| ... | ... |
@@ -353,51 +353,50 @@ |
| 353 | 353 |
const double BLOCK_SIZE_FACTOR = 0.5; |
| 354 | 354 |
const int MIN_BLOCK_SIZE = 10; |
| 355 | 355 |
|
| 356 | 356 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
| 357 | 357 |
std::sqrt(double(_search_arc_num))), |
| 358 | 358 |
MIN_BLOCK_SIZE ); |
| 359 | 359 |
} |
| 360 | 360 |
|
| 361 | 361 |
// Find next entering arc |
| 362 | 362 |
bool findEnteringArc() {
|
| 363 | 363 |
Cost c, min = 0; |
| 364 | 364 |
int cnt = _block_size; |
| 365 |
int e |
|
| 365 |
int e; |
|
| 366 | 366 |
for (e = _next_arc; e < _search_arc_num; ++e) {
|
| 367 | 367 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 368 | 368 |
if (c < min) {
|
| 369 | 369 |
min = c; |
| 370 |
|
|
| 370 |
_in_arc = e; |
|
| 371 | 371 |
} |
| 372 | 372 |
if (--cnt == 0) {
|
| 373 |
if (min < 0) |
|
| 373 |
if (min < 0) goto search_end; |
|
| 374 | 374 |
cnt = _block_size; |
| 375 | 375 |
} |
| 376 | 376 |
} |
| 377 |
if (min == 0 || cnt > 0) {
|
|
| 378 |
for (e = 0; e < _next_arc; ++e) {
|
|
| 379 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 380 |
if (c < min) {
|
|
| 381 |
min = c; |
|
| 382 |
min_arc = e; |
|
| 383 |
} |
|
| 384 |
if (--cnt == 0) {
|
|
| 385 |
if (min < 0) break; |
|
| 386 |
cnt = _block_size; |
|
| 387 |
|
|
| 377 |
for (e = 0; e < _next_arc; ++e) {
|
|
| 378 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 379 |
if (c < min) {
|
|
| 380 |
min = c; |
|
| 381 |
_in_arc = e; |
|
| 382 |
} |
|
| 383 |
if (--cnt == 0) {
|
|
| 384 |
if (min < 0) goto search_end; |
|
| 385 |
cnt = _block_size; |
|
| 388 | 386 |
} |
| 389 | 387 |
} |
| 390 | 388 |
if (min >= 0) return false; |
| 391 |
|
|
| 389 |
|
|
| 390 |
search_end: |
|
| 392 | 391 |
_next_arc = e; |
| 393 | 392 |
return true; |
| 394 | 393 |
} |
| 395 | 394 |
|
| 396 | 395 |
}; //class BlockSearchPivotRule |
| 397 | 396 |
|
| 398 | 397 |
|
| 399 | 398 |
// Implementation of the Candidate List pivot rule |
| 400 | 399 |
class CandidateListPivotRule |
| 401 | 400 |
{
|
| 402 | 401 |
private: |
| 403 | 402 |
|
| ... | ... |
@@ -417,94 +416,90 @@ |
| 417 | 416 |
int _next_arc; |
| 418 | 417 |
|
| 419 | 418 |
public: |
| 420 | 419 |
|
| 421 | 420 |
/// Constructor |
| 422 | 421 |
CandidateListPivotRule(NetworkSimplex &ns) : |
| 423 | 422 |
_source(ns._source), _target(ns._target), |
| 424 | 423 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 425 | 424 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 426 | 425 |
_next_arc(0) |
| 427 | 426 |
{
|
| 428 | 427 |
// The main parameters of the pivot rule |
| 429 |
const double LIST_LENGTH_FACTOR = |
|
| 428 |
const double LIST_LENGTH_FACTOR = 0.25; |
|
| 430 | 429 |
const int MIN_LIST_LENGTH = 10; |
| 431 | 430 |
const double MINOR_LIMIT_FACTOR = 0.1; |
| 432 | 431 |
const int MIN_MINOR_LIMIT = 3; |
| 433 | 432 |
|
| 434 | 433 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
| 435 | 434 |
std::sqrt(double(_search_arc_num))), |
| 436 | 435 |
MIN_LIST_LENGTH ); |
| 437 | 436 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
| 438 | 437 |
MIN_MINOR_LIMIT ); |
| 439 | 438 |
_curr_length = _minor_count = 0; |
| 440 | 439 |
_candidates.resize(_list_length); |
| 441 | 440 |
} |
| 442 | 441 |
|
| 443 | 442 |
/// Find next entering arc |
| 444 | 443 |
bool findEnteringArc() {
|
| 445 | 444 |
Cost min, c; |
| 446 |
int e |
|
| 445 |
int e; |
|
| 447 | 446 |
if (_curr_length > 0 && _minor_count < _minor_limit) {
|
| 448 | 447 |
// Minor iteration: select the best eligible arc from the |
| 449 | 448 |
// current candidate list |
| 450 | 449 |
++_minor_count; |
| 451 | 450 |
min = 0; |
| 452 | 451 |
for (int i = 0; i < _curr_length; ++i) {
|
| 453 | 452 |
e = _candidates[i]; |
| 454 | 453 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 455 | 454 |
if (c < min) {
|
| 456 | 455 |
min = c; |
| 457 |
|
|
| 456 |
_in_arc = e; |
|
| 458 | 457 |
} |
| 459 |
if (c >= 0) {
|
|
| 458 |
else if (c >= 0) {
|
|
| 460 | 459 |
_candidates[i--] = _candidates[--_curr_length]; |
| 461 | 460 |
} |
| 462 | 461 |
} |
| 463 |
if (min < 0) {
|
|
| 464 |
_in_arc = min_arc; |
|
| 465 |
return true; |
|
| 466 |
} |
|
| 462 |
if (min < 0) return true; |
|
| 467 | 463 |
} |
| 468 | 464 |
|
| 469 | 465 |
// Major iteration: build a new candidate list |
| 470 | 466 |
min = 0; |
| 471 | 467 |
_curr_length = 0; |
| 472 | 468 |
for (e = _next_arc; e < _search_arc_num; ++e) {
|
| 473 | 469 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 474 | 470 |
if (c < 0) {
|
| 475 | 471 |
_candidates[_curr_length++] = e; |
| 476 | 472 |
if (c < min) {
|
| 477 | 473 |
min = c; |
| 478 |
|
|
| 474 |
_in_arc = e; |
|
| 479 | 475 |
} |
| 480 |
if (_curr_length == _list_length) |
|
| 476 |
if (_curr_length == _list_length) goto search_end; |
|
| 481 | 477 |
} |
| 482 | 478 |
} |
| 483 |
if (_curr_length < _list_length) {
|
|
| 484 |
for (e = 0; e < _next_arc; ++e) {
|
|
| 485 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 486 |
if (c < 0) {
|
|
| 487 |
_candidates[_curr_length++] = e; |
|
| 488 |
if (c < min) {
|
|
| 489 |
min = c; |
|
| 490 |
min_arc = e; |
|
| 491 |
} |
|
| 492 |
if (_curr_length == _list_length) break; |
|
| 479 |
for (e = 0; e < _next_arc; ++e) {
|
|
| 480 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 481 |
if (c < 0) {
|
|
| 482 |
_candidates[_curr_length++] = e; |
|
| 483 |
if (c < min) {
|
|
| 484 |
min = c; |
|
| 485 |
_in_arc = e; |
|
| 493 | 486 |
} |
| 487 |
if (_curr_length == _list_length) goto search_end; |
|
| 494 | 488 |
} |
| 495 | 489 |
} |
| 496 | 490 |
if (_curr_length == 0) return false; |
| 491 |
|
|
| 492 |
search_end: |
|
| 497 | 493 |
_minor_count = 1; |
| 498 |
_in_arc = min_arc; |
|
| 499 | 494 |
_next_arc = e; |
| 500 | 495 |
return true; |
| 501 | 496 |
} |
| 502 | 497 |
|
| 503 | 498 |
}; //class CandidateListPivotRule |
| 504 | 499 |
|
| 505 | 500 |
|
| 506 | 501 |
// Implementation of the Altering Candidate List pivot rule |
| 507 | 502 |
class AlteringListPivotRule |
| 508 | 503 |
{
|
| 509 | 504 |
private: |
| 510 | 505 |
|
| ... | ... |
@@ -538,25 +533,25 @@ |
| 538 | 533 |
SortFunc _sort_func; |
| 539 | 534 |
|
| 540 | 535 |
public: |
| 541 | 536 |
|
| 542 | 537 |
// Constructor |
| 543 | 538 |
AlteringListPivotRule(NetworkSimplex &ns) : |
| 544 | 539 |
_source(ns._source), _target(ns._target), |
| 545 | 540 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 546 | 541 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 547 | 542 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
| 548 | 543 |
{
|
| 549 | 544 |
// The main parameters of the pivot rule |
| 550 |
const double BLOCK_SIZE_FACTOR = 1. |
|
| 545 |
const double BLOCK_SIZE_FACTOR = 1.0; |
|
| 551 | 546 |
const int MIN_BLOCK_SIZE = 10; |
| 552 | 547 |
const double HEAD_LENGTH_FACTOR = 0.1; |
| 553 | 548 |
const int MIN_HEAD_LENGTH = 3; |
| 554 | 549 |
|
| 555 | 550 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
| 556 | 551 |
std::sqrt(double(_search_arc_num))), |
| 557 | 552 |
MIN_BLOCK_SIZE ); |
| 558 | 553 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
| 559 | 554 |
MIN_HEAD_LENGTH ); |
| 560 | 555 |
_candidates.resize(_head_length + _block_size); |
| 561 | 556 |
_curr_length = 0; |
| 562 | 557 |
} |
| ... | ... |
@@ -567,80 +562,81 @@ |
| 567 | 562 |
int e; |
| 568 | 563 |
for (int i = 0; i < _curr_length; ++i) {
|
| 569 | 564 |
e = _candidates[i]; |
| 570 | 565 |
_cand_cost[e] = _state[e] * |
| 571 | 566 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 572 | 567 |
if (_cand_cost[e] >= 0) {
|
| 573 | 568 |
_candidates[i--] = _candidates[--_curr_length]; |
| 574 | 569 |
} |
| 575 | 570 |
} |
| 576 | 571 |
|
| 577 | 572 |
// Extend the list |
| 578 | 573 |
int cnt = _block_size; |
| 579 |
int last_arc = 0; |
|
| 580 | 574 |
int limit = _head_length; |
| 581 | 575 |
|
| 582 |
for ( |
|
| 576 |
for (e = _next_arc; e < _search_arc_num; ++e) {
|
|
| 583 | 577 |
_cand_cost[e] = _state[e] * |
| 584 | 578 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 585 | 579 |
if (_cand_cost[e] < 0) {
|
| 586 | 580 |
_candidates[_curr_length++] = e; |
| 587 |
last_arc = e; |
|
| 588 | 581 |
} |
| 589 | 582 |
if (--cnt == 0) {
|
| 590 |
if (_curr_length > limit) |
|
| 583 |
if (_curr_length > limit) goto search_end; |
|
| 591 | 584 |
limit = 0; |
| 592 | 585 |
cnt = _block_size; |
| 593 | 586 |
} |
| 594 | 587 |
} |
| 595 |
if (_curr_length <= limit) {
|
|
| 596 |
for (int e = 0; e < _next_arc; ++e) {
|
|
| 597 |
_cand_cost[e] = _state[e] * |
|
| 598 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 599 |
if (_cand_cost[e] < 0) {
|
|
| 600 |
_candidates[_curr_length++] = e; |
|
| 601 |
last_arc = e; |
|
| 602 |
} |
|
| 603 |
if (--cnt == 0) {
|
|
| 604 |
if (_curr_length > limit) break; |
|
| 605 |
limit = 0; |
|
| 606 |
cnt = _block_size; |
|
| 607 |
|
|
| 588 |
for (e = 0; e < _next_arc; ++e) {
|
|
| 589 |
_cand_cost[e] = _state[e] * |
|
| 590 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 591 |
if (_cand_cost[e] < 0) {
|
|
| 592 |
_candidates[_curr_length++] = e; |
|
| 593 |
} |
|
| 594 |
if (--cnt == 0) {
|
|
| 595 |
if (_curr_length > limit) goto search_end; |
|
| 596 |
limit = 0; |
|
| 597 |
cnt = _block_size; |
|
| 608 | 598 |
} |
| 609 | 599 |
} |
| 610 | 600 |
if (_curr_length == 0) return false; |
| 611 |
|
|
| 601 |
|
|
| 602 |
search_end: |
|
| 612 | 603 |
|
| 613 | 604 |
// Make heap of the candidate list (approximating a partial sort) |
| 614 | 605 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
| 615 | 606 |
_sort_func ); |
| 616 | 607 |
|
| 617 | 608 |
// Pop the first element of the heap |
| 618 | 609 |
_in_arc = _candidates[0]; |
| 610 |
_next_arc = e; |
|
| 619 | 611 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
| 620 | 612 |
_sort_func ); |
| 621 | 613 |
_curr_length = std::min(_head_length, _curr_length - 1); |
| 622 | 614 |
return true; |
| 623 | 615 |
} |
| 624 | 616 |
|
| 625 | 617 |
}; //class AlteringListPivotRule |
| 626 | 618 |
|
| 627 | 619 |
public: |
| 628 | 620 |
|
| 629 | 621 |
/// \brief Constructor. |
| 630 | 622 |
/// |
| 631 | 623 |
/// The constructor of the class. |
| 632 | 624 |
/// |
| 633 | 625 |
/// \param graph The digraph the algorithm runs on. |
| 634 |
|
|
| 626 |
/// \param arc_mixing Indicate if the arcs have to be stored in a |
|
| 627 |
/// mixed order in the internal data structure. |
|
| 628 |
/// In special cases, it could lead to better overall performance, |
|
| 629 |
/// but it is usually slower. Therefore it is disabled by default. |
|
| 630 |
NetworkSimplex(const GR& graph, bool arc_mixing = false) : |
|
| 635 | 631 |
_graph(graph), _node_id(graph), _arc_id(graph), |
| 636 | 632 |
INF(std::numeric_limits<Value>::has_infinity ? |
| 637 | 633 |
std::numeric_limits<Value>::infinity() : |
| 638 | 634 |
std::numeric_limits<Value>::max()) |
| 639 | 635 |
{
|
| 640 | 636 |
// Check the value types |
| 641 | 637 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
| 642 | 638 |
"The flow type of NetworkSimplex must be signed"); |
| 643 | 639 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
| 644 | 640 |
"The cost type of NetworkSimplex must be signed"); |
| 645 | 641 |
|
| 646 | 642 |
// Resize vectors |
| ... | ... |
@@ -660,36 +656,47 @@ |
| 660 | 656 |
_flow.resize(max_arc_num); |
| 661 | 657 |
_pi.resize(all_node_num); |
| 662 | 658 |
|
| 663 | 659 |
_parent.resize(all_node_num); |
| 664 | 660 |
_pred.resize(all_node_num); |
| 665 | 661 |
_forward.resize(all_node_num); |
| 666 | 662 |
_thread.resize(all_node_num); |
| 667 | 663 |
_rev_thread.resize(all_node_num); |
| 668 | 664 |
_succ_num.resize(all_node_num); |
| 669 | 665 |
_last_succ.resize(all_node_num); |
| 670 | 666 |
_state.resize(max_arc_num); |
| 671 | 667 |
|
| 672 |
// Copy the graph |
|
| 668 |
// Copy the graph |
|
| 673 | 669 |
int i = 0; |
| 674 | 670 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 675 | 671 |
_node_id[n] = i; |
| 676 | 672 |
} |
| 677 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
| 678 |
i = 0; |
|
| 679 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 680 |
_arc_id[a] = i; |
|
| 681 |
_source[i] = _node_id[_graph.source(a)]; |
|
| 682 |
_target[i] = _node_id[_graph.target(a)]; |
|
| 683 |
|
|
| 673 |
if (arc_mixing) {
|
|
| 674 |
// Store the arcs in a mixed order |
|
| 675 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
| 676 |
int i = 0, j = 0; |
|
| 677 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 678 |
_arc_id[a] = i; |
|
| 679 |
_source[i] = _node_id[_graph.source(a)]; |
|
| 680 |
_target[i] = _node_id[_graph.target(a)]; |
|
| 681 |
if ((i += k) >= _arc_num) i = ++j; |
|
| 682 |
} |
|
| 683 |
} else {
|
|
| 684 |
// Store the arcs in the original order |
|
| 685 |
int i = 0; |
|
| 686 |
for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
|
|
| 687 |
_arc_id[a] = i; |
|
| 688 |
_source[i] = _node_id[_graph.source(a)]; |
|
| 689 |
_target[i] = _node_id[_graph.target(a)]; |
|
| 690 |
} |
|
| 684 | 691 |
} |
| 685 | 692 |
|
| 686 | 693 |
// Reset parameters |
| 687 | 694 |
reset(); |
| 688 | 695 |
} |
| 689 | 696 |
|
| 690 | 697 |
/// \name Parameters |
| 691 | 698 |
/// The parameters of the algorithm can be specified using these |
| 692 | 699 |
/// functions. |
| 693 | 700 |
|
| 694 | 701 |
/// @{
|
| 695 | 702 |
|
0 comments (0 inline)