gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Much better implementation for node splitting (#311) in ListDigraph. This solution is the same as the one that is used in SmartDigraph. It is much faster and does not invalidate any iterator like the former implementation.
0 1 0
default
1 file changed with 9 insertions and 7 deletions:
↑ Collapse diff ↑
Show white space 96 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_LIST_GRAPH_H
20 20
#define LEMON_LIST_GRAPH_H
21 21

	
22 22
///\ingroup graphs
23 23
///\file
24 24
///\brief ListDigraph and ListGraph classes.
25 25

	
26 26
#include <lemon/core.h>
27 27
#include <lemon/error.h>
28 28
#include <lemon/bits/graph_extender.h>
29 29

	
30 30
#include <vector>
31 31
#include <list>
32 32

	
33 33
namespace lemon {
34 34

	
35
  class ListDigraph;
36

	
35 37
  class ListDigraphBase {
36 38

	
37 39
  protected:
38 40
    struct NodeT {
39 41
      int first_in, first_out;
40 42
      int prev, next;
41 43
    };
42 44

	
43 45
    struct ArcT {
44 46
      int target, source;
45 47
      int prev_in, prev_out;
46 48
      int next_in, next_out;
47 49
    };
48 50

	
49 51
    std::vector<NodeT> nodes;
50 52

	
51 53
    int first_node;
52 54

	
53 55
    int first_free_node;
54 56

	
55 57
    std::vector<ArcT> arcs;
56 58

	
57 59
    int first_free_arc;
58 60

	
59 61
  public:
60 62

	
61 63
    typedef ListDigraphBase Digraph;
62 64

	
63 65
    class Node {
64 66
      friend class ListDigraphBase;
67
      friend class ListDigraph;
65 68
    protected:
66 69

	
67 70
      int id;
68 71
      explicit Node(int pid) { id = pid;}
69 72

	
70 73
    public:
71 74
      Node() {}
72 75
      Node (Invalid) { id = -1; }
73 76
      bool operator==(const Node& node) const {return id == node.id;}
74 77
      bool operator!=(const Node& node) const {return id != node.id;}
75 78
      bool operator<(const Node& node) const {return id < node.id;}
76 79
    };
77 80

	
78 81
    class Arc {
79 82
      friend class ListDigraphBase;
83
      friend class ListDigraph;
80 84
    protected:
81 85

	
82 86
      int id;
83 87
      explicit Arc(int pid) { id = pid;}
84 88

	
85 89
    public:
86 90
      Arc() {}
87 91
      Arc (Invalid) { id = -1; }
88 92
      bool operator==(const Arc& arc) const {return id == arc.id;}
89 93
      bool operator!=(const Arc& arc) const {return id != arc.id;}
90 94
      bool operator<(const Arc& arc) const {return id < arc.id;}
91 95
    };
92 96

	
93 97

	
94 98

	
95 99
    ListDigraphBase()
96 100
      : nodes(), first_node(-1),
97 101
        first_free_node(-1), arcs(), first_free_arc(-1) {}
98 102

	
99 103

	
100 104
    int maxNodeId() const { return nodes.size()-1; }
101 105
    int maxArcId() const { return arcs.size()-1; }
102 106

	
103 107
    Node source(Arc e) const { return Node(arcs[e.id].source); }
104 108
    Node target(Arc e) const { return Node(arcs[e.id].target); }
105 109

	
106 110

	
107 111
    void first(Node& node) const {
108 112
      node.id = first_node;
109 113
    }
110 114

	
111 115
    void next(Node& node) const {
112 116
      node.id = nodes[node.id].next;
113 117
    }
114 118

	
115 119

	
116 120
    void first(Arc& arc) const {
117 121
      int n;
118 122
      for(n = first_node;
119 123
          n!=-1 && nodes[n].first_in == -1;
120 124
          n = nodes[n].next) {}
121 125
      arc.id = (n == -1) ? -1 : nodes[n].first_in;
122 126
    }
123 127

	
124 128
    void next(Arc& arc) const {
125 129
      if (arcs[arc.id].next_in != -1) {
126 130
        arc.id = arcs[arc.id].next_in;
127 131
      } else {
... ...
@@ -422,108 +426,106 @@
422 426
    }
423 427

	
424 428
    ///Contract two nodes.
425 429

	
426 430
    ///This function contracts the given two nodes.
427 431
    ///Node \c v is removed, but instead of deleting its
428 432
    ///incident arcs, they are joined to node \c u.
429 433
    ///If the last parameter \c r is \c true (this is the default value),
430 434
    ///then the newly created loops are removed.
431 435
    ///
432 436
    ///\note The moved arcs are joined to node \c u using changeSource()
433 437
    ///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are
434 438
    ///invalidated for the outgoing arcs of node \c v and \c InArcIt
435 439
    ///iterators are invalidated for the incomming arcs of \c v.
436 440
    ///Moreover all iterators referencing node \c v or the removed 
437 441
    ///loops are also invalidated. Other iterators remain valid.
438 442
    ///
439 443
    ///\warning This functionality cannot be used together with the Snapshot
440 444
    ///feature.
441 445
    void contract(Node u, Node v, bool r = true)
442 446
    {
443 447
      for(OutArcIt e(*this,v);e!=INVALID;) {
444 448
        OutArcIt f=e;
445 449
        ++f;
446 450
        if(r && target(e)==u) erase(e);
447 451
        else changeSource(e,u);
448 452
        e=f;
449 453
      }
450 454
      for(InArcIt e(*this,v);e!=INVALID;) {
451 455
        InArcIt f=e;
452 456
        ++f;
453 457
        if(r && source(e)==u) erase(e);
454 458
        else changeTarget(e,u);
455 459
        e=f;
456 460
      }
457 461
      erase(v);
458 462
    }
459 463

	
460 464
    ///Split a node.
461 465

	
462 466
    ///This function splits the given node. First, a new node is added
463 467
    ///to the digraph, then the source of each outgoing arc of node \c n
464 468
    ///is moved to this new node.
465 469
    ///If the second parameter \c connect is \c true (this is the default
466 470
    ///value), then a new arc from node \c n to the newly created node
467 471
    ///is also added.
468 472
    ///\return The newly created node.
469 473
    ///
470
    ///\note \c ArcIt and \c OutArcIt iterators referencing the outgoing
471
    ///arcs of node \c n are invalidated. Other iterators remain valid.
474
    ///\note All iterators remain valid.
472 475
    ///
473 476
    ///\warning This functionality cannot be used together with the
474 477
    ///Snapshot feature.
475 478
    Node split(Node n, bool connect = true) {
476 479
      Node b = addNode();
477
      for(OutArcIt e(*this,n);e!=INVALID;) {
478
        OutArcIt f=e;
479
        ++f;
480
        changeSource(e,b);
481
        e=f;
480
      nodes[b.id].first_out=nodes[n.id].first_out;
481
      nodes[n.id].first_out=-1;
482
      for(int i=nodes[b.id].first_out; i!=-1; i=arcs[i].next_out) {
483
        arcs[i].source=b.id;
482 484
      }
483 485
      if (connect) addArc(n,b);
484 486
      return b;
485 487
    }
486 488

	
487 489
    ///Split an arc.
488 490

	
489 491
    ///This function splits the given arc. First, a new node \c v is
490 492
    ///added to the digraph, then the target node of the original arc
491 493
    ///is set to \c v. Finally, an arc from \c v to the original target
492 494
    ///is added.
493 495
    ///\return The newly created node.
494 496
    ///
495 497
    ///\note \c InArcIt iterators referencing the original arc are
496 498
    ///invalidated. Other iterators remain valid.
497 499
    ///
498 500
    ///\warning This functionality cannot be used together with the
499 501
    ///Snapshot feature.
500 502
    Node split(Arc a) {
501 503
      Node v = addNode();
502 504
      addArc(v,target(a));
503 505
      changeTarget(a,v);
504 506
      return v;
505 507
    }
506 508

	
507 509
    ///Clear the digraph.
508 510

	
509 511
    ///This function erases all nodes and arcs from the digraph.
510 512
    ///
511 513
    void clear() {
512 514
      Parent::clear();
513 515
    }
514 516

	
515 517
    /// Reserve memory for nodes.
516 518

	
517 519
    /// Using this function, it is possible to avoid superfluous memory
518 520
    /// allocation: if you know that the digraph you want to build will
519 521
    /// be large (e.g. it will contain millions of nodes and/or arcs),
520 522
    /// then it is worth reserving space for this amount before starting
521 523
    /// to build the digraph.
522 524
    /// \sa reserveArc()
523 525
    void reserveNode(int n) { nodes.reserve(n); };
524 526

	
525 527
    /// Reserve memory for arcs.
526 528

	
527 529
    /// Using this function, it is possible to avoid superfluous memory
528 530
    /// allocation: if you know that the digraph you want to build will
529 531
    /// be large (e.g. it will contain millions of nodes and/or arcs),
0 comments (0 inline)