0
2
0
64
4
| ... | ... |
@@ -616,419 +616,438 @@ |
| 616 | 616 |
/// This function returns the \ref Status "status" of the given node |
| 617 | 617 |
/// in the Edmonds-Gallai decomposition. |
| 618 | 618 |
Status status(const Node& n) const {
|
| 619 | 619 |
return (*_status)[n]; |
| 620 | 620 |
} |
| 621 | 621 |
|
| 622 | 622 |
/// \brief Return a const reference to the status map, which stores |
| 623 | 623 |
/// the Edmonds-Gallai decomposition. |
| 624 | 624 |
/// |
| 625 | 625 |
/// This function returns a const reference to a node map that stores the |
| 626 | 626 |
/// \ref Status "status" of each node in the Edmonds-Gallai decomposition. |
| 627 | 627 |
const StatusMap& statusMap() const {
|
| 628 | 628 |
return *_status; |
| 629 | 629 |
} |
| 630 | 630 |
|
| 631 | 631 |
/// \brief Return \c true if the given node is in the barrier. |
| 632 | 632 |
/// |
| 633 | 633 |
/// This function returns \c true if the given node is in the barrier. |
| 634 | 634 |
bool barrier(const Node& n) const {
|
| 635 | 635 |
return (*_status)[n] == ODD; |
| 636 | 636 |
} |
| 637 | 637 |
|
| 638 | 638 |
/// @} |
| 639 | 639 |
|
| 640 | 640 |
}; |
| 641 | 641 |
|
| 642 | 642 |
/// \ingroup matching |
| 643 | 643 |
/// |
| 644 | 644 |
/// \brief Weighted matching in general graphs |
| 645 | 645 |
/// |
| 646 | 646 |
/// This class provides an efficient implementation of Edmond's |
| 647 | 647 |
/// maximum weighted matching algorithm. The implementation is based |
| 648 | 648 |
/// on extensive use of priority queues and provides |
| 649 | 649 |
/// \f$O(nm\log n)\f$ time complexity. |
| 650 | 650 |
/// |
| 651 | 651 |
/// The maximum weighted matching problem is to find a subset of the |
| 652 | 652 |
/// edges in an undirected graph with maximum overall weight for which |
| 653 | 653 |
/// each node has at most one incident edge. |
| 654 | 654 |
/// It can be formulated with the following linear program. |
| 655 | 655 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
|
| 656 | 656 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
|
| 657 | 657 |
\quad \forall B\in\mathcal{O}\f] */
|
| 658 | 658 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
| 659 | 659 |
/// \f[\max \sum_{e\in E}x_ew_e\f]
|
| 660 | 660 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
| 661 | 661 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
| 662 | 662 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
|
| 663 | 663 |
/// subsets of the nodes. |
| 664 | 664 |
/// |
| 665 | 665 |
/// The algorithm calculates an optimal matching and a proof of the |
| 666 | 666 |
/// optimality. The solution of the dual problem can be used to check |
| 667 | 667 |
/// the result of the algorithm. The dual linear problem is the |
| 668 | 668 |
/// following. |
| 669 | 669 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}
|
| 670 | 670 |
z_B \ge w_{uv} \quad \forall uv\in E\f] */
|
| 671 | 671 |
/// \f[y_u \ge 0 \quad \forall u \in V\f] |
| 672 | 672 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
|
| 673 | 673 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
|
| 674 | 674 |
\frac{\vert B \vert - 1}{2}z_B\f] */
|
| 675 | 675 |
/// |
| 676 | 676 |
/// The algorithm can be executed with the run() function. |
| 677 | 677 |
/// After it the matching (the primal solution) and the dual solution |
| 678 | 678 |
/// can be obtained using the query functions and the |
| 679 | 679 |
/// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, |
| 680 | 680 |
/// which is able to iterate on the nodes of a blossom. |
| 681 | 681 |
/// If the value type is integer, then the dual solution is multiplied |
| 682 | 682 |
/// by \ref MaxWeightedMatching::dualScale "4". |
| 683 | 683 |
/// |
| 684 | 684 |
/// \tparam GR The undirected graph type the algorithm runs on. |
| 685 | 685 |
/// \tparam WM The type edge weight map. The default type is |
| 686 | 686 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
| 687 | 687 |
#ifdef DOXYGEN |
| 688 | 688 |
template <typename GR, typename WM> |
| 689 | 689 |
#else |
| 690 | 690 |
template <typename GR, |
| 691 | 691 |
typename WM = typename GR::template EdgeMap<int> > |
| 692 | 692 |
#endif |
| 693 | 693 |
class MaxWeightedMatching {
|
| 694 | 694 |
public: |
| 695 | 695 |
|
| 696 | 696 |
/// The graph type of the algorithm |
| 697 | 697 |
typedef GR Graph; |
| 698 | 698 |
/// The type of the edge weight map |
| 699 | 699 |
typedef WM WeightMap; |
| 700 | 700 |
/// The value type of the edge weights |
| 701 | 701 |
typedef typename WeightMap::Value Value; |
| 702 | 702 |
|
| 703 | 703 |
/// The type of the matching map |
| 704 | 704 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
| 705 | 705 |
MatchingMap; |
| 706 | 706 |
|
| 707 | 707 |
/// \brief Scaling factor for dual solution |
| 708 | 708 |
/// |
| 709 | 709 |
/// Scaling factor for dual solution. It is equal to 4 or 1 |
| 710 | 710 |
/// according to the value type. |
| 711 | 711 |
static const int dualScale = |
| 712 | 712 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
| 713 | 713 |
|
| 714 | 714 |
private: |
| 715 | 715 |
|
| 716 | 716 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 717 | 717 |
|
| 718 | 718 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
| 719 | 719 |
typedef std::vector<Node> BlossomNodeList; |
| 720 | 720 |
|
| 721 | 721 |
struct BlossomVariable {
|
| 722 | 722 |
int begin, end; |
| 723 | 723 |
Value value; |
| 724 | 724 |
|
| 725 | 725 |
BlossomVariable(int _begin, int _end, Value _value) |
| 726 | 726 |
: begin(_begin), end(_end), value(_value) {}
|
| 727 | 727 |
|
| 728 | 728 |
}; |
| 729 | 729 |
|
| 730 | 730 |
typedef std::vector<BlossomVariable> BlossomPotential; |
| 731 | 731 |
|
| 732 | 732 |
const Graph& _graph; |
| 733 | 733 |
const WeightMap& _weight; |
| 734 | 734 |
|
| 735 | 735 |
MatchingMap* _matching; |
| 736 | 736 |
|
| 737 | 737 |
NodePotential* _node_potential; |
| 738 | 738 |
|
| 739 | 739 |
BlossomPotential _blossom_potential; |
| 740 | 740 |
BlossomNodeList _blossom_node_list; |
| 741 | 741 |
|
| 742 | 742 |
int _node_num; |
| 743 | 743 |
int _blossom_num; |
| 744 | 744 |
|
| 745 | 745 |
typedef RangeMap<int> IntIntMap; |
| 746 | 746 |
|
| 747 | 747 |
enum Status {
|
| 748 | 748 |
EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2 |
| 749 | 749 |
}; |
| 750 | 750 |
|
| 751 | 751 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
| 752 | 752 |
struct BlossomData {
|
| 753 | 753 |
int tree; |
| 754 | 754 |
Status status; |
| 755 | 755 |
Arc pred, next; |
| 756 | 756 |
Value pot, offset; |
| 757 | 757 |
Node base; |
| 758 | 758 |
}; |
| 759 | 759 |
|
| 760 | 760 |
IntNodeMap *_blossom_index; |
| 761 | 761 |
BlossomSet *_blossom_set; |
| 762 | 762 |
RangeMap<BlossomData>* _blossom_data; |
| 763 | 763 |
|
| 764 | 764 |
IntNodeMap *_node_index; |
| 765 | 765 |
IntArcMap *_node_heap_index; |
| 766 | 766 |
|
| 767 | 767 |
struct NodeData {
|
| 768 | 768 |
|
| 769 | 769 |
NodeData(IntArcMap& node_heap_index) |
| 770 | 770 |
: heap(node_heap_index) {}
|
| 771 | 771 |
|
| 772 | 772 |
int blossom; |
| 773 | 773 |
Value pot; |
| 774 | 774 |
BinHeap<Value, IntArcMap> heap; |
| 775 | 775 |
std::map<int, Arc> heap_index; |
| 776 | 776 |
|
| 777 | 777 |
int tree; |
| 778 | 778 |
}; |
| 779 | 779 |
|
| 780 | 780 |
RangeMap<NodeData>* _node_data; |
| 781 | 781 |
|
| 782 | 782 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
| 783 | 783 |
|
| 784 | 784 |
IntIntMap *_tree_set_index; |
| 785 | 785 |
TreeSet *_tree_set; |
| 786 | 786 |
|
| 787 | 787 |
IntNodeMap *_delta1_index; |
| 788 | 788 |
BinHeap<Value, IntNodeMap> *_delta1; |
| 789 | 789 |
|
| 790 | 790 |
IntIntMap *_delta2_index; |
| 791 | 791 |
BinHeap<Value, IntIntMap> *_delta2; |
| 792 | 792 |
|
| 793 | 793 |
IntEdgeMap *_delta3_index; |
| 794 | 794 |
BinHeap<Value, IntEdgeMap> *_delta3; |
| 795 | 795 |
|
| 796 | 796 |
IntIntMap *_delta4_index; |
| 797 | 797 |
BinHeap<Value, IntIntMap> *_delta4; |
| 798 | 798 |
|
| 799 | 799 |
Value _delta_sum; |
| 800 | 800 |
|
| 801 | 801 |
void createStructures() {
|
| 802 | 802 |
_node_num = countNodes(_graph); |
| 803 | 803 |
_blossom_num = _node_num * 3 / 2; |
| 804 | 804 |
|
| 805 | 805 |
if (!_matching) {
|
| 806 | 806 |
_matching = new MatchingMap(_graph); |
| 807 | 807 |
} |
| 808 |
|
|
| 808 | 809 |
if (!_node_potential) {
|
| 809 | 810 |
_node_potential = new NodePotential(_graph); |
| 810 | 811 |
} |
| 812 |
|
|
| 811 | 813 |
if (!_blossom_set) {
|
| 812 | 814 |
_blossom_index = new IntNodeMap(_graph); |
| 813 | 815 |
_blossom_set = new BlossomSet(*_blossom_index); |
| 814 | 816 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
| 817 |
} else if (_blossom_data->size() != _blossom_num) {
|
|
| 818 |
delete _blossom_data; |
|
| 819 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
|
| 815 | 820 |
} |
| 816 | 821 |
|
| 817 | 822 |
if (!_node_index) {
|
| 818 | 823 |
_node_index = new IntNodeMap(_graph); |
| 819 | 824 |
_node_heap_index = new IntArcMap(_graph); |
| 820 | 825 |
_node_data = new RangeMap<NodeData>(_node_num, |
| 821 | 826 |
NodeData(*_node_heap_index)); |
| 827 |
} else {
|
|
| 828 |
delete _node_data; |
|
| 829 |
_node_data = new RangeMap<NodeData>(_node_num, |
|
| 830 |
NodeData(*_node_heap_index)); |
|
| 822 | 831 |
} |
| 823 | 832 |
|
| 824 | 833 |
if (!_tree_set) {
|
| 825 | 834 |
_tree_set_index = new IntIntMap(_blossom_num); |
| 826 | 835 |
_tree_set = new TreeSet(*_tree_set_index); |
| 827 |
} |
|
| 836 |
} else {
|
|
| 837 |
_tree_set_index->resize(_blossom_num); |
|
| 838 |
} |
|
| 839 |
|
|
| 828 | 840 |
if (!_delta1) {
|
| 829 | 841 |
_delta1_index = new IntNodeMap(_graph); |
| 830 | 842 |
_delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index); |
| 831 | 843 |
} |
| 844 |
|
|
| 832 | 845 |
if (!_delta2) {
|
| 833 | 846 |
_delta2_index = new IntIntMap(_blossom_num); |
| 834 | 847 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
| 835 |
} |
|
| 848 |
} else {
|
|
| 849 |
_delta2_index->resize(_blossom_num); |
|
| 850 |
} |
|
| 851 |
|
|
| 836 | 852 |
if (!_delta3) {
|
| 837 | 853 |
_delta3_index = new IntEdgeMap(_graph); |
| 838 | 854 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
| 839 | 855 |
} |
| 856 |
|
|
| 840 | 857 |
if (!_delta4) {
|
| 841 | 858 |
_delta4_index = new IntIntMap(_blossom_num); |
| 842 | 859 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
| 860 |
} else {
|
|
| 861 |
_delta4_index->resize(_blossom_num); |
|
| 843 | 862 |
} |
| 844 | 863 |
} |
| 845 | 864 |
|
| 846 | 865 |
void destroyStructures() {
|
| 847 | 866 |
_node_num = countNodes(_graph); |
| 848 | 867 |
_blossom_num = _node_num * 3 / 2; |
| 849 | 868 |
|
| 850 | 869 |
if (_matching) {
|
| 851 | 870 |
delete _matching; |
| 852 | 871 |
} |
| 853 | 872 |
if (_node_potential) {
|
| 854 | 873 |
delete _node_potential; |
| 855 | 874 |
} |
| 856 | 875 |
if (_blossom_set) {
|
| 857 | 876 |
delete _blossom_index; |
| 858 | 877 |
delete _blossom_set; |
| 859 | 878 |
delete _blossom_data; |
| 860 | 879 |
} |
| 861 | 880 |
|
| 862 | 881 |
if (_node_index) {
|
| 863 | 882 |
delete _node_index; |
| 864 | 883 |
delete _node_heap_index; |
| 865 | 884 |
delete _node_data; |
| 866 | 885 |
} |
| 867 | 886 |
|
| 868 | 887 |
if (_tree_set) {
|
| 869 | 888 |
delete _tree_set_index; |
| 870 | 889 |
delete _tree_set; |
| 871 | 890 |
} |
| 872 | 891 |
if (_delta1) {
|
| 873 | 892 |
delete _delta1_index; |
| 874 | 893 |
delete _delta1; |
| 875 | 894 |
} |
| 876 | 895 |
if (_delta2) {
|
| 877 | 896 |
delete _delta2_index; |
| 878 | 897 |
delete _delta2; |
| 879 | 898 |
} |
| 880 | 899 |
if (_delta3) {
|
| 881 | 900 |
delete _delta3_index; |
| 882 | 901 |
delete _delta3; |
| 883 | 902 |
} |
| 884 | 903 |
if (_delta4) {
|
| 885 | 904 |
delete _delta4_index; |
| 886 | 905 |
delete _delta4; |
| 887 | 906 |
} |
| 888 | 907 |
} |
| 889 | 908 |
|
| 890 | 909 |
void matchedToEven(int blossom, int tree) {
|
| 891 | 910 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) {
|
| 892 | 911 |
_delta2->erase(blossom); |
| 893 | 912 |
} |
| 894 | 913 |
|
| 895 | 914 |
if (!_blossom_set->trivial(blossom)) {
|
| 896 | 915 |
(*_blossom_data)[blossom].pot -= |
| 897 | 916 |
2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
| 898 | 917 |
} |
| 899 | 918 |
|
| 900 | 919 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| 901 | 920 |
n != INVALID; ++n) {
|
| 902 | 921 |
|
| 903 | 922 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
| 904 | 923 |
int ni = (*_node_index)[n]; |
| 905 | 924 |
|
| 906 | 925 |
(*_node_data)[ni].heap.clear(); |
| 907 | 926 |
(*_node_data)[ni].heap_index.clear(); |
| 908 | 927 |
|
| 909 | 928 |
(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
| 910 | 929 |
|
| 911 | 930 |
_delta1->push(n, (*_node_data)[ni].pot); |
| 912 | 931 |
|
| 913 | 932 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 914 | 933 |
Node v = _graph.source(e); |
| 915 | 934 |
int vb = _blossom_set->find(v); |
| 916 | 935 |
int vi = (*_node_index)[v]; |
| 917 | 936 |
|
| 918 | 937 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 919 | 938 |
dualScale * _weight[e]; |
| 920 | 939 |
|
| 921 | 940 |
if ((*_blossom_data)[vb].status == EVEN) {
|
| 922 | 941 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
|
| 923 | 942 |
_delta3->push(e, rw / 2); |
| 924 | 943 |
} |
| 925 | 944 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) {
|
| 926 | 945 |
if (_delta3->state(e) != _delta3->IN_HEAP) {
|
| 927 | 946 |
_delta3->push(e, rw); |
| 928 | 947 |
} |
| 929 | 948 |
} else {
|
| 930 | 949 |
typename std::map<int, Arc>::iterator it = |
| 931 | 950 |
(*_node_data)[vi].heap_index.find(tree); |
| 932 | 951 |
|
| 933 | 952 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
| 934 | 953 |
if ((*_node_data)[vi].heap[it->second] > rw) {
|
| 935 | 954 |
(*_node_data)[vi].heap.replace(it->second, e); |
| 936 | 955 |
(*_node_data)[vi].heap.decrease(e, rw); |
| 937 | 956 |
it->second = e; |
| 938 | 957 |
} |
| 939 | 958 |
} else {
|
| 940 | 959 |
(*_node_data)[vi].heap.push(e, rw); |
| 941 | 960 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
| 942 | 961 |
} |
| 943 | 962 |
|
| 944 | 963 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
|
| 945 | 964 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
| 946 | 965 |
|
| 947 | 966 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
| 948 | 967 |
if (_delta2->state(vb) != _delta2->IN_HEAP) {
|
| 949 | 968 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
| 950 | 969 |
(*_blossom_data)[vb].offset); |
| 951 | 970 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
| 952 | 971 |
(*_blossom_data)[vb].offset){
|
| 953 | 972 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
| 954 | 973 |
(*_blossom_data)[vb].offset); |
| 955 | 974 |
} |
| 956 | 975 |
} |
| 957 | 976 |
} |
| 958 | 977 |
} |
| 959 | 978 |
} |
| 960 | 979 |
} |
| 961 | 980 |
(*_blossom_data)[blossom].offset = 0; |
| 962 | 981 |
} |
| 963 | 982 |
|
| 964 | 983 |
void matchedToOdd(int blossom) {
|
| 965 | 984 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) {
|
| 966 | 985 |
_delta2->erase(blossom); |
| 967 | 986 |
} |
| 968 | 987 |
(*_blossom_data)[blossom].offset += _delta_sum; |
| 969 | 988 |
if (!_blossom_set->trivial(blossom)) {
|
| 970 | 989 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
| 971 | 990 |
(*_blossom_data)[blossom].offset); |
| 972 | 991 |
} |
| 973 | 992 |
} |
| 974 | 993 |
|
| 975 | 994 |
void evenToMatched(int blossom, int tree) {
|
| 976 | 995 |
if (!_blossom_set->trivial(blossom)) {
|
| 977 | 996 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum; |
| 978 | 997 |
} |
| 979 | 998 |
|
| 980 | 999 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| 981 | 1000 |
n != INVALID; ++n) {
|
| 982 | 1001 |
int ni = (*_node_index)[n]; |
| 983 | 1002 |
(*_node_data)[ni].pot -= _delta_sum; |
| 984 | 1003 |
|
| 985 | 1004 |
_delta1->erase(n); |
| 986 | 1005 |
|
| 987 | 1006 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 988 | 1007 |
Node v = _graph.source(e); |
| 989 | 1008 |
int vb = _blossom_set->find(v); |
| 990 | 1009 |
int vi = (*_node_index)[v]; |
| 991 | 1010 |
|
| 992 | 1011 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 993 | 1012 |
dualScale * _weight[e]; |
| 994 | 1013 |
|
| 995 | 1014 |
if (vb == blossom) {
|
| 996 | 1015 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
| 997 | 1016 |
_delta3->erase(e); |
| 998 | 1017 |
} |
| 999 | 1018 |
} else if ((*_blossom_data)[vb].status == EVEN) {
|
| 1000 | 1019 |
|
| 1001 | 1020 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
| 1002 | 1021 |
_delta3->erase(e); |
| 1003 | 1022 |
} |
| 1004 | 1023 |
|
| 1005 | 1024 |
int vt = _tree_set->find(vb); |
| 1006 | 1025 |
|
| 1007 | 1026 |
if (vt != tree) {
|
| 1008 | 1027 |
|
| 1009 | 1028 |
Arc r = _graph.oppositeArc(e); |
| 1010 | 1029 |
|
| 1011 | 1030 |
typename std::map<int, Arc>::iterator it = |
| 1012 | 1031 |
(*_node_data)[ni].heap_index.find(vt); |
| 1013 | 1032 |
|
| 1014 | 1033 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
| 1015 | 1034 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
| 1016 | 1035 |
(*_node_data)[ni].heap.replace(it->second, r); |
| 1017 | 1036 |
(*_node_data)[ni].heap.decrease(r, rw); |
| 1018 | 1037 |
it->second = r; |
| 1019 | 1038 |
} |
| 1020 | 1039 |
} else {
|
| 1021 | 1040 |
(*_node_data)[ni].heap.push(r, rw); |
| 1022 | 1041 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
| 1023 | 1042 |
} |
| 1024 | 1043 |
|
| 1025 | 1044 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
|
| 1026 | 1045 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
| 1027 | 1046 |
|
| 1028 | 1047 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) {
|
| 1029 | 1048 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
| 1030 | 1049 |
(*_blossom_data)[blossom].offset); |
| 1031 | 1050 |
} else if ((*_delta2)[blossom] > |
| 1032 | 1051 |
_blossom_set->classPrio(blossom) - |
| 1033 | 1052 |
(*_blossom_data)[blossom].offset){
|
| 1034 | 1053 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
| ... | ... |
@@ -1496,408 +1515,420 @@ |
| 1496 | 1515 |
int ib = -1, id = -1; |
| 1497 | 1516 |
for (int i = 0; i < int(subblossoms.size()); ++i) {
|
| 1498 | 1517 |
if (subblossoms[i] == b) ib = i; |
| 1499 | 1518 |
if (subblossoms[i] == d) id = i; |
| 1500 | 1519 |
|
| 1501 | 1520 |
(*_blossom_data)[subblossoms[i]].offset = offset; |
| 1502 | 1521 |
if (!_blossom_set->trivial(subblossoms[i])) {
|
| 1503 | 1522 |
(*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
| 1504 | 1523 |
} |
| 1505 | 1524 |
if (_blossom_set->classPrio(subblossoms[i]) != |
| 1506 | 1525 |
std::numeric_limits<Value>::max()) {
|
| 1507 | 1526 |
_delta2->push(subblossoms[i], |
| 1508 | 1527 |
_blossom_set->classPrio(subblossoms[i]) - |
| 1509 | 1528 |
(*_blossom_data)[subblossoms[i]].offset); |
| 1510 | 1529 |
} |
| 1511 | 1530 |
} |
| 1512 | 1531 |
|
| 1513 | 1532 |
if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
|
| 1514 | 1533 |
for (int i = (id + 1) % subblossoms.size(); |
| 1515 | 1534 |
i != ib; i = (i + 2) % subblossoms.size()) {
|
| 1516 | 1535 |
int sb = subblossoms[i]; |
| 1517 | 1536 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| 1518 | 1537 |
(*_blossom_data)[sb].next = |
| 1519 | 1538 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
| 1520 | 1539 |
} |
| 1521 | 1540 |
|
| 1522 | 1541 |
for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
|
| 1523 | 1542 |
int sb = subblossoms[i]; |
| 1524 | 1543 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| 1525 | 1544 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
| 1526 | 1545 |
|
| 1527 | 1546 |
(*_blossom_data)[sb].status = ODD; |
| 1528 | 1547 |
matchedToOdd(sb); |
| 1529 | 1548 |
_tree_set->insert(sb, tree); |
| 1530 | 1549 |
(*_blossom_data)[sb].pred = pred; |
| 1531 | 1550 |
(*_blossom_data)[sb].next = |
| 1532 | 1551 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
| 1533 | 1552 |
|
| 1534 | 1553 |
pred = (*_blossom_data)[ub].next; |
| 1535 | 1554 |
|
| 1536 | 1555 |
(*_blossom_data)[tb].status = EVEN; |
| 1537 | 1556 |
matchedToEven(tb, tree); |
| 1538 | 1557 |
_tree_set->insert(tb, tree); |
| 1539 | 1558 |
(*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
| 1540 | 1559 |
} |
| 1541 | 1560 |
|
| 1542 | 1561 |
(*_blossom_data)[subblossoms[id]].status = ODD; |
| 1543 | 1562 |
matchedToOdd(subblossoms[id]); |
| 1544 | 1563 |
_tree_set->insert(subblossoms[id], tree); |
| 1545 | 1564 |
(*_blossom_data)[subblossoms[id]].next = next; |
| 1546 | 1565 |
(*_blossom_data)[subblossoms[id]].pred = pred; |
| 1547 | 1566 |
|
| 1548 | 1567 |
} else {
|
| 1549 | 1568 |
|
| 1550 | 1569 |
for (int i = (ib + 1) % subblossoms.size(); |
| 1551 | 1570 |
i != id; i = (i + 2) % subblossoms.size()) {
|
| 1552 | 1571 |
int sb = subblossoms[i]; |
| 1553 | 1572 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| 1554 | 1573 |
(*_blossom_data)[sb].next = |
| 1555 | 1574 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
| 1556 | 1575 |
} |
| 1557 | 1576 |
|
| 1558 | 1577 |
for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
|
| 1559 | 1578 |
int sb = subblossoms[i]; |
| 1560 | 1579 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| 1561 | 1580 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
| 1562 | 1581 |
|
| 1563 | 1582 |
(*_blossom_data)[sb].status = ODD; |
| 1564 | 1583 |
matchedToOdd(sb); |
| 1565 | 1584 |
_tree_set->insert(sb, tree); |
| 1566 | 1585 |
(*_blossom_data)[sb].next = next; |
| 1567 | 1586 |
(*_blossom_data)[sb].pred = |
| 1568 | 1587 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
| 1569 | 1588 |
|
| 1570 | 1589 |
(*_blossom_data)[tb].status = EVEN; |
| 1571 | 1590 |
matchedToEven(tb, tree); |
| 1572 | 1591 |
_tree_set->insert(tb, tree); |
| 1573 | 1592 |
(*_blossom_data)[tb].pred = |
| 1574 | 1593 |
(*_blossom_data)[tb].next = |
| 1575 | 1594 |
_graph.oppositeArc((*_blossom_data)[ub].next); |
| 1576 | 1595 |
next = (*_blossom_data)[ub].next; |
| 1577 | 1596 |
} |
| 1578 | 1597 |
|
| 1579 | 1598 |
(*_blossom_data)[subblossoms[ib]].status = ODD; |
| 1580 | 1599 |
matchedToOdd(subblossoms[ib]); |
| 1581 | 1600 |
_tree_set->insert(subblossoms[ib], tree); |
| 1582 | 1601 |
(*_blossom_data)[subblossoms[ib]].next = next; |
| 1583 | 1602 |
(*_blossom_data)[subblossoms[ib]].pred = pred; |
| 1584 | 1603 |
} |
| 1585 | 1604 |
_tree_set->erase(blossom); |
| 1586 | 1605 |
} |
| 1587 | 1606 |
|
| 1588 | 1607 |
void extractBlossom(int blossom, const Node& base, const Arc& matching) {
|
| 1589 | 1608 |
if (_blossom_set->trivial(blossom)) {
|
| 1590 | 1609 |
int bi = (*_node_index)[base]; |
| 1591 | 1610 |
Value pot = (*_node_data)[bi].pot; |
| 1592 | 1611 |
|
| 1593 | 1612 |
(*_matching)[base] = matching; |
| 1594 | 1613 |
_blossom_node_list.push_back(base); |
| 1595 | 1614 |
(*_node_potential)[base] = pot; |
| 1596 | 1615 |
} else {
|
| 1597 | 1616 |
|
| 1598 | 1617 |
Value pot = (*_blossom_data)[blossom].pot; |
| 1599 | 1618 |
int bn = _blossom_node_list.size(); |
| 1600 | 1619 |
|
| 1601 | 1620 |
std::vector<int> subblossoms; |
| 1602 | 1621 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
| 1603 | 1622 |
int b = _blossom_set->find(base); |
| 1604 | 1623 |
int ib = -1; |
| 1605 | 1624 |
for (int i = 0; i < int(subblossoms.size()); ++i) {
|
| 1606 | 1625 |
if (subblossoms[i] == b) { ib = i; break; }
|
| 1607 | 1626 |
} |
| 1608 | 1627 |
|
| 1609 | 1628 |
for (int i = 1; i < int(subblossoms.size()); i += 2) {
|
| 1610 | 1629 |
int sb = subblossoms[(ib + i) % subblossoms.size()]; |
| 1611 | 1630 |
int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
| 1612 | 1631 |
|
| 1613 | 1632 |
Arc m = (*_blossom_data)[tb].next; |
| 1614 | 1633 |
extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
| 1615 | 1634 |
extractBlossom(tb, _graph.source(m), m); |
| 1616 | 1635 |
} |
| 1617 | 1636 |
extractBlossom(subblossoms[ib], base, matching); |
| 1618 | 1637 |
|
| 1619 | 1638 |
int en = _blossom_node_list.size(); |
| 1620 | 1639 |
|
| 1621 | 1640 |
_blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
| 1622 | 1641 |
} |
| 1623 | 1642 |
} |
| 1624 | 1643 |
|
| 1625 | 1644 |
void extractMatching() {
|
| 1626 | 1645 |
std::vector<int> blossoms; |
| 1627 | 1646 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
|
| 1628 | 1647 |
blossoms.push_back(c); |
| 1629 | 1648 |
} |
| 1630 | 1649 |
|
| 1631 | 1650 |
for (int i = 0; i < int(blossoms.size()); ++i) {
|
| 1632 | 1651 |
if ((*_blossom_data)[blossoms[i]].status == MATCHED) {
|
| 1633 | 1652 |
|
| 1634 | 1653 |
Value offset = (*_blossom_data)[blossoms[i]].offset; |
| 1635 | 1654 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset; |
| 1636 | 1655 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
| 1637 | 1656 |
n != INVALID; ++n) {
|
| 1638 | 1657 |
(*_node_data)[(*_node_index)[n]].pot -= offset; |
| 1639 | 1658 |
} |
| 1640 | 1659 |
|
| 1641 | 1660 |
Arc matching = (*_blossom_data)[blossoms[i]].next; |
| 1642 | 1661 |
Node base = _graph.source(matching); |
| 1643 | 1662 |
extractBlossom(blossoms[i], base, matching); |
| 1644 | 1663 |
} else {
|
| 1645 | 1664 |
Node base = (*_blossom_data)[blossoms[i]].base; |
| 1646 | 1665 |
extractBlossom(blossoms[i], base, INVALID); |
| 1647 | 1666 |
} |
| 1648 | 1667 |
} |
| 1649 | 1668 |
} |
| 1650 | 1669 |
|
| 1651 | 1670 |
public: |
| 1652 | 1671 |
|
| 1653 | 1672 |
/// \brief Constructor |
| 1654 | 1673 |
/// |
| 1655 | 1674 |
/// Constructor. |
| 1656 | 1675 |
MaxWeightedMatching(const Graph& graph, const WeightMap& weight) |
| 1657 | 1676 |
: _graph(graph), _weight(weight), _matching(0), |
| 1658 | 1677 |
_node_potential(0), _blossom_potential(), _blossom_node_list(), |
| 1659 | 1678 |
_node_num(0), _blossom_num(0), |
| 1660 | 1679 |
|
| 1661 | 1680 |
_blossom_index(0), _blossom_set(0), _blossom_data(0), |
| 1662 | 1681 |
_node_index(0), _node_heap_index(0), _node_data(0), |
| 1663 | 1682 |
_tree_set_index(0), _tree_set(0), |
| 1664 | 1683 |
|
| 1665 | 1684 |
_delta1_index(0), _delta1(0), |
| 1666 | 1685 |
_delta2_index(0), _delta2(0), |
| 1667 | 1686 |
_delta3_index(0), _delta3(0), |
| 1668 | 1687 |
_delta4_index(0), _delta4(0), |
| 1669 | 1688 |
|
| 1670 | 1689 |
_delta_sum() {}
|
| 1671 | 1690 |
|
| 1672 | 1691 |
~MaxWeightedMatching() {
|
| 1673 | 1692 |
destroyStructures(); |
| 1674 | 1693 |
} |
| 1675 | 1694 |
|
| 1676 | 1695 |
/// \name Execution Control |
| 1677 | 1696 |
/// The simplest way to execute the algorithm is to use the |
| 1678 | 1697 |
/// \ref run() member function. |
| 1679 | 1698 |
|
| 1680 | 1699 |
///@{
|
| 1681 | 1700 |
|
| 1682 | 1701 |
/// \brief Initialize the algorithm |
| 1683 | 1702 |
/// |
| 1684 | 1703 |
/// This function initializes the algorithm. |
| 1685 | 1704 |
void init() {
|
| 1686 | 1705 |
createStructures(); |
| 1687 | 1706 |
|
| 1707 |
_blossom_node_list.clear(); |
|
| 1708 |
_blossom_potential.clear(); |
|
| 1709 |
|
|
| 1688 | 1710 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 1689 | 1711 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
| 1690 | 1712 |
} |
| 1691 | 1713 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1692 | 1714 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
| 1693 | 1715 |
} |
| 1694 | 1716 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
| 1695 | 1717 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
| 1696 | 1718 |
} |
| 1697 | 1719 |
for (int i = 0; i < _blossom_num; ++i) {
|
| 1698 | 1720 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
| 1699 | 1721 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
| 1700 | 1722 |
} |
| 1701 | 1723 |
|
| 1724 |
_delta1->clear(); |
|
| 1725 |
_delta2->clear(); |
|
| 1726 |
_delta3->clear(); |
|
| 1727 |
_delta4->clear(); |
|
| 1728 |
_blossom_set->clear(); |
|
| 1729 |
_tree_set->clear(); |
|
| 1730 |
|
|
| 1702 | 1731 |
int index = 0; |
| 1703 | 1732 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1704 | 1733 |
Value max = 0; |
| 1705 | 1734 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 1706 | 1735 |
if (_graph.target(e) == n) continue; |
| 1707 | 1736 |
if ((dualScale * _weight[e]) / 2 > max) {
|
| 1708 | 1737 |
max = (dualScale * _weight[e]) / 2; |
| 1709 | 1738 |
} |
| 1710 | 1739 |
} |
| 1711 | 1740 |
(*_node_index)[n] = index; |
| 1741 |
(*_node_data)[index].heap_index.clear(); |
|
| 1742 |
(*_node_data)[index].heap.clear(); |
|
| 1712 | 1743 |
(*_node_data)[index].pot = max; |
| 1713 | 1744 |
_delta1->push(n, max); |
| 1714 | 1745 |
int blossom = |
| 1715 | 1746 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
| 1716 | 1747 |
|
| 1717 | 1748 |
_tree_set->insert(blossom); |
| 1718 | 1749 |
|
| 1719 | 1750 |
(*_blossom_data)[blossom].status = EVEN; |
| 1720 | 1751 |
(*_blossom_data)[blossom].pred = INVALID; |
| 1721 | 1752 |
(*_blossom_data)[blossom].next = INVALID; |
| 1722 | 1753 |
(*_blossom_data)[blossom].pot = 0; |
| 1723 | 1754 |
(*_blossom_data)[blossom].offset = 0; |
| 1724 | 1755 |
++index; |
| 1725 | 1756 |
} |
| 1726 | 1757 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
| 1727 | 1758 |
int si = (*_node_index)[_graph.u(e)]; |
| 1728 | 1759 |
int ti = (*_node_index)[_graph.v(e)]; |
| 1729 | 1760 |
if (_graph.u(e) != _graph.v(e)) {
|
| 1730 | 1761 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
| 1731 | 1762 |
dualScale * _weight[e]) / 2); |
| 1732 | 1763 |
} |
| 1733 | 1764 |
} |
| 1734 | 1765 |
} |
| 1735 | 1766 |
|
| 1736 | 1767 |
/// \brief Start the algorithm |
| 1737 | 1768 |
/// |
| 1738 | 1769 |
/// This function starts the algorithm. |
| 1739 | 1770 |
/// |
| 1740 | 1771 |
/// \pre \ref init() must be called before using this function. |
| 1741 | 1772 |
void start() {
|
| 1742 | 1773 |
enum OpType {
|
| 1743 | 1774 |
D1, D2, D3, D4 |
| 1744 | 1775 |
}; |
| 1745 | 1776 |
|
| 1746 | 1777 |
int unmatched = _node_num; |
| 1747 | 1778 |
while (unmatched > 0) {
|
| 1748 | 1779 |
Value d1 = !_delta1->empty() ? |
| 1749 | 1780 |
_delta1->prio() : std::numeric_limits<Value>::max(); |
| 1750 | 1781 |
|
| 1751 | 1782 |
Value d2 = !_delta2->empty() ? |
| 1752 | 1783 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
| 1753 | 1784 |
|
| 1754 | 1785 |
Value d3 = !_delta3->empty() ? |
| 1755 | 1786 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
| 1756 | 1787 |
|
| 1757 | 1788 |
Value d4 = !_delta4->empty() ? |
| 1758 | 1789 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
| 1759 | 1790 |
|
| 1760 | 1791 |
_delta_sum = d1; OpType ot = D1; |
| 1761 | 1792 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
|
| 1762 | 1793 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
|
| 1763 | 1794 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
|
| 1764 | 1795 |
|
| 1765 | 1796 |
|
| 1766 | 1797 |
switch (ot) {
|
| 1767 | 1798 |
case D1: |
| 1768 | 1799 |
{
|
| 1769 | 1800 |
Node n = _delta1->top(); |
| 1770 | 1801 |
unmatchNode(n); |
| 1771 | 1802 |
--unmatched; |
| 1772 | 1803 |
} |
| 1773 | 1804 |
break; |
| 1774 | 1805 |
case D2: |
| 1775 | 1806 |
{
|
| 1776 | 1807 |
int blossom = _delta2->top(); |
| 1777 | 1808 |
Node n = _blossom_set->classTop(blossom); |
| 1778 | 1809 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
| 1779 | 1810 |
extendOnArc(e); |
| 1780 | 1811 |
} |
| 1781 | 1812 |
break; |
| 1782 | 1813 |
case D3: |
| 1783 | 1814 |
{
|
| 1784 | 1815 |
Edge e = _delta3->top(); |
| 1785 | 1816 |
|
| 1786 | 1817 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
| 1787 | 1818 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
| 1788 | 1819 |
|
| 1789 | 1820 |
if (left_blossom == right_blossom) {
|
| 1790 | 1821 |
_delta3->pop(); |
| 1791 | 1822 |
} else {
|
| 1792 | 1823 |
int left_tree; |
| 1793 | 1824 |
if ((*_blossom_data)[left_blossom].status == EVEN) {
|
| 1794 | 1825 |
left_tree = _tree_set->find(left_blossom); |
| 1795 | 1826 |
} else {
|
| 1796 | 1827 |
left_tree = -1; |
| 1797 | 1828 |
++unmatched; |
| 1798 | 1829 |
} |
| 1799 | 1830 |
int right_tree; |
| 1800 | 1831 |
if ((*_blossom_data)[right_blossom].status == EVEN) {
|
| 1801 | 1832 |
right_tree = _tree_set->find(right_blossom); |
| 1802 | 1833 |
} else {
|
| 1803 | 1834 |
right_tree = -1; |
| 1804 | 1835 |
++unmatched; |
| 1805 | 1836 |
} |
| 1806 | 1837 |
|
| 1807 | 1838 |
if (left_tree == right_tree) {
|
| 1808 | 1839 |
shrinkOnEdge(e, left_tree); |
| 1809 | 1840 |
} else {
|
| 1810 | 1841 |
augmentOnEdge(e); |
| 1811 | 1842 |
unmatched -= 2; |
| 1812 | 1843 |
} |
| 1813 | 1844 |
} |
| 1814 | 1845 |
} break; |
| 1815 | 1846 |
case D4: |
| 1816 | 1847 |
splitBlossom(_delta4->top()); |
| 1817 | 1848 |
break; |
| 1818 | 1849 |
} |
| 1819 | 1850 |
} |
| 1820 | 1851 |
extractMatching(); |
| 1821 | 1852 |
} |
| 1822 | 1853 |
|
| 1823 | 1854 |
/// \brief Run the algorithm. |
| 1824 | 1855 |
/// |
| 1825 | 1856 |
/// This method runs the \c %MaxWeightedMatching algorithm. |
| 1826 | 1857 |
/// |
| 1827 | 1858 |
/// \note mwm.run() is just a shortcut of the following code. |
| 1828 | 1859 |
/// \code |
| 1829 | 1860 |
/// mwm.init(); |
| 1830 | 1861 |
/// mwm.start(); |
| 1831 | 1862 |
/// \endcode |
| 1832 | 1863 |
void run() {
|
| 1833 | 1864 |
init(); |
| 1834 | 1865 |
start(); |
| 1835 | 1866 |
} |
| 1836 | 1867 |
|
| 1837 | 1868 |
/// @} |
| 1838 | 1869 |
|
| 1839 | 1870 |
/// \name Primal Solution |
| 1840 | 1871 |
/// Functions to get the primal solution, i.e. the maximum weighted |
| 1841 | 1872 |
/// matching.\n |
| 1842 | 1873 |
/// Either \ref run() or \ref start() function should be called before |
| 1843 | 1874 |
/// using them. |
| 1844 | 1875 |
|
| 1845 | 1876 |
/// @{
|
| 1846 | 1877 |
|
| 1847 | 1878 |
/// \brief Return the weight of the matching. |
| 1848 | 1879 |
/// |
| 1849 | 1880 |
/// This function returns the weight of the found matching. |
| 1850 | 1881 |
/// |
| 1851 | 1882 |
/// \pre Either run() or start() must be called before using this function. |
| 1852 | 1883 |
Value matchingWeight() const {
|
| 1853 | 1884 |
Value sum = 0; |
| 1854 | 1885 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1855 | 1886 |
if ((*_matching)[n] != INVALID) {
|
| 1856 | 1887 |
sum += _weight[(*_matching)[n]]; |
| 1857 | 1888 |
} |
| 1858 | 1889 |
} |
| 1859 | 1890 |
return sum /= 2; |
| 1860 | 1891 |
} |
| 1861 | 1892 |
|
| 1862 | 1893 |
/// \brief Return the size (cardinality) of the matching. |
| 1863 | 1894 |
/// |
| 1864 | 1895 |
/// This function returns the size (cardinality) of the found matching. |
| 1865 | 1896 |
/// |
| 1866 | 1897 |
/// \pre Either run() or start() must be called before using this function. |
| 1867 | 1898 |
int matchingSize() const {
|
| 1868 | 1899 |
int num = 0; |
| 1869 | 1900 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1870 | 1901 |
if ((*_matching)[n] != INVALID) {
|
| 1871 | 1902 |
++num; |
| 1872 | 1903 |
} |
| 1873 | 1904 |
} |
| 1874 | 1905 |
return num /= 2; |
| 1875 | 1906 |
} |
| 1876 | 1907 |
|
| 1877 | 1908 |
/// \brief Return \c true if the given edge is in the matching. |
| 1878 | 1909 |
/// |
| 1879 | 1910 |
/// This function returns \c true if the given edge is in the found |
| 1880 | 1911 |
/// matching. |
| 1881 | 1912 |
/// |
| 1882 | 1913 |
/// \pre Either run() or start() must be called before using this function. |
| 1883 | 1914 |
bool matching(const Edge& edge) const {
|
| 1884 | 1915 |
return edge == (*_matching)[_graph.u(edge)]; |
| 1885 | 1916 |
} |
| 1886 | 1917 |
|
| 1887 | 1918 |
/// \brief Return the matching arc (or edge) incident to the given node. |
| 1888 | 1919 |
/// |
| 1889 | 1920 |
/// This function returns the matching arc (or edge) incident to the |
| 1890 | 1921 |
/// given node in the found matching or \c INVALID if the node is |
| 1891 | 1922 |
/// not covered by the matching. |
| 1892 | 1923 |
/// |
| 1893 | 1924 |
/// \pre Either run() or start() must be called before using this function. |
| 1894 | 1925 |
Arc matching(const Node& node) const {
|
| 1895 | 1926 |
return (*_matching)[node]; |
| 1896 | 1927 |
} |
| 1897 | 1928 |
|
| 1898 | 1929 |
/// \brief Return a const reference to the matching map. |
| 1899 | 1930 |
/// |
| 1900 | 1931 |
/// This function returns a const reference to a node map that stores |
| 1901 | 1932 |
/// the matching arc (or edge) incident to each node. |
| 1902 | 1933 |
const MatchingMap& matchingMap() const {
|
| 1903 | 1934 |
return *_matching; |
| ... | ... |
@@ -2009,415 +2040,433 @@ |
| 2009 | 2040 |
return _algorithm->_blossom_node_list[_index]; |
| 2010 | 2041 |
} |
| 2011 | 2042 |
|
| 2012 | 2043 |
/// \brief Increment operator. |
| 2013 | 2044 |
/// |
| 2014 | 2045 |
/// Increment operator. |
| 2015 | 2046 |
BlossomIt& operator++() {
|
| 2016 | 2047 |
++_index; |
| 2017 | 2048 |
return *this; |
| 2018 | 2049 |
} |
| 2019 | 2050 |
|
| 2020 | 2051 |
/// \brief Validity checking |
| 2021 | 2052 |
/// |
| 2022 | 2053 |
/// Checks whether the iterator is invalid. |
| 2023 | 2054 |
bool operator==(Invalid) const { return _index == _last; }
|
| 2024 | 2055 |
|
| 2025 | 2056 |
/// \brief Validity checking |
| 2026 | 2057 |
/// |
| 2027 | 2058 |
/// Checks whether the iterator is valid. |
| 2028 | 2059 |
bool operator!=(Invalid) const { return _index != _last; }
|
| 2029 | 2060 |
|
| 2030 | 2061 |
private: |
| 2031 | 2062 |
const MaxWeightedMatching* _algorithm; |
| 2032 | 2063 |
int _last; |
| 2033 | 2064 |
int _index; |
| 2034 | 2065 |
}; |
| 2035 | 2066 |
|
| 2036 | 2067 |
/// @} |
| 2037 | 2068 |
|
| 2038 | 2069 |
}; |
| 2039 | 2070 |
|
| 2040 | 2071 |
/// \ingroup matching |
| 2041 | 2072 |
/// |
| 2042 | 2073 |
/// \brief Weighted perfect matching in general graphs |
| 2043 | 2074 |
/// |
| 2044 | 2075 |
/// This class provides an efficient implementation of Edmond's |
| 2045 | 2076 |
/// maximum weighted perfect matching algorithm. The implementation |
| 2046 | 2077 |
/// is based on extensive use of priority queues and provides |
| 2047 | 2078 |
/// \f$O(nm\log n)\f$ time complexity. |
| 2048 | 2079 |
/// |
| 2049 | 2080 |
/// The maximum weighted perfect matching problem is to find a subset of |
| 2050 | 2081 |
/// the edges in an undirected graph with maximum overall weight for which |
| 2051 | 2082 |
/// each node has exactly one incident edge. |
| 2052 | 2083 |
/// It can be formulated with the following linear program. |
| 2053 | 2084 |
/// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
|
| 2054 | 2085 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
|
| 2055 | 2086 |
\quad \forall B\in\mathcal{O}\f] */
|
| 2056 | 2087 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
| 2057 | 2088 |
/// \f[\max \sum_{e\in E}x_ew_e\f]
|
| 2058 | 2089 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
| 2059 | 2090 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
| 2060 | 2091 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
|
| 2061 | 2092 |
/// subsets of the nodes. |
| 2062 | 2093 |
/// |
| 2063 | 2094 |
/// The algorithm calculates an optimal matching and a proof of the |
| 2064 | 2095 |
/// optimality. The solution of the dual problem can be used to check |
| 2065 | 2096 |
/// the result of the algorithm. The dual linear problem is the |
| 2066 | 2097 |
/// following. |
| 2067 | 2098 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge
|
| 2068 | 2099 |
w_{uv} \quad \forall uv\in E\f] */
|
| 2069 | 2100 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
|
| 2070 | 2101 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
|
| 2071 | 2102 |
\frac{\vert B \vert - 1}{2}z_B\f] */
|
| 2072 | 2103 |
/// |
| 2073 | 2104 |
/// The algorithm can be executed with the run() function. |
| 2074 | 2105 |
/// After it the matching (the primal solution) and the dual solution |
| 2075 | 2106 |
/// can be obtained using the query functions and the |
| 2076 | 2107 |
/// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, |
| 2077 | 2108 |
/// which is able to iterate on the nodes of a blossom. |
| 2078 | 2109 |
/// If the value type is integer, then the dual solution is multiplied |
| 2079 | 2110 |
/// by \ref MaxWeightedMatching::dualScale "4". |
| 2080 | 2111 |
/// |
| 2081 | 2112 |
/// \tparam GR The undirected graph type the algorithm runs on. |
| 2082 | 2113 |
/// \tparam WM The type edge weight map. The default type is |
| 2083 | 2114 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
| 2084 | 2115 |
#ifdef DOXYGEN |
| 2085 | 2116 |
template <typename GR, typename WM> |
| 2086 | 2117 |
#else |
| 2087 | 2118 |
template <typename GR, |
| 2088 | 2119 |
typename WM = typename GR::template EdgeMap<int> > |
| 2089 | 2120 |
#endif |
| 2090 | 2121 |
class MaxWeightedPerfectMatching {
|
| 2091 | 2122 |
public: |
| 2092 | 2123 |
|
| 2093 | 2124 |
/// The graph type of the algorithm |
| 2094 | 2125 |
typedef GR Graph; |
| 2095 | 2126 |
/// The type of the edge weight map |
| 2096 | 2127 |
typedef WM WeightMap; |
| 2097 | 2128 |
/// The value type of the edge weights |
| 2098 | 2129 |
typedef typename WeightMap::Value Value; |
| 2099 | 2130 |
|
| 2100 | 2131 |
/// \brief Scaling factor for dual solution |
| 2101 | 2132 |
/// |
| 2102 | 2133 |
/// Scaling factor for dual solution, it is equal to 4 or 1 |
| 2103 | 2134 |
/// according to the value type. |
| 2104 | 2135 |
static const int dualScale = |
| 2105 | 2136 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
| 2106 | 2137 |
|
| 2107 | 2138 |
/// The type of the matching map |
| 2108 | 2139 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
| 2109 | 2140 |
MatchingMap; |
| 2110 | 2141 |
|
| 2111 | 2142 |
private: |
| 2112 | 2143 |
|
| 2113 | 2144 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 2114 | 2145 |
|
| 2115 | 2146 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
| 2116 | 2147 |
typedef std::vector<Node> BlossomNodeList; |
| 2117 | 2148 |
|
| 2118 | 2149 |
struct BlossomVariable {
|
| 2119 | 2150 |
int begin, end; |
| 2120 | 2151 |
Value value; |
| 2121 | 2152 |
|
| 2122 | 2153 |
BlossomVariable(int _begin, int _end, Value _value) |
| 2123 | 2154 |
: begin(_begin), end(_end), value(_value) {}
|
| 2124 | 2155 |
|
| 2125 | 2156 |
}; |
| 2126 | 2157 |
|
| 2127 | 2158 |
typedef std::vector<BlossomVariable> BlossomPotential; |
| 2128 | 2159 |
|
| 2129 | 2160 |
const Graph& _graph; |
| 2130 | 2161 |
const WeightMap& _weight; |
| 2131 | 2162 |
|
| 2132 | 2163 |
MatchingMap* _matching; |
| 2133 | 2164 |
|
| 2134 | 2165 |
NodePotential* _node_potential; |
| 2135 | 2166 |
|
| 2136 | 2167 |
BlossomPotential _blossom_potential; |
| 2137 | 2168 |
BlossomNodeList _blossom_node_list; |
| 2138 | 2169 |
|
| 2139 | 2170 |
int _node_num; |
| 2140 | 2171 |
int _blossom_num; |
| 2141 | 2172 |
|
| 2142 | 2173 |
typedef RangeMap<int> IntIntMap; |
| 2143 | 2174 |
|
| 2144 | 2175 |
enum Status {
|
| 2145 | 2176 |
EVEN = -1, MATCHED = 0, ODD = 1 |
| 2146 | 2177 |
}; |
| 2147 | 2178 |
|
| 2148 | 2179 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
| 2149 | 2180 |
struct BlossomData {
|
| 2150 | 2181 |
int tree; |
| 2151 | 2182 |
Status status; |
| 2152 | 2183 |
Arc pred, next; |
| 2153 | 2184 |
Value pot, offset; |
| 2154 | 2185 |
}; |
| 2155 | 2186 |
|
| 2156 | 2187 |
IntNodeMap *_blossom_index; |
| 2157 | 2188 |
BlossomSet *_blossom_set; |
| 2158 | 2189 |
RangeMap<BlossomData>* _blossom_data; |
| 2159 | 2190 |
|
| 2160 | 2191 |
IntNodeMap *_node_index; |
| 2161 | 2192 |
IntArcMap *_node_heap_index; |
| 2162 | 2193 |
|
| 2163 | 2194 |
struct NodeData {
|
| 2164 | 2195 |
|
| 2165 | 2196 |
NodeData(IntArcMap& node_heap_index) |
| 2166 | 2197 |
: heap(node_heap_index) {}
|
| 2167 | 2198 |
|
| 2168 | 2199 |
int blossom; |
| 2169 | 2200 |
Value pot; |
| 2170 | 2201 |
BinHeap<Value, IntArcMap> heap; |
| 2171 | 2202 |
std::map<int, Arc> heap_index; |
| 2172 | 2203 |
|
| 2173 | 2204 |
int tree; |
| 2174 | 2205 |
}; |
| 2175 | 2206 |
|
| 2176 | 2207 |
RangeMap<NodeData>* _node_data; |
| 2177 | 2208 |
|
| 2178 | 2209 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
| 2179 | 2210 |
|
| 2180 | 2211 |
IntIntMap *_tree_set_index; |
| 2181 | 2212 |
TreeSet *_tree_set; |
| 2182 | 2213 |
|
| 2183 | 2214 |
IntIntMap *_delta2_index; |
| 2184 | 2215 |
BinHeap<Value, IntIntMap> *_delta2; |
| 2185 | 2216 |
|
| 2186 | 2217 |
IntEdgeMap *_delta3_index; |
| 2187 | 2218 |
BinHeap<Value, IntEdgeMap> *_delta3; |
| 2188 | 2219 |
|
| 2189 | 2220 |
IntIntMap *_delta4_index; |
| 2190 | 2221 |
BinHeap<Value, IntIntMap> *_delta4; |
| 2191 | 2222 |
|
| 2192 | 2223 |
Value _delta_sum; |
| 2193 | 2224 |
|
| 2194 | 2225 |
void createStructures() {
|
| 2195 | 2226 |
_node_num = countNodes(_graph); |
| 2196 | 2227 |
_blossom_num = _node_num * 3 / 2; |
| 2197 | 2228 |
|
| 2198 | 2229 |
if (!_matching) {
|
| 2199 | 2230 |
_matching = new MatchingMap(_graph); |
| 2200 | 2231 |
} |
| 2232 |
|
|
| 2201 | 2233 |
if (!_node_potential) {
|
| 2202 | 2234 |
_node_potential = new NodePotential(_graph); |
| 2203 | 2235 |
} |
| 2236 |
|
|
| 2204 | 2237 |
if (!_blossom_set) {
|
| 2205 | 2238 |
_blossom_index = new IntNodeMap(_graph); |
| 2206 | 2239 |
_blossom_set = new BlossomSet(*_blossom_index); |
| 2207 | 2240 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
| 2241 |
} else if (_blossom_data->size() != _blossom_num) {
|
|
| 2242 |
delete _blossom_data; |
|
| 2243 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
|
| 2208 | 2244 |
} |
| 2209 | 2245 |
|
| 2210 | 2246 |
if (!_node_index) {
|
| 2211 | 2247 |
_node_index = new IntNodeMap(_graph); |
| 2212 | 2248 |
_node_heap_index = new IntArcMap(_graph); |
| 2213 | 2249 |
_node_data = new RangeMap<NodeData>(_node_num, |
| 2214 | 2250 |
NodeData(*_node_heap_index)); |
| 2251 |
} else if (_node_data->size() != _node_num) {
|
|
| 2252 |
delete _node_data; |
|
| 2253 |
_node_data = new RangeMap<NodeData>(_node_num, |
|
| 2254 |
NodeData(*_node_heap_index)); |
|
| 2215 | 2255 |
} |
| 2216 | 2256 |
|
| 2217 | 2257 |
if (!_tree_set) {
|
| 2218 | 2258 |
_tree_set_index = new IntIntMap(_blossom_num); |
| 2219 | 2259 |
_tree_set = new TreeSet(*_tree_set_index); |
| 2220 |
} |
|
| 2260 |
} else {
|
|
| 2261 |
_tree_set_index->resize(_blossom_num); |
|
| 2262 |
} |
|
| 2263 |
|
|
| 2221 | 2264 |
if (!_delta2) {
|
| 2222 | 2265 |
_delta2_index = new IntIntMap(_blossom_num); |
| 2223 | 2266 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
| 2224 |
} |
|
| 2267 |
} else {
|
|
| 2268 |
_delta2_index->resize(_blossom_num); |
|
| 2269 |
} |
|
| 2270 |
|
|
| 2225 | 2271 |
if (!_delta3) {
|
| 2226 | 2272 |
_delta3_index = new IntEdgeMap(_graph); |
| 2227 | 2273 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
| 2228 | 2274 |
} |
| 2275 |
|
|
| 2229 | 2276 |
if (!_delta4) {
|
| 2230 | 2277 |
_delta4_index = new IntIntMap(_blossom_num); |
| 2231 | 2278 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
| 2279 |
} else {
|
|
| 2280 |
_delta4_index->resize(_blossom_num); |
|
| 2232 | 2281 |
} |
| 2233 | 2282 |
} |
| 2234 | 2283 |
|
| 2235 | 2284 |
void destroyStructures() {
|
| 2236 | 2285 |
_node_num = countNodes(_graph); |
| 2237 | 2286 |
_blossom_num = _node_num * 3 / 2; |
| 2238 | 2287 |
|
| 2239 | 2288 |
if (_matching) {
|
| 2240 | 2289 |
delete _matching; |
| 2241 | 2290 |
} |
| 2242 | 2291 |
if (_node_potential) {
|
| 2243 | 2292 |
delete _node_potential; |
| 2244 | 2293 |
} |
| 2245 | 2294 |
if (_blossom_set) {
|
| 2246 | 2295 |
delete _blossom_index; |
| 2247 | 2296 |
delete _blossom_set; |
| 2248 | 2297 |
delete _blossom_data; |
| 2249 | 2298 |
} |
| 2250 | 2299 |
|
| 2251 | 2300 |
if (_node_index) {
|
| 2252 | 2301 |
delete _node_index; |
| 2253 | 2302 |
delete _node_heap_index; |
| 2254 | 2303 |
delete _node_data; |
| 2255 | 2304 |
} |
| 2256 | 2305 |
|
| 2257 | 2306 |
if (_tree_set) {
|
| 2258 | 2307 |
delete _tree_set_index; |
| 2259 | 2308 |
delete _tree_set; |
| 2260 | 2309 |
} |
| 2261 | 2310 |
if (_delta2) {
|
| 2262 | 2311 |
delete _delta2_index; |
| 2263 | 2312 |
delete _delta2; |
| 2264 | 2313 |
} |
| 2265 | 2314 |
if (_delta3) {
|
| 2266 | 2315 |
delete _delta3_index; |
| 2267 | 2316 |
delete _delta3; |
| 2268 | 2317 |
} |
| 2269 | 2318 |
if (_delta4) {
|
| 2270 | 2319 |
delete _delta4_index; |
| 2271 | 2320 |
delete _delta4; |
| 2272 | 2321 |
} |
| 2273 | 2322 |
} |
| 2274 | 2323 |
|
| 2275 | 2324 |
void matchedToEven(int blossom, int tree) {
|
| 2276 | 2325 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) {
|
| 2277 | 2326 |
_delta2->erase(blossom); |
| 2278 | 2327 |
} |
| 2279 | 2328 |
|
| 2280 | 2329 |
if (!_blossom_set->trivial(blossom)) {
|
| 2281 | 2330 |
(*_blossom_data)[blossom].pot -= |
| 2282 | 2331 |
2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
| 2283 | 2332 |
} |
| 2284 | 2333 |
|
| 2285 | 2334 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| 2286 | 2335 |
n != INVALID; ++n) {
|
| 2287 | 2336 |
|
| 2288 | 2337 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
| 2289 | 2338 |
int ni = (*_node_index)[n]; |
| 2290 | 2339 |
|
| 2291 | 2340 |
(*_node_data)[ni].heap.clear(); |
| 2292 | 2341 |
(*_node_data)[ni].heap_index.clear(); |
| 2293 | 2342 |
|
| 2294 | 2343 |
(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
| 2295 | 2344 |
|
| 2296 | 2345 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 2297 | 2346 |
Node v = _graph.source(e); |
| 2298 | 2347 |
int vb = _blossom_set->find(v); |
| 2299 | 2348 |
int vi = (*_node_index)[v]; |
| 2300 | 2349 |
|
| 2301 | 2350 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 2302 | 2351 |
dualScale * _weight[e]; |
| 2303 | 2352 |
|
| 2304 | 2353 |
if ((*_blossom_data)[vb].status == EVEN) {
|
| 2305 | 2354 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
|
| 2306 | 2355 |
_delta3->push(e, rw / 2); |
| 2307 | 2356 |
} |
| 2308 | 2357 |
} else {
|
| 2309 | 2358 |
typename std::map<int, Arc>::iterator it = |
| 2310 | 2359 |
(*_node_data)[vi].heap_index.find(tree); |
| 2311 | 2360 |
|
| 2312 | 2361 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
| 2313 | 2362 |
if ((*_node_data)[vi].heap[it->second] > rw) {
|
| 2314 | 2363 |
(*_node_data)[vi].heap.replace(it->second, e); |
| 2315 | 2364 |
(*_node_data)[vi].heap.decrease(e, rw); |
| 2316 | 2365 |
it->second = e; |
| 2317 | 2366 |
} |
| 2318 | 2367 |
} else {
|
| 2319 | 2368 |
(*_node_data)[vi].heap.push(e, rw); |
| 2320 | 2369 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
| 2321 | 2370 |
} |
| 2322 | 2371 |
|
| 2323 | 2372 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
|
| 2324 | 2373 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
| 2325 | 2374 |
|
| 2326 | 2375 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
| 2327 | 2376 |
if (_delta2->state(vb) != _delta2->IN_HEAP) {
|
| 2328 | 2377 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
| 2329 | 2378 |
(*_blossom_data)[vb].offset); |
| 2330 | 2379 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
| 2331 | 2380 |
(*_blossom_data)[vb].offset){
|
| 2332 | 2381 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
| 2333 | 2382 |
(*_blossom_data)[vb].offset); |
| 2334 | 2383 |
} |
| 2335 | 2384 |
} |
| 2336 | 2385 |
} |
| 2337 | 2386 |
} |
| 2338 | 2387 |
} |
| 2339 | 2388 |
} |
| 2340 | 2389 |
(*_blossom_data)[blossom].offset = 0; |
| 2341 | 2390 |
} |
| 2342 | 2391 |
|
| 2343 | 2392 |
void matchedToOdd(int blossom) {
|
| 2344 | 2393 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) {
|
| 2345 | 2394 |
_delta2->erase(blossom); |
| 2346 | 2395 |
} |
| 2347 | 2396 |
(*_blossom_data)[blossom].offset += _delta_sum; |
| 2348 | 2397 |
if (!_blossom_set->trivial(blossom)) {
|
| 2349 | 2398 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
| 2350 | 2399 |
(*_blossom_data)[blossom].offset); |
| 2351 | 2400 |
} |
| 2352 | 2401 |
} |
| 2353 | 2402 |
|
| 2354 | 2403 |
void evenToMatched(int blossom, int tree) {
|
| 2355 | 2404 |
if (!_blossom_set->trivial(blossom)) {
|
| 2356 | 2405 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum; |
| 2357 | 2406 |
} |
| 2358 | 2407 |
|
| 2359 | 2408 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| 2360 | 2409 |
n != INVALID; ++n) {
|
| 2361 | 2410 |
int ni = (*_node_index)[n]; |
| 2362 | 2411 |
(*_node_data)[ni].pot -= _delta_sum; |
| 2363 | 2412 |
|
| 2364 | 2413 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 2365 | 2414 |
Node v = _graph.source(e); |
| 2366 | 2415 |
int vb = _blossom_set->find(v); |
| 2367 | 2416 |
int vi = (*_node_index)[v]; |
| 2368 | 2417 |
|
| 2369 | 2418 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 2370 | 2419 |
dualScale * _weight[e]; |
| 2371 | 2420 |
|
| 2372 | 2421 |
if (vb == blossom) {
|
| 2373 | 2422 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
| 2374 | 2423 |
_delta3->erase(e); |
| 2375 | 2424 |
} |
| 2376 | 2425 |
} else if ((*_blossom_data)[vb].status == EVEN) {
|
| 2377 | 2426 |
|
| 2378 | 2427 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
| 2379 | 2428 |
_delta3->erase(e); |
| 2380 | 2429 |
} |
| 2381 | 2430 |
|
| 2382 | 2431 |
int vt = _tree_set->find(vb); |
| 2383 | 2432 |
|
| 2384 | 2433 |
if (vt != tree) {
|
| 2385 | 2434 |
|
| 2386 | 2435 |
Arc r = _graph.oppositeArc(e); |
| 2387 | 2436 |
|
| 2388 | 2437 |
typename std::map<int, Arc>::iterator it = |
| 2389 | 2438 |
(*_node_data)[ni].heap_index.find(vt); |
| 2390 | 2439 |
|
| 2391 | 2440 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
| 2392 | 2441 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
| 2393 | 2442 |
(*_node_data)[ni].heap.replace(it->second, r); |
| 2394 | 2443 |
(*_node_data)[ni].heap.decrease(r, rw); |
| 2395 | 2444 |
it->second = r; |
| 2396 | 2445 |
} |
| 2397 | 2446 |
} else {
|
| 2398 | 2447 |
(*_node_data)[ni].heap.push(r, rw); |
| 2399 | 2448 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
| 2400 | 2449 |
} |
| 2401 | 2450 |
|
| 2402 | 2451 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
|
| 2403 | 2452 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
| 2404 | 2453 |
|
| 2405 | 2454 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) {
|
| 2406 | 2455 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
| 2407 | 2456 |
(*_blossom_data)[blossom].offset); |
| 2408 | 2457 |
} else if ((*_delta2)[blossom] > |
| 2409 | 2458 |
_blossom_set->classPrio(blossom) - |
| 2410 | 2459 |
(*_blossom_data)[blossom].offset){
|
| 2411 | 2460 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
| 2412 | 2461 |
(*_blossom_data)[blossom].offset); |
| 2413 | 2462 |
} |
| 2414 | 2463 |
} |
| 2415 | 2464 |
} |
| 2416 | 2465 |
} else {
|
| 2417 | 2466 |
|
| 2418 | 2467 |
typename std::map<int, Arc>::iterator it = |
| 2419 | 2468 |
(*_node_data)[vi].heap_index.find(tree); |
| 2420 | 2469 |
|
| 2421 | 2470 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
| 2422 | 2471 |
(*_node_data)[vi].heap.erase(it->second); |
| 2423 | 2472 |
(*_node_data)[vi].heap_index.erase(it); |
| ... | ... |
@@ -2737,405 +2786,416 @@ |
| 2737 | 2786 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
| 2738 | 2787 |
|
| 2739 | 2788 |
Value offset = (*_blossom_data)[blossom].offset; |
| 2740 | 2789 |
int b = _blossom_set->find(_graph.source(pred)); |
| 2741 | 2790 |
int d = _blossom_set->find(_graph.source(next)); |
| 2742 | 2791 |
|
| 2743 | 2792 |
int ib = -1, id = -1; |
| 2744 | 2793 |
for (int i = 0; i < int(subblossoms.size()); ++i) {
|
| 2745 | 2794 |
if (subblossoms[i] == b) ib = i; |
| 2746 | 2795 |
if (subblossoms[i] == d) id = i; |
| 2747 | 2796 |
|
| 2748 | 2797 |
(*_blossom_data)[subblossoms[i]].offset = offset; |
| 2749 | 2798 |
if (!_blossom_set->trivial(subblossoms[i])) {
|
| 2750 | 2799 |
(*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
| 2751 | 2800 |
} |
| 2752 | 2801 |
if (_blossom_set->classPrio(subblossoms[i]) != |
| 2753 | 2802 |
std::numeric_limits<Value>::max()) {
|
| 2754 | 2803 |
_delta2->push(subblossoms[i], |
| 2755 | 2804 |
_blossom_set->classPrio(subblossoms[i]) - |
| 2756 | 2805 |
(*_blossom_data)[subblossoms[i]].offset); |
| 2757 | 2806 |
} |
| 2758 | 2807 |
} |
| 2759 | 2808 |
|
| 2760 | 2809 |
if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
|
| 2761 | 2810 |
for (int i = (id + 1) % subblossoms.size(); |
| 2762 | 2811 |
i != ib; i = (i + 2) % subblossoms.size()) {
|
| 2763 | 2812 |
int sb = subblossoms[i]; |
| 2764 | 2813 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| 2765 | 2814 |
(*_blossom_data)[sb].next = |
| 2766 | 2815 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
| 2767 | 2816 |
} |
| 2768 | 2817 |
|
| 2769 | 2818 |
for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
|
| 2770 | 2819 |
int sb = subblossoms[i]; |
| 2771 | 2820 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| 2772 | 2821 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
| 2773 | 2822 |
|
| 2774 | 2823 |
(*_blossom_data)[sb].status = ODD; |
| 2775 | 2824 |
matchedToOdd(sb); |
| 2776 | 2825 |
_tree_set->insert(sb, tree); |
| 2777 | 2826 |
(*_blossom_data)[sb].pred = pred; |
| 2778 | 2827 |
(*_blossom_data)[sb].next = |
| 2779 | 2828 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
| 2780 | 2829 |
|
| 2781 | 2830 |
pred = (*_blossom_data)[ub].next; |
| 2782 | 2831 |
|
| 2783 | 2832 |
(*_blossom_data)[tb].status = EVEN; |
| 2784 | 2833 |
matchedToEven(tb, tree); |
| 2785 | 2834 |
_tree_set->insert(tb, tree); |
| 2786 | 2835 |
(*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
| 2787 | 2836 |
} |
| 2788 | 2837 |
|
| 2789 | 2838 |
(*_blossom_data)[subblossoms[id]].status = ODD; |
| 2790 | 2839 |
matchedToOdd(subblossoms[id]); |
| 2791 | 2840 |
_tree_set->insert(subblossoms[id], tree); |
| 2792 | 2841 |
(*_blossom_data)[subblossoms[id]].next = next; |
| 2793 | 2842 |
(*_blossom_data)[subblossoms[id]].pred = pred; |
| 2794 | 2843 |
|
| 2795 | 2844 |
} else {
|
| 2796 | 2845 |
|
| 2797 | 2846 |
for (int i = (ib + 1) % subblossoms.size(); |
| 2798 | 2847 |
i != id; i = (i + 2) % subblossoms.size()) {
|
| 2799 | 2848 |
int sb = subblossoms[i]; |
| 2800 | 2849 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| 2801 | 2850 |
(*_blossom_data)[sb].next = |
| 2802 | 2851 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
| 2803 | 2852 |
} |
| 2804 | 2853 |
|
| 2805 | 2854 |
for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
|
| 2806 | 2855 |
int sb = subblossoms[i]; |
| 2807 | 2856 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| 2808 | 2857 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
| 2809 | 2858 |
|
| 2810 | 2859 |
(*_blossom_data)[sb].status = ODD; |
| 2811 | 2860 |
matchedToOdd(sb); |
| 2812 | 2861 |
_tree_set->insert(sb, tree); |
| 2813 | 2862 |
(*_blossom_data)[sb].next = next; |
| 2814 | 2863 |
(*_blossom_data)[sb].pred = |
| 2815 | 2864 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
| 2816 | 2865 |
|
| 2817 | 2866 |
(*_blossom_data)[tb].status = EVEN; |
| 2818 | 2867 |
matchedToEven(tb, tree); |
| 2819 | 2868 |
_tree_set->insert(tb, tree); |
| 2820 | 2869 |
(*_blossom_data)[tb].pred = |
| 2821 | 2870 |
(*_blossom_data)[tb].next = |
| 2822 | 2871 |
_graph.oppositeArc((*_blossom_data)[ub].next); |
| 2823 | 2872 |
next = (*_blossom_data)[ub].next; |
| 2824 | 2873 |
} |
| 2825 | 2874 |
|
| 2826 | 2875 |
(*_blossom_data)[subblossoms[ib]].status = ODD; |
| 2827 | 2876 |
matchedToOdd(subblossoms[ib]); |
| 2828 | 2877 |
_tree_set->insert(subblossoms[ib], tree); |
| 2829 | 2878 |
(*_blossom_data)[subblossoms[ib]].next = next; |
| 2830 | 2879 |
(*_blossom_data)[subblossoms[ib]].pred = pred; |
| 2831 | 2880 |
} |
| 2832 | 2881 |
_tree_set->erase(blossom); |
| 2833 | 2882 |
} |
| 2834 | 2883 |
|
| 2835 | 2884 |
void extractBlossom(int blossom, const Node& base, const Arc& matching) {
|
| 2836 | 2885 |
if (_blossom_set->trivial(blossom)) {
|
| 2837 | 2886 |
int bi = (*_node_index)[base]; |
| 2838 | 2887 |
Value pot = (*_node_data)[bi].pot; |
| 2839 | 2888 |
|
| 2840 | 2889 |
(*_matching)[base] = matching; |
| 2841 | 2890 |
_blossom_node_list.push_back(base); |
| 2842 | 2891 |
(*_node_potential)[base] = pot; |
| 2843 | 2892 |
} else {
|
| 2844 | 2893 |
|
| 2845 | 2894 |
Value pot = (*_blossom_data)[blossom].pot; |
| 2846 | 2895 |
int bn = _blossom_node_list.size(); |
| 2847 | 2896 |
|
| 2848 | 2897 |
std::vector<int> subblossoms; |
| 2849 | 2898 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
| 2850 | 2899 |
int b = _blossom_set->find(base); |
| 2851 | 2900 |
int ib = -1; |
| 2852 | 2901 |
for (int i = 0; i < int(subblossoms.size()); ++i) {
|
| 2853 | 2902 |
if (subblossoms[i] == b) { ib = i; break; }
|
| 2854 | 2903 |
} |
| 2855 | 2904 |
|
| 2856 | 2905 |
for (int i = 1; i < int(subblossoms.size()); i += 2) {
|
| 2857 | 2906 |
int sb = subblossoms[(ib + i) % subblossoms.size()]; |
| 2858 | 2907 |
int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
| 2859 | 2908 |
|
| 2860 | 2909 |
Arc m = (*_blossom_data)[tb].next; |
| 2861 | 2910 |
extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
| 2862 | 2911 |
extractBlossom(tb, _graph.source(m), m); |
| 2863 | 2912 |
} |
| 2864 | 2913 |
extractBlossom(subblossoms[ib], base, matching); |
| 2865 | 2914 |
|
| 2866 | 2915 |
int en = _blossom_node_list.size(); |
| 2867 | 2916 |
|
| 2868 | 2917 |
_blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
| 2869 | 2918 |
} |
| 2870 | 2919 |
} |
| 2871 | 2920 |
|
| 2872 | 2921 |
void extractMatching() {
|
| 2873 | 2922 |
std::vector<int> blossoms; |
| 2874 | 2923 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
|
| 2875 | 2924 |
blossoms.push_back(c); |
| 2876 | 2925 |
} |
| 2877 | 2926 |
|
| 2878 | 2927 |
for (int i = 0; i < int(blossoms.size()); ++i) {
|
| 2879 | 2928 |
|
| 2880 | 2929 |
Value offset = (*_blossom_data)[blossoms[i]].offset; |
| 2881 | 2930 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset; |
| 2882 | 2931 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
| 2883 | 2932 |
n != INVALID; ++n) {
|
| 2884 | 2933 |
(*_node_data)[(*_node_index)[n]].pot -= offset; |
| 2885 | 2934 |
} |
| 2886 | 2935 |
|
| 2887 | 2936 |
Arc matching = (*_blossom_data)[blossoms[i]].next; |
| 2888 | 2937 |
Node base = _graph.source(matching); |
| 2889 | 2938 |
extractBlossom(blossoms[i], base, matching); |
| 2890 | 2939 |
} |
| 2891 | 2940 |
} |
| 2892 | 2941 |
|
| 2893 | 2942 |
public: |
| 2894 | 2943 |
|
| 2895 | 2944 |
/// \brief Constructor |
| 2896 | 2945 |
/// |
| 2897 | 2946 |
/// Constructor. |
| 2898 | 2947 |
MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight) |
| 2899 | 2948 |
: _graph(graph), _weight(weight), _matching(0), |
| 2900 | 2949 |
_node_potential(0), _blossom_potential(), _blossom_node_list(), |
| 2901 | 2950 |
_node_num(0), _blossom_num(0), |
| 2902 | 2951 |
|
| 2903 | 2952 |
_blossom_index(0), _blossom_set(0), _blossom_data(0), |
| 2904 | 2953 |
_node_index(0), _node_heap_index(0), _node_data(0), |
| 2905 | 2954 |
_tree_set_index(0), _tree_set(0), |
| 2906 | 2955 |
|
| 2907 | 2956 |
_delta2_index(0), _delta2(0), |
| 2908 | 2957 |
_delta3_index(0), _delta3(0), |
| 2909 | 2958 |
_delta4_index(0), _delta4(0), |
| 2910 | 2959 |
|
| 2911 | 2960 |
_delta_sum() {}
|
| 2912 | 2961 |
|
| 2913 | 2962 |
~MaxWeightedPerfectMatching() {
|
| 2914 | 2963 |
destroyStructures(); |
| 2915 | 2964 |
} |
| 2916 | 2965 |
|
| 2917 | 2966 |
/// \name Execution Control |
| 2918 | 2967 |
/// The simplest way to execute the algorithm is to use the |
| 2919 | 2968 |
/// \ref run() member function. |
| 2920 | 2969 |
|
| 2921 | 2970 |
///@{
|
| 2922 | 2971 |
|
| 2923 | 2972 |
/// \brief Initialize the algorithm |
| 2924 | 2973 |
/// |
| 2925 | 2974 |
/// This function initializes the algorithm. |
| 2926 | 2975 |
void init() {
|
| 2927 | 2976 |
createStructures(); |
| 2928 | 2977 |
|
| 2978 |
_blossom_node_list.clear(); |
|
| 2979 |
_blossom_potential.clear(); |
|
| 2980 |
|
|
| 2929 | 2981 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 2930 | 2982 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
| 2931 | 2983 |
} |
| 2932 | 2984 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
| 2933 | 2985 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
| 2934 | 2986 |
} |
| 2935 | 2987 |
for (int i = 0; i < _blossom_num; ++i) {
|
| 2936 | 2988 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
| 2937 | 2989 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
| 2938 | 2990 |
} |
| 2939 | 2991 |
|
| 2992 |
_delta2->clear(); |
|
| 2993 |
_delta3->clear(); |
|
| 2994 |
_delta4->clear(); |
|
| 2995 |
_blossom_set->clear(); |
|
| 2996 |
_tree_set->clear(); |
|
| 2997 |
|
|
| 2940 | 2998 |
int index = 0; |
| 2941 | 2999 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 2942 | 3000 |
Value max = - std::numeric_limits<Value>::max(); |
| 2943 | 3001 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 2944 | 3002 |
if (_graph.target(e) == n) continue; |
| 2945 | 3003 |
if ((dualScale * _weight[e]) / 2 > max) {
|
| 2946 | 3004 |
max = (dualScale * _weight[e]) / 2; |
| 2947 | 3005 |
} |
| 2948 | 3006 |
} |
| 2949 | 3007 |
(*_node_index)[n] = index; |
| 3008 |
(*_node_data)[index].heap_index.clear(); |
|
| 3009 |
(*_node_data)[index].heap.clear(); |
|
| 2950 | 3010 |
(*_node_data)[index].pot = max; |
| 2951 | 3011 |
int blossom = |
| 2952 | 3012 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
| 2953 | 3013 |
|
| 2954 | 3014 |
_tree_set->insert(blossom); |
| 2955 | 3015 |
|
| 2956 | 3016 |
(*_blossom_data)[blossom].status = EVEN; |
| 2957 | 3017 |
(*_blossom_data)[blossom].pred = INVALID; |
| 2958 | 3018 |
(*_blossom_data)[blossom].next = INVALID; |
| 2959 | 3019 |
(*_blossom_data)[blossom].pot = 0; |
| 2960 | 3020 |
(*_blossom_data)[blossom].offset = 0; |
| 2961 | 3021 |
++index; |
| 2962 | 3022 |
} |
| 2963 | 3023 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
| 2964 | 3024 |
int si = (*_node_index)[_graph.u(e)]; |
| 2965 | 3025 |
int ti = (*_node_index)[_graph.v(e)]; |
| 2966 | 3026 |
if (_graph.u(e) != _graph.v(e)) {
|
| 2967 | 3027 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
| 2968 | 3028 |
dualScale * _weight[e]) / 2); |
| 2969 | 3029 |
} |
| 2970 | 3030 |
} |
| 2971 | 3031 |
} |
| 2972 | 3032 |
|
| 2973 | 3033 |
/// \brief Start the algorithm |
| 2974 | 3034 |
/// |
| 2975 | 3035 |
/// This function starts the algorithm. |
| 2976 | 3036 |
/// |
| 2977 | 3037 |
/// \pre \ref init() must be called before using this function. |
| 2978 | 3038 |
bool start() {
|
| 2979 | 3039 |
enum OpType {
|
| 2980 | 3040 |
D2, D3, D4 |
| 2981 | 3041 |
}; |
| 2982 | 3042 |
|
| 2983 | 3043 |
int unmatched = _node_num; |
| 2984 | 3044 |
while (unmatched > 0) {
|
| 2985 | 3045 |
Value d2 = !_delta2->empty() ? |
| 2986 | 3046 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
| 2987 | 3047 |
|
| 2988 | 3048 |
Value d3 = !_delta3->empty() ? |
| 2989 | 3049 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
| 2990 | 3050 |
|
| 2991 | 3051 |
Value d4 = !_delta4->empty() ? |
| 2992 | 3052 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
| 2993 | 3053 |
|
| 2994 | 3054 |
_delta_sum = d2; OpType ot = D2; |
| 2995 | 3055 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
|
| 2996 | 3056 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
|
| 2997 | 3057 |
|
| 2998 | 3058 |
if (_delta_sum == std::numeric_limits<Value>::max()) {
|
| 2999 | 3059 |
return false; |
| 3000 | 3060 |
} |
| 3001 | 3061 |
|
| 3002 | 3062 |
switch (ot) {
|
| 3003 | 3063 |
case D2: |
| 3004 | 3064 |
{
|
| 3005 | 3065 |
int blossom = _delta2->top(); |
| 3006 | 3066 |
Node n = _blossom_set->classTop(blossom); |
| 3007 | 3067 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
| 3008 | 3068 |
extendOnArc(e); |
| 3009 | 3069 |
} |
| 3010 | 3070 |
break; |
| 3011 | 3071 |
case D3: |
| 3012 | 3072 |
{
|
| 3013 | 3073 |
Edge e = _delta3->top(); |
| 3014 | 3074 |
|
| 3015 | 3075 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
| 3016 | 3076 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
| 3017 | 3077 |
|
| 3018 | 3078 |
if (left_blossom == right_blossom) {
|
| 3019 | 3079 |
_delta3->pop(); |
| 3020 | 3080 |
} else {
|
| 3021 | 3081 |
int left_tree = _tree_set->find(left_blossom); |
| 3022 | 3082 |
int right_tree = _tree_set->find(right_blossom); |
| 3023 | 3083 |
|
| 3024 | 3084 |
if (left_tree == right_tree) {
|
| 3025 | 3085 |
shrinkOnEdge(e, left_tree); |
| 3026 | 3086 |
} else {
|
| 3027 | 3087 |
augmentOnEdge(e); |
| 3028 | 3088 |
unmatched -= 2; |
| 3029 | 3089 |
} |
| 3030 | 3090 |
} |
| 3031 | 3091 |
} break; |
| 3032 | 3092 |
case D4: |
| 3033 | 3093 |
splitBlossom(_delta4->top()); |
| 3034 | 3094 |
break; |
| 3035 | 3095 |
} |
| 3036 | 3096 |
} |
| 3037 | 3097 |
extractMatching(); |
| 3038 | 3098 |
return true; |
| 3039 | 3099 |
} |
| 3040 | 3100 |
|
| 3041 | 3101 |
/// \brief Run the algorithm. |
| 3042 | 3102 |
/// |
| 3043 | 3103 |
/// This method runs the \c %MaxWeightedPerfectMatching algorithm. |
| 3044 | 3104 |
/// |
| 3045 | 3105 |
/// \note mwpm.run() is just a shortcut of the following code. |
| 3046 | 3106 |
/// \code |
| 3047 | 3107 |
/// mwpm.init(); |
| 3048 | 3108 |
/// mwpm.start(); |
| 3049 | 3109 |
/// \endcode |
| 3050 | 3110 |
bool run() {
|
| 3051 | 3111 |
init(); |
| 3052 | 3112 |
return start(); |
| 3053 | 3113 |
} |
| 3054 | 3114 |
|
| 3055 | 3115 |
/// @} |
| 3056 | 3116 |
|
| 3057 | 3117 |
/// \name Primal Solution |
| 3058 | 3118 |
/// Functions to get the primal solution, i.e. the maximum weighted |
| 3059 | 3119 |
/// perfect matching.\n |
| 3060 | 3120 |
/// Either \ref run() or \ref start() function should be called before |
| 3061 | 3121 |
/// using them. |
| 3062 | 3122 |
|
| 3063 | 3123 |
/// @{
|
| 3064 | 3124 |
|
| 3065 | 3125 |
/// \brief Return the weight of the matching. |
| 3066 | 3126 |
/// |
| 3067 | 3127 |
/// This function returns the weight of the found matching. |
| 3068 | 3128 |
/// |
| 3069 | 3129 |
/// \pre Either run() or start() must be called before using this function. |
| 3070 | 3130 |
Value matchingWeight() const {
|
| 3071 | 3131 |
Value sum = 0; |
| 3072 | 3132 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 3073 | 3133 |
if ((*_matching)[n] != INVALID) {
|
| 3074 | 3134 |
sum += _weight[(*_matching)[n]]; |
| 3075 | 3135 |
} |
| 3076 | 3136 |
} |
| 3077 | 3137 |
return sum /= 2; |
| 3078 | 3138 |
} |
| 3079 | 3139 |
|
| 3080 | 3140 |
/// \brief Return \c true if the given edge is in the matching. |
| 3081 | 3141 |
/// |
| 3082 | 3142 |
/// This function returns \c true if the given edge is in the found |
| 3083 | 3143 |
/// matching. |
| 3084 | 3144 |
/// |
| 3085 | 3145 |
/// \pre Either run() or start() must be called before using this function. |
| 3086 | 3146 |
bool matching(const Edge& edge) const {
|
| 3087 | 3147 |
return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge; |
| 3088 | 3148 |
} |
| 3089 | 3149 |
|
| 3090 | 3150 |
/// \brief Return the matching arc (or edge) incident to the given node. |
| 3091 | 3151 |
/// |
| 3092 | 3152 |
/// This function returns the matching arc (or edge) incident to the |
| 3093 | 3153 |
/// given node in the found matching or \c INVALID if the node is |
| 3094 | 3154 |
/// not covered by the matching. |
| 3095 | 3155 |
/// |
| 3096 | 3156 |
/// \pre Either run() or start() must be called before using this function. |
| 3097 | 3157 |
Arc matching(const Node& node) const {
|
| 3098 | 3158 |
return (*_matching)[node]; |
| 3099 | 3159 |
} |
| 3100 | 3160 |
|
| 3101 | 3161 |
/// \brief Return a const reference to the matching map. |
| 3102 | 3162 |
/// |
| 3103 | 3163 |
/// This function returns a const reference to a node map that stores |
| 3104 | 3164 |
/// the matching arc (or edge) incident to each node. |
| 3105 | 3165 |
const MatchingMap& matchingMap() const {
|
| 3106 | 3166 |
return *_matching; |
| 3107 | 3167 |
} |
| 3108 | 3168 |
|
| 3109 | 3169 |
/// \brief Return the mate of the given node. |
| 3110 | 3170 |
/// |
| 3111 | 3171 |
/// This function returns the mate of the given node in the found |
| 3112 | 3172 |
/// matching or \c INVALID if the node is not covered by the matching. |
| 3113 | 3173 |
/// |
| 3114 | 3174 |
/// \pre Either run() or start() must be called before using this function. |
| 3115 | 3175 |
Node mate(const Node& node) const {
|
| 3116 | 3176 |
return _graph.target((*_matching)[node]); |
| 3117 | 3177 |
} |
| 3118 | 3178 |
|
| 3119 | 3179 |
/// @} |
| 3120 | 3180 |
|
| 3121 | 3181 |
/// \name Dual Solution |
| 3122 | 3182 |
/// Functions to get the dual solution.\n |
| 3123 | 3183 |
/// Either \ref run() or \ref start() function should be called before |
| 3124 | 3184 |
/// using them. |
| 3125 | 3185 |
|
| 3126 | 3186 |
/// @{
|
| 3127 | 3187 |
|
| 3128 | 3188 |
/// \brief Return the value of the dual solution. |
| 3129 | 3189 |
/// |
| 3130 | 3190 |
/// This function returns the value of the dual solution. |
| 3131 | 3191 |
/// It should be equal to the primal value scaled by \ref dualScale |
| 3132 | 3192 |
/// "dual scale". |
| 3133 | 3193 |
/// |
| 3134 | 3194 |
/// \pre Either run() or start() must be called before using this function. |
| 3135 | 3195 |
Value dualValue() const {
|
| 3136 | 3196 |
Value sum = 0; |
| 3137 | 3197 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 3138 | 3198 |
sum += nodeValue(n); |
| 3139 | 3199 |
} |
| 3140 | 3200 |
for (int i = 0; i < blossomNum(); ++i) {
|
| 3141 | 3201 |
sum += blossomValue(i) * (blossomSize(i) / 2); |
| ... | ... |
@@ -550,385 +550,385 @@ |
| 550 | 550 |
|
| 551 | 551 |
private: |
| 552 | 552 |
const UnionFindEnum* unionFind; |
| 553 | 553 |
int cdx; |
| 554 | 554 |
}; |
| 555 | 555 |
|
| 556 | 556 |
/// \brief LEMON style iterator for the items of a component. |
| 557 | 557 |
/// |
| 558 | 558 |
/// ClassIt is a lemon style iterator for the components. It iterates |
| 559 | 559 |
/// on the items of a class. By example if you want to iterate on |
| 560 | 560 |
/// each items of each classes then you may write the next code. |
| 561 | 561 |
///\code |
| 562 | 562 |
/// for (ClassIt cit(ufe); cit != INVALID; ++cit) {
|
| 563 | 563 |
/// std::cout << "Class: "; |
| 564 | 564 |
/// for (ItemIt iit(ufe, cit); iit != INVALID; ++iit) {
|
| 565 | 565 |
/// std::cout << toString(iit) << ' ' << std::endl; |
| 566 | 566 |
/// } |
| 567 | 567 |
/// std::cout << std::endl; |
| 568 | 568 |
/// } |
| 569 | 569 |
///\endcode |
| 570 | 570 |
class ItemIt {
|
| 571 | 571 |
public: |
| 572 | 572 |
/// \brief Constructor of the iterator |
| 573 | 573 |
/// |
| 574 | 574 |
/// Constructor of the iterator. The iterator iterates |
| 575 | 575 |
/// on the class of the \c item. |
| 576 | 576 |
ItemIt(const UnionFindEnum& ufe, int cls) : unionFind(&ufe) {
|
| 577 | 577 |
fdx = idx = unionFind->classes[cls].firstItem; |
| 578 | 578 |
} |
| 579 | 579 |
|
| 580 | 580 |
/// \brief Constructor to get invalid iterator |
| 581 | 581 |
/// |
| 582 | 582 |
/// Constructor to get invalid iterator |
| 583 | 583 |
ItemIt(Invalid) : unionFind(0), idx(-1) {}
|
| 584 | 584 |
|
| 585 | 585 |
/// \brief Increment operator |
| 586 | 586 |
/// |
| 587 | 587 |
/// It steps to the next item in the class. |
| 588 | 588 |
ItemIt& operator++() {
|
| 589 | 589 |
idx = unionFind->items[idx].next; |
| 590 | 590 |
if (idx == fdx) idx = -1; |
| 591 | 591 |
return *this; |
| 592 | 592 |
} |
| 593 | 593 |
|
| 594 | 594 |
/// \brief Conversion operator |
| 595 | 595 |
/// |
| 596 | 596 |
/// It converts the iterator to the current item. |
| 597 | 597 |
operator const Item&() const {
|
| 598 | 598 |
return unionFind->items[idx].item; |
| 599 | 599 |
} |
| 600 | 600 |
|
| 601 | 601 |
/// \brief Equality operator |
| 602 | 602 |
/// |
| 603 | 603 |
/// Equality operator |
| 604 | 604 |
bool operator==(const ItemIt& i) {
|
| 605 | 605 |
return i.idx == idx; |
| 606 | 606 |
} |
| 607 | 607 |
|
| 608 | 608 |
/// \brief Inequality operator |
| 609 | 609 |
/// |
| 610 | 610 |
/// Inequality operator |
| 611 | 611 |
bool operator!=(const ItemIt& i) {
|
| 612 | 612 |
return i.idx != idx; |
| 613 | 613 |
} |
| 614 | 614 |
|
| 615 | 615 |
private: |
| 616 | 616 |
const UnionFindEnum* unionFind; |
| 617 | 617 |
int idx, fdx; |
| 618 | 618 |
}; |
| 619 | 619 |
|
| 620 | 620 |
}; |
| 621 | 621 |
|
| 622 | 622 |
/// \ingroup auxdat |
| 623 | 623 |
/// |
| 624 | 624 |
/// \brief A \e Extend-Find data structure implementation which |
| 625 | 625 |
/// is able to enumerate the components. |
| 626 | 626 |
/// |
| 627 | 627 |
/// The class implements an \e Extend-Find data structure which is |
| 628 | 628 |
/// able to enumerate the components and the items in a |
| 629 | 629 |
/// component. The data structure is a simplification of the |
| 630 | 630 |
/// Union-Find structure, and it does not allow to merge two components. |
| 631 | 631 |
/// |
| 632 | 632 |
/// \pre You need to add all the elements by the \ref insert() |
| 633 | 633 |
/// method. |
| 634 | 634 |
template <typename IM> |
| 635 | 635 |
class ExtendFindEnum {
|
| 636 | 636 |
public: |
| 637 | 637 |
|
| 638 | 638 |
///\e |
| 639 | 639 |
typedef IM ItemIntMap; |
| 640 | 640 |
///\e |
| 641 | 641 |
typedef typename ItemIntMap::Key Item; |
| 642 | 642 |
|
| 643 | 643 |
private: |
| 644 | 644 |
|
| 645 | 645 |
ItemIntMap& index; |
| 646 | 646 |
|
| 647 | 647 |
struct ItemT {
|
| 648 | 648 |
int cls; |
| 649 | 649 |
Item item; |
| 650 | 650 |
int next, prev; |
| 651 | 651 |
}; |
| 652 | 652 |
|
| 653 | 653 |
std::vector<ItemT> items; |
| 654 | 654 |
int firstFreeItem; |
| 655 | 655 |
|
| 656 | 656 |
struct ClassT {
|
| 657 | 657 |
int firstItem; |
| 658 | 658 |
int next, prev; |
| 659 | 659 |
}; |
| 660 | 660 |
|
| 661 | 661 |
std::vector<ClassT> classes; |
| 662 | 662 |
|
| 663 | 663 |
int firstClass, firstFreeClass; |
| 664 | 664 |
|
| 665 | 665 |
int newClass() {
|
| 666 | 666 |
if (firstFreeClass != -1) {
|
| 667 | 667 |
int cdx = firstFreeClass; |
| 668 | 668 |
firstFreeClass = classes[cdx].next; |
| 669 | 669 |
return cdx; |
| 670 | 670 |
} else {
|
| 671 | 671 |
classes.push_back(ClassT()); |
| 672 | 672 |
return classes.size() - 1; |
| 673 | 673 |
} |
| 674 | 674 |
} |
| 675 | 675 |
|
| 676 | 676 |
int newItem() {
|
| 677 | 677 |
if (firstFreeItem != -1) {
|
| 678 | 678 |
int idx = firstFreeItem; |
| 679 | 679 |
firstFreeItem = items[idx].next; |
| 680 | 680 |
return idx; |
| 681 | 681 |
} else {
|
| 682 | 682 |
items.push_back(ItemT()); |
| 683 | 683 |
return items.size() - 1; |
| 684 | 684 |
} |
| 685 | 685 |
} |
| 686 | 686 |
|
| 687 | 687 |
public: |
| 688 | 688 |
|
| 689 | 689 |
/// \brief Constructor |
| 690 | 690 |
ExtendFindEnum(ItemIntMap& _index) |
| 691 | 691 |
: index(_index), items(), firstFreeItem(-1), |
| 692 | 692 |
classes(), firstClass(-1), firstFreeClass(-1) {}
|
| 693 | 693 |
|
| 694 | 694 |
/// \brief Inserts the given element into a new component. |
| 695 | 695 |
/// |
| 696 | 696 |
/// This method creates a new component consisting only of the |
| 697 | 697 |
/// given element. |
| 698 | 698 |
int insert(const Item& item) {
|
| 699 | 699 |
int cdx = newClass(); |
| 700 | 700 |
classes[cdx].prev = -1; |
| 701 | 701 |
classes[cdx].next = firstClass; |
| 702 | 702 |
if (firstClass != -1) {
|
| 703 | 703 |
classes[firstClass].prev = cdx; |
| 704 | 704 |
} |
| 705 | 705 |
firstClass = cdx; |
| 706 | 706 |
|
| 707 | 707 |
int idx = newItem(); |
| 708 | 708 |
items[idx].item = item; |
| 709 | 709 |
items[idx].cls = cdx; |
| 710 | 710 |
items[idx].prev = idx; |
| 711 | 711 |
items[idx].next = idx; |
| 712 | 712 |
|
| 713 | 713 |
classes[cdx].firstItem = idx; |
| 714 | 714 |
|
| 715 | 715 |
index.set(item, idx); |
| 716 | 716 |
|
| 717 | 717 |
return cdx; |
| 718 | 718 |
} |
| 719 | 719 |
|
| 720 | 720 |
/// \brief Inserts the given element into the given component. |
| 721 | 721 |
/// |
| 722 | 722 |
/// This methods inserts the element \e item a into the \e cls class. |
| 723 | 723 |
void insert(const Item& item, int cls) {
|
| 724 | 724 |
int idx = newItem(); |
| 725 | 725 |
int rdx = classes[cls].firstItem; |
| 726 | 726 |
items[idx].item = item; |
| 727 | 727 |
items[idx].cls = cls; |
| 728 | 728 |
|
| 729 | 729 |
items[idx].prev = rdx; |
| 730 | 730 |
items[idx].next = items[rdx].next; |
| 731 | 731 |
items[items[rdx].next].prev = idx; |
| 732 | 732 |
items[rdx].next = idx; |
| 733 | 733 |
|
| 734 | 734 |
index.set(item, idx); |
| 735 | 735 |
} |
| 736 | 736 |
|
| 737 | 737 |
/// \brief Clears the union-find data structure |
| 738 | 738 |
/// |
| 739 | 739 |
/// Erase each item from the data structure. |
| 740 | 740 |
void clear() {
|
| 741 | 741 |
items.clear(); |
| 742 |
classes.clear; |
|
| 742 |
classes.clear(); |
|
| 743 | 743 |
firstClass = firstFreeClass = firstFreeItem = -1; |
| 744 | 744 |
} |
| 745 | 745 |
|
| 746 | 746 |
/// \brief Gives back the class of the \e item. |
| 747 | 747 |
/// |
| 748 | 748 |
/// Gives back the class of the \e item. |
| 749 | 749 |
int find(const Item &item) const {
|
| 750 | 750 |
return items[index[item]].cls; |
| 751 | 751 |
} |
| 752 | 752 |
|
| 753 | 753 |
/// \brief Gives back a representant item of the component. |
| 754 | 754 |
/// |
| 755 | 755 |
/// Gives back a representant item of the component. |
| 756 | 756 |
Item item(int cls) const {
|
| 757 | 757 |
return items[classes[cls].firstItem].item; |
| 758 | 758 |
} |
| 759 | 759 |
|
| 760 | 760 |
/// \brief Removes the given element from the structure. |
| 761 | 761 |
/// |
| 762 | 762 |
/// Removes the element from its component and if the component becomes |
| 763 | 763 |
/// empty then removes that component from the component list. |
| 764 | 764 |
/// |
| 765 | 765 |
/// \warning It is an error to remove an element which is not in |
| 766 | 766 |
/// the structure. |
| 767 | 767 |
void erase(const Item &item) {
|
| 768 | 768 |
int idx = index[item]; |
| 769 | 769 |
int cdx = items[idx].cls; |
| 770 | 770 |
|
| 771 | 771 |
if (idx == items[idx].next) {
|
| 772 | 772 |
if (classes[cdx].prev != -1) {
|
| 773 | 773 |
classes[classes[cdx].prev].next = classes[cdx].next; |
| 774 | 774 |
} else {
|
| 775 | 775 |
firstClass = classes[cdx].next; |
| 776 | 776 |
} |
| 777 | 777 |
if (classes[cdx].next != -1) {
|
| 778 | 778 |
classes[classes[cdx].next].prev = classes[cdx].prev; |
| 779 | 779 |
} |
| 780 | 780 |
classes[cdx].next = firstFreeClass; |
| 781 | 781 |
firstFreeClass = cdx; |
| 782 | 782 |
} else {
|
| 783 | 783 |
classes[cdx].firstItem = items[idx].next; |
| 784 | 784 |
items[items[idx].next].prev = items[idx].prev; |
| 785 | 785 |
items[items[idx].prev].next = items[idx].next; |
| 786 | 786 |
} |
| 787 | 787 |
items[idx].next = firstFreeItem; |
| 788 | 788 |
firstFreeItem = idx; |
| 789 | 789 |
|
| 790 | 790 |
} |
| 791 | 791 |
|
| 792 | 792 |
|
| 793 | 793 |
/// \brief Removes the component of the given element from the structure. |
| 794 | 794 |
/// |
| 795 | 795 |
/// Removes the component of the given element from the structure. |
| 796 | 796 |
/// |
| 797 | 797 |
/// \warning It is an error to give an element which is not in the |
| 798 | 798 |
/// structure. |
| 799 | 799 |
void eraseClass(int cdx) {
|
| 800 | 800 |
int idx = classes[cdx].firstItem; |
| 801 | 801 |
items[items[idx].prev].next = firstFreeItem; |
| 802 | 802 |
firstFreeItem = idx; |
| 803 | 803 |
|
| 804 | 804 |
if (classes[cdx].prev != -1) {
|
| 805 | 805 |
classes[classes[cdx].prev].next = classes[cdx].next; |
| 806 | 806 |
} else {
|
| 807 | 807 |
firstClass = classes[cdx].next; |
| 808 | 808 |
} |
| 809 | 809 |
if (classes[cdx].next != -1) {
|
| 810 | 810 |
classes[classes[cdx].next].prev = classes[cdx].prev; |
| 811 | 811 |
} |
| 812 | 812 |
classes[cdx].next = firstFreeClass; |
| 813 | 813 |
firstFreeClass = cdx; |
| 814 | 814 |
} |
| 815 | 815 |
|
| 816 | 816 |
/// \brief LEMON style iterator for the classes. |
| 817 | 817 |
/// |
| 818 | 818 |
/// ClassIt is a lemon style iterator for the components. It iterates |
| 819 | 819 |
/// on the ids of classes. |
| 820 | 820 |
class ClassIt {
|
| 821 | 821 |
public: |
| 822 | 822 |
/// \brief Constructor of the iterator |
| 823 | 823 |
/// |
| 824 | 824 |
/// Constructor of the iterator |
| 825 | 825 |
ClassIt(const ExtendFindEnum& ufe) : extendFind(&ufe) {
|
| 826 | 826 |
cdx = extendFind->firstClass; |
| 827 | 827 |
} |
| 828 | 828 |
|
| 829 | 829 |
/// \brief Constructor to get invalid iterator |
| 830 | 830 |
/// |
| 831 | 831 |
/// Constructor to get invalid iterator |
| 832 | 832 |
ClassIt(Invalid) : extendFind(0), cdx(-1) {}
|
| 833 | 833 |
|
| 834 | 834 |
/// \brief Increment operator |
| 835 | 835 |
/// |
| 836 | 836 |
/// It steps to the next representant item. |
| 837 | 837 |
ClassIt& operator++() {
|
| 838 | 838 |
cdx = extendFind->classes[cdx].next; |
| 839 | 839 |
return *this; |
| 840 | 840 |
} |
| 841 | 841 |
|
| 842 | 842 |
/// \brief Conversion operator |
| 843 | 843 |
/// |
| 844 | 844 |
/// It converts the iterator to the current class id. |
| 845 | 845 |
operator int() const {
|
| 846 | 846 |
return cdx; |
| 847 | 847 |
} |
| 848 | 848 |
|
| 849 | 849 |
/// \brief Equality operator |
| 850 | 850 |
/// |
| 851 | 851 |
/// Equality operator |
| 852 | 852 |
bool operator==(const ClassIt& i) {
|
| 853 | 853 |
return i.cdx == cdx; |
| 854 | 854 |
} |
| 855 | 855 |
|
| 856 | 856 |
/// \brief Inequality operator |
| 857 | 857 |
/// |
| 858 | 858 |
/// Inequality operator |
| 859 | 859 |
bool operator!=(const ClassIt& i) {
|
| 860 | 860 |
return i.cdx != cdx; |
| 861 | 861 |
} |
| 862 | 862 |
|
| 863 | 863 |
private: |
| 864 | 864 |
const ExtendFindEnum* extendFind; |
| 865 | 865 |
int cdx; |
| 866 | 866 |
}; |
| 867 | 867 |
|
| 868 | 868 |
/// \brief LEMON style iterator for the items of a component. |
| 869 | 869 |
/// |
| 870 | 870 |
/// ClassIt is a lemon style iterator for the components. It iterates |
| 871 | 871 |
/// on the items of a class. By example if you want to iterate on |
| 872 | 872 |
/// each items of each classes then you may write the next code. |
| 873 | 873 |
///\code |
| 874 | 874 |
/// for (ClassIt cit(ufe); cit != INVALID; ++cit) {
|
| 875 | 875 |
/// std::cout << "Class: "; |
| 876 | 876 |
/// for (ItemIt iit(ufe, cit); iit != INVALID; ++iit) {
|
| 877 | 877 |
/// std::cout << toString(iit) << ' ' << std::endl; |
| 878 | 878 |
/// } |
| 879 | 879 |
/// std::cout << std::endl; |
| 880 | 880 |
/// } |
| 881 | 881 |
///\endcode |
| 882 | 882 |
class ItemIt {
|
| 883 | 883 |
public: |
| 884 | 884 |
/// \brief Constructor of the iterator |
| 885 | 885 |
/// |
| 886 | 886 |
/// Constructor of the iterator. The iterator iterates |
| 887 | 887 |
/// on the class of the \c item. |
| 888 | 888 |
ItemIt(const ExtendFindEnum& ufe, int cls) : extendFind(&ufe) {
|
| 889 | 889 |
fdx = idx = extendFind->classes[cls].firstItem; |
| 890 | 890 |
} |
| 891 | 891 |
|
| 892 | 892 |
/// \brief Constructor to get invalid iterator |
| 893 | 893 |
/// |
| 894 | 894 |
/// Constructor to get invalid iterator |
| 895 | 895 |
ItemIt(Invalid) : extendFind(0), idx(-1) {}
|
| 896 | 896 |
|
| 897 | 897 |
/// \brief Increment operator |
| 898 | 898 |
/// |
| 899 | 899 |
/// It steps to the next item in the class. |
| 900 | 900 |
ItemIt& operator++() {
|
| 901 | 901 |
idx = extendFind->items[idx].next; |
| 902 | 902 |
if (fdx == idx) idx = -1; |
| 903 | 903 |
return *this; |
| 904 | 904 |
} |
| 905 | 905 |
|
| 906 | 906 |
/// \brief Conversion operator |
| 907 | 907 |
/// |
| 908 | 908 |
/// It converts the iterator to the current item. |
| 909 | 909 |
operator const Item&() const {
|
| 910 | 910 |
return extendFind->items[idx].item; |
| 911 | 911 |
} |
| 912 | 912 |
|
| 913 | 913 |
/// \brief Equality operator |
| 914 | 914 |
/// |
| 915 | 915 |
/// Equality operator |
| 916 | 916 |
bool operator==(const ItemIt& i) {
|
| 917 | 917 |
return i.idx == idx; |
| 918 | 918 |
} |
| 919 | 919 |
|
| 920 | 920 |
/// \brief Inequality operator |
| 921 | 921 |
/// |
| 922 | 922 |
/// Inequality operator |
| 923 | 923 |
bool operator!=(const ItemIt& i) {
|
| 924 | 924 |
return i.idx != idx; |
| 925 | 925 |
} |
| 926 | 926 |
|
| 927 | 927 |
private: |
| 928 | 928 |
const ExtendFindEnum* extendFind; |
| 929 | 929 |
int idx, fdx; |
| 930 | 930 |
}; |
| 931 | 931 |
|
| 932 | 932 |
}; |
| 933 | 933 |
|
| 934 | 934 |
/// \ingroup auxdat |
| ... | ... |
@@ -1099,384 +1099,393 @@ |
| 1099 | 1099 |
nodes[kd].right = jd; |
| 1100 | 1100 |
nodes[kd].size += 1; |
| 1101 | 1101 |
} |
| 1102 | 1102 |
} |
| 1103 | 1103 |
nodes[jd].next = nodes[id].next; |
| 1104 | 1104 |
nodes[jd].prev = id; |
| 1105 | 1105 |
nodes[id].next = jd; |
| 1106 | 1106 |
nodes[jd].parent = kd; |
| 1107 | 1107 |
} |
| 1108 | 1108 |
|
| 1109 | 1109 |
void pushRight(int id, int jd) {
|
| 1110 | 1110 |
nodes[id].size += 1; |
| 1111 | 1111 |
nodes[jd].prev = nodes[id].right; |
| 1112 | 1112 |
nodes[jd].next = -1; |
| 1113 | 1113 |
nodes[nodes[id].right].next = jd; |
| 1114 | 1114 |
nodes[id].right = jd; |
| 1115 | 1115 |
nodes[jd].parent = id; |
| 1116 | 1116 |
} |
| 1117 | 1117 |
|
| 1118 | 1118 |
void popRight(int id) {
|
| 1119 | 1119 |
nodes[id].size -= 1; |
| 1120 | 1120 |
int jd = nodes[id].right; |
| 1121 | 1121 |
nodes[nodes[jd].prev].next = -1; |
| 1122 | 1122 |
nodes[id].right = nodes[jd].prev; |
| 1123 | 1123 |
} |
| 1124 | 1124 |
|
| 1125 | 1125 |
void splice(int id, int jd) {
|
| 1126 | 1126 |
nodes[id].size += nodes[jd].size; |
| 1127 | 1127 |
nodes[nodes[id].right].next = nodes[jd].left; |
| 1128 | 1128 |
nodes[nodes[jd].left].prev = nodes[id].right; |
| 1129 | 1129 |
int kd = nodes[jd].left; |
| 1130 | 1130 |
while (kd != -1) {
|
| 1131 | 1131 |
nodes[kd].parent = id; |
| 1132 | 1132 |
kd = nodes[kd].next; |
| 1133 | 1133 |
} |
| 1134 | 1134 |
nodes[id].right = nodes[jd].right; |
| 1135 | 1135 |
} |
| 1136 | 1136 |
|
| 1137 | 1137 |
void split(int id, int jd) {
|
| 1138 | 1138 |
int kd = nodes[id].parent; |
| 1139 | 1139 |
nodes[kd].right = nodes[id].prev; |
| 1140 | 1140 |
nodes[nodes[id].prev].next = -1; |
| 1141 | 1141 |
|
| 1142 | 1142 |
nodes[jd].left = id; |
| 1143 | 1143 |
nodes[id].prev = -1; |
| 1144 | 1144 |
int num = 0; |
| 1145 | 1145 |
while (id != -1) {
|
| 1146 | 1146 |
nodes[id].parent = jd; |
| 1147 | 1147 |
nodes[jd].right = id; |
| 1148 | 1148 |
id = nodes[id].next; |
| 1149 | 1149 |
++num; |
| 1150 | 1150 |
} |
| 1151 | 1151 |
nodes[kd].size -= num; |
| 1152 | 1152 |
nodes[jd].size = num; |
| 1153 | 1153 |
} |
| 1154 | 1154 |
|
| 1155 | 1155 |
void pushLeft(int id, int jd) {
|
| 1156 | 1156 |
nodes[id].size += 1; |
| 1157 | 1157 |
nodes[jd].next = nodes[id].left; |
| 1158 | 1158 |
nodes[jd].prev = -1; |
| 1159 | 1159 |
nodes[nodes[id].left].prev = jd; |
| 1160 | 1160 |
nodes[id].left = jd; |
| 1161 | 1161 |
nodes[jd].parent = id; |
| 1162 | 1162 |
} |
| 1163 | 1163 |
|
| 1164 | 1164 |
void popLeft(int id) {
|
| 1165 | 1165 |
nodes[id].size -= 1; |
| 1166 | 1166 |
int jd = nodes[id].left; |
| 1167 | 1167 |
nodes[nodes[jd].next].prev = -1; |
| 1168 | 1168 |
nodes[id].left = nodes[jd].next; |
| 1169 | 1169 |
} |
| 1170 | 1170 |
|
| 1171 | 1171 |
void repairLeft(int id) {
|
| 1172 | 1172 |
int jd = ~(classes[id].parent); |
| 1173 | 1173 |
while (nodes[jd].left != -1) {
|
| 1174 | 1174 |
int kd = nodes[jd].left; |
| 1175 | 1175 |
if (nodes[jd].size == 1) {
|
| 1176 | 1176 |
if (nodes[jd].parent < 0) {
|
| 1177 | 1177 |
classes[id].parent = ~kd; |
| 1178 | 1178 |
classes[id].depth -= 1; |
| 1179 | 1179 |
nodes[kd].parent = ~id; |
| 1180 | 1180 |
deleteNode(jd); |
| 1181 | 1181 |
jd = kd; |
| 1182 | 1182 |
} else {
|
| 1183 | 1183 |
int pd = nodes[jd].parent; |
| 1184 | 1184 |
if (nodes[nodes[jd].next].size < cmax) {
|
| 1185 | 1185 |
pushLeft(nodes[jd].next, nodes[jd].left); |
| 1186 | 1186 |
if (less(jd, nodes[jd].next) || |
| 1187 | 1187 |
nodes[jd].item == nodes[pd].item) {
|
| 1188 | 1188 |
nodes[nodes[jd].next].prio = nodes[jd].prio; |
| 1189 | 1189 |
nodes[nodes[jd].next].item = nodes[jd].item; |
| 1190 | 1190 |
} |
| 1191 | 1191 |
popLeft(pd); |
| 1192 | 1192 |
deleteNode(jd); |
| 1193 | 1193 |
jd = pd; |
| 1194 | 1194 |
} else {
|
| 1195 | 1195 |
int ld = nodes[nodes[jd].next].left; |
| 1196 | 1196 |
popLeft(nodes[jd].next); |
| 1197 | 1197 |
pushRight(jd, ld); |
| 1198 | 1198 |
if (less(ld, nodes[jd].left) || |
| 1199 | 1199 |
nodes[ld].item == nodes[pd].item) {
|
| 1200 | 1200 |
nodes[jd].item = nodes[ld].item; |
| 1201 | 1201 |
nodes[jd].prio = nodes[ld].prio; |
| 1202 | 1202 |
} |
| 1203 | 1203 |
if (nodes[nodes[jd].next].item == nodes[ld].item) {
|
| 1204 | 1204 |
setPrio(nodes[jd].next); |
| 1205 | 1205 |
} |
| 1206 | 1206 |
jd = nodes[jd].left; |
| 1207 | 1207 |
} |
| 1208 | 1208 |
} |
| 1209 | 1209 |
} else {
|
| 1210 | 1210 |
jd = nodes[jd].left; |
| 1211 | 1211 |
} |
| 1212 | 1212 |
} |
| 1213 | 1213 |
} |
| 1214 | 1214 |
|
| 1215 | 1215 |
void repairRight(int id) {
|
| 1216 | 1216 |
int jd = ~(classes[id].parent); |
| 1217 | 1217 |
while (nodes[jd].right != -1) {
|
| 1218 | 1218 |
int kd = nodes[jd].right; |
| 1219 | 1219 |
if (nodes[jd].size == 1) {
|
| 1220 | 1220 |
if (nodes[jd].parent < 0) {
|
| 1221 | 1221 |
classes[id].parent = ~kd; |
| 1222 | 1222 |
classes[id].depth -= 1; |
| 1223 | 1223 |
nodes[kd].parent = ~id; |
| 1224 | 1224 |
deleteNode(jd); |
| 1225 | 1225 |
jd = kd; |
| 1226 | 1226 |
} else {
|
| 1227 | 1227 |
int pd = nodes[jd].parent; |
| 1228 | 1228 |
if (nodes[nodes[jd].prev].size < cmax) {
|
| 1229 | 1229 |
pushRight(nodes[jd].prev, nodes[jd].right); |
| 1230 | 1230 |
if (less(jd, nodes[jd].prev) || |
| 1231 | 1231 |
nodes[jd].item == nodes[pd].item) {
|
| 1232 | 1232 |
nodes[nodes[jd].prev].prio = nodes[jd].prio; |
| 1233 | 1233 |
nodes[nodes[jd].prev].item = nodes[jd].item; |
| 1234 | 1234 |
} |
| 1235 | 1235 |
popRight(pd); |
| 1236 | 1236 |
deleteNode(jd); |
| 1237 | 1237 |
jd = pd; |
| 1238 | 1238 |
} else {
|
| 1239 | 1239 |
int ld = nodes[nodes[jd].prev].right; |
| 1240 | 1240 |
popRight(nodes[jd].prev); |
| 1241 | 1241 |
pushLeft(jd, ld); |
| 1242 | 1242 |
if (less(ld, nodes[jd].right) || |
| 1243 | 1243 |
nodes[ld].item == nodes[pd].item) {
|
| 1244 | 1244 |
nodes[jd].item = nodes[ld].item; |
| 1245 | 1245 |
nodes[jd].prio = nodes[ld].prio; |
| 1246 | 1246 |
} |
| 1247 | 1247 |
if (nodes[nodes[jd].prev].item == nodes[ld].item) {
|
| 1248 | 1248 |
setPrio(nodes[jd].prev); |
| 1249 | 1249 |
} |
| 1250 | 1250 |
jd = nodes[jd].right; |
| 1251 | 1251 |
} |
| 1252 | 1252 |
} |
| 1253 | 1253 |
} else {
|
| 1254 | 1254 |
jd = nodes[jd].right; |
| 1255 | 1255 |
} |
| 1256 | 1256 |
} |
| 1257 | 1257 |
} |
| 1258 | 1258 |
|
| 1259 | 1259 |
|
| 1260 | 1260 |
bool less(int id, int jd) const {
|
| 1261 | 1261 |
return comp(nodes[id].prio, nodes[jd].prio); |
| 1262 | 1262 |
} |
| 1263 | 1263 |
|
| 1264 | 1264 |
public: |
| 1265 | 1265 |
|
| 1266 | 1266 |
/// \brief Returns true when the given class is alive. |
| 1267 | 1267 |
/// |
| 1268 | 1268 |
/// Returns true when the given class is alive, ie. the class is |
| 1269 | 1269 |
/// not nested into other class. |
| 1270 | 1270 |
bool alive(int cls) const {
|
| 1271 | 1271 |
return classes[cls].parent < 0; |
| 1272 | 1272 |
} |
| 1273 | 1273 |
|
| 1274 | 1274 |
/// \brief Returns true when the given class is trivial. |
| 1275 | 1275 |
/// |
| 1276 | 1276 |
/// Returns true when the given class is trivial, ie. the class |
| 1277 | 1277 |
/// contains just one item directly. |
| 1278 | 1278 |
bool trivial(int cls) const {
|
| 1279 | 1279 |
return classes[cls].left == -1; |
| 1280 | 1280 |
} |
| 1281 | 1281 |
|
| 1282 | 1282 |
/// \brief Constructs the union-find. |
| 1283 | 1283 |
/// |
| 1284 | 1284 |
/// Constructs the union-find. |
| 1285 | 1285 |
/// \brief _index The index map of the union-find. The data |
| 1286 | 1286 |
/// structure uses internally for store references. |
| 1287 | 1287 |
HeapUnionFind(ItemIntMap& _index) |
| 1288 | 1288 |
: index(_index), first_class(-1), |
| 1289 | 1289 |
first_free_class(-1), first_free_node(-1) {}
|
| 1290 | 1290 |
|
| 1291 |
/// \brief Clears the union-find data structure |
|
| 1292 |
/// |
|
| 1293 |
/// Erase each item from the data structure. |
|
| 1294 |
void clear() {
|
|
| 1295 |
nodes.clear(); |
|
| 1296 |
classes.clear(); |
|
| 1297 |
first_free_node = first_free_class = first_class = -1; |
|
| 1298 |
} |
|
| 1299 |
|
|
| 1291 | 1300 |
/// \brief Insert a new node into a new component. |
| 1292 | 1301 |
/// |
| 1293 | 1302 |
/// Insert a new node into a new component. |
| 1294 | 1303 |
/// \param item The item of the new node. |
| 1295 | 1304 |
/// \param prio The priority of the new node. |
| 1296 | 1305 |
/// \return The class id of the one-item-heap. |
| 1297 | 1306 |
int insert(const Item& item, const Value& prio) {
|
| 1298 | 1307 |
int id = newNode(); |
| 1299 | 1308 |
nodes[id].item = item; |
| 1300 | 1309 |
nodes[id].prio = prio; |
| 1301 | 1310 |
nodes[id].size = 0; |
| 1302 | 1311 |
|
| 1303 | 1312 |
nodes[id].prev = -1; |
| 1304 | 1313 |
nodes[id].next = -1; |
| 1305 | 1314 |
|
| 1306 | 1315 |
nodes[id].left = -1; |
| 1307 | 1316 |
nodes[id].right = -1; |
| 1308 | 1317 |
|
| 1309 | 1318 |
nodes[id].item = item; |
| 1310 | 1319 |
index[item] = id; |
| 1311 | 1320 |
|
| 1312 | 1321 |
int class_id = newClass(); |
| 1313 | 1322 |
classes[class_id].parent = ~id; |
| 1314 | 1323 |
classes[class_id].depth = 0; |
| 1315 | 1324 |
|
| 1316 | 1325 |
classes[class_id].left = -1; |
| 1317 | 1326 |
classes[class_id].right = -1; |
| 1318 | 1327 |
|
| 1319 | 1328 |
if (first_class != -1) {
|
| 1320 | 1329 |
classes[first_class].prev = class_id; |
| 1321 | 1330 |
} |
| 1322 | 1331 |
classes[class_id].next = first_class; |
| 1323 | 1332 |
classes[class_id].prev = -1; |
| 1324 | 1333 |
first_class = class_id; |
| 1325 | 1334 |
|
| 1326 | 1335 |
nodes[id].parent = ~class_id; |
| 1327 | 1336 |
|
| 1328 | 1337 |
return class_id; |
| 1329 | 1338 |
} |
| 1330 | 1339 |
|
| 1331 | 1340 |
/// \brief The class of the item. |
| 1332 | 1341 |
/// |
| 1333 | 1342 |
/// \return The alive class id of the item, which is not nested into |
| 1334 | 1343 |
/// other classes. |
| 1335 | 1344 |
/// |
| 1336 | 1345 |
/// The time complexity is O(log(n)). |
| 1337 | 1346 |
int find(const Item& item) const {
|
| 1338 | 1347 |
return findClass(index[item]); |
| 1339 | 1348 |
} |
| 1340 | 1349 |
|
| 1341 | 1350 |
/// \brief Joins the classes. |
| 1342 | 1351 |
/// |
| 1343 | 1352 |
/// The current function joins the given classes. The parameter is |
| 1344 | 1353 |
/// an STL range which should be contains valid class ids. The |
| 1345 | 1354 |
/// time complexity is O(log(n)*k) where n is the overall number |
| 1346 | 1355 |
/// of the joined nodes and k is the number of classes. |
| 1347 | 1356 |
/// \return The class of the joined classes. |
| 1348 | 1357 |
/// \pre The range should contain at least two class ids. |
| 1349 | 1358 |
template <typename Iterator> |
| 1350 | 1359 |
int join(Iterator begin, Iterator end) {
|
| 1351 | 1360 |
std::vector<int> cs; |
| 1352 | 1361 |
for (Iterator it = begin; it != end; ++it) {
|
| 1353 | 1362 |
cs.push_back(*it); |
| 1354 | 1363 |
} |
| 1355 | 1364 |
|
| 1356 | 1365 |
int class_id = newClass(); |
| 1357 | 1366 |
{ // creation union-find
|
| 1358 | 1367 |
|
| 1359 | 1368 |
if (first_class != -1) {
|
| 1360 | 1369 |
classes[first_class].prev = class_id; |
| 1361 | 1370 |
} |
| 1362 | 1371 |
classes[class_id].next = first_class; |
| 1363 | 1372 |
classes[class_id].prev = -1; |
| 1364 | 1373 |
first_class = class_id; |
| 1365 | 1374 |
|
| 1366 | 1375 |
classes[class_id].depth = classes[cs[0]].depth; |
| 1367 | 1376 |
classes[class_id].parent = classes[cs[0]].parent; |
| 1368 | 1377 |
nodes[~(classes[class_id].parent)].parent = ~class_id; |
| 1369 | 1378 |
|
| 1370 | 1379 |
int l = cs[0]; |
| 1371 | 1380 |
|
| 1372 | 1381 |
classes[class_id].left = l; |
| 1373 | 1382 |
classes[class_id].right = l; |
| 1374 | 1383 |
|
| 1375 | 1384 |
if (classes[l].next != -1) {
|
| 1376 | 1385 |
classes[classes[l].next].prev = classes[l].prev; |
| 1377 | 1386 |
} |
| 1378 | 1387 |
classes[classes[l].prev].next = classes[l].next; |
| 1379 | 1388 |
|
| 1380 | 1389 |
classes[l].prev = -1; |
| 1381 | 1390 |
classes[l].next = -1; |
| 1382 | 1391 |
|
| 1383 | 1392 |
classes[l].depth = leftNode(l); |
| 1384 | 1393 |
classes[l].parent = class_id; |
| 1385 | 1394 |
|
| 1386 | 1395 |
} |
| 1387 | 1396 |
|
| 1388 | 1397 |
{ // merging of heap
|
| 1389 | 1398 |
int l = class_id; |
| 1390 | 1399 |
for (int ci = 1; ci < int(cs.size()); ++ci) {
|
| 1391 | 1400 |
int r = cs[ci]; |
| 1392 | 1401 |
int rln = leftNode(r); |
| 1393 | 1402 |
if (classes[l].depth > classes[r].depth) {
|
| 1394 | 1403 |
int id = ~(classes[l].parent); |
| 1395 | 1404 |
for (int i = classes[r].depth + 1; i < classes[l].depth; ++i) {
|
| 1396 | 1405 |
id = nodes[id].right; |
| 1397 | 1406 |
} |
| 1398 | 1407 |
while (id >= 0 && nodes[id].size == cmax) {
|
| 1399 | 1408 |
int new_id = newNode(); |
| 1400 | 1409 |
int right_id = nodes[id].right; |
| 1401 | 1410 |
|
| 1402 | 1411 |
popRight(id); |
| 1403 | 1412 |
if (nodes[id].item == nodes[right_id].item) {
|
| 1404 | 1413 |
setPrio(id); |
| 1405 | 1414 |
} |
| 1406 | 1415 |
push(new_id, right_id); |
| 1407 | 1416 |
pushRight(new_id, ~(classes[r].parent)); |
| 1408 | 1417 |
|
| 1409 | 1418 |
if (less(~classes[r].parent, right_id)) {
|
| 1410 | 1419 |
nodes[new_id].item = nodes[~classes[r].parent].item; |
| 1411 | 1420 |
nodes[new_id].prio = nodes[~classes[r].parent].prio; |
| 1412 | 1421 |
} else {
|
| 1413 | 1422 |
nodes[new_id].item = nodes[right_id].item; |
| 1414 | 1423 |
nodes[new_id].prio = nodes[right_id].prio; |
| 1415 | 1424 |
} |
| 1416 | 1425 |
|
| 1417 | 1426 |
id = nodes[id].parent; |
| 1418 | 1427 |
classes[r].parent = ~new_id; |
| 1419 | 1428 |
} |
| 1420 | 1429 |
if (id < 0) {
|
| 1421 | 1430 |
int new_parent = newNode(); |
| 1422 | 1431 |
nodes[new_parent].next = -1; |
| 1423 | 1432 |
nodes[new_parent].prev = -1; |
| 1424 | 1433 |
nodes[new_parent].parent = ~l; |
| 1425 | 1434 |
|
| 1426 | 1435 |
push(new_parent, ~(classes[l].parent)); |
| 1427 | 1436 |
pushRight(new_parent, ~(classes[r].parent)); |
| 1428 | 1437 |
setPrio(new_parent); |
| 1429 | 1438 |
|
| 1430 | 1439 |
classes[l].parent = ~new_parent; |
| 1431 | 1440 |
classes[l].depth += 1; |
| 1432 | 1441 |
} else {
|
| 1433 | 1442 |
pushRight(id, ~(classes[r].parent)); |
| 1434 | 1443 |
while (id >= 0 && less(~(classes[r].parent), id)) {
|
| 1435 | 1444 |
nodes[id].prio = nodes[~(classes[r].parent)].prio; |
| 1436 | 1445 |
nodes[id].item = nodes[~(classes[r].parent)].item; |
| 1437 | 1446 |
id = nodes[id].parent; |
| 1438 | 1447 |
} |
| 1439 | 1448 |
} |
| 1440 | 1449 |
} else if (classes[r].depth > classes[l].depth) {
|
| 1441 | 1450 |
int id = ~(classes[r].parent); |
| 1442 | 1451 |
for (int i = classes[l].depth + 1; i < classes[r].depth; ++i) {
|
| 1443 | 1452 |
id = nodes[id].left; |
| 1444 | 1453 |
} |
| 1445 | 1454 |
while (id >= 0 && nodes[id].size == cmax) {
|
| 1446 | 1455 |
int new_id = newNode(); |
| 1447 | 1456 |
int left_id = nodes[id].left; |
| 1448 | 1457 |
|
| 1449 | 1458 |
popLeft(id); |
| 1450 | 1459 |
if (nodes[id].prio == nodes[left_id].prio) {
|
| 1451 | 1460 |
setPrio(id); |
| 1452 | 1461 |
} |
| 1453 | 1462 |
push(new_id, left_id); |
| 1454 | 1463 |
pushLeft(new_id, ~(classes[l].parent)); |
| 1455 | 1464 |
|
| 1456 | 1465 |
if (less(~classes[l].parent, left_id)) {
|
| 1457 | 1466 |
nodes[new_id].item = nodes[~classes[l].parent].item; |
| 1458 | 1467 |
nodes[new_id].prio = nodes[~classes[l].parent].prio; |
| 1459 | 1468 |
} else {
|
| 1460 | 1469 |
nodes[new_id].item = nodes[left_id].item; |
| 1461 | 1470 |
nodes[new_id].prio = nodes[left_id].prio; |
| 1462 | 1471 |
} |
| 1463 | 1472 |
|
| 1464 | 1473 |
id = nodes[id].parent; |
| 1465 | 1474 |
classes[l].parent = ~new_id; |
| 1466 | 1475 |
|
| 1467 | 1476 |
} |
| 1468 | 1477 |
if (id < 0) {
|
| 1469 | 1478 |
int new_parent = newNode(); |
| 1470 | 1479 |
nodes[new_parent].next = -1; |
| 1471 | 1480 |
nodes[new_parent].prev = -1; |
| 1472 | 1481 |
nodes[new_parent].parent = ~l; |
| 1473 | 1482 |
|
| 1474 | 1483 |
push(new_parent, ~(classes[r].parent)); |
| 1475 | 1484 |
pushLeft(new_parent, ~(classes[l].parent)); |
| 1476 | 1485 |
setPrio(new_parent); |
| 1477 | 1486 |
|
| 1478 | 1487 |
classes[r].parent = ~new_parent; |
| 1479 | 1488 |
classes[r].depth += 1; |
| 1480 | 1489 |
} else {
|
| 1481 | 1490 |
pushLeft(id, ~(classes[l].parent)); |
| 1482 | 1491 |
while (id >= 0 && less(~(classes[l].parent), id)) {
|
0 comments (0 inline)