... | ... |
@@ -1021,49 +1021,49 @@ |
1021 | 1021 |
|
1022 | 1022 |
// Remove non-zero lower bounds |
1023 | 1023 |
if (_have_lower) { |
1024 | 1024 |
for (int i = 0; i != _arc_num; ++i) { |
1025 | 1025 |
Value c = _lower[i]; |
1026 | 1026 |
if (c >= 0) { |
1027 | 1027 |
_cap[i] = _upper[i] < INF ? _upper[i] - c : INF; |
1028 | 1028 |
} else { |
1029 | 1029 |
_cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF; |
1030 | 1030 |
} |
1031 | 1031 |
_supply[_source[i]] -= c; |
1032 | 1032 |
_supply[_target[i]] += c; |
1033 | 1033 |
} |
1034 | 1034 |
} else { |
1035 | 1035 |
for (int i = 0; i != _arc_num; ++i) { |
1036 | 1036 |
_cap[i] = _upper[i]; |
1037 | 1037 |
} |
1038 | 1038 |
} |
1039 | 1039 |
|
1040 | 1040 |
// Initialize artifical cost |
1041 | 1041 |
Cost ART_COST; |
1042 | 1042 |
if (std::numeric_limits<Cost>::is_exact) { |
1043 | 1043 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
1044 | 1044 |
} else { |
1045 |
ART_COST = |
|
1045 |
ART_COST = 0; |
|
1046 | 1046 |
for (int i = 0; i != _arc_num; ++i) { |
1047 | 1047 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
1048 | 1048 |
} |
1049 | 1049 |
ART_COST = (ART_COST + 1) * _node_num; |
1050 | 1050 |
} |
1051 | 1051 |
|
1052 | 1052 |
// Initialize arc maps |
1053 | 1053 |
for (int i = 0; i != _arc_num; ++i) { |
1054 | 1054 |
_flow[i] = 0; |
1055 | 1055 |
_state[i] = STATE_LOWER; |
1056 | 1056 |
} |
1057 | 1057 |
|
1058 | 1058 |
// Set data for the artificial root node |
1059 | 1059 |
_root = _node_num; |
1060 | 1060 |
_parent[_root] = -1; |
1061 | 1061 |
_pred[_root] = -1; |
1062 | 1062 |
_thread[_root] = 0; |
1063 | 1063 |
_rev_thread[0] = _root; |
1064 | 1064 |
_succ_num[_root] = _node_num + 1; |
1065 | 1065 |
_last_succ[_root] = _root - 1; |
1066 | 1066 |
_supply[_root] = -_sum_supply; |
1067 | 1067 |
_pi[_root] = 0; |
1068 | 1068 |
|
1069 | 1069 |
// Add artificial arcs and initialize the spanning tree data structure |
... | ... |
@@ -1436,49 +1436,49 @@ |
1436 | 1436 |
} |
1437 | 1437 |
} |
1438 | 1438 |
|
1439 | 1439 |
// Check feasibility |
1440 | 1440 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) { |
1441 | 1441 |
if (_flow[e] != 0) return INFEASIBLE; |
1442 | 1442 |
} |
1443 | 1443 |
|
1444 | 1444 |
// Transform the solution and the supply map to the original form |
1445 | 1445 |
if (_have_lower) { |
1446 | 1446 |
for (int i = 0; i != _arc_num; ++i) { |
1447 | 1447 |
Value c = _lower[i]; |
1448 | 1448 |
if (c != 0) { |
1449 | 1449 |
_flow[i] += c; |
1450 | 1450 |
_supply[_source[i]] += c; |
1451 | 1451 |
_supply[_target[i]] -= c; |
1452 | 1452 |
} |
1453 | 1453 |
} |
1454 | 1454 |
} |
1455 | 1455 |
|
1456 | 1456 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
1457 | 1457 |
// optimality conditions |
1458 | 1458 |
if (_sum_supply == 0) { |
1459 | 1459 |
if (_stype == GEQ) { |
1460 |
Cost max_pot = std::numeric_limits<Cost>:: |
|
1460 |
Cost max_pot = -std::numeric_limits<Cost>::max(); |
|
1461 | 1461 |
for (int i = 0; i != _node_num; ++i) { |
1462 | 1462 |
if (_pi[i] > max_pot) max_pot = _pi[i]; |
1463 | 1463 |
} |
1464 | 1464 |
if (max_pot > 0) { |
1465 | 1465 |
for (int i = 0; i != _node_num; ++i) |
1466 | 1466 |
_pi[i] -= max_pot; |
1467 | 1467 |
} |
1468 | 1468 |
} else { |
1469 | 1469 |
Cost min_pot = std::numeric_limits<Cost>::max(); |
1470 | 1470 |
for (int i = 0; i != _node_num; ++i) { |
1471 | 1471 |
if (_pi[i] < min_pot) min_pot = _pi[i]; |
1472 | 1472 |
} |
1473 | 1473 |
if (min_pot < 0) { |
1474 | 1474 |
for (int i = 0; i != _node_num; ++i) |
1475 | 1475 |
_pi[i] -= min_pot; |
1476 | 1476 |
} |
1477 | 1477 |
} |
1478 | 1478 |
} |
1479 | 1479 |
|
1480 | 1480 |
return OPTIMAL; |
1481 | 1481 |
} |
1482 | 1482 |
|
1483 | 1483 |
}; //class NetworkSimplex |
1484 | 1484 |
|
0 comments (0 inline)