gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Fix the usage of min() (#368)
0 1 0
default
1 file changed with 2 insertions and 2 deletions:
↑ Collapse diff ↑
Ignore white space 192 line context
... ...
@@ -949,193 +949,193 @@
949 949
      return c;
950 950
    }
951 951

	
952 952
#ifndef DOXYGEN
953 953
    Cost totalCost() const {
954 954
      return totalCost<Cost>();
955 955
    }
956 956
#endif
957 957

	
958 958
    /// \brief Return the flow on the given arc.
959 959
    ///
960 960
    /// This function returns the flow on the given arc.
961 961
    ///
962 962
    /// \pre \ref run() must be called before using this function.
963 963
    Value flow(const Arc& a) const {
964 964
      return _flow[_arc_id[a]];
965 965
    }
966 966

	
967 967
    /// \brief Return the flow map (the primal solution).
968 968
    ///
969 969
    /// This function copies the flow value on each arc into the given
970 970
    /// map. The \c Value type of the algorithm must be convertible to
971 971
    /// the \c Value type of the map.
972 972
    ///
973 973
    /// \pre \ref run() must be called before using this function.
974 974
    template <typename FlowMap>
975 975
    void flowMap(FlowMap &map) const {
976 976
      for (ArcIt a(_graph); a != INVALID; ++a) {
977 977
        map.set(a, _flow[_arc_id[a]]);
978 978
      }
979 979
    }
980 980

	
981 981
    /// \brief Return the potential (dual value) of the given node.
982 982
    ///
983 983
    /// This function returns the potential (dual value) of the
984 984
    /// given node.
985 985
    ///
986 986
    /// \pre \ref run() must be called before using this function.
987 987
    Cost potential(const Node& n) const {
988 988
      return _pi[_node_id[n]];
989 989
    }
990 990

	
991 991
    /// \brief Return the potential map (the dual solution).
992 992
    ///
993 993
    /// This function copies the potential (dual value) of each node
994 994
    /// into the given map.
995 995
    /// The \c Cost type of the algorithm must be convertible to the
996 996
    /// \c Value type of the map.
997 997
    ///
998 998
    /// \pre \ref run() must be called before using this function.
999 999
    template <typename PotentialMap>
1000 1000
    void potentialMap(PotentialMap &map) const {
1001 1001
      for (NodeIt n(_graph); n != INVALID; ++n) {
1002 1002
        map.set(n, _pi[_node_id[n]]);
1003 1003
      }
1004 1004
    }
1005 1005

	
1006 1006
    /// @}
1007 1007

	
1008 1008
  private:
1009 1009

	
1010 1010
    // Initialize internal data structures
1011 1011
    bool init() {
1012 1012
      if (_node_num == 0) return false;
1013 1013

	
1014 1014
      // Check the sum of supply values
1015 1015
      _sum_supply = 0;
1016 1016
      for (int i = 0; i != _node_num; ++i) {
1017 1017
        _sum_supply += _supply[i];
1018 1018
      }
1019 1019
      if ( !((_stype == GEQ && _sum_supply <= 0) ||
1020 1020
             (_stype == LEQ && _sum_supply >= 0)) ) return false;
1021 1021

	
1022 1022
      // Remove non-zero lower bounds
1023 1023
      if (_have_lower) {
1024 1024
        for (int i = 0; i != _arc_num; ++i) {
1025 1025
          Value c = _lower[i];
1026 1026
          if (c >= 0) {
1027 1027
            _cap[i] = _upper[i] < INF ? _upper[i] - c : INF;
1028 1028
          } else {
1029 1029
            _cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF;
1030 1030
          }
1031 1031
          _supply[_source[i]] -= c;
1032 1032
          _supply[_target[i]] += c;
1033 1033
        }
1034 1034
      } else {
1035 1035
        for (int i = 0; i != _arc_num; ++i) {
1036 1036
          _cap[i] = _upper[i];
1037 1037
        }
1038 1038
      }
1039 1039

	
1040 1040
      // Initialize artifical cost
1041 1041
      Cost ART_COST;
1042 1042
      if (std::numeric_limits<Cost>::is_exact) {
1043 1043
        ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
1044 1044
      } else {
1045
        ART_COST = std::numeric_limits<Cost>::min();
1045
        ART_COST = 0;
1046 1046
        for (int i = 0; i != _arc_num; ++i) {
1047 1047
          if (_cost[i] > ART_COST) ART_COST = _cost[i];
1048 1048
        }
1049 1049
        ART_COST = (ART_COST + 1) * _node_num;
1050 1050
      }
1051 1051

	
1052 1052
      // Initialize arc maps
1053 1053
      for (int i = 0; i != _arc_num; ++i) {
1054 1054
        _flow[i] = 0;
1055 1055
        _state[i] = STATE_LOWER;
1056 1056
      }
1057 1057
      
1058 1058
      // Set data for the artificial root node
1059 1059
      _root = _node_num;
1060 1060
      _parent[_root] = -1;
1061 1061
      _pred[_root] = -1;
1062 1062
      _thread[_root] = 0;
1063 1063
      _rev_thread[0] = _root;
1064 1064
      _succ_num[_root] = _node_num + 1;
1065 1065
      _last_succ[_root] = _root - 1;
1066 1066
      _supply[_root] = -_sum_supply;
1067 1067
      _pi[_root] = 0;
1068 1068

	
1069 1069
      // Add artificial arcs and initialize the spanning tree data structure
1070 1070
      if (_sum_supply == 0) {
1071 1071
        // EQ supply constraints
1072 1072
        _search_arc_num = _arc_num;
1073 1073
        _all_arc_num = _arc_num + _node_num;
1074 1074
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1075 1075
          _parent[u] = _root;
1076 1076
          _pred[u] = e;
1077 1077
          _thread[u] = u + 1;
1078 1078
          _rev_thread[u + 1] = u;
1079 1079
          _succ_num[u] = 1;
1080 1080
          _last_succ[u] = u;
1081 1081
          _cap[e] = INF;
1082 1082
          _state[e] = STATE_TREE;
1083 1083
          if (_supply[u] >= 0) {
1084 1084
            _forward[u] = true;
1085 1085
            _pi[u] = 0;
1086 1086
            _source[e] = u;
1087 1087
            _target[e] = _root;
1088 1088
            _flow[e] = _supply[u];
1089 1089
            _cost[e] = 0;
1090 1090
          } else {
1091 1091
            _forward[u] = false;
1092 1092
            _pi[u] = ART_COST;
1093 1093
            _source[e] = _root;
1094 1094
            _target[e] = u;
1095 1095
            _flow[e] = -_supply[u];
1096 1096
            _cost[e] = ART_COST;
1097 1097
          }
1098 1098
        }
1099 1099
      }
1100 1100
      else if (_sum_supply > 0) {
1101 1101
        // LEQ supply constraints
1102 1102
        _search_arc_num = _arc_num + _node_num;
1103 1103
        int f = _arc_num + _node_num;
1104 1104
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1105 1105
          _parent[u] = _root;
1106 1106
          _thread[u] = u + 1;
1107 1107
          _rev_thread[u + 1] = u;
1108 1108
          _succ_num[u] = 1;
1109 1109
          _last_succ[u] = u;
1110 1110
          if (_supply[u] >= 0) {
1111 1111
            _forward[u] = true;
1112 1112
            _pi[u] = 0;
1113 1113
            _pred[u] = e;
1114 1114
            _source[e] = u;
1115 1115
            _target[e] = _root;
1116 1116
            _cap[e] = INF;
1117 1117
            _flow[e] = _supply[u];
1118 1118
            _cost[e] = 0;
1119 1119
            _state[e] = STATE_TREE;
1120 1120
          } else {
1121 1121
            _forward[u] = false;
1122 1122
            _pi[u] = ART_COST;
1123 1123
            _pred[u] = f;
1124 1124
            _source[f] = _root;
1125 1125
            _target[f] = u;
1126 1126
            _cap[f] = INF;
1127 1127
            _flow[f] = -_supply[u];
1128 1128
            _cost[f] = ART_COST;
1129 1129
            _state[f] = STATE_TREE;
1130 1130
            _source[e] = u;
1131 1131
            _target[e] = _root;
1132 1132
            _cap[e] = INF;
1133 1133
            _flow[e] = 0;
1134 1134
            _cost[e] = 0;
1135 1135
            _state[e] = STATE_LOWER;
1136 1136
            ++f;
1137 1137
          }
1138 1138
        }
1139 1139
        _all_arc_num = f;
1140 1140
      }
1141 1141
      else {
... ...
@@ -1364,126 +1364,126 @@
1364 1364

	
1365 1365
      // Update _last_succ from v_in towards the root
1366 1366
      for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
1367 1367
           u = _parent[u]) {
1368 1368
        _last_succ[u] = _last_succ[u_out];
1369 1369
      }
1370 1370
      // Update _last_succ from v_out towards the root
1371 1371
      if (join != old_rev_thread && v_in != old_rev_thread) {
1372 1372
        for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
1373 1373
             u = _parent[u]) {
1374 1374
          _last_succ[u] = old_rev_thread;
1375 1375
        }
1376 1376
      } else {
1377 1377
        for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
1378 1378
             u = _parent[u]) {
1379 1379
          _last_succ[u] = _last_succ[u_out];
1380 1380
        }
1381 1381
      }
1382 1382

	
1383 1383
      // Update _succ_num from v_in to join
1384 1384
      for (u = v_in; u != join; u = _parent[u]) {
1385 1385
        _succ_num[u] += old_succ_num;
1386 1386
      }
1387 1387
      // Update _succ_num from v_out to join
1388 1388
      for (u = v_out; u != join; u = _parent[u]) {
1389 1389
        _succ_num[u] -= old_succ_num;
1390 1390
      }
1391 1391
    }
1392 1392

	
1393 1393
    // Update potentials
1394 1394
    void updatePotential() {
1395 1395
      Cost sigma = _forward[u_in] ?
1396 1396
        _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
1397 1397
        _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
1398 1398
      // Update potentials in the subtree, which has been moved
1399 1399
      int end = _thread[_last_succ[u_in]];
1400 1400
      for (int u = u_in; u != end; u = _thread[u]) {
1401 1401
        _pi[u] += sigma;
1402 1402
      }
1403 1403
    }
1404 1404

	
1405 1405
    // Execute the algorithm
1406 1406
    ProblemType start(PivotRule pivot_rule) {
1407 1407
      // Select the pivot rule implementation
1408 1408
      switch (pivot_rule) {
1409 1409
        case FIRST_ELIGIBLE:
1410 1410
          return start<FirstEligiblePivotRule>();
1411 1411
        case BEST_ELIGIBLE:
1412 1412
          return start<BestEligiblePivotRule>();
1413 1413
        case BLOCK_SEARCH:
1414 1414
          return start<BlockSearchPivotRule>();
1415 1415
        case CANDIDATE_LIST:
1416 1416
          return start<CandidateListPivotRule>();
1417 1417
        case ALTERING_LIST:
1418 1418
          return start<AlteringListPivotRule>();
1419 1419
      }
1420 1420
      return INFEASIBLE; // avoid warning
1421 1421
    }
1422 1422

	
1423 1423
    template <typename PivotRuleImpl>
1424 1424
    ProblemType start() {
1425 1425
      PivotRuleImpl pivot(*this);
1426 1426

	
1427 1427
      // Execute the Network Simplex algorithm
1428 1428
      while (pivot.findEnteringArc()) {
1429 1429
        findJoinNode();
1430 1430
        bool change = findLeavingArc();
1431 1431
        if (delta >= INF) return UNBOUNDED;
1432 1432
        changeFlow(change);
1433 1433
        if (change) {
1434 1434
          updateTreeStructure();
1435 1435
          updatePotential();
1436 1436
        }
1437 1437
      }
1438 1438
      
1439 1439
      // Check feasibility
1440 1440
      for (int e = _search_arc_num; e != _all_arc_num; ++e) {
1441 1441
        if (_flow[e] != 0) return INFEASIBLE;
1442 1442
      }
1443 1443

	
1444 1444
      // Transform the solution and the supply map to the original form
1445 1445
      if (_have_lower) {
1446 1446
        for (int i = 0; i != _arc_num; ++i) {
1447 1447
          Value c = _lower[i];
1448 1448
          if (c != 0) {
1449 1449
            _flow[i] += c;
1450 1450
            _supply[_source[i]] += c;
1451 1451
            _supply[_target[i]] -= c;
1452 1452
          }
1453 1453
        }
1454 1454
      }
1455 1455
      
1456 1456
      // Shift potentials to meet the requirements of the GEQ/LEQ type
1457 1457
      // optimality conditions
1458 1458
      if (_sum_supply == 0) {
1459 1459
        if (_stype == GEQ) {
1460
          Cost max_pot = std::numeric_limits<Cost>::min();
1460
          Cost max_pot = -std::numeric_limits<Cost>::max();
1461 1461
          for (int i = 0; i != _node_num; ++i) {
1462 1462
            if (_pi[i] > max_pot) max_pot = _pi[i];
1463 1463
          }
1464 1464
          if (max_pot > 0) {
1465 1465
            for (int i = 0; i != _node_num; ++i)
1466 1466
              _pi[i] -= max_pot;
1467 1467
          }
1468 1468
        } else {
1469 1469
          Cost min_pot = std::numeric_limits<Cost>::max();
1470 1470
          for (int i = 0; i != _node_num; ++i) {
1471 1471
            if (_pi[i] < min_pot) min_pot = _pi[i];
1472 1472
          }
1473 1473
          if (min_pot < 0) {
1474 1474
            for (int i = 0; i != _node_num; ++i)
1475 1475
              _pi[i] -= min_pot;
1476 1476
          }
1477 1477
        }
1478 1478
      }
1479 1479

	
1480 1480
      return OPTIMAL;
1481 1481
    }
1482 1482

	
1483 1483
  }; //class NetworkSimplex
1484 1484

	
1485 1485
  ///@}
1486 1486

	
1487 1487
} //namespace lemon
1488 1488

	
1489 1489
#endif //LEMON_NETWORK_SIMPLEX_H
0 comments (0 inline)