0
2
0
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
20 | 20 |
#define LEMON_DIJKSTRA_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief Dijkstra algorithm. |
25 | 25 |
|
26 | 26 |
#include <limits> |
27 | 27 |
#include <lemon/list_graph.h> |
28 | 28 |
#include <lemon/bin_heap.h> |
29 | 29 |
#include <lemon/bits/path_dump.h> |
30 | 30 |
#include <lemon/core.h> |
31 | 31 |
#include <lemon/error.h> |
32 | 32 |
#include <lemon/maps.h> |
33 | 33 |
#include <lemon/path.h> |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \brief Default operation traits for the Dijkstra algorithm class. |
38 | 38 |
/// |
39 | 39 |
/// This operation traits class defines all computational operations and |
40 | 40 |
/// constants which are used in the Dijkstra algorithm. |
41 | 41 |
template <typename Value> |
42 | 42 |
struct DijkstraDefaultOperationTraits { |
43 | 43 |
/// \brief Gives back the zero value of the type. |
44 | 44 |
static Value zero() { |
45 | 45 |
return static_cast<Value>(0); |
46 | 46 |
} |
47 | 47 |
/// \brief Gives back the sum of the given two elements. |
48 | 48 |
static Value plus(const Value& left, const Value& right) { |
49 | 49 |
return left + right; |
50 | 50 |
} |
51 | 51 |
/// \brief Gives back true only if the first value is less than the second. |
52 | 52 |
static bool less(const Value& left, const Value& right) { |
53 | 53 |
return left < right; |
54 | 54 |
} |
55 | 55 |
}; |
56 | 56 |
|
57 |
/// \brief Widest path operation traits for the Dijkstra algorithm class. |
|
58 |
/// |
|
59 |
/// This operation traits class defines all computational operations and |
|
60 |
/// constants which are used in the Dijkstra algorithm for widest path |
|
61 |
/// computation. |
|
62 |
/// |
|
63 |
/// \see DijkstraDefaultOperationTraits |
|
64 |
template <typename Value> |
|
65 |
struct DijkstraWidestPathOperationTraits { |
|
66 |
/// \brief Gives back the maximum value of the type. |
|
67 |
static Value zero() { |
|
68 |
return std::numeric_limits<Value>::max(); |
|
69 |
} |
|
70 |
/// \brief Gives back the minimum of the given two elements. |
|
71 |
static Value plus(const Value& left, const Value& right) { |
|
72 |
return std::min(left, right); |
|
73 |
} |
|
74 |
/// \brief Gives back true only if the first value is less than the second. |
|
75 |
static bool less(const Value& left, const Value& right) { |
|
76 |
return left < right; |
|
77 |
} |
|
78 |
}; |
|
79 |
|
|
80 | 57 |
///Default traits class of Dijkstra class. |
81 | 58 |
|
82 | 59 |
///Default traits class of Dijkstra class. |
83 | 60 |
///\tparam GR The type of the digraph. |
84 | 61 |
///\tparam LM The type of the length map. |
85 | 62 |
template<class GR, class LM> |
86 | 63 |
struct DijkstraDefaultTraits |
87 | 64 |
{ |
88 | 65 |
///The type of the digraph the algorithm runs on. |
89 | 66 |
typedef GR Digraph; |
90 | 67 |
|
91 | 68 |
///The type of the map that stores the arc lengths. |
92 | 69 |
|
93 | 70 |
///The type of the map that stores the arc lengths. |
94 | 71 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
95 | 72 |
typedef LM LengthMap; |
96 | 73 |
///The type of the length of the arcs. |
97 | 74 |
typedef typename LM::Value Value; |
98 | 75 |
|
99 | 76 |
/// Operation traits for Dijkstra algorithm. |
100 | 77 |
|
101 | 78 |
/// This class defines the operations that are used in the algorithm. |
102 | 79 |
/// \see DijkstraDefaultOperationTraits |
103 | 80 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
104 | 81 |
|
105 | 82 |
/// The cross reference type used by the heap. |
106 | 83 |
|
107 | 84 |
/// The cross reference type used by the heap. |
108 | 85 |
/// Usually it is \c Digraph::NodeMap<int>. |
109 | 86 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
110 | 87 |
///Instantiates a \ref HeapCrossRef. |
111 | 88 |
|
112 | 89 |
///This function instantiates a \ref HeapCrossRef. |
113 | 90 |
/// \param g is the digraph, to which we would like to define the |
114 | 91 |
/// \ref HeapCrossRef. |
115 | 92 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
116 | 93 |
{ |
117 | 94 |
return new HeapCrossRef(g); |
118 | 95 |
} |
119 | 96 |
|
120 | 97 |
///The heap type used by the Dijkstra algorithm. |
121 | 98 |
|
122 | 99 |
///The heap type used by the Dijkstra algorithm. |
123 | 100 |
/// |
124 | 101 |
///\sa BinHeap |
125 | 102 |
///\sa Dijkstra |
126 | 103 |
typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap; |
127 | 104 |
///Instantiates a \ref Heap. |
128 | 105 |
|
129 | 106 |
///This function instantiates a \ref Heap. |
130 | 107 |
static Heap *createHeap(HeapCrossRef& r) |
131 | 108 |
{ |
132 | 109 |
return new Heap(r); |
133 | 110 |
} |
134 | 111 |
|
135 | 112 |
///\brief The type of the map that stores the predecessor |
136 | 113 |
///arcs of the shortest paths. |
137 | 114 |
/// |
138 | 115 |
///The type of the map that stores the predecessor |
139 | 116 |
///arcs of the shortest paths. |
140 | 117 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
141 | 118 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
142 | 119 |
///Instantiates a PredMap. |
143 | 120 |
|
144 | 121 |
///This function instantiates a PredMap. |
145 | 122 |
///\param g is the digraph, to which we would like to define the |
146 | 123 |
///PredMap. |
147 | 124 |
static PredMap *createPredMap(const Digraph &g) |
148 | 125 |
{ |
149 | 126 |
return new PredMap(g); |
150 | 127 |
} |
151 | 128 |
|
152 | 129 |
///The type of the map that indicates which nodes are processed. |
153 | 130 |
|
154 | 131 |
///The type of the map that indicates which nodes are processed. |
155 | 132 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
156 | 133 |
///By default it is a NullMap. |
157 | 134 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
158 | 135 |
///Instantiates a ProcessedMap. |
159 | 136 |
|
160 | 137 |
///This function instantiates a ProcessedMap. |
161 | 138 |
///\param g is the digraph, to which |
162 | 139 |
///we would like to define the ProcessedMap |
163 | 140 |
#ifdef DOXYGEN |
164 | 141 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
165 | 142 |
#else |
166 | 143 |
static ProcessedMap *createProcessedMap(const Digraph &) |
167 | 144 |
#endif |
168 | 145 |
{ |
169 | 146 |
return new ProcessedMap(); |
170 | 147 |
} |
171 | 148 |
|
172 | 149 |
///The type of the map that stores the distances of the nodes. |
173 | 150 |
|
174 | 151 |
///The type of the map that stores the distances of the nodes. |
175 | 152 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
176 | 153 |
typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
177 | 154 |
///Instantiates a DistMap. |
178 | 155 |
|
179 | 156 |
///This function instantiates a DistMap. |
180 | 157 |
///\param g is the digraph, to which we would like to define |
181 | 158 |
///the DistMap |
182 | 159 |
static DistMap *createDistMap(const Digraph &g) |
183 | 160 |
{ |
184 | 161 |
return new DistMap(g); |
185 | 162 |
} |
186 | 163 |
}; |
187 | 164 |
|
188 | 165 |
///%Dijkstra algorithm class. |
189 | 166 |
|
190 | 167 |
/// \ingroup shortest_path |
191 | 168 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
192 | 169 |
/// |
193 | 170 |
///The arc lengths are passed to the algorithm using a |
194 | 171 |
///\ref concepts::ReadMap "ReadMap", |
195 | 172 |
///so it is easy to change it to any kind of length. |
196 | 173 |
///The type of the length is determined by the |
197 | 174 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
198 | 175 |
///It is also possible to change the underlying priority heap. |
199 | 176 |
/// |
200 | 177 |
///There is also a \ref dijkstra() "function-type interface" for the |
201 | 178 |
///%Dijkstra algorithm, which is convenient in the simplier cases and |
202 | 179 |
///it can be used easier. |
203 | 180 |
/// |
204 | 181 |
///\tparam GR The type of the digraph the algorithm runs on. |
205 | 182 |
///The default value is \ref ListDigraph. |
206 | 183 |
///The value of GR is not used directly by \ref Dijkstra, it is only |
207 | 184 |
///passed to \ref DijkstraDefaultTraits. |
208 | 185 |
///\tparam LM A readable arc map that determines the lengths of the |
209 | 186 |
///arcs. It is read once for each arc, so the map may involve in |
210 | 187 |
///relatively time consuming process to compute the arc lengths if |
211 | 188 |
///it is necessary. The default map type is \ref |
212 | 189 |
///concepts::Digraph::ArcMap "Digraph::ArcMap<int>". |
213 | 190 |
///The value of LM is not used directly by \ref Dijkstra, it is only |
214 | 191 |
///passed to \ref DijkstraDefaultTraits. |
215 | 192 |
///\tparam TR Traits class to set various data types used by the algorithm. |
216 | 193 |
///The default traits class is \ref DijkstraDefaultTraits |
217 | 194 |
///"DijkstraDefaultTraits<GR,LM>". See \ref DijkstraDefaultTraits |
218 | 195 |
///for the documentation of a Dijkstra traits class. |
219 | 196 |
#ifdef DOXYGEN |
220 | 197 |
template <typename GR, typename LM, typename TR> |
221 | 198 |
#else |
222 | 199 |
template <typename GR=ListDigraph, |
223 | 200 |
typename LM=typename GR::template ArcMap<int>, |
224 | 201 |
typename TR=DijkstraDefaultTraits<GR,LM> > |
225 | 202 |
#endif |
226 | 203 |
class Dijkstra { |
227 | 204 |
public: |
228 | 205 |
|
229 | 206 |
///The type of the digraph the algorithm runs on. |
230 | 207 |
typedef typename TR::Digraph Digraph; |
231 | 208 |
|
232 | 209 |
///The type of the length of the arcs. |
233 | 210 |
typedef typename TR::LengthMap::Value Value; |
234 | 211 |
///The type of the map that stores the arc lengths. |
235 | 212 |
typedef typename TR::LengthMap LengthMap; |
236 | 213 |
///\brief The type of the map that stores the predecessor arcs of the |
237 | 214 |
///shortest paths. |
238 | 215 |
typedef typename TR::PredMap PredMap; |
239 | 216 |
///The type of the map that stores the distances of the nodes. |
240 | 217 |
typedef typename TR::DistMap DistMap; |
241 | 218 |
///The type of the map that indicates which nodes are processed. |
242 | 219 |
typedef typename TR::ProcessedMap ProcessedMap; |
243 | 220 |
///The type of the paths. |
244 | 221 |
typedef PredMapPath<Digraph, PredMap> Path; |
245 | 222 |
///The cross reference type used for the current heap. |
246 | 223 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
247 | 224 |
///The heap type used by the algorithm. |
248 | 225 |
typedef typename TR::Heap Heap; |
249 | 226 |
///The operation traits class. |
250 | 227 |
typedef typename TR::OperationTraits OperationTraits; |
251 | 228 |
|
252 | 229 |
///The traits class. |
253 | 230 |
typedef TR Traits; |
254 | 231 |
|
255 | 232 |
private: |
256 | 233 |
|
257 | 234 |
typedef typename Digraph::Node Node; |
258 | 235 |
typedef typename Digraph::NodeIt NodeIt; |
259 | 236 |
typedef typename Digraph::Arc Arc; |
260 | 237 |
typedef typename Digraph::OutArcIt OutArcIt; |
261 | 238 |
|
262 | 239 |
//Pointer to the underlying digraph. |
263 | 240 |
const Digraph *G; |
264 | 241 |
//Pointer to the length map. |
265 | 242 |
const LengthMap *length; |
266 | 243 |
//Pointer to the map of predecessors arcs. |
267 | 244 |
PredMap *_pred; |
268 | 245 |
//Indicates if _pred is locally allocated (true) or not. |
269 | 246 |
bool local_pred; |
270 | 247 |
//Pointer to the map of distances. |
271 | 248 |
DistMap *_dist; |
272 | 249 |
//Indicates if _dist is locally allocated (true) or not. |
273 | 250 |
bool local_dist; |
274 | 251 |
//Pointer to the map of processed status of the nodes. |
275 | 252 |
ProcessedMap *_processed; |
276 | 253 |
//Indicates if _processed is locally allocated (true) or not. |
277 | 254 |
bool local_processed; |
278 | 255 |
//Pointer to the heap cross references. |
279 | 256 |
HeapCrossRef *_heap_cross_ref; |
280 | 257 |
//Indicates if _heap_cross_ref is locally allocated (true) or not. |
281 | 258 |
bool local_heap_cross_ref; |
282 | 259 |
//Pointer to the heap. |
283 | 260 |
Heap *_heap; |
284 | 261 |
//Indicates if _heap is locally allocated (true) or not. |
285 | 262 |
bool local_heap; |
286 | 263 |
|
287 | 264 |
//Creates the maps if necessary. |
288 | 265 |
void create_maps() |
289 | 266 |
{ |
290 | 267 |
if(!_pred) { |
291 | 268 |
local_pred = true; |
292 | 269 |
_pred = Traits::createPredMap(*G); |
293 | 270 |
} |
294 | 271 |
if(!_dist) { |
295 | 272 |
local_dist = true; |
296 | 273 |
_dist = Traits::createDistMap(*G); |
297 | 274 |
} |
298 | 275 |
if(!_processed) { |
299 | 276 |
local_processed = true; |
300 | 277 |
_processed = Traits::createProcessedMap(*G); |
301 | 278 |
} |
302 | 279 |
if (!_heap_cross_ref) { |
303 | 280 |
local_heap_cross_ref = true; |
304 | 281 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
305 | 282 |
} |
306 | 283 |
if (!_heap) { |
307 | 284 |
local_heap = true; |
308 | 285 |
_heap = Traits::createHeap(*_heap_cross_ref); |
309 | 286 |
} |
310 | 287 |
} |
311 | 288 |
|
312 | 289 |
public: |
313 | 290 |
|
314 | 291 |
typedef Dijkstra Create; |
315 | 292 |
|
316 | 293 |
///\name Named template parameters |
317 | 294 |
|
318 | 295 |
///@{ |
319 | 296 |
|
320 | 297 |
template <class T> |
321 | 298 |
struct SetPredMapTraits : public Traits { |
322 | 299 |
typedef T PredMap; |
323 | 300 |
static PredMap *createPredMap(const Digraph &) |
324 | 301 |
{ |
325 | 302 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
326 | 303 |
return 0; // ignore warnings |
327 | 304 |
} |
328 | 305 |
}; |
329 | 306 |
///\brief \ref named-templ-param "Named parameter" for setting |
330 | 307 |
///PredMap type. |
331 | 308 |
/// |
332 | 309 |
///\ref named-templ-param "Named parameter" for setting |
333 | 310 |
///PredMap type. |
334 | 311 |
template <class T> |
335 | 312 |
struct SetPredMap |
336 | 313 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > { |
337 | 314 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
338 | 315 |
}; |
339 | 316 |
|
340 | 317 |
template <class T> |
341 | 318 |
struct SetDistMapTraits : public Traits { |
342 | 319 |
typedef T DistMap; |
343 | 320 |
static DistMap *createDistMap(const Digraph &) |
344 | 321 |
{ |
345 | 322 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
346 | 323 |
return 0; // ignore warnings |
347 | 324 |
} |
348 | 325 |
}; |
349 | 326 |
///\brief \ref named-templ-param "Named parameter" for setting |
350 | 327 |
///DistMap type. |
351 | 328 |
/// |
352 | 329 |
///\ref named-templ-param "Named parameter" for setting |
353 | 330 |
///DistMap type. |
354 | 331 |
template <class T> |
355 | 332 |
struct SetDistMap |
356 | 333 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > { |
357 | 334 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
358 | 335 |
}; |
359 | 336 |
|
360 | 337 |
template <class T> |
361 | 338 |
struct SetProcessedMapTraits : public Traits { |
362 | 339 |
typedef T ProcessedMap; |
363 | 340 |
static ProcessedMap *createProcessedMap(const Digraph &) |
364 | 341 |
{ |
365 | 342 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
366 | 343 |
return 0; // ignore warnings |
367 | 344 |
} |
368 | 345 |
}; |
369 | 346 |
///\brief \ref named-templ-param "Named parameter" for setting |
370 | 347 |
///ProcessedMap type. |
371 | 348 |
/// |
372 | 349 |
///\ref named-templ-param "Named parameter" for setting |
373 | 350 |
///ProcessedMap type. |
374 | 351 |
template <class T> |
375 | 352 |
struct SetProcessedMap |
376 | 353 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > { |
377 | 354 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
378 | 355 |
}; |
379 | 356 |
|
380 | 357 |
struct SetStandardProcessedMapTraits : public Traits { |
381 | 358 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
382 | 359 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
383 | 360 |
{ |
384 | 361 |
return new ProcessedMap(g); |
385 | 362 |
} |
386 | 363 |
}; |
387 | 364 |
///\brief \ref named-templ-param "Named parameter" for setting |
388 | 365 |
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
389 | 366 |
/// |
390 | 367 |
///\ref named-templ-param "Named parameter" for setting |
391 | 368 |
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
392 | 369 |
///If you don't set it explicitly, it will be automatically allocated. |
393 | 370 |
struct SetStandardProcessedMap |
394 | 371 |
: public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > { |
395 | 372 |
typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
396 | 373 |
Create; |
397 | 374 |
}; |
398 | 375 |
|
399 | 376 |
template <class H, class CR> |
400 | 377 |
struct SetHeapTraits : public Traits { |
401 | 378 |
typedef CR HeapCrossRef; |
402 | 379 |
typedef H Heap; |
403 | 380 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) { |
404 | 381 |
LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
405 | 382 |
return 0; // ignore warnings |
406 | 383 |
} |
407 | 384 |
static Heap *createHeap(HeapCrossRef &) |
408 | 385 |
{ |
409 | 386 |
LEMON_ASSERT(false, "Heap is not initialized"); |
410 | 387 |
return 0; // ignore warnings |
411 | 388 |
} |
412 | 389 |
}; |
413 | 390 |
///\brief \ref named-templ-param "Named parameter" for setting |
414 | 391 |
///heap and cross reference type |
415 | 392 |
/// |
416 | 393 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
417 | 394 |
///reference type. |
418 | 395 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
419 | 396 |
struct SetHeap |
420 | 397 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > { |
421 | 398 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
422 | 399 |
}; |
423 | 400 |
|
424 | 401 |
template <class H, class CR> |
425 | 402 |
struct SetStandardHeapTraits : public Traits { |
426 | 403 |
typedef CR HeapCrossRef; |
427 | 404 |
typedef H Heap; |
428 | 405 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) { |
429 | 406 |
return new HeapCrossRef(G); |
430 | 407 |
} |
431 | 408 |
static Heap *createHeap(HeapCrossRef &R) |
432 | 409 |
{ |
433 | 410 |
return new Heap(R); |
434 | 411 |
} |
435 | 412 |
}; |
436 | 413 |
///\brief \ref named-templ-param "Named parameter" for setting |
437 | 414 |
///heap and cross reference type with automatic allocation |
438 | 415 |
/// |
439 | 416 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
440 | 417 |
///reference type. It can allocate the heap and the cross reference |
441 | 418 |
///object if the cross reference's constructor waits for the digraph as |
442 | 419 |
///parameter and the heap's constructor waits for the cross reference. |
443 | 420 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
444 | 421 |
struct SetStandardHeap |
445 | 422 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > { |
446 | 423 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
447 | 424 |
Create; |
448 | 425 |
}; |
449 | 426 |
|
450 | 427 |
template <class T> |
451 | 428 |
struct SetOperationTraitsTraits : public Traits { |
452 | 429 |
typedef T OperationTraits; |
453 | 430 |
}; |
454 | 431 |
|
455 | 432 |
/// \brief \ref named-templ-param "Named parameter" for setting |
456 | 433 |
///\c OperationTraits type |
457 | 434 |
/// |
458 | 435 |
///\ref named-templ-param "Named parameter" for setting |
459 | 436 |
///\ref OperationTraits type. |
460 | 437 |
template <class T> |
461 | 438 |
struct SetOperationTraits |
462 | 439 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
463 | 440 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
464 | 441 |
Create; |
465 | 442 |
}; |
466 | 443 |
|
467 | 444 |
///@} |
468 | 445 |
|
469 | 446 |
protected: |
470 | 447 |
|
471 | 448 |
Dijkstra() {} |
472 | 449 |
|
473 | 450 |
public: |
474 | 451 |
|
475 | 452 |
///Constructor. |
476 | 453 |
|
477 | 454 |
///Constructor. |
478 | 455 |
///\param _g The digraph the algorithm runs on. |
479 | 456 |
///\param _length The length map used by the algorithm. |
480 | 457 |
Dijkstra(const Digraph& _g, const LengthMap& _length) : |
481 | 458 |
G(&_g), length(&_length), |
482 | 459 |
_pred(NULL), local_pred(false), |
483 | 460 |
_dist(NULL), local_dist(false), |
484 | 461 |
_processed(NULL), local_processed(false), |
485 | 462 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
486 | 463 |
_heap(NULL), local_heap(false) |
487 | 464 |
{ } |
488 | 465 |
|
489 | 466 |
///Destructor. |
490 | 467 |
~Dijkstra() |
491 | 468 |
{ |
492 | 469 |
if(local_pred) delete _pred; |
493 | 470 |
if(local_dist) delete _dist; |
494 | 471 |
if(local_processed) delete _processed; |
495 | 472 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
496 | 473 |
if(local_heap) delete _heap; |
497 | 474 |
} |
498 | 475 |
|
499 | 476 |
///Sets the length map. |
500 | 477 |
|
501 | 478 |
///Sets the length map. |
502 | 479 |
///\return <tt> (*this) </tt> |
503 | 480 |
Dijkstra &lengthMap(const LengthMap &m) |
504 | 481 |
{ |
505 | 482 |
length = &m; |
506 | 483 |
return *this; |
507 | 484 |
} |
508 | 485 |
|
509 | 486 |
///Sets the map that stores the predecessor arcs. |
510 | 487 |
|
511 | 488 |
///Sets the map that stores the predecessor arcs. |
512 | 489 |
///If you don't use this function before calling \ref run(), |
513 | 490 |
///it will allocate one. The destructor deallocates this |
514 | 491 |
///automatically allocated map, of course. |
515 | 492 |
///\return <tt> (*this) </tt> |
516 | 493 |
Dijkstra &predMap(PredMap &m) |
517 | 494 |
{ |
518 | 495 |
if(local_pred) { |
519 | 496 |
delete _pred; |
520 | 497 |
local_pred=false; |
521 | 498 |
} |
522 | 499 |
_pred = &m; |
523 | 500 |
return *this; |
524 | 501 |
} |
525 | 502 |
|
526 | 503 |
///Sets the map that indicates which nodes are processed. |
527 | 504 |
|
528 | 505 |
///Sets the map that indicates which nodes are processed. |
529 | 506 |
///If you don't use this function before calling \ref run(), |
530 | 507 |
///it will allocate one. The destructor deallocates this |
531 | 508 |
///automatically allocated map, of course. |
532 | 509 |
///\return <tt> (*this) </tt> |
533 | 510 |
Dijkstra &processedMap(ProcessedMap &m) |
534 | 511 |
{ |
535 | 512 |
if(local_processed) { |
536 | 513 |
delete _processed; |
537 | 514 |
local_processed=false; |
538 | 515 |
} |
539 | 516 |
_processed = &m; |
540 | 517 |
return *this; |
541 | 518 |
} |
542 | 519 |
|
543 | 520 |
///Sets the map that stores the distances of the nodes. |
544 | 521 |
|
545 | 522 |
///Sets the map that stores the distances of the nodes calculated by the |
546 | 523 |
///algorithm. |
547 | 524 |
///If you don't use this function before calling \ref run(), |
548 | 525 |
///it will allocate one. The destructor deallocates this |
549 | 526 |
///automatically allocated map, of course. |
550 | 527 |
///\return <tt> (*this) </tt> |
551 | 528 |
Dijkstra &distMap(DistMap &m) |
552 | 529 |
{ |
553 | 530 |
if(local_dist) { |
554 | 531 |
delete _dist; |
555 | 532 |
local_dist=false; |
556 | 533 |
} |
557 | 534 |
_dist = &m; |
558 | 535 |
return *this; |
559 | 536 |
} |
560 | 537 |
|
561 | 538 |
///Sets the heap and the cross reference used by algorithm. |
562 | 539 |
|
563 | 540 |
///Sets the heap and the cross reference used by algorithm. |
564 | 541 |
///If you don't use this function before calling \ref run(), |
565 | 542 |
///it will allocate one. The destructor deallocates this |
566 | 543 |
///automatically allocated heap and cross reference, of course. |
567 | 544 |
///\return <tt> (*this) </tt> |
568 | 545 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
569 | 546 |
{ |
570 | 547 |
if(local_heap_cross_ref) { |
571 | 548 |
delete _heap_cross_ref; |
572 | 549 |
local_heap_cross_ref=false; |
573 | 550 |
} |
574 | 551 |
_heap_cross_ref = &cr; |
575 | 552 |
if(local_heap) { |
576 | 553 |
delete _heap; |
577 | 554 |
local_heap=false; |
578 | 555 |
} |
579 | 556 |
_heap = &hp; |
580 | 557 |
return *this; |
581 | 558 |
} |
582 | 559 |
|
583 | 560 |
private: |
584 | 561 |
|
585 | 562 |
void finalizeNodeData(Node v,Value dst) |
586 | 563 |
{ |
587 | 564 |
_processed->set(v,true); |
588 | 565 |
_dist->set(v, dst); |
589 | 566 |
} |
590 | 567 |
|
591 | 568 |
public: |
592 | 569 |
|
593 | 570 |
///\name Execution control |
594 | 571 |
///The simplest way to execute the algorithm is to use one of the |
595 | 572 |
///member functions called \ref lemon::Dijkstra::run() "run()". |
596 | 573 |
///\n |
597 | 574 |
///If you need more control on the execution, first you must call |
598 | 575 |
///\ref lemon::Dijkstra::init() "init()", then you can add several |
599 | 576 |
///source nodes with \ref lemon::Dijkstra::addSource() "addSource()". |
600 | 577 |
///Finally \ref lemon::Dijkstra::start() "start()" will perform the |
601 | 578 |
///actual path computation. |
602 | 579 |
|
603 | 580 |
///@{ |
604 | 581 |
|
605 | 582 |
///Initializes the internal data structures. |
606 | 583 |
|
607 | 584 |
///Initializes the internal data structures. |
608 | 585 |
/// |
609 | 586 |
void init() |
610 | 587 |
{ |
611 | 588 |
create_maps(); |
612 | 589 |
_heap->clear(); |
613 | 590 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
614 | 591 |
_pred->set(u,INVALID); |
615 | 592 |
_processed->set(u,false); |
616 | 593 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
617 | 594 |
} |
618 | 595 |
} |
619 | 596 |
|
620 | 597 |
///Adds a new source node. |
621 | 598 |
|
622 | 599 |
///Adds a new source node to the priority heap. |
623 | 600 |
///The optional second parameter is the initial distance of the node. |
624 | 601 |
/// |
625 | 602 |
///The function checks if the node has already been added to the heap and |
626 | 603 |
///it is pushed to the heap only if either it was not in the heap |
627 | 604 |
///or the shortest path found till then is shorter than \c dst. |
628 | 605 |
void addSource(Node s,Value dst=OperationTraits::zero()) |
629 | 606 |
{ |
630 | 607 |
if(_heap->state(s) != Heap::IN_HEAP) { |
631 | 608 |
_heap->push(s,dst); |
632 | 609 |
} else if(OperationTraits::less((*_heap)[s], dst)) { |
633 | 610 |
_heap->set(s,dst); |
634 | 611 |
_pred->set(s,INVALID); |
635 | 612 |
} |
636 | 613 |
} |
637 | 614 |
|
638 | 615 |
///Processes the next node in the priority heap |
639 | 616 |
|
640 | 617 |
///Processes the next node in the priority heap. |
641 | 618 |
/// |
642 | 619 |
///\return The processed node. |
643 | 620 |
/// |
644 | 621 |
///\warning The priority heap must not be empty. |
645 | 622 |
Node processNextNode() |
646 | 623 |
{ |
647 | 624 |
Node v=_heap->top(); |
648 | 625 |
Value oldvalue=_heap->prio(); |
649 | 626 |
_heap->pop(); |
650 | 627 |
finalizeNodeData(v,oldvalue); |
651 | 628 |
|
652 | 629 |
for(OutArcIt e(*G,v); e!=INVALID; ++e) { |
653 | 630 |
Node w=G->target(e); |
654 | 631 |
switch(_heap->state(w)) { |
655 | 632 |
case Heap::PRE_HEAP: |
656 | 633 |
_heap->push(w,OperationTraits::plus(oldvalue, (*length)[e])); |
657 | 634 |
_pred->set(w,e); |
658 | 635 |
break; |
659 | 636 |
case Heap::IN_HEAP: |
660 | 637 |
{ |
661 | 638 |
Value newvalue = OperationTraits::plus(oldvalue, (*length)[e]); |
662 | 639 |
if ( OperationTraits::less(newvalue, (*_heap)[w]) ) { |
663 | 640 |
_heap->decrease(w, newvalue); |
664 | 641 |
_pred->set(w,e); |
665 | 642 |
} |
666 | 643 |
} |
667 | 644 |
break; |
668 | 645 |
case Heap::POST_HEAP: |
669 | 646 |
break; |
670 | 647 |
} |
671 | 648 |
} |
672 | 649 |
return v; |
673 | 650 |
} |
674 | 651 |
|
675 | 652 |
///The next node to be processed. |
676 | 653 |
|
677 | 654 |
///Returns the next node to be processed or \c INVALID if the |
678 | 655 |
///priority heap is empty. |
679 | 656 |
Node nextNode() const |
680 | 657 |
{ |
681 | 658 |
return !_heap->empty()?_heap->top():INVALID; |
682 | 659 |
} |
683 | 660 |
|
684 | 661 |
///\brief Returns \c false if there are nodes |
685 | 662 |
///to be processed. |
686 | 663 |
/// |
687 | 664 |
///Returns \c false if there are nodes |
688 | 665 |
///to be processed in the priority heap. |
689 | 666 |
bool emptyQueue() const { return _heap->empty(); } |
690 | 667 |
|
691 | 668 |
///Returns the number of the nodes to be processed in the priority heap |
692 | 669 |
|
693 | 670 |
///Returns the number of the nodes to be processed in the priority heap. |
694 | 671 |
/// |
695 | 672 |
int queueSize() const { return _heap->size(); } |
696 | 673 |
|
697 | 674 |
///Executes the algorithm. |
698 | 675 |
|
699 | 676 |
///Executes the algorithm. |
700 | 677 |
/// |
701 | 678 |
///This method runs the %Dijkstra algorithm from the root node(s) |
702 | 679 |
///in order to compute the shortest path to each node. |
703 | 680 |
/// |
704 | 681 |
///The algorithm computes |
705 | 682 |
///- the shortest path tree (forest), |
706 | 683 |
///- the distance of each node from the root(s). |
707 | 684 |
/// |
708 | 685 |
///\pre init() must be called and at least one root node should be |
709 | 686 |
///added with addSource() before using this function. |
710 | 687 |
/// |
711 | 688 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
712 | 689 |
///\code |
713 | 690 |
/// while ( !d.emptyQueue() ) { |
714 | 691 |
/// d.processNextNode(); |
715 | 692 |
/// } |
716 | 693 |
///\endcode |
717 | 694 |
void start() |
718 | 695 |
{ |
719 | 696 |
while ( !emptyQueue() ) processNextNode(); |
720 | 697 |
} |
721 | 698 |
|
722 | 699 |
///Executes the algorithm until the given target node is processed. |
723 | 700 |
|
724 | 701 |
///Executes the algorithm until the given target node is processed. |
725 | 702 |
/// |
726 | 703 |
///This method runs the %Dijkstra algorithm from the root node(s) |
727 | 704 |
///in order to compute the shortest path to \c t. |
728 | 705 |
/// |
729 | 706 |
///The algorithm computes |
730 | 707 |
///- the shortest path to \c t, |
731 | 708 |
///- the distance of \c t from the root(s). |
732 | 709 |
/// |
733 | 710 |
///\pre init() must be called and at least one root node should be |
734 | 711 |
///added with addSource() before using this function. |
735 | 712 |
void start(Node t) |
736 | 713 |
{ |
737 | 714 |
while ( !_heap->empty() && _heap->top()!=t ) processNextNode(); |
738 | 715 |
if ( !_heap->empty() ) { |
739 | 716 |
finalizeNodeData(_heap->top(),_heap->prio()); |
740 | 717 |
_heap->pop(); |
741 | 718 |
} |
742 | 719 |
} |
743 | 720 |
|
744 | 721 |
///Executes the algorithm until a condition is met. |
745 | 722 |
|
746 | 723 |
///Executes the algorithm until a condition is met. |
747 | 724 |
/// |
748 | 725 |
///This method runs the %Dijkstra algorithm from the root node(s) in |
749 | 726 |
///order to compute the shortest path to a node \c v with |
750 | 727 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
751 | 728 |
/// |
752 | 729 |
///\param nm A \c bool (or convertible) node map. The algorithm |
753 | 730 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
754 | 731 |
/// |
755 | 732 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
756 | 733 |
///\c INVALID if no such node was found. |
757 | 734 |
/// |
758 | 735 |
///\pre init() must be called and at least one root node should be |
759 | 736 |
///added with addSource() before using this function. |
760 | 737 |
template<class NodeBoolMap> |
761 | 738 |
Node start(const NodeBoolMap &nm) |
762 | 739 |
{ |
763 | 740 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
764 | 741 |
if ( _heap->empty() ) return INVALID; |
765 | 742 |
finalizeNodeData(_heap->top(),_heap->prio()); |
766 | 743 |
return _heap->top(); |
767 | 744 |
} |
768 | 745 |
|
769 | 746 |
///Runs the algorithm from the given source node. |
770 | 747 |
|
771 | 748 |
///This method runs the %Dijkstra algorithm from node \c s |
772 | 749 |
///in order to compute the shortest path to each node. |
773 | 750 |
/// |
774 | 751 |
///The algorithm computes |
775 | 752 |
///- the shortest path tree, |
776 | 753 |
///- the distance of each node from the root. |
777 | 754 |
/// |
778 | 755 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
779 | 756 |
///\code |
780 | 757 |
/// d.init(); |
781 | 758 |
/// d.addSource(s); |
782 | 759 |
/// d.start(); |
783 | 760 |
///\endcode |
784 | 761 |
void run(Node s) { |
785 | 762 |
init(); |
786 | 763 |
addSource(s); |
787 | 764 |
start(); |
788 | 765 |
} |
789 | 766 |
|
790 | 767 |
///Finds the shortest path between \c s and \c t. |
791 | 768 |
|
792 | 769 |
///This method runs the %Dijkstra algorithm from node \c s |
793 | 770 |
///in order to compute the shortest path to node \c t |
794 | 771 |
///(it stops searching when \c t is processed). |
795 | 772 |
/// |
796 | 773 |
///\return \c true if \c t is reachable form \c s. |
797 | 774 |
/// |
798 | 775 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a |
799 | 776 |
///shortcut of the following code. |
800 | 777 |
///\code |
801 | 778 |
/// d.init(); |
802 | 779 |
/// d.addSource(s); |
803 | 780 |
/// d.start(t); |
804 | 781 |
///\endcode |
805 | 782 |
bool run(Node s,Node t) { |
806 | 783 |
init(); |
807 | 784 |
addSource(s); |
808 | 785 |
start(t); |
809 | 786 |
return (*_heap_cross_ref)[t] == Heap::POST_HEAP; |
810 | 787 |
} |
811 | 788 |
|
812 | 789 |
///@} |
813 | 790 |
|
814 | 791 |
///\name Query Functions |
815 | 792 |
///The result of the %Dijkstra algorithm can be obtained using these |
816 | 793 |
///functions.\n |
817 | 794 |
///Either \ref lemon::Dijkstra::run() "run()" or |
818 | 795 |
///\ref lemon::Dijkstra::start() "start()" must be called before |
819 | 796 |
///using them. |
820 | 797 |
|
821 | 798 |
///@{ |
822 | 799 |
|
823 | 800 |
///The shortest path to a node. |
824 | 801 |
|
825 | 802 |
///Returns the shortest path to a node. |
826 | 803 |
/// |
827 | 804 |
///\warning \c t should be reachable from the root(s). |
828 | 805 |
/// |
829 | 806 |
///\pre Either \ref run() or \ref start() must be called before |
830 | 807 |
///using this function. |
831 | 808 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
832 | 809 |
|
833 | 810 |
///The distance of a node from the root(s). |
834 | 811 |
|
835 | 812 |
///Returns the distance of a node from the root(s). |
836 | 813 |
/// |
837 | 814 |
///\warning If node \c v is not reachable from the root(s), then |
838 | 815 |
///the return value of this function is undefined. |
839 | 816 |
/// |
840 | 817 |
///\pre Either \ref run() or \ref start() must be called before |
841 | 818 |
///using this function. |
842 | 819 |
Value dist(Node v) const { return (*_dist)[v]; } |
843 | 820 |
|
844 | 821 |
///Returns the 'previous arc' of the shortest path tree for a node. |
845 | 822 |
|
846 | 823 |
///This function returns the 'previous arc' of the shortest path |
847 | 824 |
///tree for the node \c v, i.e. it returns the last arc of a |
848 | 825 |
///shortest path from the root(s) to \c v. It is \c INVALID if \c v |
849 | 826 |
///is not reachable from the root(s) or if \c v is a root. |
850 | 827 |
/// |
851 | 828 |
///The shortest path tree used here is equal to the shortest path |
852 | 829 |
///tree used in \ref predNode(). |
853 | 830 |
/// |
854 | 831 |
///\pre Either \ref run() or \ref start() must be called before |
855 | 832 |
///using this function. |
856 | 833 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
857 | 834 |
|
858 | 835 |
///Returns the 'previous node' of the shortest path tree for a node. |
859 | 836 |
|
860 | 837 |
///This function returns the 'previous node' of the shortest path |
861 | 838 |
///tree for the node \c v, i.e. it returns the last but one node |
862 | 839 |
///from a shortest path from the root(s) to \c v. It is \c INVALID |
863 | 840 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
864 | 841 |
/// |
865 | 842 |
///The shortest path tree used here is equal to the shortest path |
866 | 843 |
///tree used in \ref predArc(). |
867 | 844 |
/// |
868 | 845 |
///\pre Either \ref run() or \ref start() must be called before |
869 | 846 |
///using this function. |
870 | 847 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
871 | 848 |
G->source((*_pred)[v]); } |
872 | 849 |
|
873 | 850 |
///\brief Returns a const reference to the node map that stores the |
874 | 851 |
///distances of the nodes. |
875 | 852 |
/// |
876 | 853 |
///Returns a const reference to the node map that stores the distances |
877 | 854 |
///of the nodes calculated by the algorithm. |
878 | 855 |
/// |
879 | 856 |
///\pre Either \ref run() or \ref init() |
880 | 857 |
///must be called before using this function. |
881 | 858 |
const DistMap &distMap() const { return *_dist;} |
882 | 859 |
|
883 | 860 |
///\brief Returns a const reference to the node map that stores the |
884 | 861 |
///predecessor arcs. |
885 | 862 |
/// |
886 | 863 |
///Returns a const reference to the node map that stores the predecessor |
887 | 864 |
///arcs, which form the shortest path tree. |
888 | 865 |
/// |
889 | 866 |
///\pre Either \ref run() or \ref init() |
890 | 867 |
///must be called before using this function. |
891 | 868 |
const PredMap &predMap() const { return *_pred;} |
892 | 869 |
|
893 | 870 |
///Checks if a node is reachable from the root(s). |
894 | 871 |
|
895 | 872 |
///Returns \c true if \c v is reachable from the root(s). |
896 | 873 |
///\pre Either \ref run() or \ref start() |
897 | 874 |
///must be called before using this function. |
898 | 875 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] != |
899 | 876 |
Heap::PRE_HEAP; } |
900 | 877 |
|
901 | 878 |
///Checks if a node is processed. |
902 | 879 |
|
903 | 880 |
///Returns \c true if \c v is processed, i.e. the shortest |
904 | 881 |
///path to \c v has already found. |
905 | 882 |
///\pre Either \ref run() or \ref init() |
906 | 883 |
///must be called before using this function. |
907 | 884 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] == |
908 | 885 |
Heap::POST_HEAP; } |
909 | 886 |
|
910 | 887 |
///The current distance of a node from the root(s). |
911 | 888 |
|
912 | 889 |
///Returns the current distance of a node from the root(s). |
913 | 890 |
///It may be decreased in the following processes. |
914 | 891 |
///\pre Either \ref run() or \ref init() |
915 | 892 |
///must be called before using this function and |
916 | 893 |
///node \c v must be reached but not necessarily processed. |
917 | 894 |
Value currentDist(Node v) const { |
918 | 895 |
return processed(v) ? (*_dist)[v] : (*_heap)[v]; |
919 | 896 |
} |
920 | 897 |
|
921 | 898 |
///@} |
922 | 899 |
}; |
923 | 900 |
|
924 | 901 |
|
925 | 902 |
///Default traits class of dijkstra() function. |
926 | 903 |
|
927 | 904 |
///Default traits class of dijkstra() function. |
928 | 905 |
///\tparam GR The type of the digraph. |
929 | 906 |
///\tparam LM The type of the length map. |
930 | 907 |
template<class GR, class LM> |
931 | 908 |
struct DijkstraWizardDefaultTraits |
932 | 909 |
{ |
933 | 910 |
///The type of the digraph the algorithm runs on. |
934 | 911 |
typedef GR Digraph; |
935 | 912 |
///The type of the map that stores the arc lengths. |
936 | 913 |
|
937 | 914 |
///The type of the map that stores the arc lengths. |
938 | 915 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
939 | 916 |
typedef LM LengthMap; |
940 | 917 |
///The type of the length of the arcs. |
941 | 918 |
typedef typename LM::Value Value; |
942 | 919 |
|
943 | 920 |
/// Operation traits for Dijkstra algorithm. |
944 | 921 |
|
945 | 922 |
/// This class defines the operations that are used in the algorithm. |
946 | 923 |
/// \see DijkstraDefaultOperationTraits |
947 | 924 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
948 | 925 |
|
949 | 926 |
/// The cross reference type used by the heap. |
950 | 927 |
|
951 | 928 |
/// The cross reference type used by the heap. |
952 | 929 |
/// Usually it is \c Digraph::NodeMap<int>. |
953 | 930 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
954 | 931 |
///Instantiates a \ref HeapCrossRef. |
955 | 932 |
|
956 | 933 |
///This function instantiates a \ref HeapCrossRef. |
957 | 934 |
/// \param g is the digraph, to which we would like to define the |
958 | 935 |
/// HeapCrossRef. |
959 | 936 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
960 | 937 |
{ |
961 | 938 |
return new HeapCrossRef(g); |
962 | 939 |
} |
963 | 940 |
|
964 | 941 |
///The heap type used by the Dijkstra algorithm. |
965 | 942 |
|
966 | 943 |
///The heap type used by the Dijkstra algorithm. |
967 | 944 |
/// |
968 | 945 |
///\sa BinHeap |
969 | 946 |
///\sa Dijkstra |
970 | 947 |
typedef BinHeap<Value, typename Digraph::template NodeMap<int>, |
971 | 948 |
std::less<Value> > Heap; |
972 | 949 |
|
973 | 950 |
///Instantiates a \ref Heap. |
974 | 951 |
|
975 | 952 |
///This function instantiates a \ref Heap. |
976 | 953 |
/// \param r is the HeapCrossRef which is used. |
977 | 954 |
static Heap *createHeap(HeapCrossRef& r) |
978 | 955 |
{ |
979 | 956 |
return new Heap(r); |
980 | 957 |
} |
981 | 958 |
|
982 | 959 |
///\brief The type of the map that stores the predecessor |
983 | 960 |
///arcs of the shortest paths. |
984 | 961 |
/// |
985 | 962 |
///The type of the map that stores the predecessor |
986 | 963 |
///arcs of the shortest paths. |
987 | 964 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
988 | 965 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
989 | 966 |
///Instantiates a PredMap. |
990 | 967 |
|
991 | 968 |
///This function instantiates a PredMap. |
992 | 969 |
///\param g is the digraph, to which we would like to define the |
993 | 970 |
///PredMap. |
994 | 971 |
static PredMap *createPredMap(const Digraph &g) |
995 | 972 |
{ |
996 | 973 |
return new PredMap(g); |
997 | 974 |
} |
998 | 975 |
|
999 | 976 |
///The type of the map that indicates which nodes are processed. |
1000 | 977 |
|
1001 | 978 |
///The type of the map that indicates which nodes are processed. |
1002 | 979 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
1003 | 980 |
///By default it is a NullMap. |
1004 | 981 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
1005 | 982 |
///Instantiates a ProcessedMap. |
1006 | 983 |
|
1007 | 984 |
///This function instantiates a ProcessedMap. |
1008 | 985 |
///\param g is the digraph, to which |
1009 | 986 |
///we would like to define the ProcessedMap. |
1010 | 987 |
#ifdef DOXYGEN |
1011 | 988 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
1012 | 989 |
#else |
1013 | 990 |
static ProcessedMap *createProcessedMap(const Digraph &) |
1014 | 991 |
#endif |
1015 | 992 |
{ |
1016 | 993 |
return new ProcessedMap(); |
1017 | 994 |
} |
1018 | 995 |
|
1019 | 996 |
///The type of the map that stores the distances of the nodes. |
1020 | 997 |
|
1021 | 998 |
///The type of the map that stores the distances of the nodes. |
1022 | 999 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
1023 | 1000 |
typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
1024 | 1001 |
///Instantiates a DistMap. |
1025 | 1002 |
|
1026 | 1003 |
///This function instantiates a DistMap. |
1027 | 1004 |
///\param g is the digraph, to which we would like to define |
1028 | 1005 |
///the DistMap |
1029 | 1006 |
static DistMap *createDistMap(const Digraph &g) |
1030 | 1007 |
{ |
1031 | 1008 |
return new DistMap(g); |
1032 | 1009 |
} |
1033 | 1010 |
|
1034 | 1011 |
///The type of the shortest paths. |
1035 | 1012 |
|
1036 | 1013 |
///The type of the shortest paths. |
1037 | 1014 |
///It must meet the \ref concepts::Path "Path" concept. |
1038 | 1015 |
typedef lemon::Path<Digraph> Path; |
1039 | 1016 |
}; |
1040 | 1017 |
|
1041 | 1018 |
/// Default traits class used by DijkstraWizard |
1042 | 1019 |
|
1043 | 1020 |
/// To make it easier to use Dijkstra algorithm |
1044 | 1021 |
/// we have created a wizard class. |
1045 | 1022 |
/// This \ref DijkstraWizard class needs default traits, |
1046 | 1023 |
/// as well as the \ref Dijkstra class. |
1047 | 1024 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
1048 | 1025 |
/// \ref DijkstraWizard class. |
1049 | 1026 |
template<class GR,class LM> |
1050 | 1027 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM> |
1051 | 1028 |
{ |
1052 | 1029 |
typedef DijkstraWizardDefaultTraits<GR,LM> Base; |
1053 | 1030 |
protected: |
1054 | 1031 |
//The type of the nodes in the digraph. |
1055 | 1032 |
typedef typename Base::Digraph::Node Node; |
1056 | 1033 |
|
1057 | 1034 |
//Pointer to the digraph the algorithm runs on. |
1058 | 1035 |
void *_g; |
1059 | 1036 |
//Pointer to the length map. |
1060 | 1037 |
void *_length; |
1061 | 1038 |
//Pointer to the map of processed nodes. |
1062 | 1039 |
void *_processed; |
1063 | 1040 |
//Pointer to the map of predecessors arcs. |
1064 | 1041 |
void *_pred; |
1065 | 1042 |
//Pointer to the map of distances. |
1066 | 1043 |
void *_dist; |
1067 | 1044 |
//Pointer to the shortest path to the target node. |
1068 | 1045 |
void *_path; |
1069 | 1046 |
//Pointer to the distance of the target node. |
1070 | 1047 |
void *_di; |
1071 | 1048 |
|
1072 | 1049 |
public: |
1073 | 1050 |
/// Constructor. |
1074 | 1051 |
|
1075 | 1052 |
/// This constructor does not require parameters, therefore it initiates |
1076 | 1053 |
/// all of the attributes to \c 0. |
1077 | 1054 |
DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0), |
1078 | 1055 |
_dist(0), _path(0), _di(0) {} |
1079 | 1056 |
|
1080 | 1057 |
/// Constructor. |
1081 | 1058 |
|
1082 | 1059 |
/// This constructor requires two parameters, |
1083 | 1060 |
/// others are initiated to \c 0. |
1084 | 1061 |
/// \param g The digraph the algorithm runs on. |
1085 | 1062 |
/// \param l The length map. |
1086 | 1063 |
DijkstraWizardBase(const GR &g,const LM &l) : |
1087 | 1064 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
1088 | 1065 |
_length(reinterpret_cast<void*>(const_cast<LM*>(&l))), |
1089 | 1066 |
_processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
1090 | 1067 |
|
1091 | 1068 |
}; |
1092 | 1069 |
|
1093 | 1070 |
/// Auxiliary class for the function-type interface of Dijkstra algorithm. |
1094 | 1071 |
|
1095 | 1072 |
/// This auxiliary class is created to implement the |
1096 | 1073 |
/// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm. |
1097 | 1074 |
/// It does not have own \ref run() method, it uses the functions |
1098 | 1075 |
/// and features of the plain \ref Dijkstra. |
1099 | 1076 |
/// |
1100 | 1077 |
/// This class should only be used through the \ref dijkstra() function, |
1101 | 1078 |
/// which makes it easier to use the algorithm. |
1102 | 1079 |
template<class TR> |
1103 | 1080 |
class DijkstraWizard : public TR |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/concepts/digraph.h> |
20 | 20 |
#include <lemon/smart_graph.h> |
21 | 21 |
#include <lemon/list_graph.h> |
22 | 22 |
#include <lemon/lgf_reader.h> |
23 | 23 |
#include <lemon/dijkstra.h> |
24 | 24 |
#include <lemon/path.h> |
25 | 25 |
#include <lemon/bin_heap.h> |
26 | 26 |
|
27 | 27 |
#include "graph_test.h" |
28 | 28 |
#include "test_tools.h" |
29 | 29 |
|
30 | 30 |
using namespace lemon; |
31 | 31 |
|
32 | 32 |
char test_lgf[] = |
33 | 33 |
"@nodes\n" |
34 | 34 |
"label\n" |
35 | 35 |
"0\n" |
36 | 36 |
"1\n" |
37 | 37 |
"2\n" |
38 | 38 |
"3\n" |
39 | 39 |
"4\n" |
40 | 40 |
"@arcs\n" |
41 | 41 |
" label length\n" |
42 | 42 |
"0 1 0 1\n" |
43 | 43 |
"1 2 1 1\n" |
44 | 44 |
"2 3 2 1\n" |
45 | 45 |
"0 3 4 5\n" |
46 | 46 |
"0 3 5 10\n" |
47 | 47 |
"0 3 6 7\n" |
48 | 48 |
"4 2 7 1\n" |
49 | 49 |
"@attributes\n" |
50 | 50 |
"source 0\n" |
51 | 51 |
"target 3\n"; |
52 | 52 |
|
53 | 53 |
void checkDijkstraCompile() |
54 | 54 |
{ |
55 | 55 |
typedef int VType; |
56 | 56 |
typedef concepts::Digraph Digraph; |
57 | 57 |
typedef concepts::ReadMap<Digraph::Arc,VType> LengthMap; |
58 | 58 |
typedef Dijkstra<Digraph, LengthMap> DType; |
59 | 59 |
typedef Digraph::Node Node; |
60 | 60 |
typedef Digraph::Arc Arc; |
61 | 61 |
|
62 | 62 |
Digraph G; |
63 | 63 |
Node s, t; |
64 | 64 |
Arc e; |
65 | 65 |
VType l; |
66 | 66 |
bool b; |
67 | 67 |
DType::DistMap d(G); |
68 | 68 |
DType::PredMap p(G); |
69 | 69 |
LengthMap length; |
70 | 70 |
Path<Digraph> pp; |
71 | 71 |
|
72 | 72 |
{ |
73 | 73 |
DType dijkstra_test(G,length); |
74 | 74 |
|
75 | 75 |
dijkstra_test.run(s); |
76 | 76 |
dijkstra_test.run(s,t); |
77 | 77 |
|
78 | 78 |
l = dijkstra_test.dist(t); |
79 | 79 |
e = dijkstra_test.predArc(t); |
80 | 80 |
s = dijkstra_test.predNode(t); |
81 | 81 |
b = dijkstra_test.reached(t); |
82 | 82 |
d = dijkstra_test.distMap(); |
83 | 83 |
p = dijkstra_test.predMap(); |
84 | 84 |
pp = dijkstra_test.path(t); |
85 | 85 |
} |
86 | 86 |
{ |
87 | 87 |
DType |
88 | 88 |
::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
89 | 89 |
::SetDistMap<concepts::ReadWriteMap<Node,VType> > |
90 | 90 |
::SetProcessedMap<concepts::WriteMap<Node,bool> > |
91 | 91 |
::SetStandardProcessedMap |
92 |
::SetOperationTraits< |
|
92 |
::SetOperationTraits<DijkstraDefaultOperationTraits<VType> > |
|
93 | 93 |
::SetHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > > |
94 | 94 |
::SetStandardHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > > |
95 | 95 |
::Create dijkstra_test(G,length); |
96 | 96 |
|
97 | 97 |
dijkstra_test.run(s); |
98 | 98 |
dijkstra_test.run(s,t); |
99 | 99 |
|
100 | 100 |
l = dijkstra_test.dist(t); |
101 | 101 |
e = dijkstra_test.predArc(t); |
102 | 102 |
s = dijkstra_test.predNode(t); |
103 | 103 |
b = dijkstra_test.reached(t); |
104 | 104 |
pp = dijkstra_test.path(t); |
105 | 105 |
} |
106 | 106 |
|
107 | 107 |
} |
108 | 108 |
|
109 | 109 |
void checkDijkstraFunctionCompile() |
110 | 110 |
{ |
111 | 111 |
typedef int VType; |
112 | 112 |
typedef concepts::Digraph Digraph; |
113 | 113 |
typedef Digraph::Arc Arc; |
114 | 114 |
typedef Digraph::Node Node; |
115 | 115 |
typedef concepts::ReadMap<Digraph::Arc,VType> LengthMap; |
116 | 116 |
|
117 | 117 |
Digraph g; |
118 | 118 |
bool b; |
119 | 119 |
dijkstra(g,LengthMap()).run(Node()); |
120 | 120 |
b=dijkstra(g,LengthMap()).run(Node(),Node()); |
121 | 121 |
dijkstra(g,LengthMap()) |
122 | 122 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
123 | 123 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
124 | 124 |
.processedMap(concepts::WriteMap<Node,bool>()) |
125 | 125 |
.run(Node()); |
126 | 126 |
b=dijkstra(g,LengthMap()) |
127 | 127 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
128 | 128 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
129 | 129 |
.processedMap(concepts::WriteMap<Node,bool>()) |
130 | 130 |
.path(concepts::Path<Digraph>()) |
131 | 131 |
.dist(VType()) |
132 | 132 |
.run(Node(),Node()); |
133 | 133 |
} |
134 | 134 |
|
135 | 135 |
template <class Digraph> |
136 | 136 |
void checkDijkstra() { |
137 | 137 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
138 | 138 |
typedef typename Digraph::template ArcMap<int> LengthMap; |
139 | 139 |
|
140 | 140 |
Digraph G; |
141 | 141 |
Node s, t; |
142 | 142 |
LengthMap length(G); |
143 | 143 |
|
144 | 144 |
std::istringstream input(test_lgf); |
145 | 145 |
digraphReader(G, input). |
146 | 146 |
arcMap("length", length). |
147 | 147 |
node("source", s). |
148 | 148 |
node("target", t). |
149 | 149 |
run(); |
150 | 150 |
|
151 | 151 |
Dijkstra<Digraph, LengthMap> |
152 | 152 |
dijkstra_test(G, length); |
153 | 153 |
dijkstra_test.run(s); |
154 | 154 |
|
155 | 155 |
check(dijkstra_test.dist(t)==3,"Dijkstra found a wrong path."); |
156 | 156 |
|
157 | 157 |
Path<Digraph> p = dijkstra_test.path(t); |
158 | 158 |
check(p.length()==3,"path() found a wrong path."); |
159 | 159 |
check(checkPath(G, p),"path() found a wrong path."); |
160 | 160 |
check(pathSource(G, p) == s,"path() found a wrong path."); |
161 | 161 |
check(pathTarget(G, p) == t,"path() found a wrong path."); |
162 | 162 |
|
163 | 163 |
for(ArcIt e(G); e!=INVALID; ++e) { |
164 | 164 |
Node u=G.source(e); |
165 | 165 |
Node v=G.target(e); |
166 | 166 |
check( !dijkstra_test.reached(u) || |
167 | 167 |
(dijkstra_test.dist(v) - dijkstra_test.dist(u) <= length[e]), |
168 | 168 |
"Wrong output. dist(target)-dist(source)-arc_length=" << |
169 | 169 |
dijkstra_test.dist(v) - dijkstra_test.dist(u) - length[e]); |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
for(NodeIt v(G); v!=INVALID; ++v) { |
173 | 173 |
if (dijkstra_test.reached(v)) { |
174 | 174 |
check(v==s || dijkstra_test.predArc(v)!=INVALID, "Wrong tree."); |
175 | 175 |
if (dijkstra_test.predArc(v)!=INVALID ) { |
176 | 176 |
Arc e=dijkstra_test.predArc(v); |
177 | 177 |
Node u=G.source(e); |
178 | 178 |
check(u==dijkstra_test.predNode(v),"Wrong tree."); |
179 | 179 |
check(dijkstra_test.dist(v) - dijkstra_test.dist(u) == length[e], |
180 | 180 |
"Wrong distance! Difference: " << |
181 | 181 |
std::abs(dijkstra_test.dist(v)-dijkstra_test.dist(u)-length[e])); |
182 | 182 |
} |
183 | 183 |
} |
184 | 184 |
} |
185 | 185 |
|
186 | 186 |
{ |
187 | 187 |
NullMap<Node,Arc> myPredMap; |
188 | 188 |
dijkstra(G,length).predMap(myPredMap).run(s); |
189 | 189 |
} |
190 | 190 |
} |
191 | 191 |
|
192 | 192 |
int main() { |
193 | 193 |
checkDijkstra<ListDigraph>(); |
194 | 194 |
checkDijkstra<SmartDigraph>(); |
195 | 195 |
return 0; |
196 | 196 |
} |
0 comments (0 inline)