0
2
0
303
223
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CONNECTIVITY_H |
| 20 | 20 |
#define LEMON_CONNECTIVITY_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/dfs.h> |
| 23 | 23 |
#include <lemon/bfs.h> |
| 24 | 24 |
#include <lemon/core.h> |
| 25 | 25 |
#include <lemon/maps.h> |
| 26 | 26 |
#include <lemon/adaptors.h> |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/concepts/digraph.h> |
| 29 | 29 |
#include <lemon/concepts/graph.h> |
| 30 | 30 |
#include <lemon/concept_check.h> |
| 31 | 31 |
|
| 32 | 32 |
#include <stack> |
| 33 | 33 |
#include <functional> |
| 34 | 34 |
|
| 35 | 35 |
/// \ingroup graph_properties |
| 36 | 36 |
/// \file |
| 37 | 37 |
/// \brief Connectivity algorithms |
| 38 | 38 |
/// |
| 39 | 39 |
/// Connectivity algorithms |
| 40 | 40 |
|
| 41 | 41 |
namespace lemon {
|
| 42 | 42 |
|
| 43 | 43 |
/// \ingroup graph_properties |
| 44 | 44 |
/// |
| 45 |
/// \brief Check whether |
|
| 45 |
/// \brief Check whether an undirected graph is connected. |
|
| 46 | 46 |
/// |
| 47 |
/// Check whether the given undirected graph is connected. |
|
| 48 |
/// \param graph The undirected graph. |
|
| 49 |
/// |
|
| 47 |
/// This function checks whether the given undirected graph is connected, |
|
| 48 |
/// i.e. there is a path between any two nodes in the graph. |
|
| 49 |
/// |
|
| 50 |
/// \return \c true if the graph is connected. |
|
| 50 | 51 |
/// \note By definition, the empty graph is connected. |
| 52 |
/// |
|
| 53 |
/// \see countConnectedComponents(), connectedComponents() |
|
| 54 |
/// \see stronglyConnected() |
|
| 51 | 55 |
template <typename Graph> |
| 52 | 56 |
bool connected(const Graph& graph) {
|
| 53 | 57 |
checkConcept<concepts::Graph, Graph>(); |
| 54 | 58 |
typedef typename Graph::NodeIt NodeIt; |
| 55 | 59 |
if (NodeIt(graph) == INVALID) return true; |
| 56 | 60 |
Dfs<Graph> dfs(graph); |
| 57 | 61 |
dfs.run(NodeIt(graph)); |
| 58 | 62 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 59 | 63 |
if (!dfs.reached(it)) {
|
| 60 | 64 |
return false; |
| 61 | 65 |
} |
| 62 | 66 |
} |
| 63 | 67 |
return true; |
| 64 | 68 |
} |
| 65 | 69 |
|
| 66 | 70 |
/// \ingroup graph_properties |
| 67 | 71 |
/// |
| 68 | 72 |
/// \brief Count the number of connected components of an undirected graph |
| 69 | 73 |
/// |
| 70 |
/// |
|
| 74 |
/// This function counts the number of connected components of the given |
|
| 75 |
/// undirected graph. |
|
| 71 | 76 |
/// |
| 72 |
/// \param graph The graph. It must be undirected. |
|
| 73 |
/// \return The number of components |
|
| 77 |
/// The connected components are the classes of an equivalence relation |
|
| 78 |
/// on the nodes of an undirected graph. Two nodes are in the same class |
|
| 79 |
/// if they are connected with a path. |
|
| 80 |
/// |
|
| 81 |
/// \return The number of connected components. |
|
| 74 | 82 |
/// \note By definition, the empty graph consists |
| 75 | 83 |
/// of zero connected components. |
| 84 |
/// |
|
| 85 |
/// \see connected(), connectedComponents() |
|
| 76 | 86 |
template <typename Graph> |
| 77 | 87 |
int countConnectedComponents(const Graph &graph) {
|
| 78 | 88 |
checkConcept<concepts::Graph, Graph>(); |
| 79 | 89 |
typedef typename Graph::Node Node; |
| 80 | 90 |
typedef typename Graph::Arc Arc; |
| 81 | 91 |
|
| 82 | 92 |
typedef NullMap<Node, Arc> PredMap; |
| 83 | 93 |
typedef NullMap<Node, int> DistMap; |
| 84 | 94 |
|
| 85 | 95 |
int compNum = 0; |
| 86 | 96 |
typename Bfs<Graph>:: |
| 87 | 97 |
template SetPredMap<PredMap>:: |
| 88 | 98 |
template SetDistMap<DistMap>:: |
| 89 | 99 |
Create bfs(graph); |
| 90 | 100 |
|
| 91 | 101 |
PredMap predMap; |
| 92 | 102 |
bfs.predMap(predMap); |
| 93 | 103 |
|
| 94 | 104 |
DistMap distMap; |
| 95 | 105 |
bfs.distMap(distMap); |
| 96 | 106 |
|
| 97 | 107 |
bfs.init(); |
| 98 | 108 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
| 99 | 109 |
if (!bfs.reached(n)) {
|
| 100 | 110 |
bfs.addSource(n); |
| 101 | 111 |
bfs.start(); |
| 102 | 112 |
++compNum; |
| 103 | 113 |
} |
| 104 | 114 |
} |
| 105 | 115 |
return compNum; |
| 106 | 116 |
} |
| 107 | 117 |
|
| 108 | 118 |
/// \ingroup graph_properties |
| 109 | 119 |
/// |
| 110 | 120 |
/// \brief Find the connected components of an undirected graph |
| 111 | 121 |
/// |
| 112 |
/// |
|
| 122 |
/// This function finds the connected components of the given undirected |
|
| 123 |
/// graph. |
|
| 124 |
/// |
|
| 125 |
/// The connected components are the classes of an equivalence relation |
|
| 126 |
/// on the nodes of an undirected graph. Two nodes are in the same class |
|
| 127 |
/// if they are connected with a path. |
|
| 113 | 128 |
/// |
| 114 | 129 |
/// \image html connected_components.png |
| 115 | 130 |
/// \image latex connected_components.eps "Connected components" width=\textwidth |
| 116 | 131 |
/// |
| 117 |
/// \param graph The |
|
| 132 |
/// \param graph The undirected graph. |
|
| 118 | 133 |
/// \retval compMap A writable node map. The values will be set from 0 to |
| 119 |
/// the number of the connected components minus one. Each values of the map |
|
| 120 |
/// will be set exactly once, the values of a certain component will be |
|
| 134 |
/// the number of the connected components minus one. Each value of the map |
|
| 135 |
/// will be set exactly once, and the values of a certain component will be |
|
| 121 | 136 |
/// set continuously. |
| 122 |
/// \return The number of components |
|
| 137 |
/// \return The number of connected components. |
|
| 138 |
/// \note By definition, the empty graph consists |
|
| 139 |
/// of zero connected components. |
|
| 140 |
/// |
|
| 141 |
/// \see connected(), countConnectedComponents() |
|
| 123 | 142 |
template <class Graph, class NodeMap> |
| 124 | 143 |
int connectedComponents(const Graph &graph, NodeMap &compMap) {
|
| 125 | 144 |
checkConcept<concepts::Graph, Graph>(); |
| 126 | 145 |
typedef typename Graph::Node Node; |
| 127 | 146 |
typedef typename Graph::Arc Arc; |
| 128 | 147 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| 129 | 148 |
|
| 130 | 149 |
typedef NullMap<Node, Arc> PredMap; |
| 131 | 150 |
typedef NullMap<Node, int> DistMap; |
| 132 | 151 |
|
| 133 | 152 |
int compNum = 0; |
| 134 | 153 |
typename Bfs<Graph>:: |
| 135 | 154 |
template SetPredMap<PredMap>:: |
| 136 | 155 |
template SetDistMap<DistMap>:: |
| 137 | 156 |
Create bfs(graph); |
| 138 | 157 |
|
| 139 | 158 |
PredMap predMap; |
| 140 | 159 |
bfs.predMap(predMap); |
| 141 | 160 |
|
| 142 | 161 |
DistMap distMap; |
| 143 | 162 |
bfs.distMap(distMap); |
| 144 | 163 |
|
| 145 | 164 |
bfs.init(); |
| 146 | 165 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
| 147 | 166 |
if(!bfs.reached(n)) {
|
| 148 | 167 |
bfs.addSource(n); |
| 149 | 168 |
while (!bfs.emptyQueue()) {
|
| 150 | 169 |
compMap.set(bfs.nextNode(), compNum); |
| 151 | 170 |
bfs.processNextNode(); |
| 152 | 171 |
} |
| 153 | 172 |
++compNum; |
| 154 | 173 |
} |
| 155 | 174 |
} |
| 156 | 175 |
return compNum; |
| 157 | 176 |
} |
| 158 | 177 |
|
| 159 | 178 |
namespace _connectivity_bits {
|
| 160 | 179 |
|
| 161 | 180 |
template <typename Digraph, typename Iterator > |
| 162 | 181 |
struct LeaveOrderVisitor : public DfsVisitor<Digraph> {
|
| 163 | 182 |
public: |
| 164 | 183 |
typedef typename Digraph::Node Node; |
| 165 | 184 |
LeaveOrderVisitor(Iterator it) : _it(it) {}
|
| 166 | 185 |
|
| 167 | 186 |
void leave(const Node& node) {
|
| 168 | 187 |
*(_it++) = node; |
| 169 | 188 |
} |
| 170 | 189 |
|
| 171 | 190 |
private: |
| 172 | 191 |
Iterator _it; |
| 173 | 192 |
}; |
| 174 | 193 |
|
| 175 | 194 |
template <typename Digraph, typename Map> |
| 176 | 195 |
struct FillMapVisitor : public DfsVisitor<Digraph> {
|
| 177 | 196 |
public: |
| 178 | 197 |
typedef typename Digraph::Node Node; |
| 179 | 198 |
typedef typename Map::Value Value; |
| 180 | 199 |
|
| 181 | 200 |
FillMapVisitor(Map& map, Value& value) |
| 182 | 201 |
: _map(map), _value(value) {}
|
| 183 | 202 |
|
| 184 | 203 |
void reach(const Node& node) {
|
| 185 | 204 |
_map.set(node, _value); |
| 186 | 205 |
} |
| 187 | 206 |
private: |
| 188 | 207 |
Map& _map; |
| 189 | 208 |
Value& _value; |
| 190 | 209 |
}; |
| 191 | 210 |
|
| 192 | 211 |
template <typename Digraph, typename ArcMap> |
| 193 | 212 |
struct StronglyConnectedCutArcsVisitor : public DfsVisitor<Digraph> {
|
| 194 | 213 |
public: |
| 195 | 214 |
typedef typename Digraph::Node Node; |
| 196 | 215 |
typedef typename Digraph::Arc Arc; |
| 197 | 216 |
|
| 198 | 217 |
StronglyConnectedCutArcsVisitor(const Digraph& digraph, |
| 199 | 218 |
ArcMap& cutMap, |
| 200 | 219 |
int& cutNum) |
| 201 | 220 |
: _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum), |
| 202 | 221 |
_compMap(digraph, -1), _num(-1) {
|
| 203 | 222 |
} |
| 204 | 223 |
|
| 205 | 224 |
void start(const Node&) {
|
| 206 | 225 |
++_num; |
| 207 | 226 |
} |
| 208 | 227 |
|
| 209 | 228 |
void reach(const Node& node) {
|
| 210 | 229 |
_compMap.set(node, _num); |
| 211 | 230 |
} |
| 212 | 231 |
|
| 213 | 232 |
void examine(const Arc& arc) {
|
| 214 | 233 |
if (_compMap[_digraph.source(arc)] != |
| 215 | 234 |
_compMap[_digraph.target(arc)]) {
|
| 216 | 235 |
_cutMap.set(arc, true); |
| 217 | 236 |
++_cutNum; |
| 218 | 237 |
} |
| 219 | 238 |
} |
| 220 | 239 |
private: |
| 221 | 240 |
const Digraph& _digraph; |
| 222 | 241 |
ArcMap& _cutMap; |
| 223 | 242 |
int& _cutNum; |
| 224 | 243 |
|
| 225 | 244 |
typename Digraph::template NodeMap<int> _compMap; |
| 226 | 245 |
int _num; |
| 227 | 246 |
}; |
| 228 | 247 |
|
| 229 | 248 |
} |
| 230 | 249 |
|
| 231 | 250 |
|
| 232 | 251 |
/// \ingroup graph_properties |
| 233 | 252 |
/// |
| 234 |
/// \brief Check whether |
|
| 253 |
/// \brief Check whether a directed graph is strongly connected. |
|
| 235 | 254 |
/// |
| 236 |
/// Check whether the given directed graph is strongly connected. The |
|
| 237 |
/// graph is strongly connected when any two nodes of the graph are |
|
| 255 |
/// This function checks whether the given directed graph is strongly |
|
| 256 |
/// connected, i.e. any two nodes of the digraph are |
|
| 238 | 257 |
/// connected with directed paths in both direction. |
| 239 |
/// \return \c false when the graph is not strongly connected. |
|
| 240 |
/// \see connected |
|
| 241 | 258 |
/// |
| 242 |
/// \ |
|
| 259 |
/// \return \c true if the digraph is strongly connected. |
|
| 260 |
/// \note By definition, the empty digraph is strongly connected. |
|
| 261 |
/// |
|
| 262 |
/// \see countStronglyConnectedComponents(), stronglyConnectedComponents() |
|
| 263 |
/// \see connected() |
|
| 243 | 264 |
template <typename Digraph> |
| 244 | 265 |
bool stronglyConnected(const Digraph& digraph) {
|
| 245 | 266 |
checkConcept<concepts::Digraph, Digraph>(); |
| 246 | 267 |
|
| 247 | 268 |
typedef typename Digraph::Node Node; |
| 248 | 269 |
typedef typename Digraph::NodeIt NodeIt; |
| 249 | 270 |
|
| 250 | 271 |
typename Digraph::Node source = NodeIt(digraph); |
| 251 | 272 |
if (source == INVALID) return true; |
| 252 | 273 |
|
| 253 | 274 |
using namespace _connectivity_bits; |
| 254 | 275 |
|
| 255 | 276 |
typedef DfsVisitor<Digraph> Visitor; |
| 256 | 277 |
Visitor visitor; |
| 257 | 278 |
|
| 258 | 279 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| 259 | 280 |
dfs.init(); |
| 260 | 281 |
dfs.addSource(source); |
| 261 | 282 |
dfs.start(); |
| 262 | 283 |
|
| 263 | 284 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 264 | 285 |
if (!dfs.reached(it)) {
|
| 265 | 286 |
return false; |
| 266 | 287 |
} |
| 267 | 288 |
} |
| 268 | 289 |
|
| 269 | 290 |
typedef ReverseDigraph<const Digraph> RDigraph; |
| 270 | 291 |
typedef typename RDigraph::NodeIt RNodeIt; |
| 271 | 292 |
RDigraph rdigraph(digraph); |
| 272 | 293 |
|
| 273 |
typedef DfsVisitor< |
|
| 294 |
typedef DfsVisitor<RDigraph> RVisitor; |
|
| 274 | 295 |
RVisitor rvisitor; |
| 275 | 296 |
|
| 276 | 297 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| 277 | 298 |
rdfs.init(); |
| 278 | 299 |
rdfs.addSource(source); |
| 279 | 300 |
rdfs.start(); |
| 280 | 301 |
|
| 281 | 302 |
for (RNodeIt it(rdigraph); it != INVALID; ++it) {
|
| 282 | 303 |
if (!rdfs.reached(it)) {
|
| 283 | 304 |
return false; |
| 284 | 305 |
} |
| 285 | 306 |
} |
| 286 | 307 |
|
| 287 | 308 |
return true; |
| 288 | 309 |
} |
| 289 | 310 |
|
| 290 | 311 |
/// \ingroup graph_properties |
| 291 | 312 |
/// |
| 292 |
/// \brief Count the strongly connected components of a |
|
| 313 |
/// \brief Count the number of strongly connected components of a |
|
| 314 |
/// directed graph |
|
| 293 | 315 |
/// |
| 294 |
/// |
|
| 316 |
/// This function counts the number of strongly connected components of |
|
| 317 |
/// the given directed graph. |
|
| 318 |
/// |
|
| 295 | 319 |
/// The strongly connected components are the classes of an |
| 296 |
/// equivalence relation on the nodes of |
|
| 320 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
| 297 | 321 |
/// the same class if they are connected with directed paths in both |
| 298 | 322 |
/// direction. |
| 299 | 323 |
/// |
| 300 |
/// \param digraph The graph. |
|
| 301 |
/// \return The number of components |
|
| 302 |
/// \ |
|
| 324 |
/// \return The number of strongly connected components. |
|
| 325 |
/// \note By definition, the empty digraph has zero |
|
| 303 | 326 |
/// strongly connected components. |
| 327 |
/// |
|
| 328 |
/// \see stronglyConnected(), stronglyConnectedComponents() |
|
| 304 | 329 |
template <typename Digraph> |
| 305 | 330 |
int countStronglyConnectedComponents(const Digraph& digraph) {
|
| 306 | 331 |
checkConcept<concepts::Digraph, Digraph>(); |
| 307 | 332 |
|
| 308 | 333 |
using namespace _connectivity_bits; |
| 309 | 334 |
|
| 310 | 335 |
typedef typename Digraph::Node Node; |
| 311 | 336 |
typedef typename Digraph::Arc Arc; |
| 312 | 337 |
typedef typename Digraph::NodeIt NodeIt; |
| 313 | 338 |
typedef typename Digraph::ArcIt ArcIt; |
| 314 | 339 |
|
| 315 | 340 |
typedef std::vector<Node> Container; |
| 316 | 341 |
typedef typename Container::iterator Iterator; |
| 317 | 342 |
|
| 318 | 343 |
Container nodes(countNodes(digraph)); |
| 319 | 344 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
| 320 | 345 |
Visitor visitor(nodes.begin()); |
| 321 | 346 |
|
| 322 | 347 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| 323 | 348 |
dfs.init(); |
| 324 | 349 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 325 | 350 |
if (!dfs.reached(it)) {
|
| 326 | 351 |
dfs.addSource(it); |
| 327 | 352 |
dfs.start(); |
| 328 | 353 |
} |
| 329 | 354 |
} |
| 330 | 355 |
|
| 331 | 356 |
typedef typename Container::reverse_iterator RIterator; |
| 332 | 357 |
typedef ReverseDigraph<const Digraph> RDigraph; |
| 333 | 358 |
|
| 334 | 359 |
RDigraph rdigraph(digraph); |
| 335 | 360 |
|
| 336 | 361 |
typedef DfsVisitor<Digraph> RVisitor; |
| 337 | 362 |
RVisitor rvisitor; |
| 338 | 363 |
|
| 339 | 364 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| 340 | 365 |
|
| 341 | 366 |
int compNum = 0; |
| 342 | 367 |
|
| 343 | 368 |
rdfs.init(); |
| 344 | 369 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
| 345 | 370 |
if (!rdfs.reached(*it)) {
|
| 346 | 371 |
rdfs.addSource(*it); |
| 347 | 372 |
rdfs.start(); |
| 348 | 373 |
++compNum; |
| 349 | 374 |
} |
| 350 | 375 |
} |
| 351 | 376 |
return compNum; |
| 352 | 377 |
} |
| 353 | 378 |
|
| 354 | 379 |
/// \ingroup graph_properties |
| 355 | 380 |
/// |
| 356 | 381 |
/// \brief Find the strongly connected components of a directed graph |
| 357 | 382 |
/// |
| 358 |
/// Find the strongly connected components of a directed graph. The |
|
| 359 |
/// strongly connected components are the classes of an equivalence |
|
| 360 |
/// relation on the nodes of the graph. Two nodes are in |
|
| 361 |
/// relationship when there are directed paths between them in both |
|
| 362 |
/// direction. In addition, the numbering of components will satisfy |
|
| 363 |
/// that there is no arc going from a higher numbered component to |
|
| 364 |
/// |
|
| 383 |
/// This function finds the strongly connected components of the given |
|
| 384 |
/// directed graph. In addition, the numbering of the components will |
|
| 385 |
/// satisfy that there is no arc going from a higher numbered component |
|
| 386 |
/// to a lower one (i.e. it provides a topological order of the components). |
|
| 387 |
/// |
|
| 388 |
/// The strongly connected components are the classes of an |
|
| 389 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
| 390 |
/// the same class if they are connected with directed paths in both |
|
| 391 |
/// direction. |
|
| 365 | 392 |
/// |
| 366 | 393 |
/// \image html strongly_connected_components.png |
| 367 | 394 |
/// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth |
| 368 | 395 |
/// |
| 369 | 396 |
/// \param digraph The digraph. |
| 370 | 397 |
/// \retval compMap A writable node map. The values will be set from 0 to |
| 371 | 398 |
/// the number of the strongly connected components minus one. Each value |
| 372 |
/// of the map will be set exactly once, the values of a certain component |
|
| 373 |
/// will be set continuously. |
|
| 374 |
/// |
|
| 399 |
/// of the map will be set exactly once, and the values of a certain |
|
| 400 |
/// component will be set continuously. |
|
| 401 |
/// \return The number of strongly connected components. |
|
| 402 |
/// \note By definition, the empty digraph has zero |
|
| 403 |
/// strongly connected components. |
|
| 404 |
/// |
|
| 405 |
/// \see stronglyConnected(), countStronglyConnectedComponents() |
|
| 375 | 406 |
template <typename Digraph, typename NodeMap> |
| 376 | 407 |
int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
|
| 377 | 408 |
checkConcept<concepts::Digraph, Digraph>(); |
| 378 | 409 |
typedef typename Digraph::Node Node; |
| 379 | 410 |
typedef typename Digraph::NodeIt NodeIt; |
| 380 | 411 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| 381 | 412 |
|
| 382 | 413 |
using namespace _connectivity_bits; |
| 383 | 414 |
|
| 384 | 415 |
typedef std::vector<Node> Container; |
| 385 | 416 |
typedef typename Container::iterator Iterator; |
| 386 | 417 |
|
| 387 | 418 |
Container nodes(countNodes(digraph)); |
| 388 | 419 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
| 389 | 420 |
Visitor visitor(nodes.begin()); |
| 390 | 421 |
|
| 391 | 422 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| 392 | 423 |
dfs.init(); |
| 393 | 424 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 394 | 425 |
if (!dfs.reached(it)) {
|
| 395 | 426 |
dfs.addSource(it); |
| 396 | 427 |
dfs.start(); |
| 397 | 428 |
} |
| 398 | 429 |
} |
| 399 | 430 |
|
| 400 | 431 |
typedef typename Container::reverse_iterator RIterator; |
| 401 | 432 |
typedef ReverseDigraph<const Digraph> RDigraph; |
| 402 | 433 |
|
| 403 | 434 |
RDigraph rdigraph(digraph); |
| 404 | 435 |
|
| 405 | 436 |
int compNum = 0; |
| 406 | 437 |
|
| 407 | 438 |
typedef FillMapVisitor<RDigraph, NodeMap> RVisitor; |
| 408 | 439 |
RVisitor rvisitor(compMap, compNum); |
| 409 | 440 |
|
| 410 | 441 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| 411 | 442 |
|
| 412 | 443 |
rdfs.init(); |
| 413 | 444 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
| 414 | 445 |
if (!rdfs.reached(*it)) {
|
| 415 | 446 |
rdfs.addSource(*it); |
| 416 | 447 |
rdfs.start(); |
| 417 | 448 |
++compNum; |
| 418 | 449 |
} |
| 419 | 450 |
} |
| 420 | 451 |
return compNum; |
| 421 | 452 |
} |
| 422 | 453 |
|
| 423 | 454 |
/// \ingroup graph_properties |
| 424 | 455 |
/// |
| 425 | 456 |
/// \brief Find the cut arcs of the strongly connected components. |
| 426 | 457 |
/// |
| 427 |
/// Find the cut arcs of the strongly connected components. |
|
| 428 |
/// The strongly connected components are the classes of an equivalence |
|
| 429 |
/// relation on the nodes of the graph. Two nodes are in relationship |
|
| 430 |
/// when there are directed paths between them in both direction. |
|
| 458 |
/// This function finds the cut arcs of the strongly connected components |
|
| 459 |
/// of the given digraph. |
|
| 460 |
/// |
|
| 461 |
/// The strongly connected components are the classes of an |
|
| 462 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
| 463 |
/// the same class if they are connected with directed paths in both |
|
| 464 |
/// direction. |
|
| 431 | 465 |
/// The strongly connected components are separated by the cut arcs. |
| 432 | 466 |
/// |
| 433 |
/// \param graph The graph. |
|
| 434 |
/// \retval cutMap A writable node map. The values will be set true when the |
|
| 435 |
/// |
|
| 467 |
/// \param digraph The digraph. |
|
| 468 |
/// \retval cutMap A writable arc map. The values will be set to \c true |
|
| 469 |
/// for the cut arcs (exactly once for each cut arc), and will not be |
|
| 470 |
/// changed for other arcs. |
|
| 471 |
/// \return The number of cut arcs. |
|
| 436 | 472 |
/// |
| 437 |
/// \ |
|
| 473 |
/// \see stronglyConnected(), stronglyConnectedComponents() |
|
| 438 | 474 |
template <typename Digraph, typename ArcMap> |
| 439 |
int stronglyConnectedCutArcs(const Digraph& |
|
| 475 |
int stronglyConnectedCutArcs(const Digraph& digraph, ArcMap& cutMap) {
|
|
| 440 | 476 |
checkConcept<concepts::Digraph, Digraph>(); |
| 441 | 477 |
typedef typename Digraph::Node Node; |
| 442 | 478 |
typedef typename Digraph::Arc Arc; |
| 443 | 479 |
typedef typename Digraph::NodeIt NodeIt; |
| 444 | 480 |
checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>(); |
| 445 | 481 |
|
| 446 | 482 |
using namespace _connectivity_bits; |
| 447 | 483 |
|
| 448 | 484 |
typedef std::vector<Node> Container; |
| 449 | 485 |
typedef typename Container::iterator Iterator; |
| 450 | 486 |
|
| 451 |
Container nodes(countNodes( |
|
| 487 |
Container nodes(countNodes(digraph)); |
|
| 452 | 488 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
| 453 | 489 |
Visitor visitor(nodes.begin()); |
| 454 | 490 |
|
| 455 |
DfsVisit<Digraph, Visitor> dfs( |
|
| 491 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
|
| 456 | 492 |
dfs.init(); |
| 457 |
for (NodeIt it( |
|
| 493 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
| 458 | 494 |
if (!dfs.reached(it)) {
|
| 459 | 495 |
dfs.addSource(it); |
| 460 | 496 |
dfs.start(); |
| 461 | 497 |
} |
| 462 | 498 |
} |
| 463 | 499 |
|
| 464 | 500 |
typedef typename Container::reverse_iterator RIterator; |
| 465 | 501 |
typedef ReverseDigraph<const Digraph> RDigraph; |
| 466 | 502 |
|
| 467 |
RDigraph |
|
| 503 |
RDigraph rdigraph(digraph); |
|
| 468 | 504 |
|
| 469 | 505 |
int cutNum = 0; |
| 470 | 506 |
|
| 471 | 507 |
typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor; |
| 472 |
RVisitor rvisitor( |
|
| 508 |
RVisitor rvisitor(rdigraph, cutMap, cutNum); |
|
| 473 | 509 |
|
| 474 |
DfsVisit<RDigraph, RVisitor> rdfs( |
|
| 510 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
|
| 475 | 511 |
|
| 476 | 512 |
rdfs.init(); |
| 477 | 513 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
| 478 | 514 |
if (!rdfs.reached(*it)) {
|
| 479 | 515 |
rdfs.addSource(*it); |
| 480 | 516 |
rdfs.start(); |
| 481 | 517 |
} |
| 482 | 518 |
} |
| 483 | 519 |
return cutNum; |
| 484 | 520 |
} |
| 485 | 521 |
|
| 486 | 522 |
namespace _connectivity_bits {
|
| 487 | 523 |
|
| 488 | 524 |
template <typename Digraph> |
| 489 | 525 |
class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
| 490 | 526 |
public: |
| 491 | 527 |
typedef typename Digraph::Node Node; |
| 492 | 528 |
typedef typename Digraph::Arc Arc; |
| 493 | 529 |
typedef typename Digraph::Edge Edge; |
| 494 | 530 |
|
| 495 | 531 |
CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
| 496 | 532 |
: _graph(graph), _compNum(compNum), |
| 497 | 533 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
| 498 | 534 |
|
| 499 | 535 |
void start(const Node& node) {
|
| 500 | 536 |
_predMap.set(node, INVALID); |
| 501 | 537 |
} |
| 502 | 538 |
|
| 503 | 539 |
void reach(const Node& node) {
|
| 504 | 540 |
_numMap.set(node, _num); |
| 505 | 541 |
_retMap.set(node, _num); |
| 506 | 542 |
++_num; |
| 507 | 543 |
} |
| 508 | 544 |
|
| 509 | 545 |
void discover(const Arc& edge) {
|
| 510 | 546 |
_predMap.set(_graph.target(edge), _graph.source(edge)); |
| 511 | 547 |
} |
| 512 | 548 |
|
| 513 | 549 |
void examine(const Arc& edge) {
|
| 514 | 550 |
if (_graph.source(edge) == _graph.target(edge) && |
| 515 | 551 |
_graph.direction(edge)) {
|
| 516 | 552 |
++_compNum; |
| 517 | 553 |
return; |
| 518 | 554 |
} |
| 519 | 555 |
if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
|
| 520 | 556 |
return; |
| 521 | 557 |
} |
| 522 | 558 |
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
|
| 523 | 559 |
_retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
| 524 | 560 |
} |
| 525 | 561 |
} |
| 526 | 562 |
|
| 527 | 563 |
void backtrack(const Arc& edge) {
|
| 528 | 564 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 529 | 565 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 530 | 566 |
} |
| 531 | 567 |
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
|
| 532 | 568 |
++_compNum; |
| 533 | 569 |
} |
| 534 | 570 |
} |
| 535 | 571 |
|
| 536 | 572 |
private: |
| 537 | 573 |
const Digraph& _graph; |
| 538 | 574 |
int& _compNum; |
| 539 | 575 |
|
| 540 | 576 |
typename Digraph::template NodeMap<int> _numMap; |
| 541 | 577 |
typename Digraph::template NodeMap<int> _retMap; |
| 542 | 578 |
typename Digraph::template NodeMap<Node> _predMap; |
| 543 | 579 |
int _num; |
| 544 | 580 |
}; |
| 545 | 581 |
|
| 546 | 582 |
template <typename Digraph, typename ArcMap> |
| 547 | 583 |
class BiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
| 548 | 584 |
public: |
| 549 | 585 |
typedef typename Digraph::Node Node; |
| 550 | 586 |
typedef typename Digraph::Arc Arc; |
| 551 | 587 |
typedef typename Digraph::Edge Edge; |
| 552 | 588 |
|
| 553 | 589 |
BiNodeConnectedComponentsVisitor(const Digraph& graph, |
| 554 | 590 |
ArcMap& compMap, int &compNum) |
| 555 | 591 |
: _graph(graph), _compMap(compMap), _compNum(compNum), |
| 556 | 592 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
| 557 | 593 |
|
| 558 | 594 |
void start(const Node& node) {
|
| 559 | 595 |
_predMap.set(node, INVALID); |
| 560 | 596 |
} |
| 561 | 597 |
|
| 562 | 598 |
void reach(const Node& node) {
|
| 563 | 599 |
_numMap.set(node, _num); |
| 564 | 600 |
_retMap.set(node, _num); |
| 565 | 601 |
++_num; |
| 566 | 602 |
} |
| 567 | 603 |
|
| 568 | 604 |
void discover(const Arc& edge) {
|
| 569 | 605 |
Node target = _graph.target(edge); |
| 570 | 606 |
_predMap.set(target, edge); |
| 571 | 607 |
_edgeStack.push(edge); |
| 572 | 608 |
} |
| 573 | 609 |
|
| 574 | 610 |
void examine(const Arc& edge) {
|
| 575 | 611 |
Node source = _graph.source(edge); |
| 576 | 612 |
Node target = _graph.target(edge); |
| 577 | 613 |
if (source == target && _graph.direction(edge)) {
|
| 578 | 614 |
_compMap.set(edge, _compNum); |
| 579 | 615 |
++_compNum; |
| 580 | 616 |
return; |
| 581 | 617 |
} |
| 582 | 618 |
if (_numMap[target] < _numMap[source]) {
|
| 583 | 619 |
if (_predMap[source] != _graph.oppositeArc(edge)) {
|
| 584 | 620 |
_edgeStack.push(edge); |
| 585 | 621 |
} |
| 586 | 622 |
} |
| 587 | 623 |
if (_predMap[source] != INVALID && |
| 588 | 624 |
target == _graph.source(_predMap[source])) {
|
| 589 | 625 |
return; |
| 590 | 626 |
} |
| 591 | 627 |
if (_retMap[source] > _numMap[target]) {
|
| 592 | 628 |
_retMap.set(source, _numMap[target]); |
| 593 | 629 |
} |
| 594 | 630 |
} |
| 595 | 631 |
|
| 596 | 632 |
void backtrack(const Arc& edge) {
|
| 597 | 633 |
Node source = _graph.source(edge); |
| 598 | 634 |
Node target = _graph.target(edge); |
| 599 | 635 |
if (_retMap[source] > _retMap[target]) {
|
| 600 | 636 |
_retMap.set(source, _retMap[target]); |
| 601 | 637 |
} |
| 602 | 638 |
if (_numMap[source] <= _retMap[target]) {
|
| 603 | 639 |
while (_edgeStack.top() != edge) {
|
| 604 | 640 |
_compMap.set(_edgeStack.top(), _compNum); |
| 605 | 641 |
_edgeStack.pop(); |
| 606 | 642 |
} |
| 607 | 643 |
_compMap.set(edge, _compNum); |
| 608 | 644 |
_edgeStack.pop(); |
| 609 | 645 |
++_compNum; |
| 610 | 646 |
} |
| 611 | 647 |
} |
| 612 | 648 |
|
| 613 | 649 |
private: |
| 614 | 650 |
const Digraph& _graph; |
| 615 | 651 |
ArcMap& _compMap; |
| 616 | 652 |
int& _compNum; |
| 617 | 653 |
|
| 618 | 654 |
typename Digraph::template NodeMap<int> _numMap; |
| 619 | 655 |
typename Digraph::template NodeMap<int> _retMap; |
| 620 | 656 |
typename Digraph::template NodeMap<Arc> _predMap; |
| 621 | 657 |
std::stack<Edge> _edgeStack; |
| 622 | 658 |
int _num; |
| 623 | 659 |
}; |
| 624 | 660 |
|
| 625 | 661 |
|
| 626 | 662 |
template <typename Digraph, typename NodeMap> |
| 627 | 663 |
class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Digraph> {
|
| 628 | 664 |
public: |
| 629 | 665 |
typedef typename Digraph::Node Node; |
| 630 | 666 |
typedef typename Digraph::Arc Arc; |
| 631 | 667 |
typedef typename Digraph::Edge Edge; |
| 632 | 668 |
|
| 633 | 669 |
BiNodeConnectedCutNodesVisitor(const Digraph& graph, NodeMap& cutMap, |
| 634 | 670 |
int& cutNum) |
| 635 | 671 |
: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
| 636 | 672 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
| 637 | 673 |
|
| 638 | 674 |
void start(const Node& node) {
|
| 639 | 675 |
_predMap.set(node, INVALID); |
| 640 | 676 |
rootCut = false; |
| 641 | 677 |
} |
| 642 | 678 |
|
| 643 | 679 |
void reach(const Node& node) {
|
| 644 | 680 |
_numMap.set(node, _num); |
| 645 | 681 |
_retMap.set(node, _num); |
| 646 | 682 |
++_num; |
| 647 | 683 |
} |
| 648 | 684 |
|
| 649 | 685 |
void discover(const Arc& edge) {
|
| 650 | 686 |
_predMap.set(_graph.target(edge), _graph.source(edge)); |
| 651 | 687 |
} |
| 652 | 688 |
|
| 653 | 689 |
void examine(const Arc& edge) {
|
| 654 | 690 |
if (_graph.source(edge) == _graph.target(edge) && |
| 655 | 691 |
_graph.direction(edge)) {
|
| 656 | 692 |
if (!_cutMap[_graph.source(edge)]) {
|
| 657 | 693 |
_cutMap.set(_graph.source(edge), true); |
| 658 | 694 |
++_cutNum; |
| 659 | 695 |
} |
| 660 | 696 |
return; |
| 661 | 697 |
} |
| 662 | 698 |
if (_predMap[_graph.source(edge)] == _graph.target(edge)) return; |
| 663 | 699 |
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
|
| 664 | 700 |
_retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
| 665 | 701 |
} |
| 666 | 702 |
} |
| 667 | 703 |
|
| 668 | 704 |
void backtrack(const Arc& edge) {
|
| 669 | 705 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 670 | 706 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 671 | 707 |
} |
| 672 | 708 |
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
|
| 673 | 709 |
if (_predMap[_graph.source(edge)] != INVALID) {
|
| 674 | 710 |
if (!_cutMap[_graph.source(edge)]) {
|
| 675 | 711 |
_cutMap.set(_graph.source(edge), true); |
| 676 | 712 |
++_cutNum; |
| 677 | 713 |
} |
| 678 | 714 |
} else if (rootCut) {
|
| 679 | 715 |
if (!_cutMap[_graph.source(edge)]) {
|
| 680 | 716 |
_cutMap.set(_graph.source(edge), true); |
| 681 | 717 |
++_cutNum; |
| 682 | 718 |
} |
| 683 | 719 |
} else {
|
| 684 | 720 |
rootCut = true; |
| 685 | 721 |
} |
| 686 | 722 |
} |
| 687 | 723 |
} |
| 688 | 724 |
|
| 689 | 725 |
private: |
| 690 | 726 |
const Digraph& _graph; |
| 691 | 727 |
NodeMap& _cutMap; |
| 692 | 728 |
int& _cutNum; |
| 693 | 729 |
|
| 694 | 730 |
typename Digraph::template NodeMap<int> _numMap; |
| 695 | 731 |
typename Digraph::template NodeMap<int> _retMap; |
| 696 | 732 |
typename Digraph::template NodeMap<Node> _predMap; |
| 697 | 733 |
std::stack<Edge> _edgeStack; |
| 698 | 734 |
int _num; |
| 699 | 735 |
bool rootCut; |
| 700 | 736 |
}; |
| 701 | 737 |
|
| 702 | 738 |
} |
| 703 | 739 |
|
| 704 | 740 |
template <typename Graph> |
| 705 | 741 |
int countBiNodeConnectedComponents(const Graph& graph); |
| 706 | 742 |
|
| 707 | 743 |
/// \ingroup graph_properties |
| 708 | 744 |
/// |
| 709 |
/// \brief |
|
| 745 |
/// \brief Check whether an undirected graph is bi-node-connected. |
|
| 710 | 746 |
/// |
| 711 |
/// This function checks that the undirected graph is bi-node-connected |
|
| 712 |
/// graph. The graph is bi-node-connected if any two undirected edge is |
|
| 713 |
/// |
|
| 747 |
/// This function checks whether the given undirected graph is |
|
| 748 |
/// bi-node-connected, i.e. any two edges are on same circle. |
|
| 714 | 749 |
/// |
| 715 |
/// \param graph The graph. |
|
| 716 |
/// \return \c true when the graph bi-node-connected. |
|
| 750 |
/// \return \c true if the graph bi-node-connected. |
|
| 751 |
/// \note By definition, the empty graph is bi-node-connected. |
|
| 752 |
/// |
|
| 753 |
/// \see countBiNodeConnectedComponents(), biNodeConnectedComponents() |
|
| 717 | 754 |
template <typename Graph> |
| 718 | 755 |
bool biNodeConnected(const Graph& graph) {
|
| 719 | 756 |
return countBiNodeConnectedComponents(graph) <= 1; |
| 720 | 757 |
} |
| 721 | 758 |
|
| 722 | 759 |
/// \ingroup graph_properties |
| 723 | 760 |
/// |
| 724 |
/// \brief Count the |
|
| 761 |
/// \brief Count the number of bi-node-connected components of an |
|
| 762 |
/// undirected graph. |
|
| 725 | 763 |
/// |
| 726 |
/// This function finds the bi-node-connected components in an undirected |
|
| 727 |
/// graph. The biconnected components are the classes of an equivalence |
|
| 728 |
/// relation on the undirected edges. Two undirected edge is in relationship |
|
| 729 |
/// when they are on same circle. |
|
| 764 |
/// This function counts the number of bi-node-connected components of |
|
| 765 |
/// the given undirected graph. |
|
| 730 | 766 |
/// |
| 731 |
/// \param graph The graph. |
|
| 732 |
/// \return The number of components. |
|
| 767 |
/// The bi-node-connected components are the classes of an equivalence |
|
| 768 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
| 769 |
/// same class if they are on same circle. |
|
| 770 |
/// |
|
| 771 |
/// \return The number of bi-node-connected components. |
|
| 772 |
/// |
|
| 773 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
|
| 733 | 774 |
template <typename Graph> |
| 734 | 775 |
int countBiNodeConnectedComponents(const Graph& graph) {
|
| 735 | 776 |
checkConcept<concepts::Graph, Graph>(); |
| 736 | 777 |
typedef typename Graph::NodeIt NodeIt; |
| 737 | 778 |
|
| 738 | 779 |
using namespace _connectivity_bits; |
| 739 | 780 |
|
| 740 | 781 |
typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor; |
| 741 | 782 |
|
| 742 | 783 |
int compNum = 0; |
| 743 | 784 |
Visitor visitor(graph, compNum); |
| 744 | 785 |
|
| 745 | 786 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 746 | 787 |
dfs.init(); |
| 747 | 788 |
|
| 748 | 789 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 749 | 790 |
if (!dfs.reached(it)) {
|
| 750 | 791 |
dfs.addSource(it); |
| 751 | 792 |
dfs.start(); |
| 752 | 793 |
} |
| 753 | 794 |
} |
| 754 | 795 |
return compNum; |
| 755 | 796 |
} |
| 756 | 797 |
|
| 757 | 798 |
/// \ingroup graph_properties |
| 758 | 799 |
/// |
| 759 |
/// \brief Find the bi-node-connected components. |
|
| 800 |
/// \brief Find the bi-node-connected components of an undirected graph. |
|
| 760 | 801 |
/// |
| 761 |
/// This function finds the bi-node-connected components in an undirected |
|
| 762 |
/// graph. The bi-node-connected components are the classes of an equivalence |
|
| 763 |
/// relation on the undirected edges. Two undirected edge are in relationship |
|
| 764 |
/// when they are on same circle. |
|
| 802 |
/// This function finds the bi-node-connected components of the given |
|
| 803 |
/// undirected graph. |
|
| 804 |
/// |
|
| 805 |
/// The bi-node-connected components are the classes of an equivalence |
|
| 806 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
| 807 |
/// same class if they are on same circle. |
|
| 765 | 808 |
/// |
| 766 | 809 |
/// \image html node_biconnected_components.png |
| 767 | 810 |
/// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth |
| 768 | 811 |
/// |
| 769 |
/// \param graph The graph. |
|
| 770 |
/// \retval compMap A writable uedge map. The values will be set from 0 |
|
| 771 |
/// to the number of the biconnected components minus one. Each values |
|
| 772 |
/// of the map will be set exactly once, the values of a certain component |
|
| 773 |
/// will be set continuously. |
|
| 774 |
/// \return The number of components. |
|
| 812 |
/// \param graph The undirected graph. |
|
| 813 |
/// \retval compMap A writable edge map. The values will be set from 0 |
|
| 814 |
/// to the number of the bi-node-connected components minus one. Each |
|
| 815 |
/// value of the map will be set exactly once, and the values of a |
|
| 816 |
/// certain component will be set continuously. |
|
| 817 |
/// \return The number of bi-node-connected components. |
|
| 818 |
/// |
|
| 819 |
/// \see biNodeConnected(), countBiNodeConnectedComponents() |
|
| 775 | 820 |
template <typename Graph, typename EdgeMap> |
| 776 | 821 |
int biNodeConnectedComponents(const Graph& graph, |
| 777 | 822 |
EdgeMap& compMap) {
|
| 778 | 823 |
checkConcept<concepts::Graph, Graph>(); |
| 779 | 824 |
typedef typename Graph::NodeIt NodeIt; |
| 780 | 825 |
typedef typename Graph::Edge Edge; |
| 781 | 826 |
checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>(); |
| 782 | 827 |
|
| 783 | 828 |
using namespace _connectivity_bits; |
| 784 | 829 |
|
| 785 | 830 |
typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor; |
| 786 | 831 |
|
| 787 | 832 |
int compNum = 0; |
| 788 | 833 |
Visitor visitor(graph, compMap, compNum); |
| 789 | 834 |
|
| 790 | 835 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 791 | 836 |
dfs.init(); |
| 792 | 837 |
|
| 793 | 838 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 794 | 839 |
if (!dfs.reached(it)) {
|
| 795 | 840 |
dfs.addSource(it); |
| 796 | 841 |
dfs.start(); |
| 797 | 842 |
} |
| 798 | 843 |
} |
| 799 | 844 |
return compNum; |
| 800 | 845 |
} |
| 801 | 846 |
|
| 802 | 847 |
/// \ingroup graph_properties |
| 803 | 848 |
/// |
| 804 |
/// \brief Find the bi-node-connected cut nodes. |
|
| 849 |
/// \brief Find the bi-node-connected cut nodes in an undirected graph. |
|
| 805 | 850 |
/// |
| 806 |
/// This function finds the bi-node-connected cut nodes in an undirected |
|
| 807 |
/// graph. The bi-node-connected components are the classes of an equivalence |
|
| 808 |
/// relation on the undirected edges. Two undirected edges are in |
|
| 809 |
/// relationship when they are on same circle. The biconnected components |
|
| 810 |
/// |
|
| 851 |
/// This function finds the bi-node-connected cut nodes in the given |
|
| 852 |
/// undirected graph. |
|
| 811 | 853 |
/// |
| 812 |
/// \param graph The graph. |
|
| 813 |
/// \retval cutMap A writable edge map. The values will be set true when |
|
| 814 |
/// |
|
| 854 |
/// The bi-node-connected components are the classes of an equivalence |
|
| 855 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
| 856 |
/// same class if they are on same circle. |
|
| 857 |
/// The bi-node-connected components are separted by the cut nodes of |
|
| 858 |
/// the components. |
|
| 859 |
/// |
|
| 860 |
/// \param graph The undirected graph. |
|
| 861 |
/// \retval cutMap A writable node map. The values will be set to |
|
| 862 |
/// \c true for the nodes that separate two or more components |
|
| 863 |
/// (exactly once for each cut node), and will not be changed for |
|
| 864 |
/// other nodes. |
|
| 815 | 865 |
/// \return The number of the cut nodes. |
| 866 |
/// |
|
| 867 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
|
| 816 | 868 |
template <typename Graph, typename NodeMap> |
| 817 | 869 |
int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
|
| 818 | 870 |
checkConcept<concepts::Graph, Graph>(); |
| 819 | 871 |
typedef typename Graph::Node Node; |
| 820 | 872 |
typedef typename Graph::NodeIt NodeIt; |
| 821 | 873 |
checkConcept<concepts::WriteMap<Node, bool>, NodeMap>(); |
| 822 | 874 |
|
| 823 | 875 |
using namespace _connectivity_bits; |
| 824 | 876 |
|
| 825 | 877 |
typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor; |
| 826 | 878 |
|
| 827 | 879 |
int cutNum = 0; |
| 828 | 880 |
Visitor visitor(graph, cutMap, cutNum); |
| 829 | 881 |
|
| 830 | 882 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 831 | 883 |
dfs.init(); |
| 832 | 884 |
|
| 833 | 885 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 834 | 886 |
if (!dfs.reached(it)) {
|
| 835 | 887 |
dfs.addSource(it); |
| 836 | 888 |
dfs.start(); |
| 837 | 889 |
} |
| 838 | 890 |
} |
| 839 | 891 |
return cutNum; |
| 840 | 892 |
} |
| 841 | 893 |
|
| 842 | 894 |
namespace _connectivity_bits {
|
| 843 | 895 |
|
| 844 | 896 |
template <typename Digraph> |
| 845 | 897 |
class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
| 846 | 898 |
public: |
| 847 | 899 |
typedef typename Digraph::Node Node; |
| 848 | 900 |
typedef typename Digraph::Arc Arc; |
| 849 | 901 |
typedef typename Digraph::Edge Edge; |
| 850 | 902 |
|
| 851 | 903 |
CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
| 852 | 904 |
: _graph(graph), _compNum(compNum), |
| 853 | 905 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
| 854 | 906 |
|
| 855 | 907 |
void start(const Node& node) {
|
| 856 | 908 |
_predMap.set(node, INVALID); |
| 857 | 909 |
} |
| 858 | 910 |
|
| 859 | 911 |
void reach(const Node& node) {
|
| 860 | 912 |
_numMap.set(node, _num); |
| 861 | 913 |
_retMap.set(node, _num); |
| 862 | 914 |
++_num; |
| 863 | 915 |
} |
| 864 | 916 |
|
| 865 | 917 |
void leave(const Node& node) {
|
| 866 | 918 |
if (_numMap[node] <= _retMap[node]) {
|
| 867 | 919 |
++_compNum; |
| 868 | 920 |
} |
| 869 | 921 |
} |
| 870 | 922 |
|
| 871 | 923 |
void discover(const Arc& edge) {
|
| 872 | 924 |
_predMap.set(_graph.target(edge), edge); |
| 873 | 925 |
} |
| 874 | 926 |
|
| 875 | 927 |
void examine(const Arc& edge) {
|
| 876 | 928 |
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
|
| 877 | 929 |
return; |
| 878 | 930 |
} |
| 879 | 931 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 880 | 932 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 881 | 933 |
} |
| 882 | 934 |
} |
| 883 | 935 |
|
| 884 | 936 |
void backtrack(const Arc& edge) {
|
| 885 | 937 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 886 | 938 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 887 | 939 |
} |
| 888 | 940 |
} |
| 889 | 941 |
|
| 890 | 942 |
private: |
| 891 | 943 |
const Digraph& _graph; |
| 892 | 944 |
int& _compNum; |
| 893 | 945 |
|
| 894 | 946 |
typename Digraph::template NodeMap<int> _numMap; |
| 895 | 947 |
typename Digraph::template NodeMap<int> _retMap; |
| 896 | 948 |
typename Digraph::template NodeMap<Arc> _predMap; |
| 897 | 949 |
int _num; |
| 898 | 950 |
}; |
| 899 | 951 |
|
| 900 | 952 |
template <typename Digraph, typename NodeMap> |
| 901 | 953 |
class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
| 902 | 954 |
public: |
| 903 | 955 |
typedef typename Digraph::Node Node; |
| 904 | 956 |
typedef typename Digraph::Arc Arc; |
| 905 | 957 |
typedef typename Digraph::Edge Edge; |
| 906 | 958 |
|
| 907 | 959 |
BiEdgeConnectedComponentsVisitor(const Digraph& graph, |
| 908 | 960 |
NodeMap& compMap, int &compNum) |
| 909 | 961 |
: _graph(graph), _compMap(compMap), _compNum(compNum), |
| 910 | 962 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
| 911 | 963 |
|
| 912 | 964 |
void start(const Node& node) {
|
| 913 | 965 |
_predMap.set(node, INVALID); |
| 914 | 966 |
} |
| 915 | 967 |
|
| 916 | 968 |
void reach(const Node& node) {
|
| 917 | 969 |
_numMap.set(node, _num); |
| 918 | 970 |
_retMap.set(node, _num); |
| 919 | 971 |
_nodeStack.push(node); |
| 920 | 972 |
++_num; |
| 921 | 973 |
} |
| 922 | 974 |
|
| 923 | 975 |
void leave(const Node& node) {
|
| 924 | 976 |
if (_numMap[node] <= _retMap[node]) {
|
| 925 | 977 |
while (_nodeStack.top() != node) {
|
| 926 | 978 |
_compMap.set(_nodeStack.top(), _compNum); |
| 927 | 979 |
_nodeStack.pop(); |
| 928 | 980 |
} |
| 929 | 981 |
_compMap.set(node, _compNum); |
| 930 | 982 |
_nodeStack.pop(); |
| 931 | 983 |
++_compNum; |
| 932 | 984 |
} |
| 933 | 985 |
} |
| 934 | 986 |
|
| 935 | 987 |
void discover(const Arc& edge) {
|
| 936 | 988 |
_predMap.set(_graph.target(edge), edge); |
| 937 | 989 |
} |
| 938 | 990 |
|
| 939 | 991 |
void examine(const Arc& edge) {
|
| 940 | 992 |
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
|
| 941 | 993 |
return; |
| 942 | 994 |
} |
| 943 | 995 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 944 | 996 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 945 | 997 |
} |
| 946 | 998 |
} |
| 947 | 999 |
|
| 948 | 1000 |
void backtrack(const Arc& edge) {
|
| 949 | 1001 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 950 | 1002 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 951 | 1003 |
} |
| 952 | 1004 |
} |
| 953 | 1005 |
|
| 954 | 1006 |
private: |
| 955 | 1007 |
const Digraph& _graph; |
| 956 | 1008 |
NodeMap& _compMap; |
| 957 | 1009 |
int& _compNum; |
| 958 | 1010 |
|
| 959 | 1011 |
typename Digraph::template NodeMap<int> _numMap; |
| 960 | 1012 |
typename Digraph::template NodeMap<int> _retMap; |
| 961 | 1013 |
typename Digraph::template NodeMap<Arc> _predMap; |
| 962 | 1014 |
std::stack<Node> _nodeStack; |
| 963 | 1015 |
int _num; |
| 964 | 1016 |
}; |
| 965 | 1017 |
|
| 966 | 1018 |
|
| 967 | 1019 |
template <typename Digraph, typename ArcMap> |
| 968 | 1020 |
class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Digraph> {
|
| 969 | 1021 |
public: |
| 970 | 1022 |
typedef typename Digraph::Node Node; |
| 971 | 1023 |
typedef typename Digraph::Arc Arc; |
| 972 | 1024 |
typedef typename Digraph::Edge Edge; |
| 973 | 1025 |
|
| 974 | 1026 |
BiEdgeConnectedCutEdgesVisitor(const Digraph& graph, |
| 975 | 1027 |
ArcMap& cutMap, int &cutNum) |
| 976 | 1028 |
: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
| 977 | 1029 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
| 978 | 1030 |
|
| 979 | 1031 |
void start(const Node& node) {
|
| 980 | 1032 |
_predMap[node] = INVALID; |
| 981 | 1033 |
} |
| 982 | 1034 |
|
| 983 | 1035 |
void reach(const Node& node) {
|
| 984 | 1036 |
_numMap.set(node, _num); |
| 985 | 1037 |
_retMap.set(node, _num); |
| 986 | 1038 |
++_num; |
| 987 | 1039 |
} |
| 988 | 1040 |
|
| 989 | 1041 |
void leave(const Node& node) {
|
| 990 | 1042 |
if (_numMap[node] <= _retMap[node]) {
|
| 991 | 1043 |
if (_predMap[node] != INVALID) {
|
| 992 | 1044 |
_cutMap.set(_predMap[node], true); |
| 993 | 1045 |
++_cutNum; |
| 994 | 1046 |
} |
| 995 | 1047 |
} |
| 996 | 1048 |
} |
| 997 | 1049 |
|
| 998 | 1050 |
void discover(const Arc& edge) {
|
| 999 | 1051 |
_predMap.set(_graph.target(edge), edge); |
| 1000 | 1052 |
} |
| 1001 | 1053 |
|
| 1002 | 1054 |
void examine(const Arc& edge) {
|
| 1003 | 1055 |
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
|
| 1004 | 1056 |
return; |
| 1005 | 1057 |
} |
| 1006 | 1058 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 1007 | 1059 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 1008 | 1060 |
} |
| 1009 | 1061 |
} |
| 1010 | 1062 |
|
| 1011 | 1063 |
void backtrack(const Arc& edge) {
|
| 1012 | 1064 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 1013 | 1065 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 1014 | 1066 |
} |
| 1015 | 1067 |
} |
| 1016 | 1068 |
|
| 1017 | 1069 |
private: |
| 1018 | 1070 |
const Digraph& _graph; |
| 1019 | 1071 |
ArcMap& _cutMap; |
| 1020 | 1072 |
int& _cutNum; |
| 1021 | 1073 |
|
| 1022 | 1074 |
typename Digraph::template NodeMap<int> _numMap; |
| 1023 | 1075 |
typename Digraph::template NodeMap<int> _retMap; |
| 1024 | 1076 |
typename Digraph::template NodeMap<Arc> _predMap; |
| 1025 | 1077 |
int _num; |
| 1026 | 1078 |
}; |
| 1027 | 1079 |
} |
| 1028 | 1080 |
|
| 1029 | 1081 |
template <typename Graph> |
| 1030 | 1082 |
int countBiEdgeConnectedComponents(const Graph& graph); |
| 1031 | 1083 |
|
| 1032 | 1084 |
/// \ingroup graph_properties |
| 1033 | 1085 |
/// |
| 1034 |
/// \brief |
|
| 1086 |
/// \brief Check whether an undirected graph is bi-edge-connected. |
|
| 1035 | 1087 |
/// |
| 1036 |
/// This function checks that the graph is bi-edge-connected. The undirected |
|
| 1037 |
/// graph is bi-edge-connected when any two nodes are connected with two |
|
| 1038 |
/// |
|
| 1088 |
/// This function checks whether the given undirected graph is |
|
| 1089 |
/// bi-edge-connected, i.e. any two nodes are connected with at least |
|
| 1090 |
/// two edge-disjoint paths. |
|
| 1039 | 1091 |
/// |
| 1040 |
/// \param graph The undirected graph. |
|
| 1041 |
/// \return The number of components. |
|
| 1092 |
/// \return \c true if the graph is bi-edge-connected. |
|
| 1093 |
/// \note By definition, the empty graph is bi-edge-connected. |
|
| 1094 |
/// |
|
| 1095 |
/// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents() |
|
| 1042 | 1096 |
template <typename Graph> |
| 1043 | 1097 |
bool biEdgeConnected(const Graph& graph) {
|
| 1044 | 1098 |
return countBiEdgeConnectedComponents(graph) <= 1; |
| 1045 | 1099 |
} |
| 1046 | 1100 |
|
| 1047 | 1101 |
/// \ingroup graph_properties |
| 1048 | 1102 |
/// |
| 1049 |
/// \brief Count the bi-edge-connected components |
|
| 1103 |
/// \brief Count the number of bi-edge-connected components of an |
|
| 1104 |
/// undirected graph. |
|
| 1050 | 1105 |
/// |
| 1051 |
/// This function count the bi-edge-connected components in an undirected |
|
| 1052 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
| 1053 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
| 1054 |
/// connected with at least two edge-disjoint paths. |
|
| 1106 |
/// This function counts the number of bi-edge-connected components of |
|
| 1107 |
/// the given undirected graph. |
|
| 1055 | 1108 |
/// |
| 1056 |
/// \param graph The undirected graph. |
|
| 1057 |
/// \return The number of components. |
|
| 1109 |
/// The bi-edge-connected components are the classes of an equivalence |
|
| 1110 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
| 1111 |
/// same class if they are connected with at least two edge-disjoint |
|
| 1112 |
/// paths. |
|
| 1113 |
/// |
|
| 1114 |
/// \return The number of bi-edge-connected components. |
|
| 1115 |
/// |
|
| 1116 |
/// \see biEdgeConnected(), biEdgeConnectedComponents() |
|
| 1058 | 1117 |
template <typename Graph> |
| 1059 | 1118 |
int countBiEdgeConnectedComponents(const Graph& graph) {
|
| 1060 | 1119 |
checkConcept<concepts::Graph, Graph>(); |
| 1061 | 1120 |
typedef typename Graph::NodeIt NodeIt; |
| 1062 | 1121 |
|
| 1063 | 1122 |
using namespace _connectivity_bits; |
| 1064 | 1123 |
|
| 1065 | 1124 |
typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor; |
| 1066 | 1125 |
|
| 1067 | 1126 |
int compNum = 0; |
| 1068 | 1127 |
Visitor visitor(graph, compNum); |
| 1069 | 1128 |
|
| 1070 | 1129 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 1071 | 1130 |
dfs.init(); |
| 1072 | 1131 |
|
| 1073 | 1132 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1074 | 1133 |
if (!dfs.reached(it)) {
|
| 1075 | 1134 |
dfs.addSource(it); |
| 1076 | 1135 |
dfs.start(); |
| 1077 | 1136 |
} |
| 1078 | 1137 |
} |
| 1079 | 1138 |
return compNum; |
| 1080 | 1139 |
} |
| 1081 | 1140 |
|
| 1082 | 1141 |
/// \ingroup graph_properties |
| 1083 | 1142 |
/// |
| 1084 |
/// \brief Find the bi-edge-connected components. |
|
| 1143 |
/// \brief Find the bi-edge-connected components of an undirected graph. |
|
| 1085 | 1144 |
/// |
| 1086 |
/// This function finds the bi-edge-connected components in an undirected |
|
| 1087 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
| 1088 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
| 1089 |
/// connected at least two edge-disjoint paths. |
|
| 1145 |
/// This function finds the bi-edge-connected components of the given |
|
| 1146 |
/// undirected graph. |
|
| 1147 |
/// |
|
| 1148 |
/// The bi-edge-connected components are the classes of an equivalence |
|
| 1149 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
| 1150 |
/// same class if they are connected with at least two edge-disjoint |
|
| 1151 |
/// paths. |
|
| 1090 | 1152 |
/// |
| 1091 | 1153 |
/// \image html edge_biconnected_components.png |
| 1092 | 1154 |
/// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
| 1093 | 1155 |
/// |
| 1094 |
/// \param graph The graph. |
|
| 1156 |
/// \param graph The undirected graph. |
|
| 1095 | 1157 |
/// \retval compMap A writable node map. The values will be set from 0 to |
| 1096 |
/// the number of the biconnected components minus one. Each values |
|
| 1097 |
/// of the map will be set exactly once, the values of a certain component |
|
| 1098 |
/// will be set continuously. |
|
| 1099 |
/// \return The number of components. |
|
| 1158 |
/// the number of the bi-edge-connected components minus one. Each value |
|
| 1159 |
/// of the map will be set exactly once, and the values of a certain |
|
| 1160 |
/// component will be set continuously. |
|
| 1161 |
/// \return The number of bi-edge-connected components. |
|
| 1162 |
/// |
|
| 1163 |
/// \see biEdgeConnected(), countBiEdgeConnectedComponents() |
|
| 1100 | 1164 |
template <typename Graph, typename NodeMap> |
| 1101 | 1165 |
int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
|
| 1102 | 1166 |
checkConcept<concepts::Graph, Graph>(); |
| 1103 | 1167 |
typedef typename Graph::NodeIt NodeIt; |
| 1104 | 1168 |
typedef typename Graph::Node Node; |
| 1105 | 1169 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| 1106 | 1170 |
|
| 1107 | 1171 |
using namespace _connectivity_bits; |
| 1108 | 1172 |
|
| 1109 | 1173 |
typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor; |
| 1110 | 1174 |
|
| 1111 | 1175 |
int compNum = 0; |
| 1112 | 1176 |
Visitor visitor(graph, compMap, compNum); |
| 1113 | 1177 |
|
| 1114 | 1178 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 1115 | 1179 |
dfs.init(); |
| 1116 | 1180 |
|
| 1117 | 1181 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1118 | 1182 |
if (!dfs.reached(it)) {
|
| 1119 | 1183 |
dfs.addSource(it); |
| 1120 | 1184 |
dfs.start(); |
| 1121 | 1185 |
} |
| 1122 | 1186 |
} |
| 1123 | 1187 |
return compNum; |
| 1124 | 1188 |
} |
| 1125 | 1189 |
|
| 1126 | 1190 |
/// \ingroup graph_properties |
| 1127 | 1191 |
/// |
| 1128 |
/// \brief Find the bi-edge-connected cut edges. |
|
| 1192 |
/// \brief Find the bi-edge-connected cut edges in an undirected graph. |
|
| 1129 | 1193 |
/// |
| 1130 |
/// This function finds the bi-edge-connected components in an undirected |
|
| 1131 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
| 1132 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
| 1133 |
/// connected with at least two edge-disjoint paths. The bi-edge-connected |
|
| 1134 |
/// components are separted by edges which are the cut edges of the |
|
| 1135 |
/// components. |
|
| 1194 |
/// This function finds the bi-edge-connected cut edges in the given |
|
| 1195 |
/// undirected graph. |
|
| 1136 | 1196 |
/// |
| 1137 |
/// \param graph The graph. |
|
| 1138 |
/// \retval cutMap A writable node map. The values will be set true when the |
|
| 1139 |
/// edge |
|
| 1197 |
/// The bi-edge-connected components are the classes of an equivalence |
|
| 1198 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
| 1199 |
/// same class if they are connected with at least two edge-disjoint |
|
| 1200 |
/// paths. |
|
| 1201 |
/// The bi-edge-connected components are separted by the cut edges of |
|
| 1202 |
/// the components. |
|
| 1203 |
/// |
|
| 1204 |
/// \param graph The undirected graph. |
|
| 1205 |
/// \retval cutMap A writable edge map. The values will be set to \c true |
|
| 1206 |
/// for the cut edges (exactly once for each cut edge), and will not be |
|
| 1207 |
/// changed for other edges. |
|
| 1140 | 1208 |
/// \return The number of cut edges. |
| 1209 |
/// |
|
| 1210 |
/// \see biEdgeConnected(), biEdgeConnectedComponents() |
|
| 1141 | 1211 |
template <typename Graph, typename EdgeMap> |
| 1142 | 1212 |
int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
|
| 1143 | 1213 |
checkConcept<concepts::Graph, Graph>(); |
| 1144 | 1214 |
typedef typename Graph::NodeIt NodeIt; |
| 1145 | 1215 |
typedef typename Graph::Edge Edge; |
| 1146 | 1216 |
checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>(); |
| 1147 | 1217 |
|
| 1148 | 1218 |
using namespace _connectivity_bits; |
| 1149 | 1219 |
|
| 1150 | 1220 |
typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor; |
| 1151 | 1221 |
|
| 1152 | 1222 |
int cutNum = 0; |
| 1153 | 1223 |
Visitor visitor(graph, cutMap, cutNum); |
| 1154 | 1224 |
|
| 1155 | 1225 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 1156 | 1226 |
dfs.init(); |
| 1157 | 1227 |
|
| 1158 | 1228 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1159 | 1229 |
if (!dfs.reached(it)) {
|
| 1160 | 1230 |
dfs.addSource(it); |
| 1161 | 1231 |
dfs.start(); |
| 1162 | 1232 |
} |
| 1163 | 1233 |
} |
| 1164 | 1234 |
return cutNum; |
| 1165 | 1235 |
} |
| 1166 | 1236 |
|
| 1167 | 1237 |
|
| 1168 | 1238 |
namespace _connectivity_bits {
|
| 1169 | 1239 |
|
| 1170 | 1240 |
template <typename Digraph, typename IntNodeMap> |
| 1171 | 1241 |
class TopologicalSortVisitor : public DfsVisitor<Digraph> {
|
| 1172 | 1242 |
public: |
| 1173 | 1243 |
typedef typename Digraph::Node Node; |
| 1174 | 1244 |
typedef typename Digraph::Arc edge; |
| 1175 | 1245 |
|
| 1176 | 1246 |
TopologicalSortVisitor(IntNodeMap& order, int num) |
| 1177 | 1247 |
: _order(order), _num(num) {}
|
| 1178 | 1248 |
|
| 1179 | 1249 |
void leave(const Node& node) {
|
| 1180 | 1250 |
_order.set(node, --_num); |
| 1181 | 1251 |
} |
| 1182 | 1252 |
|
| 1183 | 1253 |
private: |
| 1184 | 1254 |
IntNodeMap& _order; |
| 1185 | 1255 |
int _num; |
| 1186 | 1256 |
}; |
| 1187 | 1257 |
|
| 1188 | 1258 |
} |
| 1189 | 1259 |
|
| 1190 | 1260 |
/// \ingroup graph_properties |
| 1191 | 1261 |
/// |
| 1262 |
/// \brief Check whether a digraph is DAG. |
|
| 1263 |
/// |
|
| 1264 |
/// This function checks whether the given digraph is DAG, i.e. |
|
| 1265 |
/// \e Directed \e Acyclic \e Graph. |
|
| 1266 |
/// \return \c true if there is no directed cycle in the digraph. |
|
| 1267 |
/// \see acyclic() |
|
| 1268 |
template <typename Digraph> |
|
| 1269 |
bool dag(const Digraph& digraph) {
|
|
| 1270 |
|
|
| 1271 |
checkConcept<concepts::Digraph, Digraph>(); |
|
| 1272 |
|
|
| 1273 |
typedef typename Digraph::Node Node; |
|
| 1274 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 1275 |
typedef typename Digraph::Arc Arc; |
|
| 1276 |
|
|
| 1277 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|
| 1278 |
|
|
| 1279 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
|
| 1280 |
Create dfs(digraph); |
|
| 1281 |
|
|
| 1282 |
ProcessedMap processed(digraph); |
|
| 1283 |
dfs.processedMap(processed); |
|
| 1284 |
|
|
| 1285 |
dfs.init(); |
|
| 1286 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
| 1287 |
if (!dfs.reached(it)) {
|
|
| 1288 |
dfs.addSource(it); |
|
| 1289 |
while (!dfs.emptyQueue()) {
|
|
| 1290 |
Arc arc = dfs.nextArc(); |
|
| 1291 |
Node target = digraph.target(arc); |
|
| 1292 |
if (dfs.reached(target) && !processed[target]) {
|
|
| 1293 |
return false; |
|
| 1294 |
} |
|
| 1295 |
dfs.processNextArc(); |
|
| 1296 |
} |
|
| 1297 |
} |
|
| 1298 |
} |
|
| 1299 |
return true; |
|
| 1300 |
} |
|
| 1301 |
|
|
| 1302 |
/// \ingroup graph_properties |
|
| 1303 |
/// |
|
| 1192 | 1304 |
/// \brief Sort the nodes of a DAG into topolgical order. |
| 1193 | 1305 |
/// |
| 1194 |
/// |
|
| 1306 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
|
| 1307 |
/// into topolgical order. |
|
| 1195 | 1308 |
/// |
| 1196 |
/// \param |
|
| 1309 |
/// \param digraph The digraph, which must be DAG. |
|
| 1197 | 1310 |
/// \retval order A writable node map. The values will be set from 0 to |
| 1198 |
/// the number of the nodes in the graph minus one. Each values of the map |
|
| 1199 |
/// will be set exactly once, the values will be set descending order. |
|
| 1311 |
/// the number of the nodes in the digraph minus one. Each value of the |
|
| 1312 |
/// map will be set exactly once, and the values will be set descending |
|
| 1313 |
/// order. |
|
| 1200 | 1314 |
/// |
| 1201 |
/// \see checkedTopologicalSort |
|
| 1202 |
/// \see dag |
|
| 1315 |
/// \see dag(), checkedTopologicalSort() |
|
| 1203 | 1316 |
template <typename Digraph, typename NodeMap> |
| 1204 |
void topologicalSort(const Digraph& |
|
| 1317 |
void topologicalSort(const Digraph& digraph, NodeMap& order) {
|
|
| 1205 | 1318 |
using namespace _connectivity_bits; |
| 1206 | 1319 |
|
| 1207 | 1320 |
checkConcept<concepts::Digraph, Digraph>(); |
| 1208 | 1321 |
checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>(); |
| 1209 | 1322 |
|
| 1210 | 1323 |
typedef typename Digraph::Node Node; |
| 1211 | 1324 |
typedef typename Digraph::NodeIt NodeIt; |
| 1212 | 1325 |
typedef typename Digraph::Arc Arc; |
| 1213 | 1326 |
|
| 1214 | 1327 |
TopologicalSortVisitor<Digraph, NodeMap> |
| 1215 |
visitor(order, countNodes( |
|
| 1328 |
visitor(order, countNodes(digraph)); |
|
| 1216 | 1329 |
|
| 1217 | 1330 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
| 1218 |
dfs( |
|
| 1331 |
dfs(digraph, visitor); |
|
| 1219 | 1332 |
|
| 1220 | 1333 |
dfs.init(); |
| 1221 |
for (NodeIt it( |
|
| 1334 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
| 1222 | 1335 |
if (!dfs.reached(it)) {
|
| 1223 | 1336 |
dfs.addSource(it); |
| 1224 | 1337 |
dfs.start(); |
| 1225 | 1338 |
} |
| 1226 | 1339 |
} |
| 1227 | 1340 |
} |
| 1228 | 1341 |
|
| 1229 | 1342 |
/// \ingroup graph_properties |
| 1230 | 1343 |
/// |
| 1231 | 1344 |
/// \brief Sort the nodes of a DAG into topolgical order. |
| 1232 | 1345 |
/// |
| 1233 |
/// Sort the nodes of a DAG into topolgical order. It also checks |
|
| 1234 |
/// that the given graph is DAG. |
|
| 1346 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
|
| 1347 |
/// into topolgical order and also checks whether the given digraph |
|
| 1348 |
/// is DAG. |
|
| 1235 | 1349 |
/// |
| 1236 |
/// \param digraph The graph. It must be directed and acyclic. |
|
| 1237 |
/// \retval order A readable - writable node map. The values will be set |
|
| 1238 |
/// from 0 to the number of the nodes in the graph minus one. Each values |
|
| 1239 |
/// of the map will be set exactly once, the values will be set descending |
|
| 1240 |
/// order. |
|
| 1241 |
/// \return \c false when the graph is not DAG. |
|
| 1350 |
/// \param digraph The digraph. |
|
| 1351 |
/// \retval order A readable and writable node map. The values will be |
|
| 1352 |
/// set from 0 to the number of the nodes in the digraph minus one. |
|
| 1353 |
/// Each value of the map will be set exactly once, and the values will |
|
| 1354 |
/// be set descending order. |
|
| 1355 |
/// \return \c false if the digraph is not DAG. |
|
| 1242 | 1356 |
/// |
| 1243 |
/// \see topologicalSort |
|
| 1244 |
/// \see dag |
|
| 1357 |
/// \see dag(), topologicalSort() |
|
| 1245 | 1358 |
template <typename Digraph, typename NodeMap> |
| 1246 | 1359 |
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
|
| 1247 | 1360 |
using namespace _connectivity_bits; |
| 1248 | 1361 |
|
| 1249 | 1362 |
checkConcept<concepts::Digraph, Digraph>(); |
| 1250 | 1363 |
checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>, |
| 1251 | 1364 |
NodeMap>(); |
| 1252 | 1365 |
|
| 1253 | 1366 |
typedef typename Digraph::Node Node; |
| 1254 | 1367 |
typedef typename Digraph::NodeIt NodeIt; |
| 1255 | 1368 |
typedef typename Digraph::Arc Arc; |
| 1256 | 1369 |
|
| 1257 | 1370 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1258 | 1371 |
order.set(it, -1); |
| 1259 | 1372 |
} |
| 1260 | 1373 |
|
| 1261 | 1374 |
TopologicalSortVisitor<Digraph, NodeMap> |
| 1262 | 1375 |
visitor(order, countNodes(digraph)); |
| 1263 | 1376 |
|
| 1264 | 1377 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
| 1265 | 1378 |
dfs(digraph, visitor); |
| 1266 | 1379 |
|
| 1267 | 1380 |
dfs.init(); |
| 1268 | 1381 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1269 | 1382 |
if (!dfs.reached(it)) {
|
| 1270 | 1383 |
dfs.addSource(it); |
| 1271 | 1384 |
while (!dfs.emptyQueue()) {
|
| 1272 | 1385 |
Arc arc = dfs.nextArc(); |
| 1273 | 1386 |
Node target = digraph.target(arc); |
| 1274 | 1387 |
if (dfs.reached(target) && order[target] == -1) {
|
| 1275 | 1388 |
return false; |
| 1276 | 1389 |
} |
| 1277 | 1390 |
dfs.processNextArc(); |
| 1278 | 1391 |
} |
| 1279 | 1392 |
} |
| 1280 | 1393 |
} |
| 1281 | 1394 |
return true; |
| 1282 | 1395 |
} |
| 1283 | 1396 |
|
| 1284 | 1397 |
/// \ingroup graph_properties |
| 1285 | 1398 |
/// |
| 1286 |
/// \brief Check |
|
| 1399 |
/// \brief Check whether an undirected graph is acyclic. |
|
| 1287 | 1400 |
/// |
| 1288 |
/// Check that the given directed graph is a DAG. The DAG is |
|
| 1289 |
/// an Directed Acyclic Digraph. |
|
| 1290 |
/// \return \c false when the graph is not DAG. |
|
| 1291 |
/// \see acyclic |
|
| 1292 |
template <typename Digraph> |
|
| 1293 |
bool dag(const Digraph& digraph) {
|
|
| 1294 |
|
|
| 1295 |
checkConcept<concepts::Digraph, Digraph>(); |
|
| 1296 |
|
|
| 1297 |
typedef typename Digraph::Node Node; |
|
| 1298 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 1299 |
typedef typename Digraph::Arc Arc; |
|
| 1300 |
|
|
| 1301 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|
| 1302 |
|
|
| 1303 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
|
| 1304 |
Create dfs(digraph); |
|
| 1305 |
|
|
| 1306 |
ProcessedMap processed(digraph); |
|
| 1307 |
dfs.processedMap(processed); |
|
| 1308 |
|
|
| 1309 |
dfs.init(); |
|
| 1310 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
| 1311 |
if (!dfs.reached(it)) {
|
|
| 1312 |
dfs.addSource(it); |
|
| 1313 |
while (!dfs.emptyQueue()) {
|
|
| 1314 |
Arc edge = dfs.nextArc(); |
|
| 1315 |
Node target = digraph.target(edge); |
|
| 1316 |
if (dfs.reached(target) && !processed[target]) {
|
|
| 1317 |
return false; |
|
| 1318 |
} |
|
| 1319 |
dfs.processNextArc(); |
|
| 1320 |
} |
|
| 1321 |
} |
|
| 1322 |
} |
|
| 1323 |
return true; |
|
| 1324 |
} |
|
| 1325 |
|
|
| 1326 |
/// \ingroup graph_properties |
|
| 1327 |
/// |
|
| 1328 |
/// \brief Check that the given undirected graph is acyclic. |
|
| 1329 |
/// |
|
| 1330 |
/// Check that the given undirected graph acyclic. |
|
| 1331 |
/// \param graph The undirected graph. |
|
| 1332 |
/// \return \c true when there is no circle in the graph. |
|
| 1333 |
/// \see dag |
|
| 1401 |
/// This function checks whether the given undirected graph is acyclic. |
|
| 1402 |
/// \return \c true if there is no cycle in the graph. |
|
| 1403 |
/// \see dag() |
|
| 1334 | 1404 |
template <typename Graph> |
| 1335 | 1405 |
bool acyclic(const Graph& graph) {
|
| 1336 | 1406 |
checkConcept<concepts::Graph, Graph>(); |
| 1337 | 1407 |
typedef typename Graph::Node Node; |
| 1338 | 1408 |
typedef typename Graph::NodeIt NodeIt; |
| 1339 | 1409 |
typedef typename Graph::Arc Arc; |
| 1340 | 1410 |
Dfs<Graph> dfs(graph); |
| 1341 | 1411 |
dfs.init(); |
| 1342 | 1412 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1343 | 1413 |
if (!dfs.reached(it)) {
|
| 1344 | 1414 |
dfs.addSource(it); |
| 1345 | 1415 |
while (!dfs.emptyQueue()) {
|
| 1346 |
Arc edge = dfs.nextArc(); |
|
| 1347 |
Node source = graph.source(edge); |
|
| 1348 |
|
|
| 1416 |
Arc arc = dfs.nextArc(); |
|
| 1417 |
Node source = graph.source(arc); |
|
| 1418 |
Node target = graph.target(arc); |
|
| 1349 | 1419 |
if (dfs.reached(target) && |
| 1350 |
dfs.predArc(source) != graph.oppositeArc( |
|
| 1420 |
dfs.predArc(source) != graph.oppositeArc(arc)) {
|
|
| 1351 | 1421 |
return false; |
| 1352 | 1422 |
} |
| 1353 | 1423 |
dfs.processNextArc(); |
| 1354 | 1424 |
} |
| 1355 | 1425 |
} |
| 1356 | 1426 |
} |
| 1357 | 1427 |
return true; |
| 1358 | 1428 |
} |
| 1359 | 1429 |
|
| 1360 | 1430 |
/// \ingroup graph_properties |
| 1361 | 1431 |
/// |
| 1362 |
/// \brief Check |
|
| 1432 |
/// \brief Check whether an undirected graph is tree. |
|
| 1363 | 1433 |
/// |
| 1364 |
/// Check that the given undirected graph is tree. |
|
| 1365 |
/// \param graph The undirected graph. |
|
| 1366 |
/// |
|
| 1434 |
/// This function checks whether the given undirected graph is tree. |
|
| 1435 |
/// \return \c true if the graph is acyclic and connected. |
|
| 1436 |
/// \see acyclic(), connected() |
|
| 1367 | 1437 |
template <typename Graph> |
| 1368 | 1438 |
bool tree(const Graph& graph) {
|
| 1369 | 1439 |
checkConcept<concepts::Graph, Graph>(); |
| 1370 | 1440 |
typedef typename Graph::Node Node; |
| 1371 | 1441 |
typedef typename Graph::NodeIt NodeIt; |
| 1372 | 1442 |
typedef typename Graph::Arc Arc; |
| 1373 | 1443 |
if (NodeIt(graph) == INVALID) return true; |
| 1374 | 1444 |
Dfs<Graph> dfs(graph); |
| 1375 | 1445 |
dfs.init(); |
| 1376 | 1446 |
dfs.addSource(NodeIt(graph)); |
| 1377 | 1447 |
while (!dfs.emptyQueue()) {
|
| 1378 |
Arc edge = dfs.nextArc(); |
|
| 1379 |
Node source = graph.source(edge); |
|
| 1380 |
|
|
| 1448 |
Arc arc = dfs.nextArc(); |
|
| 1449 |
Node source = graph.source(arc); |
|
| 1450 |
Node target = graph.target(arc); |
|
| 1381 | 1451 |
if (dfs.reached(target) && |
| 1382 |
dfs.predArc(source) != graph.oppositeArc( |
|
| 1452 |
dfs.predArc(source) != graph.oppositeArc(arc)) {
|
|
| 1383 | 1453 |
return false; |
| 1384 | 1454 |
} |
| 1385 | 1455 |
dfs.processNextArc(); |
| 1386 | 1456 |
} |
| 1387 | 1457 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1388 | 1458 |
if (!dfs.reached(it)) {
|
| 1389 | 1459 |
return false; |
| 1390 | 1460 |
} |
| 1391 | 1461 |
} |
| 1392 | 1462 |
return true; |
| 1393 | 1463 |
} |
| 1394 | 1464 |
|
| 1395 | 1465 |
namespace _connectivity_bits {
|
| 1396 | 1466 |
|
| 1397 | 1467 |
template <typename Digraph> |
| 1398 | 1468 |
class BipartiteVisitor : public BfsVisitor<Digraph> {
|
| 1399 | 1469 |
public: |
| 1400 | 1470 |
typedef typename Digraph::Arc Arc; |
| 1401 | 1471 |
typedef typename Digraph::Node Node; |
| 1402 | 1472 |
|
| 1403 | 1473 |
BipartiteVisitor(const Digraph& graph, bool& bipartite) |
| 1404 | 1474 |
: _graph(graph), _part(graph), _bipartite(bipartite) {}
|
| 1405 | 1475 |
|
| 1406 | 1476 |
void start(const Node& node) {
|
| 1407 | 1477 |
_part[node] = true; |
| 1408 | 1478 |
} |
| 1409 | 1479 |
void discover(const Arc& edge) {
|
| 1410 | 1480 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
| 1411 | 1481 |
} |
| 1412 | 1482 |
void examine(const Arc& edge) {
|
| 1413 | 1483 |
_bipartite = _bipartite && |
| 1414 | 1484 |
_part[_graph.target(edge)] != _part[_graph.source(edge)]; |
| 1415 | 1485 |
} |
| 1416 | 1486 |
|
| 1417 | 1487 |
private: |
| 1418 | 1488 |
|
| 1419 | 1489 |
const Digraph& _graph; |
| 1420 | 1490 |
typename Digraph::template NodeMap<bool> _part; |
| 1421 | 1491 |
bool& _bipartite; |
| 1422 | 1492 |
}; |
| 1423 | 1493 |
|
| 1424 | 1494 |
template <typename Digraph, typename PartMap> |
| 1425 | 1495 |
class BipartitePartitionsVisitor : public BfsVisitor<Digraph> {
|
| 1426 | 1496 |
public: |
| 1427 | 1497 |
typedef typename Digraph::Arc Arc; |
| 1428 | 1498 |
typedef typename Digraph::Node Node; |
| 1429 | 1499 |
|
| 1430 | 1500 |
BipartitePartitionsVisitor(const Digraph& graph, |
| 1431 | 1501 |
PartMap& part, bool& bipartite) |
| 1432 | 1502 |
: _graph(graph), _part(part), _bipartite(bipartite) {}
|
| 1433 | 1503 |
|
| 1434 | 1504 |
void start(const Node& node) {
|
| 1435 | 1505 |
_part.set(node, true); |
| 1436 | 1506 |
} |
| 1437 | 1507 |
void discover(const Arc& edge) {
|
| 1438 | 1508 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
| 1439 | 1509 |
} |
| 1440 | 1510 |
void examine(const Arc& edge) {
|
| 1441 | 1511 |
_bipartite = _bipartite && |
| 1442 | 1512 |
_part[_graph.target(edge)] != _part[_graph.source(edge)]; |
| 1443 | 1513 |
} |
| 1444 | 1514 |
|
| 1445 | 1515 |
private: |
| 1446 | 1516 |
|
| 1447 | 1517 |
const Digraph& _graph; |
| 1448 | 1518 |
PartMap& _part; |
| 1449 | 1519 |
bool& _bipartite; |
| 1450 | 1520 |
}; |
| 1451 | 1521 |
} |
| 1452 | 1522 |
|
| 1453 | 1523 |
/// \ingroup graph_properties |
| 1454 | 1524 |
/// |
| 1455 |
/// \brief Check |
|
| 1525 |
/// \brief Check whether an undirected graph is bipartite. |
|
| 1456 | 1526 |
/// |
| 1457 |
/// The function checks if the given undirected \c graph graph is bipartite |
|
| 1458 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
|
| 1459 |
/// \param graph The undirected graph. |
|
| 1460 |
/// \return \c true if \c graph is bipartite, \c false otherwise. |
|
| 1461 |
/// |
|
| 1527 |
/// The function checks whether the given undirected graph is bipartite. |
|
| 1528 |
/// \return \c true if the graph is bipartite. |
|
| 1529 |
/// |
|
| 1530 |
/// \see bipartitePartitions() |
|
| 1462 | 1531 |
template<typename Graph> |
| 1463 |
|
|
| 1532 |
bool bipartite(const Graph &graph){
|
|
| 1464 | 1533 |
using namespace _connectivity_bits; |
| 1465 | 1534 |
|
| 1466 | 1535 |
checkConcept<concepts::Graph, Graph>(); |
| 1467 | 1536 |
|
| 1468 | 1537 |
typedef typename Graph::NodeIt NodeIt; |
| 1469 | 1538 |
typedef typename Graph::ArcIt ArcIt; |
| 1470 | 1539 |
|
| 1471 | 1540 |
bool bipartite = true; |
| 1472 | 1541 |
|
| 1473 | 1542 |
BipartiteVisitor<Graph> |
| 1474 | 1543 |
visitor(graph, bipartite); |
| 1475 | 1544 |
BfsVisit<Graph, BipartiteVisitor<Graph> > |
| 1476 | 1545 |
bfs(graph, visitor); |
| 1477 | 1546 |
bfs.init(); |
| 1478 | 1547 |
for(NodeIt it(graph); it != INVALID; ++it) {
|
| 1479 | 1548 |
if(!bfs.reached(it)){
|
| 1480 | 1549 |
bfs.addSource(it); |
| 1481 | 1550 |
while (!bfs.emptyQueue()) {
|
| 1482 | 1551 |
bfs.processNextNode(); |
| 1483 | 1552 |
if (!bipartite) return false; |
| 1484 | 1553 |
} |
| 1485 | 1554 |
} |
| 1486 | 1555 |
} |
| 1487 | 1556 |
return true; |
| 1488 | 1557 |
} |
| 1489 | 1558 |
|
| 1490 | 1559 |
/// \ingroup graph_properties |
| 1491 | 1560 |
/// |
| 1492 |
/// \brief |
|
| 1561 |
/// \brief Find the bipartite partitions of an undirected graph. |
|
| 1493 | 1562 |
/// |
| 1494 |
/// The function checks if the given undirected graph is bipartite |
|
| 1495 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
|
| 1496 |
/// During the execution, the \c partMap will be set as the two |
|
| 1497 |
/// partitions of the graph. |
|
| 1563 |
/// This function checks whether the given undirected graph is bipartite |
|
| 1564 |
/// and gives back the bipartite partitions. |
|
| 1498 | 1565 |
/// |
| 1499 | 1566 |
/// \image html bipartite_partitions.png |
| 1500 | 1567 |
/// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth |
| 1501 | 1568 |
/// |
| 1502 | 1569 |
/// \param graph The undirected graph. |
| 1503 |
/// \retval partMap A writable bool map of nodes. It will be set as the |
|
| 1504 |
/// two partitions of the graph. |
|
| 1505 |
/// \ |
|
| 1570 |
/// \retval partMap A writable node map of \c bool (or convertible) value |
|
| 1571 |
/// type. The values will be set to \c true for one component and |
|
| 1572 |
/// \c false for the other one. |
|
| 1573 |
/// \return \c true if the graph is bipartite, \c false otherwise. |
|
| 1574 |
/// |
|
| 1575 |
/// \see bipartite() |
|
| 1506 | 1576 |
template<typename Graph, typename NodeMap> |
| 1507 |
|
|
| 1577 |
bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
|
|
| 1508 | 1578 |
using namespace _connectivity_bits; |
| 1509 | 1579 |
|
| 1510 | 1580 |
checkConcept<concepts::Graph, Graph>(); |
| 1581 |
checkConcept<concepts::WriteMap<typename Graph::Node, bool>, NodeMap>(); |
|
| 1511 | 1582 |
|
| 1512 | 1583 |
typedef typename Graph::Node Node; |
| 1513 | 1584 |
typedef typename Graph::NodeIt NodeIt; |
| 1514 | 1585 |
typedef typename Graph::ArcIt ArcIt; |
| 1515 | 1586 |
|
| 1516 | 1587 |
bool bipartite = true; |
| 1517 | 1588 |
|
| 1518 | 1589 |
BipartitePartitionsVisitor<Graph, NodeMap> |
| 1519 | 1590 |
visitor(graph, partMap, bipartite); |
| 1520 | 1591 |
BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> > |
| 1521 | 1592 |
bfs(graph, visitor); |
| 1522 | 1593 |
bfs.init(); |
| 1523 | 1594 |
for(NodeIt it(graph); it != INVALID; ++it) {
|
| 1524 | 1595 |
if(!bfs.reached(it)){
|
| 1525 | 1596 |
bfs.addSource(it); |
| 1526 | 1597 |
while (!bfs.emptyQueue()) {
|
| 1527 | 1598 |
bfs.processNextNode(); |
| 1528 | 1599 |
if (!bipartite) return false; |
| 1529 | 1600 |
} |
| 1530 | 1601 |
} |
| 1531 | 1602 |
} |
| 1532 | 1603 |
return true; |
| 1533 | 1604 |
} |
| 1534 | 1605 |
|
| 1535 |
/// \ |
|
| 1606 |
/// \ingroup graph_properties |
|
| 1536 | 1607 |
/// |
| 1537 |
/// Returns true when there are not loop edges in the graph. |
|
| 1538 |
template <typename Digraph> |
|
| 1539 |
bool loopFree(const Digraph& digraph) {
|
|
| 1540 |
for (typename Digraph::ArcIt it(digraph); it != INVALID; ++it) {
|
|
| 1541 |
|
|
| 1608 |
/// \brief Check whether the given graph contains no loop arcs/edges. |
|
| 1609 |
/// |
|
| 1610 |
/// This function returns \c true if there are no loop arcs/edges in |
|
| 1611 |
/// the given graph. It works for both directed and undirected graphs. |
|
| 1612 |
template <typename Graph> |
|
| 1613 |
bool loopFree(const Graph& graph) {
|
|
| 1614 |
for (typename Graph::ArcIt it(graph); it != INVALID; ++it) {
|
|
| 1615 |
if (graph.source(it) == graph.target(it)) return false; |
|
| 1542 | 1616 |
} |
| 1543 | 1617 |
return true; |
| 1544 | 1618 |
} |
| 1545 | 1619 |
|
| 1546 |
/// \ |
|
| 1620 |
/// \ingroup graph_properties |
|
| 1547 | 1621 |
/// |
| 1548 |
/// |
|
| 1622 |
/// \brief Check whether the given graph contains no parallel arcs/edges. |
|
| 1623 |
/// |
|
| 1624 |
/// This function returns \c true if there are no parallel arcs/edges in |
|
| 1625 |
/// the given graph. It works for both directed and undirected graphs. |
|
| 1549 | 1626 |
template <typename Graph> |
| 1550 | 1627 |
bool parallelFree(const Graph& graph) {
|
| 1551 | 1628 |
typename Graph::template NodeMap<int> reached(graph, 0); |
| 1552 | 1629 |
int cnt = 1; |
| 1553 | 1630 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
| 1554 | 1631 |
for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
|
| 1555 | 1632 |
if (reached[graph.target(a)] == cnt) return false; |
| 1556 | 1633 |
reached[graph.target(a)] = cnt; |
| 1557 | 1634 |
} |
| 1558 | 1635 |
++cnt; |
| 1559 | 1636 |
} |
| 1560 | 1637 |
return true; |
| 1561 | 1638 |
} |
| 1562 | 1639 |
|
| 1563 |
/// \brief Returns true when there are not loop edges and parallel |
|
| 1564 |
/// edges in the graph. |
|
| 1640 |
/// \ingroup graph_properties |
|
| 1565 | 1641 |
/// |
| 1566 |
/// Returns true when there are not loop edges and parallel edges in |
|
| 1567 |
/// the graph. |
|
| 1642 |
/// \brief Check whether the given graph is simple. |
|
| 1643 |
/// |
|
| 1644 |
/// This function returns \c true if the given graph is simple, i.e. |
|
| 1645 |
/// it contains no loop arcs/edges and no parallel arcs/edges. |
|
| 1646 |
/// The function works for both directed and undirected graphs. |
|
| 1647 |
/// \see loopFree(), parallelFree() |
|
| 1568 | 1648 |
template <typename Graph> |
| 1569 | 1649 |
bool simpleGraph(const Graph& graph) {
|
| 1570 | 1650 |
typename Graph::template NodeMap<int> reached(graph, 0); |
| 1571 | 1651 |
int cnt = 1; |
| 1572 | 1652 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
| 1573 | 1653 |
reached[n] = cnt; |
| 1574 | 1654 |
for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
|
| 1575 | 1655 |
if (reached[graph.target(a)] == cnt) return false; |
| 1576 | 1656 |
reached[graph.target(a)] = cnt; |
| 1577 | 1657 |
} |
| 1578 | 1658 |
++cnt; |
| 1579 | 1659 |
} |
| 1580 | 1660 |
return true; |
| 1581 | 1661 |
} |
| 1582 | 1662 |
|
| 1583 | 1663 |
} //namespace lemon |
| 1584 | 1664 |
|
| 1585 | 1665 |
#endif //LEMON_CONNECTIVITY_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_EULER_H |
| 20 | 20 |
#define LEMON_EULER_H |
| 21 | 21 |
|
| 22 | 22 |
#include<lemon/core.h> |
| 23 | 23 |
#include<lemon/adaptors.h> |
| 24 | 24 |
#include<lemon/connectivity.h> |
| 25 | 25 |
#include <list> |
| 26 | 26 |
|
| 27 | 27 |
/// \ingroup graph_properties |
| 28 | 28 |
/// \file |
| 29 | 29 |
/// \brief Euler tour iterators and a function for checking the \e Eulerian |
| 30 | 30 |
/// property. |
| 31 | 31 |
/// |
| 32 | 32 |
///This file provides Euler tour iterators and a function to check |
| 33 | 33 |
///if a (di)graph is \e Eulerian. |
| 34 | 34 |
|
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 | 37 |
///Euler tour iterator for digraphs. |
| 38 | 38 |
|
| 39 | 39 |
/// \ingroup graph_prop |
| 40 | 40 |
///This iterator provides an Euler tour (Eulerian circuit) of a \e directed |
| 41 | 41 |
///graph (if there exists) and it converts to the \c Arc type of the digraph. |
| 42 | 42 |
/// |
| 43 | 43 |
///For example, if the given digraph has an Euler tour (i.e it has only one |
| 44 | 44 |
///non-trivial component and the in-degree is equal to the out-degree |
| 45 | 45 |
///for all nodes), then the following code will put the arcs of \c g |
| 46 | 46 |
///to the vector \c et according to an Euler tour of \c g. |
| 47 | 47 |
///\code |
| 48 | 48 |
/// std::vector<ListDigraph::Arc> et; |
| 49 | 49 |
/// for(DiEulerIt<ListDigraph> e(g); e!=INVALID; ++e) |
| 50 | 50 |
/// et.push_back(e); |
| 51 | 51 |
///\endcode |
| 52 | 52 |
///If \c g has no Euler tour, then the resulted walk will not be closed |
| 53 | 53 |
///or not contain all arcs. |
| 54 | 54 |
///\sa EulerIt |
| 55 | 55 |
template<typename GR> |
| 56 | 56 |
class DiEulerIt |
| 57 | 57 |
{
|
| 58 | 58 |
typedef typename GR::Node Node; |
| 59 | 59 |
typedef typename GR::NodeIt NodeIt; |
| 60 | 60 |
typedef typename GR::Arc Arc; |
| 61 | 61 |
typedef typename GR::ArcIt ArcIt; |
| 62 | 62 |
typedef typename GR::OutArcIt OutArcIt; |
| 63 | 63 |
typedef typename GR::InArcIt InArcIt; |
| 64 | 64 |
|
| 65 | 65 |
const GR &g; |
| 66 | 66 |
typename GR::template NodeMap<OutArcIt> narc; |
| 67 | 67 |
std::list<Arc> euler; |
| 68 | 68 |
|
| 69 | 69 |
public: |
| 70 | 70 |
|
| 71 | 71 |
///Constructor |
| 72 | 72 |
|
| 73 | 73 |
///Constructor. |
| 74 | 74 |
///\param gr A digraph. |
| 75 | 75 |
///\param start The starting point of the tour. If it is not given, |
| 76 | 76 |
///the tour will start from the first node that has an outgoing arc. |
| 77 | 77 |
DiEulerIt(const GR &gr, typename GR::Node start = INVALID) |
| 78 | 78 |
: g(gr), narc(g) |
| 79 | 79 |
{
|
| 80 | 80 |
if (start==INVALID) {
|
| 81 | 81 |
NodeIt n(g); |
| 82 | 82 |
while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n; |
| 83 | 83 |
start=n; |
| 84 | 84 |
} |
| 85 | 85 |
if (start!=INVALID) {
|
| 86 | 86 |
for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n); |
| 87 | 87 |
while (narc[start]!=INVALID) {
|
| 88 | 88 |
euler.push_back(narc[start]); |
| 89 | 89 |
Node next=g.target(narc[start]); |
| 90 | 90 |
++narc[start]; |
| 91 | 91 |
start=next; |
| 92 | 92 |
} |
| 93 | 93 |
} |
| 94 | 94 |
} |
| 95 | 95 |
|
| 96 | 96 |
///Arc conversion |
| 97 | 97 |
operator Arc() { return euler.empty()?INVALID:euler.front(); }
|
| 98 | 98 |
///Compare with \c INVALID |
| 99 | 99 |
bool operator==(Invalid) { return euler.empty(); }
|
| 100 | 100 |
///Compare with \c INVALID |
| 101 | 101 |
bool operator!=(Invalid) { return !euler.empty(); }
|
| 102 | 102 |
|
| 103 | 103 |
///Next arc of the tour |
| 104 | 104 |
|
| 105 | 105 |
///Next arc of the tour |
| 106 | 106 |
/// |
| 107 | 107 |
DiEulerIt &operator++() {
|
| 108 | 108 |
Node s=g.target(euler.front()); |
| 109 | 109 |
euler.pop_front(); |
| 110 | 110 |
typename std::list<Arc>::iterator next=euler.begin(); |
| 111 | 111 |
while(narc[s]!=INVALID) {
|
| 112 | 112 |
euler.insert(next,narc[s]); |
| 113 | 113 |
Node n=g.target(narc[s]); |
| 114 | 114 |
++narc[s]; |
| 115 | 115 |
s=n; |
| 116 | 116 |
} |
| 117 | 117 |
return *this; |
| 118 | 118 |
} |
| 119 | 119 |
///Postfix incrementation |
| 120 | 120 |
|
| 121 | 121 |
/// Postfix incrementation. |
| 122 | 122 |
/// |
| 123 | 123 |
///\warning This incrementation |
| 124 | 124 |
///returns an \c Arc, not a \ref DiEulerIt, as one may |
| 125 | 125 |
///expect. |
| 126 | 126 |
Arc operator++(int) |
| 127 | 127 |
{
|
| 128 | 128 |
Arc e=*this; |
| 129 | 129 |
++(*this); |
| 130 | 130 |
return e; |
| 131 | 131 |
} |
| 132 | 132 |
}; |
| 133 | 133 |
|
| 134 | 134 |
///Euler tour iterator for graphs. |
| 135 | 135 |
|
| 136 | 136 |
/// \ingroup graph_properties |
| 137 | 137 |
///This iterator provides an Euler tour (Eulerian circuit) of an |
| 138 | 138 |
///\e undirected graph (if there exists) and it converts to the \c Arc |
| 139 | 139 |
///and \c Edge types of the graph. |
| 140 | 140 |
/// |
| 141 | 141 |
///For example, if the given graph has an Euler tour (i.e it has only one |
| 142 | 142 |
///non-trivial component and the degree of each node is even), |
| 143 | 143 |
///the following code will print the arc IDs according to an |
| 144 | 144 |
///Euler tour of \c g. |
| 145 | 145 |
///\code |
| 146 | 146 |
/// for(EulerIt<ListGraph> e(g); e!=INVALID; ++e) {
|
| 147 | 147 |
/// std::cout << g.id(Edge(e)) << std::eol; |
| 148 | 148 |
/// } |
| 149 | 149 |
///\endcode |
| 150 | 150 |
///Although this iterator is for undirected graphs, it still returns |
| 151 | 151 |
///arcs in order to indicate the direction of the tour. |
| 152 | 152 |
///(But arcs convert to edges, of course.) |
| 153 | 153 |
/// |
| 154 | 154 |
///If \c g has no Euler tour, then the resulted walk will not be closed |
| 155 | 155 |
///or not contain all edges. |
| 156 | 156 |
template<typename GR> |
| 157 | 157 |
class EulerIt |
| 158 | 158 |
{
|
| 159 | 159 |
typedef typename GR::Node Node; |
| 160 | 160 |
typedef typename GR::NodeIt NodeIt; |
| 161 | 161 |
typedef typename GR::Arc Arc; |
| 162 | 162 |
typedef typename GR::Edge Edge; |
| 163 | 163 |
typedef typename GR::ArcIt ArcIt; |
| 164 | 164 |
typedef typename GR::OutArcIt OutArcIt; |
| 165 | 165 |
typedef typename GR::InArcIt InArcIt; |
| 166 | 166 |
|
| 167 | 167 |
const GR &g; |
| 168 | 168 |
typename GR::template NodeMap<OutArcIt> narc; |
| 169 | 169 |
typename GR::template EdgeMap<bool> visited; |
| 170 | 170 |
std::list<Arc> euler; |
| 171 | 171 |
|
| 172 | 172 |
public: |
| 173 | 173 |
|
| 174 | 174 |
///Constructor |
| 175 | 175 |
|
| 176 | 176 |
///Constructor. |
| 177 | 177 |
///\param gr A graph. |
| 178 | 178 |
///\param start The starting point of the tour. If it is not given, |
| 179 | 179 |
///the tour will start from the first node that has an incident edge. |
| 180 | 180 |
EulerIt(const GR &gr, typename GR::Node start = INVALID) |
| 181 | 181 |
: g(gr), narc(g), visited(g, false) |
| 182 | 182 |
{
|
| 183 | 183 |
if (start==INVALID) {
|
| 184 | 184 |
NodeIt n(g); |
| 185 | 185 |
while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n; |
| 186 | 186 |
start=n; |
| 187 | 187 |
} |
| 188 | 188 |
if (start!=INVALID) {
|
| 189 | 189 |
for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n); |
| 190 | 190 |
while(narc[start]!=INVALID) {
|
| 191 | 191 |
euler.push_back(narc[start]); |
| 192 | 192 |
visited[narc[start]]=true; |
| 193 | 193 |
Node next=g.target(narc[start]); |
| 194 | 194 |
++narc[start]; |
| 195 | 195 |
start=next; |
| 196 | 196 |
while(narc[start]!=INVALID && visited[narc[start]]) ++narc[start]; |
| 197 | 197 |
} |
| 198 | 198 |
} |
| 199 | 199 |
} |
| 200 | 200 |
|
| 201 | 201 |
///Arc conversion |
| 202 | 202 |
operator Arc() const { return euler.empty()?INVALID:euler.front(); }
|
| 203 | 203 |
///Edge conversion |
| 204 | 204 |
operator Edge() const { return euler.empty()?INVALID:euler.front(); }
|
| 205 | 205 |
///Compare with \c INVALID |
| 206 | 206 |
bool operator==(Invalid) const { return euler.empty(); }
|
| 207 | 207 |
///Compare with \c INVALID |
| 208 | 208 |
bool operator!=(Invalid) const { return !euler.empty(); }
|
| 209 | 209 |
|
| 210 | 210 |
///Next arc of the tour |
| 211 | 211 |
|
| 212 | 212 |
///Next arc of the tour |
| 213 | 213 |
/// |
| 214 | 214 |
EulerIt &operator++() {
|
| 215 | 215 |
Node s=g.target(euler.front()); |
| 216 | 216 |
euler.pop_front(); |
| 217 | 217 |
typename std::list<Arc>::iterator next=euler.begin(); |
| 218 | 218 |
while(narc[s]!=INVALID) {
|
| 219 | 219 |
while(narc[s]!=INVALID && visited[narc[s]]) ++narc[s]; |
| 220 | 220 |
if(narc[s]==INVALID) break; |
| 221 | 221 |
else {
|
| 222 | 222 |
euler.insert(next,narc[s]); |
| 223 | 223 |
visited[narc[s]]=true; |
| 224 | 224 |
Node n=g.target(narc[s]); |
| 225 | 225 |
++narc[s]; |
| 226 | 226 |
s=n; |
| 227 | 227 |
} |
| 228 | 228 |
} |
| 229 | 229 |
return *this; |
| 230 | 230 |
} |
| 231 | 231 |
|
| 232 | 232 |
///Postfix incrementation |
| 233 | 233 |
|
| 234 | 234 |
/// Postfix incrementation. |
| 235 | 235 |
/// |
| 236 | 236 |
///\warning This incrementation returns an \c Arc (which converts to |
| 237 | 237 |
///an \c Edge), not an \ref EulerIt, as one may expect. |
| 238 | 238 |
Arc operator++(int) |
| 239 | 239 |
{
|
| 240 | 240 |
Arc e=*this; |
| 241 | 241 |
++(*this); |
| 242 | 242 |
return e; |
| 243 | 243 |
} |
| 244 | 244 |
}; |
| 245 | 245 |
|
| 246 | 246 |
|
| 247 |
///Check if the given graph is |
|
| 247 |
///Check if the given graph is Eulerian |
|
| 248 | 248 |
|
| 249 | 249 |
/// \ingroup graph_properties |
| 250 |
///This function checks if the given graph is |
|
| 250 |
///This function checks if the given graph is Eulerian. |
|
| 251 | 251 |
///It works for both directed and undirected graphs. |
| 252 | 252 |
/// |
| 253 | 253 |
///By definition, a digraph is called \e Eulerian if |
| 254 | 254 |
///and only if it is connected and the number of incoming and outgoing |
| 255 | 255 |
///arcs are the same for each node. |
| 256 | 256 |
///Similarly, an undirected graph is called \e Eulerian if |
| 257 | 257 |
///and only if it is connected and the number of incident edges is even |
| 258 | 258 |
///for each node. |
| 259 | 259 |
/// |
| 260 | 260 |
///\note There are (di)graphs that are not Eulerian, but still have an |
| 261 | 261 |
/// Euler tour, since they may contain isolated nodes. |
| 262 | 262 |
/// |
| 263 | 263 |
///\sa DiEulerIt, EulerIt |
| 264 | 264 |
template<typename GR> |
| 265 | 265 |
#ifdef DOXYGEN |
| 266 | 266 |
bool |
| 267 | 267 |
#else |
| 268 | 268 |
typename enable_if<UndirectedTagIndicator<GR>,bool>::type |
| 269 | 269 |
eulerian(const GR &g) |
| 270 | 270 |
{
|
| 271 | 271 |
for(typename GR::NodeIt n(g);n!=INVALID;++n) |
| 272 | 272 |
if(countIncEdges(g,n)%2) return false; |
| 273 | 273 |
return connected(g); |
| 274 | 274 |
} |
| 275 | 275 |
template<class GR> |
| 276 | 276 |
typename disable_if<UndirectedTagIndicator<GR>,bool>::type |
| 277 | 277 |
#endif |
| 278 | 278 |
eulerian(const GR &g) |
| 279 | 279 |
{
|
| 280 | 280 |
for(typename GR::NodeIt n(g);n!=INVALID;++n) |
| 281 | 281 |
if(countInArcs(g,n)!=countOutArcs(g,n)) return false; |
| 282 | 282 |
return connected(undirector(g)); |
| 283 | 283 |
} |
| 284 | 284 |
|
| 285 | 285 |
} |
| 286 | 286 |
|
| 287 | 287 |
#endif |
0 comments (0 inline)