0
3
0
| ... | ... |
@@ -26,27 +26,27 @@ |
| 26 | 26 |
|
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <limits> |
| 29 | 29 |
#include <lemon/core.h> |
| 30 | 30 |
#include <lemon/bin_heap.h> |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
/// \brief Default traits class of CapacityScaling algorithm. |
| 35 | 35 |
/// |
| 36 | 36 |
/// Default traits class of CapacityScaling algorithm. |
| 37 | 37 |
/// \tparam GR Digraph type. |
| 38 |
/// \tparam V The |
|
| 38 |
/// \tparam V The number type used for flow amounts, capacity bounds |
|
| 39 | 39 |
/// and supply values. By default it is \c int. |
| 40 |
/// \tparam C The |
|
| 40 |
/// \tparam C The number type used for costs and potentials. |
|
| 41 | 41 |
/// By default it is the same as \c V. |
| 42 | 42 |
template <typename GR, typename V = int, typename C = V> |
| 43 | 43 |
struct CapacityScalingDefaultTraits |
| 44 | 44 |
{
|
| 45 | 45 |
/// The type of the digraph |
| 46 | 46 |
typedef GR Digraph; |
| 47 | 47 |
/// The type of the flow amounts, capacity bounds and supply values |
| 48 | 48 |
typedef V Value; |
| 49 | 49 |
/// The type of the arc costs |
| 50 | 50 |
typedef C Cost; |
| 51 | 51 |
|
| 52 | 52 |
/// \brief The type of the heap used for internal Dijkstra computations. |
| ... | ... |
@@ -66,30 +66,30 @@ |
| 66 | 66 |
/// |
| 67 | 67 |
/// \ref CapacityScaling implements the capacity scaling version |
| 68 | 68 |
/// of the successive shortest path algorithm for finding a |
| 69 | 69 |
/// \ref min_cost_flow "minimum cost flow". It is an efficient dual |
| 70 | 70 |
/// solution method. |
| 71 | 71 |
/// |
| 72 | 72 |
/// Most of the parameters of the problem (except for the digraph) |
| 73 | 73 |
/// can be given using separate functions, and the algorithm can be |
| 74 | 74 |
/// executed using the \ref run() function. If some parameters are not |
| 75 | 75 |
/// specified, then default values will be used. |
| 76 | 76 |
/// |
| 77 | 77 |
/// \tparam GR The digraph type the algorithm runs on. |
| 78 |
/// \tparam V The |
|
| 78 |
/// \tparam V The number type used for flow amounts, capacity bounds |
|
| 79 | 79 |
/// and supply values in the algorithm. By default it is \c int. |
| 80 |
/// \tparam C The |
|
| 80 |
/// \tparam C The number type used for costs and potentials in the |
|
| 81 | 81 |
/// algorithm. By default it is the same as \c V. |
| 82 | 82 |
/// |
| 83 |
/// \warning Both |
|
| 83 |
/// \warning Both number types must be signed and all input data must |
|
| 84 | 84 |
/// be integer. |
| 85 | 85 |
/// \warning This algorithm does not support negative costs for such |
| 86 | 86 |
/// arcs that have infinite upper bound. |
| 87 | 87 |
#ifdef DOXYGEN |
| 88 | 88 |
template <typename GR, typename V, typename C, typename TR> |
| 89 | 89 |
#else |
| 90 | 90 |
template < typename GR, typename V = int, typename C = V, |
| 91 | 91 |
typename TR = CapacityScalingDefaultTraits<GR, V, C> > |
| 92 | 92 |
#endif |
| 93 | 93 |
class CapacityScaling |
| 94 | 94 |
{
|
| 95 | 95 |
public: |
| ... | ... |
@@ -113,25 +113,25 @@ |
| 113 | 113 |
/// |
| 114 | 114 |
/// Enum type containing the problem type constants that can be |
| 115 | 115 |
/// returned by the \ref run() function of the algorithm. |
| 116 | 116 |
enum ProblemType {
|
| 117 | 117 |
/// The problem has no feasible solution (flow). |
| 118 | 118 |
INFEASIBLE, |
| 119 | 119 |
/// The problem has optimal solution (i.e. it is feasible and |
| 120 | 120 |
/// bounded), and the algorithm has found optimal flow and node |
| 121 | 121 |
/// potentials (primal and dual solutions). |
| 122 | 122 |
OPTIMAL, |
| 123 | 123 |
/// The digraph contains an arc of negative cost and infinite |
| 124 | 124 |
/// upper bound. It means that the objective function is unbounded |
| 125 |
/// on that arc, however note that it could actually be bounded |
|
| 125 |
/// on that arc, however, note that it could actually be bounded |
|
| 126 | 126 |
/// over the feasible flows, but this algroithm cannot handle |
| 127 | 127 |
/// these cases. |
| 128 | 128 |
UNBOUNDED |
| 129 | 129 |
}; |
| 130 | 130 |
|
| 131 | 131 |
private: |
| 132 | 132 |
|
| 133 | 133 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 134 | 134 |
|
| 135 | 135 |
typedef std::vector<int> IntVector; |
| 136 | 136 |
typedef std::vector<char> BoolVector; |
| 137 | 137 |
typedef std::vector<Value> ValueVector; |
| ... | ... |
@@ -298,25 +298,25 @@ |
| 298 | 298 |
|
| 299 | 299 |
/// \brief Constructor. |
| 300 | 300 |
/// |
| 301 | 301 |
/// The constructor of the class. |
| 302 | 302 |
/// |
| 303 | 303 |
/// \param graph The digraph the algorithm runs on. |
| 304 | 304 |
CapacityScaling(const GR& graph) : |
| 305 | 305 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
| 306 | 306 |
INF(std::numeric_limits<Value>::has_infinity ? |
| 307 | 307 |
std::numeric_limits<Value>::infinity() : |
| 308 | 308 |
std::numeric_limits<Value>::max()) |
| 309 | 309 |
{
|
| 310 |
// Check the |
|
| 310 |
// Check the number types |
|
| 311 | 311 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
| 312 | 312 |
"The flow type of CapacityScaling must be signed"); |
| 313 | 313 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
| 314 | 314 |
"The cost type of CapacityScaling must be signed"); |
| 315 | 315 |
|
| 316 | 316 |
// Resize vectors |
| 317 | 317 |
_node_num = countNodes(_graph); |
| 318 | 318 |
_arc_num = countArcs(_graph); |
| 319 | 319 |
_res_arc_num = 2 * (_arc_num + _node_num); |
| 320 | 320 |
_root = _node_num; |
| 321 | 321 |
++_node_num; |
| 322 | 322 |
|
| ... | ... |
@@ -402,25 +402,25 @@ |
| 402 | 402 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 403 | 403 |
_lower[_arc_idf[a]] = map[a]; |
| 404 | 404 |
_lower[_arc_idb[a]] = map[a]; |
| 405 | 405 |
} |
| 406 | 406 |
return *this; |
| 407 | 407 |
} |
| 408 | 408 |
|
| 409 | 409 |
/// \brief Set the upper bounds (capacities) on the arcs. |
| 410 | 410 |
/// |
| 411 | 411 |
/// This function sets the upper bounds (capacities) on the arcs. |
| 412 | 412 |
/// If it is not used before calling \ref run(), the upper bounds |
| 413 | 413 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
| 414 |
/// unbounded from above |
|
| 414 |
/// unbounded from above). |
|
| 415 | 415 |
/// |
| 416 | 416 |
/// \param map An arc map storing the upper bounds. |
| 417 | 417 |
/// Its \c Value type must be convertible to the \c Value type |
| 418 | 418 |
/// of the algorithm. |
| 419 | 419 |
/// |
| 420 | 420 |
/// \return <tt>(*this)</tt> |
| 421 | 421 |
template<typename UpperMap> |
| 422 | 422 |
CapacityScaling& upperMap(const UpperMap& map) {
|
| 423 | 423 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 424 | 424 |
_upper[_arc_idf[a]] = map[a]; |
| 425 | 425 |
} |
| 426 | 426 |
return *this; |
| ... | ... |
@@ -505,38 +505,38 @@ |
| 505 | 505 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
| 506 | 506 |
/// For example, |
| 507 | 507 |
/// \code |
| 508 | 508 |
/// CapacityScaling<ListDigraph> cs(graph); |
| 509 | 509 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
| 510 | 510 |
/// .supplyMap(sup).run(); |
| 511 | 511 |
/// \endcode |
| 512 | 512 |
/// |
| 513 | 513 |
/// This function can be called more than once. All the parameters |
| 514 | 514 |
/// that have been given are kept for the next call, unless |
| 515 | 515 |
/// \ref reset() is called, thus only the modified parameters |
| 516 | 516 |
/// have to be set again. See \ref reset() for examples. |
| 517 |
/// However the underlying digraph must not be modified after this |
|
| 517 |
/// However, the underlying digraph must not be modified after this |
|
| 518 | 518 |
/// class have been constructed, since it copies and extends the graph. |
| 519 | 519 |
/// |
| 520 | 520 |
/// \param factor The capacity scaling factor. It must be larger than |
| 521 | 521 |
/// one to use scaling. If it is less or equal to one, then scaling |
| 522 | 522 |
/// will be disabled. |
| 523 | 523 |
/// |
| 524 | 524 |
/// \return \c INFEASIBLE if no feasible flow exists, |
| 525 | 525 |
/// \n \c OPTIMAL if the problem has optimal solution |
| 526 | 526 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
| 527 | 527 |
/// optimal flow and node potentials (primal and dual solutions), |
| 528 | 528 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
| 529 | 529 |
/// and infinite upper bound. It means that the objective function |
| 530 |
/// is unbounded on that arc, however note that it could actually be |
|
| 530 |
/// is unbounded on that arc, however, note that it could actually be |
|
| 531 | 531 |
/// bounded over the feasible flows, but this algroithm cannot handle |
| 532 | 532 |
/// these cases. |
| 533 | 533 |
/// |
| 534 | 534 |
/// \see ProblemType |
| 535 | 535 |
ProblemType run(int factor = 4) {
|
| 536 | 536 |
_factor = factor; |
| 537 | 537 |
ProblemType pt = init(); |
| 538 | 538 |
if (pt != OPTIMAL) return pt; |
| 539 | 539 |
return start(); |
| 540 | 540 |
} |
| 541 | 541 |
|
| 542 | 542 |
/// \brief Reset all the parameters that have been given before. |
| ... | ... |
@@ -31,27 +31,27 @@ |
| 31 | 31 |
#include <lemon/maps.h> |
| 32 | 32 |
#include <lemon/math.h> |
| 33 | 33 |
#include <lemon/static_graph.h> |
| 34 | 34 |
#include <lemon/circulation.h> |
| 35 | 35 |
#include <lemon/bellman_ford.h> |
| 36 | 36 |
|
| 37 | 37 |
namespace lemon {
|
| 38 | 38 |
|
| 39 | 39 |
/// \brief Default traits class of CostScaling algorithm. |
| 40 | 40 |
/// |
| 41 | 41 |
/// Default traits class of CostScaling algorithm. |
| 42 | 42 |
/// \tparam GR Digraph type. |
| 43 |
/// \tparam V The |
|
| 43 |
/// \tparam V The number type used for flow amounts, capacity bounds |
|
| 44 | 44 |
/// and supply values. By default it is \c int. |
| 45 |
/// \tparam C The |
|
| 45 |
/// \tparam C The number type used for costs and potentials. |
|
| 46 | 46 |
/// By default it is the same as \c V. |
| 47 | 47 |
#ifdef DOXYGEN |
| 48 | 48 |
template <typename GR, typename V = int, typename C = V> |
| 49 | 49 |
#else |
| 50 | 50 |
template < typename GR, typename V = int, typename C = V, |
| 51 | 51 |
bool integer = std::numeric_limits<C>::is_integer > |
| 52 | 52 |
#endif |
| 53 | 53 |
struct CostScalingDefaultTraits |
| 54 | 54 |
{
|
| 55 | 55 |
/// The type of the digraph |
| 56 | 56 |
typedef GR Digraph; |
| 57 | 57 |
/// The type of the flow amounts, capacity bounds and supply values |
| ... | ... |
@@ -92,30 +92,30 @@ |
| 92 | 92 |
/// \ref CostScaling implements a cost scaling algorithm that performs |
| 93 | 93 |
/// push/augment and relabel operations for finding a minimum cost |
| 94 | 94 |
/// flow. It is an efficient primal-dual solution method, which |
| 95 | 95 |
/// can be viewed as the generalization of the \ref Preflow |
| 96 | 96 |
/// "preflow push-relabel" algorithm for the maximum flow problem. |
| 97 | 97 |
/// |
| 98 | 98 |
/// Most of the parameters of the problem (except for the digraph) |
| 99 | 99 |
/// can be given using separate functions, and the algorithm can be |
| 100 | 100 |
/// executed using the \ref run() function. If some parameters are not |
| 101 | 101 |
/// specified, then default values will be used. |
| 102 | 102 |
/// |
| 103 | 103 |
/// \tparam GR The digraph type the algorithm runs on. |
| 104 |
/// \tparam V The |
|
| 104 |
/// \tparam V The number type used for flow amounts, capacity bounds |
|
| 105 | 105 |
/// and supply values in the algorithm. By default it is \c int. |
| 106 |
/// \tparam C The |
|
| 106 |
/// \tparam C The number type used for costs and potentials in the |
|
| 107 | 107 |
/// algorithm. By default it is the same as \c V. |
| 108 | 108 |
/// |
| 109 |
/// \warning Both |
|
| 109 |
/// \warning Both number types must be signed and all input data must |
|
| 110 | 110 |
/// be integer. |
| 111 | 111 |
/// \warning This algorithm does not support negative costs for such |
| 112 | 112 |
/// arcs that have infinite upper bound. |
| 113 | 113 |
/// |
| 114 | 114 |
/// \note %CostScaling provides three different internal methods, |
| 115 | 115 |
/// from which the most efficient one is used by default. |
| 116 | 116 |
/// For more information, see \ref Method. |
| 117 | 117 |
#ifdef DOXYGEN |
| 118 | 118 |
template <typename GR, typename V, typename C, typename TR> |
| 119 | 119 |
#else |
| 120 | 120 |
template < typename GR, typename V = int, typename C = V, |
| 121 | 121 |
typename TR = CostScalingDefaultTraits<GR, V, C> > |
| ... | ... |
@@ -148,25 +148,25 @@ |
| 148 | 148 |
/// |
| 149 | 149 |
/// Enum type containing the problem type constants that can be |
| 150 | 150 |
/// returned by the \ref run() function of the algorithm. |
| 151 | 151 |
enum ProblemType {
|
| 152 | 152 |
/// The problem has no feasible solution (flow). |
| 153 | 153 |
INFEASIBLE, |
| 154 | 154 |
/// The problem has optimal solution (i.e. it is feasible and |
| 155 | 155 |
/// bounded), and the algorithm has found optimal flow and node |
| 156 | 156 |
/// potentials (primal and dual solutions). |
| 157 | 157 |
OPTIMAL, |
| 158 | 158 |
/// The digraph contains an arc of negative cost and infinite |
| 159 | 159 |
/// upper bound. It means that the objective function is unbounded |
| 160 |
/// on that arc, however note that it could actually be bounded |
|
| 160 |
/// on that arc, however, note that it could actually be bounded |
|
| 161 | 161 |
/// over the feasible flows, but this algroithm cannot handle |
| 162 | 162 |
/// these cases. |
| 163 | 163 |
UNBOUNDED |
| 164 | 164 |
}; |
| 165 | 165 |
|
| 166 | 166 |
/// \brief Constants for selecting the internal method. |
| 167 | 167 |
/// |
| 168 | 168 |
/// Enum type containing constants for selecting the internal method |
| 169 | 169 |
/// for the \ref run() function. |
| 170 | 170 |
/// |
| 171 | 171 |
/// \ref CostScaling provides three internal methods that differ mainly |
| 172 | 172 |
/// in their base operations, which are used in conjunction with the |
| ... | ... |
@@ -316,25 +316,25 @@ |
| 316 | 316 |
/// \brief Constructor. |
| 317 | 317 |
/// |
| 318 | 318 |
/// The constructor of the class. |
| 319 | 319 |
/// |
| 320 | 320 |
/// \param graph The digraph the algorithm runs on. |
| 321 | 321 |
CostScaling(const GR& graph) : |
| 322 | 322 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
| 323 | 323 |
_cost_map(_cost_vec), _pi_map(_pi), |
| 324 | 324 |
INF(std::numeric_limits<Value>::has_infinity ? |
| 325 | 325 |
std::numeric_limits<Value>::infinity() : |
| 326 | 326 |
std::numeric_limits<Value>::max()) |
| 327 | 327 |
{
|
| 328 |
// Check the |
|
| 328 |
// Check the number types |
|
| 329 | 329 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
| 330 | 330 |
"The flow type of CostScaling must be signed"); |
| 331 | 331 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
| 332 | 332 |
"The cost type of CostScaling must be signed"); |
| 333 | 333 |
|
| 334 | 334 |
// Resize vectors |
| 335 | 335 |
_node_num = countNodes(_graph); |
| 336 | 336 |
_arc_num = countArcs(_graph); |
| 337 | 337 |
_res_node_num = _node_num + 1; |
| 338 | 338 |
_res_arc_num = 2 * (_arc_num + _node_num); |
| 339 | 339 |
_root = _node_num; |
| 340 | 340 |
|
| ... | ... |
@@ -424,25 +424,25 @@ |
| 424 | 424 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 425 | 425 |
_lower[_arc_idf[a]] = map[a]; |
| 426 | 426 |
_lower[_arc_idb[a]] = map[a]; |
| 427 | 427 |
} |
| 428 | 428 |
return *this; |
| 429 | 429 |
} |
| 430 | 430 |
|
| 431 | 431 |
/// \brief Set the upper bounds (capacities) on the arcs. |
| 432 | 432 |
/// |
| 433 | 433 |
/// This function sets the upper bounds (capacities) on the arcs. |
| 434 | 434 |
/// If it is not used before calling \ref run(), the upper bounds |
| 435 | 435 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
| 436 |
/// unbounded from above |
|
| 436 |
/// unbounded from above). |
|
| 437 | 437 |
/// |
| 438 | 438 |
/// \param map An arc map storing the upper bounds. |
| 439 | 439 |
/// Its \c Value type must be convertible to the \c Value type |
| 440 | 440 |
/// of the algorithm. |
| 441 | 441 |
/// |
| 442 | 442 |
/// \return <tt>(*this)</tt> |
| 443 | 443 |
template<typename UpperMap> |
| 444 | 444 |
CostScaling& upperMap(const UpperMap& map) {
|
| 445 | 445 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 446 | 446 |
_upper[_arc_idf[a]] = map[a]; |
| 447 | 447 |
} |
| 448 | 448 |
return *this; |
| ... | ... |
@@ -540,47 +540,47 @@ |
| 540 | 540 |
/// class have been constructed, since it copies and extends the graph. |
| 541 | 541 |
/// |
| 542 | 542 |
/// \param method The internal method that will be used in the |
| 543 | 543 |
/// algorithm. For more information, see \ref Method. |
| 544 | 544 |
/// \param factor The cost scaling factor. It must be larger than one. |
| 545 | 545 |
/// |
| 546 | 546 |
/// \return \c INFEASIBLE if no feasible flow exists, |
| 547 | 547 |
/// \n \c OPTIMAL if the problem has optimal solution |
| 548 | 548 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
| 549 | 549 |
/// optimal flow and node potentials (primal and dual solutions), |
| 550 | 550 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
| 551 | 551 |
/// and infinite upper bound. It means that the objective function |
| 552 |
/// is unbounded on that arc, however note that it could actually be |
|
| 552 |
/// is unbounded on that arc, however, note that it could actually be |
|
| 553 | 553 |
/// bounded over the feasible flows, but this algroithm cannot handle |
| 554 | 554 |
/// these cases. |
| 555 | 555 |
/// |
| 556 | 556 |
/// \see ProblemType, Method |
| 557 | 557 |
ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
|
| 558 | 558 |
_alpha = factor; |
| 559 | 559 |
ProblemType pt = init(); |
| 560 | 560 |
if (pt != OPTIMAL) return pt; |
| 561 | 561 |
start(method); |
| 562 | 562 |
return OPTIMAL; |
| 563 | 563 |
} |
| 564 | 564 |
|
| 565 | 565 |
/// \brief Reset all the parameters that have been given before. |
| 566 | 566 |
/// |
| 567 | 567 |
/// This function resets all the paramaters that have been given |
| 568 | 568 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
| 569 | 569 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
| 570 | 570 |
/// |
| 571 | 571 |
/// It is useful for multiple run() calls. If this function is not |
| 572 | 572 |
/// used, all the parameters given before are kept for the next |
| 573 | 573 |
/// \ref run() call. |
| 574 |
/// However the underlying digraph must not be modified after this |
|
| 574 |
/// However, the underlying digraph must not be modified after this |
|
| 575 | 575 |
/// class have been constructed, since it copies and extends the graph. |
| 576 | 576 |
/// |
| 577 | 577 |
/// For example, |
| 578 | 578 |
/// \code |
| 579 | 579 |
/// CostScaling<ListDigraph> cs(graph); |
| 580 | 580 |
/// |
| 581 | 581 |
/// // First run |
| 582 | 582 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
| 583 | 583 |
/// .supplyMap(sup).run(); |
| 584 | 584 |
/// |
| 585 | 585 |
/// // Run again with modified cost map (reset() is not called, |
| 586 | 586 |
/// // so only the cost map have to be set again) |
| ... | ... |
@@ -34,45 +34,45 @@ |
| 34 | 34 |
namespace lemon {
|
| 35 | 35 |
|
| 36 | 36 |
/// \addtogroup min_cost_flow_algs |
| 37 | 37 |
/// @{
|
| 38 | 38 |
|
| 39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
| 40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 41 | 41 |
/// |
| 42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
| 43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow" |
| 44 | 44 |
/// \ref amo93networkflows, \ref dantzig63linearprog, |
| 45 | 45 |
/// \ref kellyoneill91netsimplex. |
| 46 |
/// This algorithm is a specialized version of the linear programming |
|
| 47 |
/// simplex method directly for the minimum cost flow problem. |
|
| 48 |
/// |
|
| 46 |
/// This algorithm is a highly efficient specialized version of the |
|
| 47 |
/// linear programming simplex method directly for the minimum cost |
|
| 48 |
/// flow problem. |
|
| 49 | 49 |
/// |
| 50 |
/// In general this class is the fastest implementation available |
|
| 51 |
/// in LEMON for the minimum cost flow problem. |
|
| 52 |
/// |
|
| 50 |
/// In general, %NetworkSimplex is the fastest implementation available |
|
| 51 |
/// in LEMON for this problem. |
|
| 52 |
/// Moreover, it supports both directions of the supply/demand inequality |
|
| 53 | 53 |
/// constraints. For more information, see \ref SupplyType. |
| 54 | 54 |
/// |
| 55 | 55 |
/// Most of the parameters of the problem (except for the digraph) |
| 56 | 56 |
/// can be given using separate functions, and the algorithm can be |
| 57 | 57 |
/// executed using the \ref run() function. If some parameters are not |
| 58 | 58 |
/// specified, then default values will be used. |
| 59 | 59 |
/// |
| 60 | 60 |
/// \tparam GR The digraph type the algorithm runs on. |
| 61 |
/// \tparam V The |
|
| 61 |
/// \tparam V The number type used for flow amounts, capacity bounds |
|
| 62 | 62 |
/// and supply values in the algorithm. By default, it is \c int. |
| 63 |
/// \tparam C The |
|
| 63 |
/// \tparam C The number type used for costs and potentials in the |
|
| 64 | 64 |
/// algorithm. By default, it is the same as \c V. |
| 65 | 65 |
/// |
| 66 |
/// \warning Both |
|
| 66 |
/// \warning Both number types must be signed and all input data must |
|
| 67 | 67 |
/// be integer. |
| 68 | 68 |
/// |
| 69 | 69 |
/// \note %NetworkSimplex provides five different pivot rule |
| 70 | 70 |
/// implementations, from which the most efficient one is used |
| 71 | 71 |
/// by default. For more information, see \ref PivotRule. |
| 72 | 72 |
template <typename GR, typename V = int, typename C = V> |
| 73 | 73 |
class NetworkSimplex |
| 74 | 74 |
{
|
| 75 | 75 |
public: |
| 76 | 76 |
|
| 77 | 77 |
/// The type of the flow amounts, capacity bounds and supply values |
| 78 | 78 |
typedef V Value; |
| ... | ... |
@@ -117,25 +117,25 @@ |
| 117 | 117 |
}; |
| 118 | 118 |
|
| 119 | 119 |
/// \brief Constants for selecting the pivot rule. |
| 120 | 120 |
/// |
| 121 | 121 |
/// Enum type containing constants for selecting the pivot rule for |
| 122 | 122 |
/// the \ref run() function. |
| 123 | 123 |
/// |
| 124 | 124 |
/// \ref NetworkSimplex provides five different pivot rule |
| 125 | 125 |
/// implementations that significantly affect the running time |
| 126 | 126 |
/// of the algorithm. |
| 127 | 127 |
/// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
| 128 | 128 |
/// proved to be the most efficient and the most robust on various |
| 129 |
/// test inputs |
|
| 129 |
/// test inputs. |
|
| 130 | 130 |
/// However, another pivot rule can be selected using the \ref run() |
| 131 | 131 |
/// function with the proper parameter. |
| 132 | 132 |
enum PivotRule {
|
| 133 | 133 |
|
| 134 | 134 |
/// The \e First \e Eligible pivot rule. |
| 135 | 135 |
/// The next eligible arc is selected in a wraparound fashion |
| 136 | 136 |
/// in every iteration. |
| 137 | 137 |
FIRST_ELIGIBLE, |
| 138 | 138 |
|
| 139 | 139 |
/// The \e Best \e Eligible pivot rule. |
| 140 | 140 |
/// The best eligible arc is selected in every iteration. |
| 141 | 141 |
BEST_ELIGIBLE, |
| ... | ... |
@@ -628,25 +628,25 @@ |
| 628 | 628 |
/// |
| 629 | 629 |
/// \param graph The digraph the algorithm runs on. |
| 630 | 630 |
/// \param arc_mixing Indicate if the arcs have to be stored in a |
| 631 | 631 |
/// mixed order in the internal data structure. |
| 632 | 632 |
/// In special cases, it could lead to better overall performance, |
| 633 | 633 |
/// but it is usually slower. Therefore it is disabled by default. |
| 634 | 634 |
NetworkSimplex(const GR& graph, bool arc_mixing = false) : |
| 635 | 635 |
_graph(graph), _node_id(graph), _arc_id(graph), |
| 636 | 636 |
MAX(std::numeric_limits<Value>::max()), |
| 637 | 637 |
INF(std::numeric_limits<Value>::has_infinity ? |
| 638 | 638 |
std::numeric_limits<Value>::infinity() : MAX) |
| 639 | 639 |
{
|
| 640 |
// Check the |
|
| 640 |
// Check the number types |
|
| 641 | 641 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
| 642 | 642 |
"The flow type of NetworkSimplex must be signed"); |
| 643 | 643 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
| 644 | 644 |
"The cost type of NetworkSimplex must be signed"); |
| 645 | 645 |
|
| 646 | 646 |
// Resize vectors |
| 647 | 647 |
_node_num = countNodes(_graph); |
| 648 | 648 |
_arc_num = countArcs(_graph); |
| 649 | 649 |
int all_node_num = _node_num + 1; |
| 650 | 650 |
int max_arc_num = _arc_num + 2 * _node_num; |
| 651 | 651 |
|
| 652 | 652 |
_source.resize(max_arc_num); |
| ... | ... |
@@ -720,25 +720,25 @@ |
| 720 | 720 |
_have_lower = true; |
| 721 | 721 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 722 | 722 |
_lower[_arc_id[a]] = map[a]; |
| 723 | 723 |
} |
| 724 | 724 |
return *this; |
| 725 | 725 |
} |
| 726 | 726 |
|
| 727 | 727 |
/// \brief Set the upper bounds (capacities) on the arcs. |
| 728 | 728 |
/// |
| 729 | 729 |
/// This function sets the upper bounds (capacities) on the arcs. |
| 730 | 730 |
/// If it is not used before calling \ref run(), the upper bounds |
| 731 | 731 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
| 732 |
/// unbounded from above |
|
| 732 |
/// unbounded from above). |
|
| 733 | 733 |
/// |
| 734 | 734 |
/// \param map An arc map storing the upper bounds. |
| 735 | 735 |
/// Its \c Value type must be convertible to the \c Value type |
| 736 | 736 |
/// of the algorithm. |
| 737 | 737 |
/// |
| 738 | 738 |
/// \return <tt>(*this)</tt> |
| 739 | 739 |
template<typename UpperMap> |
| 740 | 740 |
NetworkSimplex& upperMap(const UpperMap& map) {
|
| 741 | 741 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 742 | 742 |
_upper[_arc_id[a]] = map[a]; |
| 743 | 743 |
} |
| 744 | 744 |
return *this; |
0 comments (0 inline)