0
3
2
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_CIRCULATION_H |
|
| 20 |
#define LEMON_CIRCULATION_H |
|
| 21 |
|
|
| 22 |
#include <lemon/tolerance.h> |
|
| 23 |
#include <lemon/elevator.h> |
|
| 24 |
|
|
| 25 |
///\ingroup max_flow |
|
| 26 |
///\file |
|
| 27 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
|
| 28 |
/// |
|
| 29 |
namespace lemon {
|
|
| 30 |
|
|
| 31 |
/// \brief Default traits class of Circulation class. |
|
| 32 |
/// |
|
| 33 |
/// Default traits class of Circulation class. |
|
| 34 |
/// \tparam _Diraph Digraph type. |
|
| 35 |
/// \tparam _LCapMap Lower bound capacity map type. |
|
| 36 |
/// \tparam _UCapMap Upper bound capacity map type. |
|
| 37 |
/// \tparam _DeltaMap Delta map type. |
|
| 38 |
template <typename _Diraph, typename _LCapMap, |
|
| 39 |
typename _UCapMap, typename _DeltaMap> |
|
| 40 |
struct CirculationDefaultTraits {
|
|
| 41 |
|
|
| 42 |
/// \brief The type of the digraph the algorithm runs on. |
|
| 43 |
typedef _Diraph Digraph; |
|
| 44 |
|
|
| 45 |
/// \brief The type of the map that stores the circulation lower |
|
| 46 |
/// bound. |
|
| 47 |
/// |
|
| 48 |
/// The type of the map that stores the circulation lower bound. |
|
| 49 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
| 50 |
typedef _LCapMap LCapMap; |
|
| 51 |
|
|
| 52 |
/// \brief The type of the map that stores the circulation upper |
|
| 53 |
/// bound. |
|
| 54 |
/// |
|
| 55 |
/// The type of the map that stores the circulation upper bound. |
|
| 56 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
| 57 |
typedef _UCapMap UCapMap; |
|
| 58 |
|
|
| 59 |
/// \brief The type of the map that stores the lower bound for |
|
| 60 |
/// the supply of the nodes. |
|
| 61 |
/// |
|
| 62 |
/// The type of the map that stores the lower bound for the supply |
|
| 63 |
/// of the nodes. It must meet the \ref concepts::ReadMap "ReadMap" |
|
| 64 |
/// concept. |
|
| 65 |
typedef _DeltaMap DeltaMap; |
|
| 66 |
|
|
| 67 |
/// \brief The type of the flow values. |
|
| 68 |
typedef typename DeltaMap::Value Value; |
|
| 69 |
|
|
| 70 |
/// \brief The type of the map that stores the flow values. |
|
| 71 |
/// |
|
| 72 |
/// The type of the map that stores the flow values. |
|
| 73 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 74 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
| 75 |
|
|
| 76 |
/// \brief Instantiates a FlowMap. |
|
| 77 |
/// |
|
| 78 |
/// This function instantiates a \ref FlowMap. |
|
| 79 |
/// \param digraph The digraph, to which we would like to define |
|
| 80 |
/// the flow map. |
|
| 81 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
|
| 82 |
return new FlowMap(digraph); |
|
| 83 |
} |
|
| 84 |
|
|
| 85 |
/// \brief The elevator type used by the algorithm. |
|
| 86 |
/// |
|
| 87 |
/// The elevator type used by the algorithm. |
|
| 88 |
/// |
|
| 89 |
/// \sa Elevator |
|
| 90 |
/// \sa LinkedElevator |
|
| 91 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
|
| 92 |
|
|
| 93 |
/// \brief Instantiates an Elevator. |
|
| 94 |
/// |
|
| 95 |
/// This function instantiates an \ref Elevator. |
|
| 96 |
/// \param digraph The digraph, to which we would like to define |
|
| 97 |
/// the elevator. |
|
| 98 |
/// \param max_level The maximum level of the elevator. |
|
| 99 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
|
| 100 |
return new Elevator(digraph, max_level); |
|
| 101 |
} |
|
| 102 |
|
|
| 103 |
/// \brief The tolerance used by the algorithm |
|
| 104 |
/// |
|
| 105 |
/// The tolerance used by the algorithm to handle inexact computation. |
|
| 106 |
typedef lemon::Tolerance<Value> Tolerance; |
|
| 107 |
|
|
| 108 |
}; |
|
| 109 |
|
|
| 110 |
/** |
|
| 111 |
\brief Push-relabel algorithm for the network circulation problem. |
|
| 112 |
|
|
| 113 |
\ingroup max_flow |
|
| 114 |
This class implements a push-relabel algorithm for the network |
|
| 115 |
circulation problem. |
|
| 116 |
It is to find a feasible circulation when lower and upper bounds |
|
| 117 |
are given for the flow values on the arcs and lower bounds |
|
| 118 |
are given for the supply values of the nodes. |
|
| 119 |
|
|
| 120 |
The exact formulation of this problem is the following. |
|
| 121 |
Let \f$G=(V,A)\f$ be a digraph, |
|
| 122 |
\f$lower, upper: A\rightarrow\mathbf{R}^+_0\f$,
|
|
| 123 |
\f$delta: V\rightarrow\mathbf{R}\f$. Find a feasible circulation
|
|
| 124 |
\f$f: A\rightarrow\mathbf{R}^+_0\f$ so that
|
|
| 125 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a)
|
|
| 126 |
\geq delta(v) \quad \forall v\in V, \f] |
|
| 127 |
\f[ lower(a)\leq f(a) \leq upper(a) \quad \forall a\in A. \f] |
|
| 128 |
\note \f$delta(v)\f$ specifies a lower bound for the supply of node |
|
| 129 |
\f$v\f$. It can be either positive or negative, however note that |
|
| 130 |
\f$\sum_{v\in V}delta(v)\f$ should be zero or negative in order to
|
|
| 131 |
have a feasible solution. |
|
| 132 |
|
|
| 133 |
\note A special case of this problem is when |
|
| 134 |
\f$\sum_{v\in V}delta(v) = 0\f$. Then the supply of each node \f$v\f$
|
|
| 135 |
will be \e equal \e to \f$delta(v)\f$, if a circulation can be found. |
|
| 136 |
Thus a feasible solution for the |
|
| 137 |
\ref min_cost_flow "minimum cost flow" problem can be calculated |
|
| 138 |
in this way. |
|
| 139 |
|
|
| 140 |
\tparam _Digraph The type of the digraph the algorithm runs on. |
|
| 141 |
\tparam _LCapMap The type of the lower bound capacity map. The default |
|
| 142 |
map type is \ref concepts::Digraph::ArcMap "_Digraph::ArcMap<int>". |
|
| 143 |
\tparam _UCapMap The type of the upper bound capacity map. The default |
|
| 144 |
map type is \c _LCapMap. |
|
| 145 |
\tparam _DeltaMap The type of the map that stores the lower bound |
|
| 146 |
for the supply of the nodes. The default map type is |
|
| 147 |
\c _Digraph::ArcMap<_UCapMap::Value>. |
|
| 148 |
*/ |
|
| 149 |
#ifdef DOXYGEN |
|
| 150 |
template< typename _Digraph, |
|
| 151 |
typename _LCapMap, |
|
| 152 |
typename _UCapMap, |
|
| 153 |
typename _DeltaMap, |
|
| 154 |
typename _Traits > |
|
| 155 |
#else |
|
| 156 |
template< typename _Digraph, |
|
| 157 |
typename _LCapMap = typename _Digraph::template ArcMap<int>, |
|
| 158 |
typename _UCapMap = _LCapMap, |
|
| 159 |
typename _DeltaMap = typename _Digraph:: |
|
| 160 |
template NodeMap<typename _UCapMap::Value>, |
|
| 161 |
typename _Traits=CirculationDefaultTraits<_Digraph, _LCapMap, |
|
| 162 |
_UCapMap, _DeltaMap> > |
|
| 163 |
#endif |
|
| 164 |
class Circulation {
|
|
| 165 |
public: |
|
| 166 |
|
|
| 167 |
///The \ref CirculationDefaultTraits "traits class" of the algorithm. |
|
| 168 |
typedef _Traits Traits; |
|
| 169 |
///The type of the digraph the algorithm runs on. |
|
| 170 |
typedef typename Traits::Digraph Digraph; |
|
| 171 |
///The type of the flow values. |
|
| 172 |
typedef typename Traits::Value Value; |
|
| 173 |
|
|
| 174 |
/// The type of the lower bound capacity map. |
|
| 175 |
typedef typename Traits::LCapMap LCapMap; |
|
| 176 |
/// The type of the upper bound capacity map. |
|
| 177 |
typedef typename Traits::UCapMap UCapMap; |
|
| 178 |
/// \brief The type of the map that stores the lower bound for |
|
| 179 |
/// the supply of the nodes. |
|
| 180 |
typedef typename Traits::DeltaMap DeltaMap; |
|
| 181 |
///The type of the flow map. |
|
| 182 |
typedef typename Traits::FlowMap FlowMap; |
|
| 183 |
|
|
| 184 |
///The type of the elevator. |
|
| 185 |
typedef typename Traits::Elevator Elevator; |
|
| 186 |
///The type of the tolerance. |
|
| 187 |
typedef typename Traits::Tolerance Tolerance; |
|
| 188 |
|
|
| 189 |
private: |
|
| 190 |
|
|
| 191 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
| 192 |
|
|
| 193 |
const Digraph &_g; |
|
| 194 |
int _node_num; |
|
| 195 |
|
|
| 196 |
const LCapMap *_lo; |
|
| 197 |
const UCapMap *_up; |
|
| 198 |
const DeltaMap *_delta; |
|
| 199 |
|
|
| 200 |
FlowMap *_flow; |
|
| 201 |
bool _local_flow; |
|
| 202 |
|
|
| 203 |
Elevator* _level; |
|
| 204 |
bool _local_level; |
|
| 205 |
|
|
| 206 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
|
| 207 |
ExcessMap* _excess; |
|
| 208 |
|
|
| 209 |
Tolerance _tol; |
|
| 210 |
int _el; |
|
| 211 |
|
|
| 212 |
public: |
|
| 213 |
|
|
| 214 |
typedef Circulation Create; |
|
| 215 |
|
|
| 216 |
///\name Named Template Parameters |
|
| 217 |
|
|
| 218 |
///@{
|
|
| 219 |
|
|
| 220 |
template <typename _FlowMap> |
|
| 221 |
struct SetFlowMapTraits : public Traits {
|
|
| 222 |
typedef _FlowMap FlowMap; |
|
| 223 |
static FlowMap *createFlowMap(const Digraph&) {
|
|
| 224 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
|
| 225 |
return 0; // ignore warnings |
|
| 226 |
} |
|
| 227 |
}; |
|
| 228 |
|
|
| 229 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 230 |
/// FlowMap type |
|
| 231 |
/// |
|
| 232 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
|
| 233 |
/// type. |
|
| 234 |
template <typename _FlowMap> |
|
| 235 |
struct SetFlowMap |
|
| 236 |
: public Circulation<Digraph, LCapMap, UCapMap, DeltaMap, |
|
| 237 |
SetFlowMapTraits<_FlowMap> > {
|
|
| 238 |
typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap, |
|
| 239 |
SetFlowMapTraits<_FlowMap> > Create; |
|
| 240 |
}; |
|
| 241 |
|
|
| 242 |
template <typename _Elevator> |
|
| 243 |
struct SetElevatorTraits : public Traits {
|
|
| 244 |
typedef _Elevator Elevator; |
|
| 245 |
static Elevator *createElevator(const Digraph&, int) {
|
|
| 246 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
|
| 247 |
return 0; // ignore warnings |
|
| 248 |
} |
|
| 249 |
}; |
|
| 250 |
|
|
| 251 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 252 |
/// Elevator type |
|
| 253 |
/// |
|
| 254 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
|
| 255 |
/// type. If this named parameter is used, then an external |
|
| 256 |
/// elevator object must be passed to the algorithm using the |
|
| 257 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
|
| 258 |
/// \ref run() or \ref init(). |
|
| 259 |
/// \sa SetStandardElevator |
|
| 260 |
template <typename _Elevator> |
|
| 261 |
struct SetElevator |
|
| 262 |
: public Circulation<Digraph, LCapMap, UCapMap, DeltaMap, |
|
| 263 |
SetElevatorTraits<_Elevator> > {
|
|
| 264 |
typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap, |
|
| 265 |
SetElevatorTraits<_Elevator> > Create; |
|
| 266 |
}; |
|
| 267 |
|
|
| 268 |
template <typename _Elevator> |
|
| 269 |
struct SetStandardElevatorTraits : public Traits {
|
|
| 270 |
typedef _Elevator Elevator; |
|
| 271 |
static Elevator *createElevator(const Digraph& digraph, int max_level) {
|
|
| 272 |
return new Elevator(digraph, max_level); |
|
| 273 |
} |
|
| 274 |
}; |
|
| 275 |
|
|
| 276 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 277 |
/// Elevator type with automatic allocation |
|
| 278 |
/// |
|
| 279 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
|
| 280 |
/// type with automatic allocation. |
|
| 281 |
/// The Elevator should have standard constructor interface to be |
|
| 282 |
/// able to automatically created by the algorithm (i.e. the |
|
| 283 |
/// digraph and the maximum level should be passed to it). |
|
| 284 |
/// However an external elevator object could also be passed to the |
|
| 285 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
|
| 286 |
/// before calling \ref run() or \ref init(). |
|
| 287 |
/// \sa SetElevator |
|
| 288 |
template <typename _Elevator> |
|
| 289 |
struct SetStandardElevator |
|
| 290 |
: public Circulation<Digraph, LCapMap, UCapMap, DeltaMap, |
|
| 291 |
SetStandardElevatorTraits<_Elevator> > {
|
|
| 292 |
typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap, |
|
| 293 |
SetStandardElevatorTraits<_Elevator> > Create; |
|
| 294 |
}; |
|
| 295 |
|
|
| 296 |
/// @} |
|
| 297 |
|
|
| 298 |
protected: |
|
| 299 |
|
|
| 300 |
Circulation() {}
|
|
| 301 |
|
|
| 302 |
public: |
|
| 303 |
|
|
| 304 |
/// The constructor of the class. |
|
| 305 |
|
|
| 306 |
/// The constructor of the class. |
|
| 307 |
/// \param g The digraph the algorithm runs on. |
|
| 308 |
/// \param lo The lower bound capacity of the arcs. |
|
| 309 |
/// \param up The upper bound capacity of the arcs. |
|
| 310 |
/// \param delta The lower bound for the supply of the nodes. |
|
| 311 |
Circulation(const Digraph &g,const LCapMap &lo, |
|
| 312 |
const UCapMap &up,const DeltaMap &delta) |
|
| 313 |
: _g(g), _node_num(), |
|
| 314 |
_lo(&lo),_up(&up),_delta(&delta),_flow(0),_local_flow(false), |
|
| 315 |
_level(0), _local_level(false), _excess(0), _el() {}
|
|
| 316 |
|
|
| 317 |
/// Destructor. |
|
| 318 |
~Circulation() {
|
|
| 319 |
destroyStructures(); |
|
| 320 |
} |
|
| 321 |
|
|
| 322 |
|
|
| 323 |
private: |
|
| 324 |
|
|
| 325 |
void createStructures() {
|
|
| 326 |
_node_num = _el = countNodes(_g); |
|
| 327 |
|
|
| 328 |
if (!_flow) {
|
|
| 329 |
_flow = Traits::createFlowMap(_g); |
|
| 330 |
_local_flow = true; |
|
| 331 |
} |
|
| 332 |
if (!_level) {
|
|
| 333 |
_level = Traits::createElevator(_g, _node_num); |
|
| 334 |
_local_level = true; |
|
| 335 |
} |
|
| 336 |
if (!_excess) {
|
|
| 337 |
_excess = new ExcessMap(_g); |
|
| 338 |
} |
|
| 339 |
} |
|
| 340 |
|
|
| 341 |
void destroyStructures() {
|
|
| 342 |
if (_local_flow) {
|
|
| 343 |
delete _flow; |
|
| 344 |
} |
|
| 345 |
if (_local_level) {
|
|
| 346 |
delete _level; |
|
| 347 |
} |
|
| 348 |
if (_excess) {
|
|
| 349 |
delete _excess; |
|
| 350 |
} |
|
| 351 |
} |
|
| 352 |
|
|
| 353 |
public: |
|
| 354 |
|
|
| 355 |
/// Sets the lower bound capacity map. |
|
| 356 |
|
|
| 357 |
/// Sets the lower bound capacity map. |
|
| 358 |
/// \return <tt>(*this)</tt> |
|
| 359 |
Circulation& lowerCapMap(const LCapMap& map) {
|
|
| 360 |
_lo = ↦ |
|
| 361 |
return *this; |
|
| 362 |
} |
|
| 363 |
|
|
| 364 |
/// Sets the upper bound capacity map. |
|
| 365 |
|
|
| 366 |
/// Sets the upper bound capacity map. |
|
| 367 |
/// \return <tt>(*this)</tt> |
|
| 368 |
Circulation& upperCapMap(const LCapMap& map) {
|
|
| 369 |
_up = ↦ |
|
| 370 |
return *this; |
|
| 371 |
} |
|
| 372 |
|
|
| 373 |
/// Sets the lower bound map for the supply of the nodes. |
|
| 374 |
|
|
| 375 |
/// Sets the lower bound map for the supply of the nodes. |
|
| 376 |
/// \return <tt>(*this)</tt> |
|
| 377 |
Circulation& deltaMap(const DeltaMap& map) {
|
|
| 378 |
_delta = ↦ |
|
| 379 |
return *this; |
|
| 380 |
} |
|
| 381 |
|
|
| 382 |
/// \brief Sets the flow map. |
|
| 383 |
/// |
|
| 384 |
/// Sets the flow map. |
|
| 385 |
/// If you don't use this function before calling \ref run() or |
|
| 386 |
/// \ref init(), an instance will be allocated automatically. |
|
| 387 |
/// The destructor deallocates this automatically allocated map, |
|
| 388 |
/// of course. |
|
| 389 |
/// \return <tt>(*this)</tt> |
|
| 390 |
Circulation& flowMap(FlowMap& map) {
|
|
| 391 |
if (_local_flow) {
|
|
| 392 |
delete _flow; |
|
| 393 |
_local_flow = false; |
|
| 394 |
} |
|
| 395 |
_flow = ↦ |
|
| 396 |
return *this; |
|
| 397 |
} |
|
| 398 |
|
|
| 399 |
/// \brief Sets the elevator used by algorithm. |
|
| 400 |
/// |
|
| 401 |
/// Sets the elevator used by algorithm. |
|
| 402 |
/// If you don't use this function before calling \ref run() or |
|
| 403 |
/// \ref init(), an instance will be allocated automatically. |
|
| 404 |
/// The destructor deallocates this automatically allocated elevator, |
|
| 405 |
/// of course. |
|
| 406 |
/// \return <tt>(*this)</tt> |
|
| 407 |
Circulation& elevator(Elevator& elevator) {
|
|
| 408 |
if (_local_level) {
|
|
| 409 |
delete _level; |
|
| 410 |
_local_level = false; |
|
| 411 |
} |
|
| 412 |
_level = &elevator; |
|
| 413 |
return *this; |
|
| 414 |
} |
|
| 415 |
|
|
| 416 |
/// \brief Returns a const reference to the elevator. |
|
| 417 |
/// |
|
| 418 |
/// Returns a const reference to the elevator. |
|
| 419 |
/// |
|
| 420 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 421 |
/// using this function. |
|
| 422 |
const Elevator& elevator() {
|
|
| 423 |
return *_level; |
|
| 424 |
} |
|
| 425 |
|
|
| 426 |
/// \brief Sets the tolerance used by algorithm. |
|
| 427 |
/// |
|
| 428 |
/// Sets the tolerance used by algorithm. |
|
| 429 |
Circulation& tolerance(const Tolerance& tolerance) const {
|
|
| 430 |
_tol = tolerance; |
|
| 431 |
return *this; |
|
| 432 |
} |
|
| 433 |
|
|
| 434 |
/// \brief Returns a const reference to the tolerance. |
|
| 435 |
/// |
|
| 436 |
/// Returns a const reference to the tolerance. |
|
| 437 |
const Tolerance& tolerance() const {
|
|
| 438 |
return tolerance; |
|
| 439 |
} |
|
| 440 |
|
|
| 441 |
/// \name Execution Control |
|
| 442 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
|
| 443 |
/// If you need more control on the initial solution or the execution, |
|
| 444 |
/// first you have to call one of the \ref init() functions, then |
|
| 445 |
/// the \ref start() function. |
|
| 446 |
|
|
| 447 |
///@{
|
|
| 448 |
|
|
| 449 |
/// Initializes the internal data structures. |
|
| 450 |
|
|
| 451 |
/// Initializes the internal data structures and sets all flow values |
|
| 452 |
/// to the lower bound. |
|
| 453 |
void init() |
|
| 454 |
{
|
|
| 455 |
createStructures(); |
|
| 456 |
|
|
| 457 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
|
| 458 |
_excess->set(n, (*_delta)[n]); |
|
| 459 |
} |
|
| 460 |
|
|
| 461 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
|
| 462 |
_flow->set(e, (*_lo)[e]); |
|
| 463 |
_excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_flow)[e]); |
|
| 464 |
_excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_flow)[e]); |
|
| 465 |
} |
|
| 466 |
|
|
| 467 |
// global relabeling tested, but in general case it provides |
|
| 468 |
// worse performance for random digraphs |
|
| 469 |
_level->initStart(); |
|
| 470 |
for(NodeIt n(_g);n!=INVALID;++n) |
|
| 471 |
_level->initAddItem(n); |
|
| 472 |
_level->initFinish(); |
|
| 473 |
for(NodeIt n(_g);n!=INVALID;++n) |
|
| 474 |
if(_tol.positive((*_excess)[n])) |
|
| 475 |
_level->activate(n); |
|
| 476 |
} |
|
| 477 |
|
|
| 478 |
/// Initializes the internal data structures using a greedy approach. |
|
| 479 |
|
|
| 480 |
/// Initializes the internal data structures using a greedy approach |
|
| 481 |
/// to construct the initial solution. |
|
| 482 |
void greedyInit() |
|
| 483 |
{
|
|
| 484 |
createStructures(); |
|
| 485 |
|
|
| 486 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
|
| 487 |
_excess->set(n, (*_delta)[n]); |
|
| 488 |
} |
|
| 489 |
|
|
| 490 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
|
| 491 |
if (!_tol.positive((*_excess)[_g.target(e)] + (*_up)[e])) {
|
|
| 492 |
_flow->set(e, (*_up)[e]); |
|
| 493 |
_excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_up)[e]); |
|
| 494 |
_excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_up)[e]); |
|
| 495 |
} else if (_tol.positive((*_excess)[_g.target(e)] + (*_lo)[e])) {
|
|
| 496 |
_flow->set(e, (*_lo)[e]); |
|
| 497 |
_excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_lo)[e]); |
|
| 498 |
_excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_lo)[e]); |
|
| 499 |
} else {
|
|
| 500 |
Value fc = -(*_excess)[_g.target(e)]; |
|
| 501 |
_flow->set(e, fc); |
|
| 502 |
_excess->set(_g.target(e), 0); |
|
| 503 |
_excess->set(_g.source(e), (*_excess)[_g.source(e)] - fc); |
|
| 504 |
} |
|
| 505 |
} |
|
| 506 |
|
|
| 507 |
_level->initStart(); |
|
| 508 |
for(NodeIt n(_g);n!=INVALID;++n) |
|
| 509 |
_level->initAddItem(n); |
|
| 510 |
_level->initFinish(); |
|
| 511 |
for(NodeIt n(_g);n!=INVALID;++n) |
|
| 512 |
if(_tol.positive((*_excess)[n])) |
|
| 513 |
_level->activate(n); |
|
| 514 |
} |
|
| 515 |
|
|
| 516 |
///Executes the algorithm |
|
| 517 |
|
|
| 518 |
///This function executes the algorithm. |
|
| 519 |
/// |
|
| 520 |
///\return \c true if a feasible circulation is found. |
|
| 521 |
/// |
|
| 522 |
///\sa barrier() |
|
| 523 |
///\sa barrierMap() |
|
| 524 |
bool start() |
|
| 525 |
{
|
|
| 526 |
|
|
| 527 |
Node act; |
|
| 528 |
Node bact=INVALID; |
|
| 529 |
Node last_activated=INVALID; |
|
| 530 |
while((act=_level->highestActive())!=INVALID) {
|
|
| 531 |
int actlevel=(*_level)[act]; |
|
| 532 |
int mlevel=_node_num; |
|
| 533 |
Value exc=(*_excess)[act]; |
|
| 534 |
|
|
| 535 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) {
|
|
| 536 |
Node v = _g.target(e); |
|
| 537 |
Value fc=(*_up)[e]-(*_flow)[e]; |
|
| 538 |
if(!_tol.positive(fc)) continue; |
|
| 539 |
if((*_level)[v]<actlevel) {
|
|
| 540 |
if(!_tol.less(fc, exc)) {
|
|
| 541 |
_flow->set(e, (*_flow)[e] + exc); |
|
| 542 |
_excess->set(v, (*_excess)[v] + exc); |
|
| 543 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
|
| 544 |
_level->activate(v); |
|
| 545 |
_excess->set(act,0); |
|
| 546 |
_level->deactivate(act); |
|
| 547 |
goto next_l; |
|
| 548 |
} |
|
| 549 |
else {
|
|
| 550 |
_flow->set(e, (*_up)[e]); |
|
| 551 |
_excess->set(v, (*_excess)[v] + fc); |
|
| 552 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
|
| 553 |
_level->activate(v); |
|
| 554 |
exc-=fc; |
|
| 555 |
} |
|
| 556 |
} |
|
| 557 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
|
| 558 |
} |
|
| 559 |
for(InArcIt e(_g,act);e!=INVALID; ++e) {
|
|
| 560 |
Node v = _g.source(e); |
|
| 561 |
Value fc=(*_flow)[e]-(*_lo)[e]; |
|
| 562 |
if(!_tol.positive(fc)) continue; |
|
| 563 |
if((*_level)[v]<actlevel) {
|
|
| 564 |
if(!_tol.less(fc, exc)) {
|
|
| 565 |
_flow->set(e, (*_flow)[e] - exc); |
|
| 566 |
_excess->set(v, (*_excess)[v] + exc); |
|
| 567 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
|
| 568 |
_level->activate(v); |
|
| 569 |
_excess->set(act,0); |
|
| 570 |
_level->deactivate(act); |
|
| 571 |
goto next_l; |
|
| 572 |
} |
|
| 573 |
else {
|
|
| 574 |
_flow->set(e, (*_lo)[e]); |
|
| 575 |
_excess->set(v, (*_excess)[v] + fc); |
|
| 576 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
|
| 577 |
_level->activate(v); |
|
| 578 |
exc-=fc; |
|
| 579 |
} |
|
| 580 |
} |
|
| 581 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
|
| 582 |
} |
|
| 583 |
|
|
| 584 |
_excess->set(act, exc); |
|
| 585 |
if(!_tol.positive(exc)) _level->deactivate(act); |
|
| 586 |
else if(mlevel==_node_num) {
|
|
| 587 |
_level->liftHighestActiveToTop(); |
|
| 588 |
_el = _node_num; |
|
| 589 |
return false; |
|
| 590 |
} |
|
| 591 |
else {
|
|
| 592 |
_level->liftHighestActive(mlevel+1); |
|
| 593 |
if(_level->onLevel(actlevel)==0) {
|
|
| 594 |
_el = actlevel; |
|
| 595 |
return false; |
|
| 596 |
} |
|
| 597 |
} |
|
| 598 |
next_l: |
|
| 599 |
; |
|
| 600 |
} |
|
| 601 |
return true; |
|
| 602 |
} |
|
| 603 |
|
|
| 604 |
/// Runs the algorithm. |
|
| 605 |
|
|
| 606 |
/// This function runs the algorithm. |
|
| 607 |
/// |
|
| 608 |
/// \return \c true if a feasible circulation is found. |
|
| 609 |
/// |
|
| 610 |
/// \note Apart from the return value, c.run() is just a shortcut of |
|
| 611 |
/// the following code. |
|
| 612 |
/// \code |
|
| 613 |
/// c.greedyInit(); |
|
| 614 |
/// c.start(); |
|
| 615 |
/// \endcode |
|
| 616 |
bool run() {
|
|
| 617 |
greedyInit(); |
|
| 618 |
return start(); |
|
| 619 |
} |
|
| 620 |
|
|
| 621 |
/// @} |
|
| 622 |
|
|
| 623 |
/// \name Query Functions |
|
| 624 |
/// The results of the circulation algorithm can be obtained using |
|
| 625 |
/// these functions.\n |
|
| 626 |
/// Either \ref run() or \ref start() should be called before |
|
| 627 |
/// using them. |
|
| 628 |
|
|
| 629 |
///@{
|
|
| 630 |
|
|
| 631 |
/// \brief Returns the flow on the given arc. |
|
| 632 |
/// |
|
| 633 |
/// Returns the flow on the given arc. |
|
| 634 |
/// |
|
| 635 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 636 |
/// using this function. |
|
| 637 |
Value flow(const Arc& arc) const {
|
|
| 638 |
return (*_flow)[arc]; |
|
| 639 |
} |
|
| 640 |
|
|
| 641 |
/// \brief Returns a const reference to the flow map. |
|
| 642 |
/// |
|
| 643 |
/// Returns a const reference to the arc map storing the found flow. |
|
| 644 |
/// |
|
| 645 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 646 |
/// using this function. |
|
| 647 |
const FlowMap& flowMap() {
|
|
| 648 |
return *_flow; |
|
| 649 |
} |
|
| 650 |
|
|
| 651 |
/** |
|
| 652 |
\brief Returns \c true if the given node is in a barrier. |
|
| 653 |
|
|
| 654 |
Barrier is a set \e B of nodes for which |
|
| 655 |
|
|
| 656 |
\f[ \sum_{a\in\delta_{out}(B)} upper(a) -
|
|
| 657 |
\sum_{a\in\delta_{in}(B)} lower(a) < \sum_{v\in B}delta(v) \f]
|
|
| 658 |
|
|
| 659 |
holds. The existence of a set with this property prooves that a |
|
| 660 |
feasible circualtion cannot exist. |
|
| 661 |
|
|
| 662 |
This function returns \c true if the given node is in the found |
|
| 663 |
barrier. If a feasible circulation is found, the function |
|
| 664 |
gives back \c false for every node. |
|
| 665 |
|
|
| 666 |
\pre Either \ref run() or \ref init() must be called before |
|
| 667 |
using this function. |
|
| 668 |
|
|
| 669 |
\sa barrierMap() |
|
| 670 |
\sa checkBarrier() |
|
| 671 |
*/ |
|
| 672 |
bool barrier(const Node& node) |
|
| 673 |
{
|
|
| 674 |
return (*_level)[node] >= _el; |
|
| 675 |
} |
|
| 676 |
|
|
| 677 |
/// \brief Gives back a barrier. |
|
| 678 |
/// |
|
| 679 |
/// This function sets \c bar to the characteristic vector of the |
|
| 680 |
/// found barrier. \c bar should be a \ref concepts::WriteMap "writable" |
|
| 681 |
/// node map with \c bool (or convertible) value type. |
|
| 682 |
/// |
|
| 683 |
/// If a feasible circulation is found, the function gives back an |
|
| 684 |
/// empty set, so \c bar[v] will be \c false for all nodes \c v. |
|
| 685 |
/// |
|
| 686 |
/// \note This function calls \ref barrier() for each node, |
|
| 687 |
/// so it runs in \f$O(n)\f$ time. |
|
| 688 |
/// |
|
| 689 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 690 |
/// using this function. |
|
| 691 |
/// |
|
| 692 |
/// \sa barrier() |
|
| 693 |
/// \sa checkBarrier() |
|
| 694 |
template<class BarrierMap> |
|
| 695 |
void barrierMap(BarrierMap &bar) |
|
| 696 |
{
|
|
| 697 |
for(NodeIt n(_g);n!=INVALID;++n) |
|
| 698 |
bar.set(n, (*_level)[n] >= _el); |
|
| 699 |
} |
|
| 700 |
|
|
| 701 |
/// @} |
|
| 702 |
|
|
| 703 |
/// \name Checker Functions |
|
| 704 |
/// The feasibility of the results can be checked using |
|
| 705 |
/// these functions.\n |
|
| 706 |
/// Either \ref run() or \ref start() should be called before |
|
| 707 |
/// using them. |
|
| 708 |
|
|
| 709 |
///@{
|
|
| 710 |
|
|
| 711 |
///Check if the found flow is a feasible circulation |
|
| 712 |
|
|
| 713 |
///Check if the found flow is a feasible circulation, |
|
| 714 |
/// |
|
| 715 |
bool checkFlow() {
|
|
| 716 |
for(ArcIt e(_g);e!=INVALID;++e) |
|
| 717 |
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; |
|
| 718 |
for(NodeIt n(_g);n!=INVALID;++n) |
|
| 719 |
{
|
|
| 720 |
Value dif=-(*_delta)[n]; |
|
| 721 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
|
| 722 |
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; |
|
| 723 |
if(_tol.negative(dif)) return false; |
|
| 724 |
} |
|
| 725 |
return true; |
|
| 726 |
} |
|
| 727 |
|
|
| 728 |
///Check whether or not the last execution provides a barrier |
|
| 729 |
|
|
| 730 |
///Check whether or not the last execution provides a barrier. |
|
| 731 |
///\sa barrier() |
|
| 732 |
///\sa barrierMap() |
|
| 733 |
bool checkBarrier() |
|
| 734 |
{
|
|
| 735 |
Value delta=0; |
|
| 736 |
for(NodeIt n(_g);n!=INVALID;++n) |
|
| 737 |
if(barrier(n)) |
|
| 738 |
delta-=(*_delta)[n]; |
|
| 739 |
for(ArcIt e(_g);e!=INVALID;++e) |
|
| 740 |
{
|
|
| 741 |
Node s=_g.source(e); |
|
| 742 |
Node t=_g.target(e); |
|
| 743 |
if(barrier(s)&&!barrier(t)) delta+=(*_up)[e]; |
|
| 744 |
else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e]; |
|
| 745 |
} |
|
| 746 |
return _tol.negative(delta); |
|
| 747 |
} |
|
| 748 |
|
|
| 749 |
/// @} |
|
| 750 |
|
|
| 751 |
}; |
|
| 752 |
|
|
| 753 |
} |
|
| 754 |
|
|
| 755 |
#endif |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#include <iostream> |
|
| 20 |
|
|
| 21 |
#include "test_tools.h" |
|
| 22 |
#include <lemon/list_graph.h> |
|
| 23 |
#include <lemon/circulation.h> |
|
| 24 |
#include <lemon/lgf_reader.h> |
|
| 25 |
#include <lemon/concepts/digraph.h> |
|
| 26 |
#include <lemon/concepts/maps.h> |
|
| 27 |
|
|
| 28 |
using namespace lemon; |
|
| 29 |
|
|
| 30 |
char test_lgf[] = |
|
| 31 |
"@nodes\n" |
|
| 32 |
"label\n" |
|
| 33 |
"0\n" |
|
| 34 |
"1\n" |
|
| 35 |
"2\n" |
|
| 36 |
"3\n" |
|
| 37 |
"4\n" |
|
| 38 |
"5\n" |
|
| 39 |
"@arcs\n" |
|
| 40 |
" lcap ucap\n" |
|
| 41 |
"0 1 2 10\n" |
|
| 42 |
"0 2 2 6\n" |
|
| 43 |
"1 3 4 7\n" |
|
| 44 |
"1 4 0 5\n" |
|
| 45 |
"2 4 1 3\n" |
|
| 46 |
"3 5 3 8\n" |
|
| 47 |
"4 5 3 7\n" |
|
| 48 |
"@attributes\n" |
|
| 49 |
"source 0\n" |
|
| 50 |
"sink 5\n"; |
|
| 51 |
|
|
| 52 |
void checkCirculationCompile() |
|
| 53 |
{
|
|
| 54 |
typedef int VType; |
|
| 55 |
typedef concepts::Digraph Digraph; |
|
| 56 |
|
|
| 57 |
typedef Digraph::Node Node; |
|
| 58 |
typedef Digraph::Arc Arc; |
|
| 59 |
typedef concepts::ReadMap<Arc,VType> CapMap; |
|
| 60 |
typedef concepts::ReadMap<Node,VType> DeltaMap; |
|
| 61 |
typedef concepts::ReadWriteMap<Arc,VType> FlowMap; |
|
| 62 |
typedef concepts::WriteMap<Node,bool> BarrierMap; |
|
| 63 |
|
|
| 64 |
typedef Elevator<Digraph, Digraph::Node> Elev; |
|
| 65 |
typedef LinkedElevator<Digraph, Digraph::Node> LinkedElev; |
|
| 66 |
|
|
| 67 |
Digraph g; |
|
| 68 |
Node n; |
|
| 69 |
Arc a; |
|
| 70 |
CapMap lcap, ucap; |
|
| 71 |
DeltaMap delta; |
|
| 72 |
FlowMap flow; |
|
| 73 |
BarrierMap bar; |
|
| 74 |
|
|
| 75 |
Circulation<Digraph, CapMap, CapMap, DeltaMap> |
|
| 76 |
::SetFlowMap<FlowMap> |
|
| 77 |
::SetElevator<Elev> |
|
| 78 |
::SetStandardElevator<LinkedElev> |
|
| 79 |
::Create circ_test(g,lcap,ucap,delta); |
|
| 80 |
|
|
| 81 |
circ_test.lowerCapMap(lcap); |
|
| 82 |
circ_test.upperCapMap(ucap); |
|
| 83 |
circ_test.deltaMap(delta); |
|
| 84 |
flow = circ_test.flowMap(); |
|
| 85 |
circ_test.flowMap(flow); |
|
| 86 |
|
|
| 87 |
circ_test.init(); |
|
| 88 |
circ_test.greedyInit(); |
|
| 89 |
circ_test.start(); |
|
| 90 |
circ_test.run(); |
|
| 91 |
|
|
| 92 |
circ_test.barrier(n); |
|
| 93 |
circ_test.barrierMap(bar); |
|
| 94 |
circ_test.flow(a); |
|
| 95 |
} |
|
| 96 |
|
|
| 97 |
template <class G, class LM, class UM, class DM> |
|
| 98 |
void checkCirculation(const G& g, const LM& lm, const UM& um, |
|
| 99 |
const DM& dm, bool find) |
|
| 100 |
{
|
|
| 101 |
Circulation<G, LM, UM, DM> circ(g, lm, um, dm); |
|
| 102 |
bool ret = circ.run(); |
|
| 103 |
if (find) {
|
|
| 104 |
check(ret, "A feasible solution should have been found."); |
|
| 105 |
check(circ.checkFlow(), "The found flow is corrupt."); |
|
| 106 |
check(!circ.checkBarrier(), "A barrier should not have been found."); |
|
| 107 |
} else {
|
|
| 108 |
check(!ret, "A feasible solution should not have been found."); |
|
| 109 |
check(circ.checkBarrier(), "The found barrier is corrupt."); |
|
| 110 |
} |
|
| 111 |
} |
|
| 112 |
|
|
| 113 |
int main (int, char*[]) |
|
| 114 |
{
|
|
| 115 |
typedef ListDigraph Digraph; |
|
| 116 |
DIGRAPH_TYPEDEFS(Digraph); |
|
| 117 |
|
|
| 118 |
Digraph g; |
|
| 119 |
IntArcMap lo(g), up(g); |
|
| 120 |
IntNodeMap delta(g, 0); |
|
| 121 |
Node s, t; |
|
| 122 |
|
|
| 123 |
std::istringstream input(test_lgf); |
|
| 124 |
DigraphReader<Digraph>(g,input). |
|
| 125 |
arcMap("lcap", lo).
|
|
| 126 |
arcMap("ucap", up).
|
|
| 127 |
node("source",s).
|
|
| 128 |
node("sink",t).
|
|
| 129 |
run(); |
|
| 130 |
|
|
| 131 |
delta[s] = 7; delta[t] = -7; |
|
| 132 |
checkCirculation(g, lo, up, delta, true); |
|
| 133 |
|
|
| 134 |
delta[s] = 13; delta[t] = -13; |
|
| 135 |
checkCirculation(g, lo, up, delta, true); |
|
| 136 |
|
|
| 137 |
delta[s] = 6; delta[t] = -6; |
|
| 138 |
checkCirculation(g, lo, up, delta, false); |
|
| 139 |
|
|
| 140 |
delta[s] = 14; delta[t] = -14; |
|
| 141 |
checkCirculation(g, lo, up, delta, false); |
|
| 142 |
|
|
| 143 |
delta[s] = 7; delta[t] = -13; |
|
| 144 |
checkCirculation(g, lo, up, delta, true); |
|
| 145 |
|
|
| 146 |
delta[s] = 5; delta[t] = -15; |
|
| 147 |
checkCirculation(g, lo, up, delta, true); |
|
| 148 |
|
|
| 149 |
delta[s] = 10; delta[t] = -11; |
|
| 150 |
checkCirculation(g, lo, up, delta, true); |
|
| 151 |
|
|
| 152 |
delta[s] = 11; delta[t] = -10; |
|
| 153 |
checkCirculation(g, lo, up, delta, false); |
|
| 154 |
|
|
| 155 |
return 0; |
|
| 156 |
} |
0 comments (0 inline)