0
2
0
303
223
... | ... |
@@ -21,126 +21,145 @@ |
21 | 21 |
|
22 | 22 |
#include <lemon/dfs.h> |
23 | 23 |
#include <lemon/bfs.h> |
24 | 24 |
#include <lemon/core.h> |
25 | 25 |
#include <lemon/maps.h> |
26 | 26 |
#include <lemon/adaptors.h> |
27 | 27 |
|
28 | 28 |
#include <lemon/concepts/digraph.h> |
29 | 29 |
#include <lemon/concepts/graph.h> |
30 | 30 |
#include <lemon/concept_check.h> |
31 | 31 |
|
32 | 32 |
#include <stack> |
33 | 33 |
#include <functional> |
34 | 34 |
|
35 | 35 |
/// \ingroup graph_properties |
36 | 36 |
/// \file |
37 | 37 |
/// \brief Connectivity algorithms |
38 | 38 |
/// |
39 | 39 |
/// Connectivity algorithms |
40 | 40 |
|
41 | 41 |
namespace lemon { |
42 | 42 |
|
43 | 43 |
/// \ingroup graph_properties |
44 | 44 |
/// |
45 |
/// \brief Check whether |
|
45 |
/// \brief Check whether an undirected graph is connected. |
|
46 | 46 |
/// |
47 |
/// Check whether the given undirected graph is connected. |
|
48 |
/// \param graph The undirected graph. |
|
49 |
/// |
|
47 |
/// This function checks whether the given undirected graph is connected, |
|
48 |
/// i.e. there is a path between any two nodes in the graph. |
|
49 |
/// |
|
50 |
/// \return \c true if the graph is connected. |
|
50 | 51 |
/// \note By definition, the empty graph is connected. |
52 |
/// |
|
53 |
/// \see countConnectedComponents(), connectedComponents() |
|
54 |
/// \see stronglyConnected() |
|
51 | 55 |
template <typename Graph> |
52 | 56 |
bool connected(const Graph& graph) { |
53 | 57 |
checkConcept<concepts::Graph, Graph>(); |
54 | 58 |
typedef typename Graph::NodeIt NodeIt; |
55 | 59 |
if (NodeIt(graph) == INVALID) return true; |
56 | 60 |
Dfs<Graph> dfs(graph); |
57 | 61 |
dfs.run(NodeIt(graph)); |
58 | 62 |
for (NodeIt it(graph); it != INVALID; ++it) { |
59 | 63 |
if (!dfs.reached(it)) { |
60 | 64 |
return false; |
61 | 65 |
} |
62 | 66 |
} |
63 | 67 |
return true; |
64 | 68 |
} |
65 | 69 |
|
66 | 70 |
/// \ingroup graph_properties |
67 | 71 |
/// |
68 | 72 |
/// \brief Count the number of connected components of an undirected graph |
69 | 73 |
/// |
70 |
/// |
|
74 |
/// This function counts the number of connected components of the given |
|
75 |
/// undirected graph. |
|
71 | 76 |
/// |
72 |
/// \param graph The graph. It must be undirected. |
|
73 |
/// \return The number of components |
|
77 |
/// The connected components are the classes of an equivalence relation |
|
78 |
/// on the nodes of an undirected graph. Two nodes are in the same class |
|
79 |
/// if they are connected with a path. |
|
80 |
/// |
|
81 |
/// \return The number of connected components. |
|
74 | 82 |
/// \note By definition, the empty graph consists |
75 | 83 |
/// of zero connected components. |
84 |
/// |
|
85 |
/// \see connected(), connectedComponents() |
|
76 | 86 |
template <typename Graph> |
77 | 87 |
int countConnectedComponents(const Graph &graph) { |
78 | 88 |
checkConcept<concepts::Graph, Graph>(); |
79 | 89 |
typedef typename Graph::Node Node; |
80 | 90 |
typedef typename Graph::Arc Arc; |
81 | 91 |
|
82 | 92 |
typedef NullMap<Node, Arc> PredMap; |
83 | 93 |
typedef NullMap<Node, int> DistMap; |
84 | 94 |
|
85 | 95 |
int compNum = 0; |
86 | 96 |
typename Bfs<Graph>:: |
87 | 97 |
template SetPredMap<PredMap>:: |
88 | 98 |
template SetDistMap<DistMap>:: |
89 | 99 |
Create bfs(graph); |
90 | 100 |
|
91 | 101 |
PredMap predMap; |
92 | 102 |
bfs.predMap(predMap); |
93 | 103 |
|
94 | 104 |
DistMap distMap; |
95 | 105 |
bfs.distMap(distMap); |
96 | 106 |
|
97 | 107 |
bfs.init(); |
98 | 108 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
99 | 109 |
if (!bfs.reached(n)) { |
100 | 110 |
bfs.addSource(n); |
101 | 111 |
bfs.start(); |
102 | 112 |
++compNum; |
103 | 113 |
} |
104 | 114 |
} |
105 | 115 |
return compNum; |
106 | 116 |
} |
107 | 117 |
|
108 | 118 |
/// \ingroup graph_properties |
109 | 119 |
/// |
110 | 120 |
/// \brief Find the connected components of an undirected graph |
111 | 121 |
/// |
112 |
/// |
|
122 |
/// This function finds the connected components of the given undirected |
|
123 |
/// graph. |
|
124 |
/// |
|
125 |
/// The connected components are the classes of an equivalence relation |
|
126 |
/// on the nodes of an undirected graph. Two nodes are in the same class |
|
127 |
/// if they are connected with a path. |
|
113 | 128 |
/// |
114 | 129 |
/// \image html connected_components.png |
115 | 130 |
/// \image latex connected_components.eps "Connected components" width=\textwidth |
116 | 131 |
/// |
117 |
/// \param graph The |
|
132 |
/// \param graph The undirected graph. |
|
118 | 133 |
/// \retval compMap A writable node map. The values will be set from 0 to |
119 |
/// the number of the connected components minus one. Each values of the map |
|
120 |
/// will be set exactly once, the values of a certain component will be |
|
134 |
/// the number of the connected components minus one. Each value of the map |
|
135 |
/// will be set exactly once, and the values of a certain component will be |
|
121 | 136 |
/// set continuously. |
122 |
/// \return The number of components |
|
137 |
/// \return The number of connected components. |
|
138 |
/// \note By definition, the empty graph consists |
|
139 |
/// of zero connected components. |
|
140 |
/// |
|
141 |
/// \see connected(), countConnectedComponents() |
|
123 | 142 |
template <class Graph, class NodeMap> |
124 | 143 |
int connectedComponents(const Graph &graph, NodeMap &compMap) { |
125 | 144 |
checkConcept<concepts::Graph, Graph>(); |
126 | 145 |
typedef typename Graph::Node Node; |
127 | 146 |
typedef typename Graph::Arc Arc; |
128 | 147 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
129 | 148 |
|
130 | 149 |
typedef NullMap<Node, Arc> PredMap; |
131 | 150 |
typedef NullMap<Node, int> DistMap; |
132 | 151 |
|
133 | 152 |
int compNum = 0; |
134 | 153 |
typename Bfs<Graph>:: |
135 | 154 |
template SetPredMap<PredMap>:: |
136 | 155 |
template SetDistMap<DistMap>:: |
137 | 156 |
Create bfs(graph); |
138 | 157 |
|
139 | 158 |
PredMap predMap; |
140 | 159 |
bfs.predMap(predMap); |
141 | 160 |
|
142 | 161 |
DistMap distMap; |
143 | 162 |
bfs.distMap(distMap); |
144 | 163 |
|
145 | 164 |
bfs.init(); |
146 | 165 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
... | ... |
@@ -210,118 +229,124 @@ |
210 | 229 |
_compMap.set(node, _num); |
211 | 230 |
} |
212 | 231 |
|
213 | 232 |
void examine(const Arc& arc) { |
214 | 233 |
if (_compMap[_digraph.source(arc)] != |
215 | 234 |
_compMap[_digraph.target(arc)]) { |
216 | 235 |
_cutMap.set(arc, true); |
217 | 236 |
++_cutNum; |
218 | 237 |
} |
219 | 238 |
} |
220 | 239 |
private: |
221 | 240 |
const Digraph& _digraph; |
222 | 241 |
ArcMap& _cutMap; |
223 | 242 |
int& _cutNum; |
224 | 243 |
|
225 | 244 |
typename Digraph::template NodeMap<int> _compMap; |
226 | 245 |
int _num; |
227 | 246 |
}; |
228 | 247 |
|
229 | 248 |
} |
230 | 249 |
|
231 | 250 |
|
232 | 251 |
/// \ingroup graph_properties |
233 | 252 |
/// |
234 |
/// \brief Check whether |
|
253 |
/// \brief Check whether a directed graph is strongly connected. |
|
235 | 254 |
/// |
236 |
/// Check whether the given directed graph is strongly connected. The |
|
237 |
/// graph is strongly connected when any two nodes of the graph are |
|
255 |
/// This function checks whether the given directed graph is strongly |
|
256 |
/// connected, i.e. any two nodes of the digraph are |
|
238 | 257 |
/// connected with directed paths in both direction. |
239 |
/// \return \c false when the graph is not strongly connected. |
|
240 |
/// \see connected |
|
241 | 258 |
/// |
242 |
/// \ |
|
259 |
/// \return \c true if the digraph is strongly connected. |
|
260 |
/// \note By definition, the empty digraph is strongly connected. |
|
261 |
/// |
|
262 |
/// \see countStronglyConnectedComponents(), stronglyConnectedComponents() |
|
263 |
/// \see connected() |
|
243 | 264 |
template <typename Digraph> |
244 | 265 |
bool stronglyConnected(const Digraph& digraph) { |
245 | 266 |
checkConcept<concepts::Digraph, Digraph>(); |
246 | 267 |
|
247 | 268 |
typedef typename Digraph::Node Node; |
248 | 269 |
typedef typename Digraph::NodeIt NodeIt; |
249 | 270 |
|
250 | 271 |
typename Digraph::Node source = NodeIt(digraph); |
251 | 272 |
if (source == INVALID) return true; |
252 | 273 |
|
253 | 274 |
using namespace _connectivity_bits; |
254 | 275 |
|
255 | 276 |
typedef DfsVisitor<Digraph> Visitor; |
256 | 277 |
Visitor visitor; |
257 | 278 |
|
258 | 279 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
259 | 280 |
dfs.init(); |
260 | 281 |
dfs.addSource(source); |
261 | 282 |
dfs.start(); |
262 | 283 |
|
263 | 284 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
264 | 285 |
if (!dfs.reached(it)) { |
265 | 286 |
return false; |
266 | 287 |
} |
267 | 288 |
} |
268 | 289 |
|
269 | 290 |
typedef ReverseDigraph<const Digraph> RDigraph; |
270 | 291 |
typedef typename RDigraph::NodeIt RNodeIt; |
271 | 292 |
RDigraph rdigraph(digraph); |
272 | 293 |
|
273 |
typedef DfsVisitor< |
|
294 |
typedef DfsVisitor<RDigraph> RVisitor; |
|
274 | 295 |
RVisitor rvisitor; |
275 | 296 |
|
276 | 297 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
277 | 298 |
rdfs.init(); |
278 | 299 |
rdfs.addSource(source); |
279 | 300 |
rdfs.start(); |
280 | 301 |
|
281 | 302 |
for (RNodeIt it(rdigraph); it != INVALID; ++it) { |
282 | 303 |
if (!rdfs.reached(it)) { |
283 | 304 |
return false; |
284 | 305 |
} |
285 | 306 |
} |
286 | 307 |
|
287 | 308 |
return true; |
288 | 309 |
} |
289 | 310 |
|
290 | 311 |
/// \ingroup graph_properties |
291 | 312 |
/// |
292 |
/// \brief Count the strongly connected components of a |
|
313 |
/// \brief Count the number of strongly connected components of a |
|
314 |
/// directed graph |
|
293 | 315 |
/// |
294 |
/// |
|
316 |
/// This function counts the number of strongly connected components of |
|
317 |
/// the given directed graph. |
|
318 |
/// |
|
295 | 319 |
/// The strongly connected components are the classes of an |
296 |
/// equivalence relation on the nodes of |
|
320 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
297 | 321 |
/// the same class if they are connected with directed paths in both |
298 | 322 |
/// direction. |
299 | 323 |
/// |
300 |
/// \param digraph The graph. |
|
301 |
/// \return The number of components |
|
302 |
/// \ |
|
324 |
/// \return The number of strongly connected components. |
|
325 |
/// \note By definition, the empty digraph has zero |
|
303 | 326 |
/// strongly connected components. |
327 |
/// |
|
328 |
/// \see stronglyConnected(), stronglyConnectedComponents() |
|
304 | 329 |
template <typename Digraph> |
305 | 330 |
int countStronglyConnectedComponents(const Digraph& digraph) { |
306 | 331 |
checkConcept<concepts::Digraph, Digraph>(); |
307 | 332 |
|
308 | 333 |
using namespace _connectivity_bits; |
309 | 334 |
|
310 | 335 |
typedef typename Digraph::Node Node; |
311 | 336 |
typedef typename Digraph::Arc Arc; |
312 | 337 |
typedef typename Digraph::NodeIt NodeIt; |
313 | 338 |
typedef typename Digraph::ArcIt ArcIt; |
314 | 339 |
|
315 | 340 |
typedef std::vector<Node> Container; |
316 | 341 |
typedef typename Container::iterator Iterator; |
317 | 342 |
|
318 | 343 |
Container nodes(countNodes(digraph)); |
319 | 344 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
320 | 345 |
Visitor visitor(nodes.begin()); |
321 | 346 |
|
322 | 347 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
323 | 348 |
dfs.init(); |
324 | 349 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
325 | 350 |
if (!dfs.reached(it)) { |
326 | 351 |
dfs.addSource(it); |
327 | 352 |
dfs.start(); |
... | ... |
@@ -334,65 +359,71 @@ |
334 | 359 |
RDigraph rdigraph(digraph); |
335 | 360 |
|
336 | 361 |
typedef DfsVisitor<Digraph> RVisitor; |
337 | 362 |
RVisitor rvisitor; |
338 | 363 |
|
339 | 364 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
340 | 365 |
|
341 | 366 |
int compNum = 0; |
342 | 367 |
|
343 | 368 |
rdfs.init(); |
344 | 369 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
345 | 370 |
if (!rdfs.reached(*it)) { |
346 | 371 |
rdfs.addSource(*it); |
347 | 372 |
rdfs.start(); |
348 | 373 |
++compNum; |
349 | 374 |
} |
350 | 375 |
} |
351 | 376 |
return compNum; |
352 | 377 |
} |
353 | 378 |
|
354 | 379 |
/// \ingroup graph_properties |
355 | 380 |
/// |
356 | 381 |
/// \brief Find the strongly connected components of a directed graph |
357 | 382 |
/// |
358 |
/// Find the strongly connected components of a directed graph. The |
|
359 |
/// strongly connected components are the classes of an equivalence |
|
360 |
/// relation on the nodes of the graph. Two nodes are in |
|
361 |
/// relationship when there are directed paths between them in both |
|
362 |
/// direction. In addition, the numbering of components will satisfy |
|
363 |
/// that there is no arc going from a higher numbered component to |
|
364 |
/// |
|
383 |
/// This function finds the strongly connected components of the given |
|
384 |
/// directed graph. In addition, the numbering of the components will |
|
385 |
/// satisfy that there is no arc going from a higher numbered component |
|
386 |
/// to a lower one (i.e. it provides a topological order of the components). |
|
387 |
/// |
|
388 |
/// The strongly connected components are the classes of an |
|
389 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
390 |
/// the same class if they are connected with directed paths in both |
|
391 |
/// direction. |
|
365 | 392 |
/// |
366 | 393 |
/// \image html strongly_connected_components.png |
367 | 394 |
/// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth |
368 | 395 |
/// |
369 | 396 |
/// \param digraph The digraph. |
370 | 397 |
/// \retval compMap A writable node map. The values will be set from 0 to |
371 | 398 |
/// the number of the strongly connected components minus one. Each value |
372 |
/// of the map will be set exactly once, the values of a certain component |
|
373 |
/// will be set continuously. |
|
374 |
/// |
|
399 |
/// of the map will be set exactly once, and the values of a certain |
|
400 |
/// component will be set continuously. |
|
401 |
/// \return The number of strongly connected components. |
|
402 |
/// \note By definition, the empty digraph has zero |
|
403 |
/// strongly connected components. |
|
404 |
/// |
|
405 |
/// \see stronglyConnected(), countStronglyConnectedComponents() |
|
375 | 406 |
template <typename Digraph, typename NodeMap> |
376 | 407 |
int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) { |
377 | 408 |
checkConcept<concepts::Digraph, Digraph>(); |
378 | 409 |
typedef typename Digraph::Node Node; |
379 | 410 |
typedef typename Digraph::NodeIt NodeIt; |
380 | 411 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
381 | 412 |
|
382 | 413 |
using namespace _connectivity_bits; |
383 | 414 |
|
384 | 415 |
typedef std::vector<Node> Container; |
385 | 416 |
typedef typename Container::iterator Iterator; |
386 | 417 |
|
387 | 418 |
Container nodes(countNodes(digraph)); |
388 | 419 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
389 | 420 |
Visitor visitor(nodes.begin()); |
390 | 421 |
|
391 | 422 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
392 | 423 |
dfs.init(); |
393 | 424 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
394 | 425 |
if (!dfs.reached(it)) { |
395 | 426 |
dfs.addSource(it); |
396 | 427 |
dfs.start(); |
397 | 428 |
} |
398 | 429 |
} |
... | ... |
@@ -403,96 +434,101 @@ |
403 | 434 |
RDigraph rdigraph(digraph); |
404 | 435 |
|
405 | 436 |
int compNum = 0; |
406 | 437 |
|
407 | 438 |
typedef FillMapVisitor<RDigraph, NodeMap> RVisitor; |
408 | 439 |
RVisitor rvisitor(compMap, compNum); |
409 | 440 |
|
410 | 441 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
411 | 442 |
|
412 | 443 |
rdfs.init(); |
413 | 444 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
414 | 445 |
if (!rdfs.reached(*it)) { |
415 | 446 |
rdfs.addSource(*it); |
416 | 447 |
rdfs.start(); |
417 | 448 |
++compNum; |
418 | 449 |
} |
419 | 450 |
} |
420 | 451 |
return compNum; |
421 | 452 |
} |
422 | 453 |
|
423 | 454 |
/// \ingroup graph_properties |
424 | 455 |
/// |
425 | 456 |
/// \brief Find the cut arcs of the strongly connected components. |
426 | 457 |
/// |
427 |
/// Find the cut arcs of the strongly connected components. |
|
428 |
/// The strongly connected components are the classes of an equivalence |
|
429 |
/// relation on the nodes of the graph. Two nodes are in relationship |
|
430 |
/// when there are directed paths between them in both direction. |
|
458 |
/// This function finds the cut arcs of the strongly connected components |
|
459 |
/// of the given digraph. |
|
460 |
/// |
|
461 |
/// The strongly connected components are the classes of an |
|
462 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
463 |
/// the same class if they are connected with directed paths in both |
|
464 |
/// direction. |
|
431 | 465 |
/// The strongly connected components are separated by the cut arcs. |
432 | 466 |
/// |
433 |
/// \param graph The graph. |
|
434 |
/// \retval cutMap A writable node map. The values will be set true when the |
|
435 |
/// |
|
467 |
/// \param digraph The digraph. |
|
468 |
/// \retval cutMap A writable arc map. The values will be set to \c true |
|
469 |
/// for the cut arcs (exactly once for each cut arc), and will not be |
|
470 |
/// changed for other arcs. |
|
471 |
/// \return The number of cut arcs. |
|
436 | 472 |
/// |
437 |
/// \ |
|
473 |
/// \see stronglyConnected(), stronglyConnectedComponents() |
|
438 | 474 |
template <typename Digraph, typename ArcMap> |
439 |
int stronglyConnectedCutArcs(const Digraph& |
|
475 |
int stronglyConnectedCutArcs(const Digraph& digraph, ArcMap& cutMap) { |
|
440 | 476 |
checkConcept<concepts::Digraph, Digraph>(); |
441 | 477 |
typedef typename Digraph::Node Node; |
442 | 478 |
typedef typename Digraph::Arc Arc; |
443 | 479 |
typedef typename Digraph::NodeIt NodeIt; |
444 | 480 |
checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>(); |
445 | 481 |
|
446 | 482 |
using namespace _connectivity_bits; |
447 | 483 |
|
448 | 484 |
typedef std::vector<Node> Container; |
449 | 485 |
typedef typename Container::iterator Iterator; |
450 | 486 |
|
451 |
Container nodes(countNodes( |
|
487 |
Container nodes(countNodes(digraph)); |
|
452 | 488 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
453 | 489 |
Visitor visitor(nodes.begin()); |
454 | 490 |
|
455 |
DfsVisit<Digraph, Visitor> dfs( |
|
491 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
|
456 | 492 |
dfs.init(); |
457 |
for (NodeIt it( |
|
493 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
458 | 494 |
if (!dfs.reached(it)) { |
459 | 495 |
dfs.addSource(it); |
460 | 496 |
dfs.start(); |
461 | 497 |
} |
462 | 498 |
} |
463 | 499 |
|
464 | 500 |
typedef typename Container::reverse_iterator RIterator; |
465 | 501 |
typedef ReverseDigraph<const Digraph> RDigraph; |
466 | 502 |
|
467 |
RDigraph |
|
503 |
RDigraph rdigraph(digraph); |
|
468 | 504 |
|
469 | 505 |
int cutNum = 0; |
470 | 506 |
|
471 | 507 |
typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor; |
472 |
RVisitor rvisitor( |
|
508 |
RVisitor rvisitor(rdigraph, cutMap, cutNum); |
|
473 | 509 |
|
474 |
DfsVisit<RDigraph, RVisitor> rdfs( |
|
510 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
|
475 | 511 |
|
476 | 512 |
rdfs.init(); |
477 | 513 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
478 | 514 |
if (!rdfs.reached(*it)) { |
479 | 515 |
rdfs.addSource(*it); |
480 | 516 |
rdfs.start(); |
481 | 517 |
} |
482 | 518 |
} |
483 | 519 |
return cutNum; |
484 | 520 |
} |
485 | 521 |
|
486 | 522 |
namespace _connectivity_bits { |
487 | 523 |
|
488 | 524 |
template <typename Digraph> |
489 | 525 |
class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
490 | 526 |
public: |
491 | 527 |
typedef typename Digraph::Node Node; |
492 | 528 |
typedef typename Digraph::Arc Arc; |
493 | 529 |
typedef typename Digraph::Edge Edge; |
494 | 530 |
|
495 | 531 |
CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
496 | 532 |
: _graph(graph), _compNum(compNum), |
497 | 533 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
498 | 534 |
|
... | ... |
@@ -685,155 +721,171 @@ |
685 | 721 |
} |
686 | 722 |
} |
687 | 723 |
} |
688 | 724 |
|
689 | 725 |
private: |
690 | 726 |
const Digraph& _graph; |
691 | 727 |
NodeMap& _cutMap; |
692 | 728 |
int& _cutNum; |
693 | 729 |
|
694 | 730 |
typename Digraph::template NodeMap<int> _numMap; |
695 | 731 |
typename Digraph::template NodeMap<int> _retMap; |
696 | 732 |
typename Digraph::template NodeMap<Node> _predMap; |
697 | 733 |
std::stack<Edge> _edgeStack; |
698 | 734 |
int _num; |
699 | 735 |
bool rootCut; |
700 | 736 |
}; |
701 | 737 |
|
702 | 738 |
} |
703 | 739 |
|
704 | 740 |
template <typename Graph> |
705 | 741 |
int countBiNodeConnectedComponents(const Graph& graph); |
706 | 742 |
|
707 | 743 |
/// \ingroup graph_properties |
708 | 744 |
/// |
709 |
/// \brief |
|
745 |
/// \brief Check whether an undirected graph is bi-node-connected. |
|
710 | 746 |
/// |
711 |
/// This function checks that the undirected graph is bi-node-connected |
|
712 |
/// graph. The graph is bi-node-connected if any two undirected edge is |
|
713 |
/// |
|
747 |
/// This function checks whether the given undirected graph is |
|
748 |
/// bi-node-connected, i.e. any two edges are on same circle. |
|
714 | 749 |
/// |
715 |
/// \param graph The graph. |
|
716 |
/// \return \c true when the graph bi-node-connected. |
|
750 |
/// \return \c true if the graph bi-node-connected. |
|
751 |
/// \note By definition, the empty graph is bi-node-connected. |
|
752 |
/// |
|
753 |
/// \see countBiNodeConnectedComponents(), biNodeConnectedComponents() |
|
717 | 754 |
template <typename Graph> |
718 | 755 |
bool biNodeConnected(const Graph& graph) { |
719 | 756 |
return countBiNodeConnectedComponents(graph) <= 1; |
720 | 757 |
} |
721 | 758 |
|
722 | 759 |
/// \ingroup graph_properties |
723 | 760 |
/// |
724 |
/// \brief Count the |
|
761 |
/// \brief Count the number of bi-node-connected components of an |
|
762 |
/// undirected graph. |
|
725 | 763 |
/// |
726 |
/// This function finds the bi-node-connected components in an undirected |
|
727 |
/// graph. The biconnected components are the classes of an equivalence |
|
728 |
/// relation on the undirected edges. Two undirected edge is in relationship |
|
729 |
/// when they are on same circle. |
|
764 |
/// This function counts the number of bi-node-connected components of |
|
765 |
/// the given undirected graph. |
|
730 | 766 |
/// |
731 |
/// \param graph The graph. |
|
732 |
/// \return The number of components. |
|
767 |
/// The bi-node-connected components are the classes of an equivalence |
|
768 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
769 |
/// same class if they are on same circle. |
|
770 |
/// |
|
771 |
/// \return The number of bi-node-connected components. |
|
772 |
/// |
|
773 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
|
733 | 774 |
template <typename Graph> |
734 | 775 |
int countBiNodeConnectedComponents(const Graph& graph) { |
735 | 776 |
checkConcept<concepts::Graph, Graph>(); |
736 | 777 |
typedef typename Graph::NodeIt NodeIt; |
737 | 778 |
|
738 | 779 |
using namespace _connectivity_bits; |
739 | 780 |
|
740 | 781 |
typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor; |
741 | 782 |
|
742 | 783 |
int compNum = 0; |
743 | 784 |
Visitor visitor(graph, compNum); |
744 | 785 |
|
745 | 786 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
746 | 787 |
dfs.init(); |
747 | 788 |
|
748 | 789 |
for (NodeIt it(graph); it != INVALID; ++it) { |
749 | 790 |
if (!dfs.reached(it)) { |
750 | 791 |
dfs.addSource(it); |
751 | 792 |
dfs.start(); |
752 | 793 |
} |
753 | 794 |
} |
754 | 795 |
return compNum; |
755 | 796 |
} |
756 | 797 |
|
757 | 798 |
/// \ingroup graph_properties |
758 | 799 |
/// |
759 |
/// \brief Find the bi-node-connected components. |
|
800 |
/// \brief Find the bi-node-connected components of an undirected graph. |
|
760 | 801 |
/// |
761 |
/// This function finds the bi-node-connected components in an undirected |
|
762 |
/// graph. The bi-node-connected components are the classes of an equivalence |
|
763 |
/// relation on the undirected edges. Two undirected edge are in relationship |
|
764 |
/// when they are on same circle. |
|
802 |
/// This function finds the bi-node-connected components of the given |
|
803 |
/// undirected graph. |
|
804 |
/// |
|
805 |
/// The bi-node-connected components are the classes of an equivalence |
|
806 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
807 |
/// same class if they are on same circle. |
|
765 | 808 |
/// |
766 | 809 |
/// \image html node_biconnected_components.png |
767 | 810 |
/// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth |
768 | 811 |
/// |
769 |
/// \param graph The graph. |
|
770 |
/// \retval compMap A writable uedge map. The values will be set from 0 |
|
771 |
/// to the number of the biconnected components minus one. Each values |
|
772 |
/// of the map will be set exactly once, the values of a certain component |
|
773 |
/// will be set continuously. |
|
774 |
/// \return The number of components. |
|
812 |
/// \param graph The undirected graph. |
|
813 |
/// \retval compMap A writable edge map. The values will be set from 0 |
|
814 |
/// to the number of the bi-node-connected components minus one. Each |
|
815 |
/// value of the map will be set exactly once, and the values of a |
|
816 |
/// certain component will be set continuously. |
|
817 |
/// \return The number of bi-node-connected components. |
|
818 |
/// |
|
819 |
/// \see biNodeConnected(), countBiNodeConnectedComponents() |
|
775 | 820 |
template <typename Graph, typename EdgeMap> |
776 | 821 |
int biNodeConnectedComponents(const Graph& graph, |
777 | 822 |
EdgeMap& compMap) { |
778 | 823 |
checkConcept<concepts::Graph, Graph>(); |
779 | 824 |
typedef typename Graph::NodeIt NodeIt; |
780 | 825 |
typedef typename Graph::Edge Edge; |
781 | 826 |
checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>(); |
782 | 827 |
|
783 | 828 |
using namespace _connectivity_bits; |
784 | 829 |
|
785 | 830 |
typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor; |
786 | 831 |
|
787 | 832 |
int compNum = 0; |
788 | 833 |
Visitor visitor(graph, compMap, compNum); |
789 | 834 |
|
790 | 835 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
791 | 836 |
dfs.init(); |
792 | 837 |
|
793 | 838 |
for (NodeIt it(graph); it != INVALID; ++it) { |
794 | 839 |
if (!dfs.reached(it)) { |
795 | 840 |
dfs.addSource(it); |
796 | 841 |
dfs.start(); |
797 | 842 |
} |
798 | 843 |
} |
799 | 844 |
return compNum; |
800 | 845 |
} |
801 | 846 |
|
802 | 847 |
/// \ingroup graph_properties |
803 | 848 |
/// |
804 |
/// \brief Find the bi-node-connected cut nodes. |
|
849 |
/// \brief Find the bi-node-connected cut nodes in an undirected graph. |
|
805 | 850 |
/// |
806 |
/// This function finds the bi-node-connected cut nodes in an undirected |
|
807 |
/// graph. The bi-node-connected components are the classes of an equivalence |
|
808 |
/// relation on the undirected edges. Two undirected edges are in |
|
809 |
/// relationship when they are on same circle. The biconnected components |
|
810 |
/// |
|
851 |
/// This function finds the bi-node-connected cut nodes in the given |
|
852 |
/// undirected graph. |
|
811 | 853 |
/// |
812 |
/// \param graph The graph. |
|
813 |
/// \retval cutMap A writable edge map. The values will be set true when |
|
814 |
/// |
|
854 |
/// The bi-node-connected components are the classes of an equivalence |
|
855 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
856 |
/// same class if they are on same circle. |
|
857 |
/// The bi-node-connected components are separted by the cut nodes of |
|
858 |
/// the components. |
|
859 |
/// |
|
860 |
/// \param graph The undirected graph. |
|
861 |
/// \retval cutMap A writable node map. The values will be set to |
|
862 |
/// \c true for the nodes that separate two or more components |
|
863 |
/// (exactly once for each cut node), and will not be changed for |
|
864 |
/// other nodes. |
|
815 | 865 |
/// \return The number of the cut nodes. |
866 |
/// |
|
867 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
|
816 | 868 |
template <typename Graph, typename NodeMap> |
817 | 869 |
int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) { |
818 | 870 |
checkConcept<concepts::Graph, Graph>(); |
819 | 871 |
typedef typename Graph::Node Node; |
820 | 872 |
typedef typename Graph::NodeIt NodeIt; |
821 | 873 |
checkConcept<concepts::WriteMap<Node, bool>, NodeMap>(); |
822 | 874 |
|
823 | 875 |
using namespace _connectivity_bits; |
824 | 876 |
|
825 | 877 |
typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor; |
826 | 878 |
|
827 | 879 |
int cutNum = 0; |
828 | 880 |
Visitor visitor(graph, cutMap, cutNum); |
829 | 881 |
|
830 | 882 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
831 | 883 |
dfs.init(); |
832 | 884 |
|
833 | 885 |
for (NodeIt it(graph); it != INVALID; ++it) { |
834 | 886 |
if (!dfs.reached(it)) { |
835 | 887 |
dfs.addSource(it); |
836 | 888 |
dfs.start(); |
837 | 889 |
} |
838 | 890 |
} |
839 | 891 |
return cutNum; |
... | ... |
@@ -1010,155 +1062,173 @@ |
1010 | 1062 |
|
1011 | 1063 |
void backtrack(const Arc& edge) { |
1012 | 1064 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
1013 | 1065 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
1014 | 1066 |
} |
1015 | 1067 |
} |
1016 | 1068 |
|
1017 | 1069 |
private: |
1018 | 1070 |
const Digraph& _graph; |
1019 | 1071 |
ArcMap& _cutMap; |
1020 | 1072 |
int& _cutNum; |
1021 | 1073 |
|
1022 | 1074 |
typename Digraph::template NodeMap<int> _numMap; |
1023 | 1075 |
typename Digraph::template NodeMap<int> _retMap; |
1024 | 1076 |
typename Digraph::template NodeMap<Arc> _predMap; |
1025 | 1077 |
int _num; |
1026 | 1078 |
}; |
1027 | 1079 |
} |
1028 | 1080 |
|
1029 | 1081 |
template <typename Graph> |
1030 | 1082 |
int countBiEdgeConnectedComponents(const Graph& graph); |
1031 | 1083 |
|
1032 | 1084 |
/// \ingroup graph_properties |
1033 | 1085 |
/// |
1034 |
/// \brief |
|
1086 |
/// \brief Check whether an undirected graph is bi-edge-connected. |
|
1035 | 1087 |
/// |
1036 |
/// This function checks that the graph is bi-edge-connected. The undirected |
|
1037 |
/// graph is bi-edge-connected when any two nodes are connected with two |
|
1038 |
/// |
|
1088 |
/// This function checks whether the given undirected graph is |
|
1089 |
/// bi-edge-connected, i.e. any two nodes are connected with at least |
|
1090 |
/// two edge-disjoint paths. |
|
1039 | 1091 |
/// |
1040 |
/// \param graph The undirected graph. |
|
1041 |
/// \return The number of components. |
|
1092 |
/// \return \c true if the graph is bi-edge-connected. |
|
1093 |
/// \note By definition, the empty graph is bi-edge-connected. |
|
1094 |
/// |
|
1095 |
/// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents() |
|
1042 | 1096 |
template <typename Graph> |
1043 | 1097 |
bool biEdgeConnected(const Graph& graph) { |
1044 | 1098 |
return countBiEdgeConnectedComponents(graph) <= 1; |
1045 | 1099 |
} |
1046 | 1100 |
|
1047 | 1101 |
/// \ingroup graph_properties |
1048 | 1102 |
/// |
1049 |
/// \brief Count the bi-edge-connected components |
|
1103 |
/// \brief Count the number of bi-edge-connected components of an |
|
1104 |
/// undirected graph. |
|
1050 | 1105 |
/// |
1051 |
/// This function count the bi-edge-connected components in an undirected |
|
1052 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
1053 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
1054 |
/// connected with at least two edge-disjoint paths. |
|
1106 |
/// This function counts the number of bi-edge-connected components of |
|
1107 |
/// the given undirected graph. |
|
1055 | 1108 |
/// |
1056 |
/// \param graph The undirected graph. |
|
1057 |
/// \return The number of components. |
|
1109 |
/// The bi-edge-connected components are the classes of an equivalence |
|
1110 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
1111 |
/// same class if they are connected with at least two edge-disjoint |
|
1112 |
/// paths. |
|
1113 |
/// |
|
1114 |
/// \return The number of bi-edge-connected components. |
|
1115 |
/// |
|
1116 |
/// \see biEdgeConnected(), biEdgeConnectedComponents() |
|
1058 | 1117 |
template <typename Graph> |
1059 | 1118 |
int countBiEdgeConnectedComponents(const Graph& graph) { |
1060 | 1119 |
checkConcept<concepts::Graph, Graph>(); |
1061 | 1120 |
typedef typename Graph::NodeIt NodeIt; |
1062 | 1121 |
|
1063 | 1122 |
using namespace _connectivity_bits; |
1064 | 1123 |
|
1065 | 1124 |
typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor; |
1066 | 1125 |
|
1067 | 1126 |
int compNum = 0; |
1068 | 1127 |
Visitor visitor(graph, compNum); |
1069 | 1128 |
|
1070 | 1129 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
1071 | 1130 |
dfs.init(); |
1072 | 1131 |
|
1073 | 1132 |
for (NodeIt it(graph); it != INVALID; ++it) { |
1074 | 1133 |
if (!dfs.reached(it)) { |
1075 | 1134 |
dfs.addSource(it); |
1076 | 1135 |
dfs.start(); |
1077 | 1136 |
} |
1078 | 1137 |
} |
1079 | 1138 |
return compNum; |
1080 | 1139 |
} |
1081 | 1140 |
|
1082 | 1141 |
/// \ingroup graph_properties |
1083 | 1142 |
/// |
1084 |
/// \brief Find the bi-edge-connected components. |
|
1143 |
/// \brief Find the bi-edge-connected components of an undirected graph. |
|
1085 | 1144 |
/// |
1086 |
/// This function finds the bi-edge-connected components in an undirected |
|
1087 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
1088 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
1089 |
/// connected at least two edge-disjoint paths. |
|
1145 |
/// This function finds the bi-edge-connected components of the given |
|
1146 |
/// undirected graph. |
|
1147 |
/// |
|
1148 |
/// The bi-edge-connected components are the classes of an equivalence |
|
1149 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
1150 |
/// same class if they are connected with at least two edge-disjoint |
|
1151 |
/// paths. |
|
1090 | 1152 |
/// |
1091 | 1153 |
/// \image html edge_biconnected_components.png |
1092 | 1154 |
/// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
1093 | 1155 |
/// |
1094 |
/// \param graph The graph. |
|
1156 |
/// \param graph The undirected graph. |
|
1095 | 1157 |
/// \retval compMap A writable node map. The values will be set from 0 to |
1096 |
/// the number of the biconnected components minus one. Each values |
|
1097 |
/// of the map will be set exactly once, the values of a certain component |
|
1098 |
/// will be set continuously. |
|
1099 |
/// \return The number of components. |
|
1158 |
/// the number of the bi-edge-connected components minus one. Each value |
|
1159 |
/// of the map will be set exactly once, and the values of a certain |
|
1160 |
/// component will be set continuously. |
|
1161 |
/// \return The number of bi-edge-connected components. |
|
1162 |
/// |
|
1163 |
/// \see biEdgeConnected(), countBiEdgeConnectedComponents() |
|
1100 | 1164 |
template <typename Graph, typename NodeMap> |
1101 | 1165 |
int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) { |
1102 | 1166 |
checkConcept<concepts::Graph, Graph>(); |
1103 | 1167 |
typedef typename Graph::NodeIt NodeIt; |
1104 | 1168 |
typedef typename Graph::Node Node; |
1105 | 1169 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
1106 | 1170 |
|
1107 | 1171 |
using namespace _connectivity_bits; |
1108 | 1172 |
|
1109 | 1173 |
typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor; |
1110 | 1174 |
|
1111 | 1175 |
int compNum = 0; |
1112 | 1176 |
Visitor visitor(graph, compMap, compNum); |
1113 | 1177 |
|
1114 | 1178 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
1115 | 1179 |
dfs.init(); |
1116 | 1180 |
|
1117 | 1181 |
for (NodeIt it(graph); it != INVALID; ++it) { |
1118 | 1182 |
if (!dfs.reached(it)) { |
1119 | 1183 |
dfs.addSource(it); |
1120 | 1184 |
dfs.start(); |
1121 | 1185 |
} |
1122 | 1186 |
} |
1123 | 1187 |
return compNum; |
1124 | 1188 |
} |
1125 | 1189 |
|
1126 | 1190 |
/// \ingroup graph_properties |
1127 | 1191 |
/// |
1128 |
/// \brief Find the bi-edge-connected cut edges. |
|
1192 |
/// \brief Find the bi-edge-connected cut edges in an undirected graph. |
|
1129 | 1193 |
/// |
1130 |
/// This function finds the bi-edge-connected components in an undirected |
|
1131 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
1132 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
1133 |
/// connected with at least two edge-disjoint paths. The bi-edge-connected |
|
1134 |
/// components are separted by edges which are the cut edges of the |
|
1135 |
/// components. |
|
1194 |
/// This function finds the bi-edge-connected cut edges in the given |
|
1195 |
/// undirected graph. |
|
1136 | 1196 |
/// |
1137 |
/// \param graph The graph. |
|
1138 |
/// \retval cutMap A writable node map. The values will be set true when the |
|
1139 |
/// edge |
|
1197 |
/// The bi-edge-connected components are the classes of an equivalence |
|
1198 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
1199 |
/// same class if they are connected with at least two edge-disjoint |
|
1200 |
/// paths. |
|
1201 |
/// The bi-edge-connected components are separted by the cut edges of |
|
1202 |
/// the components. |
|
1203 |
/// |
|
1204 |
/// \param graph The undirected graph. |
|
1205 |
/// \retval cutMap A writable edge map. The values will be set to \c true |
|
1206 |
/// for the cut edges (exactly once for each cut edge), and will not be |
|
1207 |
/// changed for other edges. |
|
1140 | 1208 |
/// \return The number of cut edges. |
1209 |
/// |
|
1210 |
/// \see biEdgeConnected(), biEdgeConnectedComponents() |
|
1141 | 1211 |
template <typename Graph, typename EdgeMap> |
1142 | 1212 |
int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) { |
1143 | 1213 |
checkConcept<concepts::Graph, Graph>(); |
1144 | 1214 |
typedef typename Graph::NodeIt NodeIt; |
1145 | 1215 |
typedef typename Graph::Edge Edge; |
1146 | 1216 |
checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>(); |
1147 | 1217 |
|
1148 | 1218 |
using namespace _connectivity_bits; |
1149 | 1219 |
|
1150 | 1220 |
typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor; |
1151 | 1221 |
|
1152 | 1222 |
int cutNum = 0; |
1153 | 1223 |
Visitor visitor(graph, cutMap, cutNum); |
1154 | 1224 |
|
1155 | 1225 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
1156 | 1226 |
dfs.init(); |
1157 | 1227 |
|
1158 | 1228 |
for (NodeIt it(graph); it != INVALID; ++it) { |
1159 | 1229 |
if (!dfs.reached(it)) { |
1160 | 1230 |
dfs.addSource(it); |
1161 | 1231 |
dfs.start(); |
1162 | 1232 |
} |
1163 | 1233 |
} |
1164 | 1234 |
return cutNum; |
... | ... |
@@ -1168,239 +1238,239 @@ |
1168 | 1238 |
namespace _connectivity_bits { |
1169 | 1239 |
|
1170 | 1240 |
template <typename Digraph, typename IntNodeMap> |
1171 | 1241 |
class TopologicalSortVisitor : public DfsVisitor<Digraph> { |
1172 | 1242 |
public: |
1173 | 1243 |
typedef typename Digraph::Node Node; |
1174 | 1244 |
typedef typename Digraph::Arc edge; |
1175 | 1245 |
|
1176 | 1246 |
TopologicalSortVisitor(IntNodeMap& order, int num) |
1177 | 1247 |
: _order(order), _num(num) {} |
1178 | 1248 |
|
1179 | 1249 |
void leave(const Node& node) { |
1180 | 1250 |
_order.set(node, --_num); |
1181 | 1251 |
} |
1182 | 1252 |
|
1183 | 1253 |
private: |
1184 | 1254 |
IntNodeMap& _order; |
1185 | 1255 |
int _num; |
1186 | 1256 |
}; |
1187 | 1257 |
|
1188 | 1258 |
} |
1189 | 1259 |
|
1190 | 1260 |
/// \ingroup graph_properties |
1191 | 1261 |
/// |
1262 |
/// \brief Check whether a digraph is DAG. |
|
1263 |
/// |
|
1264 |
/// This function checks whether the given digraph is DAG, i.e. |
|
1265 |
/// \e Directed \e Acyclic \e Graph. |
|
1266 |
/// \return \c true if there is no directed cycle in the digraph. |
|
1267 |
/// \see acyclic() |
|
1268 |
template <typename Digraph> |
|
1269 |
bool dag(const Digraph& digraph) { |
|
1270 |
|
|
1271 |
checkConcept<concepts::Digraph, Digraph>(); |
|
1272 |
|
|
1273 |
typedef typename Digraph::Node Node; |
|
1274 |
typedef typename Digraph::NodeIt NodeIt; |
|
1275 |
typedef typename Digraph::Arc Arc; |
|
1276 |
|
|
1277 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|
1278 |
|
|
1279 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
|
1280 |
Create dfs(digraph); |
|
1281 |
|
|
1282 |
ProcessedMap processed(digraph); |
|
1283 |
dfs.processedMap(processed); |
|
1284 |
|
|
1285 |
dfs.init(); |
|
1286 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
1287 |
if (!dfs.reached(it)) { |
|
1288 |
dfs.addSource(it); |
|
1289 |
while (!dfs.emptyQueue()) { |
|
1290 |
Arc arc = dfs.nextArc(); |
|
1291 |
Node target = digraph.target(arc); |
|
1292 |
if (dfs.reached(target) && !processed[target]) { |
|
1293 |
return false; |
|
1294 |
} |
|
1295 |
dfs.processNextArc(); |
|
1296 |
} |
|
1297 |
} |
|
1298 |
} |
|
1299 |
return true; |
|
1300 |
} |
|
1301 |
|
|
1302 |
/// \ingroup graph_properties |
|
1303 |
/// |
|
1192 | 1304 |
/// \brief Sort the nodes of a DAG into topolgical order. |
1193 | 1305 |
/// |
1194 |
/// |
|
1306 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
|
1307 |
/// into topolgical order. |
|
1195 | 1308 |
/// |
1196 |
/// \param |
|
1309 |
/// \param digraph The digraph, which must be DAG. |
|
1197 | 1310 |
/// \retval order A writable node map. The values will be set from 0 to |
1198 |
/// the number of the nodes in the graph minus one. Each values of the map |
|
1199 |
/// will be set exactly once, the values will be set descending order. |
|
1311 |
/// the number of the nodes in the digraph minus one. Each value of the |
|
1312 |
/// map will be set exactly once, and the values will be set descending |
|
1313 |
/// order. |
|
1200 | 1314 |
/// |
1201 |
/// \see checkedTopologicalSort |
|
1202 |
/// \see dag |
|
1315 |
/// \see dag(), checkedTopologicalSort() |
|
1203 | 1316 |
template <typename Digraph, typename NodeMap> |
1204 |
void topologicalSort(const Digraph& |
|
1317 |
void topologicalSort(const Digraph& digraph, NodeMap& order) { |
|
1205 | 1318 |
using namespace _connectivity_bits; |
1206 | 1319 |
|
1207 | 1320 |
checkConcept<concepts::Digraph, Digraph>(); |
1208 | 1321 |
checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>(); |
1209 | 1322 |
|
1210 | 1323 |
typedef typename Digraph::Node Node; |
1211 | 1324 |
typedef typename Digraph::NodeIt NodeIt; |
1212 | 1325 |
typedef typename Digraph::Arc Arc; |
1213 | 1326 |
|
1214 | 1327 |
TopologicalSortVisitor<Digraph, NodeMap> |
1215 |
visitor(order, countNodes( |
|
1328 |
visitor(order, countNodes(digraph)); |
|
1216 | 1329 |
|
1217 | 1330 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
1218 |
dfs( |
|
1331 |
dfs(digraph, visitor); |
|
1219 | 1332 |
|
1220 | 1333 |
dfs.init(); |
1221 |
for (NodeIt it( |
|
1334 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
1222 | 1335 |
if (!dfs.reached(it)) { |
1223 | 1336 |
dfs.addSource(it); |
1224 | 1337 |
dfs.start(); |
1225 | 1338 |
} |
1226 | 1339 |
} |
1227 | 1340 |
} |
1228 | 1341 |
|
1229 | 1342 |
/// \ingroup graph_properties |
1230 | 1343 |
/// |
1231 | 1344 |
/// \brief Sort the nodes of a DAG into topolgical order. |
1232 | 1345 |
/// |
1233 |
/// Sort the nodes of a DAG into topolgical order. It also checks |
|
1234 |
/// that the given graph is DAG. |
|
1346 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
|
1347 |
/// into topolgical order and also checks whether the given digraph |
|
1348 |
/// is DAG. |
|
1235 | 1349 |
/// |
1236 |
/// \param digraph The graph. It must be directed and acyclic. |
|
1237 |
/// \retval order A readable - writable node map. The values will be set |
|
1238 |
/// from 0 to the number of the nodes in the graph minus one. Each values |
|
1239 |
/// of the map will be set exactly once, the values will be set descending |
|
1240 |
/// order. |
|
1241 |
/// \return \c false when the graph is not DAG. |
|
1350 |
/// \param digraph The digraph. |
|
1351 |
/// \retval order A readable and writable node map. The values will be |
|
1352 |
/// set from 0 to the number of the nodes in the digraph minus one. |
|
1353 |
/// Each value of the map will be set exactly once, and the values will |
|
1354 |
/// be set descending order. |
|
1355 |
/// \return \c false if the digraph is not DAG. |
|
1242 | 1356 |
/// |
1243 |
/// \see topologicalSort |
|
1244 |
/// \see dag |
|
1357 |
/// \see dag(), topologicalSort() |
|
1245 | 1358 |
template <typename Digraph, typename NodeMap> |
1246 | 1359 |
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) { |
1247 | 1360 |
using namespace _connectivity_bits; |
1248 | 1361 |
|
1249 | 1362 |
checkConcept<concepts::Digraph, Digraph>(); |
1250 | 1363 |
checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>, |
1251 | 1364 |
NodeMap>(); |
1252 | 1365 |
|
1253 | 1366 |
typedef typename Digraph::Node Node; |
1254 | 1367 |
typedef typename Digraph::NodeIt NodeIt; |
1255 | 1368 |
typedef typename Digraph::Arc Arc; |
1256 | 1369 |
|
1257 | 1370 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
1258 | 1371 |
order.set(it, -1); |
1259 | 1372 |
} |
1260 | 1373 |
|
1261 | 1374 |
TopologicalSortVisitor<Digraph, NodeMap> |
1262 | 1375 |
visitor(order, countNodes(digraph)); |
1263 | 1376 |
|
1264 | 1377 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
1265 | 1378 |
dfs(digraph, visitor); |
1266 | 1379 |
|
1267 | 1380 |
dfs.init(); |
1268 | 1381 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
1269 | 1382 |
if (!dfs.reached(it)) { |
1270 | 1383 |
dfs.addSource(it); |
1271 | 1384 |
while (!dfs.emptyQueue()) { |
1272 | 1385 |
Arc arc = dfs.nextArc(); |
1273 | 1386 |
Node target = digraph.target(arc); |
1274 | 1387 |
if (dfs.reached(target) && order[target] == -1) { |
1275 | 1388 |
return false; |
1276 | 1389 |
} |
1277 | 1390 |
dfs.processNextArc(); |
1278 | 1391 |
} |
1279 | 1392 |
} |
1280 | 1393 |
} |
1281 | 1394 |
return true; |
1282 | 1395 |
} |
1283 | 1396 |
|
1284 | 1397 |
/// \ingroup graph_properties |
1285 | 1398 |
/// |
1286 |
/// \brief Check |
|
1399 |
/// \brief Check whether an undirected graph is acyclic. |
|
1287 | 1400 |
/// |
1288 |
/// Check that the given directed graph is a DAG. The DAG is |
|
1289 |
/// an Directed Acyclic Digraph. |
|
1290 |
/// \return \c false when the graph is not DAG. |
|
1291 |
/// \see acyclic |
|
1292 |
template <typename Digraph> |
|
1293 |
bool dag(const Digraph& digraph) { |
|
1294 |
|
|
1295 |
checkConcept<concepts::Digraph, Digraph>(); |
|
1296 |
|
|
1297 |
typedef typename Digraph::Node Node; |
|
1298 |
typedef typename Digraph::NodeIt NodeIt; |
|
1299 |
typedef typename Digraph::Arc Arc; |
|
1300 |
|
|
1301 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|
1302 |
|
|
1303 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
|
1304 |
Create dfs(digraph); |
|
1305 |
|
|
1306 |
ProcessedMap processed(digraph); |
|
1307 |
dfs.processedMap(processed); |
|
1308 |
|
|
1309 |
dfs.init(); |
|
1310 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
1311 |
if (!dfs.reached(it)) { |
|
1312 |
dfs.addSource(it); |
|
1313 |
while (!dfs.emptyQueue()) { |
|
1314 |
Arc edge = dfs.nextArc(); |
|
1315 |
Node target = digraph.target(edge); |
|
1316 |
if (dfs.reached(target) && !processed[target]) { |
|
1317 |
return false; |
|
1318 |
} |
|
1319 |
dfs.processNextArc(); |
|
1320 |
} |
|
1321 |
} |
|
1322 |
} |
|
1323 |
return true; |
|
1324 |
} |
|
1325 |
|
|
1326 |
/// \ingroup graph_properties |
|
1327 |
/// |
|
1328 |
/// \brief Check that the given undirected graph is acyclic. |
|
1329 |
/// |
|
1330 |
/// Check that the given undirected graph acyclic. |
|
1331 |
/// \param graph The undirected graph. |
|
1332 |
/// \return \c true when there is no circle in the graph. |
|
1333 |
/// \see dag |
|
1401 |
/// This function checks whether the given undirected graph is acyclic. |
|
1402 |
/// \return \c true if there is no cycle in the graph. |
|
1403 |
/// \see dag() |
|
1334 | 1404 |
template <typename Graph> |
1335 | 1405 |
bool acyclic(const Graph& graph) { |
1336 | 1406 |
checkConcept<concepts::Graph, Graph>(); |
1337 | 1407 |
typedef typename Graph::Node Node; |
1338 | 1408 |
typedef typename Graph::NodeIt NodeIt; |
1339 | 1409 |
typedef typename Graph::Arc Arc; |
1340 | 1410 |
Dfs<Graph> dfs(graph); |
1341 | 1411 |
dfs.init(); |
1342 | 1412 |
for (NodeIt it(graph); it != INVALID; ++it) { |
1343 | 1413 |
if (!dfs.reached(it)) { |
1344 | 1414 |
dfs.addSource(it); |
1345 | 1415 |
while (!dfs.emptyQueue()) { |
1346 |
Arc edge = dfs.nextArc(); |
|
1347 |
Node source = graph.source(edge); |
|
1348 |
|
|
1416 |
Arc arc = dfs.nextArc(); |
|
1417 |
Node source = graph.source(arc); |
|
1418 |
Node target = graph.target(arc); |
|
1349 | 1419 |
if (dfs.reached(target) && |
1350 |
dfs.predArc(source) != graph.oppositeArc( |
|
1420 |
dfs.predArc(source) != graph.oppositeArc(arc)) { |
|
1351 | 1421 |
return false; |
1352 | 1422 |
} |
1353 | 1423 |
dfs.processNextArc(); |
1354 | 1424 |
} |
1355 | 1425 |
} |
1356 | 1426 |
} |
1357 | 1427 |
return true; |
1358 | 1428 |
} |
1359 | 1429 |
|
1360 | 1430 |
/// \ingroup graph_properties |
1361 | 1431 |
/// |
1362 |
/// \brief Check |
|
1432 |
/// \brief Check whether an undirected graph is tree. |
|
1363 | 1433 |
/// |
1364 |
/// Check that the given undirected graph is tree. |
|
1365 |
/// \param graph The undirected graph. |
|
1366 |
/// |
|
1434 |
/// This function checks whether the given undirected graph is tree. |
|
1435 |
/// \return \c true if the graph is acyclic and connected. |
|
1436 |
/// \see acyclic(), connected() |
|
1367 | 1437 |
template <typename Graph> |
1368 | 1438 |
bool tree(const Graph& graph) { |
1369 | 1439 |
checkConcept<concepts::Graph, Graph>(); |
1370 | 1440 |
typedef typename Graph::Node Node; |
1371 | 1441 |
typedef typename Graph::NodeIt NodeIt; |
1372 | 1442 |
typedef typename Graph::Arc Arc; |
1373 | 1443 |
if (NodeIt(graph) == INVALID) return true; |
1374 | 1444 |
Dfs<Graph> dfs(graph); |
1375 | 1445 |
dfs.init(); |
1376 | 1446 |
dfs.addSource(NodeIt(graph)); |
1377 | 1447 |
while (!dfs.emptyQueue()) { |
1378 |
Arc edge = dfs.nextArc(); |
|
1379 |
Node source = graph.source(edge); |
|
1380 |
|
|
1448 |
Arc arc = dfs.nextArc(); |
|
1449 |
Node source = graph.source(arc); |
|
1450 |
Node target = graph.target(arc); |
|
1381 | 1451 |
if (dfs.reached(target) && |
1382 |
dfs.predArc(source) != graph.oppositeArc( |
|
1452 |
dfs.predArc(source) != graph.oppositeArc(arc)) { |
|
1383 | 1453 |
return false; |
1384 | 1454 |
} |
1385 | 1455 |
dfs.processNextArc(); |
1386 | 1456 |
} |
1387 | 1457 |
for (NodeIt it(graph); it != INVALID; ++it) { |
1388 | 1458 |
if (!dfs.reached(it)) { |
1389 | 1459 |
return false; |
1390 | 1460 |
} |
1391 | 1461 |
} |
1392 | 1462 |
return true; |
1393 | 1463 |
} |
1394 | 1464 |
|
1395 | 1465 |
namespace _connectivity_bits { |
1396 | 1466 |
|
1397 | 1467 |
template <typename Digraph> |
1398 | 1468 |
class BipartiteVisitor : public BfsVisitor<Digraph> { |
1399 | 1469 |
public: |
1400 | 1470 |
typedef typename Digraph::Arc Arc; |
1401 | 1471 |
typedef typename Digraph::Node Node; |
1402 | 1472 |
|
1403 | 1473 |
BipartiteVisitor(const Digraph& graph, bool& bipartite) |
1404 | 1474 |
: _graph(graph), _part(graph), _bipartite(bipartite) {} |
1405 | 1475 |
|
1406 | 1476 |
void start(const Node& node) { |
... | ... |
@@ -1431,155 +1501,165 @@ |
1431 | 1501 |
PartMap& part, bool& bipartite) |
1432 | 1502 |
: _graph(graph), _part(part), _bipartite(bipartite) {} |
1433 | 1503 |
|
1434 | 1504 |
void start(const Node& node) { |
1435 | 1505 |
_part.set(node, true); |
1436 | 1506 |
} |
1437 | 1507 |
void discover(const Arc& edge) { |
1438 | 1508 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
1439 | 1509 |
} |
1440 | 1510 |
void examine(const Arc& edge) { |
1441 | 1511 |
_bipartite = _bipartite && |
1442 | 1512 |
_part[_graph.target(edge)] != _part[_graph.source(edge)]; |
1443 | 1513 |
} |
1444 | 1514 |
|
1445 | 1515 |
private: |
1446 | 1516 |
|
1447 | 1517 |
const Digraph& _graph; |
1448 | 1518 |
PartMap& _part; |
1449 | 1519 |
bool& _bipartite; |
1450 | 1520 |
}; |
1451 | 1521 |
} |
1452 | 1522 |
|
1453 | 1523 |
/// \ingroup graph_properties |
1454 | 1524 |
/// |
1455 |
/// \brief Check |
|
1525 |
/// \brief Check whether an undirected graph is bipartite. |
|
1456 | 1526 |
/// |
1457 |
/// The function checks if the given undirected \c graph graph is bipartite |
|
1458 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
|
1459 |
/// \param graph The undirected graph. |
|
1460 |
/// \return \c true if \c graph is bipartite, \c false otherwise. |
|
1461 |
/// |
|
1527 |
/// The function checks whether the given undirected graph is bipartite. |
|
1528 |
/// \return \c true if the graph is bipartite. |
|
1529 |
/// |
|
1530 |
/// \see bipartitePartitions() |
|
1462 | 1531 |
template<typename Graph> |
1463 |
|
|
1532 |
bool bipartite(const Graph &graph){ |
|
1464 | 1533 |
using namespace _connectivity_bits; |
1465 | 1534 |
|
1466 | 1535 |
checkConcept<concepts::Graph, Graph>(); |
1467 | 1536 |
|
1468 | 1537 |
typedef typename Graph::NodeIt NodeIt; |
1469 | 1538 |
typedef typename Graph::ArcIt ArcIt; |
1470 | 1539 |
|
1471 | 1540 |
bool bipartite = true; |
1472 | 1541 |
|
1473 | 1542 |
BipartiteVisitor<Graph> |
1474 | 1543 |
visitor(graph, bipartite); |
1475 | 1544 |
BfsVisit<Graph, BipartiteVisitor<Graph> > |
1476 | 1545 |
bfs(graph, visitor); |
1477 | 1546 |
bfs.init(); |
1478 | 1547 |
for(NodeIt it(graph); it != INVALID; ++it) { |
1479 | 1548 |
if(!bfs.reached(it)){ |
1480 | 1549 |
bfs.addSource(it); |
1481 | 1550 |
while (!bfs.emptyQueue()) { |
1482 | 1551 |
bfs.processNextNode(); |
1483 | 1552 |
if (!bipartite) return false; |
1484 | 1553 |
} |
1485 | 1554 |
} |
1486 | 1555 |
} |
1487 | 1556 |
return true; |
1488 | 1557 |
} |
1489 | 1558 |
|
1490 | 1559 |
/// \ingroup graph_properties |
1491 | 1560 |
/// |
1492 |
/// \brief |
|
1561 |
/// \brief Find the bipartite partitions of an undirected graph. |
|
1493 | 1562 |
/// |
1494 |
/// The function checks if the given undirected graph is bipartite |
|
1495 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
|
1496 |
/// During the execution, the \c partMap will be set as the two |
|
1497 |
/// partitions of the graph. |
|
1563 |
/// This function checks whether the given undirected graph is bipartite |
|
1564 |
/// and gives back the bipartite partitions. |
|
1498 | 1565 |
/// |
1499 | 1566 |
/// \image html bipartite_partitions.png |
1500 | 1567 |
/// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth |
1501 | 1568 |
/// |
1502 | 1569 |
/// \param graph The undirected graph. |
1503 |
/// \retval partMap A writable bool map of nodes. It will be set as the |
|
1504 |
/// two partitions of the graph. |
|
1505 |
/// \ |
|
1570 |
/// \retval partMap A writable node map of \c bool (or convertible) value |
|
1571 |
/// type. The values will be set to \c true for one component and |
|
1572 |
/// \c false for the other one. |
|
1573 |
/// \return \c true if the graph is bipartite, \c false otherwise. |
|
1574 |
/// |
|
1575 |
/// \see bipartite() |
|
1506 | 1576 |
template<typename Graph, typename NodeMap> |
1507 |
|
|
1577 |
bool bipartitePartitions(const Graph &graph, NodeMap &partMap){ |
|
1508 | 1578 |
using namespace _connectivity_bits; |
1509 | 1579 |
|
1510 | 1580 |
checkConcept<concepts::Graph, Graph>(); |
1581 |
checkConcept<concepts::WriteMap<typename Graph::Node, bool>, NodeMap>(); |
|
1511 | 1582 |
|
1512 | 1583 |
typedef typename Graph::Node Node; |
1513 | 1584 |
typedef typename Graph::NodeIt NodeIt; |
1514 | 1585 |
typedef typename Graph::ArcIt ArcIt; |
1515 | 1586 |
|
1516 | 1587 |
bool bipartite = true; |
1517 | 1588 |
|
1518 | 1589 |
BipartitePartitionsVisitor<Graph, NodeMap> |
1519 | 1590 |
visitor(graph, partMap, bipartite); |
1520 | 1591 |
BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> > |
1521 | 1592 |
bfs(graph, visitor); |
1522 | 1593 |
bfs.init(); |
1523 | 1594 |
for(NodeIt it(graph); it != INVALID; ++it) { |
1524 | 1595 |
if(!bfs.reached(it)){ |
1525 | 1596 |
bfs.addSource(it); |
1526 | 1597 |
while (!bfs.emptyQueue()) { |
1527 | 1598 |
bfs.processNextNode(); |
1528 | 1599 |
if (!bipartite) return false; |
1529 | 1600 |
} |
1530 | 1601 |
} |
1531 | 1602 |
} |
1532 | 1603 |
return true; |
1533 | 1604 |
} |
1534 | 1605 |
|
1535 |
/// \ |
|
1606 |
/// \ingroup graph_properties |
|
1536 | 1607 |
/// |
1537 |
/// Returns true when there are not loop edges in the graph. |
|
1538 |
template <typename Digraph> |
|
1539 |
bool loopFree(const Digraph& digraph) { |
|
1540 |
for (typename Digraph::ArcIt it(digraph); it != INVALID; ++it) { |
|
1541 |
|
|
1608 |
/// \brief Check whether the given graph contains no loop arcs/edges. |
|
1609 |
/// |
|
1610 |
/// This function returns \c true if there are no loop arcs/edges in |
|
1611 |
/// the given graph. It works for both directed and undirected graphs. |
|
1612 |
template <typename Graph> |
|
1613 |
bool loopFree(const Graph& graph) { |
|
1614 |
for (typename Graph::ArcIt it(graph); it != INVALID; ++it) { |
|
1615 |
if (graph.source(it) == graph.target(it)) return false; |
|
1542 | 1616 |
} |
1543 | 1617 |
return true; |
1544 | 1618 |
} |
1545 | 1619 |
|
1546 |
/// \ |
|
1620 |
/// \ingroup graph_properties |
|
1547 | 1621 |
/// |
1548 |
/// |
|
1622 |
/// \brief Check whether the given graph contains no parallel arcs/edges. |
|
1623 |
/// |
|
1624 |
/// This function returns \c true if there are no parallel arcs/edges in |
|
1625 |
/// the given graph. It works for both directed and undirected graphs. |
|
1549 | 1626 |
template <typename Graph> |
1550 | 1627 |
bool parallelFree(const Graph& graph) { |
1551 | 1628 |
typename Graph::template NodeMap<int> reached(graph, 0); |
1552 | 1629 |
int cnt = 1; |
1553 | 1630 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
1554 | 1631 |
for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) { |
1555 | 1632 |
if (reached[graph.target(a)] == cnt) return false; |
1556 | 1633 |
reached[graph.target(a)] = cnt; |
1557 | 1634 |
} |
1558 | 1635 |
++cnt; |
1559 | 1636 |
} |
1560 | 1637 |
return true; |
1561 | 1638 |
} |
1562 | 1639 |
|
1563 |
/// \brief Returns true when there are not loop edges and parallel |
|
1564 |
/// edges in the graph. |
|
1640 |
/// \ingroup graph_properties |
|
1565 | 1641 |
/// |
1566 |
/// Returns true when there are not loop edges and parallel edges in |
|
1567 |
/// the graph. |
|
1642 |
/// \brief Check whether the given graph is simple. |
|
1643 |
/// |
|
1644 |
/// This function returns \c true if the given graph is simple, i.e. |
|
1645 |
/// it contains no loop arcs/edges and no parallel arcs/edges. |
|
1646 |
/// The function works for both directed and undirected graphs. |
|
1647 |
/// \see loopFree(), parallelFree() |
|
1568 | 1648 |
template <typename Graph> |
1569 | 1649 |
bool simpleGraph(const Graph& graph) { |
1570 | 1650 |
typename Graph::template NodeMap<int> reached(graph, 0); |
1571 | 1651 |
int cnt = 1; |
1572 | 1652 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
1573 | 1653 |
reached[n] = cnt; |
1574 | 1654 |
for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) { |
1575 | 1655 |
if (reached[graph.target(a)] == cnt) return false; |
1576 | 1656 |
reached[graph.target(a)] = cnt; |
1577 | 1657 |
} |
1578 | 1658 |
++cnt; |
1579 | 1659 |
} |
1580 | 1660 |
return true; |
1581 | 1661 |
} |
1582 | 1662 |
|
1583 | 1663 |
} //namespace lemon |
1584 | 1664 |
|
1585 | 1665 |
#endif //LEMON_CONNECTIVITY_H |
... | ... |
@@ -223,52 +223,52 @@ |
223 | 223 |
visited[narc[s]]=true; |
224 | 224 |
Node n=g.target(narc[s]); |
225 | 225 |
++narc[s]; |
226 | 226 |
s=n; |
227 | 227 |
} |
228 | 228 |
} |
229 | 229 |
return *this; |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
///Postfix incrementation |
233 | 233 |
|
234 | 234 |
/// Postfix incrementation. |
235 | 235 |
/// |
236 | 236 |
///\warning This incrementation returns an \c Arc (which converts to |
237 | 237 |
///an \c Edge), not an \ref EulerIt, as one may expect. |
238 | 238 |
Arc operator++(int) |
239 | 239 |
{ |
240 | 240 |
Arc e=*this; |
241 | 241 |
++(*this); |
242 | 242 |
return e; |
243 | 243 |
} |
244 | 244 |
}; |
245 | 245 |
|
246 | 246 |
|
247 |
///Check if the given graph is |
|
247 |
///Check if the given graph is Eulerian |
|
248 | 248 |
|
249 | 249 |
/// \ingroup graph_properties |
250 |
///This function checks if the given graph is |
|
250 |
///This function checks if the given graph is Eulerian. |
|
251 | 251 |
///It works for both directed and undirected graphs. |
252 | 252 |
/// |
253 | 253 |
///By definition, a digraph is called \e Eulerian if |
254 | 254 |
///and only if it is connected and the number of incoming and outgoing |
255 | 255 |
///arcs are the same for each node. |
256 | 256 |
///Similarly, an undirected graph is called \e Eulerian if |
257 | 257 |
///and only if it is connected and the number of incident edges is even |
258 | 258 |
///for each node. |
259 | 259 |
/// |
260 | 260 |
///\note There are (di)graphs that are not Eulerian, but still have an |
261 | 261 |
/// Euler tour, since they may contain isolated nodes. |
262 | 262 |
/// |
263 | 263 |
///\sa DiEulerIt, EulerIt |
264 | 264 |
template<typename GR> |
265 | 265 |
#ifdef DOXYGEN |
266 | 266 |
bool |
267 | 267 |
#else |
268 | 268 |
typename enable_if<UndirectedTagIndicator<GR>,bool>::type |
269 | 269 |
eulerian(const GR &g) |
270 | 270 |
{ |
271 | 271 |
for(typename GR::NodeIt n(g);n!=INVALID;++n) |
272 | 272 |
if(countIncEdges(g,n)%2) return false; |
273 | 273 |
return connected(g); |
274 | 274 |
} |
0 comments (0 inline)