 284 |
shiftWriteMap(id, 2.0)[10] == 12.0, |
| 275 | 285 |
"Something is wrong with ShiftWriteMap"); |
| 276 | 286 |
check(scaleMap(id, 2.0)[1] == 2.0 && scaleMap(id, 2.0)[10] == 20.0, |
| 277 | 287 |
"Something is wrong with ScaleMap"); |
| 278 | 288 |
check(scaleWriteMap(id, 2.0)[1] == 2.0 && |
| 279 | 289 |
scaleWriteMap(id, 2.0)[10] == 20.0, |
| 280 | 290 |
"Something is wrong with ScaleWriteMap"); |
| 281 | 291 |
check(negMap(id)[1] == -1.0 && negMap(id)[-10] == 10.0, |
| 282 | 292 |
"Something is wrong with NegMap"); |
| 283 | 293 |
check(negWriteMap(id)[1] == -1.0 && negWriteMap(id)[-10] == 10.0, |
| 284 | 294 |
"Something is wrong with NegWriteMap"); |
| 285 | 295 |
check(absMap(id)[1] == 1.0 && absMap(id)[-10] == 10.0, |
| 286 | 296 |
"Something is wrong with AbsMap"); |
| 287 | 297 |
} |
| 288 | 298 |
|
| 289 | 299 |
// Logical maps: |
| 290 | 300 |
// - TrueMap, FalseMap |
| 291 | 301 |
// - AndMap, OrMap |
| 292 | 302 |
// - NotMap, NotWriteMap |
| 293 | 303 |
// - EqualMap, LessMap |
| 294 | 304 |
{
|
| 295 | 305 |
checkConcept<BoolMap, TrueMap<A> >(); |
| 296 | 306 |
checkConcept<BoolMap, FalseMap<A> >(); |
| 297 | 307 |
checkConcept<BoolMap, AndMap<BoolMap,BoolMap> >(); |
| 298 | 308 |
checkConcept<BoolMap, OrMap<BoolMap,BoolMap> >(); |
| 299 | 309 |
checkConcept<BoolMap, NotMap<BoolMap> >(); |
| 300 | 310 |
checkConcept<BoolWriteMap, NotWriteMap<BoolWriteMap> >(); |
| 301 | 311 |
checkConcept<BoolMap, EqualMap<DoubleMap,DoubleMap> >(); |
| 302 | 312 |
checkConcept<BoolMap, LessMap<DoubleMap,DoubleMap> >(); |
| 303 | 313 |
|
| 304 | 314 |
TrueMap<int> tm; |
| 305 | 315 |
FalseMap<int> fm; |
| 306 | 316 |
RangeMap<bool> rm(2); |
| 307 | 317 |
rm[0] = true; rm[1] = false; |
| 308 | 318 |
check(andMap(tm,rm)[0] && !andMap(tm,rm)[1] && |
| 309 | 319 |
!andMap(fm,rm)[0] && !andMap(fm,rm)[1], |
| 310 | 320 |
"Something is wrong with AndMap"); |
| 311 | 321 |
check(orMap(tm,rm)[0] && orMap(tm,rm)[1] && |
| 312 | 322 |
orMap(fm,rm)[0] && !orMap(fm,rm)[1], |
| 313 | 323 |
"Something is wrong with OrMap"); |
| 314 | 324 |
check(!notMap(rm)[0] && notMap(rm)[1], |
| 315 | 325 |
"Something is wrong with NotMap"); |
| 316 | 326 |
check(!notWriteMap(rm)[0] && notWriteMap(rm)[1], |
| 317 | 327 |
"Something is wrong with NotWriteMap"); |
| 318 | 328 |
|
| 319 | 329 |
ConstMap<int, double> cm(2.0); |
| 320 | 330 |
IdentityMap<int> im; |
| 321 | 331 |
ConvertMap<IdentityMap<int>, double> id(im); |
| 322 | 332 |
check(lessMap(id,cm)[1] && !lessMap(id,cm)[2] && !lessMap(id,cm)[3], |
| 323 | 333 |
"Something is wrong with LessMap"); |
| 324 | 334 |
check(!equalMap(id,cm)[1] && equalMap(id,cm)[2] && !equalMap(id,cm)[3], |
| 325 | 335 |
"Something is wrong with EqualMap"); |
| 326 | 336 |
} |
| 327 | 337 |
|
| 328 | 338 |
// LoggerBoolMap |
| 329 | 339 |
{
|
| 330 | 340 |
typedef std::vector<int> vec; |
| 341 |
checkConcept<WriteMap<int, bool>, LoggerBoolMap<vec::iterator> >(); |
|
| 342 |
checkConcept<WriteMap<int, bool>, |
|
| 343 |
LoggerBoolMap<std::back_insert_iterator<vec> > >(); |
|
| 344 |
|
|
| 331 | 345 |
vec v1; |
| 332 | 346 |
vec v2(10); |
| 333 | 347 |
LoggerBoolMap<std::back_insert_iterator<vec> > |
| 334 | 348 |
map1(std::back_inserter(v1)); |
| 335 | 349 |
LoggerBoolMap<vec::iterator> map2(v2.begin()); |
| 336 | 350 |
map1.set(10, false); |
| 337 | 351 |
map1.set(20, true); map2.set(20, true); |
| 338 | 352 |
map1.set(30, false); map2.set(40, false); |
| 339 | 353 |
map1.set(50, true); map2.set(50, true); |
| 340 | 354 |
map1.set(60, true); map2.set(60, true); |
| 341 | 355 |
check(v1.size() == 3 && v2.size() == 10 && |
| 342 | 356 |
v1[0]==20 && v1[1]==50 && v1[2]==60 && |
| 343 | 357 |
v2[0]==20 && v2[1]==50 && v2[2]==60, |
| 344 | 358 |
"Something is wrong with LoggerBoolMap"); |
| 345 | 359 |
|
| 346 | 360 |
int i = 0; |
| 347 | 361 |
for ( LoggerBoolMap<vec::iterator>::Iterator it = map2.begin(); |
| 348 | 362 |
it != map2.end(); ++it ) |
| 349 | 363 |
check(v1[i++] == *it, "Something is wrong with LoggerBoolMap"); |
| 364 |
|
|
| 365 |
typedef ListDigraph Graph; |
|
| 366 |
DIGRAPH_TYPEDEFS(Graph); |
|
| 367 |
Graph gr; |
|
| 368 |
|
|
| 369 |
Node n0 = gr.addNode(); |
|
| 370 |
Node n1 = gr.addNode(); |
|
| 371 |
Node n2 = gr.addNode(); |
|
| 372 |
Node n3 = gr.addNode(); |
|
| 373 |
|
|
| 374 |
gr.addArc(n3, n0); |
|
| 375 |
gr.addArc(n3, n2); |
|
| 376 |
gr.addArc(n0, n2); |
|
| 377 |
gr.addArc(n2, n1); |
|
| 378 |
gr.addArc(n0, n1); |
|
| 379 |
|
|
| 380 |
{
|
|
| 381 |
std::vector<Node> v; |
|
| 382 |
dfs(gr).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
|
| 383 |
|
|
| 384 |
check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3, |
|
| 385 |
"Something is wrong with LoggerBoolMap"); |
|
| 386 |
} |
|
| 387 |
{
|
|
| 388 |
std::vector<Node> v(countNodes(gr)); |
|
| 389 |
dfs(gr).processedMap(loggerBoolMap(v.begin())).run(); |
|
| 390 |
|
|
| 391 |
check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3, |
|
| 392 |
"Something is wrong with LoggerBoolMap"); |
|
| 393 |
} |
|
| 394 |
} |
|
| 395 |
|
|
| 396 |
// IdMap, RangeIdMap |
|
| 397 |
{
|
|
| 398 |
typedef ListDigraph Graph; |
|
| 399 |
DIGRAPH_TYPEDEFS(Graph); |
|
| 400 |
|
|
| 401 |
checkConcept<ReadMap<Node, int>, IdMap<Graph, Node> >(); |
|
| 402 |
checkConcept<ReadMap<Arc, int>, IdMap<Graph, Arc> >(); |
|
| 403 |
checkConcept<ReadMap<Node, int>, RangeIdMap<Graph, Node> >(); |
|
| 404 |
checkConcept<ReadMap<Arc, int>, RangeIdMap<Graph, Arc> >(); |
|
| 405 |
|
|
| 406 |
Graph gr; |
|
| 407 |
IdMap<Graph, Node> nmap(gr); |
|
| 408 |
IdMap<Graph, Arc> amap(gr); |
|
| 409 |
RangeIdMap<Graph, Node> nrmap(gr); |
|
| 410 |
RangeIdMap<Graph, Arc> armap(gr); |
|
| 411 |
|
|
| 412 |
Node n0 = gr.addNode(); |
|
| 413 |
Node n1 = gr.addNode(); |
|
| 414 |
Node n2 = gr.addNode(); |
|
| 415 |
|
|
| 416 |
Arc a0 = gr.addArc(n0, n1); |
|
| 417 |
Arc a1 = gr.addArc(n0, n2); |
|
| 418 |
Arc a2 = gr.addArc(n2, n1); |
|
| 419 |
Arc a3 = gr.addArc(n2, n0); |
|
| 420 |
|
|
| 421 |
check(nmap[n0] == gr.id(n0) && nmap(gr.id(n0)) == n0, "Wrong IdMap"); |
|
| 422 |
check(nmap[n1] == gr.id(n1) && nmap(gr.id(n1)) == n1, "Wrong IdMap"); |
|
| 423 |
check(nmap[n2] == gr.id(n2) && nmap(gr.id(n2)) == n2, "Wrong IdMap"); |
|
| 424 |
|
|
| 425 |
check(amap[a0] == gr.id(a0) && amap(gr.id(a0)) == a0, "Wrong IdMap"); |
|
| 426 |
check(amap[a1] == gr.id(a1) && amap(gr.id(a1)) == a1, "Wrong IdMap"); |
|
| 427 |
check(amap[a2] == gr.id(a2) && amap(gr.id(a2)) == a2, "Wrong IdMap"); |
|
| 428 |
check(amap[a3] == gr.id(a3) && amap(gr.id(a3)) == a3, "Wrong IdMap"); |
|
| 429 |
|
|
| 430 |
check(nmap.inverse()[gr.id(n0)] == n0, "Wrong IdMap::InverseMap"); |
|
| 431 |
check(amap.inverse()[gr.id(a0)] == a0, "Wrong IdMap::InverseMap"); |
|
| 432 |
|
|
| 433 |
check(nrmap.size() == 3 && armap.size() == 4, |
|
| 434 |
"Wrong RangeIdMap::size()"); |
|
| 435 |
|
|
| 436 |
check(nrmap[n0] == 0 && nrmap(0) == n0, "Wrong RangeIdMap"); |
|
| 437 |
check(nrmap[n1] == 1 && nrmap(1) == n1, "Wrong RangeIdMap"); |
|
| 438 |
check(nrmap[n2] == 2 && nrmap(2) == n2, "Wrong RangeIdMap"); |
|
| 439 |
|
|
| 440 |
check(armap[a0] == 0 && armap(0) == a0, "Wrong RangeIdMap"); |
|
| 441 |
check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap"); |
|
| 442 |
check(armap[a2] == 2 && armap(2) == a2, "Wrong RangeIdMap"); |
|
| 443 |
check(armap[a3] == 3 && armap(3) == a3, "Wrong RangeIdMap"); |
|
| 444 |
|
|
| 445 |
check(nrmap.inverse()[0] == n0, "Wrong RangeIdMap::InverseMap"); |
|
| 446 |
check(armap.inverse()[0] == a0, "Wrong RangeIdMap::InverseMap"); |
|
| 447 |
|
|
| 448 |
gr.erase(n1); |
|
| 449 |
|
|
| 450 |
if (nrmap[n0] == 1) nrmap.swap(n0, n2); |
|
| 451 |
nrmap.swap(n2, n0); |
|
| 452 |
if (armap[a1] == 1) armap.swap(a1, a3); |
|
| 453 |
armap.swap(a3, a1); |
|
| 454 |
|
|
| 455 |
check(nrmap.size() == 2 && armap.size() == 2, |
|
| 456 |
"Wrong RangeIdMap::size()"); |
|
| 457 |
|
|
| 458 |
check(nrmap[n0] == 1 && nrmap(1) == n0, "Wrong RangeIdMap"); |
|
| 459 |
check(nrmap[n2] == 0 && nrmap(0) == n2, "Wrong RangeIdMap"); |
|
| 460 |
|
|
| 461 |
check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap"); |
|
| 462 |
check(armap[a3] == 0 && armap(0) == a3, "Wrong RangeIdMap"); |
|
| 463 |
|
|
| 464 |
check(nrmap.inverse()[0] == n2, "Wrong RangeIdMap::InverseMap"); |
|
| 465 |
check(armap.inverse()[0] == a3, "Wrong RangeIdMap::InverseMap"); |
|
| 466 |
} |
|
| 467 |
|
|
| 468 |
// SourceMap, TargetMap, ForwardMap, BackwardMap, InDegMap, OutDegMap |
|
| 469 |
{
|
|
| 470 |
typedef ListGraph Graph; |
|
| 471 |
GRAPH_TYPEDEFS(Graph); |
|
| 472 |
|
|
| 473 |
checkConcept<ReadMap<Arc, Node>, SourceMap<Graph> >(); |
|
| 474 |
checkConcept<ReadMap<Arc, Node>, TargetMap<Graph> >(); |
|
| 475 |
checkConcept<ReadMap<Edge, Arc>, ForwardMap<Graph> >(); |
|
| 476 |
checkConcept<ReadMap<Edge, Arc>, BackwardMap<Graph> >(); |
|
| 477 |
checkConcept<ReadMap<Node, int>, InDegMap<Graph> >(); |
|
| 478 |
checkConcept<ReadMap<Node, int>, OutDegMap<Graph> >(); |
|
| 479 |
|
|
| 480 |
Graph gr; |
|
| 481 |
Node n0 = gr.addNode(); |
|
| 482 |
Node n1 = gr.addNode(); |
|
| 483 |
Node n2 = gr.addNode(); |
|
| 484 |
|
|
| 485 |
gr.addEdge(n0,n1); |
|
| 486 |
gr.addEdge(n1,n2); |
|
| 487 |
gr.addEdge(n0,n2); |
|
| 488 |
gr.addEdge(n2,n1); |
|
| 489 |
gr.addEdge(n1,n2); |
|
| 490 |
gr.addEdge(n0,n1); |
|
| 491 |
|
|
| 492 |
for (EdgeIt e(gr); e != INVALID; ++e) {
|
|
| 493 |
check(forwardMap(gr)[e] == gr.direct(e, true), "Wrong ForwardMap"); |
|
| 494 |
check(backwardMap(gr)[e] == gr.direct(e, false), "Wrong BackwardMap"); |
|
| 495 |
} |
|
| 496 |
|
|
| 497 |
compareMap(sourceMap(orienter(gr, constMap<Edge, bool>(true))), |
|
| 498 |
targetMap(orienter(gr, constMap<Edge, bool>(false))), |
|
| 499 |
EdgeIt(gr)); |
|
| 500 |
|
|
| 501 |
typedef Orienter<Graph, const ConstMap<Edge, bool> > Digraph; |
|
| 502 |
Digraph dgr(gr, constMap<Edge, bool>(true)); |
|
| 503 |
OutDegMap<Digraph> odm(dgr); |
|
| 504 |
InDegMap<Digraph> idm(dgr); |
|
| 505 |
|
|
| 506 |
check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 1, "Wrong OutDegMap"); |
|
| 507 |
check(idm[n0] == 0 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap"); |
|
| 508 |
|
|
| 509 |
gr.addEdge(n2, n0); |
|
| 510 |
|
|
| 511 |
check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 2, "Wrong OutDegMap"); |
|
| 512 |
check(idm[n0] == 1 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap"); |
|
| 513 |
} |
|
| 514 |
|
|
| 515 |
// CrossRefMap |
|
| 516 |
{
|
|
| 517 |
typedef ListDigraph Graph; |
|
| 518 |
DIGRAPH_TYPEDEFS(Graph); |
|
| 519 |
|
|
| 520 |
checkConcept<ReadWriteMap<Node, int>, |
|
| 521 |
CrossRefMap<Graph, Node, int> >(); |
|
| 522 |
checkConcept<ReadWriteMap<Node, bool>, |
|
| 523 |
CrossRefMap<Graph, Node, bool> >(); |
|
| 524 |
checkConcept<ReadWriteMap<Node, double>, |
|
| 525 |
CrossRefMap<Graph, Node, double> >(); |
|
| 526 |
|
|
| 527 |
Graph gr; |
|
| 528 |
typedef CrossRefMap<Graph, Node, char> CRMap; |
|
| 529 |
CRMap map(gr); |
|
| 530 |
|
|
| 531 |
Node n0 = gr.addNode(); |
|
| 532 |
Node n1 = gr.addNode(); |
|
| 533 |
Node n2 = gr.addNode(); |
|
| 534 |
|
|
| 535 |
map.set(n0, 'A'); |
|
| 536 |
map.set(n1, 'B'); |
|
| 537 |
map.set(n2, 'C'); |
|
| 538 |
|
|
| 539 |
check(map[n0] == 'A' && map('A') == n0 && map.inverse()['A'] == n0,
|
|
| 540 |
"Wrong CrossRefMap"); |
|
| 541 |
check(map[n1] == 'B' && map('B') == n1 && map.inverse()['B'] == n1,
|
|
| 542 |
"Wrong CrossRefMap"); |
|
| 543 |
check(map[n2] == 'C' && map('C') == n2 && map.inverse()['C'] == n2,
|
|
| 544 |
"Wrong CrossRefMap"); |
|
| 545 |
check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1,
|
|
| 546 |
"Wrong CrossRefMap::count()"); |
|
| 547 |
|
|
| 548 |
CRMap::ValueIt it = map.beginValue(); |
|
| 549 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
|
| 550 |
it == map.endValue(), "Wrong value iterator"); |
|
| 551 |
|
|
| 552 |
map.set(n2, 'A'); |
|
| 553 |
|
|
| 554 |
check(map[n0] == 'A' && map[n1] == 'B' && map[n2] == 'A', |
|
| 555 |
"Wrong CrossRefMap"); |
|
| 556 |
check(map('A') == n0 && map.inverse()['A'] == n0, "Wrong CrossRefMap");
|
|
| 557 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");
|
|
| 558 |
check(map('C') == INVALID && map.inverse()['C'] == INVALID,
|
|
| 559 |
"Wrong CrossRefMap"); |
|
| 560 |
check(map.count('A') == 2 && map.count('B') == 1 && map.count('C') == 0,
|
|
| 561 |
"Wrong CrossRefMap::count()"); |
|
| 562 |
|
|
| 563 |
it = map.beginValue(); |
|
| 564 |
check(*it++ == 'A' && *it++ == 'A' && *it++ == 'B' && |
|
| 565 |
it == map.endValue(), "Wrong value iterator"); |
|
| 566 |
|
|
| 567 |
map.set(n0, 'C'); |
|
| 568 |
|
|
| 569 |
check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A', |
|
| 570 |
"Wrong CrossRefMap"); |
|
| 571 |
check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap");
|
|
| 572 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");
|
|
| 573 |
check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap");
|
|
| 574 |
check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1,
|
|
| 575 |
"Wrong CrossRefMap::count()"); |
|
| 576 |
|
|
| 577 |
it = map.beginValue(); |
|
| 578 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
|
| 579 |
it == map.endValue(), "Wrong value iterator"); |
|
| 350 | 580 |
} |
| 351 | 581 |
|
| 582 |
// CrossRefMap |
|
| 583 |
{
|
|
| 584 |
typedef SmartDigraph Graph; |
|
| 585 |
DIGRAPH_TYPEDEFS(Graph); |
|
| 586 |
|
|
| 587 |
checkConcept<ReadWriteMap<Node, int>, |
|
| 588 |
CrossRefMap<Graph, Node, int> >(); |
|
| 589 |
|
|
| 590 |
Graph gr; |
|
| 591 |
typedef CrossRefMap<Graph, Node, char> CRMap; |
|
| 592 |
typedef CRMap::ValueIterator ValueIt; |
|
| 593 |
CRMap map(gr); |
|
| 594 |
|
|
| 595 |
Node n0 = gr.addNode(); |
|
| 596 |
Node n1 = gr.addNode(); |
|
| 597 |
Node n2 = gr.addNode(); |
|
| 598 |
|
|
| 599 |
map.set(n0, 'A'); |
|
| 600 |
map.set(n1, 'B'); |
|
| 601 |
map.set(n2, 'C'); |
|
| 602 |
map.set(n2, 'A'); |
|
| 603 |
map.set(n0, 'C'); |
|
| 604 |
|
|
| 605 |
check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A', |
|
| 606 |
"Wrong CrossRefMap"); |
|
| 607 |
check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap");
|
|
| 608 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");
|
|
| 609 |
check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap");
|
|
| 610 |
|
|
| 611 |
ValueIt it = map.beginValue(); |
|
| 612 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
|
| 613 |
it == map.endValue(), "Wrong value iterator"); |
|
| 614 |
} |
|
| 615 |
|
|
| 616 |
// Iterable bool map |
|
| 617 |
{
|
|
| 618 |
typedef SmartGraph Graph; |
|
| 619 |
typedef SmartGraph::Node Item; |
|
| 620 |
|
|
| 621 |
typedef IterableBoolMap<SmartGraph, SmartGraph::Node> Ibm; |
|
| 622 |
checkConcept<ReferenceMap<Item, bool, bool&, const bool&>, Ibm>(); |
|
| 623 |
|
|
| 624 |
const int num = 10; |
|
| 625 |
Graph g; |
|
| 626 |
std::vector<Item> items; |
|
| 627 |
for (int i = 0; i < num; ++i) {
|
|
| 628 |
items.push_back(g.addNode()); |
|
| 629 |
} |
|
| 630 |
|
|
| 631 |
Ibm map1(g, true); |
|
| 632 |
int n = 0; |
|
| 633 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
|
|
| 634 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt"); |
|
| 635 |
++n; |
|
| 636 |
} |
|
| 637 |
check(n == num, "Wrong number"); |
|
| 638 |
|
|
| 639 |
n = 0; |
|
| 640 |
for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) {
|
|
| 641 |
check(map1[static_cast<Item>(it)], "Wrong ItemIt for true"); |
|
| 642 |
++n; |
|
| 643 |
} |
|
| 644 |
check(n == num, "Wrong number"); |
|
| 645 |
check(Ibm::FalseIt(map1) == INVALID, "Wrong FalseIt"); |
|
| 646 |
check(Ibm::ItemIt(map1, false) == INVALID, "Wrong ItemIt for false"); |
|
| 647 |
|
|
| 648 |
map1[items[5]] = true; |
|
| 649 |
|
|
| 650 |
n = 0; |
|
| 651 |
for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) {
|
|
| 652 |
check(map1[static_cast<Item>(it)], "Wrong ItemIt for true"); |
|
| 653 |
++n; |
|
| 654 |
} |
|
| 655 |
check(n == num, "Wrong number"); |
|
| 656 |
|
|
| 657 |
map1[items[num / 2]] = false; |
|
| 658 |
check(map1[items[num / 2]] == false, "Wrong map value"); |
|
| 659 |
|
|
| 660 |
n = 0; |
|
| 661 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
|
|
| 662 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt for true"); |
|
| 663 |
++n; |
|
| 664 |
} |
|
| 665 |
check(n == num - 1, "Wrong number"); |
|
| 666 |
|
|
| 667 |
n = 0; |
|
| 668 |
for (Ibm::FalseIt it(map1); it != INVALID; ++it) {
|
|
| 669 |
check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true"); |
|
| 670 |
++n; |
|
| 671 |
} |
|
| 672 |
check(n == 1, "Wrong number"); |
|
| 673 |
|
|
| 674 |
map1[items[0]] = false; |
|
| 675 |
check(map1[items[0]] == false, "Wrong map value"); |
|
| 676 |
|
|
| 677 |
map1[items[num - 1]] = false; |
|
| 678 |
check(map1[items[num - 1]] == false, "Wrong map value"); |
|
| 679 |
|
|
| 680 |
n = 0; |
|
| 681 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
|
|
| 682 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt for true"); |
|
| 683 |
++n; |
|
| 684 |
} |
|
| 685 |
check(n == num - 3, "Wrong number"); |
|
| 686 |
check(map1.trueNum() == num - 3, "Wrong number"); |
|
| 687 |
|
|
| 688 |
n = 0; |
|
| 689 |
for (Ibm::FalseIt it(map1); it != INVALID; ++it) {
|
|
| 690 |
check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true"); |
|
| 691 |
++n; |
|
| 692 |
} |
|
| 693 |
check(n == 3, "Wrong number"); |
|
| 694 |
check(map1.falseNum() == 3, "Wrong number"); |
|
| 695 |
} |
|
| 696 |
|
|
| 697 |
// Iterable int map |
|
| 698 |
{
|
|
| 699 |
typedef SmartGraph Graph; |
|
| 700 |
typedef SmartGraph::Node Item; |
|
| 701 |
typedef IterableIntMap<SmartGraph, SmartGraph::Node> Iim; |
|
| 702 |
|
|
| 703 |
checkConcept<ReferenceMap<Item, int, int&, const int&>, Iim>(); |
|
| 704 |
|
|
| 705 |
const int num = 10; |
|
| 706 |
Graph g; |
|
| 707 |
std::vector<Item> items; |
|
| 708 |
for (int i = 0; i < num; ++i) {
|
|
| 709 |
items.push_back(g.addNode()); |
|
| 710 |
} |
|
| 711 |
|
|
| 712 |
Iim map1(g); |
|
| 713 |
check(map1.size() == 0, "Wrong size"); |
|
| 714 |
|
|
| 715 |
for (int i = 0; i < num; ++i) {
|
|
| 716 |
map1[items[i]] = i; |
|
| 717 |
} |
|
| 718 |
check(map1.size() == num, "Wrong size"); |
|
| 719 |
|
|
| 720 |
for (int i = 0; i < num; ++i) {
|
|
| 721 |
Iim::ItemIt it(map1, i); |
|
| 722 |
check(static_cast<Item>(it) == items[i], "Wrong value"); |
|
| 723 |
++it; |
|
| 724 |
check(static_cast<Item>(it) == INVALID, "Wrong value"); |
|
| 725 |
} |
|
| 726 |
|
|
| 727 |
for (int i = 0; i < num; ++i) {
|
|
| 728 |
map1[items[i]] = i % 2; |
|
| 729 |
} |
|
| 730 |
check(map1.size() == 2, "Wrong size"); |
|
| 731 |
|
|
| 732 |
int n = 0; |
|
| 733 |
for (Iim::ItemIt it(map1, 0); it != INVALID; ++it) {
|
|
| 734 |
check(map1[static_cast<Item>(it)] == 0, "Wrong value"); |
|
| 735 |
++n; |
|
| 736 |
} |
|
| 737 |
check(n == (num + 1) / 2, "Wrong number"); |
|
| 738 |
|
|
| 739 |
for (Iim::ItemIt it(map1, 1); it != INVALID; ++it) {
|
|
| 740 |
check(map1[static_cast<Item>(it)] == 1, "Wrong value"); |
|
| 741 |
++n; |
|
| 742 |
} |
|
| 743 |
check(n == num, "Wrong number"); |
|
| 744 |
|
|
| 745 |
} |
|
| 746 |
|
|
| 747 |
// Iterable value map |
|
| 748 |
{
|
|
| 749 |
typedef SmartGraph Graph; |
|
| 750 |
typedef SmartGraph::Node Item; |
|
| 751 |
typedef IterableValueMap<SmartGraph, SmartGraph::Node, double> Ivm; |
|
| 752 |
|
|
| 753 |
checkConcept<ReadWriteMap<Item, double>, Ivm>(); |
|
| 754 |
|
|
| 755 |
const int num = 10; |
|
| 756 |
Graph g; |
|
| 757 |
std::vector<Item> items; |
|
| 758 |
for (int i = 0; i < num; ++i) {
|
|
| 759 |
items.push_back(g.addNode()); |
|
| 760 |
} |
|
| 761 |
|
|
| 762 |
Ivm map1(g, 0.0); |
|
| 763 |
check(distance(map1.beginValue(), map1.endValue()) == 1, "Wrong size"); |
|
| 764 |
check(*map1.beginValue() == 0.0, "Wrong value"); |
|
| 765 |
|
|
| 766 |
for (int i = 0; i < num; ++i) {
|
|
| 767 |
map1.set(items[i], static_cast<double>(i)); |
|
| 768 |
} |
|
| 769 |
check(distance(map1.beginValue(), map1.endValue()) == num, "Wrong size"); |
|
| 770 |
|
|
| 771 |
for (int i = 0; i < num; ++i) {
|
|
| 772 |
Ivm::ItemIt it(map1, static_cast<double>(i)); |
|
| 773 |
check(static_cast<Item>(it) == items[i], "Wrong value"); |
|
| 774 |
++it; |
|
| 775 |
check(static_cast<Item>(it) == INVALID, "Wrong value"); |
|
| 776 |
} |
|
| 777 |
|
|
| 778 |
for (Ivm::ValueIt vit = map1.beginValue(); |
|
| 779 |
vit != map1.endValue(); ++vit) {
|
|
| 780 |
check(map1[static_cast<Item>(Ivm::ItemIt(map1, *vit))] == *vit, |
|
| 781 |
"Wrong ValueIt"); |
|
| 782 |
} |
|
| 783 |
|
|
| 784 |
for (int i = 0; i < num; ++i) {
|
|
| 785 |
map1.set(items[i], static_cast<double>(i % 2)); |
|
| 786 |
} |
|
| 787 |
check(distance(map1.beginValue(), map1.endValue()) == 2, "Wrong size"); |
|
| 788 |
|
|
| 789 |
int n = 0; |
|
| 790 |
for (Ivm::ItemIt it(map1, 0.0); it != INVALID; ++it) {
|
|
| 791 |
check(map1[static_cast<Item>(it)] == 0.0, "Wrong value"); |
|
| 792 |
++n; |
|
| 793 |
} |
|
| 794 |
check(n == (num + 1) / 2, "Wrong number"); |
|
| 795 |
|
|
| 796 |
for (Ivm::ItemIt it(map1, 1.0); it != INVALID; ++it) {
|
|
| 797 |
check(map1[static_cast<Item>(it)] == 1.0, "Wrong value"); |
|
| 798 |
++n; |
|
| 799 |
} |
|
| 800 |
check(n == num, "Wrong number"); |
|
| 801 |
|
|
| 802 |
} |
|
| 352 | 803 |
return 0; |
| 353 | 804 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include "test_tools.h" |
| 20 | 20 |
|
| 21 | 21 |
#include <lemon/config.h> |
| 22 | 22 |
|
| 23 | 23 |
#ifdef LEMON_HAVE_CPLEX |
| 24 | 24 |
#include <lemon/cplex.h> |
| 25 | 25 |
#endif |
| 26 | 26 |
|
| 27 | 27 |
#ifdef LEMON_HAVE_GLPK |
| 28 | 28 |
#include <lemon/glpk.h> |
| 29 | 29 |
#endif |
| 30 | 30 |
|
| 31 | 31 |
#ifdef LEMON_HAVE_CBC |
| 32 | 32 |
#include <lemon/cbc.h> |
| 33 | 33 |
#endif |
| 34 | 34 |
|
| 35 | 35 |
|
| 36 | 36 |
using namespace lemon; |
| 37 | 37 |
|
| 38 | 38 |
void solveAndCheck(MipSolver& mip, MipSolver::ProblemType stat, |
| 39 | 39 |
double exp_opt) {
|
| 40 | 40 |
using std::string; |
| 41 | 41 |
|
| 42 | 42 |
mip.solve(); |
| 43 | 43 |
//int decimal,sign; |
| 44 | 44 |
std::ostringstream buf; |
| 45 | 45 |
buf << "Type should be: " << int(stat)<<" and it is "<<int(mip.type()); |
| 46 | 46 |
|
| 47 | 47 |
|
| 48 | 48 |
// itoa(stat,buf1, 10); |
| 49 | 49 |
check(mip.type()==stat, buf.str()); |
| 50 | 50 |
|
| 51 | 51 |
if (stat == MipSolver::OPTIMAL) {
|
| 52 | 52 |
std::ostringstream sbuf; |
| 53 |
|
|
| 53 |
sbuf << "Wrong optimal value ("<< mip.solValue()
|
|
| 54 |
<<" instead of " << exp_opt << ")"; |
|
| 54 | 55 |
check(std::abs(mip.solValue()-exp_opt) < 1e-3, sbuf.str()); |
| 55 | 56 |
//+ecvt(exp_opt,2) |
| 56 | 57 |
} |
| 57 | 58 |
} |
| 58 | 59 |
|
| 59 | 60 |
void aTest(MipSolver& mip) |
| 60 | 61 |
{
|
| 61 | 62 |
//The following example is very simple |
| 62 | 63 |
|
| 63 | 64 |
|
| 64 | 65 |
typedef MipSolver::Row Row; |
| 65 | 66 |
typedef MipSolver::Col Col; |
| 66 | 67 |
|
| 67 | 68 |
|
| 68 | 69 |
Col x1 = mip.addCol(); |
| 69 | 70 |
Col x2 = mip.addCol(); |
| 70 | 71 |
|
| 71 | 72 |
|
| 72 | 73 |
//Objective function |
| 73 | 74 |
mip.obj(x1); |
| 74 | 75 |
|
| 75 | 76 |
mip.max(); |
| 76 | 77 |
|
| 77 | 78 |
//Unconstrained optimization |
| 78 | 79 |
mip.solve(); |
| 79 | 80 |
//Check it out! |
| 80 | 81 |
|
| 81 | 82 |
//Constraints |
| 82 | 83 |
mip.addRow(2 * x1 + x2 <= 2); |
| 83 | 84 |
Row y2 = mip.addRow(x1 - 2 * x2 <= 0); |
| 84 | 85 |
|
| 85 | 86 |
//Nonnegativity of the variable x1 |
| 86 | 87 |
mip.colLowerBound(x1, 0); |
| 87 | 88 |
|
| 88 | 89 |
|
| 89 | 90 |
//Maximization of x1 |
| 90 | 91 |
//over the triangle with vertices (0,0),(4/5,2/5),(0,2) |
| 91 | 92 |
double expected_opt=4.0/5.0; |
| 92 | 93 |
solveAndCheck(mip, MipSolver::OPTIMAL, expected_opt); |
| 93 | 94 |
|
| 94 | 95 |
|
| 95 | 96 |
//Restrict x2 to integer |
| 96 | 97 |
mip.colType(x2,MipSolver::INTEGER); |
| 97 | 98 |
expected_opt=1.0/2.0; |
| 98 | 99 |
solveAndCheck(mip, MipSolver::OPTIMAL, expected_opt); |
| 99 | 100 |
|
| 100 | 101 |
|
| 101 | 102 |
//Restrict both to integer |
| 102 | 103 |
mip.colType(x1,MipSolver::INTEGER); |
| 103 | 104 |
expected_opt=0; |
| 104 | 105 |
solveAndCheck(mip, MipSolver::OPTIMAL, expected_opt); |
| 105 | 106 |
|
| 106 | 107 |
//Erase a variable |
| 107 | 108 |
mip.erase(x2); |
| 108 | 109 |
mip.rowUpperBound(y2, 8); |
| 109 | 110 |
expected_opt=1; |
| 110 | 111 |
solveAndCheck(mip, MipSolver::OPTIMAL, expected_opt); |
| 111 | 112 |
|
| 112 | 113 |
} |
| 113 | 114 |
|
| 114 | 115 |
|
| 115 | 116 |
template<class MIP> |
| 116 | 117 |
void cloneTest() |
| 117 | 118 |
{
|
| 118 | 119 |
|
| 119 | 120 |
MIP* mip = new MIP(); |
| 120 | 121 |
MIP* mipnew = mip->newSolver(); |
| 121 | 122 |
MIP* mipclone = mip->cloneSolver(); |
| 122 | 123 |
delete mip; |
| 123 | 124 |
delete mipnew; |
| 124 | 125 |
delete mipclone; |
| 125 | 126 |
} |
| 126 | 127 |
|
| 127 | 128 |
int main() |
| 128 | 129 |
{
|
| 129 | 130 |
|
| 130 | 131 |
#ifdef LEMON_HAVE_GLPK |
| 131 | 132 |
{
|
| 132 | 133 |
GlpkMip mip1; |
| 133 | 134 |
aTest(mip1); |
| 134 | 135 |
cloneTest<GlpkMip>(); |
| 135 | 136 |
} |
| 136 | 137 |
#endif |
| 137 | 138 |
|
| 138 | 139 |
#ifdef LEMON_HAVE_CPLEX |
| 139 | 140 |
try {
|
| 140 | 141 |
CplexMip mip2; |
| 141 | 142 |
aTest(mip2); |
| 142 | 143 |
cloneTest<CplexMip>(); |
| 143 | 144 |
} catch (CplexEnv::LicenseError& error) {
|
| 144 | 145 |
check(false, error.what()); |
| 145 | 146 |
} |
| 146 | 147 |
#endif |
| 147 | 148 |
|
| 148 | 149 |
#ifdef LEMON_HAVE_CBC |
| 149 | 150 |
{
|
| 150 | 151 |
CbcMip mip1; |
| 151 | 152 |
aTest(mip1); |
| 152 | 153 |
cloneTest<CbcMip>(); |
| 153 | 154 |
} |
| 154 | 155 |
#endif |
| 155 | 156 |
|
| 156 | 157 |
return 0; |
| 157 | 158 |
|
| 158 | 159 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <iostream> |
| 20 | 20 |
|
| 21 | 21 |
#include "test_tools.h" |
| 22 | 22 |
#include <lemon/smart_graph.h> |
| 23 | 23 |
#include <lemon/preflow.h> |
| 24 | 24 |
#include <lemon/concepts/digraph.h> |
| 25 | 25 |
#include <lemon/concepts/maps.h> |
| 26 | 26 |
#include <lemon/lgf_reader.h> |
| 27 | 27 |
#include <lemon/elevator.h> |
| 28 | 28 |
|
| 29 | 29 |
using namespace lemon; |
| 30 | 30 |
|
| 31 | 31 |
char test_lgf[] = |
| 32 | 32 |
"@nodes\n" |
| 33 | 33 |
"label\n" |
| 34 | 34 |
"0\n" |
| 35 | 35 |
"1\n" |
| 36 | 36 |
"2\n" |
| 37 | 37 |
"3\n" |
| 38 | 38 |
"4\n" |
| 39 | 39 |
"5\n" |
| 40 | 40 |
"6\n" |
| 41 | 41 |
"7\n" |
| 42 | 42 |
"8\n" |
| 43 | 43 |
"9\n" |
| 44 | 44 |
"@arcs\n" |
| 45 | 45 |
" label capacity\n" |
| 46 | 46 |
"0 1 0 20\n" |
| 47 | 47 |
"0 2 1 0\n" |
| 48 | 48 |
"1 1 2 3\n" |
| 49 | 49 |
"1 2 3 8\n" |
| 50 | 50 |
"1 3 4 8\n" |
| 51 | 51 |
"2 5 5 5\n" |
| 52 | 52 |
"3 2 6 5\n" |
| 53 | 53 |
"3 5 7 5\n" |
| 54 | 54 |
"3 6 8 5\n" |
| 55 | 55 |
"4 3 9 3\n" |
| 56 | 56 |
"5 7 10 3\n" |
| 57 | 57 |
"5 6 11 10\n" |
| 58 | 58 |
"5 8 12 10\n" |
| 59 | 59 |
"6 8 13 8\n" |
| 60 | 60 |
"8 9 14 20\n" |
| 61 | 61 |
"8 1 15 5\n" |
| 62 | 62 |
"9 5 16 5\n" |
| 63 | 63 |
"@attributes\n" |
| 64 | 64 |
"source 1\n" |
| 65 | 65 |
"target 8\n"; |
| 66 | 66 |
|
| 67 | 67 |
void checkPreflowCompile() |
| 68 | 68 |
{
|
| 69 | 69 |
typedef int VType; |
| 70 | 70 |
typedef concepts::Digraph Digraph; |
| 71 | 71 |
|
| 72 | 72 |
typedef Digraph::Node Node; |
| 73 | 73 |
typedef Digraph::Arc Arc; |
| 74 | 74 |
typedef concepts::ReadMap<Arc,VType> CapMap; |
| 75 | 75 |
typedef concepts::ReadWriteMap<Arc,VType> FlowMap; |
| 76 | 76 |
typedef concepts::WriteMap<Node,bool> CutMap; |
| 77 | 77 |
|
| 78 | 78 |
typedef Elevator<Digraph, Digraph::Node> Elev; |
| 79 | 79 |
typedef LinkedElevator<Digraph, Digraph::Node> LinkedElev; |
| 80 | 80 |
|
| 81 | 81 |
Digraph g; |
| 82 | 82 |
Node n; |
| 83 | 83 |
Arc e; |
| 84 | 84 |
CapMap cap; |
| 85 | 85 |
FlowMap flow; |
| 86 | 86 |
CutMap cut; |
| 87 | 87 |
VType v; |
| 88 | 88 |
bool b; |
| 89 | 89 |
|
| 90 | 90 |
typedef Preflow<Digraph, CapMap> |
| 91 | 91 |
::SetFlowMap<FlowMap> |
| 92 | 92 |
::SetElevator<Elev> |
| 93 | 93 |
::SetStandardElevator<LinkedElev> |
| 94 | 94 |
::Create PreflowType; |
| 95 | 95 |
PreflowType preflow_test(g, cap, n, n); |
| 96 | 96 |
const PreflowType& const_preflow_test = preflow_test; |
| 97 |
|
|
| 98 |
const PreflowType::Elevator& elev = const_preflow_test.elevator(); |
|
| 99 |
preflow_test.elevator(const_cast<PreflowType::Elevator&>(elev)); |
|
| 100 |
PreflowType::Tolerance tol = const_preflow_test.tolerance(); |
|
| 101 |
preflow_test.tolerance(tol); |
|
| 97 | 102 |
|
| 98 | 103 |
preflow_test |
| 99 | 104 |
.capacityMap(cap) |
| 100 | 105 |
.flowMap(flow) |
| 101 | 106 |
.source(n) |
| 102 | 107 |
.target(n); |
| 103 | 108 |
|
| 104 | 109 |
preflow_test.init(); |
| 105 | 110 |
preflow_test.init(cap); |
| 106 | 111 |
preflow_test.startFirstPhase(); |
| 107 | 112 |
preflow_test.startSecondPhase(); |
| 108 | 113 |
preflow_test.run(); |
| 109 | 114 |
preflow_test.runMinCut(); |
| 110 | 115 |
|
| 111 | 116 |
v = const_preflow_test.flowValue(); |
| 112 | 117 |
v = const_preflow_test.flow(e); |
| 113 | 118 |
const FlowMap& fm = const_preflow_test.flowMap(); |
| 114 | 119 |
b = const_preflow_test.minCut(n); |
| 115 | 120 |
const_preflow_test.minCutMap(cut); |
| 116 | 121 |
|
| 117 | 122 |
ignore_unused_variable_warning(fm); |
| 118 | 123 |
} |
| 119 | 124 |
|
| 120 | 125 |
int cutValue (const SmartDigraph& g, |
| 121 | 126 |
const SmartDigraph::NodeMap<bool>& cut, |
| 122 | 127 |
const SmartDigraph::ArcMap<int>& cap) {
|
| 123 | 128 |
|
| 124 | 129 |
int c=0; |
| 125 | 130 |
for(SmartDigraph::ArcIt e(g); e!=INVALID; ++e) {
|
| 126 | 131 |
if (cut[g.source(e)] && !cut[g.target(e)]) c+=cap[e]; |
| 127 | 132 |
} |
| 128 | 133 |
return c; |
| 129 | 134 |
} |
| 130 | 135 |
|
| 131 | 136 |
bool checkFlow(const SmartDigraph& g, |
| 132 | 137 |
const SmartDigraph::ArcMap<int>& flow, |
| 133 | 138 |
const SmartDigraph::ArcMap<int>& cap, |
| 134 | 139 |
SmartDigraph::Node s, SmartDigraph::Node t) {
|
| 135 | 140 |
|
| 136 | 141 |
for (SmartDigraph::ArcIt e(g); e != INVALID; ++e) {
|
| 137 | 142 |
if (flow[e] < 0 || flow[e] > cap[e]) return false; |
| 138 | 143 |
} |
| 139 | 144 |
|
| 140 | 145 |
for (SmartDigraph::NodeIt n(g); n != INVALID; ++n) {
|
| 141 | 146 |
if (n == s || n == t) continue; |
| 142 | 147 |
int sum = 0; |
| 143 | 148 |
for (SmartDigraph::OutArcIt e(g, n); e != INVALID; ++e) {
|
| 144 | 149 |
sum += flow[e]; |
| 145 | 150 |
} |
| 146 | 151 |
for (SmartDigraph::InArcIt e(g, n); e != INVALID; ++e) {
|
| 147 | 152 |
sum -= flow[e]; |
| 148 | 153 |
} |
| 149 | 154 |
if (sum != 0) return false; |
| 150 | 155 |
} |
| 151 | 156 |
return true; |
| 152 | 157 |
} |
| 153 | 158 |
|
| 154 | 159 |
int main() {
|
| 155 | 160 |
|
| 156 | 161 |
typedef SmartDigraph Digraph; |
| 157 | 162 |
|
| 158 | 163 |
typedef Digraph::Node Node; |
| 159 | 164 |
typedef Digraph::NodeIt NodeIt; |
| 160 | 165 |
typedef Digraph::ArcIt ArcIt; |
| 161 | 166 |
typedef Digraph::ArcMap<int> CapMap; |
| 162 | 167 |
typedef Digraph::ArcMap<int> FlowMap; |
| 163 | 168 |
typedef Digraph::NodeMap<bool> CutMap; |
| 164 | 169 |
|
| 165 | 170 |
typedef Preflow<Digraph, CapMap> PType; |
| 166 | 171 |
|
| 167 | 172 |
Digraph g; |
| 168 | 173 |
Node s, t; |
| 169 | 174 |
CapMap cap(g); |
| 170 | 175 |
std::istringstream input(test_lgf); |
| 171 | 176 |
DigraphReader<Digraph>(g,input). |
| 172 | 177 |
arcMap("capacity", cap).
|
| 173 | 178 |
node("source",s).
|
| 174 | 179 |
node("target",t).
|
| 175 | 180 |
run(); |
| 176 | 181 |
|
| 177 | 182 |
PType preflow_test(g, cap, s, t); |
| 178 | 183 |
preflow_test.run(); |
| 179 | 184 |
|
| 180 | 185 |
check(checkFlow(g, preflow_test.flowMap(), cap, s, t), |
| 181 | 186 |
"The flow is not feasible."); |
| 182 | 187 |
|
| 183 | 188 |
CutMap min_cut(g); |
| 184 | 189 |
preflow_test.minCutMap(min_cut); |
| 185 | 190 |
int min_cut_value=cutValue(g,min_cut,cap); |
| 186 | 191 |
|
| 187 | 192 |
check(preflow_test.flowValue() == min_cut_value, |
| 188 | 193 |
"The max flow value is not equal to the three min cut values."); |
| 189 | 194 |
|
| 190 | 195 |
FlowMap flow(g); |
| 191 | 196 |
for(ArcIt e(g); e!=INVALID; ++e) flow[e] = preflow_test.flowMap()[e]; |
| 192 | 197 |
|
| 193 | 198 |
int flow_value=preflow_test.flowValue(); |
| 194 | 199 |
|
| 195 | 200 |
for(ArcIt e(g); e!=INVALID; ++e) cap[e]=2*cap[e]; |
| 196 | 201 |
preflow_test.init(flow); |
| 197 | 202 |
preflow_test.startFirstPhase(); |
| 198 | 203 |
|
| 199 | 204 |
CutMap min_cut1(g); |
| 200 | 205 |
preflow_test.minCutMap(min_cut1); |
| 201 | 206 |
min_cut_value=cutValue(g,min_cut1,cap); |
| 202 | 207 |
|
| 203 | 208 |
check(preflow_test.flowValue() == min_cut_value && |
| 204 | 209 |
min_cut_value == 2*flow_value, |
| 205 | 210 |
"The max flow value or the min cut value is wrong."); |
| 206 | 211 |
|
| 207 | 212 |
preflow_test.startSecondPhase(); |
| 208 | 213 |
|
| 209 | 214 |
check(checkFlow(g, preflow_test.flowMap(), cap, s, t), |
| 210 | 215 |
"The flow is not feasible."); |
| 211 | 216 |
|
| 212 | 217 |
CutMap min_cut2(g); |
| 213 | 218 |
preflow_test.minCutMap(min_cut2); |
| 214 | 219 |
min_cut_value=cutValue(g,min_cut2,cap); |
| 215 | 220 |
|
| 216 | 221 |
check(preflow_test.flowValue() == min_cut_value && |
| 217 | 222 |
min_cut_value == 2*flow_value, |
| 218 | 223 |
"The max flow value or the three min cut values were not doubled"); |
| 219 | 224 |
|
| 220 | 225 |
|
| 221 | 226 |
preflow_test.flowMap(flow); |
| 222 | 227 |
|
| 223 | 228 |
NodeIt tmp1(g,s); |
| 224 | 229 |
++tmp1; |
| 225 | 230 |
if ( tmp1 != INVALID ) s=tmp1; |
| 226 | 231 |
|
| 227 | 232 |
NodeIt tmp2(g,t); |
| 228 | 233 |
++tmp2; |
| 229 | 234 |
if ( tmp2 != INVALID ) t=tmp2; |
| 230 | 235 |
|
| 231 | 236 |
preflow_test.source(s); |
| 232 | 237 |
preflow_test.target(t); |
| 233 | 238 |
|
| 234 | 239 |
preflow_test.run(); |
| 235 | 240 |
|
| 236 | 241 |
CutMap min_cut3(g); |
| 237 | 242 |
preflow_test.minCutMap(min_cut3); |
| 238 | 243 |
min_cut_value=cutValue(g,min_cut3,cap); |
| 239 | 244 |
|
| 240 | 245 |
|
| 241 | 246 |
check(preflow_test.flowValue() == min_cut_value, |
| 242 | 247 |
"The max flow value or the three min cut values are incorrect."); |
| 243 | 248 |
|
| 244 | 249 |
return 0; |
| 245 | 250 |
} |
| 1 | 1 |
#!/bin/bash |
| 2 | 2 |
|
| 3 | 3 |
set -e |
| 4 | 4 |
|
| 5 | 5 |
if [ $# -eq 0 -o x$1 = "x-h" -o x$1 = "x-help" -o x$1 = "x--help" ]; then |
| 6 | 6 |
echo "Usage:" |
| 7 | 7 |
echo " $0 source-file(s)" |
| 8 | 8 |
exit |
| 9 | 9 |
fi |
| 10 | 10 |
|
| 11 | 11 |
for i in $@ |
| 12 | 12 |
do |
| 13 | 13 |
echo Update $i... |
| 14 | 14 |
TMP=`mktemp` |
| 15 | 15 |
sed -e "s/\<undirected graph\>/_gr_aph_label_/g"\ |
| 16 | 16 |
-e "s/\<undirected graphs\>/_gr_aph_label_s/g"\ |
| 17 | 17 |
-e "s/\<undirected edge\>/_ed_ge_label_/g"\ |
| 18 | 18 |
-e "s/\<undirected edges\>/_ed_ge_label_s/g"\ |
| 19 | 19 |
-e "s/\<directed graph\>/_digr_aph_label_/g"\ |
| 20 | 20 |
-e "s/\<directed graphs\>/_digr_aph_label_s/g"\ |
| 21 | 21 |
-e "s/\<directed edge\>/_ar_c_label_/g"\ |
| 22 | 22 |
-e "s/\<directed edges\>/_ar_c_label_s/g"\ |
| 23 | 23 |
-e "s/UGraph/_Gr_aph_label_/g"\ |
| 24 | 24 |
-e "s/u[Gg]raph/_gr_aph_label_/g"\ |
| 25 | 25 |
-e "s/Graph\>/_Digr_aph_label_/g"\ |
| 26 | 26 |
-e "s/\<graph\>/_digr_aph_label_/g"\ |
| 27 | 27 |
-e "s/Graphs\>/_Digr_aph_label_s/g"\ |
| 28 | 28 |
-e "s/\<graphs\>/_digr_aph_label_s/g"\ |
| 29 | 29 |
-e "s/\([Gg]\)raph\([a-z]\)/_\1r_aph_label_\2/g"\ |
| 30 | 30 |
-e "s/\([a-z_]\)graph/\1_gr_aph_label_/g"\ |
| 31 | 31 |
-e "s/Graph/_Digr_aph_label_/g"\ |
| 32 | 32 |
-e "s/graph/_digr_aph_label_/g"\ |
| 33 | 33 |
-e "s/UEdge/_Ed_ge_label_/g"\ |
| 34 | 34 |
-e "s/u[Ee]dge/_ed_ge_label_/g"\ |
| 35 | 35 |
-e "s/IncEdgeIt/_In_cEd_geIt_label_/g"\ |
| 36 | 36 |
-e "s/Edge\>/_Ar_c_label_/g"\ |
| 37 | 37 |
-e "s/\<edge\>/_ar_c_label_/g"\ |
| 38 |
-e "s/_edge\>/ |
|
| 38 |
-e "s/_edge\>/__ar_c_label_/g"\ |
|
| 39 | 39 |
-e "s/Edges\>/_Ar_c_label_s/g"\ |
| 40 | 40 |
-e "s/\<edges\>/_ar_c_label_s/g"\ |
| 41 |
-e "s/_edges\>/ |
|
| 41 |
-e "s/_edges\>/__ar_c_label_s/g"\ |
|
| 42 | 42 |
-e "s/\([Ee]\)dge\([a-z]\)/_\1d_ge_label_\2/g"\ |
| 43 | 43 |
-e "s/\([a-z]\)edge/\1_ed_ge_label_/g"\ |
| 44 | 44 |
-e "s/Edge/_Ar_c_label_/g"\ |
| 45 | 45 |
-e "s/edge/_ar_c_label_/g"\ |
| 46 | 46 |
-e "s/A[Nn]ode/_Re_d_label_/g"\ |
| 47 | 47 |
-e "s/B[Nn]ode/_Blu_e_label_/g"\ |
| 48 | 48 |
-e "s/A-[Nn]ode/_Re_d_label_/g"\ |
| 49 | 49 |
-e "s/B-[Nn]ode/_Blu_e_label_/g"\ |
| 50 | 50 |
-e "s/a[Nn]ode/_re_d_label_/g"\ |
| 51 | 51 |
-e "s/b[Nn]ode/_blu_e_label_/g"\ |
| 52 | 52 |
-e "s/\<UGRAPH_TYPEDEFS\([ \t]*([ \t]*\)typename[ \t]/TEMPLATE__GR_APH_TY_PEDE_FS_label_\1/g"\ |
| 53 | 53 |
-e "s/\<GRAPH_TYPEDEFS\([ \t]*([ \t]*\)typename[ \t]/TEMPLATE__DIGR_APH_TY_PEDE_FS_label_\1/g"\ |
| 54 | 54 |
-e "s/\<UGRAPH_TYPEDEFS\>/_GR_APH_TY_PEDE_FS_label_/g"\ |
| 55 | 55 |
-e "s/\<GRAPH_TYPEDEFS\>/_DIGR_APH_TY_PEDE_FS_label_/g"\ |
| 56 | 56 |
-e "s/_Digr_aph_label_/Digraph/g"\ |
| 57 | 57 |
-e "s/_digr_aph_label_/digraph/g"\ |
| 58 | 58 |
-e "s/_Gr_aph_label_/Graph/g"\ |
| 59 | 59 |
-e "s/_gr_aph_label_/graph/g"\ |
| 60 | 60 |
-e "s/_Ar_c_label_/Arc/g"\ |
| 61 | 61 |
-e "s/_ar_c_label_/arc/g"\ |
| 62 | 62 |
-e "s/_Ed_ge_label_/Edge/g"\ |
| 63 | 63 |
-e "s/_ed_ge_label_/edge/g"\ |
| 64 | 64 |
-e "s/_In_cEd_geIt_label_/IncEdgeIt/g"\ |
| 65 | 65 |
-e "s/_Re_d_label_/Red/g"\ |
| 66 | 66 |
-e "s/_Blu_e_label_/Blue/g"\ |
| 67 | 67 |
-e "s/_re_d_label_/red/g"\ |
| 68 | 68 |
-e "s/_blu_e_label_/blue/g"\ |
| 69 | 69 |
-e "s/_GR_APH_TY_PEDE_FS_label_/GRAPH_TYPEDEFS/g"\ |
| 70 | 70 |
-e "s/_DIGR_APH_TY_PEDE_FS_label_/DIGRAPH_TYPEDEFS/g"\ |
| 71 |
-e "s/\<digraph_adaptor\.h\>/adaptors.h/g"\ |
|
| 72 |
-e "s/\<digraph_utils\.h\>/core.h/g"\ |
|
| 73 |
-e "s/\<digraph_reader\.h\>/lgf_reader.h/g"\ |
|
| 74 |
-e "s/\<digraph_writer\.h\>/lgf_writer.h/g"\ |
|
| 75 |
-e "s/\<topology\.h\>/connectivity.h/g"\ |
|
| 71 | 76 |
-e "s/DigraphToEps/GraphToEps/g"\ |
| 72 | 77 |
-e "s/digraphToEps/graphToEps/g"\ |
| 73 | 78 |
-e "s/\<DefPredMap\>/SetPredMap/g"\ |
| 74 | 79 |
-e "s/\<DefDistMap\>/SetDistMap/g"\ |
| 75 | 80 |
-e "s/\<DefReachedMap\>/SetReachedMap/g"\ |
| 76 | 81 |
-e "s/\<DefProcessedMap\>/SetProcessedMap/g"\ |
| 77 | 82 |
-e "s/\<DefHeap\>/SetHeap/g"\ |
| 78 | 83 |
-e "s/\<DefStandardHeap\>/SetStandradHeap/g"\ |
| 79 | 84 |
-e "s/\<DefOperationTraits\>/SetOperationTraits/g"\ |
| 80 | 85 |
-e "s/\<DefProcessedMapToBeDefaultMap\>/SetStandardProcessedMap/g"\ |
| 81 | 86 |
-e "s/\<copyGraph\>/graphCopy/g"\ |
| 82 | 87 |
-e "s/\<copyDigraph\>/digraphCopy/g"\ |
| 83 | 88 |
-e "s/\<HyperCubeDigraph\>/HypercubeGraph/g"\ |
| 84 | 89 |
-e "s/\<IntegerMap\>/RangeMap/g"\ |
| 85 | 90 |
-e "s/\<integerMap\>/rangeMap/g"\ |
| 86 | 91 |
-e "s/\<\([sS]\)tdMap\>/\1parseMap/g"\ |
| 87 | 92 |
-e "s/\<\([Ff]\)unctorMap\>/\1unctorToMap/g"\ |
| 88 | 93 |
-e "s/\<\([Mm]\)apFunctor\>/\1apToFunctor/g"\ |
| 89 | 94 |
-e "s/\<\([Ff]\)orkWriteMap\>/\1orkMap/g"\ |
| 90 | 95 |
-e "s/\<StoreBoolMap\>/LoggerBoolMap/g"\ |
| 91 | 96 |
-e "s/\<storeBoolMap\>/loggerBoolMap/g"\ |
| 92 | 97 |
-e "s/\<InvertableMap\>/CrossRefMap/g"\ |
| 93 | 98 |
-e "s/\<invertableMap\>/crossRefMap/g"\ |
| 94 | 99 |
-e "s/\<DescriptorMap\>/RangeIdMap/g"\ |
| 95 | 100 |
-e "s/\<descriptorMap\>/rangeIdMap/g"\ |
| 96 | 101 |
-e "s/\<BoundingBox\>/Box/g"\ |
| 97 | 102 |
-e "s/\<readNauty\>/readNautyGraph/g"\ |
| 98 | 103 |
-e "s/\<RevDigraphAdaptor\>/ReverseDigraph/g"\ |
| 99 | 104 |
-e "s/\<revDigraphAdaptor\>/reverseDigraph/g"\ |
| 100 | 105 |
-e "s/\<SubDigraphAdaptor\>/SubDigraph/g"\ |
| 101 | 106 |
-e "s/\<subDigraphAdaptor\>/subDigraph/g"\ |
| 102 | 107 |
-e "s/\<SubGraphAdaptor\>/SubGraph/g"\ |
| 103 | 108 |
-e "s/\<subGraphAdaptor\>/subGraph/g"\ |
| 104 | 109 |
-e "s/\<NodeSubDigraphAdaptor\>/FilterNodes/g"\ |
| 105 | 110 |
-e "s/\<nodeSubDigraphAdaptor\>/filterNodes/g"\ |
| 106 | 111 |
-e "s/\<ArcSubDigraphAdaptor\>/FilterArcs/g"\ |
| 107 | 112 |
-e "s/\<arcSubDigraphAdaptor\>/filterArcs/g"\ |
| 108 | 113 |
-e "s/\<UndirDigraphAdaptor\>/Undirector/g"\ |
| 109 | 114 |
-e "s/\<undirDigraphAdaptor\>/undirector/g"\ |
| 110 | 115 |
-e "s/\<ResDigraphAdaptor\>/ResidualDigraph/g"\ |
| 111 | 116 |
-e "s/\<resDigraphAdaptor\>/residualDigraph/g"\ |
| 112 | 117 |
-e "s/\<SplitDigraphAdaptor\>/SplitNodes/g"\ |
| 113 | 118 |
-e "s/\<splitDigraphAdaptor\>/splitNodes/g"\ |
| 114 | 119 |
-e "s/\<SubGraphAdaptor\>/SubGraph/g"\ |
| 115 | 120 |
-e "s/\<subGraphAdaptor\>/subGraph/g"\ |
| 116 | 121 |
-e "s/\<NodeSubGraphAdaptor\>/FilterNodes/g"\ |
| 117 | 122 |
-e "s/\<nodeSubGraphAdaptor\>/filterNodes/g"\ |
| 118 | 123 |
-e "s/\<ArcSubGraphAdaptor\>/FilterEdges/g"\ |
| 119 | 124 |
-e "s/\<arcSubGraphAdaptor\>/filterEdges/g"\ |
| 120 | 125 |
-e "s/\<DirGraphAdaptor\>/Orienter/g"\ |
| 121 | 126 |
-e "s/\<dirGraphAdaptor\>/orienter/g"\ |
| 122 | 127 |
-e "s/\<LpCplex\>/CplexLp/g"\ |
| 123 | 128 |
-e "s/\<MipCplex\>/CplexMip/g"\ |
| 124 | 129 |
-e "s/\<LpGlpk\>/GlpkLp/g"\ |
| 125 | 130 |
-e "s/\<MipGlpk\>/GlpkMip/g"\ |
| 126 | 131 |
-e "s/\<LpSoplex\>/SoplexLp/g"\ |
| 127 | 132 |
<$i > $TMP |
| 128 | 133 |
mv $TMP $i |
| 129 | 134 |
done |
0 comments (0 inline)