gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Poisson distribution added
0 2 0
default
2 files changed with 24 insertions and 0 deletions:
↑ Collapse diff ↑
Ignore white space 384 line context
... ...
@@ -614,260 +614,283 @@
614 614
    /// \brief Returns a random real number from the range [0, b)
615 615
    ///
616 616
    /// It returns a random real number from the range [0, b).
617 617
    template <typename Number>
618 618
    Number operator()(Number b) { 
619 619
      return real<Number>() * b; 
620 620
    }
621 621

	
622 622
    /// \brief Returns a random real number from the range [a, b)
623 623
    ///
624 624
    /// It returns a random real number from the range [a, b).
625 625
    template <typename Number>
626 626
    Number operator()(Number a, Number b) { 
627 627
      return real<Number>() * (b - a) + a; 
628 628
    }
629 629

	
630 630
    /// \brief Returns a random integer from a range
631 631
    ///
632 632
    /// It returns a random integer from the range {0, 1, ..., b - 1}.
633 633
    template <typename Number>
634 634
    Number integer(Number b) {
635 635
      return _random_bits::Mapping<Number, Word>::map(core, b);
636 636
    }
637 637

	
638 638
    /// \brief Returns a random integer from a range
639 639
    ///
640 640
    /// It returns a random integer from the range {a, a + 1, ..., b - 1}.
641 641
    template <typename Number>
642 642
    Number integer(Number a, Number b) {
643 643
      return _random_bits::Mapping<Number, Word>::map(core, b - a) + a;
644 644
    }
645 645

	
646 646
    /// \brief Returns a random integer from a range
647 647
    ///
648 648
    /// It returns a random integer from the range {0, 1, ..., b - 1}.
649 649
    template <typename Number>
650 650
    Number operator[](Number b) {
651 651
      return _random_bits::Mapping<Number, Word>::map(core, b);
652 652
    }
653 653

	
654 654
    /// \brief Returns a random non-negative integer
655 655
    ///
656 656
    /// It returns a random non-negative integer uniformly from the
657 657
    /// whole range of the current \c Number type. The default result
658 658
    /// type of this function is <tt>unsigned int</tt>.
659 659
    template <typename Number>
660 660
    Number uinteger() {
661 661
      return _random_bits::IntConversion<Number, Word>::convert(core);
662 662
    }
663 663

	
664 664
    unsigned int uinteger() {
665 665
      return uinteger<unsigned int>();
666 666
    }
667 667

	
668 668
    /// \brief Returns a random integer
669 669
    ///
670 670
    /// It returns a random integer uniformly from the whole range of
671 671
    /// the current \c Number type. The default result type of this
672 672
    /// function is \c int.
673 673
    template <typename Number>
674 674
    Number integer() {
675 675
      static const int nb = std::numeric_limits<Number>::digits + 
676 676
        (std::numeric_limits<Number>::is_signed ? 1 : 0);
677 677
      return _random_bits::IntConversion<Number, Word, nb>::convert(core);
678 678
    }
679 679

	
680 680
    int integer() {
681 681
      return integer<int>();
682 682
    }
683 683
    
684 684
    /// \brief Returns a random bool
685 685
    ///
686 686
    /// It returns a random bool. The generator holds a buffer for
687 687
    /// random bits. Every time when it become empty the generator makes
688 688
    /// a new random word and fill the buffer up.
689 689
    bool boolean() {
690 690
      return bool_producer.convert(core);
691 691
    }
692 692

	
693 693
    ///\name Non-uniform distributions
694 694
    ///
695 695
    
696 696
    ///@{
697 697
    
698 698
    /// \brief Returns a random bool
699 699
    ///
700 700
    /// It returns a random bool with given probability of true result.
701 701
    bool boolean(double p) {
702 702
      return operator()() < p;
703 703
    }
704 704

	
705 705
    /// Standard Gauss distribution
706 706

	
707 707
    /// Standard Gauss distribution.
708 708
    /// \note The Cartesian form of the Box-Muller
709 709
    /// transformation is used to generate a random normal distribution.
710 710
    /// \todo Consider using the "ziggurat" method instead.
711 711
    double gauss() 
712 712
    {
713 713
      double V1,V2,S;
714 714
      do {
715 715
	V1=2*real<double>()-1;
716 716
	V2=2*real<double>()-1;
717 717
	S=V1*V1+V2*V2;
718 718
      } while(S>=1);
719 719
      return std::sqrt(-2*std::log(S)/S)*V1;
720 720
    }
721 721
    /// Gauss distribution with given mean and standard deviation
722 722

	
723 723
    /// Gauss distribution with given mean and standard deviation.
724 724
    /// \sa gauss()
725 725
    double gauss(double mean,double std_dev)
726 726
    {
727 727
      return gauss()*std_dev+mean;
728 728
    }
729 729

	
730 730
    /// Exponential distribution with given mean
731 731

	
732 732
    /// This function generates an exponential distribution random number
733 733
    /// with mean <tt>1/lambda</tt>.
734 734
    ///
735 735
    double exponential(double lambda=1.0)
736 736
    {
737 737
      return -std::log(1.0-real<double>())/lambda;
738 738
    }
739 739

	
740 740
    /// Gamma distribution with given integer shape
741 741

	
742 742
    /// This function generates a gamma distribution random number.
743 743
    /// 
744 744
    ///\param k shape parameter (<tt>k>0</tt> integer)
745 745
    double gamma(int k) 
746 746
    {
747 747
      double s = 0;
748 748
      for(int i=0;i<k;i++) s-=std::log(1.0-real<double>());
749 749
      return s;
750 750
    }
751 751
    
752 752
    /// Gamma distribution with given shape and scale parameter
753 753

	
754 754
    /// This function generates a gamma distribution random number.
755 755
    /// 
756 756
    ///\param k shape parameter (<tt>k>0</tt>)
757 757
    ///\param theta scale parameter
758 758
    ///
759 759
    double gamma(double k,double theta=1.0)
760 760
    {
761 761
      double xi,nu;
762 762
      const double delta = k-std::floor(k);
763 763
      const double v0=E/(E-delta);
764 764
      do {
765 765
	double V0=1.0-real<double>();
766 766
	double V1=1.0-real<double>();
767 767
	double V2=1.0-real<double>();
768 768
	if(V2<=v0) 
769 769
	  {
770 770
	    xi=std::pow(V1,1.0/delta);
771 771
	    nu=V0*std::pow(xi,delta-1.0);
772 772
	  }
773 773
	else 
774 774
	  {
775 775
	    xi=1.0-std::log(V1);
776 776
	    nu=V0*std::exp(-xi);
777 777
	  }
778 778
      } while(nu>std::pow(xi,delta-1.0)*std::exp(-xi));
779 779
      return theta*(xi-gamma(int(std::floor(k))));
780 780
    }
781 781
    
782 782
    /// Weibull distribution
783 783

	
784 784
    /// This function generates a Weibull distribution random number.
785 785
    /// 
786 786
    ///\param k shape parameter (<tt>k>0</tt>)
787 787
    ///\param lambda scale parameter (<tt>lambda>0</tt>)
788 788
    ///
789 789
    double weibull(double k,double lambda)
790 790
    {
791 791
      return lambda*pow(-std::log(1.0-real<double>()),1.0/k);
792 792
    }  
793 793
      
794 794
    /// Pareto distribution
795 795

	
796 796
    /// This function generates a Pareto distribution random number.
797 797
    /// 
798 798
    ///\param k shape parameter (<tt>k>0</tt>)
799 799
    ///\param x_min location parameter (<tt>x_min>0</tt>)
800 800
    ///
801 801
    double pareto(double k,double x_min)
802 802
    {
803 803
      return exponential(gamma(k,1.0/x_min));
804 804
    }  
805 805
      
806
    /// Poisson distribution
807

	
808
    /// This function generates a Poisson distribution random number with
809
    /// parameter \c lambda.
810
    /// 
811
    /// The probability mass function of this distribusion is
812
    /// \f[ \frac{e^{-\lambda}\lambda^k}{k!} \f]
813
    /// \note The algorithm is taken from the book of Donald E. Knuth titled
814
    /// ''Seminumerical Algorithms'' (1969). Its running time is linear in the
815
    /// return value.
816
    
817
    int poisson(double lambda)
818
    {
819
      const double l = std::exp(-lambda);
820
      int k=0;
821
      double p = 1.0;
822
      do {
823
	k++;
824
	p*=real<double>();
825
      } while (p>=l);
826
      return k-1;
827
    }  
828
      
806 829
    ///@}
807 830
    
808 831
    ///\name Two dimensional distributions
809 832
    ///
810 833

	
811 834
    ///@{
812 835
    
813 836
    /// Uniform distribution on the full unit circle
814 837

	
815 838
    /// Uniform distribution on the full unit circle.
816 839
    ///
817 840
    dim2::Point<double> disc() 
818 841
    {
819 842
      double V1,V2;
820 843
      do {
821 844
	V1=2*real<double>()-1;
822 845
	V2=2*real<double>()-1;
823 846
	
824 847
      } while(V1*V1+V2*V2>=1);
825 848
      return dim2::Point<double>(V1,V2);
826 849
    }
827 850
    /// A kind of two dimensional Gauss distribution
828 851

	
829 852
    /// This function provides a turning symmetric two-dimensional distribution.
830 853
    /// Both coordinates are of standard normal distribution, but they are not
831 854
    /// independent.
832 855
    ///
833 856
    /// \note The coordinates are the two random variables provided by
834 857
    /// the Box-Muller method.
835 858
    dim2::Point<double> gauss2()
836 859
    {
837 860
      double V1,V2,S;
838 861
      do {
839 862
	V1=2*real<double>()-1;
840 863
	V2=2*real<double>()-1;
841 864
	S=V1*V1+V2*V2;
842 865
      } while(S>=1);
843 866
      double W=std::sqrt(-2*std::log(S)/S);
844 867
      return dim2::Point<double>(W*V1,W*V2);
845 868
    }
846 869
    /// A kind of two dimensional exponential distribution
847 870

	
848 871
    /// This function provides a turning symmetric two-dimensional distribution.
849 872
    /// The x-coordinate is of conditionally exponential distribution
850 873
    /// with the condition that x is positive and y=0. If x is negative and 
851 874
    /// y=0 then, -x is of exponential distribution. The same is true for the
852 875
    /// y-coordinate.
853 876
    dim2::Point<double> exponential2() 
854 877
    {
855 878
      double V1,V2,S;
856 879
      do {
857 880
	V1=2*real<double>()-1;
858 881
	V2=2*real<double>()-1;
859 882
	S=V1*V1+V2*V2;
860 883
      } while(S>=1);
861 884
      double W=-std::log(S)/S;
862 885
      return dim2::Point<double>(W*V1,W*V2);
863 886
    }
864 887

	
865 888
    ///@}    
866 889
  };
867 890

	
868 891

	
869 892
  extern Random rnd;
870 893

	
871 894
}
872 895

	
873 896
#endif
Ignore white space 384 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <lemon/random.h>
20 20
#include "test_tools.h"
21 21

	
22 22
///\file \brief Test cases for random.h
23 23
///
24 24
///\todo To be extended
25 25
///
26 26

	
27 27
int main()
28 28
{
29 29
  double a=lemon::rnd();
30 30
  check(a<1.0&&a>0.0,"This should be in [0,1)");
31 31
  a=lemon::rnd.gauss();
32 32
  a=lemon::rnd.gamma(3.45,0);
33 33
  a=lemon::rnd.gamma(4);
34 34
  //Does gamma work with integer k?
35 35
  a=lemon::rnd.gamma(4.0,0);
36
  a=lemon::rnd.poisson(.5);
36 37
}
0 comments (0 inline)