gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Several doc improvements in maps.h
0 2 0
default
2 files changed with 51 insertions and 49 deletions:
↑ Collapse diff ↑
Show white space 24 line context
... ...
@@ -7,28 +7,28 @@
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19
// Modified for use in LEMON.
20
// We should really consider using Boost...
19
// This file contains a modified version of the concept checking
20
// utility from BOOST.
21
// See the appropriate copyright notice below.
21 22

	
22
//
23 23
// (C) Copyright Jeremy Siek 2000.
24 24
// Distributed under the Boost Software License, Version 1.0. (See
25 25
// accompanying file LICENSE_1_0.txt or copy at
26 26
// http://www.boost.org/LICENSE_1_0.txt)
27 27
//
28 28
// Revision History:
29 29
//   05 May   2001: Workarounds for HP aCC from Thomas Matelich. (Jeremy Siek)
30 30
//   02 April 2001: Removed limits header altogether. (Jeremy Siek)
31 31
//   01 April 2001: Modified to use new <boost/limits.hpp> header. (JMaddock)
32 32
//
33 33

	
34 34
// See http://www.boost.org/libs/concept_check for documentation.
Show white space 24 line context
... ...
@@ -239,24 +239,26 @@
239 239
    template <typename T1, typename C1 = std::less<T1> >
240 240
    struct rebind {
241 241
      typedef StdMap<Key, T1, C1> other;
242 242
    };
243 243
  };
244 244

	
245 245
  /// \brief Map for storing values for the range \c [0..size-1] range keys
246 246
  ///
247 247
  /// The current map has the \c [0..size-1] keyset and the values
248 248
  /// are stored in a \c std::vector<T>  container. It can be used with
249 249
  /// some data structures, for example \c UnionFind, \c BinHeap, when 
250 250
  /// the used items are small integer numbers.
251
  ///
252
  /// \todo Revise its name
251 253
  template <typename T>
252 254
  class IntegerMap {
253 255

	
254 256
    template <typename T1>
255 257
    friend class IntegerMap;
256 258

	
257 259
  public:
258 260

	
259 261
    typedef True ReferenceMapTag;
260 262
    ///\e
261 263
    typedef int Key;
262 264
    ///\e
... ...
@@ -337,87 +339,90 @@
337 339
  };
338 340

	
339 341
  ///Returns an \c IdentityMap class
340 342

	
341 343
  ///This function just returns an \c IdentityMap class.
342 344
  ///\relates IdentityMap
343 345
  template<typename T>
344 346
  inline IdentityMap<T> identityMap() {
345 347
    return IdentityMap<T>();
346 348
  }
347 349
  
348 350

	
349
  ///Convert the \c Value of a map to another type.
350

	
351
  ///\brief Convert the \c Value of a map to another type using
352
  ///the default conversion.
353
  ///
351 354
  ///This \c concepts::ReadMap "read only map"
352 355
  ///converts the \c Value of a maps to type \c T.
353 356
  ///Its \c Key is inherited from \c M.
354 357
  template <typename M, typename T> 
355 358
  class ConvertMap : public MapBase<typename M::Key, T> {
356 359
    const M& m;
357 360
  public:
358 361
    typedef MapBase<typename M::Key, T> Parent;
359 362
    typedef typename Parent::Key Key;
360 363
    typedef typename Parent::Value Value;
361 364

	
362 365
    ///Constructor
363 366

	
364 367
    ///Constructor
365 368
    ///\param _m is the underlying map
366 369
    ConvertMap(const M &_m) : m(_m) {};
367 370

	
368 371
    /// \brief The subscript operator.
369 372
    ///
370 373
    /// The subscript operator.
371
    /// \param k The key
372
    /// \return The target of the arc 
373 374
    Value operator[](const Key& k) const {return m[k];}
374 375
  };
375 376
  
376 377
  ///Returns an \c ConvertMap class
377 378

	
378 379
  ///This function just returns an \c ConvertMap class.
379 380
  ///\relates ConvertMap
380 381
  template<typename T, typename M>
381 382
  inline ConvertMap<M, T> convertMap(const M &m) {
382 383
    return ConvertMap<M, T>(m);
383 384
  }
384 385

	
385 386
  ///Simple wrapping of the map
386 387

	
387 388
  ///This \c concepts::ReadMap "read only map" returns the simple
388 389
  ///wrapping of the given map. Sometimes the reference maps cannot be
389 390
  ///combined with simple read maps. This map adaptor wraps the given
390 391
  ///map to simple read map.
392
  ///
393
  /// \todo Revise the misleading name
391 394
  template<typename M> 
392 395
  class SimpleMap : public MapBase<typename M::Key, typename M::Value> {
393 396
    const M& m;
394 397

	
395 398
  public:
396 399
    typedef MapBase<typename M::Key, typename M::Value> Parent;
397 400
    typedef typename Parent::Key Key;
398 401
    typedef typename Parent::Value Value;
399 402

	
400 403
    ///Constructor
401 404
    SimpleMap(const M &_m) : m(_m) {};
402 405
    ///\e
403 406
    Value operator[](Key k) const {return m[k];}
404 407
  };
405 408

	
406 409
  ///Simple writeable wrapping of the map
407 410

	
408
  ///This \c concepts::ReadMap "read only map" returns the simple
411
  ///This \c concepts::WriteMap "write map" returns the simple
409 412
  ///wrapping of the given map. Sometimes the reference maps cannot be
410 413
  ///combined with simple read-write maps. This map adaptor wraps the
411 414
  ///given map to simple read-write map.
415
  ///
416
  /// \todo Revise the misleading name
412 417
  template<typename M> 
413 418
  class SimpleWriteMap : public MapBase<typename M::Key, typename M::Value> {
414 419
    M& m;
415 420

	
416 421
  public:
417 422
    typedef MapBase<typename M::Key, typename M::Value> Parent;
418 423
    typedef typename Parent::Key Key;
419 424
    typedef typename Parent::Value Value;
420 425

	
421 426
    ///Constructor
422 427
    SimpleWriteMap(M &_m) : m(_m) {};
423 428
    ///\e
... ...
@@ -484,25 +489,25 @@
484 489
    typedef typename Parent::Value Value;
485 490

	
486 491
    ///Constructor
487 492

	
488 493
    ///Constructor
489 494
    ///\param _m is the undelying map
490 495
    ///\param _v is the shift value
491 496
    ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
492 497
    ///\e
493 498
    Value operator[](Key k) const {return m[k] + v;}
494 499
  };
495 500

	
496
  ///Shift a map with a constant.
501
  ///Shift a map with a constant. This map is also writable.
497 502

	
498 503
  ///This \c concepts::ReadWriteMap "read-write map" returns the sum of the
499 504
  ///given map and a constant value. It makes also possible to write the map.
500 505
  ///Its \c Key and \c Value is inherited from \c M.
501 506
  ///
502 507
  ///Actually,
503 508
  ///\code
504 509
  ///  ShiftMap<X> sh(x,v);
505 510
  ///\endcode
506 511
  ///is equivalent with
507 512
  ///\code
508 513
  ///  ConstMap<X::Key, X::Value> c_tmp(v);
... ...
@@ -540,25 +545,26 @@
540 545

	
541 546
  template<typename M, typename C> 
542 547
  inline ShiftWriteMap<M, C> shiftMap(M &m,const C &v) {
543 548
    return ShiftWriteMap<M, C>(m,v);
544 549
  }
545 550

	
546 551
  ///Difference of two maps
547 552

	
548 553
  ///This \c concepts::ReadMap "read only map" returns the difference
549 554
  ///of the values of the two
550 555
  ///given maps. Its \c Key and \c Value will be inherited from \c M1.
551 556
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
552

	
557
  ///
558
  /// \todo Revise the misleading name
553 559
  template<typename M1, typename M2> 
554 560
  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
555 561
    const M1& m1;
556 562
    const M2& m2;
557 563
  public:
558 564
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
559 565
    typedef typename Parent::Key Key;
560 566
    typedef typename Parent::Value Value;
561 567

	
562 568
    ///Constructor
563 569
    SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
564 570
    /// \e
... ...
@@ -632,25 +638,25 @@
632 638
    typedef typename Parent::Value Value;
633 639

	
634 640
    ///Constructor
635 641

	
636 642
    ///Constructor
637 643
    ///\param _m is the undelying map
638 644
    ///\param _v is the scaling value
639 645
    ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
640 646
    /// \e
641 647
    Value operator[](Key k) const {return v * m[k];}
642 648
  };
643 649

	
644
  ///Scales a maps with a constant.
650
  ///Scales a maps with a constant (ReadWrite version).
645 651

	
646 652
  ///This \c concepts::ReadWriteMap "read-write map" returns the value of the
647 653
  ///given map multiplied from the left side with a constant value. It can
648 654
  ///be used as write map also if the given multiplier is not zero.
649 655
  ///Its \c Key and \c Value is inherited from \c M.
650 656
  template<typename M, typename C = typename M::Value> 
651 657
  class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
652 658
    M& m;
653 659
    C v;
654 660
  public:
655 661
    typedef MapBase<typename M::Key, typename M::Value> Parent;
656 662
    typedef typename Parent::Key Key;
... ...
@@ -849,25 +855,25 @@
849 855
    const M& m;
850 856
  public:
851 857
    typedef MapBase<typename M::Key, typename M::Value> Parent;
852 858
    typedef typename Parent::Key Key;
853 859
    typedef typename Parent::Value Value;
854 860

	
855 861
    ///Constructor
856 862
    NegMap(const M &_m) : m(_m) {};
857 863
    /// \e
858 864
    Value operator[](Key k) const {return -m[k];}
859 865
  };
860 866
  
861
  ///Negative value of a map
867
  ///Negative value of a map (ReadWrite version)
862 868

	
863 869
  ///This \c concepts::ReadWriteMap "read-write map" returns the negative
864 870
  ///value of the value returned by the
865 871
  ///given map. Its \c Key and \c Value will be inherited from \c M.
866 872
  ///The unary \c - operator must be defined for \c Value, of course.
867 873

	
868 874
  template<typename M> 
869 875
  class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
870 876
    M& m;
871 877
  public:
872 878
    typedef MapBase<typename M::Key, typename M::Value> Parent;
873 879
    typedef typename Parent::Key Key;
... ...
@@ -896,36 +902,24 @@
896 902
  }
897 903

	
898 904
  ///Absolute value of a map
899 905

	
900 906
  ///This \c concepts::ReadMap "read only map" returns the absolute value
901 907
  ///of the
902 908
  ///value returned by the
903 909
  ///given map. Its \c Key and \c Value will be inherited
904 910
  ///from <tt>M</tt>. <tt>Value</tt>
905 911
  ///must be comparable to <tt>0</tt> and the unary <tt>-</tt>
906 912
  ///operator must be defined for it, of course.
907 913
  ///
908
  ///\bug We need a unified way to handle the situation below:
909
  ///\code
910
  ///  struct _UnConvertible {};
911
  ///  template<class A> inline A t_abs(A a) {return _UnConvertible();}
912
  ///  template<> inline int t_abs<>(int n) {return abs(n);}
913
  ///  template<> inline long int t_abs<>(long int n) {return labs(n);}
914
  ///  template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
915
  ///  template<> inline float t_abs<>(float n) {return fabsf(n);}
916
  ///  template<> inline double t_abs<>(double n) {return fabs(n);}
917
  ///  template<> inline long double t_abs<>(long double n) {return fabsl(n);}
918
  ///\endcode
919
  
920 914

	
921 915
  template<typename M> 
922 916
  class AbsMap : public MapBase<typename M::Key, typename M::Value> {
923 917
    const M& m;
924 918
  public:
925 919
    typedef MapBase<typename M::Key, typename M::Value> Parent;
926 920
    typedef typename Parent::Key Key;
927 921
    typedef typename Parent::Value Value;
928 922

	
929 923
    ///Constructor
930 924
    AbsMap(const M &_m) : m(_m) {};
931 925
    /// \e
... ...
@@ -1032,24 +1026,26 @@
1032 1026
  inline MapFunctor<M> mapFunctor(const M &m) {
1033 1027
    return MapFunctor<M>(m);
1034 1028
  }
1035 1029

	
1036 1030
  ///Applies all map setting operations to two maps
1037 1031

	
1038 1032
  ///This map has two \c concepts::ReadMap "readable map"
1039 1033
  ///parameters and each read request will be passed just to the
1040 1034
  ///first map. This class is the just readable map type of the ForkWriteMap.
1041 1035
  ///
1042 1036
  ///The \c Key and \c Value will be inherited from \c M1.
1043 1037
  ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
1038
  ///
1039
  /// \todo Why is it needed?
1044 1040
  template<typename  M1, typename M2> 
1045 1041
  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
1046 1042
    const M1& m1;
1047 1043
    const M2& m2;
1048 1044
  public:
1049 1045
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
1050 1046
    typedef typename Parent::Key Key;
1051 1047
    typedef typename Parent::Value Value;
1052 1048

	
1053 1049
    ///Constructor
1054 1050
    ForkMap(const M1 &_m1, const M2 &_m2) : m1(_m1), m2(_m2) {};
1055 1051
    /// \e
... ...
@@ -1115,25 +1111,25 @@
1115 1111
    const M& m;
1116 1112
  public:
1117 1113
    typedef MapBase<typename M::Key, bool> Parent;
1118 1114
    typedef typename Parent::Key Key;
1119 1115
    typedef typename Parent::Value Value;
1120 1116

	
1121 1117
    /// Constructor
1122 1118
    NotMap(const M &_m) : m(_m) {};
1123 1119
    ///\e
1124 1120
    Value operator[](Key k) const {return !m[k];}
1125 1121
  };
1126 1122

	
1127
  ///Logical 'not' of a map with writing possibility
1123
  ///Logical 'not' of a map (ReadWrie version)
1128 1124
  
1129 1125
  ///This bool \c concepts::ReadWriteMap "read-write map" returns the 
1130 1126
  ///logical negation of value returned by the given map. When it is set,
1131 1127
  ///the opposite value is set to the original map.
1132 1128
  ///Its \c Key and will be inherited from \c M,
1133 1129
  ///its Value is <tt>bool</tt>.
1134 1130
  template <typename M> 
1135 1131
  class NotWriteMap : public MapBase<typename M::Key, bool> {
1136 1132
    M& m;
1137 1133
  public:
1138 1134
    typedef MapBase<typename M::Key, bool> Parent;
1139 1135
    typedef typename Parent::Key Key;
... ...
@@ -1178,94 +1174,97 @@
1178 1174
    };
1179 1175

	
1180 1176
    template <typename _Iterator>
1181 1177
    struct IteratorTraits<_Iterator,
1182 1178
      typename exists<typename _Iterator::container_type>::type> 
1183 1179
    {
1184 1180
      typedef typename _Iterator::container_type::value_type Value;
1185 1181
    };
1186 1182

	
1187 1183
  }
1188 1184
  
1189 1185

	
1190
  /// \brief Writable bool map for store each true assigned elements.
1186
  /// \brief Writable bool map for logging each true assigned elements
1191 1187
  ///
1192
  /// Writable bool map to store each true assigned elements. It will
1188
  /// Writable bool map for logging each true assigned elements, i.e it
1193 1189
  /// copies all the keys set to true to the given iterator.
1194 1190
  ///
1195 1191
  /// \note The container of the iterator should contain space 
1196 1192
  /// for each element.
1197 1193
  ///
1198
  /// The next example shows how can you write the nodes directly
1194
  /// The following example shows how you can write the edges found by the Prim
1195
  /// algorithm directly
1199 1196
  /// to the standard output.
1200 1197
  ///\code
1201 1198
  /// typedef IdMap<Graph, Edge> EdgeIdMap;
1202 1199
  /// EdgeIdMap edgeId(graph);
1203 1200
  ///
1204 1201
  /// typedef MapFunctor<EdgeIdMap> EdgeIdFunctor;
1205 1202
  /// EdgeIdFunctor edgeIdFunctor(edgeId);
1206 1203
  ///
1207 1204
  /// StoreBoolMap<ostream_iterator<int>, EdgeIdFunctor> 
1208 1205
  ///   writerMap(ostream_iterator<int>(cout, " "), edgeIdFunctor);
1209 1206
  ///
1210 1207
  /// prim(graph, cost, writerMap);
1211 1208
  ///\endcode
1209
  ///
1210
  ///\todo Revise the name of this class and the relates ones.
1212 1211
  template <typename _Iterator, 
1213 1212
            typename _Functor =
1214 1213
            _maps_bits::Identity<typename _maps_bits::
1215 1214
                                 IteratorTraits<_Iterator>::Value> >
1216 1215
  class StoreBoolMap {
1217 1216
  public:
1218 1217
    typedef _Iterator Iterator;
1219 1218

	
1220 1219
    typedef typename _Functor::argument_type Key;
1221 1220
    typedef bool Value;
1222 1221

	
1223 1222
    typedef _Functor Functor;
1224 1223

	
1225 1224
    /// Constructor
1226 1225
    StoreBoolMap(Iterator it, const Functor& functor = Functor()) 
1227 1226
      : _begin(it), _end(it), _functor(functor) {}
1228 1227

	
1229
    /// Gives back the given iterator set for the first time.
1228
    /// Gives back the given iterator set for the first key
1230 1229
    Iterator begin() const {
1231 1230
      return _begin;
1232 1231
    }
1233 1232
 
1234
    /// Gives back the iterator after the last set operation.
1233
    /// Gives back the the 'after the last' iterator
1235 1234
    Iterator end() const {
1236 1235
      return _end;
1237 1236
    }
1238 1237

	
1239 1238
    /// Setter function of the map
1240 1239
    void set(const Key& key, Value value) const {
1241 1240
      if (value) {
1242 1241
	*_end++ = _functor(key);
1243 1242
      }
1244 1243
    }
1245 1244
    
1246 1245
  private:
1247 1246
    Iterator _begin;
1248 1247
    mutable Iterator _end;
1249 1248
    Functor _functor;
1250 1249
  };
1251 1250

	
1252
  /// \brief Writable bool map for store each true assigned elements in 
1253
  /// a back insertable container.
1251
  /// \brief Writable bool map for logging each true assigned elements in 
1252
  /// a back insertable container
1254 1253
  ///
1255
  /// Writable bool map for store each true assigned elements in a back 
1256
  /// insertable container. It will push back all the keys set to true into
1257
  /// the container. It can be used to retrieve the items into a standard
1258
  /// container. The next example shows how can you store the undirected
1259
  /// arcs in a vector with prim algorithm.
1254
  /// Writable bool map for logging each true assigned elements by pushing
1255
  /// back them into a back insertable container.
1256
  /// It can be used to retrieve the items into a standard
1257
  /// container. The next example shows how you can store the
1258
  /// edges found by the Prim algorithm in a vector.
1260 1259
  ///
1261 1260
  ///\code
1262 1261
  /// vector<Edge> span_tree_edges;
1263 1262
  /// BackInserterBoolMap<vector<Edge> > inserter_map(span_tree_edges);
1264 1263
  /// prim(graph, cost, inserter_map);
1265 1264
  ///\endcode
1266 1265
  template <typename Container,
1267 1266
            typename Functor =
1268 1267
            _maps_bits::Identity<typename Container::value_type> >
1269 1268
  class BackInserterBoolMap {
1270 1269
  public:
1271 1270
    typedef typename Container::value_type Key;
... ...
@@ -1279,28 +1278,28 @@
1279 1278
    /// Setter function of the map
1280 1279
    void set(const Key& key, Value value) {
1281 1280
      if (value) {
1282 1281
	container.push_back(functor(key));
1283 1282
      }
1284 1283
    }
1285 1284
    
1286 1285
  private:
1287 1286
    Container& container;
1288 1287
    Functor functor;
1289 1288
  };
1290 1289

	
1291
  /// \brief Writable bool map for store each true assigned elements in 
1290
  /// \brief Writable bool map for storing each true assignments in 
1292 1291
  /// a front insertable container.
1293 1292
  ///
1294
  /// Writable bool map for store each true assigned elements in a front 
1293
  /// Writable bool map for storing each true assignment in a front 
1295 1294
  /// insertable container. It will push front all the keys set to \c true into
1296 1295
  /// the container. For example see the BackInserterBoolMap.
1297 1296
  template <typename Container,
1298 1297
            typename Functor =
1299 1298
            _maps_bits::Identity<typename Container::value_type> >
1300 1299
  class FrontInserterBoolMap {
1301 1300
  public:
1302 1301
    typedef typename Container::value_type Key;
1303 1302
    typedef bool Value;
1304 1303

	
1305 1304
    /// Constructor
1306 1305
    FrontInserterBoolMap(Container& _container,
... ...
@@ -1310,30 +1309,32 @@
1310 1309
    /// Setter function of the map
1311 1310
    void set(const Key& key, Value value) {
1312 1311
      if (value) {
1313 1312
	container.push_front(key);
1314 1313
      }
1315 1314
    }
1316 1315
    
1317 1316
  private:
1318 1317
    Container& container;    
1319 1318
    Functor functor;
1320 1319
  };
1321 1320

	
1322
  /// \brief Writable bool map for store each true assigned elements in 
1321
  /// \brief Writable bool map for storing each true assigned elements in 
1323 1322
  /// an insertable container.
1324 1323
  ///
1325
  /// Writable bool map for store each true assigned elements in an 
1324
  /// Writable bool map for storing each true assigned elements in an 
1326 1325
  /// insertable container. It will insert all the keys set to \c true into
1327
  /// the container. If you want to store the cut arcs of the strongly
1326
  /// the container.
1327
  ///
1328
  /// For example, if you want to store the cut arcs of the strongly
1328 1329
  /// connected components in a set you can use the next code:
1329 1330
  ///
1330 1331
  ///\code
1331 1332
  /// set<Arc> cut_arcs;
1332 1333
  /// InserterBoolMap<set<Arc> > inserter_map(cut_arcs);
1333 1334
  /// stronglyConnectedCutArcs(digraph, cost, inserter_map);
1334 1335
  ///\endcode
1335 1336
  template <typename Container,
1336 1337
            typename Functor =
1337 1338
            _maps_bits::Identity<typename Container::value_type> >
1338 1339
  class InserterBoolMap {
1339 1340
  public:
... ...
@@ -1360,25 +1361,25 @@
1360 1361
  private:
1361 1362
    Container& container;
1362 1363
    typename Container::iterator it;
1363 1364
    Functor functor;
1364 1365
  };
1365 1366

	
1366 1367
  /// \brief Fill the true set elements with a given value.
1367 1368
  ///
1368 1369
  /// Writable bool map to fill the elements set to \c true with a given value.
1369 1370
  /// The value can set 
1370 1371
  /// the container.
1371 1372
  ///
1372
  /// The next code finds the connected components of the undirected digraph
1373
  /// The following code finds the connected components of a graph
1373 1374
  /// and stores it in the \c comp map:
1374 1375
  ///\code
1375 1376
  /// typedef Graph::NodeMap<int> ComponentMap;
1376 1377
  /// ComponentMap comp(graph);
1377 1378
  /// typedef FillBoolMap<Graph::NodeMap<int> > ComponentFillerMap;
1378 1379
  /// ComponentFillerMap filler(comp, 0);
1379 1380
  ///
1380 1381
  /// Dfs<Graph>::DefProcessedMap<ComponentFillerMap>::Create dfs(graph);
1381 1382
  /// dfs.processedMap(filler);
1382 1383
  /// dfs.init();
1383 1384
  /// for (NodeIt it(graph); it != INVALID; ++it) {
1384 1385
  ///   if (!dfs.reached(it)) {
... ...
@@ -1408,63 +1409,64 @@
1408 1409
    } 
1409 1410

	
1410 1411
    /// Gives back the current fill value
1411 1412
    typename Map::Value& fillValue() {
1412 1413
      return fill;
1413 1414
    } 
1414 1415

	
1415 1416
    /// Sets the current fill value
1416 1417
    void fillValue(const typename Map::Value& _fill) {
1417 1418
      fill = _fill;
1418 1419
    } 
1419 1420

	
1420
    /// Setter function of the map
1421
    /// Set function of the map
1421 1422
    void set(const Key& key, Value value) {
1422 1423
      if (value) {
1423 1424
	map.set(key, fill);
1424 1425
      }
1425 1426
    }
1426 1427
    
1427 1428
  private:
1428 1429
    Map& map;
1429 1430
    typename Map::Value fill;
1430 1431
  };
1431 1432

	
1432 1433

	
1433
  /// \brief Writable bool map which stores for each true assigned elements  
1434
  /// the setting order number.
1434
  /// \brief Writable bool map which stores the sequence number of 
1435
  /// true assignments.  
1435 1436
  ///
1436 1437
  /// Writable bool map which stores for each true assigned elements  
1437
  /// the setting order number. It make easy to calculate the leaving
1438
  /// the sequence number of this setting.
1439
  /// It makes it easy to calculate the leaving
1438 1440
  /// order of the nodes in the \c Dfs algorithm.
1439 1441
  ///
1440 1442
  ///\code
1441 1443
  /// typedef Digraph::NodeMap<int> OrderMap;
1442 1444
  /// OrderMap order(digraph);
1443 1445
  /// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
1444 1446
  /// OrderSetterMap setter(order);
1445 1447
  /// Dfs<Digraph>::DefProcessedMap<OrderSetterMap>::Create dfs(digraph);
1446 1448
  /// dfs.processedMap(setter);
1447 1449
  /// dfs.init();
1448 1450
  /// for (NodeIt it(digraph); it != INVALID; ++it) {
1449 1451
  ///   if (!dfs.reached(it)) {
1450 1452
  ///     dfs.addSource(it);
1451 1453
  ///     dfs.start();
1452 1454
  ///   }
1453 1455
  /// }
1454 1456
  ///\endcode
1455 1457
  ///
1456
  /// The discovering order can be stored a little harder because the
1458
  /// The storing of the discovering order is more difficult because the
1457 1459
  /// ReachedMap should be readable in the dfs algorithm but the setting
1458
  /// order map is not readable. Now we should use the fork map:
1460
  /// order map is not readable. Thus we must use the fork map:
1459 1461
  ///
1460 1462
  ///\code
1461 1463
  /// typedef Digraph::NodeMap<int> OrderMap;
1462 1464
  /// OrderMap order(digraph);
1463 1465
  /// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
1464 1466
  /// OrderSetterMap setter(order);
1465 1467
  /// typedef Digraph::NodeMap<bool> StoreMap;
1466 1468
  /// StoreMap store(digraph);
1467 1469
  ///
1468 1470
  /// typedef ForkWriteMap<StoreMap, OrderSetterMap> ReachedMap;
1469 1471
  /// ReachedMap reached(store, setter);
1470 1472
  ///
0 comments (0 inline)