... | ... |
@@ -519,7 +519,7 @@ |
519 | 519 |
/// |
520 | 520 |
/// This function implements the Boyer-Myrvold algorithm for |
521 |
/// planarity checking of an undirected graph. It is a simplified |
|
521 |
/// planarity checking of an undirected simple graph. It is a simplified |
|
522 | 522 |
/// version of the PlanarEmbedding algorithm class because neither |
523 |
/// the embedding nor the |
|
523 |
/// the embedding nor the Kuratowski subdivisons are computed. |
|
524 | 524 |
template <typename GR> |
525 | 525 |
bool checkPlanarity(const GR& graph) { |
... | ... |
@@ -533,14 +533,15 @@ |
533 | 533 |
/// |
534 | 534 |
/// This class implements the Boyer-Myrvold algorithm for planar |
535 |
/// embedding of an undirected graph. The planar embedding is an |
|
535 |
/// embedding of an undirected simple graph. The planar embedding is an |
|
536 | 536 |
/// ordering of the outgoing edges of the nodes, which is a possible |
537 | 537 |
/// configuration to draw the graph in the plane. If there is not |
538 |
/// such ordering then the graph contains a \f$ K_5 \f$ (full graph |
|
539 |
/// with 5 nodes) or a \f$ K_{3,3} \f$ (complete bipartite graph on |
|
540 |
/// |
|
538 |
/// such ordering then the graph contains a K<sub>5</sub> (full graph |
|
539 |
/// with 5 nodes) or a K<sub>3,3</sub> (complete bipartite graph on |
|
540 |
/// 3 Red and 3 Blue nodes) subdivision. |
|
541 | 541 |
/// |
542 | 542 |
/// The current implementation calculates either an embedding or a |
543 |
/// Kuratowski subdivision. The running time of the algorithm is |
|
544 |
/// \f$ O(n) \f$. |
|
543 |
/// Kuratowski subdivision. The running time of the algorithm is O(n). |
|
544 |
/// |
|
545 |
/// \see PlanarDrawing, checkPlanarity() |
|
545 | 546 |
template <typename Graph> |
546 | 547 |
class PlanarEmbedding { |
... | ... |
@@ -592,20 +593,24 @@ |
592 | 593 |
public: |
593 | 594 |
|
594 |
/// \brief The map for |
|
595 |
/// \brief The map type for storing the embedding |
|
596 |
/// |
|
597 |
/// The map type for storing the embedding. |
|
598 |
/// \see embeddingMap() |
|
595 | 599 |
typedef typename Graph::template ArcMap<Arc> EmbeddingMap; |
596 | 600 |
|
597 | 601 |
/// \brief Constructor |
598 | 602 |
/// |
599 |
/// \note The graph should be simple, i.e. parallel and loop arc |
|
600 |
/// free. |
|
603 |
/// Constructor. |
|
604 |
/// \pre The graph must be simple, i.e. it should not |
|
605 |
/// contain parallel or loop arcs. |
|
601 | 606 |
PlanarEmbedding(const Graph& graph) |
602 | 607 |
: _graph(graph), _embedding(_graph), _kuratowski(graph, false) {} |
603 | 608 |
|
604 |
/// \brief |
|
609 |
/// \brief Run the algorithm. |
|
605 | 610 |
/// |
606 |
/// Runs the algorithm. |
|
607 |
/// \param kuratowski If the parameter is false, then the |
|
611 |
/// This function runs the algorithm. |
|
612 |
/// \param kuratowski If this parameter is set to \c false, then the |
|
608 | 613 |
/// algorithm does not compute a Kuratowski subdivision. |
609 |
///\return |
|
614 |
/// \return \c true if the graph is planar. |
|
610 | 615 |
bool run(bool kuratowski = true) { |
611 | 616 |
typedef _planarity_bits::PlanarityVisitor<Graph> Visitor; |
... | ... |
@@ -700,7 +705,7 @@ |
700 | 705 |
} |
701 | 706 |
|
702 |
/// \brief |
|
707 |
/// \brief Give back the successor of an arc |
|
703 | 708 |
/// |
704 |
/// |
|
709 |
/// This function gives back the successor of an arc. It makes |
|
705 | 710 |
/// possible to query the cyclic order of the outgoing arcs from |
706 | 711 |
/// a node. |
... | ... |
@@ -709,19 +714,21 @@ |
709 | 714 |
} |
710 | 715 |
|
711 |
/// \brief |
|
716 |
/// \brief Give back the calculated embedding map |
|
712 | 717 |
/// |
713 |
/// The returned map contains the successor of each arc in the |
|
714 |
/// graph. |
|
718 |
/// This function gives back the calculated embedding map, which |
|
719 |
/// contains the successor of each arc in the cyclic order of the |
|
720 |
/// outgoing arcs of its source node. |
|
715 | 721 |
const EmbeddingMap& embeddingMap() const { |
716 | 722 |
return _embedding; |
717 | 723 |
} |
718 | 724 |
|
719 |
/// \brief Gives back true if the undirected arc is in the |
|
720 |
/// kuratowski subdivision |
|
725 |
/// \brief Give back \c true if the given edge is in the Kuratowski |
|
726 |
/// subdivision |
|
721 | 727 |
/// |
722 |
/// Gives back true if the undirected arc is in the kuratowski |
|
723 |
/// subdivision |
|
724 |
/// \note The \c run() had to be called with true value. |
|
725 |
bool kuratowski(const Edge& edge) { |
|
728 |
/// This function gives back \c true if the given edge is in the found |
|
729 |
/// Kuratowski subdivision. |
|
730 |
/// \pre The \c run() function must be called with \c true parameter |
|
731 |
/// before using this function. |
|
732 |
bool kuratowski(const Edge& edge) const { |
|
726 | 733 |
return _kuratowski[edge]; |
727 | 734 |
} |
... | ... |
@@ -2060,11 +2067,13 @@ |
2060 | 2067 |
/// |
2061 | 2068 |
/// The planar drawing algorithm calculates positions for the nodes |
2062 |
/// in the plane which coordinates satisfy that if the arcs are |
|
2063 |
/// represented with straight lines then they will not intersect |
|
2069 |
/// in the plane. These coordinates satisfy that if the edges are |
|
2070 |
/// represented with straight lines, then they will not intersect |
|
2064 | 2071 |
/// each other. |
2065 | 2072 |
/// |
2066 |
/// Scnyder's algorithm embeds the graph on \c (n-2,n-2) size grid, |
|
2067 |
/// i.e. each node will be located in the \c [0,n-2]x[0,n-2] square. |
|
2073 |
/// Scnyder's algorithm embeds the graph on an \c (n-2)x(n-2) size grid, |
|
2074 |
/// i.e. each node will be located in the \c [0..n-2]x[0..n-2] square. |
|
2068 | 2075 |
/// The time complexity of the algorithm is O(n). |
2076 |
/// |
|
2077 |
/// \see PlanarEmbedding |
|
2069 | 2078 |
template <typename Graph> |
2070 | 2079 |
class PlanarDrawing { |
... | ... |
@@ -2073,7 +2082,7 @@ |
2073 | 2082 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
2074 | 2083 |
|
2075 |
/// \brief The point type for |
|
2084 |
/// \brief The point type for storing coordinates |
|
2076 | 2085 |
typedef dim2::Point<int> Point; |
2077 |
/// \brief The map type for |
|
2086 |
/// \brief The map type for storing the coordinates of the nodes |
|
2078 | 2087 |
typedef typename Graph::template NodeMap<Point> PointMap; |
2079 | 2088 |
|
... | ... |
@@ -2082,5 +2091,6 @@ |
2082 | 2091 |
/// |
2083 | 2092 |
/// Constructor |
2084 |
/// \pre The graph |
|
2093 |
/// \pre The graph must be simple, i.e. it should not |
|
2094 |
/// contain parallel or loop arcs. |
|
2085 | 2095 |
PlanarDrawing(const Graph& graph) |
2086 | 2096 |
: _graph(graph), _point_map(graph) {} |
... | ... |
@@ -2367,8 +2377,8 @@ |
2367 | 2377 |
public: |
2368 | 2378 |
|
2369 |
/// \brief |
|
2379 |
/// \brief Calculate the node positions |
|
2370 | 2380 |
/// |
2371 |
/// This function calculates the node positions. |
|
2372 |
/// \return %True if the graph is planar. |
|
2381 |
/// This function calculates the node positions on the plane. |
|
2382 |
/// \return \c true if the graph is planar. |
|
2373 | 2383 |
bool run() { |
2374 | 2384 |
PlanarEmbedding<Graph> pe(_graph); |
... | ... |
@@ -2379,10 +2389,11 @@ |
2379 | 2389 |
} |
2380 | 2390 |
|
2381 |
/// \brief |
|
2391 |
/// \brief Calculate the node positions according to a |
|
2382 | 2392 |
/// combinatorical embedding |
2383 | 2393 |
/// |
2384 |
/// This function calculates the node locations. The \c embedding |
|
2385 |
/// parameter should contain a valid combinatorical embedding, i.e. |
|
2386 |
/// |
|
2394 |
/// This function calculates the node positions on the plane. |
|
2395 |
/// The given \c embedding map should contain a valid combinatorical |
|
2396 |
/// embedding, i.e. a valid cyclic order of the arcs. |
|
2397 |
/// It can be computed using PlanarEmbedding. |
|
2387 | 2398 |
template <typename EmbeddingMap> |
2388 | 2399 |
void run(const EmbeddingMap& embedding) { |
... | ... |
@@ -2424,12 +2435,13 @@ |
2424 | 2435 |
/// \brief The coordinate of the given node |
2425 | 2436 |
/// |
2426 |
/// |
|
2437 |
/// This function returns the coordinate of the given node. |
|
2427 | 2438 |
Point operator[](const Node& node) const { |
2428 | 2439 |
return _point_map[node]; |
2429 | 2440 |
} |
2430 | 2441 |
|
2431 |
/// \brief |
|
2442 |
/// \brief Return the grid embedding in a node map |
|
2432 | 2443 |
/// |
2433 |
/// |
|
2444 |
/// This function returns the grid embedding in a node map of |
|
2445 |
/// \c dim2::Point<int> coordinates. |
|
2434 | 2446 |
const PointMap& coords() const { |
2435 | 2447 |
return _point_map; |
... | ... |
@@ -2471,21 +2483,20 @@ |
2471 | 2483 |
/// |
2472 | 2484 |
/// The graph coloring problem is the coloring of the graph nodes |
2473 |
/// that there are not adjacent nodes with the same color. The |
|
2474 |
/// planar graphs can be always colored with four colors, it is |
|
2475 |
/// |
|
2485 |
/// so that there are no adjacent nodes with the same color. The |
|
2486 |
/// planar graphs can always be colored with four colors, which is |
|
2487 |
/// proved by Appel and Haken. Their proofs provide a quadratic |
|
2476 | 2488 |
/// time algorithm for four coloring, but it could not be used to |
2477 |
/// implement efficient algorithm. The five and six coloring can be |
|
2478 |
/// made in linear time, but in this class the five coloring has |
|
2489 |
/// implement an efficient algorithm. The five and six coloring can be |
|
2490 |
/// made in linear time, but in this class, the five coloring has |
|
2479 | 2491 |
/// quadratic worst case time complexity. The two coloring (if |
2480 | 2492 |
/// possible) is solvable with a graph search algorithm and it is |
2481 | 2493 |
/// implemented in \ref bipartitePartitions() function in LEMON. To |
2482 |
/// decide whether the planar graph is three colorable is |
|
2483 |
/// NP-complete. |
|
2494 |
/// decide whether a planar graph is three colorable is NP-complete. |
|
2484 | 2495 |
/// |
2485 | 2496 |
/// This class contains member functions for calculate colorings |
2486 | 2497 |
/// with five and six colors. The six coloring algorithm is a simple |
2487 | 2498 |
/// greedy coloring on the backward minimum outgoing order of nodes. |
2488 |
/// This order can be computed as in each phase the node with least |
|
2489 |
/// outgoing arcs to unprocessed nodes is chosen. This order |
|
2499 |
/// This order can be computed by selecting the node with least |
|
2500 |
/// outgoing arcs to unprocessed nodes in each phase. This order |
|
2490 | 2501 |
/// guarantees that when a node is chosen for coloring it has at |
2491 | 2502 |
/// most five already colored adjacents. The five coloring algorithm |
... | ... |
@@ -2500,13 +2511,17 @@ |
2500 | 2511 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
2501 | 2512 |
|
2502 |
/// \brief The map type for |
|
2513 |
/// \brief The map type for storing color indices |
|
2503 | 2514 |
typedef typename Graph::template NodeMap<int> IndexMap; |
2504 |
/// \brief The map type for |
|
2515 |
/// \brief The map type for storing colors |
|
2516 |
/// |
|
2517 |
/// The map type for storing colors. |
|
2518 |
/// \see Palette, Color |
|
2505 | 2519 |
typedef ComposeMap<Palette, IndexMap> ColorMap; |
2506 | 2520 |
|
2507 | 2521 |
/// \brief Constructor |
2508 | 2522 |
/// |
2509 |
/// Constructor |
|
2510 |
/// \pre The graph should be simple, i.e. loop and parallel arc free. |
|
2523 |
/// Constructor. |
|
2524 |
/// \pre The graph must be simple, i.e. it should not |
|
2525 |
/// contain parallel or loop arcs. |
|
2511 | 2526 |
PlanarColoring(const Graph& graph) |
2512 | 2527 |
: _graph(graph), _color_map(graph), _palette(0) { |
... | ... |
@@ -2519,32 +2534,32 @@ |
2519 | 2534 |
} |
2520 | 2535 |
|
2521 |
/// \brief |
|
2536 |
/// \brief Return the node map of color indices |
|
2522 | 2537 |
/// |
2523 |
/// Returns the \e NodeMap of color indexes. The values are in the |
|
2524 |
/// range \c [0..4] or \c [0..5] according to the coloring method. |
|
2538 |
/// This function returns the node map of color indices. The values are |
|
2539 |
/// in the range \c [0..4] or \c [0..5] according to the coloring method. |
|
2525 | 2540 |
IndexMap colorIndexMap() const { |
2526 | 2541 |
return _color_map; |
2527 | 2542 |
} |
2528 | 2543 |
|
2529 |
/// \brief |
|
2544 |
/// \brief Return the node map of colors |
|
2530 | 2545 |
/// |
2531 |
/// Returns the \e NodeMap of colors. The values are five or six |
|
2532 |
/// distinct \ref lemon::Color "colors". |
|
2546 |
/// This function returns the node map of colors. The values are among |
|
2547 |
/// five or six distinct \ref lemon::Color "colors". |
|
2533 | 2548 |
ColorMap colorMap() const { |
2534 | 2549 |
return composeMap(_palette, _color_map); |
2535 | 2550 |
} |
2536 | 2551 |
|
2537 |
/// \brief |
|
2552 |
/// \brief Return the color index of the node |
|
2538 | 2553 |
/// |
2539 |
/// Returns the color index of the node. The values are in the |
|
2540 |
/// range \c [0..4] or \c [0..5] according to the coloring method. |
|
2554 |
/// This function returns the color index of the given node. The value is |
|
2555 |
/// in the range \c [0..4] or \c [0..5] according to the coloring method. |
|
2541 | 2556 |
int colorIndex(const Node& node) const { |
2542 | 2557 |
return _color_map[node]; |
2543 | 2558 |
} |
2544 | 2559 |
|
2545 |
/// \brief |
|
2560 |
/// \brief Return the color of the node |
|
2546 | 2561 |
/// |
2547 |
/// Returns the color of the node. The values are five or six |
|
2548 |
/// distinct \ref lemon::Color "colors". |
|
2562 |
/// This function returns the color of the given node. The value is among |
|
2563 |
/// five or six distinct \ref lemon::Color "colors". |
|
2549 | 2564 |
Color color(const Node& node) const { |
2550 | 2565 |
return _palette[_color_map[node]]; |
... | ... |
@@ -2552,12 +2567,12 @@ |
2552 | 2567 |
|
2553 | 2568 |
|
2554 |
/// \brief |
|
2569 |
/// \brief Calculate a coloring with at most six colors |
|
2555 | 2570 |
/// |
2556 | 2571 |
/// This function calculates a coloring with at most six colors. The time |
2557 | 2572 |
/// complexity of this variant is linear in the size of the graph. |
2558 |
/// \return %True when the algorithm could color the graph with six color. |
|
2559 |
/// If the algorithm fails, then the graph could not be planar. |
|
2560 |
/// \note This function can return true if the graph is not |
|
2561 |
/// planar but it can be colored with 6 colors. |
|
2573 |
/// \return \c true if the algorithm could color the graph with six colors. |
|
2574 |
/// If the algorithm fails, then the graph is not planar. |
|
2575 |
/// \note This function can return \c true if the graph is not |
|
2576 |
/// planar, but it can be colored with at most six colors. |
|
2562 | 2577 |
bool runSixColoring() { |
2563 | 2578 |
|
... | ... |
@@ -2661,9 +2676,12 @@ |
2661 | 2676 |
public: |
2662 | 2677 |
|
2663 |
/// \brief |
|
2678 |
/// \brief Calculate a coloring with at most five colors |
|
2664 | 2679 |
/// |
2665 | 2680 |
/// This function calculates a coloring with at most five |
2666 | 2681 |
/// colors. The worst case time complexity of this variant is |
2667 | 2682 |
/// quadratic in the size of the graph. |
2683 |
/// \param embedding This map should contain a valid combinatorical |
|
2684 |
/// embedding, i.e. a valid cyclic order of the arcs. |
|
2685 |
/// It can be computed using PlanarEmbedding. |
|
2668 | 2686 |
template <typename EmbeddingMap> |
2669 | 2687 |
void runFiveColoring(const EmbeddingMap& embedding) { |
... | ... |
@@ -2712,10 +2730,10 @@ |
2712 | 2730 |
} |
2713 | 2731 |
|
2714 |
/// \brief |
|
2732 |
/// \brief Calculate a coloring with at most five colors |
|
2715 | 2733 |
/// |
2716 | 2734 |
/// This function calculates a coloring with at most five |
2717 | 2735 |
/// colors. The worst case time complexity of this variant is |
2718 | 2736 |
/// quadratic in the size of the graph. |
2719 |
/// \return |
|
2737 |
/// \return \c true if the graph is planar. |
|
2720 | 2738 |
bool runFiveColoring() { |
2721 | 2739 |
PlanarEmbedding<Graph> pe(_graph); |
0 comments (0 inline)