0
3
0
... | ... |
@@ -26,27 +26,27 @@ |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/core.h> |
30 | 30 |
#include <lemon/bin_heap.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
/// \brief Default traits class of CapacityScaling algorithm. |
35 | 35 |
/// |
36 | 36 |
/// Default traits class of CapacityScaling algorithm. |
37 | 37 |
/// \tparam GR Digraph type. |
38 |
/// \tparam V The |
|
38 |
/// \tparam V The number type used for flow amounts, capacity bounds |
|
39 | 39 |
/// and supply values. By default it is \c int. |
40 |
/// \tparam C The |
|
40 |
/// \tparam C The number type used for costs and potentials. |
|
41 | 41 |
/// By default it is the same as \c V. |
42 | 42 |
template <typename GR, typename V = int, typename C = V> |
43 | 43 |
struct CapacityScalingDefaultTraits |
44 | 44 |
{ |
45 | 45 |
/// The type of the digraph |
46 | 46 |
typedef GR Digraph; |
47 | 47 |
/// The type of the flow amounts, capacity bounds and supply values |
48 | 48 |
typedef V Value; |
49 | 49 |
/// The type of the arc costs |
50 | 50 |
typedef C Cost; |
51 | 51 |
|
52 | 52 |
/// \brief The type of the heap used for internal Dijkstra computations. |
... | ... |
@@ -66,30 +66,30 @@ |
66 | 66 |
/// |
67 | 67 |
/// \ref CapacityScaling implements the capacity scaling version |
68 | 68 |
/// of the successive shortest path algorithm for finding a |
69 | 69 |
/// \ref min_cost_flow "minimum cost flow". It is an efficient dual |
70 | 70 |
/// solution method. |
71 | 71 |
/// |
72 | 72 |
/// Most of the parameters of the problem (except for the digraph) |
73 | 73 |
/// can be given using separate functions, and the algorithm can be |
74 | 74 |
/// executed using the \ref run() function. If some parameters are not |
75 | 75 |
/// specified, then default values will be used. |
76 | 76 |
/// |
77 | 77 |
/// \tparam GR The digraph type the algorithm runs on. |
78 |
/// \tparam V The |
|
78 |
/// \tparam V The number type used for flow amounts, capacity bounds |
|
79 | 79 |
/// and supply values in the algorithm. By default it is \c int. |
80 |
/// \tparam C The |
|
80 |
/// \tparam C The number type used for costs and potentials in the |
|
81 | 81 |
/// algorithm. By default it is the same as \c V. |
82 | 82 |
/// |
83 |
/// \warning Both |
|
83 |
/// \warning Both number types must be signed and all input data must |
|
84 | 84 |
/// be integer. |
85 | 85 |
/// \warning This algorithm does not support negative costs for such |
86 | 86 |
/// arcs that have infinite upper bound. |
87 | 87 |
#ifdef DOXYGEN |
88 | 88 |
template <typename GR, typename V, typename C, typename TR> |
89 | 89 |
#else |
90 | 90 |
template < typename GR, typename V = int, typename C = V, |
91 | 91 |
typename TR = CapacityScalingDefaultTraits<GR, V, C> > |
92 | 92 |
#endif |
93 | 93 |
class CapacityScaling |
94 | 94 |
{ |
95 | 95 |
public: |
... | ... |
@@ -113,25 +113,25 @@ |
113 | 113 |
/// |
114 | 114 |
/// Enum type containing the problem type constants that can be |
115 | 115 |
/// returned by the \ref run() function of the algorithm. |
116 | 116 |
enum ProblemType { |
117 | 117 |
/// The problem has no feasible solution (flow). |
118 | 118 |
INFEASIBLE, |
119 | 119 |
/// The problem has optimal solution (i.e. it is feasible and |
120 | 120 |
/// bounded), and the algorithm has found optimal flow and node |
121 | 121 |
/// potentials (primal and dual solutions). |
122 | 122 |
OPTIMAL, |
123 | 123 |
/// The digraph contains an arc of negative cost and infinite |
124 | 124 |
/// upper bound. It means that the objective function is unbounded |
125 |
/// on that arc, however note that it could actually be bounded |
|
125 |
/// on that arc, however, note that it could actually be bounded |
|
126 | 126 |
/// over the feasible flows, but this algroithm cannot handle |
127 | 127 |
/// these cases. |
128 | 128 |
UNBOUNDED |
129 | 129 |
}; |
130 | 130 |
|
131 | 131 |
private: |
132 | 132 |
|
133 | 133 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
134 | 134 |
|
135 | 135 |
typedef std::vector<int> IntVector; |
136 | 136 |
typedef std::vector<char> BoolVector; |
137 | 137 |
typedef std::vector<Value> ValueVector; |
... | ... |
@@ -298,25 +298,25 @@ |
298 | 298 |
|
299 | 299 |
/// \brief Constructor. |
300 | 300 |
/// |
301 | 301 |
/// The constructor of the class. |
302 | 302 |
/// |
303 | 303 |
/// \param graph The digraph the algorithm runs on. |
304 | 304 |
CapacityScaling(const GR& graph) : |
305 | 305 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
306 | 306 |
INF(std::numeric_limits<Value>::has_infinity ? |
307 | 307 |
std::numeric_limits<Value>::infinity() : |
308 | 308 |
std::numeric_limits<Value>::max()) |
309 | 309 |
{ |
310 |
// Check the |
|
310 |
// Check the number types |
|
311 | 311 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
312 | 312 |
"The flow type of CapacityScaling must be signed"); |
313 | 313 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
314 | 314 |
"The cost type of CapacityScaling must be signed"); |
315 | 315 |
|
316 | 316 |
// Resize vectors |
317 | 317 |
_node_num = countNodes(_graph); |
318 | 318 |
_arc_num = countArcs(_graph); |
319 | 319 |
_res_arc_num = 2 * (_arc_num + _node_num); |
320 | 320 |
_root = _node_num; |
321 | 321 |
++_node_num; |
322 | 322 |
|
... | ... |
@@ -402,25 +402,25 @@ |
402 | 402 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
403 | 403 |
_lower[_arc_idf[a]] = map[a]; |
404 | 404 |
_lower[_arc_idb[a]] = map[a]; |
405 | 405 |
} |
406 | 406 |
return *this; |
407 | 407 |
} |
408 | 408 |
|
409 | 409 |
/// \brief Set the upper bounds (capacities) on the arcs. |
410 | 410 |
/// |
411 | 411 |
/// This function sets the upper bounds (capacities) on the arcs. |
412 | 412 |
/// If it is not used before calling \ref run(), the upper bounds |
413 | 413 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
414 |
/// unbounded from above |
|
414 |
/// unbounded from above). |
|
415 | 415 |
/// |
416 | 416 |
/// \param map An arc map storing the upper bounds. |
417 | 417 |
/// Its \c Value type must be convertible to the \c Value type |
418 | 418 |
/// of the algorithm. |
419 | 419 |
/// |
420 | 420 |
/// \return <tt>(*this)</tt> |
421 | 421 |
template<typename UpperMap> |
422 | 422 |
CapacityScaling& upperMap(const UpperMap& map) { |
423 | 423 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
424 | 424 |
_upper[_arc_idf[a]] = map[a]; |
425 | 425 |
} |
426 | 426 |
return *this; |
... | ... |
@@ -505,38 +505,38 @@ |
505 | 505 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
506 | 506 |
/// For example, |
507 | 507 |
/// \code |
508 | 508 |
/// CapacityScaling<ListDigraph> cs(graph); |
509 | 509 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
510 | 510 |
/// .supplyMap(sup).run(); |
511 | 511 |
/// \endcode |
512 | 512 |
/// |
513 | 513 |
/// This function can be called more than once. All the parameters |
514 | 514 |
/// that have been given are kept for the next call, unless |
515 | 515 |
/// \ref reset() is called, thus only the modified parameters |
516 | 516 |
/// have to be set again. See \ref reset() for examples. |
517 |
/// However the underlying digraph must not be modified after this |
|
517 |
/// However, the underlying digraph must not be modified after this |
|
518 | 518 |
/// class have been constructed, since it copies and extends the graph. |
519 | 519 |
/// |
520 | 520 |
/// \param factor The capacity scaling factor. It must be larger than |
521 | 521 |
/// one to use scaling. If it is less or equal to one, then scaling |
522 | 522 |
/// will be disabled. |
523 | 523 |
/// |
524 | 524 |
/// \return \c INFEASIBLE if no feasible flow exists, |
525 | 525 |
/// \n \c OPTIMAL if the problem has optimal solution |
526 | 526 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
527 | 527 |
/// optimal flow and node potentials (primal and dual solutions), |
528 | 528 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
529 | 529 |
/// and infinite upper bound. It means that the objective function |
530 |
/// is unbounded on that arc, however note that it could actually be |
|
530 |
/// is unbounded on that arc, however, note that it could actually be |
|
531 | 531 |
/// bounded over the feasible flows, but this algroithm cannot handle |
532 | 532 |
/// these cases. |
533 | 533 |
/// |
534 | 534 |
/// \see ProblemType |
535 | 535 |
ProblemType run(int factor = 4) { |
536 | 536 |
_factor = factor; |
537 | 537 |
ProblemType pt = init(); |
538 | 538 |
if (pt != OPTIMAL) return pt; |
539 | 539 |
return start(); |
540 | 540 |
} |
541 | 541 |
|
542 | 542 |
/// \brief Reset all the parameters that have been given before. |
... | ... |
@@ -31,27 +31,27 @@ |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
#include <lemon/static_graph.h> |
34 | 34 |
#include <lemon/circulation.h> |
35 | 35 |
#include <lemon/bellman_ford.h> |
36 | 36 |
|
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 | 39 |
/// \brief Default traits class of CostScaling algorithm. |
40 | 40 |
/// |
41 | 41 |
/// Default traits class of CostScaling algorithm. |
42 | 42 |
/// \tparam GR Digraph type. |
43 |
/// \tparam V The |
|
43 |
/// \tparam V The number type used for flow amounts, capacity bounds |
|
44 | 44 |
/// and supply values. By default it is \c int. |
45 |
/// \tparam C The |
|
45 |
/// \tparam C The number type used for costs and potentials. |
|
46 | 46 |
/// By default it is the same as \c V. |
47 | 47 |
#ifdef DOXYGEN |
48 | 48 |
template <typename GR, typename V = int, typename C = V> |
49 | 49 |
#else |
50 | 50 |
template < typename GR, typename V = int, typename C = V, |
51 | 51 |
bool integer = std::numeric_limits<C>::is_integer > |
52 | 52 |
#endif |
53 | 53 |
struct CostScalingDefaultTraits |
54 | 54 |
{ |
55 | 55 |
/// The type of the digraph |
56 | 56 |
typedef GR Digraph; |
57 | 57 |
/// The type of the flow amounts, capacity bounds and supply values |
... | ... |
@@ -92,30 +92,30 @@ |
92 | 92 |
/// \ref CostScaling implements a cost scaling algorithm that performs |
93 | 93 |
/// push/augment and relabel operations for finding a minimum cost |
94 | 94 |
/// flow. It is an efficient primal-dual solution method, which |
95 | 95 |
/// can be viewed as the generalization of the \ref Preflow |
96 | 96 |
/// "preflow push-relabel" algorithm for the maximum flow problem. |
97 | 97 |
/// |
98 | 98 |
/// Most of the parameters of the problem (except for the digraph) |
99 | 99 |
/// can be given using separate functions, and the algorithm can be |
100 | 100 |
/// executed using the \ref run() function. If some parameters are not |
101 | 101 |
/// specified, then default values will be used. |
102 | 102 |
/// |
103 | 103 |
/// \tparam GR The digraph type the algorithm runs on. |
104 |
/// \tparam V The |
|
104 |
/// \tparam V The number type used for flow amounts, capacity bounds |
|
105 | 105 |
/// and supply values in the algorithm. By default it is \c int. |
106 |
/// \tparam C The |
|
106 |
/// \tparam C The number type used for costs and potentials in the |
|
107 | 107 |
/// algorithm. By default it is the same as \c V. |
108 | 108 |
/// |
109 |
/// \warning Both |
|
109 |
/// \warning Both number types must be signed and all input data must |
|
110 | 110 |
/// be integer. |
111 | 111 |
/// \warning This algorithm does not support negative costs for such |
112 | 112 |
/// arcs that have infinite upper bound. |
113 | 113 |
/// |
114 | 114 |
/// \note %CostScaling provides three different internal methods, |
115 | 115 |
/// from which the most efficient one is used by default. |
116 | 116 |
/// For more information, see \ref Method. |
117 | 117 |
#ifdef DOXYGEN |
118 | 118 |
template <typename GR, typename V, typename C, typename TR> |
119 | 119 |
#else |
120 | 120 |
template < typename GR, typename V = int, typename C = V, |
121 | 121 |
typename TR = CostScalingDefaultTraits<GR, V, C> > |
... | ... |
@@ -148,25 +148,25 @@ |
148 | 148 |
/// |
149 | 149 |
/// Enum type containing the problem type constants that can be |
150 | 150 |
/// returned by the \ref run() function of the algorithm. |
151 | 151 |
enum ProblemType { |
152 | 152 |
/// The problem has no feasible solution (flow). |
153 | 153 |
INFEASIBLE, |
154 | 154 |
/// The problem has optimal solution (i.e. it is feasible and |
155 | 155 |
/// bounded), and the algorithm has found optimal flow and node |
156 | 156 |
/// potentials (primal and dual solutions). |
157 | 157 |
OPTIMAL, |
158 | 158 |
/// The digraph contains an arc of negative cost and infinite |
159 | 159 |
/// upper bound. It means that the objective function is unbounded |
160 |
/// on that arc, however note that it could actually be bounded |
|
160 |
/// on that arc, however, note that it could actually be bounded |
|
161 | 161 |
/// over the feasible flows, but this algroithm cannot handle |
162 | 162 |
/// these cases. |
163 | 163 |
UNBOUNDED |
164 | 164 |
}; |
165 | 165 |
|
166 | 166 |
/// \brief Constants for selecting the internal method. |
167 | 167 |
/// |
168 | 168 |
/// Enum type containing constants for selecting the internal method |
169 | 169 |
/// for the \ref run() function. |
170 | 170 |
/// |
171 | 171 |
/// \ref CostScaling provides three internal methods that differ mainly |
172 | 172 |
/// in their base operations, which are used in conjunction with the |
... | ... |
@@ -316,25 +316,25 @@ |
316 | 316 |
/// \brief Constructor. |
317 | 317 |
/// |
318 | 318 |
/// The constructor of the class. |
319 | 319 |
/// |
320 | 320 |
/// \param graph The digraph the algorithm runs on. |
321 | 321 |
CostScaling(const GR& graph) : |
322 | 322 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
323 | 323 |
_cost_map(_cost_vec), _pi_map(_pi), |
324 | 324 |
INF(std::numeric_limits<Value>::has_infinity ? |
325 | 325 |
std::numeric_limits<Value>::infinity() : |
326 | 326 |
std::numeric_limits<Value>::max()) |
327 | 327 |
{ |
328 |
// Check the |
|
328 |
// Check the number types |
|
329 | 329 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
330 | 330 |
"The flow type of CostScaling must be signed"); |
331 | 331 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
332 | 332 |
"The cost type of CostScaling must be signed"); |
333 | 333 |
|
334 | 334 |
// Resize vectors |
335 | 335 |
_node_num = countNodes(_graph); |
336 | 336 |
_arc_num = countArcs(_graph); |
337 | 337 |
_res_node_num = _node_num + 1; |
338 | 338 |
_res_arc_num = 2 * (_arc_num + _node_num); |
339 | 339 |
_root = _node_num; |
340 | 340 |
|
... | ... |
@@ -424,25 +424,25 @@ |
424 | 424 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
425 | 425 |
_lower[_arc_idf[a]] = map[a]; |
426 | 426 |
_lower[_arc_idb[a]] = map[a]; |
427 | 427 |
} |
428 | 428 |
return *this; |
429 | 429 |
} |
430 | 430 |
|
431 | 431 |
/// \brief Set the upper bounds (capacities) on the arcs. |
432 | 432 |
/// |
433 | 433 |
/// This function sets the upper bounds (capacities) on the arcs. |
434 | 434 |
/// If it is not used before calling \ref run(), the upper bounds |
435 | 435 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
436 |
/// unbounded from above |
|
436 |
/// unbounded from above). |
|
437 | 437 |
/// |
438 | 438 |
/// \param map An arc map storing the upper bounds. |
439 | 439 |
/// Its \c Value type must be convertible to the \c Value type |
440 | 440 |
/// of the algorithm. |
441 | 441 |
/// |
442 | 442 |
/// \return <tt>(*this)</tt> |
443 | 443 |
template<typename UpperMap> |
444 | 444 |
CostScaling& upperMap(const UpperMap& map) { |
445 | 445 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
446 | 446 |
_upper[_arc_idf[a]] = map[a]; |
447 | 447 |
} |
448 | 448 |
return *this; |
... | ... |
@@ -540,47 +540,47 @@ |
540 | 540 |
/// class have been constructed, since it copies and extends the graph. |
541 | 541 |
/// |
542 | 542 |
/// \param method The internal method that will be used in the |
543 | 543 |
/// algorithm. For more information, see \ref Method. |
544 | 544 |
/// \param factor The cost scaling factor. It must be larger than one. |
545 | 545 |
/// |
546 | 546 |
/// \return \c INFEASIBLE if no feasible flow exists, |
547 | 547 |
/// \n \c OPTIMAL if the problem has optimal solution |
548 | 548 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
549 | 549 |
/// optimal flow and node potentials (primal and dual solutions), |
550 | 550 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
551 | 551 |
/// and infinite upper bound. It means that the objective function |
552 |
/// is unbounded on that arc, however note that it could actually be |
|
552 |
/// is unbounded on that arc, however, note that it could actually be |
|
553 | 553 |
/// bounded over the feasible flows, but this algroithm cannot handle |
554 | 554 |
/// these cases. |
555 | 555 |
/// |
556 | 556 |
/// \see ProblemType, Method |
557 | 557 |
ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) { |
558 | 558 |
_alpha = factor; |
559 | 559 |
ProblemType pt = init(); |
560 | 560 |
if (pt != OPTIMAL) return pt; |
561 | 561 |
start(method); |
562 | 562 |
return OPTIMAL; |
563 | 563 |
} |
564 | 564 |
|
565 | 565 |
/// \brief Reset all the parameters that have been given before. |
566 | 566 |
/// |
567 | 567 |
/// This function resets all the paramaters that have been given |
568 | 568 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
569 | 569 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
570 | 570 |
/// |
571 | 571 |
/// It is useful for multiple run() calls. If this function is not |
572 | 572 |
/// used, all the parameters given before are kept for the next |
573 | 573 |
/// \ref run() call. |
574 |
/// However the underlying digraph must not be modified after this |
|
574 |
/// However, the underlying digraph must not be modified after this |
|
575 | 575 |
/// class have been constructed, since it copies and extends the graph. |
576 | 576 |
/// |
577 | 577 |
/// For example, |
578 | 578 |
/// \code |
579 | 579 |
/// CostScaling<ListDigraph> cs(graph); |
580 | 580 |
/// |
581 | 581 |
/// // First run |
582 | 582 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
583 | 583 |
/// .supplyMap(sup).run(); |
584 | 584 |
/// |
585 | 585 |
/// // Run again with modified cost map (reset() is not called, |
586 | 586 |
/// // so only the cost map have to be set again) |
... | ... |
@@ -34,45 +34,45 @@ |
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup min_cost_flow_algs |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 41 |
/// |
42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow" |
44 | 44 |
/// \ref amo93networkflows, \ref dantzig63linearprog, |
45 | 45 |
/// \ref kellyoneill91netsimplex. |
46 |
/// This algorithm is a specialized version of the linear programming |
|
47 |
/// simplex method directly for the minimum cost flow problem. |
|
48 |
/// |
|
46 |
/// This algorithm is a highly efficient specialized version of the |
|
47 |
/// linear programming simplex method directly for the minimum cost |
|
48 |
/// flow problem. |
|
49 | 49 |
/// |
50 |
/// In general this class is the fastest implementation available |
|
51 |
/// in LEMON for the minimum cost flow problem. |
|
52 |
/// |
|
50 |
/// In general, %NetworkSimplex is the fastest implementation available |
|
51 |
/// in LEMON for this problem. |
|
52 |
/// Moreover, it supports both directions of the supply/demand inequality |
|
53 | 53 |
/// constraints. For more information, see \ref SupplyType. |
54 | 54 |
/// |
55 | 55 |
/// Most of the parameters of the problem (except for the digraph) |
56 | 56 |
/// can be given using separate functions, and the algorithm can be |
57 | 57 |
/// executed using the \ref run() function. If some parameters are not |
58 | 58 |
/// specified, then default values will be used. |
59 | 59 |
/// |
60 | 60 |
/// \tparam GR The digraph type the algorithm runs on. |
61 |
/// \tparam V The |
|
61 |
/// \tparam V The number type used for flow amounts, capacity bounds |
|
62 | 62 |
/// and supply values in the algorithm. By default, it is \c int. |
63 |
/// \tparam C The |
|
63 |
/// \tparam C The number type used for costs and potentials in the |
|
64 | 64 |
/// algorithm. By default, it is the same as \c V. |
65 | 65 |
/// |
66 |
/// \warning Both |
|
66 |
/// \warning Both number types must be signed and all input data must |
|
67 | 67 |
/// be integer. |
68 | 68 |
/// |
69 | 69 |
/// \note %NetworkSimplex provides five different pivot rule |
70 | 70 |
/// implementations, from which the most efficient one is used |
71 | 71 |
/// by default. For more information, see \ref PivotRule. |
72 | 72 |
template <typename GR, typename V = int, typename C = V> |
73 | 73 |
class NetworkSimplex |
74 | 74 |
{ |
75 | 75 |
public: |
76 | 76 |
|
77 | 77 |
/// The type of the flow amounts, capacity bounds and supply values |
78 | 78 |
typedef V Value; |
... | ... |
@@ -117,25 +117,25 @@ |
117 | 117 |
}; |
118 | 118 |
|
119 | 119 |
/// \brief Constants for selecting the pivot rule. |
120 | 120 |
/// |
121 | 121 |
/// Enum type containing constants for selecting the pivot rule for |
122 | 122 |
/// the \ref run() function. |
123 | 123 |
/// |
124 | 124 |
/// \ref NetworkSimplex provides five different pivot rule |
125 | 125 |
/// implementations that significantly affect the running time |
126 | 126 |
/// of the algorithm. |
127 | 127 |
/// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
128 | 128 |
/// proved to be the most efficient and the most robust on various |
129 |
/// test inputs |
|
129 |
/// test inputs. |
|
130 | 130 |
/// However, another pivot rule can be selected using the \ref run() |
131 | 131 |
/// function with the proper parameter. |
132 | 132 |
enum PivotRule { |
133 | 133 |
|
134 | 134 |
/// The \e First \e Eligible pivot rule. |
135 | 135 |
/// The next eligible arc is selected in a wraparound fashion |
136 | 136 |
/// in every iteration. |
137 | 137 |
FIRST_ELIGIBLE, |
138 | 138 |
|
139 | 139 |
/// The \e Best \e Eligible pivot rule. |
140 | 140 |
/// The best eligible arc is selected in every iteration. |
141 | 141 |
BEST_ELIGIBLE, |
... | ... |
@@ -628,25 +628,25 @@ |
628 | 628 |
/// |
629 | 629 |
/// \param graph The digraph the algorithm runs on. |
630 | 630 |
/// \param arc_mixing Indicate if the arcs have to be stored in a |
631 | 631 |
/// mixed order in the internal data structure. |
632 | 632 |
/// In special cases, it could lead to better overall performance, |
633 | 633 |
/// but it is usually slower. Therefore it is disabled by default. |
634 | 634 |
NetworkSimplex(const GR& graph, bool arc_mixing = false) : |
635 | 635 |
_graph(graph), _node_id(graph), _arc_id(graph), |
636 | 636 |
MAX(std::numeric_limits<Value>::max()), |
637 | 637 |
INF(std::numeric_limits<Value>::has_infinity ? |
638 | 638 |
std::numeric_limits<Value>::infinity() : MAX) |
639 | 639 |
{ |
640 |
// Check the |
|
640 |
// Check the number types |
|
641 | 641 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
642 | 642 |
"The flow type of NetworkSimplex must be signed"); |
643 | 643 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
644 | 644 |
"The cost type of NetworkSimplex must be signed"); |
645 | 645 |
|
646 | 646 |
// Resize vectors |
647 | 647 |
_node_num = countNodes(_graph); |
648 | 648 |
_arc_num = countArcs(_graph); |
649 | 649 |
int all_node_num = _node_num + 1; |
650 | 650 |
int max_arc_num = _arc_num + 2 * _node_num; |
651 | 651 |
|
652 | 652 |
_source.resize(max_arc_num); |
... | ... |
@@ -720,25 +720,25 @@ |
720 | 720 |
_have_lower = true; |
721 | 721 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
722 | 722 |
_lower[_arc_id[a]] = map[a]; |
723 | 723 |
} |
724 | 724 |
return *this; |
725 | 725 |
} |
726 | 726 |
|
727 | 727 |
/// \brief Set the upper bounds (capacities) on the arcs. |
728 | 728 |
/// |
729 | 729 |
/// This function sets the upper bounds (capacities) on the arcs. |
730 | 730 |
/// If it is not used before calling \ref run(), the upper bounds |
731 | 731 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
732 |
/// unbounded from above |
|
732 |
/// unbounded from above). |
|
733 | 733 |
/// |
734 | 734 |
/// \param map An arc map storing the upper bounds. |
735 | 735 |
/// Its \c Value type must be convertible to the \c Value type |
736 | 736 |
/// of the algorithm. |
737 | 737 |
/// |
738 | 738 |
/// \return <tt>(*this)</tt> |
739 | 739 |
template<typename UpperMap> |
740 | 740 |
NetworkSimplex& upperMap(const UpperMap& map) { |
741 | 741 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
742 | 742 |
_upper[_arc_id[a]] = map[a]; |
743 | 743 |
} |
744 | 744 |
return *this; |
0 comments (0 inline)