gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Def -> Set renaming in Preflow
0 2 0
default
2 files changed with 13 insertions and 13 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_PREFLOW_H
20 20
#define LEMON_PREFLOW_H
21 21

	
22 22
#include <lemon/tolerance.h>
23 23
#include <lemon/elevator.h>
24 24

	
25 25
/// \file
26 26
/// \ingroup max_flow
27 27
/// \brief Implementation of the preflow algorithm.
28 28

	
29 29
namespace lemon {
30 30

	
31 31
  /// \brief Default traits class of Preflow class.
32 32
  ///
33 33
  /// Default traits class of Preflow class.
34 34
  /// \param _Graph Digraph type.
35 35
  /// \param _CapacityMap Type of capacity map.
36 36
  template <typename _Graph, typename _CapacityMap>
37 37
  struct PreflowDefaultTraits {
38 38

	
39 39
    /// \brief The digraph type the algorithm runs on.
40 40
    typedef _Graph Digraph;
41 41

	
42 42
    /// \brief The type of the map that stores the arc capacities.
43 43
    ///
44 44
    /// The type of the map that stores the arc capacities.
45 45
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
46 46
    typedef _CapacityMap CapacityMap;
47 47

	
48 48
    /// \brief The type of the length of the arcs.
49 49
    typedef typename CapacityMap::Value Value;
50 50

	
51 51
    /// \brief The map type that stores the flow values.
52 52
    ///
53 53
    /// The map type that stores the flow values.
54 54
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
55 55
    typedef typename Digraph::template ArcMap<Value> FlowMap;
56 56

	
57 57
    /// \brief Instantiates a FlowMap.
58 58
    ///
59 59
    /// This function instantiates a \ref FlowMap.
60 60
    /// \param digraph The digraph, to which we would like to define
61 61
    /// the flow map.
62 62
    static FlowMap* createFlowMap(const Digraph& digraph) {
63 63
      return new FlowMap(digraph);
64 64
    }
65 65

	
66 66
    /// \brief The eleavator type used by Preflow algorithm.
67 67
    ///
68 68
    /// The elevator type used by Preflow algorithm.
69 69
    ///
70 70
    /// \sa Elevator
71 71
    /// \sa LinkedElevator
72 72
    typedef LinkedElevator<Digraph, typename Digraph::Node> Elevator;
73 73

	
74 74
    /// \brief Instantiates an Elevator.
75 75
    ///
76 76
    /// This function instantiates a \ref Elevator.
77 77
    /// \param digraph The digraph, to which we would like to define
78 78
    /// the elevator.
79 79
    /// \param max_level The maximum level of the elevator.
80 80
    static Elevator* createElevator(const Digraph& digraph, int max_level) {
81 81
      return new Elevator(digraph, max_level);
82 82
    }
83 83

	
84 84
    /// \brief The tolerance used by the algorithm
85 85
    ///
86 86
    /// The tolerance used by the algorithm to handle inexact computation.
87 87
    typedef lemon::Tolerance<Value> Tolerance;
88 88

	
89 89
  };
90 90

	
91 91

	
92 92
  /// \ingroup max_flow
93 93
  ///
94 94
  /// \brief %Preflow algorithms class.
95 95
  ///
96 96
  /// This class provides an implementation of the Goldberg's \e
97 97
  /// preflow \e algorithm producing a flow of maximum value in a
98 98
  /// digraph. The preflow algorithms are the fastest known max
99 99
  /// flow algorithms. The current implementation use a mixture of the
100 100
  /// \e "highest label" and the \e "bound decrease" heuristics.
101 101
  /// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
102 102
  ///
103 103
  /// The algorithm consists from two phases. After the first phase
104 104
  /// the maximal flow value and the minimum cut can be obtained. The
105 105
  /// second phase constructs the feasible maximum flow on each arc.
106 106
  ///
107 107
  /// \param _Graph The digraph type the algorithm runs on.
108 108
  /// \param _CapacityMap The flow map type.
109 109
  /// \param _Traits Traits class to set various data types used by
110 110
  /// the algorithm.  The default traits class is \ref
111 111
  /// PreflowDefaultTraits.  See \ref PreflowDefaultTraits for the
112 112
  /// documentation of a %Preflow traits class.
113 113
  ///
114 114
  ///\author Jacint Szabo and Balazs Dezso
115 115
#ifdef DOXYGEN
116 116
  template <typename _Graph, typename _CapacityMap, typename _Traits>
117 117
#else
118 118
  template <typename _Graph,
119 119
            typename _CapacityMap = typename _Graph::template ArcMap<int>,
120 120
            typename _Traits = PreflowDefaultTraits<_Graph, _CapacityMap> >
121 121
#endif
122 122
  class Preflow {
123 123
  public:
124 124

	
125 125
    typedef _Traits Traits;
126 126
    typedef typename Traits::Digraph Digraph;
127 127
    typedef typename Traits::CapacityMap CapacityMap;
128 128
    typedef typename Traits::Value Value;
129 129

	
130 130
    typedef typename Traits::FlowMap FlowMap;
131 131
    typedef typename Traits::Elevator Elevator;
132 132
    typedef typename Traits::Tolerance Tolerance;
133 133

	
134 134
  private:
135 135

	
136 136
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
137 137

	
138 138
    const Digraph& _graph;
139 139
    const CapacityMap* _capacity;
140 140

	
141 141
    int _node_num;
142 142

	
143 143
    Node _source, _target;
144 144

	
145 145
    FlowMap* _flow;
146 146
    bool _local_flow;
147 147

	
148 148
    Elevator* _level;
149 149
    bool _local_level;
150 150

	
151 151
    typedef typename Digraph::template NodeMap<Value> ExcessMap;
152 152
    ExcessMap* _excess;
153 153

	
154 154
    Tolerance _tolerance;
155 155

	
156 156
    bool _phase;
157 157

	
158 158

	
159 159
    void createStructures() {
160 160
      _node_num = countNodes(_graph);
161 161

	
162 162
      if (!_flow) {
163 163
        _flow = Traits::createFlowMap(_graph);
164 164
        _local_flow = true;
165 165
      }
166 166
      if (!_level) {
167 167
        _level = Traits::createElevator(_graph, _node_num);
168 168
        _local_level = true;
169 169
      }
170 170
      if (!_excess) {
171 171
        _excess = new ExcessMap(_graph);
172 172
      }
173 173
    }
174 174

	
175 175
    void destroyStructures() {
176 176
      if (_local_flow) {
177 177
        delete _flow;
178 178
      }
179 179
      if (_local_level) {
180 180
        delete _level;
181 181
      }
182 182
      if (_excess) {
183 183
        delete _excess;
184 184
      }
185 185
    }
186 186

	
187 187
  public:
188 188

	
189 189
    typedef Preflow Create;
190 190

	
191 191
    ///\name Named template parameters
192 192

	
193 193
    ///@{
194 194

	
195 195
    template <typename _FlowMap>
196
    struct DefFlowMapTraits : public Traits {
196
    struct SetFlowMapTraits : public Traits {
197 197
      typedef _FlowMap FlowMap;
198 198
      static FlowMap *createFlowMap(const Digraph&) {
199 199
        LEMON_ASSERT(false, "FlowMap is not initialized");
200 200
        return 0; // ignore warnings
201 201
      }
202 202
    };
203 203

	
204 204
    /// \brief \ref named-templ-param "Named parameter" for setting
205 205
    /// FlowMap type
206 206
    ///
207 207
    /// \ref named-templ-param "Named parameter" for setting FlowMap
208 208
    /// type
209 209
    template <typename _FlowMap>
210
    struct DefFlowMap
211
      : public Preflow<Digraph, CapacityMap, DefFlowMapTraits<_FlowMap> > {
210
    struct SetFlowMap
211
      : public Preflow<Digraph, CapacityMap, SetFlowMapTraits<_FlowMap> > {
212 212
      typedef Preflow<Digraph, CapacityMap,
213
                      DefFlowMapTraits<_FlowMap> > Create;
213
                      SetFlowMapTraits<_FlowMap> > Create;
214 214
    };
215 215

	
216 216
    template <typename _Elevator>
217
    struct DefElevatorTraits : public Traits {
217
    struct SetElevatorTraits : public Traits {
218 218
      typedef _Elevator Elevator;
219 219
      static Elevator *createElevator(const Digraph&, int) {
220 220
        LEMON_ASSERT(false, "Elevator is not initialized");
221 221
        return 0; // ignore warnings
222 222
      }
223 223
    };
224 224

	
225 225
    /// \brief \ref named-templ-param "Named parameter" for setting
226 226
    /// Elevator type
227 227
    ///
228 228
    /// \ref named-templ-param "Named parameter" for setting Elevator
229 229
    /// type
230 230
    template <typename _Elevator>
231
    struct DefElevator
232
      : public Preflow<Digraph, CapacityMap, DefElevatorTraits<_Elevator> > {
231
    struct SetElevator
232
      : public Preflow<Digraph, CapacityMap, SetElevatorTraits<_Elevator> > {
233 233
      typedef Preflow<Digraph, CapacityMap,
234
                      DefElevatorTraits<_Elevator> > Create;
234
                      SetElevatorTraits<_Elevator> > Create;
235 235
    };
236 236

	
237 237
    template <typename _Elevator>
238
    struct DefStandardElevatorTraits : public Traits {
238
    struct SetStandardElevatorTraits : public Traits {
239 239
      typedef _Elevator Elevator;
240 240
      static Elevator *createElevator(const Digraph& digraph, int max_level) {
241 241
        return new Elevator(digraph, max_level);
242 242
      }
243 243
    };
244 244

	
245 245
    /// \brief \ref named-templ-param "Named parameter" for setting
246 246
    /// Elevator type
247 247
    ///
248 248
    /// \ref named-templ-param "Named parameter" for setting Elevator
249 249
    /// type. The Elevator should be standard constructor interface, ie.
250 250
    /// the digraph and the maximum level should be passed to it.
251 251
    template <typename _Elevator>
252
    struct DefStandardElevator
252
    struct SetStandardElevator
253 253
      : public Preflow<Digraph, CapacityMap,
254
                       DefStandardElevatorTraits<_Elevator> > {
254
                       SetStandardElevatorTraits<_Elevator> > {
255 255
      typedef Preflow<Digraph, CapacityMap,
256
                      DefStandardElevatorTraits<_Elevator> > Create;
256
                      SetStandardElevatorTraits<_Elevator> > Create;
257 257
    };
258 258

	
259 259
    /// @}
260 260

	
261 261
  protected:
262 262

	
263 263
    Preflow() {}
264 264

	
265 265
  public:
266 266

	
267 267

	
268 268
    /// \brief The constructor of the class.
269 269
    ///
270 270
    /// The constructor of the class.
271 271
    /// \param digraph The digraph the algorithm runs on.
272 272
    /// \param capacity The capacity of the arcs.
273 273
    /// \param source The source node.
274 274
    /// \param target The target node.
275 275
    Preflow(const Digraph& digraph, const CapacityMap& capacity,
276 276
               Node source, Node target)
277 277
      : _graph(digraph), _capacity(&capacity),
278 278
        _node_num(0), _source(source), _target(target),
279 279
        _flow(0), _local_flow(false),
280 280
        _level(0), _local_level(false),
281 281
        _excess(0), _tolerance(), _phase() {}
282 282

	
283 283
    /// \brief Destrcutor.
284 284
    ///
285 285
    /// Destructor.
286 286
    ~Preflow() {
287 287
      destroyStructures();
288 288
    }
289 289

	
290 290
    /// \brief Sets the capacity map.
291 291
    ///
292 292
    /// Sets the capacity map.
293 293
    /// \return \c (*this)
294 294
    Preflow& capacityMap(const CapacityMap& map) {
295 295
      _capacity = &map;
296 296
      return *this;
297 297
    }
298 298

	
299 299
    /// \brief Sets the flow map.
300 300
    ///
301 301
    /// Sets the flow map.
302 302
    /// \return \c (*this)
303 303
    Preflow& flowMap(FlowMap& map) {
304 304
      if (_local_flow) {
305 305
        delete _flow;
306 306
        _local_flow = false;
307 307
      }
308 308
      _flow = &map;
309 309
      return *this;
310 310
    }
311 311

	
312 312
    /// \brief Returns the flow map.
313 313
    ///
314 314
    /// \return The flow map.
315 315
    const FlowMap& flowMap() {
316 316
      return *_flow;
317 317
    }
318 318

	
319 319
    /// \brief Sets the elevator.
320 320
    ///
321 321
    /// Sets the elevator.
322 322
    /// \return \c (*this)
323 323
    Preflow& elevator(Elevator& elevator) {
324 324
      if (_local_level) {
325 325
        delete _level;
326 326
        _local_level = false;
327 327
      }
328 328
      _level = &elevator;
329 329
      return *this;
330 330
    }
331 331

	
332 332
    /// \brief Returns the elevator.
333 333
    ///
334 334
    /// \return The elevator.
335 335
    const Elevator& elevator() {
336 336
      return *_level;
337 337
    }
338 338

	
339 339
    /// \brief Sets the source node.
340 340
    ///
341 341
    /// Sets the source node.
342 342
    /// \return \c (*this)
343 343
    Preflow& source(const Node& node) {
344 344
      _source = node;
345 345
      return *this;
346 346
    }
347 347

	
348 348
    /// \brief Sets the target node.
349 349
    ///
350 350
    /// Sets the target node.
351 351
    /// \return \c (*this)
352 352
    Preflow& target(const Node& node) {
353 353
      _target = node;
354 354
      return *this;
355 355
    }
356 356

	
357 357
    /// \brief Sets the tolerance used by algorithm.
358 358
    ///
359 359
    /// Sets the tolerance used by algorithm.
360 360
    Preflow& tolerance(const Tolerance& tolerance) const {
361 361
      _tolerance = tolerance;
362 362
      return *this;
363 363
    }
364 364

	
365 365
    /// \brief Returns the tolerance used by algorithm.
366 366
    ///
367 367
    /// Returns the tolerance used by algorithm.
368 368
    const Tolerance& tolerance() const {
369 369
      return tolerance;
370 370
    }
371 371

	
372 372
    /// \name Execution control The simplest way to execute the
373 373
    /// algorithm is to use one of the member functions called \c
374 374
    /// run().
375 375
    /// \n
376 376
    /// If you need more control on initial solution or
377 377
    /// execution then you have to call one \ref init() function and then
378 378
    /// the startFirstPhase() and if you need the startSecondPhase().
379 379

	
380 380
    ///@{
381 381

	
382 382
    /// \brief Initializes the internal data structures.
383 383
    ///
384 384
    /// Initializes the internal data structures.
385 385
    ///
386 386
    void init() {
387 387
      createStructures();
388 388

	
389 389
      _phase = true;
390 390
      for (NodeIt n(_graph); n != INVALID; ++n) {
391 391
        _excess->set(n, 0);
392 392
      }
393 393

	
394 394
      for (ArcIt e(_graph); e != INVALID; ++e) {
395 395
        _flow->set(e, 0);
396 396
      }
397 397

	
398 398
      typename Digraph::template NodeMap<bool> reached(_graph, false);
399 399

	
400 400
      _level->initStart();
401 401
      _level->initAddItem(_target);
402 402

	
403 403
      std::vector<Node> queue;
404 404
      reached.set(_source, true);
405 405

	
406 406
      queue.push_back(_target);
407 407
      reached.set(_target, true);
408 408
      while (!queue.empty()) {
409 409
        _level->initNewLevel();
410 410
        std::vector<Node> nqueue;
411 411
        for (int i = 0; i < int(queue.size()); ++i) {
412 412
          Node n = queue[i];
413 413
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
414 414
            Node u = _graph.source(e);
415 415
            if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
416 416
              reached.set(u, true);
417 417
              _level->initAddItem(u);
418 418
              nqueue.push_back(u);
419 419
            }
420 420
          }
421 421
        }
422 422
        queue.swap(nqueue);
423 423
      }
424 424
      _level->initFinish();
425 425

	
426 426
      for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
427 427
        if (_tolerance.positive((*_capacity)[e])) {
428 428
          Node u = _graph.target(e);
429 429
          if ((*_level)[u] == _level->maxLevel()) continue;
430 430
          _flow->set(e, (*_capacity)[e]);
431 431
          _excess->set(u, (*_excess)[u] + (*_capacity)[e]);
432 432
          if (u != _target && !_level->active(u)) {
433 433
            _level->activate(u);
434 434
          }
435 435
        }
436 436
      }
437 437
    }
438 438

	
439 439
    /// \brief Initializes the internal data structures.
440 440
    ///
441 441
    /// Initializes the internal data structures and sets the initial
442 442
    /// flow to the given \c flowMap. The \c flowMap should contain a
443 443
    /// flow or at least a preflow, ie. in each node excluding the
444 444
    /// target the incoming flow should greater or equal to the
445 445
    /// outgoing flow.
446 446
    /// \return %False when the given \c flowMap is not a preflow.
447 447
    template <typename FlowMap>
448 448
    bool flowInit(const FlowMap& flowMap) {
449 449
      createStructures();
450 450

	
451 451
      for (ArcIt e(_graph); e != INVALID; ++e) {
452 452
        _flow->set(e, flowMap[e]);
453 453
      }
454 454

	
455 455
      for (NodeIt n(_graph); n != INVALID; ++n) {
456 456
        Value excess = 0;
457 457
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
458 458
          excess += (*_flow)[e];
459 459
        }
460 460
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
461 461
          excess -= (*_flow)[e];
462 462
        }
463 463
        if (excess < 0 && n != _source) return false;
464 464
        _excess->set(n, excess);
465 465
      }
466 466

	
467 467
      typename Digraph::template NodeMap<bool> reached(_graph, false);
468 468

	
469 469
      _level->initStart();
470 470
      _level->initAddItem(_target);
471 471

	
472 472
      std::vector<Node> queue;
473 473
      reached.set(_source, true);
474 474

	
475 475
      queue.push_back(_target);
476 476
      reached.set(_target, true);
477 477
      while (!queue.empty()) {
478 478
        _level->initNewLevel();
479 479
        std::vector<Node> nqueue;
480 480
        for (int i = 0; i < int(queue.size()); ++i) {
481 481
          Node n = queue[i];
482 482
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
483 483
            Node u = _graph.source(e);
484 484
            if (!reached[u] &&
485 485
                _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
486 486
              reached.set(u, true);
487 487
              _level->initAddItem(u);
488 488
              nqueue.push_back(u);
489 489
            }
490 490
          }
491 491
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
492 492
            Node v = _graph.target(e);
493 493
            if (!reached[v] && _tolerance.positive((*_flow)[e])) {
494 494
              reached.set(v, true);
495 495
              _level->initAddItem(v);
496 496
              nqueue.push_back(v);
497 497
            }
498 498
          }
499 499
        }
500 500
        queue.swap(nqueue);
501 501
      }
502 502
      _level->initFinish();
503 503

	
504 504
      for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
505 505
        Value rem = (*_capacity)[e] - (*_flow)[e];
506 506
        if (_tolerance.positive(rem)) {
507 507
          Node u = _graph.target(e);
508 508
          if ((*_level)[u] == _level->maxLevel()) continue;
509 509
          _flow->set(e, (*_capacity)[e]);
510 510
          _excess->set(u, (*_excess)[u] + rem);
511 511
          if (u != _target && !_level->active(u)) {
512 512
            _level->activate(u);
513 513
          }
514 514
        }
515 515
      }
516 516
      for (InArcIt e(_graph, _source); e != INVALID; ++e) {
517 517
        Value rem = (*_flow)[e];
518 518
        if (_tolerance.positive(rem)) {
519 519
          Node v = _graph.source(e);
520 520
          if ((*_level)[v] == _level->maxLevel()) continue;
521 521
          _flow->set(e, 0);
522 522
          _excess->set(v, (*_excess)[v] + rem);
523 523
          if (v != _target && !_level->active(v)) {
524 524
            _level->activate(v);
525 525
          }
526 526
        }
527 527
      }
528 528
      return true;
529 529
    }
530 530

	
531 531
    /// \brief Starts the first phase of the preflow algorithm.
532 532
    ///
533 533
    /// The preflow algorithm consists of two phases, this method runs
534 534
    /// the first phase. After the first phase the maximum flow value
535 535
    /// and a minimum value cut can already be computed, although a
536 536
    /// maximum flow is not yet obtained. So after calling this method
537 537
    /// \ref flowValue() returns the value of a maximum flow and \ref
538 538
    /// minCut() returns a minimum cut.
539 539
    /// \pre One of the \ref init() functions should be called.
540 540
    void startFirstPhase() {
541 541
      _phase = true;
542 542

	
543 543
      Node n = _level->highestActive();
544 544
      int level = _level->highestActiveLevel();
545 545
      while (n != INVALID) {
546 546
        int num = _node_num;
547 547

	
548 548
        while (num > 0 && n != INVALID) {
549 549
          Value excess = (*_excess)[n];
550 550
          int new_level = _level->maxLevel();
551 551

	
552 552
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
553 553
            Value rem = (*_capacity)[e] - (*_flow)[e];
554 554
            if (!_tolerance.positive(rem)) continue;
555 555
            Node v = _graph.target(e);
556 556
            if ((*_level)[v] < level) {
557 557
              if (!_level->active(v) && v != _target) {
558 558
                _level->activate(v);
559 559
              }
560 560
              if (!_tolerance.less(rem, excess)) {
561 561
                _flow->set(e, (*_flow)[e] + excess);
562 562
                _excess->set(v, (*_excess)[v] + excess);
563 563
                excess = 0;
564 564
                goto no_more_push_1;
565 565
              } else {
566 566
                excess -= rem;
567 567
                _excess->set(v, (*_excess)[v] + rem);
568 568
                _flow->set(e, (*_capacity)[e]);
569 569
              }
570 570
            } else if (new_level > (*_level)[v]) {
571 571
              new_level = (*_level)[v];
572 572
            }
573 573
          }
574 574

	
575 575
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
576 576
            Value rem = (*_flow)[e];
577 577
            if (!_tolerance.positive(rem)) continue;
578 578
            Node v = _graph.source(e);
579 579
            if ((*_level)[v] < level) {
580 580
              if (!_level->active(v) && v != _target) {
581 581
                _level->activate(v);
582 582
              }
583 583
              if (!_tolerance.less(rem, excess)) {
584 584
                _flow->set(e, (*_flow)[e] - excess);
585 585
                _excess->set(v, (*_excess)[v] + excess);
586 586
                excess = 0;
587 587
                goto no_more_push_1;
588 588
              } else {
589 589
                excess -= rem;
590 590
                _excess->set(v, (*_excess)[v] + rem);
591 591
                _flow->set(e, 0);
592 592
              }
593 593
            } else if (new_level > (*_level)[v]) {
594 594
              new_level = (*_level)[v];
595 595
            }
596 596
          }
597 597

	
598 598
        no_more_push_1:
599 599

	
600 600
          _excess->set(n, excess);
601 601

	
602 602
          if (excess != 0) {
603 603
            if (new_level + 1 < _level->maxLevel()) {
604 604
              _level->liftHighestActive(new_level + 1);
605 605
            } else {
606 606
              _level->liftHighestActiveToTop();
607 607
            }
608 608
            if (_level->emptyLevel(level)) {
609 609
              _level->liftToTop(level);
610 610
            }
611 611
          } else {
612 612
            _level->deactivate(n);
613 613
          }
614 614

	
615 615
          n = _level->highestActive();
616 616
          level = _level->highestActiveLevel();
617 617
          --num;
618 618
        }
619 619

	
620 620
        num = _node_num * 20;
621 621
        while (num > 0 && n != INVALID) {
622 622
          Value excess = (*_excess)[n];
623 623
          int new_level = _level->maxLevel();
624 624

	
625 625
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
626 626
            Value rem = (*_capacity)[e] - (*_flow)[e];
627 627
            if (!_tolerance.positive(rem)) continue;
628 628
            Node v = _graph.target(e);
629 629
            if ((*_level)[v] < level) {
630 630
              if (!_level->active(v) && v != _target) {
631 631
                _level->activate(v);
632 632
              }
633 633
              if (!_tolerance.less(rem, excess)) {
634 634
                _flow->set(e, (*_flow)[e] + excess);
635 635
                _excess->set(v, (*_excess)[v] + excess);
636 636
                excess = 0;
637 637
                goto no_more_push_2;
638 638
              } else {
639 639
                excess -= rem;
640 640
                _excess->set(v, (*_excess)[v] + rem);
641 641
                _flow->set(e, (*_capacity)[e]);
642 642
              }
643 643
            } else if (new_level > (*_level)[v]) {
644 644
              new_level = (*_level)[v];
645 645
            }
646 646
          }
647 647

	
648 648
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
649 649
            Value rem = (*_flow)[e];
650 650
            if (!_tolerance.positive(rem)) continue;
651 651
            Node v = _graph.source(e);
652 652
            if ((*_level)[v] < level) {
653 653
              if (!_level->active(v) && v != _target) {
654 654
                _level->activate(v);
655 655
              }
656 656
              if (!_tolerance.less(rem, excess)) {
657 657
                _flow->set(e, (*_flow)[e] - excess);
658 658
                _excess->set(v, (*_excess)[v] + excess);
659 659
                excess = 0;
660 660
                goto no_more_push_2;
661 661
              } else {
662 662
                excess -= rem;
663 663
                _excess->set(v, (*_excess)[v] + rem);
664 664
                _flow->set(e, 0);
665 665
              }
666 666
            } else if (new_level > (*_level)[v]) {
667 667
              new_level = (*_level)[v];
668 668
            }
669 669
          }
670 670

	
671 671
        no_more_push_2:
672 672

	
673 673
          _excess->set(n, excess);
674 674

	
675 675
          if (excess != 0) {
676 676
            if (new_level + 1 < _level->maxLevel()) {
677 677
              _level->liftActiveOn(level, new_level + 1);
678 678
            } else {
679 679
              _level->liftActiveToTop(level);
680 680
            }
681 681
            if (_level->emptyLevel(level)) {
682 682
              _level->liftToTop(level);
683 683
            }
684 684
          } else {
685 685
            _level->deactivate(n);
686 686
          }
687 687

	
688 688
          while (level >= 0 && _level->activeFree(level)) {
689 689
            --level;
690 690
          }
691 691
          if (level == -1) {
692 692
            n = _level->highestActive();
693 693
            level = _level->highestActiveLevel();
694 694
          } else {
695 695
            n = _level->activeOn(level);
696 696
          }
697 697
          --num;
698 698
        }
699 699
      }
700 700
    }
701 701

	
702 702
    /// \brief Starts the second phase of the preflow algorithm.
703 703
    ///
704 704
    /// The preflow algorithm consists of two phases, this method runs
705 705
    /// the second phase. After calling \ref init() and \ref
706 706
    /// startFirstPhase() and then \ref startSecondPhase(), \ref
707 707
    /// flowMap() return a maximum flow, \ref flowValue() returns the
708 708
    /// value of a maximum flow, \ref minCut() returns a minimum cut
709 709
    /// \pre The \ref init() and startFirstPhase() functions should be
710 710
    /// called before.
711 711
    void startSecondPhase() {
712 712
      _phase = false;
713 713

	
714 714
      typename Digraph::template NodeMap<bool> reached(_graph);
715 715
      for (NodeIt n(_graph); n != INVALID; ++n) {
716 716
        reached.set(n, (*_level)[n] < _level->maxLevel());
717 717
      }
718 718

	
719 719
      _level->initStart();
720 720
      _level->initAddItem(_source);
721 721

	
722 722
      std::vector<Node> queue;
723 723
      queue.push_back(_source);
724 724
      reached.set(_source, true);
725 725

	
726 726
      while (!queue.empty()) {
727 727
        _level->initNewLevel();
728 728
        std::vector<Node> nqueue;
729 729
        for (int i = 0; i < int(queue.size()); ++i) {
730 730
          Node n = queue[i];
731 731
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
732 732
            Node v = _graph.target(e);
733 733
            if (!reached[v] && _tolerance.positive((*_flow)[e])) {
734 734
              reached.set(v, true);
735 735
              _level->initAddItem(v);
736 736
              nqueue.push_back(v);
737 737
            }
738 738
          }
739 739
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
740 740
            Node u = _graph.source(e);
741 741
            if (!reached[u] &&
742 742
                _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
743 743
              reached.set(u, true);
744 744
              _level->initAddItem(u);
745 745
              nqueue.push_back(u);
746 746
            }
747 747
          }
748 748
        }
749 749
        queue.swap(nqueue);
750 750
      }
751 751
      _level->initFinish();
752 752

	
753 753
      for (NodeIt n(_graph); n != INVALID; ++n) {
754 754
        if (!reached[n]) {
755 755
          _level->dirtyTopButOne(n);
756 756
        } else if ((*_excess)[n] > 0 && _target != n) {
757 757
          _level->activate(n);
758 758
        }
759 759
      }
760 760

	
761 761
      Node n;
762 762
      while ((n = _level->highestActive()) != INVALID) {
763 763
        Value excess = (*_excess)[n];
764 764
        int level = _level->highestActiveLevel();
765 765
        int new_level = _level->maxLevel();
766 766

	
767 767
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
768 768
          Value rem = (*_capacity)[e] - (*_flow)[e];
769 769
          if (!_tolerance.positive(rem)) continue;
770 770
          Node v = _graph.target(e);
771 771
          if ((*_level)[v] < level) {
772 772
            if (!_level->active(v) && v != _source) {
773 773
              _level->activate(v);
774 774
            }
775 775
            if (!_tolerance.less(rem, excess)) {
776 776
              _flow->set(e, (*_flow)[e] + excess);
777 777
              _excess->set(v, (*_excess)[v] + excess);
778 778
              excess = 0;
779 779
              goto no_more_push;
780 780
            } else {
781 781
              excess -= rem;
782 782
              _excess->set(v, (*_excess)[v] + rem);
783 783
              _flow->set(e, (*_capacity)[e]);
784 784
            }
785 785
          } else if (new_level > (*_level)[v]) {
786 786
            new_level = (*_level)[v];
787 787
          }
788 788
        }
789 789

	
790 790
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
791 791
          Value rem = (*_flow)[e];
792 792
          if (!_tolerance.positive(rem)) continue;
793 793
          Node v = _graph.source(e);
794 794
          if ((*_level)[v] < level) {
795 795
            if (!_level->active(v) && v != _source) {
796 796
              _level->activate(v);
797 797
            }
798 798
            if (!_tolerance.less(rem, excess)) {
799 799
              _flow->set(e, (*_flow)[e] - excess);
800 800
              _excess->set(v, (*_excess)[v] + excess);
801 801
              excess = 0;
802 802
              goto no_more_push;
803 803
            } else {
804 804
              excess -= rem;
805 805
              _excess->set(v, (*_excess)[v] + rem);
806 806
              _flow->set(e, 0);
807 807
            }
808 808
          } else if (new_level > (*_level)[v]) {
809 809
            new_level = (*_level)[v];
810 810
          }
811 811
        }
812 812

	
813 813
      no_more_push:
814 814

	
815 815
        _excess->set(n, excess);
816 816

	
817 817
        if (excess != 0) {
818 818
          if (new_level + 1 < _level->maxLevel()) {
819 819
            _level->liftHighestActive(new_level + 1);
820 820
          } else {
821 821
            // Calculation error
822 822
            _level->liftHighestActiveToTop();
823 823
          }
824 824
          if (_level->emptyLevel(level)) {
825 825
            // Calculation error
826 826
            _level->liftToTop(level);
827 827
          }
828 828
        } else {
829 829
          _level->deactivate(n);
830 830
        }
831 831

	
832 832
      }
833 833
    }
834 834

	
835 835
    /// \brief Runs the preflow algorithm.
836 836
    ///
837 837
    /// Runs the preflow algorithm.
838 838
    /// \note pf.run() is just a shortcut of the following code.
839 839
    /// \code
840 840
    ///   pf.init();
841 841
    ///   pf.startFirstPhase();
842 842
    ///   pf.startSecondPhase();
843 843
    /// \endcode
844 844
    void run() {
845 845
      init();
846 846
      startFirstPhase();
847 847
      startSecondPhase();
848 848
    }
849 849

	
850 850
    /// \brief Runs the preflow algorithm to compute the minimum cut.
851 851
    ///
852 852
    /// Runs the preflow algorithm to compute the minimum cut.
853 853
    /// \note pf.runMinCut() is just a shortcut of the following code.
854 854
    /// \code
855 855
    ///   pf.init();
856 856
    ///   pf.startFirstPhase();
857 857
    /// \endcode
858 858
    void runMinCut() {
859 859
      init();
860 860
      startFirstPhase();
861 861
    }
862 862

	
863 863
    /// @}
864 864

	
865 865
    /// \name Query Functions
866 866
    /// The result of the %Preflow algorithm can be obtained using these
867 867
    /// functions.\n
868 868
    /// Before the use of these functions,
869 869
    /// either run() or start() must be called.
870 870

	
871 871
    ///@{
872 872

	
873 873
    /// \brief Returns the value of the maximum flow.
874 874
    ///
875 875
    /// Returns the value of the maximum flow by returning the excess
876 876
    /// of the target node \c t. This value equals to the value of
877 877
    /// the maximum flow already after the first phase.
878 878
    Value flowValue() const {
879 879
      return (*_excess)[_target];
880 880
    }
881 881

	
882 882
    /// \brief Returns true when the node is on the source side of minimum cut.
883 883
    ///
884 884
    /// Returns true when the node is on the source side of minimum
885 885
    /// cut. This method can be called both after running \ref
886 886
    /// startFirstPhase() and \ref startSecondPhase().
887 887
    bool minCut(const Node& node) const {
888 888
      return ((*_level)[node] == _level->maxLevel()) == _phase;
889 889
    }
890 890

	
891 891
    /// \brief Returns a minimum value cut.
892 892
    ///
893 893
    /// Sets the \c cutMap to the characteristic vector of a minimum value
894 894
    /// cut. This method can be called both after running \ref
895 895
    /// startFirstPhase() and \ref startSecondPhase(). The result after second
896 896
    /// phase could be changed slightly if inexact computation is used.
897 897
    /// \pre The \c cutMap should be a bool-valued node-map.
898 898
    template <typename CutMap>
899 899
    void minCutMap(CutMap& cutMap) const {
900 900
      for (NodeIt n(_graph); n != INVALID; ++n) {
901 901
        cutMap.set(n, minCut(n));
902 902
      }
903 903
    }
904 904

	
905 905
    /// \brief Returns the flow on the arc.
906 906
    ///
907 907
    /// Sets the \c flowMap to the flow on the arcs. This method can
908 908
    /// be called after the second phase of algorithm.
909 909
    Value flow(const Arc& arc) const {
910 910
      return (*_flow)[arc];
911 911
    }
912 912

	
913 913
    /// @}
914 914
  };
915 915
}
916 916

	
917 917
#endif
Ignore white space 12288 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <fstream>
20 20
#include <string>
21 21

	
22 22
#include "test_tools.h"
23 23
#include <lemon/smart_graph.h>
24 24
#include <lemon/preflow.h>
25 25
#include <lemon/concepts/digraph.h>
26 26
#include <lemon/concepts/maps.h>
27 27
#include <lemon/lgf_reader.h>
28 28

	
29 29
using namespace lemon;
30 30

	
31 31
void checkPreflow()
32 32
{
33 33
  typedef int VType;
34 34
  typedef concepts::Digraph Digraph;
35 35

	
36 36
  typedef Digraph::Node Node;
37 37
  typedef Digraph::Arc Arc;
38 38
  typedef concepts::ReadMap<Arc,VType> CapMap;
39 39
  typedef concepts::ReadWriteMap<Arc,VType> FlowMap;
40 40
  typedef concepts::WriteMap<Node,bool> CutMap;
41 41

	
42 42
  Digraph g;
43 43
  Node n;
44 44
  Arc e;
45 45
  CapMap cap;
46 46
  FlowMap flow;
47 47
  CutMap cut;
48 48

	
49
  Preflow<Digraph, CapMap>::DefFlowMap<FlowMap>::Create preflow_test(g,cap,n,n);
49
  Preflow<Digraph, CapMap>::SetFlowMap<FlowMap>::Create preflow_test(g,cap,n,n);
50 50

	
51 51
  preflow_test.capacityMap(cap);
52 52
  flow = preflow_test.flowMap();
53 53
  preflow_test.flowMap(flow);
54 54
  preflow_test.source(n);
55 55
  preflow_test.target(n);
56 56

	
57 57
  preflow_test.init();
58 58
  preflow_test.flowInit(cap);
59 59
  preflow_test.startFirstPhase();
60 60
  preflow_test.startSecondPhase();
61 61
  preflow_test.run();
62 62
  preflow_test.runMinCut();
63 63

	
64 64
  preflow_test.flowValue();
65 65
  preflow_test.minCut(n);
66 66
  preflow_test.minCutMap(cut);
67 67
  preflow_test.flow(e);
68 68

	
69 69
}
70 70

	
71 71
int cutValue (const SmartDigraph& g,
72 72
              const SmartDigraph::NodeMap<bool>& cut,
73 73
              const SmartDigraph::ArcMap<int>& cap) {
74 74

	
75 75
  int c=0;
76 76
  for(SmartDigraph::ArcIt e(g); e!=INVALID; ++e) {
77 77
    if (cut[g.source(e)] && !cut[g.target(e)]) c+=cap[e];
78 78
  }
79 79
  return c;
80 80
}
81 81

	
82 82
bool checkFlow(const SmartDigraph& g,
83 83
               const SmartDigraph::ArcMap<int>& flow,
84 84
               const SmartDigraph::ArcMap<int>& cap,
85 85
               SmartDigraph::Node s, SmartDigraph::Node t) {
86 86

	
87 87
  for (SmartDigraph::ArcIt e(g); e != INVALID; ++e) {
88 88
    if (flow[e] < 0 || flow[e] > cap[e]) return false;
89 89
  }
90 90

	
91 91
  for (SmartDigraph::NodeIt n(g); n != INVALID; ++n) {
92 92
    if (n == s || n == t) continue;
93 93
    int sum = 0;
94 94
    for (SmartDigraph::OutArcIt e(g, n); e != INVALID; ++e) {
95 95
      sum += flow[e];
96 96
    }
97 97
    for (SmartDigraph::InArcIt e(g, n); e != INVALID; ++e) {
98 98
      sum -= flow[e];
99 99
    }
100 100
    if (sum != 0) return false;
101 101
  }
102 102
  return true;
103 103
}
104 104

	
105 105
int main() {
106 106

	
107 107
  typedef SmartDigraph Digraph;
108 108

	
109 109
  typedef Digraph::Node Node;
110 110
  typedef Digraph::NodeIt NodeIt;
111 111
  typedef Digraph::ArcIt ArcIt;
112 112
  typedef Digraph::ArcMap<int> CapMap;
113 113
  typedef Digraph::ArcMap<int> FlowMap;
114 114
  typedef Digraph::NodeMap<bool> CutMap;
115 115

	
116 116
  typedef Preflow<Digraph, CapMap> PType;
117 117

	
118 118
  std::string f_name;
119 119
  if( getenv("srcdir") )
120 120
    f_name = std::string(getenv("srcdir"));
121 121
  else f_name = ".";
122 122
  f_name += "/test/preflow_graph.lgf";
123 123

	
124 124
  std::ifstream file(f_name.c_str());
125 125

	
126 126
  check(file, "Input file '" << f_name << "' not found.");
127 127

	
128 128
  Digraph g;
129 129
  Node s, t;
130 130
  CapMap cap(g);
131 131
  DigraphReader<Digraph>(g,file).
132 132
    arcMap("capacity", cap).
133 133
    node("source",s).
134 134
    node("target",t).
135 135
    run();
136 136

	
137 137
  PType preflow_test(g, cap, s, t);
138 138
  preflow_test.run();
139 139

	
140 140
  check(checkFlow(g, preflow_test.flowMap(), cap, s, t),
141 141
        "The flow is not feasible.");
142 142

	
143 143
  CutMap min_cut(g);
144 144
  preflow_test.minCutMap(min_cut);
145 145
  int min_cut_value=cutValue(g,min_cut,cap);
146 146

	
147 147
  check(preflow_test.flowValue() == min_cut_value,
148 148
        "The max flow value is not equal to the three min cut values.");
149 149

	
150 150
  FlowMap flow(g);
151 151
  for(ArcIt e(g); e!=INVALID; ++e) flow[e] = preflow_test.flowMap()[e];
152 152

	
153 153
  int flow_value=preflow_test.flowValue();
154 154

	
155 155
  for(ArcIt e(g); e!=INVALID; ++e) cap[e]=2*cap[e];
156 156
  preflow_test.flowInit(flow);
157 157
  preflow_test.startFirstPhase();
158 158

	
159 159
  CutMap min_cut1(g);
160 160
  preflow_test.minCutMap(min_cut1);
161 161
  min_cut_value=cutValue(g,min_cut1,cap);
162 162

	
163 163
  check(preflow_test.flowValue() == min_cut_value &&
164 164
        min_cut_value == 2*flow_value,
165 165
        "The max flow value or the min cut value is wrong.");
166 166

	
167 167
  preflow_test.startSecondPhase();
168 168

	
169 169
  check(checkFlow(g, preflow_test.flowMap(), cap, s, t),
170 170
        "The flow is not feasible.");
171 171

	
172 172
  CutMap min_cut2(g);
173 173
  preflow_test.minCutMap(min_cut2);
174 174
  min_cut_value=cutValue(g,min_cut2,cap);
175 175

	
176 176
  check(preflow_test.flowValue() == min_cut_value &&
177 177
        min_cut_value == 2*flow_value,
178 178
        "The max flow value or the three min cut values were not doubled");
179 179

	
180 180

	
181 181
  preflow_test.flowMap(flow);
182 182

	
183 183
  NodeIt tmp1(g,s);
184 184
  ++tmp1;
185 185
  if ( tmp1 != INVALID ) s=tmp1;
186 186

	
187 187
  NodeIt tmp2(g,t);
188 188
  ++tmp2;
189 189
  if ( tmp2 != INVALID ) t=tmp2;
190 190

	
191 191
  preflow_test.source(s);
192 192
  preflow_test.target(t);
193 193

	
194 194
  preflow_test.run();
195 195

	
196 196
  CutMap min_cut3(g);
197 197
  preflow_test.minCutMap(min_cut3);
198 198
  min_cut_value=cutValue(g,min_cut3,cap);
199 199

	
200 200

	
201 201
  check(preflow_test.flowValue() == min_cut_value,
202 202
        "The max flow value or the three min cut values are incorrect.");
203 203

	
204 204
  return 0;
205 205
}
0 comments (0 inline)