0
2
0
61
1
| ... | ... |
@@ -712,227 +712,246 @@ |
| 712 | 712 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
| 713 | 713 |
|
| 714 | 714 |
private: |
| 715 | 715 |
|
| 716 | 716 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 717 | 717 |
|
| 718 | 718 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
| 719 | 719 |
typedef std::vector<Node> BlossomNodeList; |
| 720 | 720 |
|
| 721 | 721 |
struct BlossomVariable {
|
| 722 | 722 |
int begin, end; |
| 723 | 723 |
Value value; |
| 724 | 724 |
|
| 725 | 725 |
BlossomVariable(int _begin, int _end, Value _value) |
| 726 | 726 |
: begin(_begin), end(_end), value(_value) {}
|
| 727 | 727 |
|
| 728 | 728 |
}; |
| 729 | 729 |
|
| 730 | 730 |
typedef std::vector<BlossomVariable> BlossomPotential; |
| 731 | 731 |
|
| 732 | 732 |
const Graph& _graph; |
| 733 | 733 |
const WeightMap& _weight; |
| 734 | 734 |
|
| 735 | 735 |
MatchingMap* _matching; |
| 736 | 736 |
|
| 737 | 737 |
NodePotential* _node_potential; |
| 738 | 738 |
|
| 739 | 739 |
BlossomPotential _blossom_potential; |
| 740 | 740 |
BlossomNodeList _blossom_node_list; |
| 741 | 741 |
|
| 742 | 742 |
int _node_num; |
| 743 | 743 |
int _blossom_num; |
| 744 | 744 |
|
| 745 | 745 |
typedef RangeMap<int> IntIntMap; |
| 746 | 746 |
|
| 747 | 747 |
enum Status {
|
| 748 | 748 |
EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2 |
| 749 | 749 |
}; |
| 750 | 750 |
|
| 751 | 751 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
| 752 | 752 |
struct BlossomData {
|
| 753 | 753 |
int tree; |
| 754 | 754 |
Status status; |
| 755 | 755 |
Arc pred, next; |
| 756 | 756 |
Value pot, offset; |
| 757 | 757 |
Node base; |
| 758 | 758 |
}; |
| 759 | 759 |
|
| 760 | 760 |
IntNodeMap *_blossom_index; |
| 761 | 761 |
BlossomSet *_blossom_set; |
| 762 | 762 |
RangeMap<BlossomData>* _blossom_data; |
| 763 | 763 |
|
| 764 | 764 |
IntNodeMap *_node_index; |
| 765 | 765 |
IntArcMap *_node_heap_index; |
| 766 | 766 |
|
| 767 | 767 |
struct NodeData {
|
| 768 | 768 |
|
| 769 | 769 |
NodeData(IntArcMap& node_heap_index) |
| 770 | 770 |
: heap(node_heap_index) {}
|
| 771 | 771 |
|
| 772 | 772 |
int blossom; |
| 773 | 773 |
Value pot; |
| 774 | 774 |
BinHeap<Value, IntArcMap> heap; |
| 775 | 775 |
std::map<int, Arc> heap_index; |
| 776 | 776 |
|
| 777 | 777 |
int tree; |
| 778 | 778 |
}; |
| 779 | 779 |
|
| 780 | 780 |
RangeMap<NodeData>* _node_data; |
| 781 | 781 |
|
| 782 | 782 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
| 783 | 783 |
|
| 784 | 784 |
IntIntMap *_tree_set_index; |
| 785 | 785 |
TreeSet *_tree_set; |
| 786 | 786 |
|
| 787 | 787 |
IntNodeMap *_delta1_index; |
| 788 | 788 |
BinHeap<Value, IntNodeMap> *_delta1; |
| 789 | 789 |
|
| 790 | 790 |
IntIntMap *_delta2_index; |
| 791 | 791 |
BinHeap<Value, IntIntMap> *_delta2; |
| 792 | 792 |
|
| 793 | 793 |
IntEdgeMap *_delta3_index; |
| 794 | 794 |
BinHeap<Value, IntEdgeMap> *_delta3; |
| 795 | 795 |
|
| 796 | 796 |
IntIntMap *_delta4_index; |
| 797 | 797 |
BinHeap<Value, IntIntMap> *_delta4; |
| 798 | 798 |
|
| 799 | 799 |
Value _delta_sum; |
| 800 | 800 |
|
| 801 | 801 |
void createStructures() {
|
| 802 | 802 |
_node_num = countNodes(_graph); |
| 803 | 803 |
_blossom_num = _node_num * 3 / 2; |
| 804 | 804 |
|
| 805 | 805 |
if (!_matching) {
|
| 806 | 806 |
_matching = new MatchingMap(_graph); |
| 807 | 807 |
} |
| 808 |
|
|
| 808 | 809 |
if (!_node_potential) {
|
| 809 | 810 |
_node_potential = new NodePotential(_graph); |
| 810 | 811 |
} |
| 812 |
|
|
| 811 | 813 |
if (!_blossom_set) {
|
| 812 | 814 |
_blossom_index = new IntNodeMap(_graph); |
| 813 | 815 |
_blossom_set = new BlossomSet(*_blossom_index); |
| 814 | 816 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
| 817 |
} else if (_blossom_data->size() != _blossom_num) {
|
|
| 818 |
delete _blossom_data; |
|
| 819 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
|
| 815 | 820 |
} |
| 816 | 821 |
|
| 817 | 822 |
if (!_node_index) {
|
| 818 | 823 |
_node_index = new IntNodeMap(_graph); |
| 819 | 824 |
_node_heap_index = new IntArcMap(_graph); |
| 820 | 825 |
_node_data = new RangeMap<NodeData>(_node_num, |
| 821 |
|
|
| 826 |
NodeData(*_node_heap_index)); |
|
| 827 |
} else {
|
|
| 828 |
delete _node_data; |
|
| 829 |
_node_data = new RangeMap<NodeData>(_node_num, |
|
| 830 |
NodeData(*_node_heap_index)); |
|
| 822 | 831 |
} |
| 823 | 832 |
|
| 824 | 833 |
if (!_tree_set) {
|
| 825 | 834 |
_tree_set_index = new IntIntMap(_blossom_num); |
| 826 | 835 |
_tree_set = new TreeSet(*_tree_set_index); |
| 836 |
} else {
|
|
| 837 |
_tree_set_index->resize(_blossom_num); |
|
| 827 | 838 |
} |
| 839 |
|
|
| 828 | 840 |
if (!_delta1) {
|
| 829 | 841 |
_delta1_index = new IntNodeMap(_graph); |
| 830 | 842 |
_delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index); |
| 831 | 843 |
} |
| 844 |
|
|
| 832 | 845 |
if (!_delta2) {
|
| 833 | 846 |
_delta2_index = new IntIntMap(_blossom_num); |
| 834 | 847 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
| 848 |
} else {
|
|
| 849 |
_delta2_index->resize(_blossom_num); |
|
| 835 | 850 |
} |
| 851 |
|
|
| 836 | 852 |
if (!_delta3) {
|
| 837 | 853 |
_delta3_index = new IntEdgeMap(_graph); |
| 838 | 854 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
| 839 | 855 |
} |
| 856 |
|
|
| 840 | 857 |
if (!_delta4) {
|
| 841 | 858 |
_delta4_index = new IntIntMap(_blossom_num); |
| 842 | 859 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
| 860 |
} else {
|
|
| 861 |
_delta4_index->resize(_blossom_num); |
|
| 843 | 862 |
} |
| 844 | 863 |
} |
| 845 | 864 |
|
| 846 | 865 |
void destroyStructures() {
|
| 847 | 866 |
_node_num = countNodes(_graph); |
| 848 | 867 |
_blossom_num = _node_num * 3 / 2; |
| 849 | 868 |
|
| 850 | 869 |
if (_matching) {
|
| 851 | 870 |
delete _matching; |
| 852 | 871 |
} |
| 853 | 872 |
if (_node_potential) {
|
| 854 | 873 |
delete _node_potential; |
| 855 | 874 |
} |
| 856 | 875 |
if (_blossom_set) {
|
| 857 | 876 |
delete _blossom_index; |
| 858 | 877 |
delete _blossom_set; |
| 859 | 878 |
delete _blossom_data; |
| 860 | 879 |
} |
| 861 | 880 |
|
| 862 | 881 |
if (_node_index) {
|
| 863 | 882 |
delete _node_index; |
| 864 | 883 |
delete _node_heap_index; |
| 865 | 884 |
delete _node_data; |
| 866 | 885 |
} |
| 867 | 886 |
|
| 868 | 887 |
if (_tree_set) {
|
| 869 | 888 |
delete _tree_set_index; |
| 870 | 889 |
delete _tree_set; |
| 871 | 890 |
} |
| 872 | 891 |
if (_delta1) {
|
| 873 | 892 |
delete _delta1_index; |
| 874 | 893 |
delete _delta1; |
| 875 | 894 |
} |
| 876 | 895 |
if (_delta2) {
|
| 877 | 896 |
delete _delta2_index; |
| 878 | 897 |
delete _delta2; |
| 879 | 898 |
} |
| 880 | 899 |
if (_delta3) {
|
| 881 | 900 |
delete _delta3_index; |
| 882 | 901 |
delete _delta3; |
| 883 | 902 |
} |
| 884 | 903 |
if (_delta4) {
|
| 885 | 904 |
delete _delta4_index; |
| 886 | 905 |
delete _delta4; |
| 887 | 906 |
} |
| 888 | 907 |
} |
| 889 | 908 |
|
| 890 | 909 |
void matchedToEven(int blossom, int tree) {
|
| 891 | 910 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) {
|
| 892 | 911 |
_delta2->erase(blossom); |
| 893 | 912 |
} |
| 894 | 913 |
|
| 895 | 914 |
if (!_blossom_set->trivial(blossom)) {
|
| 896 | 915 |
(*_blossom_data)[blossom].pot -= |
| 897 | 916 |
2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
| 898 | 917 |
} |
| 899 | 918 |
|
| 900 | 919 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| 901 | 920 |
n != INVALID; ++n) {
|
| 902 | 921 |
|
| 903 | 922 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
| 904 | 923 |
int ni = (*_node_index)[n]; |
| 905 | 924 |
|
| 906 | 925 |
(*_node_data)[ni].heap.clear(); |
| 907 | 926 |
(*_node_data)[ni].heap_index.clear(); |
| 908 | 927 |
|
| 909 | 928 |
(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
| 910 | 929 |
|
| 911 | 930 |
_delta1->push(n, (*_node_data)[ni].pot); |
| 912 | 931 |
|
| 913 | 932 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 914 | 933 |
Node v = _graph.source(e); |
| 915 | 934 |
int vb = _blossom_set->find(v); |
| 916 | 935 |
int vi = (*_node_index)[v]; |
| 917 | 936 |
|
| 918 | 937 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 919 | 938 |
dualScale * _weight[e]; |
| 920 | 939 |
|
| 921 | 940 |
if ((*_blossom_data)[vb].status == EVEN) {
|
| 922 | 941 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
|
| 923 | 942 |
_delta3->push(e, rw / 2); |
| 924 | 943 |
} |
| 925 | 944 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) {
|
| 926 | 945 |
if (_delta3->state(e) != _delta3->IN_HEAP) {
|
| 927 | 946 |
_delta3->push(e, rw); |
| 928 | 947 |
} |
| 929 | 948 |
} else {
|
| 930 | 949 |
typename std::map<int, Arc>::iterator it = |
| 931 | 950 |
(*_node_data)[vi].heap_index.find(tree); |
| 932 | 951 |
|
| 933 | 952 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
| 934 | 953 |
if ((*_node_data)[vi].heap[it->second] > rw) {
|
| 935 | 954 |
(*_node_data)[vi].heap.replace(it->second, e); |
| 936 | 955 |
(*_node_data)[vi].heap.decrease(e, rw); |
| 937 | 956 |
it->second = e; |
| 938 | 957 |
} |
| ... | ... |
@@ -1592,216 +1611,228 @@ |
| 1592 | 1611 |
|
| 1593 | 1612 |
(*_matching)[base] = matching; |
| 1594 | 1613 |
_blossom_node_list.push_back(base); |
| 1595 | 1614 |
(*_node_potential)[base] = pot; |
| 1596 | 1615 |
} else {
|
| 1597 | 1616 |
|
| 1598 | 1617 |
Value pot = (*_blossom_data)[blossom].pot; |
| 1599 | 1618 |
int bn = _blossom_node_list.size(); |
| 1600 | 1619 |
|
| 1601 | 1620 |
std::vector<int> subblossoms; |
| 1602 | 1621 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
| 1603 | 1622 |
int b = _blossom_set->find(base); |
| 1604 | 1623 |
int ib = -1; |
| 1605 | 1624 |
for (int i = 0; i < int(subblossoms.size()); ++i) {
|
| 1606 | 1625 |
if (subblossoms[i] == b) { ib = i; break; }
|
| 1607 | 1626 |
} |
| 1608 | 1627 |
|
| 1609 | 1628 |
for (int i = 1; i < int(subblossoms.size()); i += 2) {
|
| 1610 | 1629 |
int sb = subblossoms[(ib + i) % subblossoms.size()]; |
| 1611 | 1630 |
int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
| 1612 | 1631 |
|
| 1613 | 1632 |
Arc m = (*_blossom_data)[tb].next; |
| 1614 | 1633 |
extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
| 1615 | 1634 |
extractBlossom(tb, _graph.source(m), m); |
| 1616 | 1635 |
} |
| 1617 | 1636 |
extractBlossom(subblossoms[ib], base, matching); |
| 1618 | 1637 |
|
| 1619 | 1638 |
int en = _blossom_node_list.size(); |
| 1620 | 1639 |
|
| 1621 | 1640 |
_blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
| 1622 | 1641 |
} |
| 1623 | 1642 |
} |
| 1624 | 1643 |
|
| 1625 | 1644 |
void extractMatching() {
|
| 1626 | 1645 |
std::vector<int> blossoms; |
| 1627 | 1646 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
|
| 1628 | 1647 |
blossoms.push_back(c); |
| 1629 | 1648 |
} |
| 1630 | 1649 |
|
| 1631 | 1650 |
for (int i = 0; i < int(blossoms.size()); ++i) {
|
| 1632 | 1651 |
if ((*_blossom_data)[blossoms[i]].status == MATCHED) {
|
| 1633 | 1652 |
|
| 1634 | 1653 |
Value offset = (*_blossom_data)[blossoms[i]].offset; |
| 1635 | 1654 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset; |
| 1636 | 1655 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
| 1637 | 1656 |
n != INVALID; ++n) {
|
| 1638 | 1657 |
(*_node_data)[(*_node_index)[n]].pot -= offset; |
| 1639 | 1658 |
} |
| 1640 | 1659 |
|
| 1641 | 1660 |
Arc matching = (*_blossom_data)[blossoms[i]].next; |
| 1642 | 1661 |
Node base = _graph.source(matching); |
| 1643 | 1662 |
extractBlossom(blossoms[i], base, matching); |
| 1644 | 1663 |
} else {
|
| 1645 | 1664 |
Node base = (*_blossom_data)[blossoms[i]].base; |
| 1646 | 1665 |
extractBlossom(blossoms[i], base, INVALID); |
| 1647 | 1666 |
} |
| 1648 | 1667 |
} |
| 1649 | 1668 |
} |
| 1650 | 1669 |
|
| 1651 | 1670 |
public: |
| 1652 | 1671 |
|
| 1653 | 1672 |
/// \brief Constructor |
| 1654 | 1673 |
/// |
| 1655 | 1674 |
/// Constructor. |
| 1656 | 1675 |
MaxWeightedMatching(const Graph& graph, const WeightMap& weight) |
| 1657 | 1676 |
: _graph(graph), _weight(weight), _matching(0), |
| 1658 | 1677 |
_node_potential(0), _blossom_potential(), _blossom_node_list(), |
| 1659 | 1678 |
_node_num(0), _blossom_num(0), |
| 1660 | 1679 |
|
| 1661 | 1680 |
_blossom_index(0), _blossom_set(0), _blossom_data(0), |
| 1662 | 1681 |
_node_index(0), _node_heap_index(0), _node_data(0), |
| 1663 | 1682 |
_tree_set_index(0), _tree_set(0), |
| 1664 | 1683 |
|
| 1665 | 1684 |
_delta1_index(0), _delta1(0), |
| 1666 | 1685 |
_delta2_index(0), _delta2(0), |
| 1667 | 1686 |
_delta3_index(0), _delta3(0), |
| 1668 | 1687 |
_delta4_index(0), _delta4(0), |
| 1669 | 1688 |
|
| 1670 | 1689 |
_delta_sum() {}
|
| 1671 | 1690 |
|
| 1672 | 1691 |
~MaxWeightedMatching() {
|
| 1673 | 1692 |
destroyStructures(); |
| 1674 | 1693 |
} |
| 1675 | 1694 |
|
| 1676 | 1695 |
/// \name Execution Control |
| 1677 | 1696 |
/// The simplest way to execute the algorithm is to use the |
| 1678 | 1697 |
/// \ref run() member function. |
| 1679 | 1698 |
|
| 1680 | 1699 |
///@{
|
| 1681 | 1700 |
|
| 1682 | 1701 |
/// \brief Initialize the algorithm |
| 1683 | 1702 |
/// |
| 1684 | 1703 |
/// This function initializes the algorithm. |
| 1685 | 1704 |
void init() {
|
| 1686 | 1705 |
createStructures(); |
| 1687 | 1706 |
|
| 1707 |
_blossom_node_list.clear(); |
|
| 1708 |
_blossom_potential.clear(); |
|
| 1709 |
|
|
| 1688 | 1710 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 1689 | 1711 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
| 1690 | 1712 |
} |
| 1691 | 1713 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1692 | 1714 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
| 1693 | 1715 |
} |
| 1694 | 1716 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
| 1695 | 1717 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
| 1696 | 1718 |
} |
| 1697 | 1719 |
for (int i = 0; i < _blossom_num; ++i) {
|
| 1698 | 1720 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
| 1699 | 1721 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
| 1700 | 1722 |
} |
| 1723 |
|
|
| 1724 |
_delta1->clear(); |
|
| 1725 |
_delta2->clear(); |
|
| 1726 |
_delta3->clear(); |
|
| 1727 |
_delta4->clear(); |
|
| 1728 |
_blossom_set->clear(); |
|
| 1729 |
_tree_set->clear(); |
|
| 1701 | 1730 |
|
| 1702 | 1731 |
int index = 0; |
| 1703 | 1732 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1704 | 1733 |
Value max = 0; |
| 1705 | 1734 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 1706 | 1735 |
if (_graph.target(e) == n) continue; |
| 1707 | 1736 |
if ((dualScale * _weight[e]) / 2 > max) {
|
| 1708 | 1737 |
max = (dualScale * _weight[e]) / 2; |
| 1709 | 1738 |
} |
| 1710 | 1739 |
} |
| 1711 | 1740 |
(*_node_index)[n] = index; |
| 1741 |
(*_node_data)[index].heap_index.clear(); |
|
| 1742 |
(*_node_data)[index].heap.clear(); |
|
| 1712 | 1743 |
(*_node_data)[index].pot = max; |
| 1713 | 1744 |
_delta1->push(n, max); |
| 1714 | 1745 |
int blossom = |
| 1715 | 1746 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
| 1716 | 1747 |
|
| 1717 | 1748 |
_tree_set->insert(blossom); |
| 1718 | 1749 |
|
| 1719 | 1750 |
(*_blossom_data)[blossom].status = EVEN; |
| 1720 | 1751 |
(*_blossom_data)[blossom].pred = INVALID; |
| 1721 | 1752 |
(*_blossom_data)[blossom].next = INVALID; |
| 1722 | 1753 |
(*_blossom_data)[blossom].pot = 0; |
| 1723 | 1754 |
(*_blossom_data)[blossom].offset = 0; |
| 1724 | 1755 |
++index; |
| 1725 | 1756 |
} |
| 1726 | 1757 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
| 1727 | 1758 |
int si = (*_node_index)[_graph.u(e)]; |
| 1728 | 1759 |
int ti = (*_node_index)[_graph.v(e)]; |
| 1729 | 1760 |
if (_graph.u(e) != _graph.v(e)) {
|
| 1730 | 1761 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
| 1731 | 1762 |
dualScale * _weight[e]) / 2); |
| 1732 | 1763 |
} |
| 1733 | 1764 |
} |
| 1734 | 1765 |
} |
| 1735 | 1766 |
|
| 1736 | 1767 |
/// \brief Start the algorithm |
| 1737 | 1768 |
/// |
| 1738 | 1769 |
/// This function starts the algorithm. |
| 1739 | 1770 |
/// |
| 1740 | 1771 |
/// \pre \ref init() must be called before using this function. |
| 1741 | 1772 |
void start() {
|
| 1742 | 1773 |
enum OpType {
|
| 1743 | 1774 |
D1, D2, D3, D4 |
| 1744 | 1775 |
}; |
| 1745 | 1776 |
|
| 1746 | 1777 |
int unmatched = _node_num; |
| 1747 | 1778 |
while (unmatched > 0) {
|
| 1748 | 1779 |
Value d1 = !_delta1->empty() ? |
| 1749 | 1780 |
_delta1->prio() : std::numeric_limits<Value>::max(); |
| 1750 | 1781 |
|
| 1751 | 1782 |
Value d2 = !_delta2->empty() ? |
| 1752 | 1783 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
| 1753 | 1784 |
|
| 1754 | 1785 |
Value d3 = !_delta3->empty() ? |
| 1755 | 1786 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
| 1756 | 1787 |
|
| 1757 | 1788 |
Value d4 = !_delta4->empty() ? |
| 1758 | 1789 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
| 1759 | 1790 |
|
| 1760 | 1791 |
_delta_sum = d1; OpType ot = D1; |
| 1761 | 1792 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
|
| 1762 | 1793 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
|
| 1763 | 1794 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
|
| 1764 | 1795 |
|
| 1765 | 1796 |
|
| 1766 | 1797 |
switch (ot) {
|
| 1767 | 1798 |
case D1: |
| 1768 | 1799 |
{
|
| 1769 | 1800 |
Node n = _delta1->top(); |
| 1770 | 1801 |
unmatchNode(n); |
| 1771 | 1802 |
--unmatched; |
| 1772 | 1803 |
} |
| 1773 | 1804 |
break; |
| 1774 | 1805 |
case D2: |
| 1775 | 1806 |
{
|
| 1776 | 1807 |
int blossom = _delta2->top(); |
| 1777 | 1808 |
Node n = _blossom_set->classTop(blossom); |
| 1778 | 1809 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
| 1779 | 1810 |
extendOnArc(e); |
| 1780 | 1811 |
} |
| 1781 | 1812 |
break; |
| 1782 | 1813 |
case D3: |
| 1783 | 1814 |
{
|
| 1784 | 1815 |
Edge e = _delta3->top(); |
| 1785 | 1816 |
|
| 1786 | 1817 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
| 1787 | 1818 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
| 1788 | 1819 |
|
| 1789 | 1820 |
if (left_blossom == right_blossom) {
|
| 1790 | 1821 |
_delta3->pop(); |
| 1791 | 1822 |
} else {
|
| 1792 | 1823 |
int left_tree; |
| 1793 | 1824 |
if ((*_blossom_data)[left_blossom].status == EVEN) {
|
| 1794 | 1825 |
left_tree = _tree_set->find(left_blossom); |
| 1795 | 1826 |
} else {
|
| 1796 | 1827 |
left_tree = -1; |
| 1797 | 1828 |
++unmatched; |
| 1798 | 1829 |
} |
| 1799 | 1830 |
int right_tree; |
| 1800 | 1831 |
if ((*_blossom_data)[right_blossom].status == EVEN) {
|
| 1801 | 1832 |
right_tree = _tree_set->find(right_blossom); |
| 1802 | 1833 |
} else {
|
| 1803 | 1834 |
right_tree = -1; |
| 1804 | 1835 |
++unmatched; |
| 1805 | 1836 |
} |
| 1806 | 1837 |
|
| 1807 | 1838 |
if (left_tree == right_tree) {
|
| ... | ... |
@@ -2105,223 +2136,241 @@ |
| 2105 | 2136 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
| 2106 | 2137 |
|
| 2107 | 2138 |
/// The type of the matching map |
| 2108 | 2139 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
| 2109 | 2140 |
MatchingMap; |
| 2110 | 2141 |
|
| 2111 | 2142 |
private: |
| 2112 | 2143 |
|
| 2113 | 2144 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 2114 | 2145 |
|
| 2115 | 2146 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
| 2116 | 2147 |
typedef std::vector<Node> BlossomNodeList; |
| 2117 | 2148 |
|
| 2118 | 2149 |
struct BlossomVariable {
|
| 2119 | 2150 |
int begin, end; |
| 2120 | 2151 |
Value value; |
| 2121 | 2152 |
|
| 2122 | 2153 |
BlossomVariable(int _begin, int _end, Value _value) |
| 2123 | 2154 |
: begin(_begin), end(_end), value(_value) {}
|
| 2124 | 2155 |
|
| 2125 | 2156 |
}; |
| 2126 | 2157 |
|
| 2127 | 2158 |
typedef std::vector<BlossomVariable> BlossomPotential; |
| 2128 | 2159 |
|
| 2129 | 2160 |
const Graph& _graph; |
| 2130 | 2161 |
const WeightMap& _weight; |
| 2131 | 2162 |
|
| 2132 | 2163 |
MatchingMap* _matching; |
| 2133 | 2164 |
|
| 2134 | 2165 |
NodePotential* _node_potential; |
| 2135 | 2166 |
|
| 2136 | 2167 |
BlossomPotential _blossom_potential; |
| 2137 | 2168 |
BlossomNodeList _blossom_node_list; |
| 2138 | 2169 |
|
| 2139 | 2170 |
int _node_num; |
| 2140 | 2171 |
int _blossom_num; |
| 2141 | 2172 |
|
| 2142 | 2173 |
typedef RangeMap<int> IntIntMap; |
| 2143 | 2174 |
|
| 2144 | 2175 |
enum Status {
|
| 2145 | 2176 |
EVEN = -1, MATCHED = 0, ODD = 1 |
| 2146 | 2177 |
}; |
| 2147 | 2178 |
|
| 2148 | 2179 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
| 2149 | 2180 |
struct BlossomData {
|
| 2150 | 2181 |
int tree; |
| 2151 | 2182 |
Status status; |
| 2152 | 2183 |
Arc pred, next; |
| 2153 | 2184 |
Value pot, offset; |
| 2154 | 2185 |
}; |
| 2155 | 2186 |
|
| 2156 | 2187 |
IntNodeMap *_blossom_index; |
| 2157 | 2188 |
BlossomSet *_blossom_set; |
| 2158 | 2189 |
RangeMap<BlossomData>* _blossom_data; |
| 2159 | 2190 |
|
| 2160 | 2191 |
IntNodeMap *_node_index; |
| 2161 | 2192 |
IntArcMap *_node_heap_index; |
| 2162 | 2193 |
|
| 2163 | 2194 |
struct NodeData {
|
| 2164 | 2195 |
|
| 2165 | 2196 |
NodeData(IntArcMap& node_heap_index) |
| 2166 | 2197 |
: heap(node_heap_index) {}
|
| 2167 | 2198 |
|
| 2168 | 2199 |
int blossom; |
| 2169 | 2200 |
Value pot; |
| 2170 | 2201 |
BinHeap<Value, IntArcMap> heap; |
| 2171 | 2202 |
std::map<int, Arc> heap_index; |
| 2172 | 2203 |
|
| 2173 | 2204 |
int tree; |
| 2174 | 2205 |
}; |
| 2175 | 2206 |
|
| 2176 | 2207 |
RangeMap<NodeData>* _node_data; |
| 2177 | 2208 |
|
| 2178 | 2209 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
| 2179 | 2210 |
|
| 2180 | 2211 |
IntIntMap *_tree_set_index; |
| 2181 | 2212 |
TreeSet *_tree_set; |
| 2182 | 2213 |
|
| 2183 | 2214 |
IntIntMap *_delta2_index; |
| 2184 | 2215 |
BinHeap<Value, IntIntMap> *_delta2; |
| 2185 | 2216 |
|
| 2186 | 2217 |
IntEdgeMap *_delta3_index; |
| 2187 | 2218 |
BinHeap<Value, IntEdgeMap> *_delta3; |
| 2188 | 2219 |
|
| 2189 | 2220 |
IntIntMap *_delta4_index; |
| 2190 | 2221 |
BinHeap<Value, IntIntMap> *_delta4; |
| 2191 | 2222 |
|
| 2192 | 2223 |
Value _delta_sum; |
| 2193 | 2224 |
|
| 2194 | 2225 |
void createStructures() {
|
| 2195 | 2226 |
_node_num = countNodes(_graph); |
| 2196 | 2227 |
_blossom_num = _node_num * 3 / 2; |
| 2197 | 2228 |
|
| 2198 | 2229 |
if (!_matching) {
|
| 2199 | 2230 |
_matching = new MatchingMap(_graph); |
| 2200 | 2231 |
} |
| 2232 |
|
|
| 2201 | 2233 |
if (!_node_potential) {
|
| 2202 | 2234 |
_node_potential = new NodePotential(_graph); |
| 2203 | 2235 |
} |
| 2236 |
|
|
| 2204 | 2237 |
if (!_blossom_set) {
|
| 2205 | 2238 |
_blossom_index = new IntNodeMap(_graph); |
| 2206 | 2239 |
_blossom_set = new BlossomSet(*_blossom_index); |
| 2207 | 2240 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
| 2241 |
} else if (_blossom_data->size() != _blossom_num) {
|
|
| 2242 |
delete _blossom_data; |
|
| 2243 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
|
| 2208 | 2244 |
} |
| 2209 | 2245 |
|
| 2210 | 2246 |
if (!_node_index) {
|
| 2211 | 2247 |
_node_index = new IntNodeMap(_graph); |
| 2212 | 2248 |
_node_heap_index = new IntArcMap(_graph); |
| 2213 | 2249 |
_node_data = new RangeMap<NodeData>(_node_num, |
| 2214 | 2250 |
NodeData(*_node_heap_index)); |
| 2251 |
} else if (_node_data->size() != _node_num) {
|
|
| 2252 |
delete _node_data; |
|
| 2253 |
_node_data = new RangeMap<NodeData>(_node_num, |
|
| 2254 |
NodeData(*_node_heap_index)); |
|
| 2215 | 2255 |
} |
| 2216 | 2256 |
|
| 2217 | 2257 |
if (!_tree_set) {
|
| 2218 | 2258 |
_tree_set_index = new IntIntMap(_blossom_num); |
| 2219 | 2259 |
_tree_set = new TreeSet(*_tree_set_index); |
| 2260 |
} else {
|
|
| 2261 |
_tree_set_index->resize(_blossom_num); |
|
| 2220 | 2262 |
} |
| 2263 |
|
|
| 2221 | 2264 |
if (!_delta2) {
|
| 2222 | 2265 |
_delta2_index = new IntIntMap(_blossom_num); |
| 2223 | 2266 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
| 2267 |
} else {
|
|
| 2268 |
_delta2_index->resize(_blossom_num); |
|
| 2224 | 2269 |
} |
| 2270 |
|
|
| 2225 | 2271 |
if (!_delta3) {
|
| 2226 | 2272 |
_delta3_index = new IntEdgeMap(_graph); |
| 2227 | 2273 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
| 2228 | 2274 |
} |
| 2275 |
|
|
| 2229 | 2276 |
if (!_delta4) {
|
| 2230 | 2277 |
_delta4_index = new IntIntMap(_blossom_num); |
| 2231 | 2278 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
| 2279 |
} else {
|
|
| 2280 |
_delta4_index->resize(_blossom_num); |
|
| 2232 | 2281 |
} |
| 2233 | 2282 |
} |
| 2234 | 2283 |
|
| 2235 | 2284 |
void destroyStructures() {
|
| 2236 | 2285 |
_node_num = countNodes(_graph); |
| 2237 | 2286 |
_blossom_num = _node_num * 3 / 2; |
| 2238 | 2287 |
|
| 2239 | 2288 |
if (_matching) {
|
| 2240 | 2289 |
delete _matching; |
| 2241 | 2290 |
} |
| 2242 | 2291 |
if (_node_potential) {
|
| 2243 | 2292 |
delete _node_potential; |
| 2244 | 2293 |
} |
| 2245 | 2294 |
if (_blossom_set) {
|
| 2246 | 2295 |
delete _blossom_index; |
| 2247 | 2296 |
delete _blossom_set; |
| 2248 | 2297 |
delete _blossom_data; |
| 2249 | 2298 |
} |
| 2250 | 2299 |
|
| 2251 | 2300 |
if (_node_index) {
|
| 2252 | 2301 |
delete _node_index; |
| 2253 | 2302 |
delete _node_heap_index; |
| 2254 | 2303 |
delete _node_data; |
| 2255 | 2304 |
} |
| 2256 | 2305 |
|
| 2257 | 2306 |
if (_tree_set) {
|
| 2258 | 2307 |
delete _tree_set_index; |
| 2259 | 2308 |
delete _tree_set; |
| 2260 | 2309 |
} |
| 2261 | 2310 |
if (_delta2) {
|
| 2262 | 2311 |
delete _delta2_index; |
| 2263 | 2312 |
delete _delta2; |
| 2264 | 2313 |
} |
| 2265 | 2314 |
if (_delta3) {
|
| 2266 | 2315 |
delete _delta3_index; |
| 2267 | 2316 |
delete _delta3; |
| 2268 | 2317 |
} |
| 2269 | 2318 |
if (_delta4) {
|
| 2270 | 2319 |
delete _delta4_index; |
| 2271 | 2320 |
delete _delta4; |
| 2272 | 2321 |
} |
| 2273 | 2322 |
} |
| 2274 | 2323 |
|
| 2275 | 2324 |
void matchedToEven(int blossom, int tree) {
|
| 2276 | 2325 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) {
|
| 2277 | 2326 |
_delta2->erase(blossom); |
| 2278 | 2327 |
} |
| 2279 | 2328 |
|
| 2280 | 2329 |
if (!_blossom_set->trivial(blossom)) {
|
| 2281 | 2330 |
(*_blossom_data)[blossom].pot -= |
| 2282 | 2331 |
2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
| 2283 | 2332 |
} |
| 2284 | 2333 |
|
| 2285 | 2334 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| 2286 | 2335 |
n != INVALID; ++n) {
|
| 2287 | 2336 |
|
| 2288 | 2337 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
| 2289 | 2338 |
int ni = (*_node_index)[n]; |
| 2290 | 2339 |
|
| 2291 | 2340 |
(*_node_data)[ni].heap.clear(); |
| 2292 | 2341 |
(*_node_data)[ni].heap_index.clear(); |
| 2293 | 2342 |
|
| 2294 | 2343 |
(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
| 2295 | 2344 |
|
| 2296 | 2345 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 2297 | 2346 |
Node v = _graph.source(e); |
| 2298 | 2347 |
int vb = _blossom_set->find(v); |
| 2299 | 2348 |
int vi = (*_node_index)[v]; |
| 2300 | 2349 |
|
| 2301 | 2350 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 2302 | 2351 |
dualScale * _weight[e]; |
| 2303 | 2352 |
|
| 2304 | 2353 |
if ((*_blossom_data)[vb].status == EVEN) {
|
| 2305 | 2354 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
|
| 2306 | 2355 |
_delta3->push(e, rw / 2); |
| 2307 | 2356 |
} |
| 2308 | 2357 |
} else {
|
| 2309 | 2358 |
typename std::map<int, Arc>::iterator it = |
| 2310 | 2359 |
(*_node_data)[vi].heap_index.find(tree); |
| 2311 | 2360 |
|
| 2312 | 2361 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
| 2313 | 2362 |
if ((*_node_data)[vi].heap[it->second] > rw) {
|
| 2314 | 2363 |
(*_node_data)[vi].heap.replace(it->second, e); |
| 2315 | 2364 |
(*_node_data)[vi].heap.decrease(e, rw); |
| 2316 | 2365 |
it->second = e; |
| 2317 | 2366 |
} |
| 2318 | 2367 |
} else {
|
| 2319 | 2368 |
(*_node_data)[vi].heap.push(e, rw); |
| 2320 | 2369 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
| 2321 | 2370 |
} |
| 2322 | 2371 |
|
| 2323 | 2372 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
|
| 2324 | 2373 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
| 2325 | 2374 |
|
| 2326 | 2375 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
| 2327 | 2376 |
if (_delta2->state(vb) != _delta2->IN_HEAP) {
|
| ... | ... |
@@ -2833,213 +2882,224 @@ |
| 2833 | 2882 |
} |
| 2834 | 2883 |
|
| 2835 | 2884 |
void extractBlossom(int blossom, const Node& base, const Arc& matching) {
|
| 2836 | 2885 |
if (_blossom_set->trivial(blossom)) {
|
| 2837 | 2886 |
int bi = (*_node_index)[base]; |
| 2838 | 2887 |
Value pot = (*_node_data)[bi].pot; |
| 2839 | 2888 |
|
| 2840 | 2889 |
(*_matching)[base] = matching; |
| 2841 | 2890 |
_blossom_node_list.push_back(base); |
| 2842 | 2891 |
(*_node_potential)[base] = pot; |
| 2843 | 2892 |
} else {
|
| 2844 | 2893 |
|
| 2845 | 2894 |
Value pot = (*_blossom_data)[blossom].pot; |
| 2846 | 2895 |
int bn = _blossom_node_list.size(); |
| 2847 | 2896 |
|
| 2848 | 2897 |
std::vector<int> subblossoms; |
| 2849 | 2898 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
| 2850 | 2899 |
int b = _blossom_set->find(base); |
| 2851 | 2900 |
int ib = -1; |
| 2852 | 2901 |
for (int i = 0; i < int(subblossoms.size()); ++i) {
|
| 2853 | 2902 |
if (subblossoms[i] == b) { ib = i; break; }
|
| 2854 | 2903 |
} |
| 2855 | 2904 |
|
| 2856 | 2905 |
for (int i = 1; i < int(subblossoms.size()); i += 2) {
|
| 2857 | 2906 |
int sb = subblossoms[(ib + i) % subblossoms.size()]; |
| 2858 | 2907 |
int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
| 2859 | 2908 |
|
| 2860 | 2909 |
Arc m = (*_blossom_data)[tb].next; |
| 2861 | 2910 |
extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
| 2862 | 2911 |
extractBlossom(tb, _graph.source(m), m); |
| 2863 | 2912 |
} |
| 2864 | 2913 |
extractBlossom(subblossoms[ib], base, matching); |
| 2865 | 2914 |
|
| 2866 | 2915 |
int en = _blossom_node_list.size(); |
| 2867 | 2916 |
|
| 2868 | 2917 |
_blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
| 2869 | 2918 |
} |
| 2870 | 2919 |
} |
| 2871 | 2920 |
|
| 2872 | 2921 |
void extractMatching() {
|
| 2873 | 2922 |
std::vector<int> blossoms; |
| 2874 | 2923 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
|
| 2875 | 2924 |
blossoms.push_back(c); |
| 2876 | 2925 |
} |
| 2877 | 2926 |
|
| 2878 | 2927 |
for (int i = 0; i < int(blossoms.size()); ++i) {
|
| 2879 | 2928 |
|
| 2880 | 2929 |
Value offset = (*_blossom_data)[blossoms[i]].offset; |
| 2881 | 2930 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset; |
| 2882 | 2931 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
| 2883 | 2932 |
n != INVALID; ++n) {
|
| 2884 | 2933 |
(*_node_data)[(*_node_index)[n]].pot -= offset; |
| 2885 | 2934 |
} |
| 2886 | 2935 |
|
| 2887 | 2936 |
Arc matching = (*_blossom_data)[blossoms[i]].next; |
| 2888 | 2937 |
Node base = _graph.source(matching); |
| 2889 | 2938 |
extractBlossom(blossoms[i], base, matching); |
| 2890 | 2939 |
} |
| 2891 | 2940 |
} |
| 2892 | 2941 |
|
| 2893 | 2942 |
public: |
| 2894 | 2943 |
|
| 2895 | 2944 |
/// \brief Constructor |
| 2896 | 2945 |
/// |
| 2897 | 2946 |
/// Constructor. |
| 2898 | 2947 |
MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight) |
| 2899 | 2948 |
: _graph(graph), _weight(weight), _matching(0), |
| 2900 | 2949 |
_node_potential(0), _blossom_potential(), _blossom_node_list(), |
| 2901 | 2950 |
_node_num(0), _blossom_num(0), |
| 2902 | 2951 |
|
| 2903 | 2952 |
_blossom_index(0), _blossom_set(0), _blossom_data(0), |
| 2904 | 2953 |
_node_index(0), _node_heap_index(0), _node_data(0), |
| 2905 | 2954 |
_tree_set_index(0), _tree_set(0), |
| 2906 | 2955 |
|
| 2907 | 2956 |
_delta2_index(0), _delta2(0), |
| 2908 | 2957 |
_delta3_index(0), _delta3(0), |
| 2909 | 2958 |
_delta4_index(0), _delta4(0), |
| 2910 | 2959 |
|
| 2911 | 2960 |
_delta_sum() {}
|
| 2912 | 2961 |
|
| 2913 | 2962 |
~MaxWeightedPerfectMatching() {
|
| 2914 | 2963 |
destroyStructures(); |
| 2915 | 2964 |
} |
| 2916 | 2965 |
|
| 2917 | 2966 |
/// \name Execution Control |
| 2918 | 2967 |
/// The simplest way to execute the algorithm is to use the |
| 2919 | 2968 |
/// \ref run() member function. |
| 2920 | 2969 |
|
| 2921 | 2970 |
///@{
|
| 2922 | 2971 |
|
| 2923 | 2972 |
/// \brief Initialize the algorithm |
| 2924 | 2973 |
/// |
| 2925 | 2974 |
/// This function initializes the algorithm. |
| 2926 | 2975 |
void init() {
|
| 2927 | 2976 |
createStructures(); |
| 2928 | 2977 |
|
| 2978 |
_blossom_node_list.clear(); |
|
| 2979 |
_blossom_potential.clear(); |
|
| 2980 |
|
|
| 2929 | 2981 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 2930 | 2982 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
| 2931 | 2983 |
} |
| 2932 | 2984 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
| 2933 | 2985 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
| 2934 | 2986 |
} |
| 2935 | 2987 |
for (int i = 0; i < _blossom_num; ++i) {
|
| 2936 | 2988 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
| 2937 | 2989 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
| 2938 | 2990 |
} |
| 2939 | 2991 |
|
| 2992 |
_delta2->clear(); |
|
| 2993 |
_delta3->clear(); |
|
| 2994 |
_delta4->clear(); |
|
| 2995 |
_blossom_set->clear(); |
|
| 2996 |
_tree_set->clear(); |
|
| 2997 |
|
|
| 2940 | 2998 |
int index = 0; |
| 2941 | 2999 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 2942 | 3000 |
Value max = - std::numeric_limits<Value>::max(); |
| 2943 | 3001 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 2944 | 3002 |
if (_graph.target(e) == n) continue; |
| 2945 | 3003 |
if ((dualScale * _weight[e]) / 2 > max) {
|
| 2946 | 3004 |
max = (dualScale * _weight[e]) / 2; |
| 2947 | 3005 |
} |
| 2948 | 3006 |
} |
| 2949 | 3007 |
(*_node_index)[n] = index; |
| 3008 |
(*_node_data)[index].heap_index.clear(); |
|
| 3009 |
(*_node_data)[index].heap.clear(); |
|
| 2950 | 3010 |
(*_node_data)[index].pot = max; |
| 2951 | 3011 |
int blossom = |
| 2952 | 3012 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
| 2953 | 3013 |
|
| 2954 | 3014 |
_tree_set->insert(blossom); |
| 2955 | 3015 |
|
| 2956 | 3016 |
(*_blossom_data)[blossom].status = EVEN; |
| 2957 | 3017 |
(*_blossom_data)[blossom].pred = INVALID; |
| 2958 | 3018 |
(*_blossom_data)[blossom].next = INVALID; |
| 2959 | 3019 |
(*_blossom_data)[blossom].pot = 0; |
| 2960 | 3020 |
(*_blossom_data)[blossom].offset = 0; |
| 2961 | 3021 |
++index; |
| 2962 | 3022 |
} |
| 2963 | 3023 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
| 2964 | 3024 |
int si = (*_node_index)[_graph.u(e)]; |
| 2965 | 3025 |
int ti = (*_node_index)[_graph.v(e)]; |
| 2966 | 3026 |
if (_graph.u(e) != _graph.v(e)) {
|
| 2967 | 3027 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
| 2968 | 3028 |
dualScale * _weight[e]) / 2); |
| 2969 | 3029 |
} |
| 2970 | 3030 |
} |
| 2971 | 3031 |
} |
| 2972 | 3032 |
|
| 2973 | 3033 |
/// \brief Start the algorithm |
| 2974 | 3034 |
/// |
| 2975 | 3035 |
/// This function starts the algorithm. |
| 2976 | 3036 |
/// |
| 2977 | 3037 |
/// \pre \ref init() must be called before using this function. |
| 2978 | 3038 |
bool start() {
|
| 2979 | 3039 |
enum OpType {
|
| 2980 | 3040 |
D2, D3, D4 |
| 2981 | 3041 |
}; |
| 2982 | 3042 |
|
| 2983 | 3043 |
int unmatched = _node_num; |
| 2984 | 3044 |
while (unmatched > 0) {
|
| 2985 | 3045 |
Value d2 = !_delta2->empty() ? |
| 2986 | 3046 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
| 2987 | 3047 |
|
| 2988 | 3048 |
Value d3 = !_delta3->empty() ? |
| 2989 | 3049 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
| 2990 | 3050 |
|
| 2991 | 3051 |
Value d4 = !_delta4->empty() ? |
| 2992 | 3052 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
| 2993 | 3053 |
|
| 2994 | 3054 |
_delta_sum = d2; OpType ot = D2; |
| 2995 | 3055 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
|
| 2996 | 3056 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
|
| 2997 | 3057 |
|
| 2998 | 3058 |
if (_delta_sum == std::numeric_limits<Value>::max()) {
|
| 2999 | 3059 |
return false; |
| 3000 | 3060 |
} |
| 3001 | 3061 |
|
| 3002 | 3062 |
switch (ot) {
|
| 3003 | 3063 |
case D2: |
| 3004 | 3064 |
{
|
| 3005 | 3065 |
int blossom = _delta2->top(); |
| 3006 | 3066 |
Node n = _blossom_set->classTop(blossom); |
| 3007 | 3067 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
| 3008 | 3068 |
extendOnArc(e); |
| 3009 | 3069 |
} |
| 3010 | 3070 |
break; |
| 3011 | 3071 |
case D3: |
| 3012 | 3072 |
{
|
| 3013 | 3073 |
Edge e = _delta3->top(); |
| 3014 | 3074 |
|
| 3015 | 3075 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
| 3016 | 3076 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
| 3017 | 3077 |
|
| 3018 | 3078 |
if (left_blossom == right_blossom) {
|
| 3019 | 3079 |
_delta3->pop(); |
| 3020 | 3080 |
} else {
|
| 3021 | 3081 |
int left_tree = _tree_set->find(left_blossom); |
| 3022 | 3082 |
int right_tree = _tree_set->find(right_blossom); |
| 3023 | 3083 |
|
| 3024 | 3084 |
if (left_tree == right_tree) {
|
| 3025 | 3085 |
shrinkOnEdge(e, left_tree); |
| 3026 | 3086 |
} else {
|
| 3027 | 3087 |
augmentOnEdge(e); |
| 3028 | 3088 |
unmatched -= 2; |
| 3029 | 3089 |
} |
| 3030 | 3090 |
} |
| 3031 | 3091 |
} break; |
| 3032 | 3092 |
case D4: |
| 3033 | 3093 |
splitBlossom(_delta4->top()); |
| 3034 | 3094 |
break; |
| 3035 | 3095 |
} |
| 3036 | 3096 |
} |
| 3037 | 3097 |
extractMatching(); |
| 3038 | 3098 |
return true; |
| 3039 | 3099 |
} |
| 3040 | 3100 |
|
| 3041 | 3101 |
/// \brief Run the algorithm. |
| 3042 | 3102 |
/// |
| 3043 | 3103 |
/// This method runs the \c %MaxWeightedPerfectMatching algorithm. |
| 3044 | 3104 |
/// |
| 3045 | 3105 |
/// \note mwpm.run() is just a shortcut of the following code. |
| ... | ... |
@@ -646,193 +646,193 @@ |
| 646 | 646 |
|
| 647 | 647 |
struct ItemT {
|
| 648 | 648 |
int cls; |
| 649 | 649 |
Item item; |
| 650 | 650 |
int next, prev; |
| 651 | 651 |
}; |
| 652 | 652 |
|
| 653 | 653 |
std::vector<ItemT> items; |
| 654 | 654 |
int firstFreeItem; |
| 655 | 655 |
|
| 656 | 656 |
struct ClassT {
|
| 657 | 657 |
int firstItem; |
| 658 | 658 |
int next, prev; |
| 659 | 659 |
}; |
| 660 | 660 |
|
| 661 | 661 |
std::vector<ClassT> classes; |
| 662 | 662 |
|
| 663 | 663 |
int firstClass, firstFreeClass; |
| 664 | 664 |
|
| 665 | 665 |
int newClass() {
|
| 666 | 666 |
if (firstFreeClass != -1) {
|
| 667 | 667 |
int cdx = firstFreeClass; |
| 668 | 668 |
firstFreeClass = classes[cdx].next; |
| 669 | 669 |
return cdx; |
| 670 | 670 |
} else {
|
| 671 | 671 |
classes.push_back(ClassT()); |
| 672 | 672 |
return classes.size() - 1; |
| 673 | 673 |
} |
| 674 | 674 |
} |
| 675 | 675 |
|
| 676 | 676 |
int newItem() {
|
| 677 | 677 |
if (firstFreeItem != -1) {
|
| 678 | 678 |
int idx = firstFreeItem; |
| 679 | 679 |
firstFreeItem = items[idx].next; |
| 680 | 680 |
return idx; |
| 681 | 681 |
} else {
|
| 682 | 682 |
items.push_back(ItemT()); |
| 683 | 683 |
return items.size() - 1; |
| 684 | 684 |
} |
| 685 | 685 |
} |
| 686 | 686 |
|
| 687 | 687 |
public: |
| 688 | 688 |
|
| 689 | 689 |
/// \brief Constructor |
| 690 | 690 |
ExtendFindEnum(ItemIntMap& _index) |
| 691 | 691 |
: index(_index), items(), firstFreeItem(-1), |
| 692 | 692 |
classes(), firstClass(-1), firstFreeClass(-1) {}
|
| 693 | 693 |
|
| 694 | 694 |
/// \brief Inserts the given element into a new component. |
| 695 | 695 |
/// |
| 696 | 696 |
/// This method creates a new component consisting only of the |
| 697 | 697 |
/// given element. |
| 698 | 698 |
int insert(const Item& item) {
|
| 699 | 699 |
int cdx = newClass(); |
| 700 | 700 |
classes[cdx].prev = -1; |
| 701 | 701 |
classes[cdx].next = firstClass; |
| 702 | 702 |
if (firstClass != -1) {
|
| 703 | 703 |
classes[firstClass].prev = cdx; |
| 704 | 704 |
} |
| 705 | 705 |
firstClass = cdx; |
| 706 | 706 |
|
| 707 | 707 |
int idx = newItem(); |
| 708 | 708 |
items[idx].item = item; |
| 709 | 709 |
items[idx].cls = cdx; |
| 710 | 710 |
items[idx].prev = idx; |
| 711 | 711 |
items[idx].next = idx; |
| 712 | 712 |
|
| 713 | 713 |
classes[cdx].firstItem = idx; |
| 714 | 714 |
|
| 715 | 715 |
index.set(item, idx); |
| 716 | 716 |
|
| 717 | 717 |
return cdx; |
| 718 | 718 |
} |
| 719 | 719 |
|
| 720 | 720 |
/// \brief Inserts the given element into the given component. |
| 721 | 721 |
/// |
| 722 | 722 |
/// This methods inserts the element \e item a into the \e cls class. |
| 723 | 723 |
void insert(const Item& item, int cls) {
|
| 724 | 724 |
int idx = newItem(); |
| 725 | 725 |
int rdx = classes[cls].firstItem; |
| 726 | 726 |
items[idx].item = item; |
| 727 | 727 |
items[idx].cls = cls; |
| 728 | 728 |
|
| 729 | 729 |
items[idx].prev = rdx; |
| 730 | 730 |
items[idx].next = items[rdx].next; |
| 731 | 731 |
items[items[rdx].next].prev = idx; |
| 732 | 732 |
items[rdx].next = idx; |
| 733 | 733 |
|
| 734 | 734 |
index.set(item, idx); |
| 735 | 735 |
} |
| 736 | 736 |
|
| 737 | 737 |
/// \brief Clears the union-find data structure |
| 738 | 738 |
/// |
| 739 | 739 |
/// Erase each item from the data structure. |
| 740 | 740 |
void clear() {
|
| 741 | 741 |
items.clear(); |
| 742 |
classes.clear; |
|
| 742 |
classes.clear(); |
|
| 743 | 743 |
firstClass = firstFreeClass = firstFreeItem = -1; |
| 744 | 744 |
} |
| 745 | 745 |
|
| 746 | 746 |
/// \brief Gives back the class of the \e item. |
| 747 | 747 |
/// |
| 748 | 748 |
/// Gives back the class of the \e item. |
| 749 | 749 |
int find(const Item &item) const {
|
| 750 | 750 |
return items[index[item]].cls; |
| 751 | 751 |
} |
| 752 | 752 |
|
| 753 | 753 |
/// \brief Gives back a representant item of the component. |
| 754 | 754 |
/// |
| 755 | 755 |
/// Gives back a representant item of the component. |
| 756 | 756 |
Item item(int cls) const {
|
| 757 | 757 |
return items[classes[cls].firstItem].item; |
| 758 | 758 |
} |
| 759 | 759 |
|
| 760 | 760 |
/// \brief Removes the given element from the structure. |
| 761 | 761 |
/// |
| 762 | 762 |
/// Removes the element from its component and if the component becomes |
| 763 | 763 |
/// empty then removes that component from the component list. |
| 764 | 764 |
/// |
| 765 | 765 |
/// \warning It is an error to remove an element which is not in |
| 766 | 766 |
/// the structure. |
| 767 | 767 |
void erase(const Item &item) {
|
| 768 | 768 |
int idx = index[item]; |
| 769 | 769 |
int cdx = items[idx].cls; |
| 770 | 770 |
|
| 771 | 771 |
if (idx == items[idx].next) {
|
| 772 | 772 |
if (classes[cdx].prev != -1) {
|
| 773 | 773 |
classes[classes[cdx].prev].next = classes[cdx].next; |
| 774 | 774 |
} else {
|
| 775 | 775 |
firstClass = classes[cdx].next; |
| 776 | 776 |
} |
| 777 | 777 |
if (classes[cdx].next != -1) {
|
| 778 | 778 |
classes[classes[cdx].next].prev = classes[cdx].prev; |
| 779 | 779 |
} |
| 780 | 780 |
classes[cdx].next = firstFreeClass; |
| 781 | 781 |
firstFreeClass = cdx; |
| 782 | 782 |
} else {
|
| 783 | 783 |
classes[cdx].firstItem = items[idx].next; |
| 784 | 784 |
items[items[idx].next].prev = items[idx].prev; |
| 785 | 785 |
items[items[idx].prev].next = items[idx].next; |
| 786 | 786 |
} |
| 787 | 787 |
items[idx].next = firstFreeItem; |
| 788 | 788 |
firstFreeItem = idx; |
| 789 | 789 |
|
| 790 | 790 |
} |
| 791 | 791 |
|
| 792 | 792 |
|
| 793 | 793 |
/// \brief Removes the component of the given element from the structure. |
| 794 | 794 |
/// |
| 795 | 795 |
/// Removes the component of the given element from the structure. |
| 796 | 796 |
/// |
| 797 | 797 |
/// \warning It is an error to give an element which is not in the |
| 798 | 798 |
/// structure. |
| 799 | 799 |
void eraseClass(int cdx) {
|
| 800 | 800 |
int idx = classes[cdx].firstItem; |
| 801 | 801 |
items[items[idx].prev].next = firstFreeItem; |
| 802 | 802 |
firstFreeItem = idx; |
| 803 | 803 |
|
| 804 | 804 |
if (classes[cdx].prev != -1) {
|
| 805 | 805 |
classes[classes[cdx].prev].next = classes[cdx].next; |
| 806 | 806 |
} else {
|
| 807 | 807 |
firstClass = classes[cdx].next; |
| 808 | 808 |
} |
| 809 | 809 |
if (classes[cdx].next != -1) {
|
| 810 | 810 |
classes[classes[cdx].next].prev = classes[cdx].prev; |
| 811 | 811 |
} |
| 812 | 812 |
classes[cdx].next = firstFreeClass; |
| 813 | 813 |
firstFreeClass = cdx; |
| 814 | 814 |
} |
| 815 | 815 |
|
| 816 | 816 |
/// \brief LEMON style iterator for the classes. |
| 817 | 817 |
/// |
| 818 | 818 |
/// ClassIt is a lemon style iterator for the components. It iterates |
| 819 | 819 |
/// on the ids of classes. |
| 820 | 820 |
class ClassIt {
|
| 821 | 821 |
public: |
| 822 | 822 |
/// \brief Constructor of the iterator |
| 823 | 823 |
/// |
| 824 | 824 |
/// Constructor of the iterator |
| 825 | 825 |
ClassIt(const ExtendFindEnum& ufe) : extendFind(&ufe) {
|
| 826 | 826 |
cdx = extendFind->firstClass; |
| 827 | 827 |
} |
| 828 | 828 |
|
| 829 | 829 |
/// \brief Constructor to get invalid iterator |
| 830 | 830 |
/// |
| 831 | 831 |
/// Constructor to get invalid iterator |
| 832 | 832 |
ClassIt(Invalid) : extendFind(0), cdx(-1) {}
|
| 833 | 833 |
|
| 834 | 834 |
/// \brief Increment operator |
| 835 | 835 |
/// |
| 836 | 836 |
/// It steps to the next representant item. |
| 837 | 837 |
ClassIt& operator++() {
|
| 838 | 838 |
cdx = extendFind->classes[cdx].next; |
| ... | ... |
@@ -1195,192 +1195,201 @@ |
| 1195 | 1195 |
int ld = nodes[nodes[jd].next].left; |
| 1196 | 1196 |
popLeft(nodes[jd].next); |
| 1197 | 1197 |
pushRight(jd, ld); |
| 1198 | 1198 |
if (less(ld, nodes[jd].left) || |
| 1199 | 1199 |
nodes[ld].item == nodes[pd].item) {
|
| 1200 | 1200 |
nodes[jd].item = nodes[ld].item; |
| 1201 | 1201 |
nodes[jd].prio = nodes[ld].prio; |
| 1202 | 1202 |
} |
| 1203 | 1203 |
if (nodes[nodes[jd].next].item == nodes[ld].item) {
|
| 1204 | 1204 |
setPrio(nodes[jd].next); |
| 1205 | 1205 |
} |
| 1206 | 1206 |
jd = nodes[jd].left; |
| 1207 | 1207 |
} |
| 1208 | 1208 |
} |
| 1209 | 1209 |
} else {
|
| 1210 | 1210 |
jd = nodes[jd].left; |
| 1211 | 1211 |
} |
| 1212 | 1212 |
} |
| 1213 | 1213 |
} |
| 1214 | 1214 |
|
| 1215 | 1215 |
void repairRight(int id) {
|
| 1216 | 1216 |
int jd = ~(classes[id].parent); |
| 1217 | 1217 |
while (nodes[jd].right != -1) {
|
| 1218 | 1218 |
int kd = nodes[jd].right; |
| 1219 | 1219 |
if (nodes[jd].size == 1) {
|
| 1220 | 1220 |
if (nodes[jd].parent < 0) {
|
| 1221 | 1221 |
classes[id].parent = ~kd; |
| 1222 | 1222 |
classes[id].depth -= 1; |
| 1223 | 1223 |
nodes[kd].parent = ~id; |
| 1224 | 1224 |
deleteNode(jd); |
| 1225 | 1225 |
jd = kd; |
| 1226 | 1226 |
} else {
|
| 1227 | 1227 |
int pd = nodes[jd].parent; |
| 1228 | 1228 |
if (nodes[nodes[jd].prev].size < cmax) {
|
| 1229 | 1229 |
pushRight(nodes[jd].prev, nodes[jd].right); |
| 1230 | 1230 |
if (less(jd, nodes[jd].prev) || |
| 1231 | 1231 |
nodes[jd].item == nodes[pd].item) {
|
| 1232 | 1232 |
nodes[nodes[jd].prev].prio = nodes[jd].prio; |
| 1233 | 1233 |
nodes[nodes[jd].prev].item = nodes[jd].item; |
| 1234 | 1234 |
} |
| 1235 | 1235 |
popRight(pd); |
| 1236 | 1236 |
deleteNode(jd); |
| 1237 | 1237 |
jd = pd; |
| 1238 | 1238 |
} else {
|
| 1239 | 1239 |
int ld = nodes[nodes[jd].prev].right; |
| 1240 | 1240 |
popRight(nodes[jd].prev); |
| 1241 | 1241 |
pushLeft(jd, ld); |
| 1242 | 1242 |
if (less(ld, nodes[jd].right) || |
| 1243 | 1243 |
nodes[ld].item == nodes[pd].item) {
|
| 1244 | 1244 |
nodes[jd].item = nodes[ld].item; |
| 1245 | 1245 |
nodes[jd].prio = nodes[ld].prio; |
| 1246 | 1246 |
} |
| 1247 | 1247 |
if (nodes[nodes[jd].prev].item == nodes[ld].item) {
|
| 1248 | 1248 |
setPrio(nodes[jd].prev); |
| 1249 | 1249 |
} |
| 1250 | 1250 |
jd = nodes[jd].right; |
| 1251 | 1251 |
} |
| 1252 | 1252 |
} |
| 1253 | 1253 |
} else {
|
| 1254 | 1254 |
jd = nodes[jd].right; |
| 1255 | 1255 |
} |
| 1256 | 1256 |
} |
| 1257 | 1257 |
} |
| 1258 | 1258 |
|
| 1259 | 1259 |
|
| 1260 | 1260 |
bool less(int id, int jd) const {
|
| 1261 | 1261 |
return comp(nodes[id].prio, nodes[jd].prio); |
| 1262 | 1262 |
} |
| 1263 | 1263 |
|
| 1264 | 1264 |
public: |
| 1265 | 1265 |
|
| 1266 | 1266 |
/// \brief Returns true when the given class is alive. |
| 1267 | 1267 |
/// |
| 1268 | 1268 |
/// Returns true when the given class is alive, ie. the class is |
| 1269 | 1269 |
/// not nested into other class. |
| 1270 | 1270 |
bool alive(int cls) const {
|
| 1271 | 1271 |
return classes[cls].parent < 0; |
| 1272 | 1272 |
} |
| 1273 | 1273 |
|
| 1274 | 1274 |
/// \brief Returns true when the given class is trivial. |
| 1275 | 1275 |
/// |
| 1276 | 1276 |
/// Returns true when the given class is trivial, ie. the class |
| 1277 | 1277 |
/// contains just one item directly. |
| 1278 | 1278 |
bool trivial(int cls) const {
|
| 1279 | 1279 |
return classes[cls].left == -1; |
| 1280 | 1280 |
} |
| 1281 | 1281 |
|
| 1282 | 1282 |
/// \brief Constructs the union-find. |
| 1283 | 1283 |
/// |
| 1284 | 1284 |
/// Constructs the union-find. |
| 1285 | 1285 |
/// \brief _index The index map of the union-find. The data |
| 1286 | 1286 |
/// structure uses internally for store references. |
| 1287 | 1287 |
HeapUnionFind(ItemIntMap& _index) |
| 1288 | 1288 |
: index(_index), first_class(-1), |
| 1289 | 1289 |
first_free_class(-1), first_free_node(-1) {}
|
| 1290 | 1290 |
|
| 1291 |
/// \brief Clears the union-find data structure |
|
| 1292 |
/// |
|
| 1293 |
/// Erase each item from the data structure. |
|
| 1294 |
void clear() {
|
|
| 1295 |
nodes.clear(); |
|
| 1296 |
classes.clear(); |
|
| 1297 |
first_free_node = first_free_class = first_class = -1; |
|
| 1298 |
} |
|
| 1299 |
|
|
| 1291 | 1300 |
/// \brief Insert a new node into a new component. |
| 1292 | 1301 |
/// |
| 1293 | 1302 |
/// Insert a new node into a new component. |
| 1294 | 1303 |
/// \param item The item of the new node. |
| 1295 | 1304 |
/// \param prio The priority of the new node. |
| 1296 | 1305 |
/// \return The class id of the one-item-heap. |
| 1297 | 1306 |
int insert(const Item& item, const Value& prio) {
|
| 1298 | 1307 |
int id = newNode(); |
| 1299 | 1308 |
nodes[id].item = item; |
| 1300 | 1309 |
nodes[id].prio = prio; |
| 1301 | 1310 |
nodes[id].size = 0; |
| 1302 | 1311 |
|
| 1303 | 1312 |
nodes[id].prev = -1; |
| 1304 | 1313 |
nodes[id].next = -1; |
| 1305 | 1314 |
|
| 1306 | 1315 |
nodes[id].left = -1; |
| 1307 | 1316 |
nodes[id].right = -1; |
| 1308 | 1317 |
|
| 1309 | 1318 |
nodes[id].item = item; |
| 1310 | 1319 |
index[item] = id; |
| 1311 | 1320 |
|
| 1312 | 1321 |
int class_id = newClass(); |
| 1313 | 1322 |
classes[class_id].parent = ~id; |
| 1314 | 1323 |
classes[class_id].depth = 0; |
| 1315 | 1324 |
|
| 1316 | 1325 |
classes[class_id].left = -1; |
| 1317 | 1326 |
classes[class_id].right = -1; |
| 1318 | 1327 |
|
| 1319 | 1328 |
if (first_class != -1) {
|
| 1320 | 1329 |
classes[first_class].prev = class_id; |
| 1321 | 1330 |
} |
| 1322 | 1331 |
classes[class_id].next = first_class; |
| 1323 | 1332 |
classes[class_id].prev = -1; |
| 1324 | 1333 |
first_class = class_id; |
| 1325 | 1334 |
|
| 1326 | 1335 |
nodes[id].parent = ~class_id; |
| 1327 | 1336 |
|
| 1328 | 1337 |
return class_id; |
| 1329 | 1338 |
} |
| 1330 | 1339 |
|
| 1331 | 1340 |
/// \brief The class of the item. |
| 1332 | 1341 |
/// |
| 1333 | 1342 |
/// \return The alive class id of the item, which is not nested into |
| 1334 | 1343 |
/// other classes. |
| 1335 | 1344 |
/// |
| 1336 | 1345 |
/// The time complexity is O(log(n)). |
| 1337 | 1346 |
int find(const Item& item) const {
|
| 1338 | 1347 |
return findClass(index[item]); |
| 1339 | 1348 |
} |
| 1340 | 1349 |
|
| 1341 | 1350 |
/// \brief Joins the classes. |
| 1342 | 1351 |
/// |
| 1343 | 1352 |
/// The current function joins the given classes. The parameter is |
| 1344 | 1353 |
/// an STL range which should be contains valid class ids. The |
| 1345 | 1354 |
/// time complexity is O(log(n)*k) where n is the overall number |
| 1346 | 1355 |
/// of the joined nodes and k is the number of classes. |
| 1347 | 1356 |
/// \return The class of the joined classes. |
| 1348 | 1357 |
/// \pre The range should contain at least two class ids. |
| 1349 | 1358 |
template <typename Iterator> |
| 1350 | 1359 |
int join(Iterator begin, Iterator end) {
|
| 1351 | 1360 |
std::vector<int> cs; |
| 1352 | 1361 |
for (Iterator it = begin; it != end; ++it) {
|
| 1353 | 1362 |
cs.push_back(*it); |
| 1354 | 1363 |
} |
| 1355 | 1364 |
|
| 1356 | 1365 |
int class_id = newClass(); |
| 1357 | 1366 |
{ // creation union-find
|
| 1358 | 1367 |
|
| 1359 | 1368 |
if (first_class != -1) {
|
| 1360 | 1369 |
classes[first_class].prev = class_id; |
| 1361 | 1370 |
} |
| 1362 | 1371 |
classes[class_id].next = first_class; |
| 1363 | 1372 |
classes[class_id].prev = -1; |
| 1364 | 1373 |
first_class = class_id; |
| 1365 | 1374 |
|
| 1366 | 1375 |
classes[class_id].depth = classes[cs[0]].depth; |
| 1367 | 1376 |
classes[class_id].parent = classes[cs[0]].parent; |
| 1368 | 1377 |
nodes[~(classes[class_id].parent)].parent = ~class_id; |
| 1369 | 1378 |
|
| 1370 | 1379 |
int l = cs[0]; |
| 1371 | 1380 |
|
| 1372 | 1381 |
classes[class_id].left = l; |
| 1373 | 1382 |
classes[class_id].right = l; |
| 1374 | 1383 |
|
| 1375 | 1384 |
if (classes[l].next != -1) {
|
| 1376 | 1385 |
classes[classes[l].next].prev = classes[l].prev; |
| 1377 | 1386 |
} |
| 1378 | 1387 |
classes[classes[l].prev].next = classes[l].next; |
| 1379 | 1388 |
|
| 1380 | 1389 |
classes[l].prev = -1; |
| 1381 | 1390 |
classes[l].next = -1; |
| 1382 | 1391 |
|
| 1383 | 1392 |
classes[l].depth = leftNode(l); |
| 1384 | 1393 |
classes[l].parent = class_id; |
| 1385 | 1394 |
|
| 1386 | 1395 |
} |
0 comments (0 inline)