0
2
0
... | ... |
@@ -26,12 +26,13 @@ |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/bin_heap.h> |
30 | 30 |
#include <lemon/path.h> |
31 | 31 |
#include <lemon/list_graph.h> |
32 |
#include <lemon/dijkstra.h> |
|
32 | 33 |
#include <lemon/maps.h> |
33 | 34 |
|
34 | 35 |
namespace lemon { |
35 | 36 |
|
36 | 37 |
/// \addtogroup shortest_path |
37 | 38 |
/// @{ |
... | ... |
@@ -43,24 +44,24 @@ |
43 | 44 |
/// finding arc-disjoint paths having minimum total length (cost) |
44 | 45 |
/// from a given source node to a given target node in a digraph. |
45 | 46 |
/// |
46 | 47 |
/// Note that this problem is a special case of the \ref min_cost_flow |
47 | 48 |
/// "minimum cost flow problem". This implementation is actually an |
48 | 49 |
/// efficient specialized version of the \ref CapacityScaling |
49 |
/// " |
|
50 |
/// "successive shortest path" algorithm directly for this problem. |
|
50 | 51 |
/// Therefore this class provides query functions for flow values and |
51 | 52 |
/// node potentials (the dual solution) just like the minimum cost flow |
52 | 53 |
/// algorithms. |
53 | 54 |
/// |
54 | 55 |
/// \tparam GR The digraph type the algorithm runs on. |
55 | 56 |
/// \tparam LEN The type of the length map. |
56 | 57 |
/// The default value is <tt>GR::ArcMap<int></tt>. |
57 | 58 |
/// |
58 |
/// \warning Length values should be \e non-negative |
|
59 |
/// \warning Length values should be \e non-negative. |
|
59 | 60 |
/// |
60 |
/// \note For finding node-disjoint paths this algorithm can be used |
|
61 |
/// \note For finding \e node-disjoint paths, this algorithm can be used |
|
61 | 62 |
/// along with the \ref SplitNodes adaptor. |
62 | 63 |
#ifdef DOXYGEN |
63 | 64 |
template <typename GR, typename LEN> |
64 | 65 |
#else |
65 | 66 |
template < typename GR, |
66 | 67 |
typename LEN = typename GR::template ArcMap<int> > |
... | ... |
@@ -94,121 +95,163 @@ |
94 | 95 |
|
95 | 96 |
/// The type of the path structures. |
96 | 97 |
typedef SimplePath<GR> Path; |
97 | 98 |
|
98 | 99 |
private: |
99 | 100 |
|
101 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
|
102 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
|
103 |
|
|
100 | 104 |
// ResidualDijkstra is a special implementation of the |
101 | 105 |
// Dijkstra algorithm for finding shortest paths in the |
102 | 106 |
// residual network with respect to the reduced arc lengths |
103 | 107 |
// and modifying the node potentials according to the |
104 | 108 |
// distance of the nodes. |
105 | 109 |
class ResidualDijkstra |
106 | 110 |
{ |
107 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
|
108 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
|
109 |
|
|
110 | 111 |
private: |
111 | 112 |
|
112 |
// The digraph the algorithm runs on |
|
113 | 113 |
const Digraph &_graph; |
114 |
|
|
115 |
// The main maps |
|
114 |
const LengthMap &_length; |
|
116 | 115 |
const FlowMap &_flow; |
117 |
const LengthMap &_length; |
|
118 |
PotentialMap &_potential; |
|
119 |
|
|
120 |
// The distance map |
|
121 |
PotentialMap _dist; |
|
122 |
// The pred arc map |
|
116 |
PotentialMap &_pi; |
|
123 | 117 |
PredMap &_pred; |
124 |
// The processed (i.e. permanently labeled) nodes |
|
125 |
std::vector<Node> _proc_nodes; |
|
126 |
|
|
127 | 118 |
Node _s; |
128 | 119 |
Node _t; |
120 |
|
|
121 |
PotentialMap _dist; |
|
122 |
std::vector<Node> _proc_nodes; |
|
129 | 123 |
|
130 | 124 |
public: |
131 | 125 |
|
132 |
/// Constructor. |
|
133 |
ResidualDijkstra( const Digraph &graph, |
|
134 |
const FlowMap &flow, |
|
135 |
const LengthMap &length, |
|
136 |
PotentialMap &potential, |
|
137 |
PredMap &pred, |
|
138 |
Node s, Node t ) : |
|
139 |
_graph(graph), _flow(flow), _length(length), _potential(potential), |
|
140 |
|
|
126 |
// Constructor |
|
127 |
ResidualDijkstra(Suurballe &srb) : |
|
128 |
_graph(srb._graph), _length(srb._length), |
|
129 |
_flow(*srb._flow), _pi(*srb._potential), _pred(srb._pred), |
|
130 |
_s(srb._s), _t(srb._t), _dist(_graph) {} |
|
131 |
|
|
132 |
// Run the algorithm and return true if a path is found |
|
133 |
// from the source node to the target node. |
|
134 |
bool run(int cnt) { |
|
135 |
return cnt == 0 ? startFirst() : start(); |
|
136 |
} |
|
141 | 137 |
|
142 |
/// \brief Run the algorithm. It returns \c true if a path is found |
|
143 |
/// from the source node to the target node. |
|
144 |
|
|
138 |
private: |
|
139 |
|
|
140 |
// Execute the algorithm for the first time (the flow and potential |
|
141 |
// functions have to be identically zero). |
|
142 |
bool startFirst() { |
|
145 | 143 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
146 | 144 |
Heap heap(heap_cross_ref); |
147 | 145 |
heap.push(_s, 0); |
148 | 146 |
_pred[_s] = INVALID; |
149 | 147 |
_proc_nodes.clear(); |
150 | 148 |
|
151 | 149 |
// Process nodes |
152 | 150 |
while (!heap.empty() && heap.top() != _t) { |
153 | 151 |
Node u = heap.top(), v; |
154 |
Length d = heap.prio() |
|
152 |
Length d = heap.prio(), dn; |
|
155 | 153 |
_dist[u] = heap.prio(); |
154 |
_proc_nodes.push_back(u); |
|
156 | 155 |
heap.pop(); |
156 |
|
|
157 |
// Traverse outgoing arcs |
|
158 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) { |
|
159 |
v = _graph.target(e); |
|
160 |
switch(heap.state(v)) { |
|
161 |
case Heap::PRE_HEAP: |
|
162 |
heap.push(v, d + _length[e]); |
|
163 |
_pred[v] = e; |
|
164 |
break; |
|
165 |
case Heap::IN_HEAP: |
|
166 |
dn = d + _length[e]; |
|
167 |
if (dn < heap[v]) { |
|
168 |
heap.decrease(v, dn); |
|
169 |
_pred[v] = e; |
|
170 |
} |
|
171 |
break; |
|
172 |
case Heap::POST_HEAP: |
|
173 |
break; |
|
174 |
} |
|
175 |
} |
|
176 |
} |
|
177 |
if (heap.empty()) return false; |
|
178 |
|
|
179 |
// Update potentials of processed nodes |
|
180 |
Length t_dist = heap.prio(); |
|
181 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
|
182 |
_pi[_proc_nodes[i]] = _dist[_proc_nodes[i]] - t_dist; |
|
183 |
return true; |
|
184 |
} |
|
185 |
|
|
186 |
// Execute the algorithm. |
|
187 |
bool start() { |
|
188 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
|
189 |
Heap heap(heap_cross_ref); |
|
190 |
heap.push(_s, 0); |
|
191 |
_pred[_s] = INVALID; |
|
192 |
_proc_nodes.clear(); |
|
193 |
|
|
194 |
// Process nodes |
|
195 |
while (!heap.empty() && heap.top() != _t) { |
|
196 |
Node u = heap.top(), v; |
|
197 |
Length d = heap.prio() + _pi[u], dn; |
|
198 |
_dist[u] = heap.prio(); |
|
157 | 199 |
_proc_nodes.push_back(u); |
200 |
heap.pop(); |
|
158 | 201 |
|
159 | 202 |
// Traverse outgoing arcs |
160 | 203 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) { |
161 | 204 |
if (_flow[e] == 0) { |
162 | 205 |
v = _graph.target(e); |
163 | 206 |
switch(heap.state(v)) { |
164 |
case Heap::PRE_HEAP: |
|
165 |
heap.push(v, d + _length[e] - _potential[v]); |
|
166 |
_pred[v] = e; |
|
167 |
break; |
|
168 |
case Heap::IN_HEAP: |
|
169 |
nd = d + _length[e] - _potential[v]; |
|
170 |
if (nd < heap[v]) { |
|
171 |
heap.decrease(v, nd); |
|
207 |
case Heap::PRE_HEAP: |
|
208 |
heap.push(v, d + _length[e] - _pi[v]); |
|
172 | 209 |
_pred[v] = e; |
173 |
} |
|
174 |
break; |
|
175 |
case Heap::POST_HEAP: |
|
176 |
break; |
|
210 |
break; |
|
211 |
case Heap::IN_HEAP: |
|
212 |
dn = d + _length[e] - _pi[v]; |
|
213 |
if (dn < heap[v]) { |
|
214 |
heap.decrease(v, dn); |
|
215 |
_pred[v] = e; |
|
216 |
} |
|
217 |
break; |
|
218 |
case Heap::POST_HEAP: |
|
219 |
break; |
|
177 | 220 |
} |
178 | 221 |
} |
179 | 222 |
} |
180 | 223 |
|
181 | 224 |
// Traverse incoming arcs |
182 | 225 |
for (InArcIt e(_graph, u); e != INVALID; ++e) { |
183 | 226 |
if (_flow[e] == 1) { |
184 | 227 |
v = _graph.source(e); |
185 | 228 |
switch(heap.state(v)) { |
186 |
case Heap::PRE_HEAP: |
|
187 |
heap.push(v, d - _length[e] - _potential[v]); |
|
188 |
_pred[v] = e; |
|
189 |
break; |
|
190 |
case Heap::IN_HEAP: |
|
191 |
nd = d - _length[e] - _potential[v]; |
|
192 |
if (nd < heap[v]) { |
|
193 |
heap.decrease(v, nd); |
|
229 |
case Heap::PRE_HEAP: |
|
230 |
heap.push(v, d - _length[e] - _pi[v]); |
|
194 | 231 |
_pred[v] = e; |
195 |
} |
|
196 |
break; |
|
197 |
case Heap::POST_HEAP: |
|
198 |
break; |
|
232 |
break; |
|
233 |
case Heap::IN_HEAP: |
|
234 |
dn = d - _length[e] - _pi[v]; |
|
235 |
if (dn < heap[v]) { |
|
236 |
heap.decrease(v, dn); |
|
237 |
_pred[v] = e; |
|
238 |
} |
|
239 |
break; |
|
240 |
case Heap::POST_HEAP: |
|
241 |
break; |
|
199 | 242 |
} |
200 | 243 |
} |
201 | 244 |
} |
202 | 245 |
} |
203 | 246 |
if (heap.empty()) return false; |
204 | 247 |
|
205 | 248 |
// Update potentials of processed nodes |
206 | 249 |
Length t_dist = heap.prio(); |
207 | 250 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
208 |
|
|
251 |
_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist; |
|
209 | 252 |
return true; |
210 | 253 |
} |
211 | 254 |
|
212 | 255 |
}; //class ResidualDijkstra |
213 | 256 |
|
214 | 257 |
private: |
... | ... |
@@ -223,48 +266,49 @@ |
223 | 266 |
bool _local_flow; |
224 | 267 |
// Node map of the current potentials |
225 | 268 |
PotentialMap *_potential; |
226 | 269 |
bool _local_potential; |
227 | 270 |
|
228 | 271 |
// The source node |
229 |
Node |
|
272 |
Node _s; |
|
230 | 273 |
// The target node |
231 |
Node |
|
274 |
Node _t; |
|
232 | 275 |
|
233 | 276 |
// Container to store the found paths |
234 |
std::vector< |
|
277 |
std::vector<Path> _paths; |
|
235 | 278 |
int _path_num; |
236 | 279 |
|
237 | 280 |
// The pred arc map |
238 | 281 |
PredMap _pred; |
239 |
// Implementation of the Dijkstra algorithm for finding augmenting |
|
240 |
// shortest paths in the residual network |
|
241 |
|
|
282 |
|
|
283 |
// Data for full init |
|
284 |
PotentialMap *_init_dist; |
|
285 |
PredMap *_init_pred; |
|
286 |
bool _full_init; |
|
242 | 287 |
|
243 | 288 |
public: |
244 | 289 |
|
245 | 290 |
/// \brief Constructor. |
246 | 291 |
/// |
247 | 292 |
/// Constructor. |
248 | 293 |
/// |
249 | 294 |
/// \param graph The digraph the algorithm runs on. |
250 | 295 |
/// \param length The length (cost) values of the arcs. |
251 | 296 |
Suurballe( const Digraph &graph, |
252 | 297 |
const LengthMap &length ) : |
253 | 298 |
_graph(graph), _length(length), _flow(0), _local_flow(false), |
254 |
_potential(0), _local_potential(false), _pred(graph) |
|
255 |
{ |
|
256 |
LEMON_ASSERT(std::numeric_limits<Length>::is_integer, |
|
257 |
"The length type of Suurballe must be integer"); |
|
258 |
|
|
299 |
_potential(0), _local_potential(false), _pred(graph), |
|
300 |
_init_dist(0), _init_pred(0) |
|
301 |
{} |
|
259 | 302 |
|
260 | 303 |
/// Destructor. |
261 | 304 |
~Suurballe() { |
262 | 305 |
if (_local_flow) delete _flow; |
263 | 306 |
if (_local_potential) delete _potential; |
264 |
delete |
|
307 |
delete _init_dist; |
|
308 |
delete _init_pred; |
|
265 | 309 |
} |
266 | 310 |
|
267 | 311 |
/// \brief Set the flow map. |
268 | 312 |
/// |
269 | 313 |
/// This function sets the flow map. |
270 | 314 |
/// If it is not used before calling \ref run() or \ref init(), |
... | ... |
@@ -303,16 +347,19 @@ |
303 | 347 |
_potential = ↦ |
304 | 348 |
return *this; |
305 | 349 |
} |
306 | 350 |
|
307 | 351 |
/// \name Execution Control |
308 | 352 |
/// The simplest way to execute the algorithm is to call the run() |
309 |
/// function. |
|
310 |
/// \n |
|
353 |
/// function.\n |
|
354 |
/// If you need to execute the algorithm many times using the same |
|
355 |
/// source node, then you may call fullInit() once and start() |
|
356 |
/// for each target node.\n |
|
311 | 357 |
/// If you only need the flow that is the union of the found |
312 |
/// arc-disjoint paths, you may call |
|
358 |
/// arc-disjoint paths, then you may call findFlow() instead of |
|
359 |
/// start(). |
|
313 | 360 |
|
314 | 361 |
/// @{ |
315 | 362 |
|
316 | 363 |
/// \brief Run the algorithm. |
317 | 364 |
/// |
318 | 365 |
/// This function runs the algorithm. |
... | ... |
@@ -326,41 +373,94 @@ |
326 | 373 |
/// arc-disjoint paths found. |
327 | 374 |
/// |
328 | 375 |
/// \note Apart from the return value, <tt>s.run(s, t, k)</tt> is |
329 | 376 |
/// just a shortcut of the following code. |
330 | 377 |
/// \code |
331 | 378 |
/// s.init(s); |
332 |
/// s.findFlow(t, k); |
|
333 |
/// s.findPaths(); |
|
379 |
/// s.start(t, k); |
|
334 | 380 |
/// \endcode |
335 | 381 |
int run(const Node& s, const Node& t, int k = 2) { |
336 | 382 |
init(s); |
337 |
findFlow(t, k); |
|
338 |
findPaths(); |
|
383 |
start(t, k); |
|
339 | 384 |
return _path_num; |
340 | 385 |
} |
341 | 386 |
|
342 | 387 |
/// \brief Initialize the algorithm. |
343 | 388 |
/// |
344 |
/// This function initializes the algorithm. |
|
389 |
/// This function initializes the algorithm with the given source node. |
|
345 | 390 |
/// |
346 | 391 |
/// \param s The source node. |
347 | 392 |
void init(const Node& s) { |
348 |
|
|
393 |
_s = s; |
|
349 | 394 |
|
350 | 395 |
// Initialize maps |
351 | 396 |
if (!_flow) { |
352 | 397 |
_flow = new FlowMap(_graph); |
353 | 398 |
_local_flow = true; |
354 | 399 |
} |
355 | 400 |
if (!_potential) { |
356 | 401 |
_potential = new PotentialMap(_graph); |
357 | 402 |
_local_potential = true; |
358 | 403 |
} |
359 |
for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0; |
|
360 |
for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0; |
|
404 |
_full_init = false; |
|
405 |
} |
|
406 |
|
|
407 |
/// \brief Initialize the algorithm and perform Dijkstra. |
|
408 |
/// |
|
409 |
/// This function initializes the algorithm and performs a full |
|
410 |
/// Dijkstra search from the given source node. It makes consecutive |
|
411 |
/// executions of \ref start() "start(t, k)" faster, since they |
|
412 |
/// have to perform %Dijkstra only k-1 times. |
|
413 |
/// |
|
414 |
/// This initialization is usually worth using instead of \ref init() |
|
415 |
/// if the algorithm is executed many times using the same source node. |
|
416 |
/// |
|
417 |
/// \param s The source node. |
|
418 |
void fullInit(const Node& s) { |
|
419 |
// Initialize maps |
|
420 |
init(s); |
|
421 |
if (!_init_dist) { |
|
422 |
_init_dist = new PotentialMap(_graph); |
|
423 |
} |
|
424 |
if (!_init_pred) { |
|
425 |
_init_pred = new PredMap(_graph); |
|
426 |
} |
|
427 |
|
|
428 |
// Run a full Dijkstra |
|
429 |
typename Dijkstra<Digraph, LengthMap> |
|
430 |
::template SetStandardHeap<Heap> |
|
431 |
::template SetDistMap<PotentialMap> |
|
432 |
::template SetPredMap<PredMap> |
|
433 |
::Create dijk(_graph, _length); |
|
434 |
dijk.distMap(*_init_dist).predMap(*_init_pred); |
|
435 |
dijk.run(s); |
|
436 |
|
|
437 |
_full_init = true; |
|
438 |
} |
|
439 |
|
|
440 |
/// \brief Execute the algorithm. |
|
441 |
/// |
|
442 |
/// This function executes the algorithm. |
|
443 |
/// |
|
444 |
/// \param t The target node. |
|
445 |
/// \param k The number of paths to be found. |
|
446 |
/// |
|
447 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
|
448 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
|
449 |
/// arc-disjoint paths found. |
|
450 |
/// |
|
451 |
/// \note Apart from the return value, <tt>s.start(t, k)</tt> is |
|
452 |
/// just a shortcut of the following code. |
|
453 |
/// \code |
|
454 |
/// s.findFlow(t, k); |
|
455 |
/// s.findPaths(); |
|
456 |
/// \endcode |
|
457 |
int start(const Node& t, int k = 2) { |
|
458 |
findFlow(t, k); |
|
459 |
findPaths(); |
|
460 |
return _path_num; |
|
361 | 461 |
} |
362 | 462 |
|
363 | 463 |
/// \brief Execute the algorithm to find an optimal flow. |
364 | 464 |
/// |
365 | 465 |
/// This function executes the successive shortest path algorithm to |
366 | 466 |
/// find a minimum cost flow, which is the union of \c k (or less) |
... | ... |
@@ -372,26 +472,45 @@ |
372 | 472 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
373 | 473 |
/// the source node to the given node \c t in the digraph. |
374 | 474 |
/// Otherwise it returns the number of arc-disjoint paths found. |
375 | 475 |
/// |
376 | 476 |
/// \pre \ref init() must be called before using this function. |
377 | 477 |
int findFlow(const Node& t, int k = 2) { |
378 |
_target = t; |
|
379 |
_dijkstra = |
|
380 |
new ResidualDijkstra( _graph, *_flow, _length, *_potential, _pred, |
|
381 |
_source, _target ); |
|
478 |
_t = t; |
|
479 |
ResidualDijkstra dijkstra(*this); |
|
480 |
|
|
481 |
// Initialization |
|
482 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
483 |
(*_flow)[e] = 0; |
|
484 |
} |
|
485 |
if (_full_init) { |
|
486 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
487 |
(*_potential)[n] = (*_init_dist)[n]; |
|
488 |
} |
|
489 |
Node u = _t; |
|
490 |
Arc e; |
|
491 |
while ((e = (*_init_pred)[u]) != INVALID) { |
|
492 |
(*_flow)[e] = 1; |
|
493 |
u = _graph.source(e); |
|
494 |
} |
|
495 |
_path_num = 1; |
|
496 |
} else { |
|
497 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
498 |
(*_potential)[n] = 0; |
|
499 |
} |
|
500 |
_path_num = 0; |
|
501 |
} |
|
382 | 502 |
|
383 | 503 |
// Find shortest paths |
384 |
_path_num = 0; |
|
385 | 504 |
while (_path_num < k) { |
386 | 505 |
// Run Dijkstra |
387 |
if (! |
|
506 |
if (!dijkstra.run(_path_num)) break; |
|
388 | 507 |
++_path_num; |
389 | 508 |
|
390 | 509 |
// Set the flow along the found shortest path |
391 |
Node u = |
|
510 |
Node u = _t; |
|
392 | 511 |
Arc e; |
393 | 512 |
while ((e = _pred[u]) != INVALID) { |
394 | 513 |
if (u == _graph.target(e)) { |
395 | 514 |
(*_flow)[e] = 1; |
396 | 515 |
u = _graph.source(e); |
397 | 516 |
} else { |
... | ... |
@@ -402,30 +521,30 @@ |
402 | 521 |
} |
403 | 522 |
return _path_num; |
404 | 523 |
} |
405 | 524 |
|
406 | 525 |
/// \brief Compute the paths from the flow. |
407 | 526 |
/// |
408 |
/// This function computes the paths from the found minimum cost flow, |
|
409 |
/// which is the union of some arc-disjoint paths. |
|
527 |
/// This function computes arc-disjoint paths from the found minimum |
|
528 |
/// cost flow, which is the union of them. |
|
410 | 529 |
/// |
411 | 530 |
/// \pre \ref init() and \ref findFlow() must be called before using |
412 | 531 |
/// this function. |
413 | 532 |
void findPaths() { |
414 | 533 |
FlowMap res_flow(_graph); |
415 | 534 |
for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a]; |
416 | 535 |
|
417 |
paths.clear(); |
|
418 |
paths.resize(_path_num); |
|
536 |
_paths.clear(); |
|
537 |
_paths.resize(_path_num); |
|
419 | 538 |
for (int i = 0; i < _path_num; ++i) { |
420 |
Node n = _source; |
|
421 |
while (n != _target) { |
|
539 |
Node n = _s; |
|
540 |
while (n != _t) { |
|
422 | 541 |
OutArcIt e(_graph, n); |
423 | 542 |
for ( ; res_flow[e] == 0; ++e) ; |
424 | 543 |
n = _graph.target(e); |
425 |
|
|
544 |
_paths[i].addBack(e); |
|
426 | 545 |
res_flow[e] = 0; |
427 | 546 |
} |
428 | 547 |
} |
429 | 548 |
} |
430 | 549 |
|
431 | 550 |
/// @} |
... | ... |
@@ -517,14 +636,14 @@ |
517 | 636 |
/// |
518 | 637 |
/// \param i The function returns the <tt>i</tt>-th path. |
519 | 638 |
/// \c i must be between \c 0 and <tt>%pathNum()-1</tt>. |
520 | 639 |
/// |
521 | 640 |
/// \pre \ref run() or \ref findPaths() must be called before using |
522 | 641 |
/// this function. |
523 |
Path path(int i) const { |
|
524 |
return paths[i]; |
|
642 |
const Path& path(int i) const { |
|
643 |
return _paths[i]; |
|
525 | 644 |
} |
526 | 645 |
|
527 | 646 |
/// @} |
528 | 647 |
|
529 | 648 |
}; //class Suurballe |
530 | 649 |
... | ... |
@@ -98,12 +98,15 @@ |
98 | 98 |
.potentialMap(pi); |
99 | 99 |
|
100 | 100 |
int k; |
101 | 101 |
k = suurb_test.run(n, n); |
102 | 102 |
k = suurb_test.run(n, n, k); |
103 | 103 |
suurb_test.init(n); |
104 |
suurb_test.fullInit(n); |
|
105 |
suurb_test.start(n); |
|
106 |
suurb_test.start(n, k); |
|
104 | 107 |
k = suurb_test.findFlow(n); |
105 | 108 |
k = suurb_test.findFlow(n, k); |
106 | 109 |
suurb_test.findPaths(); |
107 | 110 |
|
108 | 111 |
int f; |
109 | 112 |
VType c; |
0 comments (0 inline)