gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
A better way of generating pareto distr, and swap its parameters. - Pareto distribution is now generated as a composition of a Gamma and an exponential one - Similarly to gamma() and weibull(), the shape parameter became the first one.
0 1 0
default
1 file changed with 3 insertions and 7 deletions:
↑ Collapse diff ↑
Ignore white space 3072 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2007
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/*
20 20
 * This file contains the reimplemented version of the Mersenne Twister
21 21
 * Generator of Matsumoto and Nishimura.
22 22
 *
23 23
 * See the appropriate copyright notice below.
24 24
 * 
25 25
 * Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
26 26
 * All rights reserved.                          
27 27
 *
28 28
 * Redistribution and use in source and binary forms, with or without
29 29
 * modification, are permitted provided that the following conditions
30 30
 * are met:
31 31
 *
32 32
 * 1. Redistributions of source code must retain the above copyright
33 33
 *    notice, this list of conditions and the following disclaimer.
34 34
 *
35 35
 * 2. Redistributions in binary form must reproduce the above copyright
36 36
 *    notice, this list of conditions and the following disclaimer in the
37 37
 *    documentation and/or other materials provided with the distribution.
38 38
 *
39 39
 * 3. The names of its contributors may not be used to endorse or promote 
40 40
 *    products derived from this software without specific prior written 
41 41
 *    permission.
42 42
 *
43 43
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 44
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 45
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
46 46
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
47 47
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
48 48
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
49 49
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
50 50
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
51 51
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
52 52
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53 53
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
54 54
 * OF THE POSSIBILITY OF SUCH DAMAGE.
55 55
 *
56 56
 *
57 57
 * Any feedback is very welcome.
58 58
 * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
59 59
 * email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
60 60
 */
61 61

	
62 62
#ifndef LEMON_RANDOM_H
63 63
#define LEMON_RANDOM_H
64 64

	
65 65
#include <algorithm>
66 66
#include <iterator>
67 67
#include <vector>
68 68

	
69 69
#include <ctime>
70 70
#include <cmath>
71 71

	
72 72
#include <lemon/dim2.h>
73 73
///\ingroup misc
74 74
///\file
75 75
///\brief Mersenne Twister random number generator
76 76
///
77 77
///\author Balazs Dezso
78 78

	
79 79
namespace lemon {
80 80

	
81 81
  namespace _random_bits {
82 82
    
83 83
    template <typename _Word, int _bits = std::numeric_limits<_Word>::digits>
84 84
    struct RandomTraits {};
85 85

	
86 86
    template <typename _Word>
87 87
    struct RandomTraits<_Word, 32> {
88 88

	
89 89
      typedef _Word Word;
90 90
      static const int bits = 32;
91 91

	
92 92
      static const int length = 624;
93 93
      static const int shift = 397;
94 94
      
95 95
      static const Word mul = 0x6c078965u;
96 96
      static const Word arrayInit = 0x012BD6AAu;
97 97
      static const Word arrayMul1 = 0x0019660Du;
98 98
      static const Word arrayMul2 = 0x5D588B65u;
99 99

	
100 100
      static const Word mask = 0x9908B0DFu;
101 101
      static const Word loMask = (1u << 31) - 1;
102 102
      static const Word hiMask = ~loMask;
103 103

	
104 104

	
105 105
      static Word tempering(Word rnd) {
106 106
        rnd ^= (rnd >> 11);
107 107
        rnd ^= (rnd << 7) & 0x9D2C5680u;
108 108
        rnd ^= (rnd << 15) & 0xEFC60000u;
109 109
        rnd ^= (rnd >> 18);
110 110
        return rnd;
111 111
      }
112 112

	
113 113
    };
114 114

	
115 115
    template <typename _Word>
116 116
    struct RandomTraits<_Word, 64> {
117 117

	
118 118
      typedef _Word Word;
119 119
      static const int bits = 64;
120 120

	
121 121
      static const int length = 312;
122 122
      static const int shift = 156;
123 123

	
124 124
      static const Word mul = Word(0x5851F42Du) << 32 | Word(0x4C957F2Du);
125 125
      static const Word arrayInit = Word(0x00000000u) << 32 |Word(0x012BD6AAu);
126 126
      static const Word arrayMul1 = Word(0x369DEA0Fu) << 32 |Word(0x31A53F85u);
127 127
      static const Word arrayMul2 = Word(0x27BB2EE6u) << 32 |Word(0x87B0B0FDu);
128 128

	
129 129
      static const Word mask = Word(0xB5026F5Au) << 32 | Word(0xA96619E9u);
130 130
      static const Word loMask = (Word(1u) << 31) - 1;
131 131
      static const Word hiMask = ~loMask;
132 132

	
133 133
      static Word tempering(Word rnd) {
134 134
        rnd ^= (rnd >> 29) & (Word(0x55555555u) << 32 | Word(0x55555555u));
135 135
        rnd ^= (rnd << 17) & (Word(0x71D67FFFu) << 32 | Word(0xEDA60000u));
136 136
        rnd ^= (rnd << 37) & (Word(0xFFF7EEE0u) << 32 | Word(0x00000000u));
137 137
        rnd ^= (rnd >> 43);
138 138
        return rnd;
139 139
      }
140 140

	
141 141
    };
142 142

	
143 143
    template <typename _Word>
144 144
    class RandomCore {
145 145
    public:
146 146

	
147 147
      typedef _Word Word;
148 148

	
149 149
    private:
150 150

	
151 151
      static const int bits = RandomTraits<Word>::bits;
152 152

	
153 153
      static const int length = RandomTraits<Word>::length;
154 154
      static const int shift = RandomTraits<Word>::shift;
155 155

	
156 156
    public:
157 157

	
158 158
      void initState() {
159 159
        static const Word seedArray[4] = {
160 160
          0x12345u, 0x23456u, 0x34567u, 0x45678u
161 161
        };
162 162
    
163 163
        initState(seedArray, seedArray + 4);
164 164
      }
165 165

	
166 166
      void initState(Word seed) {
167 167

	
168 168
        static const Word mul = RandomTraits<Word>::mul;
169 169

	
170 170
        current = state; 
171 171

	
172 172
        Word *curr = state + length - 1;
173 173
        curr[0] = seed; --curr;
174 174
        for (int i = 1; i < length; ++i) {
175 175
          curr[0] = (mul * ( curr[1] ^ (curr[1] >> (bits - 2)) ) + i);
176 176
          --curr;
177 177
        }
178 178
      }
179 179

	
180 180
      template <typename Iterator>
181 181
      void initState(Iterator begin, Iterator end) {
182 182

	
183 183
        static const Word init = RandomTraits<Word>::arrayInit;
184 184
        static const Word mul1 = RandomTraits<Word>::arrayMul1;
185 185
        static const Word mul2 = RandomTraits<Word>::arrayMul2;
186 186

	
187 187

	
188 188
        Word *curr = state + length - 1; --curr;
189 189
        Iterator it = begin; int cnt = 0;
190 190
        int num;
191 191

	
192 192
        initState(init);
193 193

	
194 194
        num = length > end - begin ? length : end - begin;
195 195
        while (num--) {
196 196
          curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul1)) 
197 197
            + *it + cnt;
198 198
          ++it; ++cnt;
199 199
          if (it == end) {
200 200
            it = begin; cnt = 0;
201 201
          }
202 202
          if (curr == state) {
203 203
            curr = state + length - 1; curr[0] = state[0];
204 204
          }
205 205
          --curr;
206 206
        }
207 207

	
208 208
        num = length - 1; cnt = length - (curr - state) - 1;
209 209
        while (num--) {
210 210
          curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul2))
211 211
            - cnt;
212 212
          --curr; ++cnt;
213 213
          if (curr == state) {
214 214
            curr = state + length - 1; curr[0] = state[0]; --curr;
215 215
            cnt = 1;
216 216
          }
217 217
        }
218 218
        
219 219
        state[length - 1] = Word(1) << (bits - 1);
220 220
      }
221 221
      
222 222
      void copyState(const RandomCore& other) {
223 223
        std::copy(other.state, other.state + length, state);
224 224
        current = state + (other.current - other.state);
225 225
      }
226 226

	
227 227
      Word operator()() {
228 228
        if (current == state) fillState();
229 229
        --current;
230 230
        Word rnd = *current;
231 231
        return RandomTraits<Word>::tempering(rnd);
232 232
      }
233 233

	
234 234
    private:
235 235

	
236 236
  
237 237
      void fillState() {
238 238
        static const Word mask[2] = { 0x0ul, RandomTraits<Word>::mask };
239 239
        static const Word loMask = RandomTraits<Word>::loMask;
240 240
        static const Word hiMask = RandomTraits<Word>::hiMask;
241 241

	
242 242
        current = state + length; 
243 243

	
244 244
        register Word *curr = state + length - 1;
245 245
        register long num;
246 246
      
247 247
        num = length - shift;
248 248
        while (num--) {
249 249
          curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^
250 250
            curr[- shift] ^ mask[curr[-1] & 1ul];
251 251
          --curr;
252 252
        }
253 253
        num = shift - 1;
254 254
        while (num--) {
255 255
          curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^
256 256
            curr[length - shift] ^ mask[curr[-1] & 1ul];
257 257
          --curr;
258 258
        }
259 259
        curr[0] = (((curr[0] & hiMask) | (curr[length - 1] & loMask)) >> 1) ^
260 260
          curr[length - shift] ^ mask[curr[length - 1] & 1ul];
261 261

	
262 262
      }
263 263

	
264 264
  
265 265
      Word *current;
266 266
      Word state[length];
267 267
      
268 268
    };
269 269

	
270 270

	
271 271
    template <typename Result, 
272 272
              int shift = (std::numeric_limits<Result>::digits + 1) / 2>
273 273
    struct Masker {
274 274
      static Result mask(const Result& result) {
275 275
        return Masker<Result, (shift + 1) / 2>::
276 276
          mask(static_cast<Result>(result | (result >> shift)));
277 277
      }
278 278
    };
279 279
    
280 280
    template <typename Result>
281 281
    struct Masker<Result, 1> {
282 282
      static Result mask(const Result& result) {
283 283
        return static_cast<Result>(result | (result >> 1));
284 284
      }
285 285
    };
286 286

	
287 287
    template <typename Result, typename Word, 
288 288
              int rest = std::numeric_limits<Result>::digits, int shift = 0, 
289 289
              bool last = rest <= std::numeric_limits<Word>::digits>
290 290
    struct IntConversion {
291 291
      static const int bits = std::numeric_limits<Word>::digits;
292 292
    
293 293
      static Result convert(RandomCore<Word>& rnd) {
294 294
        return static_cast<Result>(rnd() >> (bits - rest)) << shift;
295 295
      }
296 296
      
297 297
    }; 
298 298

	
299 299
    template <typename Result, typename Word, int rest, int shift> 
300 300
    struct IntConversion<Result, Word, rest, shift, false> {
301 301
      static const int bits = std::numeric_limits<Word>::digits;
302 302

	
303 303
      static Result convert(RandomCore<Word>& rnd) {
304 304
        return (static_cast<Result>(rnd()) << shift) | 
305 305
          IntConversion<Result, Word, rest - bits, shift + bits>::convert(rnd);
306 306
      }
307 307
    };
308 308

	
309 309

	
310 310
    template <typename Result, typename Word,
311 311
              bool one_word = (std::numeric_limits<Word>::digits < 
312 312
			       std::numeric_limits<Result>::digits) >
313 313
    struct Mapping {
314 314
      static Result map(RandomCore<Word>& rnd, const Result& bound) {
315 315
        Word max = Word(bound - 1);
316 316
        Result mask = Masker<Result>::mask(bound - 1);
317 317
        Result num;
318 318
        do {
319 319
          num = IntConversion<Result, Word>::convert(rnd) & mask; 
320 320
        } while (num > max);
321 321
        return num;
322 322
      }
323 323
    };
324 324

	
325 325
    template <typename Result, typename Word>
326 326
    struct Mapping<Result, Word, false> {
327 327
      static Result map(RandomCore<Word>& rnd, const Result& bound) {
328 328
        Word max = Word(bound - 1);
329 329
        Word mask = Masker<Word, (std::numeric_limits<Result>::digits + 1) / 2>
330 330
          ::mask(max);
331 331
        Word num;
332 332
        do {
333 333
          num = rnd() & mask;
334 334
        } while (num > max);
335 335
        return num;
336 336
      }
337 337
    };
338 338

	
339 339
    template <typename Result, int exp, bool pos = (exp >= 0)>
340 340
    struct ShiftMultiplier {
341 341
      static const Result multiplier() {
342 342
        Result res = ShiftMultiplier<Result, exp / 2>::multiplier();
343 343
        res *= res;
344 344
        if ((exp & 1) == 1) res *= static_cast<Result>(2.0);
345 345
        return res; 
346 346
      }
347 347
    };
348 348

	
349 349
    template <typename Result, int exp>
350 350
    struct ShiftMultiplier<Result, exp, false> {
351 351
      static const Result multiplier() {
352 352
        Result res = ShiftMultiplier<Result, exp / 2>::multiplier();
353 353
        res *= res;
354 354
        if ((exp & 1) == 1) res *= static_cast<Result>(0.5);
355 355
        return res; 
356 356
      }
357 357
    };
358 358

	
359 359
    template <typename Result>
360 360
    struct ShiftMultiplier<Result, 0, true> {
361 361
      static const Result multiplier() {
362 362
        return static_cast<Result>(1.0); 
363 363
      }
364 364
    };
365 365

	
366 366
    template <typename Result>
367 367
    struct ShiftMultiplier<Result, -20, true> {
368 368
      static const Result multiplier() {
369 369
        return static_cast<Result>(1.0/1048576.0); 
370 370
      }
371 371
    };
372 372
    
373 373
    template <typename Result>
374 374
    struct ShiftMultiplier<Result, -32, true> {
375 375
      static const Result multiplier() {
376 376
        return static_cast<Result>(1.0/424967296.0); 
377 377
      }
378 378
    };
379 379

	
380 380
    template <typename Result>
381 381
    struct ShiftMultiplier<Result, -53, true> {
382 382
      static const Result multiplier() {
383 383
        return static_cast<Result>(1.0/9007199254740992.0); 
384 384
      }
385 385
    };
386 386

	
387 387
    template <typename Result>
388 388
    struct ShiftMultiplier<Result, -64, true> {
389 389
      static const Result multiplier() {
390 390
        return static_cast<Result>(1.0/18446744073709551616.0); 
391 391
      }
392 392
    };
393 393

	
394 394
    template <typename Result, int exp>
395 395
    struct Shifting {
396 396
      static Result shift(const Result& result) {
397 397
        return result * ShiftMultiplier<Result, exp>::multiplier();
398 398
      }
399 399
    };
400 400

	
401 401
    template <typename Result, typename Word,
402 402
              int rest = std::numeric_limits<Result>::digits, int shift = 0, 
403 403
              bool last = rest <= std::numeric_limits<Word>::digits>
404 404
    struct RealConversion{ 
405 405
      static const int bits = std::numeric_limits<Word>::digits;
406 406

	
407 407
      static Result convert(RandomCore<Word>& rnd) {
408 408
        return Shifting<Result, - shift - rest>::
409 409
          shift(static_cast<Result>(rnd() >> (bits - rest)));
410 410
      }
411 411
    };
412 412

	
413 413
    template <typename Result, typename Word, int rest, int shift>
414 414
    struct RealConversion<Result, Word, rest, shift, false> { 
415 415
      static const int bits = std::numeric_limits<Word>::digits;
416 416

	
417 417
      static Result convert(RandomCore<Word>& rnd) {
418 418
        return Shifting<Result, - shift - bits>::
419 419
          shift(static_cast<Result>(rnd())) +
420 420
          RealConversion<Result, Word, rest-bits, shift + bits>::
421 421
          convert(rnd);
422 422
      }
423 423
    };
424 424

	
425 425
    template <typename Result, typename Word>
426 426
    struct Initializer {
427 427

	
428 428
      template <typename Iterator>
429 429
      static void init(RandomCore<Word>& rnd, Iterator begin, Iterator end) {
430 430
        std::vector<Word> ws;
431 431
        for (Iterator it = begin; it != end; ++it) {
432 432
          ws.push_back(Word(*it));
433 433
        }
434 434
        rnd.initState(ws.begin(), ws.end());
435 435
      }
436 436

	
437 437
      static void init(RandomCore<Word>& rnd, Result seed) {
438 438
        rnd.initState(seed);
439 439
      }
440 440
    };
441 441

	
442 442
    template <typename Word>
443 443
    struct BoolConversion {
444 444
      static bool convert(RandomCore<Word>& rnd) {
445 445
        return (rnd() & 1) == 1;
446 446
      }
447 447
    };
448 448

	
449 449
    template <typename Word>
450 450
    struct BoolProducer {
451 451
      Word buffer;
452 452
      int num;
453 453
      
454 454
      BoolProducer() : num(0) {}
455 455

	
456 456
      bool convert(RandomCore<Word>& rnd) {
457 457
        if (num == 0) {
458 458
          buffer = rnd();
459 459
          num = RandomTraits<Word>::bits;
460 460
        }
461 461
        bool r = (buffer & 1);
462 462
        buffer >>= 1;
463 463
        --num;
464 464
        return r;
465 465
      }
466 466
    };
467 467

	
468 468
  }
469 469

	
470 470
  /// \ingroup misc
471 471
  ///
472 472
  /// \brief Mersenne Twister random number generator
473 473
  ///
474 474
  /// The Mersenne Twister is a twisted generalized feedback
475 475
  /// shift-register generator of Matsumoto and Nishimura. The period
476 476
  /// of this generator is \f$ 2^{19937} - 1 \f$ and it is
477 477
  /// equi-distributed in 623 dimensions for 32-bit numbers. The time
478 478
  /// performance of this generator is comparable to the commonly used
479 479
  /// generators.
480 480
  ///
481 481
  /// This implementation is specialized for both 32-bit and 64-bit
482 482
  /// architectures. The generators differ sligthly in the
483 483
  /// initialization and generation phase so they produce two
484 484
  /// completly different sequences.
485 485
  ///
486 486
  /// The generator gives back random numbers of serveral types. To
487 487
  /// get a random number from a range of a floating point type you
488 488
  /// can use one form of the \c operator() or the \c real() member
489 489
  /// function. If you want to get random number from the {0, 1, ...,
490 490
  /// n-1} integer range use the \c operator[] or the \c integer()
491 491
  /// method. And to get random number from the whole range of an
492 492
  /// integer type you can use the argumentless \c integer() or \c
493 493
  /// uinteger() functions. After all you can get random bool with
494 494
  /// equal chance of true and false or given probability of true
495 495
  /// result with the \c boolean() member functions.
496 496
  ///
497 497
  ///\code
498 498
  /// // The commented code is identical to the other
499 499
  /// double a = rnd();                     // [0.0, 1.0)
500 500
  /// // double a = rnd.real();             // [0.0, 1.0)
501 501
  /// double b = rnd(100.0);                // [0.0, 100.0)
502 502
  /// // double b = rnd.real(100.0);        // [0.0, 100.0)
503 503
  /// double c = rnd(1.0, 2.0);             // [1.0, 2.0)
504 504
  /// // double c = rnd.real(1.0, 2.0);     // [1.0, 2.0)
505 505
  /// int d = rnd[100000];                  // 0..99999
506 506
  /// // int d = rnd.integer(100000);       // 0..99999
507 507
  /// int e = rnd[6] + 1;                   // 1..6
508 508
  /// // int e = rnd.integer(1, 1 + 6);     // 1..6
509 509
  /// int b = rnd.uinteger<int>();          // 0 .. 2^31 - 1
510 510
  /// int c = rnd.integer<int>();           // - 2^31 .. 2^31 - 1
511 511
  /// bool g = rnd.boolean();               // P(g = true) = 0.5
512 512
  /// bool h = rnd.boolean(0.8);            // P(h = true) = 0.8
513 513
  ///\endcode
514 514
  ///
515 515
  /// The lemon provides a global instance of the random number
516 516
  /// generator which name is \ref lemon::rnd "rnd". Usually it is a
517 517
  /// good programming convenience to use this global generator to get
518 518
  /// random numbers.
519 519
  ///
520 520
  /// \author Balazs Dezso
521 521
  class Random {
522 522
  private:
523 523

	
524 524
    // architecture word
525 525
    typedef unsigned long Word;
526 526
    
527 527
    _random_bits::RandomCore<Word> core;
528 528
    _random_bits::BoolProducer<Word> bool_producer;
529 529
    
530 530

	
531 531
  public:
532 532

	
533 533
    /// \brief Constructor
534 534
    ///
535 535
    /// Constructor with constant seeding.
536 536
    Random() { core.initState(); }
537 537

	
538 538
    /// \brief Constructor
539 539
    ///
540 540
    /// Constructor with seed. The current number type will be converted
541 541
    /// to the architecture word type.
542 542
    template <typename Number>
543 543
    Random(Number seed) { 
544 544
      _random_bits::Initializer<Number, Word>::init(core, seed);
545 545
    }
546 546

	
547 547
    /// \brief Constructor
548 548
    ///
549 549
    /// Constructor with array seeding. The given range should contain
550 550
    /// any number type and the numbers will be converted to the
551 551
    /// architecture word type.
552 552
    template <typename Iterator>
553 553
    Random(Iterator begin, Iterator end) { 
554 554
      typedef typename std::iterator_traits<Iterator>::value_type Number;
555 555
      _random_bits::Initializer<Number, Word>::init(core, begin, end);
556 556
    }
557 557

	
558 558
    /// \brief Copy constructor
559 559
    ///
560 560
    /// Copy constructor. The generated sequence will be identical to
561 561
    /// the other sequence. It can be used to save the current state
562 562
    /// of the generator and later use it to generate the same
563 563
    /// sequence.
564 564
    Random(const Random& other) {
565 565
      core.copyState(other.core);
566 566
    }
567 567

	
568 568
    /// \brief Assign operator
569 569
    ///
570 570
    /// Assign operator. The generated sequence will be identical to
571 571
    /// the other sequence. It can be used to save the current state
572 572
    /// of the generator and later use it to generate the same
573 573
    /// sequence.
574 574
    Random& operator=(const Random& other) {
575 575
      if (&other != this) {
576 576
        core.copyState(other.core);
577 577
      }
578 578
      return *this;
579 579
    }
580 580

	
581 581
    /// \brief Returns a random real number from the range [0, 1)
582 582
    ///
583 583
    /// It returns a random real number from the range [0, 1). The
584 584
    /// default Number type is double.
585 585
    template <typename Number>
586 586
    Number real() {
587 587
      return _random_bits::RealConversion<Number, Word>::convert(core);
588 588
    }
589 589

	
590 590
    double real() {
591 591
      return real<double>();
592 592
    }
593 593

	
594 594
    /// \brief Returns a random real number the range [0, b)
595 595
    ///
596 596
    /// It returns a random real number from the range [0, b).
597 597
    template <typename Number>
598 598
    Number real(Number b) { 
599 599
      return real<Number>() * b; 
600 600
    }
601 601

	
602 602
    /// \brief Returns a random real number from the range [a, b)
603 603
    ///
604 604
    /// It returns a random real number from the range [a, b).
605 605
    template <typename Number>
606 606
    Number real(Number a, Number b) { 
607 607
      return real<Number>() * (b - a) + a; 
608 608
    }
609 609

	
610 610
    /// \brief Returns a random real number from the range [0, 1)
611 611
    ///
612 612
    /// It returns a random double from the range [0, 1).
613 613
    double operator()() {
614 614
      return real<double>();
615 615
    }
616 616

	
617 617
    /// \brief Returns a random real number from the range [0, b)
618 618
    ///
619 619
    /// It returns a random real number from the range [0, b).
620 620
    template <typename Number>
621 621
    Number operator()(Number b) { 
622 622
      return real<Number>() * b; 
623 623
    }
624 624

	
625 625
    /// \brief Returns a random real number from the range [a, b)
626 626
    ///
627 627
    /// It returns a random real number from the range [a, b).
628 628
    template <typename Number>
629 629
    Number operator()(Number a, Number b) { 
630 630
      return real<Number>() * (b - a) + a; 
631 631
    }
632 632

	
633 633
    /// \brief Returns a random integer from a range
634 634
    ///
635 635
    /// It returns a random integer from the range {0, 1, ..., b - 1}.
636 636
    template <typename Number>
637 637
    Number integer(Number b) {
638 638
      return _random_bits::Mapping<Number, Word>::map(core, b);
639 639
    }
640 640

	
641 641
    /// \brief Returns a random integer from a range
642 642
    ///
643 643
    /// It returns a random integer from the range {a, a + 1, ..., b - 1}.
644 644
    template <typename Number>
645 645
    Number integer(Number a, Number b) {
646 646
      return _random_bits::Mapping<Number, Word>::map(core, b - a) + a;
647 647
    }
648 648

	
649 649
    /// \brief Returns a random integer from a range
650 650
    ///
651 651
    /// It returns a random integer from the range {0, 1, ..., b - 1}.
652 652
    template <typename Number>
653 653
    Number operator[](Number b) {
654 654
      return _random_bits::Mapping<Number, Word>::map(core, b);
655 655
    }
656 656

	
657 657
    /// \brief Returns a random non-negative integer
658 658
    ///
659 659
    /// It returns a random non-negative integer uniformly from the
660 660
    /// whole range of the current \c Number type.  The default result
661 661
    /// type of this function is unsigned int.
662 662
    template <typename Number>
663 663
    Number uinteger() {
664 664
      return _random_bits::IntConversion<Number, Word>::convert(core);
665 665
    }
666 666

	
667 667
    unsigned int uinteger() {
668 668
      return uinteger<unsigned int>();
669 669
    }
670 670

	
671 671
    /// \brief Returns a random integer
672 672
    ///
673 673
    /// It returns a random integer uniformly from the whole range of
674 674
    /// the current \c Number type. The default result type of this
675 675
    /// function is int.
676 676
    template <typename Number>
677 677
    Number integer() {
678 678
      static const int nb = std::numeric_limits<Number>::digits + 
679 679
        (std::numeric_limits<Number>::is_signed ? 1 : 0);
680 680
      return _random_bits::IntConversion<Number, Word, nb>::convert(core);
681 681
    }
682 682

	
683 683
    int integer() {
684 684
      return integer<int>();
685 685
    }
686 686
    
687 687
    /// \brief Returns a random bool
688 688
    ///
689 689
    /// It returns a random bool. The generator holds a buffer for
690 690
    /// random bits. Every time when it become empty the generator makes
691 691
    /// a new random word and fill the buffer up.
692 692
    bool boolean() {
693 693
      return bool_producer.convert(core);
694 694
    }
695 695

	
696 696
    ///\name Nonuniform distributions
697 697
    ///
698 698
    
699 699
    ///@{
700 700
    
701 701
    /// \brief Returns a random bool
702 702
    ///
703 703
    /// It returns a random bool with given probability of true result
704 704
    bool boolean(double p) {
705 705
      return operator()() < p;
706 706
    }
707 707

	
708 708
    /// Standard Gauss distribution
709 709

	
710 710
    /// Standard Gauss distribution.
711 711
    /// \note The Cartesian form of the Box-Muller
712 712
    /// transformation is used to generate a random normal distribution.
713 713
    /// \todo Consider using the "ziggurat" method instead.
714 714
    double gauss() 
715 715
    {
716 716
      double V1,V2,S;
717 717
      do {
718 718
	V1=2*real<double>()-1;
719 719
	V2=2*real<double>()-1;
720 720
	S=V1*V1+V2*V2;
721 721
      } while(S>=1);
722 722
      return std::sqrt(-2*std::log(S)/S)*V1;
723 723
    }
724 724
    /// Gauss distribution with given mean and standard deviation
725 725

	
726 726
    /// \sa gauss()
727 727
    ///
728 728
    double gauss(double mean,double std_dev)
729 729
    {
730 730
      return gauss()*std_dev+mean;
731 731
    }
732 732

	
733 733
    /// Exponential distribution with given mean
734 734

	
735 735
    /// This function generates an exponential distribution random number
736 736
    /// with mean <tt>1/lambda</tt>.
737 737
    ///
738 738
    double exponential(double lambda=1.0)
739 739
    {
740 740
      return -std::log(1.0-real<double>())/lambda;
741 741
    }
742 742

	
743 743
    /// Gamma distribution with given integer shape
744 744

	
745 745
    /// This function generates a gamma distribution random number.
746 746
    /// 
747 747
    ///\param k shape parameter (<tt>k>0</tt> integer)
748 748
    double gamma(int k) 
749 749
    {
750 750
      double s = 0;
751 751
      for(int i=0;i<k;i++) s-=std::log(1.0-real<double>());
752 752
      return s;
753 753
    }
754 754
    
755 755
    /// Gamma distribution with given shape and scale parameter
756 756

	
757 757
    /// This function generates a gamma distribution random number.
758 758
    /// 
759 759
    ///\param k shape parameter (<tt>k>0</tt>)
760 760
    ///\param theta scale parameter
761 761
    ///
762 762
    double gamma(double k,double theta=1.0)
763 763
    {
764 764
      double xi,nu;
765 765
      const double delta = k-std::floor(k);
766 766
      const double v0=M_E/(M_E-delta);
767 767
      do {
768 768
	double V0=1.0-real<double>();
769 769
	double V1=1.0-real<double>();
770 770
	double V2=1.0-real<double>();
771 771
	if(V2<=v0) 
772 772
	  {
773 773
	    xi=std::pow(V1,1.0/delta);
774 774
	    nu=V0*std::pow(xi,delta-1.0);
775 775
	  }
776 776
	else 
777 777
	  {
778 778
	    xi=1.0-std::log(V1);
779 779
	    nu=V0*std::exp(-xi);
780 780
	  }
781 781
      } while(nu>std::pow(xi,delta-1.0)*std::exp(-xi));
782 782
      return theta*(xi-gamma(int(std::floor(k))));
783 783
    }
784 784
    
785 785
    /// Weibull distribution
786 786

	
787 787
    /// This function generates a Weibull distribution random number.
788 788
    /// 
789 789
    ///\param k shape parameter (<tt>k>0</tt>)
790 790
    ///\param lambda scale parameter (<tt>lambda>0</tt>)
791 791
    ///
792 792
    double weibull(double k,double lambda)
793 793
    {
794 794
      return lambda*pow(-std::log(1.0-real<double>()),1.0/k);
795 795
    }  
796 796
      
797 797
    /// Pareto distribution
798 798

	
799 799
    /// This function generates a Pareto distribution random number.
800 800
    /// 
801
    ///\param k shape parameter (<tt>k>0</tt>)
801 802
    ///\param x_min location parameter (<tt>x_min>0</tt>)
802
    ///\param k shape parameter (<tt>k>0</tt>)
803 803
    ///
804
    ///\warning This function used inverse transform sampling, therefore may
805
    ///suffer from numerical unstability.
806
    ///
807
    ///\todo Implement a numerically stable method
808
    double pareto(double x_min,double k)
804
    double pareto(double k,double x_min)
809 805
    {
810
      return x_min*pow(1.0-real<double>(),1.0/k);
806
      return exponential(gamma(k,1.0/x_min));
811 807
    }  
812 808
      
813 809
    ///@}
814 810
    
815 811
    ///\name Two dimensional distributions
816 812
    ///
817 813

	
818 814
    ///@{
819 815
    
820 816
    /// Uniform distribution on the full unit circle.
821 817
    dim2::Point<double> disc() 
822 818
    {
823 819
      double V1,V2;
824 820
      do {
825 821
	V1=2*real<double>()-1;
826 822
	V2=2*real<double>()-1;
827 823
	
828 824
      } while(V1*V1+V2*V2>=1);
829 825
      return dim2::Point<double>(V1,V2);
830 826
    }
831 827
    /// A kind of two dimensional Gauss distribution
832 828

	
833 829
    /// This function provides a turning symmetric two-dimensional distribution.
834 830
    /// Both coordinates are of standard normal distribution, but they are not
835 831
    /// independent.
836 832
    ///
837 833
    /// \note The coordinates are the two random variables provided by
838 834
    /// the Box-Muller method.
839 835
    dim2::Point<double> gauss2()
840 836
    {
841 837
      double V1,V2,S;
842 838
      do {
843 839
	V1=2*real<double>()-1;
844 840
	V2=2*real<double>()-1;
845 841
	S=V1*V1+V2*V2;
846 842
      } while(S>=1);
847 843
      double W=std::sqrt(-2*std::log(S)/S);
848 844
      return dim2::Point<double>(W*V1,W*V2);
849 845
    }
850 846
    /// A kind of two dimensional exponential distribution
851 847

	
852 848
    /// This function provides a turning symmetric two-dimensional distribution.
853 849
    /// The x-coordinate is of conditionally exponential distribution
854 850
    /// with the condition that x is positive and y=0. If x is negative and 
855 851
    /// y=0 then, -x is of exponential distribution. The same is true for the
856 852
    /// y-coordinate.
857 853
    dim2::Point<double> exponential2() 
858 854
    {
859 855
      double V1,V2,S;
860 856
      do {
861 857
	V1=2*real<double>()-1;
862 858
	V2=2*real<double>()-1;
863 859
	S=V1*V1+V2*V2;
864 860
      } while(S>=1);
865 861
      double W=-std::log(S)/S;
866 862
      return dim2::Point<double>(W*V1,W*V2);
867 863
    }
868 864

	
869 865
    ///@}    
870 866
  };
871 867

	
872 868

	
873 869
  extern Random rnd;
874 870

	
875 871
}
876 872

	
877 873
#endif
0 comments (0 inline)