3
2
3
21
21
13
12
12
12
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
lemon/lemon.pc.in \ |
3 | 3 |
lemon/CMakeLists.txt \ |
4 | 4 |
lemon/config.h.cmake |
5 | 5 |
|
6 | 6 |
pkgconfig_DATA += lemon/lemon.pc |
7 | 7 |
|
8 | 8 |
lib_LTLIBRARIES += lemon/libemon.la |
9 | 9 |
|
10 | 10 |
lemon_libemon_la_SOURCES = \ |
11 | 11 |
lemon/arg_parser.cc \ |
12 | 12 |
lemon/base.cc \ |
13 | 13 |
lemon/color.cc \ |
14 | 14 |
lemon/lp_base.cc \ |
15 | 15 |
lemon/lp_skeleton.cc \ |
16 | 16 |
lemon/random.cc \ |
17 | 17 |
lemon/bits/windows.cc |
18 | 18 |
|
19 | 19 |
nodist_lemon_HEADERS = lemon/config.h |
20 | 20 |
|
21 | 21 |
lemon_libemon_la_CXXFLAGS = \ |
22 | 22 |
$(AM_CXXFLAGS) \ |
23 | 23 |
$(GLPK_CFLAGS) \ |
24 | 24 |
$(CPLEX_CFLAGS) \ |
25 | 25 |
$(SOPLEX_CXXFLAGS) \ |
26 | 26 |
$(CLP_CXXFLAGS) \ |
27 | 27 |
$(CBC_CXXFLAGS) |
28 | 28 |
|
29 | 29 |
lemon_libemon_la_LDFLAGS = \ |
30 | 30 |
$(GLPK_LIBS) \ |
31 | 31 |
$(CPLEX_LIBS) \ |
32 | 32 |
$(SOPLEX_LIBS) \ |
33 | 33 |
$(CLP_LIBS) \ |
34 | 34 |
$(CBC_LIBS) |
35 | 35 |
|
36 | 36 |
if HAVE_GLPK |
37 | 37 |
lemon_libemon_la_SOURCES += lemon/glpk.cc |
38 | 38 |
endif |
39 | 39 |
|
40 | 40 |
if HAVE_CPLEX |
41 | 41 |
lemon_libemon_la_SOURCES += lemon/cplex.cc |
42 | 42 |
endif |
43 | 43 |
|
44 | 44 |
if HAVE_SOPLEX |
45 | 45 |
lemon_libemon_la_SOURCES += lemon/soplex.cc |
46 | 46 |
endif |
47 | 47 |
|
48 | 48 |
if HAVE_CLP |
49 | 49 |
lemon_libemon_la_SOURCES += lemon/clp.cc |
50 | 50 |
endif |
51 | 51 |
|
52 | 52 |
if HAVE_CBC |
53 | 53 |
lemon_libemon_la_SOURCES += lemon/cbc.cc |
54 | 54 |
endif |
55 | 55 |
|
56 | 56 |
lemon_HEADERS += \ |
57 | 57 |
lemon/adaptors.h \ |
58 | 58 |
lemon/arg_parser.h \ |
59 | 59 |
lemon/assert.h \ |
60 | 60 |
lemon/bellman_ford.h \ |
61 | 61 |
lemon/bfs.h \ |
62 | 62 |
lemon/bin_heap.h \ |
63 |
lemon/ |
|
63 |
lemon/binomial_heap.h \ |
|
64 | 64 |
lemon/bucket_heap.h \ |
65 | 65 |
lemon/cbc.h \ |
66 | 66 |
lemon/circulation.h \ |
67 | 67 |
lemon/clp.h \ |
68 | 68 |
lemon/color.h \ |
69 | 69 |
lemon/concept_check.h \ |
70 | 70 |
lemon/connectivity.h \ |
71 | 71 |
lemon/counter.h \ |
72 | 72 |
lemon/core.h \ |
73 | 73 |
lemon/cplex.h \ |
74 | 74 |
lemon/dfs.h \ |
75 |
lemon/dheap.h \ |
|
75 | 76 |
lemon/dijkstra.h \ |
76 | 77 |
lemon/dim2.h \ |
77 | 78 |
lemon/dimacs.h \ |
78 | 79 |
lemon/edge_set.h \ |
79 | 80 |
lemon/elevator.h \ |
80 | 81 |
lemon/error.h \ |
81 | 82 |
lemon/euler.h \ |
82 | 83 |
lemon/fib_heap.h \ |
83 |
lemon/fourary_heap.h \ |
|
84 | 84 |
lemon/full_graph.h \ |
85 | 85 |
lemon/glpk.h \ |
86 | 86 |
lemon/gomory_hu.h \ |
87 | 87 |
lemon/graph_to_eps.h \ |
88 | 88 |
lemon/grid_graph.h \ |
89 | 89 |
lemon/hypercube_graph.h \ |
90 |
lemon/kary_heap.h \ |
|
91 | 90 |
lemon/kruskal.h \ |
92 | 91 |
lemon/hao_orlin.h \ |
93 | 92 |
lemon/lgf_reader.h \ |
94 | 93 |
lemon/lgf_writer.h \ |
95 | 94 |
lemon/list_graph.h \ |
96 | 95 |
lemon/lp.h \ |
97 | 96 |
lemon/lp_base.h \ |
98 | 97 |
lemon/lp_skeleton.h \ |
99 | 98 |
lemon/maps.h \ |
100 | 99 |
lemon/matching.h \ |
101 | 100 |
lemon/math.h \ |
102 | 101 |
lemon/min_cost_arborescence.h \ |
103 | 102 |
lemon/nauty_reader.h \ |
104 | 103 |
lemon/network_simplex.h \ |
105 | 104 |
lemon/pairing_heap.h \ |
106 | 105 |
lemon/path.h \ |
107 | 106 |
lemon/preflow.h \ |
107 |
lemon/quad_heap.h \ |
|
108 | 108 |
lemon/radix_heap.h \ |
109 | 109 |
lemon/radix_sort.h \ |
110 | 110 |
lemon/random.h \ |
111 | 111 |
lemon/smart_graph.h \ |
112 | 112 |
lemon/soplex.h \ |
113 | 113 |
lemon/suurballe.h \ |
114 | 114 |
lemon/time_measure.h \ |
115 | 115 |
lemon/tolerance.h \ |
116 | 116 |
lemon/unionfind.h \ |
117 | 117 |
lemon/bits/windows.h |
118 | 118 |
|
119 | 119 |
bits_HEADERS += \ |
120 | 120 |
lemon/bits/alteration_notifier.h \ |
121 | 121 |
lemon/bits/array_map.h \ |
122 | 122 |
lemon/bits/bezier.h \ |
123 | 123 |
lemon/bits/default_map.h \ |
124 | 124 |
lemon/bits/edge_set_extender.h \ |
125 | 125 |
lemon/bits/enable_if.h \ |
126 | 126 |
lemon/bits/graph_adaptor_extender.h \ |
127 | 127 |
lemon/bits/graph_extender.h \ |
128 | 128 |
lemon/bits/map_extender.h \ |
129 | 129 |
lemon/bits/path_dump.h \ |
130 | 130 |
lemon/bits/solver_bits.h \ |
131 | 131 |
lemon/bits/traits.h \ |
132 | 132 |
lemon/bits/variant.h \ |
133 | 133 |
lemon/bits/vector_map.h |
134 | 134 |
|
135 | 135 |
concept_HEADERS += \ |
136 | 136 |
lemon/concepts/digraph.h \ |
137 | 137 |
lemon/concepts/graph.h \ |
138 | 138 |
lemon/concepts/graph_components.h \ |
139 | 139 |
lemon/concepts/heap.h \ |
140 | 140 |
lemon/concepts/maps.h \ |
141 | 141 |
lemon/concepts/path.h |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 |
#ifndef LEMON_BINOM_HEAP_H |
|
20 |
#define LEMON_BINOM_HEAP_H |
|
19 |
#ifndef LEMON_BINOMIAL_HEAP_H |
|
20 |
#define LEMON_BINOMIAL_HEAP_H |
|
21 | 21 |
|
22 | 22 |
///\file |
23 | 23 |
///\ingroup heaps |
24 | 24 |
///\brief Binomial Heap implementation. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
#include <lemon/math.h> |
30 | 30 |
#include <lemon/counter.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
/// \ingroup heaps |
35 | 35 |
/// |
36 | 36 |
///\brief Binomial heap data structure. |
37 | 37 |
/// |
38 | 38 |
/// This class implements the \e binomial \e heap data structure. |
39 | 39 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
40 | 40 |
/// |
41 | 41 |
/// The methods \ref increase() and \ref erase() are not efficient |
42 | 42 |
/// in a binomial heap. In case of many calls of these operations, |
43 | 43 |
/// it is better to use other heap structure, e.g. \ref BinHeap |
44 | 44 |
/// "binary heap". |
45 | 45 |
/// |
46 | 46 |
/// \tparam PR Type of the priorities of the items. |
47 | 47 |
/// \tparam IM A read-writable item map with \c int values, used |
48 | 48 |
/// internally to handle the cross references. |
49 | 49 |
/// \tparam CMP A functor class for comparing the priorities. |
50 | 50 |
/// The default is \c std::less<PR>. |
51 | 51 |
#ifdef DOXYGEN |
52 | 52 |
template <typename PR, typename IM, typename CMP> |
53 | 53 |
#else |
54 | 54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
55 | 55 |
#endif |
56 |
class |
|
56 |
class BinomialHeap { |
|
57 | 57 |
public: |
58 | 58 |
/// Type of the item-int map. |
59 | 59 |
typedef IM ItemIntMap; |
60 | 60 |
/// Type of the priorities. |
61 | 61 |
typedef PR Prio; |
62 | 62 |
/// Type of the items stored in the heap. |
63 | 63 |
typedef typename ItemIntMap::Key Item; |
64 | 64 |
/// Functor type for comparing the priorities. |
65 | 65 |
typedef CMP Compare; |
66 | 66 |
|
67 | 67 |
/// \brief Type to represent the states of the items. |
68 | 68 |
/// |
69 | 69 |
/// Each item has a state associated to it. It can be "in heap", |
70 | 70 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
71 | 71 |
/// heap's point of view, but may be useful to the user. |
72 | 72 |
/// |
73 | 73 |
/// The item-int map must be initialized in such way that it assigns |
74 | 74 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
75 | 75 |
enum State { |
76 | 76 |
IN_HEAP = 0, ///< = 0. |
77 | 77 |
PRE_HEAP = -1, ///< = -1. |
78 | 78 |
POST_HEAP = -2 ///< = -2. |
79 | 79 |
}; |
80 | 80 |
|
81 | 81 |
private: |
82 | 82 |
class Store; |
83 | 83 |
|
84 | 84 |
std::vector<Store> _data; |
85 | 85 |
int _min, _head; |
86 | 86 |
ItemIntMap &_iim; |
87 | 87 |
Compare _comp; |
88 | 88 |
int _num_items; |
89 | 89 |
|
90 | 90 |
public: |
91 | 91 |
/// \brief Constructor. |
92 | 92 |
/// |
93 | 93 |
/// Constructor. |
94 | 94 |
/// \param map A map that assigns \c int values to the items. |
95 | 95 |
/// It is used internally to handle the cross references. |
96 | 96 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
97 |
explicit |
|
97 |
explicit BinomialHeap(ItemIntMap &map) |
|
98 | 98 |
: _min(0), _head(-1), _iim(map), _num_items(0) {} |
99 | 99 |
|
100 | 100 |
/// \brief Constructor. |
101 | 101 |
/// |
102 | 102 |
/// Constructor. |
103 | 103 |
/// \param map A map that assigns \c int values to the items. |
104 | 104 |
/// It is used internally to handle the cross references. |
105 | 105 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
106 | 106 |
/// \param comp The function object used for comparing the priorities. |
107 |
|
|
107 |
BinomialHeap(ItemIntMap &map, const Compare &comp) |
|
108 | 108 |
: _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {} |
109 | 109 |
|
110 | 110 |
/// \brief The number of items stored in the heap. |
111 | 111 |
/// |
112 | 112 |
/// This function returns the number of items stored in the heap. |
113 | 113 |
int size() const { return _num_items; } |
114 | 114 |
|
115 | 115 |
/// \brief Check if the heap is empty. |
116 | 116 |
/// |
117 | 117 |
/// This function returns \c true if the heap is empty. |
118 | 118 |
bool empty() const { return _num_items==0; } |
119 | 119 |
|
120 | 120 |
/// \brief Make the heap empty. |
121 | 121 |
/// |
122 | 122 |
/// This functon makes the heap empty. |
123 | 123 |
/// It does not change the cross reference map. If you want to reuse |
124 | 124 |
/// a heap that is not surely empty, you should first clear it and |
125 | 125 |
/// then you should set the cross reference map to \c PRE_HEAP |
126 | 126 |
/// for each item. |
127 | 127 |
void clear() { |
128 | 128 |
_data.clear(); _min=0; _num_items=0; _head=-1; |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
/// \brief Set the priority of an item or insert it, if it is |
132 | 132 |
/// not stored in the heap. |
133 | 133 |
/// |
134 | 134 |
/// This method sets the priority of the given item if it is |
135 | 135 |
/// already stored in the heap. Otherwise it inserts the given |
136 | 136 |
/// item into the heap with the given priority. |
137 | 137 |
/// \param item The item. |
138 | 138 |
/// \param value The priority. |
139 | 139 |
void set (const Item& item, const Prio& value) { |
140 | 140 |
int i=_iim[item]; |
141 | 141 |
if ( i >= 0 && _data[i].in ) { |
142 | 142 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
143 | 143 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
144 | 144 |
} else push(item, value); |
145 | 145 |
} |
146 | 146 |
|
147 | 147 |
/// \brief Insert an item into the heap with the given priority. |
148 | 148 |
/// |
149 | 149 |
/// This function inserts the given item into the heap with the |
150 | 150 |
/// given priority. |
151 | 151 |
/// \param item The item to insert. |
152 | 152 |
/// \param value The priority of the item. |
153 | 153 |
/// \pre \e item must not be stored in the heap. |
154 | 154 |
void push (const Item& item, const Prio& value) { |
155 | 155 |
int i=_iim[item]; |
156 | 156 |
if ( i<0 ) { |
157 | 157 |
int s=_data.size(); |
158 | 158 |
_iim.set( item,s ); |
159 | 159 |
Store st; |
160 | 160 |
st.name=item; |
161 | 161 |
st.prio=value; |
162 | 162 |
_data.push_back(st); |
163 | 163 |
i=s; |
164 | 164 |
} |
165 | 165 |
else { |
166 | 166 |
_data[i].parent=_data[i].right_neighbor=_data[i].child=-1; |
167 | 167 |
_data[i].degree=0; |
168 | 168 |
_data[i].in=true; |
169 | 169 |
_data[i].prio=value; |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
if( 0==_num_items ) { |
173 | 173 |
_head=i; |
174 | 174 |
_min=i; |
175 | 175 |
} else { |
176 | 176 |
merge(i); |
177 | 177 |
if( _comp(_data[i].prio, _data[_min].prio) ) _min=i; |
178 | 178 |
} |
179 | 179 |
++_num_items; |
180 | 180 |
} |
181 | 181 |
|
182 | 182 |
/// \brief Return the item having minimum priority. |
183 | 183 |
/// |
184 | 184 |
/// This function returns the item having minimum priority. |
185 | 185 |
/// \pre The heap must be non-empty. |
186 | 186 |
Item top() const { return _data[_min].name; } |
187 | 187 |
|
188 | 188 |
/// \brief The minimum priority. |
189 | 189 |
/// |
190 | 190 |
/// This function returns the minimum priority. |
191 | 191 |
/// \pre The heap must be non-empty. |
192 | 192 |
Prio prio() const { return _data[_min].prio; } |
193 | 193 |
|
194 | 194 |
/// \brief The priority of the given item. |
195 | 195 |
/// |
196 | 196 |
/// This function returns the priority of the given item. |
197 | 197 |
/// \param item The item. |
198 | 198 |
/// \pre \e item must be in the heap. |
199 | 199 |
const Prio& operator[](const Item& item) const { |
200 | 200 |
return _data[_iim[item]].prio; |
201 | 201 |
} |
202 | 202 |
|
203 | 203 |
/// \brief Remove the item having minimum priority. |
204 | 204 |
/// |
205 | 205 |
/// This function removes the item having minimum priority. |
206 | 206 |
/// \pre The heap must be non-empty. |
207 | 207 |
void pop() { |
208 | 208 |
_data[_min].in=false; |
209 | 209 |
|
210 | 210 |
int head_child=-1; |
211 | 211 |
if ( _data[_min].child!=-1 ) { |
212 | 212 |
int child=_data[_min].child; |
213 | 213 |
int neighb; |
214 | 214 |
while( child!=-1 ) { |
215 | 215 |
neighb=_data[child].right_neighbor; |
216 | 216 |
_data[child].parent=-1; |
217 | 217 |
_data[child].right_neighbor=head_child; |
218 | 218 |
head_child=child; |
219 | 219 |
child=neighb; |
220 | 220 |
} |
221 | 221 |
} |
222 | 222 |
|
223 | 223 |
if ( _data[_head].right_neighbor==-1 ) { |
224 | 224 |
// there was only one root |
225 | 225 |
_head=head_child; |
226 | 226 |
} |
227 | 227 |
else { |
228 | 228 |
// there were more roots |
229 | 229 |
if( _head!=_min ) { unlace(_min); } |
230 | 230 |
else { _head=_data[_head].right_neighbor; } |
231 | 231 |
merge(head_child); |
232 | 232 |
} |
233 | 233 |
_min=findMin(); |
234 | 234 |
--_num_items; |
235 | 235 |
} |
236 | 236 |
|
237 | 237 |
/// \brief Remove the given item from the heap. |
238 | 238 |
/// |
239 | 239 |
/// This function removes the given item from the heap if it is |
240 | 240 |
/// already stored. |
241 | 241 |
/// \param item The item to delete. |
242 | 242 |
/// \pre \e item must be in the heap. |
243 | 243 |
void erase (const Item& item) { |
244 | 244 |
int i=_iim[item]; |
245 | 245 |
if ( i >= 0 && _data[i].in ) { |
246 | 246 |
decrease( item, _data[_min].prio-1 ); |
247 | 247 |
pop(); |
248 | 248 |
} |
249 | 249 |
} |
250 | 250 |
|
251 | 251 |
/// \brief Decrease the priority of an item to the given value. |
252 | 252 |
/// |
253 | 253 |
/// This function decreases the priority of an item to the given value. |
254 | 254 |
/// \param item The item. |
255 | 255 |
/// \param value The priority. |
256 | 256 |
/// \pre \e item must be stored in the heap with priority at least \e value. |
257 | 257 |
void decrease (Item item, const Prio& value) { |
258 | 258 |
int i=_iim[item]; |
259 | 259 |
int p=_data[i].parent; |
260 | 260 |
_data[i].prio=value; |
261 | 261 |
|
262 | 262 |
while( p!=-1 && _comp(value, _data[p].prio) ) { |
263 | 263 |
_data[i].name=_data[p].name; |
264 | 264 |
_data[i].prio=_data[p].prio; |
265 | 265 |
_data[p].name=item; |
266 | 266 |
_data[p].prio=value; |
267 | 267 |
_iim[_data[i].name]=i; |
268 | 268 |
i=p; |
269 | 269 |
p=_data[p].parent; |
270 | 270 |
} |
271 | 271 |
_iim[item]=i; |
272 | 272 |
if ( _comp(value, _data[_min].prio) ) _min=i; |
273 | 273 |
} |
274 | 274 |
|
275 | 275 |
/// \brief Increase the priority of an item to the given value. |
276 | 276 |
/// |
277 | 277 |
/// This function increases the priority of an item to the given value. |
278 | 278 |
/// \param item The item. |
279 | 279 |
/// \param value The priority. |
280 | 280 |
/// \pre \e item must be stored in the heap with priority at most \e value. |
281 | 281 |
void increase (Item item, const Prio& value) { |
282 | 282 |
erase(item); |
283 | 283 |
push(item, value); |
284 | 284 |
} |
285 | 285 |
|
286 | 286 |
/// \brief Return the state of an item. |
287 | 287 |
/// |
288 | 288 |
/// This method returns \c PRE_HEAP if the given item has never |
289 | 289 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
290 | 290 |
/// and \c POST_HEAP otherwise. |
291 | 291 |
/// In the latter case it is possible that the item will get back |
292 | 292 |
/// to the heap again. |
293 | 293 |
/// \param item The item. |
294 | 294 |
State state(const Item &item) const { |
295 | 295 |
int i=_iim[item]; |
296 | 296 |
if( i>=0 ) { |
297 | 297 |
if ( _data[i].in ) i=0; |
298 | 298 |
else i=-2; |
299 | 299 |
} |
300 | 300 |
return State(i); |
301 | 301 |
} |
302 | 302 |
|
303 | 303 |
/// \brief Set the state of an item in the heap. |
304 | 304 |
/// |
305 | 305 |
/// This function sets the state of the given item in the heap. |
306 | 306 |
/// It can be used to manually clear the heap when it is important |
307 | 307 |
/// to achive better time complexity. |
308 | 308 |
/// \param i The item. |
309 | 309 |
/// \param st The state. It should not be \c IN_HEAP. |
310 | 310 |
void state(const Item& i, State st) { |
311 | 311 |
switch (st) { |
312 | 312 |
case POST_HEAP: |
313 | 313 |
case PRE_HEAP: |
314 | 314 |
if (state(i) == IN_HEAP) { |
315 | 315 |
erase(i); |
316 | 316 |
} |
317 | 317 |
_iim[i] = st; |
318 | 318 |
break; |
319 | 319 |
case IN_HEAP: |
320 | 320 |
break; |
321 | 321 |
} |
322 | 322 |
} |
323 | 323 |
|
324 | 324 |
private: |
325 | 325 |
|
326 | 326 |
// Find the minimum of the roots |
327 | 327 |
int findMin() { |
328 | 328 |
if( _head!=-1 ) { |
329 | 329 |
int min_loc=_head, min_val=_data[_head].prio; |
330 | 330 |
for( int x=_data[_head].right_neighbor; x!=-1; |
331 | 331 |
x=_data[x].right_neighbor ) { |
332 | 332 |
if( _comp( _data[x].prio,min_val ) ) { |
333 | 333 |
min_val=_data[x].prio; |
334 | 334 |
min_loc=x; |
335 | 335 |
} |
336 | 336 |
} |
337 | 337 |
return min_loc; |
338 | 338 |
} |
339 | 339 |
else return -1; |
340 | 340 |
} |
341 | 341 |
|
342 | 342 |
// Merge the heap with another heap starting at the given position |
343 | 343 |
void merge(int a) { |
344 | 344 |
if( _head==-1 || a==-1 ) return; |
345 | 345 |
if( _data[a].right_neighbor==-1 && |
346 | 346 |
_data[a].degree<=_data[_head].degree ) { |
347 | 347 |
_data[a].right_neighbor=_head; |
348 | 348 |
_head=a; |
349 | 349 |
} else { |
350 | 350 |
interleave(a); |
351 | 351 |
} |
352 | 352 |
if( _data[_head].right_neighbor==-1 ) return; |
353 | 353 |
|
354 | 354 |
int x=_head; |
355 | 355 |
int x_prev=-1, x_next=_data[x].right_neighbor; |
356 | 356 |
while( x_next!=-1 ) { |
357 | 357 |
if( _data[x].degree!=_data[x_next].degree || |
358 | 358 |
( _data[x_next].right_neighbor!=-1 && |
359 | 359 |
_data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) { |
360 | 360 |
x_prev=x; |
361 | 361 |
x=x_next; |
362 | 362 |
} |
363 | 363 |
else { |
364 | 364 |
if( _comp(_data[x_next].prio,_data[x].prio) ) { |
365 | 365 |
if( x_prev==-1 ) { |
366 | 366 |
_head=x_next; |
367 | 367 |
} else { |
368 | 368 |
_data[x_prev].right_neighbor=x_next; |
369 | 369 |
} |
370 | 370 |
fuse(x,x_next); |
371 | 371 |
x=x_next; |
372 | 372 |
} |
373 | 373 |
else { |
374 | 374 |
_data[x].right_neighbor=_data[x_next].right_neighbor; |
375 | 375 |
fuse(x_next,x); |
376 | 376 |
} |
377 | 377 |
} |
378 | 378 |
x_next=_data[x].right_neighbor; |
379 | 379 |
} |
380 | 380 |
} |
381 | 381 |
|
382 | 382 |
// Interleave the elements of the given list into the list of the roots |
383 | 383 |
void interleave(int a) { |
384 | 384 |
int p=_head, q=a; |
385 | 385 |
int curr=_data.size(); |
386 | 386 |
_data.push_back(Store()); |
387 | 387 |
|
388 | 388 |
while( p!=-1 || q!=-1 ) { |
389 | 389 |
if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) { |
390 | 390 |
_data[curr].right_neighbor=p; |
391 | 391 |
curr=p; |
392 | 392 |
p=_data[p].right_neighbor; |
393 | 393 |
} |
394 | 394 |
else { |
395 | 395 |
_data[curr].right_neighbor=q; |
396 | 396 |
curr=q; |
397 | 397 |
q=_data[q].right_neighbor; |
398 | 398 |
} |
399 | 399 |
} |
400 | 400 |
|
401 | 401 |
_head=_data.back().right_neighbor; |
402 | 402 |
_data.pop_back(); |
403 | 403 |
} |
404 | 404 |
|
405 | 405 |
// Lace node a under node b |
406 | 406 |
void fuse(int a, int b) { |
407 | 407 |
_data[a].parent=b; |
408 | 408 |
_data[a].right_neighbor=_data[b].child; |
409 | 409 |
_data[b].child=a; |
410 | 410 |
|
411 | 411 |
++_data[b].degree; |
412 | 412 |
} |
413 | 413 |
|
414 | 414 |
// Unlace node a (if it has siblings) |
415 | 415 |
void unlace(int a) { |
416 | 416 |
int neighb=_data[a].right_neighbor; |
417 | 417 |
int other=_head; |
418 | 418 |
|
419 | 419 |
while( _data[other].right_neighbor!=a ) |
420 | 420 |
other=_data[other].right_neighbor; |
421 | 421 |
_data[other].right_neighbor=neighb; |
422 | 422 |
} |
423 | 423 |
|
424 | 424 |
private: |
425 | 425 |
|
426 | 426 |
class Store { |
427 |
friend class |
|
427 |
friend class BinomialHeap; |
|
428 | 428 |
|
429 | 429 |
Item name; |
430 | 430 |
int parent; |
431 | 431 |
int right_neighbor; |
432 | 432 |
int child; |
433 | 433 |
int degree; |
434 | 434 |
bool in; |
435 | 435 |
Prio prio; |
436 | 436 |
|
437 | 437 |
Store() : parent(-1), right_neighbor(-1), child(-1), degree(0), |
438 | 438 |
in(true) {} |
439 | 439 |
}; |
440 | 440 |
}; |
441 | 441 |
|
442 | 442 |
} //namespace lemon |
443 | 443 |
|
444 |
#endif // |
|
444 |
#endif //LEMON_BINOMIAL_HEAP_H |
|
445 | 445 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 |
#ifndef LEMON_KARY_HEAP_H |
|
20 |
#define LEMON_KARY_HEAP_H |
|
19 |
#ifndef LEMON_DHEAP_H |
|
20 |
#define LEMON_DHEAP_H |
|
21 | 21 |
|
22 | 22 |
///\ingroup heaps |
23 | 23 |
///\file |
24 |
///\brief |
|
24 |
///\brief D-ary heap implementation. |
|
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
/// \ingroup heaps |
33 | 33 |
/// |
34 |
///\brief |
|
34 |
///\brief D-ary heap data structure. |
|
35 | 35 |
/// |
36 |
/// This class implements the \e |
|
36 |
/// This class implements the \e D-ary \e heap data structure. |
|
37 | 37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
38 | 38 |
/// |
39 |
/// The \ref |
|
39 |
/// The \ref DHeap "D-ary heap" is a generalization of the |
|
40 | 40 |
/// \ref BinHeap "binary heap" structure, its nodes have at most |
41 |
/// \c K children, instead of two. |
|
42 |
/// \ref BinHeap and \ref FouraryHeap are specialized implementations |
|
43 |
/// |
|
41 |
/// \c D children, instead of two. |
|
42 |
/// \ref BinHeap and \ref QuadHeap are specialized implementations |
|
43 |
/// of this structure for <tt>D=2</tt> and <tt>D=4</tt>, respectively. |
|
44 | 44 |
/// |
45 | 45 |
/// \tparam PR Type of the priorities of the items. |
46 | 46 |
/// \tparam IM A read-writable item map with \c int values, used |
47 | 47 |
/// internally to handle the cross references. |
48 |
/// \tparam |
|
48 |
/// \tparam D The degree of the heap, each node have at most \e D |
|
49 | 49 |
/// children. The default is 16. Powers of two are suggested to use |
50 | 50 |
/// so that the multiplications and divisions needed to traverse the |
51 | 51 |
/// nodes of the heap could be performed faster. |
52 | 52 |
/// \tparam CMP A functor class for comparing the priorities. |
53 | 53 |
/// The default is \c std::less<PR>. |
54 | 54 |
/// |
55 | 55 |
///\sa BinHeap |
56 | 56 |
///\sa FouraryHeap |
57 | 57 |
#ifdef DOXYGEN |
58 |
template <typename PR, typename IM, int |
|
58 |
template <typename PR, typename IM, int D, typename CMP> |
|
59 | 59 |
#else |
60 |
template <typename PR, typename IM, int |
|
60 |
template <typename PR, typename IM, int D = 16, |
|
61 | 61 |
typename CMP = std::less<PR> > |
62 | 62 |
#endif |
63 |
class |
|
63 |
class DHeap { |
|
64 | 64 |
public: |
65 | 65 |
/// Type of the item-int map. |
66 | 66 |
typedef IM ItemIntMap; |
67 | 67 |
/// Type of the priorities. |
68 | 68 |
typedef PR Prio; |
69 | 69 |
/// Type of the items stored in the heap. |
70 | 70 |
typedef typename ItemIntMap::Key Item; |
71 | 71 |
/// Type of the item-priority pairs. |
72 | 72 |
typedef std::pair<Item,Prio> Pair; |
73 | 73 |
/// Functor type for comparing the priorities. |
74 | 74 |
typedef CMP Compare; |
75 | 75 |
|
76 | 76 |
/// \brief Type to represent the states of the items. |
77 | 77 |
/// |
78 | 78 |
/// Each item has a state associated to it. It can be "in heap", |
79 | 79 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
80 | 80 |
/// heap's point of view, but may be useful to the user. |
81 | 81 |
/// |
82 | 82 |
/// The item-int map must be initialized in such way that it assigns |
83 | 83 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
84 | 84 |
enum State { |
85 | 85 |
IN_HEAP = 0, ///< = 0. |
86 | 86 |
PRE_HEAP = -1, ///< = -1. |
87 | 87 |
POST_HEAP = -2 ///< = -2. |
88 | 88 |
}; |
89 | 89 |
|
90 | 90 |
private: |
91 | 91 |
std::vector<Pair> _data; |
92 | 92 |
Compare _comp; |
93 | 93 |
ItemIntMap &_iim; |
94 | 94 |
|
95 | 95 |
public: |
96 | 96 |
/// \brief Constructor. |
97 | 97 |
/// |
98 | 98 |
/// Constructor. |
99 | 99 |
/// \param map A map that assigns \c int values to the items. |
100 | 100 |
/// It is used internally to handle the cross references. |
101 | 101 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
102 |
explicit |
|
102 |
explicit DHeap(ItemIntMap &map) : _iim(map) {} |
|
103 | 103 |
|
104 | 104 |
/// \brief Constructor. |
105 | 105 |
/// |
106 | 106 |
/// Constructor. |
107 | 107 |
/// \param map A map that assigns \c int values to the items. |
108 | 108 |
/// It is used internally to handle the cross references. |
109 | 109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
110 | 110 |
/// \param comp The function object used for comparing the priorities. |
111 |
|
|
111 |
DHeap(ItemIntMap &map, const Compare &comp) |
|
112 | 112 |
: _iim(map), _comp(comp) {} |
113 | 113 |
|
114 | 114 |
/// \brief The number of items stored in the heap. |
115 | 115 |
/// |
116 | 116 |
/// This function returns the number of items stored in the heap. |
117 | 117 |
int size() const { return _data.size(); } |
118 | 118 |
|
119 | 119 |
/// \brief Check if the heap is empty. |
120 | 120 |
/// |
121 | 121 |
/// This function returns \c true if the heap is empty. |
122 | 122 |
bool empty() const { return _data.empty(); } |
123 | 123 |
|
124 | 124 |
/// \brief Make the heap empty. |
125 | 125 |
/// |
126 | 126 |
/// This functon makes the heap empty. |
127 | 127 |
/// It does not change the cross reference map. If you want to reuse |
128 | 128 |
/// a heap that is not surely empty, you should first clear it and |
129 | 129 |
/// then you should set the cross reference map to \c PRE_HEAP |
130 | 130 |
/// for each item. |
131 | 131 |
void clear() { _data.clear(); } |
132 | 132 |
|
133 | 133 |
private: |
134 |
int parent(int i) { return (i-1)/K; } |
|
135 |
int firstChild(int i) { return K*i+1; } |
|
134 |
int parent(int i) { return (i-1)/D; } |
|
135 |
int firstChild(int i) { return D*i+1; } |
|
136 | 136 |
|
137 | 137 |
bool less(const Pair &p1, const Pair &p2) const { |
138 | 138 |
return _comp(p1.second, p2.second); |
139 | 139 |
} |
140 | 140 |
|
141 | 141 |
void bubbleUp(int hole, Pair p) { |
142 | 142 |
int par = parent(hole); |
143 | 143 |
while( hole>0 && less(p,_data[par]) ) { |
144 | 144 |
move(_data[par],hole); |
145 | 145 |
hole = par; |
146 | 146 |
par = parent(hole); |
147 | 147 |
} |
148 | 148 |
move(p, hole); |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
void bubbleDown(int hole, Pair p, int length) { |
152 | 152 |
if( length>1 ) { |
153 | 153 |
int child = firstChild(hole); |
154 |
while( child+ |
|
154 |
while( child+D<=length ) { |
|
155 | 155 |
int min=child; |
156 |
for (int i=1; i< |
|
156 |
for (int i=1; i<D; ++i) { |
|
157 | 157 |
if( less(_data[child+i], _data[min]) ) |
158 | 158 |
min=child+i; |
159 | 159 |
} |
160 | 160 |
if( !less(_data[min], p) ) |
161 | 161 |
goto ok; |
162 | 162 |
move(_data[min], hole); |
163 | 163 |
hole = min; |
164 | 164 |
child = firstChild(hole); |
165 | 165 |
} |
166 | 166 |
if ( child<length ) { |
167 | 167 |
int min = child; |
168 | 168 |
while (++child < length) { |
169 | 169 |
if( less(_data[child], _data[min]) ) |
170 | 170 |
min=child; |
171 | 171 |
} |
172 | 172 |
if( less(_data[min], p) ) { |
173 | 173 |
move(_data[min], hole); |
174 | 174 |
hole = min; |
175 | 175 |
} |
176 | 176 |
} |
177 | 177 |
} |
178 | 178 |
ok: |
179 | 179 |
move(p, hole); |
180 | 180 |
} |
181 | 181 |
|
182 | 182 |
void move(const Pair &p, int i) { |
183 | 183 |
_data[i] = p; |
184 | 184 |
_iim.set(p.first, i); |
185 | 185 |
} |
186 | 186 |
|
187 | 187 |
public: |
188 | 188 |
/// \brief Insert a pair of item and priority into the heap. |
189 | 189 |
/// |
190 | 190 |
/// This function inserts \c p.first to the heap with priority |
191 | 191 |
/// \c p.second. |
192 | 192 |
/// \param p The pair to insert. |
193 | 193 |
/// \pre \c p.first must not be stored in the heap. |
194 | 194 |
void push(const Pair &p) { |
195 | 195 |
int n = _data.size(); |
196 | 196 |
_data.resize(n+1); |
197 | 197 |
bubbleUp(n, p); |
198 | 198 |
} |
199 | 199 |
|
200 | 200 |
/// \brief Insert an item into the heap with the given priority. |
201 | 201 |
/// |
202 | 202 |
/// This function inserts the given item into the heap with the |
203 | 203 |
/// given priority. |
204 | 204 |
/// \param i The item to insert. |
205 | 205 |
/// \param p The priority of the item. |
206 | 206 |
/// \pre \e i must not be stored in the heap. |
207 | 207 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
208 | 208 |
|
209 | 209 |
/// \brief Return the item having minimum priority. |
210 | 210 |
/// |
211 | 211 |
/// This function returns the item having minimum priority. |
212 | 212 |
/// \pre The heap must be non-empty. |
213 | 213 |
Item top() const { return _data[0].first; } |
214 | 214 |
|
215 | 215 |
/// \brief The minimum priority. |
216 | 216 |
/// |
217 | 217 |
/// This function returns the minimum priority. |
218 | 218 |
/// \pre The heap must be non-empty. |
219 | 219 |
Prio prio() const { return _data[0].second; } |
220 | 220 |
|
221 | 221 |
/// \brief Remove the item having minimum priority. |
222 | 222 |
/// |
223 | 223 |
/// This function removes the item having minimum priority. |
224 | 224 |
/// \pre The heap must be non-empty. |
225 | 225 |
void pop() { |
226 | 226 |
int n = _data.size()-1; |
227 | 227 |
_iim.set(_data[0].first, POST_HEAP); |
228 | 228 |
if (n>0) bubbleDown(0, _data[n], n); |
229 | 229 |
_data.pop_back(); |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
/// \brief Remove the given item from the heap. |
233 | 233 |
/// |
234 | 234 |
/// This function removes the given item from the heap if it is |
235 | 235 |
/// already stored. |
236 | 236 |
/// \param i The item to delete. |
237 | 237 |
/// \pre \e i must be in the heap. |
238 | 238 |
void erase(const Item &i) { |
239 | 239 |
int h = _iim[i]; |
240 | 240 |
int n = _data.size()-1; |
241 | 241 |
_iim.set(_data[h].first, POST_HEAP); |
242 | 242 |
if( h<n ) { |
243 | 243 |
if( less(_data[parent(h)], _data[n]) ) |
244 | 244 |
bubbleDown(h, _data[n], n); |
245 | 245 |
else |
246 | 246 |
bubbleUp(h, _data[n]); |
247 | 247 |
} |
248 | 248 |
_data.pop_back(); |
249 | 249 |
} |
250 | 250 |
|
251 | 251 |
/// \brief The priority of the given item. |
252 | 252 |
/// |
253 | 253 |
/// This function returns the priority of the given item. |
254 | 254 |
/// \param i The item. |
255 | 255 |
/// \pre \e i must be in the heap. |
256 | 256 |
Prio operator[](const Item &i) const { |
257 | 257 |
int idx = _iim[i]; |
258 | 258 |
return _data[idx].second; |
259 | 259 |
} |
260 | 260 |
|
261 | 261 |
/// \brief Set the priority of an item or insert it, if it is |
262 | 262 |
/// not stored in the heap. |
263 | 263 |
/// |
264 | 264 |
/// This method sets the priority of the given item if it is |
265 | 265 |
/// already stored in the heap. Otherwise it inserts the given |
266 | 266 |
/// item into the heap with the given priority. |
267 | 267 |
/// \param i The item. |
268 | 268 |
/// \param p The priority. |
269 | 269 |
void set(const Item &i, const Prio &p) { |
270 | 270 |
int idx = _iim[i]; |
271 | 271 |
if( idx<0 ) |
272 | 272 |
push(i,p); |
273 | 273 |
else if( _comp(p, _data[idx].second) ) |
274 | 274 |
bubbleUp(idx, Pair(i,p)); |
275 | 275 |
else |
276 | 276 |
bubbleDown(idx, Pair(i,p), _data.size()); |
277 | 277 |
} |
278 | 278 |
|
279 | 279 |
/// \brief Decrease the priority of an item to the given value. |
280 | 280 |
/// |
281 | 281 |
/// This function decreases the priority of an item to the given value. |
282 | 282 |
/// \param i The item. |
283 | 283 |
/// \param p The priority. |
284 | 284 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
285 | 285 |
void decrease(const Item &i, const Prio &p) { |
286 | 286 |
int idx = _iim[i]; |
287 | 287 |
bubbleUp(idx, Pair(i,p)); |
288 | 288 |
} |
289 | 289 |
|
290 | 290 |
/// \brief Increase the priority of an item to the given value. |
291 | 291 |
/// |
292 | 292 |
/// This function increases the priority of an item to the given value. |
293 | 293 |
/// \param i The item. |
294 | 294 |
/// \param p The priority. |
295 | 295 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
296 | 296 |
void increase(const Item &i, const Prio &p) { |
297 | 297 |
int idx = _iim[i]; |
298 | 298 |
bubbleDown(idx, Pair(i,p), _data.size()); |
299 | 299 |
} |
300 | 300 |
|
301 | 301 |
/// \brief Return the state of an item. |
302 | 302 |
/// |
303 | 303 |
/// This method returns \c PRE_HEAP if the given item has never |
304 | 304 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
305 | 305 |
/// and \c POST_HEAP otherwise. |
306 | 306 |
/// In the latter case it is possible that the item will get back |
307 | 307 |
/// to the heap again. |
308 | 308 |
/// \param i The item. |
309 | 309 |
State state(const Item &i) const { |
310 | 310 |
int s = _iim[i]; |
311 | 311 |
if (s>=0) s=0; |
312 | 312 |
return State(s); |
313 | 313 |
} |
314 | 314 |
|
315 | 315 |
/// \brief Set the state of an item in the heap. |
316 | 316 |
/// |
317 | 317 |
/// This function sets the state of the given item in the heap. |
318 | 318 |
/// It can be used to manually clear the heap when it is important |
319 | 319 |
/// to achive better time complexity. |
320 | 320 |
/// \param i The item. |
321 | 321 |
/// \param st The state. It should not be \c IN_HEAP. |
322 | 322 |
void state(const Item& i, State st) { |
323 | 323 |
switch (st) { |
324 | 324 |
case POST_HEAP: |
325 | 325 |
case PRE_HEAP: |
326 | 326 |
if (state(i) == IN_HEAP) erase(i); |
327 | 327 |
_iim[i] = st; |
328 | 328 |
break; |
329 | 329 |
case IN_HEAP: |
330 | 330 |
break; |
331 | 331 |
} |
332 | 332 |
} |
333 | 333 |
|
334 | 334 |
/// \brief Replace an item in the heap. |
335 | 335 |
/// |
336 | 336 |
/// This function replaces item \c i with item \c j. |
337 | 337 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
338 | 338 |
/// After calling this method, item \c i will be out of the |
339 | 339 |
/// heap and \c j will be in the heap with the same prioriority |
340 | 340 |
/// as item \c i had before. |
341 | 341 |
void replace(const Item& i, const Item& j) { |
342 | 342 |
int idx=_iim[i]; |
343 | 343 |
_iim.set(i, _iim[j]); |
344 | 344 |
_iim.set(j, idx); |
345 | 345 |
_data[idx].first=j; |
346 | 346 |
} |
347 | 347 |
|
348 |
}; // class |
|
348 |
}; // class DHeap |
|
349 | 349 |
|
350 | 350 |
} // namespace lemon |
351 | 351 |
|
352 |
#endif // |
|
352 |
#endif // LEMON_DHEAP_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 |
#ifndef LEMON_FOURARY_HEAP_H |
|
20 |
#define LEMON_FOURARY_HEAP_H |
|
19 |
#ifndef LEMON_QUAD_HEAP_H |
|
20 |
#define LEMON_QUAD_HEAP_H |
|
21 | 21 |
|
22 | 22 |
///\ingroup heaps |
23 | 23 |
///\file |
24 |
///\brief Fourary heap implementation. |
|
24 |
///\brief Fourary (quaternary) heap implementation. |
|
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
/// \ingroup heaps |
33 | 33 |
/// |
34 |
///\brief Fourary heap data structure. |
|
34 |
///\brief Fourary (quaternary) heap data structure. |
|
35 | 35 |
/// |
36 |
/// This class implements the \e |
|
36 |
/// This class implements the \e Fourary (\e quaternary) \e heap |
|
37 |
/// data structure. |
|
37 | 38 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
38 | 39 |
/// |
39 |
/// The fourary heap is a specialization of the \ref KaryHeap "K-ary heap" |
|
40 |
/// for <tt>K=4</tt>. It is similar to the \ref BinHeap "binary heap", |
|
40 |
/// The fourary heap is a specialization of the \ref DHeap "D-ary heap" |
|
41 |
/// for <tt>D=4</tt>. It is similar to the \ref BinHeap "binary heap", |
|
41 | 42 |
/// but its nodes have at most four children, instead of two. |
42 | 43 |
/// |
43 | 44 |
/// \tparam PR Type of the priorities of the items. |
44 | 45 |
/// \tparam IM A read-writable item map with \c int values, used |
45 | 46 |
/// internally to handle the cross references. |
46 | 47 |
/// \tparam CMP A functor class for comparing the priorities. |
47 | 48 |
/// The default is \c std::less<PR>. |
48 | 49 |
/// |
49 | 50 |
///\sa BinHeap |
50 |
///\sa |
|
51 |
///\sa DHeap |
|
51 | 52 |
#ifdef DOXYGEN |
52 | 53 |
template <typename PR, typename IM, typename CMP> |
53 | 54 |
#else |
54 | 55 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
55 | 56 |
#endif |
56 |
class |
|
57 |
class QuadHeap { |
|
57 | 58 |
public: |
58 | 59 |
/// Type of the item-int map. |
59 | 60 |
typedef IM ItemIntMap; |
60 | 61 |
/// Type of the priorities. |
61 | 62 |
typedef PR Prio; |
62 | 63 |
/// Type of the items stored in the heap. |
63 | 64 |
typedef typename ItemIntMap::Key Item; |
64 | 65 |
/// Type of the item-priority pairs. |
65 | 66 |
typedef std::pair<Item,Prio> Pair; |
66 | 67 |
/// Functor type for comparing the priorities. |
67 | 68 |
typedef CMP Compare; |
68 | 69 |
|
69 | 70 |
/// \brief Type to represent the states of the items. |
70 | 71 |
/// |
71 | 72 |
/// Each item has a state associated to it. It can be "in heap", |
72 | 73 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
73 | 74 |
/// heap's point of view, but may be useful to the user. |
74 | 75 |
/// |
75 | 76 |
/// The item-int map must be initialized in such way that it assigns |
76 | 77 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
77 | 78 |
enum State { |
78 | 79 |
IN_HEAP = 0, ///< = 0. |
79 | 80 |
PRE_HEAP = -1, ///< = -1. |
80 | 81 |
POST_HEAP = -2 ///< = -2. |
81 | 82 |
}; |
82 | 83 |
|
83 | 84 |
private: |
84 | 85 |
std::vector<Pair> _data; |
85 | 86 |
Compare _comp; |
86 | 87 |
ItemIntMap &_iim; |
87 | 88 |
|
88 | 89 |
public: |
89 | 90 |
/// \brief Constructor. |
90 | 91 |
/// |
91 | 92 |
/// Constructor. |
92 | 93 |
/// \param map A map that assigns \c int values to the items. |
93 | 94 |
/// It is used internally to handle the cross references. |
94 | 95 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
95 |
explicit |
|
96 |
explicit QuadHeap(ItemIntMap &map) : _iim(map) {} |
|
96 | 97 |
|
97 | 98 |
/// \brief Constructor. |
98 | 99 |
/// |
99 | 100 |
/// Constructor. |
100 | 101 |
/// \param map A map that assigns \c int values to the items. |
101 | 102 |
/// It is used internally to handle the cross references. |
102 | 103 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
103 | 104 |
/// \param comp The function object used for comparing the priorities. |
104 |
|
|
105 |
QuadHeap(ItemIntMap &map, const Compare &comp) |
|
105 | 106 |
: _iim(map), _comp(comp) {} |
106 | 107 |
|
107 | 108 |
/// \brief The number of items stored in the heap. |
108 | 109 |
/// |
109 | 110 |
/// This function returns the number of items stored in the heap. |
110 | 111 |
int size() const { return _data.size(); } |
111 | 112 |
|
112 | 113 |
/// \brief Check if the heap is empty. |
113 | 114 |
/// |
114 | 115 |
/// This function returns \c true if the heap is empty. |
115 | 116 |
bool empty() const { return _data.empty(); } |
116 | 117 |
|
117 | 118 |
/// \brief Make the heap empty. |
118 | 119 |
/// |
119 | 120 |
/// This functon makes the heap empty. |
120 | 121 |
/// It does not change the cross reference map. If you want to reuse |
121 | 122 |
/// a heap that is not surely empty, you should first clear it and |
122 | 123 |
/// then you should set the cross reference map to \c PRE_HEAP |
123 | 124 |
/// for each item. |
124 | 125 |
void clear() { _data.clear(); } |
125 | 126 |
|
126 | 127 |
private: |
127 | 128 |
static int parent(int i) { return (i-1)/4; } |
128 | 129 |
static int firstChild(int i) { return 4*i+1; } |
129 | 130 |
|
130 | 131 |
bool less(const Pair &p1, const Pair &p2) const { |
131 | 132 |
return _comp(p1.second, p2.second); |
132 | 133 |
} |
133 | 134 |
|
134 | 135 |
void bubbleUp(int hole, Pair p) { |
135 | 136 |
int par = parent(hole); |
136 | 137 |
while( hole>0 && less(p,_data[par]) ) { |
137 | 138 |
move(_data[par],hole); |
138 | 139 |
hole = par; |
139 | 140 |
par = parent(hole); |
140 | 141 |
} |
141 | 142 |
move(p, hole); |
142 | 143 |
} |
143 | 144 |
|
144 | 145 |
void bubbleDown(int hole, Pair p, int length) { |
145 | 146 |
if( length>1 ) { |
146 | 147 |
int child = firstChild(hole); |
147 | 148 |
while( child+3<length ) { |
148 | 149 |
int min=child; |
149 | 150 |
if( less(_data[++child], _data[min]) ) min=child; |
150 | 151 |
if( less(_data[++child], _data[min]) ) min=child; |
151 | 152 |
if( less(_data[++child], _data[min]) ) min=child; |
152 | 153 |
if( !less(_data[min], p) ) |
153 | 154 |
goto ok; |
154 | 155 |
move(_data[min], hole); |
155 | 156 |
hole = min; |
156 | 157 |
child = firstChild(hole); |
157 | 158 |
} |
158 | 159 |
if ( child<length ) { |
159 | 160 |
int min = child; |
160 | 161 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
161 | 162 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
162 | 163 |
if( less(_data[min], p) ) { |
163 | 164 |
move(_data[min], hole); |
164 | 165 |
hole = min; |
165 | 166 |
} |
166 | 167 |
} |
167 | 168 |
} |
168 | 169 |
ok: |
169 | 170 |
move(p, hole); |
170 | 171 |
} |
171 | 172 |
|
172 | 173 |
void move(const Pair &p, int i) { |
173 | 174 |
_data[i] = p; |
174 | 175 |
_iim.set(p.first, i); |
175 | 176 |
} |
176 | 177 |
|
177 | 178 |
public: |
178 | 179 |
/// \brief Insert a pair of item and priority into the heap. |
179 | 180 |
/// |
180 | 181 |
/// This function inserts \c p.first to the heap with priority |
181 | 182 |
/// \c p.second. |
182 | 183 |
/// \param p The pair to insert. |
183 | 184 |
/// \pre \c p.first must not be stored in the heap. |
184 | 185 |
void push(const Pair &p) { |
185 | 186 |
int n = _data.size(); |
186 | 187 |
_data.resize(n+1); |
187 | 188 |
bubbleUp(n, p); |
188 | 189 |
} |
189 | 190 |
|
190 | 191 |
/// \brief Insert an item into the heap with the given priority. |
191 | 192 |
/// |
192 | 193 |
/// This function inserts the given item into the heap with the |
193 | 194 |
/// given priority. |
194 | 195 |
/// \param i The item to insert. |
195 | 196 |
/// \param p The priority of the item. |
196 | 197 |
/// \pre \e i must not be stored in the heap. |
197 | 198 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
198 | 199 |
|
199 | 200 |
/// \brief Return the item having minimum priority. |
200 | 201 |
/// |
201 | 202 |
/// This function returns the item having minimum priority. |
202 | 203 |
/// \pre The heap must be non-empty. |
203 | 204 |
Item top() const { return _data[0].first; } |
204 | 205 |
|
205 | 206 |
/// \brief The minimum priority. |
206 | 207 |
/// |
207 | 208 |
/// This function returns the minimum priority. |
208 | 209 |
/// \pre The heap must be non-empty. |
209 | 210 |
Prio prio() const { return _data[0].second; } |
210 | 211 |
|
211 | 212 |
/// \brief Remove the item having minimum priority. |
212 | 213 |
/// |
213 | 214 |
/// This function removes the item having minimum priority. |
214 | 215 |
/// \pre The heap must be non-empty. |
215 | 216 |
void pop() { |
216 | 217 |
int n = _data.size()-1; |
217 | 218 |
_iim.set(_data[0].first, POST_HEAP); |
218 | 219 |
if (n>0) bubbleDown(0, _data[n], n); |
219 | 220 |
_data.pop_back(); |
220 | 221 |
} |
221 | 222 |
|
222 | 223 |
/// \brief Remove the given item from the heap. |
223 | 224 |
/// |
224 | 225 |
/// This function removes the given item from the heap if it is |
225 | 226 |
/// already stored. |
226 | 227 |
/// \param i The item to delete. |
227 | 228 |
/// \pre \e i must be in the heap. |
228 | 229 |
void erase(const Item &i) { |
229 | 230 |
int h = _iim[i]; |
230 | 231 |
int n = _data.size()-1; |
231 | 232 |
_iim.set(_data[h].first, POST_HEAP); |
232 | 233 |
if( h<n ) { |
233 | 234 |
if( less(_data[parent(h)], _data[n]) ) |
234 | 235 |
bubbleDown(h, _data[n], n); |
235 | 236 |
else |
236 | 237 |
bubbleUp(h, _data[n]); |
237 | 238 |
} |
238 | 239 |
_data.pop_back(); |
239 | 240 |
} |
240 | 241 |
|
241 | 242 |
/// \brief The priority of the given item. |
242 | 243 |
/// |
243 | 244 |
/// This function returns the priority of the given item. |
244 | 245 |
/// \param i The item. |
245 | 246 |
/// \pre \e i must be in the heap. |
246 | 247 |
Prio operator[](const Item &i) const { |
247 | 248 |
int idx = _iim[i]; |
248 | 249 |
return _data[idx].second; |
249 | 250 |
} |
250 | 251 |
|
251 | 252 |
/// \brief Set the priority of an item or insert it, if it is |
252 | 253 |
/// not stored in the heap. |
253 | 254 |
/// |
254 | 255 |
/// This method sets the priority of the given item if it is |
255 | 256 |
/// already stored in the heap. Otherwise it inserts the given |
256 | 257 |
/// item into the heap with the given priority. |
257 | 258 |
/// \param i The item. |
258 | 259 |
/// \param p The priority. |
259 | 260 |
void set(const Item &i, const Prio &p) { |
260 | 261 |
int idx = _iim[i]; |
261 | 262 |
if( idx < 0 ) |
262 | 263 |
push(i,p); |
263 | 264 |
else if( _comp(p, _data[idx].second) ) |
264 | 265 |
bubbleUp(idx, Pair(i,p)); |
265 | 266 |
else |
266 | 267 |
bubbleDown(idx, Pair(i,p), _data.size()); |
267 | 268 |
} |
268 | 269 |
|
269 | 270 |
/// \brief Decrease the priority of an item to the given value. |
270 | 271 |
/// |
271 | 272 |
/// This function decreases the priority of an item to the given value. |
272 | 273 |
/// \param i The item. |
273 | 274 |
/// \param p The priority. |
274 | 275 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
275 | 276 |
void decrease(const Item &i, const Prio &p) { |
276 | 277 |
int idx = _iim[i]; |
277 | 278 |
bubbleUp(idx, Pair(i,p)); |
278 | 279 |
} |
279 | 280 |
|
280 | 281 |
/// \brief Increase the priority of an item to the given value. |
281 | 282 |
/// |
282 | 283 |
/// This function increases the priority of an item to the given value. |
283 | 284 |
/// \param i The item. |
284 | 285 |
/// \param p The priority. |
285 | 286 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
286 | 287 |
void increase(const Item &i, const Prio &p) { |
287 | 288 |
int idx = _iim[i]; |
288 | 289 |
bubbleDown(idx, Pair(i,p), _data.size()); |
289 | 290 |
} |
290 | 291 |
|
291 | 292 |
/// \brief Return the state of an item. |
292 | 293 |
/// |
293 | 294 |
/// This method returns \c PRE_HEAP if the given item has never |
294 | 295 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
295 | 296 |
/// and \c POST_HEAP otherwise. |
296 | 297 |
/// In the latter case it is possible that the item will get back |
297 | 298 |
/// to the heap again. |
298 | 299 |
/// \param i The item. |
299 | 300 |
State state(const Item &i) const { |
300 | 301 |
int s = _iim[i]; |
301 | 302 |
if (s>=0) s=0; |
302 | 303 |
return State(s); |
303 | 304 |
} |
304 | 305 |
|
305 | 306 |
/// \brief Set the state of an item in the heap. |
306 | 307 |
/// |
307 | 308 |
/// This function sets the state of the given item in the heap. |
308 | 309 |
/// It can be used to manually clear the heap when it is important |
309 | 310 |
/// to achive better time complexity. |
310 | 311 |
/// \param i The item. |
311 | 312 |
/// \param st The state. It should not be \c IN_HEAP. |
312 | 313 |
void state(const Item& i, State st) { |
313 | 314 |
switch (st) { |
314 | 315 |
case POST_HEAP: |
315 | 316 |
case PRE_HEAP: |
316 | 317 |
if (state(i) == IN_HEAP) erase(i); |
317 | 318 |
_iim[i] = st; |
318 | 319 |
break; |
319 | 320 |
case IN_HEAP: |
320 | 321 |
break; |
321 | 322 |
} |
322 | 323 |
} |
323 | 324 |
|
324 | 325 |
/// \brief Replace an item in the heap. |
325 | 326 |
/// |
326 | 327 |
/// This function replaces item \c i with item \c j. |
327 | 328 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
328 | 329 |
/// After calling this method, item \c i will be out of the |
329 | 330 |
/// heap and \c j will be in the heap with the same prioriority |
330 | 331 |
/// as item \c i had before. |
331 | 332 |
void replace(const Item& i, const Item& j) { |
332 | 333 |
int idx = _iim[i]; |
333 | 334 |
_iim.set(i, _iim[j]); |
334 | 335 |
_iim.set(j, idx); |
335 | 336 |
_data[idx].first = j; |
336 | 337 |
} |
337 | 338 |
|
338 |
}; // class |
|
339 |
}; // class QuadHeap |
|
339 | 340 |
|
340 | 341 |
} // namespace lemon |
341 | 342 |
|
342 | 343 |
#endif // LEMON_FOURARY_HEAP_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <fstream> |
21 | 21 |
#include <string> |
22 | 22 |
#include <vector> |
23 | 23 |
|
24 | 24 |
#include <lemon/concept_check.h> |
25 | 25 |
#include <lemon/concepts/heap.h> |
26 | 26 |
|
27 | 27 |
#include <lemon/smart_graph.h> |
28 | 28 |
#include <lemon/lgf_reader.h> |
29 | 29 |
#include <lemon/dijkstra.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
|
32 | 32 |
#include <lemon/bin_heap.h> |
33 |
#include <lemon/fourary_heap.h> |
|
34 |
#include <lemon/kary_heap.h> |
|
33 |
#include <lemon/quad_heap.h> |
|
34 |
#include <lemon/dheap.h> |
|
35 | 35 |
#include <lemon/fib_heap.h> |
36 | 36 |
#include <lemon/pairing_heap.h> |
37 | 37 |
#include <lemon/radix_heap.h> |
38 |
#include <lemon/ |
|
38 |
#include <lemon/binomial_heap.h> |
|
39 | 39 |
#include <lemon/bucket_heap.h> |
40 | 40 |
|
41 | 41 |
#include "test_tools.h" |
42 | 42 |
|
43 | 43 |
using namespace lemon; |
44 | 44 |
using namespace lemon::concepts; |
45 | 45 |
|
46 | 46 |
typedef ListDigraph Digraph; |
47 | 47 |
DIGRAPH_TYPEDEFS(Digraph); |
48 | 48 |
|
49 | 49 |
char test_lgf[] = |
50 | 50 |
"@nodes\n" |
51 | 51 |
"label\n" |
52 | 52 |
"0\n" |
53 | 53 |
"1\n" |
54 | 54 |
"2\n" |
55 | 55 |
"3\n" |
56 | 56 |
"4\n" |
57 | 57 |
"5\n" |
58 | 58 |
"6\n" |
59 | 59 |
"7\n" |
60 | 60 |
"8\n" |
61 | 61 |
"9\n" |
62 | 62 |
"@arcs\n" |
63 | 63 |
" label capacity\n" |
64 | 64 |
"0 5 0 94\n" |
65 | 65 |
"3 9 1 11\n" |
66 | 66 |
"8 7 2 83\n" |
67 | 67 |
"1 2 3 94\n" |
68 | 68 |
"5 7 4 35\n" |
69 | 69 |
"7 4 5 84\n" |
70 | 70 |
"9 5 6 38\n" |
71 | 71 |
"0 4 7 96\n" |
72 | 72 |
"6 7 8 6\n" |
73 | 73 |
"3 1 9 27\n" |
74 | 74 |
"5 2 10 77\n" |
75 | 75 |
"5 6 11 69\n" |
76 | 76 |
"6 5 12 41\n" |
77 | 77 |
"4 6 13 70\n" |
78 | 78 |
"3 2 14 45\n" |
79 | 79 |
"7 9 15 93\n" |
80 | 80 |
"5 9 16 50\n" |
81 | 81 |
"9 0 17 94\n" |
82 | 82 |
"9 6 18 67\n" |
83 | 83 |
"0 9 19 86\n" |
84 | 84 |
"@attributes\n" |
85 | 85 |
"source 3\n"; |
86 | 86 |
|
87 | 87 |
int test_seq[] = { 2, 28, 19, 27, 33, 25, 13, 41, 10, 26, 1, 9, 4, 34}; |
88 | 88 |
int test_inc[] = {20, 28, 34, 16, 0, 46, 44, 0, 42, 32, 14, 8, 6, 37}; |
89 | 89 |
|
90 | 90 |
int test_len = sizeof(test_seq) / sizeof(test_seq[0]); |
91 | 91 |
|
92 | 92 |
template <typename Heap> |
93 | 93 |
void heapSortTest() { |
94 | 94 |
RangeMap<int> map(test_len, -1); |
95 | 95 |
Heap heap(map); |
96 | 96 |
|
97 | 97 |
std::vector<int> v(test_len); |
98 | 98 |
for (int i = 0; i < test_len; ++i) { |
99 | 99 |
v[i] = test_seq[i]; |
100 | 100 |
heap.push(i, v[i]); |
101 | 101 |
} |
102 | 102 |
std::sort(v.begin(), v.end()); |
103 | 103 |
for (int i = 0; i < test_len; ++i) { |
104 | 104 |
check(v[i] == heap.prio(), "Wrong order in heap sort."); |
105 | 105 |
heap.pop(); |
106 | 106 |
} |
107 | 107 |
} |
108 | 108 |
|
109 | 109 |
template <typename Heap> |
110 | 110 |
void heapIncreaseTest() { |
111 | 111 |
RangeMap<int> map(test_len, -1); |
112 | 112 |
|
113 | 113 |
Heap heap(map); |
114 | 114 |
|
115 | 115 |
std::vector<int> v(test_len); |
116 | 116 |
for (int i = 0; i < test_len; ++i) { |
117 | 117 |
v[i] = test_seq[i]; |
118 | 118 |
heap.push(i, v[i]); |
119 | 119 |
} |
120 | 120 |
for (int i = 0; i < test_len; ++i) { |
121 | 121 |
v[i] += test_inc[i]; |
122 | 122 |
heap.increase(i, v[i]); |
123 | 123 |
} |
124 | 124 |
std::sort(v.begin(), v.end()); |
125 | 125 |
for (int i = 0; i < test_len; ++i) { |
126 | 126 |
check(v[i] == heap.prio(), "Wrong order in heap increase test."); |
127 | 127 |
heap.pop(); |
128 | 128 |
} |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
template <typename Heap> |
132 | 132 |
void dijkstraHeapTest(const Digraph& digraph, const IntArcMap& length, |
133 | 133 |
Node source) { |
134 | 134 |
|
135 | 135 |
typename Dijkstra<Digraph, IntArcMap>::template SetStandardHeap<Heap>:: |
136 | 136 |
Create dijkstra(digraph, length); |
137 | 137 |
|
138 | 138 |
dijkstra.run(source); |
139 | 139 |
|
140 | 140 |
for(ArcIt a(digraph); a != INVALID; ++a) { |
141 | 141 |
Node s = digraph.source(a); |
142 | 142 |
Node t = digraph.target(a); |
143 | 143 |
if (dijkstra.reached(s)) { |
144 | 144 |
check( dijkstra.dist(t) - dijkstra.dist(s) <= length[a], |
145 | 145 |
"Error in shortest path tree."); |
146 | 146 |
} |
147 | 147 |
} |
148 | 148 |
|
149 | 149 |
for(NodeIt n(digraph); n != INVALID; ++n) { |
150 | 150 |
if ( dijkstra.reached(n) && dijkstra.predArc(n) != INVALID ) { |
151 | 151 |
Arc a = dijkstra.predArc(n); |
152 | 152 |
Node s = digraph.source(a); |
153 | 153 |
check( dijkstra.dist(n) - dijkstra.dist(s) == length[a], |
154 | 154 |
"Error in shortest path tree."); |
155 | 155 |
} |
156 | 156 |
} |
157 | 157 |
|
158 | 158 |
} |
159 | 159 |
|
160 | 160 |
int main() { |
161 | 161 |
|
162 | 162 |
typedef int Item; |
163 | 163 |
typedef int Prio; |
164 | 164 |
typedef RangeMap<int> ItemIntMap; |
165 | 165 |
|
166 | 166 |
Digraph digraph; |
167 | 167 |
IntArcMap length(digraph); |
168 | 168 |
Node source; |
169 | 169 |
|
170 | 170 |
std::istringstream input(test_lgf); |
171 | 171 |
digraphReader(digraph, input). |
172 | 172 |
arcMap("capacity", length). |
173 | 173 |
node("source", source). |
174 | 174 |
run(); |
175 | 175 |
|
176 | 176 |
// BinHeap |
177 | 177 |
{ |
178 | 178 |
typedef BinHeap<Prio, ItemIntMap> IntHeap; |
179 | 179 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
180 | 180 |
heapSortTest<IntHeap>(); |
181 | 181 |
heapIncreaseTest<IntHeap>(); |
182 | 182 |
|
183 | 183 |
typedef BinHeap<Prio, IntNodeMap > NodeHeap; |
184 | 184 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
185 | 185 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
186 | 186 |
} |
187 | 187 |
|
188 |
// |
|
188 |
// QuadHeap |
|
189 | 189 |
{ |
190 |
typedef |
|
190 |
typedef QuadHeap<Prio, ItemIntMap> IntHeap; |
|
191 | 191 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
192 | 192 |
heapSortTest<IntHeap>(); |
193 | 193 |
heapIncreaseTest<IntHeap>(); |
194 | 194 |
|
195 |
typedef |
|
195 |
typedef QuadHeap<Prio, IntNodeMap > NodeHeap; |
|
196 | 196 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
197 | 197 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
198 | 198 |
} |
199 | 199 |
|
200 |
// |
|
200 |
// DHeap |
|
201 | 201 |
{ |
202 |
typedef |
|
202 |
typedef DHeap<Prio, ItemIntMap> IntHeap; |
|
203 | 203 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
204 | 204 |
heapSortTest<IntHeap>(); |
205 | 205 |
heapIncreaseTest<IntHeap>(); |
206 | 206 |
|
207 |
typedef |
|
207 |
typedef DHeap<Prio, IntNodeMap > NodeHeap; |
|
208 | 208 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
209 | 209 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
210 | 210 |
} |
211 | 211 |
|
212 | 212 |
// FibHeap |
213 | 213 |
{ |
214 | 214 |
typedef FibHeap<Prio, ItemIntMap> IntHeap; |
215 | 215 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
216 | 216 |
heapSortTest<IntHeap>(); |
217 | 217 |
heapIncreaseTest<IntHeap>(); |
218 | 218 |
|
219 | 219 |
typedef FibHeap<Prio, IntNodeMap > NodeHeap; |
220 | 220 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
221 | 221 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
222 | 222 |
} |
223 | 223 |
|
224 | 224 |
// PairingHeap |
225 | 225 |
{ |
226 | 226 |
typedef PairingHeap<Prio, ItemIntMap> IntHeap; |
227 | 227 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
228 | 228 |
heapSortTest<IntHeap>(); |
229 | 229 |
heapIncreaseTest<IntHeap>(); |
230 | 230 |
|
231 | 231 |
typedef PairingHeap<Prio, IntNodeMap > NodeHeap; |
232 | 232 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
233 | 233 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
234 | 234 |
} |
235 | 235 |
|
236 | 236 |
// RadixHeap |
237 | 237 |
{ |
238 | 238 |
typedef RadixHeap<ItemIntMap> IntHeap; |
239 | 239 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
240 | 240 |
heapSortTest<IntHeap>(); |
241 | 241 |
heapIncreaseTest<IntHeap>(); |
242 | 242 |
|
243 | 243 |
typedef RadixHeap<IntNodeMap > NodeHeap; |
244 | 244 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
245 | 245 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
246 | 246 |
} |
247 | 247 |
|
248 |
// |
|
248 |
// BinomialHeap |
|
249 | 249 |
{ |
250 |
typedef |
|
250 |
typedef BinomialHeap<Prio, ItemIntMap> IntHeap; |
|
251 | 251 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
252 | 252 |
heapSortTest<IntHeap>(); |
253 | 253 |
heapIncreaseTest<IntHeap>(); |
254 | 254 |
|
255 |
typedef |
|
255 |
typedef BinomialHeap<Prio, IntNodeMap > NodeHeap; |
|
256 | 256 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
257 | 257 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
258 | 258 |
} |
259 | 259 |
|
260 | 260 |
// BucketHeap, SimpleBucketHeap |
261 | 261 |
{ |
262 | 262 |
typedef BucketHeap<ItemIntMap> IntHeap; |
263 | 263 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
264 | 264 |
heapSortTest<IntHeap>(); |
265 | 265 |
heapIncreaseTest<IntHeap>(); |
266 | 266 |
|
267 | 267 |
typedef BucketHeap<IntNodeMap > NodeHeap; |
268 | 268 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
269 | 269 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
270 | 270 |
|
271 | 271 |
typedef SimpleBucketHeap<ItemIntMap> SimpleIntHeap; |
272 | 272 |
heapSortTest<SimpleIntHeap>(); |
273 | 273 |
} |
274 | 274 |
|
275 | 275 |
return 0; |
276 | 276 |
} |
0 comments (0 inline)