| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BIN_HEAP_H |
| 20 | 20 |
#define LEMON_BIN_HEAP_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup auxdat |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Binary Heap implementation. |
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <utility> |
| 28 | 28 |
#include <functional> |
| 29 | 29 |
|
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
///\ingroup auxdat |
| 33 | 33 |
/// |
| 34 | 34 |
///\brief A Binary Heap implementation. |
| 35 | 35 |
/// |
| 36 | 36 |
///This class implements the \e binary \e heap data structure. |
| 37 | 37 |
/// |
| 38 | 38 |
///A \e heap is a data structure for storing items with specified values |
| 39 | 39 |
///called \e priorities in such a way that finding the item with minimum |
| 40 | 40 |
///priority is efficient. \c Comp specifies the ordering of the priorities. |
| 41 | 41 |
///In a heap one can change the priority of an item, add or erase an |
| 42 | 42 |
///item, etc. |
| 43 | 43 |
/// |
| 44 | 44 |
///\tparam PR Type of the priority of the items. |
| 45 | 45 |
///\tparam IM A read and writable item map with int values, used internally |
| 46 | 46 |
///to handle the cross references. |
| 47 | 47 |
///\tparam Comp A functor class for the ordering of the priorities. |
| 48 | 48 |
///The default is \c std::less<PR>. |
| 49 | 49 |
/// |
| 50 | 50 |
///\sa FibHeap |
| 51 | 51 |
///\sa Dijkstra |
| 52 | 52 |
template <typename PR, typename IM, typename Comp = std::less<PR> > |
| 53 | 53 |
class BinHeap {
|
| 54 | 54 |
|
| 55 | 55 |
public: |
| 56 | 56 |
///\e |
| 57 | 57 |
typedef IM ItemIntMap; |
| 58 | 58 |
///\e |
| 59 | 59 |
typedef PR Prio; |
| 60 | 60 |
///\e |
| 61 | 61 |
typedef typename ItemIntMap::Key Item; |
| 62 | 62 |
///\e |
| 63 | 63 |
typedef std::pair<Item,Prio> Pair; |
| 64 | 64 |
///\e |
| 65 | 65 |
typedef Comp Compare; |
| 66 | 66 |
|
| 67 | 67 |
/// \brief Type to represent the items states. |
| 68 | 68 |
/// |
| 69 | 69 |
/// Each Item element have a state associated to it. It may be "in heap", |
| 70 | 70 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
| 71 | 71 |
/// heap's point of view, but may be useful to the user. |
| 72 | 72 |
/// |
| 73 | 73 |
/// The item-int map must be initialized in such way that it assigns |
| 74 | 74 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 75 | 75 |
enum State {
|
| 76 |
IN_HEAP = 0, ///< \e |
|
| 77 |
PRE_HEAP = -1, ///< \e |
|
| 78 |
|
|
| 76 |
IN_HEAP = 0, ///< = 0. |
|
| 77 |
PRE_HEAP = -1, ///< = -1. |
|
| 78 |
POST_HEAP = -2 ///< = -2. |
|
| 79 | 79 |
}; |
| 80 | 80 |
|
| 81 | 81 |
private: |
| 82 | 82 |
std::vector<Pair> _data; |
| 83 | 83 |
Compare _comp; |
| 84 | 84 |
ItemIntMap &_iim; |
| 85 | 85 |
|
| 86 | 86 |
public: |
| 87 | 87 |
/// \brief The constructor. |
| 88 | 88 |
/// |
| 89 | 89 |
/// The constructor. |
| 90 | 90 |
/// \param map should be given to the constructor, since it is used |
| 91 | 91 |
/// internally to handle the cross references. The value of the map |
| 92 | 92 |
/// must be \c PRE_HEAP (<tt>-1</tt>) for every item. |
| 93 | 93 |
explicit BinHeap(ItemIntMap &map) : _iim(map) {}
|
| 94 | 94 |
|
| 95 | 95 |
/// \brief The constructor. |
| 96 | 96 |
/// |
| 97 | 97 |
/// The constructor. |
| 98 | 98 |
/// \param map should be given to the constructor, since it is used |
| 99 | 99 |
/// internally to handle the cross references. The value of the map |
| 100 | 100 |
/// should be PRE_HEAP (-1) for each element. |
| 101 | 101 |
/// |
| 102 | 102 |
/// \param comp The comparator function object. |
| 103 | 103 |
BinHeap(ItemIntMap &map, const Compare &comp) |
| 104 | 104 |
: _iim(map), _comp(comp) {}
|
| 105 | 105 |
|
| 106 | 106 |
|
| 107 | 107 |
/// The number of items stored in the heap. |
| 108 | 108 |
/// |
| 109 | 109 |
/// \brief Returns the number of items stored in the heap. |
| 110 | 110 |
int size() const { return _data.size(); }
|
| 111 | 111 |
|
| 112 | 112 |
/// \brief Checks if the heap stores no items. |
| 113 | 113 |
/// |
| 114 | 114 |
/// Returns \c true if and only if the heap stores no items. |
| 115 | 115 |
bool empty() const { return _data.empty(); }
|
| 116 | 116 |
|
| 117 | 117 |
/// \brief Make empty this heap. |
| 118 | 118 |
/// |
| 119 | 119 |
/// Make empty this heap. It does not change the cross reference map. |
| 120 | 120 |
/// If you want to reuse what is not surely empty you should first clear |
| 121 | 121 |
/// the heap and after that you should set the cross reference map for |
| 122 | 122 |
/// each item to \c PRE_HEAP. |
| 123 | 123 |
void clear() {
|
| 124 | 124 |
_data.clear(); |
| 125 | 125 |
} |
| 126 | 126 |
|
| 127 | 127 |
private: |
| 128 | 128 |
static int parent(int i) { return (i-1)/2; }
|
| 129 | 129 |
|
| 130 | 130 |
static int second_child(int i) { return 2*i+2; }
|
| 131 | 131 |
bool less(const Pair &p1, const Pair &p2) const {
|
| 132 | 132 |
return _comp(p1.second, p2.second); |
| 133 | 133 |
} |
| 134 | 134 |
|
| 135 | 135 |
int bubble_up(int hole, Pair p) {
|
| 136 | 136 |
int par = parent(hole); |
| 137 | 137 |
while( hole>0 && less(p,_data[par]) ) {
|
| 138 | 138 |
move(_data[par],hole); |
| 139 | 139 |
hole = par; |
| 140 | 140 |
par = parent(hole); |
| 141 | 141 |
} |
| 142 | 142 |
move(p, hole); |
| 143 | 143 |
return hole; |
| 144 | 144 |
} |
| 145 | 145 |
|
| 146 | 146 |
int bubble_down(int hole, Pair p, int length) {
|
| 147 | 147 |
int child = second_child(hole); |
| 148 | 148 |
while(child < length) {
|
| 149 | 149 |
if( less(_data[child-1], _data[child]) ) {
|
| 150 | 150 |
--child; |
| 151 | 151 |
} |
| 152 | 152 |
if( !less(_data[child], p) ) |
| 153 | 153 |
goto ok; |
| 154 | 154 |
move(_data[child], hole); |
| 155 | 155 |
hole = child; |
| 156 | 156 |
child = second_child(hole); |
| 157 | 157 |
} |
| 158 | 158 |
child--; |
| 159 | 159 |
if( child<length && less(_data[child], p) ) {
|
| 160 | 160 |
move(_data[child], hole); |
| 161 | 161 |
hole=child; |
| 162 | 162 |
} |
| 163 | 163 |
ok: |
| 164 | 164 |
move(p, hole); |
| 165 | 165 |
return hole; |
| 166 | 166 |
} |
| 167 | 167 |
|
| 168 | 168 |
void move(const Pair &p, int i) {
|
| 169 | 169 |
_data[i] = p; |
| 170 | 170 |
_iim.set(p.first, i); |
| 171 | 171 |
} |
| 172 | 172 |
|
| 173 | 173 |
public: |
| 174 | 174 |
/// \brief Insert a pair of item and priority into the heap. |
| 175 | 175 |
/// |
| 176 | 176 |
/// Adds \c p.first to the heap with priority \c p.second. |
| 177 | 177 |
/// \param p The pair to insert. |
| 178 | 178 |
void push(const Pair &p) {
|
| 179 | 179 |
int n = _data.size(); |
| 180 | 180 |
_data.resize(n+1); |
| 181 | 181 |
bubble_up(n, p); |
| 182 | 182 |
} |
| 183 | 183 |
|
| 184 | 184 |
/// \brief Insert an item into the heap with the given heap. |
| 185 | 185 |
/// |
| 186 | 186 |
/// Adds \c i to the heap with priority \c p. |
| 187 | 187 |
/// \param i The item to insert. |
| 188 | 188 |
/// \param p The priority of the item. |
| 189 | 189 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
|
| 190 | 190 |
|
| 191 | 191 |
/// \brief Returns the item with minimum priority relative to \c Compare. |
| 192 | 192 |
/// |
| 193 | 193 |
/// This method returns the item with minimum priority relative to \c |
| 194 | 194 |
/// Compare. |
| 195 | 195 |
/// \pre The heap must be nonempty. |
| 196 | 196 |
Item top() const {
|
| 197 | 197 |
return _data[0].first; |
| 198 | 198 |
} |
| 199 | 199 |
|
| 200 | 200 |
/// \brief Returns the minimum priority relative to \c Compare. |
| 201 | 201 |
/// |
| 202 | 202 |
/// It returns the minimum priority relative to \c Compare. |
| 203 | 203 |
/// \pre The heap must be nonempty. |
| 204 | 204 |
Prio prio() const {
|
| 205 | 205 |
return _data[0].second; |
| 206 | 206 |
} |
| 207 | 207 |
|
| 208 | 208 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
| 209 | 209 |
/// |
| 210 | 210 |
/// This method deletes the item with minimum priority relative to \c |
| 211 | 211 |
/// Compare from the heap. |
| 212 | 212 |
/// \pre The heap must be non-empty. |
| 213 | 213 |
void pop() {
|
| 214 | 214 |
int n = _data.size()-1; |
| 215 | 215 |
_iim.set(_data[0].first, POST_HEAP); |
| 216 | 216 |
if (n > 0) {
|
| 217 | 217 |
bubble_down(0, _data[n], n); |
| 218 | 218 |
} |
| 219 | 219 |
_data.pop_back(); |
| 220 | 220 |
} |
| 221 | 221 |
|
| 222 | 222 |
/// \brief Deletes \c i from the heap. |
| 223 | 223 |
/// |
| 224 | 224 |
/// This method deletes item \c i from the heap. |
| 225 | 225 |
/// \param i The item to erase. |
| 226 | 226 |
/// \pre The item should be in the heap. |
| 227 | 227 |
void erase(const Item &i) {
|
| 228 | 228 |
int h = _iim[i]; |
| 229 | 229 |
int n = _data.size()-1; |
| 230 | 230 |
_iim.set(_data[h].first, POST_HEAP); |
| 231 | 231 |
if( h < n ) {
|
| 232 | 232 |
if ( bubble_up(h, _data[n]) == h) {
|
| 233 | 233 |
bubble_down(h, _data[n], n); |
| 234 | 234 |
} |
| 235 | 235 |
} |
| 236 | 236 |
_data.pop_back(); |
| 237 | 237 |
} |
| 238 | 238 |
|
| 239 | 239 |
|
| 240 | 240 |
/// \brief Returns the priority of \c i. |
| 241 | 241 |
/// |
| 242 | 242 |
/// This function returns the priority of item \c i. |
| 243 | 243 |
/// \param i The item. |
| 244 | 244 |
/// \pre \c i must be in the heap. |
| 245 | 245 |
Prio operator[](const Item &i) const {
|
| 246 | 246 |
int idx = _iim[i]; |
| 247 | 247 |
return _data[idx].second; |
| 248 | 248 |
} |
| 249 | 249 |
|
| 250 | 250 |
/// \brief \c i gets to the heap with priority \c p independently |
| 251 | 251 |
/// if \c i was already there. |
| 252 | 252 |
/// |
| 253 | 253 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
| 254 | 254 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
| 255 | 255 |
/// \param i The item. |
| 256 | 256 |
/// \param p The priority. |
| 257 | 257 |
void set(const Item &i, const Prio &p) {
|
| 258 | 258 |
int idx = _iim[i]; |
| 259 | 259 |
if( idx < 0 ) {
|
| 260 | 260 |
push(i,p); |
| 261 | 261 |
} |
| 262 | 262 |
else if( _comp(p, _data[idx].second) ) {
|
| 263 | 263 |
bubble_up(idx, Pair(i,p)); |
| 264 | 264 |
} |
| 265 | 265 |
else {
|
| 266 | 266 |
bubble_down(idx, Pair(i,p), _data.size()); |
| 267 | 267 |
} |
| 268 | 268 |
} |
| 269 | 269 |
|
| 270 | 270 |
/// \brief Decreases the priority of \c i to \c p. |
| 271 | 271 |
/// |
| 272 | 272 |
/// This method decreases the priority of item \c i to \c p. |
| 273 | 273 |
/// \param i The item. |
| 274 | 274 |
/// \param p The priority. |
| 275 | 275 |
/// \pre \c i must be stored in the heap with priority at least \c |
| 276 | 276 |
/// p relative to \c Compare. |
| 277 | 277 |
void decrease(const Item &i, const Prio &p) {
|
| 278 | 278 |
int idx = _iim[i]; |
| 279 | 279 |
bubble_up(idx, Pair(i,p)); |
| 280 | 280 |
} |
| 281 | 281 |
|
| 282 | 282 |
/// \brief Increases the priority of \c i to \c p. |
| 283 | 283 |
/// |
| 284 | 284 |
/// This method sets the priority of item \c i to \c p. |
| 285 | 285 |
/// \param i The item. |
| 286 | 286 |
/// \param p The priority. |
| 287 | 287 |
/// \pre \c i must be stored in the heap with priority at most \c |
| 288 | 288 |
/// p relative to \c Compare. |
| 289 | 289 |
void increase(const Item &i, const Prio &p) {
|
| 290 | 290 |
int idx = _iim[i]; |
| 291 | 291 |
bubble_down(idx, Pair(i,p), _data.size()); |
| 292 | 292 |
} |
| 293 | 293 |
|
| 294 | 294 |
/// \brief Returns if \c item is in, has already been in, or has |
| 295 | 295 |
/// never been in the heap. |
| 296 | 296 |
/// |
| 297 | 297 |
/// This method returns PRE_HEAP if \c item has never been in the |
| 298 | 298 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
| 299 | 299 |
/// otherwise. In the latter case it is possible that \c item will |
| 300 | 300 |
/// get back to the heap again. |
| 301 | 301 |
/// \param i The item. |
| 302 | 302 |
State state(const Item &i) const {
|
| 303 | 303 |
int s = _iim[i]; |
| 304 | 304 |
if( s>=0 ) |
| 305 | 305 |
s=0; |
| 306 | 306 |
return State(s); |
| 307 | 307 |
} |
| 308 | 308 |
|
| 309 | 309 |
/// \brief Sets the state of the \c item in the heap. |
| 310 | 310 |
/// |
| 311 | 311 |
/// Sets the state of the \c item in the heap. It can be used to |
| 312 | 312 |
/// manually clear the heap when it is important to achive the |
| 313 | 313 |
/// better time complexity. |
| 314 | 314 |
/// \param i The item. |
| 315 | 315 |
/// \param st The state. It should not be \c IN_HEAP. |
| 316 | 316 |
void state(const Item& i, State st) {
|
| 317 | 317 |
switch (st) {
|
| 318 | 318 |
case POST_HEAP: |
| 319 | 319 |
case PRE_HEAP: |
| 320 | 320 |
if (state(i) == IN_HEAP) {
|
| 321 | 321 |
erase(i); |
| 322 | 322 |
} |
| 323 | 323 |
_iim[i] = st; |
| 324 | 324 |
break; |
| 325 | 325 |
case IN_HEAP: |
| 326 | 326 |
break; |
| 327 | 327 |
} |
| 328 | 328 |
} |
| 329 | 329 |
|
| 330 | 330 |
/// \brief Replaces an item in the heap. |
| 331 | 331 |
/// |
| 332 | 332 |
/// The \c i item is replaced with \c j item. The \c i item should |
| 333 | 333 |
/// be in the heap, while the \c j should be out of the heap. The |
| 334 | 334 |
/// \c i item will out of the heap and \c j will be in the heap |
| 335 | 335 |
/// with the same prioriority as prevoiusly the \c i item. |
| 336 | 336 |
void replace(const Item& i, const Item& j) {
|
| 337 | 337 |
int idx = _iim[i]; |
| 338 | 338 |
_iim.set(i, _iim[j]); |
| 339 | 339 |
_iim.set(j, idx); |
| 340 | 340 |
_data[idx].first = j; |
| 341 | 341 |
} |
| 342 | 342 |
|
| 343 | 343 |
}; // class BinHeap |
| 344 | 344 |
|
| 345 | 345 |
} // namespace lemon |
| 346 | 346 |
|
| 347 | 347 |
#endif // LEMON_BIN_HEAP_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup graph_concepts |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief The concept of graph components. |
| 22 | 22 |
|
| 23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
| 24 | 24 |
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
|
| 29 | 29 |
#include <lemon/bits/alteration_notifier.h> |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
namespace concepts {
|
| 33 | 33 |
|
| 34 | 34 |
/// \brief Concept class for \c Node, \c Arc and \c Edge types. |
| 35 | 35 |
/// |
| 36 | 36 |
/// This class describes the concept of \c Node, \c Arc and \c Edge |
| 37 | 37 |
/// subtypes of digraph and graph types. |
| 38 | 38 |
/// |
| 39 | 39 |
/// \note This class is a template class so that we can use it to |
| 40 | 40 |
/// create graph skeleton classes. The reason for this is that \c Node |
| 41 | 41 |
/// and \c Arc (or \c Edge) types should \e not derive from the same |
| 42 | 42 |
/// base class. For \c Node you should instantiate it with character |
| 43 | 43 |
/// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'. |
| 44 | 44 |
#ifndef DOXYGEN |
| 45 | 45 |
template <char sel = '0'> |
| 46 | 46 |
#endif |
| 47 | 47 |
class GraphItem {
|
| 48 | 48 |
public: |
| 49 | 49 |
/// \brief Default constructor. |
| 50 | 50 |
/// |
| 51 | 51 |
/// Default constructor. |
| 52 | 52 |
/// \warning The default constructor is not required to set |
| 53 | 53 |
/// the item to some well-defined value. So you should consider it |
| 54 | 54 |
/// as uninitialized. |
| 55 | 55 |
GraphItem() {}
|
| 56 | 56 |
|
| 57 | 57 |
/// \brief Copy constructor. |
| 58 | 58 |
/// |
| 59 | 59 |
/// Copy constructor. |
| 60 | 60 |
GraphItem(const GraphItem &) {}
|
| 61 | 61 |
|
| 62 | 62 |
/// \brief Constructor for conversion from \c INVALID. |
| 63 | 63 |
/// |
| 64 | 64 |
/// Constructor for conversion from \c INVALID. |
| 65 | 65 |
/// It initializes the item to be invalid. |
| 66 | 66 |
/// \sa Invalid for more details. |
| 67 | 67 |
GraphItem(Invalid) {}
|
| 68 | 68 |
|
| 69 | 69 |
/// \brief Assignment operator. |
| 70 | 70 |
/// |
| 71 | 71 |
/// Assignment operator for the item. |
| 72 | 72 |
GraphItem& operator=(const GraphItem&) { return *this; }
|
| 73 | 73 |
|
| 74 | 74 |
/// \brief Equality operator. |
| 75 | 75 |
/// |
| 76 | 76 |
/// Equality operator. |
| 77 | 77 |
bool operator==(const GraphItem&) const { return false; }
|
| 78 | 78 |
|
| 79 | 79 |
/// \brief Inequality operator. |
| 80 | 80 |
/// |
| 81 | 81 |
/// Inequality operator. |
| 82 | 82 |
bool operator!=(const GraphItem&) const { return false; }
|
| 83 | 83 |
|
| 84 | 84 |
/// \brief Ordering operator. |
| 85 | 85 |
/// |
| 86 | 86 |
/// This operator defines an ordering of the items. |
| 87 | 87 |
/// It makes possible to use graph item types as key types in |
| 88 | 88 |
/// associative containers (e.g. \c std::map). |
| 89 | 89 |
/// |
| 90 | 90 |
/// \note This operator only have to define some strict ordering of |
| 91 | 91 |
/// the items; this order has nothing to do with the iteration |
| 92 | 92 |
/// ordering of the items. |
| 93 | 93 |
bool operator<(const GraphItem&) const { return false; }
|
| 94 | 94 |
|
| 95 | 95 |
template<typename _GraphItem> |
| 96 | 96 |
struct Constraints {
|
| 97 | 97 |
void constraints() {
|
| 98 | 98 |
_GraphItem i1; |
| 99 | 99 |
_GraphItem i2 = i1; |
| 100 | 100 |
_GraphItem i3 = INVALID; |
| 101 | 101 |
|
| 102 | 102 |
i1 = i2 = i3; |
| 103 | 103 |
|
| 104 | 104 |
bool b; |
| 105 | 105 |
b = (ia == ib) && (ia != ib); |
| 106 | 106 |
b = (ia == INVALID) && (ib != INVALID); |
| 107 | 107 |
b = (ia < ib); |
| 108 | 108 |
} |
| 109 | 109 |
|
| 110 | 110 |
const _GraphItem &ia; |
| 111 | 111 |
const _GraphItem &ib; |
| 112 | 112 |
}; |
| 113 | 113 |
}; |
| 114 | 114 |
|
| 115 | 115 |
/// \brief Base skeleton class for directed graphs. |
| 116 | 116 |
/// |
| 117 | 117 |
/// This class describes the base interface of directed graph types. |
| 118 | 118 |
/// All digraph %concepts have to conform to this class. |
| 119 | 119 |
/// It just provides types for nodes and arcs and functions |
| 120 | 120 |
/// to get the source and the target nodes of arcs. |
| 121 | 121 |
class BaseDigraphComponent {
|
| 122 | 122 |
public: |
| 123 | 123 |
|
| 124 | 124 |
typedef BaseDigraphComponent Digraph; |
| 125 | 125 |
|
| 126 | 126 |
/// \brief Node class of the digraph. |
| 127 | 127 |
/// |
| 128 | 128 |
/// This class represents the nodes of the digraph. |
| 129 | 129 |
typedef GraphItem<'n'> Node; |
| 130 | 130 |
|
| 131 | 131 |
/// \brief Arc class of the digraph. |
| 132 | 132 |
/// |
| 133 | 133 |
/// This class represents the arcs of the digraph. |
| 134 | 134 |
typedef GraphItem<'a'> Arc; |
| 135 | 135 |
|
| 136 | 136 |
/// \brief Return the source node of an arc. |
| 137 | 137 |
/// |
| 138 | 138 |
/// This function returns the source node of an arc. |
| 139 | 139 |
Node source(const Arc&) const { return INVALID; }
|
| 140 | 140 |
|
| 141 | 141 |
/// \brief Return the target node of an arc. |
| 142 | 142 |
/// |
| 143 | 143 |
/// This function returns the target node of an arc. |
| 144 | 144 |
Node target(const Arc&) const { return INVALID; }
|
| 145 | 145 |
|
| 146 | 146 |
/// \brief Return the opposite node on the given arc. |
| 147 | 147 |
/// |
| 148 | 148 |
/// This function returns the opposite node on the given arc. |
| 149 | 149 |
Node oppositeNode(const Node&, const Arc&) const {
|
| 150 | 150 |
return INVALID; |
| 151 | 151 |
} |
| 152 | 152 |
|
| 153 | 153 |
template <typename _Digraph> |
| 154 | 154 |
struct Constraints {
|
| 155 | 155 |
typedef typename _Digraph::Node Node; |
| 156 | 156 |
typedef typename _Digraph::Arc Arc; |
| 157 | 157 |
|
| 158 | 158 |
void constraints() {
|
| 159 | 159 |
checkConcept<GraphItem<'n'>, Node>(); |
| 160 | 160 |
checkConcept<GraphItem<'a'>, Arc>(); |
| 161 | 161 |
{
|
| 162 | 162 |
Node n; |
| 163 | 163 |
Arc e(INVALID); |
| 164 | 164 |
n = digraph.source(e); |
| 165 | 165 |
n = digraph.target(e); |
| 166 | 166 |
n = digraph.oppositeNode(n, e); |
| 167 | 167 |
} |
| 168 | 168 |
} |
| 169 | 169 |
|
| 170 | 170 |
const _Digraph& digraph; |
| 171 | 171 |
}; |
| 172 | 172 |
}; |
| 173 | 173 |
|
| 174 | 174 |
/// \brief Base skeleton class for undirected graphs. |
| 175 | 175 |
/// |
| 176 | 176 |
/// This class describes the base interface of undirected graph types. |
| 177 | 177 |
/// All graph %concepts have to conform to this class. |
| 178 | 178 |
/// It extends the interface of \ref BaseDigraphComponent with an |
| 179 | 179 |
/// \c Edge type and functions to get the end nodes of edges, |
| 180 | 180 |
/// to convert from arcs to edges and to get both direction of edges. |
| 181 | 181 |
class BaseGraphComponent : public BaseDigraphComponent {
|
| 182 | 182 |
public: |
| 183 | 183 |
typedef BaseDigraphComponent::Node Node; |
| 184 | 184 |
typedef BaseDigraphComponent::Arc Arc; |
| 185 | 185 |
|
| 186 | 186 |
/// \brief Undirected edge class of the graph. |
| 187 | 187 |
/// |
| 188 | 188 |
/// This class represents the undirected edges of the graph. |
| 189 | 189 |
/// Undirected graphs can be used as directed graphs, each edge is |
| 190 | 190 |
/// represented by two opposite directed arcs. |
| 191 | 191 |
class Edge : public GraphItem<'e'> {
|
| 192 | 192 |
public: |
| 193 | 193 |
typedef GraphItem<'e'> Parent; |
| 194 | 194 |
|
| 195 | 195 |
/// \brief Default constructor. |
| 196 | 196 |
/// |
| 197 | 197 |
/// Default constructor. |
| 198 | 198 |
/// \warning The default constructor is not required to set |
| 199 | 199 |
/// the item to some well-defined value. So you should consider it |
| 200 | 200 |
/// as uninitialized. |
| 201 | 201 |
Edge() {}
|
| 202 | 202 |
|
| 203 | 203 |
/// \brief Copy constructor. |
| 204 | 204 |
/// |
| 205 | 205 |
/// Copy constructor. |
| 206 | 206 |
Edge(const Edge &) : Parent() {}
|
| 207 | 207 |
|
| 208 | 208 |
/// \brief Constructor for conversion from \c INVALID. |
| 209 | 209 |
/// |
| 210 | 210 |
/// Constructor for conversion from \c INVALID. |
| 211 | 211 |
/// It initializes the item to be invalid. |
| 212 | 212 |
/// \sa Invalid for more details. |
| 213 | 213 |
Edge(Invalid) {}
|
| 214 | 214 |
|
| 215 | 215 |
/// \brief Constructor for conversion from an arc. |
| 216 | 216 |
/// |
| 217 | 217 |
/// Constructor for conversion from an arc. |
| 218 | 218 |
/// Besides the core graph item functionality each arc should |
| 219 | 219 |
/// be convertible to the represented edge. |
| 220 | 220 |
Edge(const Arc&) {}
|
| 221 | 221 |
|
| 222 | 222 |
/// \brief Assign an arc to an edge. |
| 223 | 223 |
/// |
| 224 | 224 |
/// This function assigns an arc to an edge. |
| 225 | 225 |
/// Besides the core graph item functionality each arc should |
| 226 | 226 |
/// be convertible to the represented edge. |
| 227 | 227 |
Edge& operator=(const Arc&) { return *this; }
|
| 228 | 228 |
}; |
| 229 | 229 |
|
| 230 | 230 |
/// \brief Return one end node of an edge. |
| 231 | 231 |
/// |
| 232 | 232 |
/// This function returns one end node of an edge. |
| 233 | 233 |
Node u(const Edge&) const { return INVALID; }
|
| 234 | 234 |
|
| 235 | 235 |
/// \brief Return the other end node of an edge. |
| 236 | 236 |
/// |
| 237 | 237 |
/// This function returns the other end node of an edge. |
| 238 | 238 |
Node v(const Edge&) const { return INVALID; }
|
| 239 | 239 |
|
| 240 | 240 |
/// \brief Return a directed arc related to an edge. |
| 241 | 241 |
/// |
| 242 | 242 |
/// This function returns a directed arc from its direction and the |
| 243 | 243 |
/// represented edge. |
| 244 | 244 |
Arc direct(const Edge&, bool) const { return INVALID; }
|
| 245 | 245 |
|
| 246 | 246 |
/// \brief Return a directed arc related to an edge. |
| 247 | 247 |
/// |
| 248 | 248 |
/// This function returns a directed arc from its source node and the |
| 249 | 249 |
/// represented edge. |
| 250 | 250 |
Arc direct(const Edge&, const Node&) const { return INVALID; }
|
| 251 | 251 |
|
| 252 | 252 |
/// \brief Return the direction of the arc. |
| 253 | 253 |
/// |
| 254 | 254 |
/// Returns the direction of the arc. Each arc represents an |
| 255 | 255 |
/// edge with a direction. It gives back the |
| 256 | 256 |
/// direction. |
| 257 | 257 |
bool direction(const Arc&) const { return true; }
|
| 258 | 258 |
|
| 259 | 259 |
/// \brief Return the opposite arc. |
| 260 | 260 |
/// |
| 261 | 261 |
/// This function returns the opposite arc, i.e. the arc representing |
| 262 | 262 |
/// the same edge and has opposite direction. |
| 263 | 263 |
Arc oppositeArc(const Arc&) const { return INVALID; }
|
| 264 | 264 |
|
| 265 | 265 |
template <typename _Graph> |
| 266 | 266 |
struct Constraints {
|
| 267 | 267 |
typedef typename _Graph::Node Node; |
| 268 | 268 |
typedef typename _Graph::Arc Arc; |
| 269 | 269 |
typedef typename _Graph::Edge Edge; |
| 270 | 270 |
|
| 271 | 271 |
void constraints() {
|
| 272 | 272 |
checkConcept<BaseDigraphComponent, _Graph>(); |
| 273 | 273 |
checkConcept<GraphItem<'e'>, Edge>(); |
| 274 | 274 |
{
|
| 275 | 275 |
Node n; |
| 276 | 276 |
Edge ue(INVALID); |
| 277 | 277 |
Arc e; |
| 278 | 278 |
n = graph.u(ue); |
| 279 | 279 |
n = graph.v(ue); |
| 280 | 280 |
e = graph.direct(ue, true); |
| 281 | 281 |
e = graph.direct(ue, false); |
| 282 | 282 |
e = graph.direct(ue, n); |
| 283 | 283 |
e = graph.oppositeArc(e); |
| 284 | 284 |
ue = e; |
| 285 | 285 |
bool d = graph.direction(e); |
| 286 | 286 |
ignore_unused_variable_warning(d); |
| 287 | 287 |
} |
| 288 | 288 |
} |
| 289 | 289 |
|
| 290 | 290 |
const _Graph& graph; |
| 291 | 291 |
}; |
| 292 | 292 |
|
| 293 | 293 |
}; |
| 294 | 294 |
|
| 295 | 295 |
/// \brief Skeleton class for \e idable directed graphs. |
| 296 | 296 |
/// |
| 297 | 297 |
/// This class describes the interface of \e idable directed graphs. |
| 298 | 298 |
/// It extends \ref BaseDigraphComponent with the core ID functions. |
| 299 | 299 |
/// The ids of the items must be unique and immutable. |
| 300 | 300 |
/// This concept is part of the Digraph concept. |
| 301 | 301 |
template <typename BAS = BaseDigraphComponent> |
| 302 | 302 |
class IDableDigraphComponent : public BAS {
|
| 303 | 303 |
public: |
| 304 | 304 |
|
| 305 | 305 |
typedef BAS Base; |
| 306 | 306 |
typedef typename Base::Node Node; |
| 307 | 307 |
typedef typename Base::Arc Arc; |
| 308 | 308 |
|
| 309 | 309 |
/// \brief Return a unique integer id for the given node. |
| 310 | 310 |
/// |
| 311 | 311 |
/// This function returns a unique integer id for the given node. |
| 312 | 312 |
int id(const Node&) const { return -1; }
|
| 313 | 313 |
|
| 314 | 314 |
/// \brief Return the node by its unique id. |
| 315 | 315 |
/// |
| 316 | 316 |
/// This function returns the node by its unique id. |
| 317 | 317 |
/// If the digraph does not contain a node with the given id, |
| 318 | 318 |
/// then the result of the function is undefined. |
| 319 | 319 |
Node nodeFromId(int) const { return INVALID; }
|
| 320 | 320 |
|
| 321 | 321 |
/// \brief Return a unique integer id for the given arc. |
| 322 | 322 |
/// |
| 323 | 323 |
/// This function returns a unique integer id for the given arc. |
| 324 | 324 |
int id(const Arc&) const { return -1; }
|
| 325 | 325 |
|
| 326 | 326 |
/// \brief Return the arc by its unique id. |
| 327 | 327 |
/// |
| 328 | 328 |
/// This function returns the arc by its unique id. |
| 329 | 329 |
/// If the digraph does not contain an arc with the given id, |
| 330 | 330 |
/// then the result of the function is undefined. |
| 331 | 331 |
Arc arcFromId(int) const { return INVALID; }
|
| 332 | 332 |
|
| 333 | 333 |
/// \brief Return an integer greater or equal to the maximum |
| 334 | 334 |
/// node id. |
| 335 | 335 |
/// |
| 336 | 336 |
/// This function returns an integer greater or equal to the |
| 337 | 337 |
/// maximum node id. |
| 338 | 338 |
int maxNodeId() const { return -1; }
|
| 339 | 339 |
|
| 340 | 340 |
/// \brief Return an integer greater or equal to the maximum |
| 341 | 341 |
/// arc id. |
| 342 | 342 |
/// |
| 343 | 343 |
/// This function returns an integer greater or equal to the |
| 344 | 344 |
/// maximum arc id. |
| 345 | 345 |
int maxArcId() const { return -1; }
|
| 346 | 346 |
|
| 347 | 347 |
template <typename _Digraph> |
| 348 | 348 |
struct Constraints {
|
| 349 | 349 |
|
| 350 | 350 |
void constraints() {
|
| 351 | 351 |
checkConcept<Base, _Digraph >(); |
| 352 | 352 |
typename _Digraph::Node node; |
| 353 | 353 |
int nid = digraph.id(node); |
| 354 | 354 |
nid = digraph.id(node); |
| 355 | 355 |
node = digraph.nodeFromId(nid); |
| 356 | 356 |
typename _Digraph::Arc arc; |
| 357 | 357 |
int eid = digraph.id(arc); |
| 358 | 358 |
eid = digraph.id(arc); |
| 359 | 359 |
arc = digraph.arcFromId(eid); |
| 360 | 360 |
|
| 361 | 361 |
nid = digraph.maxNodeId(); |
| 362 | 362 |
ignore_unused_variable_warning(nid); |
| 363 | 363 |
eid = digraph.maxArcId(); |
| 364 | 364 |
ignore_unused_variable_warning(eid); |
| 365 | 365 |
} |
| 366 | 366 |
|
| 367 | 367 |
const _Digraph& digraph; |
| 368 | 368 |
}; |
| 369 | 369 |
}; |
| 370 | 370 |
|
| 371 | 371 |
/// \brief Skeleton class for \e idable undirected graphs. |
| 372 | 372 |
/// |
| 373 | 373 |
/// This class describes the interface of \e idable undirected |
| 374 | 374 |
/// graphs. It extends \ref IDableDigraphComponent with the core ID |
| 375 | 375 |
/// functions of undirected graphs. |
| 376 | 376 |
/// The ids of the items must be unique and immutable. |
| 377 | 377 |
/// This concept is part of the Graph concept. |
| 378 | 378 |
template <typename BAS = BaseGraphComponent> |
| 379 | 379 |
class IDableGraphComponent : public IDableDigraphComponent<BAS> {
|
| 380 | 380 |
public: |
| 381 | 381 |
|
| 382 | 382 |
typedef BAS Base; |
| 383 | 383 |
typedef typename Base::Edge Edge; |
| 384 | 384 |
|
| 385 | 385 |
using IDableDigraphComponent<Base>::id; |
| 386 | 386 |
|
| 387 | 387 |
/// \brief Return a unique integer id for the given edge. |
| 388 | 388 |
/// |
| 389 | 389 |
/// This function returns a unique integer id for the given edge. |
| 390 | 390 |
int id(const Edge&) const { return -1; }
|
| 391 | 391 |
|
| 392 | 392 |
/// \brief Return the edge by its unique id. |
| 393 | 393 |
/// |
| 394 | 394 |
/// This function returns the edge by its unique id. |
| 395 | 395 |
/// If the graph does not contain an edge with the given id, |
| 396 | 396 |
/// then the result of the function is undefined. |
| 397 | 397 |
Edge edgeFromId(int) const { return INVALID; }
|
| 398 | 398 |
|
| 399 | 399 |
/// \brief Return an integer greater or equal to the maximum |
| 400 | 400 |
/// edge id. |
| 401 | 401 |
/// |
| 402 | 402 |
/// This function returns an integer greater or equal to the |
| 403 | 403 |
/// maximum edge id. |
| 404 | 404 |
int maxEdgeId() const { return -1; }
|
| 405 | 405 |
|
| 406 | 406 |
template <typename _Graph> |
| 407 | 407 |
struct Constraints {
|
| 408 | 408 |
|
| 409 | 409 |
void constraints() {
|
| 410 | 410 |
checkConcept<IDableDigraphComponent<Base>, _Graph >(); |
| 411 | 411 |
typename _Graph::Edge edge; |
| 412 | 412 |
int ueid = graph.id(edge); |
| 413 | 413 |
ueid = graph.id(edge); |
| 414 | 414 |
edge = graph.edgeFromId(ueid); |
| 415 | 415 |
ueid = graph.maxEdgeId(); |
| 416 | 416 |
ignore_unused_variable_warning(ueid); |
| 417 | 417 |
} |
| 418 | 418 |
|
| 419 | 419 |
const _Graph& graph; |
| 420 | 420 |
}; |
| 421 | 421 |
}; |
| 422 | 422 |
|
| 423 | 423 |
/// \brief Concept class for \c NodeIt, \c ArcIt and \c EdgeIt types. |
| 424 | 424 |
/// |
| 425 | 425 |
/// This class describes the concept of \c NodeIt, \c ArcIt and |
| 426 | 426 |
/// \c EdgeIt subtypes of digraph and graph types. |
| 427 | 427 |
template <typename GR, typename Item> |
| 428 | 428 |
class GraphItemIt : public Item {
|
| 429 | 429 |
public: |
| 430 | 430 |
/// \brief Default constructor. |
| 431 | 431 |
/// |
| 432 | 432 |
/// Default constructor. |
| 433 | 433 |
/// \warning The default constructor is not required to set |
| 434 | 434 |
/// the iterator to some well-defined value. So you should consider it |
| 435 | 435 |
/// as uninitialized. |
| 436 | 436 |
GraphItemIt() {}
|
| 437 | 437 |
|
| 438 | 438 |
/// \brief Copy constructor. |
| 439 | 439 |
/// |
| 440 | 440 |
/// Copy constructor. |
| 441 | 441 |
GraphItemIt(const GraphItemIt& it) : Item(it) {}
|
| 442 | 442 |
|
| 443 | 443 |
/// \brief Constructor that sets the iterator to the first item. |
| 444 | 444 |
/// |
| 445 | 445 |
/// Constructor that sets the iterator to the first item. |
| 446 | 446 |
explicit GraphItemIt(const GR&) {}
|
| 447 | 447 |
|
| 448 | 448 |
/// \brief Constructor for conversion from \c INVALID. |
| 449 | 449 |
/// |
| 450 | 450 |
/// Constructor for conversion from \c INVALID. |
| 451 | 451 |
/// It initializes the iterator to be invalid. |
| 452 | 452 |
/// \sa Invalid for more details. |
| 453 | 453 |
GraphItemIt(Invalid) {}
|
| 454 | 454 |
|
| 455 | 455 |
/// \brief Assignment operator. |
| 456 | 456 |
/// |
| 457 | 457 |
/// Assignment operator for the iterator. |
| 458 | 458 |
GraphItemIt& operator=(const GraphItemIt&) { return *this; }
|
| 459 | 459 |
|
| 460 | 460 |
/// \brief Increment the iterator. |
| 461 | 461 |
/// |
| 462 | 462 |
/// This operator increments the iterator, i.e. assigns it to the |
| 463 | 463 |
/// next item. |
| 464 | 464 |
GraphItemIt& operator++() { return *this; }
|
| 465 | 465 |
|
| 466 | 466 |
/// \brief Equality operator |
| 467 | 467 |
/// |
| 468 | 468 |
/// Equality operator. |
| 469 | 469 |
/// Two iterators are equal if and only if they point to the |
| 470 | 470 |
/// same object or both are invalid. |
| 471 | 471 |
bool operator==(const GraphItemIt&) const { return true;}
|
| 472 | 472 |
|
| 473 | 473 |
/// \brief Inequality operator |
| 474 | 474 |
/// |
| 475 | 475 |
/// Inequality operator. |
| 476 | 476 |
/// Two iterators are equal if and only if they point to the |
| 477 | 477 |
/// same object or both are invalid. |
| 478 | 478 |
bool operator!=(const GraphItemIt&) const { return true;}
|
| 479 | 479 |
|
| 480 | 480 |
template<typename _GraphItemIt> |
| 481 | 481 |
struct Constraints {
|
| 482 | 482 |
void constraints() {
|
| 483 | 483 |
checkConcept<GraphItem<>, _GraphItemIt>(); |
| 484 | 484 |
_GraphItemIt it1(g); |
| 485 | 485 |
_GraphItemIt it2; |
| 486 | 486 |
_GraphItemIt it3 = it1; |
| 487 | 487 |
_GraphItemIt it4 = INVALID; |
| 488 | 488 |
|
| 489 | 489 |
it2 = ++it1; |
| 490 | 490 |
++it2 = it1; |
| 491 | 491 |
++(++it1); |
| 492 | 492 |
|
| 493 | 493 |
Item bi = it1; |
| 494 | 494 |
bi = it2; |
| 495 | 495 |
} |
| 496 | 496 |
const GR& g; |
| 497 | 497 |
}; |
| 498 | 498 |
}; |
| 499 | 499 |
|
| 500 | 500 |
/// \brief Concept class for \c InArcIt, \c OutArcIt and |
| 501 | 501 |
/// \c IncEdgeIt types. |
| 502 | 502 |
/// |
| 503 | 503 |
/// This class describes the concept of \c InArcIt, \c OutArcIt |
| 504 | 504 |
/// and \c IncEdgeIt subtypes of digraph and graph types. |
| 505 | 505 |
/// |
| 506 | 506 |
/// \note Since these iterator classes do not inherit from the same |
| 507 | 507 |
/// base class, there is an additional template parameter (selector) |
| 508 | 508 |
/// \c sel. For \c InArcIt you should instantiate it with character |
| 509 | 509 |
/// \c 'i', for \c OutArcIt with \c 'o' and for \c IncEdgeIt with \c 'e'. |
| 510 | 510 |
template <typename GR, |
| 511 | 511 |
typename Item = typename GR::Arc, |
| 512 | 512 |
typename Base = typename GR::Node, |
| 513 | 513 |
char sel = '0'> |
| 514 | 514 |
class GraphIncIt : public Item {
|
| 515 | 515 |
public: |
| 516 | 516 |
/// \brief Default constructor. |
| 517 | 517 |
/// |
| 518 | 518 |
/// Default constructor. |
| 519 | 519 |
/// \warning The default constructor is not required to set |
| 520 | 520 |
/// the iterator to some well-defined value. So you should consider it |
| 521 | 521 |
/// as uninitialized. |
| 522 | 522 |
GraphIncIt() {}
|
| 523 | 523 |
|
| 524 | 524 |
/// \brief Copy constructor. |
| 525 | 525 |
/// |
| 526 | 526 |
/// Copy constructor. |
| 527 | 527 |
GraphIncIt(const GraphIncIt& it) : Item(it) {}
|
| 528 | 528 |
|
| 529 | 529 |
/// \brief Constructor that sets the iterator to the first |
| 530 | 530 |
/// incoming or outgoing arc. |
| 531 | 531 |
/// |
| 532 | 532 |
/// Constructor that sets the iterator to the first arc |
| 533 | 533 |
/// incoming to or outgoing from the given node. |
| 534 | 534 |
explicit GraphIncIt(const GR&, const Base&) {}
|
| 535 | 535 |
|
| 536 | 536 |
/// \brief Constructor for conversion from \c INVALID. |
| 537 | 537 |
/// |
| 538 | 538 |
/// Constructor for conversion from \c INVALID. |
| 539 | 539 |
/// It initializes the iterator to be invalid. |
| 540 | 540 |
/// \sa Invalid for more details. |
| 541 | 541 |
GraphIncIt(Invalid) {}
|
| 542 | 542 |
|
| 543 | 543 |
/// \brief Assignment operator. |
| 544 | 544 |
/// |
| 545 | 545 |
/// Assignment operator for the iterator. |
| 546 | 546 |
GraphIncIt& operator=(const GraphIncIt&) { return *this; }
|
| 547 | 547 |
|
| 548 | 548 |
/// \brief Increment the iterator. |
| 549 | 549 |
/// |
| 550 | 550 |
/// This operator increments the iterator, i.e. assigns it to the |
| 551 | 551 |
/// next arc incoming to or outgoing from the given node. |
| 552 | 552 |
GraphIncIt& operator++() { return *this; }
|
| 553 | 553 |
|
| 554 | 554 |
/// \brief Equality operator |
| 555 | 555 |
/// |
| 556 | 556 |
/// Equality operator. |
| 557 | 557 |
/// Two iterators are equal if and only if they point to the |
| 558 | 558 |
/// same object or both are invalid. |
| 559 | 559 |
bool operator==(const GraphIncIt&) const { return true;}
|
| 560 | 560 |
|
| 561 | 561 |
/// \brief Inequality operator |
| 562 | 562 |
/// |
| 563 | 563 |
/// Inequality operator. |
| 564 | 564 |
/// Two iterators are equal if and only if they point to the |
| 565 | 565 |
/// same object or both are invalid. |
| 566 | 566 |
bool operator!=(const GraphIncIt&) const { return true;}
|
| 567 | 567 |
|
| 568 | 568 |
template <typename _GraphIncIt> |
| 569 | 569 |
struct Constraints {
|
| 570 | 570 |
void constraints() {
|
| 571 | 571 |
checkConcept<GraphItem<sel>, _GraphIncIt>(); |
| 572 | 572 |
_GraphIncIt it1(graph, node); |
| 573 | 573 |
_GraphIncIt it2; |
| 574 | 574 |
_GraphIncIt it3 = it1; |
| 575 | 575 |
_GraphIncIt it4 = INVALID; |
| 576 | 576 |
|
| 577 | 577 |
it2 = ++it1; |
| 578 | 578 |
++it2 = it1; |
| 579 | 579 |
++(++it1); |
| 580 | 580 |
Item e = it1; |
| 581 | 581 |
e = it2; |
| 582 | 582 |
} |
| 583 | 583 |
const Base& node; |
| 584 | 584 |
const GR& graph; |
| 585 | 585 |
}; |
| 586 | 586 |
}; |
| 587 | 587 |
|
| 588 | 588 |
/// \brief Skeleton class for iterable directed graphs. |
| 589 | 589 |
/// |
| 590 | 590 |
/// This class describes the interface of iterable directed |
| 591 | 591 |
/// graphs. It extends \ref BaseDigraphComponent with the core |
| 592 | 592 |
/// iterable interface. |
| 593 | 593 |
/// This concept is part of the Digraph concept. |
| 594 | 594 |
template <typename BAS = BaseDigraphComponent> |
| 595 | 595 |
class IterableDigraphComponent : public BAS {
|
| 596 | 596 |
|
| 597 | 597 |
public: |
| 598 | 598 |
|
| 599 | 599 |
typedef BAS Base; |
| 600 | 600 |
typedef typename Base::Node Node; |
| 601 | 601 |
typedef typename Base::Arc Arc; |
| 602 | 602 |
|
| 603 | 603 |
typedef IterableDigraphComponent Digraph; |
| 604 | 604 |
|
| 605 |
/// \name Base |
|
| 605 |
/// \name Base Iteration |
|
| 606 | 606 |
/// |
| 607 | 607 |
/// This interface provides functions for iteration on digraph items. |
| 608 | 608 |
/// |
| 609 | 609 |
/// @{
|
| 610 | 610 |
|
| 611 | 611 |
/// \brief Return the first node. |
| 612 | 612 |
/// |
| 613 | 613 |
/// This function gives back the first node in the iteration order. |
| 614 | 614 |
void first(Node&) const {}
|
| 615 | 615 |
|
| 616 | 616 |
/// \brief Return the next node. |
| 617 | 617 |
/// |
| 618 | 618 |
/// This function gives back the next node in the iteration order. |
| 619 | 619 |
void next(Node&) const {}
|
| 620 | 620 |
|
| 621 | 621 |
/// \brief Return the first arc. |
| 622 | 622 |
/// |
| 623 | 623 |
/// This function gives back the first arc in the iteration order. |
| 624 | 624 |
void first(Arc&) const {}
|
| 625 | 625 |
|
| 626 | 626 |
/// \brief Return the next arc. |
| 627 | 627 |
/// |
| 628 | 628 |
/// This function gives back the next arc in the iteration order. |
| 629 | 629 |
void next(Arc&) const {}
|
| 630 | 630 |
|
| 631 | 631 |
/// \brief Return the first arc incomming to the given node. |
| 632 | 632 |
/// |
| 633 | 633 |
/// This function gives back the first arc incomming to the |
| 634 | 634 |
/// given node. |
| 635 | 635 |
void firstIn(Arc&, const Node&) const {}
|
| 636 | 636 |
|
| 637 | 637 |
/// \brief Return the next arc incomming to the given node. |
| 638 | 638 |
/// |
| 639 | 639 |
/// This function gives back the next arc incomming to the |
| 640 | 640 |
/// given node. |
| 641 | 641 |
void nextIn(Arc&) const {}
|
| 642 | 642 |
|
| 643 | 643 |
/// \brief Return the first arc outgoing form the given node. |
| 644 | 644 |
/// |
| 645 | 645 |
/// This function gives back the first arc outgoing form the |
| 646 | 646 |
/// given node. |
| 647 | 647 |
void firstOut(Arc&, const Node&) const {}
|
| 648 | 648 |
|
| 649 | 649 |
/// \brief Return the next arc outgoing form the given node. |
| 650 | 650 |
/// |
| 651 | 651 |
/// This function gives back the next arc outgoing form the |
| 652 | 652 |
/// given node. |
| 653 | 653 |
void nextOut(Arc&) const {}
|
| 654 | 654 |
|
| 655 | 655 |
/// @} |
| 656 | 656 |
|
| 657 |
/// \name Class |
|
| 657 |
/// \name Class Based Iteration |
|
| 658 | 658 |
/// |
| 659 | 659 |
/// This interface provides iterator classes for digraph items. |
| 660 | 660 |
/// |
| 661 | 661 |
/// @{
|
| 662 | 662 |
|
| 663 | 663 |
/// \brief This iterator goes through each node. |
| 664 | 664 |
/// |
| 665 | 665 |
/// This iterator goes through each node. |
| 666 | 666 |
/// |
| 667 | 667 |
typedef GraphItemIt<Digraph, Node> NodeIt; |
| 668 | 668 |
|
| 669 | 669 |
/// \brief This iterator goes through each arc. |
| 670 | 670 |
/// |
| 671 | 671 |
/// This iterator goes through each arc. |
| 672 | 672 |
/// |
| 673 | 673 |
typedef GraphItemIt<Digraph, Arc> ArcIt; |
| 674 | 674 |
|
| 675 | 675 |
/// \brief This iterator goes trough the incoming arcs of a node. |
| 676 | 676 |
/// |
| 677 | 677 |
/// This iterator goes trough the \e incoming arcs of a certain node |
| 678 | 678 |
/// of a digraph. |
| 679 | 679 |
typedef GraphIncIt<Digraph, Arc, Node, 'i'> InArcIt; |
| 680 | 680 |
|
| 681 | 681 |
/// \brief This iterator goes trough the outgoing arcs of a node. |
| 682 | 682 |
/// |
| 683 | 683 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
| 684 | 684 |
/// of a digraph. |
| 685 | 685 |
typedef GraphIncIt<Digraph, Arc, Node, 'o'> OutArcIt; |
| 686 | 686 |
|
| 687 | 687 |
/// \brief The base node of the iterator. |
| 688 | 688 |
/// |
| 689 | 689 |
/// This function gives back the base node of the iterator. |
| 690 | 690 |
/// It is always the target node of the pointed arc. |
| 691 | 691 |
Node baseNode(const InArcIt&) const { return INVALID; }
|
| 692 | 692 |
|
| 693 | 693 |
/// \brief The running node of the iterator. |
| 694 | 694 |
/// |
| 695 | 695 |
/// This function gives back the running node of the iterator. |
| 696 | 696 |
/// It is always the source node of the pointed arc. |
| 697 | 697 |
Node runningNode(const InArcIt&) const { return INVALID; }
|
| 698 | 698 |
|
| 699 | 699 |
/// \brief The base node of the iterator. |
| 700 | 700 |
/// |
| 701 | 701 |
/// This function gives back the base node of the iterator. |
| 702 | 702 |
/// It is always the source node of the pointed arc. |
| 703 | 703 |
Node baseNode(const OutArcIt&) const { return INVALID; }
|
| 704 | 704 |
|
| 705 | 705 |
/// \brief The running node of the iterator. |
| 706 | 706 |
/// |
| 707 | 707 |
/// This function gives back the running node of the iterator. |
| 708 | 708 |
/// It is always the target node of the pointed arc. |
| 709 | 709 |
Node runningNode(const OutArcIt&) const { return INVALID; }
|
| 710 | 710 |
|
| 711 | 711 |
/// @} |
| 712 | 712 |
|
| 713 | 713 |
template <typename _Digraph> |
| 714 | 714 |
struct Constraints {
|
| 715 | 715 |
void constraints() {
|
| 716 | 716 |
checkConcept<Base, _Digraph>(); |
| 717 | 717 |
|
| 718 | 718 |
{
|
| 719 | 719 |
typename _Digraph::Node node(INVALID); |
| 720 | 720 |
typename _Digraph::Arc arc(INVALID); |
| 721 | 721 |
{
|
| 722 | 722 |
digraph.first(node); |
| 723 | 723 |
digraph.next(node); |
| 724 | 724 |
} |
| 725 | 725 |
{
|
| 726 | 726 |
digraph.first(arc); |
| 727 | 727 |
digraph.next(arc); |
| 728 | 728 |
} |
| 729 | 729 |
{
|
| 730 | 730 |
digraph.firstIn(arc, node); |
| 731 | 731 |
digraph.nextIn(arc); |
| 732 | 732 |
} |
| 733 | 733 |
{
|
| 734 | 734 |
digraph.firstOut(arc, node); |
| 735 | 735 |
digraph.nextOut(arc); |
| 736 | 736 |
} |
| 737 | 737 |
} |
| 738 | 738 |
|
| 739 | 739 |
{
|
| 740 | 740 |
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Arc>, |
| 741 | 741 |
typename _Digraph::ArcIt >(); |
| 742 | 742 |
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Node>, |
| 743 | 743 |
typename _Digraph::NodeIt >(); |
| 744 | 744 |
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc, |
| 745 | 745 |
typename _Digraph::Node, 'i'>, typename _Digraph::InArcIt>(); |
| 746 | 746 |
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc, |
| 747 | 747 |
typename _Digraph::Node, 'o'>, typename _Digraph::OutArcIt>(); |
| 748 | 748 |
|
| 749 | 749 |
typename _Digraph::Node n; |
| 750 | 750 |
const typename _Digraph::InArcIt iait(INVALID); |
| 751 | 751 |
const typename _Digraph::OutArcIt oait(INVALID); |
| 752 | 752 |
n = digraph.baseNode(iait); |
| 753 | 753 |
n = digraph.runningNode(iait); |
| 754 | 754 |
n = digraph.baseNode(oait); |
| 755 | 755 |
n = digraph.runningNode(oait); |
| 756 | 756 |
ignore_unused_variable_warning(n); |
| 757 | 757 |
} |
| 758 | 758 |
} |
| 759 | 759 |
|
| 760 | 760 |
const _Digraph& digraph; |
| 761 | 761 |
}; |
| 762 | 762 |
}; |
| 763 | 763 |
|
| 764 | 764 |
/// \brief Skeleton class for iterable undirected graphs. |
| 765 | 765 |
/// |
| 766 | 766 |
/// This class describes the interface of iterable undirected |
| 767 | 767 |
/// graphs. It extends \ref IterableDigraphComponent with the core |
| 768 | 768 |
/// iterable interface of undirected graphs. |
| 769 | 769 |
/// This concept is part of the Graph concept. |
| 770 | 770 |
template <typename BAS = BaseGraphComponent> |
| 771 | 771 |
class IterableGraphComponent : public IterableDigraphComponent<BAS> {
|
| 772 | 772 |
public: |
| 773 | 773 |
|
| 774 | 774 |
typedef BAS Base; |
| 775 | 775 |
typedef typename Base::Node Node; |
| 776 | 776 |
typedef typename Base::Arc Arc; |
| 777 | 777 |
typedef typename Base::Edge Edge; |
| 778 | 778 |
|
| 779 | 779 |
|
| 780 | 780 |
typedef IterableGraphComponent Graph; |
| 781 | 781 |
|
| 782 |
/// \name Base |
|
| 782 |
/// \name Base Iteration |
|
| 783 | 783 |
/// |
| 784 | 784 |
/// This interface provides functions for iteration on edges. |
| 785 | 785 |
/// |
| 786 | 786 |
/// @{
|
| 787 | 787 |
|
| 788 | 788 |
using IterableDigraphComponent<Base>::first; |
| 789 | 789 |
using IterableDigraphComponent<Base>::next; |
| 790 | 790 |
|
| 791 | 791 |
/// \brief Return the first edge. |
| 792 | 792 |
/// |
| 793 | 793 |
/// This function gives back the first edge in the iteration order. |
| 794 | 794 |
void first(Edge&) const {}
|
| 795 | 795 |
|
| 796 | 796 |
/// \brief Return the next edge. |
| 797 | 797 |
/// |
| 798 | 798 |
/// This function gives back the next edge in the iteration order. |
| 799 | 799 |
void next(Edge&) const {}
|
| 800 | 800 |
|
| 801 | 801 |
/// \brief Return the first edge incident to the given node. |
| 802 | 802 |
/// |
| 803 | 803 |
/// This function gives back the first edge incident to the given |
| 804 | 804 |
/// node. The bool parameter gives back the direction for which the |
| 805 | 805 |
/// source node of the directed arc representing the edge is the |
| 806 | 806 |
/// given node. |
| 807 | 807 |
void firstInc(Edge&, bool&, const Node&) const {}
|
| 808 | 808 |
|
| 809 | 809 |
/// \brief Gives back the next of the edges from the |
| 810 | 810 |
/// given node. |
| 811 | 811 |
/// |
| 812 | 812 |
/// This function gives back the next edge incident to the given |
| 813 | 813 |
/// node. The bool parameter should be used as \c firstInc() use it. |
| 814 | 814 |
void nextInc(Edge&, bool&) const {}
|
| 815 | 815 |
|
| 816 | 816 |
using IterableDigraphComponent<Base>::baseNode; |
| 817 | 817 |
using IterableDigraphComponent<Base>::runningNode; |
| 818 | 818 |
|
| 819 | 819 |
/// @} |
| 820 | 820 |
|
| 821 |
/// \name Class |
|
| 821 |
/// \name Class Based Iteration |
|
| 822 | 822 |
/// |
| 823 | 823 |
/// This interface provides iterator classes for edges. |
| 824 | 824 |
/// |
| 825 | 825 |
/// @{
|
| 826 | 826 |
|
| 827 | 827 |
/// \brief This iterator goes through each edge. |
| 828 | 828 |
/// |
| 829 | 829 |
/// This iterator goes through each edge. |
| 830 | 830 |
typedef GraphItemIt<Graph, Edge> EdgeIt; |
| 831 | 831 |
|
| 832 | 832 |
/// \brief This iterator goes trough the incident edges of a |
| 833 | 833 |
/// node. |
| 834 | 834 |
/// |
| 835 | 835 |
/// This iterator goes trough the incident edges of a certain |
| 836 | 836 |
/// node of a graph. |
| 837 | 837 |
typedef GraphIncIt<Graph, Edge, Node, 'e'> IncEdgeIt; |
| 838 | 838 |
|
| 839 | 839 |
/// \brief The base node of the iterator. |
| 840 | 840 |
/// |
| 841 | 841 |
/// This function gives back the base node of the iterator. |
| 842 | 842 |
Node baseNode(const IncEdgeIt&) const { return INVALID; }
|
| 843 | 843 |
|
| 844 | 844 |
/// \brief The running node of the iterator. |
| 845 | 845 |
/// |
| 846 | 846 |
/// This function gives back the running node of the iterator. |
| 847 | 847 |
Node runningNode(const IncEdgeIt&) const { return INVALID; }
|
| 848 | 848 |
|
| 849 | 849 |
/// @} |
| 850 | 850 |
|
| 851 | 851 |
template <typename _Graph> |
| 852 | 852 |
struct Constraints {
|
| 853 | 853 |
void constraints() {
|
| 854 | 854 |
checkConcept<IterableDigraphComponent<Base>, _Graph>(); |
| 855 | 855 |
|
| 856 | 856 |
{
|
| 857 | 857 |
typename _Graph::Node node(INVALID); |
| 858 | 858 |
typename _Graph::Edge edge(INVALID); |
| 859 | 859 |
bool dir; |
| 860 | 860 |
{
|
| 861 | 861 |
graph.first(edge); |
| 862 | 862 |
graph.next(edge); |
| 863 | 863 |
} |
| 864 | 864 |
{
|
| 865 | 865 |
graph.firstInc(edge, dir, node); |
| 866 | 866 |
graph.nextInc(edge, dir); |
| 867 | 867 |
} |
| 868 | 868 |
|
| 869 | 869 |
} |
| 870 | 870 |
|
| 871 | 871 |
{
|
| 872 | 872 |
checkConcept<GraphItemIt<_Graph, typename _Graph::Edge>, |
| 873 | 873 |
typename _Graph::EdgeIt >(); |
| 874 | 874 |
checkConcept<GraphIncIt<_Graph, typename _Graph::Edge, |
| 875 | 875 |
typename _Graph::Node, 'e'>, typename _Graph::IncEdgeIt>(); |
| 876 | 876 |
|
| 877 | 877 |
typename _Graph::Node n; |
| 878 | 878 |
const typename _Graph::IncEdgeIt ieit(INVALID); |
| 879 | 879 |
n = graph.baseNode(ieit); |
| 880 | 880 |
n = graph.runningNode(ieit); |
| 881 | 881 |
} |
| 882 | 882 |
} |
| 883 | 883 |
|
| 884 | 884 |
const _Graph& graph; |
| 885 | 885 |
}; |
| 886 | 886 |
}; |
| 887 | 887 |
|
| 888 | 888 |
/// \brief Skeleton class for alterable directed graphs. |
| 889 | 889 |
/// |
| 890 | 890 |
/// This class describes the interface of alterable directed |
| 891 | 891 |
/// graphs. It extends \ref BaseDigraphComponent with the alteration |
| 892 | 892 |
/// notifier interface. It implements |
| 893 | 893 |
/// an observer-notifier pattern for each digraph item. More |
| 894 | 894 |
/// obsevers can be registered into the notifier and whenever an |
| 895 | 895 |
/// alteration occured in the digraph all the observers will be |
| 896 | 896 |
/// notified about it. |
| 897 | 897 |
template <typename BAS = BaseDigraphComponent> |
| 898 | 898 |
class AlterableDigraphComponent : public BAS {
|
| 899 | 899 |
public: |
| 900 | 900 |
|
| 901 | 901 |
typedef BAS Base; |
| 902 | 902 |
typedef typename Base::Node Node; |
| 903 | 903 |
typedef typename Base::Arc Arc; |
| 904 | 904 |
|
| 905 | 905 |
|
| 906 | 906 |
/// Node alteration notifier class. |
| 907 | 907 |
typedef AlterationNotifier<AlterableDigraphComponent, Node> |
| 908 | 908 |
NodeNotifier; |
| 909 | 909 |
/// Arc alteration notifier class. |
| 910 | 910 |
typedef AlterationNotifier<AlterableDigraphComponent, Arc> |
| 911 | 911 |
ArcNotifier; |
| 912 | 912 |
|
| 913 | 913 |
/// \brief Return the node alteration notifier. |
| 914 | 914 |
/// |
| 915 | 915 |
/// This function gives back the node alteration notifier. |
| 916 | 916 |
NodeNotifier& notifier(Node) const {
|
| 917 | 917 |
return NodeNotifier(); |
| 918 | 918 |
} |
| 919 | 919 |
|
| 920 | 920 |
/// \brief Return the arc alteration notifier. |
| 921 | 921 |
/// |
| 922 | 922 |
/// This function gives back the arc alteration notifier. |
| 923 | 923 |
ArcNotifier& notifier(Arc) const {
|
| 924 | 924 |
return ArcNotifier(); |
| 925 | 925 |
} |
| 926 | 926 |
|
| 927 | 927 |
template <typename _Digraph> |
| 928 | 928 |
struct Constraints {
|
| 929 | 929 |
void constraints() {
|
| 930 | 930 |
checkConcept<Base, _Digraph>(); |
| 931 | 931 |
typename _Digraph::NodeNotifier& nn |
| 932 | 932 |
= digraph.notifier(typename _Digraph::Node()); |
| 933 | 933 |
|
| 934 | 934 |
typename _Digraph::ArcNotifier& en |
| 935 | 935 |
= digraph.notifier(typename _Digraph::Arc()); |
| 936 | 936 |
|
| 937 | 937 |
ignore_unused_variable_warning(nn); |
| 938 | 938 |
ignore_unused_variable_warning(en); |
| 939 | 939 |
} |
| 940 | 940 |
|
| 941 | 941 |
const _Digraph& digraph; |
| 942 | 942 |
}; |
| 943 | 943 |
}; |
| 944 | 944 |
|
| 945 | 945 |
/// \brief Skeleton class for alterable undirected graphs. |
| 946 | 946 |
/// |
| 947 | 947 |
/// This class describes the interface of alterable undirected |
| 948 | 948 |
/// graphs. It extends \ref AlterableDigraphComponent with the alteration |
| 949 | 949 |
/// notifier interface of undirected graphs. It implements |
| 950 | 950 |
/// an observer-notifier pattern for the edges. More |
| 951 | 951 |
/// obsevers can be registered into the notifier and whenever an |
| 952 | 952 |
/// alteration occured in the graph all the observers will be |
| 953 | 953 |
/// notified about it. |
| 954 | 954 |
template <typename BAS = BaseGraphComponent> |
| 955 | 955 |
class AlterableGraphComponent : public AlterableDigraphComponent<BAS> {
|
| 956 | 956 |
public: |
| 957 | 957 |
|
| 958 | 958 |
typedef BAS Base; |
| 959 | 959 |
typedef typename Base::Edge Edge; |
| 960 | 960 |
|
| 961 | 961 |
|
| 962 | 962 |
/// Edge alteration notifier class. |
| 963 | 963 |
typedef AlterationNotifier<AlterableGraphComponent, Edge> |
| 964 | 964 |
EdgeNotifier; |
| 965 | 965 |
|
| 966 | 966 |
/// \brief Return the edge alteration notifier. |
| 967 | 967 |
/// |
| 968 | 968 |
/// This function gives back the edge alteration notifier. |
| 969 | 969 |
EdgeNotifier& notifier(Edge) const {
|
| 970 | 970 |
return EdgeNotifier(); |
| 971 | 971 |
} |
| 972 | 972 |
|
| 973 | 973 |
template <typename _Graph> |
| 974 | 974 |
struct Constraints {
|
| 975 | 975 |
void constraints() {
|
| 976 | 976 |
checkConcept<AlterableDigraphComponent<Base>, _Graph>(); |
| 977 | 977 |
typename _Graph::EdgeNotifier& uen |
| 978 | 978 |
= graph.notifier(typename _Graph::Edge()); |
| 979 | 979 |
ignore_unused_variable_warning(uen); |
| 980 | 980 |
} |
| 981 | 981 |
|
| 982 | 982 |
const _Graph& graph; |
| 983 | 983 |
}; |
| 984 | 984 |
}; |
| 985 | 985 |
|
| 986 | 986 |
/// \brief Concept class for standard graph maps. |
| 987 | 987 |
/// |
| 988 | 988 |
/// This class describes the concept of standard graph maps, i.e. |
| 989 | 989 |
/// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and |
| 990 | 990 |
/// graph types, which can be used for associating data to graph items. |
| 991 | 991 |
/// The standard graph maps must conform to the ReferenceMap concept. |
| 992 | 992 |
template <typename GR, typename K, typename V> |
| 993 | 993 |
class GraphMap : public ReferenceMap<K, V, V&, const V&> {
|
| 994 | 994 |
public: |
| 995 | 995 |
|
| 996 | 996 |
typedef ReadWriteMap<K, V> Parent; |
| 997 | 997 |
|
| 998 | 998 |
/// The graph type of the map. |
| 999 | 999 |
typedef GR Graph; |
| 1000 | 1000 |
/// The key type of the map. |
| 1001 | 1001 |
typedef K Key; |
| 1002 | 1002 |
/// The value type of the map. |
| 1003 | 1003 |
typedef V Value; |
| 1004 | 1004 |
/// The reference type of the map. |
| 1005 | 1005 |
typedef Value& Reference; |
| 1006 | 1006 |
/// The const reference type of the map. |
| 1007 | 1007 |
typedef const Value& ConstReference; |
| 1008 | 1008 |
|
| 1009 | 1009 |
// The reference map tag. |
| 1010 | 1010 |
typedef True ReferenceMapTag; |
| 1011 | 1011 |
|
| 1012 | 1012 |
/// \brief Construct a new map. |
| 1013 | 1013 |
/// |
| 1014 | 1014 |
/// Construct a new map for the graph. |
| 1015 | 1015 |
explicit GraphMap(const Graph&) {}
|
| 1016 | 1016 |
/// \brief Construct a new map with default value. |
| 1017 | 1017 |
/// |
| 1018 | 1018 |
/// Construct a new map for the graph and initalize the values. |
| 1019 | 1019 |
GraphMap(const Graph&, const Value&) {}
|
| 1020 | 1020 |
|
| 1021 | 1021 |
private: |
| 1022 | 1022 |
/// \brief Copy constructor. |
| 1023 | 1023 |
/// |
| 1024 | 1024 |
/// Copy Constructor. |
| 1025 | 1025 |
GraphMap(const GraphMap&) : Parent() {}
|
| 1026 | 1026 |
|
| 1027 | 1027 |
/// \brief Assignment operator. |
| 1028 | 1028 |
/// |
| 1029 | 1029 |
/// Assignment operator. It does not mofify the underlying graph, |
| 1030 | 1030 |
/// it just iterates on the current item set and set the map |
| 1031 | 1031 |
/// with the value returned by the assigned map. |
| 1032 | 1032 |
template <typename CMap> |
| 1033 | 1033 |
GraphMap& operator=(const CMap&) {
|
| 1034 | 1034 |
checkConcept<ReadMap<Key, Value>, CMap>(); |
| 1035 | 1035 |
return *this; |
| 1036 | 1036 |
} |
| 1037 | 1037 |
|
| 1038 | 1038 |
public: |
| 1039 | 1039 |
template<typename _Map> |
| 1040 | 1040 |
struct Constraints {
|
| 1041 | 1041 |
void constraints() {
|
| 1042 | 1042 |
checkConcept |
| 1043 | 1043 |
<ReferenceMap<Key, Value, Value&, const Value&>, _Map>(); |
| 1044 | 1044 |
_Map m1(g); |
| 1045 | 1045 |
_Map m2(g,t); |
| 1046 | 1046 |
|
| 1047 | 1047 |
// Copy constructor |
| 1048 | 1048 |
// _Map m3(m); |
| 1049 | 1049 |
|
| 1050 | 1050 |
// Assignment operator |
| 1051 | 1051 |
// ReadMap<Key, Value> cmap; |
| 1052 | 1052 |
// m3 = cmap; |
| 1053 | 1053 |
|
| 1054 | 1054 |
ignore_unused_variable_warning(m1); |
| 1055 | 1055 |
ignore_unused_variable_warning(m2); |
| 1056 | 1056 |
// ignore_unused_variable_warning(m3); |
| 1057 | 1057 |
} |
| 1058 | 1058 |
|
| 1059 | 1059 |
const _Map &m; |
| 1060 | 1060 |
const Graph &g; |
| 1061 | 1061 |
const typename GraphMap::Value &t; |
| 1062 | 1062 |
}; |
| 1063 | 1063 |
|
| 1064 | 1064 |
}; |
| 1065 | 1065 |
|
| 1066 | 1066 |
/// \brief Skeleton class for mappable directed graphs. |
| 1067 | 1067 |
/// |
| 1068 | 1068 |
/// This class describes the interface of mappable directed graphs. |
| 1069 | 1069 |
/// It extends \ref BaseDigraphComponent with the standard digraph |
| 1070 | 1070 |
/// map classes, namely \c NodeMap and \c ArcMap. |
| 1071 | 1071 |
/// This concept is part of the Digraph concept. |
| 1072 | 1072 |
template <typename BAS = BaseDigraphComponent> |
| 1073 | 1073 |
class MappableDigraphComponent : public BAS {
|
| 1074 | 1074 |
public: |
| 1075 | 1075 |
|
| 1076 | 1076 |
typedef BAS Base; |
| 1077 | 1077 |
typedef typename Base::Node Node; |
| 1078 | 1078 |
typedef typename Base::Arc Arc; |
| 1079 | 1079 |
|
| 1080 | 1080 |
typedef MappableDigraphComponent Digraph; |
| 1081 | 1081 |
|
| 1082 | 1082 |
/// \brief Standard graph map for the nodes. |
| 1083 | 1083 |
/// |
| 1084 | 1084 |
/// Standard graph map for the nodes. |
| 1085 | 1085 |
/// It conforms to the ReferenceMap concept. |
| 1086 | 1086 |
template <typename V> |
| 1087 | 1087 |
class NodeMap : public GraphMap<MappableDigraphComponent, Node, V> {
|
| 1088 | 1088 |
public: |
| 1089 | 1089 |
typedef GraphMap<MappableDigraphComponent, Node, V> Parent; |
| 1090 | 1090 |
|
| 1091 | 1091 |
/// \brief Construct a new map. |
| 1092 | 1092 |
/// |
| 1093 | 1093 |
/// Construct a new map for the digraph. |
| 1094 | 1094 |
explicit NodeMap(const MappableDigraphComponent& digraph) |
| 1095 | 1095 |
: Parent(digraph) {}
|
| 1096 | 1096 |
|
| 1097 | 1097 |
/// \brief Construct a new map with default value. |
| 1098 | 1098 |
/// |
| 1099 | 1099 |
/// Construct a new map for the digraph and initalize the values. |
| 1100 | 1100 |
NodeMap(const MappableDigraphComponent& digraph, const V& value) |
| 1101 | 1101 |
: Parent(digraph, value) {}
|
| 1102 | 1102 |
|
| 1103 | 1103 |
private: |
| 1104 | 1104 |
/// \brief Copy constructor. |
| 1105 | 1105 |
/// |
| 1106 | 1106 |
/// Copy Constructor. |
| 1107 | 1107 |
NodeMap(const NodeMap& nm) : Parent(nm) {}
|
| 1108 | 1108 |
|
| 1109 | 1109 |
/// \brief Assignment operator. |
| 1110 | 1110 |
/// |
| 1111 | 1111 |
/// Assignment operator. |
| 1112 | 1112 |
template <typename CMap> |
| 1113 | 1113 |
NodeMap& operator=(const CMap&) {
|
| 1114 | 1114 |
checkConcept<ReadMap<Node, V>, CMap>(); |
| 1115 | 1115 |
return *this; |
| 1116 | 1116 |
} |
| 1117 | 1117 |
|
| 1118 | 1118 |
}; |
| 1119 | 1119 |
|
| 1120 | 1120 |
/// \brief Standard graph map for the arcs. |
| 1121 | 1121 |
/// |
| 1122 | 1122 |
/// Standard graph map for the arcs. |
| 1123 | 1123 |
/// It conforms to the ReferenceMap concept. |
| 1124 | 1124 |
template <typename V> |
| 1125 | 1125 |
class ArcMap : public GraphMap<MappableDigraphComponent, Arc, V> {
|
| 1126 | 1126 |
public: |
| 1127 | 1127 |
typedef GraphMap<MappableDigraphComponent, Arc, V> Parent; |
| 1128 | 1128 |
|
| 1129 | 1129 |
/// \brief Construct a new map. |
| 1130 | 1130 |
/// |
| 1131 | 1131 |
/// Construct a new map for the digraph. |
| 1132 | 1132 |
explicit ArcMap(const MappableDigraphComponent& digraph) |
| 1133 | 1133 |
: Parent(digraph) {}
|
| 1134 | 1134 |
|
| 1135 | 1135 |
/// \brief Construct a new map with default value. |
| 1136 | 1136 |
/// |
| 1137 | 1137 |
/// Construct a new map for the digraph and initalize the values. |
| 1138 | 1138 |
ArcMap(const MappableDigraphComponent& digraph, const V& value) |
| 1139 | 1139 |
: Parent(digraph, value) {}
|
| 1140 | 1140 |
|
| 1141 | 1141 |
private: |
| 1142 | 1142 |
/// \brief Copy constructor. |
| 1143 | 1143 |
/// |
| 1144 | 1144 |
/// Copy Constructor. |
| 1145 | 1145 |
ArcMap(const ArcMap& nm) : Parent(nm) {}
|
| 1146 | 1146 |
|
| 1147 | 1147 |
/// \brief Assignment operator. |
| 1148 | 1148 |
/// |
| 1149 | 1149 |
/// Assignment operator. |
| 1150 | 1150 |
template <typename CMap> |
| 1151 | 1151 |
ArcMap& operator=(const CMap&) {
|
| 1152 | 1152 |
checkConcept<ReadMap<Arc, V>, CMap>(); |
| 1153 | 1153 |
return *this; |
| 1154 | 1154 |
} |
| 1155 | 1155 |
|
| 1156 | 1156 |
}; |
| 1157 | 1157 |
|
| 1158 | 1158 |
|
| 1159 | 1159 |
template <typename _Digraph> |
| 1160 | 1160 |
struct Constraints {
|
| 1161 | 1161 |
|
| 1162 | 1162 |
struct Dummy {
|
| 1163 | 1163 |
int value; |
| 1164 | 1164 |
Dummy() : value(0) {}
|
| 1165 | 1165 |
Dummy(int _v) : value(_v) {}
|
| 1166 | 1166 |
}; |
| 1167 | 1167 |
|
| 1168 | 1168 |
void constraints() {
|
| 1169 | 1169 |
checkConcept<Base, _Digraph>(); |
| 1170 | 1170 |
{ // int map test
|
| 1171 | 1171 |
typedef typename _Digraph::template NodeMap<int> IntNodeMap; |
| 1172 | 1172 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, int>, |
| 1173 | 1173 |
IntNodeMap >(); |
| 1174 | 1174 |
} { // bool map test
|
| 1175 | 1175 |
typedef typename _Digraph::template NodeMap<bool> BoolNodeMap; |
| 1176 | 1176 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, bool>, |
| 1177 | 1177 |
BoolNodeMap >(); |
| 1178 | 1178 |
} { // Dummy map test
|
| 1179 | 1179 |
typedef typename _Digraph::template NodeMap<Dummy> DummyNodeMap; |
| 1180 | 1180 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, Dummy>, |
| 1181 | 1181 |
DummyNodeMap >(); |
| 1182 | 1182 |
} |
| 1183 | 1183 |
|
| 1184 | 1184 |
{ // int map test
|
| 1185 | 1185 |
typedef typename _Digraph::template ArcMap<int> IntArcMap; |
| 1186 | 1186 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, int>, |
| 1187 | 1187 |
IntArcMap >(); |
| 1188 | 1188 |
} { // bool map test
|
| 1189 | 1189 |
typedef typename _Digraph::template ArcMap<bool> BoolArcMap; |
| 1190 | 1190 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, bool>, |
| 1191 | 1191 |
BoolArcMap >(); |
| 1192 | 1192 |
} { // Dummy map test
|
| 1193 | 1193 |
typedef typename _Digraph::template ArcMap<Dummy> DummyArcMap; |
| 1194 | 1194 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, Dummy>, |
| 1195 | 1195 |
DummyArcMap >(); |
| 1196 | 1196 |
} |
| 1197 | 1197 |
} |
| 1198 | 1198 |
|
| 1199 | 1199 |
const _Digraph& digraph; |
| 1200 | 1200 |
}; |
| 1201 | 1201 |
}; |
| 1202 | 1202 |
|
| 1203 | 1203 |
/// \brief Skeleton class for mappable undirected graphs. |
| 1204 | 1204 |
/// |
| 1205 | 1205 |
/// This class describes the interface of mappable undirected graphs. |
| 1206 | 1206 |
/// It extends \ref MappableDigraphComponent with the standard graph |
| 1207 | 1207 |
/// map class for edges (\c EdgeMap). |
| 1208 | 1208 |
/// This concept is part of the Graph concept. |
| 1209 | 1209 |
template <typename BAS = BaseGraphComponent> |
| 1210 | 1210 |
class MappableGraphComponent : public MappableDigraphComponent<BAS> {
|
| 1211 | 1211 |
public: |
| 1212 | 1212 |
|
| 1213 | 1213 |
typedef BAS Base; |
| 1214 | 1214 |
typedef typename Base::Edge Edge; |
| 1215 | 1215 |
|
| 1216 | 1216 |
typedef MappableGraphComponent Graph; |
| 1217 | 1217 |
|
| 1218 | 1218 |
/// \brief Standard graph map for the edges. |
| 1219 | 1219 |
/// |
| 1220 | 1220 |
/// Standard graph map for the edges. |
| 1221 | 1221 |
/// It conforms to the ReferenceMap concept. |
| 1222 | 1222 |
template <typename V> |
| 1223 | 1223 |
class EdgeMap : public GraphMap<MappableGraphComponent, Edge, V> {
|
| 1224 | 1224 |
public: |
| 1225 | 1225 |
typedef GraphMap<MappableGraphComponent, Edge, V> Parent; |
| 1226 | 1226 |
|
| 1227 | 1227 |
/// \brief Construct a new map. |
| 1228 | 1228 |
/// |
| 1229 | 1229 |
/// Construct a new map for the graph. |
| 1230 | 1230 |
explicit EdgeMap(const MappableGraphComponent& graph) |
| 1231 | 1231 |
: Parent(graph) {}
|
| 1232 | 1232 |
|
| 1233 | 1233 |
/// \brief Construct a new map with default value. |
| 1234 | 1234 |
/// |
| 1235 | 1235 |
/// Construct a new map for the graph and initalize the values. |
| 1236 | 1236 |
EdgeMap(const MappableGraphComponent& graph, const V& value) |
| 1237 | 1237 |
: Parent(graph, value) {}
|
| 1238 | 1238 |
|
| 1239 | 1239 |
private: |
| 1240 | 1240 |
/// \brief Copy constructor. |
| 1241 | 1241 |
/// |
| 1242 | 1242 |
/// Copy Constructor. |
| 1243 | 1243 |
EdgeMap(const EdgeMap& nm) : Parent(nm) {}
|
| 1244 | 1244 |
|
| 1245 | 1245 |
/// \brief Assignment operator. |
| 1246 | 1246 |
/// |
| 1247 | 1247 |
/// Assignment operator. |
| 1248 | 1248 |
template <typename CMap> |
| 1249 | 1249 |
EdgeMap& operator=(const CMap&) {
|
| 1250 | 1250 |
checkConcept<ReadMap<Edge, V>, CMap>(); |
| 1251 | 1251 |
return *this; |
| 1252 | 1252 |
} |
| 1253 | 1253 |
|
| 1254 | 1254 |
}; |
| 1255 | 1255 |
|
| 1256 | 1256 |
|
| 1257 | 1257 |
template <typename _Graph> |
| 1258 | 1258 |
struct Constraints {
|
| 1259 | 1259 |
|
| 1260 | 1260 |
struct Dummy {
|
| 1261 | 1261 |
int value; |
| 1262 | 1262 |
Dummy() : value(0) {}
|
| 1263 | 1263 |
Dummy(int _v) : value(_v) {}
|
| 1264 | 1264 |
}; |
| 1265 | 1265 |
|
| 1266 | 1266 |
void constraints() {
|
| 1267 | 1267 |
checkConcept<MappableDigraphComponent<Base>, _Graph>(); |
| 1268 | 1268 |
|
| 1269 | 1269 |
{ // int map test
|
| 1270 | 1270 |
typedef typename _Graph::template EdgeMap<int> IntEdgeMap; |
| 1271 | 1271 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, int>, |
| 1272 | 1272 |
IntEdgeMap >(); |
| 1273 | 1273 |
} { // bool map test
|
| 1274 | 1274 |
typedef typename _Graph::template EdgeMap<bool> BoolEdgeMap; |
| 1275 | 1275 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, bool>, |
| 1276 | 1276 |
BoolEdgeMap >(); |
| 1277 | 1277 |
} { // Dummy map test
|
| 1278 | 1278 |
typedef typename _Graph::template EdgeMap<Dummy> DummyEdgeMap; |
| 1279 | 1279 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, Dummy>, |
| 1280 | 1280 |
DummyEdgeMap >(); |
| 1281 | 1281 |
} |
| 1282 | 1282 |
} |
| 1283 | 1283 |
|
| 1284 | 1284 |
const _Graph& graph; |
| 1285 | 1285 |
}; |
| 1286 | 1286 |
}; |
| 1287 | 1287 |
|
| 1288 | 1288 |
/// \brief Skeleton class for extendable directed graphs. |
| 1289 | 1289 |
/// |
| 1290 | 1290 |
/// This class describes the interface of extendable directed graphs. |
| 1291 | 1291 |
/// It extends \ref BaseDigraphComponent with functions for adding |
| 1292 | 1292 |
/// nodes and arcs to the digraph. |
| 1293 | 1293 |
/// This concept requires \ref AlterableDigraphComponent. |
| 1294 | 1294 |
template <typename BAS = BaseDigraphComponent> |
| 1295 | 1295 |
class ExtendableDigraphComponent : public BAS {
|
| 1296 | 1296 |
public: |
| 1297 | 1297 |
typedef BAS Base; |
| 1298 | 1298 |
|
| 1299 | 1299 |
typedef typename Base::Node Node; |
| 1300 | 1300 |
typedef typename Base::Arc Arc; |
| 1301 | 1301 |
|
| 1302 | 1302 |
/// \brief Add a new node to the digraph. |
| 1303 | 1303 |
/// |
| 1304 | 1304 |
/// This function adds a new node to the digraph. |
| 1305 | 1305 |
Node addNode() {
|
| 1306 | 1306 |
return INVALID; |
| 1307 | 1307 |
} |
| 1308 | 1308 |
|
| 1309 | 1309 |
/// \brief Add a new arc connecting the given two nodes. |
| 1310 | 1310 |
/// |
| 1311 | 1311 |
/// This function adds a new arc connecting the given two nodes |
| 1312 | 1312 |
/// of the digraph. |
| 1313 | 1313 |
Arc addArc(const Node&, const Node&) {
|
| 1314 | 1314 |
return INVALID; |
| 1315 | 1315 |
} |
| 1316 | 1316 |
|
| 1317 | 1317 |
template <typename _Digraph> |
| 1318 | 1318 |
struct Constraints {
|
| 1319 | 1319 |
void constraints() {
|
| 1320 | 1320 |
checkConcept<Base, _Digraph>(); |
| 1321 | 1321 |
typename _Digraph::Node node_a, node_b; |
| 1322 | 1322 |
node_a = digraph.addNode(); |
| 1323 | 1323 |
node_b = digraph.addNode(); |
| 1324 | 1324 |
typename _Digraph::Arc arc; |
| 1325 | 1325 |
arc = digraph.addArc(node_a, node_b); |
| 1326 | 1326 |
} |
| 1327 | 1327 |
|
| 1328 | 1328 |
_Digraph& digraph; |
| 1329 | 1329 |
}; |
| 1330 | 1330 |
}; |
| 1331 | 1331 |
|
| 1332 | 1332 |
/// \brief Skeleton class for extendable undirected graphs. |
| 1333 | 1333 |
/// |
| 1334 | 1334 |
/// This class describes the interface of extendable undirected graphs. |
| 1335 | 1335 |
/// It extends \ref BaseGraphComponent with functions for adding |
| 1336 | 1336 |
/// nodes and edges to the graph. |
| 1337 | 1337 |
/// This concept requires \ref AlterableGraphComponent. |
| 1338 | 1338 |
template <typename BAS = BaseGraphComponent> |
| 1339 | 1339 |
class ExtendableGraphComponent : public BAS {
|
| 1340 | 1340 |
public: |
| 1341 | 1341 |
|
| 1342 | 1342 |
typedef BAS Base; |
| 1343 | 1343 |
typedef typename Base::Node Node; |
| 1344 | 1344 |
typedef typename Base::Edge Edge; |
| 1345 | 1345 |
|
| 1346 | 1346 |
/// \brief Add a new node to the digraph. |
| 1347 | 1347 |
/// |
| 1348 | 1348 |
/// This function adds a new node to the digraph. |
| 1349 | 1349 |
Node addNode() {
|
| 1350 | 1350 |
return INVALID; |
| 1351 | 1351 |
} |
| 1352 | 1352 |
|
| 1353 | 1353 |
/// \brief Add a new edge connecting the given two nodes. |
| 1354 | 1354 |
/// |
| 1355 | 1355 |
/// This function adds a new edge connecting the given two nodes |
| 1356 | 1356 |
/// of the graph. |
| 1357 | 1357 |
Edge addEdge(const Node&, const Node&) {
|
| 1358 | 1358 |
return INVALID; |
| 1359 | 1359 |
} |
| 1360 | 1360 |
|
| 1361 | 1361 |
template <typename _Graph> |
| 1362 | 1362 |
struct Constraints {
|
| 1363 | 1363 |
void constraints() {
|
| 1364 | 1364 |
checkConcept<Base, _Graph>(); |
| 1365 | 1365 |
typename _Graph::Node node_a, node_b; |
| 1366 | 1366 |
node_a = graph.addNode(); |
| 1367 | 1367 |
node_b = graph.addNode(); |
| 1368 | 1368 |
typename _Graph::Edge edge; |
| 1369 | 1369 |
edge = graph.addEdge(node_a, node_b); |
| 1370 | 1370 |
} |
| 1371 | 1371 |
|
| 1372 | 1372 |
_Graph& graph; |
| 1373 | 1373 |
}; |
| 1374 | 1374 |
}; |
| 1375 | 1375 |
|
| 1376 | 1376 |
/// \brief Skeleton class for erasable directed graphs. |
| 1377 | 1377 |
/// |
| 1378 | 1378 |
/// This class describes the interface of erasable directed graphs. |
| 1379 | 1379 |
/// It extends \ref BaseDigraphComponent with functions for removing |
| 1380 | 1380 |
/// nodes and arcs from the digraph. |
| 1381 | 1381 |
/// This concept requires \ref AlterableDigraphComponent. |
| 1382 | 1382 |
template <typename BAS = BaseDigraphComponent> |
| 1383 | 1383 |
class ErasableDigraphComponent : public BAS {
|
| 1384 | 1384 |
public: |
| 1385 | 1385 |
|
| 1386 | 1386 |
typedef BAS Base; |
| 1387 | 1387 |
typedef typename Base::Node Node; |
| 1388 | 1388 |
typedef typename Base::Arc Arc; |
| 1389 | 1389 |
|
| 1390 | 1390 |
/// \brief Erase a node from the digraph. |
| 1391 | 1391 |
/// |
| 1392 | 1392 |
/// This function erases the given node from the digraph and all arcs |
| 1393 | 1393 |
/// connected to the node. |
| 1394 | 1394 |
void erase(const Node&) {}
|
| 1395 | 1395 |
|
| 1396 | 1396 |
/// \brief Erase an arc from the digraph. |
| 1397 | 1397 |
/// |
| 1398 | 1398 |
/// This function erases the given arc from the digraph. |
| 1399 | 1399 |
void erase(const Arc&) {}
|
| 1400 | 1400 |
|
| 1401 | 1401 |
template <typename _Digraph> |
| 1402 | 1402 |
struct Constraints {
|
| 1403 | 1403 |
void constraints() {
|
| 1404 | 1404 |
checkConcept<Base, _Digraph>(); |
| 1405 | 1405 |
const typename _Digraph::Node node(INVALID); |
| 1406 | 1406 |
digraph.erase(node); |
| 1407 | 1407 |
const typename _Digraph::Arc arc(INVALID); |
| 1408 | 1408 |
digraph.erase(arc); |
| 1409 | 1409 |
} |
| 1410 | 1410 |
|
| 1411 | 1411 |
_Digraph& digraph; |
| 1412 | 1412 |
}; |
| 1413 | 1413 |
}; |
| 1414 | 1414 |
|
| 1415 | 1415 |
/// \brief Skeleton class for erasable undirected graphs. |
| 1416 | 1416 |
/// |
| 1417 | 1417 |
/// This class describes the interface of erasable undirected graphs. |
| 1418 | 1418 |
/// It extends \ref BaseGraphComponent with functions for removing |
| 1419 | 1419 |
/// nodes and edges from the graph. |
| 1420 | 1420 |
/// This concept requires \ref AlterableGraphComponent. |
| 1421 | 1421 |
template <typename BAS = BaseGraphComponent> |
| 1422 | 1422 |
class ErasableGraphComponent : public BAS {
|
| 1423 | 1423 |
public: |
| 1424 | 1424 |
|
| 1425 | 1425 |
typedef BAS Base; |
| 1426 | 1426 |
typedef typename Base::Node Node; |
| 1427 | 1427 |
typedef typename Base::Edge Edge; |
| 1428 | 1428 |
|
| 1429 | 1429 |
/// \brief Erase a node from the graph. |
| 1430 | 1430 |
/// |
| 1431 | 1431 |
/// This function erases the given node from the graph and all edges |
| 1432 | 1432 |
/// connected to the node. |
| 1433 | 1433 |
void erase(const Node&) {}
|
| 1434 | 1434 |
|
| 1435 | 1435 |
/// \brief Erase an edge from the digraph. |
| 1436 | 1436 |
/// |
| 1437 | 1437 |
/// This function erases the given edge from the digraph. |
| 1438 | 1438 |
void erase(const Edge&) {}
|
| 1439 | 1439 |
|
| 1440 | 1440 |
template <typename _Graph> |
| 1441 | 1441 |
struct Constraints {
|
| 1442 | 1442 |
void constraints() {
|
| 1443 | 1443 |
checkConcept<Base, _Graph>(); |
| 1444 | 1444 |
const typename _Graph::Node node(INVALID); |
| 1445 | 1445 |
graph.erase(node); |
| 1446 | 1446 |
const typename _Graph::Edge edge(INVALID); |
| 1447 | 1447 |
graph.erase(edge); |
| 1448 | 1448 |
} |
| 1449 | 1449 |
|
| 1450 | 1450 |
_Graph& graph; |
| 1451 | 1451 |
}; |
| 1452 | 1452 |
}; |
| 1453 | 1453 |
|
| 1454 | 1454 |
/// \brief Skeleton class for clearable directed graphs. |
| 1455 | 1455 |
/// |
| 1456 | 1456 |
/// This class describes the interface of clearable directed graphs. |
| 1457 | 1457 |
/// It extends \ref BaseDigraphComponent with a function for clearing |
| 1458 | 1458 |
/// the digraph. |
| 1459 | 1459 |
/// This concept requires \ref AlterableDigraphComponent. |
| 1460 | 1460 |
template <typename BAS = BaseDigraphComponent> |
| 1461 | 1461 |
class ClearableDigraphComponent : public BAS {
|
| 1462 | 1462 |
public: |
| 1463 | 1463 |
|
| 1464 | 1464 |
typedef BAS Base; |
| 1465 | 1465 |
|
| 1466 | 1466 |
/// \brief Erase all nodes and arcs from the digraph. |
| 1467 | 1467 |
/// |
| 1468 | 1468 |
/// This function erases all nodes and arcs from the digraph. |
| 1469 | 1469 |
void clear() {}
|
| 1470 | 1470 |
|
| 1471 | 1471 |
template <typename _Digraph> |
| 1472 | 1472 |
struct Constraints {
|
| 1473 | 1473 |
void constraints() {
|
| 1474 | 1474 |
checkConcept<Base, _Digraph>(); |
| 1475 | 1475 |
digraph.clear(); |
| 1476 | 1476 |
} |
| 1477 | 1477 |
|
| 1478 | 1478 |
_Digraph& digraph; |
| 1479 | 1479 |
}; |
| 1480 | 1480 |
}; |
| 1481 | 1481 |
|
| 1482 | 1482 |
/// \brief Skeleton class for clearable undirected graphs. |
| 1483 | 1483 |
/// |
| 1484 | 1484 |
/// This class describes the interface of clearable undirected graphs. |
| 1485 | 1485 |
/// It extends \ref BaseGraphComponent with a function for clearing |
| 1486 | 1486 |
/// the graph. |
| 1487 | 1487 |
/// This concept requires \ref AlterableGraphComponent. |
| 1488 | 1488 |
template <typename BAS = BaseGraphComponent> |
| 1489 | 1489 |
class ClearableGraphComponent : public ClearableDigraphComponent<BAS> {
|
| 1490 | 1490 |
public: |
| 1491 | 1491 |
|
| 1492 | 1492 |
typedef BAS Base; |
| 1493 | 1493 |
|
| 1494 | 1494 |
/// \brief Erase all nodes and edges from the graph. |
| 1495 | 1495 |
/// |
| 1496 | 1496 |
/// This function erases all nodes and edges from the graph. |
| 1497 | 1497 |
void clear() {}
|
| 1498 | 1498 |
|
| 1499 | 1499 |
template <typename _Graph> |
| 1500 | 1500 |
struct Constraints {
|
| 1501 | 1501 |
void constraints() {
|
| 1502 | 1502 |
checkConcept<Base, _Graph>(); |
| 1503 | 1503 |
graph.clear(); |
| 1504 | 1504 |
} |
| 1505 | 1505 |
|
| 1506 | 1506 |
_Graph& graph; |
| 1507 | 1507 |
}; |
| 1508 | 1508 |
}; |
| 1509 | 1509 |
|
| 1510 | 1510 |
} |
| 1511 | 1511 |
|
| 1512 | 1512 |
} |
| 1513 | 1513 |
|
| 1514 | 1514 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup concept |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief The concept of heaps. |
| 22 | 22 |
|
| 23 | 23 |
#ifndef LEMON_CONCEPTS_HEAP_H |
| 24 | 24 |
#define LEMON_CONCEPTS_HEAP_H |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concept_check.h> |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
namespace concepts {
|
| 32 | 32 |
|
| 33 | 33 |
/// \addtogroup concept |
| 34 | 34 |
/// @{
|
| 35 | 35 |
|
| 36 | 36 |
/// \brief The heap concept. |
| 37 | 37 |
/// |
| 38 | 38 |
/// Concept class describing the main interface of heaps. A \e heap |
| 39 | 39 |
/// is a data structure for storing items with specified values called |
| 40 | 40 |
/// \e priorities in such a way that finding the item with minimum |
| 41 | 41 |
/// priority is efficient. In a heap one can change the priority of an |
| 42 | 42 |
/// item, add or erase an item, etc. |
| 43 | 43 |
/// |
| 44 | 44 |
/// \tparam PR Type of the priority of the items. |
| 45 | 45 |
/// \tparam IM A read and writable item map with int values, used |
| 46 | 46 |
/// internally to handle the cross references. |
| 47 | 47 |
/// \tparam Comp A functor class for the ordering of the priorities. |
| 48 | 48 |
/// The default is \c std::less<PR>. |
| 49 | 49 |
#ifdef DOXYGEN |
| 50 | 50 |
template <typename PR, typename IM, typename Comp = std::less<PR> > |
| 51 | 51 |
#else |
| 52 | 52 |
template <typename PR, typename IM> |
| 53 | 53 |
#endif |
| 54 | 54 |
class Heap {
|
| 55 | 55 |
public: |
| 56 | 56 |
|
| 57 | 57 |
/// Type of the item-int map. |
| 58 | 58 |
typedef IM ItemIntMap; |
| 59 | 59 |
/// Type of the priorities. |
| 60 | 60 |
typedef PR Prio; |
| 61 | 61 |
/// Type of the items stored in the heap. |
| 62 | 62 |
typedef typename ItemIntMap::Key Item; |
| 63 | 63 |
|
| 64 | 64 |
/// \brief Type to represent the states of the items. |
| 65 | 65 |
/// |
| 66 | 66 |
/// Each item has a state associated to it. It can be "in heap", |
| 67 | 67 |
/// "pre heap" or "post heap". The later two are indifferent |
| 68 | 68 |
/// from the point of view of the heap, but may be useful for |
| 69 | 69 |
/// the user. |
| 70 | 70 |
/// |
| 71 | 71 |
/// The item-int map must be initialized in such way that it assigns |
| 72 | 72 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 73 | 73 |
enum State {
|
| 74 |
IN_HEAP = 0, ///< The "in heap" state constant. |
|
| 75 |
PRE_HEAP = -1, ///< The "pre heap" state constant. |
|
| 76 |
|
|
| 74 |
IN_HEAP = 0, ///< = 0. The "in heap" state constant. |
|
| 75 |
PRE_HEAP = -1, ///< = -1. The "pre heap" state constant. |
|
| 76 |
POST_HEAP = -2 ///< = -2. The "post heap" state constant. |
|
| 77 | 77 |
}; |
| 78 | 78 |
|
| 79 | 79 |
/// \brief The constructor. |
| 80 | 80 |
/// |
| 81 | 81 |
/// The constructor. |
| 82 | 82 |
/// \param map A map that assigns \c int values to keys of type |
| 83 | 83 |
/// \c Item. It is used internally by the heap implementations to |
| 84 | 84 |
/// handle the cross references. The assigned value must be |
| 85 | 85 |
/// \c PRE_HEAP (<tt>-1</tt>) for every item. |
| 86 | 86 |
explicit Heap(ItemIntMap &map) {}
|
| 87 | 87 |
|
| 88 | 88 |
/// \brief The number of items stored in the heap. |
| 89 | 89 |
/// |
| 90 | 90 |
/// Returns the number of items stored in the heap. |
| 91 | 91 |
int size() const { return 0; }
|
| 92 | 92 |
|
| 93 | 93 |
/// \brief Checks if the heap is empty. |
| 94 | 94 |
/// |
| 95 | 95 |
/// Returns \c true if the heap is empty. |
| 96 | 96 |
bool empty() const { return false; }
|
| 97 | 97 |
|
| 98 | 98 |
/// \brief Makes the heap empty. |
| 99 | 99 |
/// |
| 100 | 100 |
/// Makes the heap empty. |
| 101 | 101 |
void clear(); |
| 102 | 102 |
|
| 103 | 103 |
/// \brief Inserts an item into the heap with the given priority. |
| 104 | 104 |
/// |
| 105 | 105 |
/// Inserts the given item into the heap with the given priority. |
| 106 | 106 |
/// \param i The item to insert. |
| 107 | 107 |
/// \param p The priority of the item. |
| 108 | 108 |
void push(const Item &i, const Prio &p) {}
|
| 109 | 109 |
|
| 110 | 110 |
/// \brief Returns the item having minimum priority. |
| 111 | 111 |
/// |
| 112 | 112 |
/// Returns the item having minimum priority. |
| 113 | 113 |
/// \pre The heap must be non-empty. |
| 114 | 114 |
Item top() const {}
|
| 115 | 115 |
|
| 116 | 116 |
/// \brief The minimum priority. |
| 117 | 117 |
/// |
| 118 | 118 |
/// Returns the minimum priority. |
| 119 | 119 |
/// \pre The heap must be non-empty. |
| 120 | 120 |
Prio prio() const {}
|
| 121 | 121 |
|
| 122 | 122 |
/// \brief Removes the item having minimum priority. |
| 123 | 123 |
/// |
| 124 | 124 |
/// Removes the item having minimum priority. |
| 125 | 125 |
/// \pre The heap must be non-empty. |
| 126 | 126 |
void pop() {}
|
| 127 | 127 |
|
| 128 | 128 |
/// \brief Removes an item from the heap. |
| 129 | 129 |
/// |
| 130 | 130 |
/// Removes the given item from the heap if it is already stored. |
| 131 | 131 |
/// \param i The item to delete. |
| 132 | 132 |
void erase(const Item &i) {}
|
| 133 | 133 |
|
| 134 | 134 |
/// \brief The priority of an item. |
| 135 | 135 |
/// |
| 136 | 136 |
/// Returns the priority of the given item. |
| 137 | 137 |
/// \param i The item. |
| 138 | 138 |
/// \pre \c i must be in the heap. |
| 139 | 139 |
Prio operator[](const Item &i) const {}
|
| 140 | 140 |
|
| 141 | 141 |
/// \brief Sets the priority of an item or inserts it, if it is |
| 142 | 142 |
/// not stored in the heap. |
| 143 | 143 |
/// |
| 144 | 144 |
/// This method sets the priority of the given item if it is |
| 145 | 145 |
/// already stored in the heap. |
| 146 | 146 |
/// Otherwise it inserts the given item with the given priority. |
| 147 | 147 |
/// |
| 148 | 148 |
/// \param i The item. |
| 149 | 149 |
/// \param p The priority. |
| 150 | 150 |
void set(const Item &i, const Prio &p) {}
|
| 151 | 151 |
|
| 152 | 152 |
/// \brief Decreases the priority of an item to the given value. |
| 153 | 153 |
/// |
| 154 | 154 |
/// Decreases the priority of an item to the given value. |
| 155 | 155 |
/// \param i The item. |
| 156 | 156 |
/// \param p The priority. |
| 157 | 157 |
/// \pre \c i must be stored in the heap with priority at least \c p. |
| 158 | 158 |
void decrease(const Item &i, const Prio &p) {}
|
| 159 | 159 |
|
| 160 | 160 |
/// \brief Increases the priority of an item to the given value. |
| 161 | 161 |
/// |
| 162 | 162 |
/// Increases the priority of an item to the given value. |
| 163 | 163 |
/// \param i The item. |
| 164 | 164 |
/// \param p The priority. |
| 165 | 165 |
/// \pre \c i must be stored in the heap with priority at most \c p. |
| 166 | 166 |
void increase(const Item &i, const Prio &p) {}
|
| 167 | 167 |
|
| 168 | 168 |
/// \brief Returns if an item is in, has already been in, or has |
| 169 | 169 |
/// never been in the heap. |
| 170 | 170 |
/// |
| 171 | 171 |
/// This method returns \c PRE_HEAP if the given item has never |
| 172 | 172 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
| 173 | 173 |
/// and \c POST_HEAP otherwise. |
| 174 | 174 |
/// In the latter case it is possible that the item will get back |
| 175 | 175 |
/// to the heap again. |
| 176 | 176 |
/// \param i The item. |
| 177 | 177 |
State state(const Item &i) const {}
|
| 178 | 178 |
|
| 179 | 179 |
/// \brief Sets the state of an item in the heap. |
| 180 | 180 |
/// |
| 181 | 181 |
/// Sets the state of the given item in the heap. It can be used |
| 182 | 182 |
/// to manually clear the heap when it is important to achive the |
| 183 | 183 |
/// better time complexity. |
| 184 | 184 |
/// \param i The item. |
| 185 | 185 |
/// \param st The state. It should not be \c IN_HEAP. |
| 186 | 186 |
void state(const Item& i, State st) {}
|
| 187 | 187 |
|
| 188 | 188 |
|
| 189 | 189 |
template <typename _Heap> |
| 190 | 190 |
struct Constraints {
|
| 191 | 191 |
public: |
| 192 | 192 |
void constraints() {
|
| 193 | 193 |
typedef typename _Heap::Item OwnItem; |
| 194 | 194 |
typedef typename _Heap::Prio OwnPrio; |
| 195 | 195 |
typedef typename _Heap::State OwnState; |
| 196 | 196 |
|
| 197 | 197 |
Item item; |
| 198 | 198 |
Prio prio; |
| 199 | 199 |
item=Item(); |
| 200 | 200 |
prio=Prio(); |
| 201 | 201 |
ignore_unused_variable_warning(item); |
| 202 | 202 |
ignore_unused_variable_warning(prio); |
| 203 | 203 |
|
| 204 | 204 |
OwnItem own_item; |
| 205 | 205 |
OwnPrio own_prio; |
| 206 | 206 |
OwnState own_state; |
| 207 | 207 |
own_item=Item(); |
| 208 | 208 |
own_prio=Prio(); |
| 209 | 209 |
ignore_unused_variable_warning(own_item); |
| 210 | 210 |
ignore_unused_variable_warning(own_prio); |
| 211 | 211 |
ignore_unused_variable_warning(own_state); |
| 212 | 212 |
|
| 213 | 213 |
_Heap heap1(map); |
| 214 | 214 |
_Heap heap2 = heap1; |
| 215 | 215 |
ignore_unused_variable_warning(heap1); |
| 216 | 216 |
ignore_unused_variable_warning(heap2); |
| 217 | 217 |
|
| 218 | 218 |
int s = heap.size(); |
| 219 | 219 |
ignore_unused_variable_warning(s); |
| 220 | 220 |
bool e = heap.empty(); |
| 221 | 221 |
ignore_unused_variable_warning(e); |
| 222 | 222 |
|
| 223 | 223 |
prio = heap.prio(); |
| 224 | 224 |
item = heap.top(); |
| 225 | 225 |
prio = heap[item]; |
| 226 | 226 |
own_prio = heap.prio(); |
| 227 | 227 |
own_item = heap.top(); |
| 228 | 228 |
own_prio = heap[own_item]; |
| 229 | 229 |
|
| 230 | 230 |
heap.push(item, prio); |
| 231 | 231 |
heap.push(own_item, own_prio); |
| 232 | 232 |
heap.pop(); |
| 233 | 233 |
|
| 234 | 234 |
heap.set(item, prio); |
| 235 | 235 |
heap.decrease(item, prio); |
| 236 | 236 |
heap.increase(item, prio); |
| 237 | 237 |
heap.set(own_item, own_prio); |
| 238 | 238 |
heap.decrease(own_item, own_prio); |
| 239 | 239 |
heap.increase(own_item, own_prio); |
| 240 | 240 |
|
| 241 | 241 |
heap.erase(item); |
| 242 | 242 |
heap.erase(own_item); |
| 243 | 243 |
heap.clear(); |
| 244 | 244 |
|
| 245 | 245 |
own_state = heap.state(own_item); |
| 246 | 246 |
heap.state(own_item, own_state); |
| 247 | 247 |
|
| 248 | 248 |
own_state = _Heap::PRE_HEAP; |
| 249 | 249 |
own_state = _Heap::IN_HEAP; |
| 250 | 250 |
own_state = _Heap::POST_HEAP; |
| 251 | 251 |
} |
| 252 | 252 |
|
| 253 | 253 |
_Heap& heap; |
| 254 | 254 |
ItemIntMap& map; |
| 255 | 255 |
}; |
| 256 | 256 |
}; |
| 257 | 257 |
|
| 258 | 258 |
/// @} |
| 259 | 259 |
} // namespace lemon |
| 260 | 260 |
} |
| 261 | 261 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DFS_H |
| 20 | 20 |
#define LEMON_DFS_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup search |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief DFS algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
#include <lemon/path.h> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
///Default traits class of Dfs class. |
| 36 | 36 |
|
| 37 | 37 |
///Default traits class of Dfs class. |
| 38 | 38 |
///\tparam GR Digraph type. |
| 39 | 39 |
template<class GR> |
| 40 | 40 |
struct DfsDefaultTraits |
| 41 | 41 |
{
|
| 42 | 42 |
///The type of the digraph the algorithm runs on. |
| 43 | 43 |
typedef GR Digraph; |
| 44 | 44 |
|
| 45 | 45 |
///\brief The type of the map that stores the predecessor |
| 46 | 46 |
///arcs of the %DFS paths. |
| 47 | 47 |
/// |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the %DFS paths. |
| 50 | 50 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \c PredMap. |
| 53 | 53 |
|
| 54 | 54 |
///This function instantiates a \ref PredMap. |
| 55 | 55 |
///\param g is the digraph, to which we would like to define the |
| 56 | 56 |
///\ref PredMap. |
| 57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
| 58 | 58 |
{
|
| 59 | 59 |
return new PredMap(g); |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 | 62 |
///The type of the map that indicates which nodes are processed. |
| 63 | 63 |
|
| 64 | 64 |
///The type of the map that indicates which nodes are processed. |
| 65 | 65 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 66 | 66 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 67 | 67 |
///Instantiates a \c ProcessedMap. |
| 68 | 68 |
|
| 69 | 69 |
///This function instantiates a \ref ProcessedMap. |
| 70 | 70 |
///\param g is the digraph, to which |
| 71 | 71 |
///we would like to define the \ref ProcessedMap. |
| 72 | 72 |
#ifdef DOXYGEN |
| 73 | 73 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 74 | 74 |
#else |
| 75 | 75 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 76 | 76 |
#endif |
| 77 | 77 |
{
|
| 78 | 78 |
return new ProcessedMap(); |
| 79 | 79 |
} |
| 80 | 80 |
|
| 81 | 81 |
///The type of the map that indicates which nodes are reached. |
| 82 | 82 |
|
| 83 | 83 |
///The type of the map that indicates which nodes are reached. |
| 84 | 84 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 85 | 85 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 86 | 86 |
///Instantiates a \c ReachedMap. |
| 87 | 87 |
|
| 88 | 88 |
///This function instantiates a \ref ReachedMap. |
| 89 | 89 |
///\param g is the digraph, to which |
| 90 | 90 |
///we would like to define the \ref ReachedMap. |
| 91 | 91 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 92 | 92 |
{
|
| 93 | 93 |
return new ReachedMap(g); |
| 94 | 94 |
} |
| 95 | 95 |
|
| 96 | 96 |
///The type of the map that stores the distances of the nodes. |
| 97 | 97 |
|
| 98 | 98 |
///The type of the map that stores the distances of the nodes. |
| 99 | 99 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 100 | 100 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 101 | 101 |
///Instantiates a \c DistMap. |
| 102 | 102 |
|
| 103 | 103 |
///This function instantiates a \ref DistMap. |
| 104 | 104 |
///\param g is the digraph, to which we would like to define the |
| 105 | 105 |
///\ref DistMap. |
| 106 | 106 |
static DistMap *createDistMap(const Digraph &g) |
| 107 | 107 |
{
|
| 108 | 108 |
return new DistMap(g); |
| 109 | 109 |
} |
| 110 | 110 |
}; |
| 111 | 111 |
|
| 112 | 112 |
///%DFS algorithm class. |
| 113 | 113 |
|
| 114 | 114 |
///\ingroup search |
| 115 | 115 |
///This class provides an efficient implementation of the %DFS algorithm. |
| 116 | 116 |
/// |
| 117 | 117 |
///There is also a \ref dfs() "function-type interface" for the DFS |
| 118 | 118 |
///algorithm, which is convenient in the simplier cases and it can be |
| 119 | 119 |
///used easier. |
| 120 | 120 |
/// |
| 121 | 121 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 122 | 122 |
///The default type is \ref ListDigraph. |
| 123 | 123 |
#ifdef DOXYGEN |
| 124 | 124 |
template <typename GR, |
| 125 | 125 |
typename TR> |
| 126 | 126 |
#else |
| 127 | 127 |
template <typename GR=ListDigraph, |
| 128 | 128 |
typename TR=DfsDefaultTraits<GR> > |
| 129 | 129 |
#endif |
| 130 | 130 |
class Dfs {
|
| 131 | 131 |
public: |
| 132 | 132 |
|
| 133 | 133 |
///The type of the digraph the algorithm runs on. |
| 134 | 134 |
typedef typename TR::Digraph Digraph; |
| 135 | 135 |
|
| 136 | 136 |
///\brief The type of the map that stores the predecessor arcs of the |
| 137 | 137 |
///DFS paths. |
| 138 | 138 |
typedef typename TR::PredMap PredMap; |
| 139 | 139 |
///The type of the map that stores the distances of the nodes. |
| 140 | 140 |
typedef typename TR::DistMap DistMap; |
| 141 | 141 |
///The type of the map that indicates which nodes are reached. |
| 142 | 142 |
typedef typename TR::ReachedMap ReachedMap; |
| 143 | 143 |
///The type of the map that indicates which nodes are processed. |
| 144 | 144 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 145 | 145 |
///The type of the paths. |
| 146 | 146 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 147 | 147 |
|
| 148 | 148 |
///The \ref DfsDefaultTraits "traits class" of the algorithm. |
| 149 | 149 |
typedef TR Traits; |
| 150 | 150 |
|
| 151 | 151 |
private: |
| 152 | 152 |
|
| 153 | 153 |
typedef typename Digraph::Node Node; |
| 154 | 154 |
typedef typename Digraph::NodeIt NodeIt; |
| 155 | 155 |
typedef typename Digraph::Arc Arc; |
| 156 | 156 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 157 | 157 |
|
| 158 | 158 |
//Pointer to the underlying digraph. |
| 159 | 159 |
const Digraph *G; |
| 160 | 160 |
//Pointer to the map of predecessor arcs. |
| 161 | 161 |
PredMap *_pred; |
| 162 | 162 |
//Indicates if _pred is locally allocated (true) or not. |
| 163 | 163 |
bool local_pred; |
| 164 | 164 |
//Pointer to the map of distances. |
| 165 | 165 |
DistMap *_dist; |
| 166 | 166 |
//Indicates if _dist is locally allocated (true) or not. |
| 167 | 167 |
bool local_dist; |
| 168 | 168 |
//Pointer to the map of reached status of the nodes. |
| 169 | 169 |
ReachedMap *_reached; |
| 170 | 170 |
//Indicates if _reached is locally allocated (true) or not. |
| 171 | 171 |
bool local_reached; |
| 172 | 172 |
//Pointer to the map of processed status of the nodes. |
| 173 | 173 |
ProcessedMap *_processed; |
| 174 | 174 |
//Indicates if _processed is locally allocated (true) or not. |
| 175 | 175 |
bool local_processed; |
| 176 | 176 |
|
| 177 | 177 |
std::vector<typename Digraph::OutArcIt> _stack; |
| 178 | 178 |
int _stack_head; |
| 179 | 179 |
|
| 180 | 180 |
//Creates the maps if necessary. |
| 181 | 181 |
void create_maps() |
| 182 | 182 |
{
|
| 183 | 183 |
if(!_pred) {
|
| 184 | 184 |
local_pred = true; |
| 185 | 185 |
_pred = Traits::createPredMap(*G); |
| 186 | 186 |
} |
| 187 | 187 |
if(!_dist) {
|
| 188 | 188 |
local_dist = true; |
| 189 | 189 |
_dist = Traits::createDistMap(*G); |
| 190 | 190 |
} |
| 191 | 191 |
if(!_reached) {
|
| 192 | 192 |
local_reached = true; |
| 193 | 193 |
_reached = Traits::createReachedMap(*G); |
| 194 | 194 |
} |
| 195 | 195 |
if(!_processed) {
|
| 196 | 196 |
local_processed = true; |
| 197 | 197 |
_processed = Traits::createProcessedMap(*G); |
| 198 | 198 |
} |
| 199 | 199 |
} |
| 200 | 200 |
|
| 201 | 201 |
protected: |
| 202 | 202 |
|
| 203 | 203 |
Dfs() {}
|
| 204 | 204 |
|
| 205 | 205 |
public: |
| 206 | 206 |
|
| 207 | 207 |
typedef Dfs Create; |
| 208 | 208 |
|
| 209 |
///\name Named |
|
| 209 |
///\name Named Template Parameters |
|
| 210 | 210 |
|
| 211 | 211 |
///@{
|
| 212 | 212 |
|
| 213 | 213 |
template <class T> |
| 214 | 214 |
struct SetPredMapTraits : public Traits {
|
| 215 | 215 |
typedef T PredMap; |
| 216 | 216 |
static PredMap *createPredMap(const Digraph &) |
| 217 | 217 |
{
|
| 218 | 218 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 219 | 219 |
return 0; // ignore warnings |
| 220 | 220 |
} |
| 221 | 221 |
}; |
| 222 | 222 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 223 | 223 |
///\c PredMap type. |
| 224 | 224 |
/// |
| 225 | 225 |
///\ref named-templ-param "Named parameter" for setting |
| 226 | 226 |
///\c PredMap type. |
| 227 | 227 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 228 | 228 |
template <class T> |
| 229 | 229 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
|
| 230 | 230 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
| 231 | 231 |
}; |
| 232 | 232 |
|
| 233 | 233 |
template <class T> |
| 234 | 234 |
struct SetDistMapTraits : public Traits {
|
| 235 | 235 |
typedef T DistMap; |
| 236 | 236 |
static DistMap *createDistMap(const Digraph &) |
| 237 | 237 |
{
|
| 238 | 238 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 239 | 239 |
return 0; // ignore warnings |
| 240 | 240 |
} |
| 241 | 241 |
}; |
| 242 | 242 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 243 | 243 |
///\c DistMap type. |
| 244 | 244 |
/// |
| 245 | 245 |
///\ref named-templ-param "Named parameter" for setting |
| 246 | 246 |
///\c DistMap type. |
| 247 | 247 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 248 | 248 |
template <class T> |
| 249 | 249 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
|
| 250 | 250 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
| 251 | 251 |
}; |
| 252 | 252 |
|
| 253 | 253 |
template <class T> |
| 254 | 254 |
struct SetReachedMapTraits : public Traits {
|
| 255 | 255 |
typedef T ReachedMap; |
| 256 | 256 |
static ReachedMap *createReachedMap(const Digraph &) |
| 257 | 257 |
{
|
| 258 | 258 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 259 | 259 |
return 0; // ignore warnings |
| 260 | 260 |
} |
| 261 | 261 |
}; |
| 262 | 262 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 263 | 263 |
///\c ReachedMap type. |
| 264 | 264 |
/// |
| 265 | 265 |
///\ref named-templ-param "Named parameter" for setting |
| 266 | 266 |
///\c ReachedMap type. |
| 267 | 267 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 268 | 268 |
template <class T> |
| 269 | 269 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
|
| 270 | 270 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
| 271 | 271 |
}; |
| 272 | 272 |
|
| 273 | 273 |
template <class T> |
| 274 | 274 |
struct SetProcessedMapTraits : public Traits {
|
| 275 | 275 |
typedef T ProcessedMap; |
| 276 | 276 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 277 | 277 |
{
|
| 278 | 278 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
| 279 | 279 |
return 0; // ignore warnings |
| 280 | 280 |
} |
| 281 | 281 |
}; |
| 282 | 282 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 283 | 283 |
///\c ProcessedMap type. |
| 284 | 284 |
/// |
| 285 | 285 |
///\ref named-templ-param "Named parameter" for setting |
| 286 | 286 |
///\c ProcessedMap type. |
| 287 | 287 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 288 | 288 |
template <class T> |
| 289 | 289 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
|
| 290 | 290 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 291 | 291 |
}; |
| 292 | 292 |
|
| 293 | 293 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 294 | 294 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 295 | 295 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 296 | 296 |
{
|
| 297 | 297 |
return new ProcessedMap(g); |
| 298 | 298 |
} |
| 299 | 299 |
}; |
| 300 | 300 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 301 | 301 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 302 | 302 |
/// |
| 303 | 303 |
///\ref named-templ-param "Named parameter" for setting |
| 304 | 304 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 305 | 305 |
///If you don't set it explicitly, it will be automatically allocated. |
| 306 | 306 |
struct SetStandardProcessedMap : |
| 307 | 307 |
public Dfs< Digraph, SetStandardProcessedMapTraits > {
|
| 308 | 308 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
| 309 | 309 |
}; |
| 310 | 310 |
|
| 311 | 311 |
///@} |
| 312 | 312 |
|
| 313 | 313 |
public: |
| 314 | 314 |
|
| 315 | 315 |
///Constructor. |
| 316 | 316 |
|
| 317 | 317 |
///Constructor. |
| 318 | 318 |
///\param g The digraph the algorithm runs on. |
| 319 | 319 |
Dfs(const Digraph &g) : |
| 320 | 320 |
G(&g), |
| 321 | 321 |
_pred(NULL), local_pred(false), |
| 322 | 322 |
_dist(NULL), local_dist(false), |
| 323 | 323 |
_reached(NULL), local_reached(false), |
| 324 | 324 |
_processed(NULL), local_processed(false) |
| 325 | 325 |
{ }
|
| 326 | 326 |
|
| 327 | 327 |
///Destructor. |
| 328 | 328 |
~Dfs() |
| 329 | 329 |
{
|
| 330 | 330 |
if(local_pred) delete _pred; |
| 331 | 331 |
if(local_dist) delete _dist; |
| 332 | 332 |
if(local_reached) delete _reached; |
| 333 | 333 |
if(local_processed) delete _processed; |
| 334 | 334 |
} |
| 335 | 335 |
|
| 336 | 336 |
///Sets the map that stores the predecessor arcs. |
| 337 | 337 |
|
| 338 | 338 |
///Sets the map that stores the predecessor arcs. |
| 339 | 339 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 340 | 340 |
///or \ref init(), an instance will be allocated automatically. |
| 341 | 341 |
///The destructor deallocates this automatically allocated map, |
| 342 | 342 |
///of course. |
| 343 | 343 |
///\return <tt> (*this) </tt> |
| 344 | 344 |
Dfs &predMap(PredMap &m) |
| 345 | 345 |
{
|
| 346 | 346 |
if(local_pred) {
|
| 347 | 347 |
delete _pred; |
| 348 | 348 |
local_pred=false; |
| 349 | 349 |
} |
| 350 | 350 |
_pred = &m; |
| 351 | 351 |
return *this; |
| 352 | 352 |
} |
| 353 | 353 |
|
| 354 | 354 |
///Sets the map that indicates which nodes are reached. |
| 355 | 355 |
|
| 356 | 356 |
///Sets the map that indicates which nodes are reached. |
| 357 | 357 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 358 | 358 |
///or \ref init(), an instance will be allocated automatically. |
| 359 | 359 |
///The destructor deallocates this automatically allocated map, |
| 360 | 360 |
///of course. |
| 361 | 361 |
///\return <tt> (*this) </tt> |
| 362 | 362 |
Dfs &reachedMap(ReachedMap &m) |
| 363 | 363 |
{
|
| 364 | 364 |
if(local_reached) {
|
| 365 | 365 |
delete _reached; |
| 366 | 366 |
local_reached=false; |
| 367 | 367 |
} |
| 368 | 368 |
_reached = &m; |
| 369 | 369 |
return *this; |
| 370 | 370 |
} |
| 371 | 371 |
|
| 372 | 372 |
///Sets the map that indicates which nodes are processed. |
| 373 | 373 |
|
| 374 | 374 |
///Sets the map that indicates which nodes are processed. |
| 375 | 375 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 376 | 376 |
///or \ref init(), an instance will be allocated automatically. |
| 377 | 377 |
///The destructor deallocates this automatically allocated map, |
| 378 | 378 |
///of course. |
| 379 | 379 |
///\return <tt> (*this) </tt> |
| 380 | 380 |
Dfs &processedMap(ProcessedMap &m) |
| 381 | 381 |
{
|
| 382 | 382 |
if(local_processed) {
|
| 383 | 383 |
delete _processed; |
| 384 | 384 |
local_processed=false; |
| 385 | 385 |
} |
| 386 | 386 |
_processed = &m; |
| 387 | 387 |
return *this; |
| 388 | 388 |
} |
| 389 | 389 |
|
| 390 | 390 |
///Sets the map that stores the distances of the nodes. |
| 391 | 391 |
|
| 392 | 392 |
///Sets the map that stores the distances of the nodes calculated by |
| 393 | 393 |
///the algorithm. |
| 394 | 394 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 395 | 395 |
///or \ref init(), an instance will be allocated automatically. |
| 396 | 396 |
///The destructor deallocates this automatically allocated map, |
| 397 | 397 |
///of course. |
| 398 | 398 |
///\return <tt> (*this) </tt> |
| 399 | 399 |
Dfs &distMap(DistMap &m) |
| 400 | 400 |
{
|
| 401 | 401 |
if(local_dist) {
|
| 402 | 402 |
delete _dist; |
| 403 | 403 |
local_dist=false; |
| 404 | 404 |
} |
| 405 | 405 |
_dist = &m; |
| 406 | 406 |
return *this; |
| 407 | 407 |
} |
| 408 | 408 |
|
| 409 | 409 |
public: |
| 410 | 410 |
|
| 411 | 411 |
///\name Execution Control |
| 412 | 412 |
///The simplest way to execute the DFS algorithm is to use one of the |
| 413 | 413 |
///member functions called \ref run(Node) "run()".\n |
| 414 | 414 |
///If you need more control on the execution, first you have to call |
| 415 | 415 |
///\ref init(), then you can add a source node with \ref addSource() |
| 416 | 416 |
///and perform the actual computation with \ref start(). |
| 417 | 417 |
///This procedure can be repeated if there are nodes that have not |
| 418 | 418 |
///been reached. |
| 419 | 419 |
|
| 420 | 420 |
///@{
|
| 421 | 421 |
|
| 422 | 422 |
///\brief Initializes the internal data structures. |
| 423 | 423 |
/// |
| 424 | 424 |
///Initializes the internal data structures. |
| 425 | 425 |
void init() |
| 426 | 426 |
{
|
| 427 | 427 |
create_maps(); |
| 428 | 428 |
_stack.resize(countNodes(*G)); |
| 429 | 429 |
_stack_head=-1; |
| 430 | 430 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
| 431 | 431 |
_pred->set(u,INVALID); |
| 432 | 432 |
_reached->set(u,false); |
| 433 | 433 |
_processed->set(u,false); |
| 434 | 434 |
} |
| 435 | 435 |
} |
| 436 | 436 |
|
| 437 | 437 |
///Adds a new source node. |
| 438 | 438 |
|
| 439 | 439 |
///Adds a new source node to the set of nodes to be processed. |
| 440 | 440 |
/// |
| 441 | 441 |
///\pre The stack must be empty. Otherwise the algorithm gives |
| 442 | 442 |
///wrong results. (One of the outgoing arcs of all the source nodes |
| 443 | 443 |
///except for the last one will not be visited and distances will |
| 444 | 444 |
///also be wrong.) |
| 445 | 445 |
void addSource(Node s) |
| 446 | 446 |
{
|
| 447 | 447 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
| 448 | 448 |
if(!(*_reached)[s]) |
| 449 | 449 |
{
|
| 450 | 450 |
_reached->set(s,true); |
| 451 | 451 |
_pred->set(s,INVALID); |
| 452 | 452 |
OutArcIt e(*G,s); |
| 453 | 453 |
if(e!=INVALID) {
|
| 454 | 454 |
_stack[++_stack_head]=e; |
| 455 | 455 |
_dist->set(s,_stack_head); |
| 456 | 456 |
} |
| 457 | 457 |
else {
|
| 458 | 458 |
_processed->set(s,true); |
| 459 | 459 |
_dist->set(s,0); |
| 460 | 460 |
} |
| 461 | 461 |
} |
| 462 | 462 |
} |
| 463 | 463 |
|
| 464 | 464 |
///Processes the next arc. |
| 465 | 465 |
|
| 466 | 466 |
///Processes the next arc. |
| 467 | 467 |
/// |
| 468 | 468 |
///\return The processed arc. |
| 469 | 469 |
/// |
| 470 | 470 |
///\pre The stack must not be empty. |
| 471 | 471 |
Arc processNextArc() |
| 472 | 472 |
{
|
| 473 | 473 |
Node m; |
| 474 | 474 |
Arc e=_stack[_stack_head]; |
| 475 | 475 |
if(!(*_reached)[m=G->target(e)]) {
|
| 476 | 476 |
_pred->set(m,e); |
| 477 | 477 |
_reached->set(m,true); |
| 478 | 478 |
++_stack_head; |
| 479 | 479 |
_stack[_stack_head] = OutArcIt(*G, m); |
| 480 | 480 |
_dist->set(m,_stack_head); |
| 481 | 481 |
} |
| 482 | 482 |
else {
|
| 483 | 483 |
m=G->source(e); |
| 484 | 484 |
++_stack[_stack_head]; |
| 485 | 485 |
} |
| 486 | 486 |
while(_stack_head>=0 && _stack[_stack_head]==INVALID) {
|
| 487 | 487 |
_processed->set(m,true); |
| 488 | 488 |
--_stack_head; |
| 489 | 489 |
if(_stack_head>=0) {
|
| 490 | 490 |
m=G->source(_stack[_stack_head]); |
| 491 | 491 |
++_stack[_stack_head]; |
| 492 | 492 |
} |
| 493 | 493 |
} |
| 494 | 494 |
return e; |
| 495 | 495 |
} |
| 496 | 496 |
|
| 497 | 497 |
///Next arc to be processed. |
| 498 | 498 |
|
| 499 | 499 |
///Next arc to be processed. |
| 500 | 500 |
/// |
| 501 | 501 |
///\return The next arc to be processed or \c INVALID if the stack |
| 502 | 502 |
///is empty. |
| 503 | 503 |
OutArcIt nextArc() const |
| 504 | 504 |
{
|
| 505 | 505 |
return _stack_head>=0?_stack[_stack_head]:INVALID; |
| 506 | 506 |
} |
| 507 | 507 |
|
| 508 | 508 |
///Returns \c false if there are nodes to be processed. |
| 509 | 509 |
|
| 510 | 510 |
///Returns \c false if there are nodes to be processed |
| 511 | 511 |
///in the queue (stack). |
| 512 | 512 |
bool emptyQueue() const { return _stack_head<0; }
|
| 513 | 513 |
|
| 514 | 514 |
///Returns the number of the nodes to be processed. |
| 515 | 515 |
|
| 516 | 516 |
///Returns the number of the nodes to be processed |
| 517 | 517 |
///in the queue (stack). |
| 518 | 518 |
int queueSize() const { return _stack_head+1; }
|
| 519 | 519 |
|
| 520 | 520 |
///Executes the algorithm. |
| 521 | 521 |
|
| 522 | 522 |
///Executes the algorithm. |
| 523 | 523 |
/// |
| 524 | 524 |
///This method runs the %DFS algorithm from the root node |
| 525 | 525 |
///in order to compute the DFS path to each node. |
| 526 | 526 |
/// |
| 527 | 527 |
/// The algorithm computes |
| 528 | 528 |
///- the %DFS tree, |
| 529 | 529 |
///- the distance of each node from the root in the %DFS tree. |
| 530 | 530 |
/// |
| 531 | 531 |
///\pre init() must be called and a root node should be |
| 532 | 532 |
///added with addSource() before using this function. |
| 533 | 533 |
/// |
| 534 | 534 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
| 535 | 535 |
///\code |
| 536 | 536 |
/// while ( !d.emptyQueue() ) {
|
| 537 | 537 |
/// d.processNextArc(); |
| 538 | 538 |
/// } |
| 539 | 539 |
///\endcode |
| 540 | 540 |
void start() |
| 541 | 541 |
{
|
| 542 | 542 |
while ( !emptyQueue() ) processNextArc(); |
| 543 | 543 |
} |
| 544 | 544 |
|
| 545 | 545 |
///Executes the algorithm until the given target node is reached. |
| 546 | 546 |
|
| 547 | 547 |
///Executes the algorithm until the given target node is reached. |
| 548 | 548 |
/// |
| 549 | 549 |
///This method runs the %DFS algorithm from the root node |
| 550 | 550 |
///in order to compute the DFS path to \c t. |
| 551 | 551 |
/// |
| 552 | 552 |
///The algorithm computes |
| 553 | 553 |
///- the %DFS path to \c t, |
| 554 | 554 |
///- the distance of \c t from the root in the %DFS tree. |
| 555 | 555 |
/// |
| 556 | 556 |
///\pre init() must be called and a root node should be |
| 557 | 557 |
///added with addSource() before using this function. |
| 558 | 558 |
void start(Node t) |
| 559 | 559 |
{
|
| 560 | 560 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!=t ) |
| 561 | 561 |
processNextArc(); |
| 562 | 562 |
} |
| 563 | 563 |
|
| 564 | 564 |
///Executes the algorithm until a condition is met. |
| 565 | 565 |
|
| 566 | 566 |
///Executes the algorithm until a condition is met. |
| 567 | 567 |
/// |
| 568 | 568 |
///This method runs the %DFS algorithm from the root node |
| 569 | 569 |
///until an arc \c a with <tt>am[a]</tt> true is found. |
| 570 | 570 |
/// |
| 571 | 571 |
///\param am A \c bool (or convertible) arc map. The algorithm |
| 572 | 572 |
///will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
| 573 | 573 |
/// |
| 574 | 574 |
///\return The reached arc \c a with <tt>am[a]</tt> true or |
| 575 | 575 |
///\c INVALID if no such arc was found. |
| 576 | 576 |
/// |
| 577 | 577 |
///\pre init() must be called and a root node should be |
| 578 | 578 |
///added with addSource() before using this function. |
| 579 | 579 |
/// |
| 580 | 580 |
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
| 581 | 581 |
///not a node map. |
| 582 | 582 |
template<class ArcBoolMap> |
| 583 | 583 |
Arc start(const ArcBoolMap &am) |
| 584 | 584 |
{
|
| 585 | 585 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
| 586 | 586 |
processNextArc(); |
| 587 | 587 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
| 588 | 588 |
} |
| 589 | 589 |
|
| 590 | 590 |
///Runs the algorithm from the given source node. |
| 591 | 591 |
|
| 592 | 592 |
///This method runs the %DFS algorithm from node \c s |
| 593 | 593 |
///in order to compute the DFS path to each node. |
| 594 | 594 |
/// |
| 595 | 595 |
///The algorithm computes |
| 596 | 596 |
///- the %DFS tree, |
| 597 | 597 |
///- the distance of each node from the root in the %DFS tree. |
| 598 | 598 |
/// |
| 599 | 599 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 600 | 600 |
///\code |
| 601 | 601 |
/// d.init(); |
| 602 | 602 |
/// d.addSource(s); |
| 603 | 603 |
/// d.start(); |
| 604 | 604 |
///\endcode |
| 605 | 605 |
void run(Node s) {
|
| 606 | 606 |
init(); |
| 607 | 607 |
addSource(s); |
| 608 | 608 |
start(); |
| 609 | 609 |
} |
| 610 | 610 |
|
| 611 | 611 |
///Finds the %DFS path between \c s and \c t. |
| 612 | 612 |
|
| 613 | 613 |
///This method runs the %DFS algorithm from node \c s |
| 614 | 614 |
///in order to compute the DFS path to node \c t |
| 615 | 615 |
///(it stops searching when \c t is processed) |
| 616 | 616 |
/// |
| 617 | 617 |
///\return \c true if \c t is reachable form \c s. |
| 618 | 618 |
/// |
| 619 | 619 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is |
| 620 | 620 |
///just a shortcut of the following code. |
| 621 | 621 |
///\code |
| 622 | 622 |
/// d.init(); |
| 623 | 623 |
/// d.addSource(s); |
| 624 | 624 |
/// d.start(t); |
| 625 | 625 |
///\endcode |
| 626 | 626 |
bool run(Node s,Node t) {
|
| 627 | 627 |
init(); |
| 628 | 628 |
addSource(s); |
| 629 | 629 |
start(t); |
| 630 | 630 |
return reached(t); |
| 631 | 631 |
} |
| 632 | 632 |
|
| 633 | 633 |
///Runs the algorithm to visit all nodes in the digraph. |
| 634 | 634 |
|
| 635 | 635 |
///This method runs the %DFS algorithm in order to compute the |
| 636 | 636 |
///%DFS path to each node. |
| 637 | 637 |
/// |
| 638 | 638 |
///The algorithm computes |
| 639 | 639 |
///- the %DFS tree (forest), |
| 640 | 640 |
///- the distance of each node from the root(s) in the %DFS tree. |
| 641 | 641 |
/// |
| 642 | 642 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
| 643 | 643 |
///\code |
| 644 | 644 |
/// d.init(); |
| 645 | 645 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 646 | 646 |
/// if (!d.reached(n)) {
|
| 647 | 647 |
/// d.addSource(n); |
| 648 | 648 |
/// d.start(); |
| 649 | 649 |
/// } |
| 650 | 650 |
/// } |
| 651 | 651 |
///\endcode |
| 652 | 652 |
void run() {
|
| 653 | 653 |
init(); |
| 654 | 654 |
for (NodeIt it(*G); it != INVALID; ++it) {
|
| 655 | 655 |
if (!reached(it)) {
|
| 656 | 656 |
addSource(it); |
| 657 | 657 |
start(); |
| 658 | 658 |
} |
| 659 | 659 |
} |
| 660 | 660 |
} |
| 661 | 661 |
|
| 662 | 662 |
///@} |
| 663 | 663 |
|
| 664 | 664 |
///\name Query Functions |
| 665 | 665 |
///The results of the DFS algorithm can be obtained using these |
| 666 | 666 |
///functions.\n |
| 667 | 667 |
///Either \ref run(Node) "run()" or \ref start() should be called |
| 668 | 668 |
///before using them. |
| 669 | 669 |
|
| 670 | 670 |
///@{
|
| 671 | 671 |
|
| 672 | 672 |
///The DFS path to a node. |
| 673 | 673 |
|
| 674 | 674 |
///Returns the DFS path to a node. |
| 675 | 675 |
/// |
| 676 | 676 |
///\warning \c t should be reached from the root(s). |
| 677 | 677 |
/// |
| 678 | 678 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 679 | 679 |
///must be called before using this function. |
| 680 | 680 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 681 | 681 |
|
| 682 | 682 |
///The distance of a node from the root(s). |
| 683 | 683 |
|
| 684 | 684 |
///Returns the distance of a node from the root(s). |
| 685 | 685 |
/// |
| 686 | 686 |
///\warning If node \c v is not reached from the root(s), then |
| 687 | 687 |
///the return value of this function is undefined. |
| 688 | 688 |
/// |
| 689 | 689 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 690 | 690 |
///must be called before using this function. |
| 691 | 691 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 692 | 692 |
|
| 693 | 693 |
///Returns the 'previous arc' of the %DFS tree for a node. |
| 694 | 694 |
|
| 695 | 695 |
///This function returns the 'previous arc' of the %DFS tree for the |
| 696 | 696 |
///node \c v, i.e. it returns the last arc of a %DFS path from a |
| 697 | 697 |
///root to \c v. It is \c INVALID if \c v is not reached from the |
| 698 | 698 |
///root(s) or if \c v is a root. |
| 699 | 699 |
/// |
| 700 | 700 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 701 | 701 |
///\ref predNode(). |
| 702 | 702 |
/// |
| 703 | 703 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 704 | 704 |
///must be called before using this function. |
| 705 | 705 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 706 | 706 |
|
| 707 | 707 |
///Returns the 'previous node' of the %DFS tree. |
| 708 | 708 |
|
| 709 | 709 |
///This function returns the 'previous node' of the %DFS |
| 710 | 710 |
///tree for the node \c v, i.e. it returns the last but one node |
| 711 | 711 |
///from a %DFS path from a root to \c v. It is \c INVALID |
| 712 | 712 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 713 | 713 |
/// |
| 714 | 714 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 715 | 715 |
///\ref predArc(). |
| 716 | 716 |
/// |
| 717 | 717 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 718 | 718 |
///must be called before using this function. |
| 719 | 719 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 720 | 720 |
G->source((*_pred)[v]); } |
| 721 | 721 |
|
| 722 | 722 |
///\brief Returns a const reference to the node map that stores the |
| 723 | 723 |
///distances of the nodes. |
| 724 | 724 |
/// |
| 725 | 725 |
///Returns a const reference to the node map that stores the |
| 726 | 726 |
///distances of the nodes calculated by the algorithm. |
| 727 | 727 |
/// |
| 728 | 728 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 729 | 729 |
///must be called before using this function. |
| 730 | 730 |
const DistMap &distMap() const { return *_dist;}
|
| 731 | 731 |
|
| 732 | 732 |
///\brief Returns a const reference to the node map that stores the |
| 733 | 733 |
///predecessor arcs. |
| 734 | 734 |
/// |
| 735 | 735 |
///Returns a const reference to the node map that stores the predecessor |
| 736 | 736 |
///arcs, which form the DFS tree. |
| 737 | 737 |
/// |
| 738 | 738 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 739 | 739 |
///must be called before using this function. |
| 740 | 740 |
const PredMap &predMap() const { return *_pred;}
|
| 741 | 741 |
|
| 742 | 742 |
///Checks if a node is reached from the root(s). |
| 743 | 743 |
|
| 744 | 744 |
///Returns \c true if \c v is reached from the root(s). |
| 745 | 745 |
/// |
| 746 | 746 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 747 | 747 |
///must be called before using this function. |
| 748 | 748 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 749 | 749 |
|
| 750 | 750 |
///@} |
| 751 | 751 |
}; |
| 752 | 752 |
|
| 753 | 753 |
///Default traits class of dfs() function. |
| 754 | 754 |
|
| 755 | 755 |
///Default traits class of dfs() function. |
| 756 | 756 |
///\tparam GR Digraph type. |
| 757 | 757 |
template<class GR> |
| 758 | 758 |
struct DfsWizardDefaultTraits |
| 759 | 759 |
{
|
| 760 | 760 |
///The type of the digraph the algorithm runs on. |
| 761 | 761 |
typedef GR Digraph; |
| 762 | 762 |
|
| 763 | 763 |
///\brief The type of the map that stores the predecessor |
| 764 | 764 |
///arcs of the %DFS paths. |
| 765 | 765 |
/// |
| 766 | 766 |
///The type of the map that stores the predecessor |
| 767 | 767 |
///arcs of the %DFS paths. |
| 768 | 768 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 769 | 769 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 770 | 770 |
///Instantiates a PredMap. |
| 771 | 771 |
|
| 772 | 772 |
///This function instantiates a PredMap. |
| 773 | 773 |
///\param g is the digraph, to which we would like to define the |
| 774 | 774 |
///PredMap. |
| 775 | 775 |
static PredMap *createPredMap(const Digraph &g) |
| 776 | 776 |
{
|
| 777 | 777 |
return new PredMap(g); |
| 778 | 778 |
} |
| 779 | 779 |
|
| 780 | 780 |
///The type of the map that indicates which nodes are processed. |
| 781 | 781 |
|
| 782 | 782 |
///The type of the map that indicates which nodes are processed. |
| 783 | 783 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 784 | 784 |
///By default it is a NullMap. |
| 785 | 785 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 786 | 786 |
///Instantiates a ProcessedMap. |
| 787 | 787 |
|
| 788 | 788 |
///This function instantiates a ProcessedMap. |
| 789 | 789 |
///\param g is the digraph, to which |
| 790 | 790 |
///we would like to define the ProcessedMap. |
| 791 | 791 |
#ifdef DOXYGEN |
| 792 | 792 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 793 | 793 |
#else |
| 794 | 794 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 795 | 795 |
#endif |
| 796 | 796 |
{
|
| 797 | 797 |
return new ProcessedMap(); |
| 798 | 798 |
} |
| 799 | 799 |
|
| 800 | 800 |
///The type of the map that indicates which nodes are reached. |
| 801 | 801 |
|
| 802 | 802 |
///The type of the map that indicates which nodes are reached. |
| 803 | 803 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 804 | 804 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 805 | 805 |
///Instantiates a ReachedMap. |
| 806 | 806 |
|
| 807 | 807 |
///This function instantiates a ReachedMap. |
| 808 | 808 |
///\param g is the digraph, to which |
| 809 | 809 |
///we would like to define the ReachedMap. |
| 810 | 810 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 811 | 811 |
{
|
| 812 | 812 |
return new ReachedMap(g); |
| 813 | 813 |
} |
| 814 | 814 |
|
| 815 | 815 |
///The type of the map that stores the distances of the nodes. |
| 816 | 816 |
|
| 817 | 817 |
///The type of the map that stores the distances of the nodes. |
| 818 | 818 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 819 | 819 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 820 | 820 |
///Instantiates a DistMap. |
| 821 | 821 |
|
| 822 | 822 |
///This function instantiates a DistMap. |
| 823 | 823 |
///\param g is the digraph, to which we would like to define |
| 824 | 824 |
///the DistMap |
| 825 | 825 |
static DistMap *createDistMap(const Digraph &g) |
| 826 | 826 |
{
|
| 827 | 827 |
return new DistMap(g); |
| 828 | 828 |
} |
| 829 | 829 |
|
| 830 | 830 |
///The type of the DFS paths. |
| 831 | 831 |
|
| 832 | 832 |
///The type of the DFS paths. |
| 833 | 833 |
///It must meet the \ref concepts::Path "Path" concept. |
| 834 | 834 |
typedef lemon::Path<Digraph> Path; |
| 835 | 835 |
}; |
| 836 | 836 |
|
| 837 | 837 |
/// Default traits class used by DfsWizard |
| 838 | 838 |
|
| 839 | 839 |
/// To make it easier to use Dfs algorithm |
| 840 | 840 |
/// we have created a wizard class. |
| 841 | 841 |
/// This \ref DfsWizard class needs default traits, |
| 842 | 842 |
/// as well as the \ref Dfs class. |
| 843 | 843 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
| 844 | 844 |
/// \ref DfsWizard class. |
| 845 | 845 |
template<class GR> |
| 846 | 846 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
| 847 | 847 |
{
|
| 848 | 848 |
|
| 849 | 849 |
typedef DfsWizardDefaultTraits<GR> Base; |
| 850 | 850 |
protected: |
| 851 | 851 |
//The type of the nodes in the digraph. |
| 852 | 852 |
typedef typename Base::Digraph::Node Node; |
| 853 | 853 |
|
| 854 | 854 |
//Pointer to the digraph the algorithm runs on. |
| 855 | 855 |
void *_g; |
| 856 | 856 |
//Pointer to the map of reached nodes. |
| 857 | 857 |
void *_reached; |
| 858 | 858 |
//Pointer to the map of processed nodes. |
| 859 | 859 |
void *_processed; |
| 860 | 860 |
//Pointer to the map of predecessors arcs. |
| 861 | 861 |
void *_pred; |
| 862 | 862 |
//Pointer to the map of distances. |
| 863 | 863 |
void *_dist; |
| 864 | 864 |
//Pointer to the DFS path to the target node. |
| 865 | 865 |
void *_path; |
| 866 | 866 |
//Pointer to the distance of the target node. |
| 867 | 867 |
int *_di; |
| 868 | 868 |
|
| 869 | 869 |
public: |
| 870 | 870 |
/// Constructor. |
| 871 | 871 |
|
| 872 | 872 |
/// This constructor does not require parameters, therefore it initiates |
| 873 | 873 |
/// all of the attributes to \c 0. |
| 874 | 874 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 875 | 875 |
_dist(0), _path(0), _di(0) {}
|
| 876 | 876 |
|
| 877 | 877 |
/// Constructor. |
| 878 | 878 |
|
| 879 | 879 |
/// This constructor requires one parameter, |
| 880 | 880 |
/// others are initiated to \c 0. |
| 881 | 881 |
/// \param g The digraph the algorithm runs on. |
| 882 | 882 |
DfsWizardBase(const GR &g) : |
| 883 | 883 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 884 | 884 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 885 | 885 |
|
| 886 | 886 |
}; |
| 887 | 887 |
|
| 888 | 888 |
/// Auxiliary class for the function-type interface of DFS algorithm. |
| 889 | 889 |
|
| 890 | 890 |
/// This auxiliary class is created to implement the |
| 891 | 891 |
/// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
| 892 | 892 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
| 893 | 893 |
/// functions and features of the plain \ref Dfs. |
| 894 | 894 |
/// |
| 895 | 895 |
/// This class should only be used through the \ref dfs() function, |
| 896 | 896 |
/// which makes it easier to use the algorithm. |
| 897 | 897 |
template<class TR> |
| 898 | 898 |
class DfsWizard : public TR |
| 899 | 899 |
{
|
| 900 | 900 |
typedef TR Base; |
| 901 | 901 |
|
| 902 | 902 |
///The type of the digraph the algorithm runs on. |
| 903 | 903 |
typedef typename TR::Digraph Digraph; |
| 904 | 904 |
|
| 905 | 905 |
typedef typename Digraph::Node Node; |
| 906 | 906 |
typedef typename Digraph::NodeIt NodeIt; |
| 907 | 907 |
typedef typename Digraph::Arc Arc; |
| 908 | 908 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 909 | 909 |
|
| 910 | 910 |
///\brief The type of the map that stores the predecessor |
| 911 | 911 |
///arcs of the DFS paths. |
| 912 | 912 |
typedef typename TR::PredMap PredMap; |
| 913 | 913 |
///\brief The type of the map that stores the distances of the nodes. |
| 914 | 914 |
typedef typename TR::DistMap DistMap; |
| 915 | 915 |
///\brief The type of the map that indicates which nodes are reached. |
| 916 | 916 |
typedef typename TR::ReachedMap ReachedMap; |
| 917 | 917 |
///\brief The type of the map that indicates which nodes are processed. |
| 918 | 918 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 919 | 919 |
///The type of the DFS paths |
| 920 | 920 |
typedef typename TR::Path Path; |
| 921 | 921 |
|
| 922 | 922 |
public: |
| 923 | 923 |
|
| 924 | 924 |
/// Constructor. |
| 925 | 925 |
DfsWizard() : TR() {}
|
| 926 | 926 |
|
| 927 | 927 |
/// Constructor that requires parameters. |
| 928 | 928 |
|
| 929 | 929 |
/// Constructor that requires parameters. |
| 930 | 930 |
/// These parameters will be the default values for the traits class. |
| 931 | 931 |
/// \param g The digraph the algorithm runs on. |
| 932 | 932 |
DfsWizard(const Digraph &g) : |
| 933 | 933 |
TR(g) {}
|
| 934 | 934 |
|
| 935 | 935 |
///Copy constructor |
| 936 | 936 |
DfsWizard(const TR &b) : TR(b) {}
|
| 937 | 937 |
|
| 938 | 938 |
~DfsWizard() {}
|
| 939 | 939 |
|
| 940 | 940 |
///Runs DFS algorithm from the given source node. |
| 941 | 941 |
|
| 942 | 942 |
///This method runs DFS algorithm from node \c s |
| 943 | 943 |
///in order to compute the DFS path to each node. |
| 944 | 944 |
void run(Node s) |
| 945 | 945 |
{
|
| 946 | 946 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 947 | 947 |
if (Base::_pred) |
| 948 | 948 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 949 | 949 |
if (Base::_dist) |
| 950 | 950 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 951 | 951 |
if (Base::_reached) |
| 952 | 952 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 953 | 953 |
if (Base::_processed) |
| 954 | 954 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 955 | 955 |
if (s!=INVALID) |
| 956 | 956 |
alg.run(s); |
| 957 | 957 |
else |
| 958 | 958 |
alg.run(); |
| 959 | 959 |
} |
| 960 | 960 |
|
| 961 | 961 |
///Finds the DFS path between \c s and \c t. |
| 962 | 962 |
|
| 963 | 963 |
///This method runs DFS algorithm from node \c s |
| 964 | 964 |
///in order to compute the DFS path to node \c t |
| 965 | 965 |
///(it stops searching when \c t is processed). |
| 966 | 966 |
/// |
| 967 | 967 |
///\return \c true if \c t is reachable form \c s. |
| 968 | 968 |
bool run(Node s, Node t) |
| 969 | 969 |
{
|
| 970 | 970 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 971 | 971 |
if (Base::_pred) |
| 972 | 972 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 973 | 973 |
if (Base::_dist) |
| 974 | 974 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 975 | 975 |
if (Base::_reached) |
| 976 | 976 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 977 | 977 |
if (Base::_processed) |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
| 20 | 20 |
#define LEMON_DIJKSTRA_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup shortest_path |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Dijkstra algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <limits> |
| 27 | 27 |
#include <lemon/list_graph.h> |
| 28 | 28 |
#include <lemon/bin_heap.h> |
| 29 | 29 |
#include <lemon/bits/path_dump.h> |
| 30 | 30 |
#include <lemon/core.h> |
| 31 | 31 |
#include <lemon/error.h> |
| 32 | 32 |
#include <lemon/maps.h> |
| 33 | 33 |
#include <lemon/path.h> |
| 34 | 34 |
|
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 | 37 |
/// \brief Default operation traits for the Dijkstra algorithm class. |
| 38 | 38 |
/// |
| 39 | 39 |
/// This operation traits class defines all computational operations and |
| 40 | 40 |
/// constants which are used in the Dijkstra algorithm. |
| 41 | 41 |
template <typename V> |
| 42 | 42 |
struct DijkstraDefaultOperationTraits {
|
| 43 | 43 |
/// \e |
| 44 | 44 |
typedef V Value; |
| 45 | 45 |
/// \brief Gives back the zero value of the type. |
| 46 | 46 |
static Value zero() {
|
| 47 | 47 |
return static_cast<Value>(0); |
| 48 | 48 |
} |
| 49 | 49 |
/// \brief Gives back the sum of the given two elements. |
| 50 | 50 |
static Value plus(const Value& left, const Value& right) {
|
| 51 | 51 |
return left + right; |
| 52 | 52 |
} |
| 53 | 53 |
/// \brief Gives back true only if the first value is less than the second. |
| 54 | 54 |
static bool less(const Value& left, const Value& right) {
|
| 55 | 55 |
return left < right; |
| 56 | 56 |
} |
| 57 | 57 |
}; |
| 58 | 58 |
|
| 59 | 59 |
///Default traits class of Dijkstra class. |
| 60 | 60 |
|
| 61 | 61 |
///Default traits class of Dijkstra class. |
| 62 | 62 |
///\tparam GR The type of the digraph. |
| 63 | 63 |
///\tparam LEN The type of the length map. |
| 64 | 64 |
template<typename GR, typename LEN> |
| 65 | 65 |
struct DijkstraDefaultTraits |
| 66 | 66 |
{
|
| 67 | 67 |
///The type of the digraph the algorithm runs on. |
| 68 | 68 |
typedef GR Digraph; |
| 69 | 69 |
|
| 70 | 70 |
///The type of the map that stores the arc lengths. |
| 71 | 71 |
|
| 72 | 72 |
///The type of the map that stores the arc lengths. |
| 73 | 73 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 74 | 74 |
typedef LEN LengthMap; |
| 75 | 75 |
///The type of the length of the arcs. |
| 76 | 76 |
typedef typename LEN::Value Value; |
| 77 | 77 |
|
| 78 | 78 |
/// Operation traits for %Dijkstra algorithm. |
| 79 | 79 |
|
| 80 | 80 |
/// This class defines the operations that are used in the algorithm. |
| 81 | 81 |
/// \see DijkstraDefaultOperationTraits |
| 82 | 82 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
| 83 | 83 |
|
| 84 | 84 |
/// The cross reference type used by the heap. |
| 85 | 85 |
|
| 86 | 86 |
/// The cross reference type used by the heap. |
| 87 | 87 |
/// Usually it is \c Digraph::NodeMap<int>. |
| 88 | 88 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 89 | 89 |
///Instantiates a \c HeapCrossRef. |
| 90 | 90 |
|
| 91 | 91 |
///This function instantiates a \ref HeapCrossRef. |
| 92 | 92 |
/// \param g is the digraph, to which we would like to define the |
| 93 | 93 |
/// \ref HeapCrossRef. |
| 94 | 94 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
| 95 | 95 |
{
|
| 96 | 96 |
return new HeapCrossRef(g); |
| 97 | 97 |
} |
| 98 | 98 |
|
| 99 | 99 |
///The heap type used by the %Dijkstra algorithm. |
| 100 | 100 |
|
| 101 | 101 |
///The heap type used by the Dijkstra algorithm. |
| 102 | 102 |
/// |
| 103 | 103 |
///\sa BinHeap |
| 104 | 104 |
///\sa Dijkstra |
| 105 | 105 |
typedef BinHeap<typename LEN::Value, HeapCrossRef, std::less<Value> > Heap; |
| 106 | 106 |
///Instantiates a \c Heap. |
| 107 | 107 |
|
| 108 | 108 |
///This function instantiates a \ref Heap. |
| 109 | 109 |
static Heap *createHeap(HeapCrossRef& r) |
| 110 | 110 |
{
|
| 111 | 111 |
return new Heap(r); |
| 112 | 112 |
} |
| 113 | 113 |
|
| 114 | 114 |
///\brief The type of the map that stores the predecessor |
| 115 | 115 |
///arcs of the shortest paths. |
| 116 | 116 |
/// |
| 117 | 117 |
///The type of the map that stores the predecessor |
| 118 | 118 |
///arcs of the shortest paths. |
| 119 | 119 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 120 | 120 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 121 | 121 |
///Instantiates a \c PredMap. |
| 122 | 122 |
|
| 123 | 123 |
///This function instantiates a \ref PredMap. |
| 124 | 124 |
///\param g is the digraph, to which we would like to define the |
| 125 | 125 |
///\ref PredMap. |
| 126 | 126 |
static PredMap *createPredMap(const Digraph &g) |
| 127 | 127 |
{
|
| 128 | 128 |
return new PredMap(g); |
| 129 | 129 |
} |
| 130 | 130 |
|
| 131 | 131 |
///The type of the map that indicates which nodes are processed. |
| 132 | 132 |
|
| 133 | 133 |
///The type of the map that indicates which nodes are processed. |
| 134 | 134 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 135 | 135 |
///By default it is a NullMap. |
| 136 | 136 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 137 | 137 |
///Instantiates a \c ProcessedMap. |
| 138 | 138 |
|
| 139 | 139 |
///This function instantiates a \ref ProcessedMap. |
| 140 | 140 |
///\param g is the digraph, to which |
| 141 | 141 |
///we would like to define the \ref ProcessedMap. |
| 142 | 142 |
#ifdef DOXYGEN |
| 143 | 143 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 144 | 144 |
#else |
| 145 | 145 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 146 | 146 |
#endif |
| 147 | 147 |
{
|
| 148 | 148 |
return new ProcessedMap(); |
| 149 | 149 |
} |
| 150 | 150 |
|
| 151 | 151 |
///The type of the map that stores the distances of the nodes. |
| 152 | 152 |
|
| 153 | 153 |
///The type of the map that stores the distances of the nodes. |
| 154 | 154 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 155 | 155 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
| 156 | 156 |
///Instantiates a \c DistMap. |
| 157 | 157 |
|
| 158 | 158 |
///This function instantiates a \ref DistMap. |
| 159 | 159 |
///\param g is the digraph, to which we would like to define |
| 160 | 160 |
///the \ref DistMap. |
| 161 | 161 |
static DistMap *createDistMap(const Digraph &g) |
| 162 | 162 |
{
|
| 163 | 163 |
return new DistMap(g); |
| 164 | 164 |
} |
| 165 | 165 |
}; |
| 166 | 166 |
|
| 167 | 167 |
///%Dijkstra algorithm class. |
| 168 | 168 |
|
| 169 | 169 |
/// \ingroup shortest_path |
| 170 | 170 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
| 171 | 171 |
/// |
| 172 | 172 |
///The arc lengths are passed to the algorithm using a |
| 173 | 173 |
///\ref concepts::ReadMap "ReadMap", |
| 174 | 174 |
///so it is easy to change it to any kind of length. |
| 175 | 175 |
///The type of the length is determined by the |
| 176 | 176 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
| 177 | 177 |
///It is also possible to change the underlying priority heap. |
| 178 | 178 |
/// |
| 179 | 179 |
///There is also a \ref dijkstra() "function-type interface" for the |
| 180 | 180 |
///%Dijkstra algorithm, which is convenient in the simplier cases and |
| 181 | 181 |
///it can be used easier. |
| 182 | 182 |
/// |
| 183 | 183 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 184 | 184 |
///The default type is \ref ListDigraph. |
| 185 | 185 |
///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
| 186 | 186 |
///the lengths of the arcs. |
| 187 | 187 |
///It is read once for each arc, so the map may involve in |
| 188 | 188 |
///relatively time consuming process to compute the arc lengths if |
| 189 | 189 |
///it is necessary. The default map type is \ref |
| 190 | 190 |
///concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 191 | 191 |
#ifdef DOXYGEN |
| 192 | 192 |
template <typename GR, typename LEN, typename TR> |
| 193 | 193 |
#else |
| 194 | 194 |
template <typename GR=ListDigraph, |
| 195 | 195 |
typename LEN=typename GR::template ArcMap<int>, |
| 196 | 196 |
typename TR=DijkstraDefaultTraits<GR,LEN> > |
| 197 | 197 |
#endif |
| 198 | 198 |
class Dijkstra {
|
| 199 | 199 |
public: |
| 200 | 200 |
|
| 201 | 201 |
///The type of the digraph the algorithm runs on. |
| 202 | 202 |
typedef typename TR::Digraph Digraph; |
| 203 | 203 |
|
| 204 | 204 |
///The type of the length of the arcs. |
| 205 | 205 |
typedef typename TR::LengthMap::Value Value; |
| 206 | 206 |
///The type of the map that stores the arc lengths. |
| 207 | 207 |
typedef typename TR::LengthMap LengthMap; |
| 208 | 208 |
///\brief The type of the map that stores the predecessor arcs of the |
| 209 | 209 |
///shortest paths. |
| 210 | 210 |
typedef typename TR::PredMap PredMap; |
| 211 | 211 |
///The type of the map that stores the distances of the nodes. |
| 212 | 212 |
typedef typename TR::DistMap DistMap; |
| 213 | 213 |
///The type of the map that indicates which nodes are processed. |
| 214 | 214 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 215 | 215 |
///The type of the paths. |
| 216 | 216 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 217 | 217 |
///The cross reference type used for the current heap. |
| 218 | 218 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
| 219 | 219 |
///The heap type used by the algorithm. |
| 220 | 220 |
typedef typename TR::Heap Heap; |
| 221 | 221 |
///\brief The \ref DijkstraDefaultOperationTraits "operation traits class" |
| 222 | 222 |
///of the algorithm. |
| 223 | 223 |
typedef typename TR::OperationTraits OperationTraits; |
| 224 | 224 |
|
| 225 | 225 |
///The \ref DijkstraDefaultTraits "traits class" of the algorithm. |
| 226 | 226 |
typedef TR Traits; |
| 227 | 227 |
|
| 228 | 228 |
private: |
| 229 | 229 |
|
| 230 | 230 |
typedef typename Digraph::Node Node; |
| 231 | 231 |
typedef typename Digraph::NodeIt NodeIt; |
| 232 | 232 |
typedef typename Digraph::Arc Arc; |
| 233 | 233 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 234 | 234 |
|
| 235 | 235 |
//Pointer to the underlying digraph. |
| 236 | 236 |
const Digraph *G; |
| 237 | 237 |
//Pointer to the length map. |
| 238 | 238 |
const LengthMap *_length; |
| 239 | 239 |
//Pointer to the map of predecessors arcs. |
| 240 | 240 |
PredMap *_pred; |
| 241 | 241 |
//Indicates if _pred is locally allocated (true) or not. |
| 242 | 242 |
bool local_pred; |
| 243 | 243 |
//Pointer to the map of distances. |
| 244 | 244 |
DistMap *_dist; |
| 245 | 245 |
//Indicates if _dist is locally allocated (true) or not. |
| 246 | 246 |
bool local_dist; |
| 247 | 247 |
//Pointer to the map of processed status of the nodes. |
| 248 | 248 |
ProcessedMap *_processed; |
| 249 | 249 |
//Indicates if _processed is locally allocated (true) or not. |
| 250 | 250 |
bool local_processed; |
| 251 | 251 |
//Pointer to the heap cross references. |
| 252 | 252 |
HeapCrossRef *_heap_cross_ref; |
| 253 | 253 |
//Indicates if _heap_cross_ref is locally allocated (true) or not. |
| 254 | 254 |
bool local_heap_cross_ref; |
| 255 | 255 |
//Pointer to the heap. |
| 256 | 256 |
Heap *_heap; |
| 257 | 257 |
//Indicates if _heap is locally allocated (true) or not. |
| 258 | 258 |
bool local_heap; |
| 259 | 259 |
|
| 260 | 260 |
//Creates the maps if necessary. |
| 261 | 261 |
void create_maps() |
| 262 | 262 |
{
|
| 263 | 263 |
if(!_pred) {
|
| 264 | 264 |
local_pred = true; |
| 265 | 265 |
_pred = Traits::createPredMap(*G); |
| 266 | 266 |
} |
| 267 | 267 |
if(!_dist) {
|
| 268 | 268 |
local_dist = true; |
| 269 | 269 |
_dist = Traits::createDistMap(*G); |
| 270 | 270 |
} |
| 271 | 271 |
if(!_processed) {
|
| 272 | 272 |
local_processed = true; |
| 273 | 273 |
_processed = Traits::createProcessedMap(*G); |
| 274 | 274 |
} |
| 275 | 275 |
if (!_heap_cross_ref) {
|
| 276 | 276 |
local_heap_cross_ref = true; |
| 277 | 277 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
| 278 | 278 |
} |
| 279 | 279 |
if (!_heap) {
|
| 280 | 280 |
local_heap = true; |
| 281 | 281 |
_heap = Traits::createHeap(*_heap_cross_ref); |
| 282 | 282 |
} |
| 283 | 283 |
} |
| 284 | 284 |
|
| 285 | 285 |
public: |
| 286 | 286 |
|
| 287 | 287 |
typedef Dijkstra Create; |
| 288 | 288 |
|
| 289 |
///\name Named |
|
| 289 |
///\name Named Template Parameters |
|
| 290 | 290 |
|
| 291 | 291 |
///@{
|
| 292 | 292 |
|
| 293 | 293 |
template <class T> |
| 294 | 294 |
struct SetPredMapTraits : public Traits {
|
| 295 | 295 |
typedef T PredMap; |
| 296 | 296 |
static PredMap *createPredMap(const Digraph &) |
| 297 | 297 |
{
|
| 298 | 298 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 299 | 299 |
return 0; // ignore warnings |
| 300 | 300 |
} |
| 301 | 301 |
}; |
| 302 | 302 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 303 | 303 |
///\c PredMap type. |
| 304 | 304 |
/// |
| 305 | 305 |
///\ref named-templ-param "Named parameter" for setting |
| 306 | 306 |
///\c PredMap type. |
| 307 | 307 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 308 | 308 |
template <class T> |
| 309 | 309 |
struct SetPredMap |
| 310 | 310 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
|
| 311 | 311 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
| 312 | 312 |
}; |
| 313 | 313 |
|
| 314 | 314 |
template <class T> |
| 315 | 315 |
struct SetDistMapTraits : public Traits {
|
| 316 | 316 |
typedef T DistMap; |
| 317 | 317 |
static DistMap *createDistMap(const Digraph &) |
| 318 | 318 |
{
|
| 319 | 319 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 320 | 320 |
return 0; // ignore warnings |
| 321 | 321 |
} |
| 322 | 322 |
}; |
| 323 | 323 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 324 | 324 |
///\c DistMap type. |
| 325 | 325 |
/// |
| 326 | 326 |
///\ref named-templ-param "Named parameter" for setting |
| 327 | 327 |
///\c DistMap type. |
| 328 | 328 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 329 | 329 |
template <class T> |
| 330 | 330 |
struct SetDistMap |
| 331 | 331 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
|
| 332 | 332 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
| 333 | 333 |
}; |
| 334 | 334 |
|
| 335 | 335 |
template <class T> |
| 336 | 336 |
struct SetProcessedMapTraits : public Traits {
|
| 337 | 337 |
typedef T ProcessedMap; |
| 338 | 338 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 339 | 339 |
{
|
| 340 | 340 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
| 341 | 341 |
return 0; // ignore warnings |
| 342 | 342 |
} |
| 343 | 343 |
}; |
| 344 | 344 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 345 | 345 |
///\c ProcessedMap type. |
| 346 | 346 |
/// |
| 347 | 347 |
///\ref named-templ-param "Named parameter" for setting |
| 348 | 348 |
///\c ProcessedMap type. |
| 349 | 349 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 350 | 350 |
template <class T> |
| 351 | 351 |
struct SetProcessedMap |
| 352 | 352 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
|
| 353 | 353 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
| 354 | 354 |
}; |
| 355 | 355 |
|
| 356 | 356 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 357 | 357 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 358 | 358 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 359 | 359 |
{
|
| 360 | 360 |
return new ProcessedMap(g); |
| 361 | 361 |
} |
| 362 | 362 |
}; |
| 363 | 363 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 364 | 364 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 365 | 365 |
/// |
| 366 | 366 |
///\ref named-templ-param "Named parameter" for setting |
| 367 | 367 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 368 | 368 |
///If you don't set it explicitly, it will be automatically allocated. |
| 369 | 369 |
struct SetStandardProcessedMap |
| 370 | 370 |
: public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
|
| 371 | 371 |
typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
| 372 | 372 |
Create; |
| 373 | 373 |
}; |
| 374 | 374 |
|
| 375 | 375 |
template <class H, class CR> |
| 376 | 376 |
struct SetHeapTraits : public Traits {
|
| 377 | 377 |
typedef CR HeapCrossRef; |
| 378 | 378 |
typedef H Heap; |
| 379 | 379 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) {
|
| 380 | 380 |
LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
| 381 | 381 |
return 0; // ignore warnings |
| 382 | 382 |
} |
| 383 | 383 |
static Heap *createHeap(HeapCrossRef &) |
| 384 | 384 |
{
|
| 385 | 385 |
LEMON_ASSERT(false, "Heap is not initialized"); |
| 386 | 386 |
return 0; // ignore warnings |
| 387 | 387 |
} |
| 388 | 388 |
}; |
| 389 | 389 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 390 | 390 |
///heap and cross reference types |
| 391 | 391 |
/// |
| 392 | 392 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
| 393 | 393 |
///reference types. If this named parameter is used, then external |
| 394 | 394 |
///heap and cross reference objects must be passed to the algorithm |
| 395 | 395 |
///using the \ref heap() function before calling \ref run(Node) "run()" |
| 396 | 396 |
///or \ref init(). |
| 397 | 397 |
///\sa SetStandardHeap |
| 398 | 398 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
| 399 | 399 |
struct SetHeap |
| 400 | 400 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
|
| 401 | 401 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
| 402 | 402 |
}; |
| 403 | 403 |
|
| 404 | 404 |
template <class H, class CR> |
| 405 | 405 |
struct SetStandardHeapTraits : public Traits {
|
| 406 | 406 |
typedef CR HeapCrossRef; |
| 407 | 407 |
typedef H Heap; |
| 408 | 408 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
|
| 409 | 409 |
return new HeapCrossRef(G); |
| 410 | 410 |
} |
| 411 | 411 |
static Heap *createHeap(HeapCrossRef &R) |
| 412 | 412 |
{
|
| 413 | 413 |
return new Heap(R); |
| 414 | 414 |
} |
| 415 | 415 |
}; |
| 416 | 416 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 417 | 417 |
///heap and cross reference types with automatic allocation |
| 418 | 418 |
/// |
| 419 | 419 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
| 420 | 420 |
///reference types with automatic allocation. |
| 421 | 421 |
///They should have standard constructor interfaces to be able to |
| 422 | 422 |
///automatically created by the algorithm (i.e. the digraph should be |
| 423 | 423 |
///passed to the constructor of the cross reference and the cross |
| 424 | 424 |
///reference should be passed to the constructor of the heap). |
| 425 | 425 |
///However external heap and cross reference objects could also be |
| 426 | 426 |
///passed to the algorithm using the \ref heap() function before |
| 427 | 427 |
///calling \ref run(Node) "run()" or \ref init(). |
| 428 | 428 |
///\sa SetHeap |
| 429 | 429 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
| 430 | 430 |
struct SetStandardHeap |
| 431 | 431 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
|
| 432 | 432 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
| 433 | 433 |
Create; |
| 434 | 434 |
}; |
| 435 | 435 |
|
| 436 | 436 |
template <class T> |
| 437 | 437 |
struct SetOperationTraitsTraits : public Traits {
|
| 438 | 438 |
typedef T OperationTraits; |
| 439 | 439 |
}; |
| 440 | 440 |
|
| 441 | 441 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 442 | 442 |
///\c OperationTraits type |
| 443 | 443 |
/// |
| 444 | 444 |
///\ref named-templ-param "Named parameter" for setting |
| 445 | 445 |
///\c OperationTraits type. |
| 446 | 446 |
template <class T> |
| 447 | 447 |
struct SetOperationTraits |
| 448 | 448 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
| 449 | 449 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
| 450 | 450 |
Create; |
| 451 | 451 |
}; |
| 452 | 452 |
|
| 453 | 453 |
///@} |
| 454 | 454 |
|
| 455 | 455 |
protected: |
| 456 | 456 |
|
| 457 | 457 |
Dijkstra() {}
|
| 458 | 458 |
|
| 459 | 459 |
public: |
| 460 | 460 |
|
| 461 | 461 |
///Constructor. |
| 462 | 462 |
|
| 463 | 463 |
///Constructor. |
| 464 | 464 |
///\param g The digraph the algorithm runs on. |
| 465 | 465 |
///\param length The length map used by the algorithm. |
| 466 | 466 |
Dijkstra(const Digraph& g, const LengthMap& length) : |
| 467 | 467 |
G(&g), _length(&length), |
| 468 | 468 |
_pred(NULL), local_pred(false), |
| 469 | 469 |
_dist(NULL), local_dist(false), |
| 470 | 470 |
_processed(NULL), local_processed(false), |
| 471 | 471 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
| 472 | 472 |
_heap(NULL), local_heap(false) |
| 473 | 473 |
{ }
|
| 474 | 474 |
|
| 475 | 475 |
///Destructor. |
| 476 | 476 |
~Dijkstra() |
| 477 | 477 |
{
|
| 478 | 478 |
if(local_pred) delete _pred; |
| 479 | 479 |
if(local_dist) delete _dist; |
| 480 | 480 |
if(local_processed) delete _processed; |
| 481 | 481 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
| 482 | 482 |
if(local_heap) delete _heap; |
| 483 | 483 |
} |
| 484 | 484 |
|
| 485 | 485 |
///Sets the length map. |
| 486 | 486 |
|
| 487 | 487 |
///Sets the length map. |
| 488 | 488 |
///\return <tt> (*this) </tt> |
| 489 | 489 |
Dijkstra &lengthMap(const LengthMap &m) |
| 490 | 490 |
{
|
| 491 | 491 |
_length = &m; |
| 492 | 492 |
return *this; |
| 493 | 493 |
} |
| 494 | 494 |
|
| 495 | 495 |
///Sets the map that stores the predecessor arcs. |
| 496 | 496 |
|
| 497 | 497 |
///Sets the map that stores the predecessor arcs. |
| 498 | 498 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 499 | 499 |
///or \ref init(), an instance will be allocated automatically. |
| 500 | 500 |
///The destructor deallocates this automatically allocated map, |
| 501 | 501 |
///of course. |
| 502 | 502 |
///\return <tt> (*this) </tt> |
| 503 | 503 |
Dijkstra &predMap(PredMap &m) |
| 504 | 504 |
{
|
| 505 | 505 |
if(local_pred) {
|
| 506 | 506 |
delete _pred; |
| 507 | 507 |
local_pred=false; |
| 508 | 508 |
} |
| 509 | 509 |
_pred = &m; |
| 510 | 510 |
return *this; |
| 511 | 511 |
} |
| 512 | 512 |
|
| 513 | 513 |
///Sets the map that indicates which nodes are processed. |
| 514 | 514 |
|
| 515 | 515 |
///Sets the map that indicates which nodes are processed. |
| 516 | 516 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 517 | 517 |
///or \ref init(), an instance will be allocated automatically. |
| 518 | 518 |
///The destructor deallocates this automatically allocated map, |
| 519 | 519 |
///of course. |
| 520 | 520 |
///\return <tt> (*this) </tt> |
| 521 | 521 |
Dijkstra &processedMap(ProcessedMap &m) |
| 522 | 522 |
{
|
| 523 | 523 |
if(local_processed) {
|
| 524 | 524 |
delete _processed; |
| 525 | 525 |
local_processed=false; |
| 526 | 526 |
} |
| 527 | 527 |
_processed = &m; |
| 528 | 528 |
return *this; |
| 529 | 529 |
} |
| 530 | 530 |
|
| 531 | 531 |
///Sets the map that stores the distances of the nodes. |
| 532 | 532 |
|
| 533 | 533 |
///Sets the map that stores the distances of the nodes calculated by the |
| 534 | 534 |
///algorithm. |
| 535 | 535 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 536 | 536 |
///or \ref init(), an instance will be allocated automatically. |
| 537 | 537 |
///The destructor deallocates this automatically allocated map, |
| 538 | 538 |
///of course. |
| 539 | 539 |
///\return <tt> (*this) </tt> |
| 540 | 540 |
Dijkstra &distMap(DistMap &m) |
| 541 | 541 |
{
|
| 542 | 542 |
if(local_dist) {
|
| 543 | 543 |
delete _dist; |
| 544 | 544 |
local_dist=false; |
| 545 | 545 |
} |
| 546 | 546 |
_dist = &m; |
| 547 | 547 |
return *this; |
| 548 | 548 |
} |
| 549 | 549 |
|
| 550 | 550 |
///Sets the heap and the cross reference used by algorithm. |
| 551 | 551 |
|
| 552 | 552 |
///Sets the heap and the cross reference used by algorithm. |
| 553 | 553 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 554 | 554 |
///or \ref init(), heap and cross reference instances will be |
| 555 | 555 |
///allocated automatically. |
| 556 | 556 |
///The destructor deallocates these automatically allocated objects, |
| 557 | 557 |
///of course. |
| 558 | 558 |
///\return <tt> (*this) </tt> |
| 559 | 559 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
| 560 | 560 |
{
|
| 561 | 561 |
if(local_heap_cross_ref) {
|
| 562 | 562 |
delete _heap_cross_ref; |
| 563 | 563 |
local_heap_cross_ref=false; |
| 564 | 564 |
} |
| 565 | 565 |
_heap_cross_ref = &cr; |
| 566 | 566 |
if(local_heap) {
|
| 567 | 567 |
delete _heap; |
| 568 | 568 |
local_heap=false; |
| 569 | 569 |
} |
| 570 | 570 |
_heap = &hp; |
| 571 | 571 |
return *this; |
| 572 | 572 |
} |
| 573 | 573 |
|
| 574 | 574 |
private: |
| 575 | 575 |
|
| 576 | 576 |
void finalizeNodeData(Node v,Value dst) |
| 577 | 577 |
{
|
| 578 | 578 |
_processed->set(v,true); |
| 579 | 579 |
_dist->set(v, dst); |
| 580 | 580 |
} |
| 581 | 581 |
|
| 582 | 582 |
public: |
| 583 | 583 |
|
| 584 | 584 |
///\name Execution Control |
| 585 | 585 |
///The simplest way to execute the %Dijkstra algorithm is to use |
| 586 | 586 |
///one of the member functions called \ref run(Node) "run()".\n |
| 587 | 587 |
///If you need more control on the execution, first you have to call |
| 588 | 588 |
///\ref init(), then you can add several source nodes with |
| 589 | 589 |
///\ref addSource(). Finally the actual path computation can be |
| 590 | 590 |
///performed with one of the \ref start() functions. |
| 591 | 591 |
|
| 592 | 592 |
///@{
|
| 593 | 593 |
|
| 594 | 594 |
///\brief Initializes the internal data structures. |
| 595 | 595 |
/// |
| 596 | 596 |
///Initializes the internal data structures. |
| 597 | 597 |
void init() |
| 598 | 598 |
{
|
| 599 | 599 |
create_maps(); |
| 600 | 600 |
_heap->clear(); |
| 601 | 601 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
| 602 | 602 |
_pred->set(u,INVALID); |
| 603 | 603 |
_processed->set(u,false); |
| 604 | 604 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
| 605 | 605 |
} |
| 606 | 606 |
} |
| 607 | 607 |
|
| 608 | 608 |
///Adds a new source node. |
| 609 | 609 |
|
| 610 | 610 |
///Adds a new source node to the priority heap. |
| 611 | 611 |
///The optional second parameter is the initial distance of the node. |
| 612 | 612 |
/// |
| 613 | 613 |
///The function checks if the node has already been added to the heap and |
| 614 | 614 |
///it is pushed to the heap only if either it was not in the heap |
| 615 | 615 |
///or the shortest path found till then is shorter than \c dst. |
| 616 | 616 |
void addSource(Node s,Value dst=OperationTraits::zero()) |
| 617 | 617 |
{
|
| 618 | 618 |
if(_heap->state(s) != Heap::IN_HEAP) {
|
| 619 | 619 |
_heap->push(s,dst); |
| 620 | 620 |
} else if(OperationTraits::less((*_heap)[s], dst)) {
|
| 621 | 621 |
_heap->set(s,dst); |
| 622 | 622 |
_pred->set(s,INVALID); |
| 623 | 623 |
} |
| 624 | 624 |
} |
| 625 | 625 |
|
| 626 | 626 |
///Processes the next node in the priority heap |
| 627 | 627 |
|
| 628 | 628 |
///Processes the next node in the priority heap. |
| 629 | 629 |
/// |
| 630 | 630 |
///\return The processed node. |
| 631 | 631 |
/// |
| 632 | 632 |
///\warning The priority heap must not be empty. |
| 633 | 633 |
Node processNextNode() |
| 634 | 634 |
{
|
| 635 | 635 |
Node v=_heap->top(); |
| 636 | 636 |
Value oldvalue=_heap->prio(); |
| 637 | 637 |
_heap->pop(); |
| 638 | 638 |
finalizeNodeData(v,oldvalue); |
| 639 | 639 |
|
| 640 | 640 |
for(OutArcIt e(*G,v); e!=INVALID; ++e) {
|
| 641 | 641 |
Node w=G->target(e); |
| 642 | 642 |
switch(_heap->state(w)) {
|
| 643 | 643 |
case Heap::PRE_HEAP: |
| 644 | 644 |
_heap->push(w,OperationTraits::plus(oldvalue, (*_length)[e])); |
| 645 | 645 |
_pred->set(w,e); |
| 646 | 646 |
break; |
| 647 | 647 |
case Heap::IN_HEAP: |
| 648 | 648 |
{
|
| 649 | 649 |
Value newvalue = OperationTraits::plus(oldvalue, (*_length)[e]); |
| 650 | 650 |
if ( OperationTraits::less(newvalue, (*_heap)[w]) ) {
|
| 651 | 651 |
_heap->decrease(w, newvalue); |
| 652 | 652 |
_pred->set(w,e); |
| 653 | 653 |
} |
| 654 | 654 |
} |
| 655 | 655 |
break; |
| 656 | 656 |
case Heap::POST_HEAP: |
| 657 | 657 |
break; |
| 658 | 658 |
} |
| 659 | 659 |
} |
| 660 | 660 |
return v; |
| 661 | 661 |
} |
| 662 | 662 |
|
| 663 | 663 |
///The next node to be processed. |
| 664 | 664 |
|
| 665 | 665 |
///Returns the next node to be processed or \c INVALID if the |
| 666 | 666 |
///priority heap is empty. |
| 667 | 667 |
Node nextNode() const |
| 668 | 668 |
{
|
| 669 | 669 |
return !_heap->empty()?_heap->top():INVALID; |
| 670 | 670 |
} |
| 671 | 671 |
|
| 672 | 672 |
///Returns \c false if there are nodes to be processed. |
| 673 | 673 |
|
| 674 | 674 |
///Returns \c false if there are nodes to be processed |
| 675 | 675 |
///in the priority heap. |
| 676 | 676 |
bool emptyQueue() const { return _heap->empty(); }
|
| 677 | 677 |
|
| 678 | 678 |
///Returns the number of the nodes to be processed. |
| 679 | 679 |
|
| 680 | 680 |
///Returns the number of the nodes to be processed |
| 681 | 681 |
///in the priority heap. |
| 682 | 682 |
int queueSize() const { return _heap->size(); }
|
| 683 | 683 |
|
| 684 | 684 |
///Executes the algorithm. |
| 685 | 685 |
|
| 686 | 686 |
///Executes the algorithm. |
| 687 | 687 |
/// |
| 688 | 688 |
///This method runs the %Dijkstra algorithm from the root node(s) |
| 689 | 689 |
///in order to compute the shortest path to each node. |
| 690 | 690 |
/// |
| 691 | 691 |
///The algorithm computes |
| 692 | 692 |
///- the shortest path tree (forest), |
| 693 | 693 |
///- the distance of each node from the root(s). |
| 694 | 694 |
/// |
| 695 | 695 |
///\pre init() must be called and at least one root node should be |
| 696 | 696 |
///added with addSource() before using this function. |
| 697 | 697 |
/// |
| 698 | 698 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
| 699 | 699 |
///\code |
| 700 | 700 |
/// while ( !d.emptyQueue() ) {
|
| 701 | 701 |
/// d.processNextNode(); |
| 702 | 702 |
/// } |
| 703 | 703 |
///\endcode |
| 704 | 704 |
void start() |
| 705 | 705 |
{
|
| 706 | 706 |
while ( !emptyQueue() ) processNextNode(); |
| 707 | 707 |
} |
| 708 | 708 |
|
| 709 | 709 |
///Executes the algorithm until the given target node is processed. |
| 710 | 710 |
|
| 711 | 711 |
///Executes the algorithm until the given target node is processed. |
| 712 | 712 |
/// |
| 713 | 713 |
///This method runs the %Dijkstra algorithm from the root node(s) |
| 714 | 714 |
///in order to compute the shortest path to \c t. |
| 715 | 715 |
/// |
| 716 | 716 |
///The algorithm computes |
| 717 | 717 |
///- the shortest path to \c t, |
| 718 | 718 |
///- the distance of \c t from the root(s). |
| 719 | 719 |
/// |
| 720 | 720 |
///\pre init() must be called and at least one root node should be |
| 721 | 721 |
///added with addSource() before using this function. |
| 722 | 722 |
void start(Node t) |
| 723 | 723 |
{
|
| 724 | 724 |
while ( !_heap->empty() && _heap->top()!=t ) processNextNode(); |
| 725 | 725 |
if ( !_heap->empty() ) {
|
| 726 | 726 |
finalizeNodeData(_heap->top(),_heap->prio()); |
| 727 | 727 |
_heap->pop(); |
| 728 | 728 |
} |
| 729 | 729 |
} |
| 730 | 730 |
|
| 731 | 731 |
///Executes the algorithm until a condition is met. |
| 732 | 732 |
|
| 733 | 733 |
///Executes the algorithm until a condition is met. |
| 734 | 734 |
/// |
| 735 | 735 |
///This method runs the %Dijkstra algorithm from the root node(s) in |
| 736 | 736 |
///order to compute the shortest path to a node \c v with |
| 737 | 737 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
| 738 | 738 |
/// |
| 739 | 739 |
///\param nm A \c bool (or convertible) node map. The algorithm |
| 740 | 740 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
| 741 | 741 |
/// |
| 742 | 742 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
| 743 | 743 |
///\c INVALID if no such node was found. |
| 744 | 744 |
/// |
| 745 | 745 |
///\pre init() must be called and at least one root node should be |
| 746 | 746 |
///added with addSource() before using this function. |
| 747 | 747 |
template<class NodeBoolMap> |
| 748 | 748 |
Node start(const NodeBoolMap &nm) |
| 749 | 749 |
{
|
| 750 | 750 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
| 751 | 751 |
if ( _heap->empty() ) return INVALID; |
| 752 | 752 |
finalizeNodeData(_heap->top(),_heap->prio()); |
| 753 | 753 |
return _heap->top(); |
| 754 | 754 |
} |
| 755 | 755 |
|
| 756 | 756 |
///Runs the algorithm from the given source node. |
| 757 | 757 |
|
| 758 | 758 |
///This method runs the %Dijkstra algorithm from node \c s |
| 759 | 759 |
///in order to compute the shortest path to each node. |
| 760 | 760 |
/// |
| 761 | 761 |
///The algorithm computes |
| 762 | 762 |
///- the shortest path tree, |
| 763 | 763 |
///- the distance of each node from the root. |
| 764 | 764 |
/// |
| 765 | 765 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 766 | 766 |
///\code |
| 767 | 767 |
/// d.init(); |
| 768 | 768 |
/// d.addSource(s); |
| 769 | 769 |
/// d.start(); |
| 770 | 770 |
///\endcode |
| 771 | 771 |
void run(Node s) {
|
| 772 | 772 |
init(); |
| 773 | 773 |
addSource(s); |
| 774 | 774 |
start(); |
| 775 | 775 |
} |
| 776 | 776 |
|
| 777 | 777 |
///Finds the shortest path between \c s and \c t. |
| 778 | 778 |
|
| 779 | 779 |
///This method runs the %Dijkstra algorithm from node \c s |
| 780 | 780 |
///in order to compute the shortest path to node \c t |
| 781 | 781 |
///(it stops searching when \c t is processed). |
| 782 | 782 |
/// |
| 783 | 783 |
///\return \c true if \c t is reachable form \c s. |
| 784 | 784 |
/// |
| 785 | 785 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a |
| 786 | 786 |
///shortcut of the following code. |
| 787 | 787 |
///\code |
| 788 | 788 |
/// d.init(); |
| 789 | 789 |
/// d.addSource(s); |
| 790 | 790 |
/// d.start(t); |
| 791 | 791 |
///\endcode |
| 792 | 792 |
bool run(Node s,Node t) {
|
| 793 | 793 |
init(); |
| 794 | 794 |
addSource(s); |
| 795 | 795 |
start(t); |
| 796 | 796 |
return (*_heap_cross_ref)[t] == Heap::POST_HEAP; |
| 797 | 797 |
} |
| 798 | 798 |
|
| 799 | 799 |
///@} |
| 800 | 800 |
|
| 801 | 801 |
///\name Query Functions |
| 802 | 802 |
///The results of the %Dijkstra algorithm can be obtained using these |
| 803 | 803 |
///functions.\n |
| 804 | 804 |
///Either \ref run(Node) "run()" or \ref start() should be called |
| 805 | 805 |
///before using them. |
| 806 | 806 |
|
| 807 | 807 |
///@{
|
| 808 | 808 |
|
| 809 | 809 |
///The shortest path to a node. |
| 810 | 810 |
|
| 811 | 811 |
///Returns the shortest path to a node. |
| 812 | 812 |
/// |
| 813 | 813 |
///\warning \c t should be reached from the root(s). |
| 814 | 814 |
/// |
| 815 | 815 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 816 | 816 |
///must be called before using this function. |
| 817 | 817 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 818 | 818 |
|
| 819 | 819 |
///The distance of a node from the root(s). |
| 820 | 820 |
|
| 821 | 821 |
///Returns the distance of a node from the root(s). |
| 822 | 822 |
/// |
| 823 | 823 |
///\warning If node \c v is not reached from the root(s), then |
| 824 | 824 |
///the return value of this function is undefined. |
| 825 | 825 |
/// |
| 826 | 826 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 827 | 827 |
///must be called before using this function. |
| 828 | 828 |
Value dist(Node v) const { return (*_dist)[v]; }
|
| 829 | 829 |
|
| 830 | 830 |
///Returns the 'previous arc' of the shortest path tree for a node. |
| 831 | 831 |
|
| 832 | 832 |
///This function returns the 'previous arc' of the shortest path |
| 833 | 833 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 834 | 834 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
| 835 | 835 |
///is not reached from the root(s) or if \c v is a root. |
| 836 | 836 |
/// |
| 837 | 837 |
///The shortest path tree used here is equal to the shortest path |
| 838 | 838 |
///tree used in \ref predNode(). |
| 839 | 839 |
/// |
| 840 | 840 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 841 | 841 |
///must be called before using this function. |
| 842 | 842 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
| 843 | 843 |
|
| 844 | 844 |
///Returns the 'previous node' of the shortest path tree for a node. |
| 845 | 845 |
|
| 846 | 846 |
///This function returns the 'previous node' of the shortest path |
| 847 | 847 |
///tree for the node \c v, i.e. it returns the last but one node |
| 848 | 848 |
///from a shortest path from a root to \c v. It is \c INVALID |
| 849 | 849 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 850 | 850 |
/// |
| 851 | 851 |
///The shortest path tree used here is equal to the shortest path |
| 852 | 852 |
///tree used in \ref predArc(). |
| 853 | 853 |
/// |
| 854 | 854 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 855 | 855 |
///must be called before using this function. |
| 856 | 856 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 857 | 857 |
G->source((*_pred)[v]); } |
| 858 | 858 |
|
| 859 | 859 |
///\brief Returns a const reference to the node map that stores the |
| 860 | 860 |
///distances of the nodes. |
| 861 | 861 |
/// |
| 862 | 862 |
///Returns a const reference to the node map that stores the distances |
| 863 | 863 |
///of the nodes calculated by the algorithm. |
| 864 | 864 |
/// |
| 865 | 865 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 866 | 866 |
///must be called before using this function. |
| 867 | 867 |
const DistMap &distMap() const { return *_dist;}
|
| 868 | 868 |
|
| 869 | 869 |
///\brief Returns a const reference to the node map that stores the |
| 870 | 870 |
///predecessor arcs. |
| 871 | 871 |
/// |
| 872 | 872 |
///Returns a const reference to the node map that stores the predecessor |
| 873 | 873 |
///arcs, which form the shortest path tree. |
| 874 | 874 |
/// |
| 875 | 875 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 876 | 876 |
///must be called before using this function. |
| 877 | 877 |
const PredMap &predMap() const { return *_pred;}
|
| 878 | 878 |
|
| 879 | 879 |
///Checks if a node is reached from the root(s). |
| 880 | 880 |
|
| 881 | 881 |
///Returns \c true if \c v is reached from the root(s). |
| 882 | 882 |
/// |
| 883 | 883 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 884 | 884 |
///must be called before using this function. |
| 885 | 885 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
|
| 886 | 886 |
Heap::PRE_HEAP; } |
| 887 | 887 |
|
| 888 | 888 |
///Checks if a node is processed. |
| 889 | 889 |
|
| 890 | 890 |
///Returns \c true if \c v is processed, i.e. the shortest |
| 891 | 891 |
///path to \c v has already found. |
| 892 | 892 |
/// |
| 893 | 893 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 894 | 894 |
///must be called before using this function. |
| 895 | 895 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
|
| 896 | 896 |
Heap::POST_HEAP; } |
| 897 | 897 |
|
| 898 | 898 |
///The current distance of a node from the root(s). |
| 899 | 899 |
|
| 900 | 900 |
///Returns the current distance of a node from the root(s). |
| 901 | 901 |
///It may be decreased in the following processes. |
| 902 | 902 |
/// |
| 903 | 903 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 904 | 904 |
///must be called before using this function and |
| 905 | 905 |
///node \c v must be reached but not necessarily processed. |
| 906 | 906 |
Value currentDist(Node v) const {
|
| 907 | 907 |
return processed(v) ? (*_dist)[v] : (*_heap)[v]; |
| 908 | 908 |
} |
| 909 | 909 |
|
| 910 | 910 |
///@} |
| 911 | 911 |
}; |
| 912 | 912 |
|
| 913 | 913 |
|
| 914 | 914 |
///Default traits class of dijkstra() function. |
| 915 | 915 |
|
| 916 | 916 |
///Default traits class of dijkstra() function. |
| 917 | 917 |
///\tparam GR The type of the digraph. |
| 918 | 918 |
///\tparam LEN The type of the length map. |
| 919 | 919 |
template<class GR, class LEN> |
| 920 | 920 |
struct DijkstraWizardDefaultTraits |
| 921 | 921 |
{
|
| 922 | 922 |
///The type of the digraph the algorithm runs on. |
| 923 | 923 |
typedef GR Digraph; |
| 924 | 924 |
///The type of the map that stores the arc lengths. |
| 925 | 925 |
|
| 926 | 926 |
///The type of the map that stores the arc lengths. |
| 927 | 927 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 928 | 928 |
typedef LEN LengthMap; |
| 929 | 929 |
///The type of the length of the arcs. |
| 930 | 930 |
typedef typename LEN::Value Value; |
| 931 | 931 |
|
| 932 | 932 |
/// Operation traits for Dijkstra algorithm. |
| 933 | 933 |
|
| 934 | 934 |
/// This class defines the operations that are used in the algorithm. |
| 935 | 935 |
/// \see DijkstraDefaultOperationTraits |
| 936 | 936 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
| 937 | 937 |
|
| 938 | 938 |
/// The cross reference type used by the heap. |
| 939 | 939 |
|
| 940 | 940 |
/// The cross reference type used by the heap. |
| 941 | 941 |
/// Usually it is \c Digraph::NodeMap<int>. |
| 942 | 942 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 943 | 943 |
///Instantiates a \ref HeapCrossRef. |
| 944 | 944 |
|
| 945 | 945 |
///This function instantiates a \ref HeapCrossRef. |
| 946 | 946 |
/// \param g is the digraph, to which we would like to define the |
| 947 | 947 |
/// HeapCrossRef. |
| 948 | 948 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
| 949 | 949 |
{
|
| 950 | 950 |
return new HeapCrossRef(g); |
| 951 | 951 |
} |
| 952 | 952 |
|
| 953 | 953 |
///The heap type used by the Dijkstra algorithm. |
| 954 | 954 |
|
| 955 | 955 |
///The heap type used by the Dijkstra algorithm. |
| 956 | 956 |
/// |
| 957 | 957 |
///\sa BinHeap |
| 958 | 958 |
///\sa Dijkstra |
| 959 | 959 |
typedef BinHeap<Value, typename Digraph::template NodeMap<int>, |
| 960 | 960 |
std::less<Value> > Heap; |
| 961 | 961 |
|
| 962 | 962 |
///Instantiates a \ref Heap. |
| 963 | 963 |
|
| 964 | 964 |
///This function instantiates a \ref Heap. |
| 965 | 965 |
/// \param r is the HeapCrossRef which is used. |
| 966 | 966 |
static Heap *createHeap(HeapCrossRef& r) |
| 967 | 967 |
{
|
| 968 | 968 |
return new Heap(r); |
| 969 | 969 |
} |
| 970 | 970 |
|
| 971 | 971 |
///\brief The type of the map that stores the predecessor |
| 972 | 972 |
///arcs of the shortest paths. |
| 973 | 973 |
/// |
| 974 | 974 |
///The type of the map that stores the predecessor |
| 975 | 975 |
///arcs of the shortest paths. |
| 976 | 976 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 977 | 977 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 978 | 978 |
///Instantiates a PredMap. |
| 979 | 979 |
|
| 980 | 980 |
///This function instantiates a PredMap. |
| 981 | 981 |
///\param g is the digraph, to which we would like to define the |
| 982 | 982 |
///PredMap. |
| 983 | 983 |
static PredMap *createPredMap(const Digraph &g) |
| 984 | 984 |
{
|
| 985 | 985 |
return new PredMap(g); |
| 986 | 986 |
} |
| 987 | 987 |
|
| 988 | 988 |
///The type of the map that indicates which nodes are processed. |
| 989 | 989 |
|
| 990 | 990 |
///The type of the map that indicates which nodes are processed. |
| 991 | 991 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 992 | 992 |
///By default it is a NullMap. |
| 993 | 993 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 994 | 994 |
///Instantiates a ProcessedMap. |
| 995 | 995 |
|
| 996 | 996 |
///This function instantiates a ProcessedMap. |
| 997 | 997 |
///\param g is the digraph, to which |
| 998 | 998 |
///we would like to define the ProcessedMap. |
| 999 | 999 |
#ifdef DOXYGEN |
| 1000 | 1000 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 1001 | 1001 |
#else |
| 1002 | 1002 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 1003 | 1003 |
#endif |
| 1004 | 1004 |
{
|
| 1005 | 1005 |
return new ProcessedMap(); |
| 1006 | 1006 |
} |
| 1007 | 1007 |
|
| 1008 | 1008 |
///The type of the map that stores the distances of the nodes. |
| 1009 | 1009 |
|
| 1010 | 1010 |
///The type of the map that stores the distances of the nodes. |
| 1011 | 1011 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 1012 | 1012 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
| 1013 | 1013 |
///Instantiates a DistMap. |
| 1014 | 1014 |
|
| 1015 | 1015 |
///This function instantiates a DistMap. |
| 1016 | 1016 |
///\param g is the digraph, to which we would like to define |
| 1017 | 1017 |
///the DistMap |
| 1018 | 1018 |
static DistMap *createDistMap(const Digraph &g) |
| 1019 | 1019 |
{
|
| 1020 | 1020 |
return new DistMap(g); |
| 1021 | 1021 |
} |
| 1022 | 1022 |
|
| 1023 | 1023 |
///The type of the shortest paths. |
| 1024 | 1024 |
|
| 1025 | 1025 |
///The type of the shortest paths. |
| 1026 | 1026 |
///It must meet the \ref concepts::Path "Path" concept. |
| 1027 | 1027 |
typedef lemon::Path<Digraph> Path; |
| 1028 | 1028 |
}; |
| 1029 | 1029 |
|
| 1030 | 1030 |
/// Default traits class used by DijkstraWizard |
| 1031 | 1031 |
|
| 1032 | 1032 |
/// To make it easier to use Dijkstra algorithm |
| 1033 | 1033 |
/// we have created a wizard class. |
| 1034 | 1034 |
/// This \ref DijkstraWizard class needs default traits, |
| 1035 | 1035 |
/// as well as the \ref Dijkstra class. |
| 1036 | 1036 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
| 1037 | 1037 |
/// \ref DijkstraWizard class. |
| 1038 | 1038 |
template<typename GR, typename LEN> |
| 1039 | 1039 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN> |
| 1040 | 1040 |
{
|
| 1041 | 1041 |
typedef DijkstraWizardDefaultTraits<GR,LEN> Base; |
| 1042 | 1042 |
protected: |
| 1043 | 1043 |
//The type of the nodes in the digraph. |
| 1044 | 1044 |
typedef typename Base::Digraph::Node Node; |
| 1045 | 1045 |
|
| 1046 | 1046 |
//Pointer to the digraph the algorithm runs on. |
| 1047 | 1047 |
void *_g; |
| 1048 | 1048 |
//Pointer to the length map. |
| 1049 | 1049 |
void *_length; |
| 1050 | 1050 |
//Pointer to the map of processed nodes. |
| 1051 | 1051 |
void *_processed; |
| 1052 | 1052 |
//Pointer to the map of predecessors arcs. |
| 1053 | 1053 |
void *_pred; |
| 1054 | 1054 |
//Pointer to the map of distances. |
| 1055 | 1055 |
void *_dist; |
| 1056 | 1056 |
//Pointer to the shortest path to the target node. |
| 1057 | 1057 |
void *_path; |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DIMACS_H |
| 20 | 20 |
#define LEMON_DIMACS_H |
| 21 | 21 |
|
| 22 | 22 |
#include <iostream> |
| 23 | 23 |
#include <string> |
| 24 | 24 |
#include <vector> |
| 25 | 25 |
#include <limits> |
| 26 | 26 |
#include <lemon/maps.h> |
| 27 | 27 |
#include <lemon/error.h> |
| 28 | 28 |
/// \ingroup dimacs_group |
| 29 | 29 |
/// \file |
| 30 | 30 |
/// \brief DIMACS file format reader. |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
/// \addtogroup dimacs_group |
| 35 | 35 |
/// @{
|
| 36 | 36 |
|
| 37 | 37 |
/// DIMACS file type descriptor. |
| 38 | 38 |
struct DimacsDescriptor |
| 39 | 39 |
{
|
| 40 |
///File type enum |
|
| 41 |
enum Type |
|
| 42 |
{
|
|
| 43 |
NONE, MIN, MAX, SP, MAT |
|
| 44 |
|
|
| 40 |
///\brief DIMACS file type enum |
|
| 41 |
/// |
|
| 42 |
///DIMACS file type enum. |
|
| 43 |
enum Type {
|
|
| 44 |
NONE, ///< Undefined type. |
|
| 45 |
MIN, ///< DIMACS file type for minimum cost flow problems. |
|
| 46 |
MAX, ///< DIMACS file type for maximum flow problems. |
|
| 47 |
SP, ///< DIMACS file type for shostest path problems. |
|
| 48 |
MAT ///< DIMACS file type for plain graphs and matching problems. |
|
| 49 |
}; |
|
| 45 | 50 |
///The file type |
| 46 | 51 |
Type type; |
| 47 | 52 |
///The number of nodes in the graph |
| 48 | 53 |
int nodeNum; |
| 49 | 54 |
///The number of edges in the graph |
| 50 | 55 |
int edgeNum; |
| 51 | 56 |
int lineShift; |
| 52 |
/// |
|
| 57 |
///Constructor. It sets the type to \c NONE. |
|
| 53 | 58 |
DimacsDescriptor() : type(NONE) {}
|
| 54 | 59 |
}; |
| 55 | 60 |
|
| 56 | 61 |
///Discover the type of a DIMACS file |
| 57 | 62 |
|
| 58 |
///It starts seeking the beginning of the file for the problem type |
|
| 59 |
///and size info. The found data is returned in a special struct |
|
| 60 |
///that can be evaluated and passed to the appropriate reader |
|
| 61 |
///function. |
|
| 63 |
///This function starts seeking the beginning of the given file for the |
|
| 64 |
///problem type and size info. |
|
| 65 |
///The found data is returned in a special struct that can be evaluated |
|
| 66 |
///and passed to the appropriate reader function. |
|
| 62 | 67 |
DimacsDescriptor dimacsType(std::istream& is) |
| 63 | 68 |
{
|
| 64 | 69 |
DimacsDescriptor r; |
| 65 | 70 |
std::string problem,str; |
| 66 | 71 |
char c; |
| 67 | 72 |
r.lineShift=0; |
| 68 | 73 |
while (is >> c) |
| 69 | 74 |
switch(c) |
| 70 | 75 |
{
|
| 71 | 76 |
case 'p': |
| 72 | 77 |
if(is >> problem >> r.nodeNum >> r.edgeNum) |
| 73 | 78 |
{
|
| 74 | 79 |
getline(is, str); |
| 75 | 80 |
r.lineShift++; |
| 76 | 81 |
if(problem=="min") r.type=DimacsDescriptor::MIN; |
| 77 | 82 |
else if(problem=="max") r.type=DimacsDescriptor::MAX; |
| 78 | 83 |
else if(problem=="sp") r.type=DimacsDescriptor::SP; |
| 79 | 84 |
else if(problem=="mat") r.type=DimacsDescriptor::MAT; |
| 80 | 85 |
else throw FormatError("Unknown problem type");
|
| 81 | 86 |
return r; |
| 82 | 87 |
} |
| 83 | 88 |
else |
| 84 | 89 |
{
|
| 85 | 90 |
throw FormatError("Missing or wrong problem type declaration.");
|
| 86 | 91 |
} |
| 87 | 92 |
break; |
| 88 | 93 |
case 'c': |
| 89 | 94 |
getline(is, str); |
| 90 | 95 |
r.lineShift++; |
| 91 | 96 |
break; |
| 92 | 97 |
default: |
| 93 | 98 |
throw FormatError("Unknown DIMACS declaration.");
|
| 94 | 99 |
} |
| 95 | 100 |
throw FormatError("Missing problem type declaration.");
|
| 96 | 101 |
} |
| 97 | 102 |
|
| 98 | 103 |
|
| 99 |
|
|
| 100 |
/// DIMACS minimum cost flow reader function. |
|
| 104 |
/// \brief DIMACS minimum cost flow reader function. |
|
| 101 | 105 |
/// |
| 102 | 106 |
/// This function reads a minimum cost flow instance from DIMACS format, |
| 103 | 107 |
/// i.e. from a DIMACS file having a line starting with |
| 104 | 108 |
/// \code |
| 105 | 109 |
/// p min |
| 106 | 110 |
/// \endcode |
| 107 | 111 |
/// At the beginning, \c g is cleared by \c g.clear(). The supply |
| 108 | 112 |
/// amount of the nodes are written to the \c supply node map |
| 109 | 113 |
/// (they are signed values). The lower bounds, capacities and costs |
| 110 | 114 |
/// of the arcs are written to the \c lower, \c capacity and \c cost |
| 111 | 115 |
/// arc maps. |
| 112 | 116 |
/// |
| 113 | 117 |
/// If the capacity of an arc is less than the lower bound, it will |
| 114 | 118 |
/// be set to "infinite" instead. The actual value of "infinite" is |
| 115 | 119 |
/// contolled by the \c infty parameter. If it is 0 (the default value), |
| 116 | 120 |
/// \c std::numeric_limits<Capacity>::infinity() will be used if available, |
| 117 | 121 |
/// \c std::numeric_limits<Capacity>::max() otherwise. If \c infty is set to |
| 118 | 122 |
/// a non-zero value, that value will be used as "infinite". |
| 119 | 123 |
/// |
| 120 | 124 |
/// If the file type was previously evaluated by dimacsType(), then |
| 121 | 125 |
/// the descriptor struct should be given by the \c dest parameter. |
| 122 | 126 |
template <typename Digraph, typename LowerMap, |
| 123 | 127 |
typename CapacityMap, typename CostMap, |
| 124 | 128 |
typename SupplyMap> |
| 125 | 129 |
void readDimacsMin(std::istream& is, |
| 126 | 130 |
Digraph &g, |
| 127 | 131 |
LowerMap& lower, |
| 128 | 132 |
CapacityMap& capacity, |
| 129 | 133 |
CostMap& cost, |
| 130 | 134 |
SupplyMap& supply, |
| 131 | 135 |
typename CapacityMap::Value infty = 0, |
| 132 | 136 |
DimacsDescriptor desc=DimacsDescriptor()) |
| 133 | 137 |
{
|
| 134 | 138 |
g.clear(); |
| 135 | 139 |
std::vector<typename Digraph::Node> nodes; |
| 136 | 140 |
typename Digraph::Arc e; |
| 137 | 141 |
std::string problem, str; |
| 138 | 142 |
char c; |
| 139 | 143 |
int i, j; |
| 140 | 144 |
if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is); |
| 141 | 145 |
if(desc.type!=DimacsDescriptor::MIN) |
| 142 | 146 |
throw FormatError("Problem type mismatch");
|
| 143 | 147 |
|
| 144 | 148 |
nodes.resize(desc.nodeNum + 1); |
| 145 | 149 |
for (int k = 1; k <= desc.nodeNum; ++k) {
|
| 146 | 150 |
nodes[k] = g.addNode(); |
| 147 | 151 |
supply.set(nodes[k], 0); |
| 148 | 152 |
} |
| 149 | 153 |
|
| 150 | 154 |
typename SupplyMap::Value sup; |
| 151 | 155 |
typename CapacityMap::Value low; |
| 152 | 156 |
typename CapacityMap::Value cap; |
| 153 | 157 |
typename CostMap::Value co; |
| 154 | 158 |
typedef typename CapacityMap::Value Capacity; |
| 155 | 159 |
if(infty==0) |
| 156 | 160 |
infty = std::numeric_limits<Capacity>::has_infinity ? |
| 157 | 161 |
std::numeric_limits<Capacity>::infinity() : |
| 158 | 162 |
std::numeric_limits<Capacity>::max(); |
| 159 | 163 |
|
| 160 | 164 |
while (is >> c) {
|
| 161 | 165 |
switch (c) {
|
| 162 | 166 |
case 'c': // comment line |
| 163 | 167 |
getline(is, str); |
| 164 | 168 |
break; |
| 165 | 169 |
case 'n': // node definition line |
| 166 | 170 |
is >> i >> sup; |
| 167 | 171 |
getline(is, str); |
| 168 | 172 |
supply.set(nodes[i], sup); |
| 169 | 173 |
break; |
| 170 | 174 |
case 'a': // arc definition line |
| 171 | 175 |
is >> i >> j >> low >> cap >> co; |
| 172 | 176 |
getline(is, str); |
| 173 | 177 |
e = g.addArc(nodes[i], nodes[j]); |
| 174 | 178 |
lower.set(e, low); |
| 175 | 179 |
if (cap >= low) |
| 176 | 180 |
capacity.set(e, cap); |
| 177 | 181 |
else |
| 178 | 182 |
capacity.set(e, infty); |
| 179 | 183 |
cost.set(e, co); |
| 180 | 184 |
break; |
| 181 | 185 |
} |
| 182 | 186 |
} |
| 183 | 187 |
} |
| 184 | 188 |
|
| 185 | 189 |
template<typename Digraph, typename CapacityMap> |
| 186 | 190 |
void _readDimacs(std::istream& is, |
| 187 | 191 |
Digraph &g, |
| 188 | 192 |
CapacityMap& capacity, |
| 189 | 193 |
typename Digraph::Node &s, |
| 190 | 194 |
typename Digraph::Node &t, |
| 191 | 195 |
typename CapacityMap::Value infty = 0, |
| 192 | 196 |
DimacsDescriptor desc=DimacsDescriptor()) {
|
| 193 | 197 |
g.clear(); |
| 194 | 198 |
s=t=INVALID; |
| 195 | 199 |
std::vector<typename Digraph::Node> nodes; |
| 196 | 200 |
typename Digraph::Arc e; |
| 197 | 201 |
char c, d; |
| 198 | 202 |
int i, j; |
| 199 | 203 |
typename CapacityMap::Value _cap; |
| 200 | 204 |
std::string str; |
| 201 | 205 |
nodes.resize(desc.nodeNum + 1); |
| 202 | 206 |
for (int k = 1; k <= desc.nodeNum; ++k) {
|
| 203 | 207 |
nodes[k] = g.addNode(); |
| 204 | 208 |
} |
| 205 | 209 |
typedef typename CapacityMap::Value Capacity; |
| 206 | 210 |
|
| 207 | 211 |
if(infty==0) |
| 208 | 212 |
infty = std::numeric_limits<Capacity>::has_infinity ? |
| 209 | 213 |
std::numeric_limits<Capacity>::infinity() : |
| 210 | 214 |
std::numeric_limits<Capacity>::max(); |
| 211 | 215 |
|
| 212 | 216 |
while (is >> c) {
|
| 213 | 217 |
switch (c) {
|
| 214 | 218 |
case 'c': // comment line |
| 215 | 219 |
getline(is, str); |
| 216 | 220 |
break; |
| 217 | 221 |
case 'n': // node definition line |
| 218 | 222 |
if (desc.type==DimacsDescriptor::SP) { // shortest path problem
|
| 219 | 223 |
is >> i; |
| 220 | 224 |
getline(is, str); |
| 221 | 225 |
s = nodes[i]; |
| 222 | 226 |
} |
| 223 | 227 |
if (desc.type==DimacsDescriptor::MAX) { // max flow problem
|
| 224 | 228 |
is >> i >> d; |
| 225 | 229 |
getline(is, str); |
| 226 | 230 |
if (d == 's') s = nodes[i]; |
| 227 | 231 |
if (d == 't') t = nodes[i]; |
| 228 | 232 |
} |
| 229 | 233 |
break; |
| 230 | 234 |
case 'a': // arc definition line |
| 231 | 235 |
if (desc.type==DimacsDescriptor::SP) {
|
| 232 | 236 |
is >> i >> j >> _cap; |
| 233 | 237 |
getline(is, str); |
| 234 | 238 |
e = g.addArc(nodes[i], nodes[j]); |
| 235 | 239 |
capacity.set(e, _cap); |
| 236 | 240 |
} |
| 237 | 241 |
else if (desc.type==DimacsDescriptor::MAX) {
|
| 238 | 242 |
is >> i >> j >> _cap; |
| 239 | 243 |
getline(is, str); |
| 240 | 244 |
e = g.addArc(nodes[i], nodes[j]); |
| 241 | 245 |
if (_cap >= 0) |
| 242 | 246 |
capacity.set(e, _cap); |
| 243 | 247 |
else |
| 244 | 248 |
capacity.set(e, infty); |
| 245 | 249 |
} |
| 246 | 250 |
else {
|
| 247 | 251 |
is >> i >> j; |
| 248 | 252 |
getline(is, str); |
| 249 | 253 |
g.addArc(nodes[i], nodes[j]); |
| 250 | 254 |
} |
| 251 | 255 |
break; |
| 252 | 256 |
} |
| 253 | 257 |
} |
| 254 | 258 |
} |
| 255 | 259 |
|
| 256 |
/// DIMACS maximum flow reader function. |
|
| 260 |
/// \brief DIMACS maximum flow reader function. |
|
| 257 | 261 |
/// |
| 258 | 262 |
/// This function reads a maximum flow instance from DIMACS format, |
| 259 | 263 |
/// i.e. from a DIMACS file having a line starting with |
| 260 | 264 |
/// \code |
| 261 | 265 |
/// p max |
| 262 | 266 |
/// \endcode |
| 263 | 267 |
/// At the beginning, \c g is cleared by \c g.clear(). The arc |
| 264 | 268 |
/// capacities are written to the \c capacity arc map and \c s and |
| 265 | 269 |
/// \c t are set to the source and the target nodes. |
| 266 | 270 |
/// |
| 267 | 271 |
/// If the capacity of an arc is negative, it will |
| 268 | 272 |
/// be set to "infinite" instead. The actual value of "infinite" is |
| 269 | 273 |
/// contolled by the \c infty parameter. If it is 0 (the default value), |
| 270 | 274 |
/// \c std::numeric_limits<Capacity>::infinity() will be used if available, |
| 271 | 275 |
/// \c std::numeric_limits<Capacity>::max() otherwise. If \c infty is set to |
| 272 | 276 |
/// a non-zero value, that value will be used as "infinite". |
| 273 | 277 |
/// |
| 274 | 278 |
/// If the file type was previously evaluated by dimacsType(), then |
| 275 | 279 |
/// the descriptor struct should be given by the \c dest parameter. |
| 276 | 280 |
template<typename Digraph, typename CapacityMap> |
| 277 | 281 |
void readDimacsMax(std::istream& is, |
| 278 | 282 |
Digraph &g, |
| 279 | 283 |
CapacityMap& capacity, |
| 280 | 284 |
typename Digraph::Node &s, |
| 281 | 285 |
typename Digraph::Node &t, |
| 282 | 286 |
typename CapacityMap::Value infty = 0, |
| 283 | 287 |
DimacsDescriptor desc=DimacsDescriptor()) {
|
| 284 | 288 |
if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is); |
| 285 | 289 |
if(desc.type!=DimacsDescriptor::MAX) |
| 286 | 290 |
throw FormatError("Problem type mismatch");
|
| 287 | 291 |
_readDimacs(is,g,capacity,s,t,infty,desc); |
| 288 | 292 |
} |
| 289 | 293 |
|
| 290 |
/// DIMACS shortest path reader function. |
|
| 294 |
/// \brief DIMACS shortest path reader function. |
|
| 291 | 295 |
/// |
| 292 | 296 |
/// This function reads a shortest path instance from DIMACS format, |
| 293 | 297 |
/// i.e. from a DIMACS file having a line starting with |
| 294 | 298 |
/// \code |
| 295 | 299 |
/// p sp |
| 296 | 300 |
/// \endcode |
| 297 | 301 |
/// At the beginning, \c g is cleared by \c g.clear(). The arc |
| 298 | 302 |
/// lengths are written to the \c length arc map and \c s is set to the |
| 299 | 303 |
/// source node. |
| 300 | 304 |
/// |
| 301 | 305 |
/// If the file type was previously evaluated by dimacsType(), then |
| 302 | 306 |
/// the descriptor struct should be given by the \c dest parameter. |
| 303 | 307 |
template<typename Digraph, typename LengthMap> |
| 304 | 308 |
void readDimacsSp(std::istream& is, |
| 305 | 309 |
Digraph &g, |
| 306 | 310 |
LengthMap& length, |
| 307 | 311 |
typename Digraph::Node &s, |
| 308 | 312 |
DimacsDescriptor desc=DimacsDescriptor()) {
|
| 309 | 313 |
typename Digraph::Node t; |
| 310 | 314 |
if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is); |
| 311 | 315 |
if(desc.type!=DimacsDescriptor::SP) |
| 312 | 316 |
throw FormatError("Problem type mismatch");
|
| 313 | 317 |
_readDimacs(is, g, length, s, t, 0, desc); |
| 314 | 318 |
} |
| 315 | 319 |
|
| 316 |
/// DIMACS capacitated digraph reader function. |
|
| 320 |
/// \brief DIMACS capacitated digraph reader function. |
|
| 317 | 321 |
/// |
| 318 | 322 |
/// This function reads an arc capacitated digraph instance from |
| 319 | 323 |
/// DIMACS 'max' or 'sp' format. |
| 320 | 324 |
/// At the beginning, \c g is cleared by \c g.clear() |
| 321 | 325 |
/// and the arc capacities/lengths are written to the \c capacity |
| 322 | 326 |
/// arc map. |
| 323 | 327 |
/// |
| 324 | 328 |
/// In case of the 'max' format, if the capacity of an arc is negative, |
| 325 | 329 |
/// it will |
| 326 | 330 |
/// be set to "infinite" instead. The actual value of "infinite" is |
| 327 | 331 |
/// contolled by the \c infty parameter. If it is 0 (the default value), |
| 328 | 332 |
/// \c std::numeric_limits<Capacity>::infinity() will be used if available, |
| 329 | 333 |
/// \c std::numeric_limits<Capacity>::max() otherwise. If \c infty is set to |
| 330 | 334 |
/// a non-zero value, that value will be used as "infinite". |
| 331 | 335 |
/// |
| 332 | 336 |
/// If the file type was previously evaluated by dimacsType(), then |
| 333 | 337 |
/// the descriptor struct should be given by the \c dest parameter. |
| 334 | 338 |
template<typename Digraph, typename CapacityMap> |
| 335 | 339 |
void readDimacsCap(std::istream& is, |
| 336 | 340 |
Digraph &g, |
| 337 | 341 |
CapacityMap& capacity, |
| 338 | 342 |
typename CapacityMap::Value infty = 0, |
| 339 | 343 |
DimacsDescriptor desc=DimacsDescriptor()) {
|
| 340 | 344 |
typename Digraph::Node u,v; |
| 341 | 345 |
if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is); |
| 342 | 346 |
if(desc.type!=DimacsDescriptor::MAX || desc.type!=DimacsDescriptor::SP) |
| 343 | 347 |
throw FormatError("Problem type mismatch");
|
| 344 | 348 |
_readDimacs(is, g, capacity, u, v, infty, desc); |
| 345 | 349 |
} |
| 346 | 350 |
|
| 347 | 351 |
template<typename Graph> |
| 348 | 352 |
typename enable_if<lemon::UndirectedTagIndicator<Graph>,void>::type |
| 349 | 353 |
_addArcEdge(Graph &g, typename Graph::Node s, typename Graph::Node t, |
| 350 | 354 |
dummy<0> = 0) |
| 351 | 355 |
{
|
| 352 | 356 |
g.addEdge(s,t); |
| 353 | 357 |
} |
| 354 | 358 |
template<typename Graph> |
| 355 | 359 |
typename disable_if<lemon::UndirectedTagIndicator<Graph>,void>::type |
| 356 | 360 |
_addArcEdge(Graph &g, typename Graph::Node s, typename Graph::Node t, |
| 357 | 361 |
dummy<1> = 1) |
| 358 | 362 |
{
|
| 359 | 363 |
g.addArc(s,t); |
| 360 | 364 |
} |
| 361 | 365 |
|
| 362 |
/// DIMACS plain (di)graph reader function. |
|
| 366 |
/// \brief DIMACS plain (di)graph reader function. |
|
| 363 | 367 |
/// |
| 364 |
/// This function reads a (di)graph without any designated nodes and |
|
| 365 |
/// maps from DIMACS format, i.e. from DIMACS files having a line |
|
| 366 |
/// |
|
| 368 |
/// This function reads a plain (di)graph without any designated nodes |
|
| 369 |
/// and maps (e.g. a matching instance) from DIMACS format, i.e. from |
|
| 370 |
/// DIMACS files having a line starting with |
|
| 367 | 371 |
/// \code |
| 368 | 372 |
/// p mat |
| 369 | 373 |
/// \endcode |
| 370 | 374 |
/// At the beginning, \c g is cleared by \c g.clear(). |
| 371 | 375 |
/// |
| 372 | 376 |
/// If the file type was previously evaluated by dimacsType(), then |
| 373 | 377 |
/// the descriptor struct should be given by the \c dest parameter. |
| 374 | 378 |
template<typename Graph> |
| 375 | 379 |
void readDimacsMat(std::istream& is, Graph &g, |
| 376 | 380 |
DimacsDescriptor desc=DimacsDescriptor()) |
| 377 | 381 |
{
|
| 378 | 382 |
if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is); |
| 379 | 383 |
if(desc.type!=DimacsDescriptor::MAT) |
| 380 | 384 |
throw FormatError("Problem type mismatch");
|
| 381 | 385 |
|
| 382 | 386 |
g.clear(); |
| 383 | 387 |
std::vector<typename Graph::Node> nodes; |
| 384 | 388 |
char c; |
| 385 | 389 |
int i, j; |
| 386 | 390 |
std::string str; |
| 387 | 391 |
nodes.resize(desc.nodeNum + 1); |
| 388 | 392 |
for (int k = 1; k <= desc.nodeNum; ++k) {
|
| 389 | 393 |
nodes[k] = g.addNode(); |
| 390 | 394 |
} |
| 391 | 395 |
|
| 392 | 396 |
while (is >> c) {
|
| 393 | 397 |
switch (c) {
|
| 394 | 398 |
case 'c': // comment line |
| 395 | 399 |
getline(is, str); |
| 396 | 400 |
break; |
| 397 | 401 |
case 'n': // node definition line |
| 398 | 402 |
break; |
| 399 | 403 |
case 'a': // arc definition line |
| 400 | 404 |
is >> i >> j; |
| 401 | 405 |
getline(is, str); |
| 402 | 406 |
_addArcEdge(g,nodes[i], nodes[j]); |
| 403 | 407 |
break; |
| 404 | 408 |
} |
| 405 | 409 |
} |
| 406 | 410 |
} |
| 407 | 411 |
|
| 408 | 412 |
/// DIMACS plain digraph writer function. |
| 409 | 413 |
/// |
| 410 | 414 |
/// This function writes a digraph without any designated nodes and |
| 411 | 415 |
/// maps into DIMACS format, i.e. into DIMACS file having a line |
| 412 | 416 |
/// starting with |
| 413 | 417 |
/// \code |
| 414 | 418 |
/// p mat |
| 415 | 419 |
/// \endcode |
| 416 | 420 |
/// If \c comment is not empty, then it will be printed in the first line |
| 417 | 421 |
/// prefixed by 'c'. |
| 418 | 422 |
template<typename Digraph> |
| 419 | 423 |
void writeDimacsMat(std::ostream& os, const Digraph &g, |
| 420 | 424 |
std::string comment="") {
|
| 421 | 425 |
typedef typename Digraph::NodeIt NodeIt; |
| 422 | 426 |
typedef typename Digraph::ArcIt ArcIt; |
| 423 | 427 |
|
| 424 | 428 |
if(!comment.empty()) |
| 425 | 429 |
os << "c " << comment << std::endl; |
| 426 | 430 |
os << "p mat " << g.nodeNum() << " " << g.arcNum() << std::endl; |
| 427 | 431 |
|
| 428 | 432 |
typename Digraph::template NodeMap<int> nodes(g); |
| 429 | 433 |
int i = 1; |
| 430 | 434 |
for(NodeIt v(g); v != INVALID; ++v) {
|
| 431 | 435 |
nodes.set(v, i); |
| 432 | 436 |
++i; |
| 433 | 437 |
} |
| 434 | 438 |
for(ArcIt e(g); e != INVALID; ++e) {
|
| 435 | 439 |
os << "a " << nodes[g.source(e)] << " " << nodes[g.target(e)] |
| 436 | 440 |
<< std::endl; |
| 437 | 441 |
} |
| 438 | 442 |
} |
| 439 | 443 |
|
| 440 | 444 |
/// @} |
| 441 | 445 |
|
| 442 | 446 |
} //namespace lemon |
| 443 | 447 |
|
| 444 | 448 |
#endif //LEMON_DIMACS_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_GRAPH_TO_EPS_H |
| 20 | 20 |
#define LEMON_GRAPH_TO_EPS_H |
| 21 | 21 |
|
| 22 | 22 |
#include<iostream> |
| 23 | 23 |
#include<fstream> |
| 24 | 24 |
#include<sstream> |
| 25 | 25 |
#include<algorithm> |
| 26 | 26 |
#include<vector> |
| 27 | 27 |
|
| 28 | 28 |
#ifndef WIN32 |
| 29 | 29 |
#include<sys/time.h> |
| 30 | 30 |
#include<ctime> |
| 31 | 31 |
#else |
| 32 | 32 |
#include<lemon/bits/windows.h> |
| 33 | 33 |
#endif |
| 34 | 34 |
|
| 35 | 35 |
#include<lemon/math.h> |
| 36 | 36 |
#include<lemon/core.h> |
| 37 | 37 |
#include<lemon/dim2.h> |
| 38 | 38 |
#include<lemon/maps.h> |
| 39 | 39 |
#include<lemon/color.h> |
| 40 | 40 |
#include<lemon/bits/bezier.h> |
| 41 | 41 |
#include<lemon/error.h> |
| 42 | 42 |
|
| 43 | 43 |
|
| 44 | 44 |
///\ingroup eps_io |
| 45 | 45 |
///\file |
| 46 | 46 |
///\brief A well configurable tool for visualizing graphs |
| 47 | 47 |
|
| 48 | 48 |
namespace lemon {
|
| 49 | 49 |
|
| 50 | 50 |
namespace _graph_to_eps_bits {
|
| 51 | 51 |
template<class MT> |
| 52 | 52 |
class _NegY {
|
| 53 | 53 |
public: |
| 54 | 54 |
typedef typename MT::Key Key; |
| 55 | 55 |
typedef typename MT::Value Value; |
| 56 | 56 |
const MT ↦ |
| 57 | 57 |
int yscale; |
| 58 | 58 |
_NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {}
|
| 59 | 59 |
Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);}
|
| 60 | 60 |
}; |
| 61 | 61 |
} |
| 62 | 62 |
|
| 63 | 63 |
///Default traits class of GraphToEps |
| 64 | 64 |
|
| 65 | 65 |
///Default traits class of \ref GraphToEps. |
| 66 | 66 |
/// |
| 67 | 67 |
///\param GR is the type of the underlying graph. |
| 68 | 68 |
template<class GR> |
| 69 | 69 |
struct DefaultGraphToEpsTraits |
| 70 | 70 |
{
|
| 71 | 71 |
typedef GR Graph; |
| 72 | 72 |
typedef typename Graph::Node Node; |
| 73 | 73 |
typedef typename Graph::NodeIt NodeIt; |
| 74 | 74 |
typedef typename Graph::Arc Arc; |
| 75 | 75 |
typedef typename Graph::ArcIt ArcIt; |
| 76 | 76 |
typedef typename Graph::InArcIt InArcIt; |
| 77 | 77 |
typedef typename Graph::OutArcIt OutArcIt; |
| 78 | 78 |
|
| 79 | 79 |
|
| 80 | 80 |
const Graph &g; |
| 81 | 81 |
|
| 82 | 82 |
std::ostream& os; |
| 83 | 83 |
|
| 84 | 84 |
typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType; |
| 85 | 85 |
CoordsMapType _coords; |
| 86 | 86 |
ConstMap<typename Graph::Node,double > _nodeSizes; |
| 87 | 87 |
ConstMap<typename Graph::Node,int > _nodeShapes; |
| 88 | 88 |
|
| 89 | 89 |
ConstMap<typename Graph::Node,Color > _nodeColors; |
| 90 | 90 |
ConstMap<typename Graph::Arc,Color > _arcColors; |
| 91 | 91 |
|
| 92 | 92 |
ConstMap<typename Graph::Arc,double > _arcWidths; |
| 93 | 93 |
|
| 94 | 94 |
double _arcWidthScale; |
| 95 | 95 |
|
| 96 | 96 |
double _nodeScale; |
| 97 | 97 |
double _xBorder, _yBorder; |
| 98 | 98 |
double _scale; |
| 99 | 99 |
double _nodeBorderQuotient; |
| 100 | 100 |
|
| 101 | 101 |
bool _drawArrows; |
| 102 | 102 |
double _arrowLength, _arrowWidth; |
| 103 | 103 |
|
| 104 | 104 |
bool _showNodes, _showArcs; |
| 105 | 105 |
|
| 106 | 106 |
bool _enableParallel; |
| 107 | 107 |
double _parArcDist; |
| 108 | 108 |
|
| 109 | 109 |
bool _showNodeText; |
| 110 | 110 |
ConstMap<typename Graph::Node,bool > _nodeTexts; |
| 111 | 111 |
double _nodeTextSize; |
| 112 | 112 |
|
| 113 | 113 |
bool _showNodePsText; |
| 114 | 114 |
ConstMap<typename Graph::Node,bool > _nodePsTexts; |
| 115 | 115 |
char *_nodePsTextsPreamble; |
| 116 | 116 |
|
| 117 | 117 |
bool _undirected; |
| 118 | 118 |
|
| 119 | 119 |
bool _pleaseRemoveOsStream; |
| 120 | 120 |
|
| 121 | 121 |
bool _scaleToA4; |
| 122 | 122 |
|
| 123 | 123 |
std::string _title; |
| 124 | 124 |
std::string _copyright; |
| 125 | 125 |
|
| 126 | 126 |
enum NodeTextColorType |
| 127 | 127 |
{ DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType;
|
| 128 | 128 |
ConstMap<typename Graph::Node,Color > _nodeTextColors; |
| 129 | 129 |
|
| 130 | 130 |
bool _autoNodeScale; |
| 131 | 131 |
bool _autoArcWidthScale; |
| 132 | 132 |
|
| 133 | 133 |
bool _absoluteNodeSizes; |
| 134 | 134 |
bool _absoluteArcWidths; |
| 135 | 135 |
|
| 136 | 136 |
bool _negY; |
| 137 | 137 |
|
| 138 | 138 |
bool _preScale; |
| 139 | 139 |
///Constructor |
| 140 | 140 |
|
| 141 | 141 |
///Constructor |
| 142 | 142 |
///\param gr Reference to the graph to be printed. |
| 143 | 143 |
///\param ost Reference to the output stream. |
| 144 | 144 |
///By default it is <tt>std::cout</tt>. |
| 145 | 145 |
///\param pros If it is \c true, then the \c ostream referenced by \c os |
| 146 | 146 |
///will be explicitly deallocated by the destructor. |
| 147 | 147 |
DefaultGraphToEpsTraits(const GR &gr, std::ostream& ost = std::cout, |
| 148 | 148 |
bool pros = false) : |
| 149 | 149 |
g(gr), os(ost), |
| 150 | 150 |
_coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0), |
| 151 | 151 |
_nodeColors(WHITE), _arcColors(BLACK), |
| 152 | 152 |
_arcWidths(1.0), _arcWidthScale(0.003), |
| 153 | 153 |
_nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0), |
| 154 | 154 |
_nodeBorderQuotient(.1), |
| 155 | 155 |
_drawArrows(false), _arrowLength(1), _arrowWidth(0.3), |
| 156 | 156 |
_showNodes(true), _showArcs(true), |
| 157 | 157 |
_enableParallel(false), _parArcDist(1), |
| 158 | 158 |
_showNodeText(false), _nodeTexts(false), _nodeTextSize(1), |
| 159 | 159 |
_showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0), |
| 160 | 160 |
_undirected(lemon::UndirectedTagIndicator<GR>::value), |
| 161 | 161 |
_pleaseRemoveOsStream(pros), _scaleToA4(false), |
| 162 | 162 |
_nodeTextColorType(SAME_COL), _nodeTextColors(BLACK), |
| 163 | 163 |
_autoNodeScale(false), |
| 164 | 164 |
_autoArcWidthScale(false), |
| 165 | 165 |
_absoluteNodeSizes(false), |
| 166 | 166 |
_absoluteArcWidths(false), |
| 167 | 167 |
_negY(false), |
| 168 | 168 |
_preScale(true) |
| 169 | 169 |
{}
|
| 170 | 170 |
}; |
| 171 | 171 |
|
| 172 | 172 |
///Auxiliary class to implement the named parameters of \ref graphToEps() |
| 173 | 173 |
|
| 174 | 174 |
///Auxiliary class to implement the named parameters of \ref graphToEps(). |
| 175 | 175 |
/// |
| 176 | 176 |
///For detailed examples see the \ref graph_to_eps_demo.cc demo file. |
| 177 | 177 |
template<class T> class GraphToEps : public T |
| 178 | 178 |
{
|
| 179 | 179 |
// Can't believe it is required by the C++ standard |
| 180 | 180 |
using T::g; |
| 181 | 181 |
using T::os; |
| 182 | 182 |
|
| 183 | 183 |
using T::_coords; |
| 184 | 184 |
using T::_nodeSizes; |
| 185 | 185 |
using T::_nodeShapes; |
| 186 | 186 |
using T::_nodeColors; |
| 187 | 187 |
using T::_arcColors; |
| 188 | 188 |
using T::_arcWidths; |
| 189 | 189 |
|
| 190 | 190 |
using T::_arcWidthScale; |
| 191 | 191 |
using T::_nodeScale; |
| 192 | 192 |
using T::_xBorder; |
| 193 | 193 |
using T::_yBorder; |
| 194 | 194 |
using T::_scale; |
| 195 | 195 |
using T::_nodeBorderQuotient; |
| 196 | 196 |
|
| 197 | 197 |
using T::_drawArrows; |
| 198 | 198 |
using T::_arrowLength; |
| 199 | 199 |
using T::_arrowWidth; |
| 200 | 200 |
|
| 201 | 201 |
using T::_showNodes; |
| 202 | 202 |
using T::_showArcs; |
| 203 | 203 |
|
| 204 | 204 |
using T::_enableParallel; |
| 205 | 205 |
using T::_parArcDist; |
| 206 | 206 |
|
| 207 | 207 |
using T::_showNodeText; |
| 208 | 208 |
using T::_nodeTexts; |
| 209 | 209 |
using T::_nodeTextSize; |
| 210 | 210 |
|
| 211 | 211 |
using T::_showNodePsText; |
| 212 | 212 |
using T::_nodePsTexts; |
| 213 | 213 |
using T::_nodePsTextsPreamble; |
| 214 | 214 |
|
| 215 | 215 |
using T::_undirected; |
| 216 | 216 |
|
| 217 | 217 |
using T::_pleaseRemoveOsStream; |
| 218 | 218 |
|
| 219 | 219 |
using T::_scaleToA4; |
| 220 | 220 |
|
| 221 | 221 |
using T::_title; |
| 222 | 222 |
using T::_copyright; |
| 223 | 223 |
|
| 224 | 224 |
using T::NodeTextColorType; |
| 225 | 225 |
using T::CUST_COL; |
| 226 | 226 |
using T::DIST_COL; |
| 227 | 227 |
using T::DIST_BW; |
| 228 | 228 |
using T::_nodeTextColorType; |
| 229 | 229 |
using T::_nodeTextColors; |
| 230 | 230 |
|
| 231 | 231 |
using T::_autoNodeScale; |
| 232 | 232 |
using T::_autoArcWidthScale; |
| 233 | 233 |
|
| 234 | 234 |
using T::_absoluteNodeSizes; |
| 235 | 235 |
using T::_absoluteArcWidths; |
| 236 | 236 |
|
| 237 | 237 |
|
| 238 | 238 |
using T::_negY; |
| 239 | 239 |
using T::_preScale; |
| 240 | 240 |
|
| 241 | 241 |
// dradnats ++C eht yb deriuqer si ti eveileb t'naC |
| 242 | 242 |
|
| 243 | 243 |
typedef typename T::Graph Graph; |
| 244 | 244 |
typedef typename Graph::Node Node; |
| 245 | 245 |
typedef typename Graph::NodeIt NodeIt; |
| 246 | 246 |
typedef typename Graph::Arc Arc; |
| 247 | 247 |
typedef typename Graph::ArcIt ArcIt; |
| 248 | 248 |
typedef typename Graph::InArcIt InArcIt; |
| 249 | 249 |
typedef typename Graph::OutArcIt OutArcIt; |
| 250 | 250 |
|
| 251 | 251 |
static const int INTERPOL_PREC; |
| 252 | 252 |
static const double A4HEIGHT; |
| 253 | 253 |
static const double A4WIDTH; |
| 254 | 254 |
static const double A4BORDER; |
| 255 | 255 |
|
| 256 | 256 |
bool dontPrint; |
| 257 | 257 |
|
| 258 | 258 |
public: |
| 259 | 259 |
///Node shapes |
| 260 | 260 |
|
| 261 | 261 |
///Node shapes. |
| 262 | 262 |
/// |
| 263 | 263 |
enum NodeShapes {
|
| 264 | 264 |
/// = 0 |
| 265 | 265 |
///\image html nodeshape_0.png |
| 266 | 266 |
///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm |
| 267 | 267 |
CIRCLE=0, |
| 268 | 268 |
/// = 1 |
| 269 | 269 |
///\image html nodeshape_1.png |
| 270 | 270 |
///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm |
| 271 |
/// |
|
| 272 | 271 |
SQUARE=1, |
| 273 | 272 |
/// = 2 |
| 274 | 273 |
///\image html nodeshape_2.png |
| 275 | 274 |
///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm |
| 276 |
/// |
|
| 277 | 275 |
DIAMOND=2, |
| 278 | 276 |
/// = 3 |
| 279 | 277 |
///\image html nodeshape_3.png |
| 280 |
///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm |
|
| 281 |
/// |
|
| 278 |
///\image latex nodeshape_3.eps "MALE shape (3)" width=2cm |
|
| 282 | 279 |
MALE=3, |
| 283 | 280 |
/// = 4 |
| 284 | 281 |
///\image html nodeshape_4.png |
| 285 |
///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm |
|
| 286 |
/// |
|
| 282 |
///\image latex nodeshape_4.eps "FEMALE shape (4)" width=2cm |
|
| 287 | 283 |
FEMALE=4 |
| 288 | 284 |
}; |
| 289 | 285 |
|
| 290 | 286 |
private: |
| 291 | 287 |
class arcLess {
|
| 292 | 288 |
const Graph &g; |
| 293 | 289 |
public: |
| 294 | 290 |
arcLess(const Graph &_g) : g(_g) {}
|
| 295 | 291 |
bool operator()(Arc a,Arc b) const |
| 296 | 292 |
{
|
| 297 | 293 |
Node ai=std::min(g.source(a),g.target(a)); |
| 298 | 294 |
Node aa=std::max(g.source(a),g.target(a)); |
| 299 | 295 |
Node bi=std::min(g.source(b),g.target(b)); |
| 300 | 296 |
Node ba=std::max(g.source(b),g.target(b)); |
| 301 | 297 |
return ai<bi || |
| 302 | 298 |
(ai==bi && (aa < ba || |
| 303 | 299 |
(aa==ba && ai==g.source(a) && bi==g.target(b)))); |
| 304 | 300 |
} |
| 305 | 301 |
}; |
| 306 | 302 |
bool isParallel(Arc e,Arc f) const |
| 307 | 303 |
{
|
| 308 | 304 |
return (g.source(e)==g.source(f)&& |
| 309 | 305 |
g.target(e)==g.target(f)) || |
| 310 | 306 |
(g.source(e)==g.target(f)&& |
| 311 | 307 |
g.target(e)==g.source(f)); |
| 312 | 308 |
} |
| 313 | 309 |
template<class TT> |
| 314 | 310 |
static std::string psOut(const dim2::Point<TT> &p) |
| 315 | 311 |
{
|
| 316 | 312 |
std::ostringstream os; |
| 317 | 313 |
os << p.x << ' ' << p.y; |
| 318 | 314 |
return os.str(); |
| 319 | 315 |
} |
| 320 | 316 |
static std::string psOut(const Color &c) |
| 321 | 317 |
{
|
| 322 | 318 |
std::ostringstream os; |
| 323 | 319 |
os << c.red() << ' ' << c.green() << ' ' << c.blue(); |
| 324 | 320 |
return os.str(); |
| 325 | 321 |
} |
| 326 | 322 |
|
| 327 | 323 |
public: |
| 328 | 324 |
GraphToEps(const T &t) : T(t), dontPrint(false) {};
|
| 329 | 325 |
|
| 330 | 326 |
template<class X> struct CoordsTraits : public T {
|
| 331 | 327 |
typedef X CoordsMapType; |
| 332 | 328 |
const X &_coords; |
| 333 | 329 |
CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {}
|
| 334 | 330 |
}; |
| 335 | 331 |
///Sets the map of the node coordinates |
| 336 | 332 |
|
| 337 | 333 |
///Sets the map of the node coordinates. |
| 338 | 334 |
///\param x must be a node map with \ref dim2::Point "dim2::Point<double>" or |
| 339 | 335 |
///\ref dim2::Point "dim2::Point<int>" values. |
| 340 | 336 |
template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) {
|
| 341 | 337 |
dontPrint=true; |
| 342 | 338 |
return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x)); |
| 343 | 339 |
} |
| 344 | 340 |
template<class X> struct NodeSizesTraits : public T {
|
| 345 | 341 |
const X &_nodeSizes; |
| 346 | 342 |
NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {}
|
| 347 | 343 |
}; |
| 348 | 344 |
///Sets the map of the node sizes |
| 349 | 345 |
|
| 350 | 346 |
///Sets the map of the node sizes. |
| 351 | 347 |
///\param x must be a node map with \c double (or convertible) values. |
| 352 | 348 |
template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x) |
| 353 | 349 |
{
|
| 354 | 350 |
dontPrint=true; |
| 355 | 351 |
return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x)); |
| 356 | 352 |
} |
| 357 | 353 |
template<class X> struct NodeShapesTraits : public T {
|
| 358 | 354 |
const X &_nodeShapes; |
| 359 | 355 |
NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {}
|
| 360 | 356 |
}; |
| 361 | 357 |
///Sets the map of the node shapes |
| 362 | 358 |
|
| 363 | 359 |
///Sets the map of the node shapes. |
| 364 | 360 |
///The available shape values |
| 365 | 361 |
///can be found in \ref NodeShapes "enum NodeShapes". |
| 366 | 362 |
///\param x must be a node map with \c int (or convertible) values. |
| 367 | 363 |
///\sa NodeShapes |
| 368 | 364 |
template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x) |
| 369 | 365 |
{
|
| 370 | 366 |
dontPrint=true; |
| 371 | 367 |
return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x)); |
| 372 | 368 |
} |
| 373 | 369 |
template<class X> struct NodeTextsTraits : public T {
|
| 374 | 370 |
const X &_nodeTexts; |
| 375 | 371 |
NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {}
|
| 376 | 372 |
}; |
| 377 | 373 |
///Sets the text printed on the nodes |
| 378 | 374 |
|
| 379 | 375 |
///Sets the text printed on the nodes. |
| 380 | 376 |
///\param x must be a node map with type that can be pushed to a standard |
| 381 | 377 |
///\c ostream. |
| 382 | 378 |
template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x) |
| 383 | 379 |
{
|
| 384 | 380 |
dontPrint=true; |
| 385 | 381 |
_showNodeText=true; |
| 386 | 382 |
return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x)); |
| 387 | 383 |
} |
| 388 | 384 |
template<class X> struct NodePsTextsTraits : public T {
|
| 389 | 385 |
const X &_nodePsTexts; |
| 390 | 386 |
NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {}
|
| 391 | 387 |
}; |
| 392 | 388 |
///Inserts a PostScript block to the nodes |
| 393 | 389 |
|
| 394 | 390 |
///With this command it is possible to insert a verbatim PostScript |
| 395 | 391 |
///block to the nodes. |
| 396 | 392 |
///The PS current point will be moved to the center of the node before |
| 397 | 393 |
///the PostScript block inserted. |
| 398 | 394 |
/// |
| 399 | 395 |
///Before and after the block a newline character is inserted so you |
| 400 | 396 |
///don't have to bother with the separators. |
| 401 | 397 |
/// |
| 402 | 398 |
///\param x must be a node map with type that can be pushed to a standard |
| 403 | 399 |
///\c ostream. |
| 404 | 400 |
/// |
| 405 | 401 |
///\sa nodePsTextsPreamble() |
| 406 | 402 |
template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x) |
| 407 | 403 |
{
|
| 408 | 404 |
dontPrint=true; |
| 409 | 405 |
_showNodePsText=true; |
| 410 | 406 |
return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x)); |
| 411 | 407 |
} |
| 412 | 408 |
template<class X> struct ArcWidthsTraits : public T {
|
| 413 | 409 |
const X &_arcWidths; |
| 414 | 410 |
ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {}
|
| 415 | 411 |
}; |
| 416 | 412 |
///Sets the map of the arc widths |
| 417 | 413 |
|
| 418 | 414 |
///Sets the map of the arc widths. |
| 419 | 415 |
///\param x must be an arc map with \c double (or convertible) values. |
| 420 | 416 |
template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x) |
| 421 | 417 |
{
|
| 422 | 418 |
dontPrint=true; |
| 423 | 419 |
return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x)); |
| 424 | 420 |
} |
| 425 | 421 |
|
| 426 | 422 |
template<class X> struct NodeColorsTraits : public T {
|
| 427 | 423 |
const X &_nodeColors; |
| 428 | 424 |
NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {}
|
| 429 | 425 |
}; |
| 430 | 426 |
///Sets the map of the node colors |
| 431 | 427 |
|
| 432 | 428 |
///Sets the map of the node colors. |
| 433 | 429 |
///\param x must be a node map with \ref Color values. |
| 434 | 430 |
/// |
| 435 | 431 |
///\sa Palette |
| 436 | 432 |
template<class X> GraphToEps<NodeColorsTraits<X> > |
| 437 | 433 |
nodeColors(const X &x) |
| 438 | 434 |
{
|
| 439 | 435 |
dontPrint=true; |
| 440 | 436 |
return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x)); |
| 441 | 437 |
} |
| 442 | 438 |
template<class X> struct NodeTextColorsTraits : public T {
|
| 443 | 439 |
const X &_nodeTextColors; |
| 444 | 440 |
NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {}
|
| 445 | 441 |
}; |
| 446 | 442 |
///Sets the map of the node text colors |
| 447 | 443 |
|
| 448 | 444 |
///Sets the map of the node text colors. |
| 449 | 445 |
///\param x must be a node map with \ref Color values. |
| 450 | 446 |
/// |
| 451 | 447 |
///\sa Palette |
| 452 | 448 |
template<class X> GraphToEps<NodeTextColorsTraits<X> > |
| 453 | 449 |
nodeTextColors(const X &x) |
| 454 | 450 |
{
|
| 455 | 451 |
dontPrint=true; |
| 456 | 452 |
_nodeTextColorType=CUST_COL; |
| 457 | 453 |
return GraphToEps<NodeTextColorsTraits<X> > |
| 458 | 454 |
(NodeTextColorsTraits<X>(*this,x)); |
| 459 | 455 |
} |
| 460 | 456 |
template<class X> struct ArcColorsTraits : public T {
|
| 461 | 457 |
const X &_arcColors; |
| 462 | 458 |
ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {}
|
| 463 | 459 |
}; |
| 464 | 460 |
///Sets the map of the arc colors |
| 465 | 461 |
|
| 466 | 462 |
///Sets the map of the arc colors. |
| 467 | 463 |
///\param x must be an arc map with \ref Color values. |
| 468 | 464 |
/// |
| 469 | 465 |
///\sa Palette |
| 470 | 466 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
| 471 | 467 |
arcColors(const X &x) |
| 472 | 468 |
{
|
| 473 | 469 |
dontPrint=true; |
| 474 | 470 |
return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x)); |
| 475 | 471 |
} |
| 476 | 472 |
///Sets a global scale factor for node sizes |
| 477 | 473 |
|
| 478 | 474 |
///Sets a global scale factor for node sizes. |
| 479 | 475 |
/// |
| 480 | 476 |
/// If nodeSizes() is not given, this function simply sets the node |
| 481 | 477 |
/// sizes to \c d. If nodeSizes() is given, but |
| 482 | 478 |
/// autoNodeScale() is not, then the node size given by |
| 483 | 479 |
/// nodeSizes() will be multiplied by the value \c d. |
| 484 | 480 |
/// If both nodeSizes() and autoNodeScale() are used, then the |
| 485 | 481 |
/// node sizes will be scaled in such a way that the greatest size will be |
| 486 | 482 |
/// equal to \c d. |
| 487 | 483 |
/// \sa nodeSizes() |
| 488 | 484 |
/// \sa autoNodeScale() |
| 489 | 485 |
GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;}
|
| 490 | 486 |
///Turns on/off the automatic node size scaling. |
| 491 | 487 |
|
| 492 | 488 |
///Turns on/off the automatic node size scaling. |
| 493 | 489 |
/// |
| 494 | 490 |
///\sa nodeScale() |
| 495 | 491 |
/// |
| 496 | 492 |
GraphToEps<T> &autoNodeScale(bool b=true) {
|
| 497 | 493 |
_autoNodeScale=b;return *this; |
| 498 | 494 |
} |
| 499 | 495 |
|
| 500 | 496 |
///Turns on/off the absolutematic node size scaling. |
| 501 | 497 |
|
| 502 | 498 |
///Turns on/off the absolutematic node size scaling. |
| 503 | 499 |
/// |
| 504 | 500 |
///\sa nodeScale() |
| 505 | 501 |
/// |
| 506 | 502 |
GraphToEps<T> &absoluteNodeSizes(bool b=true) {
|
| 507 | 503 |
_absoluteNodeSizes=b;return *this; |
| 508 | 504 |
} |
| 509 | 505 |
|
| 510 | 506 |
///Negates the Y coordinates. |
| 511 | 507 |
GraphToEps<T> &negateY(bool b=true) {
|
| 512 | 508 |
_negY=b;return *this; |
| 513 | 509 |
} |
| 514 | 510 |
|
| 515 | 511 |
///Turn on/off pre-scaling |
| 516 | 512 |
|
| 517 | 513 |
///By default graphToEps() rescales the whole image in order to avoid |
| 518 | 514 |
///very big or very small bounding boxes. |
| 519 | 515 |
/// |
| 520 | 516 |
///This (p)rescaling can be turned off with this function. |
| 521 | 517 |
/// |
| 522 | 518 |
GraphToEps<T> &preScale(bool b=true) {
|
| 523 | 519 |
_preScale=b;return *this; |
| 524 | 520 |
} |
| 525 | 521 |
|
| 526 | 522 |
///Sets a global scale factor for arc widths |
| 527 | 523 |
|
| 528 | 524 |
/// Sets a global scale factor for arc widths. |
| 529 | 525 |
/// |
| 530 | 526 |
/// If arcWidths() is not given, this function simply sets the arc |
| 531 | 527 |
/// widths to \c d. If arcWidths() is given, but |
| 532 | 528 |
/// autoArcWidthScale() is not, then the arc withs given by |
| 533 | 529 |
/// arcWidths() will be multiplied by the value \c d. |
| 534 | 530 |
/// If both arcWidths() and autoArcWidthScale() are used, then the |
| 535 | 531 |
/// arc withs will be scaled in such a way that the greatest width will be |
| 536 | 532 |
/// equal to \c d. |
| 537 | 533 |
GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;}
|
| 538 | 534 |
///Turns on/off the automatic arc width scaling. |
| 539 | 535 |
|
| 540 | 536 |
///Turns on/off the automatic arc width scaling. |
| 541 | 537 |
/// |
| 542 | 538 |
///\sa arcWidthScale() |
| 543 | 539 |
/// |
| 544 | 540 |
GraphToEps<T> &autoArcWidthScale(bool b=true) {
|
| 545 | 541 |
_autoArcWidthScale=b;return *this; |
| 546 | 542 |
} |
| 547 | 543 |
///Turns on/off the absolutematic arc width scaling. |
| 548 | 544 |
|
| 549 | 545 |
///Turns on/off the absolutematic arc width scaling. |
| 550 | 546 |
/// |
| 551 | 547 |
///\sa arcWidthScale() |
| 552 | 548 |
/// |
| 553 | 549 |
GraphToEps<T> &absoluteArcWidths(bool b=true) {
|
| 554 | 550 |
_absoluteArcWidths=b;return *this; |
| 555 | 551 |
} |
| 556 | 552 |
///Sets a global scale factor for the whole picture |
| 557 | 553 |
GraphToEps<T> &scale(double d) {_scale=d;return *this;}
|
| 558 | 554 |
///Sets the width of the border around the picture |
| 559 | 555 |
GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;}
|
| 560 | 556 |
///Sets the width of the border around the picture |
| 561 | 557 |
GraphToEps<T> &border(double x, double y) {
|
| 562 | 558 |
_xBorder=x;_yBorder=y;return *this; |
| 563 | 559 |
} |
| 564 | 560 |
///Sets whether to draw arrows |
| 565 | 561 |
GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;}
|
| 566 | 562 |
///Sets the length of the arrowheads |
| 567 | 563 |
GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;}
|
| 568 | 564 |
///Sets the width of the arrowheads |
| 569 | 565 |
GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;}
|
| 570 | 566 |
|
| 571 | 567 |
///Scales the drawing to fit to A4 page |
| 572 | 568 |
GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;}
|
| 573 | 569 |
|
| 574 | 570 |
///Enables parallel arcs |
| 575 | 571 |
GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;}
|
| 576 | 572 |
|
| 577 | 573 |
///Sets the distance between parallel arcs |
| 578 | 574 |
GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;}
|
| 579 | 575 |
|
| 580 | 576 |
///Hides the arcs |
| 581 | 577 |
GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;}
|
| 582 | 578 |
///Hides the nodes |
| 583 | 579 |
GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;}
|
| 584 | 580 |
|
| 585 | 581 |
///Sets the size of the node texts |
| 586 | 582 |
GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;}
|
| 587 | 583 |
|
| 588 | 584 |
///Sets the color of the node texts to be different from the node color |
| 589 | 585 |
|
| 590 | 586 |
///Sets the color of the node texts to be as different from the node color |
| 591 | 587 |
///as it is possible. |
| 592 | 588 |
GraphToEps<T> &distantColorNodeTexts() |
| 593 | 589 |
{_nodeTextColorType=DIST_COL;return *this;}
|
| 594 | 590 |
///Sets the color of the node texts to be black or white and always visible. |
| 595 | 591 |
|
| 596 | 592 |
///Sets the color of the node texts to be black or white according to |
| 597 | 593 |
///which is more different from the node color. |
| 598 | 594 |
GraphToEps<T> &distantBWNodeTexts() |
| 599 | 595 |
{_nodeTextColorType=DIST_BW;return *this;}
|
| 600 | 596 |
|
| 601 | 597 |
///Gives a preamble block for node Postscript block. |
| 602 | 598 |
|
| 603 | 599 |
///Gives a preamble block for node Postscript block. |
| 604 | 600 |
/// |
| 605 | 601 |
///\sa nodePsTexts() |
| 606 | 602 |
GraphToEps<T> & nodePsTextsPreamble(const char *str) {
|
| 607 | 603 |
_nodePsTextsPreamble=str ;return *this; |
| 608 | 604 |
} |
| 609 | 605 |
///Sets whether the graph is undirected |
| 610 | 606 |
|
| 611 | 607 |
///Sets whether the graph is undirected. |
| 612 | 608 |
/// |
| 613 | 609 |
///This setting is the default for undirected graphs. |
| 614 | 610 |
/// |
| 615 | 611 |
///\sa directed() |
| 616 | 612 |
GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;}
|
| 617 | 613 |
|
| 618 | 614 |
///Sets whether the graph is directed |
| 619 | 615 |
|
| 620 | 616 |
///Sets whether the graph is directed. |
| 621 | 617 |
///Use it to show the edges as a pair of directed ones. |
| 622 | 618 |
/// |
| 623 | 619 |
///This setting is the default for digraphs. |
| 624 | 620 |
/// |
| 625 | 621 |
///\sa undirected() |
| 626 | 622 |
GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;}
|
| 627 | 623 |
|
| 628 | 624 |
///Sets the title. |
| 629 | 625 |
|
| 630 | 626 |
///Sets the title of the generated image, |
| 631 | 627 |
///namely it inserts a <tt>%%Title:</tt> DSC field to the header of |
| 632 | 628 |
///the EPS file. |
| 633 | 629 |
GraphToEps<T> &title(const std::string &t) {_title=t;return *this;}
|
| 634 | 630 |
///Sets the copyright statement. |
| 635 | 631 |
|
| 636 | 632 |
///Sets the copyright statement of the generated image, |
| 637 | 633 |
///namely it inserts a <tt>%%Copyright:</tt> DSC field to the header of |
| 638 | 634 |
///the EPS file. |
| 639 | 635 |
GraphToEps<T> ©right(const std::string &t) {_copyright=t;return *this;}
|
| 640 | 636 |
|
| 641 | 637 |
protected: |
| 642 | 638 |
bool isInsideNode(dim2::Point<double> p, double r,int t) |
| 643 | 639 |
{
|
| 644 | 640 |
switch(t) {
|
| 645 | 641 |
case CIRCLE: |
| 646 | 642 |
case MALE: |
| 647 | 643 |
case FEMALE: |
| 648 | 644 |
return p.normSquare()<=r*r; |
| 649 | 645 |
case SQUARE: |
| 650 | 646 |
return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r; |
| 651 | 647 |
case DIAMOND: |
| 652 | 648 |
return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r; |
| 653 | 649 |
} |
| 654 | 650 |
return false; |
| 655 | 651 |
} |
| 656 | 652 |
|
| 657 | 653 |
public: |
| 658 | 654 |
~GraphToEps() { }
|
| 659 | 655 |
|
| 660 | 656 |
///Draws the graph. |
| 661 | 657 |
|
| 662 | 658 |
///Like other functions using |
| 663 | 659 |
///\ref named-templ-func-param "named template parameters", |
| 664 | 660 |
///this function calls the algorithm itself, i.e. in this case |
| 665 | 661 |
///it draws the graph. |
| 666 | 662 |
void run() {
|
| 667 | 663 |
const double EPSILON=1e-9; |
| 668 | 664 |
if(dontPrint) return; |
| 669 | 665 |
|
| 670 | 666 |
_graph_to_eps_bits::_NegY<typename T::CoordsMapType> |
| 671 | 667 |
mycoords(_coords,_negY); |
| 672 | 668 |
|
| 673 | 669 |
os << "%!PS-Adobe-2.0 EPSF-2.0\n"; |
| 674 | 670 |
if(_title.size()>0) os << "%%Title: " << _title << '\n'; |
| 675 | 671 |
if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n'; |
| 676 | 672 |
os << "%%Creator: LEMON, graphToEps()\n"; |
| 677 | 673 |
|
| 678 | 674 |
{
|
| 679 | 675 |
os << "%%CreationDate: "; |
| 680 | 676 |
#ifndef WIN32 |
| 681 | 677 |
timeval tv; |
| 682 | 678 |
gettimeofday(&tv, 0); |
| 683 | 679 |
|
| 684 | 680 |
char cbuf[26]; |
| 685 | 681 |
ctime_r(&tv.tv_sec,cbuf); |
| 686 | 682 |
os << cbuf; |
| 687 | 683 |
#else |
| 688 | 684 |
os << bits::getWinFormattedDate(); |
| 689 | 685 |
#endif |
| 690 | 686 |
} |
| 691 | 687 |
os << std::endl; |
| 692 | 688 |
|
| 693 | 689 |
if (_autoArcWidthScale) {
|
| 694 | 690 |
double max_w=0; |
| 695 | 691 |
for(ArcIt e(g);e!=INVALID;++e) |
| 696 | 692 |
max_w=std::max(double(_arcWidths[e]),max_w); |
| 697 | 693 |
if(max_w>EPSILON) {
|
| 698 | 694 |
_arcWidthScale/=max_w; |
| 699 | 695 |
} |
| 700 | 696 |
} |
| 701 | 697 |
|
| 702 | 698 |
if (_autoNodeScale) {
|
| 703 | 699 |
double max_s=0; |
| 704 | 700 |
for(NodeIt n(g);n!=INVALID;++n) |
| 705 | 701 |
max_s=std::max(double(_nodeSizes[n]),max_s); |
| 706 | 702 |
if(max_s>EPSILON) {
|
| 707 | 703 |
_nodeScale/=max_s; |
| 708 | 704 |
} |
| 709 | 705 |
} |
| 710 | 706 |
|
| 711 | 707 |
double diag_len = 1; |
| 712 | 708 |
if(!(_absoluteNodeSizes&&_absoluteArcWidths)) {
|
| 713 | 709 |
dim2::Box<double> bb; |
| 714 | 710 |
for(NodeIt n(g);n!=INVALID;++n) bb.add(mycoords[n]); |
| 715 | 711 |
if (bb.empty()) {
|
| 716 | 712 |
bb = dim2::Box<double>(dim2::Point<double>(0,0)); |
| 717 | 713 |
} |
| 718 | 714 |
diag_len = std::sqrt((bb.bottomLeft()-bb.topRight()).normSquare()); |
| 719 | 715 |
if(diag_len<EPSILON) diag_len = 1; |
| 720 | 716 |
if(!_absoluteNodeSizes) _nodeScale*=diag_len; |
| 721 | 717 |
if(!_absoluteArcWidths) _arcWidthScale*=diag_len; |
| 722 | 718 |
} |
| 723 | 719 |
|
| 724 | 720 |
dim2::Box<double> bb; |
| 725 | 721 |
for(NodeIt n(g);n!=INVALID;++n) {
|
| 726 | 722 |
double ns=_nodeSizes[n]*_nodeScale; |
| 727 | 723 |
dim2::Point<double> p(ns,ns); |
| 728 | 724 |
switch(_nodeShapes[n]) {
|
| 729 | 725 |
case CIRCLE: |
| 730 | 726 |
case SQUARE: |
| 731 | 727 |
case DIAMOND: |
| 732 | 728 |
bb.add(p+mycoords[n]); |
| 733 | 729 |
bb.add(-p+mycoords[n]); |
| 734 | 730 |
break; |
| 735 | 731 |
case MALE: |
| 736 | 732 |
bb.add(-p+mycoords[n]); |
| 737 | 733 |
bb.add(dim2::Point<double>(1.5*ns,1.5*std::sqrt(3.0)*ns)+mycoords[n]); |
| 738 | 734 |
break; |
| 739 | 735 |
case FEMALE: |
| 740 | 736 |
bb.add(p+mycoords[n]); |
| 741 | 737 |
bb.add(dim2::Point<double>(-ns,-3.01*ns)+mycoords[n]); |
| 742 | 738 |
break; |
| 743 | 739 |
} |
| 744 | 740 |
} |
| 745 | 741 |
if (bb.empty()) {
|
| 746 | 742 |
bb = dim2::Box<double>(dim2::Point<double>(0,0)); |
| 747 | 743 |
} |
| 748 | 744 |
|
| 749 | 745 |
if(_scaleToA4) |
| 750 | 746 |
os <<"%%BoundingBox: 0 0 596 842\n%%DocumentPaperSizes: a4\n"; |
| 751 | 747 |
else {
|
| 752 | 748 |
if(_preScale) {
|
| 753 | 749 |
//Rescale so that BoundingBox won't be neither to big nor too small. |
| 754 | 750 |
while(bb.height()*_scale>1000||bb.width()*_scale>1000) _scale/=10; |
| 755 | 751 |
while(bb.height()*_scale<100||bb.width()*_scale<100) _scale*=10; |
| 756 | 752 |
} |
| 757 | 753 |
|
| 758 | 754 |
os << "%%BoundingBox: " |
| 759 | 755 |
<< int(floor(bb.left() * _scale - _xBorder)) << ' ' |
| 760 | 756 |
<< int(floor(bb.bottom() * _scale - _yBorder)) << ' ' |
| 761 | 757 |
<< int(ceil(bb.right() * _scale + _xBorder)) << ' ' |
| 762 | 758 |
<< int(ceil(bb.top() * _scale + _yBorder)) << '\n'; |
| 763 | 759 |
} |
| 764 | 760 |
|
| 765 | 761 |
os << "%%EndComments\n"; |
| 766 | 762 |
|
| 767 | 763 |
//x1 y1 x2 y2 x3 y3 cr cg cb w |
| 768 | 764 |
os << "/lb { setlinewidth setrgbcolor newpath moveto\n"
|
| 769 | 765 |
<< " 4 2 roll 1 index 1 index curveto stroke } bind def\n"; |
| 770 | 766 |
os << "/l { setlinewidth setrgbcolor newpath moveto lineto stroke }"
|
| 771 | 767 |
<< " bind def\n"; |
| 772 | 768 |
//x y r |
| 773 | 769 |
os << "/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath }"
|
| 774 | 770 |
<< " bind def\n"; |
| 775 | 771 |
//x y r |
| 776 | 772 |
os << "/sq { newpath 2 index 1 index add 2 index 2 index add moveto\n"
|
| 777 | 773 |
<< " 2 index 1 index sub 2 index 2 index add lineto\n" |
| 778 | 774 |
<< " 2 index 1 index sub 2 index 2 index sub lineto\n" |
| 779 | 775 |
<< " 2 index 1 index add 2 index 2 index sub lineto\n" |
| 780 | 776 |
<< " closepath pop pop pop} bind def\n"; |
| 781 | 777 |
//x y r |
| 782 | 778 |
os << "/di { newpath 2 index 1 index add 2 index moveto\n"
|
| 783 | 779 |
<< " 2 index 2 index 2 index add lineto\n" |
| 784 | 780 |
<< " 2 index 1 index sub 2 index lineto\n" |
| 785 | 781 |
<< " 2 index 2 index 2 index sub lineto\n" |
| 786 | 782 |
<< " closepath pop pop pop} bind def\n"; |
| 787 | 783 |
// x y r cr cg cb |
| 788 | 784 |
os << "/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill\n"
|
| 789 | 785 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
| 790 | 786 |
<< " } bind def\n"; |
| 791 | 787 |
os << "/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill\n"
|
| 792 | 788 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div sq fill\n" |
| 793 | 789 |
<< " } bind def\n"; |
| 794 | 790 |
os << "/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill\n"
|
| 795 | 791 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div di fill\n" |
| 796 | 792 |
<< " } bind def\n"; |
| 797 | 793 |
os << "/nfemale { 0 0 0 setrgbcolor 3 index "
|
| 798 | 794 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
| 799 | 795 |
<< " 1.5 mul mul setlinewidth\n" |
| 800 | 796 |
<< " newpath 5 index 5 index moveto " |
| 801 | 797 |
<< "5 index 5 index 5 index 3.01 mul sub\n" |
| 802 | 798 |
<< " lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub" |
| 803 | 799 |
<< " moveto\n" |
| 804 | 800 |
<< " 5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto " |
| 805 | 801 |
<< "stroke\n" |
| 806 | 802 |
<< " 5 index 5 index 5 index c fill\n" |
| 807 | 803 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
| 808 | 804 |
<< " } bind def\n"; |
| 809 | 805 |
os << "/nmale {\n"
|
| 810 | 806 |
<< " 0 0 0 setrgbcolor 3 index " |
| 811 | 807 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
| 812 | 808 |
<<" 1.5 mul mul setlinewidth\n" |
| 813 | 809 |
<< " newpath 5 index 5 index moveto\n" |
| 814 | 810 |
<< " 5 index 4 index 1 mul 1.5 mul add\n" |
| 815 | 811 |
<< " 5 index 5 index 3 sqrt 1.5 mul mul add\n" |
| 816 | 812 |
<< " 1 index 1 index lineto\n" |
| 817 | 813 |
<< " 1 index 1 index 7 index sub moveto\n" |
| 818 | 814 |
<< " 1 index 1 index lineto\n" |
| 819 | 815 |
<< " exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub" |
| 820 | 816 |
<< " lineto\n" |
| 821 | 817 |
<< " stroke\n" |
| 822 | 818 |
<< " 5 index 5 index 5 index c fill\n" |
| 823 | 819 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
| 824 | 820 |
<< " } bind def\n"; |
| 825 | 821 |
|
| 826 | 822 |
|
| 827 | 823 |
os << "/arrl " << _arrowLength << " def\n"; |
| 828 | 824 |
os << "/arrw " << _arrowWidth << " def\n"; |
| 829 | 825 |
// l dx_norm dy_norm |
| 830 | 826 |
os << "/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def\n";
|
| 831 | 827 |
//len w dx_norm dy_norm x1 y1 cr cg cb |
| 832 | 828 |
os << "/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx "
|
| 833 | 829 |
<< "exch def\n" |
| 834 | 830 |
<< " /w exch def /len exch def\n" |
| 835 | 831 |
//<< "0.1 setlinewidth x1 y1 moveto dx len mul dy len mul rlineto stroke" |
| 836 | 832 |
<< " newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto\n" |
| 837 | 833 |
<< " len w sub arrl sub dx dy lrl\n" |
| 838 | 834 |
<< " arrw dy dx neg lrl\n" |
| 839 | 835 |
<< " dx arrl w add mul dy w 2 div arrw add mul sub\n" |
| 840 | 836 |
<< " dy arrl w add mul dx w 2 div arrw add mul add rlineto\n" |
| 841 | 837 |
<< " dx arrl w add mul neg dy w 2 div arrw add mul sub\n" |
| 842 | 838 |
<< " dy arrl w add mul neg dx w 2 div arrw add mul add rlineto\n" |
| 843 | 839 |
<< " arrw dy dx neg lrl\n" |
| 844 | 840 |
<< " len w sub arrl sub neg dx dy lrl\n" |
| 845 | 841 |
<< " closepath fill } bind def\n"; |
| 846 | 842 |
os << "/cshow { 2 index 2 index moveto dup stringwidth pop\n"
|
| 847 | 843 |
<< " neg 2 div fosi .35 mul neg rmoveto show pop pop} def\n"; |
| 848 | 844 |
|
| 849 | 845 |
os << "\ngsave\n"; |
| 850 | 846 |
if(_scaleToA4) |
| 851 | 847 |
if(bb.height()>bb.width()) {
|
| 852 | 848 |
double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.height(), |
| 853 | 849 |
(A4WIDTH-2*A4BORDER)/bb.width()); |
| 854 | 850 |
os << ((A4WIDTH -2*A4BORDER)-sc*bb.width())/2 + A4BORDER << ' ' |
| 855 | 851 |
<< ((A4HEIGHT-2*A4BORDER)-sc*bb.height())/2 + A4BORDER |
| 856 | 852 |
<< " translate\n" |
| 857 | 853 |
<< sc << " dup scale\n" |
| 858 | 854 |
<< -bb.left() << ' ' << -bb.bottom() << " translate\n"; |
| 859 | 855 |
} |
| 860 | 856 |
else {
|
| 861 | 857 |
double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.width(), |
| 862 | 858 |
(A4WIDTH-2*A4BORDER)/bb.height()); |
| 863 | 859 |
os << ((A4WIDTH -2*A4BORDER)-sc*bb.height())/2 + A4BORDER << ' ' |
| 864 | 860 |
<< ((A4HEIGHT-2*A4BORDER)-sc*bb.width())/2 + A4BORDER |
| 865 | 861 |
<< " translate\n" |
| 866 | 862 |
<< sc << " dup scale\n90 rotate\n" |
| 867 | 863 |
<< -bb.left() << ' ' << -bb.top() << " translate\n"; |
| 868 | 864 |
} |
| 869 | 865 |
else if(_scale!=1.0) os << _scale << " dup scale\n"; |
| 870 | 866 |
|
| 871 | 867 |
if(_showArcs) {
|
| 872 | 868 |
os << "%Arcs:\ngsave\n"; |
| 873 | 869 |
if(_enableParallel) {
|
| 874 | 870 |
std::vector<Arc> el; |
| 875 | 871 |
for(ArcIt e(g);e!=INVALID;++e) |
| 876 | 872 |
if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0 |
| 877 | 873 |
&&g.source(e)!=g.target(e)) |
| 878 | 874 |
el.push_back(e); |
| 879 | 875 |
std::sort(el.begin(),el.end(),arcLess(g)); |
| 880 | 876 |
|
| 881 | 877 |
typename std::vector<Arc>::iterator j; |
| 882 | 878 |
for(typename std::vector<Arc>::iterator i=el.begin();i!=el.end();i=j) {
|
| 883 | 879 |
for(j=i+1;j!=el.end()&&isParallel(*i,*j);++j) ; |
| 884 | 880 |
|
| 885 | 881 |
double sw=0; |
| 886 | 882 |
for(typename std::vector<Arc>::iterator e=i;e!=j;++e) |
| 887 | 883 |
sw+=_arcWidths[*e]*_arcWidthScale+_parArcDist; |
| 888 | 884 |
sw-=_parArcDist; |
| 889 | 885 |
sw/=-2.0; |
| 890 | 886 |
dim2::Point<double> |
| 891 | 887 |
dvec(mycoords[g.target(*i)]-mycoords[g.source(*i)]); |
| 892 | 888 |
double l=std::sqrt(dvec.normSquare()); |
| 893 | 889 |
dim2::Point<double> d(dvec/std::max(l,EPSILON)); |
| 894 | 890 |
dim2::Point<double> m; |
| 895 | 891 |
// m=dim2::Point<double>(mycoords[g.target(*i)]+ |
| 896 | 892 |
// mycoords[g.source(*i)])/2.0; |
| 897 | 893 |
|
| 898 | 894 |
// m=dim2::Point<double>(mycoords[g.source(*i)])+ |
| 899 | 895 |
// dvec*(double(_nodeSizes[g.source(*i)])/ |
| 900 | 896 |
// (_nodeSizes[g.source(*i)]+_nodeSizes[g.target(*i)])); |
| 901 | 897 |
|
| 902 | 898 |
m=dim2::Point<double>(mycoords[g.source(*i)])+ |
| 903 | 899 |
d*(l+_nodeSizes[g.source(*i)]-_nodeSizes[g.target(*i)])/2.0; |
| 904 | 900 |
|
| 905 | 901 |
for(typename std::vector<Arc>::iterator e=i;e!=j;++e) {
|
| 906 | 902 |
sw+=_arcWidths[*e]*_arcWidthScale/2.0; |
| 907 | 903 |
dim2::Point<double> mm=m+rot90(d)*sw/.75; |
| 908 | 904 |
if(_drawArrows) {
|
| 909 | 905 |
int node_shape; |
| 910 | 906 |
dim2::Point<double> s=mycoords[g.source(*e)]; |
| 911 | 907 |
dim2::Point<double> t=mycoords[g.target(*e)]; |
| 912 | 908 |
double rn=_nodeSizes[g.target(*e)]*_nodeScale; |
| 913 | 909 |
node_shape=_nodeShapes[g.target(*e)]; |
| 914 | 910 |
dim2::Bezier3 bez(s,mm,mm,t); |
| 915 | 911 |
double t1=0,t2=1; |
| 916 | 912 |
for(int ii=0;ii<INTERPOL_PREC;++ii) |
| 917 | 913 |
if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) t2=(t1+t2)/2; |
| 918 | 914 |
else t1=(t1+t2)/2; |
| 919 | 915 |
dim2::Point<double> apoint=bez((t1+t2)/2); |
| 920 | 916 |
rn = _arrowLength+_arcWidths[*e]*_arcWidthScale; |
| 921 | 917 |
rn*=rn; |
| 922 | 918 |
t2=(t1+t2)/2;t1=0; |
| 923 | 919 |
for(int ii=0;ii<INTERPOL_PREC;++ii) |
| 924 | 920 |
if((bez((t1+t2)/2)-apoint).normSquare()>rn) t1=(t1+t2)/2; |
| 925 | 921 |
else t2=(t1+t2)/2; |
| 926 | 922 |
dim2::Point<double> linend=bez((t1+t2)/2); |
| 927 | 923 |
bez=bez.before((t1+t2)/2); |
| 928 | 924 |
// rn=_nodeSizes[g.source(*e)]*_nodeScale; |
| 929 | 925 |
// node_shape=_nodeShapes[g.source(*e)]; |
| 930 | 926 |
// t1=0;t2=1; |
| 931 | 927 |
// for(int i=0;i<INTERPOL_PREC;++i) |
| 932 | 928 |
// if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) |
| 933 | 929 |
// t1=(t1+t2)/2; |
| 934 | 930 |
// else t2=(t1+t2)/2; |
| 935 | 931 |
// bez=bez.after((t1+t2)/2); |
| 936 | 932 |
os << _arcWidths[*e]*_arcWidthScale << " setlinewidth " |
| 937 | 933 |
<< _arcColors[*e].red() << ' ' |
| 938 | 934 |
<< _arcColors[*e].green() << ' ' |
| 939 | 935 |
<< _arcColors[*e].blue() << " setrgbcolor newpath\n" |
| 940 | 936 |
<< bez.p1.x << ' ' << bez.p1.y << " moveto\n" |
| 941 | 937 |
<< bez.p2.x << ' ' << bez.p2.y << ' ' |
| 942 | 938 |
<< bez.p3.x << ' ' << bez.p3.y << ' ' |
| 943 | 939 |
<< bez.p4.x << ' ' << bez.p4.y << " curveto stroke\n"; |
| 944 | 940 |
dim2::Point<double> dd(rot90(linend-apoint)); |
| 945 | 941 |
dd*=(.5*_arcWidths[*e]*_arcWidthScale+_arrowWidth)/ |
| 946 | 942 |
std::sqrt(dd.normSquare()); |
| 947 | 943 |
os << "newpath " << psOut(apoint) << " moveto " |
| 948 | 944 |
<< psOut(linend+dd) << " lineto " |
| 949 | 945 |
<< psOut(linend-dd) << " lineto closepath fill\n"; |
| 950 | 946 |
} |
| 951 | 947 |
else {
|
| 952 | 948 |
os << mycoords[g.source(*e)].x << ' ' |
| 953 | 949 |
<< mycoords[g.source(*e)].y << ' ' |
| 954 | 950 |
<< mm.x << ' ' << mm.y << ' ' |
| 955 | 951 |
<< mycoords[g.target(*e)].x << ' ' |
| 956 | 952 |
<< mycoords[g.target(*e)].y << ' ' |
| 957 | 953 |
<< _arcColors[*e].red() << ' ' |
| 958 | 954 |
<< _arcColors[*e].green() << ' ' |
| 959 | 955 |
<< _arcColors[*e].blue() << ' ' |
| 960 | 956 |
<< _arcWidths[*e]*_arcWidthScale << " lb\n"; |
| 961 | 957 |
} |
| 962 | 958 |
sw+=_arcWidths[*e]*_arcWidthScale/2.0+_parArcDist; |
| 963 | 959 |
} |
| 964 | 960 |
} |
| 965 | 961 |
} |
| 966 | 962 |
else for(ArcIt e(g);e!=INVALID;++e) |
| 967 | 963 |
if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0 |
| 968 | 964 |
&&g.source(e)!=g.target(e)) {
|
| 969 | 965 |
if(_drawArrows) {
|
| 970 | 966 |
dim2::Point<double> d(mycoords[g.target(e)]-mycoords[g.source(e)]); |
| 971 | 967 |
double rn=_nodeSizes[g.target(e)]*_nodeScale; |
| 972 | 968 |
int node_shape=_nodeShapes[g.target(e)]; |
| 973 | 969 |
double t1=0,t2=1; |
| 974 | 970 |
for(int i=0;i<INTERPOL_PREC;++i) |
| 975 | 971 |
if(isInsideNode((-(t1+t2)/2)*d,rn,node_shape)) t1=(t1+t2)/2; |
| 976 | 972 |
else t2=(t1+t2)/2; |
| 977 | 973 |
double l=std::sqrt(d.normSquare()); |
| 978 | 974 |
d/=l; |
| 979 | 975 |
|
| 980 | 976 |
os << l*(1-(t1+t2)/2) << ' ' |
| 981 | 977 |
<< _arcWidths[e]*_arcWidthScale << ' ' |
| 982 | 978 |
<< d.x << ' ' << d.y << ' ' |
| 983 | 979 |
<< mycoords[g.source(e)].x << ' ' |
| 984 | 980 |
<< mycoords[g.source(e)].y << ' ' |
| 985 | 981 |
<< _arcColors[e].red() << ' ' |
| 986 | 982 |
<< _arcColors[e].green() << ' ' |
| 987 | 983 |
<< _arcColors[e].blue() << " arr\n"; |
| 988 | 984 |
} |
| 989 | 985 |
else os << mycoords[g.source(e)].x << ' ' |
| 990 | 986 |
<< mycoords[g.source(e)].y << ' ' |
| 991 | 987 |
<< mycoords[g.target(e)].x << ' ' |
| 992 | 988 |
<< mycoords[g.target(e)].y << ' ' |
| 993 | 989 |
<< _arcColors[e].red() << ' ' |
| 994 | 990 |
<< _arcColors[e].green() << ' ' |
| 995 | 991 |
<< _arcColors[e].blue() << ' ' |
| 996 | 992 |
<< _arcWidths[e]*_arcWidthScale << " l\n"; |
| 997 | 993 |
} |
| 998 | 994 |
os << "grestore\n"; |
| 999 | 995 |
} |
| 1000 | 996 |
if(_showNodes) {
|
| 1001 | 997 |
os << "%Nodes:\ngsave\n"; |
| 1002 | 998 |
for(NodeIt n(g);n!=INVALID;++n) {
|
| 1003 | 999 |
os << mycoords[n].x << ' ' << mycoords[n].y << ' ' |
| 1004 | 1000 |
<< _nodeSizes[n]*_nodeScale << ' ' |
| 1005 | 1001 |
<< _nodeColors[n].red() << ' ' |
| 1006 | 1002 |
<< _nodeColors[n].green() << ' ' |
| 1007 | 1003 |
<< _nodeColors[n].blue() << ' '; |
| 1008 | 1004 |
switch(_nodeShapes[n]) {
|
| 1009 | 1005 |
case CIRCLE: |
| 1010 | 1006 |
os<< "nc";break; |
| 1011 | 1007 |
case SQUARE: |
| 1012 | 1008 |
os<< "nsq";break; |
| 1013 | 1009 |
case DIAMOND: |
| 1014 | 1010 |
os<< "ndi";break; |
| 1015 | 1011 |
case MALE: |
| 1016 | 1012 |
os<< "nmale";break; |
| 1017 | 1013 |
case FEMALE: |
| 1018 | 1014 |
os<< "nfemale";break; |
| 1019 | 1015 |
} |
| 1020 | 1016 |
os<<'\n'; |
| 1021 | 1017 |
} |
| 1022 | 1018 |
os << "grestore\n"; |
| 1023 | 1019 |
} |
| 1024 | 1020 |
if(_showNodeText) {
|
| 1025 | 1021 |
os << "%Node texts:\ngsave\n"; |
| 1026 | 1022 |
os << "/fosi " << _nodeTextSize << " def\n"; |
| 1027 | 1023 |
os << "(Helvetica) findfont fosi scalefont setfont\n"; |
| 1028 | 1024 |
for(NodeIt n(g);n!=INVALID;++n) {
|
| 1029 | 1025 |
switch(_nodeTextColorType) {
|
| 1030 | 1026 |
case DIST_COL: |
| 1031 | 1027 |
os << psOut(distantColor(_nodeColors[n])) << " setrgbcolor\n"; |
| 1032 | 1028 |
break; |
| 1033 | 1029 |
case DIST_BW: |
| 1034 | 1030 |
os << psOut(distantBW(_nodeColors[n])) << " setrgbcolor\n"; |
| 1035 | 1031 |
break; |
| 1036 | 1032 |
case CUST_COL: |
| 1037 | 1033 |
os << psOut(distantColor(_nodeTextColors[n])) << " setrgbcolor\n"; |
| 1038 | 1034 |
break; |
| 1039 | 1035 |
default: |
| 1040 | 1036 |
os << "0 0 0 setrgbcolor\n"; |
| 1041 | 1037 |
} |
| 1042 | 1038 |
os << mycoords[n].x << ' ' << mycoords[n].y |
| 1043 | 1039 |
<< " (" << _nodeTexts[n] << ") cshow\n";
|
| 1044 | 1040 |
} |
| 1045 | 1041 |
os << "grestore\n"; |
| 1046 | 1042 |
} |
| 1047 | 1043 |
if(_showNodePsText) {
|
| 1048 | 1044 |
os << "%Node PS blocks:\ngsave\n"; |
| 1049 | 1045 |
for(NodeIt n(g);n!=INVALID;++n) |
| 1050 | 1046 |
os << mycoords[n].x << ' ' << mycoords[n].y |
| 1051 | 1047 |
<< " moveto\n" << _nodePsTexts[n] << "\n"; |
| 1052 | 1048 |
os << "grestore\n"; |
| 1053 | 1049 |
} |
| 1054 | 1050 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_KRUSKAL_H |
| 20 | 20 |
#define LEMON_KRUSKAL_H |
| 21 | 21 |
|
| 22 | 22 |
#include <algorithm> |
| 23 | 23 |
#include <vector> |
| 24 | 24 |
#include <lemon/unionfind.h> |
| 25 | 25 |
#include <lemon/maps.h> |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/core.h> |
| 28 | 28 |
#include <lemon/bits/traits.h> |
| 29 | 29 |
|
| 30 | 30 |
///\ingroup spantree |
| 31 | 31 |
///\file |
| 32 | 32 |
///\brief Kruskal's algorithm to compute a minimum cost spanning tree |
| 33 | 33 |
/// |
| 34 | 34 |
///Kruskal's algorithm to compute a minimum cost spanning tree. |
| 35 | 35 |
/// |
| 36 | 36 |
|
| 37 | 37 |
namespace lemon {
|
| 38 | 38 |
|
| 39 | 39 |
namespace _kruskal_bits {
|
| 40 | 40 |
|
| 41 | 41 |
// Kruskal for directed graphs. |
| 42 | 42 |
|
| 43 | 43 |
template <typename Digraph, typename In, typename Out> |
| 44 | 44 |
typename disable_if<lemon::UndirectedTagIndicator<Digraph>, |
| 45 | 45 |
typename In::value_type::second_type >::type |
| 46 | 46 |
kruskal(const Digraph& digraph, const In& in, Out& out,dummy<0> = 0) {
|
| 47 | 47 |
typedef typename In::value_type::second_type Value; |
| 48 | 48 |
typedef typename Digraph::template NodeMap<int> IndexMap; |
| 49 | 49 |
typedef typename Digraph::Node Node; |
| 50 | 50 |
|
| 51 | 51 |
IndexMap index(digraph); |
| 52 | 52 |
UnionFind<IndexMap> uf(index); |
| 53 | 53 |
for (typename Digraph::NodeIt it(digraph); it != INVALID; ++it) {
|
| 54 | 54 |
uf.insert(it); |
| 55 | 55 |
} |
| 56 | 56 |
|
| 57 | 57 |
Value tree_value = 0; |
| 58 | 58 |
for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) {
|
| 59 | 59 |
if (uf.join(digraph.target(it->first),digraph.source(it->first))) {
|
| 60 | 60 |
out.set(it->first, true); |
| 61 | 61 |
tree_value += it->second; |
| 62 | 62 |
} |
| 63 | 63 |
else {
|
| 64 | 64 |
out.set(it->first, false); |
| 65 | 65 |
} |
| 66 | 66 |
} |
| 67 | 67 |
return tree_value; |
| 68 | 68 |
} |
| 69 | 69 |
|
| 70 | 70 |
// Kruskal for undirected graphs. |
| 71 | 71 |
|
| 72 | 72 |
template <typename Graph, typename In, typename Out> |
| 73 | 73 |
typename enable_if<lemon::UndirectedTagIndicator<Graph>, |
| 74 | 74 |
typename In::value_type::second_type >::type |
| 75 | 75 |
kruskal(const Graph& graph, const In& in, Out& out,dummy<1> = 1) {
|
| 76 | 76 |
typedef typename In::value_type::second_type Value; |
| 77 | 77 |
typedef typename Graph::template NodeMap<int> IndexMap; |
| 78 | 78 |
typedef typename Graph::Node Node; |
| 79 | 79 |
|
| 80 | 80 |
IndexMap index(graph); |
| 81 | 81 |
UnionFind<IndexMap> uf(index); |
| 82 | 82 |
for (typename Graph::NodeIt it(graph); it != INVALID; ++it) {
|
| 83 | 83 |
uf.insert(it); |
| 84 | 84 |
} |
| 85 | 85 |
|
| 86 | 86 |
Value tree_value = 0; |
| 87 | 87 |
for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) {
|
| 88 | 88 |
if (uf.join(graph.u(it->first),graph.v(it->first))) {
|
| 89 | 89 |
out.set(it->first, true); |
| 90 | 90 |
tree_value += it->second; |
| 91 | 91 |
} |
| 92 | 92 |
else {
|
| 93 | 93 |
out.set(it->first, false); |
| 94 | 94 |
} |
| 95 | 95 |
} |
| 96 | 96 |
return tree_value; |
| 97 | 97 |
} |
| 98 | 98 |
|
| 99 | 99 |
|
| 100 | 100 |
template <typename Sequence> |
| 101 | 101 |
struct PairComp {
|
| 102 | 102 |
typedef typename Sequence::value_type Value; |
| 103 | 103 |
bool operator()(const Value& left, const Value& right) {
|
| 104 | 104 |
return left.second < right.second; |
| 105 | 105 |
} |
| 106 | 106 |
}; |
| 107 | 107 |
|
| 108 | 108 |
template <typename In, typename Enable = void> |
| 109 | 109 |
struct SequenceInputIndicator {
|
| 110 | 110 |
static const bool value = false; |
| 111 | 111 |
}; |
| 112 | 112 |
|
| 113 | 113 |
template <typename In> |
| 114 | 114 |
struct SequenceInputIndicator<In, |
| 115 | 115 |
typename exists<typename In::value_type::first_type>::type> {
|
| 116 | 116 |
static const bool value = true; |
| 117 | 117 |
}; |
| 118 | 118 |
|
| 119 | 119 |
template <typename In, typename Enable = void> |
| 120 | 120 |
struct MapInputIndicator {
|
| 121 | 121 |
static const bool value = false; |
| 122 | 122 |
}; |
| 123 | 123 |
|
| 124 | 124 |
template <typename In> |
| 125 | 125 |
struct MapInputIndicator<In, |
| 126 | 126 |
typename exists<typename In::Value>::type> {
|
| 127 | 127 |
static const bool value = true; |
| 128 | 128 |
}; |
| 129 | 129 |
|
| 130 | 130 |
template <typename In, typename Enable = void> |
| 131 | 131 |
struct SequenceOutputIndicator {
|
| 132 | 132 |
static const bool value = false; |
| 133 | 133 |
}; |
| 134 | 134 |
|
| 135 | 135 |
template <typename Out> |
| 136 | 136 |
struct SequenceOutputIndicator<Out, |
| 137 | 137 |
typename exists<typename Out::value_type>::type> {
|
| 138 | 138 |
static const bool value = true; |
| 139 | 139 |
}; |
| 140 | 140 |
|
| 141 | 141 |
template <typename Out, typename Enable = void> |
| 142 | 142 |
struct MapOutputIndicator {
|
| 143 | 143 |
static const bool value = false; |
| 144 | 144 |
}; |
| 145 | 145 |
|
| 146 | 146 |
template <typename Out> |
| 147 | 147 |
struct MapOutputIndicator<Out, |
| 148 | 148 |
typename exists<typename Out::Value>::type> {
|
| 149 | 149 |
static const bool value = true; |
| 150 | 150 |
}; |
| 151 | 151 |
|
| 152 | 152 |
template <typename In, typename InEnable = void> |
| 153 | 153 |
struct KruskalValueSelector {};
|
| 154 | 154 |
|
| 155 | 155 |
template <typename In> |
| 156 | 156 |
struct KruskalValueSelector<In, |
| 157 | 157 |
typename enable_if<SequenceInputIndicator<In>, void>::type> |
| 158 | 158 |
{
|
| 159 | 159 |
typedef typename In::value_type::second_type Value; |
| 160 | 160 |
}; |
| 161 | 161 |
|
| 162 | 162 |
template <typename In> |
| 163 | 163 |
struct KruskalValueSelector<In, |
| 164 | 164 |
typename enable_if<MapInputIndicator<In>, void>::type> |
| 165 | 165 |
{
|
| 166 | 166 |
typedef typename In::Value Value; |
| 167 | 167 |
}; |
| 168 | 168 |
|
| 169 | 169 |
template <typename Graph, typename In, typename Out, |
| 170 | 170 |
typename InEnable = void> |
| 171 | 171 |
struct KruskalInputSelector {};
|
| 172 | 172 |
|
| 173 | 173 |
template <typename Graph, typename In, typename Out, |
| 174 | 174 |
typename InEnable = void> |
| 175 | 175 |
struct KruskalOutputSelector {};
|
| 176 | 176 |
|
| 177 | 177 |
template <typename Graph, typename In, typename Out> |
| 178 | 178 |
struct KruskalInputSelector<Graph, In, Out, |
| 179 | 179 |
typename enable_if<SequenceInputIndicator<In>, void>::type > |
| 180 | 180 |
{
|
| 181 | 181 |
typedef typename In::value_type::second_type Value; |
| 182 | 182 |
|
| 183 | 183 |
static Value kruskal(const Graph& graph, const In& in, Out& out) {
|
| 184 | 184 |
return KruskalOutputSelector<Graph, In, Out>:: |
| 185 | 185 |
kruskal(graph, in, out); |
| 186 | 186 |
} |
| 187 | 187 |
|
| 188 | 188 |
}; |
| 189 | 189 |
|
| 190 | 190 |
template <typename Graph, typename In, typename Out> |
| 191 | 191 |
struct KruskalInputSelector<Graph, In, Out, |
| 192 | 192 |
typename enable_if<MapInputIndicator<In>, void>::type > |
| 193 | 193 |
{
|
| 194 | 194 |
typedef typename In::Value Value; |
| 195 | 195 |
static Value kruskal(const Graph& graph, const In& in, Out& out) {
|
| 196 | 196 |
typedef typename In::Key MapArc; |
| 197 | 197 |
typedef typename In::Value Value; |
| 198 | 198 |
typedef typename ItemSetTraits<Graph, MapArc>::ItemIt MapArcIt; |
| 199 | 199 |
typedef std::vector<std::pair<MapArc, Value> > Sequence; |
| 200 | 200 |
Sequence seq; |
| 201 | 201 |
|
| 202 | 202 |
for (MapArcIt it(graph); it != INVALID; ++it) {
|
| 203 | 203 |
seq.push_back(std::make_pair(it, in[it])); |
| 204 | 204 |
} |
| 205 | 205 |
|
| 206 | 206 |
std::sort(seq.begin(), seq.end(), PairComp<Sequence>()); |
| 207 | 207 |
return KruskalOutputSelector<Graph, Sequence, Out>:: |
| 208 | 208 |
kruskal(graph, seq, out); |
| 209 | 209 |
} |
| 210 | 210 |
}; |
| 211 | 211 |
|
| 212 | 212 |
template <typename T> |
| 213 | 213 |
struct RemoveConst {
|
| 214 | 214 |
typedef T type; |
| 215 | 215 |
}; |
| 216 | 216 |
|
| 217 | 217 |
template <typename T> |
| 218 | 218 |
struct RemoveConst<const T> {
|
| 219 | 219 |
typedef T type; |
| 220 | 220 |
}; |
| 221 | 221 |
|
| 222 | 222 |
template <typename Graph, typename In, typename Out> |
| 223 | 223 |
struct KruskalOutputSelector<Graph, In, Out, |
| 224 | 224 |
typename enable_if<SequenceOutputIndicator<Out>, void>::type > |
| 225 | 225 |
{
|
| 226 | 226 |
typedef typename In::value_type::second_type Value; |
| 227 | 227 |
|
| 228 | 228 |
static Value kruskal(const Graph& graph, const In& in, Out& out) {
|
| 229 | 229 |
typedef LoggerBoolMap<typename RemoveConst<Out>::type> Map; |
| 230 | 230 |
Map map(out); |
| 231 | 231 |
return _kruskal_bits::kruskal(graph, in, map); |
| 232 | 232 |
} |
| 233 | 233 |
|
| 234 | 234 |
}; |
| 235 | 235 |
|
| 236 | 236 |
template <typename Graph, typename In, typename Out> |
| 237 | 237 |
struct KruskalOutputSelector<Graph, In, Out, |
| 238 | 238 |
typename enable_if<MapOutputIndicator<Out>, void>::type > |
| 239 | 239 |
{
|
| 240 | 240 |
typedef typename In::value_type::second_type Value; |
| 241 | 241 |
|
| 242 | 242 |
static Value kruskal(const Graph& graph, const In& in, Out& out) {
|
| 243 | 243 |
return _kruskal_bits::kruskal(graph, in, out); |
| 244 | 244 |
} |
| 245 | 245 |
}; |
| 246 | 246 |
|
| 247 | 247 |
} |
| 248 | 248 |
|
| 249 | 249 |
/// \ingroup spantree |
| 250 | 250 |
/// |
| 251 |
/// \brief Kruskal algorithm |
|
| 251 |
/// \brief Kruskal's algorithm for finding a minimum cost spanning tree of |
|
| 252 | 252 |
/// a graph. |
| 253 | 253 |
/// |
| 254 | 254 |
/// This function runs Kruskal's algorithm to find a minimum cost |
| 255 |
/// spanning tree. |
|
| 255 |
/// spanning tree of a graph. |
|
| 256 | 256 |
/// Due to some C++ hacking, it accepts various input and output types. |
| 257 | 257 |
/// |
| 258 | 258 |
/// \param g The graph the algorithm runs on. |
| 259 | 259 |
/// It can be either \ref concepts::Digraph "directed" or |
| 260 | 260 |
/// \ref concepts::Graph "undirected". |
| 261 | 261 |
/// If the graph is directed, the algorithm consider it to be |
| 262 | 262 |
/// undirected by disregarding the direction of the arcs. |
| 263 | 263 |
/// |
| 264 | 264 |
/// \param in This object is used to describe the arc/edge costs. |
| 265 | 265 |
/// It can be one of the following choices. |
| 266 | 266 |
/// - An STL compatible 'Forward Container' with |
| 267 |
/// <tt>std::pair<GR::Arc,X></tt> or |
|
| 268 |
/// <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>, where |
|
| 269 |
/// |
|
| 267 |
/// <tt>std::pair<GR::Arc,C></tt> or |
|
| 268 |
/// <tt>std::pair<GR::Edge,C></tt> as its <tt>value_type</tt>, where |
|
| 269 |
/// \c C is the type of the costs. The pairs indicates the arcs/edges |
|
| 270 | 270 |
/// along with the assigned cost. <em>They must be in a |
| 271 | 271 |
/// cost-ascending order.</em> |
| 272 | 272 |
/// - Any readable arc/edge map. The values of the map indicate the |
| 273 | 273 |
/// arc/edge costs. |
| 274 | 274 |
/// |
| 275 | 275 |
/// \retval out Here we also have a choice. |
| 276 |
/// - It can be a writable \c bool arc/edge map. After running the |
|
| 277 |
/// algorithm it will contain the found minimum cost spanning |
|
| 276 |
/// - It can be a writable arc/edge map with \c bool value type. After |
|
| 277 |
/// running the algorithm it will contain the found minimum cost spanning |
|
| 278 | 278 |
/// tree: the value of an arc/edge will be set to \c true if it belongs |
| 279 | 279 |
/// to the tree, otherwise it will be set to \c false. The value of |
| 280 | 280 |
/// each arc/edge will be set exactly once. |
| 281 | 281 |
/// - It can also be an iteraror of an STL Container with |
| 282 | 282 |
/// <tt>GR::Arc</tt> or <tt>GR::Edge</tt> as its |
| 283 | 283 |
/// <tt>value_type</tt>. The algorithm copies the elements of the |
| 284 | 284 |
/// found tree into this sequence. For example, if we know that the |
| 285 | 285 |
/// spanning tree of the graph \c g has say 53 arcs, then we can |
| 286 | 286 |
/// put its arcs into an STL vector \c tree with a code like this. |
| 287 | 287 |
///\code |
| 288 | 288 |
/// std::vector<Arc> tree(53); |
| 289 | 289 |
/// kruskal(g,cost,tree.begin()); |
| 290 | 290 |
///\endcode |
| 291 | 291 |
/// Or if we don't know in advance the size of the tree, we can |
| 292 | 292 |
/// write this. |
| 293 | 293 |
///\code |
| 294 | 294 |
/// std::vector<Arc> tree; |
| 295 | 295 |
/// kruskal(g,cost,std::back_inserter(tree)); |
| 296 | 296 |
///\endcode |
| 297 | 297 |
/// |
| 298 | 298 |
/// \return The total cost of the found spanning tree. |
| 299 | 299 |
/// |
| 300 | 300 |
/// \note If the input graph is not (weakly) connected, a spanning |
| 301 | 301 |
/// forest is calculated instead of a spanning tree. |
| 302 | 302 |
|
| 303 | 303 |
#ifdef DOXYGEN |
| 304 |
template <class Graph, class In, class Out> |
|
| 305 |
Value kruskal(GR const& g, const In& in, Out& out) |
|
| 304 |
template <typename Graph, typename In, typename Out> |
|
| 305 |
Value kruskal(const Graph& g, const In& in, Out& out) |
|
| 306 | 306 |
#else |
| 307 | 307 |
template <class Graph, class In, class Out> |
| 308 | 308 |
inline typename _kruskal_bits::KruskalValueSelector<In>::Value |
| 309 | 309 |
kruskal(const Graph& graph, const In& in, Out& out) |
| 310 | 310 |
#endif |
| 311 | 311 |
{
|
| 312 | 312 |
return _kruskal_bits::KruskalInputSelector<Graph, In, Out>:: |
| 313 | 313 |
kruskal(graph, in, out); |
| 314 | 314 |
} |
| 315 | 315 |
|
| 316 | 316 |
|
| 317 |
|
|
| 318 |
|
|
| 319 | 317 |
template <class Graph, class In, class Out> |
| 320 | 318 |
inline typename _kruskal_bits::KruskalValueSelector<In>::Value |
| 321 | 319 |
kruskal(const Graph& graph, const In& in, const Out& out) |
| 322 | 320 |
{
|
| 323 | 321 |
return _kruskal_bits::KruskalInputSelector<Graph, In, const Out>:: |
| 324 | 322 |
kruskal(graph, in, out); |
| 325 | 323 |
} |
| 326 | 324 |
|
| 327 | 325 |
} //namespace lemon |
| 328 | 326 |
|
| 329 | 327 |
#endif //LEMON_KRUSKAL_H |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)