0
2
0
303
223
... | ... |
@@ -43,10 +43,14 @@ |
43 | 43 |
/// \ingroup graph_properties |
44 | 44 |
/// |
45 |
/// \brief Check whether |
|
45 |
/// \brief Check whether an undirected graph is connected. |
|
46 | 46 |
/// |
47 |
/// Check whether the given undirected graph is connected. |
|
48 |
/// \param graph The undirected graph. |
|
49 |
/// |
|
47 |
/// This function checks whether the given undirected graph is connected, |
|
48 |
/// i.e. there is a path between any two nodes in the graph. |
|
49 |
/// |
|
50 |
/// \return \c true if the graph is connected. |
|
50 | 51 |
/// \note By definition, the empty graph is connected. |
52 |
/// |
|
53 |
/// \see countConnectedComponents(), connectedComponents() |
|
54 |
/// \see stronglyConnected() |
|
51 | 55 |
template <typename Graph> |
52 | 56 |
bool connected(const Graph& graph) { |
... | ... |
@@ -68,10 +72,16 @@ |
68 | 72 |
/// \brief Count the number of connected components of an undirected graph |
69 | 73 |
/// |
70 |
/// |
|
74 |
/// This function counts the number of connected components of the given |
|
75 |
/// undirected graph. |
|
71 | 76 |
/// |
72 |
/// \param graph The graph. It must be undirected. |
|
73 |
/// \return The number of components |
|
77 |
/// The connected components are the classes of an equivalence relation |
|
78 |
/// on the nodes of an undirected graph. Two nodes are in the same class |
|
79 |
/// if they are connected with a path. |
|
80 |
/// |
|
81 |
/// \return The number of connected components. |
|
74 | 82 |
/// \note By definition, the empty graph consists |
75 | 83 |
/// of zero connected components. |
84 |
/// |
|
85 |
/// \see connected(), connectedComponents() |
|
76 | 86 |
template <typename Graph> |
77 | 87 |
int countConnectedComponents(const Graph &graph) { |
... | ... |
@@ -110,15 +120,24 @@ |
110 | 120 |
/// \brief Find the connected components of an undirected graph |
111 | 121 |
/// |
112 |
/// |
|
122 |
/// This function finds the connected components of the given undirected |
|
123 |
/// graph. |
|
124 |
/// |
|
125 |
/// The connected components are the classes of an equivalence relation |
|
126 |
/// on the nodes of an undirected graph. Two nodes are in the same class |
|
127 |
/// if they are connected with a path. |
|
113 | 128 |
/// |
114 | 129 |
/// \image html connected_components.png |
115 | 130 |
/// \image latex connected_components.eps "Connected components" width=\textwidth |
116 | 131 |
/// |
117 |
/// \param graph The |
|
132 |
/// \param graph The undirected graph. |
|
118 | 133 |
/// \retval compMap A writable node map. The values will be set from 0 to |
119 |
/// the number of the connected components minus one. Each values of the map |
|
120 |
/// will be set exactly once, the values of a certain component will be |
|
134 |
/// the number of the connected components minus one. Each value of the map |
|
135 |
/// will be set exactly once, and the values of a certain component will be |
|
121 | 136 |
/// set continuously. |
122 |
/// \return The number of components |
|
137 |
/// \return The number of connected components. |
|
138 |
/// \note By definition, the empty graph consists |
|
139 |
/// of zero connected components. |
|
140 |
/// |
|
141 |
/// \see connected(), countConnectedComponents() |
|
123 | 142 |
template <class Graph, class NodeMap> |
124 | 143 |
int connectedComponents(const Graph &graph, NodeMap &compMap) { |
... | ... |
@@ -232,13 +251,15 @@ |
232 | 251 |
/// \ingroup graph_properties |
233 | 252 |
/// |
234 |
/// \brief Check whether |
|
253 |
/// \brief Check whether a directed graph is strongly connected. |
|
235 | 254 |
/// |
236 |
/// Check whether the given directed graph is strongly connected. The |
|
237 |
/// graph is strongly connected when any two nodes of the graph are |
|
255 |
/// This function checks whether the given directed graph is strongly |
|
256 |
/// connected, i.e. any two nodes of the digraph are |
|
238 | 257 |
/// connected with directed paths in both direction. |
239 |
/// \return \c false when the graph is not strongly connected. |
|
240 |
/// \see connected |
|
241 | 258 |
/// |
242 |
/// \ |
|
259 |
/// \return \c true if the digraph is strongly connected. |
|
260 |
/// \note By definition, the empty digraph is strongly connected. |
|
261 |
/// |
|
262 |
/// \see countStronglyConnectedComponents(), stronglyConnectedComponents() |
|
263 |
/// \see connected() |
|
243 | 264 |
template <typename Digraph> |
244 | 265 |
bool stronglyConnected(const Digraph& digraph) { |
... | ... |
@@ -271,5 +292,5 @@ |
271 | 292 |
RDigraph rdigraph(digraph); |
272 | 293 |
|
273 |
typedef DfsVisitor< |
|
294 |
typedef DfsVisitor<RDigraph> RVisitor; |
|
274 | 295 |
RVisitor rvisitor; |
275 | 296 |
|
... | ... |
@@ -290,16 +311,20 @@ |
290 | 311 |
/// \ingroup graph_properties |
291 | 312 |
/// |
292 |
/// \brief Count the strongly connected components of a |
|
313 |
/// \brief Count the number of strongly connected components of a |
|
314 |
/// directed graph |
|
293 | 315 |
/// |
294 |
/// |
|
316 |
/// This function counts the number of strongly connected components of |
|
317 |
/// the given directed graph. |
|
318 |
/// |
|
295 | 319 |
/// The strongly connected components are the classes of an |
296 |
/// equivalence relation on the nodes of |
|
320 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
297 | 321 |
/// the same class if they are connected with directed paths in both |
298 | 322 |
/// direction. |
299 | 323 |
/// |
300 |
/// \param digraph The graph. |
|
301 |
/// \return The number of components |
|
302 |
/// \ |
|
324 |
/// \return The number of strongly connected components. |
|
325 |
/// \note By definition, the empty digraph has zero |
|
303 | 326 |
/// strongly connected components. |
327 |
/// |
|
328 |
/// \see stronglyConnected(), stronglyConnectedComponents() |
|
304 | 329 |
template <typename Digraph> |
305 | 330 |
int countStronglyConnectedComponents(const Digraph& digraph) { |
... | ... |
@@ -356,11 +381,13 @@ |
356 | 381 |
/// \brief Find the strongly connected components of a directed graph |
357 | 382 |
/// |
358 |
/// Find the strongly connected components of a directed graph. The |
|
359 |
/// strongly connected components are the classes of an equivalence |
|
360 |
/// relation on the nodes of the graph. Two nodes are in |
|
361 |
/// relationship when there are directed paths between them in both |
|
362 |
/// direction. In addition, the numbering of components will satisfy |
|
363 |
/// that there is no arc going from a higher numbered component to |
|
364 |
/// |
|
383 |
/// This function finds the strongly connected components of the given |
|
384 |
/// directed graph. In addition, the numbering of the components will |
|
385 |
/// satisfy that there is no arc going from a higher numbered component |
|
386 |
/// to a lower one (i.e. it provides a topological order of the components). |
|
387 |
/// |
|
388 |
/// The strongly connected components are the classes of an |
|
389 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
390 |
/// the same class if they are connected with directed paths in both |
|
391 |
/// direction. |
|
365 | 392 |
/// |
366 | 393 |
/// \image html strongly_connected_components.png |
... | ... |
@@ -370,7 +397,11 @@ |
370 | 397 |
/// \retval compMap A writable node map. The values will be set from 0 to |
371 | 398 |
/// the number of the strongly connected components minus one. Each value |
372 |
/// of the map will be set exactly once, the values of a certain component |
|
373 |
/// will be set continuously. |
|
374 |
/// |
|
399 |
/// of the map will be set exactly once, and the values of a certain |
|
400 |
/// component will be set continuously. |
|
401 |
/// \return The number of strongly connected components. |
|
402 |
/// \note By definition, the empty digraph has zero |
|
403 |
/// strongly connected components. |
|
404 |
/// |
|
405 |
/// \see stronglyConnected(), countStronglyConnectedComponents() |
|
375 | 406 |
template <typename Digraph, typename NodeMap> |
376 | 407 |
int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) { |
... | ... |
@@ -425,17 +456,22 @@ |
425 | 456 |
/// \brief Find the cut arcs of the strongly connected components. |
426 | 457 |
/// |
427 |
/// Find the cut arcs of the strongly connected components. |
|
428 |
/// The strongly connected components are the classes of an equivalence |
|
429 |
/// relation on the nodes of the graph. Two nodes are in relationship |
|
430 |
/// when there are directed paths between them in both direction. |
|
458 |
/// This function finds the cut arcs of the strongly connected components |
|
459 |
/// of the given digraph. |
|
460 |
/// |
|
461 |
/// The strongly connected components are the classes of an |
|
462 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
463 |
/// the same class if they are connected with directed paths in both |
|
464 |
/// direction. |
|
431 | 465 |
/// The strongly connected components are separated by the cut arcs. |
432 | 466 |
/// |
433 |
/// \param graph The graph. |
|
434 |
/// \retval cutMap A writable node map. The values will be set true when the |
|
435 |
/// |
|
467 |
/// \param digraph The digraph. |
|
468 |
/// \retval cutMap A writable arc map. The values will be set to \c true |
|
469 |
/// for the cut arcs (exactly once for each cut arc), and will not be |
|
470 |
/// changed for other arcs. |
|
471 |
/// \return The number of cut arcs. |
|
436 | 472 |
/// |
437 |
/// \ |
|
473 |
/// \see stronglyConnected(), stronglyConnectedComponents() |
|
438 | 474 |
template <typename Digraph, typename ArcMap> |
439 |
int stronglyConnectedCutArcs(const Digraph& |
|
475 |
int stronglyConnectedCutArcs(const Digraph& digraph, ArcMap& cutMap) { |
|
440 | 476 |
checkConcept<concepts::Digraph, Digraph>(); |
441 | 477 |
typedef typename Digraph::Node Node; |
... | ... |
@@ -449,11 +485,11 @@ |
449 | 485 |
typedef typename Container::iterator Iterator; |
450 | 486 |
|
451 |
Container nodes(countNodes( |
|
487 |
Container nodes(countNodes(digraph)); |
|
452 | 488 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
453 | 489 |
Visitor visitor(nodes.begin()); |
454 | 490 |
|
455 |
DfsVisit<Digraph, Visitor> dfs( |
|
491 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
|
456 | 492 |
dfs.init(); |
457 |
for (NodeIt it( |
|
493 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
458 | 494 |
if (!dfs.reached(it)) { |
459 | 495 |
dfs.addSource(it); |
... | ... |
@@ -465,12 +501,12 @@ |
465 | 501 |
typedef ReverseDigraph<const Digraph> RDigraph; |
466 | 502 |
|
467 |
RDigraph |
|
503 |
RDigraph rdigraph(digraph); |
|
468 | 504 |
|
469 | 505 |
int cutNum = 0; |
470 | 506 |
|
471 | 507 |
typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor; |
472 |
RVisitor rvisitor( |
|
508 |
RVisitor rvisitor(rdigraph, cutMap, cutNum); |
|
473 | 509 |
|
474 |
DfsVisit<RDigraph, RVisitor> rdfs( |
|
510 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
|
475 | 511 |
|
476 | 512 |
rdfs.init(); |
... | ... |
@@ -707,12 +743,13 @@ |
707 | 743 |
/// \ingroup graph_properties |
708 | 744 |
/// |
709 |
/// \brief |
|
745 |
/// \brief Check whether an undirected graph is bi-node-connected. |
|
710 | 746 |
/// |
711 |
/// This function checks that the undirected graph is bi-node-connected |
|
712 |
/// graph. The graph is bi-node-connected if any two undirected edge is |
|
713 |
/// |
|
747 |
/// This function checks whether the given undirected graph is |
|
748 |
/// bi-node-connected, i.e. any two edges are on same circle. |
|
714 | 749 |
/// |
715 |
/// \param graph The graph. |
|
716 |
/// \return \c true when the graph bi-node-connected. |
|
750 |
/// \return \c true if the graph bi-node-connected. |
|
751 |
/// \note By definition, the empty graph is bi-node-connected. |
|
752 |
/// |
|
753 |
/// \see countBiNodeConnectedComponents(), biNodeConnectedComponents() |
|
717 | 754 |
template <typename Graph> |
718 | 755 |
bool biNodeConnected(const Graph& graph) { |
... | ... |
@@ -722,13 +759,17 @@ |
722 | 759 |
/// \ingroup graph_properties |
723 | 760 |
/// |
724 |
/// \brief Count the |
|
761 |
/// \brief Count the number of bi-node-connected components of an |
|
762 |
/// undirected graph. |
|
725 | 763 |
/// |
726 |
/// This function finds the bi-node-connected components in an undirected |
|
727 |
/// graph. The biconnected components are the classes of an equivalence |
|
728 |
/// relation on the undirected edges. Two undirected edge is in relationship |
|
729 |
/// when they are on same circle. |
|
764 |
/// This function counts the number of bi-node-connected components of |
|
765 |
/// the given undirected graph. |
|
730 | 766 |
/// |
731 |
/// \param graph The graph. |
|
732 |
/// \return The number of components. |
|
767 |
/// The bi-node-connected components are the classes of an equivalence |
|
768 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
769 |
/// same class if they are on same circle. |
|
770 |
/// |
|
771 |
/// \return The number of bi-node-connected components. |
|
772 |
/// |
|
773 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
|
733 | 774 |
template <typename Graph> |
734 | 775 |
int countBiNodeConnectedComponents(const Graph& graph) { |
... | ... |
@@ -757,20 +798,24 @@ |
757 | 798 |
/// \ingroup graph_properties |
758 | 799 |
/// |
759 |
/// \brief Find the bi-node-connected components. |
|
800 |
/// \brief Find the bi-node-connected components of an undirected graph. |
|
760 | 801 |
/// |
761 |
/// This function finds the bi-node-connected components in an undirected |
|
762 |
/// graph. The bi-node-connected components are the classes of an equivalence |
|
763 |
/// relation on the undirected edges. Two undirected edge are in relationship |
|
764 |
/// when they are on same circle. |
|
802 |
/// This function finds the bi-node-connected components of the given |
|
803 |
/// undirected graph. |
|
804 |
/// |
|
805 |
/// The bi-node-connected components are the classes of an equivalence |
|
806 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
807 |
/// same class if they are on same circle. |
|
765 | 808 |
/// |
766 | 809 |
/// \image html node_biconnected_components.png |
767 | 810 |
/// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth |
768 | 811 |
/// |
769 |
/// \param graph The graph. |
|
770 |
/// \retval compMap A writable uedge map. The values will be set from 0 |
|
771 |
/// to the number of the biconnected components minus one. Each values |
|
772 |
/// of the map will be set exactly once, the values of a certain component |
|
773 |
/// will be set continuously. |
|
774 |
/// \return The number of components. |
|
812 |
/// \param graph The undirected graph. |
|
813 |
/// \retval compMap A writable edge map. The values will be set from 0 |
|
814 |
/// to the number of the bi-node-connected components minus one. Each |
|
815 |
/// value of the map will be set exactly once, and the values of a |
|
816 |
/// certain component will be set continuously. |
|
817 |
/// \return The number of bi-node-connected components. |
|
818 |
/// |
|
819 |
/// \see biNodeConnected(), countBiNodeConnectedComponents() |
|
775 | 820 |
template <typename Graph, typename EdgeMap> |
776 | 821 |
int biNodeConnectedComponents(const Graph& graph, |
... | ... |
@@ -802,16 +847,23 @@ |
802 | 847 |
/// \ingroup graph_properties |
803 | 848 |
/// |
804 |
/// \brief Find the bi-node-connected cut nodes. |
|
849 |
/// \brief Find the bi-node-connected cut nodes in an undirected graph. |
|
805 | 850 |
/// |
806 |
/// This function finds the bi-node-connected cut nodes in an undirected |
|
807 |
/// graph. The bi-node-connected components are the classes of an equivalence |
|
808 |
/// relation on the undirected edges. Two undirected edges are in |
|
809 |
/// relationship when they are on same circle. The biconnected components |
|
810 |
/// |
|
851 |
/// This function finds the bi-node-connected cut nodes in the given |
|
852 |
/// undirected graph. |
|
811 | 853 |
/// |
812 |
/// \param graph The graph. |
|
813 |
/// \retval cutMap A writable edge map. The values will be set true when |
|
814 |
/// |
|
854 |
/// The bi-node-connected components are the classes of an equivalence |
|
855 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
856 |
/// same class if they are on same circle. |
|
857 |
/// The bi-node-connected components are separted by the cut nodes of |
|
858 |
/// the components. |
|
859 |
/// |
|
860 |
/// \param graph The undirected graph. |
|
861 |
/// \retval cutMap A writable node map. The values will be set to |
|
862 |
/// \c true for the nodes that separate two or more components |
|
863 |
/// (exactly once for each cut node), and will not be changed for |
|
864 |
/// other nodes. |
|
815 | 865 |
/// \return The number of the cut nodes. |
866 |
/// |
|
867 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
|
816 | 868 |
template <typename Graph, typename NodeMap> |
817 | 869 |
int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) { |
... | ... |
@@ -1032,12 +1084,14 @@ |
1032 | 1084 |
/// \ingroup graph_properties |
1033 | 1085 |
/// |
1034 |
/// \brief |
|
1086 |
/// \brief Check whether an undirected graph is bi-edge-connected. |
|
1035 | 1087 |
/// |
1036 |
/// This function checks that the graph is bi-edge-connected. The undirected |
|
1037 |
/// graph is bi-edge-connected when any two nodes are connected with two |
|
1038 |
/// |
|
1088 |
/// This function checks whether the given undirected graph is |
|
1089 |
/// bi-edge-connected, i.e. any two nodes are connected with at least |
|
1090 |
/// two edge-disjoint paths. |
|
1039 | 1091 |
/// |
1040 |
/// \param graph The undirected graph. |
|
1041 |
/// \return The number of components. |
|
1092 |
/// \return \c true if the graph is bi-edge-connected. |
|
1093 |
/// \note By definition, the empty graph is bi-edge-connected. |
|
1094 |
/// |
|
1095 |
/// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents() |
|
1042 | 1096 |
template <typename Graph> |
1043 | 1097 |
bool biEdgeConnected(const Graph& graph) { |
... | ... |
@@ -1047,13 +1101,18 @@ |
1047 | 1101 |
/// \ingroup graph_properties |
1048 | 1102 |
/// |
1049 |
/// \brief Count the bi-edge-connected components |
|
1103 |
/// \brief Count the number of bi-edge-connected components of an |
|
1104 |
/// undirected graph. |
|
1050 | 1105 |
/// |
1051 |
/// This function count the bi-edge-connected components in an undirected |
|
1052 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
1053 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
1054 |
/// connected with at least two edge-disjoint paths. |
|
1106 |
/// This function counts the number of bi-edge-connected components of |
|
1107 |
/// the given undirected graph. |
|
1055 | 1108 |
/// |
1056 |
/// \param graph The undirected graph. |
|
1057 |
/// \return The number of components. |
|
1109 |
/// The bi-edge-connected components are the classes of an equivalence |
|
1110 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
1111 |
/// same class if they are connected with at least two edge-disjoint |
|
1112 |
/// paths. |
|
1113 |
/// |
|
1114 |
/// \return The number of bi-edge-connected components. |
|
1115 |
/// |
|
1116 |
/// \see biEdgeConnected(), biEdgeConnectedComponents() |
|
1058 | 1117 |
template <typename Graph> |
1059 | 1118 |
int countBiEdgeConnectedComponents(const Graph& graph) { |
... | ... |
@@ -1082,20 +1141,25 @@ |
1082 | 1141 |
/// \ingroup graph_properties |
1083 | 1142 |
/// |
1084 |
/// \brief Find the bi-edge-connected components. |
|
1143 |
/// \brief Find the bi-edge-connected components of an undirected graph. |
|
1085 | 1144 |
/// |
1086 |
/// This function finds the bi-edge-connected components in an undirected |
|
1087 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
1088 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
1089 |
/// connected at least two edge-disjoint paths. |
|
1145 |
/// This function finds the bi-edge-connected components of the given |
|
1146 |
/// undirected graph. |
|
1147 |
/// |
|
1148 |
/// The bi-edge-connected components are the classes of an equivalence |
|
1149 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
1150 |
/// same class if they are connected with at least two edge-disjoint |
|
1151 |
/// paths. |
|
1090 | 1152 |
/// |
1091 | 1153 |
/// \image html edge_biconnected_components.png |
1092 | 1154 |
/// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
1093 | 1155 |
/// |
1094 |
/// \param graph The graph. |
|
1156 |
/// \param graph The undirected graph. |
|
1095 | 1157 |
/// \retval compMap A writable node map. The values will be set from 0 to |
1096 |
/// the number of the biconnected components minus one. Each values |
|
1097 |
/// of the map will be set exactly once, the values of a certain component |
|
1098 |
/// will be set continuously. |
|
1099 |
/// \return The number of components. |
|
1158 |
/// the number of the bi-edge-connected components minus one. Each value |
|
1159 |
/// of the map will be set exactly once, and the values of a certain |
|
1160 |
/// component will be set continuously. |
|
1161 |
/// \return The number of bi-edge-connected components. |
|
1162 |
/// |
|
1163 |
/// \see biEdgeConnected(), countBiEdgeConnectedComponents() |
|
1100 | 1164 |
template <typename Graph, typename NodeMap> |
1101 | 1165 |
int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) { |
... | ... |
@@ -1126,17 +1190,23 @@ |
1126 | 1190 |
/// \ingroup graph_properties |
1127 | 1191 |
/// |
1128 |
/// \brief Find the bi-edge-connected cut edges. |
|
1192 |
/// \brief Find the bi-edge-connected cut edges in an undirected graph. |
|
1129 | 1193 |
/// |
1130 |
/// This function finds the bi-edge-connected components in an undirected |
|
1131 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
1132 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
1133 |
/// connected with at least two edge-disjoint paths. The bi-edge-connected |
|
1134 |
/// components are separted by edges which are the cut edges of the |
|
1135 |
/// components. |
|
1194 |
/// This function finds the bi-edge-connected cut edges in the given |
|
1195 |
/// undirected graph. |
|
1136 | 1196 |
/// |
1137 |
/// \param graph The graph. |
|
1138 |
/// \retval cutMap A writable node map. The values will be set true when the |
|
1139 |
/// edge |
|
1197 |
/// The bi-edge-connected components are the classes of an equivalence |
|
1198 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
1199 |
/// same class if they are connected with at least two edge-disjoint |
|
1200 |
/// paths. |
|
1201 |
/// The bi-edge-connected components are separted by the cut edges of |
|
1202 |
/// the components. |
|
1203 |
/// |
|
1204 |
/// \param graph The undirected graph. |
|
1205 |
/// \retval cutMap A writable edge map. The values will be set to \c true |
|
1206 |
/// for the cut edges (exactly once for each cut edge), and will not be |
|
1207 |
/// changed for other edges. |
|
1140 | 1208 |
/// \return The number of cut edges. |
1209 |
/// |
|
1210 |
/// \see biEdgeConnected(), biEdgeConnectedComponents() |
|
1141 | 1211 |
template <typename Graph, typename EdgeMap> |
1142 | 1212 |
int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) { |
... | ... |
@@ -1190,17 +1260,60 @@ |
1190 | 1260 |
/// \ingroup graph_properties |
1191 | 1261 |
/// |
1262 |
/// \brief Check whether a digraph is DAG. |
|
1263 |
/// |
|
1264 |
/// This function checks whether the given digraph is DAG, i.e. |
|
1265 |
/// \e Directed \e Acyclic \e Graph. |
|
1266 |
/// \return \c true if there is no directed cycle in the digraph. |
|
1267 |
/// \see acyclic() |
|
1268 |
template <typename Digraph> |
|
1269 |
bool dag(const Digraph& digraph) { |
|
1270 |
|
|
1271 |
checkConcept<concepts::Digraph, Digraph>(); |
|
1272 |
|
|
1273 |
typedef typename Digraph::Node Node; |
|
1274 |
typedef typename Digraph::NodeIt NodeIt; |
|
1275 |
typedef typename Digraph::Arc Arc; |
|
1276 |
|
|
1277 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|
1278 |
|
|
1279 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
|
1280 |
Create dfs(digraph); |
|
1281 |
|
|
1282 |
ProcessedMap processed(digraph); |
|
1283 |
dfs.processedMap(processed); |
|
1284 |
|
|
1285 |
dfs.init(); |
|
1286 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
1287 |
if (!dfs.reached(it)) { |
|
1288 |
dfs.addSource(it); |
|
1289 |
while (!dfs.emptyQueue()) { |
|
1290 |
Arc arc = dfs.nextArc(); |
|
1291 |
Node target = digraph.target(arc); |
|
1292 |
if (dfs.reached(target) && !processed[target]) { |
|
1293 |
return false; |
|
1294 |
} |
|
1295 |
dfs.processNextArc(); |
|
1296 |
} |
|
1297 |
} |
|
1298 |
} |
|
1299 |
return true; |
|
1300 |
} |
|
1301 |
|
|
1302 |
/// \ingroup graph_properties |
|
1303 |
/// |
|
1192 | 1304 |
/// \brief Sort the nodes of a DAG into topolgical order. |
1193 | 1305 |
/// |
1194 |
/// |
|
1306 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
|
1307 |
/// into topolgical order. |
|
1195 | 1308 |
/// |
1196 |
/// \param |
|
1309 |
/// \param digraph The digraph, which must be DAG. |
|
1197 | 1310 |
/// \retval order A writable node map. The values will be set from 0 to |
1198 |
/// the number of the nodes in the graph minus one. Each values of the map |
|
1199 |
/// will be set exactly once, the values will be set descending order. |
|
1311 |
/// the number of the nodes in the digraph minus one. Each value of the |
|
1312 |
/// map will be set exactly once, and the values will be set descending |
|
1313 |
/// order. |
|
1200 | 1314 |
/// |
1201 |
/// \see checkedTopologicalSort |
|
1202 |
/// \see dag |
|
1315 |
/// \see dag(), checkedTopologicalSort() |
|
1203 | 1316 |
template <typename Digraph, typename NodeMap> |
1204 |
void topologicalSort(const Digraph& |
|
1317 |
void topologicalSort(const Digraph& digraph, NodeMap& order) { |
|
1205 | 1318 |
using namespace _connectivity_bits; |
1206 | 1319 |
|
... | ... |
@@ -1213,11 +1326,11 @@ |
1213 | 1326 |
|
1214 | 1327 |
TopologicalSortVisitor<Digraph, NodeMap> |
1215 |
visitor(order, countNodes( |
|
1328 |
visitor(order, countNodes(digraph)); |
|
1216 | 1329 |
|
1217 | 1330 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
1218 |
dfs( |
|
1331 |
dfs(digraph, visitor); |
|
1219 | 1332 |
|
1220 | 1333 |
dfs.init(); |
1221 |
for (NodeIt it( |
|
1334 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
1222 | 1335 |
if (!dfs.reached(it)) { |
1223 | 1336 |
dfs.addSource(it); |
... | ... |
@@ -1231,16 +1344,16 @@ |
1231 | 1344 |
/// \brief Sort the nodes of a DAG into topolgical order. |
1232 | 1345 |
/// |
1233 |
/// Sort the nodes of a DAG into topolgical order. It also checks |
|
1234 |
/// that the given graph is DAG. |
|
1346 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
|
1347 |
/// into topolgical order and also checks whether the given digraph |
|
1348 |
/// is DAG. |
|
1235 | 1349 |
/// |
1236 |
/// \param digraph The graph. It must be directed and acyclic. |
|
1237 |
/// \retval order A readable - writable node map. The values will be set |
|
1238 |
/// from 0 to the number of the nodes in the graph minus one. Each values |
|
1239 |
/// of the map will be set exactly once, the values will be set descending |
|
1240 |
/// order. |
|
1241 |
/// \return \c false when the graph is not DAG. |
|
1350 |
/// \param digraph The digraph. |
|
1351 |
/// \retval order A readable and writable node map. The values will be |
|
1352 |
/// set from 0 to the number of the nodes in the digraph minus one. |
|
1353 |
/// Each value of the map will be set exactly once, and the values will |
|
1354 |
/// be set descending order. |
|
1355 |
/// \return \c false if the digraph is not DAG. |
|
1242 | 1356 |
/// |
1243 |
/// \see topologicalSort |
|
1244 |
/// \see dag |
|
1357 |
/// \see dag(), topologicalSort() |
|
1245 | 1358 |
template <typename Digraph, typename NodeMap> |
1246 | 1359 |
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) { |
... | ... |
@@ -1284,52 +1397,9 @@ |
1284 | 1397 |
/// \ingroup graph_properties |
1285 | 1398 |
/// |
1286 |
/// \brief Check |
|
1399 |
/// \brief Check whether an undirected graph is acyclic. |
|
1287 | 1400 |
/// |
1288 |
/// Check that the given directed graph is a DAG. The DAG is |
|
1289 |
/// an Directed Acyclic Digraph. |
|
1290 |
/// \return \c false when the graph is not DAG. |
|
1291 |
/// \see acyclic |
|
1292 |
template <typename Digraph> |
|
1293 |
bool dag(const Digraph& digraph) { |
|
1294 |
|
|
1295 |
checkConcept<concepts::Digraph, Digraph>(); |
|
1296 |
|
|
1297 |
typedef typename Digraph::Node Node; |
|
1298 |
typedef typename Digraph::NodeIt NodeIt; |
|
1299 |
typedef typename Digraph::Arc Arc; |
|
1300 |
|
|
1301 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|
1302 |
|
|
1303 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
|
1304 |
Create dfs(digraph); |
|
1305 |
|
|
1306 |
ProcessedMap processed(digraph); |
|
1307 |
dfs.processedMap(processed); |
|
1308 |
|
|
1309 |
dfs.init(); |
|
1310 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
1311 |
if (!dfs.reached(it)) { |
|
1312 |
dfs.addSource(it); |
|
1313 |
while (!dfs.emptyQueue()) { |
|
1314 |
Arc edge = dfs.nextArc(); |
|
1315 |
Node target = digraph.target(edge); |
|
1316 |
if (dfs.reached(target) && !processed[target]) { |
|
1317 |
return false; |
|
1318 |
} |
|
1319 |
dfs.processNextArc(); |
|
1320 |
} |
|
1321 |
} |
|
1322 |
} |
|
1323 |
return true; |
|
1324 |
} |
|
1325 |
|
|
1326 |
/// \ingroup graph_properties |
|
1327 |
/// |
|
1328 |
/// \brief Check that the given undirected graph is acyclic. |
|
1329 |
/// |
|
1330 |
/// Check that the given undirected graph acyclic. |
|
1331 |
/// \param graph The undirected graph. |
|
1332 |
/// \return \c true when there is no circle in the graph. |
|
1333 |
/// \see dag |
|
1401 |
/// This function checks whether the given undirected graph is acyclic. |
|
1402 |
/// \return \c true if there is no cycle in the graph. |
|
1403 |
/// \see dag() |
|
1334 | 1404 |
template <typename Graph> |
1335 | 1405 |
bool acyclic(const Graph& graph) { |
... | ... |
@@ -1344,9 +1414,9 @@ |
1344 | 1414 |
dfs.addSource(it); |
1345 | 1415 |
while (!dfs.emptyQueue()) { |
1346 |
Arc edge = dfs.nextArc(); |
|
1347 |
Node source = graph.source(edge); |
|
1348 |
|
|
1416 |
Arc arc = dfs.nextArc(); |
|
1417 |
Node source = graph.source(arc); |
|
1418 |
Node target = graph.target(arc); |
|
1349 | 1419 |
if (dfs.reached(target) && |
1350 |
dfs.predArc(source) != graph.oppositeArc( |
|
1420 |
dfs.predArc(source) != graph.oppositeArc(arc)) { |
|
1351 | 1421 |
return false; |
1352 | 1422 |
} |
... | ... |
@@ -1360,9 +1430,9 @@ |
1360 | 1430 |
/// \ingroup graph_properties |
1361 | 1431 |
/// |
1362 |
/// \brief Check |
|
1432 |
/// \brief Check whether an undirected graph is tree. |
|
1363 | 1433 |
/// |
1364 |
/// Check that the given undirected graph is tree. |
|
1365 |
/// \param graph The undirected graph. |
|
1366 |
/// |
|
1434 |
/// This function checks whether the given undirected graph is tree. |
|
1435 |
/// \return \c true if the graph is acyclic and connected. |
|
1436 |
/// \see acyclic(), connected() |
|
1367 | 1437 |
template <typename Graph> |
1368 | 1438 |
bool tree(const Graph& graph) { |
... | ... |
@@ -1376,9 +1446,9 @@ |
1376 | 1446 |
dfs.addSource(NodeIt(graph)); |
1377 | 1447 |
while (!dfs.emptyQueue()) { |
1378 |
Arc edge = dfs.nextArc(); |
|
1379 |
Node source = graph.source(edge); |
|
1380 |
|
|
1448 |
Arc arc = dfs.nextArc(); |
|
1449 |
Node source = graph.source(arc); |
|
1450 |
Node target = graph.target(arc); |
|
1381 | 1451 |
if (dfs.reached(target) && |
1382 |
dfs.predArc(source) != graph.oppositeArc( |
|
1452 |
dfs.predArc(source) != graph.oppositeArc(arc)) { |
|
1383 | 1453 |
return false; |
1384 | 1454 |
} |
... | ... |
@@ -1453,13 +1523,12 @@ |
1453 | 1523 |
/// \ingroup graph_properties |
1454 | 1524 |
/// |
1455 |
/// \brief Check |
|
1525 |
/// \brief Check whether an undirected graph is bipartite. |
|
1456 | 1526 |
/// |
1457 |
/// The function checks if the given undirected \c graph graph is bipartite |
|
1458 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
|
1459 |
/// \param graph The undirected graph. |
|
1460 |
/// \return \c true if \c graph is bipartite, \c false otherwise. |
|
1461 |
/// |
|
1527 |
/// The function checks whether the given undirected graph is bipartite. |
|
1528 |
/// \return \c true if the graph is bipartite. |
|
1529 |
/// |
|
1530 |
/// \see bipartitePartitions() |
|
1462 | 1531 |
template<typename Graph> |
1463 |
|
|
1532 |
bool bipartite(const Graph &graph){ |
|
1464 | 1533 |
using namespace _connectivity_bits; |
1465 | 1534 |
|
... | ... |
@@ -1490,10 +1559,8 @@ |
1490 | 1559 |
/// \ingroup graph_properties |
1491 | 1560 |
/// |
1492 |
/// \brief |
|
1561 |
/// \brief Find the bipartite partitions of an undirected graph. |
|
1493 | 1562 |
/// |
1494 |
/// The function checks if the given undirected graph is bipartite |
|
1495 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
|
1496 |
/// During the execution, the \c partMap will be set as the two |
|
1497 |
/// partitions of the graph. |
|
1563 |
/// This function checks whether the given undirected graph is bipartite |
|
1564 |
/// and gives back the bipartite partitions. |
|
1498 | 1565 |
/// |
1499 | 1566 |
/// \image html bipartite_partitions.png |
... | ... |
@@ -1501,12 +1568,16 @@ |
1501 | 1568 |
/// |
1502 | 1569 |
/// \param graph The undirected graph. |
1503 |
/// \retval partMap A writable bool map of nodes. It will be set as the |
|
1504 |
/// two partitions of the graph. |
|
1505 |
/// \ |
|
1570 |
/// \retval partMap A writable node map of \c bool (or convertible) value |
|
1571 |
/// type. The values will be set to \c true for one component and |
|
1572 |
/// \c false for the other one. |
|
1573 |
/// \return \c true if the graph is bipartite, \c false otherwise. |
|
1574 |
/// |
|
1575 |
/// \see bipartite() |
|
1506 | 1576 |
template<typename Graph, typename NodeMap> |
1507 |
|
|
1577 |
bool bipartitePartitions(const Graph &graph, NodeMap &partMap){ |
|
1508 | 1578 |
using namespace _connectivity_bits; |
1509 | 1579 |
|
1510 | 1580 |
checkConcept<concepts::Graph, Graph>(); |
1581 |
checkConcept<concepts::WriteMap<typename Graph::Node, bool>, NodeMap>(); |
|
1511 | 1582 |
|
1512 | 1583 |
typedef typename Graph::Node Node; |
... | ... |
@@ -1533,18 +1604,24 @@ |
1533 | 1604 |
} |
1534 | 1605 |
|
1535 |
/// \ |
|
1606 |
/// \ingroup graph_properties |
|
1536 | 1607 |
/// |
1537 |
/// Returns true when there are not loop edges in the graph. |
|
1538 |
template <typename Digraph> |
|
1539 |
bool loopFree(const Digraph& digraph) { |
|
1540 |
for (typename Digraph::ArcIt it(digraph); it != INVALID; ++it) { |
|
1541 |
|
|
1608 |
/// \brief Check whether the given graph contains no loop arcs/edges. |
|
1609 |
/// |
|
1610 |
/// This function returns \c true if there are no loop arcs/edges in |
|
1611 |
/// the given graph. It works for both directed and undirected graphs. |
|
1612 |
template <typename Graph> |
|
1613 |
bool loopFree(const Graph& graph) { |
|
1614 |
for (typename Graph::ArcIt it(graph); it != INVALID; ++it) { |
|
1615 |
if (graph.source(it) == graph.target(it)) return false; |
|
1542 | 1616 |
} |
1543 | 1617 |
return true; |
1544 | 1618 |
} |
1545 | 1619 |
|
1546 |
/// \ |
|
1620 |
/// \ingroup graph_properties |
|
1547 | 1621 |
/// |
1548 |
/// |
|
1622 |
/// \brief Check whether the given graph contains no parallel arcs/edges. |
|
1623 |
/// |
|
1624 |
/// This function returns \c true if there are no parallel arcs/edges in |
|
1625 |
/// the given graph. It works for both directed and undirected graphs. |
|
1549 | 1626 |
template <typename Graph> |
1550 | 1627 |
bool parallelFree(const Graph& graph) { |
... | ... |
@@ -1561,9 +1638,12 @@ |
1561 | 1638 |
} |
1562 | 1639 |
|
1563 |
/// \brief Returns true when there are not loop edges and parallel |
|
1564 |
/// edges in the graph. |
|
1640 |
/// \ingroup graph_properties |
|
1565 | 1641 |
/// |
1566 |
/// Returns true when there are not loop edges and parallel edges in |
|
1567 |
/// the graph. |
|
1642 |
/// \brief Check whether the given graph is simple. |
|
1643 |
/// |
|
1644 |
/// This function returns \c true if the given graph is simple, i.e. |
|
1645 |
/// it contains no loop arcs/edges and no parallel arcs/edges. |
|
1646 |
/// The function works for both directed and undirected graphs. |
|
1647 |
/// \see loopFree(), parallelFree() |
|
1568 | 1648 |
template <typename Graph> |
1569 | 1649 |
bool simpleGraph(const Graph& graph) { |
... | ... |
@@ -245,8 +245,8 @@ |
245 | 245 |
|
246 | 246 |
|
247 |
///Check if the given graph is |
|
247 |
///Check if the given graph is Eulerian |
|
248 | 248 |
|
249 | 249 |
/// \ingroup graph_properties |
250 |
///This function checks if the given graph is |
|
250 |
///This function checks if the given graph is Eulerian. |
|
251 | 251 |
///It works for both directed and undirected graphs. |
252 | 252 |
/// |
0 comments (0 inline)