0
22
9
1100
475
100
57
4
4
112
112
4
4
2
9
943
28
20
11
99
10
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_BELLMAN_FORD_H |
|
20 |
#define LEMON_BELLMAN_FORD_H |
|
21 |
|
|
22 |
/// \ingroup shortest_path |
|
23 |
/// \file |
|
24 |
/// \brief Bellman-Ford algorithm. |
|
25 |
|
|
26 |
#include <lemon/bits/path_dump.h> |
|
27 |
#include <lemon/core.h> |
|
28 |
#include <lemon/error.h> |
|
29 |
#include <lemon/maps.h> |
|
30 |
#include <lemon/path.h> |
|
31 |
|
|
32 |
#include <limits> |
|
33 |
|
|
34 |
namespace lemon { |
|
35 |
|
|
36 |
/// \brief Default OperationTraits for the BellmanFord algorithm class. |
|
37 |
/// |
|
38 |
/// This operation traits class defines all computational operations |
|
39 |
/// and constants that are used in the Bellman-Ford algorithm. |
|
40 |
/// The default implementation is based on the \c numeric_limits class. |
|
41 |
/// If the numeric type does not have infinity value, then the maximum |
|
42 |
/// value is used as extremal infinity value. |
|
43 |
template < |
|
44 |
typename V, |
|
45 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
|
46 |
struct BellmanFordDefaultOperationTraits { |
|
47 |
/// \e |
|
48 |
typedef V Value; |
|
49 |
/// \brief Gives back the zero value of the type. |
|
50 |
static Value zero() { |
|
51 |
return static_cast<Value>(0); |
|
52 |
} |
|
53 |
/// \brief Gives back the positive infinity value of the type. |
|
54 |
static Value infinity() { |
|
55 |
return std::numeric_limits<Value>::infinity(); |
|
56 |
} |
|
57 |
/// \brief Gives back the sum of the given two elements. |
|
58 |
static Value plus(const Value& left, const Value& right) { |
|
59 |
return left + right; |
|
60 |
} |
|
61 |
/// \brief Gives back \c true only if the first value is less than |
|
62 |
/// the second. |
|
63 |
static bool less(const Value& left, const Value& right) { |
|
64 |
return left < right; |
|
65 |
} |
|
66 |
}; |
|
67 |
|
|
68 |
template <typename V> |
|
69 |
struct BellmanFordDefaultOperationTraits<V, false> { |
|
70 |
typedef V Value; |
|
71 |
static Value zero() { |
|
72 |
return static_cast<Value>(0); |
|
73 |
} |
|
74 |
static Value infinity() { |
|
75 |
return std::numeric_limits<Value>::max(); |
|
76 |
} |
|
77 |
static Value plus(const Value& left, const Value& right) { |
|
78 |
if (left == infinity() || right == infinity()) return infinity(); |
|
79 |
return left + right; |
|
80 |
} |
|
81 |
static bool less(const Value& left, const Value& right) { |
|
82 |
return left < right; |
|
83 |
} |
|
84 |
}; |
|
85 |
|
|
86 |
/// \brief Default traits class of BellmanFord class. |
|
87 |
/// |
|
88 |
/// Default traits class of BellmanFord class. |
|
89 |
/// \param GR The type of the digraph. |
|
90 |
/// \param LEN The type of the length map. |
|
91 |
template<typename GR, typename LEN> |
|
92 |
struct BellmanFordDefaultTraits { |
|
93 |
/// The type of the digraph the algorithm runs on. |
|
94 |
typedef GR Digraph; |
|
95 |
|
|
96 |
/// \brief The type of the map that stores the arc lengths. |
|
97 |
/// |
|
98 |
/// The type of the map that stores the arc lengths. |
|
99 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
100 |
typedef LEN LengthMap; |
|
101 |
|
|
102 |
/// The type of the arc lengths. |
|
103 |
typedef typename LEN::Value Value; |
|
104 |
|
|
105 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
106 |
/// |
|
107 |
/// It defines the used operations and the infinity value for the |
|
108 |
/// given \c Value type. |
|
109 |
/// \see BellmanFordDefaultOperationTraits |
|
110 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
111 |
|
|
112 |
/// \brief The type of the map that stores the last arcs of the |
|
113 |
/// shortest paths. |
|
114 |
/// |
|
115 |
/// The type of the map that stores the last |
|
116 |
/// arcs of the shortest paths. |
|
117 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
118 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
119 |
|
|
120 |
/// \brief Instantiates a \c PredMap. |
|
121 |
/// |
|
122 |
/// This function instantiates a \ref PredMap. |
|
123 |
/// \param g is the digraph to which we would like to define the |
|
124 |
/// \ref PredMap. |
|
125 |
static PredMap *createPredMap(const GR& g) { |
|
126 |
return new PredMap(g); |
|
127 |
} |
|
128 |
|
|
129 |
/// \brief The type of the map that stores the distances of the nodes. |
|
130 |
/// |
|
131 |
/// The type of the map that stores the distances of the nodes. |
|
132 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
133 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
|
134 |
|
|
135 |
/// \brief Instantiates a \c DistMap. |
|
136 |
/// |
|
137 |
/// This function instantiates a \ref DistMap. |
|
138 |
/// \param g is the digraph to which we would like to define the |
|
139 |
/// \ref DistMap. |
|
140 |
static DistMap *createDistMap(const GR& g) { |
|
141 |
return new DistMap(g); |
|
142 |
} |
|
143 |
|
|
144 |
}; |
|
145 |
|
|
146 |
/// \brief %BellmanFord algorithm class. |
|
147 |
/// |
|
148 |
/// \ingroup shortest_path |
|
149 |
/// This class provides an efficient implementation of the Bellman-Ford |
|
150 |
/// algorithm. The maximum time complexity of the algorithm is |
|
151 |
/// <tt>O(ne)</tt>. |
|
152 |
/// |
|
153 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
|
154 |
/// problem when the arcs can have negative lengths, but the digraph |
|
155 |
/// should not contain directed cycles with negative total length. |
|
156 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
|
157 |
/// algorithm instead, since it is more efficient. |
|
158 |
/// |
|
159 |
/// The arc lengths are passed to the algorithm using a |
|
160 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
161 |
/// kind of length. The type of the length values is determined by the |
|
162 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
|
163 |
/// |
|
164 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
|
165 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
|
166 |
/// it can be used easier. |
|
167 |
/// |
|
168 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
169 |
/// The default type is \ref ListDigraph. |
|
170 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
|
171 |
/// the lengths of the arcs. The default map type is |
|
172 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
173 |
#ifdef DOXYGEN |
|
174 |
template <typename GR, typename LEN, typename TR> |
|
175 |
#else |
|
176 |
template <typename GR=ListDigraph, |
|
177 |
typename LEN=typename GR::template ArcMap<int>, |
|
178 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
|
179 |
#endif |
|
180 |
class BellmanFord { |
|
181 |
public: |
|
182 |
|
|
183 |
///The type of the underlying digraph. |
|
184 |
typedef typename TR::Digraph Digraph; |
|
185 |
|
|
186 |
/// \brief The type of the arc lengths. |
|
187 |
typedef typename TR::LengthMap::Value Value; |
|
188 |
/// \brief The type of the map that stores the arc lengths. |
|
189 |
typedef typename TR::LengthMap LengthMap; |
|
190 |
/// \brief The type of the map that stores the last |
|
191 |
/// arcs of the shortest paths. |
|
192 |
typedef typename TR::PredMap PredMap; |
|
193 |
/// \brief The type of the map that stores the distances of the nodes. |
|
194 |
typedef typename TR::DistMap DistMap; |
|
195 |
/// The type of the paths. |
|
196 |
typedef PredMapPath<Digraph, PredMap> Path; |
|
197 |
///\brief The \ref BellmanFordDefaultOperationTraits |
|
198 |
/// "operation traits class" of the algorithm. |
|
199 |
typedef typename TR::OperationTraits OperationTraits; |
|
200 |
|
|
201 |
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
|
202 |
typedef TR Traits; |
|
203 |
|
|
204 |
private: |
|
205 |
|
|
206 |
typedef typename Digraph::Node Node; |
|
207 |
typedef typename Digraph::NodeIt NodeIt; |
|
208 |
typedef typename Digraph::Arc Arc; |
|
209 |
typedef typename Digraph::OutArcIt OutArcIt; |
|
210 |
|
|
211 |
// Pointer to the underlying digraph. |
|
212 |
const Digraph *_gr; |
|
213 |
// Pointer to the length map |
|
214 |
const LengthMap *_length; |
|
215 |
// Pointer to the map of predecessors arcs. |
|
216 |
PredMap *_pred; |
|
217 |
// Indicates if _pred is locally allocated (true) or not. |
|
218 |
bool _local_pred; |
|
219 |
// Pointer to the map of distances. |
|
220 |
DistMap *_dist; |
|
221 |
// Indicates if _dist is locally allocated (true) or not. |
|
222 |
bool _local_dist; |
|
223 |
|
|
224 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
|
225 |
MaskMap *_mask; |
|
226 |
|
|
227 |
std::vector<Node> _process; |
|
228 |
|
|
229 |
// Creates the maps if necessary. |
|
230 |
void create_maps() { |
|
231 |
if(!_pred) { |
|
232 |
_local_pred = true; |
|
233 |
_pred = Traits::createPredMap(*_gr); |
|
234 |
} |
|
235 |
if(!_dist) { |
|
236 |
_local_dist = true; |
|
237 |
_dist = Traits::createDistMap(*_gr); |
|
238 |
} |
|
239 |
_mask = new MaskMap(*_gr, false); |
|
240 |
} |
|
241 |
|
|
242 |
public : |
|
243 |
|
|
244 |
typedef BellmanFord Create; |
|
245 |
|
|
246 |
/// \name Named Template Parameters |
|
247 |
|
|
248 |
///@{ |
|
249 |
|
|
250 |
template <class T> |
|
251 |
struct SetPredMapTraits : public Traits { |
|
252 |
typedef T PredMap; |
|
253 |
static PredMap *createPredMap(const Digraph&) { |
|
254 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
|
255 |
return 0; // ignore warnings |
|
256 |
} |
|
257 |
}; |
|
258 |
|
|
259 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
260 |
/// \c PredMap type. |
|
261 |
/// |
|
262 |
/// \ref named-templ-param "Named parameter" for setting |
|
263 |
/// \c PredMap type. |
|
264 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
265 |
template <class T> |
|
266 |
struct SetPredMap |
|
267 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > { |
|
268 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
|
269 |
}; |
|
270 |
|
|
271 |
template <class T> |
|
272 |
struct SetDistMapTraits : public Traits { |
|
273 |
typedef T DistMap; |
|
274 |
static DistMap *createDistMap(const Digraph&) { |
|
275 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
|
276 |
return 0; // ignore warnings |
|
277 |
} |
|
278 |
}; |
|
279 |
|
|
280 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
281 |
/// \c DistMap type. |
|
282 |
/// |
|
283 |
/// \ref named-templ-param "Named parameter" for setting |
|
284 |
/// \c DistMap type. |
|
285 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
286 |
template <class T> |
|
287 |
struct SetDistMap |
|
288 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > { |
|
289 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
|
290 |
}; |
|
291 |
|
|
292 |
template <class T> |
|
293 |
struct SetOperationTraitsTraits : public Traits { |
|
294 |
typedef T OperationTraits; |
|
295 |
}; |
|
296 |
|
|
297 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
298 |
/// \c OperationTraits type. |
|
299 |
/// |
|
300 |
/// \ref named-templ-param "Named parameter" for setting |
|
301 |
/// \c OperationTraits type. |
|
302 |
/// For more information see \ref BellmanFordDefaultOperationTraits. |
|
303 |
template <class T> |
|
304 |
struct SetOperationTraits |
|
305 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
|
306 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
|
307 |
Create; |
|
308 |
}; |
|
309 |
|
|
310 |
///@} |
|
311 |
|
|
312 |
protected: |
|
313 |
|
|
314 |
BellmanFord() {} |
|
315 |
|
|
316 |
public: |
|
317 |
|
|
318 |
/// \brief Constructor. |
|
319 |
/// |
|
320 |
/// Constructor. |
|
321 |
/// \param g The digraph the algorithm runs on. |
|
322 |
/// \param length The length map used by the algorithm. |
|
323 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
|
324 |
_gr(&g), _length(&length), |
|
325 |
_pred(0), _local_pred(false), |
|
326 |
_dist(0), _local_dist(false), _mask(0) {} |
|
327 |
|
|
328 |
///Destructor. |
|
329 |
~BellmanFord() { |
|
330 |
if(_local_pred) delete _pred; |
|
331 |
if(_local_dist) delete _dist; |
|
332 |
if(_mask) delete _mask; |
|
333 |
} |
|
334 |
|
|
335 |
/// \brief Sets the length map. |
|
336 |
/// |
|
337 |
/// Sets the length map. |
|
338 |
/// \return <tt>(*this)</tt> |
|
339 |
BellmanFord &lengthMap(const LengthMap &map) { |
|
340 |
_length = ↦ |
|
341 |
return *this; |
|
342 |
} |
|
343 |
|
|
344 |
/// \brief Sets the map that stores the predecessor arcs. |
|
345 |
/// |
|
346 |
/// Sets the map that stores the predecessor arcs. |
|
347 |
/// If you don't use this function before calling \ref run() |
|
348 |
/// or \ref init(), an instance will be allocated automatically. |
|
349 |
/// The destructor deallocates this automatically allocated map, |
|
350 |
/// of course. |
|
351 |
/// \return <tt>(*this)</tt> |
|
352 |
BellmanFord &predMap(PredMap &map) { |
|
353 |
if(_local_pred) { |
|
354 |
delete _pred; |
|
355 |
_local_pred=false; |
|
356 |
} |
|
357 |
_pred = ↦ |
|
358 |
return *this; |
|
359 |
} |
|
360 |
|
|
361 |
/// \brief Sets the map that stores the distances of the nodes. |
|
362 |
/// |
|
363 |
/// Sets the map that stores the distances of the nodes calculated |
|
364 |
/// by the algorithm. |
|
365 |
/// If you don't use this function before calling \ref run() |
|
366 |
/// or \ref init(), an instance will be allocated automatically. |
|
367 |
/// The destructor deallocates this automatically allocated map, |
|
368 |
/// of course. |
|
369 |
/// \return <tt>(*this)</tt> |
|
370 |
BellmanFord &distMap(DistMap &map) { |
|
371 |
if(_local_dist) { |
|
372 |
delete _dist; |
|
373 |
_local_dist=false; |
|
374 |
} |
|
375 |
_dist = ↦ |
|
376 |
return *this; |
|
377 |
} |
|
378 |
|
|
379 |
/// \name Execution Control |
|
380 |
/// The simplest way to execute the Bellman-Ford algorithm is to use |
|
381 |
/// one of the member functions called \ref run().\n |
|
382 |
/// If you need better control on the execution, you have to call |
|
383 |
/// \ref init() first, then you can add several source nodes |
|
384 |
/// with \ref addSource(). Finally the actual path computation can be |
|
385 |
/// performed with \ref start(), \ref checkedStart() or |
|
386 |
/// \ref limitedStart(). |
|
387 |
|
|
388 |
///@{ |
|
389 |
|
|
390 |
/// \brief Initializes the internal data structures. |
|
391 |
/// |
|
392 |
/// Initializes the internal data structures. The optional parameter |
|
393 |
/// is the initial distance of each node. |
|
394 |
void init(const Value value = OperationTraits::infinity()) { |
|
395 |
create_maps(); |
|
396 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
|
397 |
_pred->set(it, INVALID); |
|
398 |
_dist->set(it, value); |
|
399 |
} |
|
400 |
_process.clear(); |
|
401 |
if (OperationTraits::less(value, OperationTraits::infinity())) { |
|
402 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
|
403 |
_process.push_back(it); |
|
404 |
_mask->set(it, true); |
|
405 |
} |
|
406 |
} |
|
407 |
} |
|
408 |
|
|
409 |
/// \brief Adds a new source node. |
|
410 |
/// |
|
411 |
/// This function adds a new source node. The optional second parameter |
|
412 |
/// is the initial distance of the node. |
|
413 |
void addSource(Node source, Value dst = OperationTraits::zero()) { |
|
414 |
_dist->set(source, dst); |
|
415 |
if (!(*_mask)[source]) { |
|
416 |
_process.push_back(source); |
|
417 |
_mask->set(source, true); |
|
418 |
} |
|
419 |
} |
|
420 |
|
|
421 |
/// \brief Executes one round from the Bellman-Ford algorithm. |
|
422 |
/// |
|
423 |
/// If the algoritm calculated the distances in the previous round |
|
424 |
/// exactly for the paths of at most \c k arcs, then this function |
|
425 |
/// will calculate the distances exactly for the paths of at most |
|
426 |
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function |
|
427 |
/// calculates the shortest path distances exactly for the paths |
|
428 |
/// consisting of at most \c k arcs. |
|
429 |
/// |
|
430 |
/// \warning The paths with limited arc number cannot be retrieved |
|
431 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
432 |
/// need the shortest paths and not only the distances, you should |
|
433 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
434 |
/// and build the path manually. |
|
435 |
/// |
|
436 |
/// \return \c true when the algorithm have not found more shorter |
|
437 |
/// paths. |
|
438 |
/// |
|
439 |
/// \see ActiveIt |
|
440 |
bool processNextRound() { |
|
441 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
442 |
_mask->set(_process[i], false); |
|
443 |
} |
|
444 |
std::vector<Node> nextProcess; |
|
445 |
std::vector<Value> values(_process.size()); |
|
446 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
447 |
values[i] = (*_dist)[_process[i]]; |
|
448 |
} |
|
449 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
450 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
|
451 |
Node target = _gr->target(it); |
|
452 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
|
453 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
454 |
_pred->set(target, it); |
|
455 |
_dist->set(target, relaxed); |
|
456 |
if (!(*_mask)[target]) { |
|
457 |
_mask->set(target, true); |
|
458 |
nextProcess.push_back(target); |
|
459 |
} |
|
460 |
} |
|
461 |
} |
|
462 |
} |
|
463 |
_process.swap(nextProcess); |
|
464 |
return _process.empty(); |
|
465 |
} |
|
466 |
|
|
467 |
/// \brief Executes one weak round from the Bellman-Ford algorithm. |
|
468 |
/// |
|
469 |
/// If the algorithm calculated the distances in the previous round |
|
470 |
/// at least for the paths of at most \c k arcs, then this function |
|
471 |
/// will calculate the distances at least for the paths of at most |
|
472 |
/// <tt>k+1</tt> arcs. |
|
473 |
/// This function does not make it possible to calculate the shortest |
|
474 |
/// path distances exactly for paths consisting of at most \c k arcs, |
|
475 |
/// this is why it is called weak round. |
|
476 |
/// |
|
477 |
/// \return \c true when the algorithm have not found more shorter |
|
478 |
/// paths. |
|
479 |
/// |
|
480 |
/// \see ActiveIt |
|
481 |
bool processNextWeakRound() { |
|
482 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
483 |
_mask->set(_process[i], false); |
|
484 |
} |
|
485 |
std::vector<Node> nextProcess; |
|
486 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
487 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
|
488 |
Node target = _gr->target(it); |
|
489 |
Value relaxed = |
|
490 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
|
491 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
492 |
_pred->set(target, it); |
|
493 |
_dist->set(target, relaxed); |
|
494 |
if (!(*_mask)[target]) { |
|
495 |
_mask->set(target, true); |
|
496 |
nextProcess.push_back(target); |
|
497 |
} |
|
498 |
} |
|
499 |
} |
|
500 |
} |
|
501 |
_process.swap(nextProcess); |
|
502 |
return _process.empty(); |
|
503 |
} |
|
504 |
|
|
505 |
/// \brief Executes the algorithm. |
|
506 |
/// |
|
507 |
/// Executes the algorithm. |
|
508 |
/// |
|
509 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
510 |
/// in order to compute the shortest path to each node. |
|
511 |
/// |
|
512 |
/// The algorithm computes |
|
513 |
/// - the shortest path tree (forest), |
|
514 |
/// - the distance of each node from the root(s). |
|
515 |
/// |
|
516 |
/// \pre init() must be called and at least one root node should be |
|
517 |
/// added with addSource() before using this function. |
|
518 |
void start() { |
|
519 |
int num = countNodes(*_gr) - 1; |
|
520 |
for (int i = 0; i < num; ++i) { |
|
521 |
if (processNextWeakRound()) break; |
|
522 |
} |
|
523 |
} |
|
524 |
|
|
525 |
/// \brief Executes the algorithm and checks the negative cycles. |
|
526 |
/// |
|
527 |
/// Executes the algorithm and checks the negative cycles. |
|
528 |
/// |
|
529 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
530 |
/// in order to compute the shortest path to each node and also checks |
|
531 |
/// if the digraph contains cycles with negative total length. |
|
532 |
/// |
|
533 |
/// The algorithm computes |
|
534 |
/// - the shortest path tree (forest), |
|
535 |
/// - the distance of each node from the root(s). |
|
536 |
/// |
|
537 |
/// \return \c false if there is a negative cycle in the digraph. |
|
538 |
/// |
|
539 |
/// \pre init() must be called and at least one root node should be |
|
540 |
/// added with addSource() before using this function. |
|
541 |
bool checkedStart() { |
|
542 |
int num = countNodes(*_gr); |
|
543 |
for (int i = 0; i < num; ++i) { |
|
544 |
if (processNextWeakRound()) return true; |
|
545 |
} |
|
546 |
return _process.empty(); |
|
547 |
} |
|
548 |
|
|
549 |
/// \brief Executes the algorithm with arc number limit. |
|
550 |
/// |
|
551 |
/// Executes the algorithm with arc number limit. |
|
552 |
/// |
|
553 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
554 |
/// in order to compute the shortest path distance for each node |
|
555 |
/// using only the paths consisting of at most \c num arcs. |
|
556 |
/// |
|
557 |
/// The algorithm computes |
|
558 |
/// - the limited distance of each node from the root(s), |
|
559 |
/// - the predecessor arc for each node. |
|
560 |
/// |
|
561 |
/// \warning The paths with limited arc number cannot be retrieved |
|
562 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
563 |
/// need the shortest paths and not only the distances, you should |
|
564 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
565 |
/// and build the path manually. |
|
566 |
/// |
|
567 |
/// \pre init() must be called and at least one root node should be |
|
568 |
/// added with addSource() before using this function. |
|
569 |
void limitedStart(int num) { |
|
570 |
for (int i = 0; i < num; ++i) { |
|
571 |
if (processNextRound()) break; |
|
572 |
} |
|
573 |
} |
|
574 |
|
|
575 |
/// \brief Runs the algorithm from the given root node. |
|
576 |
/// |
|
577 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
578 |
/// node \c s in order to compute the shortest path to each node. |
|
579 |
/// |
|
580 |
/// The algorithm computes |
|
581 |
/// - the shortest path tree (forest), |
|
582 |
/// - the distance of each node from the root(s). |
|
583 |
/// |
|
584 |
/// \note bf.run(s) is just a shortcut of the following code. |
|
585 |
/// \code |
|
586 |
/// bf.init(); |
|
587 |
/// bf.addSource(s); |
|
588 |
/// bf.start(); |
|
589 |
/// \endcode |
|
590 |
void run(Node s) { |
|
591 |
init(); |
|
592 |
addSource(s); |
|
593 |
start(); |
|
594 |
} |
|
595 |
|
|
596 |
/// \brief Runs the algorithm from the given root node with arc |
|
597 |
/// number limit. |
|
598 |
/// |
|
599 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
600 |
/// node \c s in order to compute the shortest path distance for each |
|
601 |
/// node using only the paths consisting of at most \c num arcs. |
|
602 |
/// |
|
603 |
/// The algorithm computes |
|
604 |
/// - the limited distance of each node from the root(s), |
|
605 |
/// - the predecessor arc for each node. |
|
606 |
/// |
|
607 |
/// \warning The paths with limited arc number cannot be retrieved |
|
608 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
609 |
/// need the shortest paths and not only the distances, you should |
|
610 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
611 |
/// and build the path manually. |
|
612 |
/// |
|
613 |
/// \note bf.run(s, num) is just a shortcut of the following code. |
|
614 |
/// \code |
|
615 |
/// bf.init(); |
|
616 |
/// bf.addSource(s); |
|
617 |
/// bf.limitedStart(num); |
|
618 |
/// \endcode |
|
619 |
void run(Node s, int num) { |
|
620 |
init(); |
|
621 |
addSource(s); |
|
622 |
limitedStart(num); |
|
623 |
} |
|
624 |
|
|
625 |
///@} |
|
626 |
|
|
627 |
/// \brief LEMON iterator for getting the active nodes. |
|
628 |
/// |
|
629 |
/// This class provides a common style LEMON iterator that traverses |
|
630 |
/// the active nodes of the Bellman-Ford algorithm after the last |
|
631 |
/// phase. These nodes should be checked in the next phase to |
|
632 |
/// find augmenting arcs outgoing from them. |
|
633 |
class ActiveIt { |
|
634 |
public: |
|
635 |
|
|
636 |
/// \brief Constructor. |
|
637 |
/// |
|
638 |
/// Constructor for getting the active nodes of the given BellmanFord |
|
639 |
/// instance. |
|
640 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
|
641 |
{ |
|
642 |
_index = _algorithm->_process.size() - 1; |
|
643 |
} |
|
644 |
|
|
645 |
/// \brief Invalid constructor. |
|
646 |
/// |
|
647 |
/// Invalid constructor. |
|
648 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {} |
|
649 |
|
|
650 |
/// \brief Conversion to \c Node. |
|
651 |
/// |
|
652 |
/// Conversion to \c Node. |
|
653 |
operator Node() const { |
|
654 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
|
655 |
} |
|
656 |
|
|
657 |
/// \brief Increment operator. |
|
658 |
/// |
|
659 |
/// Increment operator. |
|
660 |
ActiveIt& operator++() { |
|
661 |
--_index; |
|
662 |
return *this; |
|
663 |
} |
|
664 |
|
|
665 |
bool operator==(const ActiveIt& it) const { |
|
666 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
|
667 |
} |
|
668 |
bool operator!=(const ActiveIt& it) const { |
|
669 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
|
670 |
} |
|
671 |
bool operator<(const ActiveIt& it) const { |
|
672 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
|
673 |
} |
|
674 |
|
|
675 |
private: |
|
676 |
const BellmanFord* _algorithm; |
|
677 |
int _index; |
|
678 |
}; |
|
679 |
|
|
680 |
/// \name Query Functions |
|
681 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
|
682 |
/// functions.\n |
|
683 |
/// Either \ref run() or \ref init() should be called before using them. |
|
684 |
|
|
685 |
///@{ |
|
686 |
|
|
687 |
/// \brief The shortest path to the given node. |
|
688 |
/// |
|
689 |
/// Gives back the shortest path to the given node from the root(s). |
|
690 |
/// |
|
691 |
/// \warning \c t should be reached from the root(s). |
|
692 |
/// |
|
693 |
/// \pre Either \ref run() or \ref init() must be called before |
|
694 |
/// using this function. |
|
695 |
Path path(Node t) const |
|
696 |
{ |
|
697 |
return Path(*_gr, *_pred, t); |
|
698 |
} |
|
699 |
|
|
700 |
/// \brief The distance of the given node from the root(s). |
|
701 |
/// |
|
702 |
/// Returns the distance of the given node from the root(s). |
|
703 |
/// |
|
704 |
/// \warning If node \c v is not reached from the root(s), then |
|
705 |
/// the return value of this function is undefined. |
|
706 |
/// |
|
707 |
/// \pre Either \ref run() or \ref init() must be called before |
|
708 |
/// using this function. |
|
709 |
Value dist(Node v) const { return (*_dist)[v]; } |
|
710 |
|
|
711 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
|
712 |
/// the given node. |
|
713 |
/// |
|
714 |
/// This function returns the 'previous arc' of the shortest path |
|
715 |
/// tree for node \c v, i.e. it returns the last arc of a |
|
716 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
|
717 |
/// is not reached from the root(s) or if \c v is a root. |
|
718 |
/// |
|
719 |
/// The shortest path tree used here is equal to the shortest path |
|
720 |
/// tree used in \ref predNode() and \predMap(). |
|
721 |
/// |
|
722 |
/// \pre Either \ref run() or \ref init() must be called before |
|
723 |
/// using this function. |
|
724 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
|
725 |
|
|
726 |
/// \brief Returns the 'previous node' of the shortest path tree for |
|
727 |
/// the given node. |
|
728 |
/// |
|
729 |
/// This function returns the 'previous node' of the shortest path |
|
730 |
/// tree for node \c v, i.e. it returns the last but one node of |
|
731 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
|
732 |
/// is not reached from the root(s) or if \c v is a root. |
|
733 |
/// |
|
734 |
/// The shortest path tree used here is equal to the shortest path |
|
735 |
/// tree used in \ref predArc() and \predMap(). |
|
736 |
/// |
|
737 |
/// \pre Either \ref run() or \ref init() must be called before |
|
738 |
/// using this function. |
|
739 |
Node predNode(Node v) const { |
|
740 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
|
741 |
} |
|
742 |
|
|
743 |
/// \brief Returns a const reference to the node map that stores the |
|
744 |
/// distances of the nodes. |
|
745 |
/// |
|
746 |
/// Returns a const reference to the node map that stores the distances |
|
747 |
/// of the nodes calculated by the algorithm. |
|
748 |
/// |
|
749 |
/// \pre Either \ref run() or \ref init() must be called before |
|
750 |
/// using this function. |
|
751 |
const DistMap &distMap() const { return *_dist;} |
|
752 |
|
|
753 |
/// \brief Returns a const reference to the node map that stores the |
|
754 |
/// predecessor arcs. |
|
755 |
/// |
|
756 |
/// Returns a const reference to the node map that stores the predecessor |
|
757 |
/// arcs, which form the shortest path tree (forest). |
|
758 |
/// |
|
759 |
/// \pre Either \ref run() or \ref init() must be called before |
|
760 |
/// using this function. |
|
761 |
const PredMap &predMap() const { return *_pred; } |
|
762 |
|
|
763 |
/// \brief Checks if a node is reached from the root(s). |
|
764 |
/// |
|
765 |
/// Returns \c true if \c v is reached from the root(s). |
|
766 |
/// |
|
767 |
/// \pre Either \ref run() or \ref init() must be called before |
|
768 |
/// using this function. |
|
769 |
bool reached(Node v) const { |
|
770 |
return (*_dist)[v] != OperationTraits::infinity(); |
|
771 |
} |
|
772 |
|
|
773 |
/// \brief Gives back a negative cycle. |
|
774 |
/// |
|
775 |
/// This function gives back a directed cycle with negative total |
|
776 |
/// length if the algorithm has already found one. |
|
777 |
/// Otherwise it gives back an empty path. |
|
778 |
lemon::Path<Digraph> negativeCycle() { |
|
779 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
|
780 |
lemon::Path<Digraph> cycle; |
|
781 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
782 |
if (state[_process[i]] != -1) continue; |
|
783 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
|
784 |
v = _gr->source((*_pred)[v])) { |
|
785 |
if (state[v] == i) { |
|
786 |
cycle.addFront((*_pred)[v]); |
|
787 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
|
788 |
u = _gr->source((*_pred)[u])) { |
|
789 |
cycle.addFront((*_pred)[u]); |
|
790 |
} |
|
791 |
return cycle; |
|
792 |
} |
|
793 |
else if (state[v] >= 0) { |
|
794 |
break; |
|
795 |
} |
|
796 |
state[v] = i; |
|
797 |
} |
|
798 |
} |
|
799 |
return cycle; |
|
800 |
} |
|
801 |
|
|
802 |
///@} |
|
803 |
}; |
|
804 |
|
|
805 |
/// \brief Default traits class of bellmanFord() function. |
|
806 |
/// |
|
807 |
/// Default traits class of bellmanFord() function. |
|
808 |
/// \tparam GR The type of the digraph. |
|
809 |
/// \tparam LEN The type of the length map. |
|
810 |
template <typename GR, typename LEN> |
|
811 |
struct BellmanFordWizardDefaultTraits { |
|
812 |
/// The type of the digraph the algorithm runs on. |
|
813 |
typedef GR Digraph; |
|
814 |
|
|
815 |
/// \brief The type of the map that stores the arc lengths. |
|
816 |
/// |
|
817 |
/// The type of the map that stores the arc lengths. |
|
818 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
819 |
typedef LEN LengthMap; |
|
820 |
|
|
821 |
/// The type of the arc lengths. |
|
822 |
typedef typename LEN::Value Value; |
|
823 |
|
|
824 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
825 |
/// |
|
826 |
/// It defines the used operations and the infinity value for the |
|
827 |
/// given \c Value type. |
|
828 |
/// \see BellmanFordDefaultOperationTraits |
|
829 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
830 |
|
|
831 |
/// \brief The type of the map that stores the last |
|
832 |
/// arcs of the shortest paths. |
|
833 |
/// |
|
834 |
/// The type of the map that stores the last arcs of the shortest paths. |
|
835 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
836 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
837 |
|
|
838 |
/// \brief Instantiates a \c PredMap. |
|
839 |
/// |
|
840 |
/// This function instantiates a \ref PredMap. |
|
841 |
/// \param g is the digraph to which we would like to define the |
|
842 |
/// \ref PredMap. |
|
843 |
static PredMap *createPredMap(const GR &g) { |
|
844 |
return new PredMap(g); |
|
845 |
} |
|
846 |
|
|
847 |
/// \brief The type of the map that stores the distances of the nodes. |
|
848 |
/// |
|
849 |
/// The type of the map that stores the distances of the nodes. |
|
850 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
851 |
typedef typename GR::template NodeMap<Value> DistMap; |
|
852 |
|
|
853 |
/// \brief Instantiates a \c DistMap. |
|
854 |
/// |
|
855 |
/// This function instantiates a \ref DistMap. |
|
856 |
/// \param g is the digraph to which we would like to define the |
|
857 |
/// \ref DistMap. |
|
858 |
static DistMap *createDistMap(const GR &g) { |
|
859 |
return new DistMap(g); |
|
860 |
} |
|
861 |
|
|
862 |
///The type of the shortest paths. |
|
863 |
|
|
864 |
///The type of the shortest paths. |
|
865 |
///It must meet the \ref concepts::Path "Path" concept. |
|
866 |
typedef lemon::Path<Digraph> Path; |
|
867 |
}; |
|
868 |
|
|
869 |
/// \brief Default traits class used by BellmanFordWizard. |
|
870 |
/// |
|
871 |
/// Default traits class used by BellmanFordWizard. |
|
872 |
/// \tparam GR The type of the digraph. |
|
873 |
/// \tparam LEN The type of the length map. |
|
874 |
template <typename GR, typename LEN> |
|
875 |
class BellmanFordWizardBase |
|
876 |
: public BellmanFordWizardDefaultTraits<GR, LEN> { |
|
877 |
|
|
878 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
|
879 |
protected: |
|
880 |
// Type of the nodes in the digraph. |
|
881 |
typedef typename Base::Digraph::Node Node; |
|
882 |
|
|
883 |
// Pointer to the underlying digraph. |
|
884 |
void *_graph; |
|
885 |
// Pointer to the length map |
|
886 |
void *_length; |
|
887 |
// Pointer to the map of predecessors arcs. |
|
888 |
void *_pred; |
|
889 |
// Pointer to the map of distances. |
|
890 |
void *_dist; |
|
891 |
//Pointer to the shortest path to the target node. |
|
892 |
void *_path; |
|
893 |
//Pointer to the distance of the target node. |
|
894 |
void *_di; |
|
895 |
|
|
896 |
public: |
|
897 |
/// Constructor. |
|
898 |
|
|
899 |
/// This constructor does not require parameters, it initiates |
|
900 |
/// all of the attributes to default values \c 0. |
|
901 |
BellmanFordWizardBase() : |
|
902 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {} |
|
903 |
|
|
904 |
/// Constructor. |
|
905 |
|
|
906 |
/// This constructor requires two parameters, |
|
907 |
/// others are initiated to \c 0. |
|
908 |
/// \param gr The digraph the algorithm runs on. |
|
909 |
/// \param len The length map. |
|
910 |
BellmanFordWizardBase(const GR& gr, |
|
911 |
const LEN& len) : |
|
912 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
|
913 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
|
914 |
_pred(0), _dist(0), _path(0), _di(0) {} |
|
915 |
|
|
916 |
}; |
|
917 |
|
|
918 |
/// \brief Auxiliary class for the function-type interface of the |
|
919 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
920 |
/// |
|
921 |
/// This auxiliary class is created to implement the |
|
922 |
/// \ref bellmanFord() "function-type interface" of the |
|
923 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
924 |
/// It does not have own \ref run() method, it uses the |
|
925 |
/// functions and features of the plain \ref BellmanFord. |
|
926 |
/// |
|
927 |
/// This class should only be used through the \ref bellmanFord() |
|
928 |
/// function, which makes it easier to use the algorithm. |
|
929 |
template<class TR> |
|
930 |
class BellmanFordWizard : public TR { |
|
931 |
typedef TR Base; |
|
932 |
|
|
933 |
typedef typename TR::Digraph Digraph; |
|
934 |
|
|
935 |
typedef typename Digraph::Node Node; |
|
936 |
typedef typename Digraph::NodeIt NodeIt; |
|
937 |
typedef typename Digraph::Arc Arc; |
|
938 |
typedef typename Digraph::OutArcIt ArcIt; |
|
939 |
|
|
940 |
typedef typename TR::LengthMap LengthMap; |
|
941 |
typedef typename LengthMap::Value Value; |
|
942 |
typedef typename TR::PredMap PredMap; |
|
943 |
typedef typename TR::DistMap DistMap; |
|
944 |
typedef typename TR::Path Path; |
|
945 |
|
|
946 |
public: |
|
947 |
/// Constructor. |
|
948 |
BellmanFordWizard() : TR() {} |
|
949 |
|
|
950 |
/// \brief Constructor that requires parameters. |
|
951 |
/// |
|
952 |
/// Constructor that requires parameters. |
|
953 |
/// These parameters will be the default values for the traits class. |
|
954 |
/// \param gr The digraph the algorithm runs on. |
|
955 |
/// \param len The length map. |
|
956 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
|
957 |
: TR(gr, len) {} |
|
958 |
|
|
959 |
/// \brief Copy constructor |
|
960 |
BellmanFordWizard(const TR &b) : TR(b) {} |
|
961 |
|
|
962 |
~BellmanFordWizard() {} |
|
963 |
|
|
964 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
|
965 |
/// |
|
966 |
/// This method runs the Bellman-Ford algorithm from the given source |
|
967 |
/// node in order to compute the shortest path to each node. |
|
968 |
void run(Node s) { |
|
969 |
BellmanFord<Digraph,LengthMap,TR> |
|
970 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
971 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
972 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
973 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
974 |
bf.run(s); |
|
975 |
} |
|
976 |
|
|
977 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
|
978 |
/// between \c s and \c t. |
|
979 |
/// |
|
980 |
/// This method runs the Bellman-Ford algorithm from node \c s |
|
981 |
/// in order to compute the shortest path to node \c t. |
|
982 |
/// Actually, it computes the shortest path to each node, but using |
|
983 |
/// this function you can retrieve the distance and the shortest path |
|
984 |
/// for a single target node easier. |
|
985 |
/// |
|
986 |
/// \return \c true if \c t is reachable form \c s. |
|
987 |
bool run(Node s, Node t) { |
|
988 |
BellmanFord<Digraph,LengthMap,TR> |
|
989 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
990 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
991 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
992 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
993 |
bf.run(s); |
|
994 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
|
995 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
|
996 |
return bf.reached(t); |
|
997 |
} |
|
998 |
|
|
999 |
template<class T> |
|
1000 |
struct SetPredMapBase : public Base { |
|
1001 |
typedef T PredMap; |
|
1002 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
|
1003 |
SetPredMapBase(const TR &b) : TR(b) {} |
|
1004 |
}; |
|
1005 |
|
|
1006 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
1007 |
/// the predecessor map. |
|
1008 |
/// |
|
1009 |
/// \ref named-templ-param "Named parameter" for setting |
|
1010 |
/// the map that stores the predecessor arcs of the nodes. |
|
1011 |
template<class T> |
|
1012 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) { |
|
1013 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1014 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
|
1015 |
} |
|
1016 |
|
|
1017 |
template<class T> |
|
1018 |
struct SetDistMapBase : public Base { |
|
1019 |
typedef T DistMap; |
|
1020 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
|
1021 |
SetDistMapBase(const TR &b) : TR(b) {} |
|
1022 |
}; |
|
1023 |
|
|
1024 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
1025 |
/// the distance map. |
|
1026 |
/// |
|
1027 |
/// \ref named-templ-param "Named parameter" for setting |
|
1028 |
/// the map that stores the distances of the nodes calculated |
|
1029 |
/// by the algorithm. |
|
1030 |
template<class T> |
|
1031 |
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) { |
|
1032 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1033 |
return BellmanFordWizard<SetDistMapBase<T> >(*this); |
|
1034 |
} |
|
1035 |
|
|
1036 |
template<class T> |
|
1037 |
struct SetPathBase : public Base { |
|
1038 |
typedef T Path; |
|
1039 |
SetPathBase(const TR &b) : TR(b) {} |
|
1040 |
}; |
|
1041 |
|
|
1042 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
1043 |
/// the shortest path to the target node. |
|
1044 |
/// |
|
1045 |
/// \ref named-func-param "Named parameter" for getting |
|
1046 |
/// the shortest path to the target node. |
|
1047 |
template<class T> |
|
1048 |
BellmanFordWizard<SetPathBase<T> > path(const T &t) |
|
1049 |
{ |
|
1050 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1051 |
return BellmanFordWizard<SetPathBase<T> >(*this); |
|
1052 |
} |
|
1053 |
|
|
1054 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
1055 |
/// the distance of the target node. |
|
1056 |
/// |
|
1057 |
/// \ref named-func-param "Named parameter" for getting |
|
1058 |
/// the distance of the target node. |
|
1059 |
BellmanFordWizard dist(const Value &d) |
|
1060 |
{ |
|
1061 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
|
1062 |
return *this; |
|
1063 |
} |
|
1064 |
|
|
1065 |
}; |
|
1066 |
|
|
1067 |
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
1068 |
/// algorithm. |
|
1069 |
/// |
|
1070 |
/// \ingroup shortest_path |
|
1071 |
/// Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
1072 |
/// algorithm. |
|
1073 |
/// |
|
1074 |
/// This function also has several \ref named-templ-func-param |
|
1075 |
/// "named parameters", they are declared as the members of class |
|
1076 |
/// \ref BellmanFordWizard. |
|
1077 |
/// The following examples show how to use these parameters. |
|
1078 |
/// \code |
|
1079 |
/// // Compute shortest path from node s to each node |
|
1080 |
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s); |
|
1081 |
/// |
|
1082 |
/// // Compute shortest path from s to t |
|
1083 |
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t); |
|
1084 |
/// \endcode |
|
1085 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
|
1086 |
/// to the end of the parameter list. |
|
1087 |
/// \sa BellmanFordWizard |
|
1088 |
/// \sa BellmanFord |
|
1089 |
template<typename GR, typename LEN> |
|
1090 |
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> > |
|
1091 |
bellmanFord(const GR& digraph, |
|
1092 |
const LEN& length) |
|
1093 |
{ |
|
1094 |
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length); |
|
1095 |
} |
|
1096 |
|
|
1097 |
} //END OF NAMESPACE LEMON |
|
1098 |
|
|
1099 |
#endif |
|
1100 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_BINOM_HEAP_H |
|
20 |
#define LEMON_BINOM_HEAP_H |
|
21 |
|
|
22 |
///\file |
|
23 |
///\ingroup heaps |
|
24 |
///\brief Binomial Heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
#include <lemon/math.h> |
|
30 |
#include <lemon/counter.h> |
|
31 |
|
|
32 |
namespace lemon { |
|
33 |
|
|
34 |
/// \ingroup heaps |
|
35 |
/// |
|
36 |
///\brief Binomial heap data structure. |
|
37 |
/// |
|
38 |
/// This class implements the \e binomial \e heap data structure. |
|
39 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
40 |
/// |
|
41 |
/// The methods \ref increase() and \ref erase() are not efficient |
|
42 |
/// in a binomial heap. In case of many calls of these operations, |
|
43 |
/// it is better to use other heap structure, e.g. \ref BinHeap |
|
44 |
/// "binary heap". |
|
45 |
/// |
|
46 |
/// \tparam PR Type of the priorities of the items. |
|
47 |
/// \tparam IM A read-writable item map with \c int values, used |
|
48 |
/// internally to handle the cross references. |
|
49 |
/// \tparam CMP A functor class for comparing the priorities. |
|
50 |
/// The default is \c std::less<PR>. |
|
51 |
#ifdef DOXYGEN |
|
52 |
template <typename PR, typename IM, typename CMP> |
|
53 |
#else |
|
54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
55 |
#endif |
|
56 |
class BinomHeap { |
|
57 |
public: |
|
58 |
/// Type of the item-int map. |
|
59 |
typedef IM ItemIntMap; |
|
60 |
/// Type of the priorities. |
|
61 |
typedef PR Prio; |
|
62 |
/// Type of the items stored in the heap. |
|
63 |
typedef typename ItemIntMap::Key Item; |
|
64 |
/// Functor type for comparing the priorities. |
|
65 |
typedef CMP Compare; |
|
66 |
|
|
67 |
/// \brief Type to represent the states of the items. |
|
68 |
/// |
|
69 |
/// Each item has a state associated to it. It can be "in heap", |
|
70 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
71 |
/// heap's point of view, but may be useful to the user. |
|
72 |
/// |
|
73 |
/// The item-int map must be initialized in such way that it assigns |
|
74 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
75 |
enum State { |
|
76 |
IN_HEAP = 0, ///< = 0. |
|
77 |
PRE_HEAP = -1, ///< = -1. |
|
78 |
POST_HEAP = -2 ///< = -2. |
|
79 |
}; |
|
80 |
|
|
81 |
private: |
|
82 |
class Store; |
|
83 |
|
|
84 |
std::vector<Store> _data; |
|
85 |
int _min, _head; |
|
86 |
ItemIntMap &_iim; |
|
87 |
Compare _comp; |
|
88 |
int _num_items; |
|
89 |
|
|
90 |
public: |
|
91 |
/// \brief Constructor. |
|
92 |
/// |
|
93 |
/// Constructor. |
|
94 |
/// \param map A map that assigns \c int values to the items. |
|
95 |
/// It is used internally to handle the cross references. |
|
96 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
97 |
explicit BinomHeap(ItemIntMap &map) |
|
98 |
: _min(0), _head(-1), _iim(map), _num_items(0) {} |
|
99 |
|
|
100 |
/// \brief Constructor. |
|
101 |
/// |
|
102 |
/// Constructor. |
|
103 |
/// \param map A map that assigns \c int values to the items. |
|
104 |
/// It is used internally to handle the cross references. |
|
105 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
106 |
/// \param comp The function object used for comparing the priorities. |
|
107 |
BinomHeap(ItemIntMap &map, const Compare &comp) |
|
108 |
: _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {} |
|
109 |
|
|
110 |
/// \brief The number of items stored in the heap. |
|
111 |
/// |
|
112 |
/// This function returns the number of items stored in the heap. |
|
113 |
int size() const { return _num_items; } |
|
114 |
|
|
115 |
/// \brief Check if the heap is empty. |
|
116 |
/// |
|
117 |
/// This function returns \c true if the heap is empty. |
|
118 |
bool empty() const { return _num_items==0; } |
|
119 |
|
|
120 |
/// \brief Make the heap empty. |
|
121 |
/// |
|
122 |
/// This functon makes the heap empty. |
|
123 |
/// It does not change the cross reference map. If you want to reuse |
|
124 |
/// a heap that is not surely empty, you should first clear it and |
|
125 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
126 |
/// for each item. |
|
127 |
void clear() { |
|
128 |
_data.clear(); _min=0; _num_items=0; _head=-1; |
|
129 |
} |
|
130 |
|
|
131 |
/// \brief Set the priority of an item or insert it, if it is |
|
132 |
/// not stored in the heap. |
|
133 |
/// |
|
134 |
/// This method sets the priority of the given item if it is |
|
135 |
/// already stored in the heap. Otherwise it inserts the given |
|
136 |
/// item into the heap with the given priority. |
|
137 |
/// \param item The item. |
|
138 |
/// \param value The priority. |
|
139 |
void set (const Item& item, const Prio& value) { |
|
140 |
int i=_iim[item]; |
|
141 |
if ( i >= 0 && _data[i].in ) { |
|
142 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
143 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
144 |
} else push(item, value); |
|
145 |
} |
|
146 |
|
|
147 |
/// \brief Insert an item into the heap with the given priority. |
|
148 |
/// |
|
149 |
/// This function inserts the given item into the heap with the |
|
150 |
/// given priority. |
|
151 |
/// \param item The item to insert. |
|
152 |
/// \param value The priority of the item. |
|
153 |
/// \pre \e item must not be stored in the heap. |
|
154 |
void push (const Item& item, const Prio& value) { |
|
155 |
int i=_iim[item]; |
|
156 |
if ( i<0 ) { |
|
157 |
int s=_data.size(); |
|
158 |
_iim.set( item,s ); |
|
159 |
Store st; |
|
160 |
st.name=item; |
|
161 |
st.prio=value; |
|
162 |
_data.push_back(st); |
|
163 |
i=s; |
|
164 |
} |
|
165 |
else { |
|
166 |
_data[i].parent=_data[i].right_neighbor=_data[i].child=-1; |
|
167 |
_data[i].degree=0; |
|
168 |
_data[i].in=true; |
|
169 |
_data[i].prio=value; |
|
170 |
} |
|
171 |
|
|
172 |
if( 0==_num_items ) { |
|
173 |
_head=i; |
|
174 |
_min=i; |
|
175 |
} else { |
|
176 |
merge(i); |
|
177 |
if( _comp(_data[i].prio, _data[_min].prio) ) _min=i; |
|
178 |
} |
|
179 |
++_num_items; |
|
180 |
} |
|
181 |
|
|
182 |
/// \brief Return the item having minimum priority. |
|
183 |
/// |
|
184 |
/// This function returns the item having minimum priority. |
|
185 |
/// \pre The heap must be non-empty. |
|
186 |
Item top() const { return _data[_min].name; } |
|
187 |
|
|
188 |
/// \brief The minimum priority. |
|
189 |
/// |
|
190 |
/// This function returns the minimum priority. |
|
191 |
/// \pre The heap must be non-empty. |
|
192 |
Prio prio() const { return _data[_min].prio; } |
|
193 |
|
|
194 |
/// \brief The priority of the given item. |
|
195 |
/// |
|
196 |
/// This function returns the priority of the given item. |
|
197 |
/// \param item The item. |
|
198 |
/// \pre \e item must be in the heap. |
|
199 |
const Prio& operator[](const Item& item) const { |
|
200 |
return _data[_iim[item]].prio; |
|
201 |
} |
|
202 |
|
|
203 |
/// \brief Remove the item having minimum priority. |
|
204 |
/// |
|
205 |
/// This function removes the item having minimum priority. |
|
206 |
/// \pre The heap must be non-empty. |
|
207 |
void pop() { |
|
208 |
_data[_min].in=false; |
|
209 |
|
|
210 |
int head_child=-1; |
|
211 |
if ( _data[_min].child!=-1 ) { |
|
212 |
int child=_data[_min].child; |
|
213 |
int neighb; |
|
214 |
while( child!=-1 ) { |
|
215 |
neighb=_data[child].right_neighbor; |
|
216 |
_data[child].parent=-1; |
|
217 |
_data[child].right_neighbor=head_child; |
|
218 |
head_child=child; |
|
219 |
child=neighb; |
|
220 |
} |
|
221 |
} |
|
222 |
|
|
223 |
if ( _data[_head].right_neighbor==-1 ) { |
|
224 |
// there was only one root |
|
225 |
_head=head_child; |
|
226 |
} |
|
227 |
else { |
|
228 |
// there were more roots |
|
229 |
if( _head!=_min ) { unlace(_min); } |
|
230 |
else { _head=_data[_head].right_neighbor; } |
|
231 |
merge(head_child); |
|
232 |
} |
|
233 |
_min=findMin(); |
|
234 |
--_num_items; |
|
235 |
} |
|
236 |
|
|
237 |
/// \brief Remove the given item from the heap. |
|
238 |
/// |
|
239 |
/// This function removes the given item from the heap if it is |
|
240 |
/// already stored. |
|
241 |
/// \param item The item to delete. |
|
242 |
/// \pre \e item must be in the heap. |
|
243 |
void erase (const Item& item) { |
|
244 |
int i=_iim[item]; |
|
245 |
if ( i >= 0 && _data[i].in ) { |
|
246 |
decrease( item, _data[_min].prio-1 ); |
|
247 |
pop(); |
|
248 |
} |
|
249 |
} |
|
250 |
|
|
251 |
/// \brief Decrease the priority of an item to the given value. |
|
252 |
/// |
|
253 |
/// This function decreases the priority of an item to the given value. |
|
254 |
/// \param item The item. |
|
255 |
/// \param value The priority. |
|
256 |
/// \pre \e item must be stored in the heap with priority at least \e value. |
|
257 |
void decrease (Item item, const Prio& value) { |
|
258 |
int i=_iim[item]; |
|
259 |
int p=_data[i].parent; |
|
260 |
_data[i].prio=value; |
|
261 |
|
|
262 |
while( p!=-1 && _comp(value, _data[p].prio) ) { |
|
263 |
_data[i].name=_data[p].name; |
|
264 |
_data[i].prio=_data[p].prio; |
|
265 |
_data[p].name=item; |
|
266 |
_data[p].prio=value; |
|
267 |
_iim[_data[i].name]=i; |
|
268 |
i=p; |
|
269 |
p=_data[p].parent; |
|
270 |
} |
|
271 |
_iim[item]=i; |
|
272 |
if ( _comp(value, _data[_min].prio) ) _min=i; |
|
273 |
} |
|
274 |
|
|
275 |
/// \brief Increase the priority of an item to the given value. |
|
276 |
/// |
|
277 |
/// This function increases the priority of an item to the given value. |
|
278 |
/// \param item The item. |
|
279 |
/// \param value The priority. |
|
280 |
/// \pre \e item must be stored in the heap with priority at most \e value. |
|
281 |
void increase (Item item, const Prio& value) { |
|
282 |
erase(item); |
|
283 |
push(item, value); |
|
284 |
} |
|
285 |
|
|
286 |
/// \brief Return the state of an item. |
|
287 |
/// |
|
288 |
/// This method returns \c PRE_HEAP if the given item has never |
|
289 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
290 |
/// and \c POST_HEAP otherwise. |
|
291 |
/// In the latter case it is possible that the item will get back |
|
292 |
/// to the heap again. |
|
293 |
/// \param item The item. |
|
294 |
State state(const Item &item) const { |
|
295 |
int i=_iim[item]; |
|
296 |
if( i>=0 ) { |
|
297 |
if ( _data[i].in ) i=0; |
|
298 |
else i=-2; |
|
299 |
} |
|
300 |
return State(i); |
|
301 |
} |
|
302 |
|
|
303 |
/// \brief Set the state of an item in the heap. |
|
304 |
/// |
|
305 |
/// This function sets the state of the given item in the heap. |
|
306 |
/// It can be used to manually clear the heap when it is important |
|
307 |
/// to achive better time complexity. |
|
308 |
/// \param i The item. |
|
309 |
/// \param st The state. It should not be \c IN_HEAP. |
|
310 |
void state(const Item& i, State st) { |
|
311 |
switch (st) { |
|
312 |
case POST_HEAP: |
|
313 |
case PRE_HEAP: |
|
314 |
if (state(i) == IN_HEAP) { |
|
315 |
erase(i); |
|
316 |
} |
|
317 |
_iim[i] = st; |
|
318 |
break; |
|
319 |
case IN_HEAP: |
|
320 |
break; |
|
321 |
} |
|
322 |
} |
|
323 |
|
|
324 |
private: |
|
325 |
|
|
326 |
// Find the minimum of the roots |
|
327 |
int findMin() { |
|
328 |
if( _head!=-1 ) { |
|
329 |
int min_loc=_head, min_val=_data[_head].prio; |
|
330 |
for( int x=_data[_head].right_neighbor; x!=-1; |
|
331 |
x=_data[x].right_neighbor ) { |
|
332 |
if( _comp( _data[x].prio,min_val ) ) { |
|
333 |
min_val=_data[x].prio; |
|
334 |
min_loc=x; |
|
335 |
} |
|
336 |
} |
|
337 |
return min_loc; |
|
338 |
} |
|
339 |
else return -1; |
|
340 |
} |
|
341 |
|
|
342 |
// Merge the heap with another heap starting at the given position |
|
343 |
void merge(int a) { |
|
344 |
if( _head==-1 || a==-1 ) return; |
|
345 |
if( _data[a].right_neighbor==-1 && |
|
346 |
_data[a].degree<=_data[_head].degree ) { |
|
347 |
_data[a].right_neighbor=_head; |
|
348 |
_head=a; |
|
349 |
} else { |
|
350 |
interleave(a); |
|
351 |
} |
|
352 |
if( _data[_head].right_neighbor==-1 ) return; |
|
353 |
|
|
354 |
int x=_head; |
|
355 |
int x_prev=-1, x_next=_data[x].right_neighbor; |
|
356 |
while( x_next!=-1 ) { |
|
357 |
if( _data[x].degree!=_data[x_next].degree || |
|
358 |
( _data[x_next].right_neighbor!=-1 && |
|
359 |
_data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) { |
|
360 |
x_prev=x; |
|
361 |
x=x_next; |
|
362 |
} |
|
363 |
else { |
|
364 |
if( _comp(_data[x_next].prio,_data[x].prio) ) { |
|
365 |
if( x_prev==-1 ) { |
|
366 |
_head=x_next; |
|
367 |
} else { |
|
368 |
_data[x_prev].right_neighbor=x_next; |
|
369 |
} |
|
370 |
fuse(x,x_next); |
|
371 |
x=x_next; |
|
372 |
} |
|
373 |
else { |
|
374 |
_data[x].right_neighbor=_data[x_next].right_neighbor; |
|
375 |
fuse(x_next,x); |
|
376 |
} |
|
377 |
} |
|
378 |
x_next=_data[x].right_neighbor; |
|
379 |
} |
|
380 |
} |
|
381 |
|
|
382 |
// Interleave the elements of the given list into the list of the roots |
|
383 |
void interleave(int a) { |
|
384 |
int p=_head, q=a; |
|
385 |
int curr=_data.size(); |
|
386 |
_data.push_back(Store()); |
|
387 |
|
|
388 |
while( p!=-1 || q!=-1 ) { |
|
389 |
if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) { |
|
390 |
_data[curr].right_neighbor=p; |
|
391 |
curr=p; |
|
392 |
p=_data[p].right_neighbor; |
|
393 |
} |
|
394 |
else { |
|
395 |
_data[curr].right_neighbor=q; |
|
396 |
curr=q; |
|
397 |
q=_data[q].right_neighbor; |
|
398 |
} |
|
399 |
} |
|
400 |
|
|
401 |
_head=_data.back().right_neighbor; |
|
402 |
_data.pop_back(); |
|
403 |
} |
|
404 |
|
|
405 |
// Lace node a under node b |
|
406 |
void fuse(int a, int b) { |
|
407 |
_data[a].parent=b; |
|
408 |
_data[a].right_neighbor=_data[b].child; |
|
409 |
_data[b].child=a; |
|
410 |
|
|
411 |
++_data[b].degree; |
|
412 |
} |
|
413 |
|
|
414 |
// Unlace node a (if it has siblings) |
|
415 |
void unlace(int a) { |
|
416 |
int neighb=_data[a].right_neighbor; |
|
417 |
int other=_head; |
|
418 |
|
|
419 |
while( _data[other].right_neighbor!=a ) |
|
420 |
other=_data[other].right_neighbor; |
|
421 |
_data[other].right_neighbor=neighb; |
|
422 |
} |
|
423 |
|
|
424 |
private: |
|
425 |
|
|
426 |
class Store { |
|
427 |
friend class BinomHeap; |
|
428 |
|
|
429 |
Item name; |
|
430 |
int parent; |
|
431 |
int right_neighbor; |
|
432 |
int child; |
|
433 |
int degree; |
|
434 |
bool in; |
|
435 |
Prio prio; |
|
436 |
|
|
437 |
Store() : parent(-1), right_neighbor(-1), child(-1), degree(0), |
|
438 |
in(true) {} |
|
439 |
}; |
|
440 |
}; |
|
441 |
|
|
442 |
} //namespace lemon |
|
443 |
|
|
444 |
#endif //LEMON_BINOM_HEAP_H |
|
445 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_BUCKET_HEAP_H |
|
20 |
#define LEMON_BUCKET_HEAP_H |
|
21 |
|
|
22 |
///\ingroup heaps |
|
23 |
///\file |
|
24 |
///\brief Bucket heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
|
|
30 |
namespace lemon { |
|
31 |
|
|
32 |
namespace _bucket_heap_bits { |
|
33 |
|
|
34 |
template <bool MIN> |
|
35 |
struct DirectionTraits { |
|
36 |
static bool less(int left, int right) { |
|
37 |
return left < right; |
|
38 |
} |
|
39 |
static void increase(int& value) { |
|
40 |
++value; |
|
41 |
} |
|
42 |
}; |
|
43 |
|
|
44 |
template <> |
|
45 |
struct DirectionTraits<false> { |
|
46 |
static bool less(int left, int right) { |
|
47 |
return left > right; |
|
48 |
} |
|
49 |
static void increase(int& value) { |
|
50 |
--value; |
|
51 |
} |
|
52 |
}; |
|
53 |
|
|
54 |
} |
|
55 |
|
|
56 |
/// \ingroup heaps |
|
57 |
/// |
|
58 |
/// \brief Bucket heap data structure. |
|
59 |
/// |
|
60 |
/// This class implements the \e bucket \e heap data structure. |
|
61 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
|
62 |
/// but it has some limitations. |
|
63 |
/// |
|
64 |
/// The bucket heap is a very simple structure. It can store only |
|
65 |
/// \c int priorities and it maintains a list of items for each priority |
|
66 |
/// in the range <tt>[0..C)</tt>. So it should only be used when the |
|
67 |
/// priorities are small. It is not intended to use as a Dijkstra heap. |
|
68 |
/// |
|
69 |
/// \tparam IM A read-writable item map with \c int values, used |
|
70 |
/// internally to handle the cross references. |
|
71 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
|
72 |
/// The default is \e min-heap. If this parameter is set to \c false, |
|
73 |
/// then the comparison is reversed, so the top(), prio() and pop() |
|
74 |
/// functions deal with the item having maximum priority instead of the |
|
75 |
/// minimum. |
|
76 |
/// |
|
77 |
/// \sa SimpleBucketHeap |
|
78 |
template <typename IM, bool MIN = true> |
|
79 |
class BucketHeap { |
|
80 |
|
|
81 |
public: |
|
82 |
|
|
83 |
/// Type of the item-int map. |
|
84 |
typedef IM ItemIntMap; |
|
85 |
/// Type of the priorities. |
|
86 |
typedef int Prio; |
|
87 |
/// Type of the items stored in the heap. |
|
88 |
typedef typename ItemIntMap::Key Item; |
|
89 |
/// Type of the item-priority pairs. |
|
90 |
typedef std::pair<Item,Prio> Pair; |
|
91 |
|
|
92 |
private: |
|
93 |
|
|
94 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
|
95 |
|
|
96 |
public: |
|
97 |
|
|
98 |
/// \brief Type to represent the states of the items. |
|
99 |
/// |
|
100 |
/// Each item has a state associated to it. It can be "in heap", |
|
101 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
102 |
/// heap's point of view, but may be useful to the user. |
|
103 |
/// |
|
104 |
/// The item-int map must be initialized in such way that it assigns |
|
105 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
106 |
enum State { |
|
107 |
IN_HEAP = 0, ///< = 0. |
|
108 |
PRE_HEAP = -1, ///< = -1. |
|
109 |
POST_HEAP = -2 ///< = -2. |
|
110 |
}; |
|
111 |
|
|
112 |
public: |
|
113 |
|
|
114 |
/// \brief Constructor. |
|
115 |
/// |
|
116 |
/// Constructor. |
|
117 |
/// \param map A map that assigns \c int values to the items. |
|
118 |
/// It is used internally to handle the cross references. |
|
119 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
120 |
explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {} |
|
121 |
|
|
122 |
/// \brief The number of items stored in the heap. |
|
123 |
/// |
|
124 |
/// This function returns the number of items stored in the heap. |
|
125 |
int size() const { return _data.size(); } |
|
126 |
|
|
127 |
/// \brief Check if the heap is empty. |
|
128 |
/// |
|
129 |
/// This function returns \c true if the heap is empty. |
|
130 |
bool empty() const { return _data.empty(); } |
|
131 |
|
|
132 |
/// \brief Make the heap empty. |
|
133 |
/// |
|
134 |
/// This functon makes the heap empty. |
|
135 |
/// It does not change the cross reference map. If you want to reuse |
|
136 |
/// a heap that is not surely empty, you should first clear it and |
|
137 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
138 |
/// for each item. |
|
139 |
void clear() { |
|
140 |
_data.clear(); _first.clear(); _minimum = 0; |
|
141 |
} |
|
142 |
|
|
143 |
private: |
|
144 |
|
|
145 |
void relocateLast(int idx) { |
|
146 |
if (idx + 1 < int(_data.size())) { |
|
147 |
_data[idx] = _data.back(); |
|
148 |
if (_data[idx].prev != -1) { |
|
149 |
_data[_data[idx].prev].next = idx; |
|
150 |
} else { |
|
151 |
_first[_data[idx].value] = idx; |
|
152 |
} |
|
153 |
if (_data[idx].next != -1) { |
|
154 |
_data[_data[idx].next].prev = idx; |
|
155 |
} |
|
156 |
_iim[_data[idx].item] = idx; |
|
157 |
} |
|
158 |
_data.pop_back(); |
|
159 |
} |
|
160 |
|
|
161 |
void unlace(int idx) { |
|
162 |
if (_data[idx].prev != -1) { |
|
163 |
_data[_data[idx].prev].next = _data[idx].next; |
|
164 |
} else { |
|
165 |
_first[_data[idx].value] = _data[idx].next; |
|
166 |
} |
|
167 |
if (_data[idx].next != -1) { |
|
168 |
_data[_data[idx].next].prev = _data[idx].prev; |
|
169 |
} |
|
170 |
} |
|
171 |
|
|
172 |
void lace(int idx) { |
|
173 |
if (int(_first.size()) <= _data[idx].value) { |
|
174 |
_first.resize(_data[idx].value + 1, -1); |
|
175 |
} |
|
176 |
_data[idx].next = _first[_data[idx].value]; |
|
177 |
if (_data[idx].next != -1) { |
|
178 |
_data[_data[idx].next].prev = idx; |
|
179 |
} |
|
180 |
_first[_data[idx].value] = idx; |
|
181 |
_data[idx].prev = -1; |
|
182 |
} |
|
183 |
|
|
184 |
public: |
|
185 |
|
|
186 |
/// \brief Insert a pair of item and priority into the heap. |
|
187 |
/// |
|
188 |
/// This function inserts \c p.first to the heap with priority |
|
189 |
/// \c p.second. |
|
190 |
/// \param p The pair to insert. |
|
191 |
/// \pre \c p.first must not be stored in the heap. |
|
192 |
void push(const Pair& p) { |
|
193 |
push(p.first, p.second); |
|
194 |
} |
|
195 |
|
|
196 |
/// \brief Insert an item into the heap with the given priority. |
|
197 |
/// |
|
198 |
/// This function inserts the given item into the heap with the |
|
199 |
/// given priority. |
|
200 |
/// \param i The item to insert. |
|
201 |
/// \param p The priority of the item. |
|
202 |
/// \pre \e i must not be stored in the heap. |
|
203 |
void push(const Item &i, const Prio &p) { |
|
204 |
int idx = _data.size(); |
|
205 |
_iim[i] = idx; |
|
206 |
_data.push_back(BucketItem(i, p)); |
|
207 |
lace(idx); |
|
208 |
if (Direction::less(p, _minimum)) { |
|
209 |
_minimum = p; |
|
210 |
} |
|
211 |
} |
|
212 |
|
|
213 |
/// \brief Return the item having minimum priority. |
|
214 |
/// |
|
215 |
/// This function returns the item having minimum priority. |
|
216 |
/// \pre The heap must be non-empty. |
|
217 |
Item top() const { |
|
218 |
while (_first[_minimum] == -1) { |
|
219 |
Direction::increase(_minimum); |
|
220 |
} |
|
221 |
return _data[_first[_minimum]].item; |
|
222 |
} |
|
223 |
|
|
224 |
/// \brief The minimum priority. |
|
225 |
/// |
|
226 |
/// This function returns the minimum priority. |
|
227 |
/// \pre The heap must be non-empty. |
|
228 |
Prio prio() const { |
|
229 |
while (_first[_minimum] == -1) { |
|
230 |
Direction::increase(_minimum); |
|
231 |
} |
|
232 |
return _minimum; |
|
233 |
} |
|
234 |
|
|
235 |
/// \brief Remove the item having minimum priority. |
|
236 |
/// |
|
237 |
/// This function removes the item having minimum priority. |
|
238 |
/// \pre The heap must be non-empty. |
|
239 |
void pop() { |
|
240 |
while (_first[_minimum] == -1) { |
|
241 |
Direction::increase(_minimum); |
|
242 |
} |
|
243 |
int idx = _first[_minimum]; |
|
244 |
_iim[_data[idx].item] = -2; |
|
245 |
unlace(idx); |
|
246 |
relocateLast(idx); |
|
247 |
} |
|
248 |
|
|
249 |
/// \brief Remove the given item from the heap. |
|
250 |
/// |
|
251 |
/// This function removes the given item from the heap if it is |
|
252 |
/// already stored. |
|
253 |
/// \param i The item to delete. |
|
254 |
/// \pre \e i must be in the heap. |
|
255 |
void erase(const Item &i) { |
|
256 |
int idx = _iim[i]; |
|
257 |
_iim[_data[idx].item] = -2; |
|
258 |
unlace(idx); |
|
259 |
relocateLast(idx); |
|
260 |
} |
|
261 |
|
|
262 |
/// \brief The priority of the given item. |
|
263 |
/// |
|
264 |
/// This function returns the priority of the given item. |
|
265 |
/// \param i The item. |
|
266 |
/// \pre \e i must be in the heap. |
|
267 |
Prio operator[](const Item &i) const { |
|
268 |
int idx = _iim[i]; |
|
269 |
return _data[idx].value; |
|
270 |
} |
|
271 |
|
|
272 |
/// \brief Set the priority of an item or insert it, if it is |
|
273 |
/// not stored in the heap. |
|
274 |
/// |
|
275 |
/// This method sets the priority of the given item if it is |
|
276 |
/// already stored in the heap. Otherwise it inserts the given |
|
277 |
/// item into the heap with the given priority. |
|
278 |
/// \param i The item. |
|
279 |
/// \param p The priority. |
|
280 |
void set(const Item &i, const Prio &p) { |
|
281 |
int idx = _iim[i]; |
|
282 |
if (idx < 0) { |
|
283 |
push(i, p); |
|
284 |
} else if (Direction::less(p, _data[idx].value)) { |
|
285 |
decrease(i, p); |
|
286 |
} else { |
|
287 |
increase(i, p); |
|
288 |
} |
|
289 |
} |
|
290 |
|
|
291 |
/// \brief Decrease the priority of an item to the given value. |
|
292 |
/// |
|
293 |
/// This function decreases the priority of an item to the given value. |
|
294 |
/// \param i The item. |
|
295 |
/// \param p The priority. |
|
296 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
297 |
void decrease(const Item &i, const Prio &p) { |
|
298 |
int idx = _iim[i]; |
|
299 |
unlace(idx); |
|
300 |
_data[idx].value = p; |
|
301 |
if (Direction::less(p, _minimum)) { |
|
302 |
_minimum = p; |
|
303 |
} |
|
304 |
lace(idx); |
|
305 |
} |
|
306 |
|
|
307 |
/// \brief Increase the priority of an item to the given value. |
|
308 |
/// |
|
309 |
/// This function increases the priority of an item to the given value. |
|
310 |
/// \param i The item. |
|
311 |
/// \param p The priority. |
|
312 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
313 |
void increase(const Item &i, const Prio &p) { |
|
314 |
int idx = _iim[i]; |
|
315 |
unlace(idx); |
|
316 |
_data[idx].value = p; |
|
317 |
lace(idx); |
|
318 |
} |
|
319 |
|
|
320 |
/// \brief Return the state of an item. |
|
321 |
/// |
|
322 |
/// This method returns \c PRE_HEAP if the given item has never |
|
323 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
324 |
/// and \c POST_HEAP otherwise. |
|
325 |
/// In the latter case it is possible that the item will get back |
|
326 |
/// to the heap again. |
|
327 |
/// \param i The item. |
|
328 |
State state(const Item &i) const { |
|
329 |
int idx = _iim[i]; |
|
330 |
if (idx >= 0) idx = 0; |
|
331 |
return State(idx); |
|
332 |
} |
|
333 |
|
|
334 |
/// \brief Set the state of an item in the heap. |
|
335 |
/// |
|
336 |
/// This function sets the state of the given item in the heap. |
|
337 |
/// It can be used to manually clear the heap when it is important |
|
338 |
/// to achive better time complexity. |
|
339 |
/// \param i The item. |
|
340 |
/// \param st The state. It should not be \c IN_HEAP. |
|
341 |
void state(const Item& i, State st) { |
|
342 |
switch (st) { |
|
343 |
case POST_HEAP: |
|
344 |
case PRE_HEAP: |
|
345 |
if (state(i) == IN_HEAP) { |
|
346 |
erase(i); |
|
347 |
} |
|
348 |
_iim[i] = st; |
|
349 |
break; |
|
350 |
case IN_HEAP: |
|
351 |
break; |
|
352 |
} |
|
353 |
} |
|
354 |
|
|
355 |
private: |
|
356 |
|
|
357 |
struct BucketItem { |
|
358 |
BucketItem(const Item& _item, int _value) |
|
359 |
: item(_item), value(_value) {} |
|
360 |
|
|
361 |
Item item; |
|
362 |
int value; |
|
363 |
|
|
364 |
int prev, next; |
|
365 |
}; |
|
366 |
|
|
367 |
ItemIntMap& _iim; |
|
368 |
std::vector<int> _first; |
|
369 |
std::vector<BucketItem> _data; |
|
370 |
mutable int _minimum; |
|
371 |
|
|
372 |
}; // class BucketHeap |
|
373 |
|
|
374 |
/// \ingroup heaps |
|
375 |
/// |
|
376 |
/// \brief Simplified bucket heap data structure. |
|
377 |
/// |
|
378 |
/// This class implements a simplified \e bucket \e heap data |
|
379 |
/// structure. It does not provide some functionality, but it is |
|
380 |
/// faster and simpler than BucketHeap. The main difference is |
|
381 |
/// that BucketHeap stores a doubly-linked list for each key while |
|
382 |
/// this class stores only simply-linked lists. It supports erasing |
|
383 |
/// only for the item having minimum priority and it does not support |
|
384 |
/// key increasing and decreasing. |
|
385 |
/// |
|
386 |
/// Note that this implementation does not conform to the |
|
387 |
/// \ref concepts::Heap "heap concept" due to the lack of some |
|
388 |
/// functionality. |
|
389 |
/// |
|
390 |
/// \tparam IM A read-writable item map with \c int values, used |
|
391 |
/// internally to handle the cross references. |
|
392 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
|
393 |
/// The default is \e min-heap. If this parameter is set to \c false, |
|
394 |
/// then the comparison is reversed, so the top(), prio() and pop() |
|
395 |
/// functions deal with the item having maximum priority instead of the |
|
396 |
/// minimum. |
|
397 |
/// |
|
398 |
/// \sa BucketHeap |
|
399 |
template <typename IM, bool MIN = true > |
|
400 |
class SimpleBucketHeap { |
|
401 |
|
|
402 |
public: |
|
403 |
|
|
404 |
/// Type of the item-int map. |
|
405 |
typedef IM ItemIntMap; |
|
406 |
/// Type of the priorities. |
|
407 |
typedef int Prio; |
|
408 |
/// Type of the items stored in the heap. |
|
409 |
typedef typename ItemIntMap::Key Item; |
|
410 |
/// Type of the item-priority pairs. |
|
411 |
typedef std::pair<Item,Prio> Pair; |
|
412 |
|
|
413 |
private: |
|
414 |
|
|
415 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
|
416 |
|
|
417 |
public: |
|
418 |
|
|
419 |
/// \brief Type to represent the states of the items. |
|
420 |
/// |
|
421 |
/// Each item has a state associated to it. It can be "in heap", |
|
422 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
423 |
/// heap's point of view, but may be useful to the user. |
|
424 |
/// |
|
425 |
/// The item-int map must be initialized in such way that it assigns |
|
426 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
427 |
enum State { |
|
428 |
IN_HEAP = 0, ///< = 0. |
|
429 |
PRE_HEAP = -1, ///< = -1. |
|
430 |
POST_HEAP = -2 ///< = -2. |
|
431 |
}; |
|
432 |
|
|
433 |
public: |
|
434 |
|
|
435 |
/// \brief Constructor. |
|
436 |
/// |
|
437 |
/// Constructor. |
|
438 |
/// \param map A map that assigns \c int values to the items. |
|
439 |
/// It is used internally to handle the cross references. |
|
440 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
441 |
explicit SimpleBucketHeap(ItemIntMap &map) |
|
442 |
: _iim(map), _free(-1), _num(0), _minimum(0) {} |
|
443 |
|
|
444 |
/// \brief The number of items stored in the heap. |
|
445 |
/// |
|
446 |
/// This function returns the number of items stored in the heap. |
|
447 |
int size() const { return _num; } |
|
448 |
|
|
449 |
/// \brief Check if the heap is empty. |
|
450 |
/// |
|
451 |
/// This function returns \c true if the heap is empty. |
|
452 |
bool empty() const { return _num == 0; } |
|
453 |
|
|
454 |
/// \brief Make the heap empty. |
|
455 |
/// |
|
456 |
/// This functon makes the heap empty. |
|
457 |
/// It does not change the cross reference map. If you want to reuse |
|
458 |
/// a heap that is not surely empty, you should first clear it and |
|
459 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
460 |
/// for each item. |
|
461 |
void clear() { |
|
462 |
_data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0; |
|
463 |
} |
|
464 |
|
|
465 |
/// \brief Insert a pair of item and priority into the heap. |
|
466 |
/// |
|
467 |
/// This function inserts \c p.first to the heap with priority |
|
468 |
/// \c p.second. |
|
469 |
/// \param p The pair to insert. |
|
470 |
/// \pre \c p.first must not be stored in the heap. |
|
471 |
void push(const Pair& p) { |
|
472 |
push(p.first, p.second); |
|
473 |
} |
|
474 |
|
|
475 |
/// \brief Insert an item into the heap with the given priority. |
|
476 |
/// |
|
477 |
/// This function inserts the given item into the heap with the |
|
478 |
/// given priority. |
|
479 |
/// \param i The item to insert. |
|
480 |
/// \param p The priority of the item. |
|
481 |
/// \pre \e i must not be stored in the heap. |
|
482 |
void push(const Item &i, const Prio &p) { |
|
483 |
int idx; |
|
484 |
if (_free == -1) { |
|
485 |
idx = _data.size(); |
|
486 |
_data.push_back(BucketItem(i)); |
|
487 |
} else { |
|
488 |
idx = _free; |
|
489 |
_free = _data[idx].next; |
|
490 |
_data[idx].item = i; |
|
491 |
} |
|
492 |
_iim[i] = idx; |
|
493 |
if (p >= int(_first.size())) _first.resize(p + 1, -1); |
|
494 |
_data[idx].next = _first[p]; |
|
495 |
_first[p] = idx; |
|
496 |
if (Direction::less(p, _minimum)) { |
|
497 |
_minimum = p; |
|
498 |
} |
|
499 |
++_num; |
|
500 |
} |
|
501 |
|
|
502 |
/// \brief Return the item having minimum priority. |
|
503 |
/// |
|
504 |
/// This function returns the item having minimum priority. |
|
505 |
/// \pre The heap must be non-empty. |
|
506 |
Item top() const { |
|
507 |
while (_first[_minimum] == -1) { |
|
508 |
Direction::increase(_minimum); |
|
509 |
} |
|
510 |
return _data[_first[_minimum]].item; |
|
511 |
} |
|
512 |
|
|
513 |
/// \brief The minimum priority. |
|
514 |
/// |
|
515 |
/// This function returns the minimum priority. |
|
516 |
/// \pre The heap must be non-empty. |
|
517 |
Prio prio() const { |
|
518 |
while (_first[_minimum] == -1) { |
|
519 |
Direction::increase(_minimum); |
|
520 |
} |
|
521 |
return _minimum; |
|
522 |
} |
|
523 |
|
|
524 |
/// \brief Remove the item having minimum priority. |
|
525 |
/// |
|
526 |
/// This function removes the item having minimum priority. |
|
527 |
/// \pre The heap must be non-empty. |
|
528 |
void pop() { |
|
529 |
while (_first[_minimum] == -1) { |
|
530 |
Direction::increase(_minimum); |
|
531 |
} |
|
532 |
int idx = _first[_minimum]; |
|
533 |
_iim[_data[idx].item] = -2; |
|
534 |
_first[_minimum] = _data[idx].next; |
|
535 |
_data[idx].next = _free; |
|
536 |
_free = idx; |
|
537 |
--_num; |
|
538 |
} |
|
539 |
|
|
540 |
/// \brief The priority of the given item. |
|
541 |
/// |
|
542 |
/// This function returns the priority of the given item. |
|
543 |
/// \param i The item. |
|
544 |
/// \pre \e i must be in the heap. |
|
545 |
/// \warning This operator is not a constant time function because |
|
546 |
/// it scans the whole data structure to find the proper value. |
|
547 |
Prio operator[](const Item &i) const { |
|
548 |
for (int k = 0; k < int(_first.size()); ++k) { |
|
549 |
int idx = _first[k]; |
|
550 |
while (idx != -1) { |
|
551 |
if (_data[idx].item == i) { |
|
552 |
return k; |
|
553 |
} |
|
554 |
idx = _data[idx].next; |
|
555 |
} |
|
556 |
} |
|
557 |
return -1; |
|
558 |
} |
|
559 |
|
|
560 |
/// \brief Return the state of an item. |
|
561 |
/// |
|
562 |
/// This method returns \c PRE_HEAP if the given item has never |
|
563 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
564 |
/// and \c POST_HEAP otherwise. |
|
565 |
/// In the latter case it is possible that the item will get back |
|
566 |
/// to the heap again. |
|
567 |
/// \param i The item. |
|
568 |
State state(const Item &i) const { |
|
569 |
int idx = _iim[i]; |
|
570 |
if (idx >= 0) idx = 0; |
|
571 |
return State(idx); |
|
572 |
} |
|
573 |
|
|
574 |
private: |
|
575 |
|
|
576 |
struct BucketItem { |
|
577 |
BucketItem(const Item& _item) |
|
578 |
: item(_item) {} |
|
579 |
|
|
580 |
Item item; |
|
581 |
int next; |
|
582 |
}; |
|
583 |
|
|
584 |
ItemIntMap& _iim; |
|
585 |
std::vector<int> _first; |
|
586 |
std::vector<BucketItem> _data; |
|
587 |
int _free, _num; |
|
588 |
mutable int _minimum; |
|
589 |
|
|
590 |
}; // class SimpleBucketHeap |
|
591 |
|
|
592 |
} |
|
593 |
|
|
594 |
#endif |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_FIB_HEAP_H |
|
20 |
#define LEMON_FIB_HEAP_H |
|
21 |
|
|
22 |
///\file |
|
23 |
///\ingroup heaps |
|
24 |
///\brief Fibonacci heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
#include <lemon/math.h> |
|
30 |
|
|
31 |
namespace lemon { |
|
32 |
|
|
33 |
/// \ingroup heaps |
|
34 |
/// |
|
35 |
/// \brief Fibonacci heap data structure. |
|
36 |
/// |
|
37 |
/// This class implements the \e Fibonacci \e heap data structure. |
|
38 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
39 |
/// |
|
40 |
/// The methods \ref increase() and \ref erase() are not efficient in a |
|
41 |
/// Fibonacci heap. In case of many calls of these operations, it is |
|
42 |
/// better to use other heap structure, e.g. \ref BinHeap "binary heap". |
|
43 |
/// |
|
44 |
/// \tparam PR Type of the priorities of the items. |
|
45 |
/// \tparam IM A read-writable item map with \c int values, used |
|
46 |
/// internally to handle the cross references. |
|
47 |
/// \tparam CMP A functor class for comparing the priorities. |
|
48 |
/// The default is \c std::less<PR>. |
|
49 |
#ifdef DOXYGEN |
|
50 |
template <typename PR, typename IM, typename CMP> |
|
51 |
#else |
|
52 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
53 |
#endif |
|
54 |
class FibHeap { |
|
55 |
public: |
|
56 |
|
|
57 |
/// Type of the item-int map. |
|
58 |
typedef IM ItemIntMap; |
|
59 |
/// Type of the priorities. |
|
60 |
typedef PR Prio; |
|
61 |
/// Type of the items stored in the heap. |
|
62 |
typedef typename ItemIntMap::Key Item; |
|
63 |
/// Type of the item-priority pairs. |
|
64 |
typedef std::pair<Item,Prio> Pair; |
|
65 |
/// Functor type for comparing the priorities. |
|
66 |
typedef CMP Compare; |
|
67 |
|
|
68 |
private: |
|
69 |
class Store; |
|
70 |
|
|
71 |
std::vector<Store> _data; |
|
72 |
int _minimum; |
|
73 |
ItemIntMap &_iim; |
|
74 |
Compare _comp; |
|
75 |
int _num; |
|
76 |
|
|
77 |
public: |
|
78 |
|
|
79 |
/// \brief Type to represent the states of the items. |
|
80 |
/// |
|
81 |
/// Each item has a state associated to it. It can be "in heap", |
|
82 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
83 |
/// heap's point of view, but may be useful to the user. |
|
84 |
/// |
|
85 |
/// The item-int map must be initialized in such way that it assigns |
|
86 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
87 |
enum State { |
|
88 |
IN_HEAP = 0, ///< = 0. |
|
89 |
PRE_HEAP = -1, ///< = -1. |
|
90 |
POST_HEAP = -2 ///< = -2. |
|
91 |
}; |
|
92 |
|
|
93 |
/// \brief Constructor. |
|
94 |
/// |
|
95 |
/// Constructor. |
|
96 |
/// \param map A map that assigns \c int values to the items. |
|
97 |
/// It is used internally to handle the cross references. |
|
98 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
99 |
explicit FibHeap(ItemIntMap &map) |
|
100 |
: _minimum(0), _iim(map), _num() {} |
|
101 |
|
|
102 |
/// \brief Constructor. |
|
103 |
/// |
|
104 |
/// Constructor. |
|
105 |
/// \param map A map that assigns \c int values to the items. |
|
106 |
/// It is used internally to handle the cross references. |
|
107 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
108 |
/// \param comp The function object used for comparing the priorities. |
|
109 |
FibHeap(ItemIntMap &map, const Compare &comp) |
|
110 |
: _minimum(0), _iim(map), _comp(comp), _num() {} |
|
111 |
|
|
112 |
/// \brief The number of items stored in the heap. |
|
113 |
/// |
|
114 |
/// This function returns the number of items stored in the heap. |
|
115 |
int size() const { return _num; } |
|
116 |
|
|
117 |
/// \brief Check if the heap is empty. |
|
118 |
/// |
|
119 |
/// This function returns \c true if the heap is empty. |
|
120 |
bool empty() const { return _num==0; } |
|
121 |
|
|
122 |
/// \brief Make the heap empty. |
|
123 |
/// |
|
124 |
/// This functon makes the heap empty. |
|
125 |
/// It does not change the cross reference map. If you want to reuse |
|
126 |
/// a heap that is not surely empty, you should first clear it and |
|
127 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
128 |
/// for each item. |
|
129 |
void clear() { |
|
130 |
_data.clear(); _minimum = 0; _num = 0; |
|
131 |
} |
|
132 |
|
|
133 |
/// \brief Insert an item into the heap with the given priority. |
|
134 |
/// |
|
135 |
/// This function inserts the given item into the heap with the |
|
136 |
/// given priority. |
|
137 |
/// \param item The item to insert. |
|
138 |
/// \param prio The priority of the item. |
|
139 |
/// \pre \e item must not be stored in the heap. |
|
140 |
void push (const Item& item, const Prio& prio) { |
|
141 |
int i=_iim[item]; |
|
142 |
if ( i < 0 ) { |
|
143 |
int s=_data.size(); |
|
144 |
_iim.set( item, s ); |
|
145 |
Store st; |
|
146 |
st.name=item; |
|
147 |
_data.push_back(st); |
|
148 |
i=s; |
|
149 |
} else { |
|
150 |
_data[i].parent=_data[i].child=-1; |
|
151 |
_data[i].degree=0; |
|
152 |
_data[i].in=true; |
|
153 |
_data[i].marked=false; |
|
154 |
} |
|
155 |
|
|
156 |
if ( _num ) { |
|
157 |
_data[_data[_minimum].right_neighbor].left_neighbor=i; |
|
158 |
_data[i].right_neighbor=_data[_minimum].right_neighbor; |
|
159 |
_data[_minimum].right_neighbor=i; |
|
160 |
_data[i].left_neighbor=_minimum; |
|
161 |
if ( _comp( prio, _data[_minimum].prio) ) _minimum=i; |
|
162 |
} else { |
|
163 |
_data[i].right_neighbor=_data[i].left_neighbor=i; |
|
164 |
_minimum=i; |
|
165 |
} |
|
166 |
_data[i].prio=prio; |
|
167 |
++_num; |
|
168 |
} |
|
169 |
|
|
170 |
/// \brief Return the item having minimum priority. |
|
171 |
/// |
|
172 |
/// This function returns the item having minimum priority. |
|
173 |
/// \pre The heap must be non-empty. |
|
174 |
Item top() const { return _data[_minimum].name; } |
|
175 |
|
|
176 |
/// \brief The minimum priority. |
|
177 |
/// |
|
178 |
/// This function returns the minimum priority. |
|
179 |
/// \pre The heap must be non-empty. |
|
180 |
Prio prio() const { return _data[_minimum].prio; } |
|
181 |
|
|
182 |
/// \brief Remove the item having minimum priority. |
|
183 |
/// |
|
184 |
/// This function removes the item having minimum priority. |
|
185 |
/// \pre The heap must be non-empty. |
|
186 |
void pop() { |
|
187 |
/*The first case is that there are only one root.*/ |
|
188 |
if ( _data[_minimum].left_neighbor==_minimum ) { |
|
189 |
_data[_minimum].in=false; |
|
190 |
if ( _data[_minimum].degree!=0 ) { |
|
191 |
makeRoot(_data[_minimum].child); |
|
192 |
_minimum=_data[_minimum].child; |
|
193 |
balance(); |
|
194 |
} |
|
195 |
} else { |
|
196 |
int right=_data[_minimum].right_neighbor; |
|
197 |
unlace(_minimum); |
|
198 |
_data[_minimum].in=false; |
|
199 |
if ( _data[_minimum].degree > 0 ) { |
|
200 |
int left=_data[_minimum].left_neighbor; |
|
201 |
int child=_data[_minimum].child; |
|
202 |
int last_child=_data[child].left_neighbor; |
|
203 |
|
|
204 |
makeRoot(child); |
|
205 |
|
|
206 |
_data[left].right_neighbor=child; |
|
207 |
_data[child].left_neighbor=left; |
|
208 |
_data[right].left_neighbor=last_child; |
|
209 |
_data[last_child].right_neighbor=right; |
|
210 |
} |
|
211 |
_minimum=right; |
|
212 |
balance(); |
|
213 |
} // the case where there are more roots |
|
214 |
--_num; |
|
215 |
} |
|
216 |
|
|
217 |
/// \brief Remove the given item from the heap. |
|
218 |
/// |
|
219 |
/// This function removes the given item from the heap if it is |
|
220 |
/// already stored. |
|
221 |
/// \param item The item to delete. |
|
222 |
/// \pre \e item must be in the heap. |
|
223 |
void erase (const Item& item) { |
|
224 |
int i=_iim[item]; |
|
225 |
|
|
226 |
if ( i >= 0 && _data[i].in ) { |
|
227 |
if ( _data[i].parent!=-1 ) { |
|
228 |
int p=_data[i].parent; |
|
229 |
cut(i,p); |
|
230 |
cascade(p); |
|
231 |
} |
|
232 |
_minimum=i; //As if its prio would be -infinity |
|
233 |
pop(); |
|
234 |
} |
|
235 |
} |
|
236 |
|
|
237 |
/// \brief The priority of the given item. |
|
238 |
/// |
|
239 |
/// This function returns the priority of the given item. |
|
240 |
/// \param item The item. |
|
241 |
/// \pre \e item must be in the heap. |
|
242 |
Prio operator[](const Item& item) const { |
|
243 |
return _data[_iim[item]].prio; |
|
244 |
} |
|
245 |
|
|
246 |
/// \brief Set the priority of an item or insert it, if it is |
|
247 |
/// not stored in the heap. |
|
248 |
/// |
|
249 |
/// This method sets the priority of the given item if it is |
|
250 |
/// already stored in the heap. Otherwise it inserts the given |
|
251 |
/// item into the heap with the given priority. |
|
252 |
/// \param item The item. |
|
253 |
/// \param prio The priority. |
|
254 |
void set (const Item& item, const Prio& prio) { |
|
255 |
int i=_iim[item]; |
|
256 |
if ( i >= 0 && _data[i].in ) { |
|
257 |
if ( _comp(prio, _data[i].prio) ) decrease(item, prio); |
|
258 |
if ( _comp(_data[i].prio, prio) ) increase(item, prio); |
|
259 |
} else push(item, prio); |
|
260 |
} |
|
261 |
|
|
262 |
/// \brief Decrease the priority of an item to the given value. |
|
263 |
/// |
|
264 |
/// This function decreases the priority of an item to the given value. |
|
265 |
/// \param item The item. |
|
266 |
/// \param prio The priority. |
|
267 |
/// \pre \e item must be stored in the heap with priority at least \e prio. |
|
268 |
void decrease (const Item& item, const Prio& prio) { |
|
269 |
int i=_iim[item]; |
|
270 |
_data[i].prio=prio; |
|
271 |
int p=_data[i].parent; |
|
272 |
|
|
273 |
if ( p!=-1 && _comp(prio, _data[p].prio) ) { |
|
274 |
cut(i,p); |
|
275 |
cascade(p); |
|
276 |
} |
|
277 |
if ( _comp(prio, _data[_minimum].prio) ) _minimum=i; |
|
278 |
} |
|
279 |
|
|
280 |
/// \brief Increase the priority of an item to the given value. |
|
281 |
/// |
|
282 |
/// This function increases the priority of an item to the given value. |
|
283 |
/// \param item The item. |
|
284 |
/// \param prio The priority. |
|
285 |
/// \pre \e item must be stored in the heap with priority at most \e prio. |
|
286 |
void increase (const Item& item, const Prio& prio) { |
|
287 |
erase(item); |
|
288 |
push(item, prio); |
|
289 |
} |
|
290 |
|
|
291 |
/// \brief Return the state of an item. |
|
292 |
/// |
|
293 |
/// This method returns \c PRE_HEAP if the given item has never |
|
294 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
295 |
/// and \c POST_HEAP otherwise. |
|
296 |
/// In the latter case it is possible that the item will get back |
|
297 |
/// to the heap again. |
|
298 |
/// \param item The item. |
|
299 |
State state(const Item &item) const { |
|
300 |
int i=_iim[item]; |
|
301 |
if( i>=0 ) { |
|
302 |
if ( _data[i].in ) i=0; |
|
303 |
else i=-2; |
|
304 |
} |
|
305 |
return State(i); |
|
306 |
} |
|
307 |
|
|
308 |
/// \brief Set the state of an item in the heap. |
|
309 |
/// |
|
310 |
/// This function sets the state of the given item in the heap. |
|
311 |
/// It can be used to manually clear the heap when it is important |
|
312 |
/// to achive better time complexity. |
|
313 |
/// \param i The item. |
|
314 |
/// \param st The state. It should not be \c IN_HEAP. |
|
315 |
void state(const Item& i, State st) { |
|
316 |
switch (st) { |
|
317 |
case POST_HEAP: |
|
318 |
case PRE_HEAP: |
|
319 |
if (state(i) == IN_HEAP) { |
|
320 |
erase(i); |
|
321 |
} |
|
322 |
_iim[i] = st; |
|
323 |
break; |
|
324 |
case IN_HEAP: |
|
325 |
break; |
|
326 |
} |
|
327 |
} |
|
328 |
|
|
329 |
private: |
|
330 |
|
|
331 |
void balance() { |
|
332 |
|
|
333 |
int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1; |
|
334 |
|
|
335 |
std::vector<int> A(maxdeg,-1); |
|
336 |
|
|
337 |
/* |
|
338 |
*Recall that now minimum does not point to the minimum prio element. |
|
339 |
*We set minimum to this during balance(). |
|
340 |
*/ |
|
341 |
int anchor=_data[_minimum].left_neighbor; |
|
342 |
int next=_minimum; |
|
343 |
bool end=false; |
|
344 |
|
|
345 |
do { |
|
346 |
int active=next; |
|
347 |
if ( anchor==active ) end=true; |
|
348 |
int d=_data[active].degree; |
|
349 |
next=_data[active].right_neighbor; |
|
350 |
|
|
351 |
while (A[d]!=-1) { |
|
352 |
if( _comp(_data[active].prio, _data[A[d]].prio) ) { |
|
353 |
fuse(active,A[d]); |
|
354 |
} else { |
|
355 |
fuse(A[d],active); |
|
356 |
active=A[d]; |
|
357 |
} |
|
358 |
A[d]=-1; |
|
359 |
++d; |
|
360 |
} |
|
361 |
A[d]=active; |
|
362 |
} while ( !end ); |
|
363 |
|
|
364 |
|
|
365 |
while ( _data[_minimum].parent >=0 ) |
|
366 |
_minimum=_data[_minimum].parent; |
|
367 |
int s=_minimum; |
|
368 |
int m=_minimum; |
|
369 |
do { |
|
370 |
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; |
|
371 |
s=_data[s].right_neighbor; |
|
372 |
} while ( s != m ); |
|
373 |
} |
|
374 |
|
|
375 |
void makeRoot(int c) { |
|
376 |
int s=c; |
|
377 |
do { |
|
378 |
_data[s].parent=-1; |
|
379 |
s=_data[s].right_neighbor; |
|
380 |
} while ( s != c ); |
|
381 |
} |
|
382 |
|
|
383 |
void cut(int a, int b) { |
|
384 |
/* |
|
385 |
*Replacing a from the children of b. |
|
386 |
*/ |
|
387 |
--_data[b].degree; |
|
388 |
|
|
389 |
if ( _data[b].degree !=0 ) { |
|
390 |
int child=_data[b].child; |
|
391 |
if ( child==a ) |
|
392 |
_data[b].child=_data[child].right_neighbor; |
|
393 |
unlace(a); |
|
394 |
} |
|
395 |
|
|
396 |
|
|
397 |
/*Lacing a to the roots.*/ |
|
398 |
int right=_data[_minimum].right_neighbor; |
|
399 |
_data[_minimum].right_neighbor=a; |
|
400 |
_data[a].left_neighbor=_minimum; |
|
401 |
_data[a].right_neighbor=right; |
|
402 |
_data[right].left_neighbor=a; |
|
403 |
|
|
404 |
_data[a].parent=-1; |
|
405 |
_data[a].marked=false; |
|
406 |
} |
|
407 |
|
|
408 |
void cascade(int a) { |
|
409 |
if ( _data[a].parent!=-1 ) { |
|
410 |
int p=_data[a].parent; |
|
411 |
|
|
412 |
if ( _data[a].marked==false ) _data[a].marked=true; |
|
413 |
else { |
|
414 |
cut(a,p); |
|
415 |
cascade(p); |
|
416 |
} |
|
417 |
} |
|
418 |
} |
|
419 |
|
|
420 |
void fuse(int a, int b) { |
|
421 |
unlace(b); |
|
422 |
|
|
423 |
/*Lacing b under a.*/ |
|
424 |
_data[b].parent=a; |
|
425 |
|
|
426 |
if (_data[a].degree==0) { |
|
427 |
_data[b].left_neighbor=b; |
|
428 |
_data[b].right_neighbor=b; |
|
429 |
_data[a].child=b; |
|
430 |
} else { |
|
431 |
int child=_data[a].child; |
|
432 |
int last_child=_data[child].left_neighbor; |
|
433 |
_data[child].left_neighbor=b; |
|
434 |
_data[b].right_neighbor=child; |
|
435 |
_data[last_child].right_neighbor=b; |
|
436 |
_data[b].left_neighbor=last_child; |
|
437 |
} |
|
438 |
|
|
439 |
++_data[a].degree; |
|
440 |
|
|
441 |
_data[b].marked=false; |
|
442 |
} |
|
443 |
|
|
444 |
/* |
|
445 |
*It is invoked only if a has siblings. |
|
446 |
*/ |
|
447 |
void unlace(int a) { |
|
448 |
int leftn=_data[a].left_neighbor; |
|
449 |
int rightn=_data[a].right_neighbor; |
|
450 |
_data[leftn].right_neighbor=rightn; |
|
451 |
_data[rightn].left_neighbor=leftn; |
|
452 |
} |
|
453 |
|
|
454 |
|
|
455 |
class Store { |
|
456 |
friend class FibHeap; |
|
457 |
|
|
458 |
Item name; |
|
459 |
int parent; |
|
460 |
int left_neighbor; |
|
461 |
int right_neighbor; |
|
462 |
int child; |
|
463 |
int degree; |
|
464 |
bool marked; |
|
465 |
bool in; |
|
466 |
Prio prio; |
|
467 |
|
|
468 |
Store() : parent(-1), child(-1), degree(), marked(false), in(true) {} |
|
469 |
}; |
|
470 |
}; |
|
471 |
|
|
472 |
} //namespace lemon |
|
473 |
|
|
474 |
#endif //LEMON_FIB_HEAP_H |
|
475 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_FOURARY_HEAP_H |
|
20 |
#define LEMON_FOURARY_HEAP_H |
|
21 |
|
|
22 |
///\ingroup heaps |
|
23 |
///\file |
|
24 |
///\brief Fourary heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
|
|
30 |
namespace lemon { |
|
31 |
|
|
32 |
/// \ingroup heaps |
|
33 |
/// |
|
34 |
///\brief Fourary heap data structure. |
|
35 |
/// |
|
36 |
/// This class implements the \e fourary \e heap data structure. |
|
37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
38 |
/// |
|
39 |
/// The fourary heap is a specialization of the \ref KaryHeap "K-ary heap" |
|
40 |
/// for <tt>K=4</tt>. It is similar to the \ref BinHeap "binary heap", |
|
41 |
/// but its nodes have at most four children, instead of two. |
|
42 |
/// |
|
43 |
/// \tparam PR Type of the priorities of the items. |
|
44 |
/// \tparam IM A read-writable item map with \c int values, used |
|
45 |
/// internally to handle the cross references. |
|
46 |
/// \tparam CMP A functor class for comparing the priorities. |
|
47 |
/// The default is \c std::less<PR>. |
|
48 |
/// |
|
49 |
///\sa BinHeap |
|
50 |
///\sa KaryHeap |
|
51 |
#ifdef DOXYGEN |
|
52 |
template <typename PR, typename IM, typename CMP> |
|
53 |
#else |
|
54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
55 |
#endif |
|
56 |
class FouraryHeap { |
|
57 |
public: |
|
58 |
/// Type of the item-int map. |
|
59 |
typedef IM ItemIntMap; |
|
60 |
/// Type of the priorities. |
|
61 |
typedef PR Prio; |
|
62 |
/// Type of the items stored in the heap. |
|
63 |
typedef typename ItemIntMap::Key Item; |
|
64 |
/// Type of the item-priority pairs. |
|
65 |
typedef std::pair<Item,Prio> Pair; |
|
66 |
/// Functor type for comparing the priorities. |
|
67 |
typedef CMP Compare; |
|
68 |
|
|
69 |
/// \brief Type to represent the states of the items. |
|
70 |
/// |
|
71 |
/// Each item has a state associated to it. It can be "in heap", |
|
72 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
73 |
/// heap's point of view, but may be useful to the user. |
|
74 |
/// |
|
75 |
/// The item-int map must be initialized in such way that it assigns |
|
76 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
77 |
enum State { |
|
78 |
IN_HEAP = 0, ///< = 0. |
|
79 |
PRE_HEAP = -1, ///< = -1. |
|
80 |
POST_HEAP = -2 ///< = -2. |
|
81 |
}; |
|
82 |
|
|
83 |
private: |
|
84 |
std::vector<Pair> _data; |
|
85 |
Compare _comp; |
|
86 |
ItemIntMap &_iim; |
|
87 |
|
|
88 |
public: |
|
89 |
/// \brief Constructor. |
|
90 |
/// |
|
91 |
/// Constructor. |
|
92 |
/// \param map A map that assigns \c int values to the items. |
|
93 |
/// It is used internally to handle the cross references. |
|
94 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
95 |
explicit FouraryHeap(ItemIntMap &map) : _iim(map) {} |
|
96 |
|
|
97 |
/// \brief Constructor. |
|
98 |
/// |
|
99 |
/// Constructor. |
|
100 |
/// \param map A map that assigns \c int values to the items. |
|
101 |
/// It is used internally to handle the cross references. |
|
102 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
103 |
/// \param comp The function object used for comparing the priorities. |
|
104 |
FouraryHeap(ItemIntMap &map, const Compare &comp) |
|
105 |
: _iim(map), _comp(comp) {} |
|
106 |
|
|
107 |
/// \brief The number of items stored in the heap. |
|
108 |
/// |
|
109 |
/// This function returns the number of items stored in the heap. |
|
110 |
int size() const { return _data.size(); } |
|
111 |
|
|
112 |
/// \brief Check if the heap is empty. |
|
113 |
/// |
|
114 |
/// This function returns \c true if the heap is empty. |
|
115 |
bool empty() const { return _data.empty(); } |
|
116 |
|
|
117 |
/// \brief Make the heap empty. |
|
118 |
/// |
|
119 |
/// This functon makes the heap empty. |
|
120 |
/// It does not change the cross reference map. If you want to reuse |
|
121 |
/// a heap that is not surely empty, you should first clear it and |
|
122 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
123 |
/// for each item. |
|
124 |
void clear() { _data.clear(); } |
|
125 |
|
|
126 |
private: |
|
127 |
static int parent(int i) { return (i-1)/4; } |
|
128 |
static int firstChild(int i) { return 4*i+1; } |
|
129 |
|
|
130 |
bool less(const Pair &p1, const Pair &p2) const { |
|
131 |
return _comp(p1.second, p2.second); |
|
132 |
} |
|
133 |
|
|
134 |
void bubbleUp(int hole, Pair p) { |
|
135 |
int par = parent(hole); |
|
136 |
while( hole>0 && less(p,_data[par]) ) { |
|
137 |
move(_data[par],hole); |
|
138 |
hole = par; |
|
139 |
par = parent(hole); |
|
140 |
} |
|
141 |
move(p, hole); |
|
142 |
} |
|
143 |
|
|
144 |
void bubbleDown(int hole, Pair p, int length) { |
|
145 |
if( length>1 ) { |
|
146 |
int child = firstChild(hole); |
|
147 |
while( child+3<length ) { |
|
148 |
int min=child; |
|
149 |
if( less(_data[++child], _data[min]) ) min=child; |
|
150 |
if( less(_data[++child], _data[min]) ) min=child; |
|
151 |
if( less(_data[++child], _data[min]) ) min=child; |
|
152 |
if( !less(_data[min], p) ) |
|
153 |
goto ok; |
|
154 |
move(_data[min], hole); |
|
155 |
hole = min; |
|
156 |
child = firstChild(hole); |
|
157 |
} |
|
158 |
if ( child<length ) { |
|
159 |
int min = child; |
|
160 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
|
161 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
|
162 |
if( less(_data[min], p) ) { |
|
163 |
move(_data[min], hole); |
|
164 |
hole = min; |
|
165 |
} |
|
166 |
} |
|
167 |
} |
|
168 |
ok: |
|
169 |
move(p, hole); |
|
170 |
} |
|
171 |
|
|
172 |
void move(const Pair &p, int i) { |
|
173 |
_data[i] = p; |
|
174 |
_iim.set(p.first, i); |
|
175 |
} |
|
176 |
|
|
177 |
public: |
|
178 |
/// \brief Insert a pair of item and priority into the heap. |
|
179 |
/// |
|
180 |
/// This function inserts \c p.first to the heap with priority |
|
181 |
/// \c p.second. |
|
182 |
/// \param p The pair to insert. |
|
183 |
/// \pre \c p.first must not be stored in the heap. |
|
184 |
void push(const Pair &p) { |
|
185 |
int n = _data.size(); |
|
186 |
_data.resize(n+1); |
|
187 |
bubbleUp(n, p); |
|
188 |
} |
|
189 |
|
|
190 |
/// \brief Insert an item into the heap with the given priority. |
|
191 |
/// |
|
192 |
/// This function inserts the given item into the heap with the |
|
193 |
/// given priority. |
|
194 |
/// \param i The item to insert. |
|
195 |
/// \param p The priority of the item. |
|
196 |
/// \pre \e i must not be stored in the heap. |
|
197 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
|
198 |
|
|
199 |
/// \brief Return the item having minimum priority. |
|
200 |
/// |
|
201 |
/// This function returns the item having minimum priority. |
|
202 |
/// \pre The heap must be non-empty. |
|
203 |
Item top() const { return _data[0].first; } |
|
204 |
|
|
205 |
/// \brief The minimum priority. |
|
206 |
/// |
|
207 |
/// This function returns the minimum priority. |
|
208 |
/// \pre The heap must be non-empty. |
|
209 |
Prio prio() const { return _data[0].second; } |
|
210 |
|
|
211 |
/// \brief Remove the item having minimum priority. |
|
212 |
/// |
|
213 |
/// This function removes the item having minimum priority. |
|
214 |
/// \pre The heap must be non-empty. |
|
215 |
void pop() { |
|
216 |
int n = _data.size()-1; |
|
217 |
_iim.set(_data[0].first, POST_HEAP); |
|
218 |
if (n>0) bubbleDown(0, _data[n], n); |
|
219 |
_data.pop_back(); |
|
220 |
} |
|
221 |
|
|
222 |
/// \brief Remove the given item from the heap. |
|
223 |
/// |
|
224 |
/// This function removes the given item from the heap if it is |
|
225 |
/// already stored. |
|
226 |
/// \param i The item to delete. |
|
227 |
/// \pre \e i must be in the heap. |
|
228 |
void erase(const Item &i) { |
|
229 |
int h = _iim[i]; |
|
230 |
int n = _data.size()-1; |
|
231 |
_iim.set(_data[h].first, POST_HEAP); |
|
232 |
if( h<n ) { |
|
233 |
if( less(_data[parent(h)], _data[n]) ) |
|
234 |
bubbleDown(h, _data[n], n); |
|
235 |
else |
|
236 |
bubbleUp(h, _data[n]); |
|
237 |
} |
|
238 |
_data.pop_back(); |
|
239 |
} |
|
240 |
|
|
241 |
/// \brief The priority of the given item. |
|
242 |
/// |
|
243 |
/// This function returns the priority of the given item. |
|
244 |
/// \param i The item. |
|
245 |
/// \pre \e i must be in the heap. |
|
246 |
Prio operator[](const Item &i) const { |
|
247 |
int idx = _iim[i]; |
|
248 |
return _data[idx].second; |
|
249 |
} |
|
250 |
|
|
251 |
/// \brief Set the priority of an item or insert it, if it is |
|
252 |
/// not stored in the heap. |
|
253 |
/// |
|
254 |
/// This method sets the priority of the given item if it is |
|
255 |
/// already stored in the heap. Otherwise it inserts the given |
|
256 |
/// item into the heap with the given priority. |
|
257 |
/// \param i The item. |
|
258 |
/// \param p The priority. |
|
259 |
void set(const Item &i, const Prio &p) { |
|
260 |
int idx = _iim[i]; |
|
261 |
if( idx < 0 ) |
|
262 |
push(i,p); |
|
263 |
else if( _comp(p, _data[idx].second) ) |
|
264 |
bubbleUp(idx, Pair(i,p)); |
|
265 |
else |
|
266 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
267 |
} |
|
268 |
|
|
269 |
/// \brief Decrease the priority of an item to the given value. |
|
270 |
/// |
|
271 |
/// This function decreases the priority of an item to the given value. |
|
272 |
/// \param i The item. |
|
273 |
/// \param p The priority. |
|
274 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
275 |
void decrease(const Item &i, const Prio &p) { |
|
276 |
int idx = _iim[i]; |
|
277 |
bubbleUp(idx, Pair(i,p)); |
|
278 |
} |
|
279 |
|
|
280 |
/// \brief Increase the priority of an item to the given value. |
|
281 |
/// |
|
282 |
/// This function increases the priority of an item to the given value. |
|
283 |
/// \param i The item. |
|
284 |
/// \param p The priority. |
|
285 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
286 |
void increase(const Item &i, const Prio &p) { |
|
287 |
int idx = _iim[i]; |
|
288 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
289 |
} |
|
290 |
|
|
291 |
/// \brief Return the state of an item. |
|
292 |
/// |
|
293 |
/// This method returns \c PRE_HEAP if the given item has never |
|
294 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
295 |
/// and \c POST_HEAP otherwise. |
|
296 |
/// In the latter case it is possible that the item will get back |
|
297 |
/// to the heap again. |
|
298 |
/// \param i The item. |
|
299 |
State state(const Item &i) const { |
|
300 |
int s = _iim[i]; |
|
301 |
if (s>=0) s=0; |
|
302 |
return State(s); |
|
303 |
} |
|
304 |
|
|
305 |
/// \brief Set the state of an item in the heap. |
|
306 |
/// |
|
307 |
/// This function sets the state of the given item in the heap. |
|
308 |
/// It can be used to manually clear the heap when it is important |
|
309 |
/// to achive better time complexity. |
|
310 |
/// \param i The item. |
|
311 |
/// \param st The state. It should not be \c IN_HEAP. |
|
312 |
void state(const Item& i, State st) { |
|
313 |
switch (st) { |
|
314 |
case POST_HEAP: |
|
315 |
case PRE_HEAP: |
|
316 |
if (state(i) == IN_HEAP) erase(i); |
|
317 |
_iim[i] = st; |
|
318 |
break; |
|
319 |
case IN_HEAP: |
|
320 |
break; |
|
321 |
} |
|
322 |
} |
|
323 |
|
|
324 |
/// \brief Replace an item in the heap. |
|
325 |
/// |
|
326 |
/// This function replaces item \c i with item \c j. |
|
327 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
328 |
/// After calling this method, item \c i will be out of the |
|
329 |
/// heap and \c j will be in the heap with the same prioriority |
|
330 |
/// as item \c i had before. |
|
331 |
void replace(const Item& i, const Item& j) { |
|
332 |
int idx = _iim[i]; |
|
333 |
_iim.set(i, _iim[j]); |
|
334 |
_iim.set(j, idx); |
|
335 |
_data[idx].first = j; |
|
336 |
} |
|
337 |
|
|
338 |
}; // class FouraryHeap |
|
339 |
|
|
340 |
} // namespace lemon |
|
341 |
|
|
342 |
#endif // LEMON_FOURARY_HEAP_H |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_KARY_HEAP_H |
|
20 |
#define LEMON_KARY_HEAP_H |
|
21 |
|
|
22 |
///\ingroup heaps |
|
23 |
///\file |
|
24 |
///\brief Fourary heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
|
|
30 |
namespace lemon { |
|
31 |
|
|
32 |
/// \ingroup heaps |
|
33 |
/// |
|
34 |
///\brief K-ary heap data structure. |
|
35 |
/// |
|
36 |
/// This class implements the \e K-ary \e heap data structure. |
|
37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
38 |
/// |
|
39 |
/// The \ref KaryHeap "K-ary heap" is a generalization of the |
|
40 |
/// \ref BinHeap "binary heap" structure, its nodes have at most |
|
41 |
/// \c K children, instead of two. |
|
42 |
/// \ref BinHeap and \ref FouraryHeap are specialized implementations |
|
43 |
/// of this structure for <tt>K=2</tt> and <tt>K=4</tt>, respectively. |
|
44 |
/// |
|
45 |
/// \tparam PR Type of the priorities of the items. |
|
46 |
/// \tparam IM A read-writable item map with \c int values, used |
|
47 |
/// internally to handle the cross references. |
|
48 |
/// \tparam K The degree of the heap, each node have at most \e K |
|
49 |
/// children. The default is 16. Powers of two are suggested to use |
|
50 |
/// so that the multiplications and divisions needed to traverse the |
|
51 |
/// nodes of the heap could be performed faster. |
|
52 |
/// \tparam CMP A functor class for comparing the priorities. |
|
53 |
/// The default is \c std::less<PR>. |
|
54 |
/// |
|
55 |
///\sa BinHeap |
|
56 |
///\sa FouraryHeap |
|
57 |
#ifdef DOXYGEN |
|
58 |
template <typename PR, typename IM, int K, typename CMP> |
|
59 |
#else |
|
60 |
template <typename PR, typename IM, int K = 16, |
|
61 |
typename CMP = std::less<PR> > |
|
62 |
#endif |
|
63 |
class KaryHeap { |
|
64 |
public: |
|
65 |
/// Type of the item-int map. |
|
66 |
typedef IM ItemIntMap; |
|
67 |
/// Type of the priorities. |
|
68 |
typedef PR Prio; |
|
69 |
/// Type of the items stored in the heap. |
|
70 |
typedef typename ItemIntMap::Key Item; |
|
71 |
/// Type of the item-priority pairs. |
|
72 |
typedef std::pair<Item,Prio> Pair; |
|
73 |
/// Functor type for comparing the priorities. |
|
74 |
typedef CMP Compare; |
|
75 |
|
|
76 |
/// \brief Type to represent the states of the items. |
|
77 |
/// |
|
78 |
/// Each item has a state associated to it. It can be "in heap", |
|
79 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
80 |
/// heap's point of view, but may be useful to the user. |
|
81 |
/// |
|
82 |
/// The item-int map must be initialized in such way that it assigns |
|
83 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
84 |
enum State { |
|
85 |
IN_HEAP = 0, ///< = 0. |
|
86 |
PRE_HEAP = -1, ///< = -1. |
|
87 |
POST_HEAP = -2 ///< = -2. |
|
88 |
}; |
|
89 |
|
|
90 |
private: |
|
91 |
std::vector<Pair> _data; |
|
92 |
Compare _comp; |
|
93 |
ItemIntMap &_iim; |
|
94 |
|
|
95 |
public: |
|
96 |
/// \brief Constructor. |
|
97 |
/// |
|
98 |
/// Constructor. |
|
99 |
/// \param map A map that assigns \c int values to the items. |
|
100 |
/// It is used internally to handle the cross references. |
|
101 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
102 |
explicit KaryHeap(ItemIntMap &map) : _iim(map) {} |
|
103 |
|
|
104 |
/// \brief Constructor. |
|
105 |
/// |
|
106 |
/// Constructor. |
|
107 |
/// \param map A map that assigns \c int values to the items. |
|
108 |
/// It is used internally to handle the cross references. |
|
109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
110 |
/// \param comp The function object used for comparing the priorities. |
|
111 |
KaryHeap(ItemIntMap &map, const Compare &comp) |
|
112 |
: _iim(map), _comp(comp) {} |
|
113 |
|
|
114 |
/// \brief The number of items stored in the heap. |
|
115 |
/// |
|
116 |
/// This function returns the number of items stored in the heap. |
|
117 |
int size() const { return _data.size(); } |
|
118 |
|
|
119 |
/// \brief Check if the heap is empty. |
|
120 |
/// |
|
121 |
/// This function returns \c true if the heap is empty. |
|
122 |
bool empty() const { return _data.empty(); } |
|
123 |
|
|
124 |
/// \brief Make the heap empty. |
|
125 |
/// |
|
126 |
/// This functon makes the heap empty. |
|
127 |
/// It does not change the cross reference map. If you want to reuse |
|
128 |
/// a heap that is not surely empty, you should first clear it and |
|
129 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
130 |
/// for each item. |
|
131 |
void clear() { _data.clear(); } |
|
132 |
|
|
133 |
private: |
|
134 |
int parent(int i) { return (i-1)/K; } |
|
135 |
int firstChild(int i) { return K*i+1; } |
|
136 |
|
|
137 |
bool less(const Pair &p1, const Pair &p2) const { |
|
138 |
return _comp(p1.second, p2.second); |
|
139 |
} |
|
140 |
|
|
141 |
void bubbleUp(int hole, Pair p) { |
|
142 |
int par = parent(hole); |
|
143 |
while( hole>0 && less(p,_data[par]) ) { |
|
144 |
move(_data[par],hole); |
|
145 |
hole = par; |
|
146 |
par = parent(hole); |
|
147 |
} |
|
148 |
move(p, hole); |
|
149 |
} |
|
150 |
|
|
151 |
void bubbleDown(int hole, Pair p, int length) { |
|
152 |
if( length>1 ) { |
|
153 |
int child = firstChild(hole); |
|
154 |
while( child+K<=length ) { |
|
155 |
int min=child; |
|
156 |
for (int i=1; i<K; ++i) { |
|
157 |
if( less(_data[child+i], _data[min]) ) |
|
158 |
min=child+i; |
|
159 |
} |
|
160 |
if( !less(_data[min], p) ) |
|
161 |
goto ok; |
|
162 |
move(_data[min], hole); |
|
163 |
hole = min; |
|
164 |
child = firstChild(hole); |
|
165 |
} |
|
166 |
if ( child<length ) { |
|
167 |
int min = child; |
|
168 |
while (++child < length) { |
|
169 |
if( less(_data[child], _data[min]) ) |
|
170 |
min=child; |
|
171 |
} |
|
172 |
if( less(_data[min], p) ) { |
|
173 |
move(_data[min], hole); |
|
174 |
hole = min; |
|
175 |
} |
|
176 |
} |
|
177 |
} |
|
178 |
ok: |
|
179 |
move(p, hole); |
|
180 |
} |
|
181 |
|
|
182 |
void move(const Pair &p, int i) { |
|
183 |
_data[i] = p; |
|
184 |
_iim.set(p.first, i); |
|
185 |
} |
|
186 |
|
|
187 |
public: |
|
188 |
/// \brief Insert a pair of item and priority into the heap. |
|
189 |
/// |
|
190 |
/// This function inserts \c p.first to the heap with priority |
|
191 |
/// \c p.second. |
|
192 |
/// \param p The pair to insert. |
|
193 |
/// \pre \c p.first must not be stored in the heap. |
|
194 |
void push(const Pair &p) { |
|
195 |
int n = _data.size(); |
|
196 |
_data.resize(n+1); |
|
197 |
bubbleUp(n, p); |
|
198 |
} |
|
199 |
|
|
200 |
/// \brief Insert an item into the heap with the given priority. |
|
201 |
/// |
|
202 |
/// This function inserts the given item into the heap with the |
|
203 |
/// given priority. |
|
204 |
/// \param i The item to insert. |
|
205 |
/// \param p The priority of the item. |
|
206 |
/// \pre \e i must not be stored in the heap. |
|
207 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
|
208 |
|
|
209 |
/// \brief Return the item having minimum priority. |
|
210 |
/// |
|
211 |
/// This function returns the item having minimum priority. |
|
212 |
/// \pre The heap must be non-empty. |
|
213 |
Item top() const { return _data[0].first; } |
|
214 |
|
|
215 |
/// \brief The minimum priority. |
|
216 |
/// |
|
217 |
/// This function returns the minimum priority. |
|
218 |
/// \pre The heap must be non-empty. |
|
219 |
Prio prio() const { return _data[0].second; } |
|
220 |
|
|
221 |
/// \brief Remove the item having minimum priority. |
|
222 |
/// |
|
223 |
/// This function removes the item having minimum priority. |
|
224 |
/// \pre The heap must be non-empty. |
|
225 |
void pop() { |
|
226 |
int n = _data.size()-1; |
|
227 |
_iim.set(_data[0].first, POST_HEAP); |
|
228 |
if (n>0) bubbleDown(0, _data[n], n); |
|
229 |
_data.pop_back(); |
|
230 |
} |
|
231 |
|
|
232 |
/// \brief Remove the given item from the heap. |
|
233 |
/// |
|
234 |
/// This function removes the given item from the heap if it is |
|
235 |
/// already stored. |
|
236 |
/// \param i The item to delete. |
|
237 |
/// \pre \e i must be in the heap. |
|
238 |
void erase(const Item &i) { |
|
239 |
int h = _iim[i]; |
|
240 |
int n = _data.size()-1; |
|
241 |
_iim.set(_data[h].first, POST_HEAP); |
|
242 |
if( h<n ) { |
|
243 |
if( less(_data[parent(h)], _data[n]) ) |
|
244 |
bubbleDown(h, _data[n], n); |
|
245 |
else |
|
246 |
bubbleUp(h, _data[n]); |
|
247 |
} |
|
248 |
_data.pop_back(); |
|
249 |
} |
|
250 |
|
|
251 |
/// \brief The priority of the given item. |
|
252 |
/// |
|
253 |
/// This function returns the priority of the given item. |
|
254 |
/// \param i The item. |
|
255 |
/// \pre \e i must be in the heap. |
|
256 |
Prio operator[](const Item &i) const { |
|
257 |
int idx = _iim[i]; |
|
258 |
return _data[idx].second; |
|
259 |
} |
|
260 |
|
|
261 |
/// \brief Set the priority of an item or insert it, if it is |
|
262 |
/// not stored in the heap. |
|
263 |
/// |
|
264 |
/// This method sets the priority of the given item if it is |
|
265 |
/// already stored in the heap. Otherwise it inserts the given |
|
266 |
/// item into the heap with the given priority. |
|
267 |
/// \param i The item. |
|
268 |
/// \param p The priority. |
|
269 |
void set(const Item &i, const Prio &p) { |
|
270 |
int idx = _iim[i]; |
|
271 |
if( idx<0 ) |
|
272 |
push(i,p); |
|
273 |
else if( _comp(p, _data[idx].second) ) |
|
274 |
bubbleUp(idx, Pair(i,p)); |
|
275 |
else |
|
276 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
277 |
} |
|
278 |
|
|
279 |
/// \brief Decrease the priority of an item to the given value. |
|
280 |
/// |
|
281 |
/// This function decreases the priority of an item to the given value. |
|
282 |
/// \param i The item. |
|
283 |
/// \param p The priority. |
|
284 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
285 |
void decrease(const Item &i, const Prio &p) { |
|
286 |
int idx = _iim[i]; |
|
287 |
bubbleUp(idx, Pair(i,p)); |
|
288 |
} |
|
289 |
|
|
290 |
/// \brief Increase the priority of an item to the given value. |
|
291 |
/// |
|
292 |
/// This function increases the priority of an item to the given value. |
|
293 |
/// \param i The item. |
|
294 |
/// \param p The priority. |
|
295 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
296 |
void increase(const Item &i, const Prio &p) { |
|
297 |
int idx = _iim[i]; |
|
298 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
299 |
} |
|
300 |
|
|
301 |
/// \brief Return the state of an item. |
|
302 |
/// |
|
303 |
/// This method returns \c PRE_HEAP if the given item has never |
|
304 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
305 |
/// and \c POST_HEAP otherwise. |
|
306 |
/// In the latter case it is possible that the item will get back |
|
307 |
/// to the heap again. |
|
308 |
/// \param i The item. |
|
309 |
State state(const Item &i) const { |
|
310 |
int s = _iim[i]; |
|
311 |
if (s>=0) s=0; |
|
312 |
return State(s); |
|
313 |
} |
|
314 |
|
|
315 |
/// \brief Set the state of an item in the heap. |
|
316 |
/// |
|
317 |
/// This function sets the state of the given item in the heap. |
|
318 |
/// It can be used to manually clear the heap when it is important |
|
319 |
/// to achive better time complexity. |
|
320 |
/// \param i The item. |
|
321 |
/// \param st The state. It should not be \c IN_HEAP. |
|
322 |
void state(const Item& i, State st) { |
|
323 |
switch (st) { |
|
324 |
case POST_HEAP: |
|
325 |
case PRE_HEAP: |
|
326 |
if (state(i) == IN_HEAP) erase(i); |
|
327 |
_iim[i] = st; |
|
328 |
break; |
|
329 |
case IN_HEAP: |
|
330 |
break; |
|
331 |
} |
|
332 |
} |
|
333 |
|
|
334 |
/// \brief Replace an item in the heap. |
|
335 |
/// |
|
336 |
/// This function replaces item \c i with item \c j. |
|
337 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
338 |
/// After calling this method, item \c i will be out of the |
|
339 |
/// heap and \c j will be in the heap with the same prioriority |
|
340 |
/// as item \c i had before. |
|
341 |
void replace(const Item& i, const Item& j) { |
|
342 |
int idx=_iim[i]; |
|
343 |
_iim.set(i, _iim[j]); |
|
344 |
_iim.set(j, idx); |
|
345 |
_data[idx].first=j; |
|
346 |
} |
|
347 |
|
|
348 |
}; // class KaryHeap |
|
349 |
|
|
350 |
} // namespace lemon |
|
351 |
|
|
352 |
#endif // LEMON_KARY_HEAP_H |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_PAIRING_HEAP_H |
|
20 |
#define LEMON_PAIRING_HEAP_H |
|
21 |
|
|
22 |
///\file |
|
23 |
///\ingroup heaps |
|
24 |
///\brief Pairing heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
#include <lemon/math.h> |
|
30 |
|
|
31 |
namespace lemon { |
|
32 |
|
|
33 |
/// \ingroup heaps |
|
34 |
/// |
|
35 |
///\brief Pairing Heap. |
|
36 |
/// |
|
37 |
/// This class implements the \e pairing \e heap data structure. |
|
38 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
39 |
/// |
|
40 |
/// The methods \ref increase() and \ref erase() are not efficient |
|
41 |
/// in a pairing heap. In case of many calls of these operations, |
|
42 |
/// it is better to use other heap structure, e.g. \ref BinHeap |
|
43 |
/// "binary heap". |
|
44 |
/// |
|
45 |
/// \tparam PR Type of the priorities of the items. |
|
46 |
/// \tparam IM A read-writable item map with \c int values, used |
|
47 |
/// internally to handle the cross references. |
|
48 |
/// \tparam CMP A functor class for comparing the priorities. |
|
49 |
/// The default is \c std::less<PR>. |
|
50 |
#ifdef DOXYGEN |
|
51 |
template <typename PR, typename IM, typename CMP> |
|
52 |
#else |
|
53 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
54 |
#endif |
|
55 |
class PairingHeap { |
|
56 |
public: |
|
57 |
/// Type of the item-int map. |
|
58 |
typedef IM ItemIntMap; |
|
59 |
/// Type of the priorities. |
|
60 |
typedef PR Prio; |
|
61 |
/// Type of the items stored in the heap. |
|
62 |
typedef typename ItemIntMap::Key Item; |
|
63 |
/// Functor type for comparing the priorities. |
|
64 |
typedef CMP Compare; |
|
65 |
|
|
66 |
/// \brief Type to represent the states of the items. |
|
67 |
/// |
|
68 |
/// Each item has a state associated to it. It can be "in heap", |
|
69 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
70 |
/// heap's point of view, but may be useful to the user. |
|
71 |
/// |
|
72 |
/// The item-int map must be initialized in such way that it assigns |
|
73 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
74 |
enum State { |
|
75 |
IN_HEAP = 0, ///< = 0. |
|
76 |
PRE_HEAP = -1, ///< = -1. |
|
77 |
POST_HEAP = -2 ///< = -2. |
|
78 |
}; |
|
79 |
|
|
80 |
private: |
|
81 |
class store; |
|
82 |
|
|
83 |
std::vector<store> _data; |
|
84 |
int _min; |
|
85 |
ItemIntMap &_iim; |
|
86 |
Compare _comp; |
|
87 |
int _num_items; |
|
88 |
|
|
89 |
public: |
|
90 |
/// \brief Constructor. |
|
91 |
/// |
|
92 |
/// Constructor. |
|
93 |
/// \param map A map that assigns \c int values to the items. |
|
94 |
/// It is used internally to handle the cross references. |
|
95 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
96 |
explicit PairingHeap(ItemIntMap &map) |
|
97 |
: _min(0), _iim(map), _num_items(0) {} |
|
98 |
|
|
99 |
/// \brief Constructor. |
|
100 |
/// |
|
101 |
/// Constructor. |
|
102 |
/// \param map A map that assigns \c int values to the items. |
|
103 |
/// It is used internally to handle the cross references. |
|
104 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
105 |
/// \param comp The function object used for comparing the priorities. |
|
106 |
PairingHeap(ItemIntMap &map, const Compare &comp) |
|
107 |
: _min(0), _iim(map), _comp(comp), _num_items(0) {} |
|
108 |
|
|
109 |
/// \brief The number of items stored in the heap. |
|
110 |
/// |
|
111 |
/// This function returns the number of items stored in the heap. |
|
112 |
int size() const { return _num_items; } |
|
113 |
|
|
114 |
/// \brief Check if the heap is empty. |
|
115 |
/// |
|
116 |
/// This function returns \c true if the heap is empty. |
|
117 |
bool empty() const { return _num_items==0; } |
|
118 |
|
|
119 |
/// \brief Make the heap empty. |
|
120 |
/// |
|
121 |
/// This functon makes the heap empty. |
|
122 |
/// It does not change the cross reference map. If you want to reuse |
|
123 |
/// a heap that is not surely empty, you should first clear it and |
|
124 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
125 |
/// for each item. |
|
126 |
void clear() { |
|
127 |
_data.clear(); |
|
128 |
_min = 0; |
|
129 |
_num_items = 0; |
|
130 |
} |
|
131 |
|
|
132 |
/// \brief Set the priority of an item or insert it, if it is |
|
133 |
/// not stored in the heap. |
|
134 |
/// |
|
135 |
/// This method sets the priority of the given item if it is |
|
136 |
/// already stored in the heap. Otherwise it inserts the given |
|
137 |
/// item into the heap with the given priority. |
|
138 |
/// \param item The item. |
|
139 |
/// \param value The priority. |
|
140 |
void set (const Item& item, const Prio& value) { |
|
141 |
int i=_iim[item]; |
|
142 |
if ( i>=0 && _data[i].in ) { |
|
143 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
144 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
145 |
} else push(item, value); |
|
146 |
} |
|
147 |
|
|
148 |
/// \brief Insert an item into the heap with the given priority. |
|
149 |
/// |
|
150 |
/// This function inserts the given item into the heap with the |
|
151 |
/// given priority. |
|
152 |
/// \param item The item to insert. |
|
153 |
/// \param value The priority of the item. |
|
154 |
/// \pre \e item must not be stored in the heap. |
|
155 |
void push (const Item& item, const Prio& value) { |
|
156 |
int i=_iim[item]; |
|
157 |
if( i<0 ) { |
|
158 |
int s=_data.size(); |
|
159 |
_iim.set(item, s); |
|
160 |
store st; |
|
161 |
st.name=item; |
|
162 |
_data.push_back(st); |
|
163 |
i=s; |
|
164 |
} else { |
|
165 |
_data[i].parent=_data[i].child=-1; |
|
166 |
_data[i].left_child=false; |
|
167 |
_data[i].degree=0; |
|
168 |
_data[i].in=true; |
|
169 |
} |
|
170 |
|
|
171 |
_data[i].prio=value; |
|
172 |
|
|
173 |
if ( _num_items!=0 ) { |
|
174 |
if ( _comp( value, _data[_min].prio) ) { |
|
175 |
fuse(i,_min); |
|
176 |
_min=i; |
|
177 |
} |
|
178 |
else fuse(_min,i); |
|
179 |
} |
|
180 |
else _min=i; |
|
181 |
|
|
182 |
++_num_items; |
|
183 |
} |
|
184 |
|
|
185 |
/// \brief Return the item having minimum priority. |
|
186 |
/// |
|
187 |
/// This function returns the item having minimum priority. |
|
188 |
/// \pre The heap must be non-empty. |
|
189 |
Item top() const { return _data[_min].name; } |
|
190 |
|
|
191 |
/// \brief The minimum priority. |
|
192 |
/// |
|
193 |
/// This function returns the minimum priority. |
|
194 |
/// \pre The heap must be non-empty. |
|
195 |
const Prio& prio() const { return _data[_min].prio; } |
|
196 |
|
|
197 |
/// \brief The priority of the given item. |
|
198 |
/// |
|
199 |
/// This function returns the priority of the given item. |
|
200 |
/// \param item The item. |
|
201 |
/// \pre \e item must be in the heap. |
|
202 |
const Prio& operator[](const Item& item) const { |
|
203 |
return _data[_iim[item]].prio; |
|
204 |
} |
|
205 |
|
|
206 |
/// \brief Remove the item having minimum priority. |
|
207 |
/// |
|
208 |
/// This function removes the item having minimum priority. |
|
209 |
/// \pre The heap must be non-empty. |
|
210 |
void pop() { |
|
211 |
std::vector<int> trees; |
|
212 |
int i=0, child_right = 0; |
|
213 |
_data[_min].in=false; |
|
214 |
|
|
215 |
if( -1!=_data[_min].child ) { |
|
216 |
i=_data[_min].child; |
|
217 |
trees.push_back(i); |
|
218 |
_data[i].parent = -1; |
|
219 |
_data[_min].child = -1; |
|
220 |
|
|
221 |
int ch=-1; |
|
222 |
while( _data[i].child!=-1 ) { |
|
223 |
ch=_data[i].child; |
|
224 |
if( _data[ch].left_child && i==_data[ch].parent ) { |
|
225 |
break; |
|
226 |
} else { |
|
227 |
if( _data[ch].left_child ) { |
|
228 |
child_right=_data[ch].parent; |
|
229 |
_data[ch].parent = i; |
|
230 |
--_data[i].degree; |
|
231 |
} |
|
232 |
else { |
|
233 |
child_right=ch; |
|
234 |
_data[i].child=-1; |
|
235 |
_data[i].degree=0; |
|
236 |
} |
|
237 |
_data[child_right].parent = -1; |
|
238 |
trees.push_back(child_right); |
|
239 |
i = child_right; |
|
240 |
} |
|
241 |
} |
|
242 |
|
|
243 |
int num_child = trees.size(); |
|
244 |
int other; |
|
245 |
for( i=0; i<num_child-1; i+=2 ) { |
|
246 |
if ( !_comp(_data[trees[i]].prio, _data[trees[i+1]].prio) ) { |
|
247 |
other=trees[i]; |
|
248 |
trees[i]=trees[i+1]; |
|
249 |
trees[i+1]=other; |
|
250 |
} |
|
251 |
fuse( trees[i], trees[i+1] ); |
|
252 |
} |
|
253 |
|
|
254 |
i = (0==(num_child % 2)) ? num_child-2 : num_child-1; |
|
255 |
while(i>=2) { |
|
256 |
if ( _comp(_data[trees[i]].prio, _data[trees[i-2]].prio) ) { |
|
257 |
other=trees[i]; |
|
258 |
trees[i]=trees[i-2]; |
|
259 |
trees[i-2]=other; |
|
260 |
} |
|
261 |
fuse( trees[i-2], trees[i] ); |
|
262 |
i-=2; |
|
263 |
} |
|
264 |
_min = trees[0]; |
|
265 |
} |
|
266 |
else { |
|
267 |
_min = _data[_min].child; |
|
268 |
} |
|
269 |
|
|
270 |
if (_min >= 0) _data[_min].left_child = false; |
|
271 |
--_num_items; |
|
272 |
} |
|
273 |
|
|
274 |
/// \brief Remove the given item from the heap. |
|
275 |
/// |
|
276 |
/// This function removes the given item from the heap if it is |
|
277 |
/// already stored. |
|
278 |
/// \param item The item to delete. |
|
279 |
/// \pre \e item must be in the heap. |
|
280 |
void erase (const Item& item) { |
|
281 |
int i=_iim[item]; |
|
282 |
if ( i>=0 && _data[i].in ) { |
|
283 |
decrease( item, _data[_min].prio-1 ); |
|
284 |
pop(); |
|
285 |
} |
|
286 |
} |
|
287 |
|
|
288 |
/// \brief Decrease the priority of an item to the given value. |
|
289 |
/// |
|
290 |
/// This function decreases the priority of an item to the given value. |
|
291 |
/// \param item The item. |
|
292 |
/// \param value The priority. |
|
293 |
/// \pre \e item must be stored in the heap with priority at least \e value. |
|
294 |
void decrease (Item item, const Prio& value) { |
|
295 |
int i=_iim[item]; |
|
296 |
_data[i].prio=value; |
|
297 |
int p=_data[i].parent; |
|
298 |
|
|
299 |
if( _data[i].left_child && i!=_data[p].child ) { |
|
300 |
p=_data[p].parent; |
|
301 |
} |
|
302 |
|
|
303 |
if ( p!=-1 && _comp(value,_data[p].prio) ) { |
|
304 |
cut(i,p); |
|
305 |
if ( _comp(_data[_min].prio,value) ) { |
|
306 |
fuse(_min,i); |
|
307 |
} else { |
|
308 |
fuse(i,_min); |
|
309 |
_min=i; |
|
310 |
} |
|
311 |
} |
|
312 |
} |
|
313 |
|
|
314 |
/// \brief Increase the priority of an item to the given value. |
|
315 |
/// |
|
316 |
/// This function increases the priority of an item to the given value. |
|
317 |
/// \param item The item. |
|
318 |
/// \param value The priority. |
|
319 |
/// \pre \e item must be stored in the heap with priority at most \e value. |
|
320 |
void increase (Item item, const Prio& value) { |
|
321 |
erase(item); |
|
322 |
push(item,value); |
|
323 |
} |
|
324 |
|
|
325 |
/// \brief Return the state of an item. |
|
326 |
/// |
|
327 |
/// This method returns \c PRE_HEAP if the given item has never |
|
328 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
329 |
/// and \c POST_HEAP otherwise. |
|
330 |
/// In the latter case it is possible that the item will get back |
|
331 |
/// to the heap again. |
|
332 |
/// \param item The item. |
|
333 |
State state(const Item &item) const { |
|
334 |
int i=_iim[item]; |
|
335 |
if( i>=0 ) { |
|
336 |
if( _data[i].in ) i=0; |
|
337 |
else i=-2; |
|
338 |
} |
|
339 |
return State(i); |
|
340 |
} |
|
341 |
|
|
342 |
/// \brief Set the state of an item in the heap. |
|
343 |
/// |
|
344 |
/// This function sets the state of the given item in the heap. |
|
345 |
/// It can be used to manually clear the heap when it is important |
|
346 |
/// to achive better time complexity. |
|
347 |
/// \param i The item. |
|
348 |
/// \param st The state. It should not be \c IN_HEAP. |
|
349 |
void state(const Item& i, State st) { |
|
350 |
switch (st) { |
|
351 |
case POST_HEAP: |
|
352 |
case PRE_HEAP: |
|
353 |
if (state(i) == IN_HEAP) erase(i); |
|
354 |
_iim[i]=st; |
|
355 |
break; |
|
356 |
case IN_HEAP: |
|
357 |
break; |
|
358 |
} |
|
359 |
} |
|
360 |
|
|
361 |
private: |
|
362 |
|
|
363 |
void cut(int a, int b) { |
|
364 |
int child_a; |
|
365 |
switch (_data[a].degree) { |
|
366 |
case 2: |
|
367 |
child_a = _data[_data[a].child].parent; |
|
368 |
if( _data[a].left_child ) { |
|
369 |
_data[child_a].left_child=true; |
|
370 |
_data[b].child=child_a; |
|
371 |
_data[child_a].parent=_data[a].parent; |
|
372 |
} |
|
373 |
else { |
|
374 |
_data[child_a].left_child=false; |
|
375 |
_data[child_a].parent=b; |
|
376 |
if( a!=_data[b].child ) |
|
377 |
_data[_data[b].child].parent=child_a; |
|
378 |
else |
|
379 |
_data[b].child=child_a; |
|
380 |
} |
|
381 |
--_data[a].degree; |
|
382 |
_data[_data[a].child].parent=a; |
|
383 |
break; |
|
384 |
|
|
385 |
case 1: |
|
386 |
child_a = _data[a].child; |
|
387 |
if( !_data[child_a].left_child ) { |
|
388 |
--_data[a].degree; |
|
389 |
if( _data[a].left_child ) { |
|
390 |
_data[child_a].left_child=true; |
|
391 |
_data[child_a].parent=_data[a].parent; |
|
392 |
_data[b].child=child_a; |
|
393 |
} |
|
394 |
else { |
|
395 |
_data[child_a].left_child=false; |
|
396 |
_data[child_a].parent=b; |
|
397 |
if( a!=_data[b].child ) |
|
398 |
_data[_data[b].child].parent=child_a; |
|
399 |
else |
|
400 |
_data[b].child=child_a; |
|
401 |
} |
|
402 |
_data[a].child=-1; |
|
403 |
} |
|
404 |
else { |
|
405 |
--_data[b].degree; |
|
406 |
if( _data[a].left_child ) { |
|
407 |
_data[b].child = |
|
408 |
(1==_data[b].degree) ? _data[a].parent : -1; |
|
409 |
} else { |
|
410 |
if (1==_data[b].degree) |
|
411 |
_data[_data[b].child].parent=b; |
|
412 |
else |
|
413 |
_data[b].child=-1; |
|
414 |
} |
|
415 |
} |
|
416 |
break; |
|
417 |
|
|
418 |
case 0: |
|
419 |
--_data[b].degree; |
|
420 |
if( _data[a].left_child ) { |
|
421 |
_data[b].child = |
|
422 |
(0!=_data[b].degree) ? _data[a].parent : -1; |
|
423 |
} else { |
|
424 |
if( 0!=_data[b].degree ) |
|
425 |
_data[_data[b].child].parent=b; |
|
426 |
else |
|
427 |
_data[b].child=-1; |
|
428 |
} |
|
429 |
break; |
|
430 |
} |
|
431 |
_data[a].parent=-1; |
|
432 |
_data[a].left_child=false; |
|
433 |
} |
|
434 |
|
|
435 |
void fuse(int a, int b) { |
|
436 |
int child_a = _data[a].child; |
|
437 |
int child_b = _data[b].child; |
|
438 |
_data[a].child=b; |
|
439 |
_data[b].parent=a; |
|
440 |
_data[b].left_child=true; |
|
441 |
|
|
442 |
if( -1!=child_a ) { |
|
443 |
_data[b].child=child_a; |
|
444 |
_data[child_a].parent=b; |
|
445 |
_data[child_a].left_child=false; |
|
446 |
++_data[b].degree; |
|
447 |
|
|
448 |
if( -1!=child_b ) { |
|
449 |
_data[b].child=child_b; |
|
450 |
_data[child_b].parent=child_a; |
|
451 |
} |
|
452 |
} |
|
453 |
else { ++_data[a].degree; } |
|
454 |
} |
|
455 |
|
|
456 |
class store { |
|
457 |
friend class PairingHeap; |
|
458 |
|
|
459 |
Item name; |
|
460 |
int parent; |
|
461 |
int child; |
|
462 |
bool left_child; |
|
463 |
int degree; |
|
464 |
bool in; |
|
465 |
Prio prio; |
|
466 |
|
|
467 |
store() : parent(-1), child(-1), left_child(false), degree(0), in(true) {} |
|
468 |
}; |
|
469 |
}; |
|
470 |
|
|
471 |
} //namespace lemon |
|
472 |
|
|
473 |
#endif //LEMON_PAIRING_HEAP_H |
|
474 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_RADIX_HEAP_H |
|
20 |
#define LEMON_RADIX_HEAP_H |
|
21 |
|
|
22 |
///\ingroup heaps |
|
23 |
///\file |
|
24 |
///\brief Radix heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <lemon/error.h> |
|
28 |
|
|
29 |
namespace lemon { |
|
30 |
|
|
31 |
|
|
32 |
/// \ingroup heaps |
|
33 |
/// |
|
34 |
/// \brief Radix heap data structure. |
|
35 |
/// |
|
36 |
/// This class implements the \e radix \e heap data structure. |
|
37 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
|
38 |
/// but it has some limitations due its special implementation. |
|
39 |
/// The type of the priorities must be \c int and the priority of an |
|
40 |
/// item cannot be decreased under the priority of the last removed item. |
|
41 |
/// |
|
42 |
/// \tparam IM A read-writable item map with \c int values, used |
|
43 |
/// internally to handle the cross references. |
|
44 |
template <typename IM> |
|
45 |
class RadixHeap { |
|
46 |
|
|
47 |
public: |
|
48 |
|
|
49 |
/// Type of the item-int map. |
|
50 |
typedef IM ItemIntMap; |
|
51 |
/// Type of the priorities. |
|
52 |
typedef int Prio; |
|
53 |
/// Type of the items stored in the heap. |
|
54 |
typedef typename ItemIntMap::Key Item; |
|
55 |
|
|
56 |
/// \brief Exception thrown by RadixHeap. |
|
57 |
/// |
|
58 |
/// This exception is thrown when an item is inserted into a |
|
59 |
/// RadixHeap with a priority smaller than the last erased one. |
|
60 |
/// \see RadixHeap |
|
61 |
class PriorityUnderflowError : public Exception { |
|
62 |
public: |
|
63 |
virtual const char* what() const throw() { |
|
64 |
return "lemon::RadixHeap::PriorityUnderflowError"; |
|
65 |
} |
|
66 |
}; |
|
67 |
|
|
68 |
/// \brief Type to represent the states of the items. |
|
69 |
/// |
|
70 |
/// Each item has a state associated to it. It can be "in heap", |
|
71 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
72 |
/// heap's point of view, but may be useful to the user. |
|
73 |
/// |
|
74 |
/// The item-int map must be initialized in such way that it assigns |
|
75 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
76 |
enum State { |
|
77 |
IN_HEAP = 0, ///< = 0. |
|
78 |
PRE_HEAP = -1, ///< = -1. |
|
79 |
POST_HEAP = -2 ///< = -2. |
|
80 |
}; |
|
81 |
|
|
82 |
private: |
|
83 |
|
|
84 |
struct RadixItem { |
|
85 |
int prev, next, box; |
|
86 |
Item item; |
|
87 |
int prio; |
|
88 |
RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {} |
|
89 |
}; |
|
90 |
|
|
91 |
struct RadixBox { |
|
92 |
int first; |
|
93 |
int min, size; |
|
94 |
RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {} |
|
95 |
}; |
|
96 |
|
|
97 |
std::vector<RadixItem> _data; |
|
98 |
std::vector<RadixBox> _boxes; |
|
99 |
|
|
100 |
ItemIntMap &_iim; |
|
101 |
|
|
102 |
public: |
|
103 |
|
|
104 |
/// \brief Constructor. |
|
105 |
/// |
|
106 |
/// Constructor. |
|
107 |
/// \param map A map that assigns \c int values to the items. |
|
108 |
/// It is used internally to handle the cross references. |
|
109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
110 |
/// \param minimum The initial minimum value of the heap. |
|
111 |
/// \param capacity The initial capacity of the heap. |
|
112 |
RadixHeap(ItemIntMap &map, int minimum = 0, int capacity = 0) |
|
113 |
: _iim(map) |
|
114 |
{ |
|
115 |
_boxes.push_back(RadixBox(minimum, 1)); |
|
116 |
_boxes.push_back(RadixBox(minimum + 1, 1)); |
|
117 |
while (lower(_boxes.size() - 1, capacity + minimum - 1)) { |
|
118 |
extend(); |
|
119 |
} |
|
120 |
} |
|
121 |
|
|
122 |
/// \brief The number of items stored in the heap. |
|
123 |
/// |
|
124 |
/// This function returns the number of items stored in the heap. |
|
125 |
int size() const { return _data.size(); } |
|
126 |
|
|
127 |
/// \brief Check if the heap is empty. |
|
128 |
/// |
|
129 |
/// This function returns \c true if the heap is empty. |
|
130 |
bool empty() const { return _data.empty(); } |
|
131 |
|
|
132 |
/// \brief Make the heap empty. |
|
133 |
/// |
|
134 |
/// This functon makes the heap empty. |
|
135 |
/// It does not change the cross reference map. If you want to reuse |
|
136 |
/// a heap that is not surely empty, you should first clear it and |
|
137 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
138 |
/// for each item. |
|
139 |
/// \param minimum The minimum value of the heap. |
|
140 |
/// \param capacity The capacity of the heap. |
|
141 |
void clear(int minimum = 0, int capacity = 0) { |
|
142 |
_data.clear(); _boxes.clear(); |
|
143 |
_boxes.push_back(RadixBox(minimum, 1)); |
|
144 |
_boxes.push_back(RadixBox(minimum + 1, 1)); |
|
145 |
while (lower(_boxes.size() - 1, capacity + minimum - 1)) { |
|
146 |
extend(); |
|
147 |
} |
|
148 |
} |
|
149 |
|
|
150 |
private: |
|
151 |
|
|
152 |
bool upper(int box, Prio pr) { |
|
153 |
return pr < _boxes[box].min; |
|
154 |
} |
|
155 |
|
|
156 |
bool lower(int box, Prio pr) { |
|
157 |
return pr >= _boxes[box].min + _boxes[box].size; |
|
158 |
} |
|
159 |
|
|
160 |
// Remove item from the box list |
|
161 |
void remove(int index) { |
|
162 |
if (_data[index].prev >= 0) { |
|
163 |
_data[_data[index].prev].next = _data[index].next; |
|
164 |
} else { |
|
165 |
_boxes[_data[index].box].first = _data[index].next; |
|
166 |
} |
|
167 |
if (_data[index].next >= 0) { |
|
168 |
_data[_data[index].next].prev = _data[index].prev; |
|
169 |
} |
|
170 |
} |
|
171 |
|
|
172 |
// Insert item into the box list |
|
173 |
void insert(int box, int index) { |
|
174 |
if (_boxes[box].first == -1) { |
|
175 |
_boxes[box].first = index; |
|
176 |
_data[index].next = _data[index].prev = -1; |
|
177 |
} else { |
|
178 |
_data[index].next = _boxes[box].first; |
|
179 |
_data[_boxes[box].first].prev = index; |
|
180 |
_data[index].prev = -1; |
|
181 |
_boxes[box].first = index; |
|
182 |
} |
|
183 |
_data[index].box = box; |
|
184 |
} |
|
185 |
|
|
186 |
// Add a new box to the box list |
|
187 |
void extend() { |
|
188 |
int min = _boxes.back().min + _boxes.back().size; |
|
189 |
int bs = 2 * _boxes.back().size; |
|
190 |
_boxes.push_back(RadixBox(min, bs)); |
|
191 |
} |
|
192 |
|
|
193 |
// Move an item up into the proper box. |
|
194 |
void bubbleUp(int index) { |
|
195 |
if (!lower(_data[index].box, _data[index].prio)) return; |
|
196 |
remove(index); |
|
197 |
int box = findUp(_data[index].box, _data[index].prio); |
|
198 |
insert(box, index); |
|
199 |
} |
|
200 |
|
|
201 |
// Find up the proper box for the item with the given priority |
|
202 |
int findUp(int start, int pr) { |
|
203 |
while (lower(start, pr)) { |
|
204 |
if (++start == int(_boxes.size())) { |
|
205 |
extend(); |
|
206 |
} |
|
207 |
} |
|
208 |
return start; |
|
209 |
} |
|
210 |
|
|
211 |
// Move an item down into the proper box |
|
212 |
void bubbleDown(int index) { |
|
213 |
if (!upper(_data[index].box, _data[index].prio)) return; |
|
214 |
remove(index); |
|
215 |
int box = findDown(_data[index].box, _data[index].prio); |
|
216 |
insert(box, index); |
|
217 |
} |
|
218 |
|
|
219 |
// Find down the proper box for the item with the given priority |
|
220 |
int findDown(int start, int pr) { |
|
221 |
while (upper(start, pr)) { |
|
222 |
if (--start < 0) throw PriorityUnderflowError(); |
|
223 |
} |
|
224 |
return start; |
|
225 |
} |
|
226 |
|
|
227 |
// Find the first non-empty box |
|
228 |
int findFirst() { |
|
229 |
int first = 0; |
|
230 |
while (_boxes[first].first == -1) ++first; |
|
231 |
return first; |
|
232 |
} |
|
233 |
|
|
234 |
// Gives back the minimum priority of the given box |
|
235 |
int minValue(int box) { |
|
236 |
int min = _data[_boxes[box].first].prio; |
|
237 |
for (int k = _boxes[box].first; k != -1; k = _data[k].next) { |
|
238 |
if (_data[k].prio < min) min = _data[k].prio; |
|
239 |
} |
|
240 |
return min; |
|
241 |
} |
|
242 |
|
|
243 |
// Rearrange the items of the heap and make the first box non-empty |
|
244 |
void moveDown() { |
|
245 |
int box = findFirst(); |
|
246 |
if (box == 0) return; |
|
247 |
int min = minValue(box); |
|
248 |
for (int i = 0; i <= box; ++i) { |
|
249 |
_boxes[i].min = min; |
|
250 |
min += _boxes[i].size; |
|
251 |
} |
|
252 |
int curr = _boxes[box].first, next; |
|
253 |
while (curr != -1) { |
|
254 |
next = _data[curr].next; |
|
255 |
bubbleDown(curr); |
|
256 |
curr = next; |
|
257 |
} |
|
258 |
} |
|
259 |
|
|
260 |
void relocateLast(int index) { |
|
261 |
if (index != int(_data.size()) - 1) { |
|
262 |
_data[index] = _data.back(); |
|
263 |
if (_data[index].prev != -1) { |
|
264 |
_data[_data[index].prev].next = index; |
|
265 |
} else { |
|
266 |
_boxes[_data[index].box].first = index; |
|
267 |
} |
|
268 |
if (_data[index].next != -1) { |
|
269 |
_data[_data[index].next].prev = index; |
|
270 |
} |
|
271 |
_iim[_data[index].item] = index; |
|
272 |
} |
|
273 |
_data.pop_back(); |
|
274 |
} |
|
275 |
|
|
276 |
public: |
|
277 |
|
|
278 |
/// \brief Insert an item into the heap with the given priority. |
|
279 |
/// |
|
280 |
/// This function inserts the given item into the heap with the |
|
281 |
/// given priority. |
|
282 |
/// \param i The item to insert. |
|
283 |
/// \param p The priority of the item. |
|
284 |
/// \pre \e i must not be stored in the heap. |
|
285 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
|
286 |
void push(const Item &i, const Prio &p) { |
|
287 |
int n = _data.size(); |
|
288 |
_iim.set(i, n); |
|
289 |
_data.push_back(RadixItem(i, p)); |
|
290 |
while (lower(_boxes.size() - 1, p)) { |
|
291 |
extend(); |
|
292 |
} |
|
293 |
int box = findDown(_boxes.size() - 1, p); |
|
294 |
insert(box, n); |
|
295 |
} |
|
296 |
|
|
297 |
/// \brief Return the item having minimum priority. |
|
298 |
/// |
|
299 |
/// This function returns the item having minimum priority. |
|
300 |
/// \pre The heap must be non-empty. |
|
301 |
Item top() const { |
|
302 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
|
303 |
return _data[_boxes[0].first].item; |
|
304 |
} |
|
305 |
|
|
306 |
/// \brief The minimum priority. |
|
307 |
/// |
|
308 |
/// This function returns the minimum priority. |
|
309 |
/// \pre The heap must be non-empty. |
|
310 |
Prio prio() const { |
|
311 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
|
312 |
return _data[_boxes[0].first].prio; |
|
313 |
} |
|
314 |
|
|
315 |
/// \brief Remove the item having minimum priority. |
|
316 |
/// |
|
317 |
/// This function removes the item having minimum priority. |
|
318 |
/// \pre The heap must be non-empty. |
|
319 |
void pop() { |
|
320 |
moveDown(); |
|
321 |
int index = _boxes[0].first; |
|
322 |
_iim[_data[index].item] = POST_HEAP; |
|
323 |
remove(index); |
|
324 |
relocateLast(index); |
|
325 |
} |
|
326 |
|
|
327 |
/// \brief Remove the given item from the heap. |
|
328 |
/// |
|
329 |
/// This function removes the given item from the heap if it is |
|
330 |
/// already stored. |
|
331 |
/// \param i The item to delete. |
|
332 |
/// \pre \e i must be in the heap. |
|
333 |
void erase(const Item &i) { |
|
334 |
int index = _iim[i]; |
|
335 |
_iim[i] = POST_HEAP; |
|
336 |
remove(index); |
|
337 |
relocateLast(index); |
|
338 |
} |
|
339 |
|
|
340 |
/// \brief The priority of the given item. |
|
341 |
/// |
|
342 |
/// This function returns the priority of the given item. |
|
343 |
/// \param i The item. |
|
344 |
/// \pre \e i must be in the heap. |
|
345 |
Prio operator[](const Item &i) const { |
|
346 |
int idx = _iim[i]; |
|
347 |
return _data[idx].prio; |
|
348 |
} |
|
349 |
|
|
350 |
/// \brief Set the priority of an item or insert it, if it is |
|
351 |
/// not stored in the heap. |
|
352 |
/// |
|
353 |
/// This method sets the priority of the given item if it is |
|
354 |
/// already stored in the heap. Otherwise it inserts the given |
|
355 |
/// item into the heap with the given priority. |
|
356 |
/// \param i The item. |
|
357 |
/// \param p The priority. |
|
358 |
/// \pre \e i must be in the heap. |
|
359 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
|
360 |
void set(const Item &i, const Prio &p) { |
|
361 |
int idx = _iim[i]; |
|
362 |
if( idx < 0 ) { |
|
363 |
push(i, p); |
|
364 |
} |
|
365 |
else if( p >= _data[idx].prio ) { |
|
366 |
_data[idx].prio = p; |
|
367 |
bubbleUp(idx); |
|
368 |
} else { |
|
369 |
_data[idx].prio = p; |
|
370 |
bubbleDown(idx); |
|
371 |
} |
|
372 |
} |
|
373 |
|
|
374 |
/// \brief Decrease the priority of an item to the given value. |
|
375 |
/// |
|
376 |
/// This function decreases the priority of an item to the given value. |
|
377 |
/// \param i The item. |
|
378 |
/// \param p The priority. |
|
379 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
380 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
|
381 |
void decrease(const Item &i, const Prio &p) { |
|
382 |
int idx = _iim[i]; |
|
383 |
_data[idx].prio = p; |
|
384 |
bubbleDown(idx); |
|
385 |
} |
|
386 |
|
|
387 |
/// \brief Increase the priority of an item to the given value. |
|
388 |
/// |
|
389 |
/// This function increases the priority of an item to the given value. |
|
390 |
/// \param i The item. |
|
391 |
/// \param p The priority. |
|
392 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
393 |
void increase(const Item &i, const Prio &p) { |
|
394 |
int idx = _iim[i]; |
|
395 |
_data[idx].prio = p; |
|
396 |
bubbleUp(idx); |
|
397 |
} |
|
398 |
|
|
399 |
/// \brief Return the state of an item. |
|
400 |
/// |
|
401 |
/// This method returns \c PRE_HEAP if the given item has never |
|
402 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
403 |
/// and \c POST_HEAP otherwise. |
|
404 |
/// In the latter case it is possible that the item will get back |
|
405 |
/// to the heap again. |
|
406 |
/// \param i The item. |
|
407 |
State state(const Item &i) const { |
|
408 |
int s = _iim[i]; |
|
409 |
if( s >= 0 ) s = 0; |
|
410 |
return State(s); |
|
411 |
} |
|
412 |
|
|
413 |
/// \brief Set the state of an item in the heap. |
|
414 |
/// |
|
415 |
/// This function sets the state of the given item in the heap. |
|
416 |
/// It can be used to manually clear the heap when it is important |
|
417 |
/// to achive better time complexity. |
|
418 |
/// \param i The item. |
|
419 |
/// \param st The state. It should not be \c IN_HEAP. |
|
420 |
void state(const Item& i, State st) { |
|
421 |
switch (st) { |
|
422 |
case POST_HEAP: |
|
423 |
case PRE_HEAP: |
|
424 |
if (state(i) == IN_HEAP) { |
|
425 |
erase(i); |
|
426 |
} |
|
427 |
_iim[i] = st; |
|
428 |
break; |
|
429 |
case IN_HEAP: |
|
430 |
break; |
|
431 |
} |
|
432 |
} |
|
433 |
|
|
434 |
}; // class RadixHeap |
|
435 |
|
|
436 |
} // namespace lemon |
|
437 |
|
|
438 |
#endif // LEMON_RADIX_HEAP_H |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#include <lemon/concepts/digraph.h> |
|
20 |
#include <lemon/smart_graph.h> |
|
21 |
#include <lemon/list_graph.h> |
|
22 |
#include <lemon/lgf_reader.h> |
|
23 |
#include <lemon/bellman_ford.h> |
|
24 |
#include <lemon/path.h> |
|
25 |
|
|
26 |
#include "graph_test.h" |
|
27 |
#include "test_tools.h" |
|
28 |
|
|
29 |
using namespace lemon; |
|
30 |
|
|
31 |
char test_lgf[] = |
|
32 |
"@nodes\n" |
|
33 |
"label\n" |
|
34 |
"0\n" |
|
35 |
"1\n" |
|
36 |
"2\n" |
|
37 |
"3\n" |
|
38 |
"4\n" |
|
39 |
"@arcs\n" |
|
40 |
" length\n" |
|
41 |
"0 1 3\n" |
|
42 |
"1 2 -3\n" |
|
43 |
"1 2 -5\n" |
|
44 |
"1 3 -2\n" |
|
45 |
"0 2 -1\n" |
|
46 |
"1 2 -4\n" |
|
47 |
"0 3 2\n" |
|
48 |
"4 2 -5\n" |
|
49 |
"2 3 1\n" |
|
50 |
"@attributes\n" |
|
51 |
"source 0\n" |
|
52 |
"target 3\n"; |
|
53 |
|
|
54 |
|
|
55 |
void checkBellmanFordCompile() |
|
56 |
{ |
|
57 |
typedef int Value; |
|
58 |
typedef concepts::Digraph Digraph; |
|
59 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
|
60 |
typedef BellmanFord<Digraph, LengthMap> BF; |
|
61 |
typedef Digraph::Node Node; |
|
62 |
typedef Digraph::Arc Arc; |
|
63 |
|
|
64 |
Digraph gr; |
|
65 |
Node s, t, n; |
|
66 |
Arc e; |
|
67 |
Value l; |
|
68 |
int k; |
|
69 |
bool b; |
|
70 |
BF::DistMap d(gr); |
|
71 |
BF::PredMap p(gr); |
|
72 |
LengthMap length; |
|
73 |
concepts::Path<Digraph> pp; |
|
74 |
|
|
75 |
{ |
|
76 |
BF bf_test(gr,length); |
|
77 |
const BF& const_bf_test = bf_test; |
|
78 |
|
|
79 |
bf_test.run(s); |
|
80 |
bf_test.run(s,k); |
|
81 |
|
|
82 |
bf_test.init(); |
|
83 |
bf_test.addSource(s); |
|
84 |
bf_test.addSource(s, 1); |
|
85 |
b = bf_test.processNextRound(); |
|
86 |
b = bf_test.processNextWeakRound(); |
|
87 |
|
|
88 |
bf_test.start(); |
|
89 |
bf_test.checkedStart(); |
|
90 |
bf_test.limitedStart(k); |
|
91 |
|
|
92 |
l = const_bf_test.dist(t); |
|
93 |
e = const_bf_test.predArc(t); |
|
94 |
s = const_bf_test.predNode(t); |
|
95 |
b = const_bf_test.reached(t); |
|
96 |
d = const_bf_test.distMap(); |
|
97 |
p = const_bf_test.predMap(); |
|
98 |
pp = const_bf_test.path(t); |
|
99 |
|
|
100 |
for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {} |
|
101 |
} |
|
102 |
{ |
|
103 |
BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
|
104 |
::SetDistMap<concepts::ReadWriteMap<Node,Value> > |
|
105 |
::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> > |
|
106 |
::Create bf_test(gr,length); |
|
107 |
|
|
108 |
LengthMap length_map; |
|
109 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
|
110 |
concepts::ReadWriteMap<Node,Value> dist_map; |
|
111 |
|
|
112 |
bf_test |
|
113 |
.lengthMap(length_map) |
|
114 |
.predMap(pred_map) |
|
115 |
.distMap(dist_map); |
|
116 |
|
|
117 |
bf_test.run(s); |
|
118 |
bf_test.run(s,k); |
|
119 |
|
|
120 |
bf_test.init(); |
|
121 |
bf_test.addSource(s); |
|
122 |
bf_test.addSource(s, 1); |
|
123 |
b = bf_test.processNextRound(); |
|
124 |
b = bf_test.processNextWeakRound(); |
|
125 |
|
|
126 |
bf_test.start(); |
|
127 |
bf_test.checkedStart(); |
|
128 |
bf_test.limitedStart(k); |
|
129 |
|
|
130 |
l = bf_test.dist(t); |
|
131 |
e = bf_test.predArc(t); |
|
132 |
s = bf_test.predNode(t); |
|
133 |
b = bf_test.reached(t); |
|
134 |
pp = bf_test.path(t); |
|
135 |
} |
|
136 |
} |
|
137 |
|
|
138 |
void checkBellmanFordFunctionCompile() |
|
139 |
{ |
|
140 |
typedef int Value; |
|
141 |
typedef concepts::Digraph Digraph; |
|
142 |
typedef Digraph::Arc Arc; |
|
143 |
typedef Digraph::Node Node; |
|
144 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
|
145 |
|
|
146 |
Digraph g; |
|
147 |
bool b; |
|
148 |
bellmanFord(g,LengthMap()).run(Node()); |
|
149 |
b = bellmanFord(g,LengthMap()).run(Node(),Node()); |
|
150 |
bellmanFord(g,LengthMap()) |
|
151 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
|
152 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
|
153 |
.run(Node()); |
|
154 |
b=bellmanFord(g,LengthMap()) |
|
155 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
|
156 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
|
157 |
.path(concepts::Path<Digraph>()) |
|
158 |
.dist(Value()) |
|
159 |
.run(Node(),Node()); |
|
160 |
} |
|
161 |
|
|
162 |
|
|
163 |
template <typename Digraph, typename Value> |
|
164 |
void checkBellmanFord() { |
|
165 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
166 |
typedef typename Digraph::template ArcMap<Value> LengthMap; |
|
167 |
|
|
168 |
Digraph gr; |
|
169 |
Node s, t; |
|
170 |
LengthMap length(gr); |
|
171 |
|
|
172 |
std::istringstream input(test_lgf); |
|
173 |
digraphReader(gr, input). |
|
174 |
arcMap("length", length). |
|
175 |
node("source", s). |
|
176 |
node("target", t). |
|
177 |
run(); |
|
178 |
|
|
179 |
BellmanFord<Digraph, LengthMap> |
|
180 |
bf(gr, length); |
|
181 |
bf.run(s); |
|
182 |
Path<Digraph> p = bf.path(t); |
|
183 |
|
|
184 |
check(bf.reached(t) && bf.dist(t) == -1, "Bellman-Ford found a wrong path."); |
|
185 |
check(p.length() == 3, "path() found a wrong path."); |
|
186 |
check(checkPath(gr, p), "path() found a wrong path."); |
|
187 |
check(pathSource(gr, p) == s, "path() found a wrong path."); |
|
188 |
check(pathTarget(gr, p) == t, "path() found a wrong path."); |
|
189 |
|
|
190 |
ListPath<Digraph> path; |
|
191 |
Value dist; |
|
192 |
bool reached = bellmanFord(gr,length).path(path).dist(dist).run(s,t); |
|
193 |
|
|
194 |
check(reached && dist == -1, "Bellman-Ford found a wrong path."); |
|
195 |
check(path.length() == 3, "path() found a wrong path."); |
|
196 |
check(checkPath(gr, path), "path() found a wrong path."); |
|
197 |
check(pathSource(gr, path) == s, "path() found a wrong path."); |
|
198 |
check(pathTarget(gr, path) == t, "path() found a wrong path."); |
|
199 |
|
|
200 |
for(ArcIt e(gr); e!=INVALID; ++e) { |
|
201 |
Node u=gr.source(e); |
|
202 |
Node v=gr.target(e); |
|
203 |
check(!bf.reached(u) || (bf.dist(v) - bf.dist(u) <= length[e]), |
|
204 |
"Wrong output. dist(target)-dist(source)-arc_length=" << |
|
205 |
bf.dist(v) - bf.dist(u) - length[e]); |
|
206 |
} |
|
207 |
|
|
208 |
for(NodeIt v(gr); v!=INVALID; ++v) { |
|
209 |
if (bf.reached(v)) { |
|
210 |
check(v==s || bf.predArc(v)!=INVALID, "Wrong tree."); |
|
211 |
if (bf.predArc(v)!=INVALID ) { |
|
212 |
Arc e=bf.predArc(v); |
|
213 |
Node u=gr.source(e); |
|
214 |
check(u==bf.predNode(v),"Wrong tree."); |
|
215 |
check(bf.dist(v) - bf.dist(u) == length[e], |
|
216 |
"Wrong distance! Difference: " << |
|
217 |
bf.dist(v) - bf.dist(u) - length[e]); |
|
218 |
} |
|
219 |
} |
|
220 |
} |
|
221 |
} |
|
222 |
|
|
223 |
void checkBellmanFordNegativeCycle() { |
|
224 |
DIGRAPH_TYPEDEFS(SmartDigraph); |
|
225 |
|
|
226 |
SmartDigraph gr; |
|
227 |
IntArcMap length(gr); |
|
228 |
|
|
229 |
Node n1 = gr.addNode(); |
|
230 |
Node n2 = gr.addNode(); |
|
231 |
Node n3 = gr.addNode(); |
|
232 |
Node n4 = gr.addNode(); |
|
233 |
|
|
234 |
Arc a1 = gr.addArc(n1, n2); |
|
235 |
Arc a2 = gr.addArc(n2, n2); |
|
236 |
|
|
237 |
length[a1] = 2; |
|
238 |
length[a2] = -1; |
|
239 |
|
|
240 |
{ |
|
241 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
|
242 |
bf.run(n1); |
|
243 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
|
244 |
check(p.length() == 1 && p.front() == p.back() && p.front() == a2, |
|
245 |
"Wrong negative cycle."); |
|
246 |
} |
|
247 |
|
|
248 |
length[a2] = 0; |
|
249 |
|
|
250 |
{ |
|
251 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
|
252 |
bf.run(n1); |
|
253 |
check(bf.negativeCycle().empty(), |
|
254 |
"Negative cycle should not be found."); |
|
255 |
} |
|
256 |
|
|
257 |
length[gr.addArc(n1, n3)] = 5; |
|
258 |
length[gr.addArc(n4, n3)] = 1; |
|
259 |
length[gr.addArc(n2, n4)] = 2; |
|
260 |
length[gr.addArc(n3, n2)] = -4; |
|
261 |
|
|
262 |
{ |
|
263 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
|
264 |
bf.init(); |
|
265 |
bf.addSource(n1); |
|
266 |
for (int i = 0; i < 4; ++i) { |
|
267 |
check(bf.negativeCycle().empty(), |
|
268 |
"Negative cycle should not be found."); |
|
269 |
bf.processNextRound(); |
|
270 |
} |
|
271 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
|
272 |
check(p.length() == 3, "Wrong negative cycle."); |
|
273 |
check(length[p.nth(0)] + length[p.nth(1)] + length[p.nth(2)] == -1, |
|
274 |
"Wrong negative cycle."); |
|
275 |
} |
|
276 |
} |
|
277 |
|
|
278 |
int main() { |
|
279 |
checkBellmanFord<ListDigraph, int>(); |
|
280 |
checkBellmanFord<SmartDigraph, double>(); |
|
281 |
checkBellmanFordNegativeCycle(); |
|
282 |
return 0; |
|
283 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
|
21 | 21 |
/** |
22 | 22 |
@defgroup datas Data Structures |
23 | 23 |
This group contains the several data structures implemented in LEMON. |
24 | 24 |
*/ |
25 | 25 |
|
26 | 26 |
/** |
27 | 27 |
@defgroup graphs Graph Structures |
28 | 28 |
@ingroup datas |
29 | 29 |
\brief Graph structures implemented in LEMON. |
30 | 30 |
|
31 | 31 |
The implementation of combinatorial algorithms heavily relies on |
32 | 32 |
efficient graph implementations. LEMON offers data structures which are |
33 | 33 |
planned to be easily used in an experimental phase of implementation studies, |
34 | 34 |
and thereafter the program code can be made efficient by small modifications. |
35 | 35 |
|
36 | 36 |
The most efficient implementation of diverse applications require the |
37 | 37 |
usage of different physical graph implementations. These differences |
38 | 38 |
appear in the size of graph we require to handle, memory or time usage |
39 | 39 |
limitations or in the set of operations through which the graph can be |
40 | 40 |
accessed. LEMON provides several physical graph structures to meet |
41 | 41 |
the diverging requirements of the possible users. In order to save on |
42 | 42 |
running time or on memory usage, some structures may fail to provide |
43 | 43 |
some graph features like arc/edge or node deletion. |
44 | 44 |
|
45 | 45 |
Alteration of standard containers need a very limited number of |
46 | 46 |
operations, these together satisfy the everyday requirements. |
47 | 47 |
In the case of graph structures, different operations are needed which do |
48 | 48 |
not alter the physical graph, but gives another view. If some nodes or |
49 | 49 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
50 | 50 |
this is the case. It also may happen that in a flow implementation |
51 | 51 |
the residual graph can be accessed by another algorithm, or a node-set |
52 | 52 |
is to be shrunk for another algorithm. |
53 | 53 |
LEMON also provides a variety of graphs for these requirements called |
54 | 54 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
55 | 55 |
in conjunction with other graph representations. |
56 | 56 |
|
57 | 57 |
You are free to use the graph structure that fit your requirements |
58 | 58 |
the best, most graph algorithms and auxiliary data structures can be used |
59 | 59 |
with any graph structure. |
60 | 60 |
|
61 | 61 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
62 | 62 |
*/ |
63 | 63 |
|
64 | 64 |
/** |
65 | 65 |
@defgroup graph_adaptors Adaptor Classes for Graphs |
66 | 66 |
@ingroup graphs |
67 | 67 |
\brief Adaptor classes for digraphs and graphs |
68 | 68 |
|
69 | 69 |
This group contains several useful adaptor classes for digraphs and graphs. |
70 | 70 |
|
71 | 71 |
The main parts of LEMON are the different graph structures, generic |
72 | 72 |
graph algorithms, graph concepts, which couple them, and graph |
73 | 73 |
adaptors. While the previous notions are more or less clear, the |
74 | 74 |
latter one needs further explanation. Graph adaptors are graph classes |
75 | 75 |
which serve for considering graph structures in different ways. |
76 | 76 |
|
77 | 77 |
A short example makes this much clearer. Suppose that we have an |
78 | 78 |
instance \c g of a directed graph type, say ListDigraph and an algorithm |
79 | 79 |
\code |
80 | 80 |
template <typename Digraph> |
81 | 81 |
int algorithm(const Digraph&); |
82 | 82 |
\endcode |
83 | 83 |
is needed to run on the reverse oriented graph. It may be expensive |
84 | 84 |
(in time or in memory usage) to copy \c g with the reversed |
85 | 85 |
arcs. In this case, an adaptor class is used, which (according |
86 | 86 |
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph. |
87 | 87 |
The adaptor uses the original digraph structure and digraph operations when |
88 | 88 |
methods of the reversed oriented graph are called. This means that the adaptor |
89 | 89 |
have minor memory usage, and do not perform sophisticated algorithmic |
90 | 90 |
actions. The purpose of it is to give a tool for the cases when a |
91 | 91 |
graph have to be used in a specific alteration. If this alteration is |
92 | 92 |
obtained by a usual construction like filtering the node or the arc set or |
93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
94 | 94 |
To come back to the reverse oriented graph, in this situation |
95 | 95 |
\code |
96 | 96 |
template<typename Digraph> class ReverseDigraph; |
97 | 97 |
\endcode |
98 | 98 |
template class can be used. The code looks as follows |
99 | 99 |
\code |
100 | 100 |
ListDigraph g; |
101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
102 | 102 |
int result = algorithm(rg); |
103 | 103 |
\endcode |
104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
105 | 105 |
This techniques give rise to an elegant code, and based on stable |
106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
107 | 107 |
|
108 | 108 |
In flow, circulation and matching problems, the residual |
109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
112 | 112 |
obtained. For other examples, the interested user is referred to the |
113 | 113 |
detailed documentation of particular adaptors. |
114 | 114 |
|
115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
116 | 116 |
capabilities of the original graph while in other cases this would be |
117 | 117 |
meaningless. This means that the concepts that they meet depend |
118 | 118 |
on the graph adaptor, and the wrapped graph. |
119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
121 | 121 |
adaptor modifies the original digraph. |
122 | 122 |
However in case of a residual digraph, this operation has no sense. |
123 | 123 |
|
124 | 124 |
Let us stand one more example here to simplify your work. |
125 | 125 |
ReverseDigraph has constructor |
126 | 126 |
\code |
127 | 127 |
ReverseDigraph(Digraph& digraph); |
128 | 128 |
\endcode |
129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
130 | 130 |
reference to a graph is given, then it have to be instantiated with |
131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
132 | 132 |
\code |
133 | 133 |
int algorithm1(const ListDigraph& g) { |
134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
135 | 135 |
return algorithm2(rg); |
136 | 136 |
} |
137 | 137 |
\endcode |
138 | 138 |
*/ |
139 | 139 |
|
140 | 140 |
/** |
141 | 141 |
@defgroup maps Maps |
142 | 142 |
@ingroup datas |
143 | 143 |
\brief Map structures implemented in LEMON. |
144 | 144 |
|
145 | 145 |
This group contains the map structures implemented in LEMON. |
146 | 146 |
|
147 | 147 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
148 | 148 |
new maps from existing ones. |
149 | 149 |
|
150 | 150 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
151 | 151 |
*/ |
152 | 152 |
|
153 | 153 |
/** |
154 | 154 |
@defgroup graph_maps Graph Maps |
155 | 155 |
@ingroup maps |
156 | 156 |
\brief Special graph-related maps. |
157 | 157 |
|
158 | 158 |
This group contains maps that are specifically designed to assign |
159 | 159 |
values to the nodes and arcs/edges of graphs. |
160 | 160 |
|
161 | 161 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
162 | 162 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
163 | 163 |
*/ |
164 | 164 |
|
165 | 165 |
/** |
166 | 166 |
\defgroup map_adaptors Map Adaptors |
167 | 167 |
\ingroup maps |
168 | 168 |
\brief Tools to create new maps from existing ones |
169 | 169 |
|
170 | 170 |
This group contains map adaptors that are used to create "implicit" |
171 | 171 |
maps from other maps. |
172 | 172 |
|
173 | 173 |
Most of them are \ref concepts::ReadMap "read-only maps". |
174 | 174 |
They can make arithmetic and logical operations between one or two maps |
175 | 175 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
176 | 176 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
177 | 177 |
|
178 | 178 |
The typical usage of this classes is passing implicit maps to |
179 | 179 |
algorithms. If a function type algorithm is called then the function |
180 | 180 |
type map adaptors can be used comfortable. For example let's see the |
181 | 181 |
usage of map adaptors with the \c graphToEps() function. |
182 | 182 |
\code |
183 | 183 |
Color nodeColor(int deg) { |
184 | 184 |
if (deg >= 2) { |
185 | 185 |
return Color(0.5, 0.0, 0.5); |
186 | 186 |
} else if (deg == 1) { |
187 | 187 |
return Color(1.0, 0.5, 1.0); |
188 | 188 |
} else { |
189 | 189 |
return Color(0.0, 0.0, 0.0); |
190 | 190 |
} |
191 | 191 |
} |
192 | 192 |
|
193 | 193 |
Digraph::NodeMap<int> degree_map(graph); |
194 | 194 |
|
195 | 195 |
graphToEps(graph, "graph.eps") |
196 | 196 |
.coords(coords).scaleToA4().undirected() |
197 | 197 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
198 | 198 |
.run(); |
199 | 199 |
\endcode |
200 | 200 |
The \c functorToMap() function makes an \c int to \c Color map from the |
201 | 201 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
202 | 202 |
and the previously created map. The composed map is a proper function to |
203 | 203 |
get the color of each node. |
204 | 204 |
|
205 | 205 |
The usage with class type algorithms is little bit harder. In this |
206 | 206 |
case the function type map adaptors can not be used, because the |
207 | 207 |
function map adaptors give back temporary objects. |
208 | 208 |
\code |
209 | 209 |
Digraph graph; |
210 | 210 |
|
211 | 211 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
212 | 212 |
DoubleArcMap length(graph); |
213 | 213 |
DoubleArcMap speed(graph); |
214 | 214 |
|
215 | 215 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
216 | 216 |
TimeMap time(length, speed); |
217 | 217 |
|
218 | 218 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
219 | 219 |
dijkstra.run(source, target); |
220 | 220 |
\endcode |
221 | 221 |
We have a length map and a maximum speed map on the arcs of a digraph. |
222 | 222 |
The minimum time to pass the arc can be calculated as the division of |
223 | 223 |
the two maps which can be done implicitly with the \c DivMap template |
224 | 224 |
class. We use the implicit minimum time map as the length map of the |
225 | 225 |
\c Dijkstra algorithm. |
226 | 226 |
*/ |
227 | 227 |
|
228 | 228 |
/** |
229 |
@defgroup matrices Matrices |
|
230 |
@ingroup datas |
|
231 |
\brief Two dimensional data storages implemented in LEMON. |
|
232 |
|
|
233 |
This group contains two dimensional data storages implemented in LEMON. |
|
234 |
*/ |
|
235 |
|
|
236 |
/** |
|
237 | 229 |
@defgroup paths Path Structures |
238 | 230 |
@ingroup datas |
239 | 231 |
\brief %Path structures implemented in LEMON. |
240 | 232 |
|
241 | 233 |
This group contains the path structures implemented in LEMON. |
242 | 234 |
|
243 | 235 |
LEMON provides flexible data structures to work with paths. |
244 | 236 |
All of them have similar interfaces and they can be copied easily with |
245 | 237 |
assignment operators and copy constructors. This makes it easy and |
246 | 238 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
247 | 239 |
any kind of path structure. |
248 | 240 |
|
249 |
\sa |
|
241 |
\sa \ref concepts::Path "Path concept" |
|
242 |
*/ |
|
243 |
|
|
244 |
/** |
|
245 |
@defgroup heaps Heap Structures |
|
246 |
@ingroup datas |
|
247 |
\brief %Heap structures implemented in LEMON. |
|
248 |
|
|
249 |
This group contains the heap structures implemented in LEMON. |
|
250 |
|
|
251 |
LEMON provides several heap classes. They are efficient implementations |
|
252 |
of the abstract data type \e priority \e queue. They store items with |
|
253 |
specified values called \e priorities in such a way that finding and |
|
254 |
removing the item with minimum priority are efficient. |
|
255 |
The basic operations are adding and erasing items, changing the priority |
|
256 |
of an item, etc. |
|
257 |
|
|
258 |
Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
|
259 |
The heap implementations have the same interface, thus any of them can be |
|
260 |
used easily in such algorithms. |
|
261 |
|
|
262 |
\sa \ref concepts::Heap "Heap concept" |
|
263 |
*/ |
|
264 |
|
|
265 |
/** |
|
266 |
@defgroup matrices Matrices |
|
267 |
@ingroup datas |
|
268 |
\brief Two dimensional data storages implemented in LEMON. |
|
269 |
|
|
270 |
This group contains two dimensional data storages implemented in LEMON. |
|
250 | 271 |
*/ |
251 | 272 |
|
252 | 273 |
/** |
253 | 274 |
@defgroup auxdat Auxiliary Data Structures |
254 | 275 |
@ingroup datas |
255 | 276 |
\brief Auxiliary data structures implemented in LEMON. |
256 | 277 |
|
257 | 278 |
This group contains some data structures implemented in LEMON in |
258 | 279 |
order to make it easier to implement combinatorial algorithms. |
259 | 280 |
*/ |
260 | 281 |
|
261 | 282 |
/** |
283 |
@defgroup geomdat Geometric Data Structures |
|
284 |
@ingroup auxdat |
|
285 |
\brief Geometric data structures implemented in LEMON. |
|
286 |
|
|
287 |
This group contains geometric data structures implemented in LEMON. |
|
288 |
|
|
289 |
- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional |
|
290 |
vector with the usual operations. |
|
291 |
- \ref lemon::dim2::Box "dim2::Box" can be used to determine the |
|
292 |
rectangular bounding box of a set of \ref lemon::dim2::Point |
|
293 |
"dim2::Point"'s. |
|
294 |
*/ |
|
295 |
|
|
296 |
/** |
|
297 |
@defgroup matrices Matrices |
|
298 |
@ingroup auxdat |
|
299 |
\brief Two dimensional data storages implemented in LEMON. |
|
300 |
|
|
301 |
This group contains two dimensional data storages implemented in LEMON. |
|
302 |
*/ |
|
303 |
|
|
304 |
/** |
|
262 | 305 |
@defgroup algs Algorithms |
263 | 306 |
\brief This group contains the several algorithms |
264 | 307 |
implemented in LEMON. |
265 | 308 |
|
266 | 309 |
This group contains the several algorithms |
267 | 310 |
implemented in LEMON. |
268 | 311 |
*/ |
269 | 312 |
|
270 | 313 |
/** |
271 | 314 |
@defgroup search Graph Search |
272 | 315 |
@ingroup algs |
273 | 316 |
\brief Common graph search algorithms. |
274 | 317 |
|
275 | 318 |
This group contains the common graph search algorithms, namely |
276 | 319 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
277 | 320 |
*/ |
278 | 321 |
|
279 | 322 |
/** |
280 | 323 |
@defgroup shortest_path Shortest Path Algorithms |
281 | 324 |
@ingroup algs |
282 | 325 |
\brief Algorithms for finding shortest paths. |
283 | 326 |
|
284 | 327 |
This group contains the algorithms for finding shortest paths in digraphs. |
285 | 328 |
|
286 | 329 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
287 | 330 |
when all arc lengths are non-negative. |
288 | 331 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
289 | 332 |
from a source node when arc lenghts can be either positive or negative, |
290 | 333 |
but the digraph should not contain directed cycles with negative total |
291 | 334 |
length. |
292 | 335 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
293 | 336 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
294 | 337 |
lenghts can be either positive or negative, but the digraph should |
295 | 338 |
not contain directed cycles with negative total length. |
296 | 339 |
- \ref Suurballe A successive shortest path algorithm for finding |
297 | 340 |
arc-disjoint paths between two nodes having minimum total length. |
298 | 341 |
*/ |
299 | 342 |
|
300 | 343 |
/** |
344 |
@defgroup spantree Minimum Spanning Tree Algorithms |
|
345 |
@ingroup algs |
|
346 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
|
347 |
|
|
348 |
This group contains the algorithms for finding minimum cost spanning |
|
349 |
trees and arborescences. |
|
350 |
*/ |
|
351 |
|
|
352 |
/** |
|
301 | 353 |
@defgroup max_flow Maximum Flow Algorithms |
302 | 354 |
@ingroup algs |
303 | 355 |
\brief Algorithms for finding maximum flows. |
304 | 356 |
|
305 | 357 |
This group contains the algorithms for finding maximum flows and |
306 | 358 |
feasible circulations. |
307 | 359 |
|
308 | 360 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
309 | 361 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
310 | 362 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
311 | 363 |
\f$s, t \in V\f$ source and target nodes. |
312 | 364 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the |
313 | 365 |
following optimization problem. |
314 | 366 |
|
315 | 367 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
316 | 368 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
317 | 369 |
\quad \forall u\in V\setminus\{s,t\} \f] |
318 | 370 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
319 | 371 |
|
320 | 372 |
LEMON contains several algorithms for solving maximum flow problems: |
321 | 373 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
322 | 374 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
323 | 375 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
324 | 376 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
325 | 377 |
|
326 | 378 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
327 | 379 |
fastest method for computing a maximum flow. All implementations |
328 | 380 |
also provide functions to query the minimum cut, which is the dual |
329 | 381 |
problem of maximum flow. |
330 | 382 |
|
331 | 383 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
332 | 384 |
for finding feasible circulations, which is a somewhat different problem, |
333 | 385 |
but it is strongly related to maximum flow. |
334 | 386 |
For more information, see \ref Circulation. |
335 | 387 |
*/ |
336 | 388 |
|
337 | 389 |
/** |
338 | 390 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
339 | 391 |
@ingroup algs |
340 | 392 |
|
341 | 393 |
\brief Algorithms for finding minimum cost flows and circulations. |
342 | 394 |
|
343 | 395 |
This group contains the algorithms for finding minimum cost flows and |
344 | 396 |
circulations. For more information about this problem and its dual |
345 | 397 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
346 | 398 |
|
347 | 399 |
LEMON contains several algorithms for this problem. |
348 | 400 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
349 | 401 |
pivot strategies. |
350 | 402 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
351 | 403 |
cost scaling. |
352 | 404 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
353 | 405 |
capacity scaling. |
354 | 406 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
355 | 407 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
356 | 408 |
|
357 | 409 |
In general NetworkSimplex is the most efficient implementation, |
358 | 410 |
but in special cases other algorithms could be faster. |
359 | 411 |
For example, if the total supply and/or capacities are rather small, |
360 | 412 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
361 | 413 |
*/ |
362 | 414 |
|
363 | 415 |
/** |
364 | 416 |
@defgroup min_cut Minimum Cut Algorithms |
365 | 417 |
@ingroup algs |
366 | 418 |
|
367 | 419 |
\brief Algorithms for finding minimum cut in graphs. |
368 | 420 |
|
369 | 421 |
This group contains the algorithms for finding minimum cut in graphs. |
370 | 422 |
|
371 | 423 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
372 | 424 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
373 | 425 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
374 | 426 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
375 | 427 |
cut is the \f$X\f$ solution of the next optimization problem: |
376 | 428 |
|
377 | 429 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
378 |
\sum_{uv\in A |
|
430 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f] |
|
379 | 431 |
|
380 | 432 |
LEMON contains several algorithms related to minimum cut problems: |
381 | 433 |
|
382 | 434 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
383 | 435 |
in directed graphs. |
384 | 436 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
385 | 437 |
calculating minimum cut in undirected graphs. |
386 | 438 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
387 | 439 |
all-pairs minimum cut in undirected graphs. |
388 | 440 |
|
389 | 441 |
If you want to find minimum cut just between two distinict nodes, |
390 | 442 |
see the \ref max_flow "maximum flow problem". |
391 | 443 |
*/ |
392 | 444 |
|
393 | 445 |
/** |
394 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
395 |
@ingroup algs |
|
396 |
\brief Algorithms for discovering the graph properties |
|
397 |
|
|
398 |
This group contains the algorithms for discovering the graph properties |
|
399 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
400 |
|
|
401 |
\image html edge_biconnected_components.png |
|
402 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
|
403 |
*/ |
|
404 |
|
|
405 |
/** |
|
406 |
@defgroup planar Planarity Embedding and Drawing |
|
407 |
@ingroup algs |
|
408 |
\brief Algorithms for planarity checking, embedding and drawing |
|
409 |
|
|
410 |
This group contains the algorithms for planarity checking, |
|
411 |
embedding and drawing. |
|
412 |
|
|
413 |
\image html planar.png |
|
414 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
415 |
*/ |
|
416 |
|
|
417 |
/** |
|
418 | 446 |
@defgroup matching Matching Algorithms |
419 | 447 |
@ingroup algs |
420 | 448 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
421 | 449 |
|
422 | 450 |
This group contains the algorithms for calculating |
423 | 451 |
matchings in graphs and bipartite graphs. The general matching problem is |
424 | 452 |
finding a subset of the edges for which each node has at most one incident |
425 | 453 |
edge. |
426 | 454 |
|
427 | 455 |
There are several different algorithms for calculate matchings in |
428 | 456 |
graphs. The matching problems in bipartite graphs are generally |
429 | 457 |
easier than in general graphs. The goal of the matching optimization |
430 | 458 |
can be finding maximum cardinality, maximum weight or minimum cost |
431 | 459 |
matching. The search can be constrained to find perfect or |
432 | 460 |
maximum cardinality matching. |
433 | 461 |
|
434 | 462 |
The matching algorithms implemented in LEMON: |
435 | 463 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
436 | 464 |
for calculating maximum cardinality matching in bipartite graphs. |
437 | 465 |
- \ref PrBipartiteMatching Push-relabel algorithm |
438 | 466 |
for calculating maximum cardinality matching in bipartite graphs. |
439 | 467 |
- \ref MaxWeightedBipartiteMatching |
440 | 468 |
Successive shortest path algorithm for calculating maximum weighted |
441 | 469 |
matching and maximum weighted bipartite matching in bipartite graphs. |
442 | 470 |
- \ref MinCostMaxBipartiteMatching |
443 | 471 |
Successive shortest path algorithm for calculating minimum cost maximum |
444 | 472 |
matching in bipartite graphs. |
445 | 473 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
446 | 474 |
maximum cardinality matching in general graphs. |
447 | 475 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
448 | 476 |
maximum weighted matching in general graphs. |
449 | 477 |
- \ref MaxWeightedPerfectMatching |
450 | 478 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
451 | 479 |
perfect matching in general graphs. |
452 | 480 |
|
453 | 481 |
\image html bipartite_matching.png |
454 | 482 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
455 | 483 |
*/ |
456 | 484 |
|
457 | 485 |
/** |
458 |
@defgroup |
|
486 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
459 | 487 |
@ingroup algs |
460 |
\brief Algorithms for |
|
488 |
\brief Algorithms for discovering the graph properties |
|
461 | 489 |
|
462 |
This group contains the algorithms for finding minimum cost spanning |
|
463 |
trees and arborescences. |
|
490 |
This group contains the algorithms for discovering the graph properties |
|
491 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
492 |
|
|
493 |
\image html connected_components.png |
|
494 |
\image latex connected_components.eps "Connected components" width=\textwidth |
|
495 |
*/ |
|
496 |
|
|
497 |
/** |
|
498 |
@defgroup planar Planarity Embedding and Drawing |
|
499 |
@ingroup algs |
|
500 |
\brief Algorithms for planarity checking, embedding and drawing |
|
501 |
|
|
502 |
This group contains the algorithms for planarity checking, |
|
503 |
embedding and drawing. |
|
504 |
|
|
505 |
\image html planar.png |
|
506 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
507 |
*/ |
|
508 |
|
|
509 |
/** |
|
510 |
@defgroup approx Approximation Algorithms |
|
511 |
@ingroup algs |
|
512 |
\brief Approximation algorithms. |
|
513 |
|
|
514 |
This group contains the approximation and heuristic algorithms |
|
515 |
implemented in LEMON. |
|
464 | 516 |
*/ |
465 | 517 |
|
466 | 518 |
/** |
467 | 519 |
@defgroup auxalg Auxiliary Algorithms |
468 | 520 |
@ingroup algs |
469 | 521 |
\brief Auxiliary algorithms implemented in LEMON. |
470 | 522 |
|
471 | 523 |
This group contains some algorithms implemented in LEMON |
472 | 524 |
in order to make it easier to implement complex algorithms. |
473 | 525 |
*/ |
474 | 526 |
|
475 | 527 |
/** |
476 |
@defgroup approx Approximation Algorithms |
|
477 |
@ingroup algs |
|
478 |
\brief Approximation algorithms. |
|
479 |
|
|
480 |
This group contains the approximation and heuristic algorithms |
|
481 |
implemented in LEMON. |
|
482 |
*/ |
|
483 |
|
|
484 |
/** |
|
485 | 528 |
@defgroup gen_opt_group General Optimization Tools |
486 | 529 |
\brief This group contains some general optimization frameworks |
487 | 530 |
implemented in LEMON. |
488 | 531 |
|
489 | 532 |
This group contains some general optimization frameworks |
490 | 533 |
implemented in LEMON. |
491 | 534 |
*/ |
492 | 535 |
|
493 | 536 |
/** |
494 | 537 |
@defgroup lp_group Lp and Mip Solvers |
495 | 538 |
@ingroup gen_opt_group |
496 | 539 |
\brief Lp and Mip solver interfaces for LEMON. |
497 | 540 |
|
498 | 541 |
This group contains Lp and Mip solver interfaces for LEMON. The |
499 | 542 |
various LP solvers could be used in the same manner with this |
500 | 543 |
interface. |
501 | 544 |
*/ |
502 | 545 |
|
503 | 546 |
/** |
504 | 547 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
505 | 548 |
@ingroup lp_group |
506 | 549 |
\brief Helper tools to the Lp and Mip solvers. |
507 | 550 |
|
508 | 551 |
This group adds some helper tools to general optimization framework |
509 | 552 |
implemented in LEMON. |
510 | 553 |
*/ |
511 | 554 |
|
512 | 555 |
/** |
513 | 556 |
@defgroup metah Metaheuristics |
514 | 557 |
@ingroup gen_opt_group |
515 | 558 |
\brief Metaheuristics for LEMON library. |
516 | 559 |
|
517 | 560 |
This group contains some metaheuristic optimization tools. |
518 | 561 |
*/ |
519 | 562 |
|
520 | 563 |
/** |
521 | 564 |
@defgroup utils Tools and Utilities |
522 | 565 |
\brief Tools and utilities for programming in LEMON |
523 | 566 |
|
524 | 567 |
Tools and utilities for programming in LEMON. |
525 | 568 |
*/ |
526 | 569 |
|
527 | 570 |
/** |
528 | 571 |
@defgroup gutils Basic Graph Utilities |
529 | 572 |
@ingroup utils |
530 | 573 |
\brief Simple basic graph utilities. |
531 | 574 |
|
532 | 575 |
This group contains some simple basic graph utilities. |
533 | 576 |
*/ |
534 | 577 |
|
535 | 578 |
/** |
536 | 579 |
@defgroup misc Miscellaneous Tools |
537 | 580 |
@ingroup utils |
538 | 581 |
\brief Tools for development, debugging and testing. |
539 | 582 |
|
540 | 583 |
This group contains several useful tools for development, |
541 | 584 |
debugging and testing. |
542 | 585 |
*/ |
543 | 586 |
|
544 | 587 |
/** |
545 | 588 |
@defgroup timecount Time Measuring and Counting |
546 | 589 |
@ingroup misc |
547 | 590 |
\brief Simple tools for measuring the performance of algorithms. |
548 | 591 |
|
549 | 592 |
This group contains simple tools for measuring the performance |
550 | 593 |
of algorithms. |
551 | 594 |
*/ |
552 | 595 |
|
553 | 596 |
/** |
554 | 597 |
@defgroup exceptions Exceptions |
555 | 598 |
@ingroup utils |
556 | 599 |
\brief Exceptions defined in LEMON. |
557 | 600 |
|
558 | 601 |
This group contains the exceptions defined in LEMON. |
559 | 602 |
*/ |
560 | 603 |
|
561 | 604 |
/** |
562 | 605 |
@defgroup io_group Input-Output |
563 | 606 |
\brief Graph Input-Output methods |
564 | 607 |
|
565 | 608 |
This group contains the tools for importing and exporting graphs |
566 | 609 |
and graph related data. Now it supports the \ref lgf-format |
567 | 610 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
568 | 611 |
postscript (EPS) format. |
569 | 612 |
*/ |
570 | 613 |
|
571 | 614 |
/** |
572 | 615 |
@defgroup lemon_io LEMON Graph Format |
573 | 616 |
@ingroup io_group |
574 | 617 |
\brief Reading and writing LEMON Graph Format. |
575 | 618 |
|
576 | 619 |
This group contains methods for reading and writing |
577 | 620 |
\ref lgf-format "LEMON Graph Format". |
578 | 621 |
*/ |
579 | 622 |
|
580 | 623 |
/** |
581 | 624 |
@defgroup eps_io Postscript Exporting |
582 | 625 |
@ingroup io_group |
583 | 626 |
\brief General \c EPS drawer and graph exporter |
584 | 627 |
|
585 | 628 |
This group contains general \c EPS drawing methods and special |
586 | 629 |
graph exporting tools. |
587 | 630 |
*/ |
588 | 631 |
|
589 | 632 |
/** |
590 |
@defgroup dimacs_group DIMACS |
|
633 |
@defgroup dimacs_group DIMACS Format |
|
591 | 634 |
@ingroup io_group |
592 | 635 |
\brief Read and write files in DIMACS format |
593 | 636 |
|
594 | 637 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
595 | 638 |
*/ |
596 | 639 |
|
597 | 640 |
/** |
598 | 641 |
@defgroup nauty_group NAUTY Format |
599 | 642 |
@ingroup io_group |
600 | 643 |
\brief Read \e Nauty format |
601 | 644 |
|
602 | 645 |
Tool to read graphs from \e Nauty format data. |
603 | 646 |
*/ |
604 | 647 |
|
605 | 648 |
/** |
606 | 649 |
@defgroup concept Concepts |
607 | 650 |
\brief Skeleton classes and concept checking classes |
608 | 651 |
|
609 | 652 |
This group contains the data/algorithm skeletons and concept checking |
610 | 653 |
classes implemented in LEMON. |
611 | 654 |
|
612 | 655 |
The purpose of the classes in this group is fourfold. |
613 | 656 |
|
614 | 657 |
- These classes contain the documentations of the %concepts. In order |
615 | 658 |
to avoid document multiplications, an implementation of a concept |
616 | 659 |
simply refers to the corresponding concept class. |
617 | 660 |
|
618 | 661 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
619 | 662 |
implementation of the %concepts should provide, however completely |
620 | 663 |
without implementations and real data structures behind the |
621 | 664 |
interface. On the other hand they should provide nothing else. All |
622 | 665 |
the algorithms working on a data structure meeting a certain concept |
623 | 666 |
should compile with these classes. (Though it will not run properly, |
624 | 667 |
of course.) In this way it is easily to check if an algorithm |
625 | 668 |
doesn't use any extra feature of a certain implementation. |
626 | 669 |
|
627 | 670 |
- The concept descriptor classes also provide a <em>checker class</em> |
628 | 671 |
that makes it possible to check whether a certain implementation of a |
629 | 672 |
concept indeed provides all the required features. |
630 | 673 |
|
631 | 674 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
632 | 675 |
*/ |
633 | 676 |
|
634 | 677 |
/** |
635 | 678 |
@defgroup graph_concepts Graph Structure Concepts |
636 | 679 |
@ingroup concept |
637 | 680 |
\brief Skeleton and concept checking classes for graph structures |
638 | 681 |
|
639 | 682 |
This group contains the skeletons and concept checking classes of LEMON's |
640 | 683 |
graph structures and helper classes used to implement these. |
641 | 684 |
*/ |
642 | 685 |
|
643 | 686 |
/** |
644 | 687 |
@defgroup map_concepts Map Concepts |
645 | 688 |
@ingroup concept |
646 | 689 |
\brief Skeleton and concept checking classes for maps |
647 | 690 |
|
648 | 691 |
This group contains the skeletons and concept checking classes of maps. |
649 | 692 |
*/ |
650 | 693 |
|
651 | 694 |
/** |
695 |
@defgroup tools Standalone Utility Applications |
|
696 |
|
|
697 |
Some utility applications are listed here. |
|
698 |
|
|
699 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
700 |
them, as well. |
|
701 |
*/ |
|
702 |
|
|
703 |
/** |
|
652 | 704 |
\anchor demoprograms |
653 | 705 |
|
654 | 706 |
@defgroup demos Demo Programs |
655 | 707 |
|
656 | 708 |
Some demo programs are listed here. Their full source codes can be found in |
657 | 709 |
the \c demo subdirectory of the source tree. |
658 | 710 |
|
659 | 711 |
In order to compile them, use the <tt>make demo</tt> or the |
660 | 712 |
<tt>make check</tt> commands. |
661 | 713 |
*/ |
662 | 714 |
|
663 |
/** |
|
664 |
@defgroup tools Standalone Utility Applications |
|
665 |
|
|
666 |
Some utility applications are listed here. |
|
667 |
|
|
668 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
669 |
them, as well. |
|
670 |
*/ |
|
671 |
|
|
672 | 715 |
} |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
lemon/lemon.pc.in \ |
3 | 3 |
lemon/CMakeLists.txt \ |
4 | 4 |
lemon/config.h.cmake |
5 | 5 |
|
6 | 6 |
pkgconfig_DATA += lemon/lemon.pc |
7 | 7 |
|
8 | 8 |
lib_LTLIBRARIES += lemon/libemon.la |
9 | 9 |
|
10 | 10 |
lemon_libemon_la_SOURCES = \ |
11 | 11 |
lemon/arg_parser.cc \ |
12 | 12 |
lemon/base.cc \ |
13 | 13 |
lemon/color.cc \ |
14 | 14 |
lemon/lp_base.cc \ |
15 | 15 |
lemon/lp_skeleton.cc \ |
16 | 16 |
lemon/random.cc \ |
17 | 17 |
lemon/bits/windows.cc |
18 | 18 |
|
19 | 19 |
nodist_lemon_HEADERS = lemon/config.h |
20 | 20 |
|
21 | 21 |
lemon_libemon_la_CXXFLAGS = \ |
22 | 22 |
$(AM_CXXFLAGS) \ |
23 | 23 |
$(GLPK_CFLAGS) \ |
24 | 24 |
$(CPLEX_CFLAGS) \ |
25 | 25 |
$(SOPLEX_CXXFLAGS) \ |
26 | 26 |
$(CLP_CXXFLAGS) \ |
27 | 27 |
$(CBC_CXXFLAGS) |
28 | 28 |
|
29 | 29 |
lemon_libemon_la_LDFLAGS = \ |
30 | 30 |
$(GLPK_LIBS) \ |
31 | 31 |
$(CPLEX_LIBS) \ |
32 | 32 |
$(SOPLEX_LIBS) \ |
33 | 33 |
$(CLP_LIBS) \ |
34 | 34 |
$(CBC_LIBS) |
35 | 35 |
|
36 | 36 |
if HAVE_GLPK |
37 | 37 |
lemon_libemon_la_SOURCES += lemon/glpk.cc |
38 | 38 |
endif |
39 | 39 |
|
40 | 40 |
if HAVE_CPLEX |
41 | 41 |
lemon_libemon_la_SOURCES += lemon/cplex.cc |
42 | 42 |
endif |
43 | 43 |
|
44 | 44 |
if HAVE_SOPLEX |
45 | 45 |
lemon_libemon_la_SOURCES += lemon/soplex.cc |
46 | 46 |
endif |
47 | 47 |
|
48 | 48 |
if HAVE_CLP |
49 | 49 |
lemon_libemon_la_SOURCES += lemon/clp.cc |
50 | 50 |
endif |
51 | 51 |
|
52 | 52 |
if HAVE_CBC |
53 | 53 |
lemon_libemon_la_SOURCES += lemon/cbc.cc |
54 | 54 |
endif |
55 | 55 |
|
56 | 56 |
lemon_HEADERS += \ |
57 | 57 |
lemon/adaptors.h \ |
58 | 58 |
lemon/arg_parser.h \ |
59 | 59 |
lemon/assert.h \ |
60 |
lemon/bellman_ford.h \ |
|
60 | 61 |
lemon/bfs.h \ |
61 | 62 |
lemon/bin_heap.h \ |
63 |
lemon/binom_heap.h \ |
|
64 |
lemon/bucket_heap.h \ |
|
62 | 65 |
lemon/cbc.h \ |
63 | 66 |
lemon/circulation.h \ |
64 | 67 |
lemon/clp.h \ |
65 | 68 |
lemon/color.h \ |
66 | 69 |
lemon/concept_check.h \ |
67 | 70 |
lemon/connectivity.h \ |
68 | 71 |
lemon/counter.h \ |
69 | 72 |
lemon/core.h \ |
70 | 73 |
lemon/cplex.h \ |
71 | 74 |
lemon/dfs.h \ |
72 | 75 |
lemon/dijkstra.h \ |
73 | 76 |
lemon/dim2.h \ |
74 | 77 |
lemon/dimacs.h \ |
75 | 78 |
lemon/edge_set.h \ |
76 | 79 |
lemon/elevator.h \ |
77 | 80 |
lemon/error.h \ |
78 | 81 |
lemon/euler.h \ |
82 |
lemon/fib_heap.h \ |
|
83 |
lemon/fourary_heap.h \ |
|
79 | 84 |
lemon/full_graph.h \ |
80 | 85 |
lemon/glpk.h \ |
81 | 86 |
lemon/gomory_hu.h \ |
82 | 87 |
lemon/graph_to_eps.h \ |
83 | 88 |
lemon/grid_graph.h \ |
84 | 89 |
lemon/hypercube_graph.h \ |
90 |
lemon/kary_heap.h \ |
|
85 | 91 |
lemon/kruskal.h \ |
86 | 92 |
lemon/hao_orlin.h \ |
87 | 93 |
lemon/lgf_reader.h \ |
88 | 94 |
lemon/lgf_writer.h \ |
89 | 95 |
lemon/list_graph.h \ |
90 | 96 |
lemon/lp.h \ |
91 | 97 |
lemon/lp_base.h \ |
92 | 98 |
lemon/lp_skeleton.h \ |
93 |
lemon/list_graph.h \ |
|
94 | 99 |
lemon/maps.h \ |
95 | 100 |
lemon/matching.h \ |
96 | 101 |
lemon/math.h \ |
97 | 102 |
lemon/min_cost_arborescence.h \ |
98 | 103 |
lemon/nauty_reader.h \ |
99 | 104 |
lemon/network_simplex.h \ |
105 |
lemon/pairing_heap.h \ |
|
100 | 106 |
lemon/path.h \ |
101 | 107 |
lemon/preflow.h \ |
108 |
lemon/radix_heap.h \ |
|
102 | 109 |
lemon/radix_sort.h \ |
103 | 110 |
lemon/random.h \ |
104 | 111 |
lemon/smart_graph.h \ |
105 | 112 |
lemon/soplex.h \ |
106 | 113 |
lemon/suurballe.h \ |
107 | 114 |
lemon/time_measure.h \ |
108 | 115 |
lemon/tolerance.h \ |
109 | 116 |
lemon/unionfind.h \ |
110 | 117 |
lemon/bits/windows.h |
111 | 118 |
|
112 | 119 |
bits_HEADERS += \ |
113 | 120 |
lemon/bits/alteration_notifier.h \ |
114 | 121 |
lemon/bits/array_map.h \ |
115 | 122 |
lemon/bits/bezier.h \ |
116 | 123 |
lemon/bits/default_map.h \ |
117 | 124 |
lemon/bits/edge_set_extender.h \ |
118 | 125 |
lemon/bits/enable_if.h \ |
119 | 126 |
lemon/bits/graph_adaptor_extender.h \ |
120 | 127 |
lemon/bits/graph_extender.h \ |
121 | 128 |
lemon/bits/map_extender.h \ |
122 | 129 |
lemon/bits/path_dump.h \ |
123 | 130 |
lemon/bits/solver_bits.h \ |
124 | 131 |
lemon/bits/traits.h \ |
125 | 132 |
lemon/bits/variant.h \ |
126 | 133 |
lemon/bits/vector_map.h |
127 | 134 |
|
128 | 135 |
concept_HEADERS += \ |
129 | 136 |
lemon/concepts/digraph.h \ |
130 | 137 |
lemon/concepts/graph.h \ |
131 | 138 |
lemon/concepts/graph_components.h \ |
132 | 139 |
lemon/concepts/heap.h \ |
133 | 140 |
lemon/concepts/maps.h \ |
134 | 141 |
lemon/concepts/path.h |
... | ... |
@@ -161,514 +161,514 @@ |
161 | 161 |
//Pointer to the map of predecessor arcs. |
162 | 162 |
PredMap *_pred; |
163 | 163 |
//Indicates if _pred is locally allocated (true) or not. |
164 | 164 |
bool local_pred; |
165 | 165 |
//Pointer to the map of distances. |
166 | 166 |
DistMap *_dist; |
167 | 167 |
//Indicates if _dist is locally allocated (true) or not. |
168 | 168 |
bool local_dist; |
169 | 169 |
//Pointer to the map of reached status of the nodes. |
170 | 170 |
ReachedMap *_reached; |
171 | 171 |
//Indicates if _reached is locally allocated (true) or not. |
172 | 172 |
bool local_reached; |
173 | 173 |
//Pointer to the map of processed status of the nodes. |
174 | 174 |
ProcessedMap *_processed; |
175 | 175 |
//Indicates if _processed is locally allocated (true) or not. |
176 | 176 |
bool local_processed; |
177 | 177 |
|
178 | 178 |
std::vector<typename Digraph::Node> _queue; |
179 | 179 |
int _queue_head,_queue_tail,_queue_next_dist; |
180 | 180 |
int _curr_dist; |
181 | 181 |
|
182 | 182 |
//Creates the maps if necessary. |
183 | 183 |
void create_maps() |
184 | 184 |
{ |
185 | 185 |
if(!_pred) { |
186 | 186 |
local_pred = true; |
187 | 187 |
_pred = Traits::createPredMap(*G); |
188 | 188 |
} |
189 | 189 |
if(!_dist) { |
190 | 190 |
local_dist = true; |
191 | 191 |
_dist = Traits::createDistMap(*G); |
192 | 192 |
} |
193 | 193 |
if(!_reached) { |
194 | 194 |
local_reached = true; |
195 | 195 |
_reached = Traits::createReachedMap(*G); |
196 | 196 |
} |
197 | 197 |
if(!_processed) { |
198 | 198 |
local_processed = true; |
199 | 199 |
_processed = Traits::createProcessedMap(*G); |
200 | 200 |
} |
201 | 201 |
} |
202 | 202 |
|
203 | 203 |
protected: |
204 | 204 |
|
205 | 205 |
Bfs() {} |
206 | 206 |
|
207 | 207 |
public: |
208 | 208 |
|
209 | 209 |
typedef Bfs Create; |
210 | 210 |
|
211 | 211 |
///\name Named Template Parameters |
212 | 212 |
|
213 | 213 |
///@{ |
214 | 214 |
|
215 | 215 |
template <class T> |
216 | 216 |
struct SetPredMapTraits : public Traits { |
217 | 217 |
typedef T PredMap; |
218 | 218 |
static PredMap *createPredMap(const Digraph &) |
219 | 219 |
{ |
220 | 220 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
221 | 221 |
return 0; // ignore warnings |
222 | 222 |
} |
223 | 223 |
}; |
224 | 224 |
///\brief \ref named-templ-param "Named parameter" for setting |
225 | 225 |
///\c PredMap type. |
226 | 226 |
/// |
227 | 227 |
///\ref named-templ-param "Named parameter" for setting |
228 | 228 |
///\c PredMap type. |
229 | 229 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
230 | 230 |
template <class T> |
231 | 231 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > { |
232 | 232 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
233 | 233 |
}; |
234 | 234 |
|
235 | 235 |
template <class T> |
236 | 236 |
struct SetDistMapTraits : public Traits { |
237 | 237 |
typedef T DistMap; |
238 | 238 |
static DistMap *createDistMap(const Digraph &) |
239 | 239 |
{ |
240 | 240 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
241 | 241 |
return 0; // ignore warnings |
242 | 242 |
} |
243 | 243 |
}; |
244 | 244 |
///\brief \ref named-templ-param "Named parameter" for setting |
245 | 245 |
///\c DistMap type. |
246 | 246 |
/// |
247 | 247 |
///\ref named-templ-param "Named parameter" for setting |
248 | 248 |
///\c DistMap type. |
249 | 249 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
250 | 250 |
template <class T> |
251 | 251 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > { |
252 | 252 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
253 | 253 |
}; |
254 | 254 |
|
255 | 255 |
template <class T> |
256 | 256 |
struct SetReachedMapTraits : public Traits { |
257 | 257 |
typedef T ReachedMap; |
258 | 258 |
static ReachedMap *createReachedMap(const Digraph &) |
259 | 259 |
{ |
260 | 260 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
261 | 261 |
return 0; // ignore warnings |
262 | 262 |
} |
263 | 263 |
}; |
264 | 264 |
///\brief \ref named-templ-param "Named parameter" for setting |
265 | 265 |
///\c ReachedMap type. |
266 | 266 |
/// |
267 | 267 |
///\ref named-templ-param "Named parameter" for setting |
268 | 268 |
///\c ReachedMap type. |
269 | 269 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
270 | 270 |
template <class T> |
271 | 271 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > { |
272 | 272 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
273 | 273 |
}; |
274 | 274 |
|
275 | 275 |
template <class T> |
276 | 276 |
struct SetProcessedMapTraits : public Traits { |
277 | 277 |
typedef T ProcessedMap; |
278 | 278 |
static ProcessedMap *createProcessedMap(const Digraph &) |
279 | 279 |
{ |
280 | 280 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
281 | 281 |
return 0; // ignore warnings |
282 | 282 |
} |
283 | 283 |
}; |
284 | 284 |
///\brief \ref named-templ-param "Named parameter" for setting |
285 | 285 |
///\c ProcessedMap type. |
286 | 286 |
/// |
287 | 287 |
///\ref named-templ-param "Named parameter" for setting |
288 | 288 |
///\c ProcessedMap type. |
289 | 289 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
290 | 290 |
template <class T> |
291 | 291 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > { |
292 | 292 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
293 | 293 |
}; |
294 | 294 |
|
295 | 295 |
struct SetStandardProcessedMapTraits : public Traits { |
296 | 296 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
297 | 297 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
298 | 298 |
{ |
299 | 299 |
return new ProcessedMap(g); |
300 | 300 |
return 0; // ignore warnings |
301 | 301 |
} |
302 | 302 |
}; |
303 | 303 |
///\brief \ref named-templ-param "Named parameter" for setting |
304 | 304 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
305 | 305 |
/// |
306 | 306 |
///\ref named-templ-param "Named parameter" for setting |
307 | 307 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
308 | 308 |
///If you don't set it explicitly, it will be automatically allocated. |
309 | 309 |
struct SetStandardProcessedMap : |
310 | 310 |
public Bfs< Digraph, SetStandardProcessedMapTraits > { |
311 | 311 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
312 | 312 |
}; |
313 | 313 |
|
314 | 314 |
///@} |
315 | 315 |
|
316 | 316 |
public: |
317 | 317 |
|
318 | 318 |
///Constructor. |
319 | 319 |
|
320 | 320 |
///Constructor. |
321 | 321 |
///\param g The digraph the algorithm runs on. |
322 | 322 |
Bfs(const Digraph &g) : |
323 | 323 |
G(&g), |
324 | 324 |
_pred(NULL), local_pred(false), |
325 | 325 |
_dist(NULL), local_dist(false), |
326 | 326 |
_reached(NULL), local_reached(false), |
327 | 327 |
_processed(NULL), local_processed(false) |
328 | 328 |
{ } |
329 | 329 |
|
330 | 330 |
///Destructor. |
331 | 331 |
~Bfs() |
332 | 332 |
{ |
333 | 333 |
if(local_pred) delete _pred; |
334 | 334 |
if(local_dist) delete _dist; |
335 | 335 |
if(local_reached) delete _reached; |
336 | 336 |
if(local_processed) delete _processed; |
337 | 337 |
} |
338 | 338 |
|
339 | 339 |
///Sets the map that stores the predecessor arcs. |
340 | 340 |
|
341 | 341 |
///Sets the map that stores the predecessor arcs. |
342 | 342 |
///If you don't use this function before calling \ref run(Node) "run()" |
343 | 343 |
///or \ref init(), an instance will be allocated automatically. |
344 | 344 |
///The destructor deallocates this automatically allocated map, |
345 | 345 |
///of course. |
346 | 346 |
///\return <tt> (*this) </tt> |
347 | 347 |
Bfs &predMap(PredMap &m) |
348 | 348 |
{ |
349 | 349 |
if(local_pred) { |
350 | 350 |
delete _pred; |
351 | 351 |
local_pred=false; |
352 | 352 |
} |
353 | 353 |
_pred = &m; |
354 | 354 |
return *this; |
355 | 355 |
} |
356 | 356 |
|
357 | 357 |
///Sets the map that indicates which nodes are reached. |
358 | 358 |
|
359 | 359 |
///Sets the map that indicates which nodes are reached. |
360 | 360 |
///If you don't use this function before calling \ref run(Node) "run()" |
361 | 361 |
///or \ref init(), an instance will be allocated automatically. |
362 | 362 |
///The destructor deallocates this automatically allocated map, |
363 | 363 |
///of course. |
364 | 364 |
///\return <tt> (*this) </tt> |
365 | 365 |
Bfs &reachedMap(ReachedMap &m) |
366 | 366 |
{ |
367 | 367 |
if(local_reached) { |
368 | 368 |
delete _reached; |
369 | 369 |
local_reached=false; |
370 | 370 |
} |
371 | 371 |
_reached = &m; |
372 | 372 |
return *this; |
373 | 373 |
} |
374 | 374 |
|
375 | 375 |
///Sets the map that indicates which nodes are processed. |
376 | 376 |
|
377 | 377 |
///Sets the map that indicates which nodes are processed. |
378 | 378 |
///If you don't use this function before calling \ref run(Node) "run()" |
379 | 379 |
///or \ref init(), an instance will be allocated automatically. |
380 | 380 |
///The destructor deallocates this automatically allocated map, |
381 | 381 |
///of course. |
382 | 382 |
///\return <tt> (*this) </tt> |
383 | 383 |
Bfs &processedMap(ProcessedMap &m) |
384 | 384 |
{ |
385 | 385 |
if(local_processed) { |
386 | 386 |
delete _processed; |
387 | 387 |
local_processed=false; |
388 | 388 |
} |
389 | 389 |
_processed = &m; |
390 | 390 |
return *this; |
391 | 391 |
} |
392 | 392 |
|
393 | 393 |
///Sets the map that stores the distances of the nodes. |
394 | 394 |
|
395 | 395 |
///Sets the map that stores the distances of the nodes calculated by |
396 | 396 |
///the algorithm. |
397 | 397 |
///If you don't use this function before calling \ref run(Node) "run()" |
398 | 398 |
///or \ref init(), an instance will be allocated automatically. |
399 | 399 |
///The destructor deallocates this automatically allocated map, |
400 | 400 |
///of course. |
401 | 401 |
///\return <tt> (*this) </tt> |
402 | 402 |
Bfs &distMap(DistMap &m) |
403 | 403 |
{ |
404 | 404 |
if(local_dist) { |
405 | 405 |
delete _dist; |
406 | 406 |
local_dist=false; |
407 | 407 |
} |
408 | 408 |
_dist = &m; |
409 | 409 |
return *this; |
410 | 410 |
} |
411 | 411 |
|
412 | 412 |
public: |
413 | 413 |
|
414 | 414 |
///\name Execution Control |
415 | 415 |
///The simplest way to execute the BFS algorithm is to use one of the |
416 | 416 |
///member functions called \ref run(Node) "run()".\n |
417 |
///If you need more control on the execution, first you have to call |
|
418 |
///\ref init(), then you can add several source nodes with |
|
417 |
///If you need better control on the execution, you have to call |
|
418 |
///\ref init() first, then you can add several source nodes with |
|
419 | 419 |
///\ref addSource(). Finally the actual path computation can be |
420 | 420 |
///performed with one of the \ref start() functions. |
421 | 421 |
|
422 | 422 |
///@{ |
423 | 423 |
|
424 | 424 |
///\brief Initializes the internal data structures. |
425 | 425 |
/// |
426 | 426 |
///Initializes the internal data structures. |
427 | 427 |
void init() |
428 | 428 |
{ |
429 | 429 |
create_maps(); |
430 | 430 |
_queue.resize(countNodes(*G)); |
431 | 431 |
_queue_head=_queue_tail=0; |
432 | 432 |
_curr_dist=1; |
433 | 433 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
434 | 434 |
_pred->set(u,INVALID); |
435 | 435 |
_reached->set(u,false); |
436 | 436 |
_processed->set(u,false); |
437 | 437 |
} |
438 | 438 |
} |
439 | 439 |
|
440 | 440 |
///Adds a new source node. |
441 | 441 |
|
442 | 442 |
///Adds a new source node to the set of nodes to be processed. |
443 | 443 |
/// |
444 | 444 |
void addSource(Node s) |
445 | 445 |
{ |
446 | 446 |
if(!(*_reached)[s]) |
447 | 447 |
{ |
448 | 448 |
_reached->set(s,true); |
449 | 449 |
_pred->set(s,INVALID); |
450 | 450 |
_dist->set(s,0); |
451 | 451 |
_queue[_queue_head++]=s; |
452 | 452 |
_queue_next_dist=_queue_head; |
453 | 453 |
} |
454 | 454 |
} |
455 | 455 |
|
456 | 456 |
///Processes the next node. |
457 | 457 |
|
458 | 458 |
///Processes the next node. |
459 | 459 |
/// |
460 | 460 |
///\return The processed node. |
461 | 461 |
/// |
462 | 462 |
///\pre The queue must not be empty. |
463 | 463 |
Node processNextNode() |
464 | 464 |
{ |
465 | 465 |
if(_queue_tail==_queue_next_dist) { |
466 | 466 |
_curr_dist++; |
467 | 467 |
_queue_next_dist=_queue_head; |
468 | 468 |
} |
469 | 469 |
Node n=_queue[_queue_tail++]; |
470 | 470 |
_processed->set(n,true); |
471 | 471 |
Node m; |
472 | 472 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
473 | 473 |
if(!(*_reached)[m=G->target(e)]) { |
474 | 474 |
_queue[_queue_head++]=m; |
475 | 475 |
_reached->set(m,true); |
476 | 476 |
_pred->set(m,e); |
477 | 477 |
_dist->set(m,_curr_dist); |
478 | 478 |
} |
479 | 479 |
return n; |
480 | 480 |
} |
481 | 481 |
|
482 | 482 |
///Processes the next node. |
483 | 483 |
|
484 | 484 |
///Processes the next node and checks if the given target node |
485 | 485 |
///is reached. If the target node is reachable from the processed |
486 | 486 |
///node, then the \c reach parameter will be set to \c true. |
487 | 487 |
/// |
488 | 488 |
///\param target The target node. |
489 | 489 |
///\retval reach Indicates if the target node is reached. |
490 | 490 |
///It should be initially \c false. |
491 | 491 |
/// |
492 | 492 |
///\return The processed node. |
493 | 493 |
/// |
494 | 494 |
///\pre The queue must not be empty. |
495 | 495 |
Node processNextNode(Node target, bool& reach) |
496 | 496 |
{ |
497 | 497 |
if(_queue_tail==_queue_next_dist) { |
498 | 498 |
_curr_dist++; |
499 | 499 |
_queue_next_dist=_queue_head; |
500 | 500 |
} |
501 | 501 |
Node n=_queue[_queue_tail++]; |
502 | 502 |
_processed->set(n,true); |
503 | 503 |
Node m; |
504 | 504 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
505 | 505 |
if(!(*_reached)[m=G->target(e)]) { |
506 | 506 |
_queue[_queue_head++]=m; |
507 | 507 |
_reached->set(m,true); |
508 | 508 |
_pred->set(m,e); |
509 | 509 |
_dist->set(m,_curr_dist); |
510 | 510 |
reach = reach || (target == m); |
511 | 511 |
} |
512 | 512 |
return n; |
513 | 513 |
} |
514 | 514 |
|
515 | 515 |
///Processes the next node. |
516 | 516 |
|
517 | 517 |
///Processes the next node and checks if at least one of reached |
518 | 518 |
///nodes has \c true value in the \c nm node map. If one node |
519 | 519 |
///with \c true value is reachable from the processed node, then the |
520 | 520 |
///\c rnode parameter will be set to the first of such nodes. |
521 | 521 |
/// |
522 | 522 |
///\param nm A \c bool (or convertible) node map that indicates the |
523 | 523 |
///possible targets. |
524 | 524 |
///\retval rnode The reached target node. |
525 | 525 |
///It should be initially \c INVALID. |
526 | 526 |
/// |
527 | 527 |
///\return The processed node. |
528 | 528 |
/// |
529 | 529 |
///\pre The queue must not be empty. |
530 | 530 |
template<class NM> |
531 | 531 |
Node processNextNode(const NM& nm, Node& rnode) |
532 | 532 |
{ |
533 | 533 |
if(_queue_tail==_queue_next_dist) { |
534 | 534 |
_curr_dist++; |
535 | 535 |
_queue_next_dist=_queue_head; |
536 | 536 |
} |
537 | 537 |
Node n=_queue[_queue_tail++]; |
538 | 538 |
_processed->set(n,true); |
539 | 539 |
Node m; |
540 | 540 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
541 | 541 |
if(!(*_reached)[m=G->target(e)]) { |
542 | 542 |
_queue[_queue_head++]=m; |
543 | 543 |
_reached->set(m,true); |
544 | 544 |
_pred->set(m,e); |
545 | 545 |
_dist->set(m,_curr_dist); |
546 | 546 |
if (nm[m] && rnode == INVALID) rnode = m; |
547 | 547 |
} |
548 | 548 |
return n; |
549 | 549 |
} |
550 | 550 |
|
551 | 551 |
///The next node to be processed. |
552 | 552 |
|
553 | 553 |
///Returns the next node to be processed or \c INVALID if the queue |
554 | 554 |
///is empty. |
555 | 555 |
Node nextNode() const |
556 | 556 |
{ |
557 | 557 |
return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID; |
558 | 558 |
} |
559 | 559 |
|
560 | 560 |
///Returns \c false if there are nodes to be processed. |
561 | 561 |
|
562 | 562 |
///Returns \c false if there are nodes to be processed |
563 | 563 |
///in the queue. |
564 | 564 |
bool emptyQueue() const { return _queue_tail==_queue_head; } |
565 | 565 |
|
566 | 566 |
///Returns the number of the nodes to be processed. |
567 | 567 |
|
568 | 568 |
///Returns the number of the nodes to be processed |
569 | 569 |
///in the queue. |
570 | 570 |
int queueSize() const { return _queue_head-_queue_tail; } |
571 | 571 |
|
572 | 572 |
///Executes the algorithm. |
573 | 573 |
|
574 | 574 |
///Executes the algorithm. |
575 | 575 |
/// |
576 | 576 |
///This method runs the %BFS algorithm from the root node(s) |
577 | 577 |
///in order to compute the shortest path to each node. |
578 | 578 |
/// |
579 | 579 |
///The algorithm computes |
580 | 580 |
///- the shortest path tree (forest), |
581 | 581 |
///- the distance of each node from the root(s). |
582 | 582 |
/// |
583 | 583 |
///\pre init() must be called and at least one root node should be |
584 | 584 |
///added with addSource() before using this function. |
585 | 585 |
/// |
586 | 586 |
///\note <tt>b.start()</tt> is just a shortcut of the following code. |
587 | 587 |
///\code |
588 | 588 |
/// while ( !b.emptyQueue() ) { |
589 | 589 |
/// b.processNextNode(); |
590 | 590 |
/// } |
591 | 591 |
///\endcode |
592 | 592 |
void start() |
593 | 593 |
{ |
594 | 594 |
while ( !emptyQueue() ) processNextNode(); |
595 | 595 |
} |
596 | 596 |
|
597 | 597 |
///Executes the algorithm until the given target node is reached. |
598 | 598 |
|
599 | 599 |
///Executes the algorithm until the given target node is reached. |
600 | 600 |
/// |
601 | 601 |
///This method runs the %BFS algorithm from the root node(s) |
602 | 602 |
///in order to compute the shortest path to \c t. |
603 | 603 |
/// |
604 | 604 |
///The algorithm computes |
605 | 605 |
///- the shortest path to \c t, |
606 | 606 |
///- the distance of \c t from the root(s). |
607 | 607 |
/// |
608 | 608 |
///\pre init() must be called and at least one root node should be |
609 | 609 |
///added with addSource() before using this function. |
610 | 610 |
/// |
611 | 611 |
///\note <tt>b.start(t)</tt> is just a shortcut of the following code. |
612 | 612 |
///\code |
613 | 613 |
/// bool reach = false; |
614 | 614 |
/// while ( !b.emptyQueue() && !reach ) { |
615 | 615 |
/// b.processNextNode(t, reach); |
616 | 616 |
/// } |
617 | 617 |
///\endcode |
618 | 618 |
void start(Node t) |
619 | 619 |
{ |
620 | 620 |
bool reach = false; |
621 | 621 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
622 | 622 |
} |
623 | 623 |
|
624 | 624 |
///Executes the algorithm until a condition is met. |
625 | 625 |
|
626 | 626 |
///Executes the algorithm until a condition is met. |
627 | 627 |
/// |
628 | 628 |
///This method runs the %BFS algorithm from the root node(s) in |
629 | 629 |
///order to compute the shortest path to a node \c v with |
630 | 630 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
631 | 631 |
/// |
632 | 632 |
///\param nm A \c bool (or convertible) node map. The algorithm |
633 | 633 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
634 | 634 |
/// |
635 | 635 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
636 | 636 |
///\c INVALID if no such node was found. |
637 | 637 |
/// |
638 | 638 |
///\pre init() must be called and at least one root node should be |
639 | 639 |
///added with addSource() before using this function. |
640 | 640 |
/// |
641 | 641 |
///\note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
642 | 642 |
///\code |
643 | 643 |
/// Node rnode = INVALID; |
644 | 644 |
/// while ( !b.emptyQueue() && rnode == INVALID ) { |
645 | 645 |
/// b.processNextNode(nm, rnode); |
646 | 646 |
/// } |
647 | 647 |
/// return rnode; |
648 | 648 |
///\endcode |
649 | 649 |
template<class NodeBoolMap> |
650 | 650 |
Node start(const NodeBoolMap &nm) |
651 | 651 |
{ |
652 | 652 |
Node rnode = INVALID; |
653 | 653 |
while ( !emptyQueue() && rnode == INVALID ) { |
654 | 654 |
processNextNode(nm, rnode); |
655 | 655 |
} |
656 | 656 |
return rnode; |
657 | 657 |
} |
658 | 658 |
|
659 | 659 |
///Runs the algorithm from the given source node. |
660 | 660 |
|
661 | 661 |
///This method runs the %BFS algorithm from node \c s |
662 | 662 |
///in order to compute the shortest path to each node. |
663 | 663 |
/// |
664 | 664 |
///The algorithm computes |
665 | 665 |
///- the shortest path tree, |
666 | 666 |
///- the distance of each node from the root. |
667 | 667 |
/// |
668 | 668 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
669 | 669 |
///\code |
670 | 670 |
/// b.init(); |
671 | 671 |
/// b.addSource(s); |
672 | 672 |
/// b.start(); |
673 | 673 |
///\endcode |
674 | 674 |
void run(Node s) { |
... | ... |
@@ -1169,514 +1169,514 @@ |
1169 | 1169 |
///they are declared as the members of class \ref BfsWizard. |
1170 | 1170 |
///The following examples show how to use these parameters. |
1171 | 1171 |
///\code |
1172 | 1172 |
/// // Compute shortest path from node s to each node |
1173 | 1173 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
1174 | 1174 |
/// |
1175 | 1175 |
/// // Compute shortest path from s to t |
1176 | 1176 |
/// bool reached = bfs(g).path(p).dist(d).run(s,t); |
1177 | 1177 |
///\endcode |
1178 | 1178 |
///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()" |
1179 | 1179 |
///to the end of the parameter list. |
1180 | 1180 |
///\sa BfsWizard |
1181 | 1181 |
///\sa Bfs |
1182 | 1182 |
template<class GR> |
1183 | 1183 |
BfsWizard<BfsWizardBase<GR> > |
1184 | 1184 |
bfs(const GR &digraph) |
1185 | 1185 |
{ |
1186 | 1186 |
return BfsWizard<BfsWizardBase<GR> >(digraph); |
1187 | 1187 |
} |
1188 | 1188 |
|
1189 | 1189 |
#ifdef DOXYGEN |
1190 | 1190 |
/// \brief Visitor class for BFS. |
1191 | 1191 |
/// |
1192 | 1192 |
/// This class defines the interface of the BfsVisit events, and |
1193 | 1193 |
/// it could be the base of a real visitor class. |
1194 | 1194 |
template <typename GR> |
1195 | 1195 |
struct BfsVisitor { |
1196 | 1196 |
typedef GR Digraph; |
1197 | 1197 |
typedef typename Digraph::Arc Arc; |
1198 | 1198 |
typedef typename Digraph::Node Node; |
1199 | 1199 |
/// \brief Called for the source node(s) of the BFS. |
1200 | 1200 |
/// |
1201 | 1201 |
/// This function is called for the source node(s) of the BFS. |
1202 | 1202 |
void start(const Node& node) {} |
1203 | 1203 |
/// \brief Called when a node is reached first time. |
1204 | 1204 |
/// |
1205 | 1205 |
/// This function is called when a node is reached first time. |
1206 | 1206 |
void reach(const Node& node) {} |
1207 | 1207 |
/// \brief Called when a node is processed. |
1208 | 1208 |
/// |
1209 | 1209 |
/// This function is called when a node is processed. |
1210 | 1210 |
void process(const Node& node) {} |
1211 | 1211 |
/// \brief Called when an arc reaches a new node. |
1212 | 1212 |
/// |
1213 | 1213 |
/// This function is called when the BFS finds an arc whose target node |
1214 | 1214 |
/// is not reached yet. |
1215 | 1215 |
void discover(const Arc& arc) {} |
1216 | 1216 |
/// \brief Called when an arc is examined but its target node is |
1217 | 1217 |
/// already discovered. |
1218 | 1218 |
/// |
1219 | 1219 |
/// This function is called when an arc is examined but its target node is |
1220 | 1220 |
/// already discovered. |
1221 | 1221 |
void examine(const Arc& arc) {} |
1222 | 1222 |
}; |
1223 | 1223 |
#else |
1224 | 1224 |
template <typename GR> |
1225 | 1225 |
struct BfsVisitor { |
1226 | 1226 |
typedef GR Digraph; |
1227 | 1227 |
typedef typename Digraph::Arc Arc; |
1228 | 1228 |
typedef typename Digraph::Node Node; |
1229 | 1229 |
void start(const Node&) {} |
1230 | 1230 |
void reach(const Node&) {} |
1231 | 1231 |
void process(const Node&) {} |
1232 | 1232 |
void discover(const Arc&) {} |
1233 | 1233 |
void examine(const Arc&) {} |
1234 | 1234 |
|
1235 | 1235 |
template <typename _Visitor> |
1236 | 1236 |
struct Constraints { |
1237 | 1237 |
void constraints() { |
1238 | 1238 |
Arc arc; |
1239 | 1239 |
Node node; |
1240 | 1240 |
visitor.start(node); |
1241 | 1241 |
visitor.reach(node); |
1242 | 1242 |
visitor.process(node); |
1243 | 1243 |
visitor.discover(arc); |
1244 | 1244 |
visitor.examine(arc); |
1245 | 1245 |
} |
1246 | 1246 |
_Visitor& visitor; |
1247 | 1247 |
}; |
1248 | 1248 |
}; |
1249 | 1249 |
#endif |
1250 | 1250 |
|
1251 | 1251 |
/// \brief Default traits class of BfsVisit class. |
1252 | 1252 |
/// |
1253 | 1253 |
/// Default traits class of BfsVisit class. |
1254 | 1254 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1255 | 1255 |
template<class GR> |
1256 | 1256 |
struct BfsVisitDefaultTraits { |
1257 | 1257 |
|
1258 | 1258 |
/// \brief The type of the digraph the algorithm runs on. |
1259 | 1259 |
typedef GR Digraph; |
1260 | 1260 |
|
1261 | 1261 |
/// \brief The type of the map that indicates which nodes are reached. |
1262 | 1262 |
/// |
1263 | 1263 |
/// The type of the map that indicates which nodes are reached. |
1264 | 1264 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
1265 | 1265 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1266 | 1266 |
|
1267 | 1267 |
/// \brief Instantiates a ReachedMap. |
1268 | 1268 |
/// |
1269 | 1269 |
/// This function instantiates a ReachedMap. |
1270 | 1270 |
/// \param digraph is the digraph, to which |
1271 | 1271 |
/// we would like to define the ReachedMap. |
1272 | 1272 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1273 | 1273 |
return new ReachedMap(digraph); |
1274 | 1274 |
} |
1275 | 1275 |
|
1276 | 1276 |
}; |
1277 | 1277 |
|
1278 | 1278 |
/// \ingroup search |
1279 | 1279 |
/// |
1280 | 1280 |
/// \brief BFS algorithm class with visitor interface. |
1281 | 1281 |
/// |
1282 | 1282 |
/// This class provides an efficient implementation of the BFS algorithm |
1283 | 1283 |
/// with visitor interface. |
1284 | 1284 |
/// |
1285 | 1285 |
/// The BfsVisit class provides an alternative interface to the Bfs |
1286 | 1286 |
/// class. It works with callback mechanism, the BfsVisit object calls |
1287 | 1287 |
/// the member functions of the \c Visitor class on every BFS event. |
1288 | 1288 |
/// |
1289 | 1289 |
/// This interface of the BFS algorithm should be used in special cases |
1290 | 1290 |
/// when extra actions have to be performed in connection with certain |
1291 | 1291 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
1292 | 1292 |
/// instead. |
1293 | 1293 |
/// |
1294 | 1294 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1295 | 1295 |
/// The default type is \ref ListDigraph. |
1296 | 1296 |
/// The value of GR is not used directly by \ref BfsVisit, |
1297 | 1297 |
/// it is only passed to \ref BfsVisitDefaultTraits. |
1298 | 1298 |
/// \tparam VS The Visitor type that is used by the algorithm. |
1299 | 1299 |
/// \ref BfsVisitor "BfsVisitor<GR>" is an empty visitor, which |
1300 | 1300 |
/// does not observe the BFS events. If you want to observe the BFS |
1301 | 1301 |
/// events, you should implement your own visitor class. |
1302 | 1302 |
/// \tparam TR Traits class to set various data types used by the |
1303 | 1303 |
/// algorithm. The default traits class is |
1304 | 1304 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<GR>". |
1305 | 1305 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
1306 | 1306 |
/// a BFS visit traits class. |
1307 | 1307 |
#ifdef DOXYGEN |
1308 | 1308 |
template <typename GR, typename VS, typename TR> |
1309 | 1309 |
#else |
1310 | 1310 |
template <typename GR = ListDigraph, |
1311 | 1311 |
typename VS = BfsVisitor<GR>, |
1312 | 1312 |
typename TR = BfsVisitDefaultTraits<GR> > |
1313 | 1313 |
#endif |
1314 | 1314 |
class BfsVisit { |
1315 | 1315 |
public: |
1316 | 1316 |
|
1317 | 1317 |
///The traits class. |
1318 | 1318 |
typedef TR Traits; |
1319 | 1319 |
|
1320 | 1320 |
///The type of the digraph the algorithm runs on. |
1321 | 1321 |
typedef typename Traits::Digraph Digraph; |
1322 | 1322 |
|
1323 | 1323 |
///The visitor type used by the algorithm. |
1324 | 1324 |
typedef VS Visitor; |
1325 | 1325 |
|
1326 | 1326 |
///The type of the map that indicates which nodes are reached. |
1327 | 1327 |
typedef typename Traits::ReachedMap ReachedMap; |
1328 | 1328 |
|
1329 | 1329 |
private: |
1330 | 1330 |
|
1331 | 1331 |
typedef typename Digraph::Node Node; |
1332 | 1332 |
typedef typename Digraph::NodeIt NodeIt; |
1333 | 1333 |
typedef typename Digraph::Arc Arc; |
1334 | 1334 |
typedef typename Digraph::OutArcIt OutArcIt; |
1335 | 1335 |
|
1336 | 1336 |
//Pointer to the underlying digraph. |
1337 | 1337 |
const Digraph *_digraph; |
1338 | 1338 |
//Pointer to the visitor object. |
1339 | 1339 |
Visitor *_visitor; |
1340 | 1340 |
//Pointer to the map of reached status of the nodes. |
1341 | 1341 |
ReachedMap *_reached; |
1342 | 1342 |
//Indicates if _reached is locally allocated (true) or not. |
1343 | 1343 |
bool local_reached; |
1344 | 1344 |
|
1345 | 1345 |
std::vector<typename Digraph::Node> _list; |
1346 | 1346 |
int _list_front, _list_back; |
1347 | 1347 |
|
1348 | 1348 |
//Creates the maps if necessary. |
1349 | 1349 |
void create_maps() { |
1350 | 1350 |
if(!_reached) { |
1351 | 1351 |
local_reached = true; |
1352 | 1352 |
_reached = Traits::createReachedMap(*_digraph); |
1353 | 1353 |
} |
1354 | 1354 |
} |
1355 | 1355 |
|
1356 | 1356 |
protected: |
1357 | 1357 |
|
1358 | 1358 |
BfsVisit() {} |
1359 | 1359 |
|
1360 | 1360 |
public: |
1361 | 1361 |
|
1362 | 1362 |
typedef BfsVisit Create; |
1363 | 1363 |
|
1364 | 1364 |
/// \name Named Template Parameters |
1365 | 1365 |
|
1366 | 1366 |
///@{ |
1367 | 1367 |
template <class T> |
1368 | 1368 |
struct SetReachedMapTraits : public Traits { |
1369 | 1369 |
typedef T ReachedMap; |
1370 | 1370 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1371 | 1371 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
1372 | 1372 |
return 0; // ignore warnings |
1373 | 1373 |
} |
1374 | 1374 |
}; |
1375 | 1375 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1376 | 1376 |
/// ReachedMap type. |
1377 | 1377 |
/// |
1378 | 1378 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1379 | 1379 |
template <class T> |
1380 | 1380 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
1381 | 1381 |
SetReachedMapTraits<T> > { |
1382 | 1382 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1383 | 1383 |
}; |
1384 | 1384 |
///@} |
1385 | 1385 |
|
1386 | 1386 |
public: |
1387 | 1387 |
|
1388 | 1388 |
/// \brief Constructor. |
1389 | 1389 |
/// |
1390 | 1390 |
/// Constructor. |
1391 | 1391 |
/// |
1392 | 1392 |
/// \param digraph The digraph the algorithm runs on. |
1393 | 1393 |
/// \param visitor The visitor object of the algorithm. |
1394 | 1394 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
1395 | 1395 |
: _digraph(&digraph), _visitor(&visitor), |
1396 | 1396 |
_reached(0), local_reached(false) {} |
1397 | 1397 |
|
1398 | 1398 |
/// \brief Destructor. |
1399 | 1399 |
~BfsVisit() { |
1400 | 1400 |
if(local_reached) delete _reached; |
1401 | 1401 |
} |
1402 | 1402 |
|
1403 | 1403 |
/// \brief Sets the map that indicates which nodes are reached. |
1404 | 1404 |
/// |
1405 | 1405 |
/// Sets the map that indicates which nodes are reached. |
1406 | 1406 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1407 | 1407 |
/// or \ref init(), an instance will be allocated automatically. |
1408 | 1408 |
/// The destructor deallocates this automatically allocated map, |
1409 | 1409 |
/// of course. |
1410 | 1410 |
/// \return <tt> (*this) </tt> |
1411 | 1411 |
BfsVisit &reachedMap(ReachedMap &m) { |
1412 | 1412 |
if(local_reached) { |
1413 | 1413 |
delete _reached; |
1414 | 1414 |
local_reached = false; |
1415 | 1415 |
} |
1416 | 1416 |
_reached = &m; |
1417 | 1417 |
return *this; |
1418 | 1418 |
} |
1419 | 1419 |
|
1420 | 1420 |
public: |
1421 | 1421 |
|
1422 | 1422 |
/// \name Execution Control |
1423 | 1423 |
/// The simplest way to execute the BFS algorithm is to use one of the |
1424 | 1424 |
/// member functions called \ref run(Node) "run()".\n |
1425 |
/// If you need more control on the execution, first you have to call |
|
1426 |
/// \ref init(), then you can add several source nodes with |
|
1425 |
/// If you need better control on the execution, you have to call |
|
1426 |
/// \ref init() first, then you can add several source nodes with |
|
1427 | 1427 |
/// \ref addSource(). Finally the actual path computation can be |
1428 | 1428 |
/// performed with one of the \ref start() functions. |
1429 | 1429 |
|
1430 | 1430 |
/// @{ |
1431 | 1431 |
|
1432 | 1432 |
/// \brief Initializes the internal data structures. |
1433 | 1433 |
/// |
1434 | 1434 |
/// Initializes the internal data structures. |
1435 | 1435 |
void init() { |
1436 | 1436 |
create_maps(); |
1437 | 1437 |
_list.resize(countNodes(*_digraph)); |
1438 | 1438 |
_list_front = _list_back = -1; |
1439 | 1439 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1440 | 1440 |
_reached->set(u, false); |
1441 | 1441 |
} |
1442 | 1442 |
} |
1443 | 1443 |
|
1444 | 1444 |
/// \brief Adds a new source node. |
1445 | 1445 |
/// |
1446 | 1446 |
/// Adds a new source node to the set of nodes to be processed. |
1447 | 1447 |
void addSource(Node s) { |
1448 | 1448 |
if(!(*_reached)[s]) { |
1449 | 1449 |
_reached->set(s,true); |
1450 | 1450 |
_visitor->start(s); |
1451 | 1451 |
_visitor->reach(s); |
1452 | 1452 |
_list[++_list_back] = s; |
1453 | 1453 |
} |
1454 | 1454 |
} |
1455 | 1455 |
|
1456 | 1456 |
/// \brief Processes the next node. |
1457 | 1457 |
/// |
1458 | 1458 |
/// Processes the next node. |
1459 | 1459 |
/// |
1460 | 1460 |
/// \return The processed node. |
1461 | 1461 |
/// |
1462 | 1462 |
/// \pre The queue must not be empty. |
1463 | 1463 |
Node processNextNode() { |
1464 | 1464 |
Node n = _list[++_list_front]; |
1465 | 1465 |
_visitor->process(n); |
1466 | 1466 |
Arc e; |
1467 | 1467 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1468 | 1468 |
Node m = _digraph->target(e); |
1469 | 1469 |
if (!(*_reached)[m]) { |
1470 | 1470 |
_visitor->discover(e); |
1471 | 1471 |
_visitor->reach(m); |
1472 | 1472 |
_reached->set(m, true); |
1473 | 1473 |
_list[++_list_back] = m; |
1474 | 1474 |
} else { |
1475 | 1475 |
_visitor->examine(e); |
1476 | 1476 |
} |
1477 | 1477 |
} |
1478 | 1478 |
return n; |
1479 | 1479 |
} |
1480 | 1480 |
|
1481 | 1481 |
/// \brief Processes the next node. |
1482 | 1482 |
/// |
1483 | 1483 |
/// Processes the next node and checks if the given target node |
1484 | 1484 |
/// is reached. If the target node is reachable from the processed |
1485 | 1485 |
/// node, then the \c reach parameter will be set to \c true. |
1486 | 1486 |
/// |
1487 | 1487 |
/// \param target The target node. |
1488 | 1488 |
/// \retval reach Indicates if the target node is reached. |
1489 | 1489 |
/// It should be initially \c false. |
1490 | 1490 |
/// |
1491 | 1491 |
/// \return The processed node. |
1492 | 1492 |
/// |
1493 | 1493 |
/// \pre The queue must not be empty. |
1494 | 1494 |
Node processNextNode(Node target, bool& reach) { |
1495 | 1495 |
Node n = _list[++_list_front]; |
1496 | 1496 |
_visitor->process(n); |
1497 | 1497 |
Arc e; |
1498 | 1498 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1499 | 1499 |
Node m = _digraph->target(e); |
1500 | 1500 |
if (!(*_reached)[m]) { |
1501 | 1501 |
_visitor->discover(e); |
1502 | 1502 |
_visitor->reach(m); |
1503 | 1503 |
_reached->set(m, true); |
1504 | 1504 |
_list[++_list_back] = m; |
1505 | 1505 |
reach = reach || (target == m); |
1506 | 1506 |
} else { |
1507 | 1507 |
_visitor->examine(e); |
1508 | 1508 |
} |
1509 | 1509 |
} |
1510 | 1510 |
return n; |
1511 | 1511 |
} |
1512 | 1512 |
|
1513 | 1513 |
/// \brief Processes the next node. |
1514 | 1514 |
/// |
1515 | 1515 |
/// Processes the next node and checks if at least one of reached |
1516 | 1516 |
/// nodes has \c true value in the \c nm node map. If one node |
1517 | 1517 |
/// with \c true value is reachable from the processed node, then the |
1518 | 1518 |
/// \c rnode parameter will be set to the first of such nodes. |
1519 | 1519 |
/// |
1520 | 1520 |
/// \param nm A \c bool (or convertible) node map that indicates the |
1521 | 1521 |
/// possible targets. |
1522 | 1522 |
/// \retval rnode The reached target node. |
1523 | 1523 |
/// It should be initially \c INVALID. |
1524 | 1524 |
/// |
1525 | 1525 |
/// \return The processed node. |
1526 | 1526 |
/// |
1527 | 1527 |
/// \pre The queue must not be empty. |
1528 | 1528 |
template <typename NM> |
1529 | 1529 |
Node processNextNode(const NM& nm, Node& rnode) { |
1530 | 1530 |
Node n = _list[++_list_front]; |
1531 | 1531 |
_visitor->process(n); |
1532 | 1532 |
Arc e; |
1533 | 1533 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1534 | 1534 |
Node m = _digraph->target(e); |
1535 | 1535 |
if (!(*_reached)[m]) { |
1536 | 1536 |
_visitor->discover(e); |
1537 | 1537 |
_visitor->reach(m); |
1538 | 1538 |
_reached->set(m, true); |
1539 | 1539 |
_list[++_list_back] = m; |
1540 | 1540 |
if (nm[m] && rnode == INVALID) rnode = m; |
1541 | 1541 |
} else { |
1542 | 1542 |
_visitor->examine(e); |
1543 | 1543 |
} |
1544 | 1544 |
} |
1545 | 1545 |
return n; |
1546 | 1546 |
} |
1547 | 1547 |
|
1548 | 1548 |
/// \brief The next node to be processed. |
1549 | 1549 |
/// |
1550 | 1550 |
/// Returns the next node to be processed or \c INVALID if the queue |
1551 | 1551 |
/// is empty. |
1552 | 1552 |
Node nextNode() const { |
1553 | 1553 |
return _list_front != _list_back ? _list[_list_front + 1] : INVALID; |
1554 | 1554 |
} |
1555 | 1555 |
|
1556 | 1556 |
/// \brief Returns \c false if there are nodes |
1557 | 1557 |
/// to be processed. |
1558 | 1558 |
/// |
1559 | 1559 |
/// Returns \c false if there are nodes |
1560 | 1560 |
/// to be processed in the queue. |
1561 | 1561 |
bool emptyQueue() const { return _list_front == _list_back; } |
1562 | 1562 |
|
1563 | 1563 |
/// \brief Returns the number of the nodes to be processed. |
1564 | 1564 |
/// |
1565 | 1565 |
/// Returns the number of the nodes to be processed in the queue. |
1566 | 1566 |
int queueSize() const { return _list_back - _list_front; } |
1567 | 1567 |
|
1568 | 1568 |
/// \brief Executes the algorithm. |
1569 | 1569 |
/// |
1570 | 1570 |
/// Executes the algorithm. |
1571 | 1571 |
/// |
1572 | 1572 |
/// This method runs the %BFS algorithm from the root node(s) |
1573 | 1573 |
/// in order to compute the shortest path to each node. |
1574 | 1574 |
/// |
1575 | 1575 |
/// The algorithm computes |
1576 | 1576 |
/// - the shortest path tree (forest), |
1577 | 1577 |
/// - the distance of each node from the root(s). |
1578 | 1578 |
/// |
1579 | 1579 |
/// \pre init() must be called and at least one root node should be added |
1580 | 1580 |
/// with addSource() before using this function. |
1581 | 1581 |
/// |
1582 | 1582 |
/// \note <tt>b.start()</tt> is just a shortcut of the following code. |
1583 | 1583 |
/// \code |
1584 | 1584 |
/// while ( !b.emptyQueue() ) { |
1585 | 1585 |
/// b.processNextNode(); |
1586 | 1586 |
/// } |
1587 | 1587 |
/// \endcode |
1588 | 1588 |
void start() { |
1589 | 1589 |
while ( !emptyQueue() ) processNextNode(); |
1590 | 1590 |
} |
1591 | 1591 |
|
1592 | 1592 |
/// \brief Executes the algorithm until the given target node is reached. |
1593 | 1593 |
/// |
1594 | 1594 |
/// Executes the algorithm until the given target node is reached. |
1595 | 1595 |
/// |
1596 | 1596 |
/// This method runs the %BFS algorithm from the root node(s) |
1597 | 1597 |
/// in order to compute the shortest path to \c t. |
1598 | 1598 |
/// |
1599 | 1599 |
/// The algorithm computes |
1600 | 1600 |
/// - the shortest path to \c t, |
1601 | 1601 |
/// - the distance of \c t from the root(s). |
1602 | 1602 |
/// |
1603 | 1603 |
/// \pre init() must be called and at least one root node should be |
1604 | 1604 |
/// added with addSource() before using this function. |
1605 | 1605 |
/// |
1606 | 1606 |
/// \note <tt>b.start(t)</tt> is just a shortcut of the following code. |
1607 | 1607 |
/// \code |
1608 | 1608 |
/// bool reach = false; |
1609 | 1609 |
/// while ( !b.emptyQueue() && !reach ) { |
1610 | 1610 |
/// b.processNextNode(t, reach); |
1611 | 1611 |
/// } |
1612 | 1612 |
/// \endcode |
1613 | 1613 |
void start(Node t) { |
1614 | 1614 |
bool reach = false; |
1615 | 1615 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
1616 | 1616 |
} |
1617 | 1617 |
|
1618 | 1618 |
/// \brief Executes the algorithm until a condition is met. |
1619 | 1619 |
/// |
1620 | 1620 |
/// Executes the algorithm until a condition is met. |
1621 | 1621 |
/// |
1622 | 1622 |
/// This method runs the %BFS algorithm from the root node(s) in |
1623 | 1623 |
/// order to compute the shortest path to a node \c v with |
1624 | 1624 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
1625 | 1625 |
/// |
1626 | 1626 |
/// \param nm must be a bool (or convertible) node map. The |
1627 | 1627 |
/// algorithm will stop when it reaches a node \c v with |
1628 | 1628 |
/// <tt>nm[v]</tt> true. |
1629 | 1629 |
/// |
1630 | 1630 |
/// \return The reached node \c v with <tt>nm[v]</tt> true or |
1631 | 1631 |
/// \c INVALID if no such node was found. |
1632 | 1632 |
/// |
1633 | 1633 |
/// \pre init() must be called and at least one root node should be |
1634 | 1634 |
/// added with addSource() before using this function. |
1635 | 1635 |
/// |
1636 | 1636 |
/// \note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
1637 | 1637 |
/// \code |
1638 | 1638 |
/// Node rnode = INVALID; |
1639 | 1639 |
/// while ( !b.emptyQueue() && rnode == INVALID ) { |
1640 | 1640 |
/// b.processNextNode(nm, rnode); |
1641 | 1641 |
/// } |
1642 | 1642 |
/// return rnode; |
1643 | 1643 |
/// \endcode |
1644 | 1644 |
template <typename NM> |
1645 | 1645 |
Node start(const NM &nm) { |
1646 | 1646 |
Node rnode = INVALID; |
1647 | 1647 |
while ( !emptyQueue() && rnode == INVALID ) { |
1648 | 1648 |
processNextNode(nm, rnode); |
1649 | 1649 |
} |
1650 | 1650 |
return rnode; |
1651 | 1651 |
} |
1652 | 1652 |
|
1653 | 1653 |
/// \brief Runs the algorithm from the given source node. |
1654 | 1654 |
/// |
1655 | 1655 |
/// This method runs the %BFS algorithm from node \c s |
1656 | 1656 |
/// in order to compute the shortest path to each node. |
1657 | 1657 |
/// |
1658 | 1658 |
/// The algorithm computes |
1659 | 1659 |
/// - the shortest path tree, |
1660 | 1660 |
/// - the distance of each node from the root. |
1661 | 1661 |
/// |
1662 | 1662 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
1663 | 1663 |
///\code |
1664 | 1664 |
/// b.init(); |
1665 | 1665 |
/// b.addSource(s); |
1666 | 1666 |
/// b.start(); |
1667 | 1667 |
///\endcode |
1668 | 1668 |
void run(Node s) { |
1669 | 1669 |
init(); |
1670 | 1670 |
addSource(s); |
1671 | 1671 |
start(); |
1672 | 1672 |
} |
1673 | 1673 |
|
1674 | 1674 |
/// \brief Finds the shortest path between \c s and \c t. |
1675 | 1675 |
/// |
1676 | 1676 |
/// This method runs the %BFS algorithm from node \c s |
1677 | 1677 |
/// in order to compute the shortest path to node \c t |
1678 | 1678 |
/// (it stops searching when \c t is processed). |
1679 | 1679 |
/// |
1680 | 1680 |
/// \return \c true if \c t is reachable form \c s. |
1681 | 1681 |
/// |
1682 | 1682 |
/// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BIN_HEAP_H |
20 | 20 |
#define LEMON_BIN_HEAP_H |
21 | 21 |
|
22 |
///\ingroup |
|
22 |
///\ingroup heaps |
|
23 | 23 |
///\file |
24 |
///\brief Binary |
|
24 |
///\brief Binary heap implementation. |
|
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 |
///\ingroup |
|
32 |
/// \ingroup heaps |
|
33 | 33 |
/// |
34 |
///\brief |
|
34 |
/// \brief Binary heap data structure. |
|
35 | 35 |
/// |
36 |
///This class implements the \e binary \e heap data structure. |
|
37 |
/// |
|
38 |
///A \e heap is a data structure for storing items with specified values |
|
39 |
///called \e priorities in such a way that finding the item with minimum |
|
40 |
///priority is efficient. \c Comp specifies the ordering of the priorities. |
|
41 |
///In a heap one can change the priority of an item, add or erase an |
|
42 |
/// |
|
36 |
/// This class implements the \e binary \e heap data structure. |
|
37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
43 | 38 |
/// |
44 |
///\tparam PR Type of the priority of the items. |
|
45 |
///\tparam IM A read and writable item map with int values, used internally |
|
46 |
///to handle the cross references. |
|
47 |
///\tparam Comp A functor class for the ordering of the priorities. |
|
48 |
///The default is \c std::less<PR>. |
|
49 |
/// |
|
50 |
///\sa FibHeap |
|
51 |
///\sa Dijkstra |
|
52 |
|
|
39 |
/// \tparam PR Type of the priorities of the items. |
|
40 |
/// \tparam IM A read-writable item map with \c int values, used |
|
41 |
/// internally to handle the cross references. |
|
42 |
/// \tparam CMP A functor class for comparing the priorities. |
|
43 |
/// The default is \c std::less<PR>. |
|
44 |
#ifdef DOXYGEN |
|
45 |
template <typename PR, typename IM, typename CMP> |
|
46 |
#else |
|
47 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
48 |
#endif |
|
53 | 49 |
class BinHeap { |
50 |
public: |
|
54 | 51 |
|
55 |
public: |
|
56 |
///\e |
|
52 |
/// Type of the item-int map. |
|
57 | 53 |
typedef IM ItemIntMap; |
58 |
/// |
|
54 |
/// Type of the priorities. |
|
59 | 55 |
typedef PR Prio; |
60 |
/// |
|
56 |
/// Type of the items stored in the heap. |
|
61 | 57 |
typedef typename ItemIntMap::Key Item; |
62 |
/// |
|
58 |
/// Type of the item-priority pairs. |
|
63 | 59 |
typedef std::pair<Item,Prio> Pair; |
64 |
///\e |
|
65 |
typedef Comp Compare; |
|
60 |
/// Functor type for comparing the priorities. |
|
61 |
typedef CMP Compare; |
|
66 | 62 |
|
67 |
/// \brief Type to represent the |
|
63 |
/// \brief Type to represent the states of the items. |
|
68 | 64 |
/// |
69 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
70 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
65 |
/// Each item has a state associated to it. It can be "in heap", |
|
66 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
71 | 67 |
/// heap's point of view, but may be useful to the user. |
72 | 68 |
/// |
73 | 69 |
/// The item-int map must be initialized in such way that it assigns |
74 | 70 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
75 | 71 |
enum State { |
76 | 72 |
IN_HEAP = 0, ///< = 0. |
77 | 73 |
PRE_HEAP = -1, ///< = -1. |
78 | 74 |
POST_HEAP = -2 ///< = -2. |
79 | 75 |
}; |
80 | 76 |
|
81 | 77 |
private: |
82 | 78 |
std::vector<Pair> _data; |
83 | 79 |
Compare _comp; |
84 | 80 |
ItemIntMap &_iim; |
85 | 81 |
|
86 | 82 |
public: |
87 |
|
|
83 |
|
|
84 |
/// \brief Constructor. |
|
88 | 85 |
/// |
89 |
/// The constructor. |
|
90 |
/// \param map should be given to the constructor, since it is used |
|
91 |
/// internally to handle the cross references. The value of the map |
|
92 |
/// must be \c PRE_HEAP (<tt>-1</tt>) for every item. |
|
86 |
/// Constructor. |
|
87 |
/// \param map A map that assigns \c int values to the items. |
|
88 |
/// It is used internally to handle the cross references. |
|
89 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
93 | 90 |
explicit BinHeap(ItemIntMap &map) : _iim(map) {} |
94 | 91 |
|
95 |
/// \brief |
|
92 |
/// \brief Constructor. |
|
96 | 93 |
/// |
97 |
/// The constructor. |
|
98 |
/// \param map should be given to the constructor, since it is used |
|
99 |
/// internally to handle the cross references. The value of the map |
|
100 |
/// should be PRE_HEAP (-1) for each element. |
|
101 |
/// |
|
102 |
/// \param comp The comparator function object. |
|
94 |
/// Constructor. |
|
95 |
/// \param map A map that assigns \c int values to the items. |
|
96 |
/// It is used internally to handle the cross references. |
|
97 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
98 |
/// \param comp The function object used for comparing the priorities. |
|
103 | 99 |
BinHeap(ItemIntMap &map, const Compare &comp) |
104 | 100 |
: _iim(map), _comp(comp) {} |
105 | 101 |
|
106 | 102 |
|
107 |
/// The number of items stored in the heap. |
|
103 |
/// \brief The number of items stored in the heap. |
|
108 | 104 |
/// |
109 |
/// |
|
105 |
/// This function returns the number of items stored in the heap. |
|
110 | 106 |
int size() const { return _data.size(); } |
111 | 107 |
|
112 |
/// \brief |
|
108 |
/// \brief Check if the heap is empty. |
|
113 | 109 |
/// |
114 |
/// |
|
110 |
/// This function returns \c true if the heap is empty. |
|
115 | 111 |
bool empty() const { return _data.empty(); } |
116 | 112 |
|
117 |
/// \brief Make |
|
113 |
/// \brief Make the heap empty. |
|
118 | 114 |
/// |
119 |
/// Make empty this heap. It does not change the cross reference map. |
|
120 |
/// If you want to reuse what is not surely empty you should first clear |
|
121 |
/// the heap and after that you should set the cross reference map for |
|
122 |
/// each item to \c PRE_HEAP. |
|
115 |
/// This functon makes the heap empty. |
|
116 |
/// It does not change the cross reference map. If you want to reuse |
|
117 |
/// a heap that is not surely empty, you should first clear it and |
|
118 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
119 |
/// for each item. |
|
123 | 120 |
void clear() { |
124 | 121 |
_data.clear(); |
125 | 122 |
} |
126 | 123 |
|
127 | 124 |
private: |
128 | 125 |
static int parent(int i) { return (i-1)/2; } |
129 | 126 |
|
130 |
static int |
|
127 |
static int secondChild(int i) { return 2*i+2; } |
|
131 | 128 |
bool less(const Pair &p1, const Pair &p2) const { |
132 | 129 |
return _comp(p1.second, p2.second); |
133 | 130 |
} |
134 | 131 |
|
135 |
int |
|
132 |
int bubbleUp(int hole, Pair p) { |
|
136 | 133 |
int par = parent(hole); |
137 | 134 |
while( hole>0 && less(p,_data[par]) ) { |
138 | 135 |
move(_data[par],hole); |
139 | 136 |
hole = par; |
140 | 137 |
par = parent(hole); |
141 | 138 |
} |
142 | 139 |
move(p, hole); |
143 | 140 |
return hole; |
144 | 141 |
} |
145 | 142 |
|
146 |
int bubble_down(int hole, Pair p, int length) { |
|
147 |
int child = second_child(hole); |
|
143 |
int bubbleDown(int hole, Pair p, int length) { |
|
144 |
int child = secondChild(hole); |
|
148 | 145 |
while(child < length) { |
149 | 146 |
if( less(_data[child-1], _data[child]) ) { |
150 | 147 |
--child; |
151 | 148 |
} |
152 | 149 |
if( !less(_data[child], p) ) |
153 | 150 |
goto ok; |
154 | 151 |
move(_data[child], hole); |
155 | 152 |
hole = child; |
156 |
child = |
|
153 |
child = secondChild(hole); |
|
157 | 154 |
} |
158 | 155 |
child--; |
159 | 156 |
if( child<length && less(_data[child], p) ) { |
160 | 157 |
move(_data[child], hole); |
161 | 158 |
hole=child; |
162 | 159 |
} |
163 | 160 |
ok: |
164 | 161 |
move(p, hole); |
165 | 162 |
return hole; |
166 | 163 |
} |
167 | 164 |
|
168 | 165 |
void move(const Pair &p, int i) { |
169 | 166 |
_data[i] = p; |
170 | 167 |
_iim.set(p.first, i); |
171 | 168 |
} |
172 | 169 |
|
173 | 170 |
public: |
171 |
|
|
174 | 172 |
/// \brief Insert a pair of item and priority into the heap. |
175 | 173 |
/// |
176 |
/// |
|
174 |
/// This function inserts \c p.first to the heap with priority |
|
175 |
/// \c p.second. |
|
177 | 176 |
/// \param p The pair to insert. |
177 |
/// \pre \c p.first must not be stored in the heap. |
|
178 | 178 |
void push(const Pair &p) { |
179 | 179 |
int n = _data.size(); |
180 | 180 |
_data.resize(n+1); |
181 |
|
|
181 |
bubbleUp(n, p); |
|
182 | 182 |
} |
183 | 183 |
|
184 |
/// \brief Insert an item into the heap with the given |
|
184 |
/// \brief Insert an item into the heap with the given priority. |
|
185 | 185 |
/// |
186 |
/// |
|
186 |
/// This function inserts the given item into the heap with the |
|
187 |
/// given priority. |
|
187 | 188 |
/// \param i The item to insert. |
188 | 189 |
/// \param p The priority of the item. |
190 |
/// \pre \e i must not be stored in the heap. |
|
189 | 191 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
190 | 192 |
|
191 |
/// \brief |
|
193 |
/// \brief Return the item having minimum priority. |
|
192 | 194 |
/// |
193 |
/// This method returns the item with minimum priority relative to \c |
|
194 |
/// Compare. |
|
195 |
/// |
|
195 |
/// This function returns the item having minimum priority. |
|
196 |
/// \pre The heap must be non-empty. |
|
196 | 197 |
Item top() const { |
197 | 198 |
return _data[0].first; |
198 | 199 |
} |
199 | 200 |
|
200 |
/// \brief |
|
201 |
/// \brief The minimum priority. |
|
201 | 202 |
/// |
202 |
/// It returns the minimum priority relative to \c Compare. |
|
203 |
/// \pre The heap must be nonempty. |
|
203 |
/// This function returns the minimum priority. |
|
204 |
/// \pre The heap must be non-empty. |
|
204 | 205 |
Prio prio() const { |
205 | 206 |
return _data[0].second; |
206 | 207 |
} |
207 | 208 |
|
208 |
/// \brief |
|
209 |
/// \brief Remove the item having minimum priority. |
|
209 | 210 |
/// |
210 |
/// This method deletes the item with minimum priority relative to \c |
|
211 |
/// Compare from the heap. |
|
211 |
/// This function removes the item having minimum priority. |
|
212 | 212 |
/// \pre The heap must be non-empty. |
213 | 213 |
void pop() { |
214 | 214 |
int n = _data.size()-1; |
215 | 215 |
_iim.set(_data[0].first, POST_HEAP); |
216 | 216 |
if (n > 0) { |
217 |
|
|
217 |
bubbleDown(0, _data[n], n); |
|
218 | 218 |
} |
219 | 219 |
_data.pop_back(); |
220 | 220 |
} |
221 | 221 |
|
222 |
/// \brief |
|
222 |
/// \brief Remove the given item from the heap. |
|
223 | 223 |
/// |
224 |
/// This method deletes item \c i from the heap. |
|
225 |
/// \param i The item to erase. |
|
226 |
/// |
|
224 |
/// This function removes the given item from the heap if it is |
|
225 |
/// already stored. |
|
226 |
/// \param i The item to delete. |
|
227 |
/// \pre \e i must be in the heap. |
|
227 | 228 |
void erase(const Item &i) { |
228 | 229 |
int h = _iim[i]; |
229 | 230 |
int n = _data.size()-1; |
230 | 231 |
_iim.set(_data[h].first, POST_HEAP); |
231 | 232 |
if( h < n ) { |
232 |
if ( bubble_up(h, _data[n]) == h) { |
|
233 |
bubble_down(h, _data[n], n); |
|
233 |
if ( bubbleUp(h, _data[n]) == h) { |
|
234 |
bubbleDown(h, _data[n], n); |
|
234 | 235 |
} |
235 | 236 |
} |
236 | 237 |
_data.pop_back(); |
237 | 238 |
} |
238 | 239 |
|
239 |
|
|
240 |
/// \brief Returns the priority of \c i. |
|
240 |
/// \brief The priority of the given item. |
|
241 | 241 |
/// |
242 |
/// This function returns the priority of |
|
242 |
/// This function returns the priority of the given item. |
|
243 | 243 |
/// \param i The item. |
244 |
/// \pre \ |
|
244 |
/// \pre \e i must be in the heap. |
|
245 | 245 |
Prio operator[](const Item &i) const { |
246 | 246 |
int idx = _iim[i]; |
247 | 247 |
return _data[idx].second; |
248 | 248 |
} |
249 | 249 |
|
250 |
/// \brief \c i gets to the heap with priority \c p independently |
|
251 |
/// if \c i was already there. |
|
250 |
/// \brief Set the priority of an item or insert it, if it is |
|
251 |
/// not stored in the heap. |
|
252 | 252 |
/// |
253 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
254 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
253 |
/// This method sets the priority of the given item if it is |
|
254 |
/// already stored in the heap. Otherwise it inserts the given |
|
255 |
/// item into the heap with the given priority. |
|
255 | 256 |
/// \param i The item. |
256 | 257 |
/// \param p The priority. |
257 | 258 |
void set(const Item &i, const Prio &p) { |
258 | 259 |
int idx = _iim[i]; |
259 | 260 |
if( idx < 0 ) { |
260 | 261 |
push(i,p); |
261 | 262 |
} |
262 | 263 |
else if( _comp(p, _data[idx].second) ) { |
263 |
|
|
264 |
bubbleUp(idx, Pair(i,p)); |
|
264 | 265 |
} |
265 | 266 |
else { |
266 |
|
|
267 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
267 | 268 |
} |
268 | 269 |
} |
269 | 270 |
|
270 |
/// \brief |
|
271 |
/// \brief Decrease the priority of an item to the given value. |
|
271 | 272 |
/// |
272 |
/// This |
|
273 |
/// This function decreases the priority of an item to the given value. |
|
273 | 274 |
/// \param i The item. |
274 | 275 |
/// \param p The priority. |
275 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
276 |
/// p relative to \c Compare. |
|
276 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
277 | 277 |
void decrease(const Item &i, const Prio &p) { |
278 | 278 |
int idx = _iim[i]; |
279 |
|
|
279 |
bubbleUp(idx, Pair(i,p)); |
|
280 | 280 |
} |
281 | 281 |
|
282 |
/// \brief |
|
282 |
/// \brief Increase the priority of an item to the given value. |
|
283 | 283 |
/// |
284 |
/// This |
|
284 |
/// This function increases the priority of an item to the given value. |
|
285 | 285 |
/// \param i The item. |
286 | 286 |
/// \param p The priority. |
287 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
288 |
/// p relative to \c Compare. |
|
287 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
289 | 288 |
void increase(const Item &i, const Prio &p) { |
290 | 289 |
int idx = _iim[i]; |
291 |
|
|
290 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
292 | 291 |
} |
293 | 292 |
|
294 |
/// \brief Returns if \c item is in, has already been in, or has |
|
295 |
/// never been in the heap. |
|
293 |
/// \brief Return the state of an item. |
|
296 | 294 |
/// |
297 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
298 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
299 |
/// otherwise. In the latter case it is possible that \c item will |
|
300 |
/// get back to the heap again. |
|
295 |
/// This method returns \c PRE_HEAP if the given item has never |
|
296 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
297 |
/// and \c POST_HEAP otherwise. |
|
298 |
/// In the latter case it is possible that the item will get back |
|
299 |
/// to the heap again. |
|
301 | 300 |
/// \param i The item. |
302 | 301 |
State state(const Item &i) const { |
303 | 302 |
int s = _iim[i]; |
304 | 303 |
if( s>=0 ) |
305 | 304 |
s=0; |
306 | 305 |
return State(s); |
307 | 306 |
} |
308 | 307 |
|
309 |
/// \brief |
|
308 |
/// \brief Set the state of an item in the heap. |
|
310 | 309 |
/// |
311 |
/// Sets the state of the \c item in the heap. It can be used to |
|
312 |
/// manually clear the heap when it is important to achive the |
|
313 |
/// |
|
310 |
/// This function sets the state of the given item in the heap. |
|
311 |
/// It can be used to manually clear the heap when it is important |
|
312 |
/// to achive better time complexity. |
|
314 | 313 |
/// \param i The item. |
315 | 314 |
/// \param st The state. It should not be \c IN_HEAP. |
316 | 315 |
void state(const Item& i, State st) { |
317 | 316 |
switch (st) { |
318 | 317 |
case POST_HEAP: |
319 | 318 |
case PRE_HEAP: |
320 | 319 |
if (state(i) == IN_HEAP) { |
321 | 320 |
erase(i); |
322 | 321 |
} |
323 | 322 |
_iim[i] = st; |
324 | 323 |
break; |
325 | 324 |
case IN_HEAP: |
326 | 325 |
break; |
327 | 326 |
} |
328 | 327 |
} |
329 | 328 |
|
330 |
/// \brief |
|
329 |
/// \brief Replace an item in the heap. |
|
331 | 330 |
/// |
332 |
/// The \c i item is replaced with \c j item. The \c i item should |
|
333 |
/// be in the heap, while the \c j should be out of the heap. The |
|
334 |
/// \c i item will out of the heap and \c j will be in the heap |
|
335 |
/// with the same prioriority as prevoiusly the \c i item. |
|
331 |
/// This function replaces item \c i with item \c j. |
|
332 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
333 |
/// After calling this method, item \c i will be out of the |
|
334 |
/// heap and \c j will be in the heap with the same prioriority |
|
335 |
/// as item \c i had before. |
|
336 | 336 |
void replace(const Item& i, const Item& j) { |
337 | 337 |
int idx = _iim[i]; |
338 | 338 |
_iim.set(i, _iim[j]); |
339 | 339 |
_iim.set(j, idx); |
340 | 340 |
_data[idx].first = j; |
341 | 341 |
} |
342 | 342 |
|
343 | 343 |
}; // class BinHeap |
344 | 344 |
|
345 | 345 |
} // namespace lemon |
346 | 346 |
|
347 | 347 |
#endif // LEMON_BIN_HEAP_H |
... | ... |
@@ -284,342 +284,342 @@ |
284 | 284 |
typedef typename Parent::Arc Arc; |
285 | 285 |
typedef typename Parent::Edge Edge; |
286 | 286 |
|
287 | 287 |
int maxId(Node) const { |
288 | 288 |
return Parent::maxNodeId(); |
289 | 289 |
} |
290 | 290 |
|
291 | 291 |
int maxId(Arc) const { |
292 | 292 |
return Parent::maxArcId(); |
293 | 293 |
} |
294 | 294 |
|
295 | 295 |
int maxId(Edge) const { |
296 | 296 |
return Parent::maxEdgeId(); |
297 | 297 |
} |
298 | 298 |
|
299 | 299 |
Node fromId(int id, Node) const { |
300 | 300 |
return Parent::nodeFromId(id); |
301 | 301 |
} |
302 | 302 |
|
303 | 303 |
Arc fromId(int id, Arc) const { |
304 | 304 |
return Parent::arcFromId(id); |
305 | 305 |
} |
306 | 306 |
|
307 | 307 |
Edge fromId(int id, Edge) const { |
308 | 308 |
return Parent::edgeFromId(id); |
309 | 309 |
} |
310 | 310 |
|
311 | 311 |
Node oppositeNode(const Node &n, const Edge &e) const { |
312 | 312 |
if( n == Parent::u(e)) |
313 | 313 |
return Parent::v(e); |
314 | 314 |
else if( n == Parent::v(e)) |
315 | 315 |
return Parent::u(e); |
316 | 316 |
else |
317 | 317 |
return INVALID; |
318 | 318 |
} |
319 | 319 |
|
320 | 320 |
Arc oppositeArc(const Arc &e) const { |
321 | 321 |
return Parent::direct(e, !Parent::direction(e)); |
322 | 322 |
} |
323 | 323 |
|
324 | 324 |
using Parent::direct; |
325 | 325 |
Arc direct(const Edge &e, const Node &s) const { |
326 | 326 |
return Parent::direct(e, Parent::u(e) == s); |
327 | 327 |
} |
328 | 328 |
|
329 | 329 |
typedef AlterationNotifier<EdgeSetExtender, Arc> ArcNotifier; |
330 | 330 |
typedef AlterationNotifier<EdgeSetExtender, Edge> EdgeNotifier; |
331 | 331 |
|
332 | 332 |
|
333 | 333 |
protected: |
334 | 334 |
|
335 | 335 |
mutable ArcNotifier arc_notifier; |
336 | 336 |
mutable EdgeNotifier edge_notifier; |
337 | 337 |
|
338 | 338 |
public: |
339 | 339 |
|
340 | 340 |
using Parent::notifier; |
341 | 341 |
|
342 | 342 |
ArcNotifier& notifier(Arc) const { |
343 | 343 |
return arc_notifier; |
344 | 344 |
} |
345 | 345 |
|
346 | 346 |
EdgeNotifier& notifier(Edge) const { |
347 | 347 |
return edge_notifier; |
348 | 348 |
} |
349 | 349 |
|
350 | 350 |
|
351 | 351 |
class NodeIt : public Node { |
352 | 352 |
const Graph* graph; |
353 | 353 |
public: |
354 | 354 |
|
355 | 355 |
NodeIt() {} |
356 | 356 |
|
357 | 357 |
NodeIt(Invalid i) : Node(i) { } |
358 | 358 |
|
359 | 359 |
explicit NodeIt(const Graph& _graph) : graph(&_graph) { |
360 | 360 |
_graph.first(static_cast<Node&>(*this)); |
361 | 361 |
} |
362 | 362 |
|
363 | 363 |
NodeIt(const Graph& _graph, const Node& node) |
364 | 364 |
: Node(node), graph(&_graph) {} |
365 | 365 |
|
366 | 366 |
NodeIt& operator++() { |
367 | 367 |
graph->next(*this); |
368 | 368 |
return *this; |
369 | 369 |
} |
370 | 370 |
|
371 | 371 |
}; |
372 | 372 |
|
373 | 373 |
|
374 | 374 |
class ArcIt : public Arc { |
375 | 375 |
const Graph* graph; |
376 | 376 |
public: |
377 | 377 |
|
378 | 378 |
ArcIt() { } |
379 | 379 |
|
380 | 380 |
ArcIt(Invalid i) : Arc(i) { } |
381 | 381 |
|
382 | 382 |
explicit ArcIt(const Graph& _graph) : graph(&_graph) { |
383 | 383 |
_graph.first(static_cast<Arc&>(*this)); |
384 | 384 |
} |
385 | 385 |
|
386 | 386 |
ArcIt(const Graph& _graph, const Arc& e) : |
387 | 387 |
Arc(e), graph(&_graph) { } |
388 | 388 |
|
389 | 389 |
ArcIt& operator++() { |
390 | 390 |
graph->next(*this); |
391 | 391 |
return *this; |
392 | 392 |
} |
393 | 393 |
|
394 | 394 |
}; |
395 | 395 |
|
396 | 396 |
|
397 | 397 |
class OutArcIt : public Arc { |
398 | 398 |
const Graph* graph; |
399 | 399 |
public: |
400 | 400 |
|
401 | 401 |
OutArcIt() { } |
402 | 402 |
|
403 | 403 |
OutArcIt(Invalid i) : Arc(i) { } |
404 | 404 |
|
405 | 405 |
OutArcIt(const Graph& _graph, const Node& node) |
406 | 406 |
: graph(&_graph) { |
407 | 407 |
_graph.firstOut(*this, node); |
408 | 408 |
} |
409 | 409 |
|
410 | 410 |
OutArcIt(const Graph& _graph, const Arc& arc) |
411 | 411 |
: Arc(arc), graph(&_graph) {} |
412 | 412 |
|
413 | 413 |
OutArcIt& operator++() { |
414 | 414 |
graph->nextOut(*this); |
415 | 415 |
return *this; |
416 | 416 |
} |
417 | 417 |
|
418 | 418 |
}; |
419 | 419 |
|
420 | 420 |
|
421 | 421 |
class InArcIt : public Arc { |
422 | 422 |
const Graph* graph; |
423 | 423 |
public: |
424 | 424 |
|
425 | 425 |
InArcIt() { } |
426 | 426 |
|
427 | 427 |
InArcIt(Invalid i) : Arc(i) { } |
428 | 428 |
|
429 | 429 |
InArcIt(const Graph& _graph, const Node& node) |
430 | 430 |
: graph(&_graph) { |
431 | 431 |
_graph.firstIn(*this, node); |
432 | 432 |
} |
433 | 433 |
|
434 | 434 |
InArcIt(const Graph& _graph, const Arc& arc) : |
435 | 435 |
Arc(arc), graph(&_graph) {} |
436 | 436 |
|
437 | 437 |
InArcIt& operator++() { |
438 | 438 |
graph->nextIn(*this); |
439 | 439 |
return *this; |
440 | 440 |
} |
441 | 441 |
|
442 | 442 |
}; |
443 | 443 |
|
444 | 444 |
|
445 | 445 |
class EdgeIt : public Parent::Edge { |
446 | 446 |
const Graph* graph; |
447 | 447 |
public: |
448 | 448 |
|
449 | 449 |
EdgeIt() { } |
450 | 450 |
|
451 | 451 |
EdgeIt(Invalid i) : Edge(i) { } |
452 | 452 |
|
453 | 453 |
explicit EdgeIt(const Graph& _graph) : graph(&_graph) { |
454 | 454 |
_graph.first(static_cast<Edge&>(*this)); |
455 | 455 |
} |
456 | 456 |
|
457 | 457 |
EdgeIt(const Graph& _graph, const Edge& e) : |
458 | 458 |
Edge(e), graph(&_graph) { } |
459 | 459 |
|
460 | 460 |
EdgeIt& operator++() { |
461 | 461 |
graph->next(*this); |
462 | 462 |
return *this; |
463 | 463 |
} |
464 | 464 |
|
465 | 465 |
}; |
466 | 466 |
|
467 | 467 |
class IncEdgeIt : public Parent::Edge { |
468 | 468 |
friend class EdgeSetExtender; |
469 | 469 |
const Graph* graph; |
470 | 470 |
bool direction; |
471 | 471 |
public: |
472 | 472 |
|
473 | 473 |
IncEdgeIt() { } |
474 | 474 |
|
475 | 475 |
IncEdgeIt(Invalid i) : Edge(i), direction(false) { } |
476 | 476 |
|
477 | 477 |
IncEdgeIt(const Graph& _graph, const Node &n) : graph(&_graph) { |
478 | 478 |
_graph.firstInc(*this, direction, n); |
479 | 479 |
} |
480 | 480 |
|
481 | 481 |
IncEdgeIt(const Graph& _graph, const Edge &ue, const Node &n) |
482 | 482 |
: graph(&_graph), Edge(ue) { |
483 | 483 |
direction = (_graph.source(ue) == n); |
484 | 484 |
} |
485 | 485 |
|
486 | 486 |
IncEdgeIt& operator++() { |
487 | 487 |
graph->nextInc(*this, direction); |
488 | 488 |
return *this; |
489 | 489 |
} |
490 | 490 |
}; |
491 | 491 |
|
492 | 492 |
// \brief Base node of the iterator |
493 | 493 |
// |
494 | 494 |
// Returns the base node (ie. the source in this case) of the iterator |
495 | 495 |
Node baseNode(const OutArcIt &e) const { |
496 | 496 |
return Parent::source(static_cast<const Arc&>(e)); |
497 | 497 |
} |
498 | 498 |
// \brief Running node of the iterator |
499 | 499 |
// |
500 | 500 |
// Returns the running node (ie. the target in this case) of the |
501 | 501 |
// iterator |
502 | 502 |
Node runningNode(const OutArcIt &e) const { |
503 | 503 |
return Parent::target(static_cast<const Arc&>(e)); |
504 | 504 |
} |
505 | 505 |
|
506 | 506 |
// \brief Base node of the iterator |
507 | 507 |
// |
508 | 508 |
// Returns the base node (ie. the target in this case) of the iterator |
509 | 509 |
Node baseNode(const InArcIt &e) const { |
510 | 510 |
return Parent::target(static_cast<const Arc&>(e)); |
511 | 511 |
} |
512 | 512 |
// \brief Running node of the iterator |
513 | 513 |
// |
514 | 514 |
// Returns the running node (ie. the source in this case) of the |
515 | 515 |
// iterator |
516 | 516 |
Node runningNode(const InArcIt &e) const { |
517 | 517 |
return Parent::source(static_cast<const Arc&>(e)); |
518 | 518 |
} |
519 | 519 |
|
520 | 520 |
// Base node of the iterator |
521 | 521 |
// |
522 | 522 |
// Returns the base node of the iterator |
523 | 523 |
Node baseNode(const IncEdgeIt &e) const { |
524 | 524 |
return e.direction ? u(e) : v(e); |
525 | 525 |
} |
526 | 526 |
// Running node of the iterator |
527 | 527 |
// |
528 | 528 |
// Returns the running node of the iterator |
529 | 529 |
Node runningNode(const IncEdgeIt &e) const { |
530 | 530 |
return e.direction ? v(e) : u(e); |
531 | 531 |
} |
532 | 532 |
|
533 | 533 |
|
534 | 534 |
template <typename _Value> |
535 | 535 |
class ArcMap |
536 | 536 |
: public MapExtender<DefaultMap<Graph, Arc, _Value> > { |
537 | 537 |
typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent; |
538 | 538 |
|
539 | 539 |
public: |
540 |
ArcMap(const Graph& _g) |
|
540 |
explicit ArcMap(const Graph& _g) |
|
541 | 541 |
: Parent(_g) {} |
542 | 542 |
ArcMap(const Graph& _g, const _Value& _v) |
543 | 543 |
: Parent(_g, _v) {} |
544 | 544 |
|
545 | 545 |
ArcMap& operator=(const ArcMap& cmap) { |
546 | 546 |
return operator=<ArcMap>(cmap); |
547 | 547 |
} |
548 | 548 |
|
549 | 549 |
template <typename CMap> |
550 | 550 |
ArcMap& operator=(const CMap& cmap) { |
551 | 551 |
Parent::operator=(cmap); |
552 | 552 |
return *this; |
553 | 553 |
} |
554 | 554 |
|
555 | 555 |
}; |
556 | 556 |
|
557 | 557 |
|
558 | 558 |
template <typename _Value> |
559 | 559 |
class EdgeMap |
560 | 560 |
: public MapExtender<DefaultMap<Graph, Edge, _Value> > { |
561 | 561 |
typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent; |
562 | 562 |
|
563 | 563 |
public: |
564 |
EdgeMap(const Graph& _g) |
|
564 |
explicit EdgeMap(const Graph& _g) |
|
565 | 565 |
: Parent(_g) {} |
566 | 566 |
|
567 | 567 |
EdgeMap(const Graph& _g, const _Value& _v) |
568 | 568 |
: Parent(_g, _v) {} |
569 | 569 |
|
570 | 570 |
EdgeMap& operator=(const EdgeMap& cmap) { |
571 | 571 |
return operator=<EdgeMap>(cmap); |
572 | 572 |
} |
573 | 573 |
|
574 | 574 |
template <typename CMap> |
575 | 575 |
EdgeMap& operator=(const CMap& cmap) { |
576 | 576 |
Parent::operator=(cmap); |
577 | 577 |
return *this; |
578 | 578 |
} |
579 | 579 |
|
580 | 580 |
}; |
581 | 581 |
|
582 | 582 |
|
583 | 583 |
// Alteration extension |
584 | 584 |
|
585 | 585 |
Edge addEdge(const Node& from, const Node& to) { |
586 | 586 |
Edge edge = Parent::addEdge(from, to); |
587 | 587 |
notifier(Edge()).add(edge); |
588 | 588 |
std::vector<Arc> arcs; |
589 | 589 |
arcs.push_back(Parent::direct(edge, true)); |
590 | 590 |
arcs.push_back(Parent::direct(edge, false)); |
591 | 591 |
notifier(Arc()).add(arcs); |
592 | 592 |
return edge; |
593 | 593 |
} |
594 | 594 |
|
595 | 595 |
void clear() { |
596 | 596 |
notifier(Arc()).clear(); |
597 | 597 |
notifier(Edge()).clear(); |
598 | 598 |
Parent::clear(); |
599 | 599 |
} |
600 | 600 |
|
601 | 601 |
void erase(const Edge& edge) { |
602 | 602 |
std::vector<Arc> arcs; |
603 | 603 |
arcs.push_back(Parent::direct(edge, true)); |
604 | 604 |
arcs.push_back(Parent::direct(edge, false)); |
605 | 605 |
notifier(Arc()).erase(arcs); |
606 | 606 |
notifier(Edge()).erase(edge); |
607 | 607 |
Parent::erase(edge); |
608 | 608 |
} |
609 | 609 |
|
610 | 610 |
|
611 | 611 |
EdgeSetExtender() { |
612 | 612 |
arc_notifier.setContainer(*this); |
613 | 613 |
edge_notifier.setContainer(*this); |
614 | 614 |
} |
615 | 615 |
|
616 | 616 |
~EdgeSetExtender() { |
617 | 617 |
edge_notifier.clear(); |
618 | 618 |
arc_notifier.clear(); |
619 | 619 |
} |
620 | 620 |
|
621 | 621 |
}; |
622 | 622 |
|
623 | 623 |
} |
624 | 624 |
|
625 | 625 |
#endif |
... | ... |
@@ -351,401 +351,401 @@ |
351 | 351 |
return Parent::maxArcId(); |
352 | 352 |
} |
353 | 353 |
|
354 | 354 |
int maxId(Edge) const { |
355 | 355 |
return Parent::maxEdgeId(); |
356 | 356 |
} |
357 | 357 |
|
358 | 358 |
Node fromId(int id, Node) const { |
359 | 359 |
return Parent::nodeFromId(id); |
360 | 360 |
} |
361 | 361 |
|
362 | 362 |
Arc fromId(int id, Arc) const { |
363 | 363 |
return Parent::arcFromId(id); |
364 | 364 |
} |
365 | 365 |
|
366 | 366 |
Edge fromId(int id, Edge) const { |
367 | 367 |
return Parent::edgeFromId(id); |
368 | 368 |
} |
369 | 369 |
|
370 | 370 |
Node oppositeNode(const Node &n, const Edge &e) const { |
371 | 371 |
if( n == Parent::u(e)) |
372 | 372 |
return Parent::v(e); |
373 | 373 |
else if( n == Parent::v(e)) |
374 | 374 |
return Parent::u(e); |
375 | 375 |
else |
376 | 376 |
return INVALID; |
377 | 377 |
} |
378 | 378 |
|
379 | 379 |
Arc oppositeArc(const Arc &arc) const { |
380 | 380 |
return Parent::direct(arc, !Parent::direction(arc)); |
381 | 381 |
} |
382 | 382 |
|
383 | 383 |
using Parent::direct; |
384 | 384 |
Arc direct(const Edge &edge, const Node &node) const { |
385 | 385 |
return Parent::direct(edge, Parent::u(edge) == node); |
386 | 386 |
} |
387 | 387 |
|
388 | 388 |
// Alterable extension |
389 | 389 |
|
390 | 390 |
typedef AlterationNotifier<GraphExtender, Node> NodeNotifier; |
391 | 391 |
typedef AlterationNotifier<GraphExtender, Arc> ArcNotifier; |
392 | 392 |
typedef AlterationNotifier<GraphExtender, Edge> EdgeNotifier; |
393 | 393 |
|
394 | 394 |
|
395 | 395 |
protected: |
396 | 396 |
|
397 | 397 |
mutable NodeNotifier node_notifier; |
398 | 398 |
mutable ArcNotifier arc_notifier; |
399 | 399 |
mutable EdgeNotifier edge_notifier; |
400 | 400 |
|
401 | 401 |
public: |
402 | 402 |
|
403 | 403 |
NodeNotifier& notifier(Node) const { |
404 | 404 |
return node_notifier; |
405 | 405 |
} |
406 | 406 |
|
407 | 407 |
ArcNotifier& notifier(Arc) const { |
408 | 408 |
return arc_notifier; |
409 | 409 |
} |
410 | 410 |
|
411 | 411 |
EdgeNotifier& notifier(Edge) const { |
412 | 412 |
return edge_notifier; |
413 | 413 |
} |
414 | 414 |
|
415 | 415 |
|
416 | 416 |
|
417 | 417 |
class NodeIt : public Node { |
418 | 418 |
const Graph* _graph; |
419 | 419 |
public: |
420 | 420 |
|
421 | 421 |
NodeIt() {} |
422 | 422 |
|
423 | 423 |
NodeIt(Invalid i) : Node(i) { } |
424 | 424 |
|
425 | 425 |
explicit NodeIt(const Graph& graph) : _graph(&graph) { |
426 | 426 |
_graph->first(static_cast<Node&>(*this)); |
427 | 427 |
} |
428 | 428 |
|
429 | 429 |
NodeIt(const Graph& graph, const Node& node) |
430 | 430 |
: Node(node), _graph(&graph) {} |
431 | 431 |
|
432 | 432 |
NodeIt& operator++() { |
433 | 433 |
_graph->next(*this); |
434 | 434 |
return *this; |
435 | 435 |
} |
436 | 436 |
|
437 | 437 |
}; |
438 | 438 |
|
439 | 439 |
|
440 | 440 |
class ArcIt : public Arc { |
441 | 441 |
const Graph* _graph; |
442 | 442 |
public: |
443 | 443 |
|
444 | 444 |
ArcIt() { } |
445 | 445 |
|
446 | 446 |
ArcIt(Invalid i) : Arc(i) { } |
447 | 447 |
|
448 | 448 |
explicit ArcIt(const Graph& graph) : _graph(&graph) { |
449 | 449 |
_graph->first(static_cast<Arc&>(*this)); |
450 | 450 |
} |
451 | 451 |
|
452 | 452 |
ArcIt(const Graph& graph, const Arc& arc) : |
453 | 453 |
Arc(arc), _graph(&graph) { } |
454 | 454 |
|
455 | 455 |
ArcIt& operator++() { |
456 | 456 |
_graph->next(*this); |
457 | 457 |
return *this; |
458 | 458 |
} |
459 | 459 |
|
460 | 460 |
}; |
461 | 461 |
|
462 | 462 |
|
463 | 463 |
class OutArcIt : public Arc { |
464 | 464 |
const Graph* _graph; |
465 | 465 |
public: |
466 | 466 |
|
467 | 467 |
OutArcIt() { } |
468 | 468 |
|
469 | 469 |
OutArcIt(Invalid i) : Arc(i) { } |
470 | 470 |
|
471 | 471 |
OutArcIt(const Graph& graph, const Node& node) |
472 | 472 |
: _graph(&graph) { |
473 | 473 |
_graph->firstOut(*this, node); |
474 | 474 |
} |
475 | 475 |
|
476 | 476 |
OutArcIt(const Graph& graph, const Arc& arc) |
477 | 477 |
: Arc(arc), _graph(&graph) {} |
478 | 478 |
|
479 | 479 |
OutArcIt& operator++() { |
480 | 480 |
_graph->nextOut(*this); |
481 | 481 |
return *this; |
482 | 482 |
} |
483 | 483 |
|
484 | 484 |
}; |
485 | 485 |
|
486 | 486 |
|
487 | 487 |
class InArcIt : public Arc { |
488 | 488 |
const Graph* _graph; |
489 | 489 |
public: |
490 | 490 |
|
491 | 491 |
InArcIt() { } |
492 | 492 |
|
493 | 493 |
InArcIt(Invalid i) : Arc(i) { } |
494 | 494 |
|
495 | 495 |
InArcIt(const Graph& graph, const Node& node) |
496 | 496 |
: _graph(&graph) { |
497 | 497 |
_graph->firstIn(*this, node); |
498 | 498 |
} |
499 | 499 |
|
500 | 500 |
InArcIt(const Graph& graph, const Arc& arc) : |
501 | 501 |
Arc(arc), _graph(&graph) {} |
502 | 502 |
|
503 | 503 |
InArcIt& operator++() { |
504 | 504 |
_graph->nextIn(*this); |
505 | 505 |
return *this; |
506 | 506 |
} |
507 | 507 |
|
508 | 508 |
}; |
509 | 509 |
|
510 | 510 |
|
511 | 511 |
class EdgeIt : public Parent::Edge { |
512 | 512 |
const Graph* _graph; |
513 | 513 |
public: |
514 | 514 |
|
515 | 515 |
EdgeIt() { } |
516 | 516 |
|
517 | 517 |
EdgeIt(Invalid i) : Edge(i) { } |
518 | 518 |
|
519 | 519 |
explicit EdgeIt(const Graph& graph) : _graph(&graph) { |
520 | 520 |
_graph->first(static_cast<Edge&>(*this)); |
521 | 521 |
} |
522 | 522 |
|
523 | 523 |
EdgeIt(const Graph& graph, const Edge& edge) : |
524 | 524 |
Edge(edge), _graph(&graph) { } |
525 | 525 |
|
526 | 526 |
EdgeIt& operator++() { |
527 | 527 |
_graph->next(*this); |
528 | 528 |
return *this; |
529 | 529 |
} |
530 | 530 |
|
531 | 531 |
}; |
532 | 532 |
|
533 | 533 |
class IncEdgeIt : public Parent::Edge { |
534 | 534 |
friend class GraphExtender; |
535 | 535 |
const Graph* _graph; |
536 | 536 |
bool _direction; |
537 | 537 |
public: |
538 | 538 |
|
539 | 539 |
IncEdgeIt() { } |
540 | 540 |
|
541 | 541 |
IncEdgeIt(Invalid i) : Edge(i), _direction(false) { } |
542 | 542 |
|
543 | 543 |
IncEdgeIt(const Graph& graph, const Node &node) : _graph(&graph) { |
544 | 544 |
_graph->firstInc(*this, _direction, node); |
545 | 545 |
} |
546 | 546 |
|
547 | 547 |
IncEdgeIt(const Graph& graph, const Edge &edge, const Node &node) |
548 | 548 |
: _graph(&graph), Edge(edge) { |
549 | 549 |
_direction = (_graph->source(edge) == node); |
550 | 550 |
} |
551 | 551 |
|
552 | 552 |
IncEdgeIt& operator++() { |
553 | 553 |
_graph->nextInc(*this, _direction); |
554 | 554 |
return *this; |
555 | 555 |
} |
556 | 556 |
}; |
557 | 557 |
|
558 | 558 |
// \brief Base node of the iterator |
559 | 559 |
// |
560 | 560 |
// Returns the base node (ie. the source in this case) of the iterator |
561 | 561 |
Node baseNode(const OutArcIt &arc) const { |
562 | 562 |
return Parent::source(static_cast<const Arc&>(arc)); |
563 | 563 |
} |
564 | 564 |
// \brief Running node of the iterator |
565 | 565 |
// |
566 | 566 |
// Returns the running node (ie. the target in this case) of the |
567 | 567 |
// iterator |
568 | 568 |
Node runningNode(const OutArcIt &arc) const { |
569 | 569 |
return Parent::target(static_cast<const Arc&>(arc)); |
570 | 570 |
} |
571 | 571 |
|
572 | 572 |
// \brief Base node of the iterator |
573 | 573 |
// |
574 | 574 |
// Returns the base node (ie. the target in this case) of the iterator |
575 | 575 |
Node baseNode(const InArcIt &arc) const { |
576 | 576 |
return Parent::target(static_cast<const Arc&>(arc)); |
577 | 577 |
} |
578 | 578 |
// \brief Running node of the iterator |
579 | 579 |
// |
580 | 580 |
// Returns the running node (ie. the source in this case) of the |
581 | 581 |
// iterator |
582 | 582 |
Node runningNode(const InArcIt &arc) const { |
583 | 583 |
return Parent::source(static_cast<const Arc&>(arc)); |
584 | 584 |
} |
585 | 585 |
|
586 | 586 |
// Base node of the iterator |
587 | 587 |
// |
588 | 588 |
// Returns the base node of the iterator |
589 | 589 |
Node baseNode(const IncEdgeIt &edge) const { |
590 | 590 |
return edge._direction ? u(edge) : v(edge); |
591 | 591 |
} |
592 | 592 |
// Running node of the iterator |
593 | 593 |
// |
594 | 594 |
// Returns the running node of the iterator |
595 | 595 |
Node runningNode(const IncEdgeIt &edge) const { |
596 | 596 |
return edge._direction ? v(edge) : u(edge); |
597 | 597 |
} |
598 | 598 |
|
599 | 599 |
// Mappable extension |
600 | 600 |
|
601 | 601 |
template <typename _Value> |
602 | 602 |
class NodeMap |
603 | 603 |
: public MapExtender<DefaultMap<Graph, Node, _Value> > { |
604 | 604 |
typedef MapExtender<DefaultMap<Graph, Node, _Value> > Parent; |
605 | 605 |
|
606 | 606 |
public: |
607 |
NodeMap(const Graph& graph) |
|
607 |
explicit NodeMap(const Graph& graph) |
|
608 | 608 |
: Parent(graph) {} |
609 | 609 |
NodeMap(const Graph& graph, const _Value& value) |
610 | 610 |
: Parent(graph, value) {} |
611 | 611 |
|
612 | 612 |
private: |
613 | 613 |
NodeMap& operator=(const NodeMap& cmap) { |
614 | 614 |
return operator=<NodeMap>(cmap); |
615 | 615 |
} |
616 | 616 |
|
617 | 617 |
template <typename CMap> |
618 | 618 |
NodeMap& operator=(const CMap& cmap) { |
619 | 619 |
Parent::operator=(cmap); |
620 | 620 |
return *this; |
621 | 621 |
} |
622 | 622 |
|
623 | 623 |
}; |
624 | 624 |
|
625 | 625 |
template <typename _Value> |
626 | 626 |
class ArcMap |
627 | 627 |
: public MapExtender<DefaultMap<Graph, Arc, _Value> > { |
628 | 628 |
typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent; |
629 | 629 |
|
630 | 630 |
public: |
631 |
ArcMap(const Graph& graph) |
|
631 |
explicit ArcMap(const Graph& graph) |
|
632 | 632 |
: Parent(graph) {} |
633 | 633 |
ArcMap(const Graph& graph, const _Value& value) |
634 | 634 |
: Parent(graph, value) {} |
635 | 635 |
|
636 | 636 |
private: |
637 | 637 |
ArcMap& operator=(const ArcMap& cmap) { |
638 | 638 |
return operator=<ArcMap>(cmap); |
639 | 639 |
} |
640 | 640 |
|
641 | 641 |
template <typename CMap> |
642 | 642 |
ArcMap& operator=(const CMap& cmap) { |
643 | 643 |
Parent::operator=(cmap); |
644 | 644 |
return *this; |
645 | 645 |
} |
646 | 646 |
}; |
647 | 647 |
|
648 | 648 |
|
649 | 649 |
template <typename _Value> |
650 | 650 |
class EdgeMap |
651 | 651 |
: public MapExtender<DefaultMap<Graph, Edge, _Value> > { |
652 | 652 |
typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent; |
653 | 653 |
|
654 | 654 |
public: |
655 |
EdgeMap(const Graph& graph) |
|
655 |
explicit EdgeMap(const Graph& graph) |
|
656 | 656 |
: Parent(graph) {} |
657 | 657 |
|
658 | 658 |
EdgeMap(const Graph& graph, const _Value& value) |
659 | 659 |
: Parent(graph, value) {} |
660 | 660 |
|
661 | 661 |
private: |
662 | 662 |
EdgeMap& operator=(const EdgeMap& cmap) { |
663 | 663 |
return operator=<EdgeMap>(cmap); |
664 | 664 |
} |
665 | 665 |
|
666 | 666 |
template <typename CMap> |
667 | 667 |
EdgeMap& operator=(const CMap& cmap) { |
668 | 668 |
Parent::operator=(cmap); |
669 | 669 |
return *this; |
670 | 670 |
} |
671 | 671 |
|
672 | 672 |
}; |
673 | 673 |
|
674 | 674 |
// Alteration extension |
675 | 675 |
|
676 | 676 |
Node addNode() { |
677 | 677 |
Node node = Parent::addNode(); |
678 | 678 |
notifier(Node()).add(node); |
679 | 679 |
return node; |
680 | 680 |
} |
681 | 681 |
|
682 | 682 |
Edge addEdge(const Node& from, const Node& to) { |
683 | 683 |
Edge edge = Parent::addEdge(from, to); |
684 | 684 |
notifier(Edge()).add(edge); |
685 | 685 |
std::vector<Arc> ev; |
686 | 686 |
ev.push_back(Parent::direct(edge, true)); |
687 | 687 |
ev.push_back(Parent::direct(edge, false)); |
688 | 688 |
notifier(Arc()).add(ev); |
689 | 689 |
return edge; |
690 | 690 |
} |
691 | 691 |
|
692 | 692 |
void clear() { |
693 | 693 |
notifier(Arc()).clear(); |
694 | 694 |
notifier(Edge()).clear(); |
695 | 695 |
notifier(Node()).clear(); |
696 | 696 |
Parent::clear(); |
697 | 697 |
} |
698 | 698 |
|
699 | 699 |
template <typename Graph, typename NodeRefMap, typename EdgeRefMap> |
700 | 700 |
void build(const Graph& graph, NodeRefMap& nodeRef, |
701 | 701 |
EdgeRefMap& edgeRef) { |
702 | 702 |
Parent::build(graph, nodeRef, edgeRef); |
703 | 703 |
notifier(Node()).build(); |
704 | 704 |
notifier(Edge()).build(); |
705 | 705 |
notifier(Arc()).build(); |
706 | 706 |
} |
707 | 707 |
|
708 | 708 |
void erase(const Node& node) { |
709 | 709 |
Arc arc; |
710 | 710 |
Parent::firstOut(arc, node); |
711 | 711 |
while (arc != INVALID ) { |
712 | 712 |
erase(arc); |
713 | 713 |
Parent::firstOut(arc, node); |
714 | 714 |
} |
715 | 715 |
|
716 | 716 |
Parent::firstIn(arc, node); |
717 | 717 |
while (arc != INVALID ) { |
718 | 718 |
erase(arc); |
719 | 719 |
Parent::firstIn(arc, node); |
720 | 720 |
} |
721 | 721 |
|
722 | 722 |
notifier(Node()).erase(node); |
723 | 723 |
Parent::erase(node); |
724 | 724 |
} |
725 | 725 |
|
726 | 726 |
void erase(const Edge& edge) { |
727 | 727 |
std::vector<Arc> av; |
728 | 728 |
av.push_back(Parent::direct(edge, true)); |
729 | 729 |
av.push_back(Parent::direct(edge, false)); |
730 | 730 |
notifier(Arc()).erase(av); |
731 | 731 |
notifier(Edge()).erase(edge); |
732 | 732 |
Parent::erase(edge); |
733 | 733 |
} |
734 | 734 |
|
735 | 735 |
GraphExtender() { |
736 | 736 |
node_notifier.setContainer(*this); |
737 | 737 |
arc_notifier.setContainer(*this); |
738 | 738 |
edge_notifier.setContainer(*this); |
739 | 739 |
} |
740 | 740 |
|
741 | 741 |
~GraphExtender() { |
742 | 742 |
edge_notifier.clear(); |
743 | 743 |
arc_notifier.clear(); |
744 | 744 |
node_notifier.clear(); |
745 | 745 |
} |
746 | 746 |
|
747 | 747 |
}; |
748 | 748 |
|
749 | 749 |
} |
750 | 750 |
|
751 | 751 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CIRCULATION_H |
20 | 20 |
#define LEMON_CIRCULATION_H |
21 | 21 |
|
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
#include <lemon/elevator.h> |
24 | 24 |
#include <limits> |
25 | 25 |
|
26 | 26 |
///\ingroup max_flow |
27 | 27 |
///\file |
28 | 28 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
29 | 29 |
/// |
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
/// \brief Default traits class of Circulation class. |
33 | 33 |
/// |
34 | 34 |
/// Default traits class of Circulation class. |
35 | 35 |
/// |
36 | 36 |
/// \tparam GR Type of the digraph the algorithm runs on. |
37 | 37 |
/// \tparam LM The type of the lower bound map. |
38 | 38 |
/// \tparam UM The type of the upper bound (capacity) map. |
39 | 39 |
/// \tparam SM The type of the supply map. |
40 | 40 |
template <typename GR, typename LM, |
41 | 41 |
typename UM, typename SM> |
42 | 42 |
struct CirculationDefaultTraits { |
43 | 43 |
|
44 | 44 |
/// \brief The type of the digraph the algorithm runs on. |
45 | 45 |
typedef GR Digraph; |
46 | 46 |
|
47 | 47 |
/// \brief The type of the lower bound map. |
48 | 48 |
/// |
49 | 49 |
/// The type of the map that stores the lower bounds on the arcs. |
50 | 50 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
51 | 51 |
typedef LM LowerMap; |
52 | 52 |
|
53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
54 | 54 |
/// |
55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
56 | 56 |
/// on the arcs. |
57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
58 | 58 |
typedef UM UpperMap; |
59 | 59 |
|
60 | 60 |
/// \brief The type of supply map. |
61 | 61 |
/// |
62 | 62 |
/// The type of the map that stores the signed supply values of the |
63 | 63 |
/// nodes. |
64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
65 | 65 |
typedef SM SupplyMap; |
66 | 66 |
|
67 | 67 |
/// \brief The type of the flow and supply values. |
68 | 68 |
typedef typename SupplyMap::Value Value; |
69 | 69 |
|
70 | 70 |
/// \brief The type of the map that stores the flow values. |
71 | 71 |
/// |
72 | 72 |
/// The type of the map that stores the flow values. |
73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
74 | 74 |
/// concept. |
75 |
#ifdef DOXYGEN |
|
76 |
typedef GR::ArcMap<Value> FlowMap; |
|
77 |
#else |
|
75 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
79 |
#endif |
|
76 | 80 |
|
77 | 81 |
/// \brief Instantiates a FlowMap. |
78 | 82 |
/// |
79 | 83 |
/// This function instantiates a \ref FlowMap. |
80 | 84 |
/// \param digraph The digraph for which we would like to define |
81 | 85 |
/// the flow map. |
82 | 86 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
83 | 87 |
return new FlowMap(digraph); |
84 | 88 |
} |
85 | 89 |
|
86 | 90 |
/// \brief The elevator type used by the algorithm. |
87 | 91 |
/// |
88 | 92 |
/// The elevator type used by the algorithm. |
89 | 93 |
/// |
90 |
/// \sa Elevator |
|
91 |
/// \sa LinkedElevator |
|
94 |
/// \sa Elevator, LinkedElevator |
|
95 |
#ifdef DOXYGEN |
|
96 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
97 |
#else |
|
92 | 98 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
99 |
#endif |
|
93 | 100 |
|
94 | 101 |
/// \brief Instantiates an Elevator. |
95 | 102 |
/// |
96 | 103 |
/// This function instantiates an \ref Elevator. |
97 | 104 |
/// \param digraph The digraph for which we would like to define |
98 | 105 |
/// the elevator. |
99 | 106 |
/// \param max_level The maximum level of the elevator. |
100 | 107 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
101 | 108 |
return new Elevator(digraph, max_level); |
102 | 109 |
} |
103 | 110 |
|
104 | 111 |
/// \brief The tolerance used by the algorithm |
105 | 112 |
/// |
106 | 113 |
/// The tolerance used by the algorithm to handle inexact computation. |
107 | 114 |
typedef lemon::Tolerance<Value> Tolerance; |
108 | 115 |
|
109 | 116 |
}; |
110 | 117 |
|
111 | 118 |
/** |
112 | 119 |
\brief Push-relabel algorithm for the network circulation problem. |
113 | 120 |
|
114 | 121 |
\ingroup max_flow |
115 | 122 |
This class implements a push-relabel algorithm for the \e network |
116 | 123 |
\e circulation problem. |
117 | 124 |
It is to find a feasible circulation when lower and upper bounds |
118 | 125 |
are given for the flow values on the arcs and lower bounds are |
119 | 126 |
given for the difference between the outgoing and incoming flow |
120 | 127 |
at the nodes. |
121 | 128 |
|
122 | 129 |
The exact formulation of this problem is the following. |
123 | 130 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$ |
124 | 131 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and |
125 | 132 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
126 | 133 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$ |
127 | 134 |
denotes the signed supply values of the nodes. |
128 | 135 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
129 | 136 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
130 | 137 |
\f$-sup(u)\f$ demand. |
131 | 138 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$ |
132 | 139 |
solution of the following problem. |
133 | 140 |
|
134 | 141 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) |
135 | 142 |
\geq sup(u) \quad \forall u\in V, \f] |
136 | 143 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
137 | 144 |
|
138 | 145 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
139 | 146 |
zero or negative in order to have a feasible solution (since the sum |
140 | 147 |
of the expressions on the left-hand side of the inequalities is zero). |
141 | 148 |
It means that the total demand must be greater or equal to the total |
142 | 149 |
supply and all the supplies have to be carried out from the supply nodes, |
143 | 150 |
but there could be demands that are not satisfied. |
144 | 151 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
145 | 152 |
constraints have to be satisfied with equality, i.e. all demands |
146 | 153 |
have to be satisfied and all supplies have to be used. |
147 | 154 |
|
148 | 155 |
If you need the opposite inequalities in the supply/demand constraints |
149 | 156 |
(i.e. the total demand is less than the total supply and all the demands |
150 | 157 |
have to be satisfied while there could be supplies that are not used), |
151 | 158 |
then you could easily transform the problem to the above form by reversing |
152 | 159 |
the direction of the arcs and taking the negative of the supply values |
153 | 160 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
154 | 161 |
|
155 | 162 |
This algorithm either calculates a feasible circulation, or provides |
156 | 163 |
a \ref barrier() "barrier", which prooves that a feasible soultion |
157 | 164 |
cannot exist. |
158 | 165 |
|
159 | 166 |
Note that this algorithm also provides a feasible solution for the |
160 | 167 |
\ref min_cost_flow "minimum cost flow problem". |
161 | 168 |
|
162 | 169 |
\tparam GR The type of the digraph the algorithm runs on. |
163 | 170 |
\tparam LM The type of the lower bound map. The default |
164 | 171 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
165 | 172 |
\tparam UM The type of the upper bound (capacity) map. |
166 | 173 |
The default map type is \c LM. |
167 | 174 |
\tparam SM The type of the supply map. The default map type is |
168 | 175 |
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". |
169 | 176 |
*/ |
170 | 177 |
#ifdef DOXYGEN |
171 | 178 |
template< typename GR, |
172 | 179 |
typename LM, |
173 | 180 |
typename UM, |
174 | 181 |
typename SM, |
175 | 182 |
typename TR > |
176 | 183 |
#else |
177 | 184 |
template< typename GR, |
178 | 185 |
typename LM = typename GR::template ArcMap<int>, |
179 | 186 |
typename UM = LM, |
180 | 187 |
typename SM = typename GR::template NodeMap<typename UM::Value>, |
181 | 188 |
typename TR = CirculationDefaultTraits<GR, LM, UM, SM> > |
182 | 189 |
#endif |
183 | 190 |
class Circulation { |
184 | 191 |
public: |
185 | 192 |
|
186 | 193 |
///The \ref CirculationDefaultTraits "traits class" of the algorithm. |
187 | 194 |
typedef TR Traits; |
188 | 195 |
///The type of the digraph the algorithm runs on. |
189 | 196 |
typedef typename Traits::Digraph Digraph; |
190 | 197 |
///The type of the flow and supply values. |
191 | 198 |
typedef typename Traits::Value Value; |
192 | 199 |
|
193 | 200 |
///The type of the lower bound map. |
194 | 201 |
typedef typename Traits::LowerMap LowerMap; |
195 | 202 |
///The type of the upper bound (capacity) map. |
196 | 203 |
typedef typename Traits::UpperMap UpperMap; |
197 | 204 |
///The type of the supply map. |
198 | 205 |
typedef typename Traits::SupplyMap SupplyMap; |
199 | 206 |
///The type of the flow map. |
200 | 207 |
typedef typename Traits::FlowMap FlowMap; |
201 | 208 |
|
202 | 209 |
///The type of the elevator. |
203 | 210 |
typedef typename Traits::Elevator Elevator; |
204 | 211 |
///The type of the tolerance. |
205 | 212 |
typedef typename Traits::Tolerance Tolerance; |
206 | 213 |
|
207 | 214 |
private: |
208 | 215 |
|
209 | 216 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
210 | 217 |
|
211 | 218 |
const Digraph &_g; |
212 | 219 |
int _node_num; |
213 | 220 |
|
214 | 221 |
const LowerMap *_lo; |
215 | 222 |
const UpperMap *_up; |
216 | 223 |
const SupplyMap *_supply; |
217 | 224 |
|
218 | 225 |
FlowMap *_flow; |
219 | 226 |
bool _local_flow; |
220 | 227 |
|
221 | 228 |
Elevator* _level; |
222 | 229 |
bool _local_level; |
223 | 230 |
|
224 | 231 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
225 | 232 |
ExcessMap* _excess; |
226 | 233 |
|
227 | 234 |
Tolerance _tol; |
228 | 235 |
int _el; |
229 | 236 |
|
230 | 237 |
public: |
231 | 238 |
|
232 | 239 |
typedef Circulation Create; |
233 | 240 |
|
234 | 241 |
///\name Named Template Parameters |
235 | 242 |
|
236 | 243 |
///@{ |
237 | 244 |
|
238 | 245 |
template <typename T> |
239 | 246 |
struct SetFlowMapTraits : public Traits { |
240 | 247 |
typedef T FlowMap; |
241 | 248 |
static FlowMap *createFlowMap(const Digraph&) { |
242 | 249 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
243 | 250 |
return 0; // ignore warnings |
244 | 251 |
} |
245 | 252 |
}; |
246 | 253 |
|
247 | 254 |
/// \brief \ref named-templ-param "Named parameter" for setting |
248 | 255 |
/// FlowMap type |
249 | 256 |
/// |
250 | 257 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
251 | 258 |
/// type. |
252 | 259 |
template <typename T> |
253 | 260 |
struct SetFlowMap |
254 | 261 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
255 | 262 |
SetFlowMapTraits<T> > { |
256 | 263 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
257 | 264 |
SetFlowMapTraits<T> > Create; |
258 | 265 |
}; |
259 | 266 |
|
260 | 267 |
template <typename T> |
261 | 268 |
struct SetElevatorTraits : public Traits { |
262 | 269 |
typedef T Elevator; |
263 | 270 |
static Elevator *createElevator(const Digraph&, int) { |
264 | 271 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
265 | 272 |
return 0; // ignore warnings |
266 | 273 |
} |
267 | 274 |
}; |
268 | 275 |
|
269 | 276 |
/// \brief \ref named-templ-param "Named parameter" for setting |
270 | 277 |
/// Elevator type |
271 | 278 |
/// |
272 | 279 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
273 | 280 |
/// type. If this named parameter is used, then an external |
274 | 281 |
/// elevator object must be passed to the algorithm using the |
275 | 282 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
276 | 283 |
/// \ref run() or \ref init(). |
277 | 284 |
/// \sa SetStandardElevator |
278 | 285 |
template <typename T> |
279 | 286 |
struct SetElevator |
280 | 287 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
281 | 288 |
SetElevatorTraits<T> > { |
282 | 289 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
283 | 290 |
SetElevatorTraits<T> > Create; |
284 | 291 |
}; |
285 | 292 |
|
286 | 293 |
template <typename T> |
287 | 294 |
struct SetStandardElevatorTraits : public Traits { |
288 | 295 |
typedef T Elevator; |
289 | 296 |
static Elevator *createElevator(const Digraph& digraph, int max_level) { |
290 | 297 |
return new Elevator(digraph, max_level); |
291 | 298 |
} |
292 | 299 |
}; |
293 | 300 |
|
294 | 301 |
/// \brief \ref named-templ-param "Named parameter" for setting |
295 | 302 |
/// Elevator type with automatic allocation |
296 | 303 |
/// |
297 | 304 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
298 | 305 |
/// type with automatic allocation. |
299 | 306 |
/// The Elevator should have standard constructor interface to be |
300 | 307 |
/// able to automatically created by the algorithm (i.e. the |
301 | 308 |
/// digraph and the maximum level should be passed to it). |
302 | 309 |
/// However an external elevator object could also be passed to the |
303 | 310 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
304 | 311 |
/// before calling \ref run() or \ref init(). |
305 | 312 |
/// \sa SetElevator |
306 | 313 |
template <typename T> |
307 | 314 |
struct SetStandardElevator |
308 | 315 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
309 | 316 |
SetStandardElevatorTraits<T> > { |
310 | 317 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
311 | 318 |
SetStandardElevatorTraits<T> > Create; |
312 | 319 |
}; |
313 | 320 |
|
314 | 321 |
/// @} |
315 | 322 |
|
316 | 323 |
protected: |
317 | 324 |
|
318 | 325 |
Circulation() {} |
319 | 326 |
|
320 | 327 |
public: |
321 | 328 |
|
322 | 329 |
/// Constructor. |
323 | 330 |
|
324 | 331 |
/// The constructor of the class. |
325 | 332 |
/// |
326 | 333 |
/// \param graph The digraph the algorithm runs on. |
327 | 334 |
/// \param lower The lower bounds for the flow values on the arcs. |
328 | 335 |
/// \param upper The upper bounds (capacities) for the flow values |
329 | 336 |
/// on the arcs. |
330 | 337 |
/// \param supply The signed supply values of the nodes. |
331 | 338 |
Circulation(const Digraph &graph, const LowerMap &lower, |
332 | 339 |
const UpperMap &upper, const SupplyMap &supply) |
333 | 340 |
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply), |
334 | 341 |
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false), |
335 | 342 |
_excess(NULL) {} |
336 | 343 |
|
337 | 344 |
/// Destructor. |
338 | 345 |
~Circulation() { |
339 | 346 |
destroyStructures(); |
340 | 347 |
} |
341 | 348 |
|
342 | 349 |
|
343 | 350 |
private: |
344 | 351 |
|
345 | 352 |
bool checkBoundMaps() { |
346 | 353 |
for (ArcIt e(_g);e!=INVALID;++e) { |
347 | 354 |
if (_tol.less((*_up)[e], (*_lo)[e])) return false; |
348 | 355 |
} |
349 | 356 |
return true; |
350 | 357 |
} |
351 | 358 |
|
352 | 359 |
void createStructures() { |
353 | 360 |
_node_num = _el = countNodes(_g); |
354 | 361 |
|
355 | 362 |
if (!_flow) { |
356 | 363 |
_flow = Traits::createFlowMap(_g); |
357 | 364 |
_local_flow = true; |
358 | 365 |
} |
359 | 366 |
if (!_level) { |
360 | 367 |
_level = Traits::createElevator(_g, _node_num); |
361 | 368 |
_local_level = true; |
362 | 369 |
} |
363 | 370 |
if (!_excess) { |
364 | 371 |
_excess = new ExcessMap(_g); |
365 | 372 |
} |
366 | 373 |
} |
367 | 374 |
|
368 | 375 |
void destroyStructures() { |
369 | 376 |
if (_local_flow) { |
370 | 377 |
delete _flow; |
371 | 378 |
} |
372 | 379 |
if (_local_level) { |
373 | 380 |
delete _level; |
374 | 381 |
} |
375 | 382 |
if (_excess) { |
376 | 383 |
delete _excess; |
377 | 384 |
} |
378 | 385 |
} |
379 | 386 |
|
380 | 387 |
public: |
381 | 388 |
|
382 | 389 |
/// Sets the lower bound map. |
383 | 390 |
|
384 | 391 |
/// Sets the lower bound map. |
385 | 392 |
/// \return <tt>(*this)</tt> |
386 | 393 |
Circulation& lowerMap(const LowerMap& map) { |
387 | 394 |
_lo = ↦ |
388 | 395 |
return *this; |
389 | 396 |
} |
390 | 397 |
|
391 | 398 |
/// Sets the upper bound (capacity) map. |
392 | 399 |
|
393 | 400 |
/// Sets the upper bound (capacity) map. |
394 | 401 |
/// \return <tt>(*this)</tt> |
395 | 402 |
Circulation& upperMap(const UpperMap& map) { |
396 | 403 |
_up = ↦ |
397 | 404 |
return *this; |
398 | 405 |
} |
399 | 406 |
|
400 | 407 |
/// Sets the supply map. |
401 | 408 |
|
402 | 409 |
/// Sets the supply map. |
403 | 410 |
/// \return <tt>(*this)</tt> |
404 | 411 |
Circulation& supplyMap(const SupplyMap& map) { |
405 | 412 |
_supply = ↦ |
406 | 413 |
return *this; |
407 | 414 |
} |
408 | 415 |
|
409 | 416 |
/// \brief Sets the flow map. |
410 | 417 |
/// |
411 | 418 |
/// Sets the flow map. |
412 | 419 |
/// If you don't use this function before calling \ref run() or |
413 | 420 |
/// \ref init(), an instance will be allocated automatically. |
414 | 421 |
/// The destructor deallocates this automatically allocated map, |
415 | 422 |
/// of course. |
416 | 423 |
/// \return <tt>(*this)</tt> |
417 | 424 |
Circulation& flowMap(FlowMap& map) { |
418 | 425 |
if (_local_flow) { |
419 | 426 |
delete _flow; |
420 | 427 |
_local_flow = false; |
421 | 428 |
} |
422 | 429 |
_flow = ↦ |
423 | 430 |
return *this; |
424 | 431 |
} |
425 | 432 |
|
426 | 433 |
/// \brief Sets the elevator used by algorithm. |
427 | 434 |
/// |
428 | 435 |
/// Sets the elevator used by algorithm. |
429 | 436 |
/// If you don't use this function before calling \ref run() or |
430 | 437 |
/// \ref init(), an instance will be allocated automatically. |
431 | 438 |
/// The destructor deallocates this automatically allocated elevator, |
432 | 439 |
/// of course. |
433 | 440 |
/// \return <tt>(*this)</tt> |
434 | 441 |
Circulation& elevator(Elevator& elevator) { |
435 | 442 |
if (_local_level) { |
436 | 443 |
delete _level; |
437 | 444 |
_local_level = false; |
438 | 445 |
} |
439 | 446 |
_level = &elevator; |
440 | 447 |
return *this; |
441 | 448 |
} |
442 | 449 |
|
443 | 450 |
/// \brief Returns a const reference to the elevator. |
444 | 451 |
/// |
445 | 452 |
/// Returns a const reference to the elevator. |
446 | 453 |
/// |
447 | 454 |
/// \pre Either \ref run() or \ref init() must be called before |
448 | 455 |
/// using this function. |
449 | 456 |
const Elevator& elevator() const { |
450 | 457 |
return *_level; |
451 | 458 |
} |
452 | 459 |
|
453 |
/// \brief Sets the tolerance used by algorithm. |
|
460 |
/// \brief Sets the tolerance used by the algorithm. |
|
454 | 461 |
/// |
455 |
/// Sets the tolerance used by algorithm. |
|
456 |
Circulation& tolerance(const Tolerance& tolerance) const { |
|
462 |
/// Sets the tolerance object used by the algorithm. |
|
463 |
/// \return <tt>(*this)</tt> |
|
464 |
Circulation& tolerance(const Tolerance& tolerance) { |
|
457 | 465 |
_tol = tolerance; |
458 | 466 |
return *this; |
459 | 467 |
} |
460 | 468 |
|
461 | 469 |
/// \brief Returns a const reference to the tolerance. |
462 | 470 |
/// |
463 |
/// Returns a const reference to the tolerance |
|
471 |
/// Returns a const reference to the tolerance object used by |
|
472 |
/// the algorithm. |
|
464 | 473 |
const Tolerance& tolerance() const { |
465 |
return |
|
474 |
return _tol; |
|
466 | 475 |
} |
467 | 476 |
|
468 | 477 |
/// \name Execution Control |
469 | 478 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
470 |
/// If you need more control on the initial solution or the execution, |
|
471 |
/// first you have to call one of the \ref init() functions, then |
|
479 |
/// If you need better control on the initial solution or the execution, |
|
480 |
/// you have to call one of the \ref init() functions first, then |
|
472 | 481 |
/// the \ref start() function. |
473 | 482 |
|
474 | 483 |
///@{ |
475 | 484 |
|
476 | 485 |
/// Initializes the internal data structures. |
477 | 486 |
|
478 | 487 |
/// Initializes the internal data structures and sets all flow values |
479 | 488 |
/// to the lower bound. |
480 | 489 |
void init() |
481 | 490 |
{ |
482 | 491 |
LEMON_DEBUG(checkBoundMaps(), |
483 | 492 |
"Upper bounds must be greater or equal to the lower bounds"); |
484 | 493 |
|
485 | 494 |
createStructures(); |
486 | 495 |
|
487 | 496 |
for(NodeIt n(_g);n!=INVALID;++n) { |
488 | 497 |
(*_excess)[n] = (*_supply)[n]; |
489 | 498 |
} |
490 | 499 |
|
491 | 500 |
for (ArcIt e(_g);e!=INVALID;++e) { |
492 | 501 |
_flow->set(e, (*_lo)[e]); |
493 | 502 |
(*_excess)[_g.target(e)] += (*_flow)[e]; |
494 | 503 |
(*_excess)[_g.source(e)] -= (*_flow)[e]; |
495 | 504 |
} |
496 | 505 |
|
497 | 506 |
// global relabeling tested, but in general case it provides |
498 | 507 |
// worse performance for random digraphs |
499 | 508 |
_level->initStart(); |
500 | 509 |
for(NodeIt n(_g);n!=INVALID;++n) |
501 | 510 |
_level->initAddItem(n); |
502 | 511 |
_level->initFinish(); |
503 | 512 |
for(NodeIt n(_g);n!=INVALID;++n) |
504 | 513 |
if(_tol.positive((*_excess)[n])) |
505 | 514 |
_level->activate(n); |
506 | 515 |
} |
507 | 516 |
|
508 | 517 |
/// Initializes the internal data structures using a greedy approach. |
509 | 518 |
|
510 | 519 |
/// Initializes the internal data structures using a greedy approach |
511 | 520 |
/// to construct the initial solution. |
512 | 521 |
void greedyInit() |
513 | 522 |
{ |
514 | 523 |
LEMON_DEBUG(checkBoundMaps(), |
515 | 524 |
"Upper bounds must be greater or equal to the lower bounds"); |
516 | 525 |
|
517 | 526 |
createStructures(); |
518 | 527 |
|
519 | 528 |
for(NodeIt n(_g);n!=INVALID;++n) { |
520 | 529 |
(*_excess)[n] = (*_supply)[n]; |
521 | 530 |
} |
522 | 531 |
|
523 | 532 |
for (ArcIt e(_g);e!=INVALID;++e) { |
524 | 533 |
if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) { |
525 | 534 |
_flow->set(e, (*_up)[e]); |
526 | 535 |
(*_excess)[_g.target(e)] += (*_up)[e]; |
527 | 536 |
(*_excess)[_g.source(e)] -= (*_up)[e]; |
528 | 537 |
} else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) { |
529 | 538 |
_flow->set(e, (*_lo)[e]); |
530 | 539 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
531 | 540 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
532 | 541 |
} else { |
533 | 542 |
Value fc = -(*_excess)[_g.target(e)]; |
534 | 543 |
_flow->set(e, fc); |
535 | 544 |
(*_excess)[_g.target(e)] = 0; |
536 | 545 |
(*_excess)[_g.source(e)] -= fc; |
537 | 546 |
} |
538 | 547 |
} |
539 | 548 |
|
540 | 549 |
_level->initStart(); |
541 | 550 |
for(NodeIt n(_g);n!=INVALID;++n) |
542 | 551 |
_level->initAddItem(n); |
543 | 552 |
_level->initFinish(); |
544 | 553 |
for(NodeIt n(_g);n!=INVALID;++n) |
545 | 554 |
if(_tol.positive((*_excess)[n])) |
546 | 555 |
_level->activate(n); |
547 | 556 |
} |
548 | 557 |
|
549 | 558 |
///Executes the algorithm |
550 | 559 |
|
551 | 560 |
///This function executes the algorithm. |
552 | 561 |
/// |
553 | 562 |
///\return \c true if a feasible circulation is found. |
554 | 563 |
/// |
555 | 564 |
///\sa barrier() |
556 | 565 |
///\sa barrierMap() |
557 | 566 |
bool start() |
558 | 567 |
{ |
559 | 568 |
|
560 | 569 |
Node act; |
561 | 570 |
Node bact=INVALID; |
562 | 571 |
Node last_activated=INVALID; |
563 | 572 |
while((act=_level->highestActive())!=INVALID) { |
564 | 573 |
int actlevel=(*_level)[act]; |
565 | 574 |
int mlevel=_node_num; |
566 | 575 |
Value exc=(*_excess)[act]; |
567 | 576 |
|
568 | 577 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) { |
569 | 578 |
Node v = _g.target(e); |
570 | 579 |
Value fc=(*_up)[e]-(*_flow)[e]; |
571 | 580 |
if(!_tol.positive(fc)) continue; |
572 | 581 |
if((*_level)[v]<actlevel) { |
573 | 582 |
if(!_tol.less(fc, exc)) { |
574 | 583 |
_flow->set(e, (*_flow)[e] + exc); |
575 | 584 |
(*_excess)[v] += exc; |
576 | 585 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
577 | 586 |
_level->activate(v); |
578 | 587 |
(*_excess)[act] = 0; |
579 | 588 |
_level->deactivate(act); |
580 | 589 |
goto next_l; |
581 | 590 |
} |
582 | 591 |
else { |
583 | 592 |
_flow->set(e, (*_up)[e]); |
584 | 593 |
(*_excess)[v] += fc; |
585 | 594 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
586 | 595 |
_level->activate(v); |
587 | 596 |
exc-=fc; |
588 | 597 |
} |
589 | 598 |
} |
590 | 599 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
591 | 600 |
} |
592 | 601 |
for(InArcIt e(_g,act);e!=INVALID; ++e) { |
593 | 602 |
Node v = _g.source(e); |
594 | 603 |
Value fc=(*_flow)[e]-(*_lo)[e]; |
595 | 604 |
if(!_tol.positive(fc)) continue; |
596 | 605 |
if((*_level)[v]<actlevel) { |
597 | 606 |
if(!_tol.less(fc, exc)) { |
598 | 607 |
_flow->set(e, (*_flow)[e] - exc); |
599 | 608 |
(*_excess)[v] += exc; |
600 | 609 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
601 | 610 |
_level->activate(v); |
602 | 611 |
(*_excess)[act] = 0; |
603 | 612 |
_level->deactivate(act); |
604 | 613 |
goto next_l; |
605 | 614 |
} |
606 | 615 |
else { |
607 | 616 |
_flow->set(e, (*_lo)[e]); |
608 | 617 |
(*_excess)[v] += fc; |
609 | 618 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
610 | 619 |
_level->activate(v); |
611 | 620 |
exc-=fc; |
612 | 621 |
} |
613 | 622 |
} |
614 | 623 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
615 | 624 |
} |
616 | 625 |
|
617 | 626 |
(*_excess)[act] = exc; |
618 | 627 |
if(!_tol.positive(exc)) _level->deactivate(act); |
619 | 628 |
else if(mlevel==_node_num) { |
620 | 629 |
_level->liftHighestActiveToTop(); |
621 | 630 |
_el = _node_num; |
622 | 631 |
return false; |
623 | 632 |
} |
624 | 633 |
else { |
625 | 634 |
_level->liftHighestActive(mlevel+1); |
626 | 635 |
if(_level->onLevel(actlevel)==0) { |
627 | 636 |
_el = actlevel; |
628 | 637 |
return false; |
629 | 638 |
} |
630 | 639 |
} |
631 | 640 |
next_l: |
632 | 641 |
; |
633 | 642 |
} |
634 | 643 |
return true; |
635 | 644 |
} |
636 | 645 |
|
637 | 646 |
/// Runs the algorithm. |
638 | 647 |
|
639 | 648 |
/// This function runs the algorithm. |
640 | 649 |
/// |
641 | 650 |
/// \return \c true if a feasible circulation is found. |
642 | 651 |
/// |
643 | 652 |
/// \note Apart from the return value, c.run() is just a shortcut of |
644 | 653 |
/// the following code. |
645 | 654 |
/// \code |
646 | 655 |
/// c.greedyInit(); |
647 | 656 |
/// c.start(); |
648 | 657 |
/// \endcode |
649 | 658 |
bool run() { |
650 | 659 |
greedyInit(); |
651 | 660 |
return start(); |
652 | 661 |
} |
653 | 662 |
|
654 | 663 |
/// @} |
655 | 664 |
|
656 | 665 |
/// \name Query Functions |
657 | 666 |
/// The results of the circulation algorithm can be obtained using |
658 | 667 |
/// these functions.\n |
659 | 668 |
/// Either \ref run() or \ref start() should be called before |
660 | 669 |
/// using them. |
661 | 670 |
|
662 | 671 |
///@{ |
663 | 672 |
|
664 | 673 |
/// \brief Returns the flow value on the given arc. |
665 | 674 |
/// |
666 | 675 |
/// Returns the flow value on the given arc. |
667 | 676 |
/// |
668 | 677 |
/// \pre Either \ref run() or \ref init() must be called before |
669 | 678 |
/// using this function. |
670 | 679 |
Value flow(const Arc& arc) const { |
671 | 680 |
return (*_flow)[arc]; |
672 | 681 |
} |
673 | 682 |
|
674 | 683 |
/// \brief Returns a const reference to the flow map. |
675 | 684 |
/// |
676 | 685 |
/// Returns a const reference to the arc map storing the found flow. |
677 | 686 |
/// |
678 | 687 |
/// \pre Either \ref run() or \ref init() must be called before |
679 | 688 |
/// using this function. |
680 | 689 |
const FlowMap& flowMap() const { |
681 | 690 |
return *_flow; |
682 | 691 |
} |
683 | 692 |
|
684 | 693 |
/** |
685 | 694 |
\brief Returns \c true if the given node is in a barrier. |
686 | 695 |
|
687 | 696 |
Barrier is a set \e B of nodes for which |
688 | 697 |
|
689 | 698 |
\f[ \sum_{uv\in A: u\in B} upper(uv) - |
690 | 699 |
\sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f] |
691 | 700 |
|
692 | 701 |
holds. The existence of a set with this property prooves that a |
693 | 702 |
feasible circualtion cannot exist. |
694 | 703 |
|
695 | 704 |
This function returns \c true if the given node is in the found |
696 | 705 |
barrier. If a feasible circulation is found, the function |
697 | 706 |
gives back \c false for every node. |
698 | 707 |
|
699 | 708 |
\pre Either \ref run() or \ref init() must be called before |
700 | 709 |
using this function. |
701 | 710 |
|
702 | 711 |
\sa barrierMap() |
703 | 712 |
\sa checkBarrier() |
704 | 713 |
*/ |
705 | 714 |
bool barrier(const Node& node) const |
706 | 715 |
{ |
707 | 716 |
return (*_level)[node] >= _el; |
708 | 717 |
} |
709 | 718 |
|
710 | 719 |
/// \brief Gives back a barrier. |
711 | 720 |
/// |
712 | 721 |
/// This function sets \c bar to the characteristic vector of the |
713 | 722 |
/// found barrier. \c bar should be a \ref concepts::WriteMap "writable" |
714 | 723 |
/// node map with \c bool (or convertible) value type. |
715 | 724 |
/// |
716 | 725 |
/// If a feasible circulation is found, the function gives back an |
717 | 726 |
/// empty set, so \c bar[v] will be \c false for all nodes \c v. |
718 | 727 |
/// |
719 | 728 |
/// \note This function calls \ref barrier() for each node, |
720 | 729 |
/// so it runs in O(n) time. |
721 | 730 |
/// |
722 | 731 |
/// \pre Either \ref run() or \ref init() must be called before |
723 | 732 |
/// using this function. |
724 | 733 |
/// |
725 | 734 |
/// \sa barrier() |
726 | 735 |
/// \sa checkBarrier() |
727 | 736 |
template<class BarrierMap> |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 |
#ifndef LEMON_CONCEPTS_HEAP_H |
|
20 |
#define LEMON_CONCEPTS_HEAP_H |
|
21 |
|
|
19 | 22 |
///\ingroup concept |
20 | 23 |
///\file |
21 | 24 |
///\brief The concept of heaps. |
22 | 25 |
|
23 |
#ifndef LEMON_CONCEPTS_HEAP_H |
|
24 |
#define LEMON_CONCEPTS_HEAP_H |
|
25 |
|
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concept_check.h> |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \addtogroup concept |
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// \brief The heap concept. |
37 | 37 |
/// |
38 |
/// Concept class describing the main interface of heaps. A \e heap |
|
39 |
/// is a data structure for storing items with specified values called |
|
40 |
/// \e priorities in such a way that finding the item with minimum |
|
41 |
/// priority is efficient. In a heap one can change the priority of an |
|
42 |
/// |
|
38 |
/// This concept class describes the main interface of heaps. |
|
39 |
/// The various \ref heaps "heap structures" are efficient |
|
40 |
/// implementations of the abstract data type \e priority \e queue. |
|
41 |
/// They store items with specified values called \e priorities |
|
42 |
/// in such a way that finding and removing the item with minimum |
|
43 |
/// priority are efficient. The basic operations are adding and |
|
44 |
/// erasing items, changing the priority of an item, etc. |
|
43 | 45 |
/// |
44 |
/// \tparam PR Type of the priority of the items. |
|
45 |
/// \tparam IM A read and writable item map with int values, used |
|
46 |
/// Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
|
47 |
/// Any class that conforms to this concept can be used easily in such |
|
48 |
/// algorithms. |
|
49 |
/// |
|
50 |
/// \tparam PR Type of the priorities of the items. |
|
51 |
/// \tparam IM A read-writable item map with \c int values, used |
|
46 | 52 |
/// internally to handle the cross references. |
47 |
/// \tparam |
|
53 |
/// \tparam CMP A functor class for comparing the priorities. |
|
48 | 54 |
/// The default is \c std::less<PR>. |
49 | 55 |
#ifdef DOXYGEN |
50 |
template <typename PR, typename IM, typename |
|
56 |
template <typename PR, typename IM, typename CMP> |
|
51 | 57 |
#else |
52 |
template <typename PR, typename IM> |
|
58 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
53 | 59 |
#endif |
54 | 60 |
class Heap { |
55 | 61 |
public: |
56 | 62 |
|
57 | 63 |
/// Type of the item-int map. |
58 | 64 |
typedef IM ItemIntMap; |
59 | 65 |
/// Type of the priorities. |
60 | 66 |
typedef PR Prio; |
61 | 67 |
/// Type of the items stored in the heap. |
62 | 68 |
typedef typename ItemIntMap::Key Item; |
63 | 69 |
|
64 | 70 |
/// \brief Type to represent the states of the items. |
65 | 71 |
/// |
66 | 72 |
/// Each item has a state associated to it. It can be "in heap", |
67 |
/// "pre heap" or "post heap". The later two are indifferent |
|
68 |
/// from the point of view of the heap, but may be useful for |
|
69 |
/// |
|
73 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
74 |
/// heap's point of view, but may be useful to the user. |
|
70 | 75 |
/// |
71 | 76 |
/// The item-int map must be initialized in such way that it assigns |
72 | 77 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
73 | 78 |
enum State { |
74 | 79 |
IN_HEAP = 0, ///< = 0. The "in heap" state constant. |
75 |
PRE_HEAP = -1, ///< = -1. The "pre heap" state constant. |
|
76 |
POST_HEAP = -2 ///< = -2. The "post heap" state constant. |
|
80 |
PRE_HEAP = -1, ///< = -1. The "pre-heap" state constant. |
|
81 |
POST_HEAP = -2 ///< = -2. The "post-heap" state constant. |
|
77 | 82 |
}; |
78 | 83 |
|
79 |
/// \brief |
|
84 |
/// \brief Constructor. |
|
80 | 85 |
/// |
81 |
/// |
|
86 |
/// Constructor. |
|
82 | 87 |
/// \param map A map that assigns \c int values to keys of type |
83 | 88 |
/// \c Item. It is used internally by the heap implementations to |
84 | 89 |
/// handle the cross references. The assigned value must be |
85 |
/// \c PRE_HEAP (<tt>-1</tt>) for |
|
90 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
86 | 91 |
explicit Heap(ItemIntMap &map) {} |
87 | 92 |
|
93 |
/// \brief Constructor. |
|
94 |
/// |
|
95 |
/// Constructor. |
|
96 |
/// \param map A map that assigns \c int values to keys of type |
|
97 |
/// \c Item. It is used internally by the heap implementations to |
|
98 |
/// handle the cross references. The assigned value must be |
|
99 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
100 |
/// \param comp The function object used for comparing the priorities. |
|
101 |
explicit Heap(ItemIntMap &map, const CMP &comp) {} |
|
102 |
|
|
88 | 103 |
/// \brief The number of items stored in the heap. |
89 | 104 |
/// |
90 |
/// |
|
105 |
/// This function returns the number of items stored in the heap. |
|
91 | 106 |
int size() const { return 0; } |
92 | 107 |
|
93 |
/// \brief |
|
108 |
/// \brief Check if the heap is empty. |
|
94 | 109 |
/// |
95 |
/// |
|
110 |
/// This function returns \c true if the heap is empty. |
|
96 | 111 |
bool empty() const { return false; } |
97 | 112 |
|
98 |
/// \brief |
|
113 |
/// \brief Make the heap empty. |
|
99 | 114 |
/// |
100 |
/// Makes the heap empty. |
|
101 |
void clear(); |
|
115 |
/// This functon makes the heap empty. |
|
116 |
/// It does not change the cross reference map. If you want to reuse |
|
117 |
/// a heap that is not surely empty, you should first clear it and |
|
118 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
119 |
/// for each item. |
|
120 |
void clear() {} |
|
102 | 121 |
|
103 |
/// \brief |
|
122 |
/// \brief Insert an item into the heap with the given priority. |
|
104 | 123 |
/// |
105 |
/// |
|
124 |
/// This function inserts the given item into the heap with the |
|
125 |
/// given priority. |
|
106 | 126 |
/// \param i The item to insert. |
107 | 127 |
/// \param p The priority of the item. |
128 |
/// \pre \e i must not be stored in the heap. |
|
108 | 129 |
void push(const Item &i, const Prio &p) {} |
109 | 130 |
|
110 |
/// \brief |
|
131 |
/// \brief Return the item having minimum priority. |
|
111 | 132 |
/// |
112 |
/// |
|
133 |
/// This function returns the item having minimum priority. |
|
113 | 134 |
/// \pre The heap must be non-empty. |
114 | 135 |
Item top() const {} |
115 | 136 |
|
116 | 137 |
/// \brief The minimum priority. |
117 | 138 |
/// |
118 |
/// |
|
139 |
/// This function returns the minimum priority. |
|
119 | 140 |
/// \pre The heap must be non-empty. |
120 | 141 |
Prio prio() const {} |
121 | 142 |
|
122 |
/// \brief |
|
143 |
/// \brief Remove the item having minimum priority. |
|
123 | 144 |
/// |
124 |
/// |
|
145 |
/// This function removes the item having minimum priority. |
|
125 | 146 |
/// \pre The heap must be non-empty. |
126 | 147 |
void pop() {} |
127 | 148 |
|
128 |
/// \brief |
|
149 |
/// \brief Remove the given item from the heap. |
|
129 | 150 |
/// |
130 |
/// |
|
151 |
/// This function removes the given item from the heap if it is |
|
152 |
/// already stored. |
|
131 | 153 |
/// \param i The item to delete. |
154 |
/// \pre \e i must be in the heap. |
|
132 | 155 |
void erase(const Item &i) {} |
133 | 156 |
|
134 |
/// \brief The priority of |
|
157 |
/// \brief The priority of the given item. |
|
135 | 158 |
/// |
136 |
/// |
|
159 |
/// This function returns the priority of the given item. |
|
137 | 160 |
/// \param i The item. |
138 |
/// \pre \ |
|
161 |
/// \pre \e i must be in the heap. |
|
139 | 162 |
Prio operator[](const Item &i) const {} |
140 | 163 |
|
141 |
/// \brief |
|
164 |
/// \brief Set the priority of an item or insert it, if it is |
|
142 | 165 |
/// not stored in the heap. |
143 | 166 |
/// |
144 | 167 |
/// This method sets the priority of the given item if it is |
145 |
/// already stored in the heap. |
|
146 |
/// Otherwise it inserts the given item with the given priority. |
|
168 |
/// already stored in the heap. Otherwise it inserts the given |
|
169 |
/// item into the heap with the given priority. |
|
147 | 170 |
/// |
148 | 171 |
/// \param i The item. |
149 | 172 |
/// \param p The priority. |
150 | 173 |
void set(const Item &i, const Prio &p) {} |
151 | 174 |
|
152 |
/// \brief |
|
175 |
/// \brief Decrease the priority of an item to the given value. |
|
153 | 176 |
/// |
154 |
/// |
|
177 |
/// This function decreases the priority of an item to the given value. |
|
155 | 178 |
/// \param i The item. |
156 | 179 |
/// \param p The priority. |
157 |
/// \pre \ |
|
180 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
158 | 181 |
void decrease(const Item &i, const Prio &p) {} |
159 | 182 |
|
160 |
/// \brief |
|
183 |
/// \brief Increase the priority of an item to the given value. |
|
161 | 184 |
/// |
162 |
/// |
|
185 |
/// This function increases the priority of an item to the given value. |
|
163 | 186 |
/// \param i The item. |
164 | 187 |
/// \param p The priority. |
165 |
/// \pre \ |
|
188 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
166 | 189 |
void increase(const Item &i, const Prio &p) {} |
167 | 190 |
|
168 |
/// \brief Returns if an item is in, has already been in, or has |
|
169 |
/// never been in the heap. |
|
191 |
/// \brief Return the state of an item. |
|
170 | 192 |
/// |
171 | 193 |
/// This method returns \c PRE_HEAP if the given item has never |
172 | 194 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
173 | 195 |
/// and \c POST_HEAP otherwise. |
174 | 196 |
/// In the latter case it is possible that the item will get back |
175 | 197 |
/// to the heap again. |
176 | 198 |
/// \param i The item. |
177 | 199 |
State state(const Item &i) const {} |
178 | 200 |
|
179 |
/// \brief |
|
201 |
/// \brief Set the state of an item in the heap. |
|
180 | 202 |
/// |
181 |
/// Sets the state of the given item in the heap. It can be used |
|
182 |
/// to manually clear the heap when it is important to achive the |
|
183 |
/// |
|
203 |
/// This function sets the state of the given item in the heap. |
|
204 |
/// It can be used to manually clear the heap when it is important |
|
205 |
/// to achive better time complexity. |
|
184 | 206 |
/// \param i The item. |
185 | 207 |
/// \param st The state. It should not be \c IN_HEAP. |
186 | 208 |
void state(const Item& i, State st) {} |
187 | 209 |
|
188 | 210 |
|
189 | 211 |
template <typename _Heap> |
190 | 212 |
struct Constraints { |
191 | 213 |
public: |
192 | 214 |
void constraints() { |
193 | 215 |
typedef typename _Heap::Item OwnItem; |
194 | 216 |
typedef typename _Heap::Prio OwnPrio; |
195 | 217 |
typedef typename _Heap::State OwnState; |
196 | 218 |
|
197 | 219 |
Item item; |
198 | 220 |
Prio prio; |
199 | 221 |
item=Item(); |
200 | 222 |
prio=Prio(); |
201 | 223 |
ignore_unused_variable_warning(item); |
202 | 224 |
ignore_unused_variable_warning(prio); |
203 | 225 |
|
204 | 226 |
OwnItem own_item; |
205 | 227 |
OwnPrio own_prio; |
206 | 228 |
OwnState own_state; |
207 | 229 |
own_item=Item(); |
208 | 230 |
own_prio=Prio(); |
209 | 231 |
ignore_unused_variable_warning(own_item); |
210 | 232 |
ignore_unused_variable_warning(own_prio); |
211 | 233 |
ignore_unused_variable_warning(own_state); |
212 | 234 |
|
213 | 235 |
_Heap heap1(map); |
214 | 236 |
_Heap heap2 = heap1; |
215 | 237 |
ignore_unused_variable_warning(heap1); |
216 | 238 |
ignore_unused_variable_warning(heap2); |
217 | 239 |
|
218 | 240 |
int s = heap.size(); |
219 | 241 |
ignore_unused_variable_warning(s); |
220 | 242 |
bool e = heap.empty(); |
221 | 243 |
ignore_unused_variable_warning(e); |
222 | 244 |
|
223 | 245 |
prio = heap.prio(); |
224 | 246 |
item = heap.top(); |
225 | 247 |
prio = heap[item]; |
226 | 248 |
own_prio = heap.prio(); |
227 | 249 |
own_item = heap.top(); |
228 | 250 |
own_prio = heap[own_item]; |
229 | 251 |
|
230 | 252 |
heap.push(item, prio); |
231 | 253 |
heap.push(own_item, own_prio); |
232 | 254 |
heap.pop(); |
233 | 255 |
|
234 | 256 |
heap.set(item, prio); |
235 | 257 |
heap.decrease(item, prio); |
236 | 258 |
heap.increase(item, prio); |
237 | 259 |
heap.set(own_item, own_prio); |
238 | 260 |
heap.decrease(own_item, own_prio); |
239 | 261 |
heap.increase(own_item, own_prio); |
240 | 262 |
|
241 | 263 |
heap.erase(item); |
242 | 264 |
heap.erase(own_item); |
243 | 265 |
heap.clear(); |
244 | 266 |
|
245 | 267 |
own_state = heap.state(own_item); |
246 | 268 |
heap.state(own_item, own_state); |
247 | 269 |
|
248 | 270 |
own_state = _Heap::PRE_HEAP; |
249 | 271 |
own_state = _Heap::IN_HEAP; |
250 | 272 |
own_state = _Heap::POST_HEAP; |
251 | 273 |
} |
252 | 274 |
|
253 | 275 |
_Heap& heap; |
254 | 276 |
ItemIntMap& map; |
255 | 277 |
}; |
256 | 278 |
}; |
257 | 279 |
|
258 | 280 |
/// @} |
259 | 281 |
} // namespace lemon |
260 | 282 |
} |
261 | 283 |
#endif |
... | ... |
@@ -159,514 +159,514 @@ |
159 | 159 |
//Pointer to the underlying digraph. |
160 | 160 |
const Digraph *G; |
161 | 161 |
//Pointer to the map of predecessor arcs. |
162 | 162 |
PredMap *_pred; |
163 | 163 |
//Indicates if _pred is locally allocated (true) or not. |
164 | 164 |
bool local_pred; |
165 | 165 |
//Pointer to the map of distances. |
166 | 166 |
DistMap *_dist; |
167 | 167 |
//Indicates if _dist is locally allocated (true) or not. |
168 | 168 |
bool local_dist; |
169 | 169 |
//Pointer to the map of reached status of the nodes. |
170 | 170 |
ReachedMap *_reached; |
171 | 171 |
//Indicates if _reached is locally allocated (true) or not. |
172 | 172 |
bool local_reached; |
173 | 173 |
//Pointer to the map of processed status of the nodes. |
174 | 174 |
ProcessedMap *_processed; |
175 | 175 |
//Indicates if _processed is locally allocated (true) or not. |
176 | 176 |
bool local_processed; |
177 | 177 |
|
178 | 178 |
std::vector<typename Digraph::OutArcIt> _stack; |
179 | 179 |
int _stack_head; |
180 | 180 |
|
181 | 181 |
//Creates the maps if necessary. |
182 | 182 |
void create_maps() |
183 | 183 |
{ |
184 | 184 |
if(!_pred) { |
185 | 185 |
local_pred = true; |
186 | 186 |
_pred = Traits::createPredMap(*G); |
187 | 187 |
} |
188 | 188 |
if(!_dist) { |
189 | 189 |
local_dist = true; |
190 | 190 |
_dist = Traits::createDistMap(*G); |
191 | 191 |
} |
192 | 192 |
if(!_reached) { |
193 | 193 |
local_reached = true; |
194 | 194 |
_reached = Traits::createReachedMap(*G); |
195 | 195 |
} |
196 | 196 |
if(!_processed) { |
197 | 197 |
local_processed = true; |
198 | 198 |
_processed = Traits::createProcessedMap(*G); |
199 | 199 |
} |
200 | 200 |
} |
201 | 201 |
|
202 | 202 |
protected: |
203 | 203 |
|
204 | 204 |
Dfs() {} |
205 | 205 |
|
206 | 206 |
public: |
207 | 207 |
|
208 | 208 |
typedef Dfs Create; |
209 | 209 |
|
210 | 210 |
///\name Named Template Parameters |
211 | 211 |
|
212 | 212 |
///@{ |
213 | 213 |
|
214 | 214 |
template <class T> |
215 | 215 |
struct SetPredMapTraits : public Traits { |
216 | 216 |
typedef T PredMap; |
217 | 217 |
static PredMap *createPredMap(const Digraph &) |
218 | 218 |
{ |
219 | 219 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
220 | 220 |
return 0; // ignore warnings |
221 | 221 |
} |
222 | 222 |
}; |
223 | 223 |
///\brief \ref named-templ-param "Named parameter" for setting |
224 | 224 |
///\c PredMap type. |
225 | 225 |
/// |
226 | 226 |
///\ref named-templ-param "Named parameter" for setting |
227 | 227 |
///\c PredMap type. |
228 | 228 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
229 | 229 |
template <class T> |
230 | 230 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > { |
231 | 231 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
232 | 232 |
}; |
233 | 233 |
|
234 | 234 |
template <class T> |
235 | 235 |
struct SetDistMapTraits : public Traits { |
236 | 236 |
typedef T DistMap; |
237 | 237 |
static DistMap *createDistMap(const Digraph &) |
238 | 238 |
{ |
239 | 239 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
240 | 240 |
return 0; // ignore warnings |
241 | 241 |
} |
242 | 242 |
}; |
243 | 243 |
///\brief \ref named-templ-param "Named parameter" for setting |
244 | 244 |
///\c DistMap type. |
245 | 245 |
/// |
246 | 246 |
///\ref named-templ-param "Named parameter" for setting |
247 | 247 |
///\c DistMap type. |
248 | 248 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
249 | 249 |
template <class T> |
250 | 250 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > { |
251 | 251 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
252 | 252 |
}; |
253 | 253 |
|
254 | 254 |
template <class T> |
255 | 255 |
struct SetReachedMapTraits : public Traits { |
256 | 256 |
typedef T ReachedMap; |
257 | 257 |
static ReachedMap *createReachedMap(const Digraph &) |
258 | 258 |
{ |
259 | 259 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
260 | 260 |
return 0; // ignore warnings |
261 | 261 |
} |
262 | 262 |
}; |
263 | 263 |
///\brief \ref named-templ-param "Named parameter" for setting |
264 | 264 |
///\c ReachedMap type. |
265 | 265 |
/// |
266 | 266 |
///\ref named-templ-param "Named parameter" for setting |
267 | 267 |
///\c ReachedMap type. |
268 | 268 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
269 | 269 |
template <class T> |
270 | 270 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > { |
271 | 271 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
272 | 272 |
}; |
273 | 273 |
|
274 | 274 |
template <class T> |
275 | 275 |
struct SetProcessedMapTraits : public Traits { |
276 | 276 |
typedef T ProcessedMap; |
277 | 277 |
static ProcessedMap *createProcessedMap(const Digraph &) |
278 | 278 |
{ |
279 | 279 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
280 | 280 |
return 0; // ignore warnings |
281 | 281 |
} |
282 | 282 |
}; |
283 | 283 |
///\brief \ref named-templ-param "Named parameter" for setting |
284 | 284 |
///\c ProcessedMap type. |
285 | 285 |
/// |
286 | 286 |
///\ref named-templ-param "Named parameter" for setting |
287 | 287 |
///\c ProcessedMap type. |
288 | 288 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
289 | 289 |
template <class T> |
290 | 290 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > { |
291 | 291 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
292 | 292 |
}; |
293 | 293 |
|
294 | 294 |
struct SetStandardProcessedMapTraits : public Traits { |
295 | 295 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
296 | 296 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
297 | 297 |
{ |
298 | 298 |
return new ProcessedMap(g); |
299 | 299 |
} |
300 | 300 |
}; |
301 | 301 |
///\brief \ref named-templ-param "Named parameter" for setting |
302 | 302 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
303 | 303 |
/// |
304 | 304 |
///\ref named-templ-param "Named parameter" for setting |
305 | 305 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
306 | 306 |
///If you don't set it explicitly, it will be automatically allocated. |
307 | 307 |
struct SetStandardProcessedMap : |
308 | 308 |
public Dfs< Digraph, SetStandardProcessedMapTraits > { |
309 | 309 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
310 | 310 |
}; |
311 | 311 |
|
312 | 312 |
///@} |
313 | 313 |
|
314 | 314 |
public: |
315 | 315 |
|
316 | 316 |
///Constructor. |
317 | 317 |
|
318 | 318 |
///Constructor. |
319 | 319 |
///\param g The digraph the algorithm runs on. |
320 | 320 |
Dfs(const Digraph &g) : |
321 | 321 |
G(&g), |
322 | 322 |
_pred(NULL), local_pred(false), |
323 | 323 |
_dist(NULL), local_dist(false), |
324 | 324 |
_reached(NULL), local_reached(false), |
325 | 325 |
_processed(NULL), local_processed(false) |
326 | 326 |
{ } |
327 | 327 |
|
328 | 328 |
///Destructor. |
329 | 329 |
~Dfs() |
330 | 330 |
{ |
331 | 331 |
if(local_pred) delete _pred; |
332 | 332 |
if(local_dist) delete _dist; |
333 | 333 |
if(local_reached) delete _reached; |
334 | 334 |
if(local_processed) delete _processed; |
335 | 335 |
} |
336 | 336 |
|
337 | 337 |
///Sets the map that stores the predecessor arcs. |
338 | 338 |
|
339 | 339 |
///Sets the map that stores the predecessor arcs. |
340 | 340 |
///If you don't use this function before calling \ref run(Node) "run()" |
341 | 341 |
///or \ref init(), an instance will be allocated automatically. |
342 | 342 |
///The destructor deallocates this automatically allocated map, |
343 | 343 |
///of course. |
344 | 344 |
///\return <tt> (*this) </tt> |
345 | 345 |
Dfs &predMap(PredMap &m) |
346 | 346 |
{ |
347 | 347 |
if(local_pred) { |
348 | 348 |
delete _pred; |
349 | 349 |
local_pred=false; |
350 | 350 |
} |
351 | 351 |
_pred = &m; |
352 | 352 |
return *this; |
353 | 353 |
} |
354 | 354 |
|
355 | 355 |
///Sets the map that indicates which nodes are reached. |
356 | 356 |
|
357 | 357 |
///Sets the map that indicates which nodes are reached. |
358 | 358 |
///If you don't use this function before calling \ref run(Node) "run()" |
359 | 359 |
///or \ref init(), an instance will be allocated automatically. |
360 | 360 |
///The destructor deallocates this automatically allocated map, |
361 | 361 |
///of course. |
362 | 362 |
///\return <tt> (*this) </tt> |
363 | 363 |
Dfs &reachedMap(ReachedMap &m) |
364 | 364 |
{ |
365 | 365 |
if(local_reached) { |
366 | 366 |
delete _reached; |
367 | 367 |
local_reached=false; |
368 | 368 |
} |
369 | 369 |
_reached = &m; |
370 | 370 |
return *this; |
371 | 371 |
} |
372 | 372 |
|
373 | 373 |
///Sets the map that indicates which nodes are processed. |
374 | 374 |
|
375 | 375 |
///Sets the map that indicates which nodes are processed. |
376 | 376 |
///If you don't use this function before calling \ref run(Node) "run()" |
377 | 377 |
///or \ref init(), an instance will be allocated automatically. |
378 | 378 |
///The destructor deallocates this automatically allocated map, |
379 | 379 |
///of course. |
380 | 380 |
///\return <tt> (*this) </tt> |
381 | 381 |
Dfs &processedMap(ProcessedMap &m) |
382 | 382 |
{ |
383 | 383 |
if(local_processed) { |
384 | 384 |
delete _processed; |
385 | 385 |
local_processed=false; |
386 | 386 |
} |
387 | 387 |
_processed = &m; |
388 | 388 |
return *this; |
389 | 389 |
} |
390 | 390 |
|
391 | 391 |
///Sets the map that stores the distances of the nodes. |
392 | 392 |
|
393 | 393 |
///Sets the map that stores the distances of the nodes calculated by |
394 | 394 |
///the algorithm. |
395 | 395 |
///If you don't use this function before calling \ref run(Node) "run()" |
396 | 396 |
///or \ref init(), an instance will be allocated automatically. |
397 | 397 |
///The destructor deallocates this automatically allocated map, |
398 | 398 |
///of course. |
399 | 399 |
///\return <tt> (*this) </tt> |
400 | 400 |
Dfs &distMap(DistMap &m) |
401 | 401 |
{ |
402 | 402 |
if(local_dist) { |
403 | 403 |
delete _dist; |
404 | 404 |
local_dist=false; |
405 | 405 |
} |
406 | 406 |
_dist = &m; |
407 | 407 |
return *this; |
408 | 408 |
} |
409 | 409 |
|
410 | 410 |
public: |
411 | 411 |
|
412 | 412 |
///\name Execution Control |
413 | 413 |
///The simplest way to execute the DFS algorithm is to use one of the |
414 | 414 |
///member functions called \ref run(Node) "run()".\n |
415 |
///If you need more control on the execution, first you have to call |
|
416 |
///\ref init(), then you can add a source node with \ref addSource() |
|
415 |
///If you need better control on the execution, you have to call |
|
416 |
///\ref init() first, then you can add a source node with \ref addSource() |
|
417 | 417 |
///and perform the actual computation with \ref start(). |
418 | 418 |
///This procedure can be repeated if there are nodes that have not |
419 | 419 |
///been reached. |
420 | 420 |
|
421 | 421 |
///@{ |
422 | 422 |
|
423 | 423 |
///\brief Initializes the internal data structures. |
424 | 424 |
/// |
425 | 425 |
///Initializes the internal data structures. |
426 | 426 |
void init() |
427 | 427 |
{ |
428 | 428 |
create_maps(); |
429 | 429 |
_stack.resize(countNodes(*G)); |
430 | 430 |
_stack_head=-1; |
431 | 431 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
432 | 432 |
_pred->set(u,INVALID); |
433 | 433 |
_reached->set(u,false); |
434 | 434 |
_processed->set(u,false); |
435 | 435 |
} |
436 | 436 |
} |
437 | 437 |
|
438 | 438 |
///Adds a new source node. |
439 | 439 |
|
440 | 440 |
///Adds a new source node to the set of nodes to be processed. |
441 | 441 |
/// |
442 | 442 |
///\pre The stack must be empty. Otherwise the algorithm gives |
443 | 443 |
///wrong results. (One of the outgoing arcs of all the source nodes |
444 | 444 |
///except for the last one will not be visited and distances will |
445 | 445 |
///also be wrong.) |
446 | 446 |
void addSource(Node s) |
447 | 447 |
{ |
448 | 448 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
449 | 449 |
if(!(*_reached)[s]) |
450 | 450 |
{ |
451 | 451 |
_reached->set(s,true); |
452 | 452 |
_pred->set(s,INVALID); |
453 | 453 |
OutArcIt e(*G,s); |
454 | 454 |
if(e!=INVALID) { |
455 | 455 |
_stack[++_stack_head]=e; |
456 | 456 |
_dist->set(s,_stack_head); |
457 | 457 |
} |
458 | 458 |
else { |
459 | 459 |
_processed->set(s,true); |
460 | 460 |
_dist->set(s,0); |
461 | 461 |
} |
462 | 462 |
} |
463 | 463 |
} |
464 | 464 |
|
465 | 465 |
///Processes the next arc. |
466 | 466 |
|
467 | 467 |
///Processes the next arc. |
468 | 468 |
/// |
469 | 469 |
///\return The processed arc. |
470 | 470 |
/// |
471 | 471 |
///\pre The stack must not be empty. |
472 | 472 |
Arc processNextArc() |
473 | 473 |
{ |
474 | 474 |
Node m; |
475 | 475 |
Arc e=_stack[_stack_head]; |
476 | 476 |
if(!(*_reached)[m=G->target(e)]) { |
477 | 477 |
_pred->set(m,e); |
478 | 478 |
_reached->set(m,true); |
479 | 479 |
++_stack_head; |
480 | 480 |
_stack[_stack_head] = OutArcIt(*G, m); |
481 | 481 |
_dist->set(m,_stack_head); |
482 | 482 |
} |
483 | 483 |
else { |
484 | 484 |
m=G->source(e); |
485 | 485 |
++_stack[_stack_head]; |
486 | 486 |
} |
487 | 487 |
while(_stack_head>=0 && _stack[_stack_head]==INVALID) { |
488 | 488 |
_processed->set(m,true); |
489 | 489 |
--_stack_head; |
490 | 490 |
if(_stack_head>=0) { |
491 | 491 |
m=G->source(_stack[_stack_head]); |
492 | 492 |
++_stack[_stack_head]; |
493 | 493 |
} |
494 | 494 |
} |
495 | 495 |
return e; |
496 | 496 |
} |
497 | 497 |
|
498 | 498 |
///Next arc to be processed. |
499 | 499 |
|
500 | 500 |
///Next arc to be processed. |
501 | 501 |
/// |
502 | 502 |
///\return The next arc to be processed or \c INVALID if the stack |
503 | 503 |
///is empty. |
504 | 504 |
OutArcIt nextArc() const |
505 | 505 |
{ |
506 | 506 |
return _stack_head>=0?_stack[_stack_head]:INVALID; |
507 | 507 |
} |
508 | 508 |
|
509 | 509 |
///Returns \c false if there are nodes to be processed. |
510 | 510 |
|
511 | 511 |
///Returns \c false if there are nodes to be processed |
512 | 512 |
///in the queue (stack). |
513 | 513 |
bool emptyQueue() const { return _stack_head<0; } |
514 | 514 |
|
515 | 515 |
///Returns the number of the nodes to be processed. |
516 | 516 |
|
517 | 517 |
///Returns the number of the nodes to be processed |
518 | 518 |
///in the queue (stack). |
519 | 519 |
int queueSize() const { return _stack_head+1; } |
520 | 520 |
|
521 | 521 |
///Executes the algorithm. |
522 | 522 |
|
523 | 523 |
///Executes the algorithm. |
524 | 524 |
/// |
525 | 525 |
///This method runs the %DFS algorithm from the root node |
526 | 526 |
///in order to compute the DFS path to each node. |
527 | 527 |
/// |
528 | 528 |
/// The algorithm computes |
529 | 529 |
///- the %DFS tree, |
530 | 530 |
///- the distance of each node from the root in the %DFS tree. |
531 | 531 |
/// |
532 | 532 |
///\pre init() must be called and a root node should be |
533 | 533 |
///added with addSource() before using this function. |
534 | 534 |
/// |
535 | 535 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
536 | 536 |
///\code |
537 | 537 |
/// while ( !d.emptyQueue() ) { |
538 | 538 |
/// d.processNextArc(); |
539 | 539 |
/// } |
540 | 540 |
///\endcode |
541 | 541 |
void start() |
542 | 542 |
{ |
543 | 543 |
while ( !emptyQueue() ) processNextArc(); |
544 | 544 |
} |
545 | 545 |
|
546 | 546 |
///Executes the algorithm until the given target node is reached. |
547 | 547 |
|
548 | 548 |
///Executes the algorithm until the given target node is reached. |
549 | 549 |
/// |
550 | 550 |
///This method runs the %DFS algorithm from the root node |
551 | 551 |
///in order to compute the DFS path to \c t. |
552 | 552 |
/// |
553 | 553 |
///The algorithm computes |
554 | 554 |
///- the %DFS path to \c t, |
555 | 555 |
///- the distance of \c t from the root in the %DFS tree. |
556 | 556 |
/// |
557 | 557 |
///\pre init() must be called and a root node should be |
558 | 558 |
///added with addSource() before using this function. |
559 | 559 |
void start(Node t) |
560 | 560 |
{ |
561 | 561 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!=t ) |
562 | 562 |
processNextArc(); |
563 | 563 |
} |
564 | 564 |
|
565 | 565 |
///Executes the algorithm until a condition is met. |
566 | 566 |
|
567 | 567 |
///Executes the algorithm until a condition is met. |
568 | 568 |
/// |
569 | 569 |
///This method runs the %DFS algorithm from the root node |
570 | 570 |
///until an arc \c a with <tt>am[a]</tt> true is found. |
571 | 571 |
/// |
572 | 572 |
///\param am A \c bool (or convertible) arc map. The algorithm |
573 | 573 |
///will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
574 | 574 |
/// |
575 | 575 |
///\return The reached arc \c a with <tt>am[a]</tt> true or |
576 | 576 |
///\c INVALID if no such arc was found. |
577 | 577 |
/// |
578 | 578 |
///\pre init() must be called and a root node should be |
579 | 579 |
///added with addSource() before using this function. |
580 | 580 |
/// |
581 | 581 |
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
582 | 582 |
///not a node map. |
583 | 583 |
template<class ArcBoolMap> |
584 | 584 |
Arc start(const ArcBoolMap &am) |
585 | 585 |
{ |
586 | 586 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
587 | 587 |
processNextArc(); |
588 | 588 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
589 | 589 |
} |
590 | 590 |
|
591 | 591 |
///Runs the algorithm from the given source node. |
592 | 592 |
|
593 | 593 |
///This method runs the %DFS algorithm from node \c s |
594 | 594 |
///in order to compute the DFS path to each node. |
595 | 595 |
/// |
596 | 596 |
///The algorithm computes |
597 | 597 |
///- the %DFS tree, |
598 | 598 |
///- the distance of each node from the root in the %DFS tree. |
599 | 599 |
/// |
600 | 600 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
601 | 601 |
///\code |
602 | 602 |
/// d.init(); |
603 | 603 |
/// d.addSource(s); |
604 | 604 |
/// d.start(); |
605 | 605 |
///\endcode |
606 | 606 |
void run(Node s) { |
607 | 607 |
init(); |
608 | 608 |
addSource(s); |
609 | 609 |
start(); |
610 | 610 |
} |
611 | 611 |
|
612 | 612 |
///Finds the %DFS path between \c s and \c t. |
613 | 613 |
|
614 | 614 |
///This method runs the %DFS algorithm from node \c s |
615 | 615 |
///in order to compute the DFS path to node \c t |
616 | 616 |
///(it stops searching when \c t is processed) |
617 | 617 |
/// |
618 | 618 |
///\return \c true if \c t is reachable form \c s. |
619 | 619 |
/// |
620 | 620 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is |
621 | 621 |
///just a shortcut of the following code. |
622 | 622 |
///\code |
623 | 623 |
/// d.init(); |
624 | 624 |
/// d.addSource(s); |
625 | 625 |
/// d.start(t); |
626 | 626 |
///\endcode |
627 | 627 |
bool run(Node s,Node t) { |
628 | 628 |
init(); |
629 | 629 |
addSource(s); |
630 | 630 |
start(t); |
631 | 631 |
return reached(t); |
632 | 632 |
} |
633 | 633 |
|
634 | 634 |
///Runs the algorithm to visit all nodes in the digraph. |
635 | 635 |
|
636 | 636 |
///This method runs the %DFS algorithm in order to compute the |
637 | 637 |
///%DFS path to each node. |
638 | 638 |
/// |
639 | 639 |
///The algorithm computes |
640 | 640 |
///- the %DFS tree (forest), |
641 | 641 |
///- the distance of each node from the root(s) in the %DFS tree. |
642 | 642 |
/// |
643 | 643 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
644 | 644 |
///\code |
645 | 645 |
/// d.init(); |
646 | 646 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
647 | 647 |
/// if (!d.reached(n)) { |
648 | 648 |
/// d.addSource(n); |
649 | 649 |
/// d.start(); |
650 | 650 |
/// } |
651 | 651 |
/// } |
652 | 652 |
///\endcode |
653 | 653 |
void run() { |
654 | 654 |
init(); |
655 | 655 |
for (NodeIt it(*G); it != INVALID; ++it) { |
656 | 656 |
if (!reached(it)) { |
657 | 657 |
addSource(it); |
658 | 658 |
start(); |
659 | 659 |
} |
660 | 660 |
} |
661 | 661 |
} |
662 | 662 |
|
663 | 663 |
///@} |
664 | 664 |
|
665 | 665 |
///\name Query Functions |
666 | 666 |
///The results of the DFS algorithm can be obtained using these |
667 | 667 |
///functions.\n |
668 | 668 |
///Either \ref run(Node) "run()" or \ref start() should be called |
669 | 669 |
///before using them. |
670 | 670 |
|
671 | 671 |
///@{ |
672 | 672 |
|
... | ... |
@@ -1111,514 +1111,514 @@ |
1111 | 1111 |
///\sa Dfs |
1112 | 1112 |
template<class GR> |
1113 | 1113 |
DfsWizard<DfsWizardBase<GR> > |
1114 | 1114 |
dfs(const GR &digraph) |
1115 | 1115 |
{ |
1116 | 1116 |
return DfsWizard<DfsWizardBase<GR> >(digraph); |
1117 | 1117 |
} |
1118 | 1118 |
|
1119 | 1119 |
#ifdef DOXYGEN |
1120 | 1120 |
/// \brief Visitor class for DFS. |
1121 | 1121 |
/// |
1122 | 1122 |
/// This class defines the interface of the DfsVisit events, and |
1123 | 1123 |
/// it could be the base of a real visitor class. |
1124 | 1124 |
template <typename GR> |
1125 | 1125 |
struct DfsVisitor { |
1126 | 1126 |
typedef GR Digraph; |
1127 | 1127 |
typedef typename Digraph::Arc Arc; |
1128 | 1128 |
typedef typename Digraph::Node Node; |
1129 | 1129 |
/// \brief Called for the source node of the DFS. |
1130 | 1130 |
/// |
1131 | 1131 |
/// This function is called for the source node of the DFS. |
1132 | 1132 |
void start(const Node& node) {} |
1133 | 1133 |
/// \brief Called when the source node is leaved. |
1134 | 1134 |
/// |
1135 | 1135 |
/// This function is called when the source node is leaved. |
1136 | 1136 |
void stop(const Node& node) {} |
1137 | 1137 |
/// \brief Called when a node is reached first time. |
1138 | 1138 |
/// |
1139 | 1139 |
/// This function is called when a node is reached first time. |
1140 | 1140 |
void reach(const Node& node) {} |
1141 | 1141 |
/// \brief Called when an arc reaches a new node. |
1142 | 1142 |
/// |
1143 | 1143 |
/// This function is called when the DFS finds an arc whose target node |
1144 | 1144 |
/// is not reached yet. |
1145 | 1145 |
void discover(const Arc& arc) {} |
1146 | 1146 |
/// \brief Called when an arc is examined but its target node is |
1147 | 1147 |
/// already discovered. |
1148 | 1148 |
/// |
1149 | 1149 |
/// This function is called when an arc is examined but its target node is |
1150 | 1150 |
/// already discovered. |
1151 | 1151 |
void examine(const Arc& arc) {} |
1152 | 1152 |
/// \brief Called when the DFS steps back from a node. |
1153 | 1153 |
/// |
1154 | 1154 |
/// This function is called when the DFS steps back from a node. |
1155 | 1155 |
void leave(const Node& node) {} |
1156 | 1156 |
/// \brief Called when the DFS steps back on an arc. |
1157 | 1157 |
/// |
1158 | 1158 |
/// This function is called when the DFS steps back on an arc. |
1159 | 1159 |
void backtrack(const Arc& arc) {} |
1160 | 1160 |
}; |
1161 | 1161 |
#else |
1162 | 1162 |
template <typename GR> |
1163 | 1163 |
struct DfsVisitor { |
1164 | 1164 |
typedef GR Digraph; |
1165 | 1165 |
typedef typename Digraph::Arc Arc; |
1166 | 1166 |
typedef typename Digraph::Node Node; |
1167 | 1167 |
void start(const Node&) {} |
1168 | 1168 |
void stop(const Node&) {} |
1169 | 1169 |
void reach(const Node&) {} |
1170 | 1170 |
void discover(const Arc&) {} |
1171 | 1171 |
void examine(const Arc&) {} |
1172 | 1172 |
void leave(const Node&) {} |
1173 | 1173 |
void backtrack(const Arc&) {} |
1174 | 1174 |
|
1175 | 1175 |
template <typename _Visitor> |
1176 | 1176 |
struct Constraints { |
1177 | 1177 |
void constraints() { |
1178 | 1178 |
Arc arc; |
1179 | 1179 |
Node node; |
1180 | 1180 |
visitor.start(node); |
1181 | 1181 |
visitor.stop(arc); |
1182 | 1182 |
visitor.reach(node); |
1183 | 1183 |
visitor.discover(arc); |
1184 | 1184 |
visitor.examine(arc); |
1185 | 1185 |
visitor.leave(node); |
1186 | 1186 |
visitor.backtrack(arc); |
1187 | 1187 |
} |
1188 | 1188 |
_Visitor& visitor; |
1189 | 1189 |
}; |
1190 | 1190 |
}; |
1191 | 1191 |
#endif |
1192 | 1192 |
|
1193 | 1193 |
/// \brief Default traits class of DfsVisit class. |
1194 | 1194 |
/// |
1195 | 1195 |
/// Default traits class of DfsVisit class. |
1196 | 1196 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1197 | 1197 |
template<class GR> |
1198 | 1198 |
struct DfsVisitDefaultTraits { |
1199 | 1199 |
|
1200 | 1200 |
/// \brief The type of the digraph the algorithm runs on. |
1201 | 1201 |
typedef GR Digraph; |
1202 | 1202 |
|
1203 | 1203 |
/// \brief The type of the map that indicates which nodes are reached. |
1204 | 1204 |
/// |
1205 | 1205 |
/// The type of the map that indicates which nodes are reached. |
1206 | 1206 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
1207 | 1207 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1208 | 1208 |
|
1209 | 1209 |
/// \brief Instantiates a ReachedMap. |
1210 | 1210 |
/// |
1211 | 1211 |
/// This function instantiates a ReachedMap. |
1212 | 1212 |
/// \param digraph is the digraph, to which |
1213 | 1213 |
/// we would like to define the ReachedMap. |
1214 | 1214 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1215 | 1215 |
return new ReachedMap(digraph); |
1216 | 1216 |
} |
1217 | 1217 |
|
1218 | 1218 |
}; |
1219 | 1219 |
|
1220 | 1220 |
/// \ingroup search |
1221 | 1221 |
/// |
1222 | 1222 |
/// \brief DFS algorithm class with visitor interface. |
1223 | 1223 |
/// |
1224 | 1224 |
/// This class provides an efficient implementation of the DFS algorithm |
1225 | 1225 |
/// with visitor interface. |
1226 | 1226 |
/// |
1227 | 1227 |
/// The DfsVisit class provides an alternative interface to the Dfs |
1228 | 1228 |
/// class. It works with callback mechanism, the DfsVisit object calls |
1229 | 1229 |
/// the member functions of the \c Visitor class on every DFS event. |
1230 | 1230 |
/// |
1231 | 1231 |
/// This interface of the DFS algorithm should be used in special cases |
1232 | 1232 |
/// when extra actions have to be performed in connection with certain |
1233 | 1233 |
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs() |
1234 | 1234 |
/// instead. |
1235 | 1235 |
/// |
1236 | 1236 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1237 | 1237 |
/// The default type is \ref ListDigraph. |
1238 | 1238 |
/// The value of GR is not used directly by \ref DfsVisit, |
1239 | 1239 |
/// it is only passed to \ref DfsVisitDefaultTraits. |
1240 | 1240 |
/// \tparam VS The Visitor type that is used by the algorithm. |
1241 | 1241 |
/// \ref DfsVisitor "DfsVisitor<GR>" is an empty visitor, which |
1242 | 1242 |
/// does not observe the DFS events. If you want to observe the DFS |
1243 | 1243 |
/// events, you should implement your own visitor class. |
1244 | 1244 |
/// \tparam TR Traits class to set various data types used by the |
1245 | 1245 |
/// algorithm. The default traits class is |
1246 | 1246 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<GR>". |
1247 | 1247 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
1248 | 1248 |
/// a DFS visit traits class. |
1249 | 1249 |
#ifdef DOXYGEN |
1250 | 1250 |
template <typename GR, typename VS, typename TR> |
1251 | 1251 |
#else |
1252 | 1252 |
template <typename GR = ListDigraph, |
1253 | 1253 |
typename VS = DfsVisitor<GR>, |
1254 | 1254 |
typename TR = DfsVisitDefaultTraits<GR> > |
1255 | 1255 |
#endif |
1256 | 1256 |
class DfsVisit { |
1257 | 1257 |
public: |
1258 | 1258 |
|
1259 | 1259 |
///The traits class. |
1260 | 1260 |
typedef TR Traits; |
1261 | 1261 |
|
1262 | 1262 |
///The type of the digraph the algorithm runs on. |
1263 | 1263 |
typedef typename Traits::Digraph Digraph; |
1264 | 1264 |
|
1265 | 1265 |
///The visitor type used by the algorithm. |
1266 | 1266 |
typedef VS Visitor; |
1267 | 1267 |
|
1268 | 1268 |
///The type of the map that indicates which nodes are reached. |
1269 | 1269 |
typedef typename Traits::ReachedMap ReachedMap; |
1270 | 1270 |
|
1271 | 1271 |
private: |
1272 | 1272 |
|
1273 | 1273 |
typedef typename Digraph::Node Node; |
1274 | 1274 |
typedef typename Digraph::NodeIt NodeIt; |
1275 | 1275 |
typedef typename Digraph::Arc Arc; |
1276 | 1276 |
typedef typename Digraph::OutArcIt OutArcIt; |
1277 | 1277 |
|
1278 | 1278 |
//Pointer to the underlying digraph. |
1279 | 1279 |
const Digraph *_digraph; |
1280 | 1280 |
//Pointer to the visitor object. |
1281 | 1281 |
Visitor *_visitor; |
1282 | 1282 |
//Pointer to the map of reached status of the nodes. |
1283 | 1283 |
ReachedMap *_reached; |
1284 | 1284 |
//Indicates if _reached is locally allocated (true) or not. |
1285 | 1285 |
bool local_reached; |
1286 | 1286 |
|
1287 | 1287 |
std::vector<typename Digraph::Arc> _stack; |
1288 | 1288 |
int _stack_head; |
1289 | 1289 |
|
1290 | 1290 |
//Creates the maps if necessary. |
1291 | 1291 |
void create_maps() { |
1292 | 1292 |
if(!_reached) { |
1293 | 1293 |
local_reached = true; |
1294 | 1294 |
_reached = Traits::createReachedMap(*_digraph); |
1295 | 1295 |
} |
1296 | 1296 |
} |
1297 | 1297 |
|
1298 | 1298 |
protected: |
1299 | 1299 |
|
1300 | 1300 |
DfsVisit() {} |
1301 | 1301 |
|
1302 | 1302 |
public: |
1303 | 1303 |
|
1304 | 1304 |
typedef DfsVisit Create; |
1305 | 1305 |
|
1306 | 1306 |
/// \name Named Template Parameters |
1307 | 1307 |
|
1308 | 1308 |
///@{ |
1309 | 1309 |
template <class T> |
1310 | 1310 |
struct SetReachedMapTraits : public Traits { |
1311 | 1311 |
typedef T ReachedMap; |
1312 | 1312 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1313 | 1313 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
1314 | 1314 |
return 0; // ignore warnings |
1315 | 1315 |
} |
1316 | 1316 |
}; |
1317 | 1317 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1318 | 1318 |
/// ReachedMap type. |
1319 | 1319 |
/// |
1320 | 1320 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1321 | 1321 |
template <class T> |
1322 | 1322 |
struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
1323 | 1323 |
SetReachedMapTraits<T> > { |
1324 | 1324 |
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1325 | 1325 |
}; |
1326 | 1326 |
///@} |
1327 | 1327 |
|
1328 | 1328 |
public: |
1329 | 1329 |
|
1330 | 1330 |
/// \brief Constructor. |
1331 | 1331 |
/// |
1332 | 1332 |
/// Constructor. |
1333 | 1333 |
/// |
1334 | 1334 |
/// \param digraph The digraph the algorithm runs on. |
1335 | 1335 |
/// \param visitor The visitor object of the algorithm. |
1336 | 1336 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
1337 | 1337 |
: _digraph(&digraph), _visitor(&visitor), |
1338 | 1338 |
_reached(0), local_reached(false) {} |
1339 | 1339 |
|
1340 | 1340 |
/// \brief Destructor. |
1341 | 1341 |
~DfsVisit() { |
1342 | 1342 |
if(local_reached) delete _reached; |
1343 | 1343 |
} |
1344 | 1344 |
|
1345 | 1345 |
/// \brief Sets the map that indicates which nodes are reached. |
1346 | 1346 |
/// |
1347 | 1347 |
/// Sets the map that indicates which nodes are reached. |
1348 | 1348 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1349 | 1349 |
/// or \ref init(), an instance will be allocated automatically. |
1350 | 1350 |
/// The destructor deallocates this automatically allocated map, |
1351 | 1351 |
/// of course. |
1352 | 1352 |
/// \return <tt> (*this) </tt> |
1353 | 1353 |
DfsVisit &reachedMap(ReachedMap &m) { |
1354 | 1354 |
if(local_reached) { |
1355 | 1355 |
delete _reached; |
1356 | 1356 |
local_reached=false; |
1357 | 1357 |
} |
1358 | 1358 |
_reached = &m; |
1359 | 1359 |
return *this; |
1360 | 1360 |
} |
1361 | 1361 |
|
1362 | 1362 |
public: |
1363 | 1363 |
|
1364 | 1364 |
/// \name Execution Control |
1365 | 1365 |
/// The simplest way to execute the DFS algorithm is to use one of the |
1366 | 1366 |
/// member functions called \ref run(Node) "run()".\n |
1367 |
/// If you need more control on the execution, first you have to call |
|
1368 |
/// \ref init(), then you can add a source node with \ref addSource() |
|
1367 |
/// If you need better control on the execution, you have to call |
|
1368 |
/// \ref init() first, then you can add a source node with \ref addSource() |
|
1369 | 1369 |
/// and perform the actual computation with \ref start(). |
1370 | 1370 |
/// This procedure can be repeated if there are nodes that have not |
1371 | 1371 |
/// been reached. |
1372 | 1372 |
|
1373 | 1373 |
/// @{ |
1374 | 1374 |
|
1375 | 1375 |
/// \brief Initializes the internal data structures. |
1376 | 1376 |
/// |
1377 | 1377 |
/// Initializes the internal data structures. |
1378 | 1378 |
void init() { |
1379 | 1379 |
create_maps(); |
1380 | 1380 |
_stack.resize(countNodes(*_digraph)); |
1381 | 1381 |
_stack_head = -1; |
1382 | 1382 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1383 | 1383 |
_reached->set(u, false); |
1384 | 1384 |
} |
1385 | 1385 |
} |
1386 | 1386 |
|
1387 | 1387 |
/// \brief Adds a new source node. |
1388 | 1388 |
/// |
1389 | 1389 |
/// Adds a new source node to the set of nodes to be processed. |
1390 | 1390 |
/// |
1391 | 1391 |
/// \pre The stack must be empty. Otherwise the algorithm gives |
1392 | 1392 |
/// wrong results. (One of the outgoing arcs of all the source nodes |
1393 | 1393 |
/// except for the last one will not be visited and distances will |
1394 | 1394 |
/// also be wrong.) |
1395 | 1395 |
void addSource(Node s) |
1396 | 1396 |
{ |
1397 | 1397 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
1398 | 1398 |
if(!(*_reached)[s]) { |
1399 | 1399 |
_reached->set(s,true); |
1400 | 1400 |
_visitor->start(s); |
1401 | 1401 |
_visitor->reach(s); |
1402 | 1402 |
Arc e; |
1403 | 1403 |
_digraph->firstOut(e, s); |
1404 | 1404 |
if (e != INVALID) { |
1405 | 1405 |
_stack[++_stack_head] = e; |
1406 | 1406 |
} else { |
1407 | 1407 |
_visitor->leave(s); |
1408 | 1408 |
_visitor->stop(s); |
1409 | 1409 |
} |
1410 | 1410 |
} |
1411 | 1411 |
} |
1412 | 1412 |
|
1413 | 1413 |
/// \brief Processes the next arc. |
1414 | 1414 |
/// |
1415 | 1415 |
/// Processes the next arc. |
1416 | 1416 |
/// |
1417 | 1417 |
/// \return The processed arc. |
1418 | 1418 |
/// |
1419 | 1419 |
/// \pre The stack must not be empty. |
1420 | 1420 |
Arc processNextArc() { |
1421 | 1421 |
Arc e = _stack[_stack_head]; |
1422 | 1422 |
Node m = _digraph->target(e); |
1423 | 1423 |
if(!(*_reached)[m]) { |
1424 | 1424 |
_visitor->discover(e); |
1425 | 1425 |
_visitor->reach(m); |
1426 | 1426 |
_reached->set(m, true); |
1427 | 1427 |
_digraph->firstOut(_stack[++_stack_head], m); |
1428 | 1428 |
} else { |
1429 | 1429 |
_visitor->examine(e); |
1430 | 1430 |
m = _digraph->source(e); |
1431 | 1431 |
_digraph->nextOut(_stack[_stack_head]); |
1432 | 1432 |
} |
1433 | 1433 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) { |
1434 | 1434 |
_visitor->leave(m); |
1435 | 1435 |
--_stack_head; |
1436 | 1436 |
if (_stack_head >= 0) { |
1437 | 1437 |
_visitor->backtrack(_stack[_stack_head]); |
1438 | 1438 |
m = _digraph->source(_stack[_stack_head]); |
1439 | 1439 |
_digraph->nextOut(_stack[_stack_head]); |
1440 | 1440 |
} else { |
1441 | 1441 |
_visitor->stop(m); |
1442 | 1442 |
} |
1443 | 1443 |
} |
1444 | 1444 |
return e; |
1445 | 1445 |
} |
1446 | 1446 |
|
1447 | 1447 |
/// \brief Next arc to be processed. |
1448 | 1448 |
/// |
1449 | 1449 |
/// Next arc to be processed. |
1450 | 1450 |
/// |
1451 | 1451 |
/// \return The next arc to be processed or INVALID if the stack is |
1452 | 1452 |
/// empty. |
1453 | 1453 |
Arc nextArc() const { |
1454 | 1454 |
return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
1455 | 1455 |
} |
1456 | 1456 |
|
1457 | 1457 |
/// \brief Returns \c false if there are nodes |
1458 | 1458 |
/// to be processed. |
1459 | 1459 |
/// |
1460 | 1460 |
/// Returns \c false if there are nodes |
1461 | 1461 |
/// to be processed in the queue (stack). |
1462 | 1462 |
bool emptyQueue() const { return _stack_head < 0; } |
1463 | 1463 |
|
1464 | 1464 |
/// \brief Returns the number of the nodes to be processed. |
1465 | 1465 |
/// |
1466 | 1466 |
/// Returns the number of the nodes to be processed in the queue (stack). |
1467 | 1467 |
int queueSize() const { return _stack_head + 1; } |
1468 | 1468 |
|
1469 | 1469 |
/// \brief Executes the algorithm. |
1470 | 1470 |
/// |
1471 | 1471 |
/// Executes the algorithm. |
1472 | 1472 |
/// |
1473 | 1473 |
/// This method runs the %DFS algorithm from the root node |
1474 | 1474 |
/// in order to compute the %DFS path to each node. |
1475 | 1475 |
/// |
1476 | 1476 |
/// The algorithm computes |
1477 | 1477 |
/// - the %DFS tree, |
1478 | 1478 |
/// - the distance of each node from the root in the %DFS tree. |
1479 | 1479 |
/// |
1480 | 1480 |
/// \pre init() must be called and a root node should be |
1481 | 1481 |
/// added with addSource() before using this function. |
1482 | 1482 |
/// |
1483 | 1483 |
/// \note <tt>d.start()</tt> is just a shortcut of the following code. |
1484 | 1484 |
/// \code |
1485 | 1485 |
/// while ( !d.emptyQueue() ) { |
1486 | 1486 |
/// d.processNextArc(); |
1487 | 1487 |
/// } |
1488 | 1488 |
/// \endcode |
1489 | 1489 |
void start() { |
1490 | 1490 |
while ( !emptyQueue() ) processNextArc(); |
1491 | 1491 |
} |
1492 | 1492 |
|
1493 | 1493 |
/// \brief Executes the algorithm until the given target node is reached. |
1494 | 1494 |
/// |
1495 | 1495 |
/// Executes the algorithm until the given target node is reached. |
1496 | 1496 |
/// |
1497 | 1497 |
/// This method runs the %DFS algorithm from the root node |
1498 | 1498 |
/// in order to compute the DFS path to \c t. |
1499 | 1499 |
/// |
1500 | 1500 |
/// The algorithm computes |
1501 | 1501 |
/// - the %DFS path to \c t, |
1502 | 1502 |
/// - the distance of \c t from the root in the %DFS tree. |
1503 | 1503 |
/// |
1504 | 1504 |
/// \pre init() must be called and a root node should be added |
1505 | 1505 |
/// with addSource() before using this function. |
1506 | 1506 |
void start(Node t) { |
1507 | 1507 |
while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != t ) |
1508 | 1508 |
processNextArc(); |
1509 | 1509 |
} |
1510 | 1510 |
|
1511 | 1511 |
/// \brief Executes the algorithm until a condition is met. |
1512 | 1512 |
/// |
1513 | 1513 |
/// Executes the algorithm until a condition is met. |
1514 | 1514 |
/// |
1515 | 1515 |
/// This method runs the %DFS algorithm from the root node |
1516 | 1516 |
/// until an arc \c a with <tt>am[a]</tt> true is found. |
1517 | 1517 |
/// |
1518 | 1518 |
/// \param am A \c bool (or convertible) arc map. The algorithm |
1519 | 1519 |
/// will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
1520 | 1520 |
/// |
1521 | 1521 |
/// \return The reached arc \c a with <tt>am[a]</tt> true or |
1522 | 1522 |
/// \c INVALID if no such arc was found. |
1523 | 1523 |
/// |
1524 | 1524 |
/// \pre init() must be called and a root node should be added |
1525 | 1525 |
/// with addSource() before using this function. |
1526 | 1526 |
/// |
1527 | 1527 |
/// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
1528 | 1528 |
/// not a node map. |
1529 | 1529 |
template <typename AM> |
1530 | 1530 |
Arc start(const AM &am) { |
1531 | 1531 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
1532 | 1532 |
processNextArc(); |
1533 | 1533 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
1534 | 1534 |
} |
1535 | 1535 |
|
1536 | 1536 |
/// \brief Runs the algorithm from the given source node. |
1537 | 1537 |
/// |
1538 | 1538 |
/// This method runs the %DFS algorithm from node \c s. |
1539 | 1539 |
/// in order to compute the DFS path to each node. |
1540 | 1540 |
/// |
1541 | 1541 |
/// The algorithm computes |
1542 | 1542 |
/// - the %DFS tree, |
1543 | 1543 |
/// - the distance of each node from the root in the %DFS tree. |
1544 | 1544 |
/// |
1545 | 1545 |
/// \note <tt>d.run(s)</tt> is just a shortcut of the following code. |
1546 | 1546 |
///\code |
1547 | 1547 |
/// d.init(); |
1548 | 1548 |
/// d.addSource(s); |
1549 | 1549 |
/// d.start(); |
1550 | 1550 |
///\endcode |
1551 | 1551 |
void run(Node s) { |
1552 | 1552 |
init(); |
1553 | 1553 |
addSource(s); |
1554 | 1554 |
start(); |
1555 | 1555 |
} |
1556 | 1556 |
|
1557 | 1557 |
/// \brief Finds the %DFS path between \c s and \c t. |
1558 | 1558 |
|
1559 | 1559 |
/// This method runs the %DFS algorithm from node \c s |
1560 | 1560 |
/// in order to compute the DFS path to node \c t |
1561 | 1561 |
/// (it stops searching when \c t is processed). |
1562 | 1562 |
/// |
1563 | 1563 |
/// \return \c true if \c t is reachable form \c s. |
1564 | 1564 |
/// |
1565 | 1565 |
/// \note Apart from the return value, <tt>d.run(s,t)</tt> is |
1566 | 1566 |
/// just a shortcut of the following code. |
1567 | 1567 |
///\code |
1568 | 1568 |
/// d.init(); |
1569 | 1569 |
/// d.addSource(s); |
1570 | 1570 |
/// d.start(t); |
1571 | 1571 |
///\endcode |
1572 | 1572 |
bool run(Node s,Node t) { |
1573 | 1573 |
init(); |
1574 | 1574 |
addSource(s); |
1575 | 1575 |
start(t); |
1576 | 1576 |
return reached(t); |
1577 | 1577 |
} |
1578 | 1578 |
|
1579 | 1579 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1580 | 1580 |
|
1581 | 1581 |
/// This method runs the %DFS algorithm in order to |
1582 | 1582 |
/// compute the %DFS path to each node. |
1583 | 1583 |
/// |
1584 | 1584 |
/// The algorithm computes |
1585 | 1585 |
/// - the %DFS tree (forest), |
1586 | 1586 |
/// - the distance of each node from the root(s) in the %DFS tree. |
1587 | 1587 |
/// |
1588 | 1588 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
1589 | 1589 |
///\code |
1590 | 1590 |
/// d.init(); |
1591 | 1591 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
1592 | 1592 |
/// if (!d.reached(n)) { |
1593 | 1593 |
/// d.addSource(n); |
1594 | 1594 |
/// d.start(); |
1595 | 1595 |
/// } |
1596 | 1596 |
/// } |
1597 | 1597 |
///\endcode |
1598 | 1598 |
void run() { |
1599 | 1599 |
init(); |
1600 | 1600 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1601 | 1601 |
if (!reached(it)) { |
1602 | 1602 |
addSource(it); |
1603 | 1603 |
start(); |
1604 | 1604 |
} |
1605 | 1605 |
} |
1606 | 1606 |
} |
1607 | 1607 |
|
1608 | 1608 |
///@} |
1609 | 1609 |
|
1610 | 1610 |
/// \name Query Functions |
1611 | 1611 |
/// The results of the DFS algorithm can be obtained using these |
1612 | 1612 |
/// functions.\n |
1613 | 1613 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
1614 | 1614 |
/// before using them. |
1615 | 1615 |
|
1616 | 1616 |
///@{ |
1617 | 1617 |
|
1618 | 1618 |
/// \brief Checks if the given node is reached from the root(s). |
1619 | 1619 |
/// |
1620 | 1620 |
/// Returns \c true if \c v is reached from the root(s). |
1621 | 1621 |
/// |
1622 | 1622 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
1623 | 1623 |
/// must be called before using this function. |
1624 | 1624 |
bool reached(Node v) const { return (*_reached)[v]; } |
... | ... |
@@ -336,514 +336,514 @@ |
336 | 336 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
337 | 337 |
}; |
338 | 338 |
|
339 | 339 |
template <class T> |
340 | 340 |
struct SetProcessedMapTraits : public Traits { |
341 | 341 |
typedef T ProcessedMap; |
342 | 342 |
static ProcessedMap *createProcessedMap(const Digraph &) |
343 | 343 |
{ |
344 | 344 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
345 | 345 |
return 0; // ignore warnings |
346 | 346 |
} |
347 | 347 |
}; |
348 | 348 |
///\brief \ref named-templ-param "Named parameter" for setting |
349 | 349 |
///\c ProcessedMap type. |
350 | 350 |
/// |
351 | 351 |
///\ref named-templ-param "Named parameter" for setting |
352 | 352 |
///\c ProcessedMap type. |
353 | 353 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
354 | 354 |
template <class T> |
355 | 355 |
struct SetProcessedMap |
356 | 356 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > { |
357 | 357 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
358 | 358 |
}; |
359 | 359 |
|
360 | 360 |
struct SetStandardProcessedMapTraits : public Traits { |
361 | 361 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
362 | 362 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
363 | 363 |
{ |
364 | 364 |
return new ProcessedMap(g); |
365 | 365 |
} |
366 | 366 |
}; |
367 | 367 |
///\brief \ref named-templ-param "Named parameter" for setting |
368 | 368 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
369 | 369 |
/// |
370 | 370 |
///\ref named-templ-param "Named parameter" for setting |
371 | 371 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
372 | 372 |
///If you don't set it explicitly, it will be automatically allocated. |
373 | 373 |
struct SetStandardProcessedMap |
374 | 374 |
: public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > { |
375 | 375 |
typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
376 | 376 |
Create; |
377 | 377 |
}; |
378 | 378 |
|
379 | 379 |
template <class H, class CR> |
380 | 380 |
struct SetHeapTraits : public Traits { |
381 | 381 |
typedef CR HeapCrossRef; |
382 | 382 |
typedef H Heap; |
383 | 383 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) { |
384 | 384 |
LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
385 | 385 |
return 0; // ignore warnings |
386 | 386 |
} |
387 | 387 |
static Heap *createHeap(HeapCrossRef &) |
388 | 388 |
{ |
389 | 389 |
LEMON_ASSERT(false, "Heap is not initialized"); |
390 | 390 |
return 0; // ignore warnings |
391 | 391 |
} |
392 | 392 |
}; |
393 | 393 |
///\brief \ref named-templ-param "Named parameter" for setting |
394 | 394 |
///heap and cross reference types |
395 | 395 |
/// |
396 | 396 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
397 | 397 |
///reference types. If this named parameter is used, then external |
398 | 398 |
///heap and cross reference objects must be passed to the algorithm |
399 | 399 |
///using the \ref heap() function before calling \ref run(Node) "run()" |
400 | 400 |
///or \ref init(). |
401 | 401 |
///\sa SetStandardHeap |
402 | 402 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
403 | 403 |
struct SetHeap |
404 | 404 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > { |
405 | 405 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
406 | 406 |
}; |
407 | 407 |
|
408 | 408 |
template <class H, class CR> |
409 | 409 |
struct SetStandardHeapTraits : public Traits { |
410 | 410 |
typedef CR HeapCrossRef; |
411 | 411 |
typedef H Heap; |
412 | 412 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) { |
413 | 413 |
return new HeapCrossRef(G); |
414 | 414 |
} |
415 | 415 |
static Heap *createHeap(HeapCrossRef &R) |
416 | 416 |
{ |
417 | 417 |
return new Heap(R); |
418 | 418 |
} |
419 | 419 |
}; |
420 | 420 |
///\brief \ref named-templ-param "Named parameter" for setting |
421 | 421 |
///heap and cross reference types with automatic allocation |
422 | 422 |
/// |
423 | 423 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
424 | 424 |
///reference types with automatic allocation. |
425 | 425 |
///They should have standard constructor interfaces to be able to |
426 | 426 |
///automatically created by the algorithm (i.e. the digraph should be |
427 | 427 |
///passed to the constructor of the cross reference and the cross |
428 | 428 |
///reference should be passed to the constructor of the heap). |
429 | 429 |
///However external heap and cross reference objects could also be |
430 | 430 |
///passed to the algorithm using the \ref heap() function before |
431 | 431 |
///calling \ref run(Node) "run()" or \ref init(). |
432 | 432 |
///\sa SetHeap |
433 | 433 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
434 | 434 |
struct SetStandardHeap |
435 | 435 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > { |
436 | 436 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
437 | 437 |
Create; |
438 | 438 |
}; |
439 | 439 |
|
440 | 440 |
template <class T> |
441 | 441 |
struct SetOperationTraitsTraits : public Traits { |
442 | 442 |
typedef T OperationTraits; |
443 | 443 |
}; |
444 | 444 |
|
445 | 445 |
/// \brief \ref named-templ-param "Named parameter" for setting |
446 | 446 |
///\c OperationTraits type |
447 | 447 |
/// |
448 | 448 |
///\ref named-templ-param "Named parameter" for setting |
449 | 449 |
///\c OperationTraits type. |
450 | 450 |
/// For more information see \ref DijkstraDefaultOperationTraits. |
451 | 451 |
template <class T> |
452 | 452 |
struct SetOperationTraits |
453 | 453 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
454 | 454 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
455 | 455 |
Create; |
456 | 456 |
}; |
457 | 457 |
|
458 | 458 |
///@} |
459 | 459 |
|
460 | 460 |
protected: |
461 | 461 |
|
462 | 462 |
Dijkstra() {} |
463 | 463 |
|
464 | 464 |
public: |
465 | 465 |
|
466 | 466 |
///Constructor. |
467 | 467 |
|
468 | 468 |
///Constructor. |
469 | 469 |
///\param g The digraph the algorithm runs on. |
470 | 470 |
///\param length The length map used by the algorithm. |
471 | 471 |
Dijkstra(const Digraph& g, const LengthMap& length) : |
472 | 472 |
G(&g), _length(&length), |
473 | 473 |
_pred(NULL), local_pred(false), |
474 | 474 |
_dist(NULL), local_dist(false), |
475 | 475 |
_processed(NULL), local_processed(false), |
476 | 476 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
477 | 477 |
_heap(NULL), local_heap(false) |
478 | 478 |
{ } |
479 | 479 |
|
480 | 480 |
///Destructor. |
481 | 481 |
~Dijkstra() |
482 | 482 |
{ |
483 | 483 |
if(local_pred) delete _pred; |
484 | 484 |
if(local_dist) delete _dist; |
485 | 485 |
if(local_processed) delete _processed; |
486 | 486 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
487 | 487 |
if(local_heap) delete _heap; |
488 | 488 |
} |
489 | 489 |
|
490 | 490 |
///Sets the length map. |
491 | 491 |
|
492 | 492 |
///Sets the length map. |
493 | 493 |
///\return <tt> (*this) </tt> |
494 | 494 |
Dijkstra &lengthMap(const LengthMap &m) |
495 | 495 |
{ |
496 | 496 |
_length = &m; |
497 | 497 |
return *this; |
498 | 498 |
} |
499 | 499 |
|
500 | 500 |
///Sets the map that stores the predecessor arcs. |
501 | 501 |
|
502 | 502 |
///Sets the map that stores the predecessor arcs. |
503 | 503 |
///If you don't use this function before calling \ref run(Node) "run()" |
504 | 504 |
///or \ref init(), an instance will be allocated automatically. |
505 | 505 |
///The destructor deallocates this automatically allocated map, |
506 | 506 |
///of course. |
507 | 507 |
///\return <tt> (*this) </tt> |
508 | 508 |
Dijkstra &predMap(PredMap &m) |
509 | 509 |
{ |
510 | 510 |
if(local_pred) { |
511 | 511 |
delete _pred; |
512 | 512 |
local_pred=false; |
513 | 513 |
} |
514 | 514 |
_pred = &m; |
515 | 515 |
return *this; |
516 | 516 |
} |
517 | 517 |
|
518 | 518 |
///Sets the map that indicates which nodes are processed. |
519 | 519 |
|
520 | 520 |
///Sets the map that indicates which nodes are processed. |
521 | 521 |
///If you don't use this function before calling \ref run(Node) "run()" |
522 | 522 |
///or \ref init(), an instance will be allocated automatically. |
523 | 523 |
///The destructor deallocates this automatically allocated map, |
524 | 524 |
///of course. |
525 | 525 |
///\return <tt> (*this) </tt> |
526 | 526 |
Dijkstra &processedMap(ProcessedMap &m) |
527 | 527 |
{ |
528 | 528 |
if(local_processed) { |
529 | 529 |
delete _processed; |
530 | 530 |
local_processed=false; |
531 | 531 |
} |
532 | 532 |
_processed = &m; |
533 | 533 |
return *this; |
534 | 534 |
} |
535 | 535 |
|
536 | 536 |
///Sets the map that stores the distances of the nodes. |
537 | 537 |
|
538 | 538 |
///Sets the map that stores the distances of the nodes calculated by the |
539 | 539 |
///algorithm. |
540 | 540 |
///If you don't use this function before calling \ref run(Node) "run()" |
541 | 541 |
///or \ref init(), an instance will be allocated automatically. |
542 | 542 |
///The destructor deallocates this automatically allocated map, |
543 | 543 |
///of course. |
544 | 544 |
///\return <tt> (*this) </tt> |
545 | 545 |
Dijkstra &distMap(DistMap &m) |
546 | 546 |
{ |
547 | 547 |
if(local_dist) { |
548 | 548 |
delete _dist; |
549 | 549 |
local_dist=false; |
550 | 550 |
} |
551 | 551 |
_dist = &m; |
552 | 552 |
return *this; |
553 | 553 |
} |
554 | 554 |
|
555 | 555 |
///Sets the heap and the cross reference used by algorithm. |
556 | 556 |
|
557 | 557 |
///Sets the heap and the cross reference used by algorithm. |
558 | 558 |
///If you don't use this function before calling \ref run(Node) "run()" |
559 | 559 |
///or \ref init(), heap and cross reference instances will be |
560 | 560 |
///allocated automatically. |
561 | 561 |
///The destructor deallocates these automatically allocated objects, |
562 | 562 |
///of course. |
563 | 563 |
///\return <tt> (*this) </tt> |
564 | 564 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
565 | 565 |
{ |
566 | 566 |
if(local_heap_cross_ref) { |
567 | 567 |
delete _heap_cross_ref; |
568 | 568 |
local_heap_cross_ref=false; |
569 | 569 |
} |
570 | 570 |
_heap_cross_ref = &cr; |
571 | 571 |
if(local_heap) { |
572 | 572 |
delete _heap; |
573 | 573 |
local_heap=false; |
574 | 574 |
} |
575 | 575 |
_heap = &hp; |
576 | 576 |
return *this; |
577 | 577 |
} |
578 | 578 |
|
579 | 579 |
private: |
580 | 580 |
|
581 | 581 |
void finalizeNodeData(Node v,Value dst) |
582 | 582 |
{ |
583 | 583 |
_processed->set(v,true); |
584 | 584 |
_dist->set(v, dst); |
585 | 585 |
} |
586 | 586 |
|
587 | 587 |
public: |
588 | 588 |
|
589 | 589 |
///\name Execution Control |
590 | 590 |
///The simplest way to execute the %Dijkstra algorithm is to use |
591 | 591 |
///one of the member functions called \ref run(Node) "run()".\n |
592 |
///If you need more control on the execution, first you have to call |
|
593 |
///\ref init(), then you can add several source nodes with |
|
592 |
///If you need better control on the execution, you have to call |
|
593 |
///\ref init() first, then you can add several source nodes with |
|
594 | 594 |
///\ref addSource(). Finally the actual path computation can be |
595 | 595 |
///performed with one of the \ref start() functions. |
596 | 596 |
|
597 | 597 |
///@{ |
598 | 598 |
|
599 | 599 |
///\brief Initializes the internal data structures. |
600 | 600 |
/// |
601 | 601 |
///Initializes the internal data structures. |
602 | 602 |
void init() |
603 | 603 |
{ |
604 | 604 |
create_maps(); |
605 | 605 |
_heap->clear(); |
606 | 606 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
607 | 607 |
_pred->set(u,INVALID); |
608 | 608 |
_processed->set(u,false); |
609 | 609 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
610 | 610 |
} |
611 | 611 |
} |
612 | 612 |
|
613 | 613 |
///Adds a new source node. |
614 | 614 |
|
615 | 615 |
///Adds a new source node to the priority heap. |
616 | 616 |
///The optional second parameter is the initial distance of the node. |
617 | 617 |
/// |
618 | 618 |
///The function checks if the node has already been added to the heap and |
619 | 619 |
///it is pushed to the heap only if either it was not in the heap |
620 | 620 |
///or the shortest path found till then is shorter than \c dst. |
621 | 621 |
void addSource(Node s,Value dst=OperationTraits::zero()) |
622 | 622 |
{ |
623 | 623 |
if(_heap->state(s) != Heap::IN_HEAP) { |
624 | 624 |
_heap->push(s,dst); |
625 | 625 |
} else if(OperationTraits::less((*_heap)[s], dst)) { |
626 | 626 |
_heap->set(s,dst); |
627 | 627 |
_pred->set(s,INVALID); |
628 | 628 |
} |
629 | 629 |
} |
630 | 630 |
|
631 | 631 |
///Processes the next node in the priority heap |
632 | 632 |
|
633 | 633 |
///Processes the next node in the priority heap. |
634 | 634 |
/// |
635 | 635 |
///\return The processed node. |
636 | 636 |
/// |
637 | 637 |
///\warning The priority heap must not be empty. |
638 | 638 |
Node processNextNode() |
639 | 639 |
{ |
640 | 640 |
Node v=_heap->top(); |
641 | 641 |
Value oldvalue=_heap->prio(); |
642 | 642 |
_heap->pop(); |
643 | 643 |
finalizeNodeData(v,oldvalue); |
644 | 644 |
|
645 | 645 |
for(OutArcIt e(*G,v); e!=INVALID; ++e) { |
646 | 646 |
Node w=G->target(e); |
647 | 647 |
switch(_heap->state(w)) { |
648 | 648 |
case Heap::PRE_HEAP: |
649 | 649 |
_heap->push(w,OperationTraits::plus(oldvalue, (*_length)[e])); |
650 | 650 |
_pred->set(w,e); |
651 | 651 |
break; |
652 | 652 |
case Heap::IN_HEAP: |
653 | 653 |
{ |
654 | 654 |
Value newvalue = OperationTraits::plus(oldvalue, (*_length)[e]); |
655 | 655 |
if ( OperationTraits::less(newvalue, (*_heap)[w]) ) { |
656 | 656 |
_heap->decrease(w, newvalue); |
657 | 657 |
_pred->set(w,e); |
658 | 658 |
} |
659 | 659 |
} |
660 | 660 |
break; |
661 | 661 |
case Heap::POST_HEAP: |
662 | 662 |
break; |
663 | 663 |
} |
664 | 664 |
} |
665 | 665 |
return v; |
666 | 666 |
} |
667 | 667 |
|
668 | 668 |
///The next node to be processed. |
669 | 669 |
|
670 | 670 |
///Returns the next node to be processed or \c INVALID if the |
671 | 671 |
///priority heap is empty. |
672 | 672 |
Node nextNode() const |
673 | 673 |
{ |
674 | 674 |
return !_heap->empty()?_heap->top():INVALID; |
675 | 675 |
} |
676 | 676 |
|
677 | 677 |
///Returns \c false if there are nodes to be processed. |
678 | 678 |
|
679 | 679 |
///Returns \c false if there are nodes to be processed |
680 | 680 |
///in the priority heap. |
681 | 681 |
bool emptyQueue() const { return _heap->empty(); } |
682 | 682 |
|
683 | 683 |
///Returns the number of the nodes to be processed. |
684 | 684 |
|
685 | 685 |
///Returns the number of the nodes to be processed |
686 | 686 |
///in the priority heap. |
687 | 687 |
int queueSize() const { return _heap->size(); } |
688 | 688 |
|
689 | 689 |
///Executes the algorithm. |
690 | 690 |
|
691 | 691 |
///Executes the algorithm. |
692 | 692 |
/// |
693 | 693 |
///This method runs the %Dijkstra algorithm from the root node(s) |
694 | 694 |
///in order to compute the shortest path to each node. |
695 | 695 |
/// |
696 | 696 |
///The algorithm computes |
697 | 697 |
///- the shortest path tree (forest), |
698 | 698 |
///- the distance of each node from the root(s). |
699 | 699 |
/// |
700 | 700 |
///\pre init() must be called and at least one root node should be |
701 | 701 |
///added with addSource() before using this function. |
702 | 702 |
/// |
703 | 703 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
704 | 704 |
///\code |
705 | 705 |
/// while ( !d.emptyQueue() ) { |
706 | 706 |
/// d.processNextNode(); |
707 | 707 |
/// } |
708 | 708 |
///\endcode |
709 | 709 |
void start() |
710 | 710 |
{ |
711 | 711 |
while ( !emptyQueue() ) processNextNode(); |
712 | 712 |
} |
713 | 713 |
|
714 | 714 |
///Executes the algorithm until the given target node is processed. |
715 | 715 |
|
716 | 716 |
///Executes the algorithm until the given target node is processed. |
717 | 717 |
/// |
718 | 718 |
///This method runs the %Dijkstra algorithm from the root node(s) |
719 | 719 |
///in order to compute the shortest path to \c t. |
720 | 720 |
/// |
721 | 721 |
///The algorithm computes |
722 | 722 |
///- the shortest path to \c t, |
723 | 723 |
///- the distance of \c t from the root(s). |
724 | 724 |
/// |
725 | 725 |
///\pre init() must be called and at least one root node should be |
726 | 726 |
///added with addSource() before using this function. |
727 | 727 |
void start(Node t) |
728 | 728 |
{ |
729 | 729 |
while ( !_heap->empty() && _heap->top()!=t ) processNextNode(); |
730 | 730 |
if ( !_heap->empty() ) { |
731 | 731 |
finalizeNodeData(_heap->top(),_heap->prio()); |
732 | 732 |
_heap->pop(); |
733 | 733 |
} |
734 | 734 |
} |
735 | 735 |
|
736 | 736 |
///Executes the algorithm until a condition is met. |
737 | 737 |
|
738 | 738 |
///Executes the algorithm until a condition is met. |
739 | 739 |
/// |
740 | 740 |
///This method runs the %Dijkstra algorithm from the root node(s) in |
741 | 741 |
///order to compute the shortest path to a node \c v with |
742 | 742 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
743 | 743 |
/// |
744 | 744 |
///\param nm A \c bool (or convertible) node map. The algorithm |
745 | 745 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
746 | 746 |
/// |
747 | 747 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
748 | 748 |
///\c INVALID if no such node was found. |
749 | 749 |
/// |
750 | 750 |
///\pre init() must be called and at least one root node should be |
751 | 751 |
///added with addSource() before using this function. |
752 | 752 |
template<class NodeBoolMap> |
753 | 753 |
Node start(const NodeBoolMap &nm) |
754 | 754 |
{ |
755 | 755 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
756 | 756 |
if ( _heap->empty() ) return INVALID; |
757 | 757 |
finalizeNodeData(_heap->top(),_heap->prio()); |
758 | 758 |
return _heap->top(); |
759 | 759 |
} |
760 | 760 |
|
761 | 761 |
///Runs the algorithm from the given source node. |
762 | 762 |
|
763 | 763 |
///This method runs the %Dijkstra algorithm from node \c s |
764 | 764 |
///in order to compute the shortest path to each node. |
765 | 765 |
/// |
766 | 766 |
///The algorithm computes |
767 | 767 |
///- the shortest path tree, |
768 | 768 |
///- the distance of each node from the root. |
769 | 769 |
/// |
770 | 770 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
771 | 771 |
///\code |
772 | 772 |
/// d.init(); |
773 | 773 |
/// d.addSource(s); |
774 | 774 |
/// d.start(); |
775 | 775 |
///\endcode |
776 | 776 |
void run(Node s) { |
777 | 777 |
init(); |
778 | 778 |
addSource(s); |
779 | 779 |
start(); |
780 | 780 |
} |
781 | 781 |
|
782 | 782 |
///Finds the shortest path between \c s and \c t. |
783 | 783 |
|
784 | 784 |
///This method runs the %Dijkstra algorithm from node \c s |
785 | 785 |
///in order to compute the shortest path to node \c t |
786 | 786 |
///(it stops searching when \c t is processed). |
787 | 787 |
/// |
788 | 788 |
///\return \c true if \c t is reachable form \c s. |
789 | 789 |
/// |
790 | 790 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a |
791 | 791 |
///shortcut of the following code. |
792 | 792 |
///\code |
793 | 793 |
/// d.init(); |
794 | 794 |
/// d.addSource(s); |
795 | 795 |
/// d.start(t); |
796 | 796 |
///\endcode |
797 | 797 |
bool run(Node s,Node t) { |
798 | 798 |
init(); |
799 | 799 |
addSource(s); |
800 | 800 |
start(t); |
801 | 801 |
return (*_heap_cross_ref)[t] == Heap::POST_HEAP; |
802 | 802 |
} |
803 | 803 |
|
804 | 804 |
///@} |
805 | 805 |
|
806 | 806 |
///\name Query Functions |
807 | 807 |
///The results of the %Dijkstra algorithm can be obtained using these |
808 | 808 |
///functions.\n |
809 | 809 |
///Either \ref run(Node) "run()" or \ref init() should be called |
810 | 810 |
///before using them. |
811 | 811 |
|
812 | 812 |
///@{ |
813 | 813 |
|
814 | 814 |
///The shortest path to the given node. |
815 | 815 |
|
816 | 816 |
///Returns the shortest path to the given node from the root(s). |
817 | 817 |
/// |
818 | 818 |
///\warning \c t should be reached from the root(s). |
819 | 819 |
/// |
820 | 820 |
///\pre Either \ref run(Node) "run()" or \ref init() |
821 | 821 |
///must be called before using this function. |
822 | 822 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
823 | 823 |
|
824 | 824 |
///The distance of the given node from the root(s). |
825 | 825 |
|
826 | 826 |
///Returns the distance of the given node from the root(s). |
827 | 827 |
/// |
828 | 828 |
///\warning If node \c v is not reached from the root(s), then |
829 | 829 |
///the return value of this function is undefined. |
830 | 830 |
/// |
831 | 831 |
///\pre Either \ref run(Node) "run()" or \ref init() |
832 | 832 |
///must be called before using this function. |
833 | 833 |
Value dist(Node v) const { return (*_dist)[v]; } |
834 | 834 |
|
835 | 835 |
///\brief Returns the 'previous arc' of the shortest path tree for |
836 | 836 |
///the given node. |
837 | 837 |
/// |
838 | 838 |
///This function returns the 'previous arc' of the shortest path |
839 | 839 |
///tree for the node \c v, i.e. it returns the last arc of a |
840 | 840 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
841 | 841 |
///is not reached from the root(s) or if \c v is a root. |
842 | 842 |
/// |
843 | 843 |
///The shortest path tree used here is equal to the shortest path |
844 | 844 |
///tree used in \ref predNode() and \ref predMap(). |
845 | 845 |
/// |
846 | 846 |
///\pre Either \ref run(Node) "run()" or \ref init() |
847 | 847 |
///must be called before using this function. |
848 | 848 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
849 | 849 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIM2_H |
20 | 20 |
#define LEMON_DIM2_H |
21 | 21 |
|
22 | 22 |
#include <iostream> |
23 | 23 |
|
24 |
///\ingroup |
|
24 |
///\ingroup geomdat |
|
25 | 25 |
///\file |
26 | 26 |
///\brief A simple two dimensional vector and a bounding box implementation |
27 |
/// |
|
28 |
/// The class \ref lemon::dim2::Point "dim2::Point" implements |
|
29 |
/// a two dimensional vector with the usual operations. |
|
30 |
/// |
|
31 |
/// The class \ref lemon::dim2::Box "dim2::Box" can be used to determine |
|
32 |
/// the rectangular bounding box of a set of |
|
33 |
/// \ref lemon::dim2::Point "dim2::Point"'s. |
|
34 | 27 |
|
35 | 28 |
namespace lemon { |
36 | 29 |
|
37 | 30 |
///Tools for handling two dimensional coordinates |
38 | 31 |
|
39 | 32 |
///This namespace is a storage of several |
40 | 33 |
///tools for handling two dimensional coordinates |
41 | 34 |
namespace dim2 { |
42 | 35 |
|
43 |
/// \addtogroup |
|
36 |
/// \addtogroup geomdat |
|
44 | 37 |
/// @{ |
45 | 38 |
|
46 | 39 |
/// Two dimensional vector (plain vector) |
47 | 40 |
|
48 | 41 |
/// A simple two dimensional vector (plain vector) implementation |
49 | 42 |
/// with the usual vector operations. |
50 | 43 |
template<typename T> |
51 | 44 |
class Point { |
52 | 45 |
|
53 | 46 |
public: |
54 | 47 |
|
55 | 48 |
typedef T Value; |
56 | 49 |
|
57 | 50 |
///First coordinate |
58 | 51 |
T x; |
59 | 52 |
///Second coordinate |
60 | 53 |
T y; |
61 | 54 |
|
62 | 55 |
///Default constructor |
63 | 56 |
Point() {} |
64 | 57 |
|
65 | 58 |
///Construct an instance from coordinates |
66 | 59 |
Point(T a, T b) : x(a), y(b) { } |
67 | 60 |
|
68 | 61 |
///Returns the dimension of the vector (i.e. returns 2). |
69 | 62 |
|
70 | 63 |
///The dimension of the vector. |
71 | 64 |
///This function always returns 2. |
72 | 65 |
int size() const { return 2; } |
73 | 66 |
|
74 | 67 |
///Subscripting operator |
75 | 68 |
|
76 | 69 |
///\c p[0] is \c p.x and \c p[1] is \c p.y |
77 | 70 |
/// |
78 | 71 |
T& operator[](int idx) { return idx == 0 ? x : y; } |
79 | 72 |
|
80 | 73 |
///Const subscripting operator |
81 | 74 |
|
82 | 75 |
///\c p[0] is \c p.x and \c p[1] is \c p.y |
83 | 76 |
/// |
84 | 77 |
const T& operator[](int idx) const { return idx == 0 ? x : y; } |
85 | 78 |
|
86 | 79 |
///Conversion constructor |
87 | 80 |
template<class TT> Point(const Point<TT> &p) : x(p.x), y(p.y) {} |
88 | 81 |
|
89 | 82 |
///Give back the square of the norm of the vector |
90 | 83 |
T normSquare() const { |
91 | 84 |
return x*x+y*y; |
92 | 85 |
} |
93 | 86 |
|
94 | 87 |
///Increment the left hand side by \c u |
95 | 88 |
Point<T>& operator +=(const Point<T>& u) { |
96 | 89 |
x += u.x; |
97 | 90 |
y += u.y; |
98 | 91 |
return *this; |
99 | 92 |
} |
100 | 93 |
|
101 | 94 |
///Decrement the left hand side by \c u |
102 | 95 |
Point<T>& operator -=(const Point<T>& u) { |
103 | 96 |
x -= u.x; |
104 | 97 |
y -= u.y; |
105 | 98 |
return *this; |
106 | 99 |
} |
107 | 100 |
|
108 | 101 |
///Multiply the left hand side with a scalar |
109 | 102 |
Point<T>& operator *=(const T &u) { |
110 | 103 |
x *= u; |
111 | 104 |
y *= u; |
112 | 105 |
return *this; |
113 | 106 |
} |
114 | 107 |
|
115 | 108 |
///Divide the left hand side by a scalar |
116 | 109 |
Point<T>& operator /=(const T &u) { |
117 | 110 |
x /= u; |
118 | 111 |
y /= u; |
119 | 112 |
return *this; |
120 | 113 |
} |
121 | 114 |
|
122 | 115 |
///Return the scalar product of two vectors |
123 | 116 |
T operator *(const Point<T>& u) const { |
124 | 117 |
return x*u.x+y*u.y; |
125 | 118 |
} |
126 | 119 |
|
127 | 120 |
///Return the sum of two vectors |
128 | 121 |
Point<T> operator+(const Point<T> &u) const { |
129 | 122 |
Point<T> b=*this; |
130 | 123 |
return b+=u; |
131 | 124 |
} |
132 | 125 |
|
133 | 126 |
///Return the negative of the vector |
134 | 127 |
Point<T> operator-() const { |
135 | 128 |
Point<T> b=*this; |
136 | 129 |
b.x=-b.x; b.y=-b.y; |
137 | 130 |
return b; |
138 | 131 |
} |
139 | 132 |
|
140 | 133 |
///Return the difference of two vectors |
141 | 134 |
Point<T> operator-(const Point<T> &u) const { |
142 | 135 |
Point<T> b=*this; |
143 | 136 |
return b-=u; |
144 | 137 |
} |
145 | 138 |
|
146 | 139 |
///Return a vector multiplied by a scalar |
147 | 140 |
Point<T> operator*(const T &u) const { |
148 | 141 |
Point<T> b=*this; |
149 | 142 |
return b*=u; |
150 | 143 |
} |
151 | 144 |
|
152 | 145 |
///Return a vector divided by a scalar |
153 | 146 |
Point<T> operator/(const T &u) const { |
154 | 147 |
Point<T> b=*this; |
155 | 148 |
return b/=u; |
156 | 149 |
} |
157 | 150 |
|
158 | 151 |
///Test equality |
159 | 152 |
bool operator==(const Point<T> &u) const { |
160 | 153 |
return (x==u.x) && (y==u.y); |
161 | 154 |
} |
162 | 155 |
|
163 | 156 |
///Test inequality |
164 | 157 |
bool operator!=(Point u) const { |
165 | 158 |
return (x!=u.x) || (y!=u.y); |
166 | 159 |
} |
167 | 160 |
|
168 | 161 |
}; |
169 | 162 |
|
170 | 163 |
///Return a Point |
171 | 164 |
|
172 | 165 |
///Return a Point. |
173 | 166 |
///\relates Point |
174 | 167 |
template <typename T> |
175 | 168 |
inline Point<T> makePoint(const T& x, const T& y) { |
176 | 169 |
return Point<T>(x, y); |
177 | 170 |
} |
178 | 171 |
|
179 | 172 |
///Return a vector multiplied by a scalar |
180 | 173 |
|
181 | 174 |
///Return a vector multiplied by a scalar. |
182 | 175 |
///\relates Point |
183 | 176 |
template<typename T> Point<T> operator*(const T &u,const Point<T> &x) { |
184 | 177 |
return x*u; |
185 | 178 |
} |
186 | 179 |
|
187 | 180 |
///Read a plain vector from a stream |
188 | 181 |
|
189 | 182 |
///Read a plain vector from a stream. |
190 | 183 |
///\relates Point |
191 | 184 |
/// |
192 | 185 |
template<typename T> |
193 | 186 |
inline std::istream& operator>>(std::istream &is, Point<T> &z) { |
194 | 187 |
char c; |
195 | 188 |
if (is >> c) { |
196 | 189 |
if (c != '(') is.putback(c); |
197 | 190 |
} else { |
198 | 191 |
is.clear(); |
199 | 192 |
} |
200 | 193 |
if (!(is >> z.x)) return is; |
201 | 194 |
if (is >> c) { |
202 | 195 |
if (c != ',') is.putback(c); |
203 | 196 |
} else { |
204 | 197 |
is.clear(); |
205 | 198 |
} |
206 | 199 |
if (!(is >> z.y)) return is; |
207 | 200 |
if (is >> c) { |
208 | 201 |
if (c != ')') is.putback(c); |
209 | 202 |
} else { |
210 | 203 |
is.clear(); |
211 | 204 |
} |
212 | 205 |
return is; |
213 | 206 |
} |
214 | 207 |
|
215 | 208 |
///Write a plain vector to a stream |
216 | 209 |
|
217 | 210 |
///Write a plain vector to a stream. |
218 | 211 |
///\relates Point |
219 | 212 |
/// |
220 | 213 |
template<typename T> |
221 | 214 |
inline std::ostream& operator<<(std::ostream &os, const Point<T>& z) |
222 | 215 |
{ |
223 | 216 |
os << "(" << z.x << "," << z.y << ")"; |
224 | 217 |
return os; |
225 | 218 |
} |
226 | 219 |
|
227 | 220 |
///Rotate by 90 degrees |
228 | 221 |
|
229 | 222 |
///Returns the parameter rotated by 90 degrees in positive direction. |
230 | 223 |
///\relates Point |
231 | 224 |
/// |
232 | 225 |
template<typename T> |
233 | 226 |
inline Point<T> rot90(const Point<T> &z) |
234 | 227 |
{ |
235 | 228 |
return Point<T>(-z.y,z.x); |
236 | 229 |
} |
237 | 230 |
|
238 | 231 |
///Rotate by 180 degrees |
239 | 232 |
|
240 | 233 |
///Returns the parameter rotated by 180 degrees. |
241 | 234 |
///\relates Point |
242 | 235 |
/// |
243 | 236 |
template<typename T> |
244 | 237 |
inline Point<T> rot180(const Point<T> &z) |
245 | 238 |
{ |
246 | 239 |
return Point<T>(-z.x,-z.y); |
247 | 240 |
} |
248 | 241 |
|
249 | 242 |
///Rotate by 270 degrees |
250 | 243 |
|
251 | 244 |
///Returns the parameter rotated by 90 degrees in negative direction. |
252 | 245 |
///\relates Point |
253 | 246 |
/// |
254 | 247 |
template<typename T> |
255 | 248 |
inline Point<T> rot270(const Point<T> &z) |
256 | 249 |
{ |
257 | 250 |
return Point<T>(z.y,-z.x); |
258 | 251 |
} |
259 | 252 |
|
260 | 253 |
|
261 | 254 |
|
262 | 255 |
/// Bounding box of plain vectors (points). |
263 | 256 |
|
264 | 257 |
/// A class to calculate or store the bounding box of plain vectors |
265 | 258 |
/// (\ref Point "points"). |
266 | 259 |
template<typename T> |
267 | 260 |
class Box { |
268 | 261 |
Point<T> _bottom_left, _top_right; |
269 | 262 |
bool _empty; |
270 | 263 |
public: |
271 | 264 |
|
272 | 265 |
///Default constructor: creates an empty box |
273 | 266 |
Box() { _empty = true; } |
274 | 267 |
|
275 | 268 |
///Construct a box from one point |
276 | 269 |
Box(Point<T> a) { |
277 | 270 |
_bottom_left = _top_right = a; |
278 | 271 |
_empty = false; |
279 | 272 |
} |
280 | 273 |
|
281 | 274 |
///Construct a box from two points |
282 | 275 |
|
283 | 276 |
///Construct a box from two points. |
284 | 277 |
///\param a The bottom left corner. |
285 | 278 |
///\param b The top right corner. |
286 | 279 |
///\warning The coordinates of the bottom left corner must be no more |
287 | 280 |
///than those of the top right one. |
288 | 281 |
Box(Point<T> a,Point<T> b) |
289 | 282 |
{ |
290 | 283 |
_bottom_left = a; |
291 | 284 |
_top_right = b; |
292 | 285 |
_empty = false; |
293 | 286 |
} |
294 | 287 |
|
295 | 288 |
///Construct a box from four numbers |
296 | 289 |
|
297 | 290 |
///Construct a box from four numbers. |
298 | 291 |
///\param l The left side of the box. |
299 | 292 |
///\param b The bottom of the box. |
... | ... |
@@ -106,465 +106,465 @@ |
106 | 106 |
if (_weight) { |
107 | 107 |
delete _weight; |
108 | 108 |
} |
109 | 109 |
if (_order) { |
110 | 110 |
delete _order; |
111 | 111 |
} |
112 | 112 |
} |
113 | 113 |
|
114 | 114 |
public: |
115 | 115 |
|
116 | 116 |
/// \brief Constructor |
117 | 117 |
/// |
118 | 118 |
/// Constructor. |
119 | 119 |
/// \param graph The undirected graph the algorithm runs on. |
120 | 120 |
/// \param capacity The edge capacity map. |
121 | 121 |
GomoryHu(const Graph& graph, const Capacity& capacity) |
122 | 122 |
: _graph(graph), _capacity(capacity), |
123 | 123 |
_pred(0), _weight(0), _order(0) |
124 | 124 |
{ |
125 | 125 |
checkConcept<concepts::ReadMap<Edge, Value>, Capacity>(); |
126 | 126 |
} |
127 | 127 |
|
128 | 128 |
|
129 | 129 |
/// \brief Destructor |
130 | 130 |
/// |
131 | 131 |
/// Destructor. |
132 | 132 |
~GomoryHu() { |
133 | 133 |
destroyStructures(); |
134 | 134 |
} |
135 | 135 |
|
136 | 136 |
private: |
137 | 137 |
|
138 | 138 |
// Initialize the internal data structures |
139 | 139 |
void init() { |
140 | 140 |
createStructures(); |
141 | 141 |
|
142 | 142 |
_root = NodeIt(_graph); |
143 | 143 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
144 | 144 |
(*_pred)[n] = _root; |
145 | 145 |
(*_order)[n] = -1; |
146 | 146 |
} |
147 | 147 |
(*_pred)[_root] = INVALID; |
148 | 148 |
(*_weight)[_root] = std::numeric_limits<Value>::max(); |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
|
152 | 152 |
// Start the algorithm |
153 | 153 |
void start() { |
154 | 154 |
Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID); |
155 | 155 |
|
156 | 156 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
157 | 157 |
if (n == _root) continue; |
158 | 158 |
|
159 | 159 |
Node pn = (*_pred)[n]; |
160 | 160 |
fa.source(n); |
161 | 161 |
fa.target(pn); |
162 | 162 |
|
163 | 163 |
fa.runMinCut(); |
164 | 164 |
|
165 | 165 |
(*_weight)[n] = fa.flowValue(); |
166 | 166 |
|
167 | 167 |
for (NodeIt nn(_graph); nn != INVALID; ++nn) { |
168 | 168 |
if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) { |
169 | 169 |
(*_pred)[nn] = n; |
170 | 170 |
} |
171 | 171 |
} |
172 | 172 |
if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) { |
173 | 173 |
(*_pred)[n] = (*_pred)[pn]; |
174 | 174 |
(*_pred)[pn] = n; |
175 | 175 |
(*_weight)[n] = (*_weight)[pn]; |
176 | 176 |
(*_weight)[pn] = fa.flowValue(); |
177 | 177 |
} |
178 | 178 |
} |
179 | 179 |
|
180 | 180 |
(*_order)[_root] = 0; |
181 | 181 |
int index = 1; |
182 | 182 |
|
183 | 183 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
184 | 184 |
std::vector<Node> st; |
185 | 185 |
Node nn = n; |
186 | 186 |
while ((*_order)[nn] == -1) { |
187 | 187 |
st.push_back(nn); |
188 | 188 |
nn = (*_pred)[nn]; |
189 | 189 |
} |
190 | 190 |
while (!st.empty()) { |
191 | 191 |
(*_order)[st.back()] = index++; |
192 | 192 |
st.pop_back(); |
193 | 193 |
} |
194 | 194 |
} |
195 | 195 |
} |
196 | 196 |
|
197 | 197 |
public: |
198 | 198 |
|
199 | 199 |
///\name Execution Control |
200 | 200 |
|
201 | 201 |
///@{ |
202 | 202 |
|
203 | 203 |
/// \brief Run the Gomory-Hu algorithm. |
204 | 204 |
/// |
205 | 205 |
/// This function runs the Gomory-Hu algorithm. |
206 | 206 |
void run() { |
207 | 207 |
init(); |
208 | 208 |
start(); |
209 | 209 |
} |
210 | 210 |
|
211 | 211 |
/// @} |
212 | 212 |
|
213 | 213 |
///\name Query Functions |
214 | 214 |
///The results of the algorithm can be obtained using these |
215 | 215 |
///functions.\n |
216 | 216 |
///\ref run() should be called before using them.\n |
217 | 217 |
///See also \ref MinCutNodeIt and \ref MinCutEdgeIt. |
218 | 218 |
|
219 | 219 |
///@{ |
220 | 220 |
|
221 | 221 |
/// \brief Return the predecessor node in the Gomory-Hu tree. |
222 | 222 |
/// |
223 | 223 |
/// This function returns the predecessor node of the given node |
224 | 224 |
/// in the Gomory-Hu tree. |
225 | 225 |
/// If \c node is the root of the tree, then it returns \c INVALID. |
226 | 226 |
/// |
227 | 227 |
/// \pre \ref run() must be called before using this function. |
228 | 228 |
Node predNode(const Node& node) const { |
229 | 229 |
return (*_pred)[node]; |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
/// \brief Return the weight of the predecessor edge in the |
233 | 233 |
/// Gomory-Hu tree. |
234 | 234 |
/// |
235 | 235 |
/// This function returns the weight of the predecessor edge of the |
236 | 236 |
/// given node in the Gomory-Hu tree. |
237 | 237 |
/// If \c node is the root of the tree, the result is undefined. |
238 | 238 |
/// |
239 | 239 |
/// \pre \ref run() must be called before using this function. |
240 | 240 |
Value predValue(const Node& node) const { |
241 | 241 |
return (*_weight)[node]; |
242 | 242 |
} |
243 | 243 |
|
244 | 244 |
/// \brief Return the distance from the root node in the Gomory-Hu tree. |
245 | 245 |
/// |
246 | 246 |
/// This function returns the distance of the given node from the root |
247 | 247 |
/// node in the Gomory-Hu tree. |
248 | 248 |
/// |
249 | 249 |
/// \pre \ref run() must be called before using this function. |
250 | 250 |
int rootDist(const Node& node) const { |
251 | 251 |
return (*_order)[node]; |
252 | 252 |
} |
253 | 253 |
|
254 | 254 |
/// \brief Return the minimum cut value between two nodes |
255 | 255 |
/// |
256 | 256 |
/// This function returns the minimum cut value between the nodes |
257 | 257 |
/// \c s and \c t. |
258 | 258 |
/// It finds the nearest common ancestor of the given nodes in the |
259 | 259 |
/// Gomory-Hu tree and calculates the minimum weight edge on the |
260 | 260 |
/// paths to the ancestor. |
261 | 261 |
/// |
262 | 262 |
/// \pre \ref run() must be called before using this function. |
263 | 263 |
Value minCutValue(const Node& s, const Node& t) const { |
264 | 264 |
Node sn = s, tn = t; |
265 | 265 |
Value value = std::numeric_limits<Value>::max(); |
266 | 266 |
|
267 | 267 |
while (sn != tn) { |
268 | 268 |
if ((*_order)[sn] < (*_order)[tn]) { |
269 | 269 |
if ((*_weight)[tn] <= value) value = (*_weight)[tn]; |
270 | 270 |
tn = (*_pred)[tn]; |
271 | 271 |
} else { |
272 | 272 |
if ((*_weight)[sn] <= value) value = (*_weight)[sn]; |
273 | 273 |
sn = (*_pred)[sn]; |
274 | 274 |
} |
275 | 275 |
} |
276 | 276 |
return value; |
277 | 277 |
} |
278 | 278 |
|
279 | 279 |
/// \brief Return the minimum cut between two nodes |
280 | 280 |
/// |
281 | 281 |
/// This function returns the minimum cut between the nodes \c s and \c t |
282 | 282 |
/// in the \c cutMap parameter by setting the nodes in the component of |
283 | 283 |
/// \c s to \c true and the other nodes to \c false. |
284 | 284 |
/// |
285 | 285 |
/// For higher level interfaces see MinCutNodeIt and MinCutEdgeIt. |
286 | 286 |
/// |
287 | 287 |
/// \param s The base node. |
288 | 288 |
/// \param t The node you want to separate from node \c s. |
289 | 289 |
/// \param cutMap The cut will be returned in this map. |
290 | 290 |
/// It must be a \c bool (or convertible) \ref concepts::ReadWriteMap |
291 | 291 |
/// "ReadWriteMap" on the graph nodes. |
292 | 292 |
/// |
293 | 293 |
/// \return The value of the minimum cut between \c s and \c t. |
294 | 294 |
/// |
295 | 295 |
/// \pre \ref run() must be called before using this function. |
296 | 296 |
template <typename CutMap> |
297 | 297 |
Value minCutMap(const Node& s, ///< |
298 | 298 |
const Node& t, |
299 | 299 |
///< |
300 | 300 |
CutMap& cutMap |
301 | 301 |
///< |
302 | 302 |
) const { |
303 | 303 |
Node sn = s, tn = t; |
304 | 304 |
bool s_root=false; |
305 | 305 |
Node rn = INVALID; |
306 | 306 |
Value value = std::numeric_limits<Value>::max(); |
307 | 307 |
|
308 | 308 |
while (sn != tn) { |
309 | 309 |
if ((*_order)[sn] < (*_order)[tn]) { |
310 | 310 |
if ((*_weight)[tn] <= value) { |
311 | 311 |
rn = tn; |
312 | 312 |
s_root = false; |
313 | 313 |
value = (*_weight)[tn]; |
314 | 314 |
} |
315 | 315 |
tn = (*_pred)[tn]; |
316 | 316 |
} else { |
317 | 317 |
if ((*_weight)[sn] <= value) { |
318 | 318 |
rn = sn; |
319 | 319 |
s_root = true; |
320 | 320 |
value = (*_weight)[sn]; |
321 | 321 |
} |
322 | 322 |
sn = (*_pred)[sn]; |
323 | 323 |
} |
324 | 324 |
} |
325 | 325 |
|
326 | 326 |
typename Graph::template NodeMap<bool> reached(_graph, false); |
327 | 327 |
reached[_root] = true; |
328 | 328 |
cutMap.set(_root, !s_root); |
329 | 329 |
reached[rn] = true; |
330 | 330 |
cutMap.set(rn, s_root); |
331 | 331 |
|
332 | 332 |
std::vector<Node> st; |
333 | 333 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
334 | 334 |
st.clear(); |
335 | 335 |
Node nn = n; |
336 | 336 |
while (!reached[nn]) { |
337 | 337 |
st.push_back(nn); |
338 | 338 |
nn = (*_pred)[nn]; |
339 | 339 |
} |
340 | 340 |
while (!st.empty()) { |
341 | 341 |
cutMap.set(st.back(), cutMap[nn]); |
342 | 342 |
st.pop_back(); |
343 | 343 |
} |
344 | 344 |
} |
345 | 345 |
|
346 | 346 |
return value; |
347 | 347 |
} |
348 | 348 |
|
349 | 349 |
///@} |
350 | 350 |
|
351 | 351 |
friend class MinCutNodeIt; |
352 | 352 |
|
353 | 353 |
/// Iterate on the nodes of a minimum cut |
354 | 354 |
|
355 | 355 |
/// This iterator class lists the nodes of a minimum cut found by |
356 | 356 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
357 | 357 |
/// and call its \ref GomoryHu::run() "run()" method. |
358 | 358 |
/// |
359 | 359 |
/// This example counts the nodes in the minimum cut separating \c s from |
360 | 360 |
/// \c t. |
361 | 361 |
/// \code |
362 |
/// |
|
362 |
/// GomoryHu<Graph> gom(g, capacities); |
|
363 | 363 |
/// gom.run(); |
364 | 364 |
/// int cnt=0; |
365 |
/// for( |
|
365 |
/// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; |
|
366 | 366 |
/// \endcode |
367 | 367 |
class MinCutNodeIt |
368 | 368 |
{ |
369 | 369 |
bool _side; |
370 | 370 |
typename Graph::NodeIt _node_it; |
371 | 371 |
typename Graph::template NodeMap<bool> _cut; |
372 | 372 |
public: |
373 | 373 |
/// Constructor |
374 | 374 |
|
375 | 375 |
/// Constructor. |
376 | 376 |
/// |
377 | 377 |
MinCutNodeIt(GomoryHu const &gomory, |
378 | 378 |
///< The GomoryHu class. You must call its |
379 | 379 |
/// run() method |
380 | 380 |
/// before initializing this iterator. |
381 | 381 |
const Node& s, ///< The base node. |
382 | 382 |
const Node& t, |
383 | 383 |
///< The node you want to separate from node \c s. |
384 | 384 |
bool side=true |
385 | 385 |
///< If it is \c true (default) then the iterator lists |
386 | 386 |
/// the nodes of the component containing \c s, |
387 | 387 |
/// otherwise it lists the other component. |
388 | 388 |
/// \note As the minimum cut is not always unique, |
389 | 389 |
/// \code |
390 | 390 |
/// MinCutNodeIt(gomory, s, t, true); |
391 | 391 |
/// \endcode |
392 | 392 |
/// and |
393 | 393 |
/// \code |
394 | 394 |
/// MinCutNodeIt(gomory, t, s, false); |
395 | 395 |
/// \endcode |
396 | 396 |
/// does not necessarily give the same set of nodes. |
397 | 397 |
/// However it is ensured that |
398 | 398 |
/// \code |
399 | 399 |
/// MinCutNodeIt(gomory, s, t, true); |
400 | 400 |
/// \endcode |
401 | 401 |
/// and |
402 | 402 |
/// \code |
403 | 403 |
/// MinCutNodeIt(gomory, s, t, false); |
404 | 404 |
/// \endcode |
405 | 405 |
/// together list each node exactly once. |
406 | 406 |
) |
407 | 407 |
: _side(side), _cut(gomory._graph) |
408 | 408 |
{ |
409 | 409 |
gomory.minCutMap(s,t,_cut); |
410 | 410 |
for(_node_it=typename Graph::NodeIt(gomory._graph); |
411 | 411 |
_node_it!=INVALID && _cut[_node_it]!=_side; |
412 | 412 |
++_node_it) {} |
413 | 413 |
} |
414 | 414 |
/// Conversion to \c Node |
415 | 415 |
|
416 | 416 |
/// Conversion to \c Node. |
417 | 417 |
/// |
418 | 418 |
operator typename Graph::Node() const |
419 | 419 |
{ |
420 | 420 |
return _node_it; |
421 | 421 |
} |
422 | 422 |
bool operator==(Invalid) { return _node_it==INVALID; } |
423 | 423 |
bool operator!=(Invalid) { return _node_it!=INVALID; } |
424 | 424 |
/// Next node |
425 | 425 |
|
426 | 426 |
/// Next node. |
427 | 427 |
/// |
428 | 428 |
MinCutNodeIt &operator++() |
429 | 429 |
{ |
430 | 430 |
for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {} |
431 | 431 |
return *this; |
432 | 432 |
} |
433 | 433 |
/// Postfix incrementation |
434 | 434 |
|
435 | 435 |
/// Postfix incrementation. |
436 | 436 |
/// |
437 | 437 |
/// \warning This incrementation |
438 | 438 |
/// returns a \c Node, not a \c MinCutNodeIt, as one may |
439 | 439 |
/// expect. |
440 | 440 |
typename Graph::Node operator++(int) |
441 | 441 |
{ |
442 | 442 |
typename Graph::Node n=*this; |
443 | 443 |
++(*this); |
444 | 444 |
return n; |
445 | 445 |
} |
446 | 446 |
}; |
447 | 447 |
|
448 | 448 |
friend class MinCutEdgeIt; |
449 | 449 |
|
450 | 450 |
/// Iterate on the edges of a minimum cut |
451 | 451 |
|
452 | 452 |
/// This iterator class lists the edges of a minimum cut found by |
453 | 453 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
454 | 454 |
/// and call its \ref GomoryHu::run() "run()" method. |
455 | 455 |
/// |
456 | 456 |
/// This example computes the value of the minimum cut separating \c s from |
457 | 457 |
/// \c t. |
458 | 458 |
/// \code |
459 |
/// |
|
459 |
/// GomoryHu<Graph> gom(g, capacities); |
|
460 | 460 |
/// gom.run(); |
461 | 461 |
/// int value=0; |
462 |
/// for( |
|
462 |
/// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) |
|
463 | 463 |
/// value+=capacities[e]; |
464 | 464 |
/// \endcode |
465 | 465 |
/// The result will be the same as the value returned by |
466 | 466 |
/// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)". |
467 | 467 |
class MinCutEdgeIt |
468 | 468 |
{ |
469 | 469 |
bool _side; |
470 | 470 |
const Graph &_graph; |
471 | 471 |
typename Graph::NodeIt _node_it; |
472 | 472 |
typename Graph::OutArcIt _arc_it; |
473 | 473 |
typename Graph::template NodeMap<bool> _cut; |
474 | 474 |
void step() |
475 | 475 |
{ |
476 | 476 |
++_arc_it; |
477 | 477 |
while(_node_it!=INVALID && _arc_it==INVALID) |
478 | 478 |
{ |
479 | 479 |
for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {} |
480 | 480 |
if(_node_it!=INVALID) |
481 | 481 |
_arc_it=typename Graph::OutArcIt(_graph,_node_it); |
482 | 482 |
} |
483 | 483 |
} |
484 | 484 |
|
485 | 485 |
public: |
486 | 486 |
/// Constructor |
487 | 487 |
|
488 | 488 |
/// Constructor. |
489 | 489 |
/// |
490 | 490 |
MinCutEdgeIt(GomoryHu const &gomory, |
491 | 491 |
///< The GomoryHu class. You must call its |
492 | 492 |
/// run() method |
493 | 493 |
/// before initializing this iterator. |
494 | 494 |
const Node& s, ///< The base node. |
495 | 495 |
const Node& t, |
496 | 496 |
///< The node you want to separate from node \c s. |
497 | 497 |
bool side=true |
498 | 498 |
///< If it is \c true (default) then the listed arcs |
499 | 499 |
/// will be oriented from the |
500 | 500 |
/// nodes of the component containing \c s, |
501 | 501 |
/// otherwise they will be oriented in the opposite |
502 | 502 |
/// direction. |
503 | 503 |
) |
504 | 504 |
: _graph(gomory._graph), _cut(_graph) |
505 | 505 |
{ |
506 | 506 |
gomory.minCutMap(s,t,_cut); |
507 | 507 |
if(!side) |
508 | 508 |
for(typename Graph::NodeIt n(_graph);n!=INVALID;++n) |
509 | 509 |
_cut[n]=!_cut[n]; |
510 | 510 |
|
511 | 511 |
for(_node_it=typename Graph::NodeIt(_graph); |
512 | 512 |
_node_it!=INVALID && !_cut[_node_it]; |
513 | 513 |
++_node_it) {} |
514 | 514 |
_arc_it = _node_it!=INVALID ? |
515 | 515 |
typename Graph::OutArcIt(_graph,_node_it) : INVALID; |
516 | 516 |
while(_node_it!=INVALID && _arc_it == INVALID) |
517 | 517 |
{ |
518 | 518 |
for(++_node_it; _node_it!=INVALID&&!_cut[_node_it]; ++_node_it) {} |
519 | 519 |
if(_node_it!=INVALID) |
520 | 520 |
_arc_it= typename Graph::OutArcIt(_graph,_node_it); |
521 | 521 |
} |
522 | 522 |
while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step(); |
523 | 523 |
} |
524 | 524 |
/// Conversion to \c Arc |
525 | 525 |
|
526 | 526 |
/// Conversion to \c Arc. |
527 | 527 |
/// |
528 | 528 |
operator typename Graph::Arc() const |
529 | 529 |
{ |
530 | 530 |
return _arc_it; |
531 | 531 |
} |
532 | 532 |
/// Conversion to \c Edge |
533 | 533 |
|
534 | 534 |
/// Conversion to \c Edge. |
535 | 535 |
/// |
536 | 536 |
operator typename Graph::Edge() const |
537 | 537 |
{ |
538 | 538 |
return _arc_it; |
539 | 539 |
} |
540 | 540 |
bool operator==(Invalid) { return _node_it==INVALID; } |
541 | 541 |
bool operator!=(Invalid) { return _node_it!=INVALID; } |
542 | 542 |
/// Next edge |
543 | 543 |
|
544 | 544 |
/// Next edge. |
545 | 545 |
/// |
546 | 546 |
MinCutEdgeIt &operator++() |
547 | 547 |
{ |
548 | 548 |
step(); |
549 | 549 |
while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step(); |
550 | 550 |
return *this; |
551 | 551 |
} |
552 | 552 |
/// Postfix incrementation |
553 | 553 |
|
554 | 554 |
/// Postfix incrementation. |
555 | 555 |
/// |
556 | 556 |
/// \warning This incrementation |
557 | 557 |
/// returns an \c Arc, not a \c MinCutEdgeIt, as one may expect. |
558 | 558 |
typename Graph::Arc operator++(int) |
559 | 559 |
{ |
560 | 560 |
typename Graph::Arc e=*this; |
561 | 561 |
++(*this); |
562 | 562 |
return e; |
563 | 563 |
} |
564 | 564 |
}; |
565 | 565 |
|
566 | 566 |
}; |
567 | 567 |
|
568 | 568 |
} |
569 | 569 |
|
570 | 570 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MAPS_H |
20 | 20 |
#define LEMON_MAPS_H |
21 | 21 |
|
22 | 22 |
#include <iterator> |
23 | 23 |
#include <functional> |
24 | 24 |
#include <vector> |
25 |
#include <map> |
|
25 | 26 |
|
26 | 27 |
#include <lemon/core.h> |
27 | 28 |
|
28 | 29 |
///\file |
29 | 30 |
///\ingroup maps |
30 | 31 |
///\brief Miscellaneous property maps |
31 | 32 |
|
32 |
#include <map> |
|
33 |
|
|
34 | 33 |
namespace lemon { |
35 | 34 |
|
36 | 35 |
/// \addtogroup maps |
37 | 36 |
/// @{ |
38 | 37 |
|
39 | 38 |
/// Base class of maps. |
40 | 39 |
|
41 | 40 |
/// Base class of maps. It provides the necessary type definitions |
42 | 41 |
/// required by the map %concepts. |
43 | 42 |
template<typename K, typename V> |
44 | 43 |
class MapBase { |
45 | 44 |
public: |
46 | 45 |
/// \brief The key type of the map. |
47 | 46 |
typedef K Key; |
48 | 47 |
/// \brief The value type of the map. |
49 | 48 |
/// (The type of objects associated with the keys). |
50 | 49 |
typedef V Value; |
51 | 50 |
}; |
52 | 51 |
|
53 | 52 |
|
54 | 53 |
/// Null map. (a.k.a. DoNothingMap) |
55 | 54 |
|
56 | 55 |
/// This map can be used if you have to provide a map only for |
57 | 56 |
/// its type definitions, or if you have to provide a writable map, |
58 | 57 |
/// but data written to it is not required (i.e. it will be sent to |
59 | 58 |
/// <tt>/dev/null</tt>). |
60 | 59 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
61 | 60 |
/// |
62 | 61 |
/// \sa ConstMap |
63 | 62 |
template<typename K, typename V> |
64 | 63 |
class NullMap : public MapBase<K, V> { |
65 | 64 |
public: |
66 | 65 |
///\e |
67 | 66 |
typedef K Key; |
68 | 67 |
///\e |
69 | 68 |
typedef V Value; |
70 | 69 |
|
71 | 70 |
/// Gives back a default constructed element. |
72 | 71 |
Value operator[](const Key&) const { return Value(); } |
73 | 72 |
/// Absorbs the value. |
74 | 73 |
void set(const Key&, const Value&) {} |
75 | 74 |
}; |
76 | 75 |
|
77 | 76 |
/// Returns a \c NullMap class |
78 | 77 |
|
79 | 78 |
/// This function just returns a \c NullMap class. |
80 | 79 |
/// \relates NullMap |
81 | 80 |
template <typename K, typename V> |
82 | 81 |
NullMap<K, V> nullMap() { |
83 | 82 |
return NullMap<K, V>(); |
84 | 83 |
} |
85 | 84 |
|
86 | 85 |
|
87 | 86 |
/// Constant map. |
88 | 87 |
|
89 | 88 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
90 | 89 |
/// value to each key. |
91 | 90 |
/// |
92 | 91 |
/// In other aspects it is equivalent to \c NullMap. |
93 | 92 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
94 | 93 |
/// concept, but it absorbs the data written to it. |
95 | 94 |
/// |
96 | 95 |
/// The simplest way of using this map is through the constMap() |
97 | 96 |
/// function. |
98 | 97 |
/// |
99 | 98 |
/// \sa NullMap |
100 | 99 |
/// \sa IdentityMap |
101 | 100 |
template<typename K, typename V> |
102 | 101 |
class ConstMap : public MapBase<K, V> { |
103 | 102 |
private: |
104 | 103 |
V _value; |
105 | 104 |
public: |
106 | 105 |
///\e |
107 | 106 |
typedef K Key; |
108 | 107 |
///\e |
109 | 108 |
typedef V Value; |
110 | 109 |
|
111 | 110 |
/// Default constructor |
112 | 111 |
|
113 | 112 |
/// Default constructor. |
114 | 113 |
/// The value of the map will be default constructed. |
115 | 114 |
ConstMap() {} |
116 | 115 |
|
117 | 116 |
/// Constructor with specified initial value |
118 | 117 |
|
119 | 118 |
/// Constructor with specified initial value. |
120 | 119 |
/// \param v The initial value of the map. |
121 | 120 |
ConstMap(const Value &v) : _value(v) {} |
122 | 121 |
|
123 | 122 |
/// Gives back the specified value. |
124 | 123 |
Value operator[](const Key&) const { return _value; } |
125 | 124 |
|
126 | 125 |
/// Absorbs the value. |
127 | 126 |
void set(const Key&, const Value&) {} |
128 | 127 |
|
129 | 128 |
/// Sets the value that is assigned to each key. |
130 | 129 |
void setAll(const Value &v) { |
131 | 130 |
_value = v; |
132 | 131 |
} |
133 | 132 |
|
134 | 133 |
template<typename V1> |
135 | 134 |
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {} |
136 | 135 |
}; |
137 | 136 |
|
138 | 137 |
/// Returns a \c ConstMap class |
139 | 138 |
|
140 | 139 |
/// This function just returns a \c ConstMap class. |
141 | 140 |
/// \relates ConstMap |
142 | 141 |
template<typename K, typename V> |
143 | 142 |
inline ConstMap<K, V> constMap(const V &v) { |
144 | 143 |
return ConstMap<K, V>(v); |
145 | 144 |
} |
146 | 145 |
|
147 | 146 |
template<typename K, typename V> |
148 | 147 |
inline ConstMap<K, V> constMap() { |
149 | 148 |
return ConstMap<K, V>(); |
150 | 149 |
} |
151 | 150 |
|
152 | 151 |
|
153 | 152 |
template<typename T, T v> |
154 | 153 |
struct Const {}; |
155 | 154 |
|
156 | 155 |
/// Constant map with inlined constant value. |
157 | 156 |
|
158 | 157 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
159 | 158 |
/// value to each key. |
160 | 159 |
/// |
161 | 160 |
/// In other aspects it is equivalent to \c NullMap. |
162 | 161 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
163 | 162 |
/// concept, but it absorbs the data written to it. |
164 | 163 |
/// |
165 | 164 |
/// The simplest way of using this map is through the constMap() |
166 | 165 |
/// function. |
167 | 166 |
/// |
168 | 167 |
/// \sa NullMap |
169 | 168 |
/// \sa IdentityMap |
170 | 169 |
template<typename K, typename V, V v> |
171 | 170 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
172 | 171 |
public: |
173 | 172 |
///\e |
174 | 173 |
typedef K Key; |
175 | 174 |
///\e |
176 | 175 |
typedef V Value; |
177 | 176 |
|
178 | 177 |
/// Constructor. |
179 | 178 |
ConstMap() {} |
180 | 179 |
|
181 | 180 |
/// Gives back the specified value. |
182 | 181 |
Value operator[](const Key&) const { return v; } |
183 | 182 |
|
184 | 183 |
/// Absorbs the value. |
185 | 184 |
void set(const Key&, const Value&) {} |
186 | 185 |
}; |
187 | 186 |
|
188 | 187 |
/// Returns a \c ConstMap class with inlined constant value |
189 | 188 |
|
190 | 189 |
/// This function just returns a \c ConstMap class with inlined |
191 | 190 |
/// constant value. |
192 | 191 |
/// \relates ConstMap |
193 | 192 |
template<typename K, typename V, V v> |
194 | 193 |
inline ConstMap<K, Const<V, v> > constMap() { |
195 | 194 |
return ConstMap<K, Const<V, v> >(); |
196 | 195 |
} |
197 | 196 |
|
198 | 197 |
|
199 | 198 |
/// Identity map. |
200 | 199 |
|
201 | 200 |
/// This \ref concepts::ReadMap "read-only map" gives back the given |
202 | 201 |
/// key as value without any modification. |
203 | 202 |
/// |
204 | 203 |
/// \sa ConstMap |
205 | 204 |
template <typename T> |
206 | 205 |
class IdentityMap : public MapBase<T, T> { |
207 | 206 |
public: |
208 | 207 |
///\e |
209 | 208 |
typedef T Key; |
210 | 209 |
///\e |
211 | 210 |
typedef T Value; |
212 | 211 |
|
213 | 212 |
/// Gives back the given value without any modification. |
214 | 213 |
Value operator[](const Key &k) const { |
215 | 214 |
return k; |
216 | 215 |
} |
217 | 216 |
}; |
218 | 217 |
|
219 | 218 |
/// Returns an \c IdentityMap class |
220 | 219 |
|
221 | 220 |
/// This function just returns an \c IdentityMap class. |
222 | 221 |
/// \relates IdentityMap |
223 | 222 |
template<typename T> |
224 | 223 |
inline IdentityMap<T> identityMap() { |
225 | 224 |
return IdentityMap<T>(); |
226 | 225 |
} |
227 | 226 |
|
228 | 227 |
|
229 | 228 |
/// \brief Map for storing values for integer keys from the range |
230 | 229 |
/// <tt>[0..size-1]</tt>. |
231 | 230 |
/// |
232 | 231 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
233 | 232 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
234 | 233 |
/// It can be used with some data structures, for example |
235 | 234 |
/// \c UnionFind, \c BinHeap, when the used items are small |
236 | 235 |
/// integers. This map conforms the \ref concepts::ReferenceMap |
237 | 236 |
/// "ReferenceMap" concept. |
238 | 237 |
/// |
239 | 238 |
/// The simplest way of using this map is through the rangeMap() |
240 | 239 |
/// function. |
241 | 240 |
template <typename V> |
242 | 241 |
class RangeMap : public MapBase<int, V> { |
243 | 242 |
template <typename V1> |
244 | 243 |
friend class RangeMap; |
245 | 244 |
private: |
246 | 245 |
|
247 | 246 |
typedef std::vector<V> Vector; |
248 | 247 |
Vector _vector; |
249 | 248 |
|
250 | 249 |
public: |
251 | 250 |
|
252 | 251 |
/// Key type |
253 | 252 |
typedef int Key; |
254 | 253 |
/// Value type |
255 | 254 |
typedef V Value; |
256 | 255 |
/// Reference type |
257 | 256 |
typedef typename Vector::reference Reference; |
258 | 257 |
/// Const reference type |
259 | 258 |
typedef typename Vector::const_reference ConstReference; |
260 | 259 |
|
261 | 260 |
typedef True ReferenceMapTag; |
262 | 261 |
|
263 | 262 |
public: |
264 | 263 |
|
265 | 264 |
/// Constructor with specified default value. |
266 | 265 |
RangeMap(int size = 0, const Value &value = Value()) |
267 | 266 |
: _vector(size, value) {} |
268 | 267 |
|
269 | 268 |
/// Constructs the map from an appropriate \c std::vector. |
270 | 269 |
template <typename V1> |
271 | 270 |
RangeMap(const std::vector<V1>& vector) |
272 | 271 |
: _vector(vector.begin(), vector.end()) {} |
273 | 272 |
|
274 | 273 |
/// Constructs the map from another \c RangeMap. |
275 | 274 |
template <typename V1> |
276 | 275 |
RangeMap(const RangeMap<V1> &c) |
277 | 276 |
: _vector(c._vector.begin(), c._vector.end()) {} |
278 | 277 |
|
279 | 278 |
/// Returns the size of the map. |
280 | 279 |
int size() { |
281 | 280 |
return _vector.size(); |
282 | 281 |
} |
283 | 282 |
|
284 | 283 |
/// Resizes the map. |
285 | 284 |
|
286 | 285 |
/// Resizes the underlying \c std::vector container, so changes the |
287 | 286 |
/// keyset of the map. |
288 | 287 |
/// \param size The new size of the map. The new keyset will be the |
289 | 288 |
/// range <tt>[0..size-1]</tt>. |
... | ... |
@@ -1565,1223 +1564,2139 @@ |
1565 | 1564 |
NotWriteMap(M &m) : _m(m) {} |
1566 | 1565 |
///\e |
1567 | 1566 |
Value operator[](const Key &k) const { return !_m[k]; } |
1568 | 1567 |
///\e |
1569 | 1568 |
void set(const Key &k, bool v) { _m.set(k, !v); } |
1570 | 1569 |
}; |
1571 | 1570 |
|
1572 | 1571 |
/// Returns a \c NotMap class |
1573 | 1572 |
|
1574 | 1573 |
/// This function just returns a \c NotMap class. |
1575 | 1574 |
/// |
1576 | 1575 |
/// For example, if \c m is a map with \c bool values, then |
1577 | 1576 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1578 | 1577 |
/// |
1579 | 1578 |
/// \relates NotMap |
1580 | 1579 |
template <typename M> |
1581 | 1580 |
inline NotMap<M> notMap(const M &m) { |
1582 | 1581 |
return NotMap<M>(m); |
1583 | 1582 |
} |
1584 | 1583 |
|
1585 | 1584 |
/// Returns a \c NotWriteMap class |
1586 | 1585 |
|
1587 | 1586 |
/// This function just returns a \c NotWriteMap class. |
1588 | 1587 |
/// |
1589 | 1588 |
/// For example, if \c m is a map with \c bool values, then |
1590 | 1589 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1591 | 1590 |
/// Moreover it makes also possible to write the map. |
1592 | 1591 |
/// |
1593 | 1592 |
/// \relates NotWriteMap |
1594 | 1593 |
template <typename M> |
1595 | 1594 |
inline NotWriteMap<M> notWriteMap(M &m) { |
1596 | 1595 |
return NotWriteMap<M>(m); |
1597 | 1596 |
} |
1598 | 1597 |
|
1599 | 1598 |
|
1600 | 1599 |
/// Combination of two maps using the \c == operator |
1601 | 1600 |
|
1602 | 1601 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1603 | 1602 |
/// the keys for which the corresponding values of the two maps are |
1604 | 1603 |
/// equal. |
1605 | 1604 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1606 | 1605 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1607 | 1606 |
/// |
1608 | 1607 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1609 | 1608 |
/// \code |
1610 | 1609 |
/// EqualMap<M1,M2> em(m1,m2); |
1611 | 1610 |
/// \endcode |
1612 | 1611 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
1613 | 1612 |
/// |
1614 | 1613 |
/// The simplest way of using this map is through the equalMap() |
1615 | 1614 |
/// function. |
1616 | 1615 |
/// |
1617 | 1616 |
/// \sa LessMap |
1618 | 1617 |
template<typename M1, typename M2> |
1619 | 1618 |
class EqualMap : public MapBase<typename M1::Key, bool> { |
1620 | 1619 |
const M1 &_m1; |
1621 | 1620 |
const M2 &_m2; |
1622 | 1621 |
public: |
1623 | 1622 |
///\e |
1624 | 1623 |
typedef typename M1::Key Key; |
1625 | 1624 |
///\e |
1626 | 1625 |
typedef bool Value; |
1627 | 1626 |
|
1628 | 1627 |
/// Constructor |
1629 | 1628 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1630 | 1629 |
///\e |
1631 | 1630 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } |
1632 | 1631 |
}; |
1633 | 1632 |
|
1634 | 1633 |
/// Returns an \c EqualMap class |
1635 | 1634 |
|
1636 | 1635 |
/// This function just returns an \c EqualMap class. |
1637 | 1636 |
/// |
1638 | 1637 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1639 | 1638 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
1640 | 1639 |
/// <tt>m1[x]==m2[x]</tt>. |
1641 | 1640 |
/// |
1642 | 1641 |
/// \relates EqualMap |
1643 | 1642 |
template<typename M1, typename M2> |
1644 | 1643 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) { |
1645 | 1644 |
return EqualMap<M1, M2>(m1,m2); |
1646 | 1645 |
} |
1647 | 1646 |
|
1648 | 1647 |
|
1649 | 1648 |
/// Combination of two maps using the \c < operator |
1650 | 1649 |
|
1651 | 1650 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1652 | 1651 |
/// the keys for which the corresponding value of the first map is |
1653 | 1652 |
/// less then the value of the second map. |
1654 | 1653 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1655 | 1654 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1656 | 1655 |
/// |
1657 | 1656 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1658 | 1657 |
/// \code |
1659 | 1658 |
/// LessMap<M1,M2> lm(m1,m2); |
1660 | 1659 |
/// \endcode |
1661 | 1660 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
1662 | 1661 |
/// |
1663 | 1662 |
/// The simplest way of using this map is through the lessMap() |
1664 | 1663 |
/// function. |
1665 | 1664 |
/// |
1666 | 1665 |
/// \sa EqualMap |
1667 | 1666 |
template<typename M1, typename M2> |
1668 | 1667 |
class LessMap : public MapBase<typename M1::Key, bool> { |
1669 | 1668 |
const M1 &_m1; |
1670 | 1669 |
const M2 &_m2; |
1671 | 1670 |
public: |
1672 | 1671 |
///\e |
1673 | 1672 |
typedef typename M1::Key Key; |
1674 | 1673 |
///\e |
1675 | 1674 |
typedef bool Value; |
1676 | 1675 |
|
1677 | 1676 |
/// Constructor |
1678 | 1677 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1679 | 1678 |
///\e |
1680 | 1679 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
1681 | 1680 |
}; |
1682 | 1681 |
|
1683 | 1682 |
/// Returns an \c LessMap class |
1684 | 1683 |
|
1685 | 1684 |
/// This function just returns an \c LessMap class. |
1686 | 1685 |
/// |
1687 | 1686 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1688 | 1687 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
1689 | 1688 |
/// <tt>m1[x]<m2[x]</tt>. |
1690 | 1689 |
/// |
1691 | 1690 |
/// \relates LessMap |
1692 | 1691 |
template<typename M1, typename M2> |
1693 | 1692 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
1694 | 1693 |
return LessMap<M1, M2>(m1,m2); |
1695 | 1694 |
} |
1696 | 1695 |
|
1697 | 1696 |
namespace _maps_bits { |
1698 | 1697 |
|
1699 | 1698 |
template <typename _Iterator, typename Enable = void> |
1700 | 1699 |
struct IteratorTraits { |
1701 | 1700 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
1702 | 1701 |
}; |
1703 | 1702 |
|
1704 | 1703 |
template <typename _Iterator> |
1705 | 1704 |
struct IteratorTraits<_Iterator, |
1706 | 1705 |
typename exists<typename _Iterator::container_type>::type> |
1707 | 1706 |
{ |
1708 | 1707 |
typedef typename _Iterator::container_type::value_type Value; |
1709 | 1708 |
}; |
1710 | 1709 |
|
1711 | 1710 |
} |
1712 | 1711 |
|
1713 | 1712 |
/// @} |
1714 | 1713 |
|
1715 | 1714 |
/// \addtogroup maps |
1716 | 1715 |
/// @{ |
1717 | 1716 |
|
1718 | 1717 |
/// \brief Writable bool map for logging each \c true assigned element |
1719 | 1718 |
/// |
1720 | 1719 |
/// A \ref concepts::WriteMap "writable" bool map for logging |
1721 | 1720 |
/// each \c true assigned element, i.e it copies subsequently each |
1722 | 1721 |
/// keys set to \c true to the given iterator. |
1723 | 1722 |
/// The most important usage of it is storing certain nodes or arcs |
1724 | 1723 |
/// that were marked \c true by an algorithm. |
1725 | 1724 |
/// |
1726 | 1725 |
/// There are several algorithms that provide solutions through bool |
1727 | 1726 |
/// maps and most of them assign \c true at most once for each key. |
1728 | 1727 |
/// In these cases it is a natural request to store each \c true |
1729 | 1728 |
/// assigned elements (in order of the assignment), which can be |
1730 | 1729 |
/// easily done with LoggerBoolMap. |
1731 | 1730 |
/// |
1732 | 1731 |
/// The simplest way of using this map is through the loggerBoolMap() |
1733 | 1732 |
/// function. |
1734 | 1733 |
/// |
1735 | 1734 |
/// \tparam IT The type of the iterator. |
1736 | 1735 |
/// \tparam KEY The key type of the map. The default value set |
1737 | 1736 |
/// according to the iterator type should work in most cases. |
1738 | 1737 |
/// |
1739 | 1738 |
/// \note The container of the iterator must contain enough space |
1740 | 1739 |
/// for the elements or the iterator should be an inserter iterator. |
1741 | 1740 |
#ifdef DOXYGEN |
1742 | 1741 |
template <typename IT, typename KEY> |
1743 | 1742 |
#else |
1744 | 1743 |
template <typename IT, |
1745 | 1744 |
typename KEY = typename _maps_bits::IteratorTraits<IT>::Value> |
1746 | 1745 |
#endif |
1747 | 1746 |
class LoggerBoolMap : public MapBase<KEY, bool> { |
1748 | 1747 |
public: |
1749 | 1748 |
|
1750 | 1749 |
///\e |
1751 | 1750 |
typedef KEY Key; |
1752 | 1751 |
///\e |
1753 | 1752 |
typedef bool Value; |
1754 | 1753 |
///\e |
1755 | 1754 |
typedef IT Iterator; |
1756 | 1755 |
|
1757 | 1756 |
/// Constructor |
1758 | 1757 |
LoggerBoolMap(Iterator it) |
1759 | 1758 |
: _begin(it), _end(it) {} |
1760 | 1759 |
|
1761 | 1760 |
/// Gives back the given iterator set for the first key |
1762 | 1761 |
Iterator begin() const { |
1763 | 1762 |
return _begin; |
1764 | 1763 |
} |
1765 | 1764 |
|
1766 | 1765 |
/// Gives back the the 'after the last' iterator |
1767 | 1766 |
Iterator end() const { |
1768 | 1767 |
return _end; |
1769 | 1768 |
} |
1770 | 1769 |
|
1771 | 1770 |
/// The set function of the map |
1772 | 1771 |
void set(const Key& key, Value value) { |
1773 | 1772 |
if (value) { |
1774 | 1773 |
*_end++ = key; |
1775 | 1774 |
} |
1776 | 1775 |
} |
1777 | 1776 |
|
1778 | 1777 |
private: |
1779 | 1778 |
Iterator _begin; |
1780 | 1779 |
Iterator _end; |
1781 | 1780 |
}; |
1782 | 1781 |
|
1783 | 1782 |
/// Returns a \c LoggerBoolMap class |
1784 | 1783 |
|
1785 | 1784 |
/// This function just returns a \c LoggerBoolMap class. |
1786 | 1785 |
/// |
1787 | 1786 |
/// The most important usage of it is storing certain nodes or arcs |
1788 | 1787 |
/// that were marked \c true by an algorithm. |
1789 | 1788 |
/// For example it makes easier to store the nodes in the processing |
1790 | 1789 |
/// order of Dfs algorithm, as the following examples show. |
1791 | 1790 |
/// \code |
1792 | 1791 |
/// std::vector<Node> v; |
1793 | 1792 |
/// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s); |
1794 | 1793 |
/// \endcode |
1795 | 1794 |
/// \code |
1796 | 1795 |
/// std::vector<Node> v(countNodes(g)); |
1797 | 1796 |
/// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s); |
1798 | 1797 |
/// \endcode |
1799 | 1798 |
/// |
1800 | 1799 |
/// \note The container of the iterator must contain enough space |
1801 | 1800 |
/// for the elements or the iterator should be an inserter iterator. |
1802 | 1801 |
/// |
1803 | 1802 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
1804 | 1803 |
/// it cannot be used when a readable map is needed, for example as |
1805 | 1804 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
1806 | 1805 |
/// |
1807 | 1806 |
/// \relates LoggerBoolMap |
1808 | 1807 |
template<typename Iterator> |
1809 | 1808 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
1810 | 1809 |
return LoggerBoolMap<Iterator>(it); |
1811 | 1810 |
} |
1812 | 1811 |
|
1813 | 1812 |
/// @} |
1814 | 1813 |
|
1815 | 1814 |
/// \addtogroup graph_maps |
1816 | 1815 |
/// @{ |
1817 | 1816 |
|
1818 | 1817 |
/// \brief Provides an immutable and unique id for each item in a graph. |
1819 | 1818 |
/// |
1820 | 1819 |
/// IdMap provides a unique and immutable id for each item of the |
1821 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
|
1820 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
|
1822 | 1821 |
/// - \b unique: different items get different ids, |
1823 | 1822 |
/// - \b immutable: the id of an item does not change (even if you |
1824 | 1823 |
/// delete other nodes). |
1825 | 1824 |
/// |
1826 | 1825 |
/// Using this map you get access (i.e. can read) the inner id values of |
1827 | 1826 |
/// the items stored in the graph, which is returned by the \c id() |
1828 | 1827 |
/// function of the graph. This map can be inverted with its member |
1829 | 1828 |
/// class \c InverseMap or with the \c operator() member. |
1830 | 1829 |
/// |
1831 | 1830 |
/// \tparam GR The graph type. |
1832 | 1831 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1833 | 1832 |
/// \c GR::Edge). |
1834 | 1833 |
/// |
1835 | 1834 |
/// \see RangeIdMap |
1836 | 1835 |
template <typename GR, typename K> |
1837 | 1836 |
class IdMap : public MapBase<K, int> { |
1838 | 1837 |
public: |
1839 | 1838 |
/// The graph type of IdMap. |
1840 | 1839 |
typedef GR Graph; |
1841 | 1840 |
typedef GR Digraph; |
1842 | 1841 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1843 | 1842 |
typedef K Item; |
1844 | 1843 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1845 | 1844 |
typedef K Key; |
1846 | 1845 |
/// The value type of IdMap. |
1847 | 1846 |
typedef int Value; |
1848 | 1847 |
|
1849 | 1848 |
/// \brief Constructor. |
1850 | 1849 |
/// |
1851 | 1850 |
/// Constructor of the map. |
1852 | 1851 |
explicit IdMap(const Graph& graph) : _graph(&graph) {} |
1853 | 1852 |
|
1854 | 1853 |
/// \brief Gives back the \e id of the item. |
1855 | 1854 |
/// |
1856 | 1855 |
/// Gives back the immutable and unique \e id of the item. |
1857 | 1856 |
int operator[](const Item& item) const { return _graph->id(item);} |
1858 | 1857 |
|
1859 | 1858 |
/// \brief Gives back the \e item by its id. |
1860 | 1859 |
/// |
1861 | 1860 |
/// Gives back the \e item by its id. |
1862 | 1861 |
Item operator()(int id) { return _graph->fromId(id, Item()); } |
1863 | 1862 |
|
1864 | 1863 |
private: |
1865 | 1864 |
const Graph* _graph; |
1866 | 1865 |
|
1867 | 1866 |
public: |
1868 | 1867 |
|
1869 | 1868 |
/// \brief This class represents the inverse of its owner (IdMap). |
1870 | 1869 |
/// |
1871 | 1870 |
/// This class represents the inverse of its owner (IdMap). |
1872 | 1871 |
/// \see inverse() |
1873 | 1872 |
class InverseMap { |
1874 | 1873 |
public: |
1875 | 1874 |
|
1876 | 1875 |
/// \brief Constructor. |
1877 | 1876 |
/// |
1878 | 1877 |
/// Constructor for creating an id-to-item map. |
1879 | 1878 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {} |
1880 | 1879 |
|
1881 | 1880 |
/// \brief Constructor. |
1882 | 1881 |
/// |
1883 | 1882 |
/// Constructor for creating an id-to-item map. |
1884 | 1883 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
1885 | 1884 |
|
1886 | 1885 |
/// \brief Gives back the given item from its id. |
1887 | 1886 |
/// |
1888 | 1887 |
/// Gives back the given item from its id. |
1889 | 1888 |
Item operator[](int id) const { return _graph->fromId(id, Item());} |
1890 | 1889 |
|
1891 | 1890 |
private: |
1892 | 1891 |
const Graph* _graph; |
1893 | 1892 |
}; |
1894 | 1893 |
|
1895 | 1894 |
/// \brief Gives back the inverse of the map. |
1896 | 1895 |
/// |
1897 | 1896 |
/// Gives back the inverse of the IdMap. |
1898 | 1897 |
InverseMap inverse() const { return InverseMap(*_graph);} |
1899 | 1898 |
}; |
1900 | 1899 |
|
1901 | 1900 |
|
1902 | 1901 |
/// \brief General cross reference graph map type. |
1903 | 1902 |
|
1904 | 1903 |
/// This class provides simple invertable graph maps. |
1905 |
/// It wraps an arbitrary \ref concepts::ReadWriteMap "ReadWriteMap" |
|
1906 |
/// and if a key is set to a new value then store it |
|
1907 |
/// in the inverse map. |
|
1908 |
/// |
|
1904 |
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) |
|
1905 |
/// and if a key is set to a new value, then stores it in the inverse map. |
|
1909 | 1906 |
/// The values of the map can be accessed |
1910 | 1907 |
/// with stl compatible forward iterator. |
1911 | 1908 |
/// |
1909 |
/// This type is not reference map, so it cannot be modified with |
|
1910 |
/// the subscript operator. |
|
1911 |
/// |
|
1912 | 1912 |
/// \tparam GR The graph type. |
1913 | 1913 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1914 | 1914 |
/// \c GR::Edge). |
1915 | 1915 |
/// \tparam V The value type of the map. |
1916 | 1916 |
/// |
1917 | 1917 |
/// \see IterableValueMap |
1918 | 1918 |
template <typename GR, typename K, typename V> |
1919 | 1919 |
class CrossRefMap |
1920 | 1920 |
: protected ItemSetTraits<GR, K>::template Map<V>::Type { |
1921 | 1921 |
private: |
1922 | 1922 |
|
1923 | 1923 |
typedef typename ItemSetTraits<GR, K>:: |
1924 | 1924 |
template Map<V>::Type Map; |
1925 | 1925 |
|
1926 |
typedef std:: |
|
1926 |
typedef std::multimap<V, K> Container; |
|
1927 | 1927 |
Container _inv_map; |
1928 | 1928 |
|
1929 | 1929 |
public: |
1930 | 1930 |
|
1931 | 1931 |
/// The graph type of CrossRefMap. |
1932 | 1932 |
typedef GR Graph; |
1933 | 1933 |
typedef GR Digraph; |
1934 | 1934 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
1935 | 1935 |
typedef K Item; |
1936 | 1936 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
1937 | 1937 |
typedef K Key; |
1938 | 1938 |
/// The value type of CrossRefMap. |
1939 | 1939 |
typedef V Value; |
1940 | 1940 |
|
1941 | 1941 |
/// \brief Constructor. |
1942 | 1942 |
/// |
1943 | 1943 |
/// Construct a new CrossRefMap for the given graph. |
1944 | 1944 |
explicit CrossRefMap(const Graph& graph) : Map(graph) {} |
1945 | 1945 |
|
1946 | 1946 |
/// \brief Forward iterator for values. |
1947 | 1947 |
/// |
1948 | 1948 |
/// This iterator is an stl compatible forward |
1949 | 1949 |
/// iterator on the values of the map. The values can |
1950 | 1950 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
1951 |
/// They are considered with multiplicity, so each value is |
|
1952 |
/// traversed for each item it is assigned to. |
|
1951 | 1953 |
class ValueIterator |
1952 | 1954 |
: public std::iterator<std::forward_iterator_tag, Value> { |
1953 | 1955 |
friend class CrossRefMap; |
1954 | 1956 |
private: |
1955 | 1957 |
ValueIterator(typename Container::const_iterator _it) |
1956 | 1958 |
: it(_it) {} |
1957 | 1959 |
public: |
1958 | 1960 |
|
1959 | 1961 |
ValueIterator() {} |
1960 | 1962 |
|
1961 | 1963 |
ValueIterator& operator++() { ++it; return *this; } |
1962 | 1964 |
ValueIterator operator++(int) { |
1963 | 1965 |
ValueIterator tmp(*this); |
1964 | 1966 |
operator++(); |
1965 | 1967 |
return tmp; |
1966 | 1968 |
} |
1967 | 1969 |
|
1968 | 1970 |
const Value& operator*() const { return it->first; } |
1969 | 1971 |
const Value* operator->() const { return &(it->first); } |
1970 | 1972 |
|
1971 | 1973 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
1972 | 1974 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
1973 | 1975 |
|
1974 | 1976 |
private: |
1975 | 1977 |
typename Container::const_iterator it; |
1976 | 1978 |
}; |
1977 | 1979 |
|
1978 | 1980 |
/// \brief Returns an iterator to the first value. |
1979 | 1981 |
/// |
1980 | 1982 |
/// Returns an stl compatible iterator to the |
1981 | 1983 |
/// first value of the map. The values of the |
1982 | 1984 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
1983 | 1985 |
/// range. |
1984 | 1986 |
ValueIterator beginValue() const { |
1985 | 1987 |
return ValueIterator(_inv_map.begin()); |
1986 | 1988 |
} |
1987 | 1989 |
|
1988 | 1990 |
/// \brief Returns an iterator after the last value. |
1989 | 1991 |
/// |
1990 | 1992 |
/// Returns an stl compatible iterator after the |
1991 | 1993 |
/// last value of the map. The values of the |
1992 | 1994 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
1993 | 1995 |
/// range. |
1994 | 1996 |
ValueIterator endValue() const { |
1995 | 1997 |
return ValueIterator(_inv_map.end()); |
1996 | 1998 |
} |
1997 | 1999 |
|
1998 | 2000 |
/// \brief Sets the value associated with the given key. |
1999 | 2001 |
/// |
2000 | 2002 |
/// Sets the value associated with the given key. |
2001 | 2003 |
void set(const Key& key, const Value& val) { |
2002 | 2004 |
Value oldval = Map::operator[](key); |
2003 |
typename Container::iterator it = _inv_map.find(oldval); |
|
2004 |
if (it != _inv_map.end() && it->second == key) { |
|
2005 |
|
|
2005 |
typename Container::iterator it; |
|
2006 |
for (it = _inv_map.equal_range(oldval).first; |
|
2007 |
it != _inv_map.equal_range(oldval).second; ++it) { |
|
2008 |
if (it->second == key) { |
|
2009 |
_inv_map.erase(it); |
|
2010 |
break; |
|
2011 |
} |
|
2006 | 2012 |
} |
2007 |
_inv_map.insert(make_pair(val, key)); |
|
2013 |
_inv_map.insert(std::make_pair(val, key)); |
|
2008 | 2014 |
Map::set(key, val); |
2009 | 2015 |
} |
2010 | 2016 |
|
2011 | 2017 |
/// \brief Returns the value associated with the given key. |
2012 | 2018 |
/// |
2013 | 2019 |
/// Returns the value associated with the given key. |
2014 | 2020 |
typename MapTraits<Map>::ConstReturnValue |
2015 | 2021 |
operator[](const Key& key) const { |
2016 | 2022 |
return Map::operator[](key); |
2017 | 2023 |
} |
2018 | 2024 |
|
2019 |
/// \brief Gives back |
|
2025 |
/// \brief Gives back an item by its value. |
|
2020 | 2026 |
/// |
2021 |
/// Gives back the item by its value. |
|
2022 |
Key operator()(const Value& key) const { |
|
2023 |
|
|
2027 |
/// This function gives back an item that is assigned to |
|
2028 |
/// the given value or \c INVALID if no such item exists. |
|
2029 |
/// If there are more items with the same associated value, |
|
2030 |
/// only one of them is returned. |
|
2031 |
Key operator()(const Value& val) const { |
|
2032 |
typename Container::const_iterator it = _inv_map.find(val); |
|
2024 | 2033 |
return it != _inv_map.end() ? it->second : INVALID; |
2025 | 2034 |
} |
2026 | 2035 |
|
2027 | 2036 |
protected: |
2028 | 2037 |
|
2029 | 2038 |
/// \brief Erase the key from the map and the inverse map. |
2030 | 2039 |
/// |
2031 | 2040 |
/// Erase the key from the map and the inverse map. It is called by the |
2032 | 2041 |
/// \c AlterationNotifier. |
2033 | 2042 |
virtual void erase(const Key& key) { |
2034 | 2043 |
Value val = Map::operator[](key); |
2035 |
typename Container::iterator it = _inv_map.find(val); |
|
2036 |
if (it != _inv_map.end() && it->second == key) { |
|
2037 |
|
|
2044 |
typename Container::iterator it; |
|
2045 |
for (it = _inv_map.equal_range(val).first; |
|
2046 |
it != _inv_map.equal_range(val).second; ++it) { |
|
2047 |
if (it->second == key) { |
|
2048 |
_inv_map.erase(it); |
|
2049 |
break; |
|
2050 |
} |
|
2038 | 2051 |
} |
2039 | 2052 |
Map::erase(key); |
2040 | 2053 |
} |
2041 | 2054 |
|
2042 | 2055 |
/// \brief Erase more keys from the map and the inverse map. |
2043 | 2056 |
/// |
2044 | 2057 |
/// Erase more keys from the map and the inverse map. It is called by the |
2045 | 2058 |
/// \c AlterationNotifier. |
2046 | 2059 |
virtual void erase(const std::vector<Key>& keys) { |
2047 | 2060 |
for (int i = 0; i < int(keys.size()); ++i) { |
2048 | 2061 |
Value val = Map::operator[](keys[i]); |
2049 |
typename Container::iterator it = _inv_map.find(val); |
|
2050 |
if (it != _inv_map.end() && it->second == keys[i]) { |
|
2051 |
|
|
2062 |
typename Container::iterator it; |
|
2063 |
for (it = _inv_map.equal_range(val).first; |
|
2064 |
it != _inv_map.equal_range(val).second; ++it) { |
|
2065 |
if (it->second == keys[i]) { |
|
2066 |
_inv_map.erase(it); |
|
2067 |
break; |
|
2068 |
} |
|
2052 | 2069 |
} |
2053 | 2070 |
} |
2054 | 2071 |
Map::erase(keys); |
2055 | 2072 |
} |
2056 | 2073 |
|
2057 | 2074 |
/// \brief Clear the keys from the map and the inverse map. |
2058 | 2075 |
/// |
2059 | 2076 |
/// Clear the keys from the map and the inverse map. It is called by the |
2060 | 2077 |
/// \c AlterationNotifier. |
2061 | 2078 |
virtual void clear() { |
2062 | 2079 |
_inv_map.clear(); |
2063 | 2080 |
Map::clear(); |
2064 | 2081 |
} |
2065 | 2082 |
|
2066 | 2083 |
public: |
2067 | 2084 |
|
2068 | 2085 |
/// \brief The inverse map type. |
2069 | 2086 |
/// |
2070 | 2087 |
/// The inverse of this map. The subscript operator of the map |
2071 | 2088 |
/// gives back the item that was last assigned to the value. |
2072 | 2089 |
class InverseMap { |
2073 | 2090 |
public: |
2074 | 2091 |
/// \brief Constructor |
2075 | 2092 |
/// |
2076 | 2093 |
/// Constructor of the InverseMap. |
2077 | 2094 |
explicit InverseMap(const CrossRefMap& inverted) |
2078 | 2095 |
: _inverted(inverted) {} |
2079 | 2096 |
|
2080 | 2097 |
/// The value type of the InverseMap. |
2081 | 2098 |
typedef typename CrossRefMap::Key Value; |
2082 | 2099 |
/// The key type of the InverseMap. |
2083 | 2100 |
typedef typename CrossRefMap::Value Key; |
2084 | 2101 |
|
2085 | 2102 |
/// \brief Subscript operator. |
2086 | 2103 |
/// |
2087 |
/// Subscript operator. It gives back the item |
|
2088 |
/// that was last assigned to the given value. |
|
2104 |
/// Subscript operator. It gives back an item |
|
2105 |
/// that is assigned to the given value or \c INVALID |
|
2106 |
/// if no such item exists. |
|
2089 | 2107 |
Value operator[](const Key& key) const { |
2090 | 2108 |
return _inverted(key); |
2091 | 2109 |
} |
2092 | 2110 |
|
2093 | 2111 |
private: |
2094 | 2112 |
const CrossRefMap& _inverted; |
2095 | 2113 |
}; |
2096 | 2114 |
|
2097 | 2115 |
/// \brief It gives back the read-only inverse map. |
2098 | 2116 |
/// |
2099 | 2117 |
/// It gives back the read-only inverse map. |
2100 | 2118 |
InverseMap inverse() const { |
2101 | 2119 |
return InverseMap(*this); |
2102 | 2120 |
} |
2103 | 2121 |
|
2104 | 2122 |
}; |
2105 | 2123 |
|
2106 | 2124 |
/// \brief Provides continuous and unique ID for the |
2107 | 2125 |
/// items of a graph. |
2108 | 2126 |
/// |
2109 | 2127 |
/// RangeIdMap provides a unique and continuous |
2110 | 2128 |
/// ID for each item of a given type (\c Node, \c Arc or |
2111 | 2129 |
/// \c Edge) in a graph. This id is |
2112 | 2130 |
/// - \b unique: different items get different ids, |
2113 | 2131 |
/// - \b continuous: the range of the ids is the set of integers |
2114 | 2132 |
/// between 0 and \c n-1, where \c n is the number of the items of |
2115 | 2133 |
/// this type (\c Node, \c Arc or \c Edge). |
2116 | 2134 |
/// - So, the ids can change when deleting an item of the same type. |
2117 | 2135 |
/// |
2118 | 2136 |
/// Thus this id is not (necessarily) the same as what can get using |
2119 | 2137 |
/// the \c id() function of the graph or \ref IdMap. |
2120 | 2138 |
/// This map can be inverted with its member class \c InverseMap, |
2121 | 2139 |
/// or with the \c operator() member. |
2122 | 2140 |
/// |
2123 | 2141 |
/// \tparam GR The graph type. |
2124 | 2142 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
2125 | 2143 |
/// \c GR::Edge). |
2126 | 2144 |
/// |
2127 | 2145 |
/// \see IdMap |
2128 | 2146 |
template <typename GR, typename K> |
2129 | 2147 |
class RangeIdMap |
2130 | 2148 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type { |
2131 | 2149 |
|
2132 | 2150 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map; |
2133 | 2151 |
|
2134 | 2152 |
public: |
2135 | 2153 |
/// The graph type of RangeIdMap. |
2136 | 2154 |
typedef GR Graph; |
2137 | 2155 |
typedef GR Digraph; |
2138 | 2156 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
2139 | 2157 |
typedef K Item; |
2140 | 2158 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
2141 | 2159 |
typedef K Key; |
2142 | 2160 |
/// The value type of RangeIdMap. |
2143 | 2161 |
typedef int Value; |
2144 | 2162 |
|
2145 | 2163 |
/// \brief Constructor. |
2146 | 2164 |
/// |
2147 | 2165 |
/// Constructor. |
2148 | 2166 |
explicit RangeIdMap(const Graph& gr) : Map(gr) { |
2149 | 2167 |
Item it; |
2150 | 2168 |
const typename Map::Notifier* nf = Map::notifier(); |
2151 | 2169 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2152 | 2170 |
Map::set(it, _inv_map.size()); |
2153 | 2171 |
_inv_map.push_back(it); |
2154 | 2172 |
} |
2155 | 2173 |
} |
2156 | 2174 |
|
2157 | 2175 |
protected: |
2158 | 2176 |
|
2159 | 2177 |
/// \brief Adds a new key to the map. |
2160 | 2178 |
/// |
2161 | 2179 |
/// Add a new key to the map. It is called by the |
2162 | 2180 |
/// \c AlterationNotifier. |
2163 | 2181 |
virtual void add(const Item& item) { |
2164 | 2182 |
Map::add(item); |
2165 | 2183 |
Map::set(item, _inv_map.size()); |
2166 | 2184 |
_inv_map.push_back(item); |
2167 | 2185 |
} |
2168 | 2186 |
|
2169 | 2187 |
/// \brief Add more new keys to the map. |
2170 | 2188 |
/// |
2171 | 2189 |
/// Add more new keys to the map. It is called by the |
2172 | 2190 |
/// \c AlterationNotifier. |
2173 | 2191 |
virtual void add(const std::vector<Item>& items) { |
2174 | 2192 |
Map::add(items); |
2175 | 2193 |
for (int i = 0; i < int(items.size()); ++i) { |
2176 | 2194 |
Map::set(items[i], _inv_map.size()); |
2177 | 2195 |
_inv_map.push_back(items[i]); |
2178 | 2196 |
} |
2179 | 2197 |
} |
2180 | 2198 |
|
2181 | 2199 |
/// \brief Erase the key from the map. |
2182 | 2200 |
/// |
2183 | 2201 |
/// Erase the key from the map. It is called by the |
2184 | 2202 |
/// \c AlterationNotifier. |
2185 | 2203 |
virtual void erase(const Item& item) { |
2186 | 2204 |
Map::set(_inv_map.back(), Map::operator[](item)); |
2187 | 2205 |
_inv_map[Map::operator[](item)] = _inv_map.back(); |
2188 | 2206 |
_inv_map.pop_back(); |
2189 | 2207 |
Map::erase(item); |
2190 | 2208 |
} |
2191 | 2209 |
|
2192 | 2210 |
/// \brief Erase more keys from the map. |
2193 | 2211 |
/// |
2194 | 2212 |
/// Erase more keys from the map. It is called by the |
2195 | 2213 |
/// \c AlterationNotifier. |
2196 | 2214 |
virtual void erase(const std::vector<Item>& items) { |
2197 | 2215 |
for (int i = 0; i < int(items.size()); ++i) { |
2198 | 2216 |
Map::set(_inv_map.back(), Map::operator[](items[i])); |
2199 | 2217 |
_inv_map[Map::operator[](items[i])] = _inv_map.back(); |
2200 | 2218 |
_inv_map.pop_back(); |
2201 | 2219 |
} |
2202 | 2220 |
Map::erase(items); |
2203 | 2221 |
} |
2204 | 2222 |
|
2205 | 2223 |
/// \brief Build the unique map. |
2206 | 2224 |
/// |
2207 | 2225 |
/// Build the unique map. It is called by the |
2208 | 2226 |
/// \c AlterationNotifier. |
2209 | 2227 |
virtual void build() { |
2210 | 2228 |
Map::build(); |
2211 | 2229 |
Item it; |
2212 | 2230 |
const typename Map::Notifier* nf = Map::notifier(); |
2213 | 2231 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2214 | 2232 |
Map::set(it, _inv_map.size()); |
2215 | 2233 |
_inv_map.push_back(it); |
2216 | 2234 |
} |
2217 | 2235 |
} |
2218 | 2236 |
|
2219 | 2237 |
/// \brief Clear the keys from the map. |
2220 | 2238 |
/// |
2221 | 2239 |
/// Clear the keys from the map. It is called by the |
2222 | 2240 |
/// \c AlterationNotifier. |
2223 | 2241 |
virtual void clear() { |
2224 | 2242 |
_inv_map.clear(); |
2225 | 2243 |
Map::clear(); |
2226 | 2244 |
} |
2227 | 2245 |
|
2228 | 2246 |
public: |
2229 | 2247 |
|
2230 | 2248 |
/// \brief Returns the maximal value plus one. |
2231 | 2249 |
/// |
2232 | 2250 |
/// Returns the maximal value plus one in the map. |
2233 | 2251 |
unsigned int size() const { |
2234 | 2252 |
return _inv_map.size(); |
2235 | 2253 |
} |
2236 | 2254 |
|
2237 | 2255 |
/// \brief Swaps the position of the two items in the map. |
2238 | 2256 |
/// |
2239 | 2257 |
/// Swaps the position of the two items in the map. |
2240 | 2258 |
void swap(const Item& p, const Item& q) { |
2241 | 2259 |
int pi = Map::operator[](p); |
2242 | 2260 |
int qi = Map::operator[](q); |
2243 | 2261 |
Map::set(p, qi); |
2244 | 2262 |
_inv_map[qi] = p; |
2245 | 2263 |
Map::set(q, pi); |
2246 | 2264 |
_inv_map[pi] = q; |
2247 | 2265 |
} |
2248 | 2266 |
|
2249 | 2267 |
/// \brief Gives back the \e RangeId of the item |
2250 | 2268 |
/// |
2251 | 2269 |
/// Gives back the \e RangeId of the item. |
2252 | 2270 |
int operator[](const Item& item) const { |
2253 | 2271 |
return Map::operator[](item); |
2254 | 2272 |
} |
2255 | 2273 |
|
2256 | 2274 |
/// \brief Gives back the item belonging to a \e RangeId |
2257 |
/// |
|
2275 |
/// |
|
2258 | 2276 |
/// Gives back the item belonging to a \e RangeId. |
2259 | 2277 |
Item operator()(int id) const { |
2260 | 2278 |
return _inv_map[id]; |
2261 | 2279 |
} |
2262 | 2280 |
|
2263 | 2281 |
private: |
2264 | 2282 |
|
2265 | 2283 |
typedef std::vector<Item> Container; |
2266 | 2284 |
Container _inv_map; |
2267 | 2285 |
|
2268 | 2286 |
public: |
2269 | 2287 |
|
2270 | 2288 |
/// \brief The inverse map type of RangeIdMap. |
2271 | 2289 |
/// |
2272 | 2290 |
/// The inverse map type of RangeIdMap. |
2273 | 2291 |
class InverseMap { |
2274 | 2292 |
public: |
2275 | 2293 |
/// \brief Constructor |
2276 | 2294 |
/// |
2277 | 2295 |
/// Constructor of the InverseMap. |
2278 | 2296 |
explicit InverseMap(const RangeIdMap& inverted) |
2279 | 2297 |
: _inverted(inverted) {} |
2280 | 2298 |
|
2281 | 2299 |
|
2282 | 2300 |
/// The value type of the InverseMap. |
2283 | 2301 |
typedef typename RangeIdMap::Key Value; |
2284 | 2302 |
/// The key type of the InverseMap. |
2285 | 2303 |
typedef typename RangeIdMap::Value Key; |
2286 | 2304 |
|
2287 | 2305 |
/// \brief Subscript operator. |
2288 | 2306 |
/// |
2289 | 2307 |
/// Subscript operator. It gives back the item |
2290 | 2308 |
/// that the descriptor currently belongs to. |
2291 | 2309 |
Value operator[](const Key& key) const { |
2292 | 2310 |
return _inverted(key); |
2293 | 2311 |
} |
2294 | 2312 |
|
2295 | 2313 |
/// \brief Size of the map. |
2296 | 2314 |
/// |
2297 | 2315 |
/// Returns the size of the map. |
2298 | 2316 |
unsigned int size() const { |
2299 | 2317 |
return _inverted.size(); |
2300 | 2318 |
} |
2301 | 2319 |
|
2302 | 2320 |
private: |
2303 | 2321 |
const RangeIdMap& _inverted; |
2304 | 2322 |
}; |
2305 | 2323 |
|
2306 | 2324 |
/// \brief Gives back the inverse of the map. |
2307 | 2325 |
/// |
2308 | 2326 |
/// Gives back the inverse of the map. |
2309 | 2327 |
const InverseMap inverse() const { |
2310 | 2328 |
return InverseMap(*this); |
2311 | 2329 |
} |
2312 | 2330 |
}; |
2313 | 2331 |
|
2332 |
/// \brief Dynamic iterable \c bool map. |
|
2333 |
/// |
|
2334 |
/// This class provides a special graph map type which can store a |
|
2335 |
/// \c bool value for graph items (\c Node, \c Arc or \c Edge). |
|
2336 |
/// For both \c true and \c false values it is possible to iterate on |
|
2337 |
/// the keys. |
|
2338 |
/// |
|
2339 |
/// This type is a reference map, so it can be modified with the |
|
2340 |
/// subscript operator. |
|
2341 |
/// |
|
2342 |
/// \tparam GR The graph type. |
|
2343 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
2344 |
/// \c GR::Edge). |
|
2345 |
/// |
|
2346 |
/// \see IterableIntMap, IterableValueMap |
|
2347 |
/// \see CrossRefMap |
|
2348 |
template <typename GR, typename K> |
|
2349 |
class IterableBoolMap |
|
2350 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type { |
|
2351 |
private: |
|
2352 |
typedef GR Graph; |
|
2353 |
|
|
2354 |
typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt; |
|
2355 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent; |
|
2356 |
|
|
2357 |
std::vector<K> _array; |
|
2358 |
int _sep; |
|
2359 |
|
|
2360 |
public: |
|
2361 |
|
|
2362 |
/// Indicates that the map is reference map. |
|
2363 |
typedef True ReferenceMapTag; |
|
2364 |
|
|
2365 |
/// The key type |
|
2366 |
typedef K Key; |
|
2367 |
/// The value type |
|
2368 |
typedef bool Value; |
|
2369 |
/// The const reference type. |
|
2370 |
typedef const Value& ConstReference; |
|
2371 |
|
|
2372 |
private: |
|
2373 |
|
|
2374 |
int position(const Key& key) const { |
|
2375 |
return Parent::operator[](key); |
|
2376 |
} |
|
2377 |
|
|
2378 |
public: |
|
2379 |
|
|
2380 |
/// \brief Reference to the value of the map. |
|
2381 |
/// |
|
2382 |
/// This class is similar to the \c bool type. It can be converted to |
|
2383 |
/// \c bool and it provides the same operators. |
|
2384 |
class Reference { |
|
2385 |
friend class IterableBoolMap; |
|
2386 |
private: |
|
2387 |
Reference(IterableBoolMap& map, const Key& key) |
|
2388 |
: _key(key), _map(map) {} |
|
2389 |
public: |
|
2390 |
|
|
2391 |
Reference& operator=(const Reference& value) { |
|
2392 |
_map.set(_key, static_cast<bool>(value)); |
|
2393 |
return *this; |
|
2394 |
} |
|
2395 |
|
|
2396 |
operator bool() const { |
|
2397 |
return static_cast<const IterableBoolMap&>(_map)[_key]; |
|
2398 |
} |
|
2399 |
|
|
2400 |
Reference& operator=(bool value) { |
|
2401 |
_map.set(_key, value); |
|
2402 |
return *this; |
|
2403 |
} |
|
2404 |
Reference& operator&=(bool value) { |
|
2405 |
_map.set(_key, _map[_key] & value); |
|
2406 |
return *this; |
|
2407 |
} |
|
2408 |
Reference& operator|=(bool value) { |
|
2409 |
_map.set(_key, _map[_key] | value); |
|
2410 |
return *this; |
|
2411 |
} |
|
2412 |
Reference& operator^=(bool value) { |
|
2413 |
_map.set(_key, _map[_key] ^ value); |
|
2414 |
return *this; |
|
2415 |
} |
|
2416 |
private: |
|
2417 |
Key _key; |
|
2418 |
IterableBoolMap& _map; |
|
2419 |
}; |
|
2420 |
|
|
2421 |
/// \brief Constructor of the map with a default value. |
|
2422 |
/// |
|
2423 |
/// Constructor of the map with a default value. |
|
2424 |
explicit IterableBoolMap(const Graph& graph, bool def = false) |
|
2425 |
: Parent(graph) { |
|
2426 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
2427 |
Key it; |
|
2428 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
|
2429 |
Parent::set(it, _array.size()); |
|
2430 |
_array.push_back(it); |
|
2431 |
} |
|
2432 |
_sep = (def ? _array.size() : 0); |
|
2433 |
} |
|
2434 |
|
|
2435 |
/// \brief Const subscript operator of the map. |
|
2436 |
/// |
|
2437 |
/// Const subscript operator of the map. |
|
2438 |
bool operator[](const Key& key) const { |
|
2439 |
return position(key) < _sep; |
|
2440 |
} |
|
2441 |
|
|
2442 |
/// \brief Subscript operator of the map. |
|
2443 |
/// |
|
2444 |
/// Subscript operator of the map. |
|
2445 |
Reference operator[](const Key& key) { |
|
2446 |
return Reference(*this, key); |
|
2447 |
} |
|
2448 |
|
|
2449 |
/// \brief Set operation of the map. |
|
2450 |
/// |
|
2451 |
/// Set operation of the map. |
|
2452 |
void set(const Key& key, bool value) { |
|
2453 |
int pos = position(key); |
|
2454 |
if (value) { |
|
2455 |
if (pos < _sep) return; |
|
2456 |
Key tmp = _array[_sep]; |
|
2457 |
_array[_sep] = key; |
|
2458 |
Parent::set(key, _sep); |
|
2459 |
_array[pos] = tmp; |
|
2460 |
Parent::set(tmp, pos); |
|
2461 |
++_sep; |
|
2462 |
} else { |
|
2463 |
if (pos >= _sep) return; |
|
2464 |
--_sep; |
|
2465 |
Key tmp = _array[_sep]; |
|
2466 |
_array[_sep] = key; |
|
2467 |
Parent::set(key, _sep); |
|
2468 |
_array[pos] = tmp; |
|
2469 |
Parent::set(tmp, pos); |
|
2470 |
} |
|
2471 |
} |
|
2472 |
|
|
2473 |
/// \brief Set all items. |
|
2474 |
/// |
|
2475 |
/// Set all items in the map. |
|
2476 |
/// \note Constant time operation. |
|
2477 |
void setAll(bool value) { |
|
2478 |
_sep = (value ? _array.size() : 0); |
|
2479 |
} |
|
2480 |
|
|
2481 |
/// \brief Returns the number of the keys mapped to \c true. |
|
2482 |
/// |
|
2483 |
/// Returns the number of the keys mapped to \c true. |
|
2484 |
int trueNum() const { |
|
2485 |
return _sep; |
|
2486 |
} |
|
2487 |
|
|
2488 |
/// \brief Returns the number of the keys mapped to \c false. |
|
2489 |
/// |
|
2490 |
/// Returns the number of the keys mapped to \c false. |
|
2491 |
int falseNum() const { |
|
2492 |
return _array.size() - _sep; |
|
2493 |
} |
|
2494 |
|
|
2495 |
/// \brief Iterator for the keys mapped to \c true. |
|
2496 |
/// |
|
2497 |
/// Iterator for the keys mapped to \c true. It works |
|
2498 |
/// like a graph item iterator, it can be converted to |
|
2499 |
/// the key type of the map, incremented with \c ++ operator, and |
|
2500 |
/// if the iterator leaves the last valid key, it will be equal to |
|
2501 |
/// \c INVALID. |
|
2502 |
class TrueIt : public Key { |
|
2503 |
public: |
|
2504 |
typedef Key Parent; |
|
2505 |
|
|
2506 |
/// \brief Creates an iterator. |
|
2507 |
/// |
|
2508 |
/// Creates an iterator. It iterates on the |
|
2509 |
/// keys mapped to \c true. |
|
2510 |
/// \param map The IterableBoolMap. |
|
2511 |
explicit TrueIt(const IterableBoolMap& map) |
|
2512 |
: Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID), |
|
2513 |
_map(&map) {} |
|
2514 |
|
|
2515 |
/// \brief Invalid constructor \& conversion. |
|
2516 |
/// |
|
2517 |
/// This constructor initializes the iterator to be invalid. |
|
2518 |
/// \sa Invalid for more details. |
|
2519 |
TrueIt(Invalid) : Parent(INVALID), _map(0) {} |
|
2520 |
|
|
2521 |
/// \brief Increment operator. |
|
2522 |
/// |
|
2523 |
/// Increment operator. |
|
2524 |
TrueIt& operator++() { |
|
2525 |
int pos = _map->position(*this); |
|
2526 |
Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID); |
|
2527 |
return *this; |
|
2528 |
} |
|
2529 |
|
|
2530 |
private: |
|
2531 |
const IterableBoolMap* _map; |
|
2532 |
}; |
|
2533 |
|
|
2534 |
/// \brief Iterator for the keys mapped to \c false. |
|
2535 |
/// |
|
2536 |
/// Iterator for the keys mapped to \c false. It works |
|
2537 |
/// like a graph item iterator, it can be converted to |
|
2538 |
/// the key type of the map, incremented with \c ++ operator, and |
|
2539 |
/// if the iterator leaves the last valid key, it will be equal to |
|
2540 |
/// \c INVALID. |
|
2541 |
class FalseIt : public Key { |
|
2542 |
public: |
|
2543 |
typedef Key Parent; |
|
2544 |
|
|
2545 |
/// \brief Creates an iterator. |
|
2546 |
/// |
|
2547 |
/// Creates an iterator. It iterates on the |
|
2548 |
/// keys mapped to \c false. |
|
2549 |
/// \param map The IterableBoolMap. |
|
2550 |
explicit FalseIt(const IterableBoolMap& map) |
|
2551 |
: Parent(map._sep < int(map._array.size()) ? |
|
2552 |
map._array.back() : INVALID), _map(&map) {} |
|
2553 |
|
|
2554 |
/// \brief Invalid constructor \& conversion. |
|
2555 |
/// |
|
2556 |
/// This constructor initializes the iterator to be invalid. |
|
2557 |
/// \sa Invalid for more details. |
|
2558 |
FalseIt(Invalid) : Parent(INVALID), _map(0) {} |
|
2559 |
|
|
2560 |
/// \brief Increment operator. |
|
2561 |
/// |
|
2562 |
/// Increment operator. |
|
2563 |
FalseIt& operator++() { |
|
2564 |
int pos = _map->position(*this); |
|
2565 |
Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID); |
|
2566 |
return *this; |
|
2567 |
} |
|
2568 |
|
|
2569 |
private: |
|
2570 |
const IterableBoolMap* _map; |
|
2571 |
}; |
|
2572 |
|
|
2573 |
/// \brief Iterator for the keys mapped to a given value. |
|
2574 |
/// |
|
2575 |
/// Iterator for the keys mapped to a given value. It works |
|
2576 |
/// like a graph item iterator, it can be converted to |
|
2577 |
/// the key type of the map, incremented with \c ++ operator, and |
|
2578 |
/// if the iterator leaves the last valid key, it will be equal to |
|
2579 |
/// \c INVALID. |
|
2580 |
class ItemIt : public Key { |
|
2581 |
public: |
|
2582 |
typedef Key Parent; |
|
2583 |
|
|
2584 |
/// \brief Creates an iterator with a value. |
|
2585 |
/// |
|
2586 |
/// Creates an iterator with a value. It iterates on the |
|
2587 |
/// keys mapped to the given value. |
|
2588 |
/// \param map The IterableBoolMap. |
|
2589 |
/// \param value The value. |
|
2590 |
ItemIt(const IterableBoolMap& map, bool value) |
|
2591 |
: Parent(value ? |
|
2592 |
(map._sep > 0 ? |
|
2593 |
map._array[map._sep - 1] : INVALID) : |
|
2594 |
(map._sep < int(map._array.size()) ? |
|
2595 |
map._array.back() : INVALID)), _map(&map) {} |
|
2596 |
|
|
2597 |
/// \brief Invalid constructor \& conversion. |
|
2598 |
/// |
|
2599 |
/// This constructor initializes the iterator to be invalid. |
|
2600 |
/// \sa Invalid for more details. |
|
2601 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
|
2602 |
|
|
2603 |
/// \brief Increment operator. |
|
2604 |
/// |
|
2605 |
/// Increment operator. |
|
2606 |
ItemIt& operator++() { |
|
2607 |
int pos = _map->position(*this); |
|
2608 |
int _sep = pos >= _map->_sep ? _map->_sep : 0; |
|
2609 |
Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID); |
|
2610 |
return *this; |
|
2611 |
} |
|
2612 |
|
|
2613 |
private: |
|
2614 |
const IterableBoolMap* _map; |
|
2615 |
}; |
|
2616 |
|
|
2617 |
protected: |
|
2618 |
|
|
2619 |
virtual void add(const Key& key) { |
|
2620 |
Parent::add(key); |
|
2621 |
Parent::set(key, _array.size()); |
|
2622 |
_array.push_back(key); |
|
2623 |
} |
|
2624 |
|
|
2625 |
virtual void add(const std::vector<Key>& keys) { |
|
2626 |
Parent::add(keys); |
|
2627 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
2628 |
Parent::set(keys[i], _array.size()); |
|
2629 |
_array.push_back(keys[i]); |
|
2630 |
} |
|
2631 |
} |
|
2632 |
|
|
2633 |
virtual void erase(const Key& key) { |
|
2634 |
int pos = position(key); |
|
2635 |
if (pos < _sep) { |
|
2636 |
--_sep; |
|
2637 |
Parent::set(_array[_sep], pos); |
|
2638 |
_array[pos] = _array[_sep]; |
|
2639 |
Parent::set(_array.back(), _sep); |
|
2640 |
_array[_sep] = _array.back(); |
|
2641 |
_array.pop_back(); |
|
2642 |
} else { |
|
2643 |
Parent::set(_array.back(), pos); |
|
2644 |
_array[pos] = _array.back(); |
|
2645 |
_array.pop_back(); |
|
2646 |
} |
|
2647 |
Parent::erase(key); |
|
2648 |
} |
|
2649 |
|
|
2650 |
virtual void erase(const std::vector<Key>& keys) { |
|
2651 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
2652 |
int pos = position(keys[i]); |
|
2653 |
if (pos < _sep) { |
|
2654 |
--_sep; |
|
2655 |
Parent::set(_array[_sep], pos); |
|
2656 |
_array[pos] = _array[_sep]; |
|
2657 |
Parent::set(_array.back(), _sep); |
|
2658 |
_array[_sep] = _array.back(); |
|
2659 |
_array.pop_back(); |
|
2660 |
} else { |
|
2661 |
Parent::set(_array.back(), pos); |
|
2662 |
_array[pos] = _array.back(); |
|
2663 |
_array.pop_back(); |
|
2664 |
} |
|
2665 |
} |
|
2666 |
Parent::erase(keys); |
|
2667 |
} |
|
2668 |
|
|
2669 |
virtual void build() { |
|
2670 |
Parent::build(); |
|
2671 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
2672 |
Key it; |
|
2673 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
|
2674 |
Parent::set(it, _array.size()); |
|
2675 |
_array.push_back(it); |
|
2676 |
} |
|
2677 |
_sep = 0; |
|
2678 |
} |
|
2679 |
|
|
2680 |
virtual void clear() { |
|
2681 |
_array.clear(); |
|
2682 |
_sep = 0; |
|
2683 |
Parent::clear(); |
|
2684 |
} |
|
2685 |
|
|
2686 |
}; |
|
2687 |
|
|
2688 |
|
|
2689 |
namespace _maps_bits { |
|
2690 |
template <typename Item> |
|
2691 |
struct IterableIntMapNode { |
|
2692 |
IterableIntMapNode() : value(-1) {} |
|
2693 |
IterableIntMapNode(int _value) : value(_value) {} |
|
2694 |
Item prev, next; |
|
2695 |
int value; |
|
2696 |
}; |
|
2697 |
} |
|
2698 |
|
|
2699 |
/// \brief Dynamic iterable integer map. |
|
2700 |
/// |
|
2701 |
/// This class provides a special graph map type which can store an |
|
2702 |
/// integer value for graph items (\c Node, \c Arc or \c Edge). |
|
2703 |
/// For each non-negative value it is possible to iterate on the keys |
|
2704 |
/// mapped to the value. |
|
2705 |
/// |
|
2706 |
/// This type is a reference map, so it can be modified with the |
|
2707 |
/// subscript operator. |
|
2708 |
/// |
|
2709 |
/// \note The size of the data structure depends on the largest |
|
2710 |
/// value in the map. |
|
2711 |
/// |
|
2712 |
/// \tparam GR The graph type. |
|
2713 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
2714 |
/// \c GR::Edge). |
|
2715 |
/// |
|
2716 |
/// \see IterableBoolMap, IterableValueMap |
|
2717 |
/// \see CrossRefMap |
|
2718 |
template <typename GR, typename K> |
|
2719 |
class IterableIntMap |
|
2720 |
: protected ItemSetTraits<GR, K>:: |
|
2721 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type { |
|
2722 |
public: |
|
2723 |
typedef typename ItemSetTraits<GR, K>:: |
|
2724 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent; |
|
2725 |
|
|
2726 |
/// The key type |
|
2727 |
typedef K Key; |
|
2728 |
/// The value type |
|
2729 |
typedef int Value; |
|
2730 |
/// The graph type |
|
2731 |
typedef GR Graph; |
|
2732 |
|
|
2733 |
/// \brief Constructor of the map. |
|
2734 |
/// |
|
2735 |
/// Constructor of the map. It sets all values to -1. |
|
2736 |
explicit IterableIntMap(const Graph& graph) |
|
2737 |
: Parent(graph) {} |
|
2738 |
|
|
2739 |
/// \brief Constructor of the map with a given value. |
|
2740 |
/// |
|
2741 |
/// Constructor of the map with a given value. |
|
2742 |
explicit IterableIntMap(const Graph& graph, int value) |
|
2743 |
: Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) { |
|
2744 |
if (value >= 0) { |
|
2745 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
|
2746 |
lace(it); |
|
2747 |
} |
|
2748 |
} |
|
2749 |
} |
|
2750 |
|
|
2751 |
private: |
|
2752 |
|
|
2753 |
void unlace(const Key& key) { |
|
2754 |
typename Parent::Value& node = Parent::operator[](key); |
|
2755 |
if (node.value < 0) return; |
|
2756 |
if (node.prev != INVALID) { |
|
2757 |
Parent::operator[](node.prev).next = node.next; |
|
2758 |
} else { |
|
2759 |
_first[node.value] = node.next; |
|
2760 |
} |
|
2761 |
if (node.next != INVALID) { |
|
2762 |
Parent::operator[](node.next).prev = node.prev; |
|
2763 |
} |
|
2764 |
while (!_first.empty() && _first.back() == INVALID) { |
|
2765 |
_first.pop_back(); |
|
2766 |
} |
|
2767 |
} |
|
2768 |
|
|
2769 |
void lace(const Key& key) { |
|
2770 |
typename Parent::Value& node = Parent::operator[](key); |
|
2771 |
if (node.value < 0) return; |
|
2772 |
if (node.value >= int(_first.size())) { |
|
2773 |
_first.resize(node.value + 1, INVALID); |
|
2774 |
} |
|
2775 |
node.prev = INVALID; |
|
2776 |
node.next = _first[node.value]; |
|
2777 |
if (node.next != INVALID) { |
|
2778 |
Parent::operator[](node.next).prev = key; |
|
2779 |
} |
|
2780 |
_first[node.value] = key; |
|
2781 |
} |
|
2782 |
|
|
2783 |
public: |
|
2784 |
|
|
2785 |
/// Indicates that the map is reference map. |
|
2786 |
typedef True ReferenceMapTag; |
|
2787 |
|
|
2788 |
/// \brief Reference to the value of the map. |
|
2789 |
/// |
|
2790 |
/// This class is similar to the \c int type. It can |
|
2791 |
/// be converted to \c int and it has the same operators. |
|
2792 |
class Reference { |
|
2793 |
friend class IterableIntMap; |
|
2794 |
private: |
|
2795 |
Reference(IterableIntMap& map, const Key& key) |
|
2796 |
: _key(key), _map(map) {} |
|
2797 |
public: |
|
2798 |
|
|
2799 |
Reference& operator=(const Reference& value) { |
|
2800 |
_map.set(_key, static_cast<const int&>(value)); |
|
2801 |
return *this; |
|
2802 |
} |
|
2803 |
|
|
2804 |
operator const int&() const { |
|
2805 |
return static_cast<const IterableIntMap&>(_map)[_key]; |
|
2806 |
} |
|
2807 |
|
|
2808 |
Reference& operator=(int value) { |
|
2809 |
_map.set(_key, value); |
|
2810 |
return *this; |
|
2811 |
} |
|
2812 |
Reference& operator++() { |
|
2813 |
_map.set(_key, _map[_key] + 1); |
|
2814 |
return *this; |
|
2815 |
} |
|
2816 |
int operator++(int) { |
|
2817 |
int value = _map[_key]; |
|
2818 |
_map.set(_key, value + 1); |
|
2819 |
return value; |
|
2820 |
} |
|
2821 |
Reference& operator--() { |
|
2822 |
_map.set(_key, _map[_key] - 1); |
|
2823 |
return *this; |
|
2824 |
} |
|
2825 |
int operator--(int) { |
|
2826 |
int value = _map[_key]; |
|
2827 |
_map.set(_key, value - 1); |
|
2828 |
return value; |
|
2829 |
} |
|
2830 |
Reference& operator+=(int value) { |
|
2831 |
_map.set(_key, _map[_key] + value); |
|
2832 |
return *this; |
|
2833 |
} |
|
2834 |
Reference& operator-=(int value) { |
|
2835 |
_map.set(_key, _map[_key] - value); |
|
2836 |
return *this; |
|
2837 |
} |
|
2838 |
Reference& operator*=(int value) { |
|
2839 |
_map.set(_key, _map[_key] * value); |
|
2840 |
return *this; |
|
2841 |
} |
|
2842 |
Reference& operator/=(int value) { |
|
2843 |
_map.set(_key, _map[_key] / value); |
|
2844 |
return *this; |
|
2845 |
} |
|
2846 |
Reference& operator%=(int value) { |
|
2847 |
_map.set(_key, _map[_key] % value); |
|
2848 |
return *this; |
|
2849 |
} |
|
2850 |
Reference& operator&=(int value) { |
|
2851 |
_map.set(_key, _map[_key] & value); |
|
2852 |
return *this; |
|
2853 |
} |
|
2854 |
Reference& operator|=(int value) { |
|
2855 |
_map.set(_key, _map[_key] | value); |
|
2856 |
return *this; |
|
2857 |
} |
|
2858 |
Reference& operator^=(int value) { |
|
2859 |
_map.set(_key, _map[_key] ^ value); |
|
2860 |
return *this; |
|
2861 |
} |
|
2862 |
Reference& operator<<=(int value) { |
|
2863 |
_map.set(_key, _map[_key] << value); |
|
2864 |
return *this; |
|
2865 |
} |
|
2866 |
Reference& operator>>=(int value) { |
|
2867 |
_map.set(_key, _map[_key] >> value); |
|
2868 |
return *this; |
|
2869 |
} |
|
2870 |
|
|
2871 |
private: |
|
2872 |
Key _key; |
|
2873 |
IterableIntMap& _map; |
|
2874 |
}; |
|
2875 |
|
|
2876 |
/// The const reference type. |
|
2877 |
typedef const Value& ConstReference; |
|
2878 |
|
|
2879 |
/// \brief Gives back the maximal value plus one. |
|
2880 |
/// |
|
2881 |
/// Gives back the maximal value plus one. |
|
2882 |
int size() const { |
|
2883 |
return _first.size(); |
|
2884 |
} |
|
2885 |
|
|
2886 |
/// \brief Set operation of the map. |
|
2887 |
/// |
|
2888 |
/// Set operation of the map. |
|
2889 |
void set(const Key& key, const Value& value) { |
|
2890 |
unlace(key); |
|
2891 |
Parent::operator[](key).value = value; |
|
2892 |
lace(key); |
|
2893 |
} |
|
2894 |
|
|
2895 |
/// \brief Const subscript operator of the map. |
|
2896 |
/// |
|
2897 |
/// Const subscript operator of the map. |
|
2898 |
const Value& operator[](const Key& key) const { |
|
2899 |
return Parent::operator[](key).value; |
|
2900 |
} |
|
2901 |
|
|
2902 |
/// \brief Subscript operator of the map. |
|
2903 |
/// |
|
2904 |
/// Subscript operator of the map. |
|
2905 |
Reference operator[](const Key& key) { |
|
2906 |
return Reference(*this, key); |
|
2907 |
} |
|
2908 |
|
|
2909 |
/// \brief Iterator for the keys with the same value. |
|
2910 |
/// |
|
2911 |
/// Iterator for the keys with the same value. It works |
|
2912 |
/// like a graph item iterator, it can be converted to |
|
2913 |
/// the item type of the map, incremented with \c ++ operator, and |
|
2914 |
/// if the iterator leaves the last valid item, it will be equal to |
|
2915 |
/// \c INVALID. |
|
2916 |
class ItemIt : public Key { |
|
2917 |
public: |
|
2918 |
typedef Key Parent; |
|
2919 |
|
|
2920 |
/// \brief Invalid constructor \& conversion. |
|
2921 |
/// |
|
2922 |
/// This constructor initializes the iterator to be invalid. |
|
2923 |
/// \sa Invalid for more details. |
|
2924 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
|
2925 |
|
|
2926 |
/// \brief Creates an iterator with a value. |
|
2927 |
/// |
|
2928 |
/// Creates an iterator with a value. It iterates on the |
|
2929 |
/// keys mapped to the given value. |
|
2930 |
/// \param map The IterableIntMap. |
|
2931 |
/// \param value The value. |
|
2932 |
ItemIt(const IterableIntMap& map, int value) : _map(&map) { |
|
2933 |
if (value < 0 || value >= int(_map->_first.size())) { |
|
2934 |
Parent::operator=(INVALID); |
|
2935 |
} else { |
|
2936 |
Parent::operator=(_map->_first[value]); |
|
2937 |
} |
|
2938 |
} |
|
2939 |
|
|
2940 |
/// \brief Increment operator. |
|
2941 |
/// |
|
2942 |
/// Increment operator. |
|
2943 |
ItemIt& operator++() { |
|
2944 |
Parent::operator=(_map->IterableIntMap::Parent:: |
|
2945 |
operator[](static_cast<Parent&>(*this)).next); |
|
2946 |
return *this; |
|
2947 |
} |
|
2948 |
|
|
2949 |
private: |
|
2950 |
const IterableIntMap* _map; |
|
2951 |
}; |
|
2952 |
|
|
2953 |
protected: |
|
2954 |
|
|
2955 |
virtual void erase(const Key& key) { |
|
2956 |
unlace(key); |
|
2957 |
Parent::erase(key); |
|
2958 |
} |
|
2959 |
|
|
2960 |
virtual void erase(const std::vector<Key>& keys) { |
|
2961 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
2962 |
unlace(keys[i]); |
|
2963 |
} |
|
2964 |
Parent::erase(keys); |
|
2965 |
} |
|
2966 |
|
|
2967 |
virtual void clear() { |
|
2968 |
_first.clear(); |
|
2969 |
Parent::clear(); |
|
2970 |
} |
|
2971 |
|
|
2972 |
private: |
|
2973 |
std::vector<Key> _first; |
|
2974 |
}; |
|
2975 |
|
|
2976 |
namespace _maps_bits { |
|
2977 |
template <typename Item, typename Value> |
|
2978 |
struct IterableValueMapNode { |
|
2979 |
IterableValueMapNode(Value _value = Value()) : value(_value) {} |
|
2980 |
Item prev, next; |
|
2981 |
Value value; |
|
2982 |
}; |
|
2983 |
} |
|
2984 |
|
|
2985 |
/// \brief Dynamic iterable map for comparable values. |
|
2986 |
/// |
|
2987 |
/// This class provides a special graph map type which can store an |
|
2988 |
/// comparable value for graph items (\c Node, \c Arc or \c Edge). |
|
2989 |
/// For each value it is possible to iterate on the keys mapped to |
|
2990 |
/// the value. |
|
2991 |
/// |
|
2992 |
/// The map stores for each value a linked list with |
|
2993 |
/// the items which mapped to the value, and the values are stored |
|
2994 |
/// in balanced binary tree. The values of the map can be accessed |
|
2995 |
/// with stl compatible forward iterator. |
|
2996 |
/// |
|
2997 |
/// This type is not reference map, so it cannot be modified with |
|
2998 |
/// the subscript operator. |
|
2999 |
/// |
|
3000 |
/// \tparam GR The graph type. |
|
3001 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
3002 |
/// \c GR::Edge). |
|
3003 |
/// \tparam V The value type of the map. It can be any comparable |
|
3004 |
/// value type. |
|
3005 |
/// |
|
3006 |
/// \see IterableBoolMap, IterableIntMap |
|
3007 |
/// \see CrossRefMap |
|
3008 |
template <typename GR, typename K, typename V> |
|
3009 |
class IterableValueMap |
|
3010 |
: protected ItemSetTraits<GR, K>:: |
|
3011 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type { |
|
3012 |
public: |
|
3013 |
typedef typename ItemSetTraits<GR, K>:: |
|
3014 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent; |
|
3015 |
|
|
3016 |
/// The key type |
|
3017 |
typedef K Key; |
|
3018 |
/// The value type |
|
3019 |
typedef V Value; |
|
3020 |
/// The graph type |
|
3021 |
typedef GR Graph; |
|
3022 |
|
|
3023 |
public: |
|
3024 |
|
|
3025 |
/// \brief Constructor of the map with a given value. |
|
3026 |
/// |
|
3027 |
/// Constructor of the map with a given value. |
|
3028 |
explicit IterableValueMap(const Graph& graph, |
|
3029 |
const Value& value = Value()) |
|
3030 |
: Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) { |
|
3031 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
|
3032 |
lace(it); |
|
3033 |
} |
|
3034 |
} |
|
3035 |
|
|
3036 |
protected: |
|
3037 |
|
|
3038 |
void unlace(const Key& key) { |
|
3039 |
typename Parent::Value& node = Parent::operator[](key); |
|
3040 |
if (node.prev != INVALID) { |
|
3041 |
Parent::operator[](node.prev).next = node.next; |
|
3042 |
} else { |
|
3043 |
if (node.next != INVALID) { |
|
3044 |
_first[node.value] = node.next; |
|
3045 |
} else { |
|
3046 |
_first.erase(node.value); |
|
3047 |
} |
|
3048 |
} |
|
3049 |
if (node.next != INVALID) { |
|
3050 |
Parent::operator[](node.next).prev = node.prev; |
|
3051 |
} |
|
3052 |
} |
|
3053 |
|
|
3054 |
void lace(const Key& key) { |
|
3055 |
typename Parent::Value& node = Parent::operator[](key); |
|
3056 |
typename std::map<Value, Key>::iterator it = _first.find(node.value); |
|
3057 |
if (it == _first.end()) { |
|
3058 |
node.prev = node.next = INVALID; |
|
3059 |
_first.insert(std::make_pair(node.value, key)); |
|
3060 |
} else { |
|
3061 |
node.prev = INVALID; |
|
3062 |
node.next = it->second; |
|
3063 |
if (node.next != INVALID) { |
|
3064 |
Parent::operator[](node.next).prev = key; |
|
3065 |
} |
|
3066 |
it->second = key; |
|
3067 |
} |
|
3068 |
} |
|
3069 |
|
|
3070 |
public: |
|
3071 |
|
|
3072 |
/// \brief Forward iterator for values. |
|
3073 |
/// |
|
3074 |
/// This iterator is an stl compatible forward |
|
3075 |
/// iterator on the values of the map. The values can |
|
3076 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
|
3077 |
class ValueIterator |
|
3078 |
: public std::iterator<std::forward_iterator_tag, Value> { |
|
3079 |
friend class IterableValueMap; |
|
3080 |
private: |
|
3081 |
ValueIterator(typename std::map<Value, Key>::const_iterator _it) |
|
3082 |
: it(_it) {} |
|
3083 |
public: |
|
3084 |
|
|
3085 |
ValueIterator() {} |
|
3086 |
|
|
3087 |
ValueIterator& operator++() { ++it; return *this; } |
|
3088 |
ValueIterator operator++(int) { |
|
3089 |
ValueIterator tmp(*this); |
|
3090 |
operator++(); |
|
3091 |
return tmp; |
|
3092 |
} |
|
3093 |
|
|
3094 |
const Value& operator*() const { return it->first; } |
|
3095 |
const Value* operator->() const { return &(it->first); } |
|
3096 |
|
|
3097 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
|
3098 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
|
3099 |
|
|
3100 |
private: |
|
3101 |
typename std::map<Value, Key>::const_iterator it; |
|
3102 |
}; |
|
3103 |
|
|
3104 |
/// \brief Returns an iterator to the first value. |
|
3105 |
/// |
|
3106 |
/// Returns an stl compatible iterator to the |
|
3107 |
/// first value of the map. The values of the |
|
3108 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|
3109 |
/// range. |
|
3110 |
ValueIterator beginValue() const { |
|
3111 |
return ValueIterator(_first.begin()); |
|
3112 |
} |
|
3113 |
|
|
3114 |
/// \brief Returns an iterator after the last value. |
|
3115 |
/// |
|
3116 |
/// Returns an stl compatible iterator after the |
|
3117 |
/// last value of the map. The values of the |
|
3118 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|
3119 |
/// range. |
|
3120 |
ValueIterator endValue() const { |
|
3121 |
return ValueIterator(_first.end()); |
|
3122 |
} |
|
3123 |
|
|
3124 |
/// \brief Set operation of the map. |
|
3125 |
/// |
|
3126 |
/// Set operation of the map. |
|
3127 |
void set(const Key& key, const Value& value) { |
|
3128 |
unlace(key); |
|
3129 |
Parent::operator[](key).value = value; |
|
3130 |
lace(key); |
|
3131 |
} |
|
3132 |
|
|
3133 |
/// \brief Const subscript operator of the map. |
|
3134 |
/// |
|
3135 |
/// Const subscript operator of the map. |
|
3136 |
const Value& operator[](const Key& key) const { |
|
3137 |
return Parent::operator[](key).value; |
|
3138 |
} |
|
3139 |
|
|
3140 |
/// \brief Iterator for the keys with the same value. |
|
3141 |
/// |
|
3142 |
/// Iterator for the keys with the same value. It works |
|
3143 |
/// like a graph item iterator, it can be converted to |
|
3144 |
/// the item type of the map, incremented with \c ++ operator, and |
|
3145 |
/// if the iterator leaves the last valid item, it will be equal to |
|
3146 |
/// \c INVALID. |
|
3147 |
class ItemIt : public Key { |
|
3148 |
public: |
|
3149 |
typedef Key Parent; |
|
3150 |
|
|
3151 |
/// \brief Invalid constructor \& conversion. |
|
3152 |
/// |
|
3153 |
/// This constructor initializes the iterator to be invalid. |
|
3154 |
/// \sa Invalid for more details. |
|
3155 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
|
3156 |
|
|
3157 |
/// \brief Creates an iterator with a value. |
|
3158 |
/// |
|
3159 |
/// Creates an iterator with a value. It iterates on the |
|
3160 |
/// keys which have the given value. |
|
3161 |
/// \param map The IterableValueMap |
|
3162 |
/// \param value The value |
|
3163 |
ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) { |
|
3164 |
typename std::map<Value, Key>::const_iterator it = |
|
3165 |
map._first.find(value); |
|
3166 |
if (it == map._first.end()) { |
|
3167 |
Parent::operator=(INVALID); |
|
3168 |
} else { |
|
3169 |
Parent::operator=(it->second); |
|
3170 |
} |
|
3171 |
} |
|
3172 |
|
|
3173 |
/// \brief Increment operator. |
|
3174 |
/// |
|
3175 |
/// Increment Operator. |
|
3176 |
ItemIt& operator++() { |
|
3177 |
Parent::operator=(_map->IterableValueMap::Parent:: |
|
3178 |
operator[](static_cast<Parent&>(*this)).next); |
|
3179 |
return *this; |
|
3180 |
} |
|
3181 |
|
|
3182 |
|
|
3183 |
private: |
|
3184 |
const IterableValueMap* _map; |
|
3185 |
}; |
|
3186 |
|
|
3187 |
protected: |
|
3188 |
|
|
3189 |
virtual void add(const Key& key) { |
|
3190 |
Parent::add(key); |
|
3191 |
unlace(key); |
|
3192 |
} |
|
3193 |
|
|
3194 |
virtual void add(const std::vector<Key>& keys) { |
|
3195 |
Parent::add(keys); |
|
3196 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
3197 |
lace(keys[i]); |
|
3198 |
} |
|
3199 |
} |
|
3200 |
|
|
3201 |
virtual void erase(const Key& key) { |
|
3202 |
unlace(key); |
|
3203 |
Parent::erase(key); |
|
3204 |
} |
|
3205 |
|
|
3206 |
virtual void erase(const std::vector<Key>& keys) { |
|
3207 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
3208 |
unlace(keys[i]); |
|
3209 |
} |
|
3210 |
Parent::erase(keys); |
|
3211 |
} |
|
3212 |
|
|
3213 |
virtual void build() { |
|
3214 |
Parent::build(); |
|
3215 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
|
3216 |
lace(it); |
|
3217 |
} |
|
3218 |
} |
|
3219 |
|
|
3220 |
virtual void clear() { |
|
3221 |
_first.clear(); |
|
3222 |
Parent::clear(); |
|
3223 |
} |
|
3224 |
|
|
3225 |
private: |
|
3226 |
std::map<Value, Key> _first; |
|
3227 |
}; |
|
3228 |
|
|
2314 | 3229 |
/// \brief Map of the source nodes of arcs in a digraph. |
2315 | 3230 |
/// |
2316 | 3231 |
/// SourceMap provides access for the source node of each arc in a digraph, |
2317 | 3232 |
/// which is returned by the \c source() function of the digraph. |
2318 | 3233 |
/// \tparam GR The digraph type. |
2319 | 3234 |
/// \see TargetMap |
2320 | 3235 |
template <typename GR> |
2321 | 3236 |
class SourceMap { |
2322 | 3237 |
public: |
2323 | 3238 |
|
2324 | 3239 |
///\e |
2325 | 3240 |
typedef typename GR::Arc Key; |
2326 | 3241 |
///\e |
2327 | 3242 |
typedef typename GR::Node Value; |
2328 | 3243 |
|
2329 | 3244 |
/// \brief Constructor |
2330 | 3245 |
/// |
2331 | 3246 |
/// Constructor. |
2332 | 3247 |
/// \param digraph The digraph that the map belongs to. |
2333 | 3248 |
explicit SourceMap(const GR& digraph) : _graph(digraph) {} |
2334 | 3249 |
|
2335 | 3250 |
/// \brief Returns the source node of the given arc. |
2336 | 3251 |
/// |
2337 | 3252 |
/// Returns the source node of the given arc. |
2338 | 3253 |
Value operator[](const Key& arc) const { |
2339 | 3254 |
return _graph.source(arc); |
2340 | 3255 |
} |
2341 | 3256 |
|
2342 | 3257 |
private: |
2343 | 3258 |
const GR& _graph; |
2344 | 3259 |
}; |
2345 | 3260 |
|
2346 | 3261 |
/// \brief Returns a \c SourceMap class. |
2347 | 3262 |
/// |
2348 | 3263 |
/// This function just returns an \c SourceMap class. |
2349 | 3264 |
/// \relates SourceMap |
2350 | 3265 |
template <typename GR> |
2351 | 3266 |
inline SourceMap<GR> sourceMap(const GR& graph) { |
2352 | 3267 |
return SourceMap<GR>(graph); |
2353 | 3268 |
} |
2354 | 3269 |
|
2355 | 3270 |
/// \brief Map of the target nodes of arcs in a digraph. |
2356 | 3271 |
/// |
2357 | 3272 |
/// TargetMap provides access for the target node of each arc in a digraph, |
2358 | 3273 |
/// which is returned by the \c target() function of the digraph. |
2359 | 3274 |
/// \tparam GR The digraph type. |
2360 | 3275 |
/// \see SourceMap |
2361 | 3276 |
template <typename GR> |
2362 | 3277 |
class TargetMap { |
2363 | 3278 |
public: |
2364 | 3279 |
|
2365 | 3280 |
///\e |
2366 | 3281 |
typedef typename GR::Arc Key; |
2367 | 3282 |
///\e |
2368 | 3283 |
typedef typename GR::Node Value; |
2369 | 3284 |
|
2370 | 3285 |
/// \brief Constructor |
2371 | 3286 |
/// |
2372 | 3287 |
/// Constructor. |
2373 | 3288 |
/// \param digraph The digraph that the map belongs to. |
2374 | 3289 |
explicit TargetMap(const GR& digraph) : _graph(digraph) {} |
2375 | 3290 |
|
2376 | 3291 |
/// \brief Returns the target node of the given arc. |
2377 | 3292 |
/// |
2378 | 3293 |
/// Returns the target node of the given arc. |
2379 | 3294 |
Value operator[](const Key& e) const { |
2380 | 3295 |
return _graph.target(e); |
2381 | 3296 |
} |
2382 | 3297 |
|
2383 | 3298 |
private: |
2384 | 3299 |
const GR& _graph; |
2385 | 3300 |
}; |
2386 | 3301 |
|
2387 | 3302 |
/// \brief Returns a \c TargetMap class. |
2388 | 3303 |
/// |
2389 | 3304 |
/// This function just returns a \c TargetMap class. |
2390 | 3305 |
/// \relates TargetMap |
2391 | 3306 |
template <typename GR> |
2392 | 3307 |
inline TargetMap<GR> targetMap(const GR& graph) { |
2393 | 3308 |
return TargetMap<GR>(graph); |
2394 | 3309 |
} |
2395 | 3310 |
|
2396 | 3311 |
/// \brief Map of the "forward" directed arc view of edges in a graph. |
2397 | 3312 |
/// |
2398 | 3313 |
/// ForwardMap provides access for the "forward" directed arc view of |
2399 | 3314 |
/// each edge in a graph, which is returned by the \c direct() function |
2400 | 3315 |
/// of the graph with \c true parameter. |
2401 | 3316 |
/// \tparam GR The graph type. |
2402 | 3317 |
/// \see BackwardMap |
2403 | 3318 |
template <typename GR> |
2404 | 3319 |
class ForwardMap { |
2405 | 3320 |
public: |
2406 | 3321 |
|
2407 | 3322 |
typedef typename GR::Arc Value; |
2408 | 3323 |
typedef typename GR::Edge Key; |
2409 | 3324 |
|
2410 | 3325 |
/// \brief Constructor |
2411 | 3326 |
/// |
2412 | 3327 |
/// Constructor. |
2413 | 3328 |
/// \param graph The graph that the map belongs to. |
2414 | 3329 |
explicit ForwardMap(const GR& graph) : _graph(graph) {} |
2415 | 3330 |
|
2416 | 3331 |
/// \brief Returns the "forward" directed arc view of the given edge. |
2417 | 3332 |
/// |
2418 | 3333 |
/// Returns the "forward" directed arc view of the given edge. |
2419 | 3334 |
Value operator[](const Key& key) const { |
2420 | 3335 |
return _graph.direct(key, true); |
2421 | 3336 |
} |
2422 | 3337 |
|
2423 | 3338 |
private: |
2424 | 3339 |
const GR& _graph; |
2425 | 3340 |
}; |
2426 | 3341 |
|
2427 | 3342 |
/// \brief Returns a \c ForwardMap class. |
2428 | 3343 |
/// |
2429 | 3344 |
/// This function just returns an \c ForwardMap class. |
2430 | 3345 |
/// \relates ForwardMap |
2431 | 3346 |
template <typename GR> |
2432 | 3347 |
inline ForwardMap<GR> forwardMap(const GR& graph) { |
2433 | 3348 |
return ForwardMap<GR>(graph); |
2434 | 3349 |
} |
2435 | 3350 |
|
2436 | 3351 |
/// \brief Map of the "backward" directed arc view of edges in a graph. |
2437 | 3352 |
/// |
2438 | 3353 |
/// BackwardMap provides access for the "backward" directed arc view of |
2439 | 3354 |
/// each edge in a graph, which is returned by the \c direct() function |
2440 | 3355 |
/// of the graph with \c false parameter. |
2441 | 3356 |
/// \tparam GR The graph type. |
2442 | 3357 |
/// \see ForwardMap |
2443 | 3358 |
template <typename GR> |
2444 | 3359 |
class BackwardMap { |
2445 | 3360 |
public: |
2446 | 3361 |
|
2447 | 3362 |
typedef typename GR::Arc Value; |
2448 | 3363 |
typedef typename GR::Edge Key; |
2449 | 3364 |
|
2450 | 3365 |
/// \brief Constructor |
2451 | 3366 |
/// |
2452 | 3367 |
/// Constructor. |
2453 | 3368 |
/// \param graph The graph that the map belongs to. |
2454 | 3369 |
explicit BackwardMap(const GR& graph) : _graph(graph) {} |
2455 | 3370 |
|
2456 | 3371 |
/// \brief Returns the "backward" directed arc view of the given edge. |
2457 | 3372 |
/// |
2458 | 3373 |
/// Returns the "backward" directed arc view of the given edge. |
2459 | 3374 |
Value operator[](const Key& key) const { |
2460 | 3375 |
return _graph.direct(key, false); |
2461 | 3376 |
} |
2462 | 3377 |
|
2463 | 3378 |
private: |
2464 | 3379 |
const GR& _graph; |
2465 | 3380 |
}; |
2466 | 3381 |
|
2467 | 3382 |
/// \brief Returns a \c BackwardMap class |
2468 | 3383 |
|
2469 | 3384 |
/// This function just returns a \c BackwardMap class. |
2470 | 3385 |
/// \relates BackwardMap |
2471 | 3386 |
template <typename GR> |
2472 | 3387 |
inline BackwardMap<GR> backwardMap(const GR& graph) { |
2473 | 3388 |
return BackwardMap<GR>(graph); |
2474 | 3389 |
} |
2475 | 3390 |
|
2476 | 3391 |
/// \brief Map of the in-degrees of nodes in a digraph. |
2477 | 3392 |
/// |
2478 | 3393 |
/// This map returns the in-degree of a node. Once it is constructed, |
2479 | 3394 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
2480 | 3395 |
/// in constant time. On the other hand, the values are updated automatically |
2481 | 3396 |
/// whenever the digraph changes. |
2482 | 3397 |
/// |
2483 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
3398 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
2484 | 3399 |
/// may provide alternative ways to modify the digraph. |
2485 | 3400 |
/// The correct behavior of InDegMap is not guarantied if these additional |
2486 | 3401 |
/// features are used. For example the functions |
2487 | 3402 |
/// \ref ListDigraph::changeSource() "changeSource()", |
2488 | 3403 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
2489 | 3404 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
2490 | 3405 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
2491 | 3406 |
/// |
2492 | 3407 |
/// \sa OutDegMap |
2493 | 3408 |
template <typename GR> |
2494 | 3409 |
class InDegMap |
2495 | 3410 |
: protected ItemSetTraits<GR, typename GR::Arc> |
2496 | 3411 |
::ItemNotifier::ObserverBase { |
2497 | 3412 |
|
2498 | 3413 |
public: |
2499 |
|
|
3414 |
|
|
2500 | 3415 |
/// The graph type of InDegMap |
2501 | 3416 |
typedef GR Graph; |
2502 | 3417 |
typedef GR Digraph; |
2503 | 3418 |
/// The key type |
2504 | 3419 |
typedef typename Digraph::Node Key; |
2505 | 3420 |
/// The value type |
2506 | 3421 |
typedef int Value; |
2507 | 3422 |
|
2508 | 3423 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
2509 | 3424 |
::ItemNotifier::ObserverBase Parent; |
2510 | 3425 |
|
2511 | 3426 |
private: |
2512 | 3427 |
|
2513 | 3428 |
class AutoNodeMap |
2514 | 3429 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
2515 | 3430 |
public: |
2516 | 3431 |
|
2517 | 3432 |
typedef typename ItemSetTraits<Digraph, Key>:: |
2518 | 3433 |
template Map<int>::Type Parent; |
2519 | 3434 |
|
2520 | 3435 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
2521 | 3436 |
|
2522 | 3437 |
virtual void add(const Key& key) { |
2523 | 3438 |
Parent::add(key); |
2524 | 3439 |
Parent::set(key, 0); |
2525 | 3440 |
} |
2526 | 3441 |
|
2527 | 3442 |
virtual void add(const std::vector<Key>& keys) { |
2528 | 3443 |
Parent::add(keys); |
2529 | 3444 |
for (int i = 0; i < int(keys.size()); ++i) { |
2530 | 3445 |
Parent::set(keys[i], 0); |
2531 | 3446 |
} |
2532 | 3447 |
} |
2533 | 3448 |
|
2534 | 3449 |
virtual void build() { |
2535 | 3450 |
Parent::build(); |
2536 | 3451 |
Key it; |
2537 | 3452 |
typename Parent::Notifier* nf = Parent::notifier(); |
2538 | 3453 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2539 | 3454 |
Parent::set(it, 0); |
2540 | 3455 |
} |
2541 | 3456 |
} |
2542 | 3457 |
}; |
2543 | 3458 |
|
2544 | 3459 |
public: |
2545 | 3460 |
|
2546 | 3461 |
/// \brief Constructor. |
2547 | 3462 |
/// |
2548 | 3463 |
/// Constructor for creating an in-degree map. |
2549 | 3464 |
explicit InDegMap(const Digraph& graph) |
2550 | 3465 |
: _digraph(graph), _deg(graph) { |
2551 | 3466 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
2552 | 3467 |
|
2553 | 3468 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2554 | 3469 |
_deg[it] = countInArcs(_digraph, it); |
2555 | 3470 |
} |
2556 | 3471 |
} |
2557 | 3472 |
|
2558 | 3473 |
/// \brief Gives back the in-degree of a Node. |
2559 | 3474 |
/// |
2560 | 3475 |
/// Gives back the in-degree of a Node. |
2561 | 3476 |
int operator[](const Key& key) const { |
2562 | 3477 |
return _deg[key]; |
2563 | 3478 |
} |
2564 | 3479 |
|
2565 | 3480 |
protected: |
2566 | 3481 |
|
2567 | 3482 |
typedef typename Digraph::Arc Arc; |
2568 | 3483 |
|
2569 | 3484 |
virtual void add(const Arc& arc) { |
2570 | 3485 |
++_deg[_digraph.target(arc)]; |
2571 | 3486 |
} |
2572 | 3487 |
|
2573 | 3488 |
virtual void add(const std::vector<Arc>& arcs) { |
2574 | 3489 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2575 | 3490 |
++_deg[_digraph.target(arcs[i])]; |
2576 | 3491 |
} |
2577 | 3492 |
} |
2578 | 3493 |
|
2579 | 3494 |
virtual void erase(const Arc& arc) { |
2580 | 3495 |
--_deg[_digraph.target(arc)]; |
2581 | 3496 |
} |
2582 | 3497 |
|
2583 | 3498 |
virtual void erase(const std::vector<Arc>& arcs) { |
2584 | 3499 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2585 | 3500 |
--_deg[_digraph.target(arcs[i])]; |
2586 | 3501 |
} |
2587 | 3502 |
} |
2588 | 3503 |
|
2589 | 3504 |
virtual void build() { |
2590 | 3505 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2591 | 3506 |
_deg[it] = countInArcs(_digraph, it); |
2592 | 3507 |
} |
2593 | 3508 |
} |
2594 | 3509 |
|
2595 | 3510 |
virtual void clear() { |
2596 | 3511 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2597 | 3512 |
_deg[it] = 0; |
2598 | 3513 |
} |
2599 | 3514 |
} |
2600 | 3515 |
private: |
2601 | 3516 |
|
2602 | 3517 |
const Digraph& _digraph; |
2603 | 3518 |
AutoNodeMap _deg; |
2604 | 3519 |
}; |
2605 | 3520 |
|
2606 | 3521 |
/// \brief Map of the out-degrees of nodes in a digraph. |
2607 | 3522 |
/// |
2608 | 3523 |
/// This map returns the out-degree of a node. Once it is constructed, |
2609 | 3524 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
2610 | 3525 |
/// in constant time. On the other hand, the values are updated automatically |
2611 | 3526 |
/// whenever the digraph changes. |
2612 | 3527 |
/// |
2613 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
3528 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
2614 | 3529 |
/// may provide alternative ways to modify the digraph. |
2615 | 3530 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
2616 | 3531 |
/// features are used. For example the functions |
2617 | 3532 |
/// \ref ListDigraph::changeSource() "changeSource()", |
2618 | 3533 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
2619 | 3534 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
2620 | 3535 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
2621 | 3536 |
/// |
2622 | 3537 |
/// \sa InDegMap |
2623 | 3538 |
template <typename GR> |
2624 | 3539 |
class OutDegMap |
2625 | 3540 |
: protected ItemSetTraits<GR, typename GR::Arc> |
2626 | 3541 |
::ItemNotifier::ObserverBase { |
2627 | 3542 |
|
2628 | 3543 |
public: |
2629 | 3544 |
|
2630 | 3545 |
/// The graph type of OutDegMap |
2631 | 3546 |
typedef GR Graph; |
2632 | 3547 |
typedef GR Digraph; |
2633 | 3548 |
/// The key type |
2634 | 3549 |
typedef typename Digraph::Node Key; |
2635 | 3550 |
/// The value type |
2636 | 3551 |
typedef int Value; |
2637 | 3552 |
|
2638 | 3553 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
2639 | 3554 |
::ItemNotifier::ObserverBase Parent; |
2640 | 3555 |
|
2641 | 3556 |
private: |
2642 | 3557 |
|
2643 | 3558 |
class AutoNodeMap |
2644 | 3559 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
2645 | 3560 |
public: |
2646 | 3561 |
|
2647 | 3562 |
typedef typename ItemSetTraits<Digraph, Key>:: |
2648 | 3563 |
template Map<int>::Type Parent; |
2649 | 3564 |
|
2650 | 3565 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
2651 | 3566 |
|
2652 | 3567 |
virtual void add(const Key& key) { |
2653 | 3568 |
Parent::add(key); |
2654 | 3569 |
Parent::set(key, 0); |
2655 | 3570 |
} |
2656 | 3571 |
virtual void add(const std::vector<Key>& keys) { |
2657 | 3572 |
Parent::add(keys); |
2658 | 3573 |
for (int i = 0; i < int(keys.size()); ++i) { |
2659 | 3574 |
Parent::set(keys[i], 0); |
2660 | 3575 |
} |
2661 | 3576 |
} |
2662 | 3577 |
virtual void build() { |
2663 | 3578 |
Parent::build(); |
2664 | 3579 |
Key it; |
2665 | 3580 |
typename Parent::Notifier* nf = Parent::notifier(); |
2666 | 3581 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2667 | 3582 |
Parent::set(it, 0); |
2668 | 3583 |
} |
2669 | 3584 |
} |
2670 | 3585 |
}; |
2671 | 3586 |
|
2672 | 3587 |
public: |
2673 | 3588 |
|
2674 | 3589 |
/// \brief Constructor. |
2675 | 3590 |
/// |
2676 | 3591 |
/// Constructor for creating an out-degree map. |
2677 | 3592 |
explicit OutDegMap(const Digraph& graph) |
2678 | 3593 |
: _digraph(graph), _deg(graph) { |
2679 | 3594 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
2680 | 3595 |
|
2681 | 3596 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2682 | 3597 |
_deg[it] = countOutArcs(_digraph, it); |
2683 | 3598 |
} |
2684 | 3599 |
} |
2685 | 3600 |
|
2686 | 3601 |
/// \brief Gives back the out-degree of a Node. |
2687 | 3602 |
/// |
2688 | 3603 |
/// Gives back the out-degree of a Node. |
2689 | 3604 |
int operator[](const Key& key) const { |
2690 | 3605 |
return _deg[key]; |
2691 | 3606 |
} |
2692 | 3607 |
|
2693 | 3608 |
protected: |
2694 | 3609 |
|
2695 | 3610 |
typedef typename Digraph::Arc Arc; |
2696 | 3611 |
|
2697 | 3612 |
virtual void add(const Arc& arc) { |
2698 | 3613 |
++_deg[_digraph.source(arc)]; |
2699 | 3614 |
} |
2700 | 3615 |
|
2701 | 3616 |
virtual void add(const std::vector<Arc>& arcs) { |
2702 | 3617 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2703 | 3618 |
++_deg[_digraph.source(arcs[i])]; |
2704 | 3619 |
} |
2705 | 3620 |
} |
2706 | 3621 |
|
2707 | 3622 |
virtual void erase(const Arc& arc) { |
2708 | 3623 |
--_deg[_digraph.source(arc)]; |
2709 | 3624 |
} |
2710 | 3625 |
|
2711 | 3626 |
virtual void erase(const std::vector<Arc>& arcs) { |
2712 | 3627 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2713 | 3628 |
--_deg[_digraph.source(arcs[i])]; |
2714 | 3629 |
} |
2715 | 3630 |
} |
2716 | 3631 |
|
2717 | 3632 |
virtual void build() { |
2718 | 3633 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2719 | 3634 |
_deg[it] = countOutArcs(_digraph, it); |
2720 | 3635 |
} |
2721 | 3636 |
} |
2722 | 3637 |
|
2723 | 3638 |
virtual void clear() { |
2724 | 3639 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2725 | 3640 |
_deg[it] = 0; |
2726 | 3641 |
} |
2727 | 3642 |
} |
2728 | 3643 |
private: |
2729 | 3644 |
|
2730 | 3645 |
const Digraph& _digraph; |
2731 | 3646 |
AutoNodeMap _deg; |
2732 | 3647 |
}; |
2733 | 3648 |
|
2734 | 3649 |
/// \brief Potential difference map |
2735 | 3650 |
/// |
2736 | 3651 |
/// PotentialDifferenceMap returns the difference between the potentials of |
2737 | 3652 |
/// the source and target nodes of each arc in a digraph, i.e. it returns |
2738 | 3653 |
/// \code |
2739 | 3654 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
2740 | 3655 |
/// \endcode |
2741 | 3656 |
/// \tparam GR The digraph type. |
2742 | 3657 |
/// \tparam POT A node map storing the potentials. |
2743 | 3658 |
template <typename GR, typename POT> |
2744 | 3659 |
class PotentialDifferenceMap { |
2745 | 3660 |
public: |
2746 | 3661 |
/// Key type |
2747 | 3662 |
typedef typename GR::Arc Key; |
2748 | 3663 |
/// Value type |
2749 | 3664 |
typedef typename POT::Value Value; |
2750 | 3665 |
|
2751 | 3666 |
/// \brief Constructor |
2752 | 3667 |
/// |
2753 | 3668 |
/// Contructor of the map. |
2754 | 3669 |
explicit PotentialDifferenceMap(const GR& gr, |
2755 | 3670 |
const POT& potential) |
2756 | 3671 |
: _digraph(gr), _potential(potential) {} |
2757 | 3672 |
|
2758 | 3673 |
/// \brief Returns the potential difference for the given arc. |
2759 | 3674 |
/// |
2760 | 3675 |
/// Returns the potential difference for the given arc, i.e. |
2761 | 3676 |
/// \code |
2762 | 3677 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
2763 | 3678 |
/// \endcode |
2764 | 3679 |
Value operator[](const Key& arc) const { |
2765 | 3680 |
return _potential[_digraph.target(arc)] - |
2766 | 3681 |
_potential[_digraph.source(arc)]; |
2767 | 3682 |
} |
2768 | 3683 |
|
2769 | 3684 |
private: |
2770 | 3685 |
const GR& _digraph; |
2771 | 3686 |
const POT& _potential; |
2772 | 3687 |
}; |
2773 | 3688 |
|
2774 | 3689 |
/// \brief Returns a PotentialDifferenceMap. |
2775 | 3690 |
/// |
2776 | 3691 |
/// This function just returns a PotentialDifferenceMap. |
2777 | 3692 |
/// \relates PotentialDifferenceMap |
2778 | 3693 |
template <typename GR, typename POT> |
2779 | 3694 |
PotentialDifferenceMap<GR, POT> |
2780 | 3695 |
potentialDifferenceMap(const GR& gr, const POT& potential) { |
2781 | 3696 |
return PotentialDifferenceMap<GR, POT>(gr, potential); |
2782 | 3697 |
} |
2783 | 3698 |
|
2784 | 3699 |
/// @} |
2785 | 3700 |
} |
2786 | 3701 |
|
2787 | 3702 |
#endif // LEMON_MAPS_H |
... | ... |
@@ -235,514 +235,514 @@ |
235 | 235 |
_cost_arcs = new CostArcMap(*_digraph); |
236 | 236 |
} |
237 | 237 |
if (!_heap_cross_ref) { |
238 | 238 |
_heap_cross_ref = new HeapCrossRef(*_digraph, -1); |
239 | 239 |
} |
240 | 240 |
if (!_heap) { |
241 | 241 |
_heap = new Heap(*_heap_cross_ref); |
242 | 242 |
} |
243 | 243 |
} |
244 | 244 |
|
245 | 245 |
void destroyStructures() { |
246 | 246 |
if (local_arborescence) { |
247 | 247 |
delete _arborescence; |
248 | 248 |
} |
249 | 249 |
if (local_pred) { |
250 | 250 |
delete _pred; |
251 | 251 |
} |
252 | 252 |
if (_arc_order) { |
253 | 253 |
delete _arc_order; |
254 | 254 |
} |
255 | 255 |
if (_node_order) { |
256 | 256 |
delete _node_order; |
257 | 257 |
} |
258 | 258 |
if (_cost_arcs) { |
259 | 259 |
delete _cost_arcs; |
260 | 260 |
} |
261 | 261 |
if (_heap) { |
262 | 262 |
delete _heap; |
263 | 263 |
} |
264 | 264 |
if (_heap_cross_ref) { |
265 | 265 |
delete _heap_cross_ref; |
266 | 266 |
} |
267 | 267 |
} |
268 | 268 |
|
269 | 269 |
Arc prepare(Node node) { |
270 | 270 |
std::vector<Node> nodes; |
271 | 271 |
(*_node_order)[node] = _dual_node_list.size(); |
272 | 272 |
StackLevel level; |
273 | 273 |
level.node_level = _dual_node_list.size(); |
274 | 274 |
_dual_node_list.push_back(node); |
275 | 275 |
for (InArcIt it(*_digraph, node); it != INVALID; ++it) { |
276 | 276 |
Arc arc = it; |
277 | 277 |
Node source = _digraph->source(arc); |
278 | 278 |
Value value = (*_cost)[it]; |
279 | 279 |
if (source == node || (*_node_order)[source] == -3) continue; |
280 | 280 |
if ((*_cost_arcs)[source].arc == INVALID) { |
281 | 281 |
(*_cost_arcs)[source].arc = arc; |
282 | 282 |
(*_cost_arcs)[source].value = value; |
283 | 283 |
nodes.push_back(source); |
284 | 284 |
} else { |
285 | 285 |
if ((*_cost_arcs)[source].value > value) { |
286 | 286 |
(*_cost_arcs)[source].arc = arc; |
287 | 287 |
(*_cost_arcs)[source].value = value; |
288 | 288 |
} |
289 | 289 |
} |
290 | 290 |
} |
291 | 291 |
CostArc minimum = (*_cost_arcs)[nodes[0]]; |
292 | 292 |
for (int i = 1; i < int(nodes.size()); ++i) { |
293 | 293 |
if ((*_cost_arcs)[nodes[i]].value < minimum.value) { |
294 | 294 |
minimum = (*_cost_arcs)[nodes[i]]; |
295 | 295 |
} |
296 | 296 |
} |
297 | 297 |
(*_arc_order)[minimum.arc] = _dual_variables.size(); |
298 | 298 |
DualVariable var(_dual_node_list.size() - 1, |
299 | 299 |
_dual_node_list.size(), minimum.value); |
300 | 300 |
_dual_variables.push_back(var); |
301 | 301 |
for (int i = 0; i < int(nodes.size()); ++i) { |
302 | 302 |
(*_cost_arcs)[nodes[i]].value -= minimum.value; |
303 | 303 |
level.arcs.push_back((*_cost_arcs)[nodes[i]]); |
304 | 304 |
(*_cost_arcs)[nodes[i]].arc = INVALID; |
305 | 305 |
} |
306 | 306 |
level_stack.push_back(level); |
307 | 307 |
return minimum.arc; |
308 | 308 |
} |
309 | 309 |
|
310 | 310 |
Arc contract(Node node) { |
311 | 311 |
int node_bottom = bottom(node); |
312 | 312 |
std::vector<Node> nodes; |
313 | 313 |
while (!level_stack.empty() && |
314 | 314 |
level_stack.back().node_level >= node_bottom) { |
315 | 315 |
for (int i = 0; i < int(level_stack.back().arcs.size()); ++i) { |
316 | 316 |
Arc arc = level_stack.back().arcs[i].arc; |
317 | 317 |
Node source = _digraph->source(arc); |
318 | 318 |
Value value = level_stack.back().arcs[i].value; |
319 | 319 |
if ((*_node_order)[source] >= node_bottom) continue; |
320 | 320 |
if ((*_cost_arcs)[source].arc == INVALID) { |
321 | 321 |
(*_cost_arcs)[source].arc = arc; |
322 | 322 |
(*_cost_arcs)[source].value = value; |
323 | 323 |
nodes.push_back(source); |
324 | 324 |
} else { |
325 | 325 |
if ((*_cost_arcs)[source].value > value) { |
326 | 326 |
(*_cost_arcs)[source].arc = arc; |
327 | 327 |
(*_cost_arcs)[source].value = value; |
328 | 328 |
} |
329 | 329 |
} |
330 | 330 |
} |
331 | 331 |
level_stack.pop_back(); |
332 | 332 |
} |
333 | 333 |
CostArc minimum = (*_cost_arcs)[nodes[0]]; |
334 | 334 |
for (int i = 1; i < int(nodes.size()); ++i) { |
335 | 335 |
if ((*_cost_arcs)[nodes[i]].value < minimum.value) { |
336 | 336 |
minimum = (*_cost_arcs)[nodes[i]]; |
337 | 337 |
} |
338 | 338 |
} |
339 | 339 |
(*_arc_order)[minimum.arc] = _dual_variables.size(); |
340 | 340 |
DualVariable var(node_bottom, _dual_node_list.size(), minimum.value); |
341 | 341 |
_dual_variables.push_back(var); |
342 | 342 |
StackLevel level; |
343 | 343 |
level.node_level = node_bottom; |
344 | 344 |
for (int i = 0; i < int(nodes.size()); ++i) { |
345 | 345 |
(*_cost_arcs)[nodes[i]].value -= minimum.value; |
346 | 346 |
level.arcs.push_back((*_cost_arcs)[nodes[i]]); |
347 | 347 |
(*_cost_arcs)[nodes[i]].arc = INVALID; |
348 | 348 |
} |
349 | 349 |
level_stack.push_back(level); |
350 | 350 |
return minimum.arc; |
351 | 351 |
} |
352 | 352 |
|
353 | 353 |
int bottom(Node node) { |
354 | 354 |
int k = level_stack.size() - 1; |
355 | 355 |
while (level_stack[k].node_level > (*_node_order)[node]) { |
356 | 356 |
--k; |
357 | 357 |
} |
358 | 358 |
return level_stack[k].node_level; |
359 | 359 |
} |
360 | 360 |
|
361 | 361 |
void finalize(Arc arc) { |
362 | 362 |
Node node = _digraph->target(arc); |
363 | 363 |
_heap->push(node, (*_arc_order)[arc]); |
364 | 364 |
_pred->set(node, arc); |
365 | 365 |
while (!_heap->empty()) { |
366 | 366 |
Node source = _heap->top(); |
367 | 367 |
_heap->pop(); |
368 | 368 |
(*_node_order)[source] = -1; |
369 | 369 |
for (OutArcIt it(*_digraph, source); it != INVALID; ++it) { |
370 | 370 |
if ((*_arc_order)[it] < 0) continue; |
371 | 371 |
Node target = _digraph->target(it); |
372 | 372 |
switch(_heap->state(target)) { |
373 | 373 |
case Heap::PRE_HEAP: |
374 | 374 |
_heap->push(target, (*_arc_order)[it]); |
375 | 375 |
_pred->set(target, it); |
376 | 376 |
break; |
377 | 377 |
case Heap::IN_HEAP: |
378 | 378 |
if ((*_arc_order)[it] < (*_heap)[target]) { |
379 | 379 |
_heap->decrease(target, (*_arc_order)[it]); |
380 | 380 |
_pred->set(target, it); |
381 | 381 |
} |
382 | 382 |
break; |
383 | 383 |
case Heap::POST_HEAP: |
384 | 384 |
break; |
385 | 385 |
} |
386 | 386 |
} |
387 | 387 |
_arborescence->set((*_pred)[source], true); |
388 | 388 |
} |
389 | 389 |
} |
390 | 390 |
|
391 | 391 |
|
392 | 392 |
public: |
393 | 393 |
|
394 | 394 |
/// \name Named Template Parameters |
395 | 395 |
|
396 | 396 |
/// @{ |
397 | 397 |
|
398 | 398 |
template <class T> |
399 | 399 |
struct SetArborescenceMapTraits : public Traits { |
400 | 400 |
typedef T ArborescenceMap; |
401 | 401 |
static ArborescenceMap *createArborescenceMap(const Digraph &) |
402 | 402 |
{ |
403 | 403 |
LEMON_ASSERT(false, "ArborescenceMap is not initialized"); |
404 | 404 |
return 0; // ignore warnings |
405 | 405 |
} |
406 | 406 |
}; |
407 | 407 |
|
408 | 408 |
/// \brief \ref named-templ-param "Named parameter" for |
409 | 409 |
/// setting \c ArborescenceMap type |
410 | 410 |
/// |
411 | 411 |
/// \ref named-templ-param "Named parameter" for setting |
412 | 412 |
/// \c ArborescenceMap type. |
413 | 413 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept, |
414 | 414 |
/// and its value type must be \c bool (or convertible). |
415 | 415 |
/// Initially it will be set to \c false on each arc, |
416 | 416 |
/// then it will be set on each arborescence arc once. |
417 | 417 |
template <class T> |
418 | 418 |
struct SetArborescenceMap |
419 | 419 |
: public MinCostArborescence<Digraph, CostMap, |
420 | 420 |
SetArborescenceMapTraits<T> > { |
421 | 421 |
}; |
422 | 422 |
|
423 | 423 |
template <class T> |
424 | 424 |
struct SetPredMapTraits : public Traits { |
425 | 425 |
typedef T PredMap; |
426 | 426 |
static PredMap *createPredMap(const Digraph &) |
427 | 427 |
{ |
428 | 428 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
429 | 429 |
return 0; // ignore warnings |
430 | 430 |
} |
431 | 431 |
}; |
432 | 432 |
|
433 | 433 |
/// \brief \ref named-templ-param "Named parameter" for |
434 | 434 |
/// setting \c PredMap type |
435 | 435 |
/// |
436 | 436 |
/// \ref named-templ-param "Named parameter" for setting |
437 | 437 |
/// \c PredMap type. |
438 | 438 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept, |
439 | 439 |
/// and its value type must be the \c Arc type of the digraph. |
440 | 440 |
template <class T> |
441 | 441 |
struct SetPredMap |
442 | 442 |
: public MinCostArborescence<Digraph, CostMap, SetPredMapTraits<T> > { |
443 | 443 |
}; |
444 | 444 |
|
445 | 445 |
/// @} |
446 | 446 |
|
447 | 447 |
/// \brief Constructor. |
448 | 448 |
/// |
449 | 449 |
/// \param digraph The digraph the algorithm will run on. |
450 | 450 |
/// \param cost The cost map used by the algorithm. |
451 | 451 |
MinCostArborescence(const Digraph& digraph, const CostMap& cost) |
452 | 452 |
: _digraph(&digraph), _cost(&cost), _pred(0), local_pred(false), |
453 | 453 |
_arborescence(0), local_arborescence(false), |
454 | 454 |
_arc_order(0), _node_order(0), _cost_arcs(0), |
455 | 455 |
_heap_cross_ref(0), _heap(0) {} |
456 | 456 |
|
457 | 457 |
/// \brief Destructor. |
458 | 458 |
~MinCostArborescence() { |
459 | 459 |
destroyStructures(); |
460 | 460 |
} |
461 | 461 |
|
462 | 462 |
/// \brief Sets the arborescence map. |
463 | 463 |
/// |
464 | 464 |
/// Sets the arborescence map. |
465 | 465 |
/// \return <tt>(*this)</tt> |
466 | 466 |
MinCostArborescence& arborescenceMap(ArborescenceMap& m) { |
467 | 467 |
if (local_arborescence) { |
468 | 468 |
delete _arborescence; |
469 | 469 |
} |
470 | 470 |
local_arborescence = false; |
471 | 471 |
_arborescence = &m; |
472 | 472 |
return *this; |
473 | 473 |
} |
474 | 474 |
|
475 | 475 |
/// \brief Sets the predecessor map. |
476 | 476 |
/// |
477 | 477 |
/// Sets the predecessor map. |
478 | 478 |
/// \return <tt>(*this)</tt> |
479 | 479 |
MinCostArborescence& predMap(PredMap& m) { |
480 | 480 |
if (local_pred) { |
481 | 481 |
delete _pred; |
482 | 482 |
} |
483 | 483 |
local_pred = false; |
484 | 484 |
_pred = &m; |
485 | 485 |
return *this; |
486 | 486 |
} |
487 | 487 |
|
488 | 488 |
/// \name Execution Control |
489 | 489 |
/// The simplest way to execute the algorithm is to use |
490 | 490 |
/// one of the member functions called \c run(...). \n |
491 |
/// If you need more control on the execution, |
|
492 |
/// first you must call \ref init(), then you can add several |
|
491 |
/// If you need better control on the execution, |
|
492 |
/// you have to call \ref init() first, then you can add several |
|
493 | 493 |
/// source nodes with \ref addSource(). |
494 | 494 |
/// Finally \ref start() will perform the arborescence |
495 | 495 |
/// computation. |
496 | 496 |
|
497 | 497 |
///@{ |
498 | 498 |
|
499 | 499 |
/// \brief Initializes the internal data structures. |
500 | 500 |
/// |
501 | 501 |
/// Initializes the internal data structures. |
502 | 502 |
/// |
503 | 503 |
void init() { |
504 | 504 |
createStructures(); |
505 | 505 |
_heap->clear(); |
506 | 506 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
507 | 507 |
(*_cost_arcs)[it].arc = INVALID; |
508 | 508 |
(*_node_order)[it] = -3; |
509 | 509 |
(*_heap_cross_ref)[it] = Heap::PRE_HEAP; |
510 | 510 |
_pred->set(it, INVALID); |
511 | 511 |
} |
512 | 512 |
for (ArcIt it(*_digraph); it != INVALID; ++it) { |
513 | 513 |
_arborescence->set(it, false); |
514 | 514 |
(*_arc_order)[it] = -1; |
515 | 515 |
} |
516 | 516 |
_dual_node_list.clear(); |
517 | 517 |
_dual_variables.clear(); |
518 | 518 |
} |
519 | 519 |
|
520 | 520 |
/// \brief Adds a new source node. |
521 | 521 |
/// |
522 | 522 |
/// Adds a new source node to the algorithm. |
523 | 523 |
void addSource(Node source) { |
524 | 524 |
std::vector<Node> nodes; |
525 | 525 |
nodes.push_back(source); |
526 | 526 |
while (!nodes.empty()) { |
527 | 527 |
Node node = nodes.back(); |
528 | 528 |
nodes.pop_back(); |
529 | 529 |
for (OutArcIt it(*_digraph, node); it != INVALID; ++it) { |
530 | 530 |
Node target = _digraph->target(it); |
531 | 531 |
if ((*_node_order)[target] == -3) { |
532 | 532 |
(*_node_order)[target] = -2; |
533 | 533 |
nodes.push_back(target); |
534 | 534 |
queue.push_back(target); |
535 | 535 |
} |
536 | 536 |
} |
537 | 537 |
} |
538 | 538 |
(*_node_order)[source] = -1; |
539 | 539 |
} |
540 | 540 |
|
541 | 541 |
/// \brief Processes the next node in the priority queue. |
542 | 542 |
/// |
543 | 543 |
/// Processes the next node in the priority queue. |
544 | 544 |
/// |
545 | 545 |
/// \return The processed node. |
546 | 546 |
/// |
547 | 547 |
/// \warning The queue must not be empty. |
548 | 548 |
Node processNextNode() { |
549 | 549 |
Node node = queue.back(); |
550 | 550 |
queue.pop_back(); |
551 | 551 |
if ((*_node_order)[node] == -2) { |
552 | 552 |
Arc arc = prepare(node); |
553 | 553 |
Node source = _digraph->source(arc); |
554 | 554 |
while ((*_node_order)[source] != -1) { |
555 | 555 |
if ((*_node_order)[source] >= 0) { |
556 | 556 |
arc = contract(source); |
557 | 557 |
} else { |
558 | 558 |
arc = prepare(source); |
559 | 559 |
} |
560 | 560 |
source = _digraph->source(arc); |
561 | 561 |
} |
562 | 562 |
finalize(arc); |
563 | 563 |
level_stack.clear(); |
564 | 564 |
} |
565 | 565 |
return node; |
566 | 566 |
} |
567 | 567 |
|
568 | 568 |
/// \brief Returns the number of the nodes to be processed. |
569 | 569 |
/// |
570 | 570 |
/// Returns the number of the nodes to be processed in the priority |
571 | 571 |
/// queue. |
572 | 572 |
int queueSize() const { |
573 | 573 |
return queue.size(); |
574 | 574 |
} |
575 | 575 |
|
576 | 576 |
/// \brief Returns \c false if there are nodes to be processed. |
577 | 577 |
/// |
578 | 578 |
/// Returns \c false if there are nodes to be processed. |
579 | 579 |
bool emptyQueue() const { |
580 | 580 |
return queue.empty(); |
581 | 581 |
} |
582 | 582 |
|
583 | 583 |
/// \brief Executes the algorithm. |
584 | 584 |
/// |
585 | 585 |
/// Executes the algorithm. |
586 | 586 |
/// |
587 | 587 |
/// \pre init() must be called and at least one node should be added |
588 | 588 |
/// with addSource() before using this function. |
589 | 589 |
/// |
590 | 590 |
///\note mca.start() is just a shortcut of the following code. |
591 | 591 |
///\code |
592 | 592 |
///while (!mca.emptyQueue()) { |
593 | 593 |
/// mca.processNextNode(); |
594 | 594 |
///} |
595 | 595 |
///\endcode |
596 | 596 |
void start() { |
597 | 597 |
while (!emptyQueue()) { |
598 | 598 |
processNextNode(); |
599 | 599 |
} |
600 | 600 |
} |
601 | 601 |
|
602 | 602 |
/// \brief Runs %MinCostArborescence algorithm from node \c s. |
603 | 603 |
/// |
604 | 604 |
/// This method runs the %MinCostArborescence algorithm from |
605 | 605 |
/// a root node \c s. |
606 | 606 |
/// |
607 | 607 |
/// \note mca.run(s) is just a shortcut of the following code. |
608 | 608 |
/// \code |
609 | 609 |
/// mca.init(); |
610 | 610 |
/// mca.addSource(s); |
611 | 611 |
/// mca.start(); |
612 | 612 |
/// \endcode |
613 | 613 |
void run(Node s) { |
614 | 614 |
init(); |
615 | 615 |
addSource(s); |
616 | 616 |
start(); |
617 | 617 |
} |
618 | 618 |
|
619 | 619 |
///@} |
620 | 620 |
|
621 | 621 |
/// \name Query Functions |
622 | 622 |
/// The result of the %MinCostArborescence algorithm can be obtained |
623 | 623 |
/// using these functions.\n |
624 | 624 |
/// Either run() or start() must be called before using them. |
625 | 625 |
|
626 | 626 |
/// @{ |
627 | 627 |
|
628 | 628 |
/// \brief Returns the cost of the arborescence. |
629 | 629 |
/// |
630 | 630 |
/// Returns the cost of the arborescence. |
631 | 631 |
Value arborescenceCost() const { |
632 | 632 |
Value sum = 0; |
633 | 633 |
for (ArcIt it(*_digraph); it != INVALID; ++it) { |
634 | 634 |
if (arborescence(it)) { |
635 | 635 |
sum += (*_cost)[it]; |
636 | 636 |
} |
637 | 637 |
} |
638 | 638 |
return sum; |
639 | 639 |
} |
640 | 640 |
|
641 | 641 |
/// \brief Returns \c true if the arc is in the arborescence. |
642 | 642 |
/// |
643 | 643 |
/// Returns \c true if the given arc is in the arborescence. |
644 | 644 |
/// \param arc An arc of the digraph. |
645 | 645 |
/// \pre \ref run() must be called before using this function. |
646 | 646 |
bool arborescence(Arc arc) const { |
647 | 647 |
return (*_pred)[_digraph->target(arc)] == arc; |
648 | 648 |
} |
649 | 649 |
|
650 | 650 |
/// \brief Returns a const reference to the arborescence map. |
651 | 651 |
/// |
652 | 652 |
/// Returns a const reference to the arborescence map. |
653 | 653 |
/// \pre \ref run() must be called before using this function. |
654 | 654 |
const ArborescenceMap& arborescenceMap() const { |
655 | 655 |
return *_arborescence; |
656 | 656 |
} |
657 | 657 |
|
658 | 658 |
/// \brief Returns the predecessor arc of the given node. |
659 | 659 |
/// |
660 | 660 |
/// Returns the predecessor arc of the given node. |
661 | 661 |
/// \pre \ref run() must be called before using this function. |
662 | 662 |
Arc pred(Node node) const { |
663 | 663 |
return (*_pred)[node]; |
664 | 664 |
} |
665 | 665 |
|
666 | 666 |
/// \brief Returns a const reference to the pred map. |
667 | 667 |
/// |
668 | 668 |
/// Returns a const reference to the pred map. |
669 | 669 |
/// \pre \ref run() must be called before using this function. |
670 | 670 |
const PredMap& predMap() const { |
671 | 671 |
return *_pred; |
672 | 672 |
} |
673 | 673 |
|
674 | 674 |
/// \brief Indicates that a node is reachable from the sources. |
675 | 675 |
/// |
676 | 676 |
/// Indicates that a node is reachable from the sources. |
677 | 677 |
bool reached(Node node) const { |
678 | 678 |
return (*_node_order)[node] != -3; |
679 | 679 |
} |
680 | 680 |
|
681 | 681 |
/// \brief Indicates that a node is processed. |
682 | 682 |
/// |
683 | 683 |
/// Indicates that a node is processed. The arborescence path exists |
684 | 684 |
/// from the source to the given node. |
685 | 685 |
bool processed(Node node) const { |
686 | 686 |
return (*_node_order)[node] == -1; |
687 | 687 |
} |
688 | 688 |
|
689 | 689 |
/// \brief Returns the number of the dual variables in basis. |
690 | 690 |
/// |
691 | 691 |
/// Returns the number of the dual variables in basis. |
692 | 692 |
int dualNum() const { |
693 | 693 |
return _dual_variables.size(); |
694 | 694 |
} |
695 | 695 |
|
696 | 696 |
/// \brief Returns the value of the dual solution. |
697 | 697 |
/// |
698 | 698 |
/// Returns the value of the dual solution. It should be |
699 | 699 |
/// equal to the arborescence value. |
700 | 700 |
Value dualValue() const { |
701 | 701 |
Value sum = 0; |
702 | 702 |
for (int i = 0; i < int(_dual_variables.size()); ++i) { |
703 | 703 |
sum += _dual_variables[i].value; |
704 | 704 |
} |
705 | 705 |
return sum; |
706 | 706 |
} |
707 | 707 |
|
708 | 708 |
/// \brief Returns the number of the nodes in the dual variable. |
709 | 709 |
/// |
710 | 710 |
/// Returns the number of the nodes in the dual variable. |
711 | 711 |
int dualSize(int k) const { |
712 | 712 |
return _dual_variables[k].end - _dual_variables[k].begin; |
713 | 713 |
} |
714 | 714 |
|
715 | 715 |
/// \brief Returns the value of the dual variable. |
716 | 716 |
/// |
717 | 717 |
/// Returns the the value of the dual variable. |
718 | 718 |
Value dualValue(int k) const { |
719 | 719 |
return _dual_variables[k].value; |
720 | 720 |
} |
721 | 721 |
|
722 | 722 |
/// \brief LEMON iterator for getting a dual variable. |
723 | 723 |
/// |
724 | 724 |
/// This class provides a common style LEMON iterator for getting a |
725 | 725 |
/// dual variable of \ref MinCostArborescence algorithm. |
726 | 726 |
/// It iterates over a subset of the nodes. |
727 | 727 |
class DualIt { |
728 | 728 |
public: |
729 | 729 |
|
730 | 730 |
/// \brief Constructor. |
731 | 731 |
/// |
732 | 732 |
/// Constructor for getting the nodeset of the dual variable |
733 | 733 |
/// of \ref MinCostArborescence algorithm. |
734 | 734 |
DualIt(const MinCostArborescence& algorithm, int variable) |
735 | 735 |
: _algorithm(&algorithm) |
736 | 736 |
{ |
737 | 737 |
_index = _algorithm->_dual_variables[variable].begin; |
738 | 738 |
_last = _algorithm->_dual_variables[variable].end; |
739 | 739 |
} |
740 | 740 |
|
741 | 741 |
/// \brief Conversion to \c Node. |
742 | 742 |
/// |
743 | 743 |
/// Conversion to \c Node. |
744 | 744 |
operator Node() const { |
745 | 745 |
return _algorithm->_dual_node_list[_index]; |
746 | 746 |
} |
747 | 747 |
|
748 | 748 |
/// \brief Increment operator. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_PREFLOW_H |
20 | 20 |
#define LEMON_PREFLOW_H |
21 | 21 |
|
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
#include <lemon/elevator.h> |
24 | 24 |
|
25 | 25 |
/// \file |
26 | 26 |
/// \ingroup max_flow |
27 | 27 |
/// \brief Implementation of the preflow algorithm. |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
/// \brief Default traits class of Preflow class. |
32 | 32 |
/// |
33 | 33 |
/// Default traits class of Preflow class. |
34 | 34 |
/// \tparam GR Digraph type. |
35 | 35 |
/// \tparam CAP Capacity map type. |
36 | 36 |
template <typename GR, typename CAP> |
37 | 37 |
struct PreflowDefaultTraits { |
38 | 38 |
|
39 | 39 |
/// \brief The type of the digraph the algorithm runs on. |
40 | 40 |
typedef GR Digraph; |
41 | 41 |
|
42 | 42 |
/// \brief The type of the map that stores the arc capacities. |
43 | 43 |
/// |
44 | 44 |
/// The type of the map that stores the arc capacities. |
45 | 45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
46 | 46 |
typedef CAP CapacityMap; |
47 | 47 |
|
48 | 48 |
/// \brief The type of the flow values. |
49 | 49 |
typedef typename CapacityMap::Value Value; |
50 | 50 |
|
51 | 51 |
/// \brief The type of the map that stores the flow values. |
52 | 52 |
/// |
53 | 53 |
/// The type of the map that stores the flow values. |
54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
55 |
#ifdef DOXYGEN |
|
56 |
typedef GR::ArcMap<Value> FlowMap; |
|
57 |
#else |
|
55 | 58 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
59 |
#endif |
|
56 | 60 |
|
57 | 61 |
/// \brief Instantiates a FlowMap. |
58 | 62 |
/// |
59 | 63 |
/// This function instantiates a \ref FlowMap. |
60 | 64 |
/// \param digraph The digraph for which we would like to define |
61 | 65 |
/// the flow map. |
62 | 66 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
63 | 67 |
return new FlowMap(digraph); |
64 | 68 |
} |
65 | 69 |
|
66 | 70 |
/// \brief The elevator type used by Preflow algorithm. |
67 | 71 |
/// |
68 | 72 |
/// The elevator type used by Preflow algorithm. |
69 | 73 |
/// |
70 |
/// \sa Elevator |
|
71 |
/// \sa LinkedElevator |
|
72 |
|
|
74 |
/// \sa Elevator, LinkedElevator |
|
75 |
#ifdef DOXYGEN |
|
76 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
77 |
#else |
|
78 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
|
79 |
#endif |
|
73 | 80 |
|
74 | 81 |
/// \brief Instantiates an Elevator. |
75 | 82 |
/// |
76 | 83 |
/// This function instantiates an \ref Elevator. |
77 | 84 |
/// \param digraph The digraph for which we would like to define |
78 | 85 |
/// the elevator. |
79 | 86 |
/// \param max_level The maximum level of the elevator. |
80 | 87 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
81 | 88 |
return new Elevator(digraph, max_level); |
82 | 89 |
} |
83 | 90 |
|
84 | 91 |
/// \brief The tolerance used by the algorithm |
85 | 92 |
/// |
86 | 93 |
/// The tolerance used by the algorithm to handle inexact computation. |
87 | 94 |
typedef lemon::Tolerance<Value> Tolerance; |
88 | 95 |
|
89 | 96 |
}; |
90 | 97 |
|
91 | 98 |
|
92 | 99 |
/// \ingroup max_flow |
93 | 100 |
/// |
94 | 101 |
/// \brief %Preflow algorithm class. |
95 | 102 |
/// |
96 | 103 |
/// This class provides an implementation of Goldberg-Tarjan's \e preflow |
97 | 104 |
/// \e push-relabel algorithm producing a \ref max_flow |
98 | 105 |
/// "flow of maximum value" in a digraph. |
99 | 106 |
/// The preflow algorithms are the fastest known maximum |
100 |
/// flow algorithms. The current implementation |
|
107 |
/// flow algorithms. The current implementation uses a mixture of the |
|
101 | 108 |
/// \e "highest label" and the \e "bound decrease" heuristics. |
102 | 109 |
/// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$. |
103 | 110 |
/// |
104 | 111 |
/// The algorithm consists of two phases. After the first phase |
105 | 112 |
/// the maximum flow value and the minimum cut is obtained. The |
106 | 113 |
/// second phase constructs a feasible maximum flow on each arc. |
107 | 114 |
/// |
108 | 115 |
/// \tparam GR The type of the digraph the algorithm runs on. |
109 | 116 |
/// \tparam CAP The type of the capacity map. The default map |
110 | 117 |
/// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
111 | 118 |
#ifdef DOXYGEN |
112 | 119 |
template <typename GR, typename CAP, typename TR> |
113 | 120 |
#else |
114 | 121 |
template <typename GR, |
115 | 122 |
typename CAP = typename GR::template ArcMap<int>, |
116 | 123 |
typename TR = PreflowDefaultTraits<GR, CAP> > |
117 | 124 |
#endif |
118 | 125 |
class Preflow { |
119 | 126 |
public: |
120 | 127 |
|
121 | 128 |
///The \ref PreflowDefaultTraits "traits class" of the algorithm. |
122 | 129 |
typedef TR Traits; |
123 | 130 |
///The type of the digraph the algorithm runs on. |
124 | 131 |
typedef typename Traits::Digraph Digraph; |
125 | 132 |
///The type of the capacity map. |
126 | 133 |
typedef typename Traits::CapacityMap CapacityMap; |
127 | 134 |
///The type of the flow values. |
128 | 135 |
typedef typename Traits::Value Value; |
129 | 136 |
|
130 | 137 |
///The type of the flow map. |
131 | 138 |
typedef typename Traits::FlowMap FlowMap; |
132 | 139 |
///The type of the elevator. |
133 | 140 |
typedef typename Traits::Elevator Elevator; |
134 | 141 |
///The type of the tolerance. |
135 | 142 |
typedef typename Traits::Tolerance Tolerance; |
136 | 143 |
|
137 | 144 |
private: |
138 | 145 |
|
139 | 146 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
140 | 147 |
|
141 | 148 |
const Digraph& _graph; |
142 | 149 |
const CapacityMap* _capacity; |
143 | 150 |
|
144 | 151 |
int _node_num; |
145 | 152 |
|
146 | 153 |
Node _source, _target; |
147 | 154 |
|
148 | 155 |
FlowMap* _flow; |
149 | 156 |
bool _local_flow; |
150 | 157 |
|
151 | 158 |
Elevator* _level; |
152 | 159 |
bool _local_level; |
153 | 160 |
|
154 | 161 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
155 | 162 |
ExcessMap* _excess; |
156 | 163 |
|
157 | 164 |
Tolerance _tolerance; |
158 | 165 |
|
159 | 166 |
bool _phase; |
160 | 167 |
|
161 | 168 |
|
162 | 169 |
void createStructures() { |
163 | 170 |
_node_num = countNodes(_graph); |
164 | 171 |
|
165 | 172 |
if (!_flow) { |
166 | 173 |
_flow = Traits::createFlowMap(_graph); |
167 | 174 |
_local_flow = true; |
168 | 175 |
} |
169 | 176 |
if (!_level) { |
170 | 177 |
_level = Traits::createElevator(_graph, _node_num); |
171 | 178 |
_local_level = true; |
172 | 179 |
} |
173 | 180 |
if (!_excess) { |
174 | 181 |
_excess = new ExcessMap(_graph); |
175 | 182 |
} |
176 | 183 |
} |
177 | 184 |
|
178 | 185 |
void destroyStructures() { |
179 | 186 |
if (_local_flow) { |
180 | 187 |
delete _flow; |
181 | 188 |
} |
182 | 189 |
if (_local_level) { |
183 | 190 |
delete _level; |
184 | 191 |
} |
185 | 192 |
if (_excess) { |
186 | 193 |
delete _excess; |
187 | 194 |
} |
188 | 195 |
} |
189 | 196 |
|
190 | 197 |
public: |
191 | 198 |
|
192 | 199 |
typedef Preflow Create; |
193 | 200 |
|
194 | 201 |
///\name Named Template Parameters |
195 | 202 |
|
196 | 203 |
///@{ |
197 | 204 |
|
198 | 205 |
template <typename T> |
199 | 206 |
struct SetFlowMapTraits : public Traits { |
200 | 207 |
typedef T FlowMap; |
201 | 208 |
static FlowMap *createFlowMap(const Digraph&) { |
202 | 209 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
203 | 210 |
return 0; // ignore warnings |
204 | 211 |
} |
205 | 212 |
}; |
206 | 213 |
|
207 | 214 |
/// \brief \ref named-templ-param "Named parameter" for setting |
208 | 215 |
/// FlowMap type |
209 | 216 |
/// |
210 | 217 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
211 | 218 |
/// type. |
212 | 219 |
template <typename T> |
213 | 220 |
struct SetFlowMap |
214 | 221 |
: public Preflow<Digraph, CapacityMap, SetFlowMapTraits<T> > { |
215 | 222 |
typedef Preflow<Digraph, CapacityMap, |
216 | 223 |
SetFlowMapTraits<T> > Create; |
217 | 224 |
}; |
218 | 225 |
|
219 | 226 |
template <typename T> |
220 | 227 |
struct SetElevatorTraits : public Traits { |
221 | 228 |
typedef T Elevator; |
222 | 229 |
static Elevator *createElevator(const Digraph&, int) { |
223 | 230 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
224 | 231 |
return 0; // ignore warnings |
225 | 232 |
} |
226 | 233 |
}; |
227 | 234 |
|
228 | 235 |
/// \brief \ref named-templ-param "Named parameter" for setting |
229 | 236 |
/// Elevator type |
230 | 237 |
/// |
231 | 238 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
232 | 239 |
/// type. If this named parameter is used, then an external |
233 | 240 |
/// elevator object must be passed to the algorithm using the |
234 | 241 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
235 | 242 |
/// \ref run() or \ref init(). |
236 | 243 |
/// \sa SetStandardElevator |
237 | 244 |
template <typename T> |
238 | 245 |
struct SetElevator |
239 | 246 |
: public Preflow<Digraph, CapacityMap, SetElevatorTraits<T> > { |
240 | 247 |
typedef Preflow<Digraph, CapacityMap, |
241 | 248 |
SetElevatorTraits<T> > Create; |
242 | 249 |
}; |
243 | 250 |
|
244 | 251 |
template <typename T> |
245 | 252 |
struct SetStandardElevatorTraits : public Traits { |
246 | 253 |
typedef T Elevator; |
247 | 254 |
static Elevator *createElevator(const Digraph& digraph, int max_level) { |
248 | 255 |
return new Elevator(digraph, max_level); |
249 | 256 |
} |
250 | 257 |
}; |
251 | 258 |
|
252 | 259 |
/// \brief \ref named-templ-param "Named parameter" for setting |
253 | 260 |
/// Elevator type with automatic allocation |
254 | 261 |
/// |
255 | 262 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
256 | 263 |
/// type with automatic allocation. |
257 | 264 |
/// The Elevator should have standard constructor interface to be |
258 | 265 |
/// able to automatically created by the algorithm (i.e. the |
259 | 266 |
/// digraph and the maximum level should be passed to it). |
260 | 267 |
/// However an external elevator object could also be passed to the |
261 | 268 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
262 | 269 |
/// before calling \ref run() or \ref init(). |
263 | 270 |
/// \sa SetElevator |
264 | 271 |
template <typename T> |
265 | 272 |
struct SetStandardElevator |
266 | 273 |
: public Preflow<Digraph, CapacityMap, |
267 | 274 |
SetStandardElevatorTraits<T> > { |
268 | 275 |
typedef Preflow<Digraph, CapacityMap, |
269 | 276 |
SetStandardElevatorTraits<T> > Create; |
270 | 277 |
}; |
271 | 278 |
|
272 | 279 |
/// @} |
273 | 280 |
|
274 | 281 |
protected: |
275 | 282 |
|
276 | 283 |
Preflow() {} |
277 | 284 |
|
278 | 285 |
public: |
279 | 286 |
|
280 | 287 |
|
281 | 288 |
/// \brief The constructor of the class. |
282 | 289 |
/// |
283 | 290 |
/// The constructor of the class. |
284 | 291 |
/// \param digraph The digraph the algorithm runs on. |
285 | 292 |
/// \param capacity The capacity of the arcs. |
286 | 293 |
/// \param source The source node. |
287 | 294 |
/// \param target The target node. |
288 | 295 |
Preflow(const Digraph& digraph, const CapacityMap& capacity, |
289 | 296 |
Node source, Node target) |
290 | 297 |
: _graph(digraph), _capacity(&capacity), |
291 | 298 |
_node_num(0), _source(source), _target(target), |
292 | 299 |
_flow(0), _local_flow(false), |
293 | 300 |
_level(0), _local_level(false), |
294 | 301 |
_excess(0), _tolerance(), _phase() {} |
295 | 302 |
|
296 | 303 |
/// \brief Destructor. |
297 | 304 |
/// |
298 | 305 |
/// Destructor. |
299 | 306 |
~Preflow() { |
300 | 307 |
destroyStructures(); |
301 | 308 |
} |
302 | 309 |
|
303 | 310 |
/// \brief Sets the capacity map. |
304 | 311 |
/// |
305 | 312 |
/// Sets the capacity map. |
306 | 313 |
/// \return <tt>(*this)</tt> |
307 | 314 |
Preflow& capacityMap(const CapacityMap& map) { |
308 | 315 |
_capacity = ↦ |
309 | 316 |
return *this; |
310 | 317 |
} |
311 | 318 |
|
312 | 319 |
/// \brief Sets the flow map. |
313 | 320 |
/// |
314 | 321 |
/// Sets the flow map. |
315 | 322 |
/// If you don't use this function before calling \ref run() or |
316 | 323 |
/// \ref init(), an instance will be allocated automatically. |
317 | 324 |
/// The destructor deallocates this automatically allocated map, |
318 | 325 |
/// of course. |
319 | 326 |
/// \return <tt>(*this)</tt> |
320 | 327 |
Preflow& flowMap(FlowMap& map) { |
321 | 328 |
if (_local_flow) { |
322 | 329 |
delete _flow; |
323 | 330 |
_local_flow = false; |
324 | 331 |
} |
325 | 332 |
_flow = ↦ |
326 | 333 |
return *this; |
327 | 334 |
} |
328 | 335 |
|
329 | 336 |
/// \brief Sets the source node. |
330 | 337 |
/// |
331 | 338 |
/// Sets the source node. |
332 | 339 |
/// \return <tt>(*this)</tt> |
333 | 340 |
Preflow& source(const Node& node) { |
334 | 341 |
_source = node; |
335 | 342 |
return *this; |
336 | 343 |
} |
337 | 344 |
|
338 | 345 |
/// \brief Sets the target node. |
339 | 346 |
/// |
340 | 347 |
/// Sets the target node. |
341 | 348 |
/// \return <tt>(*this)</tt> |
342 | 349 |
Preflow& target(const Node& node) { |
343 | 350 |
_target = node; |
344 | 351 |
return *this; |
345 | 352 |
} |
346 | 353 |
|
347 | 354 |
/// \brief Sets the elevator used by algorithm. |
348 | 355 |
/// |
349 | 356 |
/// Sets the elevator used by algorithm. |
350 | 357 |
/// If you don't use this function before calling \ref run() or |
351 | 358 |
/// \ref init(), an instance will be allocated automatically. |
352 | 359 |
/// The destructor deallocates this automatically allocated elevator, |
353 | 360 |
/// of course. |
354 | 361 |
/// \return <tt>(*this)</tt> |
355 | 362 |
Preflow& elevator(Elevator& elevator) { |
356 | 363 |
if (_local_level) { |
357 | 364 |
delete _level; |
358 | 365 |
_local_level = false; |
359 | 366 |
} |
360 | 367 |
_level = &elevator; |
361 | 368 |
return *this; |
362 | 369 |
} |
363 | 370 |
|
364 | 371 |
/// \brief Returns a const reference to the elevator. |
365 | 372 |
/// |
366 | 373 |
/// Returns a const reference to the elevator. |
367 | 374 |
/// |
368 | 375 |
/// \pre Either \ref run() or \ref init() must be called before |
369 | 376 |
/// using this function. |
370 | 377 |
const Elevator& elevator() const { |
371 | 378 |
return *_level; |
372 | 379 |
} |
373 | 380 |
|
374 |
/// \brief Sets the tolerance used by algorithm. |
|
381 |
/// \brief Sets the tolerance used by the algorithm. |
|
375 | 382 |
/// |
376 |
/// Sets the tolerance used by algorithm. |
|
377 |
Preflow& tolerance(const Tolerance& tolerance) const { |
|
383 |
/// Sets the tolerance object used by the algorithm. |
|
384 |
/// \return <tt>(*this)</tt> |
|
385 |
Preflow& tolerance(const Tolerance& tolerance) { |
|
378 | 386 |
_tolerance = tolerance; |
379 | 387 |
return *this; |
380 | 388 |
} |
381 | 389 |
|
382 | 390 |
/// \brief Returns a const reference to the tolerance. |
383 | 391 |
/// |
384 |
/// Returns a const reference to the tolerance |
|
392 |
/// Returns a const reference to the tolerance object used by |
|
393 |
/// the algorithm. |
|
385 | 394 |
const Tolerance& tolerance() const { |
386 |
return |
|
395 |
return _tolerance; |
|
387 | 396 |
} |
388 | 397 |
|
389 | 398 |
/// \name Execution Control |
390 | 399 |
/// The simplest way to execute the preflow algorithm is to use |
391 | 400 |
/// \ref run() or \ref runMinCut().\n |
392 |
/// If you need more control on the initial solution or the execution, |
|
393 |
/// first you have to call one of the \ref init() functions, then |
|
401 |
/// If you need better control on the initial solution or the execution, |
|
402 |
/// you have to call one of the \ref init() functions first, then |
|
394 | 403 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
395 | 404 |
|
396 | 405 |
///@{ |
397 | 406 |
|
398 | 407 |
/// \brief Initializes the internal data structures. |
399 | 408 |
/// |
400 | 409 |
/// Initializes the internal data structures and sets the initial |
401 | 410 |
/// flow to zero on each arc. |
402 | 411 |
void init() { |
403 | 412 |
createStructures(); |
404 | 413 |
|
405 | 414 |
_phase = true; |
406 | 415 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
407 | 416 |
(*_excess)[n] = 0; |
408 | 417 |
} |
409 | 418 |
|
410 | 419 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
411 | 420 |
_flow->set(e, 0); |
412 | 421 |
} |
413 | 422 |
|
414 | 423 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
415 | 424 |
|
416 | 425 |
_level->initStart(); |
417 | 426 |
_level->initAddItem(_target); |
418 | 427 |
|
419 | 428 |
std::vector<Node> queue; |
420 | 429 |
reached[_source] = true; |
421 | 430 |
|
422 | 431 |
queue.push_back(_target); |
423 | 432 |
reached[_target] = true; |
424 | 433 |
while (!queue.empty()) { |
425 | 434 |
_level->initNewLevel(); |
426 | 435 |
std::vector<Node> nqueue; |
427 | 436 |
for (int i = 0; i < int(queue.size()); ++i) { |
428 | 437 |
Node n = queue[i]; |
429 | 438 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
430 | 439 |
Node u = _graph.source(e); |
431 | 440 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) { |
432 | 441 |
reached[u] = true; |
433 | 442 |
_level->initAddItem(u); |
434 | 443 |
nqueue.push_back(u); |
435 | 444 |
} |
436 | 445 |
} |
437 | 446 |
} |
438 | 447 |
queue.swap(nqueue); |
439 | 448 |
} |
440 | 449 |
_level->initFinish(); |
441 | 450 |
|
442 | 451 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
443 | 452 |
if (_tolerance.positive((*_capacity)[e])) { |
444 | 453 |
Node u = _graph.target(e); |
445 | 454 |
if ((*_level)[u] == _level->maxLevel()) continue; |
446 | 455 |
_flow->set(e, (*_capacity)[e]); |
447 | 456 |
(*_excess)[u] += (*_capacity)[e]; |
448 | 457 |
if (u != _target && !_level->active(u)) { |
449 | 458 |
_level->activate(u); |
450 | 459 |
} |
451 | 460 |
} |
452 | 461 |
} |
453 | 462 |
} |
454 | 463 |
|
455 | 464 |
/// \brief Initializes the internal data structures using the |
456 | 465 |
/// given flow map. |
457 | 466 |
/// |
458 | 467 |
/// Initializes the internal data structures and sets the initial |
459 | 468 |
/// flow to the given \c flowMap. The \c flowMap should contain a |
460 | 469 |
/// flow or at least a preflow, i.e. at each node excluding the |
461 | 470 |
/// source node the incoming flow should greater or equal to the |
462 | 471 |
/// outgoing flow. |
463 | 472 |
/// \return \c false if the given \c flowMap is not a preflow. |
464 | 473 |
template <typename FlowMap> |
465 | 474 |
bool init(const FlowMap& flowMap) { |
466 | 475 |
createStructures(); |
467 | 476 |
|
468 | 477 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
469 | 478 |
_flow->set(e, flowMap[e]); |
470 | 479 |
} |
471 | 480 |
|
472 | 481 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
473 | 482 |
Value excess = 0; |
474 | 483 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
475 | 484 |
excess += (*_flow)[e]; |
476 | 485 |
} |
477 | 486 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
478 | 487 |
excess -= (*_flow)[e]; |
479 | 488 |
} |
480 | 489 |
if (excess < 0 && n != _source) return false; |
481 | 490 |
(*_excess)[n] = excess; |
482 | 491 |
} |
483 | 492 |
|
484 | 493 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
485 | 494 |
|
486 | 495 |
_level->initStart(); |
487 | 496 |
_level->initAddItem(_target); |
488 | 497 |
|
489 | 498 |
std::vector<Node> queue; |
490 | 499 |
reached[_source] = true; |
491 | 500 |
|
492 | 501 |
queue.push_back(_target); |
493 | 502 |
reached[_target] = true; |
494 | 503 |
while (!queue.empty()) { |
495 | 504 |
_level->initNewLevel(); |
496 | 505 |
std::vector<Node> nqueue; |
497 | 506 |
for (int i = 0; i < int(queue.size()); ++i) { |
498 | 507 |
Node n = queue[i]; |
499 | 508 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
500 | 509 |
Node u = _graph.source(e); |
501 | 510 |
if (!reached[u] && |
502 | 511 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) { |
503 | 512 |
reached[u] = true; |
504 | 513 |
_level->initAddItem(u); |
505 | 514 |
nqueue.push_back(u); |
506 | 515 |
} |
507 | 516 |
} |
508 | 517 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
509 | 518 |
Node v = _graph.target(e); |
510 | 519 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) { |
511 | 520 |
reached[v] = true; |
512 | 521 |
_level->initAddItem(v); |
513 | 522 |
nqueue.push_back(v); |
514 | 523 |
} |
515 | 524 |
} |
516 | 525 |
} |
517 | 526 |
queue.swap(nqueue); |
518 | 527 |
} |
519 | 528 |
_level->initFinish(); |
520 | 529 |
|
521 | 530 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
522 | 531 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
523 | 532 |
if (_tolerance.positive(rem)) { |
524 | 533 |
Node u = _graph.target(e); |
525 | 534 |
if ((*_level)[u] == _level->maxLevel()) continue; |
526 | 535 |
_flow->set(e, (*_capacity)[e]); |
527 | 536 |
(*_excess)[u] += rem; |
528 | 537 |
if (u != _target && !_level->active(u)) { |
529 | 538 |
_level->activate(u); |
530 | 539 |
} |
531 | 540 |
} |
532 | 541 |
} |
533 | 542 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) { |
534 | 543 |
Value rem = (*_flow)[e]; |
535 | 544 |
if (_tolerance.positive(rem)) { |
536 | 545 |
Node v = _graph.source(e); |
537 | 546 |
if ((*_level)[v] == _level->maxLevel()) continue; |
538 | 547 |
_flow->set(e, 0); |
539 | 548 |
(*_excess)[v] += rem; |
540 | 549 |
if (v != _target && !_level->active(v)) { |
541 | 550 |
_level->activate(v); |
542 | 551 |
} |
543 | 552 |
} |
544 | 553 |
} |
545 | 554 |
return true; |
546 | 555 |
} |
547 | 556 |
|
548 | 557 |
/// \brief Starts the first phase of the preflow algorithm. |
549 | 558 |
/// |
550 | 559 |
/// The preflow algorithm consists of two phases, this method runs |
551 | 560 |
/// the first phase. After the first phase the maximum flow value |
552 | 561 |
/// and a minimum value cut can already be computed, although a |
553 | 562 |
/// maximum flow is not yet obtained. So after calling this method |
554 | 563 |
/// \ref flowValue() returns the value of a maximum flow and \ref |
555 | 564 |
/// minCut() returns a minimum cut. |
556 | 565 |
/// \pre One of the \ref init() functions must be called before |
557 | 566 |
/// using this function. |
558 | 567 |
void startFirstPhase() { |
559 | 568 |
_phase = true; |
560 | 569 |
|
561 | 570 |
Node n = _level->highestActive(); |
562 | 571 |
int level = _level->highestActiveLevel(); |
563 | 572 |
while (n != INVALID) { |
564 | 573 |
int num = _node_num; |
565 | 574 |
|
566 | 575 |
while (num > 0 && n != INVALID) { |
567 | 576 |
Value excess = (*_excess)[n]; |
568 | 577 |
int new_level = _level->maxLevel(); |
569 | 578 |
|
570 | 579 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
571 | 580 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
572 | 581 |
if (!_tolerance.positive(rem)) continue; |
573 | 582 |
Node v = _graph.target(e); |
574 | 583 |
if ((*_level)[v] < level) { |
575 | 584 |
if (!_level->active(v) && v != _target) { |
576 | 585 |
_level->activate(v); |
577 | 586 |
} |
578 | 587 |
if (!_tolerance.less(rem, excess)) { |
579 | 588 |
_flow->set(e, (*_flow)[e] + excess); |
580 | 589 |
(*_excess)[v] += excess; |
581 | 590 |
excess = 0; |
582 | 591 |
goto no_more_push_1; |
583 | 592 |
} else { |
584 | 593 |
excess -= rem; |
585 | 594 |
(*_excess)[v] += rem; |
586 | 595 |
_flow->set(e, (*_capacity)[e]); |
587 | 596 |
} |
588 | 597 |
} else if (new_level > (*_level)[v]) { |
589 | 598 |
new_level = (*_level)[v]; |
590 | 599 |
} |
591 | 600 |
} |
592 | 601 |
|
593 | 602 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
594 | 603 |
Value rem = (*_flow)[e]; |
595 | 604 |
if (!_tolerance.positive(rem)) continue; |
596 | 605 |
Node v = _graph.source(e); |
597 | 606 |
if ((*_level)[v] < level) { |
598 | 607 |
if (!_level->active(v) && v != _target) { |
599 | 608 |
_level->activate(v); |
600 | 609 |
} |
601 | 610 |
if (!_tolerance.less(rem, excess)) { |
602 | 611 |
_flow->set(e, (*_flow)[e] - excess); |
603 | 612 |
(*_excess)[v] += excess; |
604 | 613 |
excess = 0; |
605 | 614 |
goto no_more_push_1; |
606 | 615 |
} else { |
607 | 616 |
excess -= rem; |
608 | 617 |
(*_excess)[v] += rem; |
609 | 618 |
_flow->set(e, 0); |
610 | 619 |
} |
611 | 620 |
} else if (new_level > (*_level)[v]) { |
612 | 621 |
new_level = (*_level)[v]; |
613 | 622 |
} |
614 | 623 |
} |
615 | 624 |
|
616 | 625 |
no_more_push_1: |
617 | 626 |
|
618 | 627 |
(*_excess)[n] = excess; |
619 | 628 |
|
620 | 629 |
if (excess != 0) { |
621 | 630 |
if (new_level + 1 < _level->maxLevel()) { |
622 | 631 |
_level->liftHighestActive(new_level + 1); |
623 | 632 |
} else { |
624 | 633 |
_level->liftHighestActiveToTop(); |
625 | 634 |
} |
626 | 635 |
if (_level->emptyLevel(level)) { |
627 | 636 |
_level->liftToTop(level); |
628 | 637 |
} |
629 | 638 |
} else { |
630 | 639 |
_level->deactivate(n); |
631 | 640 |
} |
632 | 641 |
|
633 | 642 |
n = _level->highestActive(); |
634 | 643 |
level = _level->highestActiveLevel(); |
635 | 644 |
--num; |
636 | 645 |
} |
637 | 646 |
|
638 | 647 |
num = _node_num * 20; |
639 | 648 |
while (num > 0 && n != INVALID) { |
640 | 649 |
Value excess = (*_excess)[n]; |
641 | 650 |
int new_level = _level->maxLevel(); |
642 | 651 |
|
643 | 652 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
644 | 653 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
645 | 654 |
if (!_tolerance.positive(rem)) continue; |
646 | 655 |
Node v = _graph.target(e); |
647 | 656 |
if ((*_level)[v] < level) { |
648 | 657 |
if (!_level->active(v) && v != _target) { |
649 | 658 |
_level->activate(v); |
1 | 1 |
INCLUDE_DIRECTORIES( |
2 | 2 |
${PROJECT_SOURCE_DIR} |
3 | 3 |
${PROJECT_BINARY_DIR} |
4 | 4 |
) |
5 | 5 |
|
6 | 6 |
LINK_DIRECTORIES( |
7 | 7 |
${PROJECT_BINARY_DIR}/lemon |
8 | 8 |
) |
9 | 9 |
|
10 | 10 |
SET(TESTS |
11 | 11 |
adaptors_test |
12 |
bellman_ford_test |
|
12 | 13 |
bfs_test |
13 | 14 |
circulation_test |
14 | 15 |
connectivity_test |
15 | 16 |
counter_test |
16 | 17 |
dfs_test |
17 | 18 |
digraph_test |
18 | 19 |
dijkstra_test |
19 | 20 |
dim_test |
20 | 21 |
edge_set_test |
21 | 22 |
error_test |
22 | 23 |
euler_test |
23 | 24 |
gomory_hu_test |
24 | 25 |
graph_copy_test |
25 | 26 |
graph_test |
26 | 27 |
graph_utils_test |
27 | 28 |
hao_orlin_test |
28 | 29 |
heap_test |
29 | 30 |
kruskal_test |
30 | 31 |
maps_test |
31 | 32 |
matching_test |
32 | 33 |
min_cost_arborescence_test |
33 | 34 |
min_cost_flow_test |
34 | 35 |
path_test |
35 | 36 |
preflow_test |
36 | 37 |
radix_sort_test |
37 | 38 |
random_test |
38 | 39 |
suurballe_test |
39 | 40 |
time_measure_test |
40 | 41 |
unionfind_test |
41 | 42 |
) |
42 | 43 |
|
43 | 44 |
IF(LEMON_HAVE_LP) |
44 | 45 |
ADD_EXECUTABLE(lp_test lp_test.cc) |
45 | 46 |
SET(LP_TEST_LIBS lemon) |
46 | 47 |
|
47 | 48 |
IF(LEMON_HAVE_GLPK) |
48 | 49 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${GLPK_LIBRARIES}) |
49 | 50 |
ENDIF() |
50 | 51 |
IF(LEMON_HAVE_CPLEX) |
51 | 52 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${CPLEX_LIBRARIES}) |
52 | 53 |
ENDIF() |
53 | 54 |
IF(LEMON_HAVE_CLP) |
54 | 55 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${COIN_CLP_LIBRARIES}) |
55 | 56 |
ENDIF() |
56 | 57 |
|
57 | 58 |
TARGET_LINK_LIBRARIES(lp_test ${LP_TEST_LIBS}) |
58 | 59 |
ADD_TEST(lp_test lp_test) |
59 | 60 |
|
60 | 61 |
IF(WIN32 AND LEMON_HAVE_GLPK) |
61 | 62 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
62 | 63 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
63 | 64 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
64 | 65 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH} |
65 | 66 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH} |
66 | 67 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH} |
67 | 68 |
) |
68 | 69 |
ENDIF() |
69 | 70 |
|
70 | 71 |
IF(WIN32 AND LEMON_HAVE_CPLEX) |
71 | 72 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
72 | 73 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
73 | 74 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
74 | 75 |
COMMAND ${CMAKE_COMMAND} -E copy ${CPLEX_BIN_DIR}/cplex91.dll ${TARGET_PATH} |
75 | 76 |
) |
76 | 77 |
ENDIF() |
77 | 78 |
ENDIF() |
78 | 79 |
|
79 | 80 |
IF(LEMON_HAVE_MIP) |
80 | 81 |
ADD_EXECUTABLE(mip_test mip_test.cc) |
81 | 82 |
SET(MIP_TEST_LIBS lemon) |
82 | 83 |
|
83 | 84 |
IF(LEMON_HAVE_GLPK) |
84 | 85 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${GLPK_LIBRARIES}) |
85 | 86 |
ENDIF() |
86 | 87 |
IF(LEMON_HAVE_CPLEX) |
87 | 88 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${CPLEX_LIBRARIES}) |
88 | 89 |
ENDIF() |
89 | 90 |
IF(LEMON_HAVE_CBC) |
90 | 91 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${COIN_CBC_LIBRARIES}) |
91 | 92 |
ENDIF() |
92 | 93 |
|
93 | 94 |
TARGET_LINK_LIBRARIES(mip_test ${MIP_TEST_LIBS}) |
94 | 95 |
ADD_TEST(mip_test mip_test) |
95 | 96 |
|
96 | 97 |
IF(WIN32 AND LEMON_HAVE_GLPK) |
97 | 98 |
GET_TARGET_PROPERTY(TARGET_LOC mip_test LOCATION) |
98 | 99 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
99 | 100 |
ADD_CUSTOM_COMMAND(TARGET mip_test POST_BUILD |
100 | 101 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH} |
101 | 102 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH} |
102 | 103 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH} |
103 | 104 |
) |
104 | 105 |
ENDIF() |
105 | 106 |
|
106 | 107 |
IF(WIN32 AND LEMON_HAVE_CPLEX) |
107 | 108 |
GET_TARGET_PROPERTY(TARGET_LOC mip_test LOCATION) |
108 | 109 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
109 | 110 |
ADD_CUSTOM_COMMAND(TARGET mip_test POST_BUILD |
110 | 111 |
COMMAND ${CMAKE_COMMAND} -E copy ${CPLEX_BIN_DIR}/cplex91.dll ${TARGET_PATH} |
111 | 112 |
) |
112 | 113 |
ENDIF() |
113 | 114 |
ENDIF() |
114 | 115 |
|
115 | 116 |
FOREACH(TEST_NAME ${TESTS}) |
116 | 117 |
ADD_EXECUTABLE(${TEST_NAME} ${TEST_NAME}.cc) |
117 | 118 |
TARGET_LINK_LIBRARIES(${TEST_NAME} lemon) |
118 | 119 |
ADD_TEST(${TEST_NAME} ${TEST_NAME}) |
119 | 120 |
ENDFOREACH() |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
test/CMakeLists.txt |
3 | 3 |
|
4 | 4 |
noinst_HEADERS += \ |
5 | 5 |
test/graph_test.h \ |
6 | 6 |
test/test_tools.h |
7 | 7 |
|
8 | 8 |
check_PROGRAMS += \ |
9 | 9 |
test/adaptors_test \ |
10 |
test/bellman_ford_test \ |
|
10 | 11 |
test/bfs_test \ |
11 | 12 |
test/circulation_test \ |
12 | 13 |
test/connectivity_test \ |
13 | 14 |
test/counter_test \ |
14 | 15 |
test/dfs_test \ |
15 | 16 |
test/digraph_test \ |
16 | 17 |
test/dijkstra_test \ |
17 | 18 |
test/dim_test \ |
18 | 19 |
test/edge_set_test \ |
19 | 20 |
test/error_test \ |
20 | 21 |
test/euler_test \ |
21 | 22 |
test/gomory_hu_test \ |
22 | 23 |
test/graph_copy_test \ |
23 | 24 |
test/graph_test \ |
24 | 25 |
test/graph_utils_test \ |
25 | 26 |
test/hao_orlin_test \ |
26 | 27 |
test/heap_test \ |
27 | 28 |
test/kruskal_test \ |
28 | 29 |
test/maps_test \ |
29 | 30 |
test/matching_test \ |
30 | 31 |
test/min_cost_arborescence_test \ |
31 | 32 |
test/min_cost_flow_test \ |
32 | 33 |
test/path_test \ |
33 | 34 |
test/preflow_test \ |
34 | 35 |
test/radix_sort_test \ |
35 | 36 |
test/random_test \ |
36 | 37 |
test/suurballe_test \ |
37 | 38 |
test/test_tools_fail \ |
38 | 39 |
test/test_tools_pass \ |
39 | 40 |
test/time_measure_test \ |
40 | 41 |
test/unionfind_test |
41 | 42 |
|
42 | 43 |
test_test_tools_pass_DEPENDENCIES = demo |
43 | 44 |
|
44 | 45 |
if HAVE_LP |
45 | 46 |
check_PROGRAMS += test/lp_test |
46 | 47 |
endif HAVE_LP |
47 | 48 |
if HAVE_MIP |
48 | 49 |
check_PROGRAMS += test/mip_test |
49 | 50 |
endif HAVE_MIP |
50 | 51 |
|
51 | 52 |
TESTS += $(check_PROGRAMS) |
52 | 53 |
XFAIL_TESTS += test/test_tools_fail$(EXEEXT) |
53 | 54 |
|
54 | 55 |
test_adaptors_test_SOURCES = test/adaptors_test.cc |
56 |
test_bellman_ford_test_SOURCES = test/bellman_ford_test.cc |
|
55 | 57 |
test_bfs_test_SOURCES = test/bfs_test.cc |
56 | 58 |
test_circulation_test_SOURCES = test/circulation_test.cc |
57 | 59 |
test_counter_test_SOURCES = test/counter_test.cc |
58 | 60 |
test_connectivity_test_SOURCES = test/connectivity_test.cc |
59 | 61 |
test_dfs_test_SOURCES = test/dfs_test.cc |
60 | 62 |
test_digraph_test_SOURCES = test/digraph_test.cc |
61 | 63 |
test_dijkstra_test_SOURCES = test/dijkstra_test.cc |
62 | 64 |
test_dim_test_SOURCES = test/dim_test.cc |
63 | 65 |
test_edge_set_test_SOURCES = test/edge_set_test.cc |
64 | 66 |
test_error_test_SOURCES = test/error_test.cc |
65 | 67 |
test_euler_test_SOURCES = test/euler_test.cc |
66 | 68 |
test_gomory_hu_test_SOURCES = test/gomory_hu_test.cc |
67 | 69 |
test_graph_copy_test_SOURCES = test/graph_copy_test.cc |
68 | 70 |
test_graph_test_SOURCES = test/graph_test.cc |
69 | 71 |
test_graph_utils_test_SOURCES = test/graph_utils_test.cc |
70 | 72 |
test_heap_test_SOURCES = test/heap_test.cc |
71 | 73 |
test_kruskal_test_SOURCES = test/kruskal_test.cc |
72 | 74 |
test_hao_orlin_test_SOURCES = test/hao_orlin_test.cc |
73 | 75 |
test_lp_test_SOURCES = test/lp_test.cc |
74 | 76 |
test_maps_test_SOURCES = test/maps_test.cc |
75 | 77 |
test_mip_test_SOURCES = test/mip_test.cc |
76 | 78 |
test_matching_test_SOURCES = test/matching_test.cc |
77 | 79 |
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc |
78 | 80 |
test_min_cost_flow_test_SOURCES = test/min_cost_flow_test.cc |
79 | 81 |
test_path_test_SOURCES = test/path_test.cc |
80 | 82 |
test_preflow_test_SOURCES = test/preflow_test.cc |
81 | 83 |
test_radix_sort_test_SOURCES = test/radix_sort_test.cc |
82 | 84 |
test_suurballe_test_SOURCES = test/suurballe_test.cc |
83 | 85 |
test_random_test_SOURCES = test/random_test.cc |
84 | 86 |
test_test_tools_fail_SOURCES = test/test_tools_fail.cc |
85 | 87 |
test_test_tools_pass_SOURCES = test/test_tools_pass.cc |
86 | 88 |
test_time_measure_test_SOURCES = test/time_measure_test.cc |
87 | 89 |
test_unionfind_test_SOURCES = test/unionfind_test.cc |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
|
21 | 21 |
#include "test_tools.h" |
22 | 22 |
#include <lemon/list_graph.h> |
23 | 23 |
#include <lemon/circulation.h> |
24 | 24 |
#include <lemon/lgf_reader.h> |
25 | 25 |
#include <lemon/concepts/digraph.h> |
26 | 26 |
#include <lemon/concepts/maps.h> |
27 | 27 |
|
28 | 28 |
using namespace lemon; |
29 | 29 |
|
30 | 30 |
char test_lgf[] = |
31 | 31 |
"@nodes\n" |
32 | 32 |
"label\n" |
33 | 33 |
"0\n" |
34 | 34 |
"1\n" |
35 | 35 |
"2\n" |
36 | 36 |
"3\n" |
37 | 37 |
"4\n" |
38 | 38 |
"5\n" |
39 | 39 |
"@arcs\n" |
40 | 40 |
" lcap ucap\n" |
41 | 41 |
"0 1 2 10\n" |
42 | 42 |
"0 2 2 6\n" |
43 | 43 |
"1 3 4 7\n" |
44 | 44 |
"1 4 0 5\n" |
45 | 45 |
"2 4 1 3\n" |
46 | 46 |
"3 5 3 8\n" |
47 | 47 |
"4 5 3 7\n" |
48 | 48 |
"@attributes\n" |
49 | 49 |
"source 0\n" |
50 | 50 |
"sink 5\n"; |
51 | 51 |
|
52 | 52 |
void checkCirculationCompile() |
53 | 53 |
{ |
54 | 54 |
typedef int VType; |
55 | 55 |
typedef concepts::Digraph Digraph; |
56 | 56 |
|
57 | 57 |
typedef Digraph::Node Node; |
58 | 58 |
typedef Digraph::Arc Arc; |
59 | 59 |
typedef concepts::ReadMap<Arc,VType> CapMap; |
60 | 60 |
typedef concepts::ReadMap<Node,VType> SupplyMap; |
61 | 61 |
typedef concepts::ReadWriteMap<Arc,VType> FlowMap; |
62 | 62 |
typedef concepts::WriteMap<Node,bool> BarrierMap; |
63 | 63 |
|
64 | 64 |
typedef Elevator<Digraph, Digraph::Node> Elev; |
65 | 65 |
typedef LinkedElevator<Digraph, Digraph::Node> LinkedElev; |
66 | 66 |
|
67 | 67 |
Digraph g; |
68 | 68 |
Node n; |
69 | 69 |
Arc a; |
70 | 70 |
CapMap lcap, ucap; |
71 | 71 |
SupplyMap supply; |
72 | 72 |
FlowMap flow; |
73 | 73 |
BarrierMap bar; |
74 | 74 |
VType v; |
75 | 75 |
bool b; |
76 | 76 |
|
77 | 77 |
typedef Circulation<Digraph, CapMap, CapMap, SupplyMap> |
78 | 78 |
::SetFlowMap<FlowMap> |
79 | 79 |
::SetElevator<Elev> |
80 | 80 |
::SetStandardElevator<LinkedElev> |
81 | 81 |
::Create CirculationType; |
82 | 82 |
CirculationType circ_test(g, lcap, ucap, supply); |
83 | 83 |
const CirculationType& const_circ_test = circ_test; |
84 | 84 |
|
85 | 85 |
circ_test |
86 | 86 |
.lowerMap(lcap) |
87 | 87 |
.upperMap(ucap) |
88 | 88 |
.supplyMap(supply) |
89 | 89 |
.flowMap(flow); |
90 |
|
|
91 |
const CirculationType::Elevator& elev = const_circ_test.elevator(); |
|
92 |
circ_test.elevator(const_cast<CirculationType::Elevator&>(elev)); |
|
93 |
CirculationType::Tolerance tol = const_circ_test.tolerance(); |
|
94 |
circ_test.tolerance(tol); |
|
90 | 95 |
|
91 | 96 |
circ_test.init(); |
92 | 97 |
circ_test.greedyInit(); |
93 | 98 |
circ_test.start(); |
94 | 99 |
circ_test.run(); |
95 | 100 |
|
96 | 101 |
v = const_circ_test.flow(a); |
97 | 102 |
const FlowMap& fm = const_circ_test.flowMap(); |
98 | 103 |
b = const_circ_test.barrier(n); |
99 | 104 |
const_circ_test.barrierMap(bar); |
100 | 105 |
|
101 | 106 |
ignore_unused_variable_warning(fm); |
102 | 107 |
} |
103 | 108 |
|
104 | 109 |
template <class G, class LM, class UM, class DM> |
105 | 110 |
void checkCirculation(const G& g, const LM& lm, const UM& um, |
106 | 111 |
const DM& dm, bool find) |
107 | 112 |
{ |
108 | 113 |
Circulation<G, LM, UM, DM> circ(g, lm, um, dm); |
109 | 114 |
bool ret = circ.run(); |
110 | 115 |
if (find) { |
111 | 116 |
check(ret, "A feasible solution should have been found."); |
112 | 117 |
check(circ.checkFlow(), "The found flow is corrupt."); |
113 | 118 |
check(!circ.checkBarrier(), "A barrier should not have been found."); |
114 | 119 |
} else { |
115 | 120 |
check(!ret, "A feasible solution should not have been found."); |
116 | 121 |
check(circ.checkBarrier(), "The found barrier is corrupt."); |
117 | 122 |
} |
118 | 123 |
} |
119 | 124 |
|
120 | 125 |
int main (int, char*[]) |
121 | 126 |
{ |
122 | 127 |
typedef ListDigraph Digraph; |
123 | 128 |
DIGRAPH_TYPEDEFS(Digraph); |
124 | 129 |
|
125 | 130 |
Digraph g; |
126 | 131 |
IntArcMap lo(g), up(g); |
127 | 132 |
IntNodeMap delta(g, 0); |
128 | 133 |
Node s, t; |
129 | 134 |
|
130 | 135 |
std::istringstream input(test_lgf); |
131 | 136 |
DigraphReader<Digraph>(g,input). |
132 | 137 |
arcMap("lcap", lo). |
133 | 138 |
arcMap("ucap", up). |
134 | 139 |
node("source",s). |
135 | 140 |
node("sink",t). |
136 | 141 |
run(); |
137 | 142 |
|
138 | 143 |
delta[s] = 7; delta[t] = -7; |
139 | 144 |
checkCirculation(g, lo, up, delta, true); |
140 | 145 |
|
141 | 146 |
delta[s] = 13; delta[t] = -13; |
142 | 147 |
checkCirculation(g, lo, up, delta, true); |
143 | 148 |
|
144 | 149 |
delta[s] = 6; delta[t] = -6; |
145 | 150 |
checkCirculation(g, lo, up, delta, false); |
146 | 151 |
|
147 | 152 |
delta[s] = 14; delta[t] = -14; |
148 | 153 |
checkCirculation(g, lo, up, delta, false); |
149 | 154 |
|
150 | 155 |
delta[s] = 7; delta[t] = -13; |
151 | 156 |
checkCirculation(g, lo, up, delta, true); |
152 | 157 |
|
153 | 158 |
delta[s] = 5; delta[t] = -15; |
154 | 159 |
checkCirculation(g, lo, up, delta, true); |
155 | 160 |
|
156 | 161 |
delta[s] = 10; delta[t] = -11; |
157 | 162 |
checkCirculation(g, lo, up, delta, true); |
158 | 163 |
|
159 | 164 |
delta[s] = 11; delta[t] = -10; |
160 | 165 |
checkCirculation(g, lo, up, delta, false); |
161 | 166 |
|
162 | 167 |
return 0; |
163 | 168 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <fstream> |
21 | 21 |
#include <string> |
22 | 22 |
#include <vector> |
23 | 23 |
|
24 | 24 |
#include <lemon/concept_check.h> |
25 | 25 |
#include <lemon/concepts/heap.h> |
26 | 26 |
|
27 | 27 |
#include <lemon/smart_graph.h> |
28 |
|
|
29 | 28 |
#include <lemon/lgf_reader.h> |
30 | 29 |
#include <lemon/dijkstra.h> |
31 | 30 |
#include <lemon/maps.h> |
32 | 31 |
|
33 | 32 |
#include <lemon/bin_heap.h> |
33 |
#include <lemon/fourary_heap.h> |
|
34 |
#include <lemon/kary_heap.h> |
|
35 |
#include <lemon/fib_heap.h> |
|
36 |
#include <lemon/pairing_heap.h> |
|
37 |
#include <lemon/radix_heap.h> |
|
38 |
#include <lemon/binom_heap.h> |
|
39 |
#include <lemon/bucket_heap.h> |
|
34 | 40 |
|
35 | 41 |
#include "test_tools.h" |
36 | 42 |
|
37 | 43 |
using namespace lemon; |
38 | 44 |
using namespace lemon::concepts; |
39 | 45 |
|
40 | 46 |
typedef ListDigraph Digraph; |
41 | 47 |
DIGRAPH_TYPEDEFS(Digraph); |
42 | 48 |
|
43 | 49 |
char test_lgf[] = |
44 | 50 |
"@nodes\n" |
45 | 51 |
"label\n" |
46 | 52 |
"0\n" |
47 | 53 |
"1\n" |
48 | 54 |
"2\n" |
49 | 55 |
"3\n" |
50 | 56 |
"4\n" |
51 | 57 |
"5\n" |
52 | 58 |
"6\n" |
53 | 59 |
"7\n" |
54 | 60 |
"8\n" |
55 | 61 |
"9\n" |
56 | 62 |
"@arcs\n" |
57 | 63 |
" label capacity\n" |
58 | 64 |
"0 5 0 94\n" |
59 | 65 |
"3 9 1 11\n" |
60 | 66 |
"8 7 2 83\n" |
61 | 67 |
"1 2 3 94\n" |
62 | 68 |
"5 7 4 35\n" |
63 | 69 |
"7 4 5 84\n" |
64 | 70 |
"9 5 6 38\n" |
65 | 71 |
"0 4 7 96\n" |
66 | 72 |
"6 7 8 6\n" |
67 | 73 |
"3 1 9 27\n" |
68 | 74 |
"5 2 10 77\n" |
69 | 75 |
"5 6 11 69\n" |
70 | 76 |
"6 5 12 41\n" |
71 | 77 |
"4 6 13 70\n" |
72 | 78 |
"3 2 14 45\n" |
73 | 79 |
"7 9 15 93\n" |
74 | 80 |
"5 9 16 50\n" |
75 | 81 |
"9 0 17 94\n" |
76 | 82 |
"9 6 18 67\n" |
77 | 83 |
"0 9 19 86\n" |
78 | 84 |
"@attributes\n" |
79 | 85 |
"source 3\n"; |
80 | 86 |
|
81 | 87 |
int test_seq[] = { 2, 28, 19, 27, 33, 25, 13, 41, 10, 26, 1, 9, 4, 34}; |
82 | 88 |
int test_inc[] = {20, 28, 34, 16, 0, 46, 44, 0, 42, 32, 14, 8, 6, 37}; |
83 | 89 |
|
84 | 90 |
int test_len = sizeof(test_seq) / sizeof(test_seq[0]); |
85 | 91 |
|
86 | 92 |
template <typename Heap> |
87 | 93 |
void heapSortTest() { |
88 | 94 |
RangeMap<int> map(test_len, -1); |
89 |
|
|
90 | 95 |
Heap heap(map); |
91 | 96 |
|
92 | 97 |
std::vector<int> v(test_len); |
93 |
|
|
94 | 98 |
for (int i = 0; i < test_len; ++i) { |
95 | 99 |
v[i] = test_seq[i]; |
96 | 100 |
heap.push(i, v[i]); |
97 | 101 |
} |
98 | 102 |
std::sort(v.begin(), v.end()); |
99 | 103 |
for (int i = 0; i < test_len; ++i) { |
100 |
check(v[i] == heap.prio() |
|
104 |
check(v[i] == heap.prio(), "Wrong order in heap sort."); |
|
101 | 105 |
heap.pop(); |
102 | 106 |
} |
103 | 107 |
} |
104 | 108 |
|
105 | 109 |
template <typename Heap> |
106 | 110 |
void heapIncreaseTest() { |
107 | 111 |
RangeMap<int> map(test_len, -1); |
108 | 112 |
|
109 | 113 |
Heap heap(map); |
110 | 114 |
|
111 | 115 |
std::vector<int> v(test_len); |
112 |
|
|
113 | 116 |
for (int i = 0; i < test_len; ++i) { |
114 | 117 |
v[i] = test_seq[i]; |
115 | 118 |
heap.push(i, v[i]); |
116 | 119 |
} |
117 | 120 |
for (int i = 0; i < test_len; ++i) { |
118 | 121 |
v[i] += test_inc[i]; |
119 | 122 |
heap.increase(i, v[i]); |
120 | 123 |
} |
121 | 124 |
std::sort(v.begin(), v.end()); |
122 | 125 |
for (int i = 0; i < test_len; ++i) { |
123 |
check(v[i] == heap.prio() |
|
126 |
check(v[i] == heap.prio(), "Wrong order in heap increase test."); |
|
124 | 127 |
heap.pop(); |
125 | 128 |
} |
126 | 129 |
} |
127 | 130 |
|
128 |
|
|
129 |
|
|
130 | 131 |
template <typename Heap> |
131 | 132 |
void dijkstraHeapTest(const Digraph& digraph, const IntArcMap& length, |
132 | 133 |
Node source) { |
133 | 134 |
|
134 | 135 |
typename Dijkstra<Digraph, IntArcMap>::template SetStandardHeap<Heap>:: |
135 | 136 |
Create dijkstra(digraph, length); |
136 | 137 |
|
137 | 138 |
dijkstra.run(source); |
138 | 139 |
|
139 | 140 |
for(ArcIt a(digraph); a != INVALID; ++a) { |
140 | 141 |
Node s = digraph.source(a); |
141 | 142 |
Node t = digraph.target(a); |
142 | 143 |
if (dijkstra.reached(s)) { |
143 | 144 |
check( dijkstra.dist(t) - dijkstra.dist(s) <= length[a], |
144 |
"Error in |
|
145 |
"Error in shortest path tree."); |
|
145 | 146 |
} |
146 | 147 |
} |
147 | 148 |
|
148 | 149 |
for(NodeIt n(digraph); n != INVALID; ++n) { |
149 | 150 |
if ( dijkstra.reached(n) && dijkstra.predArc(n) != INVALID ) { |
150 | 151 |
Arc a = dijkstra.predArc(n); |
151 | 152 |
Node s = digraph.source(a); |
152 | 153 |
check( dijkstra.dist(n) - dijkstra.dist(s) == length[a], |
153 |
"Error in |
|
154 |
"Error in shortest path tree."); |
|
154 | 155 |
} |
155 | 156 |
} |
156 | 157 |
|
157 | 158 |
} |
158 | 159 |
|
159 | 160 |
int main() { |
160 | 161 |
|
161 | 162 |
typedef int Item; |
162 | 163 |
typedef int Prio; |
163 | 164 |
typedef RangeMap<int> ItemIntMap; |
164 | 165 |
|
165 | 166 |
Digraph digraph; |
166 | 167 |
IntArcMap length(digraph); |
167 | 168 |
Node source; |
168 | 169 |
|
169 | 170 |
std::istringstream input(test_lgf); |
170 | 171 |
digraphReader(digraph, input). |
171 | 172 |
arcMap("capacity", length). |
172 | 173 |
node("source", source). |
173 | 174 |
run(); |
174 | 175 |
|
176 |
// BinHeap |
|
175 | 177 |
{ |
176 | 178 |
typedef BinHeap<Prio, ItemIntMap> IntHeap; |
177 | 179 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
178 | 180 |
heapSortTest<IntHeap>(); |
179 | 181 |
heapIncreaseTest<IntHeap>(); |
180 | 182 |
|
181 | 183 |
typedef BinHeap<Prio, IntNodeMap > NodeHeap; |
182 | 184 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
183 | 185 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
184 | 186 |
} |
185 | 187 |
|
188 |
// FouraryHeap |
|
189 |
{ |
|
190 |
typedef FouraryHeap<Prio, ItemIntMap> IntHeap; |
|
191 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
192 |
heapSortTest<IntHeap>(); |
|
193 |
heapIncreaseTest<IntHeap>(); |
|
194 |
|
|
195 |
typedef FouraryHeap<Prio, IntNodeMap > NodeHeap; |
|
196 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
197 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
198 |
} |
|
199 |
|
|
200 |
// KaryHeap |
|
201 |
{ |
|
202 |
typedef KaryHeap<Prio, ItemIntMap> IntHeap; |
|
203 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
204 |
heapSortTest<IntHeap>(); |
|
205 |
heapIncreaseTest<IntHeap>(); |
|
206 |
|
|
207 |
typedef KaryHeap<Prio, IntNodeMap > NodeHeap; |
|
208 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
209 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
210 |
} |
|
211 |
|
|
212 |
// FibHeap |
|
213 |
{ |
|
214 |
typedef FibHeap<Prio, ItemIntMap> IntHeap; |
|
215 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
216 |
heapSortTest<IntHeap>(); |
|
217 |
heapIncreaseTest<IntHeap>(); |
|
218 |
|
|
219 |
typedef FibHeap<Prio, IntNodeMap > NodeHeap; |
|
220 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
221 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
222 |
} |
|
223 |
|
|
224 |
// PairingHeap |
|
225 |
{ |
|
226 |
typedef PairingHeap<Prio, ItemIntMap> IntHeap; |
|
227 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
228 |
heapSortTest<IntHeap>(); |
|
229 |
heapIncreaseTest<IntHeap>(); |
|
230 |
|
|
231 |
typedef PairingHeap<Prio, IntNodeMap > NodeHeap; |
|
232 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
233 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
234 |
} |
|
235 |
|
|
236 |
// RadixHeap |
|
237 |
{ |
|
238 |
typedef RadixHeap<ItemIntMap> IntHeap; |
|
239 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
240 |
heapSortTest<IntHeap>(); |
|
241 |
heapIncreaseTest<IntHeap>(); |
|
242 |
|
|
243 |
typedef RadixHeap<IntNodeMap > NodeHeap; |
|
244 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
245 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
246 |
} |
|
247 |
|
|
248 |
// BinomHeap |
|
249 |
{ |
|
250 |
typedef BinomHeap<Prio, ItemIntMap> IntHeap; |
|
251 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
252 |
heapSortTest<IntHeap>(); |
|
253 |
heapIncreaseTest<IntHeap>(); |
|
254 |
|
|
255 |
typedef BinomHeap<Prio, IntNodeMap > NodeHeap; |
|
256 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
257 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
258 |
} |
|
259 |
|
|
260 |
// BucketHeap, SimpleBucketHeap |
|
261 |
{ |
|
262 |
typedef BucketHeap<ItemIntMap> IntHeap; |
|
263 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
264 |
heapSortTest<IntHeap>(); |
|
265 |
heapIncreaseTest<IntHeap>(); |
|
266 |
|
|
267 |
typedef BucketHeap<IntNodeMap > NodeHeap; |
|
268 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
269 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
270 |
|
|
271 |
typedef SimpleBucketHeap<ItemIntMap> SimpleIntHeap; |
|
272 |
heapSortTest<SimpleIntHeap>(); |
|
273 |
} |
|
274 |
|
|
186 | 275 |
return 0; |
187 | 276 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <deque> |
20 | 20 |
#include <set> |
21 | 21 |
|
22 | 22 |
#include <lemon/concept_check.h> |
23 | 23 |
#include <lemon/concepts/maps.h> |
24 | 24 |
#include <lemon/maps.h> |
25 |
#include <lemon/smart_graph.h> |
|
25 | 26 |
|
26 | 27 |
#include "test_tools.h" |
27 | 28 |
|
28 | 29 |
using namespace lemon; |
29 | 30 |
using namespace lemon::concepts; |
30 | 31 |
|
31 | 32 |
struct A {}; |
32 | 33 |
inline bool operator<(A, A) { return true; } |
33 | 34 |
struct B {}; |
34 | 35 |
|
35 | 36 |
class C { |
36 | 37 |
int x; |
37 | 38 |
public: |
38 | 39 |
C(int _x) : x(_x) {} |
39 | 40 |
}; |
40 | 41 |
|
41 | 42 |
class F { |
42 | 43 |
public: |
43 | 44 |
typedef A argument_type; |
44 | 45 |
typedef B result_type; |
45 | 46 |
|
46 | 47 |
B operator()(const A&) const { return B(); } |
47 | 48 |
private: |
48 | 49 |
F& operator=(const F&); |
49 | 50 |
}; |
50 | 51 |
|
51 | 52 |
int func(A) { return 3; } |
52 | 53 |
|
53 | 54 |
int binc(int a, B) { return a+1; } |
54 | 55 |
|
55 | 56 |
typedef ReadMap<A, double> DoubleMap; |
56 | 57 |
typedef ReadWriteMap<A, double> DoubleWriteMap; |
57 | 58 |
typedef ReferenceMap<A, double, double&, const double&> DoubleRefMap; |
58 | 59 |
|
59 | 60 |
typedef ReadMap<A, bool> BoolMap; |
60 | 61 |
typedef ReadWriteMap<A, bool> BoolWriteMap; |
61 | 62 |
typedef ReferenceMap<A, bool, bool&, const bool&> BoolRefMap; |
62 | 63 |
|
63 | 64 |
int main() |
64 | 65 |
{ |
65 | 66 |
// Map concepts |
66 | 67 |
checkConcept<ReadMap<A,B>, ReadMap<A,B> >(); |
67 | 68 |
checkConcept<ReadMap<A,C>, ReadMap<A,C> >(); |
68 | 69 |
checkConcept<WriteMap<A,B>, WriteMap<A,B> >(); |
69 | 70 |
checkConcept<WriteMap<A,C>, WriteMap<A,C> >(); |
70 | 71 |
checkConcept<ReadWriteMap<A,B>, ReadWriteMap<A,B> >(); |
71 | 72 |
checkConcept<ReadWriteMap<A,C>, ReadWriteMap<A,C> >(); |
72 | 73 |
checkConcept<ReferenceMap<A,B,B&,const B&>, ReferenceMap<A,B,B&,const B&> >(); |
73 | 74 |
checkConcept<ReferenceMap<A,C,C&,const C&>, ReferenceMap<A,C,C&,const C&> >(); |
74 | 75 |
|
75 | 76 |
// NullMap |
76 | 77 |
{ |
77 | 78 |
checkConcept<ReadWriteMap<A,B>, NullMap<A,B> >(); |
78 | 79 |
NullMap<A,B> map1; |
79 | 80 |
NullMap<A,B> map2 = map1; |
80 | 81 |
map1 = nullMap<A,B>(); |
81 | 82 |
} |
82 | 83 |
|
83 | 84 |
// ConstMap |
84 | 85 |
{ |
85 | 86 |
checkConcept<ReadWriteMap<A,B>, ConstMap<A,B> >(); |
86 | 87 |
checkConcept<ReadWriteMap<A,C>, ConstMap<A,C> >(); |
87 | 88 |
ConstMap<A,B> map1; |
88 | 89 |
ConstMap<A,B> map2 = B(); |
89 | 90 |
ConstMap<A,B> map3 = map1; |
90 | 91 |
map1 = constMap<A>(B()); |
91 | 92 |
map1 = constMap<A,B>(); |
92 | 93 |
map1.setAll(B()); |
93 | 94 |
ConstMap<A,C> map4(C(1)); |
94 | 95 |
ConstMap<A,C> map5 = map4; |
95 | 96 |
map4 = constMap<A>(C(2)); |
96 | 97 |
map4.setAll(C(3)); |
97 | 98 |
|
98 | 99 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,int> >(); |
99 | 100 |
check(constMap<A>(10)[A()] == 10, "Something is wrong with ConstMap"); |
100 | 101 |
|
101 | 102 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,Const<int,10> > >(); |
102 | 103 |
ConstMap<A,Const<int,10> > map6; |
103 | 104 |
ConstMap<A,Const<int,10> > map7 = map6; |
104 | 105 |
map6 = constMap<A,int,10>(); |
105 | 106 |
map7 = constMap<A,Const<int,10> >(); |
106 | 107 |
check(map6[A()] == 10 && map7[A()] == 10, |
107 | 108 |
"Something is wrong with ConstMap"); |
108 | 109 |
} |
109 | 110 |
|
110 | 111 |
// IdentityMap |
111 | 112 |
{ |
112 | 113 |
checkConcept<ReadMap<A,A>, IdentityMap<A> >(); |
113 | 114 |
IdentityMap<A> map1; |
114 | 115 |
IdentityMap<A> map2 = map1; |
115 | 116 |
map1 = identityMap<A>(); |
116 | 117 |
|
117 | 118 |
checkConcept<ReadMap<double,double>, IdentityMap<double> >(); |
118 | 119 |
check(identityMap<double>()[1.0] == 1.0 && |
119 | 120 |
identityMap<double>()[3.14] == 3.14, |
120 | 121 |
"Something is wrong with IdentityMap"); |
121 | 122 |
} |
122 | 123 |
|
123 | 124 |
// RangeMap |
124 | 125 |
{ |
125 | 126 |
checkConcept<ReferenceMap<int,B,B&,const B&>, RangeMap<B> >(); |
126 | 127 |
RangeMap<B> map1; |
127 | 128 |
RangeMap<B> map2(10); |
128 | 129 |
RangeMap<B> map3(10,B()); |
129 | 130 |
RangeMap<B> map4 = map1; |
130 | 131 |
RangeMap<B> map5 = rangeMap<B>(); |
131 | 132 |
RangeMap<B> map6 = rangeMap<B>(10); |
132 | 133 |
RangeMap<B> map7 = rangeMap(10,B()); |
133 | 134 |
|
134 | 135 |
checkConcept< ReferenceMap<int, double, double&, const double&>, |
135 | 136 |
RangeMap<double> >(); |
136 | 137 |
std::vector<double> v(10, 0); |
137 | 138 |
v[5] = 100; |
138 | 139 |
RangeMap<double> map8(v); |
139 | 140 |
RangeMap<double> map9 = rangeMap(v); |
140 | 141 |
check(map9.size() == 10 && map9[2] == 0 && map9[5] == 100, |
141 | 142 |
"Something is wrong with RangeMap"); |
142 | 143 |
} |
143 | 144 |
|
144 | 145 |
// SparseMap |
145 | 146 |
{ |
146 | 147 |
checkConcept<ReferenceMap<A,B,B&,const B&>, SparseMap<A,B> >(); |
147 | 148 |
SparseMap<A,B> map1; |
148 | 149 |
SparseMap<A,B> map2 = B(); |
149 | 150 |
SparseMap<A,B> map3 = sparseMap<A,B>(); |
150 | 151 |
SparseMap<A,B> map4 = sparseMap<A>(B()); |
151 | 152 |
|
152 | 153 |
checkConcept< ReferenceMap<double, int, int&, const int&>, |
153 | 154 |
SparseMap<double, int> >(); |
154 | 155 |
std::map<double, int> m; |
155 | 156 |
SparseMap<double, int> map5(m); |
156 | 157 |
SparseMap<double, int> map6(m,10); |
157 | 158 |
SparseMap<double, int> map7 = sparseMap(m); |
158 | 159 |
SparseMap<double, int> map8 = sparseMap(m,10); |
159 | 160 |
|
160 | 161 |
check(map5[1.0] == 0 && map5[3.14] == 0 && |
161 | 162 |
map6[1.0] == 10 && map6[3.14] == 10, |
162 | 163 |
"Something is wrong with SparseMap"); |
163 | 164 |
map5[1.0] = map6[3.14] = 100; |
164 | 165 |
check(map5[1.0] == 100 && map5[3.14] == 0 && |
165 | 166 |
map6[1.0] == 10 && map6[3.14] == 100, |
166 | 167 |
"Something is wrong with SparseMap"); |
167 | 168 |
} |
168 | 169 |
|
169 | 170 |
// ComposeMap |
170 | 171 |
{ |
171 | 172 |
typedef ComposeMap<DoubleMap, ReadMap<B,A> > CompMap; |
172 | 173 |
checkConcept<ReadMap<B,double>, CompMap>(); |
173 | 174 |
CompMap map1 = CompMap(DoubleMap(),ReadMap<B,A>()); |
174 | 175 |
CompMap map2 = composeMap(DoubleMap(), ReadMap<B,A>()); |
175 | 176 |
|
176 | 177 |
SparseMap<double, bool> m1(false); m1[3.14] = true; |
177 | 178 |
RangeMap<double> m2(2); m2[0] = 3.0; m2[1] = 3.14; |
178 | 179 |
check(!composeMap(m1,m2)[0] && composeMap(m1,m2)[1], |
179 | 180 |
"Something is wrong with ComposeMap") |
180 | 181 |
} |
181 | 182 |
|
182 | 183 |
// CombineMap |
183 | 184 |
{ |
184 | 185 |
typedef CombineMap<DoubleMap, DoubleMap, std::plus<double> > CombMap; |
185 | 186 |
checkConcept<ReadMap<A,double>, CombMap>(); |
186 | 187 |
CombMap map1 = CombMap(DoubleMap(), DoubleMap()); |
187 | 188 |
CombMap map2 = combineMap(DoubleMap(), DoubleMap(), std::plus<double>()); |
188 | 189 |
|
189 | 190 |
check(combineMap(constMap<B,int,2>(), identityMap<B>(), &binc)[B()] == 3, |
190 | 191 |
"Something is wrong with CombineMap"); |
191 | 192 |
} |
192 | 193 |
|
193 | 194 |
// FunctorToMap, MapToFunctor |
194 | 195 |
{ |
195 | 196 |
checkConcept<ReadMap<A,B>, FunctorToMap<F,A,B> >(); |
196 | 197 |
checkConcept<ReadMap<A,B>, FunctorToMap<F> >(); |
197 | 198 |
FunctorToMap<F> map1; |
198 | 199 |
FunctorToMap<F> map2 = FunctorToMap<F>(F()); |
199 | 200 |
B b = functorToMap(F())[A()]; |
200 | 201 |
|
201 | 202 |
checkConcept<ReadMap<A,B>, MapToFunctor<ReadMap<A,B> > >(); |
202 | 203 |
MapToFunctor<ReadMap<A,B> > map = MapToFunctor<ReadMap<A,B> >(ReadMap<A,B>()); |
203 | 204 |
|
204 | 205 |
check(functorToMap(&func)[A()] == 3, |
205 | 206 |
"Something is wrong with FunctorToMap"); |
206 | 207 |
check(mapToFunctor(constMap<A,int>(2))(A()) == 2, |
207 | 208 |
"Something is wrong with MapToFunctor"); |
208 | 209 |
check(mapToFunctor(functorToMap(&func))(A()) == 3 && |
209 | 210 |
mapToFunctor(functorToMap(&func))[A()] == 3, |
210 | 211 |
"Something is wrong with FunctorToMap or MapToFunctor"); |
211 | 212 |
check(functorToMap(mapToFunctor(constMap<A,int>(2)))[A()] == 2, |
212 | 213 |
"Something is wrong with FunctorToMap or MapToFunctor"); |
213 | 214 |
} |
214 | 215 |
|
215 | 216 |
// ConvertMap |
216 | 217 |
{ |
217 | 218 |
checkConcept<ReadMap<double,double>, |
218 | 219 |
ConvertMap<ReadMap<double, int>, double> >(); |
219 | 220 |
ConvertMap<RangeMap<bool>, int> map1(rangeMap(1, true)); |
220 | 221 |
ConvertMap<RangeMap<bool>, int> map2 = convertMap<int>(rangeMap(2, false)); |
221 | 222 |
} |
222 | 223 |
|
223 | 224 |
// ForkMap |
224 | 225 |
{ |
225 | 226 |
checkConcept<DoubleWriteMap, ForkMap<DoubleWriteMap, DoubleWriteMap> >(); |
226 | 227 |
|
227 | 228 |
typedef RangeMap<double> RM; |
228 | 229 |
typedef SparseMap<int, double> SM; |
229 | 230 |
RM m1(10, -1); |
230 | 231 |
SM m2(-1); |
231 | 232 |
checkConcept<ReadWriteMap<int, double>, ForkMap<RM, SM> >(); |
232 | 233 |
checkConcept<ReadWriteMap<int, double>, ForkMap<SM, RM> >(); |
233 | 234 |
ForkMap<RM, SM> map1(m1,m2); |
234 | 235 |
ForkMap<SM, RM> map2 = forkMap(m2,m1); |
235 | 236 |
map2.set(5, 10); |
236 | 237 |
check(m1[1] == -1 && m1[5] == 10 && m2[1] == -1 && |
237 | 238 |
m2[5] == 10 && map2[1] == -1 && map2[5] == 10, |
238 | 239 |
"Something is wrong with ForkMap"); |
239 | 240 |
} |
240 | 241 |
|
241 | 242 |
// Arithmetic maps: |
242 | 243 |
// - AddMap, SubMap, MulMap, DivMap |
243 | 244 |
// - ShiftMap, ShiftWriteMap, ScaleMap, ScaleWriteMap |
244 | 245 |
// - NegMap, NegWriteMap, AbsMap |
245 | 246 |
{ |
246 | 247 |
checkConcept<DoubleMap, AddMap<DoubleMap,DoubleMap> >(); |
247 | 248 |
checkConcept<DoubleMap, SubMap<DoubleMap,DoubleMap> >(); |
248 | 249 |
checkConcept<DoubleMap, MulMap<DoubleMap,DoubleMap> >(); |
249 | 250 |
checkConcept<DoubleMap, DivMap<DoubleMap,DoubleMap> >(); |
250 | 251 |
|
251 | 252 |
ConstMap<int, double> c1(1.0), c2(3.14); |
252 | 253 |
IdentityMap<int> im; |
253 | 254 |
ConvertMap<IdentityMap<int>, double> id(im); |
254 | 255 |
check(addMap(c1,id)[0] == 1.0 && addMap(c1,id)[10] == 11.0, |
255 | 256 |
"Something is wrong with AddMap"); |
256 | 257 |
check(subMap(id,c1)[0] == -1.0 && subMap(id,c1)[10] == 9.0, |
257 | 258 |
"Something is wrong with SubMap"); |
258 | 259 |
check(mulMap(id,c2)[0] == 0 && mulMap(id,c2)[2] == 6.28, |
259 | 260 |
"Something is wrong with MulMap"); |
260 | 261 |
check(divMap(c2,id)[1] == 3.14 && divMap(c2,id)[2] == 1.57, |
261 | 262 |
"Something is wrong with DivMap"); |
262 | 263 |
|
263 | 264 |
checkConcept<DoubleMap, ShiftMap<DoubleMap> >(); |
264 | 265 |
checkConcept<DoubleWriteMap, ShiftWriteMap<DoubleWriteMap> >(); |
265 | 266 |
checkConcept<DoubleMap, ScaleMap<DoubleMap> >(); |
266 | 267 |
checkConcept<DoubleWriteMap, ScaleWriteMap<DoubleWriteMap> >(); |
267 | 268 |
checkConcept<DoubleMap, NegMap<DoubleMap> >(); |
268 | 269 |
checkConcept<DoubleWriteMap, NegWriteMap<DoubleWriteMap> >(); |
269 | 270 |
checkConcept<DoubleMap, AbsMap<DoubleMap> >(); |
270 | 271 |
|
271 | 272 |
check(shiftMap(id, 2.0)[1] == 3.0 && shiftMap(id, 2.0)[10] == 12.0, |
272 | 273 |
"Something is wrong with ShiftMap"); |
273 | 274 |
check(shiftWriteMap(id, 2.0)[1] == 3.0 && |
274 | 275 |
shiftWriteMap(id, 2.0)[10] == 12.0, |
275 | 276 |
"Something is wrong with ShiftWriteMap"); |
276 | 277 |
check(scaleMap(id, 2.0)[1] == 2.0 && scaleMap(id, 2.0)[10] == 20.0, |
277 | 278 |
"Something is wrong with ScaleMap"); |
278 | 279 |
check(scaleWriteMap(id, 2.0)[1] == 2.0 && |
279 | 280 |
scaleWriteMap(id, 2.0)[10] == 20.0, |
280 | 281 |
"Something is wrong with ScaleWriteMap"); |
281 | 282 |
check(negMap(id)[1] == -1.0 && negMap(id)[-10] == 10.0, |
282 | 283 |
"Something is wrong with NegMap"); |
283 | 284 |
check(negWriteMap(id)[1] == -1.0 && negWriteMap(id)[-10] == 10.0, |
284 | 285 |
"Something is wrong with NegWriteMap"); |
285 | 286 |
check(absMap(id)[1] == 1.0 && absMap(id)[-10] == 10.0, |
286 | 287 |
"Something is wrong with AbsMap"); |
287 | 288 |
} |
288 | 289 |
|
289 | 290 |
// Logical maps: |
290 | 291 |
// - TrueMap, FalseMap |
291 | 292 |
// - AndMap, OrMap |
292 | 293 |
// - NotMap, NotWriteMap |
293 | 294 |
// - EqualMap, LessMap |
294 | 295 |
{ |
295 | 296 |
checkConcept<BoolMap, TrueMap<A> >(); |
296 | 297 |
checkConcept<BoolMap, FalseMap<A> >(); |
297 | 298 |
checkConcept<BoolMap, AndMap<BoolMap,BoolMap> >(); |
298 | 299 |
checkConcept<BoolMap, OrMap<BoolMap,BoolMap> >(); |
299 | 300 |
checkConcept<BoolMap, NotMap<BoolMap> >(); |
300 | 301 |
checkConcept<BoolWriteMap, NotWriteMap<BoolWriteMap> >(); |
301 | 302 |
checkConcept<BoolMap, EqualMap<DoubleMap,DoubleMap> >(); |
302 | 303 |
checkConcept<BoolMap, LessMap<DoubleMap,DoubleMap> >(); |
303 | 304 |
|
304 | 305 |
TrueMap<int> tm; |
305 | 306 |
FalseMap<int> fm; |
306 | 307 |
RangeMap<bool> rm(2); |
307 | 308 |
rm[0] = true; rm[1] = false; |
308 | 309 |
check(andMap(tm,rm)[0] && !andMap(tm,rm)[1] && |
309 | 310 |
!andMap(fm,rm)[0] && !andMap(fm,rm)[1], |
310 | 311 |
"Something is wrong with AndMap"); |
311 | 312 |
check(orMap(tm,rm)[0] && orMap(tm,rm)[1] && |
312 | 313 |
orMap(fm,rm)[0] && !orMap(fm,rm)[1], |
313 | 314 |
"Something is wrong with OrMap"); |
314 | 315 |
check(!notMap(rm)[0] && notMap(rm)[1], |
315 | 316 |
"Something is wrong with NotMap"); |
316 | 317 |
check(!notWriteMap(rm)[0] && notWriteMap(rm)[1], |
317 | 318 |
"Something is wrong with NotWriteMap"); |
318 | 319 |
|
319 | 320 |
ConstMap<int, double> cm(2.0); |
320 | 321 |
IdentityMap<int> im; |
321 | 322 |
ConvertMap<IdentityMap<int>, double> id(im); |
322 | 323 |
check(lessMap(id,cm)[1] && !lessMap(id,cm)[2] && !lessMap(id,cm)[3], |
323 | 324 |
"Something is wrong with LessMap"); |
324 | 325 |
check(!equalMap(id,cm)[1] && equalMap(id,cm)[2] && !equalMap(id,cm)[3], |
325 | 326 |
"Something is wrong with EqualMap"); |
326 | 327 |
} |
327 | 328 |
|
328 | 329 |
// LoggerBoolMap |
329 | 330 |
{ |
330 | 331 |
typedef std::vector<int> vec; |
331 | 332 |
vec v1; |
332 | 333 |
vec v2(10); |
333 | 334 |
LoggerBoolMap<std::back_insert_iterator<vec> > |
334 | 335 |
map1(std::back_inserter(v1)); |
335 | 336 |
LoggerBoolMap<vec::iterator> map2(v2.begin()); |
336 | 337 |
map1.set(10, false); |
337 | 338 |
map1.set(20, true); map2.set(20, true); |
338 | 339 |
map1.set(30, false); map2.set(40, false); |
339 | 340 |
map1.set(50, true); map2.set(50, true); |
340 | 341 |
map1.set(60, true); map2.set(60, true); |
341 | 342 |
check(v1.size() == 3 && v2.size() == 10 && |
342 | 343 |
v1[0]==20 && v1[1]==50 && v1[2]==60 && |
343 | 344 |
v2[0]==20 && v2[1]==50 && v2[2]==60, |
344 | 345 |
"Something is wrong with LoggerBoolMap"); |
345 | 346 |
|
346 | 347 |
int i = 0; |
347 | 348 |
for ( LoggerBoolMap<vec::iterator>::Iterator it = map2.begin(); |
348 | 349 |
it != map2.end(); ++it ) |
349 | 350 |
check(v1[i++] == *it, "Something is wrong with LoggerBoolMap"); |
350 | 351 |
} |
351 | 352 |
|
353 |
// CrossRefMap |
|
354 |
{ |
|
355 |
typedef SmartDigraph Graph; |
|
356 |
DIGRAPH_TYPEDEFS(Graph); |
|
357 |
|
|
358 |
checkConcept<ReadWriteMap<Node, int>, |
|
359 |
CrossRefMap<Graph, Node, int> >(); |
|
360 |
|
|
361 |
Graph gr; |
|
362 |
typedef CrossRefMap<Graph, Node, char> CRMap; |
|
363 |
typedef CRMap::ValueIterator ValueIt; |
|
364 |
CRMap map(gr); |
|
365 |
|
|
366 |
Node n0 = gr.addNode(); |
|
367 |
Node n1 = gr.addNode(); |
|
368 |
Node n2 = gr.addNode(); |
|
369 |
|
|
370 |
map.set(n0, 'A'); |
|
371 |
map.set(n1, 'B'); |
|
372 |
map.set(n2, 'C'); |
|
373 |
map.set(n2, 'A'); |
|
374 |
map.set(n0, 'C'); |
|
375 |
|
|
376 |
check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A', |
|
377 |
"Wrong CrossRefMap"); |
|
378 |
check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap"); |
|
379 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap"); |
|
380 |
check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap"); |
|
381 |
|
|
382 |
ValueIt it = map.beginValue(); |
|
383 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
|
384 |
it == map.endValue(), "Wrong value iterator"); |
|
385 |
} |
|
386 |
|
|
387 |
// Iterable bool map |
|
388 |
{ |
|
389 |
typedef SmartGraph Graph; |
|
390 |
typedef SmartGraph::Node Item; |
|
391 |
|
|
392 |
typedef IterableBoolMap<SmartGraph, SmartGraph::Node> Ibm; |
|
393 |
checkConcept<ReferenceMap<Item, bool, bool&, const bool&>, Ibm>(); |
|
394 |
|
|
395 |
const int num = 10; |
|
396 |
Graph g; |
|
397 |
std::vector<Item> items; |
|
398 |
for (int i = 0; i < num; ++i) { |
|
399 |
items.push_back(g.addNode()); |
|
400 |
} |
|
401 |
|
|
402 |
Ibm map1(g, true); |
|
403 |
int n = 0; |
|
404 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) { |
|
405 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt"); |
|
406 |
++n; |
|
407 |
} |
|
408 |
check(n == num, "Wrong number"); |
|
409 |
|
|
410 |
n = 0; |
|
411 |
for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) { |
|
412 |
check(map1[static_cast<Item>(it)], "Wrong ItemIt for true"); |
|
413 |
++n; |
|
414 |
} |
|
415 |
check(n == num, "Wrong number"); |
|
416 |
check(Ibm::FalseIt(map1) == INVALID, "Wrong FalseIt"); |
|
417 |
check(Ibm::ItemIt(map1, false) == INVALID, "Wrong ItemIt for false"); |
|
418 |
|
|
419 |
map1[items[5]] = true; |
|
420 |
|
|
421 |
n = 0; |
|
422 |
for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) { |
|
423 |
check(map1[static_cast<Item>(it)], "Wrong ItemIt for true"); |
|
424 |
++n; |
|
425 |
} |
|
426 |
check(n == num, "Wrong number"); |
|
427 |
|
|
428 |
map1[items[num / 2]] = false; |
|
429 |
check(map1[items[num / 2]] == false, "Wrong map value"); |
|
430 |
|
|
431 |
n = 0; |
|
432 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) { |
|
433 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt for true"); |
|
434 |
++n; |
|
435 |
} |
|
436 |
check(n == num - 1, "Wrong number"); |
|
437 |
|
|
438 |
n = 0; |
|
439 |
for (Ibm::FalseIt it(map1); it != INVALID; ++it) { |
|
440 |
check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true"); |
|
441 |
++n; |
|
442 |
} |
|
443 |
check(n == 1, "Wrong number"); |
|
444 |
|
|
445 |
map1[items[0]] = false; |
|
446 |
check(map1[items[0]] == false, "Wrong map value"); |
|
447 |
|
|
448 |
map1[items[num - 1]] = false; |
|
449 |
check(map1[items[num - 1]] == false, "Wrong map value"); |
|
450 |
|
|
451 |
n = 0; |
|
452 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) { |
|
453 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt for true"); |
|
454 |
++n; |
|
455 |
} |
|
456 |
check(n == num - 3, "Wrong number"); |
|
457 |
check(map1.trueNum() == num - 3, "Wrong number"); |
|
458 |
|
|
459 |
n = 0; |
|
460 |
for (Ibm::FalseIt it(map1); it != INVALID; ++it) { |
|
461 |
check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true"); |
|
462 |
++n; |
|
463 |
} |
|
464 |
check(n == 3, "Wrong number"); |
|
465 |
check(map1.falseNum() == 3, "Wrong number"); |
|
466 |
} |
|
467 |
|
|
468 |
// Iterable int map |
|
469 |
{ |
|
470 |
typedef SmartGraph Graph; |
|
471 |
typedef SmartGraph::Node Item; |
|
472 |
typedef IterableIntMap<SmartGraph, SmartGraph::Node> Iim; |
|
473 |
|
|
474 |
checkConcept<ReferenceMap<Item, int, int&, const int&>, Iim>(); |
|
475 |
|
|
476 |
const int num = 10; |
|
477 |
Graph g; |
|
478 |
std::vector<Item> items; |
|
479 |
for (int i = 0; i < num; ++i) { |
|
480 |
items.push_back(g.addNode()); |
|
481 |
} |
|
482 |
|
|
483 |
Iim map1(g); |
|
484 |
check(map1.size() == 0, "Wrong size"); |
|
485 |
|
|
486 |
for (int i = 0; i < num; ++i) { |
|
487 |
map1[items[i]] = i; |
|
488 |
} |
|
489 |
check(map1.size() == num, "Wrong size"); |
|
490 |
|
|
491 |
for (int i = 0; i < num; ++i) { |
|
492 |
Iim::ItemIt it(map1, i); |
|
493 |
check(static_cast<Item>(it) == items[i], "Wrong value"); |
|
494 |
++it; |
|
495 |
check(static_cast<Item>(it) == INVALID, "Wrong value"); |
|
496 |
} |
|
497 |
|
|
498 |
for (int i = 0; i < num; ++i) { |
|
499 |
map1[items[i]] = i % 2; |
|
500 |
} |
|
501 |
check(map1.size() == 2, "Wrong size"); |
|
502 |
|
|
503 |
int n = 0; |
|
504 |
for (Iim::ItemIt it(map1, 0); it != INVALID; ++it) { |
|
505 |
check(map1[static_cast<Item>(it)] == 0, "Wrong value"); |
|
506 |
++n; |
|
507 |
} |
|
508 |
check(n == (num + 1) / 2, "Wrong number"); |
|
509 |
|
|
510 |
for (Iim::ItemIt it(map1, 1); it != INVALID; ++it) { |
|
511 |
check(map1[static_cast<Item>(it)] == 1, "Wrong value"); |
|
512 |
++n; |
|
513 |
} |
|
514 |
check(n == num, "Wrong number"); |
|
515 |
|
|
516 |
} |
|
517 |
|
|
518 |
// Iterable value map |
|
519 |
{ |
|
520 |
typedef SmartGraph Graph; |
|
521 |
typedef SmartGraph::Node Item; |
|
522 |
typedef IterableValueMap<SmartGraph, SmartGraph::Node, double> Ivm; |
|
523 |
|
|
524 |
checkConcept<ReadWriteMap<Item, double>, Ivm>(); |
|
525 |
|
|
526 |
const int num = 10; |
|
527 |
Graph g; |
|
528 |
std::vector<Item> items; |
|
529 |
for (int i = 0; i < num; ++i) { |
|
530 |
items.push_back(g.addNode()); |
|
531 |
} |
|
532 |
|
|
533 |
Ivm map1(g, 0.0); |
|
534 |
check(distance(map1.beginValue(), map1.endValue()) == 1, "Wrong size"); |
|
535 |
check(*map1.beginValue() == 0.0, "Wrong value"); |
|
536 |
|
|
537 |
for (int i = 0; i < num; ++i) { |
|
538 |
map1.set(items[i], static_cast<double>(i)); |
|
539 |
} |
|
540 |
check(distance(map1.beginValue(), map1.endValue()) == num, "Wrong size"); |
|
541 |
|
|
542 |
for (int i = 0; i < num; ++i) { |
|
543 |
Ivm::ItemIt it(map1, static_cast<double>(i)); |
|
544 |
check(static_cast<Item>(it) == items[i], "Wrong value"); |
|
545 |
++it; |
|
546 |
check(static_cast<Item>(it) == INVALID, "Wrong value"); |
|
547 |
} |
|
548 |
|
|
549 |
for (Ivm::ValueIterator vit = map1.beginValue(); |
|
550 |
vit != map1.endValue(); ++vit) { |
|
551 |
check(map1[static_cast<Item>(Ivm::ItemIt(map1, *vit))] == *vit, |
|
552 |
"Wrong ValueIterator"); |
|
553 |
} |
|
554 |
|
|
555 |
for (int i = 0; i < num; ++i) { |
|
556 |
map1.set(items[i], static_cast<double>(i % 2)); |
|
557 |
} |
|
558 |
check(distance(map1.beginValue(), map1.endValue()) == 2, "Wrong size"); |
|
559 |
|
|
560 |
int n = 0; |
|
561 |
for (Ivm::ItemIt it(map1, 0.0); it != INVALID; ++it) { |
|
562 |
check(map1[static_cast<Item>(it)] == 0.0, "Wrong value"); |
|
563 |
++n; |
|
564 |
} |
|
565 |
check(n == (num + 1) / 2, "Wrong number"); |
|
566 |
|
|
567 |
for (Ivm::ItemIt it(map1, 1.0); it != INVALID; ++it) { |
|
568 |
check(map1[static_cast<Item>(it)] == 1.0, "Wrong value"); |
|
569 |
++n; |
|
570 |
} |
|
571 |
check(n == num, "Wrong number"); |
|
572 |
|
|
573 |
} |
|
352 | 574 |
return 0; |
353 | 575 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
|
21 | 21 |
#include "test_tools.h" |
22 | 22 |
#include <lemon/smart_graph.h> |
23 | 23 |
#include <lemon/preflow.h> |
24 | 24 |
#include <lemon/concepts/digraph.h> |
25 | 25 |
#include <lemon/concepts/maps.h> |
26 | 26 |
#include <lemon/lgf_reader.h> |
27 | 27 |
#include <lemon/elevator.h> |
28 | 28 |
|
29 | 29 |
using namespace lemon; |
30 | 30 |
|
31 | 31 |
char test_lgf[] = |
32 | 32 |
"@nodes\n" |
33 | 33 |
"label\n" |
34 | 34 |
"0\n" |
35 | 35 |
"1\n" |
36 | 36 |
"2\n" |
37 | 37 |
"3\n" |
38 | 38 |
"4\n" |
39 | 39 |
"5\n" |
40 | 40 |
"6\n" |
41 | 41 |
"7\n" |
42 | 42 |
"8\n" |
43 | 43 |
"9\n" |
44 | 44 |
"@arcs\n" |
45 | 45 |
" label capacity\n" |
46 | 46 |
"0 1 0 20\n" |
47 | 47 |
"0 2 1 0\n" |
48 | 48 |
"1 1 2 3\n" |
49 | 49 |
"1 2 3 8\n" |
50 | 50 |
"1 3 4 8\n" |
51 | 51 |
"2 5 5 5\n" |
52 | 52 |
"3 2 6 5\n" |
53 | 53 |
"3 5 7 5\n" |
54 | 54 |
"3 6 8 5\n" |
55 | 55 |
"4 3 9 3\n" |
56 | 56 |
"5 7 10 3\n" |
57 | 57 |
"5 6 11 10\n" |
58 | 58 |
"5 8 12 10\n" |
59 | 59 |
"6 8 13 8\n" |
60 | 60 |
"8 9 14 20\n" |
61 | 61 |
"8 1 15 5\n" |
62 | 62 |
"9 5 16 5\n" |
63 | 63 |
"@attributes\n" |
64 | 64 |
"source 1\n" |
65 | 65 |
"target 8\n"; |
66 | 66 |
|
67 | 67 |
void checkPreflowCompile() |
68 | 68 |
{ |
69 | 69 |
typedef int VType; |
70 | 70 |
typedef concepts::Digraph Digraph; |
71 | 71 |
|
72 | 72 |
typedef Digraph::Node Node; |
73 | 73 |
typedef Digraph::Arc Arc; |
74 | 74 |
typedef concepts::ReadMap<Arc,VType> CapMap; |
75 | 75 |
typedef concepts::ReadWriteMap<Arc,VType> FlowMap; |
76 | 76 |
typedef concepts::WriteMap<Node,bool> CutMap; |
77 | 77 |
|
78 | 78 |
typedef Elevator<Digraph, Digraph::Node> Elev; |
79 | 79 |
typedef LinkedElevator<Digraph, Digraph::Node> LinkedElev; |
80 | 80 |
|
81 | 81 |
Digraph g; |
82 | 82 |
Node n; |
83 | 83 |
Arc e; |
84 | 84 |
CapMap cap; |
85 | 85 |
FlowMap flow; |
86 | 86 |
CutMap cut; |
87 | 87 |
VType v; |
88 | 88 |
bool b; |
89 | 89 |
|
90 | 90 |
typedef Preflow<Digraph, CapMap> |
91 | 91 |
::SetFlowMap<FlowMap> |
92 | 92 |
::SetElevator<Elev> |
93 | 93 |
::SetStandardElevator<LinkedElev> |
94 | 94 |
::Create PreflowType; |
95 | 95 |
PreflowType preflow_test(g, cap, n, n); |
96 | 96 |
const PreflowType& const_preflow_test = preflow_test; |
97 |
|
|
98 |
const PreflowType::Elevator& elev = const_preflow_test.elevator(); |
|
99 |
preflow_test.elevator(const_cast<PreflowType::Elevator&>(elev)); |
|
100 |
PreflowType::Tolerance tol = const_preflow_test.tolerance(); |
|
101 |
preflow_test.tolerance(tol); |
|
97 | 102 |
|
98 | 103 |
preflow_test |
99 | 104 |
.capacityMap(cap) |
100 | 105 |
.flowMap(flow) |
101 | 106 |
.source(n) |
102 | 107 |
.target(n); |
103 | 108 |
|
104 | 109 |
preflow_test.init(); |
105 | 110 |
preflow_test.init(cap); |
106 | 111 |
preflow_test.startFirstPhase(); |
107 | 112 |
preflow_test.startSecondPhase(); |
108 | 113 |
preflow_test.run(); |
109 | 114 |
preflow_test.runMinCut(); |
110 | 115 |
|
111 | 116 |
v = const_preflow_test.flowValue(); |
112 | 117 |
v = const_preflow_test.flow(e); |
113 | 118 |
const FlowMap& fm = const_preflow_test.flowMap(); |
114 | 119 |
b = const_preflow_test.minCut(n); |
115 | 120 |
const_preflow_test.minCutMap(cut); |
116 | 121 |
|
117 | 122 |
ignore_unused_variable_warning(fm); |
118 | 123 |
} |
119 | 124 |
|
120 | 125 |
int cutValue (const SmartDigraph& g, |
121 | 126 |
const SmartDigraph::NodeMap<bool>& cut, |
122 | 127 |
const SmartDigraph::ArcMap<int>& cap) { |
123 | 128 |
|
124 | 129 |
int c=0; |
125 | 130 |
for(SmartDigraph::ArcIt e(g); e!=INVALID; ++e) { |
126 | 131 |
if (cut[g.source(e)] && !cut[g.target(e)]) c+=cap[e]; |
127 | 132 |
} |
128 | 133 |
return c; |
129 | 134 |
} |
130 | 135 |
|
131 | 136 |
bool checkFlow(const SmartDigraph& g, |
132 | 137 |
const SmartDigraph::ArcMap<int>& flow, |
133 | 138 |
const SmartDigraph::ArcMap<int>& cap, |
134 | 139 |
SmartDigraph::Node s, SmartDigraph::Node t) { |
135 | 140 |
|
136 | 141 |
for (SmartDigraph::ArcIt e(g); e != INVALID; ++e) { |
137 | 142 |
if (flow[e] < 0 || flow[e] > cap[e]) return false; |
138 | 143 |
} |
139 | 144 |
|
140 | 145 |
for (SmartDigraph::NodeIt n(g); n != INVALID; ++n) { |
141 | 146 |
if (n == s || n == t) continue; |
142 | 147 |
int sum = 0; |
143 | 148 |
for (SmartDigraph::OutArcIt e(g, n); e != INVALID; ++e) { |
144 | 149 |
sum += flow[e]; |
145 | 150 |
} |
146 | 151 |
for (SmartDigraph::InArcIt e(g, n); e != INVALID; ++e) { |
147 | 152 |
sum -= flow[e]; |
148 | 153 |
} |
149 | 154 |
if (sum != 0) return false; |
150 | 155 |
} |
151 | 156 |
return true; |
152 | 157 |
} |
153 | 158 |
|
154 | 159 |
int main() { |
155 | 160 |
|
156 | 161 |
typedef SmartDigraph Digraph; |
157 | 162 |
|
158 | 163 |
typedef Digraph::Node Node; |
159 | 164 |
typedef Digraph::NodeIt NodeIt; |
160 | 165 |
typedef Digraph::ArcIt ArcIt; |
161 | 166 |
typedef Digraph::ArcMap<int> CapMap; |
162 | 167 |
typedef Digraph::ArcMap<int> FlowMap; |
163 | 168 |
typedef Digraph::NodeMap<bool> CutMap; |
164 | 169 |
|
165 | 170 |
typedef Preflow<Digraph, CapMap> PType; |
166 | 171 |
|
167 | 172 |
Digraph g; |
168 | 173 |
Node s, t; |
169 | 174 |
CapMap cap(g); |
170 | 175 |
std::istringstream input(test_lgf); |
171 | 176 |
DigraphReader<Digraph>(g,input). |
172 | 177 |
arcMap("capacity", cap). |
173 | 178 |
node("source",s). |
174 | 179 |
node("target",t). |
175 | 180 |
run(); |
176 | 181 |
|
177 | 182 |
PType preflow_test(g, cap, s, t); |
178 | 183 |
preflow_test.run(); |
179 | 184 |
|
180 | 185 |
check(checkFlow(g, preflow_test.flowMap(), cap, s, t), |
181 | 186 |
"The flow is not feasible."); |
182 | 187 |
|
183 | 188 |
CutMap min_cut(g); |
184 | 189 |
preflow_test.minCutMap(min_cut); |
185 | 190 |
int min_cut_value=cutValue(g,min_cut,cap); |
186 | 191 |
|
187 | 192 |
check(preflow_test.flowValue() == min_cut_value, |
188 | 193 |
"The max flow value is not equal to the three min cut values."); |
189 | 194 |
|
190 | 195 |
FlowMap flow(g); |
191 | 196 |
for(ArcIt e(g); e!=INVALID; ++e) flow[e] = preflow_test.flowMap()[e]; |
192 | 197 |
|
193 | 198 |
int flow_value=preflow_test.flowValue(); |
194 | 199 |
|
195 | 200 |
for(ArcIt e(g); e!=INVALID; ++e) cap[e]=2*cap[e]; |
196 | 201 |
preflow_test.init(flow); |
197 | 202 |
preflow_test.startFirstPhase(); |
198 | 203 |
|
199 | 204 |
CutMap min_cut1(g); |
200 | 205 |
preflow_test.minCutMap(min_cut1); |
201 | 206 |
min_cut_value=cutValue(g,min_cut1,cap); |
202 | 207 |
|
203 | 208 |
check(preflow_test.flowValue() == min_cut_value && |
204 | 209 |
min_cut_value == 2*flow_value, |
205 | 210 |
"The max flow value or the min cut value is wrong."); |
206 | 211 |
|
207 | 212 |
preflow_test.startSecondPhase(); |
208 | 213 |
|
209 | 214 |
check(checkFlow(g, preflow_test.flowMap(), cap, s, t), |
210 | 215 |
"The flow is not feasible."); |
211 | 216 |
|
212 | 217 |
CutMap min_cut2(g); |
213 | 218 |
preflow_test.minCutMap(min_cut2); |
214 | 219 |
min_cut_value=cutValue(g,min_cut2,cap); |
215 | 220 |
|
216 | 221 |
check(preflow_test.flowValue() == min_cut_value && |
217 | 222 |
min_cut_value == 2*flow_value, |
218 | 223 |
"The max flow value or the three min cut values were not doubled"); |
219 | 224 |
|
220 | 225 |
|
221 | 226 |
preflow_test.flowMap(flow); |
222 | 227 |
|
223 | 228 |
NodeIt tmp1(g,s); |
224 | 229 |
++tmp1; |
225 | 230 |
if ( tmp1 != INVALID ) s=tmp1; |
226 | 231 |
|
227 | 232 |
NodeIt tmp2(g,t); |
228 | 233 |
++tmp2; |
229 | 234 |
if ( tmp2 != INVALID ) t=tmp2; |
230 | 235 |
|
231 | 236 |
preflow_test.source(s); |
232 | 237 |
preflow_test.target(t); |
233 | 238 |
|
234 | 239 |
preflow_test.run(); |
235 | 240 |
|
236 | 241 |
CutMap min_cut3(g); |
237 | 242 |
preflow_test.minCutMap(min_cut3); |
238 | 243 |
min_cut_value=cutValue(g,min_cut3,cap); |
239 | 244 |
|
240 | 245 |
|
241 | 246 |
check(preflow_test.flowValue() == min_cut_value, |
242 | 247 |
"The max flow value or the three min cut values are incorrect."); |
243 | 248 |
|
244 | 249 |
return 0; |
245 | 250 |
} |
1 | 1 |
#!/bin/bash |
2 | 2 |
|
3 | 3 |
set -e |
4 | 4 |
|
5 | 5 |
if [ $# -eq 0 -o x$1 = "x-h" -o x$1 = "x-help" -o x$1 = "x--help" ]; then |
6 | 6 |
echo "Usage:" |
7 | 7 |
echo " $0 source-file(s)" |
8 | 8 |
exit |
9 | 9 |
fi |
10 | 10 |
|
11 | 11 |
for i in $@ |
12 | 12 |
do |
13 | 13 |
echo Update $i... |
14 | 14 |
TMP=`mktemp` |
15 | 15 |
sed -e "s/\<undirected graph\>/_gr_aph_label_/g"\ |
16 | 16 |
-e "s/\<undirected graphs\>/_gr_aph_label_s/g"\ |
17 | 17 |
-e "s/\<undirected edge\>/_ed_ge_label_/g"\ |
18 | 18 |
-e "s/\<undirected edges\>/_ed_ge_label_s/g"\ |
19 | 19 |
-e "s/\<directed graph\>/_digr_aph_label_/g"\ |
20 | 20 |
-e "s/\<directed graphs\>/_digr_aph_label_s/g"\ |
21 | 21 |
-e "s/\<directed edge\>/_ar_c_label_/g"\ |
22 | 22 |
-e "s/\<directed edges\>/_ar_c_label_s/g"\ |
23 | 23 |
-e "s/UGraph/_Gr_aph_label_/g"\ |
24 | 24 |
-e "s/u[Gg]raph/_gr_aph_label_/g"\ |
25 | 25 |
-e "s/Graph\>/_Digr_aph_label_/g"\ |
26 | 26 |
-e "s/\<graph\>/_digr_aph_label_/g"\ |
27 | 27 |
-e "s/Graphs\>/_Digr_aph_label_s/g"\ |
28 | 28 |
-e "s/\<graphs\>/_digr_aph_label_s/g"\ |
29 | 29 |
-e "s/\([Gg]\)raph\([a-z]\)/_\1r_aph_label_\2/g"\ |
30 | 30 |
-e "s/\([a-z_]\)graph/\1_gr_aph_label_/g"\ |
31 | 31 |
-e "s/Graph/_Digr_aph_label_/g"\ |
32 | 32 |
-e "s/graph/_digr_aph_label_/g"\ |
33 | 33 |
-e "s/UEdge/_Ed_ge_label_/g"\ |
34 | 34 |
-e "s/u[Ee]dge/_ed_ge_label_/g"\ |
35 | 35 |
-e "s/IncEdgeIt/_In_cEd_geIt_label_/g"\ |
36 | 36 |
-e "s/Edge\>/_Ar_c_label_/g"\ |
37 | 37 |
-e "s/\<edge\>/_ar_c_label_/g"\ |
38 |
-e "s/_edge\>/ |
|
38 |
-e "s/_edge\>/__ar_c_label_/g"\ |
|
39 | 39 |
-e "s/Edges\>/_Ar_c_label_s/g"\ |
40 | 40 |
-e "s/\<edges\>/_ar_c_label_s/g"\ |
41 |
-e "s/_edges\>/ |
|
41 |
-e "s/_edges\>/__ar_c_label_s/g"\ |
|
42 | 42 |
-e "s/\([Ee]\)dge\([a-z]\)/_\1d_ge_label_\2/g"\ |
43 | 43 |
-e "s/\([a-z]\)edge/\1_ed_ge_label_/g"\ |
44 | 44 |
-e "s/Edge/_Ar_c_label_/g"\ |
45 | 45 |
-e "s/edge/_ar_c_label_/g"\ |
46 | 46 |
-e "s/A[Nn]ode/_Re_d_label_/g"\ |
47 | 47 |
-e "s/B[Nn]ode/_Blu_e_label_/g"\ |
48 | 48 |
-e "s/A-[Nn]ode/_Re_d_label_/g"\ |
49 | 49 |
-e "s/B-[Nn]ode/_Blu_e_label_/g"\ |
50 | 50 |
-e "s/a[Nn]ode/_re_d_label_/g"\ |
51 | 51 |
-e "s/b[Nn]ode/_blu_e_label_/g"\ |
52 | 52 |
-e "s/\<UGRAPH_TYPEDEFS\([ \t]*([ \t]*\)typename[ \t]/TEMPLATE__GR_APH_TY_PEDE_FS_label_\1/g"\ |
53 | 53 |
-e "s/\<GRAPH_TYPEDEFS\([ \t]*([ \t]*\)typename[ \t]/TEMPLATE__DIGR_APH_TY_PEDE_FS_label_\1/g"\ |
54 | 54 |
-e "s/\<UGRAPH_TYPEDEFS\>/_GR_APH_TY_PEDE_FS_label_/g"\ |
55 | 55 |
-e "s/\<GRAPH_TYPEDEFS\>/_DIGR_APH_TY_PEDE_FS_label_/g"\ |
56 | 56 |
-e "s/_Digr_aph_label_/Digraph/g"\ |
57 | 57 |
-e "s/_digr_aph_label_/digraph/g"\ |
58 | 58 |
-e "s/_Gr_aph_label_/Graph/g"\ |
59 | 59 |
-e "s/_gr_aph_label_/graph/g"\ |
60 | 60 |
-e "s/_Ar_c_label_/Arc/g"\ |
61 | 61 |
-e "s/_ar_c_label_/arc/g"\ |
62 | 62 |
-e "s/_Ed_ge_label_/Edge/g"\ |
63 | 63 |
-e "s/_ed_ge_label_/edge/g"\ |
64 | 64 |
-e "s/_In_cEd_geIt_label_/IncEdgeIt/g"\ |
65 | 65 |
-e "s/_Re_d_label_/Red/g"\ |
66 | 66 |
-e "s/_Blu_e_label_/Blue/g"\ |
67 | 67 |
-e "s/_re_d_label_/red/g"\ |
68 | 68 |
-e "s/_blu_e_label_/blue/g"\ |
69 | 69 |
-e "s/_GR_APH_TY_PEDE_FS_label_/GRAPH_TYPEDEFS/g"\ |
70 | 70 |
-e "s/_DIGR_APH_TY_PEDE_FS_label_/DIGRAPH_TYPEDEFS/g"\ |
71 |
-e "s/\<digraph_adaptor\.h\>/adaptors.h/g"\ |
|
72 |
-e "s/\<digraph_utils\.h\>/core.h/g"\ |
|
73 |
-e "s/\<digraph_reader\.h\>/lgf_reader.h/g"\ |
|
74 |
-e "s/\<digraph_writer\.h\>/lgf_writer.h/g"\ |
|
75 |
-e "s/\<topology\.h\>/connectivity.h/g"\ |
|
71 | 76 |
-e "s/DigraphToEps/GraphToEps/g"\ |
72 | 77 |
-e "s/digraphToEps/graphToEps/g"\ |
73 | 78 |
-e "s/\<DefPredMap\>/SetPredMap/g"\ |
74 | 79 |
-e "s/\<DefDistMap\>/SetDistMap/g"\ |
75 | 80 |
-e "s/\<DefReachedMap\>/SetReachedMap/g"\ |
76 | 81 |
-e "s/\<DefProcessedMap\>/SetProcessedMap/g"\ |
77 | 82 |
-e "s/\<DefHeap\>/SetHeap/g"\ |
78 | 83 |
-e "s/\<DefStandardHeap\>/SetStandradHeap/g"\ |
79 | 84 |
-e "s/\<DefOperationTraits\>/SetOperationTraits/g"\ |
80 | 85 |
-e "s/\<DefProcessedMapToBeDefaultMap\>/SetStandardProcessedMap/g"\ |
81 | 86 |
-e "s/\<copyGraph\>/graphCopy/g"\ |
82 | 87 |
-e "s/\<copyDigraph\>/digraphCopy/g"\ |
83 | 88 |
-e "s/\<HyperCubeDigraph\>/HypercubeGraph/g"\ |
84 | 89 |
-e "s/\<IntegerMap\>/RangeMap/g"\ |
85 | 90 |
-e "s/\<integerMap\>/rangeMap/g"\ |
86 | 91 |
-e "s/\<\([sS]\)tdMap\>/\1parseMap/g"\ |
87 | 92 |
-e "s/\<\([Ff]\)unctorMap\>/\1unctorToMap/g"\ |
88 | 93 |
-e "s/\<\([Mm]\)apFunctor\>/\1apToFunctor/g"\ |
89 | 94 |
-e "s/\<\([Ff]\)orkWriteMap\>/\1orkMap/g"\ |
90 | 95 |
-e "s/\<StoreBoolMap\>/LoggerBoolMap/g"\ |
91 | 96 |
-e "s/\<storeBoolMap\>/loggerBoolMap/g"\ |
92 | 97 |
-e "s/\<InvertableMap\>/CrossRefMap/g"\ |
93 | 98 |
-e "s/\<invertableMap\>/crossRefMap/g"\ |
94 | 99 |
-e "s/\<DescriptorMap\>/RangeIdMap/g"\ |
95 | 100 |
-e "s/\<descriptorMap\>/rangeIdMap/g"\ |
96 | 101 |
-e "s/\<BoundingBox\>/Box/g"\ |
97 | 102 |
-e "s/\<readNauty\>/readNautyGraph/g"\ |
98 | 103 |
-e "s/\<RevDigraphAdaptor\>/ReverseDigraph/g"\ |
99 | 104 |
-e "s/\<revDigraphAdaptor\>/reverseDigraph/g"\ |
100 | 105 |
-e "s/\<SubDigraphAdaptor\>/SubDigraph/g"\ |
101 | 106 |
-e "s/\<subDigraphAdaptor\>/subDigraph/g"\ |
102 | 107 |
-e "s/\<SubGraphAdaptor\>/SubGraph/g"\ |
103 | 108 |
-e "s/\<subGraphAdaptor\>/subGraph/g"\ |
104 | 109 |
-e "s/\<NodeSubDigraphAdaptor\>/FilterNodes/g"\ |
105 | 110 |
-e "s/\<nodeSubDigraphAdaptor\>/filterNodes/g"\ |
106 | 111 |
-e "s/\<ArcSubDigraphAdaptor\>/FilterArcs/g"\ |
107 | 112 |
-e "s/\<arcSubDigraphAdaptor\>/filterArcs/g"\ |
108 | 113 |
-e "s/\<UndirDigraphAdaptor\>/Undirector/g"\ |
109 | 114 |
-e "s/\<undirDigraphAdaptor\>/undirector/g"\ |
110 | 115 |
-e "s/\<ResDigraphAdaptor\>/ResidualDigraph/g"\ |
111 | 116 |
-e "s/\<resDigraphAdaptor\>/residualDigraph/g"\ |
112 | 117 |
-e "s/\<SplitDigraphAdaptor\>/SplitNodes/g"\ |
113 | 118 |
-e "s/\<splitDigraphAdaptor\>/splitNodes/g"\ |
114 | 119 |
-e "s/\<SubGraphAdaptor\>/SubGraph/g"\ |
115 | 120 |
-e "s/\<subGraphAdaptor\>/subGraph/g"\ |
116 | 121 |
-e "s/\<NodeSubGraphAdaptor\>/FilterNodes/g"\ |
117 | 122 |
-e "s/\<nodeSubGraphAdaptor\>/filterNodes/g"\ |
118 | 123 |
-e "s/\<ArcSubGraphAdaptor\>/FilterEdges/g"\ |
119 | 124 |
-e "s/\<arcSubGraphAdaptor\>/filterEdges/g"\ |
120 | 125 |
-e "s/\<DirGraphAdaptor\>/Orienter/g"\ |
121 | 126 |
-e "s/\<dirGraphAdaptor\>/orienter/g"\ |
122 | 127 |
-e "s/\<LpCplex\>/CplexLp/g"\ |
123 | 128 |
-e "s/\<MipCplex\>/CplexMip/g"\ |
124 | 129 |
-e "s/\<LpGlpk\>/GlpkLp/g"\ |
125 | 130 |
-e "s/\<MipGlpk\>/GlpkMip/g"\ |
126 | 131 |
-e "s/\<LpSoplex\>/SoplexLp/g"\ |
127 | 132 |
<$i > $TMP |
128 | 133 |
mv $TMP $i |
129 | 134 |
done |
0 comments (0 inline)