... | ... |
@@ -949,193 +949,193 @@ |
949 | 949 |
return c; |
950 | 950 |
} |
951 | 951 |
|
952 | 952 |
#ifndef DOXYGEN |
953 | 953 |
Cost totalCost() const { |
954 | 954 |
return totalCost<Cost>(); |
955 | 955 |
} |
956 | 956 |
#endif |
957 | 957 |
|
958 | 958 |
/// \brief Return the flow on the given arc. |
959 | 959 |
/// |
960 | 960 |
/// This function returns the flow on the given arc. |
961 | 961 |
/// |
962 | 962 |
/// \pre \ref run() must be called before using this function. |
963 | 963 |
Value flow(const Arc& a) const { |
964 | 964 |
return _flow[_arc_id[a]]; |
965 | 965 |
} |
966 | 966 |
|
967 | 967 |
/// \brief Return the flow map (the primal solution). |
968 | 968 |
/// |
969 | 969 |
/// This function copies the flow value on each arc into the given |
970 | 970 |
/// map. The \c Value type of the algorithm must be convertible to |
971 | 971 |
/// the \c Value type of the map. |
972 | 972 |
/// |
973 | 973 |
/// \pre \ref run() must be called before using this function. |
974 | 974 |
template <typename FlowMap> |
975 | 975 |
void flowMap(FlowMap &map) const { |
976 | 976 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
977 | 977 |
map.set(a, _flow[_arc_id[a]]); |
978 | 978 |
} |
979 | 979 |
} |
980 | 980 |
|
981 | 981 |
/// \brief Return the potential (dual value) of the given node. |
982 | 982 |
/// |
983 | 983 |
/// This function returns the potential (dual value) of the |
984 | 984 |
/// given node. |
985 | 985 |
/// |
986 | 986 |
/// \pre \ref run() must be called before using this function. |
987 | 987 |
Cost potential(const Node& n) const { |
988 | 988 |
return _pi[_node_id[n]]; |
989 | 989 |
} |
990 | 990 |
|
991 | 991 |
/// \brief Return the potential map (the dual solution). |
992 | 992 |
/// |
993 | 993 |
/// This function copies the potential (dual value) of each node |
994 | 994 |
/// into the given map. |
995 | 995 |
/// The \c Cost type of the algorithm must be convertible to the |
996 | 996 |
/// \c Value type of the map. |
997 | 997 |
/// |
998 | 998 |
/// \pre \ref run() must be called before using this function. |
999 | 999 |
template <typename PotentialMap> |
1000 | 1000 |
void potentialMap(PotentialMap &map) const { |
1001 | 1001 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1002 | 1002 |
map.set(n, _pi[_node_id[n]]); |
1003 | 1003 |
} |
1004 | 1004 |
} |
1005 | 1005 |
|
1006 | 1006 |
/// @} |
1007 | 1007 |
|
1008 | 1008 |
private: |
1009 | 1009 |
|
1010 | 1010 |
// Initialize internal data structures |
1011 | 1011 |
bool init() { |
1012 | 1012 |
if (_node_num == 0) return false; |
1013 | 1013 |
|
1014 | 1014 |
// Check the sum of supply values |
1015 | 1015 |
_sum_supply = 0; |
1016 | 1016 |
for (int i = 0; i != _node_num; ++i) { |
1017 | 1017 |
_sum_supply += _supply[i]; |
1018 | 1018 |
} |
1019 | 1019 |
if ( !((_stype == GEQ && _sum_supply <= 0) || |
1020 | 1020 |
(_stype == LEQ && _sum_supply >= 0)) ) return false; |
1021 | 1021 |
|
1022 | 1022 |
// Remove non-zero lower bounds |
1023 | 1023 |
if (_have_lower) { |
1024 | 1024 |
for (int i = 0; i != _arc_num; ++i) { |
1025 | 1025 |
Value c = _lower[i]; |
1026 | 1026 |
if (c >= 0) { |
1027 | 1027 |
_cap[i] = _upper[i] < INF ? _upper[i] - c : INF; |
1028 | 1028 |
} else { |
1029 | 1029 |
_cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF; |
1030 | 1030 |
} |
1031 | 1031 |
_supply[_source[i]] -= c; |
1032 | 1032 |
_supply[_target[i]] += c; |
1033 | 1033 |
} |
1034 | 1034 |
} else { |
1035 | 1035 |
for (int i = 0; i != _arc_num; ++i) { |
1036 | 1036 |
_cap[i] = _upper[i]; |
1037 | 1037 |
} |
1038 | 1038 |
} |
1039 | 1039 |
|
1040 | 1040 |
// Initialize artifical cost |
1041 | 1041 |
Cost ART_COST; |
1042 | 1042 |
if (std::numeric_limits<Cost>::is_exact) { |
1043 | 1043 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
1044 | 1044 |
} else { |
1045 |
ART_COST = |
|
1045 |
ART_COST = 0; |
|
1046 | 1046 |
for (int i = 0; i != _arc_num; ++i) { |
1047 | 1047 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
1048 | 1048 |
} |
1049 | 1049 |
ART_COST = (ART_COST + 1) * _node_num; |
1050 | 1050 |
} |
1051 | 1051 |
|
1052 | 1052 |
// Initialize arc maps |
1053 | 1053 |
for (int i = 0; i != _arc_num; ++i) { |
1054 | 1054 |
_flow[i] = 0; |
1055 | 1055 |
_state[i] = STATE_LOWER; |
1056 | 1056 |
} |
1057 | 1057 |
|
1058 | 1058 |
// Set data for the artificial root node |
1059 | 1059 |
_root = _node_num; |
1060 | 1060 |
_parent[_root] = -1; |
1061 | 1061 |
_pred[_root] = -1; |
1062 | 1062 |
_thread[_root] = 0; |
1063 | 1063 |
_rev_thread[0] = _root; |
1064 | 1064 |
_succ_num[_root] = _node_num + 1; |
1065 | 1065 |
_last_succ[_root] = _root - 1; |
1066 | 1066 |
_supply[_root] = -_sum_supply; |
1067 | 1067 |
_pi[_root] = 0; |
1068 | 1068 |
|
1069 | 1069 |
// Add artificial arcs and initialize the spanning tree data structure |
1070 | 1070 |
if (_sum_supply == 0) { |
1071 | 1071 |
// EQ supply constraints |
1072 | 1072 |
_search_arc_num = _arc_num; |
1073 | 1073 |
_all_arc_num = _arc_num + _node_num; |
1074 | 1074 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1075 | 1075 |
_parent[u] = _root; |
1076 | 1076 |
_pred[u] = e; |
1077 | 1077 |
_thread[u] = u + 1; |
1078 | 1078 |
_rev_thread[u + 1] = u; |
1079 | 1079 |
_succ_num[u] = 1; |
1080 | 1080 |
_last_succ[u] = u; |
1081 | 1081 |
_cap[e] = INF; |
1082 | 1082 |
_state[e] = STATE_TREE; |
1083 | 1083 |
if (_supply[u] >= 0) { |
1084 | 1084 |
_forward[u] = true; |
1085 | 1085 |
_pi[u] = 0; |
1086 | 1086 |
_source[e] = u; |
1087 | 1087 |
_target[e] = _root; |
1088 | 1088 |
_flow[e] = _supply[u]; |
1089 | 1089 |
_cost[e] = 0; |
1090 | 1090 |
} else { |
1091 | 1091 |
_forward[u] = false; |
1092 | 1092 |
_pi[u] = ART_COST; |
1093 | 1093 |
_source[e] = _root; |
1094 | 1094 |
_target[e] = u; |
1095 | 1095 |
_flow[e] = -_supply[u]; |
1096 | 1096 |
_cost[e] = ART_COST; |
1097 | 1097 |
} |
1098 | 1098 |
} |
1099 | 1099 |
} |
1100 | 1100 |
else if (_sum_supply > 0) { |
1101 | 1101 |
// LEQ supply constraints |
1102 | 1102 |
_search_arc_num = _arc_num + _node_num; |
1103 | 1103 |
int f = _arc_num + _node_num; |
1104 | 1104 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1105 | 1105 |
_parent[u] = _root; |
1106 | 1106 |
_thread[u] = u + 1; |
1107 | 1107 |
_rev_thread[u + 1] = u; |
1108 | 1108 |
_succ_num[u] = 1; |
1109 | 1109 |
_last_succ[u] = u; |
1110 | 1110 |
if (_supply[u] >= 0) { |
1111 | 1111 |
_forward[u] = true; |
1112 | 1112 |
_pi[u] = 0; |
1113 | 1113 |
_pred[u] = e; |
1114 | 1114 |
_source[e] = u; |
1115 | 1115 |
_target[e] = _root; |
1116 | 1116 |
_cap[e] = INF; |
1117 | 1117 |
_flow[e] = _supply[u]; |
1118 | 1118 |
_cost[e] = 0; |
1119 | 1119 |
_state[e] = STATE_TREE; |
1120 | 1120 |
} else { |
1121 | 1121 |
_forward[u] = false; |
1122 | 1122 |
_pi[u] = ART_COST; |
1123 | 1123 |
_pred[u] = f; |
1124 | 1124 |
_source[f] = _root; |
1125 | 1125 |
_target[f] = u; |
1126 | 1126 |
_cap[f] = INF; |
1127 | 1127 |
_flow[f] = -_supply[u]; |
1128 | 1128 |
_cost[f] = ART_COST; |
1129 | 1129 |
_state[f] = STATE_TREE; |
1130 | 1130 |
_source[e] = u; |
1131 | 1131 |
_target[e] = _root; |
1132 | 1132 |
_cap[e] = INF; |
1133 | 1133 |
_flow[e] = 0; |
1134 | 1134 |
_cost[e] = 0; |
1135 | 1135 |
_state[e] = STATE_LOWER; |
1136 | 1136 |
++f; |
1137 | 1137 |
} |
1138 | 1138 |
} |
1139 | 1139 |
_all_arc_num = f; |
1140 | 1140 |
} |
1141 | 1141 |
else { |
... | ... |
@@ -1364,126 +1364,126 @@ |
1364 | 1364 |
|
1365 | 1365 |
// Update _last_succ from v_in towards the root |
1366 | 1366 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
1367 | 1367 |
u = _parent[u]) { |
1368 | 1368 |
_last_succ[u] = _last_succ[u_out]; |
1369 | 1369 |
} |
1370 | 1370 |
// Update _last_succ from v_out towards the root |
1371 | 1371 |
if (join != old_rev_thread && v_in != old_rev_thread) { |
1372 | 1372 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1373 | 1373 |
u = _parent[u]) { |
1374 | 1374 |
_last_succ[u] = old_rev_thread; |
1375 | 1375 |
} |
1376 | 1376 |
} else { |
1377 | 1377 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1378 | 1378 |
u = _parent[u]) { |
1379 | 1379 |
_last_succ[u] = _last_succ[u_out]; |
1380 | 1380 |
} |
1381 | 1381 |
} |
1382 | 1382 |
|
1383 | 1383 |
// Update _succ_num from v_in to join |
1384 | 1384 |
for (u = v_in; u != join; u = _parent[u]) { |
1385 | 1385 |
_succ_num[u] += old_succ_num; |
1386 | 1386 |
} |
1387 | 1387 |
// Update _succ_num from v_out to join |
1388 | 1388 |
for (u = v_out; u != join; u = _parent[u]) { |
1389 | 1389 |
_succ_num[u] -= old_succ_num; |
1390 | 1390 |
} |
1391 | 1391 |
} |
1392 | 1392 |
|
1393 | 1393 |
// Update potentials |
1394 | 1394 |
void updatePotential() { |
1395 | 1395 |
Cost sigma = _forward[u_in] ? |
1396 | 1396 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
1397 | 1397 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
1398 | 1398 |
// Update potentials in the subtree, which has been moved |
1399 | 1399 |
int end = _thread[_last_succ[u_in]]; |
1400 | 1400 |
for (int u = u_in; u != end; u = _thread[u]) { |
1401 | 1401 |
_pi[u] += sigma; |
1402 | 1402 |
} |
1403 | 1403 |
} |
1404 | 1404 |
|
1405 | 1405 |
// Execute the algorithm |
1406 | 1406 |
ProblemType start(PivotRule pivot_rule) { |
1407 | 1407 |
// Select the pivot rule implementation |
1408 | 1408 |
switch (pivot_rule) { |
1409 | 1409 |
case FIRST_ELIGIBLE: |
1410 | 1410 |
return start<FirstEligiblePivotRule>(); |
1411 | 1411 |
case BEST_ELIGIBLE: |
1412 | 1412 |
return start<BestEligiblePivotRule>(); |
1413 | 1413 |
case BLOCK_SEARCH: |
1414 | 1414 |
return start<BlockSearchPivotRule>(); |
1415 | 1415 |
case CANDIDATE_LIST: |
1416 | 1416 |
return start<CandidateListPivotRule>(); |
1417 | 1417 |
case ALTERING_LIST: |
1418 | 1418 |
return start<AlteringListPivotRule>(); |
1419 | 1419 |
} |
1420 | 1420 |
return INFEASIBLE; // avoid warning |
1421 | 1421 |
} |
1422 | 1422 |
|
1423 | 1423 |
template <typename PivotRuleImpl> |
1424 | 1424 |
ProblemType start() { |
1425 | 1425 |
PivotRuleImpl pivot(*this); |
1426 | 1426 |
|
1427 | 1427 |
// Execute the Network Simplex algorithm |
1428 | 1428 |
while (pivot.findEnteringArc()) { |
1429 | 1429 |
findJoinNode(); |
1430 | 1430 |
bool change = findLeavingArc(); |
1431 | 1431 |
if (delta >= INF) return UNBOUNDED; |
1432 | 1432 |
changeFlow(change); |
1433 | 1433 |
if (change) { |
1434 | 1434 |
updateTreeStructure(); |
1435 | 1435 |
updatePotential(); |
1436 | 1436 |
} |
1437 | 1437 |
} |
1438 | 1438 |
|
1439 | 1439 |
// Check feasibility |
1440 | 1440 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) { |
1441 | 1441 |
if (_flow[e] != 0) return INFEASIBLE; |
1442 | 1442 |
} |
1443 | 1443 |
|
1444 | 1444 |
// Transform the solution and the supply map to the original form |
1445 | 1445 |
if (_have_lower) { |
1446 | 1446 |
for (int i = 0; i != _arc_num; ++i) { |
1447 | 1447 |
Value c = _lower[i]; |
1448 | 1448 |
if (c != 0) { |
1449 | 1449 |
_flow[i] += c; |
1450 | 1450 |
_supply[_source[i]] += c; |
1451 | 1451 |
_supply[_target[i]] -= c; |
1452 | 1452 |
} |
1453 | 1453 |
} |
1454 | 1454 |
} |
1455 | 1455 |
|
1456 | 1456 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
1457 | 1457 |
// optimality conditions |
1458 | 1458 |
if (_sum_supply == 0) { |
1459 | 1459 |
if (_stype == GEQ) { |
1460 |
Cost max_pot = std::numeric_limits<Cost>:: |
|
1460 |
Cost max_pot = -std::numeric_limits<Cost>::max(); |
|
1461 | 1461 |
for (int i = 0; i != _node_num; ++i) { |
1462 | 1462 |
if (_pi[i] > max_pot) max_pot = _pi[i]; |
1463 | 1463 |
} |
1464 | 1464 |
if (max_pot > 0) { |
1465 | 1465 |
for (int i = 0; i != _node_num; ++i) |
1466 | 1466 |
_pi[i] -= max_pot; |
1467 | 1467 |
} |
1468 | 1468 |
} else { |
1469 | 1469 |
Cost min_pot = std::numeric_limits<Cost>::max(); |
1470 | 1470 |
for (int i = 0; i != _node_num; ++i) { |
1471 | 1471 |
if (_pi[i] < min_pot) min_pot = _pi[i]; |
1472 | 1472 |
} |
1473 | 1473 |
if (min_pot < 0) { |
1474 | 1474 |
for (int i = 0; i != _node_num; ++i) |
1475 | 1475 |
_pi[i] -= min_pot; |
1476 | 1476 |
} |
1477 | 1477 |
} |
1478 | 1478 |
} |
1479 | 1479 |
|
1480 | 1480 |
return OPTIMAL; |
1481 | 1481 |
} |
1482 | 1482 |
|
1483 | 1483 |
}; //class NetworkSimplex |
1484 | 1484 |
|
1485 | 1485 |
///@} |
1486 | 1486 |
|
1487 | 1487 |
} //namespace lemon |
1488 | 1488 |
|
1489 | 1489 |
#endif //LEMON_NETWORK_SIMPLEX_H |
0 comments (0 inline)