gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge bugfix #420
0 2 0
merge default
0 files changed with 4 insertions and 1 deletions:
↑ Collapse diff ↑
Ignore white space 2048 line context
... ...
@@ -2231,1827 +2231,1827 @@
2231 2231
      Map::add(items);
2232 2232
      for (int i = 0; i < int(items.size()); ++i) {
2233 2233
        Map::set(items[i], _inv_map.size());
2234 2234
        _inv_map.push_back(items[i]);
2235 2235
      }
2236 2236
    }
2237 2237

	
2238 2238
    /// \brief Erase the key from the map.
2239 2239
    ///
2240 2240
    /// Erase the key from the map. It is called by the
2241 2241
    /// \c AlterationNotifier.
2242 2242
    virtual void erase(const Item& item) {
2243 2243
      Map::set(_inv_map.back(), Map::operator[](item));
2244 2244
      _inv_map[Map::operator[](item)] = _inv_map.back();
2245 2245
      _inv_map.pop_back();
2246 2246
      Map::erase(item);
2247 2247
    }
2248 2248

	
2249 2249
    /// \brief Erase more keys from the map.
2250 2250
    ///
2251 2251
    /// Erase more keys from the map. It is called by the
2252 2252
    /// \c AlterationNotifier.
2253 2253
    virtual void erase(const std::vector<Item>& items) {
2254 2254
      for (int i = 0; i < int(items.size()); ++i) {
2255 2255
        Map::set(_inv_map.back(), Map::operator[](items[i]));
2256 2256
        _inv_map[Map::operator[](items[i])] = _inv_map.back();
2257 2257
        _inv_map.pop_back();
2258 2258
      }
2259 2259
      Map::erase(items);
2260 2260
    }
2261 2261

	
2262 2262
    /// \brief Build the unique map.
2263 2263
    ///
2264 2264
    /// Build the unique map. It is called by the
2265 2265
    /// \c AlterationNotifier.
2266 2266
    virtual void build() {
2267 2267
      Map::build();
2268 2268
      Item it;
2269 2269
      const typename Map::Notifier* nf = Map::notifier();
2270 2270
      for (nf->first(it); it != INVALID; nf->next(it)) {
2271 2271
        Map::set(it, _inv_map.size());
2272 2272
        _inv_map.push_back(it);
2273 2273
      }
2274 2274
    }
2275 2275

	
2276 2276
    /// \brief Clear the keys from the map.
2277 2277
    ///
2278 2278
    /// Clear the keys from the map. It is called by the
2279 2279
    /// \c AlterationNotifier.
2280 2280
    virtual void clear() {
2281 2281
      _inv_map.clear();
2282 2282
      Map::clear();
2283 2283
    }
2284 2284

	
2285 2285
  public:
2286 2286

	
2287 2287
    /// \brief Returns the maximal value plus one.
2288 2288
    ///
2289 2289
    /// Returns the maximal value plus one in the map.
2290 2290
    unsigned int size() const {
2291 2291
      return _inv_map.size();
2292 2292
    }
2293 2293

	
2294 2294
    /// \brief Swaps the position of the two items in the map.
2295 2295
    ///
2296 2296
    /// Swaps the position of the two items in the map.
2297 2297
    void swap(const Item& p, const Item& q) {
2298 2298
      int pi = Map::operator[](p);
2299 2299
      int qi = Map::operator[](q);
2300 2300
      Map::set(p, qi);
2301 2301
      _inv_map[qi] = p;
2302 2302
      Map::set(q, pi);
2303 2303
      _inv_map[pi] = q;
2304 2304
    }
2305 2305

	
2306 2306
    /// \brief Gives back the \e range \e id of the item
2307 2307
    ///
2308 2308
    /// Gives back the \e range \e id of the item.
2309 2309
    int operator[](const Item& item) const {
2310 2310
      return Map::operator[](item);
2311 2311
    }
2312 2312

	
2313 2313
    /// \brief Gives back the item belonging to a \e range \e id
2314 2314
    ///
2315 2315
    /// Gives back the item belonging to the given \e range \e id.
2316 2316
    Item operator()(int id) const {
2317 2317
      return _inv_map[id];
2318 2318
    }
2319 2319

	
2320 2320
  private:
2321 2321

	
2322 2322
    typedef std::vector<Item> Container;
2323 2323
    Container _inv_map;
2324 2324

	
2325 2325
  public:
2326 2326

	
2327 2327
    /// \brief The inverse map type of RangeIdMap.
2328 2328
    ///
2329 2329
    /// The inverse map type of RangeIdMap. The subscript operator gives
2330 2330
    /// back an item by its \e range \e id.
2331 2331
    /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
2332 2332
    class InverseMap {
2333 2333
    public:
2334 2334
      /// \brief Constructor
2335 2335
      ///
2336 2336
      /// Constructor of the InverseMap.
2337 2337
      explicit InverseMap(const RangeIdMap& inverted)
2338 2338
        : _inverted(inverted) {}
2339 2339

	
2340 2340

	
2341 2341
      /// The value type of the InverseMap.
2342 2342
      typedef typename RangeIdMap::Key Value;
2343 2343
      /// The key type of the InverseMap.
2344 2344
      typedef typename RangeIdMap::Value Key;
2345 2345

	
2346 2346
      /// \brief Subscript operator.
2347 2347
      ///
2348 2348
      /// Subscript operator. It gives back the item
2349 2349
      /// that the given \e range \e id currently belongs to.
2350 2350
      Value operator[](const Key& key) const {
2351 2351
        return _inverted(key);
2352 2352
      }
2353 2353

	
2354 2354
      /// \brief Size of the map.
2355 2355
      ///
2356 2356
      /// Returns the size of the map.
2357 2357
      unsigned int size() const {
2358 2358
        return _inverted.size();
2359 2359
      }
2360 2360

	
2361 2361
    private:
2362 2362
      const RangeIdMap& _inverted;
2363 2363
    };
2364 2364

	
2365 2365
    /// \brief Gives back the inverse of the map.
2366 2366
    ///
2367 2367
    /// Gives back the inverse of the RangeIdMap.
2368 2368
    const InverseMap inverse() const {
2369 2369
      return InverseMap(*this);
2370 2370
    }
2371 2371
  };
2372 2372

	
2373 2373
  /// \brief Returns a \c RangeIdMap class.
2374 2374
  ///
2375 2375
  /// This function just returns an \c RangeIdMap class.
2376 2376
  /// \relates RangeIdMap
2377 2377
  template <typename K, typename GR>
2378 2378
  inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) {
2379 2379
    return RangeIdMap<GR, K>(graph);
2380 2380
  }
2381 2381

	
2382 2382
  /// \brief Dynamic iterable \c bool map.
2383 2383
  ///
2384 2384
  /// This class provides a special graph map type which can store a
2385 2385
  /// \c bool value for graph items (\c Node, \c Arc or \c Edge).
2386 2386
  /// For both \c true and \c false values it is possible to iterate on
2387 2387
  /// the keys mapped to the value.
2388 2388
  ///
2389 2389
  /// This type is a reference map, so it can be modified with the
2390 2390
  /// subscript operator.
2391 2391
  ///
2392 2392
  /// \tparam GR The graph type.
2393 2393
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
2394 2394
  /// \c GR::Edge).
2395 2395
  ///
2396 2396
  /// \see IterableIntMap, IterableValueMap
2397 2397
  /// \see CrossRefMap
2398 2398
  template <typename GR, typename K>
2399 2399
  class IterableBoolMap
2400 2400
    : protected ItemSetTraits<GR, K>::template Map<int>::Type {
2401 2401
  private:
2402 2402
    typedef GR Graph;
2403 2403

	
2404 2404
    typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt;
2405 2405
    typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent;
2406 2406

	
2407 2407
    std::vector<K> _array;
2408 2408
    int _sep;
2409 2409

	
2410 2410
  public:
2411 2411

	
2412 2412
    /// Indicates that the map is reference map.
2413 2413
    typedef True ReferenceMapTag;
2414 2414

	
2415 2415
    /// The key type
2416 2416
    typedef K Key;
2417 2417
    /// The value type
2418 2418
    typedef bool Value;
2419 2419
    /// The const reference type.
2420 2420
    typedef const Value& ConstReference;
2421 2421

	
2422 2422
  private:
2423 2423

	
2424 2424
    int position(const Key& key) const {
2425 2425
      return Parent::operator[](key);
2426 2426
    }
2427 2427

	
2428 2428
  public:
2429 2429

	
2430 2430
    /// \brief Reference to the value of the map.
2431 2431
    ///
2432 2432
    /// This class is similar to the \c bool type. It can be converted to
2433 2433
    /// \c bool and it provides the same operators.
2434 2434
    class Reference {
2435 2435
      friend class IterableBoolMap;
2436 2436
    private:
2437 2437
      Reference(IterableBoolMap& map, const Key& key)
2438 2438
        : _key(key), _map(map) {}
2439 2439
    public:
2440 2440

	
2441 2441
      Reference& operator=(const Reference& value) {
2442 2442
        _map.set(_key, static_cast<bool>(value));
2443 2443
         return *this;
2444 2444
      }
2445 2445

	
2446 2446
      operator bool() const {
2447 2447
        return static_cast<const IterableBoolMap&>(_map)[_key];
2448 2448
      }
2449 2449

	
2450 2450
      Reference& operator=(bool value) {
2451 2451
        _map.set(_key, value);
2452 2452
        return *this;
2453 2453
      }
2454 2454
      Reference& operator&=(bool value) {
2455 2455
        _map.set(_key, _map[_key] & value);
2456 2456
        return *this;
2457 2457
      }
2458 2458
      Reference& operator|=(bool value) {
2459 2459
        _map.set(_key, _map[_key] | value);
2460 2460
        return *this;
2461 2461
      }
2462 2462
      Reference& operator^=(bool value) {
2463 2463
        _map.set(_key, _map[_key] ^ value);
2464 2464
        return *this;
2465 2465
      }
2466 2466
    private:
2467 2467
      Key _key;
2468 2468
      IterableBoolMap& _map;
2469 2469
    };
2470 2470

	
2471 2471
    /// \brief Constructor of the map with a default value.
2472 2472
    ///
2473 2473
    /// Constructor of the map with a default value.
2474 2474
    explicit IterableBoolMap(const Graph& graph, bool def = false)
2475 2475
      : Parent(graph) {
2476 2476
      typename Parent::Notifier* nf = Parent::notifier();
2477 2477
      Key it;
2478 2478
      for (nf->first(it); it != INVALID; nf->next(it)) {
2479 2479
        Parent::set(it, _array.size());
2480 2480
        _array.push_back(it);
2481 2481
      }
2482 2482
      _sep = (def ? _array.size() : 0);
2483 2483
    }
2484 2484

	
2485 2485
    /// \brief Const subscript operator of the map.
2486 2486
    ///
2487 2487
    /// Const subscript operator of the map.
2488 2488
    bool operator[](const Key& key) const {
2489 2489
      return position(key) < _sep;
2490 2490
    }
2491 2491

	
2492 2492
    /// \brief Subscript operator of the map.
2493 2493
    ///
2494 2494
    /// Subscript operator of the map.
2495 2495
    Reference operator[](const Key& key) {
2496 2496
      return Reference(*this, key);
2497 2497
    }
2498 2498

	
2499 2499
    /// \brief Set operation of the map.
2500 2500
    ///
2501 2501
    /// Set operation of the map.
2502 2502
    void set(const Key& key, bool value) {
2503 2503
      int pos = position(key);
2504 2504
      if (value) {
2505 2505
        if (pos < _sep) return;
2506 2506
        Key tmp = _array[_sep];
2507 2507
        _array[_sep] = key;
2508 2508
        Parent::set(key, _sep);
2509 2509
        _array[pos] = tmp;
2510 2510
        Parent::set(tmp, pos);
2511 2511
        ++_sep;
2512 2512
      } else {
2513 2513
        if (pos >= _sep) return;
2514 2514
        --_sep;
2515 2515
        Key tmp = _array[_sep];
2516 2516
        _array[_sep] = key;
2517 2517
        Parent::set(key, _sep);
2518 2518
        _array[pos] = tmp;
2519 2519
        Parent::set(tmp, pos);
2520 2520
      }
2521 2521
    }
2522 2522

	
2523 2523
    /// \brief Set all items.
2524 2524
    ///
2525 2525
    /// Set all items in the map.
2526 2526
    /// \note Constant time operation.
2527 2527
    void setAll(bool value) {
2528 2528
      _sep = (value ? _array.size() : 0);
2529 2529
    }
2530 2530

	
2531 2531
    /// \brief Returns the number of the keys mapped to \c true.
2532 2532
    ///
2533 2533
    /// Returns the number of the keys mapped to \c true.
2534 2534
    int trueNum() const {
2535 2535
      return _sep;
2536 2536
    }
2537 2537

	
2538 2538
    /// \brief Returns the number of the keys mapped to \c false.
2539 2539
    ///
2540 2540
    /// Returns the number of the keys mapped to \c false.
2541 2541
    int falseNum() const {
2542 2542
      return _array.size() - _sep;
2543 2543
    }
2544 2544

	
2545 2545
    /// \brief Iterator for the keys mapped to \c true.
2546 2546
    ///
2547 2547
    /// Iterator for the keys mapped to \c true. It works
2548 2548
    /// like a graph item iterator, it can be converted to
2549 2549
    /// the key type of the map, incremented with \c ++ operator, and
2550 2550
    /// if the iterator leaves the last valid key, it will be equal to
2551 2551
    /// \c INVALID.
2552 2552
    class TrueIt : public Key {
2553 2553
    public:
2554 2554
      typedef Key Parent;
2555 2555

	
2556 2556
      /// \brief Creates an iterator.
2557 2557
      ///
2558 2558
      /// Creates an iterator. It iterates on the
2559 2559
      /// keys mapped to \c true.
2560 2560
      /// \param map The IterableBoolMap.
2561 2561
      explicit TrueIt(const IterableBoolMap& map)
2562 2562
        : Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID),
2563 2563
          _map(&map) {}
2564 2564

	
2565 2565
      /// \brief Invalid constructor \& conversion.
2566 2566
      ///
2567 2567
      /// This constructor initializes the iterator to be invalid.
2568 2568
      /// \sa Invalid for more details.
2569 2569
      TrueIt(Invalid) : Parent(INVALID), _map(0) {}
2570 2570

	
2571 2571
      /// \brief Increment operator.
2572 2572
      ///
2573 2573
      /// Increment operator.
2574 2574
      TrueIt& operator++() {
2575 2575
        int pos = _map->position(*this);
2576 2576
        Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID);
2577 2577
        return *this;
2578 2578
      }
2579 2579

	
2580 2580
    private:
2581 2581
      const IterableBoolMap* _map;
2582 2582
    };
2583 2583

	
2584 2584
    /// \brief Iterator for the keys mapped to \c false.
2585 2585
    ///
2586 2586
    /// Iterator for the keys mapped to \c false. It works
2587 2587
    /// like a graph item iterator, it can be converted to
2588 2588
    /// the key type of the map, incremented with \c ++ operator, and
2589 2589
    /// if the iterator leaves the last valid key, it will be equal to
2590 2590
    /// \c INVALID.
2591 2591
    class FalseIt : public Key {
2592 2592
    public:
2593 2593
      typedef Key Parent;
2594 2594

	
2595 2595
      /// \brief Creates an iterator.
2596 2596
      ///
2597 2597
      /// Creates an iterator. It iterates on the
2598 2598
      /// keys mapped to \c false.
2599 2599
      /// \param map The IterableBoolMap.
2600 2600
      explicit FalseIt(const IterableBoolMap& map)
2601 2601
        : Parent(map._sep < int(map._array.size()) ?
2602 2602
                 map._array.back() : INVALID), _map(&map) {}
2603 2603

	
2604 2604
      /// \brief Invalid constructor \& conversion.
2605 2605
      ///
2606 2606
      /// This constructor initializes the iterator to be invalid.
2607 2607
      /// \sa Invalid for more details.
2608 2608
      FalseIt(Invalid) : Parent(INVALID), _map(0) {}
2609 2609

	
2610 2610
      /// \brief Increment operator.
2611 2611
      ///
2612 2612
      /// Increment operator.
2613 2613
      FalseIt& operator++() {
2614 2614
        int pos = _map->position(*this);
2615 2615
        Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID);
2616 2616
        return *this;
2617 2617
      }
2618 2618

	
2619 2619
    private:
2620 2620
      const IterableBoolMap* _map;
2621 2621
    };
2622 2622

	
2623 2623
    /// \brief Iterator for the keys mapped to a given value.
2624 2624
    ///
2625 2625
    /// Iterator for the keys mapped to a given value. It works
2626 2626
    /// like a graph item iterator, it can be converted to
2627 2627
    /// the key type of the map, incremented with \c ++ operator, and
2628 2628
    /// if the iterator leaves the last valid key, it will be equal to
2629 2629
    /// \c INVALID.
2630 2630
    class ItemIt : public Key {
2631 2631
    public:
2632 2632
      typedef Key Parent;
2633 2633

	
2634 2634
      /// \brief Creates an iterator with a value.
2635 2635
      ///
2636 2636
      /// Creates an iterator with a value. It iterates on the
2637 2637
      /// keys mapped to the given value.
2638 2638
      /// \param map The IterableBoolMap.
2639 2639
      /// \param value The value.
2640 2640
      ItemIt(const IterableBoolMap& map, bool value)
2641 2641
        : Parent(value ?
2642 2642
                 (map._sep > 0 ?
2643 2643
                  map._array[map._sep - 1] : INVALID) :
2644 2644
                 (map._sep < int(map._array.size()) ?
2645 2645
                  map._array.back() : INVALID)), _map(&map) {}
2646 2646

	
2647 2647
      /// \brief Invalid constructor \& conversion.
2648 2648
      ///
2649 2649
      /// This constructor initializes the iterator to be invalid.
2650 2650
      /// \sa Invalid for more details.
2651 2651
      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
2652 2652

	
2653 2653
      /// \brief Increment operator.
2654 2654
      ///
2655 2655
      /// Increment operator.
2656 2656
      ItemIt& operator++() {
2657 2657
        int pos = _map->position(*this);
2658 2658
        int _sep = pos >= _map->_sep ? _map->_sep : 0;
2659 2659
        Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID);
2660 2660
        return *this;
2661 2661
      }
2662 2662

	
2663 2663
    private:
2664 2664
      const IterableBoolMap* _map;
2665 2665
    };
2666 2666

	
2667 2667
  protected:
2668 2668

	
2669 2669
    virtual void add(const Key& key) {
2670 2670
      Parent::add(key);
2671 2671
      Parent::set(key, _array.size());
2672 2672
      _array.push_back(key);
2673 2673
    }
2674 2674

	
2675 2675
    virtual void add(const std::vector<Key>& keys) {
2676 2676
      Parent::add(keys);
2677 2677
      for (int i = 0; i < int(keys.size()); ++i) {
2678 2678
        Parent::set(keys[i], _array.size());
2679 2679
        _array.push_back(keys[i]);
2680 2680
      }
2681 2681
    }
2682 2682

	
2683 2683
    virtual void erase(const Key& key) {
2684 2684
      int pos = position(key);
2685 2685
      if (pos < _sep) {
2686 2686
        --_sep;
2687 2687
        Parent::set(_array[_sep], pos);
2688 2688
        _array[pos] = _array[_sep];
2689 2689
        Parent::set(_array.back(), _sep);
2690 2690
        _array[_sep] = _array.back();
2691 2691
        _array.pop_back();
2692 2692
      } else {
2693 2693
        Parent::set(_array.back(), pos);
2694 2694
        _array[pos] = _array.back();
2695 2695
        _array.pop_back();
2696 2696
      }
2697 2697
      Parent::erase(key);
2698 2698
    }
2699 2699

	
2700 2700
    virtual void erase(const std::vector<Key>& keys) {
2701 2701
      for (int i = 0; i < int(keys.size()); ++i) {
2702 2702
        int pos = position(keys[i]);
2703 2703
        if (pos < _sep) {
2704 2704
          --_sep;
2705 2705
          Parent::set(_array[_sep], pos);
2706 2706
          _array[pos] = _array[_sep];
2707 2707
          Parent::set(_array.back(), _sep);
2708 2708
          _array[_sep] = _array.back();
2709 2709
          _array.pop_back();
2710 2710
        } else {
2711 2711
          Parent::set(_array.back(), pos);
2712 2712
          _array[pos] = _array.back();
2713 2713
          _array.pop_back();
2714 2714
        }
2715 2715
      }
2716 2716
      Parent::erase(keys);
2717 2717
    }
2718 2718

	
2719 2719
    virtual void build() {
2720 2720
      Parent::build();
2721 2721
      typename Parent::Notifier* nf = Parent::notifier();
2722 2722
      Key it;
2723 2723
      for (nf->first(it); it != INVALID; nf->next(it)) {
2724 2724
        Parent::set(it, _array.size());
2725 2725
        _array.push_back(it);
2726 2726
      }
2727 2727
      _sep = 0;
2728 2728
    }
2729 2729

	
2730 2730
    virtual void clear() {
2731 2731
      _array.clear();
2732 2732
      _sep = 0;
2733 2733
      Parent::clear();
2734 2734
    }
2735 2735

	
2736 2736
  };
2737 2737

	
2738 2738

	
2739 2739
  namespace _maps_bits {
2740 2740
    template <typename Item>
2741 2741
    struct IterableIntMapNode {
2742 2742
      IterableIntMapNode() : value(-1) {}
2743 2743
      IterableIntMapNode(int _value) : value(_value) {}
2744 2744
      Item prev, next;
2745 2745
      int value;
2746 2746
    };
2747 2747
  }
2748 2748

	
2749 2749
  /// \brief Dynamic iterable integer map.
2750 2750
  ///
2751 2751
  /// This class provides a special graph map type which can store an
2752 2752
  /// integer value for graph items (\c Node, \c Arc or \c Edge).
2753 2753
  /// For each non-negative value it is possible to iterate on the keys
2754 2754
  /// mapped to the value.
2755 2755
  ///
2756 2756
  /// This map is intended to be used with small integer values, for which
2757 2757
  /// it is efficient, and supports iteration only for non-negative values.
2758 2758
  /// If you need large values and/or iteration for negative integers,
2759 2759
  /// consider to use \ref IterableValueMap instead.
2760 2760
  ///
2761 2761
  /// This type is a reference map, so it can be modified with the
2762 2762
  /// subscript operator.
2763 2763
  ///
2764 2764
  /// \note The size of the data structure depends on the largest
2765 2765
  /// value in the map.
2766 2766
  ///
2767 2767
  /// \tparam GR The graph type.
2768 2768
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
2769 2769
  /// \c GR::Edge).
2770 2770
  ///
2771 2771
  /// \see IterableBoolMap, IterableValueMap
2772 2772
  /// \see CrossRefMap
2773 2773
  template <typename GR, typename K>
2774 2774
  class IterableIntMap
2775 2775
    : protected ItemSetTraits<GR, K>::
2776 2776
        template Map<_maps_bits::IterableIntMapNode<K> >::Type {
2777 2777
  public:
2778 2778
    typedef typename ItemSetTraits<GR, K>::
2779 2779
      template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent;
2780 2780

	
2781 2781
    /// The key type
2782 2782
    typedef K Key;
2783 2783
    /// The value type
2784 2784
    typedef int Value;
2785 2785
    /// The graph type
2786 2786
    typedef GR Graph;
2787 2787

	
2788 2788
    /// \brief Constructor of the map.
2789 2789
    ///
2790 2790
    /// Constructor of the map. It sets all values to -1.
2791 2791
    explicit IterableIntMap(const Graph& graph)
2792 2792
      : Parent(graph) {}
2793 2793

	
2794 2794
    /// \brief Constructor of the map with a given value.
2795 2795
    ///
2796 2796
    /// Constructor of the map with a given value.
2797 2797
    explicit IterableIntMap(const Graph& graph, int value)
2798 2798
      : Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
2799 2799
      if (value >= 0) {
2800 2800
        for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
2801 2801
          lace(it);
2802 2802
        }
2803 2803
      }
2804 2804
    }
2805 2805

	
2806 2806
  private:
2807 2807

	
2808 2808
    void unlace(const Key& key) {
2809 2809
      typename Parent::Value& node = Parent::operator[](key);
2810 2810
      if (node.value < 0) return;
2811 2811
      if (node.prev != INVALID) {
2812 2812
        Parent::operator[](node.prev).next = node.next;
2813 2813
      } else {
2814 2814
        _first[node.value] = node.next;
2815 2815
      }
2816 2816
      if (node.next != INVALID) {
2817 2817
        Parent::operator[](node.next).prev = node.prev;
2818 2818
      }
2819 2819
      while (!_first.empty() && _first.back() == INVALID) {
2820 2820
        _first.pop_back();
2821 2821
      }
2822 2822
    }
2823 2823

	
2824 2824
    void lace(const Key& key) {
2825 2825
      typename Parent::Value& node = Parent::operator[](key);
2826 2826
      if (node.value < 0) return;
2827 2827
      if (node.value >= int(_first.size())) {
2828 2828
        _first.resize(node.value + 1, INVALID);
2829 2829
      }
2830 2830
      node.prev = INVALID;
2831 2831
      node.next = _first[node.value];
2832 2832
      if (node.next != INVALID) {
2833 2833
        Parent::operator[](node.next).prev = key;
2834 2834
      }
2835 2835
      _first[node.value] = key;
2836 2836
    }
2837 2837

	
2838 2838
  public:
2839 2839

	
2840 2840
    /// Indicates that the map is reference map.
2841 2841
    typedef True ReferenceMapTag;
2842 2842

	
2843 2843
    /// \brief Reference to the value of the map.
2844 2844
    ///
2845 2845
    /// This class is similar to the \c int type. It can
2846 2846
    /// be converted to \c int and it has the same operators.
2847 2847
    class Reference {
2848 2848
      friend class IterableIntMap;
2849 2849
    private:
2850 2850
      Reference(IterableIntMap& map, const Key& key)
2851 2851
        : _key(key), _map(map) {}
2852 2852
    public:
2853 2853

	
2854 2854
      Reference& operator=(const Reference& value) {
2855 2855
        _map.set(_key, static_cast<const int&>(value));
2856 2856
         return *this;
2857 2857
      }
2858 2858

	
2859 2859
      operator const int&() const {
2860 2860
        return static_cast<const IterableIntMap&>(_map)[_key];
2861 2861
      }
2862 2862

	
2863 2863
      Reference& operator=(int value) {
2864 2864
        _map.set(_key, value);
2865 2865
        return *this;
2866 2866
      }
2867 2867
      Reference& operator++() {
2868 2868
        _map.set(_key, _map[_key] + 1);
2869 2869
        return *this;
2870 2870
      }
2871 2871
      int operator++(int) {
2872 2872
        int value = _map[_key];
2873 2873
        _map.set(_key, value + 1);
2874 2874
        return value;
2875 2875
      }
2876 2876
      Reference& operator--() {
2877 2877
        _map.set(_key, _map[_key] - 1);
2878 2878
        return *this;
2879 2879
      }
2880 2880
      int operator--(int) {
2881 2881
        int value = _map[_key];
2882 2882
        _map.set(_key, value - 1);
2883 2883
        return value;
2884 2884
      }
2885 2885
      Reference& operator+=(int value) {
2886 2886
        _map.set(_key, _map[_key] + value);
2887 2887
        return *this;
2888 2888
      }
2889 2889
      Reference& operator-=(int value) {
2890 2890
        _map.set(_key, _map[_key] - value);
2891 2891
        return *this;
2892 2892
      }
2893 2893
      Reference& operator*=(int value) {
2894 2894
        _map.set(_key, _map[_key] * value);
2895 2895
        return *this;
2896 2896
      }
2897 2897
      Reference& operator/=(int value) {
2898 2898
        _map.set(_key, _map[_key] / value);
2899 2899
        return *this;
2900 2900
      }
2901 2901
      Reference& operator%=(int value) {
2902 2902
        _map.set(_key, _map[_key] % value);
2903 2903
        return *this;
2904 2904
      }
2905 2905
      Reference& operator&=(int value) {
2906 2906
        _map.set(_key, _map[_key] & value);
2907 2907
        return *this;
2908 2908
      }
2909 2909
      Reference& operator|=(int value) {
2910 2910
        _map.set(_key, _map[_key] | value);
2911 2911
        return *this;
2912 2912
      }
2913 2913
      Reference& operator^=(int value) {
2914 2914
        _map.set(_key, _map[_key] ^ value);
2915 2915
        return *this;
2916 2916
      }
2917 2917
      Reference& operator<<=(int value) {
2918 2918
        _map.set(_key, _map[_key] << value);
2919 2919
        return *this;
2920 2920
      }
2921 2921
      Reference& operator>>=(int value) {
2922 2922
        _map.set(_key, _map[_key] >> value);
2923 2923
        return *this;
2924 2924
      }
2925 2925

	
2926 2926
    private:
2927 2927
      Key _key;
2928 2928
      IterableIntMap& _map;
2929 2929
    };
2930 2930

	
2931 2931
    /// The const reference type.
2932 2932
    typedef const Value& ConstReference;
2933 2933

	
2934 2934
    /// \brief Gives back the maximal value plus one.
2935 2935
    ///
2936 2936
    /// Gives back the maximal value plus one.
2937 2937
    int size() const {
2938 2938
      return _first.size();
2939 2939
    }
2940 2940

	
2941 2941
    /// \brief Set operation of the map.
2942 2942
    ///
2943 2943
    /// Set operation of the map.
2944 2944
    void set(const Key& key, const Value& value) {
2945 2945
      unlace(key);
2946 2946
      Parent::operator[](key).value = value;
2947 2947
      lace(key);
2948 2948
    }
2949 2949

	
2950 2950
    /// \brief Const subscript operator of the map.
2951 2951
    ///
2952 2952
    /// Const subscript operator of the map.
2953 2953
    const Value& operator[](const Key& key) const {
2954 2954
      return Parent::operator[](key).value;
2955 2955
    }
2956 2956

	
2957 2957
    /// \brief Subscript operator of the map.
2958 2958
    ///
2959 2959
    /// Subscript operator of the map.
2960 2960
    Reference operator[](const Key& key) {
2961 2961
      return Reference(*this, key);
2962 2962
    }
2963 2963

	
2964 2964
    /// \brief Iterator for the keys with the same value.
2965 2965
    ///
2966 2966
    /// Iterator for the keys with the same value. It works
2967 2967
    /// like a graph item iterator, it can be converted to
2968 2968
    /// the item type of the map, incremented with \c ++ operator, and
2969 2969
    /// if the iterator leaves the last valid item, it will be equal to
2970 2970
    /// \c INVALID.
2971 2971
    class ItemIt : public Key {
2972 2972
    public:
2973 2973
      typedef Key Parent;
2974 2974

	
2975 2975
      /// \brief Invalid constructor \& conversion.
2976 2976
      ///
2977 2977
      /// This constructor initializes the iterator to be invalid.
2978 2978
      /// \sa Invalid for more details.
2979 2979
      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
2980 2980

	
2981 2981
      /// \brief Creates an iterator with a value.
2982 2982
      ///
2983 2983
      /// Creates an iterator with a value. It iterates on the
2984 2984
      /// keys mapped to the given value.
2985 2985
      /// \param map The IterableIntMap.
2986 2986
      /// \param value The value.
2987 2987
      ItemIt(const IterableIntMap& map, int value) : _map(&map) {
2988 2988
        if (value < 0 || value >= int(_map->_first.size())) {
2989 2989
          Parent::operator=(INVALID);
2990 2990
        } else {
2991 2991
          Parent::operator=(_map->_first[value]);
2992 2992
        }
2993 2993
      }
2994 2994

	
2995 2995
      /// \brief Increment operator.
2996 2996
      ///
2997 2997
      /// Increment operator.
2998 2998
      ItemIt& operator++() {
2999 2999
        Parent::operator=(_map->IterableIntMap::Parent::
3000 3000
                          operator[](static_cast<Parent&>(*this)).next);
3001 3001
        return *this;
3002 3002
      }
3003 3003

	
3004 3004
    private:
3005 3005
      const IterableIntMap* _map;
3006 3006
    };
3007 3007

	
3008 3008
  protected:
3009 3009

	
3010 3010
    virtual void erase(const Key& key) {
3011 3011
      unlace(key);
3012 3012
      Parent::erase(key);
3013 3013
    }
3014 3014

	
3015 3015
    virtual void erase(const std::vector<Key>& keys) {
3016 3016
      for (int i = 0; i < int(keys.size()); ++i) {
3017 3017
        unlace(keys[i]);
3018 3018
      }
3019 3019
      Parent::erase(keys);
3020 3020
    }
3021 3021

	
3022 3022
    virtual void clear() {
3023 3023
      _first.clear();
3024 3024
      Parent::clear();
3025 3025
    }
3026 3026

	
3027 3027
  private:
3028 3028
    std::vector<Key> _first;
3029 3029
  };
3030 3030

	
3031 3031
  namespace _maps_bits {
3032 3032
    template <typename Item, typename Value>
3033 3033
    struct IterableValueMapNode {
3034 3034
      IterableValueMapNode(Value _value = Value()) : value(_value) {}
3035 3035
      Item prev, next;
3036 3036
      Value value;
3037 3037
    };
3038 3038
  }
3039 3039

	
3040 3040
  /// \brief Dynamic iterable map for comparable values.
3041 3041
  ///
3042 3042
  /// This class provides a special graph map type which can store a
3043 3043
  /// comparable value for graph items (\c Node, \c Arc or \c Edge).
3044 3044
  /// For each value it is possible to iterate on the keys mapped to
3045 3045
  /// the value (\c ItemIt), and the values of the map can be accessed
3046 3046
  /// with an STL compatible forward iterator (\c ValueIt).
3047 3047
  /// The map stores a linked list for each value, which contains
3048 3048
  /// the items mapped to the value, and the used values are stored
3049 3049
  /// in balanced binary tree (\c std::map).
3050 3050
  ///
3051 3051
  /// \ref IterableBoolMap and \ref IterableIntMap are similar classes
3052 3052
  /// specialized for \c bool and \c int values, respectively.
3053 3053
  ///
3054 3054
  /// This type is not reference map, so it cannot be modified with
3055 3055
  /// the subscript operator.
3056 3056
  ///
3057 3057
  /// \tparam GR The graph type.
3058 3058
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
3059 3059
  /// \c GR::Edge).
3060 3060
  /// \tparam V The value type of the map. It can be any comparable
3061 3061
  /// value type.
3062 3062
  ///
3063 3063
  /// \see IterableBoolMap, IterableIntMap
3064 3064
  /// \see CrossRefMap
3065 3065
  template <typename GR, typename K, typename V>
3066 3066
  class IterableValueMap
3067 3067
    : protected ItemSetTraits<GR, K>::
3068 3068
        template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
3069 3069
  public:
3070 3070
    typedef typename ItemSetTraits<GR, K>::
3071 3071
      template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent;
3072 3072

	
3073 3073
    /// The key type
3074 3074
    typedef K Key;
3075 3075
    /// The value type
3076 3076
    typedef V Value;
3077 3077
    /// The graph type
3078 3078
    typedef GR Graph;
3079 3079

	
3080 3080
  public:
3081 3081

	
3082 3082
    /// \brief Constructor of the map with a given value.
3083 3083
    ///
3084 3084
    /// Constructor of the map with a given value.
3085 3085
    explicit IterableValueMap(const Graph& graph,
3086 3086
                              const Value& value = Value())
3087 3087
      : Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
3088 3088
      for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
3089 3089
        lace(it);
3090 3090
      }
3091 3091
    }
3092 3092

	
3093 3093
  protected:
3094 3094

	
3095 3095
    void unlace(const Key& key) {
3096 3096
      typename Parent::Value& node = Parent::operator[](key);
3097 3097
      if (node.prev != INVALID) {
3098 3098
        Parent::operator[](node.prev).next = node.next;
3099 3099
      } else {
3100 3100
        if (node.next != INVALID) {
3101 3101
          _first[node.value] = node.next;
3102 3102
        } else {
3103 3103
          _first.erase(node.value);
3104 3104
        }
3105 3105
      }
3106 3106
      if (node.next != INVALID) {
3107 3107
        Parent::operator[](node.next).prev = node.prev;
3108 3108
      }
3109 3109
    }
3110 3110

	
3111 3111
    void lace(const Key& key) {
3112 3112
      typename Parent::Value& node = Parent::operator[](key);
3113 3113
      typename std::map<Value, Key>::iterator it = _first.find(node.value);
3114 3114
      if (it == _first.end()) {
3115 3115
        node.prev = node.next = INVALID;
3116 3116
        _first.insert(std::make_pair(node.value, key));
3117 3117
      } else {
3118 3118
        node.prev = INVALID;
3119 3119
        node.next = it->second;
3120 3120
        if (node.next != INVALID) {
3121 3121
          Parent::operator[](node.next).prev = key;
3122 3122
        }
3123 3123
        it->second = key;
3124 3124
      }
3125 3125
    }
3126 3126

	
3127 3127
  public:
3128 3128

	
3129 3129
    /// \brief Forward iterator for values.
3130 3130
    ///
3131 3131
    /// This iterator is an STL compatible forward
3132 3132
    /// iterator on the values of the map. The values can
3133 3133
    /// be accessed in the <tt>[beginValue, endValue)</tt> range.
3134 3134
    class ValueIt
3135 3135
      : public std::iterator<std::forward_iterator_tag, Value> {
3136 3136
      friend class IterableValueMap;
3137 3137
    private:
3138 3138
      ValueIt(typename std::map<Value, Key>::const_iterator _it)
3139 3139
        : it(_it) {}
3140 3140
    public:
3141 3141

	
3142 3142
      /// Constructor
3143 3143
      ValueIt() {}
3144 3144

	
3145 3145
      /// \e
3146 3146
      ValueIt& operator++() { ++it; return *this; }
3147 3147
      /// \e
3148 3148
      ValueIt operator++(int) {
3149 3149
        ValueIt tmp(*this);
3150 3150
        operator++();
3151 3151
        return tmp;
3152 3152
      }
3153 3153

	
3154 3154
      /// \e
3155 3155
      const Value& operator*() const { return it->first; }
3156 3156
      /// \e
3157 3157
      const Value* operator->() const { return &(it->first); }
3158 3158

	
3159 3159
      /// \e
3160 3160
      bool operator==(ValueIt jt) const { return it == jt.it; }
3161 3161
      /// \e
3162 3162
      bool operator!=(ValueIt jt) const { return it != jt.it; }
3163 3163

	
3164 3164
    private:
3165 3165
      typename std::map<Value, Key>::const_iterator it;
3166 3166
    };
3167 3167

	
3168 3168
    /// \brief Returns an iterator to the first value.
3169 3169
    ///
3170 3170
    /// Returns an STL compatible iterator to the
3171 3171
    /// first value of the map. The values of the
3172 3172
    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
3173 3173
    /// range.
3174 3174
    ValueIt beginValue() const {
3175 3175
      return ValueIt(_first.begin());
3176 3176
    }
3177 3177

	
3178 3178
    /// \brief Returns an iterator after the last value.
3179 3179
    ///
3180 3180
    /// Returns an STL compatible iterator after the
3181 3181
    /// last value of the map. The values of the
3182 3182
    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
3183 3183
    /// range.
3184 3184
    ValueIt endValue() const {
3185 3185
      return ValueIt(_first.end());
3186 3186
    }
3187 3187

	
3188 3188
    /// \brief Set operation of the map.
3189 3189
    ///
3190 3190
    /// Set operation of the map.
3191 3191
    void set(const Key& key, const Value& value) {
3192 3192
      unlace(key);
3193 3193
      Parent::operator[](key).value = value;
3194 3194
      lace(key);
3195 3195
    }
3196 3196

	
3197 3197
    /// \brief Const subscript operator of the map.
3198 3198
    ///
3199 3199
    /// Const subscript operator of the map.
3200 3200
    const Value& operator[](const Key& key) const {
3201 3201
      return Parent::operator[](key).value;
3202 3202
    }
3203 3203

	
3204 3204
    /// \brief Iterator for the keys with the same value.
3205 3205
    ///
3206 3206
    /// Iterator for the keys with the same value. It works
3207 3207
    /// like a graph item iterator, it can be converted to
3208 3208
    /// the item type of the map, incremented with \c ++ operator, and
3209 3209
    /// if the iterator leaves the last valid item, it will be equal to
3210 3210
    /// \c INVALID.
3211 3211
    class ItemIt : public Key {
3212 3212
    public:
3213 3213
      typedef Key Parent;
3214 3214

	
3215 3215
      /// \brief Invalid constructor \& conversion.
3216 3216
      ///
3217 3217
      /// This constructor initializes the iterator to be invalid.
3218 3218
      /// \sa Invalid for more details.
3219 3219
      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
3220 3220

	
3221 3221
      /// \brief Creates an iterator with a value.
3222 3222
      ///
3223 3223
      /// Creates an iterator with a value. It iterates on the
3224 3224
      /// keys which have the given value.
3225 3225
      /// \param map The IterableValueMap
3226 3226
      /// \param value The value
3227 3227
      ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
3228 3228
        typename std::map<Value, Key>::const_iterator it =
3229 3229
          map._first.find(value);
3230 3230
        if (it == map._first.end()) {
3231 3231
          Parent::operator=(INVALID);
3232 3232
        } else {
3233 3233
          Parent::operator=(it->second);
3234 3234
        }
3235 3235
      }
3236 3236

	
3237 3237
      /// \brief Increment operator.
3238 3238
      ///
3239 3239
      /// Increment Operator.
3240 3240
      ItemIt& operator++() {
3241 3241
        Parent::operator=(_map->IterableValueMap::Parent::
3242 3242
                          operator[](static_cast<Parent&>(*this)).next);
3243 3243
        return *this;
3244 3244
      }
3245 3245

	
3246 3246

	
3247 3247
    private:
3248 3248
      const IterableValueMap* _map;
3249 3249
    };
3250 3250

	
3251 3251
  protected:
3252 3252

	
3253 3253
    virtual void add(const Key& key) {
3254 3254
      Parent::add(key);
3255
      unlace(key);
3255
      lace(key);
3256 3256
    }
3257 3257

	
3258 3258
    virtual void add(const std::vector<Key>& keys) {
3259 3259
      Parent::add(keys);
3260 3260
      for (int i = 0; i < int(keys.size()); ++i) {
3261 3261
        lace(keys[i]);
3262 3262
      }
3263 3263
    }
3264 3264

	
3265 3265
    virtual void erase(const Key& key) {
3266 3266
      unlace(key);
3267 3267
      Parent::erase(key);
3268 3268
    }
3269 3269

	
3270 3270
    virtual void erase(const std::vector<Key>& keys) {
3271 3271
      for (int i = 0; i < int(keys.size()); ++i) {
3272 3272
        unlace(keys[i]);
3273 3273
      }
3274 3274
      Parent::erase(keys);
3275 3275
    }
3276 3276

	
3277 3277
    virtual void build() {
3278 3278
      Parent::build();
3279 3279
      for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
3280 3280
        lace(it);
3281 3281
      }
3282 3282
    }
3283 3283

	
3284 3284
    virtual void clear() {
3285 3285
      _first.clear();
3286 3286
      Parent::clear();
3287 3287
    }
3288 3288

	
3289 3289
  private:
3290 3290
    std::map<Value, Key> _first;
3291 3291
  };
3292 3292

	
3293 3293
  /// \brief Map of the source nodes of arcs in a digraph.
3294 3294
  ///
3295 3295
  /// SourceMap provides access for the source node of each arc in a digraph,
3296 3296
  /// which is returned by the \c source() function of the digraph.
3297 3297
  /// \tparam GR The digraph type.
3298 3298
  /// \see TargetMap
3299 3299
  template <typename GR>
3300 3300
  class SourceMap {
3301 3301
  public:
3302 3302

	
3303 3303
    /// The key type (the \c Arc type of the digraph).
3304 3304
    typedef typename GR::Arc Key;
3305 3305
    /// The value type (the \c Node type of the digraph).
3306 3306
    typedef typename GR::Node Value;
3307 3307

	
3308 3308
    /// \brief Constructor
3309 3309
    ///
3310 3310
    /// Constructor.
3311 3311
    /// \param digraph The digraph that the map belongs to.
3312 3312
    explicit SourceMap(const GR& digraph) : _graph(digraph) {}
3313 3313

	
3314 3314
    /// \brief Returns the source node of the given arc.
3315 3315
    ///
3316 3316
    /// Returns the source node of the given arc.
3317 3317
    Value operator[](const Key& arc) const {
3318 3318
      return _graph.source(arc);
3319 3319
    }
3320 3320

	
3321 3321
  private:
3322 3322
    const GR& _graph;
3323 3323
  };
3324 3324

	
3325 3325
  /// \brief Returns a \c SourceMap class.
3326 3326
  ///
3327 3327
  /// This function just returns an \c SourceMap class.
3328 3328
  /// \relates SourceMap
3329 3329
  template <typename GR>
3330 3330
  inline SourceMap<GR> sourceMap(const GR& graph) {
3331 3331
    return SourceMap<GR>(graph);
3332 3332
  }
3333 3333

	
3334 3334
  /// \brief Map of the target nodes of arcs in a digraph.
3335 3335
  ///
3336 3336
  /// TargetMap provides access for the target node of each arc in a digraph,
3337 3337
  /// which is returned by the \c target() function of the digraph.
3338 3338
  /// \tparam GR The digraph type.
3339 3339
  /// \see SourceMap
3340 3340
  template <typename GR>
3341 3341
  class TargetMap {
3342 3342
  public:
3343 3343

	
3344 3344
    /// The key type (the \c Arc type of the digraph).
3345 3345
    typedef typename GR::Arc Key;
3346 3346
    /// The value type (the \c Node type of the digraph).
3347 3347
    typedef typename GR::Node Value;
3348 3348

	
3349 3349
    /// \brief Constructor
3350 3350
    ///
3351 3351
    /// Constructor.
3352 3352
    /// \param digraph The digraph that the map belongs to.
3353 3353
    explicit TargetMap(const GR& digraph) : _graph(digraph) {}
3354 3354

	
3355 3355
    /// \brief Returns the target node of the given arc.
3356 3356
    ///
3357 3357
    /// Returns the target node of the given arc.
3358 3358
    Value operator[](const Key& e) const {
3359 3359
      return _graph.target(e);
3360 3360
    }
3361 3361

	
3362 3362
  private:
3363 3363
    const GR& _graph;
3364 3364
  };
3365 3365

	
3366 3366
  /// \brief Returns a \c TargetMap class.
3367 3367
  ///
3368 3368
  /// This function just returns a \c TargetMap class.
3369 3369
  /// \relates TargetMap
3370 3370
  template <typename GR>
3371 3371
  inline TargetMap<GR> targetMap(const GR& graph) {
3372 3372
    return TargetMap<GR>(graph);
3373 3373
  }
3374 3374

	
3375 3375
  /// \brief Map of the "forward" directed arc view of edges in a graph.
3376 3376
  ///
3377 3377
  /// ForwardMap provides access for the "forward" directed arc view of
3378 3378
  /// each edge in a graph, which is returned by the \c direct() function
3379 3379
  /// of the graph with \c true parameter.
3380 3380
  /// \tparam GR The graph type.
3381 3381
  /// \see BackwardMap
3382 3382
  template <typename GR>
3383 3383
  class ForwardMap {
3384 3384
  public:
3385 3385

	
3386 3386
    /// The key type (the \c Edge type of the digraph).
3387 3387
    typedef typename GR::Edge Key;
3388 3388
    /// The value type (the \c Arc type of the digraph).
3389 3389
    typedef typename GR::Arc Value;
3390 3390

	
3391 3391
    /// \brief Constructor
3392 3392
    ///
3393 3393
    /// Constructor.
3394 3394
    /// \param graph The graph that the map belongs to.
3395 3395
    explicit ForwardMap(const GR& graph) : _graph(graph) {}
3396 3396

	
3397 3397
    /// \brief Returns the "forward" directed arc view of the given edge.
3398 3398
    ///
3399 3399
    /// Returns the "forward" directed arc view of the given edge.
3400 3400
    Value operator[](const Key& key) const {
3401 3401
      return _graph.direct(key, true);
3402 3402
    }
3403 3403

	
3404 3404
  private:
3405 3405
    const GR& _graph;
3406 3406
  };
3407 3407

	
3408 3408
  /// \brief Returns a \c ForwardMap class.
3409 3409
  ///
3410 3410
  /// This function just returns an \c ForwardMap class.
3411 3411
  /// \relates ForwardMap
3412 3412
  template <typename GR>
3413 3413
  inline ForwardMap<GR> forwardMap(const GR& graph) {
3414 3414
    return ForwardMap<GR>(graph);
3415 3415
  }
3416 3416

	
3417 3417
  /// \brief Map of the "backward" directed arc view of edges in a graph.
3418 3418
  ///
3419 3419
  /// BackwardMap provides access for the "backward" directed arc view of
3420 3420
  /// each edge in a graph, which is returned by the \c direct() function
3421 3421
  /// of the graph with \c false parameter.
3422 3422
  /// \tparam GR The graph type.
3423 3423
  /// \see ForwardMap
3424 3424
  template <typename GR>
3425 3425
  class BackwardMap {
3426 3426
  public:
3427 3427

	
3428 3428
    /// The key type (the \c Edge type of the digraph).
3429 3429
    typedef typename GR::Edge Key;
3430 3430
    /// The value type (the \c Arc type of the digraph).
3431 3431
    typedef typename GR::Arc Value;
3432 3432

	
3433 3433
    /// \brief Constructor
3434 3434
    ///
3435 3435
    /// Constructor.
3436 3436
    /// \param graph The graph that the map belongs to.
3437 3437
    explicit BackwardMap(const GR& graph) : _graph(graph) {}
3438 3438

	
3439 3439
    /// \brief Returns the "backward" directed arc view of the given edge.
3440 3440
    ///
3441 3441
    /// Returns the "backward" directed arc view of the given edge.
3442 3442
    Value operator[](const Key& key) const {
3443 3443
      return _graph.direct(key, false);
3444 3444
    }
3445 3445

	
3446 3446
  private:
3447 3447
    const GR& _graph;
3448 3448
  };
3449 3449

	
3450 3450
  /// \brief Returns a \c BackwardMap class
3451 3451

	
3452 3452
  /// This function just returns a \c BackwardMap class.
3453 3453
  /// \relates BackwardMap
3454 3454
  template <typename GR>
3455 3455
  inline BackwardMap<GR> backwardMap(const GR& graph) {
3456 3456
    return BackwardMap<GR>(graph);
3457 3457
  }
3458 3458

	
3459 3459
  /// \brief Map of the in-degrees of nodes in a digraph.
3460 3460
  ///
3461 3461
  /// This map returns the in-degree of a node. Once it is constructed,
3462 3462
  /// the degrees are stored in a standard \c NodeMap, so each query is done
3463 3463
  /// in constant time. On the other hand, the values are updated automatically
3464 3464
  /// whenever the digraph changes.
3465 3465
  ///
3466 3466
  /// \warning Besides \c addNode() and \c addArc(), a digraph structure
3467 3467
  /// may provide alternative ways to modify the digraph.
3468 3468
  /// The correct behavior of InDegMap is not guarantied if these additional
3469 3469
  /// features are used. For example, the functions
3470 3470
  /// \ref ListDigraph::changeSource() "changeSource()",
3471 3471
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
3472 3472
  /// \ref ListDigraph::reverseArc() "reverseArc()"
3473 3473
  /// of \ref ListDigraph will \e not update the degree values correctly.
3474 3474
  ///
3475 3475
  /// \sa OutDegMap
3476 3476
  template <typename GR>
3477 3477
  class InDegMap
3478 3478
    : protected ItemSetTraits<GR, typename GR::Arc>
3479 3479
      ::ItemNotifier::ObserverBase {
3480 3480

	
3481 3481
  public:
3482 3482

	
3483 3483
    /// The graph type of InDegMap
3484 3484
    typedef GR Graph;
3485 3485
    typedef GR Digraph;
3486 3486
    /// The key type
3487 3487
    typedef typename Digraph::Node Key;
3488 3488
    /// The value type
3489 3489
    typedef int Value;
3490 3490

	
3491 3491
    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
3492 3492
    ::ItemNotifier::ObserverBase Parent;
3493 3493

	
3494 3494
  private:
3495 3495

	
3496 3496
    class AutoNodeMap
3497 3497
      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
3498 3498
    public:
3499 3499

	
3500 3500
      typedef typename ItemSetTraits<Digraph, Key>::
3501 3501
      template Map<int>::Type Parent;
3502 3502

	
3503 3503
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
3504 3504

	
3505 3505
      virtual void add(const Key& key) {
3506 3506
        Parent::add(key);
3507 3507
        Parent::set(key, 0);
3508 3508
      }
3509 3509

	
3510 3510
      virtual void add(const std::vector<Key>& keys) {
3511 3511
        Parent::add(keys);
3512 3512
        for (int i = 0; i < int(keys.size()); ++i) {
3513 3513
          Parent::set(keys[i], 0);
3514 3514
        }
3515 3515
      }
3516 3516

	
3517 3517
      virtual void build() {
3518 3518
        Parent::build();
3519 3519
        Key it;
3520 3520
        typename Parent::Notifier* nf = Parent::notifier();
3521 3521
        for (nf->first(it); it != INVALID; nf->next(it)) {
3522 3522
          Parent::set(it, 0);
3523 3523
        }
3524 3524
      }
3525 3525
    };
3526 3526

	
3527 3527
  public:
3528 3528

	
3529 3529
    /// \brief Constructor.
3530 3530
    ///
3531 3531
    /// Constructor for creating an in-degree map.
3532 3532
    explicit InDegMap(const Digraph& graph)
3533 3533
      : _digraph(graph), _deg(graph) {
3534 3534
      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
3535 3535

	
3536 3536
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3537 3537
        _deg[it] = countInArcs(_digraph, it);
3538 3538
      }
3539 3539
    }
3540 3540

	
3541 3541
    /// \brief Gives back the in-degree of a Node.
3542 3542
    ///
3543 3543
    /// Gives back the in-degree of a Node.
3544 3544
    int operator[](const Key& key) const {
3545 3545
      return _deg[key];
3546 3546
    }
3547 3547

	
3548 3548
  protected:
3549 3549

	
3550 3550
    typedef typename Digraph::Arc Arc;
3551 3551

	
3552 3552
    virtual void add(const Arc& arc) {
3553 3553
      ++_deg[_digraph.target(arc)];
3554 3554
    }
3555 3555

	
3556 3556
    virtual void add(const std::vector<Arc>& arcs) {
3557 3557
      for (int i = 0; i < int(arcs.size()); ++i) {
3558 3558
        ++_deg[_digraph.target(arcs[i])];
3559 3559
      }
3560 3560
    }
3561 3561

	
3562 3562
    virtual void erase(const Arc& arc) {
3563 3563
      --_deg[_digraph.target(arc)];
3564 3564
    }
3565 3565

	
3566 3566
    virtual void erase(const std::vector<Arc>& arcs) {
3567 3567
      for (int i = 0; i < int(arcs.size()); ++i) {
3568 3568
        --_deg[_digraph.target(arcs[i])];
3569 3569
      }
3570 3570
    }
3571 3571

	
3572 3572
    virtual void build() {
3573 3573
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3574 3574
        _deg[it] = countInArcs(_digraph, it);
3575 3575
      }
3576 3576
    }
3577 3577

	
3578 3578
    virtual void clear() {
3579 3579
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3580 3580
        _deg[it] = 0;
3581 3581
      }
3582 3582
    }
3583 3583
  private:
3584 3584

	
3585 3585
    const Digraph& _digraph;
3586 3586
    AutoNodeMap _deg;
3587 3587
  };
3588 3588

	
3589 3589
  /// \brief Map of the out-degrees of nodes in a digraph.
3590 3590
  ///
3591 3591
  /// This map returns the out-degree of a node. Once it is constructed,
3592 3592
  /// the degrees are stored in a standard \c NodeMap, so each query is done
3593 3593
  /// in constant time. On the other hand, the values are updated automatically
3594 3594
  /// whenever the digraph changes.
3595 3595
  ///
3596 3596
  /// \warning Besides \c addNode() and \c addArc(), a digraph structure
3597 3597
  /// may provide alternative ways to modify the digraph.
3598 3598
  /// The correct behavior of OutDegMap is not guarantied if these additional
3599 3599
  /// features are used. For example, the functions
3600 3600
  /// \ref ListDigraph::changeSource() "changeSource()",
3601 3601
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
3602 3602
  /// \ref ListDigraph::reverseArc() "reverseArc()"
3603 3603
  /// of \ref ListDigraph will \e not update the degree values correctly.
3604 3604
  ///
3605 3605
  /// \sa InDegMap
3606 3606
  template <typename GR>
3607 3607
  class OutDegMap
3608 3608
    : protected ItemSetTraits<GR, typename GR::Arc>
3609 3609
      ::ItemNotifier::ObserverBase {
3610 3610

	
3611 3611
  public:
3612 3612

	
3613 3613
    /// The graph type of OutDegMap
3614 3614
    typedef GR Graph;
3615 3615
    typedef GR Digraph;
3616 3616
    /// The key type
3617 3617
    typedef typename Digraph::Node Key;
3618 3618
    /// The value type
3619 3619
    typedef int Value;
3620 3620

	
3621 3621
    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
3622 3622
    ::ItemNotifier::ObserverBase Parent;
3623 3623

	
3624 3624
  private:
3625 3625

	
3626 3626
    class AutoNodeMap
3627 3627
      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
3628 3628
    public:
3629 3629

	
3630 3630
      typedef typename ItemSetTraits<Digraph, Key>::
3631 3631
      template Map<int>::Type Parent;
3632 3632

	
3633 3633
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
3634 3634

	
3635 3635
      virtual void add(const Key& key) {
3636 3636
        Parent::add(key);
3637 3637
        Parent::set(key, 0);
3638 3638
      }
3639 3639
      virtual void add(const std::vector<Key>& keys) {
3640 3640
        Parent::add(keys);
3641 3641
        for (int i = 0; i < int(keys.size()); ++i) {
3642 3642
          Parent::set(keys[i], 0);
3643 3643
        }
3644 3644
      }
3645 3645
      virtual void build() {
3646 3646
        Parent::build();
3647 3647
        Key it;
3648 3648
        typename Parent::Notifier* nf = Parent::notifier();
3649 3649
        for (nf->first(it); it != INVALID; nf->next(it)) {
3650 3650
          Parent::set(it, 0);
3651 3651
        }
3652 3652
      }
3653 3653
    };
3654 3654

	
3655 3655
  public:
3656 3656

	
3657 3657
    /// \brief Constructor.
3658 3658
    ///
3659 3659
    /// Constructor for creating an out-degree map.
3660 3660
    explicit OutDegMap(const Digraph& graph)
3661 3661
      : _digraph(graph), _deg(graph) {
3662 3662
      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
3663 3663

	
3664 3664
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3665 3665
        _deg[it] = countOutArcs(_digraph, it);
3666 3666
      }
3667 3667
    }
3668 3668

	
3669 3669
    /// \brief Gives back the out-degree of a Node.
3670 3670
    ///
3671 3671
    /// Gives back the out-degree of a Node.
3672 3672
    int operator[](const Key& key) const {
3673 3673
      return _deg[key];
3674 3674
    }
3675 3675

	
3676 3676
  protected:
3677 3677

	
3678 3678
    typedef typename Digraph::Arc Arc;
3679 3679

	
3680 3680
    virtual void add(const Arc& arc) {
3681 3681
      ++_deg[_digraph.source(arc)];
3682 3682
    }
3683 3683

	
3684 3684
    virtual void add(const std::vector<Arc>& arcs) {
3685 3685
      for (int i = 0; i < int(arcs.size()); ++i) {
3686 3686
        ++_deg[_digraph.source(arcs[i])];
3687 3687
      }
3688 3688
    }
3689 3689

	
3690 3690
    virtual void erase(const Arc& arc) {
3691 3691
      --_deg[_digraph.source(arc)];
3692 3692
    }
3693 3693

	
3694 3694
    virtual void erase(const std::vector<Arc>& arcs) {
3695 3695
      for (int i = 0; i < int(arcs.size()); ++i) {
3696 3696
        --_deg[_digraph.source(arcs[i])];
3697 3697
      }
3698 3698
    }
3699 3699

	
3700 3700
    virtual void build() {
3701 3701
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3702 3702
        _deg[it] = countOutArcs(_digraph, it);
3703 3703
      }
3704 3704
    }
3705 3705

	
3706 3706
    virtual void clear() {
3707 3707
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3708 3708
        _deg[it] = 0;
3709 3709
      }
3710 3710
    }
3711 3711
  private:
3712 3712

	
3713 3713
    const Digraph& _digraph;
3714 3714
    AutoNodeMap _deg;
3715 3715
  };
3716 3716

	
3717 3717
  /// \brief Potential difference map
3718 3718
  ///
3719 3719
  /// PotentialDifferenceMap returns the difference between the potentials of
3720 3720
  /// the source and target nodes of each arc in a digraph, i.e. it returns
3721 3721
  /// \code
3722 3722
  ///   potential[gr.target(arc)] - potential[gr.source(arc)].
3723 3723
  /// \endcode
3724 3724
  /// \tparam GR The digraph type.
3725 3725
  /// \tparam POT A node map storing the potentials.
3726 3726
  template <typename GR, typename POT>
3727 3727
  class PotentialDifferenceMap {
3728 3728
  public:
3729 3729
    /// Key type
3730 3730
    typedef typename GR::Arc Key;
3731 3731
    /// Value type
3732 3732
    typedef typename POT::Value Value;
3733 3733

	
3734 3734
    /// \brief Constructor
3735 3735
    ///
3736 3736
    /// Contructor of the map.
3737 3737
    explicit PotentialDifferenceMap(const GR& gr,
3738 3738
                                    const POT& potential)
3739 3739
      : _digraph(gr), _potential(potential) {}
3740 3740

	
3741 3741
    /// \brief Returns the potential difference for the given arc.
3742 3742
    ///
3743 3743
    /// Returns the potential difference for the given arc, i.e.
3744 3744
    /// \code
3745 3745
    ///   potential[gr.target(arc)] - potential[gr.source(arc)].
3746 3746
    /// \endcode
3747 3747
    Value operator[](const Key& arc) const {
3748 3748
      return _potential[_digraph.target(arc)] -
3749 3749
        _potential[_digraph.source(arc)];
3750 3750
    }
3751 3751

	
3752 3752
  private:
3753 3753
    const GR& _digraph;
3754 3754
    const POT& _potential;
3755 3755
  };
3756 3756

	
3757 3757
  /// \brief Returns a PotentialDifferenceMap.
3758 3758
  ///
3759 3759
  /// This function just returns a PotentialDifferenceMap.
3760 3760
  /// \relates PotentialDifferenceMap
3761 3761
  template <typename GR, typename POT>
3762 3762
  PotentialDifferenceMap<GR, POT>
3763 3763
  potentialDifferenceMap(const GR& gr, const POT& potential) {
3764 3764
    return PotentialDifferenceMap<GR, POT>(gr, potential);
3765 3765
  }
3766 3766

	
3767 3767

	
3768 3768
  /// \brief Copy the values of a graph map to another map.
3769 3769
  ///
3770 3770
  /// This function copies the values of a graph map to another graph map.
3771 3771
  /// \c To::Key must be equal or convertible to \c From::Key and
3772 3772
  /// \c From::Value must be equal or convertible to \c To::Value.
3773 3773
  ///
3774 3774
  /// For example, an edge map of \c int value type can be copied to
3775 3775
  /// an arc map of \c double value type in an undirected graph, but
3776 3776
  /// an arc map cannot be copied to an edge map.
3777 3777
  /// Note that even a \ref ConstMap can be copied to a standard graph map,
3778 3778
  /// but \ref mapFill() can also be used for this purpose.
3779 3779
  ///
3780 3780
  /// \param gr The graph for which the maps are defined.
3781 3781
  /// \param from The map from which the values have to be copied.
3782 3782
  /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
3783 3783
  /// \param to The map to which the values have to be copied.
3784 3784
  /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
3785 3785
  template <typename GR, typename From, typename To>
3786 3786
  void mapCopy(const GR& gr, const From& from, To& to) {
3787 3787
    typedef typename To::Key Item;
3788 3788
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
3789 3789

	
3790 3790
    for (ItemIt it(gr); it != INVALID; ++it) {
3791 3791
      to.set(it, from[it]);
3792 3792
    }
3793 3793
  }
3794 3794

	
3795 3795
  /// \brief Compare two graph maps.
3796 3796
  ///
3797 3797
  /// This function compares the values of two graph maps. It returns
3798 3798
  /// \c true if the maps assign the same value for all items in the graph.
3799 3799
  /// The \c Key type of the maps (\c Node, \c Arc or \c Edge) must be equal
3800 3800
  /// and their \c Value types must be comparable using \c %operator==().
3801 3801
  ///
3802 3802
  /// \param gr The graph for which the maps are defined.
3803 3803
  /// \param map1 The first map.
3804 3804
  /// \param map2 The second map.
3805 3805
  template <typename GR, typename Map1, typename Map2>
3806 3806
  bool mapCompare(const GR& gr, const Map1& map1, const Map2& map2) {
3807 3807
    typedef typename Map2::Key Item;
3808 3808
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
3809 3809

	
3810 3810
    for (ItemIt it(gr); it != INVALID; ++it) {
3811 3811
      if (!(map1[it] == map2[it])) return false;
3812 3812
    }
3813 3813
    return true;
3814 3814
  }
3815 3815

	
3816 3816
  /// \brief Return an item having minimum value of a graph map.
3817 3817
  ///
3818 3818
  /// This function returns an item (\c Node, \c Arc or \c Edge) having
3819 3819
  /// minimum value of the given graph map.
3820 3820
  /// If the item set is empty, it returns \c INVALID.
3821 3821
  ///
3822 3822
  /// \param gr The graph for which the map is defined.
3823 3823
  /// \param map The graph map.
3824 3824
  template <typename GR, typename Map>
3825 3825
  typename Map::Key mapMin(const GR& gr, const Map& map) {
3826 3826
    return mapMin(gr, map, std::less<typename Map::Value>());
3827 3827
  }
3828 3828

	
3829 3829
  /// \brief Return an item having minimum value of a graph map.
3830 3830
  ///
3831 3831
  /// This function returns an item (\c Node, \c Arc or \c Edge) having
3832 3832
  /// minimum value of the given graph map.
3833 3833
  /// If the item set is empty, it returns \c INVALID.
3834 3834
  ///
3835 3835
  /// \param gr The graph for which the map is defined.
3836 3836
  /// \param map The graph map.
3837 3837
  /// \param comp Comparison function object.
3838 3838
  template <typename GR, typename Map, typename Comp>
3839 3839
  typename Map::Key mapMin(const GR& gr, const Map& map, const Comp& comp) {
3840 3840
    typedef typename Map::Key Item;
3841 3841
    typedef typename Map::Value Value;
3842 3842
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
3843 3843

	
3844 3844
    ItemIt min_item(gr);
3845 3845
    if (min_item == INVALID) return INVALID;
3846 3846
    Value min = map[min_item];
3847 3847
    for (ItemIt it(gr); it != INVALID; ++it) {
3848 3848
      if (comp(map[it], min)) {
3849 3849
        min = map[it];
3850 3850
        min_item = it;
3851 3851
      }
3852 3852
    }
3853 3853
    return min_item;
3854 3854
  }
3855 3855

	
3856 3856
  /// \brief Return an item having maximum value of a graph map.
3857 3857
  ///
3858 3858
  /// This function returns an item (\c Node, \c Arc or \c Edge) having
3859 3859
  /// maximum value of the given graph map.
3860 3860
  /// If the item set is empty, it returns \c INVALID.
3861 3861
  ///
3862 3862
  /// \param gr The graph for which the map is defined.
3863 3863
  /// \param map The graph map.
3864 3864
  template <typename GR, typename Map>
3865 3865
  typename Map::Key mapMax(const GR& gr, const Map& map) {
3866 3866
    return mapMax(gr, map, std::less<typename Map::Value>());
3867 3867
  }
3868 3868

	
3869 3869
  /// \brief Return an item having maximum value of a graph map.
3870 3870
  ///
3871 3871
  /// This function returns an item (\c Node, \c Arc or \c Edge) having
3872 3872
  /// maximum value of the given graph map.
3873 3873
  /// If the item set is empty, it returns \c INVALID.
3874 3874
  ///
3875 3875
  /// \param gr The graph for which the map is defined.
3876 3876
  /// \param map The graph map.
3877 3877
  /// \param comp Comparison function object.
3878 3878
  template <typename GR, typename Map, typename Comp>
3879 3879
  typename Map::Key mapMax(const GR& gr, const Map& map, const Comp& comp) {
3880 3880
    typedef typename Map::Key Item;
3881 3881
    typedef typename Map::Value Value;
3882 3882
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
3883 3883

	
3884 3884
    ItemIt max_item(gr);
3885 3885
    if (max_item == INVALID) return INVALID;
3886 3886
    Value max = map[max_item];
3887 3887
    for (ItemIt it(gr); it != INVALID; ++it) {
3888 3888
      if (comp(max, map[it])) {
3889 3889
        max = map[it];
3890 3890
        max_item = it;
3891 3891
      }
3892 3892
    }
3893 3893
    return max_item;
3894 3894
  }
3895 3895

	
3896 3896
  /// \brief Return the minimum value of a graph map.
3897 3897
  ///
3898 3898
  /// This function returns the minimum value of the given graph map.
3899 3899
  /// The corresponding item set of the graph must not be empty.
3900 3900
  ///
3901 3901
  /// \param gr The graph for which the map is defined.
3902 3902
  /// \param map The graph map.
3903 3903
  template <typename GR, typename Map>
3904 3904
  typename Map::Value mapMinValue(const GR& gr, const Map& map) {
3905 3905
    return map[mapMin(gr, map, std::less<typename Map::Value>())];
3906 3906
  }
3907 3907

	
3908 3908
  /// \brief Return the minimum value of a graph map.
3909 3909
  ///
3910 3910
  /// This function returns the minimum value of the given graph map.
3911 3911
  /// The corresponding item set of the graph must not be empty.
3912 3912
  ///
3913 3913
  /// \param gr The graph for which the map is defined.
3914 3914
  /// \param map The graph map.
3915 3915
  /// \param comp Comparison function object.
3916 3916
  template <typename GR, typename Map, typename Comp>
3917 3917
  typename Map::Value
3918 3918
  mapMinValue(const GR& gr, const Map& map, const Comp& comp) {
3919 3919
    return map[mapMin(gr, map, comp)];
3920 3920
  }
3921 3921

	
3922 3922
  /// \brief Return the maximum value of a graph map.
3923 3923
  ///
3924 3924
  /// This function returns the maximum value of the given graph map.
3925 3925
  /// The corresponding item set of the graph must not be empty.
3926 3926
  ///
3927 3927
  /// \param gr The graph for which the map is defined.
3928 3928
  /// \param map The graph map.
3929 3929
  template <typename GR, typename Map>
3930 3930
  typename Map::Value mapMaxValue(const GR& gr, const Map& map) {
3931 3931
    return map[mapMax(gr, map, std::less<typename Map::Value>())];
3932 3932
  }
3933 3933

	
3934 3934
  /// \brief Return the maximum value of a graph map.
3935 3935
  ///
3936 3936
  /// This function returns the maximum value of the given graph map.
3937 3937
  /// The corresponding item set of the graph must not be empty.
3938 3938
  ///
3939 3939
  /// \param gr The graph for which the map is defined.
3940 3940
  /// \param map The graph map.
3941 3941
  /// \param comp Comparison function object.
3942 3942
  template <typename GR, typename Map, typename Comp>
3943 3943
  typename Map::Value
3944 3944
  mapMaxValue(const GR& gr, const Map& map, const Comp& comp) {
3945 3945
    return map[mapMax(gr, map, comp)];
3946 3946
  }
3947 3947

	
3948 3948
  /// \brief Return an item having a specified value in a graph map.
3949 3949
  ///
3950 3950
  /// This function returns an item (\c Node, \c Arc or \c Edge) having
3951 3951
  /// the specified assigned value in the given graph map.
3952 3952
  /// If no such item exists, it returns \c INVALID.
3953 3953
  ///
3954 3954
  /// \param gr The graph for which the map is defined.
3955 3955
  /// \param map The graph map.
3956 3956
  /// \param val The value that have to be found.
3957 3957
  template <typename GR, typename Map>
3958 3958
  typename Map::Key
3959 3959
  mapFind(const GR& gr, const Map& map, const typename Map::Value& val) {
3960 3960
    typedef typename Map::Key Item;
3961 3961
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
3962 3962

	
3963 3963
    for (ItemIt it(gr); it != INVALID; ++it) {
3964 3964
      if (map[it] == val) return it;
3965 3965
    }
3966 3966
    return INVALID;
3967 3967
  }
3968 3968

	
3969 3969
  /// \brief Return an item having value for which a certain predicate is
3970 3970
  /// true in a graph map.
3971 3971
  ///
3972 3972
  /// This function returns an item (\c Node, \c Arc or \c Edge) having
3973 3973
  /// such assigned value for which the specified predicate is true
3974 3974
  /// in the given graph map.
3975 3975
  /// If no such item exists, it returns \c INVALID.
3976 3976
  ///
3977 3977
  /// \param gr The graph for which the map is defined.
3978 3978
  /// \param map The graph map.
3979 3979
  /// \param pred The predicate function object.
3980 3980
  template <typename GR, typename Map, typename Pred>
3981 3981
  typename Map::Key
3982 3982
  mapFindIf(const GR& gr, const Map& map, const Pred& pred) {
3983 3983
    typedef typename Map::Key Item;
3984 3984
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
3985 3985

	
3986 3986
    for (ItemIt it(gr); it != INVALID; ++it) {
3987 3987
      if (pred(map[it])) return it;
3988 3988
    }
3989 3989
    return INVALID;
3990 3990
  }
3991 3991

	
3992 3992
  /// \brief Return the number of items having a specified value in a
3993 3993
  /// graph map.
3994 3994
  ///
3995 3995
  /// This function returns the number of items (\c Node, \c Arc or \c Edge)
3996 3996
  /// having the specified assigned value in the given graph map.
3997 3997
  ///
3998 3998
  /// \param gr The graph for which the map is defined.
3999 3999
  /// \param map The graph map.
4000 4000
  /// \param val The value that have to be counted.
4001 4001
  template <typename GR, typename Map>
4002 4002
  int mapCount(const GR& gr, const Map& map, const typename Map::Value& val) {
4003 4003
    typedef typename Map::Key Item;
4004 4004
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
4005 4005

	
4006 4006
    int cnt = 0;
4007 4007
    for (ItemIt it(gr); it != INVALID; ++it) {
4008 4008
      if (map[it] == val) ++cnt;
4009 4009
    }
4010 4010
    return cnt;
4011 4011
  }
4012 4012

	
4013 4013
  /// \brief Return the number of items having values for which a certain
4014 4014
  /// predicate is true in a graph map.
4015 4015
  ///
4016 4016
  /// This function returns the number of items (\c Node, \c Arc or \c Edge)
4017 4017
  /// having such assigned values for which the specified predicate is true
4018 4018
  /// in the given graph map.
4019 4019
  ///
4020 4020
  /// \param gr The graph for which the map is defined.
4021 4021
  /// \param map The graph map.
4022 4022
  /// \param pred The predicate function object.
4023 4023
  template <typename GR, typename Map, typename Pred>
4024 4024
  int mapCountIf(const GR& gr, const Map& map, const Pred& pred) {
4025 4025
    typedef typename Map::Key Item;
4026 4026
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
4027 4027

	
4028 4028
    int cnt = 0;
4029 4029
    for (ItemIt it(gr); it != INVALID; ++it) {
4030 4030
      if (pred(map[it])) ++cnt;
4031 4031
    }
4032 4032
    return cnt;
4033 4033
  }
4034 4034

	
4035 4035
  /// \brief Fill a graph map with a certain value.
4036 4036
  ///
4037 4037
  /// This function sets the specified value for all items (\c Node,
4038 4038
  /// \c Arc or \c Edge) in the given graph map.
4039 4039
  ///
4040 4040
  /// \param gr The graph for which the map is defined.
4041 4041
  /// \param map The graph map. It must conform to the
4042 4042
  /// \ref concepts::WriteMap "WriteMap" concept.
4043 4043
  /// \param val The value.
4044 4044
  template <typename GR, typename Map>
4045 4045
  void mapFill(const GR& gr, Map& map, const typename Map::Value& val) {
4046 4046
    typedef typename Map::Key Item;
4047 4047
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
4048 4048

	
4049 4049
    for (ItemIt it(gr); it != INVALID; ++it) {
4050 4050
      map.set(it, val);
4051 4051
    }
4052 4052
  }
4053 4053

	
4054 4054
  /// @}
4055 4055
}
4056 4056

	
4057 4057
#endif // LEMON_MAPS_H
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <deque>
20 20
#include <set>
21 21

	
22 22
#include <lemon/concept_check.h>
23 23
#include <lemon/concepts/maps.h>
24 24
#include <lemon/maps.h>
25 25
#include <lemon/list_graph.h>
26 26
#include <lemon/smart_graph.h>
27 27
#include <lemon/adaptors.h>
28 28
#include <lemon/dfs.h>
29 29
#include <algorithm>
30 30

	
31 31
#include "test_tools.h"
32 32

	
33 33
using namespace lemon;
34 34
using namespace lemon::concepts;
35 35

	
36 36
struct A {};
37 37
inline bool operator<(A, A) { return true; }
38 38
struct B {};
39 39

	
40 40
class C {
41 41
  int _x;
42 42
public:
43 43
  C(int x) : _x(x) {}
44 44
  int get() const { return _x; }
45 45
};
46 46
inline bool operator<(C c1, C c2) { return c1.get() < c2.get(); }
47 47
inline bool operator==(C c1, C c2) { return c1.get() == c2.get(); }
48 48

	
49 49
C createC(int x) { return C(x); }
50 50

	
51 51
template <typename T>
52 52
class Less {
53 53
  T _t;
54 54
public:
55 55
  Less(T t): _t(t) {}
56 56
  bool operator()(const T& t) const { return t < _t; }
57 57
};
58 58

	
59 59
class F {
60 60
public:
61 61
  typedef A argument_type;
62 62
  typedef B result_type;
63 63

	
64 64
  B operator()(const A&) const { return B(); }
65 65
private:
66 66
  F& operator=(const F&);
67 67
};
68 68

	
69 69
int func(A) { return 3; }
70 70

	
71 71
int binc(int a, B) { return a+1; }
72 72

	
73 73
template <typename T>
74 74
class Sum {
75 75
  T& _sum;
76 76
public:
77 77
  Sum(T& sum) : _sum(sum) {}
78 78
  void operator()(const T& t) { _sum += t; }
79 79
};
80 80

	
81 81
typedef ReadMap<A, double> DoubleMap;
82 82
typedef ReadWriteMap<A, double> DoubleWriteMap;
83 83
typedef ReferenceMap<A, double, double&, const double&> DoubleRefMap;
84 84

	
85 85
typedef ReadMap<A, bool> BoolMap;
86 86
typedef ReadWriteMap<A, bool> BoolWriteMap;
87 87
typedef ReferenceMap<A, bool, bool&, const bool&> BoolRefMap;
88 88

	
89 89
int main()
90 90
{
91 91
  // Map concepts
92 92
  checkConcept<ReadMap<A,B>, ReadMap<A,B> >();
93 93
  checkConcept<ReadMap<A,C>, ReadMap<A,C> >();
94 94
  checkConcept<WriteMap<A,B>, WriteMap<A,B> >();
95 95
  checkConcept<WriteMap<A,C>, WriteMap<A,C> >();
96 96
  checkConcept<ReadWriteMap<A,B>, ReadWriteMap<A,B> >();
97 97
  checkConcept<ReadWriteMap<A,C>, ReadWriteMap<A,C> >();
98 98
  checkConcept<ReferenceMap<A,B,B&,const B&>, ReferenceMap<A,B,B&,const B&> >();
99 99
  checkConcept<ReferenceMap<A,C,C&,const C&>, ReferenceMap<A,C,C&,const C&> >();
100 100

	
101 101
  // NullMap
102 102
  {
103 103
    checkConcept<ReadWriteMap<A,B>, NullMap<A,B> >();
104 104
    NullMap<A,B> map1;
105 105
    NullMap<A,B> map2 = map1;
106 106
    map1 = nullMap<A,B>();
107 107
  }
108 108

	
109 109
  // ConstMap
110 110
  {
111 111
    checkConcept<ReadWriteMap<A,B>, ConstMap<A,B> >();
112 112
    checkConcept<ReadWriteMap<A,C>, ConstMap<A,C> >();
113 113
    ConstMap<A,B> map1;
114 114
    ConstMap<A,B> map2 = B();
115 115
    ConstMap<A,B> map3 = map1;
116 116
    map1 = constMap<A>(B());
117 117
    map1 = constMap<A,B>();
118 118
    map1.setAll(B());
119 119
    ConstMap<A,C> map4(C(1));
120 120
    ConstMap<A,C> map5 = map4;
121 121
    map4 = constMap<A>(C(2));
122 122
    map4.setAll(C(3));
123 123

	
124 124
    checkConcept<ReadWriteMap<A,int>, ConstMap<A,int> >();
125 125
    check(constMap<A>(10)[A()] == 10, "Something is wrong with ConstMap");
126 126

	
127 127
    checkConcept<ReadWriteMap<A,int>, ConstMap<A,Const<int,10> > >();
128 128
    ConstMap<A,Const<int,10> > map6;
129 129
    ConstMap<A,Const<int,10> > map7 = map6;
130 130
    map6 = constMap<A,int,10>();
131 131
    map7 = constMap<A,Const<int,10> >();
132 132
    check(map6[A()] == 10 && map7[A()] == 10,
133 133
          "Something is wrong with ConstMap");
134 134
  }
135 135

	
136 136
  // IdentityMap
137 137
  {
138 138
    checkConcept<ReadMap<A,A>, IdentityMap<A> >();
139 139
    IdentityMap<A> map1;
140 140
    IdentityMap<A> map2 = map1;
141 141
    map1 = identityMap<A>();
142 142

	
143 143
    checkConcept<ReadMap<double,double>, IdentityMap<double> >();
144 144
    check(identityMap<double>()[1.0] == 1.0 &&
145 145
          identityMap<double>()[3.14] == 3.14,
146 146
          "Something is wrong with IdentityMap");
147 147
  }
148 148

	
149 149
  // RangeMap
150 150
  {
151 151
    checkConcept<ReferenceMap<int,B,B&,const B&>, RangeMap<B> >();
152 152
    RangeMap<B> map1;
153 153
    RangeMap<B> map2(10);
154 154
    RangeMap<B> map3(10,B());
155 155
    RangeMap<B> map4 = map1;
156 156
    RangeMap<B> map5 = rangeMap<B>();
157 157
    RangeMap<B> map6 = rangeMap<B>(10);
158 158
    RangeMap<B> map7 = rangeMap(10,B());
159 159

	
160 160
    checkConcept< ReferenceMap<int, double, double&, const double&>,
161 161
                  RangeMap<double> >();
162 162
    std::vector<double> v(10, 0);
163 163
    v[5] = 100;
164 164
    RangeMap<double> map8(v);
165 165
    RangeMap<double> map9 = rangeMap(v);
166 166
    check(map9.size() == 10 && map9[2] == 0 && map9[5] == 100,
167 167
          "Something is wrong with RangeMap");
168 168
  }
169 169

	
170 170
  // SparseMap
171 171
  {
172 172
    checkConcept<ReferenceMap<A,B,B&,const B&>, SparseMap<A,B> >();
173 173
    SparseMap<A,B> map1;
174 174
    SparseMap<A,B> map2 = B();
175 175
    SparseMap<A,B> map3 = sparseMap<A,B>();
176 176
    SparseMap<A,B> map4 = sparseMap<A>(B());
177 177

	
178 178
    checkConcept< ReferenceMap<double, int, int&, const int&>,
179 179
                  SparseMap<double, int> >();
180 180
    std::map<double, int> m;
181 181
    SparseMap<double, int> map5(m);
182 182
    SparseMap<double, int> map6(m,10);
183 183
    SparseMap<double, int> map7 = sparseMap(m);
184 184
    SparseMap<double, int> map8 = sparseMap(m,10);
185 185

	
186 186
    check(map5[1.0] == 0 && map5[3.14] == 0 &&
187 187
          map6[1.0] == 10 && map6[3.14] == 10,
188 188
          "Something is wrong with SparseMap");
189 189
    map5[1.0] = map6[3.14] = 100;
190 190
    check(map5[1.0] == 100 && map5[3.14] == 0 &&
191 191
          map6[1.0] == 10 && map6[3.14] == 100,
192 192
          "Something is wrong with SparseMap");
193 193
  }
194 194

	
195 195
  // ComposeMap
196 196
  {
197 197
    typedef ComposeMap<DoubleMap, ReadMap<B,A> > CompMap;
198 198
    checkConcept<ReadMap<B,double>, CompMap>();
199 199
    CompMap map1 = CompMap(DoubleMap(),ReadMap<B,A>());
200 200
    CompMap map2 = composeMap(DoubleMap(), ReadMap<B,A>());
201 201

	
202 202
    SparseMap<double, bool> m1(false); m1[3.14] = true;
203 203
    RangeMap<double> m2(2); m2[0] = 3.0; m2[1] = 3.14;
204 204
    check(!composeMap(m1,m2)[0] && composeMap(m1,m2)[1],
205 205
          "Something is wrong with ComposeMap")
206 206
  }
207 207

	
208 208
  // CombineMap
209 209
  {
210 210
    typedef CombineMap<DoubleMap, DoubleMap, std::plus<double> > CombMap;
211 211
    checkConcept<ReadMap<A,double>, CombMap>();
212 212
    CombMap map1 = CombMap(DoubleMap(), DoubleMap());
213 213
    CombMap map2 = combineMap(DoubleMap(), DoubleMap(), std::plus<double>());
214 214

	
215 215
    check(combineMap(constMap<B,int,2>(), identityMap<B>(), &binc)[B()] == 3,
216 216
          "Something is wrong with CombineMap");
217 217
  }
218 218

	
219 219
  // FunctorToMap, MapToFunctor
220 220
  {
221 221
    checkConcept<ReadMap<A,B>, FunctorToMap<F,A,B> >();
222 222
    checkConcept<ReadMap<A,B>, FunctorToMap<F> >();
223 223
    FunctorToMap<F> map1;
224 224
    FunctorToMap<F> map2 = FunctorToMap<F>(F());
225 225
    B b = functorToMap(F())[A()];
226 226

	
227 227
    checkConcept<ReadMap<A,B>, MapToFunctor<ReadMap<A,B> > >();
228 228
    MapToFunctor<ReadMap<A,B> > map =
229 229
      MapToFunctor<ReadMap<A,B> >(ReadMap<A,B>());
230 230

	
231 231
    check(functorToMap(&func)[A()] == 3,
232 232
          "Something is wrong with FunctorToMap");
233 233
    check(mapToFunctor(constMap<A,int>(2))(A()) == 2,
234 234
          "Something is wrong with MapToFunctor");
235 235
    check(mapToFunctor(functorToMap(&func))(A()) == 3 &&
236 236
          mapToFunctor(functorToMap(&func))[A()] == 3,
237 237
          "Something is wrong with FunctorToMap or MapToFunctor");
238 238
    check(functorToMap(mapToFunctor(constMap<A,int>(2)))[A()] == 2,
239 239
          "Something is wrong with FunctorToMap or MapToFunctor");
240 240
  }
241 241

	
242 242
  // ConvertMap
243 243
  {
244 244
    checkConcept<ReadMap<double,double>,
245 245
      ConvertMap<ReadMap<double, int>, double> >();
246 246
    ConvertMap<RangeMap<bool>, int> map1(rangeMap(1, true));
247 247
    ConvertMap<RangeMap<bool>, int> map2 = convertMap<int>(rangeMap(2, false));
248 248
  }
249 249

	
250 250
  // ForkMap
251 251
  {
252 252
    checkConcept<DoubleWriteMap, ForkMap<DoubleWriteMap, DoubleWriteMap> >();
253 253

	
254 254
    typedef RangeMap<double> RM;
255 255
    typedef SparseMap<int, double> SM;
256 256
    RM m1(10, -1);
257 257
    SM m2(-1);
258 258
    checkConcept<ReadWriteMap<int, double>, ForkMap<RM, SM> >();
259 259
    checkConcept<ReadWriteMap<int, double>, ForkMap<SM, RM> >();
260 260
    ForkMap<RM, SM> map1(m1,m2);
261 261
    ForkMap<SM, RM> map2 = forkMap(m2,m1);
262 262
    map2.set(5, 10);
263 263
    check(m1[1] == -1 && m1[5] == 10 && m2[1] == -1 &&
264 264
          m2[5] == 10 && map2[1] == -1 && map2[5] == 10,
265 265
          "Something is wrong with ForkMap");
266 266
  }
267 267

	
268 268
  // Arithmetic maps:
269 269
  // - AddMap, SubMap, MulMap, DivMap
270 270
  // - ShiftMap, ShiftWriteMap, ScaleMap, ScaleWriteMap
271 271
  // - NegMap, NegWriteMap, AbsMap
272 272
  {
273 273
    checkConcept<DoubleMap, AddMap<DoubleMap,DoubleMap> >();
274 274
    checkConcept<DoubleMap, SubMap<DoubleMap,DoubleMap> >();
275 275
    checkConcept<DoubleMap, MulMap<DoubleMap,DoubleMap> >();
276 276
    checkConcept<DoubleMap, DivMap<DoubleMap,DoubleMap> >();
277 277

	
278 278
    ConstMap<int, double> c1(1.0), c2(3.14);
279 279
    IdentityMap<int> im;
280 280
    ConvertMap<IdentityMap<int>, double> id(im);
281 281
    check(addMap(c1,id)[0] == 1.0  && addMap(c1,id)[10] == 11.0,
282 282
          "Something is wrong with AddMap");
283 283
    check(subMap(id,c1)[0] == -1.0 && subMap(id,c1)[10] == 9.0,
284 284
          "Something is wrong with SubMap");
285 285
    check(mulMap(id,c2)[0] == 0    && mulMap(id,c2)[2]  == 6.28,
286 286
          "Something is wrong with MulMap");
287 287
    check(divMap(c2,id)[1] == 3.14 && divMap(c2,id)[2]  == 1.57,
288 288
          "Something is wrong with DivMap");
289 289

	
290 290
    checkConcept<DoubleMap, ShiftMap<DoubleMap> >();
291 291
    checkConcept<DoubleWriteMap, ShiftWriteMap<DoubleWriteMap> >();
292 292
    checkConcept<DoubleMap, ScaleMap<DoubleMap> >();
293 293
    checkConcept<DoubleWriteMap, ScaleWriteMap<DoubleWriteMap> >();
294 294
    checkConcept<DoubleMap, NegMap<DoubleMap> >();
295 295
    checkConcept<DoubleWriteMap, NegWriteMap<DoubleWriteMap> >();
296 296
    checkConcept<DoubleMap, AbsMap<DoubleMap> >();
297 297

	
298 298
    check(shiftMap(id, 2.0)[1] == 3.0 && shiftMap(id, 2.0)[10] == 12.0,
299 299
          "Something is wrong with ShiftMap");
300 300
    check(shiftWriteMap(id, 2.0)[1] == 3.0 &&
301 301
          shiftWriteMap(id, 2.0)[10] == 12.0,
302 302
          "Something is wrong with ShiftWriteMap");
303 303
    check(scaleMap(id, 2.0)[1] == 2.0 && scaleMap(id, 2.0)[10] == 20.0,
304 304
          "Something is wrong with ScaleMap");
305 305
    check(scaleWriteMap(id, 2.0)[1] == 2.0 &&
306 306
          scaleWriteMap(id, 2.0)[10] == 20.0,
307 307
          "Something is wrong with ScaleWriteMap");
308 308
    check(negMap(id)[1] == -1.0 && negMap(id)[-10] == 10.0,
309 309
          "Something is wrong with NegMap");
310 310
    check(negWriteMap(id)[1] == -1.0 && negWriteMap(id)[-10] == 10.0,
311 311
          "Something is wrong with NegWriteMap");
312 312
    check(absMap(id)[1] == 1.0 && absMap(id)[-10] == 10.0,
313 313
          "Something is wrong with AbsMap");
314 314
  }
315 315

	
316 316
  // Logical maps:
317 317
  // - TrueMap, FalseMap
318 318
  // - AndMap, OrMap
319 319
  // - NotMap, NotWriteMap
320 320
  // - EqualMap, LessMap
321 321
  {
322 322
    checkConcept<BoolMap, TrueMap<A> >();
323 323
    checkConcept<BoolMap, FalseMap<A> >();
324 324
    checkConcept<BoolMap, AndMap<BoolMap,BoolMap> >();
325 325
    checkConcept<BoolMap, OrMap<BoolMap,BoolMap> >();
326 326
    checkConcept<BoolMap, NotMap<BoolMap> >();
327 327
    checkConcept<BoolWriteMap, NotWriteMap<BoolWriteMap> >();
328 328
    checkConcept<BoolMap, EqualMap<DoubleMap,DoubleMap> >();
329 329
    checkConcept<BoolMap, LessMap<DoubleMap,DoubleMap> >();
330 330

	
331 331
    TrueMap<int> tm;
332 332
    FalseMap<int> fm;
333 333
    RangeMap<bool> rm(2);
334 334
    rm[0] = true; rm[1] = false;
335 335
    check(andMap(tm,rm)[0] && !andMap(tm,rm)[1] &&
336 336
          !andMap(fm,rm)[0] && !andMap(fm,rm)[1],
337 337
          "Something is wrong with AndMap");
338 338
    check(orMap(tm,rm)[0] && orMap(tm,rm)[1] &&
339 339
          orMap(fm,rm)[0] && !orMap(fm,rm)[1],
340 340
          "Something is wrong with OrMap");
341 341
    check(!notMap(rm)[0] && notMap(rm)[1],
342 342
          "Something is wrong with NotMap");
343 343
    check(!notWriteMap(rm)[0] && notWriteMap(rm)[1],
344 344
          "Something is wrong with NotWriteMap");
345 345

	
346 346
    ConstMap<int, double> cm(2.0);
347 347
    IdentityMap<int> im;
348 348
    ConvertMap<IdentityMap<int>, double> id(im);
349 349
    check(lessMap(id,cm)[1] && !lessMap(id,cm)[2] && !lessMap(id,cm)[3],
350 350
          "Something is wrong with LessMap");
351 351
    check(!equalMap(id,cm)[1] && equalMap(id,cm)[2] && !equalMap(id,cm)[3],
352 352
          "Something is wrong with EqualMap");
353 353
  }
354 354

	
355 355
  // LoggerBoolMap
356 356
  {
357 357
    typedef std::vector<int> vec;
358 358
    checkConcept<WriteMap<int, bool>, LoggerBoolMap<vec::iterator> >();
359 359
    checkConcept<WriteMap<int, bool>,
360 360
                 LoggerBoolMap<std::back_insert_iterator<vec> > >();
361 361

	
362 362
    vec v1;
363 363
    vec v2(10);
364 364
    LoggerBoolMap<std::back_insert_iterator<vec> >
365 365
      map1(std::back_inserter(v1));
366 366
    LoggerBoolMap<vec::iterator> map2(v2.begin());
367 367
    map1.set(10, false);
368 368
    map1.set(20, true);   map2.set(20, true);
369 369
    map1.set(30, false);  map2.set(40, false);
370 370
    map1.set(50, true);   map2.set(50, true);
371 371
    map1.set(60, true);   map2.set(60, true);
372 372
    check(v1.size() == 3 && v2.size() == 10 &&
373 373
          v1[0]==20 && v1[1]==50 && v1[2]==60 &&
374 374
          v2[0]==20 && v2[1]==50 && v2[2]==60,
375 375
          "Something is wrong with LoggerBoolMap");
376 376

	
377 377
    int i = 0;
378 378
    for ( LoggerBoolMap<vec::iterator>::Iterator it = map2.begin();
379 379
          it != map2.end(); ++it )
380 380
      check(v1[i++] == *it, "Something is wrong with LoggerBoolMap");
381 381

	
382 382
    typedef ListDigraph Graph;
383 383
    DIGRAPH_TYPEDEFS(Graph);
384 384
    Graph gr;
385 385

	
386 386
    Node n0 = gr.addNode();
387 387
    Node n1 = gr.addNode();
388 388
    Node n2 = gr.addNode();
389 389
    Node n3 = gr.addNode();
390 390

	
391 391
    gr.addArc(n3, n0);
392 392
    gr.addArc(n3, n2);
393 393
    gr.addArc(n0, n2);
394 394
    gr.addArc(n2, n1);
395 395
    gr.addArc(n0, n1);
396 396

	
397 397
    {
398 398
      std::vector<Node> v;
399 399
      dfs(gr).processedMap(loggerBoolMap(std::back_inserter(v))).run();
400 400

	
401 401
      check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3,
402 402
            "Something is wrong with LoggerBoolMap");
403 403
    }
404 404
    {
405 405
      std::vector<Node> v(countNodes(gr));
406 406
      dfs(gr).processedMap(loggerBoolMap(v.begin())).run();
407 407

	
408 408
      check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3,
409 409
            "Something is wrong with LoggerBoolMap");
410 410
    }
411 411
  }
412 412

	
413 413
  // IdMap, RangeIdMap
414 414
  {
415 415
    typedef ListDigraph Graph;
416 416
    DIGRAPH_TYPEDEFS(Graph);
417 417

	
418 418
    checkConcept<ReadMap<Node, int>, IdMap<Graph, Node> >();
419 419
    checkConcept<ReadMap<Arc, int>, IdMap<Graph, Arc> >();
420 420
    checkConcept<ReadMap<Node, int>, RangeIdMap<Graph, Node> >();
421 421
    checkConcept<ReadMap<Arc, int>, RangeIdMap<Graph, Arc> >();
422 422

	
423 423
    Graph gr;
424 424
    IdMap<Graph, Node> nmap(gr);
425 425
    IdMap<Graph, Arc> amap(gr);
426 426
    RangeIdMap<Graph, Node> nrmap(gr);
427 427
    RangeIdMap<Graph, Arc> armap(gr);
428 428

	
429 429
    Node n0 = gr.addNode();
430 430
    Node n1 = gr.addNode();
431 431
    Node n2 = gr.addNode();
432 432

	
433 433
    Arc a0 = gr.addArc(n0, n1);
434 434
    Arc a1 = gr.addArc(n0, n2);
435 435
    Arc a2 = gr.addArc(n2, n1);
436 436
    Arc a3 = gr.addArc(n2, n0);
437 437

	
438 438
    check(nmap[n0] == gr.id(n0) && nmap(gr.id(n0)) == n0, "Wrong IdMap");
439 439
    check(nmap[n1] == gr.id(n1) && nmap(gr.id(n1)) == n1, "Wrong IdMap");
440 440
    check(nmap[n2] == gr.id(n2) && nmap(gr.id(n2)) == n2, "Wrong IdMap");
441 441

	
442 442
    check(amap[a0] == gr.id(a0) && amap(gr.id(a0)) == a0, "Wrong IdMap");
443 443
    check(amap[a1] == gr.id(a1) && amap(gr.id(a1)) == a1, "Wrong IdMap");
444 444
    check(amap[a2] == gr.id(a2) && amap(gr.id(a2)) == a2, "Wrong IdMap");
445 445
    check(amap[a3] == gr.id(a3) && amap(gr.id(a3)) == a3, "Wrong IdMap");
446 446

	
447 447
    check(nmap.inverse()[gr.id(n0)] == n0, "Wrong IdMap::InverseMap");
448 448
    check(amap.inverse()[gr.id(a0)] == a0, "Wrong IdMap::InverseMap");
449 449

	
450 450
    check(nrmap.size() == 3 && armap.size() == 4,
451 451
          "Wrong RangeIdMap::size()");
452 452

	
453 453
    check(nrmap[n0] == 0 && nrmap(0) == n0, "Wrong RangeIdMap");
454 454
    check(nrmap[n1] == 1 && nrmap(1) == n1, "Wrong RangeIdMap");
455 455
    check(nrmap[n2] == 2 && nrmap(2) == n2, "Wrong RangeIdMap");
456 456

	
457 457
    check(armap[a0] == 0 && armap(0) == a0, "Wrong RangeIdMap");
458 458
    check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap");
459 459
    check(armap[a2] == 2 && armap(2) == a2, "Wrong RangeIdMap");
460 460
    check(armap[a3] == 3 && armap(3) == a3, "Wrong RangeIdMap");
461 461

	
462 462
    check(nrmap.inverse()[0] == n0, "Wrong RangeIdMap::InverseMap");
463 463
    check(armap.inverse()[0] == a0, "Wrong RangeIdMap::InverseMap");
464 464

	
465 465
    gr.erase(n1);
466 466

	
467 467
    if (nrmap[n0] == 1) nrmap.swap(n0, n2);
468 468
    nrmap.swap(n2, n0);
469 469
    if (armap[a1] == 1) armap.swap(a1, a3);
470 470
    armap.swap(a3, a1);
471 471

	
472 472
    check(nrmap.size() == 2 && armap.size() == 2,
473 473
          "Wrong RangeIdMap::size()");
474 474

	
475 475
    check(nrmap[n0] == 1 && nrmap(1) == n0, "Wrong RangeIdMap");
476 476
    check(nrmap[n2] == 0 && nrmap(0) == n2, "Wrong RangeIdMap");
477 477

	
478 478
    check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap");
479 479
    check(armap[a3] == 0 && armap(0) == a3, "Wrong RangeIdMap");
480 480

	
481 481
    check(nrmap.inverse()[0] == n2, "Wrong RangeIdMap::InverseMap");
482 482
    check(armap.inverse()[0] == a3, "Wrong RangeIdMap::InverseMap");
483 483
  }
484 484

	
485 485
  // SourceMap, TargetMap, ForwardMap, BackwardMap, InDegMap, OutDegMap
486 486
  {
487 487
    typedef ListGraph Graph;
488 488
    GRAPH_TYPEDEFS(Graph);
489 489

	
490 490
    checkConcept<ReadMap<Arc, Node>, SourceMap<Graph> >();
491 491
    checkConcept<ReadMap<Arc, Node>, TargetMap<Graph> >();
492 492
    checkConcept<ReadMap<Edge, Arc>, ForwardMap<Graph> >();
493 493
    checkConcept<ReadMap<Edge, Arc>, BackwardMap<Graph> >();
494 494
    checkConcept<ReadMap<Node, int>, InDegMap<Graph> >();
495 495
    checkConcept<ReadMap<Node, int>, OutDegMap<Graph> >();
496 496

	
497 497
    Graph gr;
498 498
    Node n0 = gr.addNode();
499 499
    Node n1 = gr.addNode();
500 500
    Node n2 = gr.addNode();
501 501

	
502 502
    gr.addEdge(n0,n1);
503 503
    gr.addEdge(n1,n2);
504 504
    gr.addEdge(n0,n2);
505 505
    gr.addEdge(n2,n1);
506 506
    gr.addEdge(n1,n2);
507 507
    gr.addEdge(n0,n1);
508 508

	
509 509
    for (EdgeIt e(gr); e != INVALID; ++e) {
510 510
      check(forwardMap(gr)[e] == gr.direct(e, true), "Wrong ForwardMap");
511 511
      check(backwardMap(gr)[e] == gr.direct(e, false), "Wrong BackwardMap");
512 512
    }
513 513

	
514 514
    check(mapCompare(gr,
515 515
          sourceMap(orienter(gr, constMap<Edge, bool>(true))),
516 516
          targetMap(orienter(gr, constMap<Edge, bool>(false)))),
517 517
          "Wrong SourceMap or TargetMap");
518 518

	
519 519
    typedef Orienter<Graph, const ConstMap<Edge, bool> > Digraph;
520 520
    Digraph dgr(gr, constMap<Edge, bool>(true));
521 521
    OutDegMap<Digraph> odm(dgr);
522 522
    InDegMap<Digraph> idm(dgr);
523 523

	
524 524
    check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 1, "Wrong OutDegMap");
525 525
    check(idm[n0] == 0 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap");
526 526

	
527 527
    gr.addEdge(n2, n0);
528 528

	
529 529
    check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 2, "Wrong OutDegMap");
530 530
    check(idm[n0] == 1 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap");
531 531
  }
532 532

	
533 533
  // CrossRefMap
534 534
  {
535 535
    typedef ListDigraph Graph;
536 536
    DIGRAPH_TYPEDEFS(Graph);
537 537

	
538 538
    checkConcept<ReadWriteMap<Node, int>,
539 539
                 CrossRefMap<Graph, Node, int> >();
540 540
    checkConcept<ReadWriteMap<Node, bool>,
541 541
                 CrossRefMap<Graph, Node, bool> >();
542 542
    checkConcept<ReadWriteMap<Node, double>,
543 543
                 CrossRefMap<Graph, Node, double> >();
544 544

	
545 545
    Graph gr;
546 546
    typedef CrossRefMap<Graph, Node, char> CRMap;
547 547
    CRMap map(gr);
548 548

	
549 549
    Node n0 = gr.addNode();
550 550
    Node n1 = gr.addNode();
551 551
    Node n2 = gr.addNode();
552 552

	
553 553
    map.set(n0, 'A');
554 554
    map.set(n1, 'B');
555 555
    map.set(n2, 'C');
556 556

	
557 557
    check(map[n0] == 'A' && map('A') == n0 && map.inverse()['A'] == n0,
558 558
          "Wrong CrossRefMap");
559 559
    check(map[n1] == 'B' && map('B') == n1 && map.inverse()['B'] == n1,
560 560
          "Wrong CrossRefMap");
561 561
    check(map[n2] == 'C' && map('C') == n2 && map.inverse()['C'] == n2,
562 562
          "Wrong CrossRefMap");
563 563
    check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1,
564 564
          "Wrong CrossRefMap::count()");
565 565

	
566 566
    CRMap::ValueIt it = map.beginValue();
567 567
    check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' &&
568 568
          it == map.endValue(), "Wrong value iterator");
569 569

	
570 570
    map.set(n2, 'A');
571 571

	
572 572
    check(map[n0] == 'A' && map[n1] == 'B' && map[n2] == 'A',
573 573
          "Wrong CrossRefMap");
574 574
    check(map('A') == n0 && map.inverse()['A'] == n0, "Wrong CrossRefMap");
575 575
    check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");
576 576
    check(map('C') == INVALID && map.inverse()['C'] == INVALID,
577 577
          "Wrong CrossRefMap");
578 578
    check(map.count('A') == 2 && map.count('B') == 1 && map.count('C') == 0,
579 579
          "Wrong CrossRefMap::count()");
580 580

	
581 581
    it = map.beginValue();
582 582
    check(*it++ == 'A' && *it++ == 'A' && *it++ == 'B' &&
583 583
          it == map.endValue(), "Wrong value iterator");
584 584

	
585 585
    map.set(n0, 'C');
586 586

	
587 587
    check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A',
588 588
          "Wrong CrossRefMap");
589 589
    check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap");
590 590
    check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");
591 591
    check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap");
592 592
    check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1,
593 593
          "Wrong CrossRefMap::count()");
594 594

	
595 595
    it = map.beginValue();
596 596
    check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' &&
597 597
          it == map.endValue(), "Wrong value iterator");
598 598
  }
599 599

	
600 600
  // CrossRefMap
601 601
  {
602 602
    typedef SmartDigraph Graph;
603 603
    DIGRAPH_TYPEDEFS(Graph);
604 604

	
605 605
    checkConcept<ReadWriteMap<Node, int>,
606 606
                 CrossRefMap<Graph, Node, int> >();
607 607

	
608 608
    Graph gr;
609 609
    typedef CrossRefMap<Graph, Node, char> CRMap;
610 610
    typedef CRMap::ValueIterator ValueIt;
611 611
    CRMap map(gr);
612 612

	
613 613
    Node n0 = gr.addNode();
614 614
    Node n1 = gr.addNode();
615 615
    Node n2 = gr.addNode();
616 616

	
617 617
    map.set(n0, 'A');
618 618
    map.set(n1, 'B');
619 619
    map.set(n2, 'C');
620 620
    map.set(n2, 'A');
621 621
    map.set(n0, 'C');
622 622

	
623 623
    check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A',
624 624
          "Wrong CrossRefMap");
625 625
    check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap");
626 626
    check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");
627 627
    check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap");
628 628

	
629 629
    ValueIt it = map.beginValue();
630 630
    check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' &&
631 631
          it == map.endValue(), "Wrong value iterator");
632 632
  }
633 633

	
634 634
  // Iterable bool map
635 635
  {
636 636
    typedef SmartGraph Graph;
637 637
    typedef SmartGraph::Node Item;
638 638

	
639 639
    typedef IterableBoolMap<SmartGraph, SmartGraph::Node> Ibm;
640 640
    checkConcept<ReferenceMap<Item, bool, bool&, const bool&>, Ibm>();
641 641

	
642 642
    const int num = 10;
643 643
    Graph g;
644
    Ibm map0(g, true);
644 645
    std::vector<Item> items;
645 646
    for (int i = 0; i < num; ++i) {
646 647
      items.push_back(g.addNode());
647 648
    }
648 649

	
649 650
    Ibm map1(g, true);
650 651
    int n = 0;
651 652
    for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
652 653
      check(map1[static_cast<Item>(it)], "Wrong TrueIt");
653 654
      ++n;
654 655
    }
655 656
    check(n == num, "Wrong number");
656 657

	
657 658
    n = 0;
658 659
    for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) {
659 660
        check(map1[static_cast<Item>(it)], "Wrong ItemIt for true");
660 661
        ++n;
661 662
    }
662 663
    check(n == num, "Wrong number");
663 664
    check(Ibm::FalseIt(map1) == INVALID, "Wrong FalseIt");
664 665
    check(Ibm::ItemIt(map1, false) == INVALID, "Wrong ItemIt for false");
665 666

	
666 667
    map1[items[5]] = true;
667 668

	
668 669
    n = 0;
669 670
    for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) {
670 671
        check(map1[static_cast<Item>(it)], "Wrong ItemIt for true");
671 672
        ++n;
672 673
    }
673 674
    check(n == num, "Wrong number");
674 675

	
675 676
    map1[items[num / 2]] = false;
676 677
    check(map1[items[num / 2]] == false, "Wrong map value");
677 678

	
678 679
    n = 0;
679 680
    for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
680 681
        check(map1[static_cast<Item>(it)], "Wrong TrueIt for true");
681 682
        ++n;
682 683
    }
683 684
    check(n == num - 1, "Wrong number");
684 685

	
685 686
    n = 0;
686 687
    for (Ibm::FalseIt it(map1); it != INVALID; ++it) {
687 688
        check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true");
688 689
        ++n;
689 690
    }
690 691
    check(n == 1, "Wrong number");
691 692

	
692 693
    map1[items[0]] = false;
693 694
    check(map1[items[0]] == false, "Wrong map value");
694 695

	
695 696
    map1[items[num - 1]] = false;
696 697
    check(map1[items[num - 1]] == false, "Wrong map value");
697 698

	
698 699
    n = 0;
699 700
    for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
700 701
        check(map1[static_cast<Item>(it)], "Wrong TrueIt for true");
701 702
        ++n;
702 703
    }
703 704
    check(n == num - 3, "Wrong number");
704 705
    check(map1.trueNum() == num - 3, "Wrong number");
705 706

	
706 707
    n = 0;
707 708
    for (Ibm::FalseIt it(map1); it != INVALID; ++it) {
708 709
        check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true");
709 710
        ++n;
710 711
    }
711 712
    check(n == 3, "Wrong number");
712 713
    check(map1.falseNum() == 3, "Wrong number");
713 714
  }
714 715

	
715 716
  // Iterable int map
716 717
  {
717 718
    typedef SmartGraph Graph;
718 719
    typedef SmartGraph::Node Item;
719 720
    typedef IterableIntMap<SmartGraph, SmartGraph::Node> Iim;
720 721

	
721 722
    checkConcept<ReferenceMap<Item, int, int&, const int&>, Iim>();
722 723

	
723 724
    const int num = 10;
724 725
    Graph g;
726
    Iim map0(g, 0);
725 727
    std::vector<Item> items;
726 728
    for (int i = 0; i < num; ++i) {
727 729
      items.push_back(g.addNode());
728 730
    }
729 731

	
730 732
    Iim map1(g);
731 733
    check(map1.size() == 0, "Wrong size");
732 734

	
733 735
    for (int i = 0; i < num; ++i) {
734 736
      map1[items[i]] = i;
735 737
    }
736 738
    check(map1.size() == num, "Wrong size");
737 739

	
738 740
    for (int i = 0; i < num; ++i) {
739 741
      Iim::ItemIt it(map1, i);
740 742
      check(static_cast<Item>(it) == items[i], "Wrong value");
741 743
      ++it;
742 744
      check(static_cast<Item>(it) == INVALID, "Wrong value");
743 745
    }
744 746

	
745 747
    for (int i = 0; i < num; ++i) {
746 748
      map1[items[i]] = i % 2;
747 749
    }
748 750
    check(map1.size() == 2, "Wrong size");
749 751

	
750 752
    int n = 0;
751 753
    for (Iim::ItemIt it(map1, 0); it != INVALID; ++it) {
752 754
      check(map1[static_cast<Item>(it)] == 0, "Wrong value");
753 755
      ++n;
754 756
    }
755 757
    check(n == (num + 1) / 2, "Wrong number");
756 758

	
757 759
    for (Iim::ItemIt it(map1, 1); it != INVALID; ++it) {
758 760
      check(map1[static_cast<Item>(it)] == 1, "Wrong value");
759 761
      ++n;
760 762
    }
761 763
    check(n == num, "Wrong number");
762 764

	
763 765
  }
764 766

	
765 767
  // Iterable value map
766 768
  {
767 769
    typedef SmartGraph Graph;
768 770
    typedef SmartGraph::Node Item;
769 771
    typedef IterableValueMap<SmartGraph, SmartGraph::Node, double> Ivm;
770 772

	
771 773
    checkConcept<ReadWriteMap<Item, double>, Ivm>();
772 774

	
773 775
    const int num = 10;
774 776
    Graph g;
777
    Ivm map0(g, 0.0);
775 778
    std::vector<Item> items;
776 779
    for (int i = 0; i < num; ++i) {
777 780
      items.push_back(g.addNode());
778 781
    }
779 782

	
780 783
    Ivm map1(g, 0.0);
781 784
    check(distance(map1.beginValue(), map1.endValue()) == 1, "Wrong size");
782 785
    check(*map1.beginValue() == 0.0, "Wrong value");
783 786

	
784 787
    for (int i = 0; i < num; ++i) {
785 788
      map1.set(items[i], static_cast<double>(i));
786 789
    }
787 790
    check(distance(map1.beginValue(), map1.endValue()) == num, "Wrong size");
788 791

	
789 792
    for (int i = 0; i < num; ++i) {
790 793
      Ivm::ItemIt it(map1, static_cast<double>(i));
791 794
      check(static_cast<Item>(it) == items[i], "Wrong value");
792 795
      ++it;
793 796
      check(static_cast<Item>(it) == INVALID, "Wrong value");
794 797
    }
795 798

	
796 799
    for (Ivm::ValueIt vit = map1.beginValue();
797 800
         vit != map1.endValue(); ++vit) {
798 801
      check(map1[static_cast<Item>(Ivm::ItemIt(map1, *vit))] == *vit,
799 802
            "Wrong ValueIt");
800 803
    }
801 804

	
802 805
    for (int i = 0; i < num; ++i) {
803 806
      map1.set(items[i], static_cast<double>(i % 2));
804 807
    }
805 808
    check(distance(map1.beginValue(), map1.endValue()) == 2, "Wrong size");
806 809

	
807 810
    int n = 0;
808 811
    for (Ivm::ItemIt it(map1, 0.0); it != INVALID; ++it) {
809 812
      check(map1[static_cast<Item>(it)] == 0.0, "Wrong value");
810 813
      ++n;
811 814
    }
812 815
    check(n == (num + 1) / 2, "Wrong number");
813 816

	
814 817
    for (Ivm::ItemIt it(map1, 1.0); it != INVALID; ++it) {
815 818
      check(map1[static_cast<Item>(it)] == 1.0, "Wrong value");
816 819
      ++n;
817 820
    }
818 821
    check(n == num, "Wrong number");
819 822

	
820 823
  }
821 824

	
822 825
  // Graph map utilities:
823 826
  // mapMin(), mapMax(), mapMinValue(), mapMaxValue()
824 827
  // mapFind(), mapFindIf(), mapCount(), mapCountIf()
825 828
  // mapCopy(), mapCompare(), mapFill()
826 829
  {
827 830
    DIGRAPH_TYPEDEFS(SmartDigraph);
828 831

	
829 832
    SmartDigraph g;
830 833
    Node n1 = g.addNode();
831 834
    Node n2 = g.addNode();
832 835
    Node n3 = g.addNode();
833 836

	
834 837
    SmartDigraph::NodeMap<int> map1(g);
835 838
    SmartDigraph::ArcMap<char> map2(g);
836 839
    ConstMap<Node, A> cmap1 = A();
837 840
    ConstMap<Arc, C> cmap2 = C(0);
838 841

	
839 842
    map1[n1] = 10;
840 843
    map1[n2] = 5;
841 844
    map1[n3] = 12;
842 845

	
843 846
    // mapMin(), mapMax(), mapMinValue(), mapMaxValue()
844 847
    check(mapMin(g, map1) == n2, "Wrong mapMin()");
845 848
    check(mapMax(g, map1) == n3, "Wrong mapMax()");
846 849
    check(mapMin(g, map1, std::greater<int>()) == n3, "Wrong mapMin()");
847 850
    check(mapMax(g, map1, std::greater<int>()) == n2, "Wrong mapMax()");
848 851
    check(mapMinValue(g, map1) == 5, "Wrong mapMinValue()");
849 852
    check(mapMaxValue(g, map1) == 12, "Wrong mapMaxValue()");
850 853

	
851 854
    check(mapMin(g, map2) == INVALID, "Wrong mapMin()");
852 855
    check(mapMax(g, map2) == INVALID, "Wrong mapMax()");
853 856

	
854 857
    check(mapMin(g, cmap1) != INVALID, "Wrong mapMin()");
855 858
    check(mapMax(g, cmap2) == INVALID, "Wrong mapMax()");
856 859

	
857 860
    Arc a1 = g.addArc(n1, n2);
858 861
    Arc a2 = g.addArc(n1, n3);
859 862
    Arc a3 = g.addArc(n2, n3);
860 863
    Arc a4 = g.addArc(n3, n1);
861 864

	
862 865
    map2[a1] = 'b';
863 866
    map2[a2] = 'a';
864 867
    map2[a3] = 'b';
865 868
    map2[a4] = 'c';
866 869

	
867 870
    // mapMin(), mapMax(), mapMinValue(), mapMaxValue()
868 871
    check(mapMin(g, map2) == a2, "Wrong mapMin()");
869 872
    check(mapMax(g, map2) == a4, "Wrong mapMax()");
870 873
    check(mapMin(g, map2, std::greater<int>()) == a4, "Wrong mapMin()");
871 874
    check(mapMax(g, map2, std::greater<int>()) == a2, "Wrong mapMax()");
872 875
    check(mapMinValue(g, map2, std::greater<int>()) == 'c',
873 876
          "Wrong mapMinValue()");
874 877
    check(mapMaxValue(g, map2, std::greater<int>()) == 'a',
875 878
          "Wrong mapMaxValue()");
876 879

	
877 880
    check(mapMin(g, cmap1) != INVALID, "Wrong mapMin()");
878 881
    check(mapMax(g, cmap2) != INVALID, "Wrong mapMax()");
879 882
    check(mapMaxValue(g, cmap2) == C(0), "Wrong mapMaxValue()");
880 883

	
881 884
    check(mapMin(g, composeMap(functorToMap(&createC), map2)) == a2,
882 885
          "Wrong mapMin()");
883 886
    check(mapMax(g, composeMap(functorToMap(&createC), map2)) == a4,
884 887
          "Wrong mapMax()");
885 888
    check(mapMinValue(g, composeMap(functorToMap(&createC), map2)) == C('a'),
886 889
          "Wrong mapMinValue()");
887 890
    check(mapMaxValue(g, composeMap(functorToMap(&createC), map2)) == C('c'),
888 891
          "Wrong mapMaxValue()");
889 892

	
890 893
    // mapFind(), mapFindIf()
891 894
    check(mapFind(g, map1, 5) == n2, "Wrong mapFind()");
892 895
    check(mapFind(g, map1, 6) == INVALID, "Wrong mapFind()");
893 896
    check(mapFind(g, map2, 'a') == a2, "Wrong mapFind()");
894 897
    check(mapFind(g, map2, 'e') == INVALID, "Wrong mapFind()");
895 898
    check(mapFind(g, cmap2, C(0)) == ArcIt(g), "Wrong mapFind()");
896 899
    check(mapFind(g, cmap2, C(1)) == INVALID, "Wrong mapFind()");
897 900

	
898 901
    check(mapFindIf(g, map1, Less<int>(7)) == n2,
899 902
          "Wrong mapFindIf()");
900 903
    check(mapFindIf(g, map1, Less<int>(5)) == INVALID,
901 904
          "Wrong mapFindIf()");
902 905
    check(mapFindIf(g, map2, Less<char>('d')) == ArcIt(g),
903 906
          "Wrong mapFindIf()");
904 907
    check(mapFindIf(g, map2, Less<char>('a')) == INVALID,
905 908
          "Wrong mapFindIf()");
906 909

	
907 910
    // mapCount(), mapCountIf()
908 911
    check(mapCount(g, map1, 5) == 1, "Wrong mapCount()");
909 912
    check(mapCount(g, map1, 6) == 0, "Wrong mapCount()");
910 913
    check(mapCount(g, map2, 'a') == 1, "Wrong mapCount()");
911 914
    check(mapCount(g, map2, 'b') == 2, "Wrong mapCount()");
912 915
    check(mapCount(g, map2, 'e') == 0, "Wrong mapCount()");
913 916
    check(mapCount(g, cmap2, C(0)) == 4, "Wrong mapCount()");
914 917
    check(mapCount(g, cmap2, C(1)) == 0, "Wrong mapCount()");
915 918

	
916 919
    check(mapCountIf(g, map1, Less<int>(11)) == 2,
917 920
          "Wrong mapCountIf()");
918 921
    check(mapCountIf(g, map1, Less<int>(13)) == 3,
919 922
          "Wrong mapCountIf()");
920 923
    check(mapCountIf(g, map1, Less<int>(5)) == 0,
921 924
          "Wrong mapCountIf()");
922 925
    check(mapCountIf(g, map2, Less<char>('d')) == 4,
923 926
          "Wrong mapCountIf()");
924 927
    check(mapCountIf(g, map2, Less<char>('c')) == 3,
925 928
          "Wrong mapCountIf()");
926 929
    check(mapCountIf(g, map2, Less<char>('a')) == 0,
927 930
          "Wrong mapCountIf()");
928 931

	
929 932
    // MapIt, ConstMapIt
930 933
/*
931 934
These tests can be used after applying bugfix #330
932 935
    typedef SmartDigraph::NodeMap<int>::MapIt MapIt;
933 936
    typedef SmartDigraph::NodeMap<int>::ConstMapIt ConstMapIt;
934 937
    check(*std::min_element(MapIt(map1), MapIt(INVALID)) == 5,
935 938
          "Wrong NodeMap<>::MapIt");
936 939
    check(*std::max_element(ConstMapIt(map1), ConstMapIt(INVALID)) == 12,
937 940
          "Wrong NodeMap<>::MapIt");
938 941

	
939 942
    int sum = 0;
940 943
    std::for_each(MapIt(map1), MapIt(INVALID), Sum<int>(sum));
941 944
    check(sum == 27, "Wrong NodeMap<>::MapIt");
942 945
    std::for_each(ConstMapIt(map1), ConstMapIt(INVALID), Sum<int>(sum));
943 946
    check(sum == 54, "Wrong NodeMap<>::ConstMapIt");
944 947
*/
945 948

	
946 949
    // mapCopy(), mapCompare(), mapFill()
947 950
    check(mapCompare(g, map1, map1), "Wrong mapCompare()");
948 951
    check(mapCompare(g, cmap2, cmap2), "Wrong mapCompare()");
949 952
    check(mapCompare(g, map1, shiftMap(map1, 0)), "Wrong mapCompare()");
950 953
    check(mapCompare(g, map2, scaleMap(map2, 1)), "Wrong mapCompare()");
951 954
    check(!mapCompare(g, map1, shiftMap(map1, 1)), "Wrong mapCompare()");
952 955

	
953 956
    SmartDigraph::NodeMap<int> map3(g, 0);
954 957
    SmartDigraph::ArcMap<char> map4(g, 'a');
955 958

	
956 959
    check(!mapCompare(g, map1, map3), "Wrong mapCompare()");
957 960
    check(!mapCompare(g, map2, map4), "Wrong mapCompare()");
958 961

	
959 962
    mapCopy(g, map1, map3);
960 963
    mapCopy(g, map2, map4);
961 964

	
962 965
    check(mapCompare(g, map1, map3), "Wrong mapCompare() or mapCopy()");
963 966
    check(mapCompare(g, map2, map4), "Wrong mapCompare() or mapCopy()");
964 967

	
965 968
    Undirector<SmartDigraph> ug(g);
966 969
    Undirector<SmartDigraph>::EdgeMap<char> umap1(ug, 'x');
967 970
    Undirector<SmartDigraph>::ArcMap<double> umap2(ug, 3.14);
968 971

	
969 972
    check(!mapCompare(g, map2, umap1), "Wrong mapCompare() or mapCopy()");
970 973
    check(!mapCompare(g, umap1, map2), "Wrong mapCompare() or mapCopy()");
971 974
    check(!mapCompare(ug, map2, umap1), "Wrong mapCompare() or mapCopy()");
972 975
    check(!mapCompare(ug, umap1, map2), "Wrong mapCompare() or mapCopy()");
973 976

	
974 977
    mapCopy(g, map2, umap1);
975 978

	
976 979
    check(mapCompare(g, map2, umap1), "Wrong mapCompare() or mapCopy()");
977 980
    check(mapCompare(g, umap1, map2), "Wrong mapCompare() or mapCopy()");
978 981
    check(mapCompare(ug, map2, umap1), "Wrong mapCompare() or mapCopy()");
979 982
    check(mapCompare(ug, umap1, map2), "Wrong mapCompare() or mapCopy()");
980 983

	
981 984
    mapCopy(g, map2, umap1);
982 985
    mapCopy(g, umap1, map2);
983 986
    mapCopy(ug, map2, umap1);
984 987
    mapCopy(ug, umap1, map2);
985 988

	
986 989
    check(!mapCompare(ug, umap1, umap2), "Wrong mapCompare() or mapCopy()");
987 990
    mapCopy(ug, umap1, umap2);
988 991
    check(mapCompare(ug, umap1, umap2), "Wrong mapCompare() or mapCopy()");
989 992

	
990 993
    check(!mapCompare(g, map1, constMap<Node>(2)), "Wrong mapCompare()");
991 994
    mapFill(g, map1, 2);
992 995
    check(mapCompare(g, constMap<Node>(2), map1), "Wrong mapFill()");
993 996

	
994 997
    check(!mapCompare(g, map2, constMap<Arc>('z')), "Wrong mapCompare()");
995 998
    mapCopy(g, constMap<Arc>('z'), map2);
996 999
    check(mapCompare(g, constMap<Arc>('z'), map2), "Wrong mapCopy()");
997 1000
  }
998 1001

	
999 1002
  return 0;
1000 1003
}
0 comments (0 inline)