0
4
0
... | ... |
@@ -1648,105 +1648,105 @@ |
1648 | 1648 |
Node start(const NM &nm) { |
1649 | 1649 |
Node rnode = INVALID; |
1650 | 1650 |
while ( !emptyQueue() && rnode == INVALID ) { |
1651 | 1651 |
processNextNode(nm, rnode); |
1652 | 1652 |
} |
1653 | 1653 |
return rnode; |
1654 | 1654 |
} |
1655 | 1655 |
|
1656 | 1656 |
/// \brief Runs the algorithm from the given source node. |
1657 | 1657 |
/// |
1658 | 1658 |
/// This method runs the %BFS algorithm from node \c s |
1659 | 1659 |
/// in order to compute the shortest path to each node. |
1660 | 1660 |
/// |
1661 | 1661 |
/// The algorithm computes |
1662 | 1662 |
/// - the shortest path tree, |
1663 | 1663 |
/// - the distance of each node from the root. |
1664 | 1664 |
/// |
1665 | 1665 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
1666 | 1666 |
///\code |
1667 | 1667 |
/// b.init(); |
1668 | 1668 |
/// b.addSource(s); |
1669 | 1669 |
/// b.start(); |
1670 | 1670 |
///\endcode |
1671 | 1671 |
void run(Node s) { |
1672 | 1672 |
init(); |
1673 | 1673 |
addSource(s); |
1674 | 1674 |
start(); |
1675 | 1675 |
} |
1676 | 1676 |
|
1677 | 1677 |
/// \brief Finds the shortest path between \c s and \c t. |
1678 | 1678 |
/// |
1679 | 1679 |
/// This method runs the %BFS algorithm from node \c s |
1680 | 1680 |
/// in order to compute the shortest path to node \c t |
1681 | 1681 |
/// (it stops searching when \c t is processed). |
1682 | 1682 |
/// |
1683 | 1683 |
/// \return \c true if \c t is reachable form \c s. |
1684 | 1684 |
/// |
1685 | 1685 |
/// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
1686 | 1686 |
/// shortcut of the following code. |
1687 | 1687 |
///\code |
1688 | 1688 |
/// b.init(); |
1689 | 1689 |
/// b.addSource(s); |
1690 | 1690 |
/// b.start(t); |
1691 | 1691 |
///\endcode |
1692 | 1692 |
bool run(Node s,Node t) { |
1693 | 1693 |
init(); |
1694 | 1694 |
addSource(s); |
1695 | 1695 |
start(t); |
1696 | 1696 |
return reached(t); |
1697 | 1697 |
} |
1698 | 1698 |
|
1699 | 1699 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1700 | 1700 |
/// |
1701 | 1701 |
/// This method runs the %BFS algorithm in order to |
1702 | 1702 |
/// compute the shortest path to each node. |
1703 | 1703 |
/// |
1704 | 1704 |
/// The algorithm computes |
1705 | 1705 |
/// - the shortest path tree (forest), |
1706 | 1706 |
/// - the distance of each node from the root(s). |
1707 | 1707 |
/// |
1708 | 1708 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
1709 | 1709 |
///\code |
1710 | 1710 |
/// b.init(); |
1711 | 1711 |
/// for (NodeIt n(gr); n != INVALID; ++n) { |
1712 | 1712 |
/// if (!b.reached(n)) { |
1713 | 1713 |
/// b.addSource(n); |
1714 | 1714 |
/// b.start(); |
1715 | 1715 |
/// } |
1716 | 1716 |
/// } |
1717 | 1717 |
///\endcode |
1718 | 1718 |
void run() { |
1719 | 1719 |
init(); |
1720 | 1720 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1721 | 1721 |
if (!reached(it)) { |
1722 | 1722 |
addSource(it); |
1723 | 1723 |
start(); |
1724 | 1724 |
} |
1725 | 1725 |
} |
1726 | 1726 |
} |
1727 | 1727 |
|
1728 | 1728 |
///@} |
1729 | 1729 |
|
1730 | 1730 |
/// \name Query Functions |
1731 | 1731 |
/// The results of the BFS algorithm can be obtained using these |
1732 | 1732 |
/// functions.\n |
1733 | 1733 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
1734 | 1734 |
/// before using them. |
1735 | 1735 |
|
1736 | 1736 |
///@{ |
1737 | 1737 |
|
1738 | 1738 |
/// \brief Checks if a node is reached from the root(s). |
1739 | 1739 |
/// |
1740 | 1740 |
/// Returns \c true if \c v is reached from the root(s). |
1741 | 1741 |
/// |
1742 | 1742 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
1743 | 1743 |
/// must be called before using this function. |
1744 |
bool reached(Node v) { return (*_reached)[v]; } |
|
1744 |
bool reached(Node v) const { return (*_reached)[v]; } |
|
1745 | 1745 |
|
1746 | 1746 |
///@} |
1747 | 1747 |
|
1748 | 1748 |
}; |
1749 | 1749 |
|
1750 | 1750 |
} //END OF NAMESPACE LEMON |
1751 | 1751 |
|
1752 | 1752 |
#endif |
... | ... |
@@ -326,193 +326,193 @@ |
326 | 326 |
_node_num = _el = countNodes(_g); |
327 | 327 |
|
328 | 328 |
if (!_flow) { |
329 | 329 |
_flow = Traits::createFlowMap(_g); |
330 | 330 |
_local_flow = true; |
331 | 331 |
} |
332 | 332 |
if (!_level) { |
333 | 333 |
_level = Traits::createElevator(_g, _node_num); |
334 | 334 |
_local_level = true; |
335 | 335 |
} |
336 | 336 |
if (!_excess) { |
337 | 337 |
_excess = new ExcessMap(_g); |
338 | 338 |
} |
339 | 339 |
} |
340 | 340 |
|
341 | 341 |
void destroyStructures() { |
342 | 342 |
if (_local_flow) { |
343 | 343 |
delete _flow; |
344 | 344 |
} |
345 | 345 |
if (_local_level) { |
346 | 346 |
delete _level; |
347 | 347 |
} |
348 | 348 |
if (_excess) { |
349 | 349 |
delete _excess; |
350 | 350 |
} |
351 | 351 |
} |
352 | 352 |
|
353 | 353 |
public: |
354 | 354 |
|
355 | 355 |
/// Sets the lower bound capacity map. |
356 | 356 |
|
357 | 357 |
/// Sets the lower bound capacity map. |
358 | 358 |
/// \return <tt>(*this)</tt> |
359 | 359 |
Circulation& lowerCapMap(const LCapMap& map) { |
360 | 360 |
_lo = ↦ |
361 | 361 |
return *this; |
362 | 362 |
} |
363 | 363 |
|
364 | 364 |
/// Sets the upper bound capacity map. |
365 | 365 |
|
366 | 366 |
/// Sets the upper bound capacity map. |
367 | 367 |
/// \return <tt>(*this)</tt> |
368 | 368 |
Circulation& upperCapMap(const LCapMap& map) { |
369 | 369 |
_up = ↦ |
370 | 370 |
return *this; |
371 | 371 |
} |
372 | 372 |
|
373 | 373 |
/// Sets the lower bound map for the supply of the nodes. |
374 | 374 |
|
375 | 375 |
/// Sets the lower bound map for the supply of the nodes. |
376 | 376 |
/// \return <tt>(*this)</tt> |
377 | 377 |
Circulation& deltaMap(const DeltaMap& map) { |
378 | 378 |
_delta = ↦ |
379 | 379 |
return *this; |
380 | 380 |
} |
381 | 381 |
|
382 | 382 |
/// \brief Sets the flow map. |
383 | 383 |
/// |
384 | 384 |
/// Sets the flow map. |
385 | 385 |
/// If you don't use this function before calling \ref run() or |
386 | 386 |
/// \ref init(), an instance will be allocated automatically. |
387 | 387 |
/// The destructor deallocates this automatically allocated map, |
388 | 388 |
/// of course. |
389 | 389 |
/// \return <tt>(*this)</tt> |
390 | 390 |
Circulation& flowMap(FlowMap& map) { |
391 | 391 |
if (_local_flow) { |
392 | 392 |
delete _flow; |
393 | 393 |
_local_flow = false; |
394 | 394 |
} |
395 | 395 |
_flow = ↦ |
396 | 396 |
return *this; |
397 | 397 |
} |
398 | 398 |
|
399 | 399 |
/// \brief Sets the elevator used by algorithm. |
400 | 400 |
/// |
401 | 401 |
/// Sets the elevator used by algorithm. |
402 | 402 |
/// If you don't use this function before calling \ref run() or |
403 | 403 |
/// \ref init(), an instance will be allocated automatically. |
404 | 404 |
/// The destructor deallocates this automatically allocated elevator, |
405 | 405 |
/// of course. |
406 | 406 |
/// \return <tt>(*this)</tt> |
407 | 407 |
Circulation& elevator(Elevator& elevator) { |
408 | 408 |
if (_local_level) { |
409 | 409 |
delete _level; |
410 | 410 |
_local_level = false; |
411 | 411 |
} |
412 | 412 |
_level = &elevator; |
413 | 413 |
return *this; |
414 | 414 |
} |
415 | 415 |
|
416 | 416 |
/// \brief Returns a const reference to the elevator. |
417 | 417 |
/// |
418 | 418 |
/// Returns a const reference to the elevator. |
419 | 419 |
/// |
420 | 420 |
/// \pre Either \ref run() or \ref init() must be called before |
421 | 421 |
/// using this function. |
422 |
const Elevator& elevator() { |
|
422 |
const Elevator& elevator() const { |
|
423 | 423 |
return *_level; |
424 | 424 |
} |
425 | 425 |
|
426 | 426 |
/// \brief Sets the tolerance used by algorithm. |
427 | 427 |
/// |
428 | 428 |
/// Sets the tolerance used by algorithm. |
429 | 429 |
Circulation& tolerance(const Tolerance& tolerance) const { |
430 | 430 |
_tol = tolerance; |
431 | 431 |
return *this; |
432 | 432 |
} |
433 | 433 |
|
434 | 434 |
/// \brief Returns a const reference to the tolerance. |
435 | 435 |
/// |
436 | 436 |
/// Returns a const reference to the tolerance. |
437 | 437 |
const Tolerance& tolerance() const { |
438 | 438 |
return tolerance; |
439 | 439 |
} |
440 | 440 |
|
441 | 441 |
/// \name Execution Control |
442 | 442 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
443 | 443 |
/// If you need more control on the initial solution or the execution, |
444 | 444 |
/// first you have to call one of the \ref init() functions, then |
445 | 445 |
/// the \ref start() function. |
446 | 446 |
|
447 | 447 |
///@{ |
448 | 448 |
|
449 | 449 |
/// Initializes the internal data structures. |
450 | 450 |
|
451 | 451 |
/// Initializes the internal data structures and sets all flow values |
452 | 452 |
/// to the lower bound. |
453 | 453 |
void init() |
454 | 454 |
{ |
455 | 455 |
createStructures(); |
456 | 456 |
|
457 | 457 |
for(NodeIt n(_g);n!=INVALID;++n) { |
458 | 458 |
_excess->set(n, (*_delta)[n]); |
459 | 459 |
} |
460 | 460 |
|
461 | 461 |
for (ArcIt e(_g);e!=INVALID;++e) { |
462 | 462 |
_flow->set(e, (*_lo)[e]); |
463 | 463 |
_excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_flow)[e]); |
464 | 464 |
_excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_flow)[e]); |
465 | 465 |
} |
466 | 466 |
|
467 | 467 |
// global relabeling tested, but in general case it provides |
468 | 468 |
// worse performance for random digraphs |
469 | 469 |
_level->initStart(); |
470 | 470 |
for(NodeIt n(_g);n!=INVALID;++n) |
471 | 471 |
_level->initAddItem(n); |
472 | 472 |
_level->initFinish(); |
473 | 473 |
for(NodeIt n(_g);n!=INVALID;++n) |
474 | 474 |
if(_tol.positive((*_excess)[n])) |
475 | 475 |
_level->activate(n); |
476 | 476 |
} |
477 | 477 |
|
478 | 478 |
/// Initializes the internal data structures using a greedy approach. |
479 | 479 |
|
480 | 480 |
/// Initializes the internal data structures using a greedy approach |
481 | 481 |
/// to construct the initial solution. |
482 | 482 |
void greedyInit() |
483 | 483 |
{ |
484 | 484 |
createStructures(); |
485 | 485 |
|
486 | 486 |
for(NodeIt n(_g);n!=INVALID;++n) { |
487 | 487 |
_excess->set(n, (*_delta)[n]); |
488 | 488 |
} |
489 | 489 |
|
490 | 490 |
for (ArcIt e(_g);e!=INVALID;++e) { |
491 | 491 |
if (!_tol.positive((*_excess)[_g.target(e)] + (*_up)[e])) { |
492 | 492 |
_flow->set(e, (*_up)[e]); |
493 | 493 |
_excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_up)[e]); |
494 | 494 |
_excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_up)[e]); |
495 | 495 |
} else if (_tol.positive((*_excess)[_g.target(e)] + (*_lo)[e])) { |
496 | 496 |
_flow->set(e, (*_lo)[e]); |
497 | 497 |
_excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_lo)[e]); |
498 | 498 |
_excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_lo)[e]); |
499 | 499 |
} else { |
500 | 500 |
Value fc = -(*_excess)[_g.target(e)]; |
501 | 501 |
_flow->set(e, fc); |
502 | 502 |
_excess->set(_g.target(e), 0); |
503 | 503 |
_excess->set(_g.source(e), (*_excess)[_g.source(e)] - fc); |
504 | 504 |
} |
505 | 505 |
} |
506 | 506 |
|
507 | 507 |
_level->initStart(); |
508 | 508 |
for(NodeIt n(_g);n!=INVALID;++n) |
509 | 509 |
_level->initAddItem(n); |
510 | 510 |
_level->initFinish(); |
511 | 511 |
for(NodeIt n(_g);n!=INVALID;++n) |
512 | 512 |
if(_tol.positive((*_excess)[n])) |
513 | 513 |
_level->activate(n); |
514 | 514 |
} |
515 | 515 |
|
516 | 516 |
///Executes the algorithm |
517 | 517 |
|
518 | 518 |
///This function executes the algorithm. |
... | ... |
@@ -551,205 +551,205 @@ |
551 | 551 |
_excess->set(v, (*_excess)[v] + fc); |
552 | 552 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
553 | 553 |
_level->activate(v); |
554 | 554 |
exc-=fc; |
555 | 555 |
} |
556 | 556 |
} |
557 | 557 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
558 | 558 |
} |
559 | 559 |
for(InArcIt e(_g,act);e!=INVALID; ++e) { |
560 | 560 |
Node v = _g.source(e); |
561 | 561 |
Value fc=(*_flow)[e]-(*_lo)[e]; |
562 | 562 |
if(!_tol.positive(fc)) continue; |
563 | 563 |
if((*_level)[v]<actlevel) { |
564 | 564 |
if(!_tol.less(fc, exc)) { |
565 | 565 |
_flow->set(e, (*_flow)[e] - exc); |
566 | 566 |
_excess->set(v, (*_excess)[v] + exc); |
567 | 567 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
568 | 568 |
_level->activate(v); |
569 | 569 |
_excess->set(act,0); |
570 | 570 |
_level->deactivate(act); |
571 | 571 |
goto next_l; |
572 | 572 |
} |
573 | 573 |
else { |
574 | 574 |
_flow->set(e, (*_lo)[e]); |
575 | 575 |
_excess->set(v, (*_excess)[v] + fc); |
576 | 576 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
577 | 577 |
_level->activate(v); |
578 | 578 |
exc-=fc; |
579 | 579 |
} |
580 | 580 |
} |
581 | 581 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
582 | 582 |
} |
583 | 583 |
|
584 | 584 |
_excess->set(act, exc); |
585 | 585 |
if(!_tol.positive(exc)) _level->deactivate(act); |
586 | 586 |
else if(mlevel==_node_num) { |
587 | 587 |
_level->liftHighestActiveToTop(); |
588 | 588 |
_el = _node_num; |
589 | 589 |
return false; |
590 | 590 |
} |
591 | 591 |
else { |
592 | 592 |
_level->liftHighestActive(mlevel+1); |
593 | 593 |
if(_level->onLevel(actlevel)==0) { |
594 | 594 |
_el = actlevel; |
595 | 595 |
return false; |
596 | 596 |
} |
597 | 597 |
} |
598 | 598 |
next_l: |
599 | 599 |
; |
600 | 600 |
} |
601 | 601 |
return true; |
602 | 602 |
} |
603 | 603 |
|
604 | 604 |
/// Runs the algorithm. |
605 | 605 |
|
606 | 606 |
/// This function runs the algorithm. |
607 | 607 |
/// |
608 | 608 |
/// \return \c true if a feasible circulation is found. |
609 | 609 |
/// |
610 | 610 |
/// \note Apart from the return value, c.run() is just a shortcut of |
611 | 611 |
/// the following code. |
612 | 612 |
/// \code |
613 | 613 |
/// c.greedyInit(); |
614 | 614 |
/// c.start(); |
615 | 615 |
/// \endcode |
616 | 616 |
bool run() { |
617 | 617 |
greedyInit(); |
618 | 618 |
return start(); |
619 | 619 |
} |
620 | 620 |
|
621 | 621 |
/// @} |
622 | 622 |
|
623 | 623 |
/// \name Query Functions |
624 | 624 |
/// The results of the circulation algorithm can be obtained using |
625 | 625 |
/// these functions.\n |
626 | 626 |
/// Either \ref run() or \ref start() should be called before |
627 | 627 |
/// using them. |
628 | 628 |
|
629 | 629 |
///@{ |
630 | 630 |
|
631 | 631 |
/// \brief Returns the flow on the given arc. |
632 | 632 |
/// |
633 | 633 |
/// Returns the flow on the given arc. |
634 | 634 |
/// |
635 | 635 |
/// \pre Either \ref run() or \ref init() must be called before |
636 | 636 |
/// using this function. |
637 | 637 |
Value flow(const Arc& arc) const { |
638 | 638 |
return (*_flow)[arc]; |
639 | 639 |
} |
640 | 640 |
|
641 | 641 |
/// \brief Returns a const reference to the flow map. |
642 | 642 |
/// |
643 | 643 |
/// Returns a const reference to the arc map storing the found flow. |
644 | 644 |
/// |
645 | 645 |
/// \pre Either \ref run() or \ref init() must be called before |
646 | 646 |
/// using this function. |
647 |
const FlowMap& flowMap() { |
|
647 |
const FlowMap& flowMap() const { |
|
648 | 648 |
return *_flow; |
649 | 649 |
} |
650 | 650 |
|
651 | 651 |
/** |
652 | 652 |
\brief Returns \c true if the given node is in a barrier. |
653 | 653 |
|
654 | 654 |
Barrier is a set \e B of nodes for which |
655 | 655 |
|
656 | 656 |
\f[ \sum_{a\in\delta_{out}(B)} upper(a) - |
657 | 657 |
\sum_{a\in\delta_{in}(B)} lower(a) < \sum_{v\in B}delta(v) \f] |
658 | 658 |
|
659 | 659 |
holds. The existence of a set with this property prooves that a |
660 | 660 |
feasible circualtion cannot exist. |
661 | 661 |
|
662 | 662 |
This function returns \c true if the given node is in the found |
663 | 663 |
barrier. If a feasible circulation is found, the function |
664 | 664 |
gives back \c false for every node. |
665 | 665 |
|
666 | 666 |
\pre Either \ref run() or \ref init() must be called before |
667 | 667 |
using this function. |
668 | 668 |
|
669 | 669 |
\sa barrierMap() |
670 | 670 |
\sa checkBarrier() |
671 | 671 |
*/ |
672 |
bool barrier(const Node& node) |
|
672 |
bool barrier(const Node& node) const |
|
673 | 673 |
{ |
674 | 674 |
return (*_level)[node] >= _el; |
675 | 675 |
} |
676 | 676 |
|
677 | 677 |
/// \brief Gives back a barrier. |
678 | 678 |
/// |
679 | 679 |
/// This function sets \c bar to the characteristic vector of the |
680 | 680 |
/// found barrier. \c bar should be a \ref concepts::WriteMap "writable" |
681 | 681 |
/// node map with \c bool (or convertible) value type. |
682 | 682 |
/// |
683 | 683 |
/// If a feasible circulation is found, the function gives back an |
684 | 684 |
/// empty set, so \c bar[v] will be \c false for all nodes \c v. |
685 | 685 |
/// |
686 | 686 |
/// \note This function calls \ref barrier() for each node, |
687 | 687 |
/// so it runs in \f$O(n)\f$ time. |
688 | 688 |
/// |
689 | 689 |
/// \pre Either \ref run() or \ref init() must be called before |
690 | 690 |
/// using this function. |
691 | 691 |
/// |
692 | 692 |
/// \sa barrier() |
693 | 693 |
/// \sa checkBarrier() |
694 | 694 |
template<class BarrierMap> |
695 |
void barrierMap(BarrierMap &bar) |
|
695 |
void barrierMap(BarrierMap &bar) const |
|
696 | 696 |
{ |
697 | 697 |
for(NodeIt n(_g);n!=INVALID;++n) |
698 | 698 |
bar.set(n, (*_level)[n] >= _el); |
699 | 699 |
} |
700 | 700 |
|
701 | 701 |
/// @} |
702 | 702 |
|
703 | 703 |
/// \name Checker Functions |
704 | 704 |
/// The feasibility of the results can be checked using |
705 | 705 |
/// these functions.\n |
706 | 706 |
/// Either \ref run() or \ref start() should be called before |
707 | 707 |
/// using them. |
708 | 708 |
|
709 | 709 |
///@{ |
710 | 710 |
|
711 | 711 |
///Check if the found flow is a feasible circulation |
712 | 712 |
|
713 | 713 |
///Check if the found flow is a feasible circulation, |
714 | 714 |
/// |
715 |
bool checkFlow() { |
|
715 |
bool checkFlow() const { |
|
716 | 716 |
for(ArcIt e(_g);e!=INVALID;++e) |
717 | 717 |
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; |
718 | 718 |
for(NodeIt n(_g);n!=INVALID;++n) |
719 | 719 |
{ |
720 | 720 |
Value dif=-(*_delta)[n]; |
721 | 721 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
722 | 722 |
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; |
723 | 723 |
if(_tol.negative(dif)) return false; |
724 | 724 |
} |
725 | 725 |
return true; |
726 | 726 |
} |
727 | 727 |
|
728 | 728 |
///Check whether or not the last execution provides a barrier |
729 | 729 |
|
730 | 730 |
///Check whether or not the last execution provides a barrier. |
731 | 731 |
///\sa barrier() |
732 | 732 |
///\sa barrierMap() |
733 |
bool checkBarrier() |
|
733 |
bool checkBarrier() const |
|
734 | 734 |
{ |
735 | 735 |
Value delta=0; |
736 | 736 |
for(NodeIt n(_g);n!=INVALID;++n) |
737 | 737 |
if(barrier(n)) |
738 | 738 |
delta-=(*_delta)[n]; |
739 | 739 |
for(ArcIt e(_g);e!=INVALID;++e) |
740 | 740 |
{ |
741 | 741 |
Node s=_g.source(e); |
742 | 742 |
Node t=_g.target(e); |
743 | 743 |
if(barrier(s)&&!barrier(t)) delta+=(*_up)[e]; |
744 | 744 |
else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e]; |
745 | 745 |
} |
746 | 746 |
return _tol.negative(delta); |
747 | 747 |
} |
748 | 748 |
|
749 | 749 |
/// @} |
750 | 750 |
|
751 | 751 |
}; |
752 | 752 |
|
753 | 753 |
} |
754 | 754 |
|
755 | 755 |
#endif |
... | ... |
@@ -1532,105 +1532,105 @@ |
1532 | 1532 |
/// not a node map. |
1533 | 1533 |
template <typename AM> |
1534 | 1534 |
Arc start(const AM &am) { |
1535 | 1535 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
1536 | 1536 |
processNextArc(); |
1537 | 1537 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
1538 | 1538 |
} |
1539 | 1539 |
|
1540 | 1540 |
/// \brief Runs the algorithm from the given source node. |
1541 | 1541 |
/// |
1542 | 1542 |
/// This method runs the %DFS algorithm from node \c s. |
1543 | 1543 |
/// in order to compute the DFS path to each node. |
1544 | 1544 |
/// |
1545 | 1545 |
/// The algorithm computes |
1546 | 1546 |
/// - the %DFS tree, |
1547 | 1547 |
/// - the distance of each node from the root in the %DFS tree. |
1548 | 1548 |
/// |
1549 | 1549 |
/// \note <tt>d.run(s)</tt> is just a shortcut of the following code. |
1550 | 1550 |
///\code |
1551 | 1551 |
/// d.init(); |
1552 | 1552 |
/// d.addSource(s); |
1553 | 1553 |
/// d.start(); |
1554 | 1554 |
///\endcode |
1555 | 1555 |
void run(Node s) { |
1556 | 1556 |
init(); |
1557 | 1557 |
addSource(s); |
1558 | 1558 |
start(); |
1559 | 1559 |
} |
1560 | 1560 |
|
1561 | 1561 |
/// \brief Finds the %DFS path between \c s and \c t. |
1562 | 1562 |
|
1563 | 1563 |
/// This method runs the %DFS algorithm from node \c s |
1564 | 1564 |
/// in order to compute the DFS path to node \c t |
1565 | 1565 |
/// (it stops searching when \c t is processed). |
1566 | 1566 |
/// |
1567 | 1567 |
/// \return \c true if \c t is reachable form \c s. |
1568 | 1568 |
/// |
1569 | 1569 |
/// \note Apart from the return value, <tt>d.run(s,t)</tt> is |
1570 | 1570 |
/// just a shortcut of the following code. |
1571 | 1571 |
///\code |
1572 | 1572 |
/// d.init(); |
1573 | 1573 |
/// d.addSource(s); |
1574 | 1574 |
/// d.start(t); |
1575 | 1575 |
///\endcode |
1576 | 1576 |
bool run(Node s,Node t) { |
1577 | 1577 |
init(); |
1578 | 1578 |
addSource(s); |
1579 | 1579 |
start(t); |
1580 | 1580 |
return reached(t); |
1581 | 1581 |
} |
1582 | 1582 |
|
1583 | 1583 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1584 | 1584 |
|
1585 | 1585 |
/// This method runs the %DFS algorithm in order to |
1586 | 1586 |
/// compute the %DFS path to each node. |
1587 | 1587 |
/// |
1588 | 1588 |
/// The algorithm computes |
1589 | 1589 |
/// - the %DFS tree (forest), |
1590 | 1590 |
/// - the distance of each node from the root(s) in the %DFS tree. |
1591 | 1591 |
/// |
1592 | 1592 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
1593 | 1593 |
///\code |
1594 | 1594 |
/// d.init(); |
1595 | 1595 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
1596 | 1596 |
/// if (!d.reached(n)) { |
1597 | 1597 |
/// d.addSource(n); |
1598 | 1598 |
/// d.start(); |
1599 | 1599 |
/// } |
1600 | 1600 |
/// } |
1601 | 1601 |
///\endcode |
1602 | 1602 |
void run() { |
1603 | 1603 |
init(); |
1604 | 1604 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1605 | 1605 |
if (!reached(it)) { |
1606 | 1606 |
addSource(it); |
1607 | 1607 |
start(); |
1608 | 1608 |
} |
1609 | 1609 |
} |
1610 | 1610 |
} |
1611 | 1611 |
|
1612 | 1612 |
///@} |
1613 | 1613 |
|
1614 | 1614 |
/// \name Query Functions |
1615 | 1615 |
/// The results of the DFS algorithm can be obtained using these |
1616 | 1616 |
/// functions.\n |
1617 | 1617 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
1618 | 1618 |
/// before using them. |
1619 | 1619 |
|
1620 | 1620 |
///@{ |
1621 | 1621 |
|
1622 | 1622 |
/// \brief Checks if a node is reached from the root(s). |
1623 | 1623 |
/// |
1624 | 1624 |
/// Returns \c true if \c v is reached from the root(s). |
1625 | 1625 |
/// |
1626 | 1626 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
1627 | 1627 |
/// must be called before using this function. |
1628 |
bool reached(Node v) { return (*_reached)[v]; } |
|
1628 |
bool reached(Node v) const { return (*_reached)[v]; } |
|
1629 | 1629 |
|
1630 | 1630 |
///@} |
1631 | 1631 |
|
1632 | 1632 |
}; |
1633 | 1633 |
|
1634 | 1634 |
} //END OF NAMESPACE LEMON |
1635 | 1635 |
|
1636 | 1636 |
#endif |
... | ... |
@@ -273,193 +273,193 @@ |
273 | 273 |
protected: |
274 | 274 |
|
275 | 275 |
Preflow() {} |
276 | 276 |
|
277 | 277 |
public: |
278 | 278 |
|
279 | 279 |
|
280 | 280 |
/// \brief The constructor of the class. |
281 | 281 |
/// |
282 | 282 |
/// The constructor of the class. |
283 | 283 |
/// \param digraph The digraph the algorithm runs on. |
284 | 284 |
/// \param capacity The capacity of the arcs. |
285 | 285 |
/// \param source The source node. |
286 | 286 |
/// \param target The target node. |
287 | 287 |
Preflow(const Digraph& digraph, const CapacityMap& capacity, |
288 | 288 |
Node source, Node target) |
289 | 289 |
: _graph(digraph), _capacity(&capacity), |
290 | 290 |
_node_num(0), _source(source), _target(target), |
291 | 291 |
_flow(0), _local_flow(false), |
292 | 292 |
_level(0), _local_level(false), |
293 | 293 |
_excess(0), _tolerance(), _phase() {} |
294 | 294 |
|
295 | 295 |
/// \brief Destructor. |
296 | 296 |
/// |
297 | 297 |
/// Destructor. |
298 | 298 |
~Preflow() { |
299 | 299 |
destroyStructures(); |
300 | 300 |
} |
301 | 301 |
|
302 | 302 |
/// \brief Sets the capacity map. |
303 | 303 |
/// |
304 | 304 |
/// Sets the capacity map. |
305 | 305 |
/// \return <tt>(*this)</tt> |
306 | 306 |
Preflow& capacityMap(const CapacityMap& map) { |
307 | 307 |
_capacity = ↦ |
308 | 308 |
return *this; |
309 | 309 |
} |
310 | 310 |
|
311 | 311 |
/// \brief Sets the flow map. |
312 | 312 |
/// |
313 | 313 |
/// Sets the flow map. |
314 | 314 |
/// If you don't use this function before calling \ref run() or |
315 | 315 |
/// \ref init(), an instance will be allocated automatically. |
316 | 316 |
/// The destructor deallocates this automatically allocated map, |
317 | 317 |
/// of course. |
318 | 318 |
/// \return <tt>(*this)</tt> |
319 | 319 |
Preflow& flowMap(FlowMap& map) { |
320 | 320 |
if (_local_flow) { |
321 | 321 |
delete _flow; |
322 | 322 |
_local_flow = false; |
323 | 323 |
} |
324 | 324 |
_flow = ↦ |
325 | 325 |
return *this; |
326 | 326 |
} |
327 | 327 |
|
328 | 328 |
/// \brief Sets the source node. |
329 | 329 |
/// |
330 | 330 |
/// Sets the source node. |
331 | 331 |
/// \return <tt>(*this)</tt> |
332 | 332 |
Preflow& source(const Node& node) { |
333 | 333 |
_source = node; |
334 | 334 |
return *this; |
335 | 335 |
} |
336 | 336 |
|
337 | 337 |
/// \brief Sets the target node. |
338 | 338 |
/// |
339 | 339 |
/// Sets the target node. |
340 | 340 |
/// \return <tt>(*this)</tt> |
341 | 341 |
Preflow& target(const Node& node) { |
342 | 342 |
_target = node; |
343 | 343 |
return *this; |
344 | 344 |
} |
345 | 345 |
|
346 | 346 |
/// \brief Sets the elevator used by algorithm. |
347 | 347 |
/// |
348 | 348 |
/// Sets the elevator used by algorithm. |
349 | 349 |
/// If you don't use this function before calling \ref run() or |
350 | 350 |
/// \ref init(), an instance will be allocated automatically. |
351 | 351 |
/// The destructor deallocates this automatically allocated elevator, |
352 | 352 |
/// of course. |
353 | 353 |
/// \return <tt>(*this)</tt> |
354 | 354 |
Preflow& elevator(Elevator& elevator) { |
355 | 355 |
if (_local_level) { |
356 | 356 |
delete _level; |
357 | 357 |
_local_level = false; |
358 | 358 |
} |
359 | 359 |
_level = &elevator; |
360 | 360 |
return *this; |
361 | 361 |
} |
362 | 362 |
|
363 | 363 |
/// \brief Returns a const reference to the elevator. |
364 | 364 |
/// |
365 | 365 |
/// Returns a const reference to the elevator. |
366 | 366 |
/// |
367 | 367 |
/// \pre Either \ref run() or \ref init() must be called before |
368 | 368 |
/// using this function. |
369 |
const Elevator& elevator() { |
|
369 |
const Elevator& elevator() const { |
|
370 | 370 |
return *_level; |
371 | 371 |
} |
372 | 372 |
|
373 | 373 |
/// \brief Sets the tolerance used by algorithm. |
374 | 374 |
/// |
375 | 375 |
/// Sets the tolerance used by algorithm. |
376 | 376 |
Preflow& tolerance(const Tolerance& tolerance) const { |
377 | 377 |
_tolerance = tolerance; |
378 | 378 |
return *this; |
379 | 379 |
} |
380 | 380 |
|
381 | 381 |
/// \brief Returns a const reference to the tolerance. |
382 | 382 |
/// |
383 | 383 |
/// Returns a const reference to the tolerance. |
384 | 384 |
const Tolerance& tolerance() const { |
385 | 385 |
return tolerance; |
386 | 386 |
} |
387 | 387 |
|
388 | 388 |
/// \name Execution Control |
389 | 389 |
/// The simplest way to execute the preflow algorithm is to use |
390 | 390 |
/// \ref run() or \ref runMinCut().\n |
391 | 391 |
/// If you need more control on the initial solution or the execution, |
392 | 392 |
/// first you have to call one of the \ref init() functions, then |
393 | 393 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
394 | 394 |
|
395 | 395 |
///@{ |
396 | 396 |
|
397 | 397 |
/// \brief Initializes the internal data structures. |
398 | 398 |
/// |
399 | 399 |
/// Initializes the internal data structures and sets the initial |
400 | 400 |
/// flow to zero on each arc. |
401 | 401 |
void init() { |
402 | 402 |
createStructures(); |
403 | 403 |
|
404 | 404 |
_phase = true; |
405 | 405 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
406 | 406 |
_excess->set(n, 0); |
407 | 407 |
} |
408 | 408 |
|
409 | 409 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
410 | 410 |
_flow->set(e, 0); |
411 | 411 |
} |
412 | 412 |
|
413 | 413 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
414 | 414 |
|
415 | 415 |
_level->initStart(); |
416 | 416 |
_level->initAddItem(_target); |
417 | 417 |
|
418 | 418 |
std::vector<Node> queue; |
419 | 419 |
reached.set(_source, true); |
420 | 420 |
|
421 | 421 |
queue.push_back(_target); |
422 | 422 |
reached.set(_target, true); |
423 | 423 |
while (!queue.empty()) { |
424 | 424 |
_level->initNewLevel(); |
425 | 425 |
std::vector<Node> nqueue; |
426 | 426 |
for (int i = 0; i < int(queue.size()); ++i) { |
427 | 427 |
Node n = queue[i]; |
428 | 428 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
429 | 429 |
Node u = _graph.source(e); |
430 | 430 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) { |
431 | 431 |
reached.set(u, true); |
432 | 432 |
_level->initAddItem(u); |
433 | 433 |
nqueue.push_back(u); |
434 | 434 |
} |
435 | 435 |
} |
436 | 436 |
} |
437 | 437 |
queue.swap(nqueue); |
438 | 438 |
} |
439 | 439 |
_level->initFinish(); |
440 | 440 |
|
441 | 441 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
442 | 442 |
if (_tolerance.positive((*_capacity)[e])) { |
443 | 443 |
Node u = _graph.target(e); |
444 | 444 |
if ((*_level)[u] == _level->maxLevel()) continue; |
445 | 445 |
_flow->set(e, (*_capacity)[e]); |
446 | 446 |
_excess->set(u, (*_excess)[u] + (*_capacity)[e]); |
447 | 447 |
if (u != _target && !_level->active(u)) { |
448 | 448 |
_level->activate(u); |
449 | 449 |
} |
450 | 450 |
} |
451 | 451 |
} |
452 | 452 |
} |
453 | 453 |
|
454 | 454 |
/// \brief Initializes the internal data structures using the |
455 | 455 |
/// given flow map. |
456 | 456 |
/// |
457 | 457 |
/// Initializes the internal data structures and sets the initial |
458 | 458 |
/// flow to the given \c flowMap. The \c flowMap should contain a |
459 | 459 |
/// flow or at least a preflow, i.e. at each node excluding the |
460 | 460 |
/// source node the incoming flow should greater or equal to the |
461 | 461 |
/// outgoing flow. |
462 | 462 |
/// \return \c false if the given \c flowMap is not a preflow. |
463 | 463 |
template <typename FlowMap> |
464 | 464 |
bool init(const FlowMap& flowMap) { |
465 | 465 |
createStructures(); |
... | ... |
@@ -825,140 +825,140 @@ |
825 | 825 |
} else if (new_level > (*_level)[v]) { |
826 | 826 |
new_level = (*_level)[v]; |
827 | 827 |
} |
828 | 828 |
} |
829 | 829 |
|
830 | 830 |
no_more_push: |
831 | 831 |
|
832 | 832 |
_excess->set(n, excess); |
833 | 833 |
|
834 | 834 |
if (excess != 0) { |
835 | 835 |
if (new_level + 1 < _level->maxLevel()) { |
836 | 836 |
_level->liftHighestActive(new_level + 1); |
837 | 837 |
} else { |
838 | 838 |
// Calculation error |
839 | 839 |
_level->liftHighestActiveToTop(); |
840 | 840 |
} |
841 | 841 |
if (_level->emptyLevel(level)) { |
842 | 842 |
// Calculation error |
843 | 843 |
_level->liftToTop(level); |
844 | 844 |
} |
845 | 845 |
} else { |
846 | 846 |
_level->deactivate(n); |
847 | 847 |
} |
848 | 848 |
|
849 | 849 |
} |
850 | 850 |
} |
851 | 851 |
|
852 | 852 |
/// \brief Runs the preflow algorithm. |
853 | 853 |
/// |
854 | 854 |
/// Runs the preflow algorithm. |
855 | 855 |
/// \note pf.run() is just a shortcut of the following code. |
856 | 856 |
/// \code |
857 | 857 |
/// pf.init(); |
858 | 858 |
/// pf.startFirstPhase(); |
859 | 859 |
/// pf.startSecondPhase(); |
860 | 860 |
/// \endcode |
861 | 861 |
void run() { |
862 | 862 |
init(); |
863 | 863 |
startFirstPhase(); |
864 | 864 |
startSecondPhase(); |
865 | 865 |
} |
866 | 866 |
|
867 | 867 |
/// \brief Runs the preflow algorithm to compute the minimum cut. |
868 | 868 |
/// |
869 | 869 |
/// Runs the preflow algorithm to compute the minimum cut. |
870 | 870 |
/// \note pf.runMinCut() is just a shortcut of the following code. |
871 | 871 |
/// \code |
872 | 872 |
/// pf.init(); |
873 | 873 |
/// pf.startFirstPhase(); |
874 | 874 |
/// \endcode |
875 | 875 |
void runMinCut() { |
876 | 876 |
init(); |
877 | 877 |
startFirstPhase(); |
878 | 878 |
} |
879 | 879 |
|
880 | 880 |
/// @} |
881 | 881 |
|
882 | 882 |
/// \name Query Functions |
883 | 883 |
/// The results of the preflow algorithm can be obtained using these |
884 | 884 |
/// functions.\n |
885 | 885 |
/// Either one of the \ref run() "run*()" functions or one of the |
886 | 886 |
/// \ref startFirstPhase() "start*()" functions should be called |
887 | 887 |
/// before using them. |
888 | 888 |
|
889 | 889 |
///@{ |
890 | 890 |
|
891 | 891 |
/// \brief Returns the value of the maximum flow. |
892 | 892 |
/// |
893 | 893 |
/// Returns the value of the maximum flow by returning the excess |
894 | 894 |
/// of the target node. This value equals to the value of |
895 | 895 |
/// the maximum flow already after the first phase of the algorithm. |
896 | 896 |
/// |
897 | 897 |
/// \pre Either \ref run() or \ref init() must be called before |
898 | 898 |
/// using this function. |
899 | 899 |
Value flowValue() const { |
900 | 900 |
return (*_excess)[_target]; |
901 | 901 |
} |
902 | 902 |
|
903 | 903 |
/// \brief Returns the flow on the given arc. |
904 | 904 |
/// |
905 | 905 |
/// Returns the flow on the given arc. This method can |
906 | 906 |
/// be called after the second phase of the algorithm. |
907 | 907 |
/// |
908 | 908 |
/// \pre Either \ref run() or \ref init() must be called before |
909 | 909 |
/// using this function. |
910 | 910 |
Value flow(const Arc& arc) const { |
911 | 911 |
return (*_flow)[arc]; |
912 | 912 |
} |
913 | 913 |
|
914 | 914 |
/// \brief Returns a const reference to the flow map. |
915 | 915 |
/// |
916 | 916 |
/// Returns a const reference to the arc map storing the found flow. |
917 | 917 |
/// This method can be called after the second phase of the algorithm. |
918 | 918 |
/// |
919 | 919 |
/// \pre Either \ref run() or \ref init() must be called before |
920 | 920 |
/// using this function. |
921 |
const FlowMap& flowMap() { |
|
921 |
const FlowMap& flowMap() const { |
|
922 | 922 |
return *_flow; |
923 | 923 |
} |
924 | 924 |
|
925 | 925 |
/// \brief Returns \c true when the node is on the source side of the |
926 | 926 |
/// minimum cut. |
927 | 927 |
/// |
928 | 928 |
/// Returns true when the node is on the source side of the found |
929 | 929 |
/// minimum cut. This method can be called both after running \ref |
930 | 930 |
/// startFirstPhase() and \ref startSecondPhase(). |
931 | 931 |
/// |
932 | 932 |
/// \pre Either \ref run() or \ref init() must be called before |
933 | 933 |
/// using this function. |
934 | 934 |
bool minCut(const Node& node) const { |
935 | 935 |
return ((*_level)[node] == _level->maxLevel()) == _phase; |
936 | 936 |
} |
937 | 937 |
|
938 | 938 |
/// \brief Gives back a minimum value cut. |
939 | 939 |
/// |
940 | 940 |
/// Sets \c cutMap to the characteristic vector of a minimum value |
941 | 941 |
/// cut. \c cutMap should be a \ref concepts::WriteMap "writable" |
942 | 942 |
/// node map with \c bool (or convertible) value type. |
943 | 943 |
/// |
944 | 944 |
/// This method can be called both after running \ref startFirstPhase() |
945 | 945 |
/// and \ref startSecondPhase(). The result after the second phase |
946 | 946 |
/// could be slightly different if inexact computation is used. |
947 | 947 |
/// |
948 | 948 |
/// \note This function calls \ref minCut() for each node, so it runs in |
949 | 949 |
/// \f$O(n)\f$ time. |
950 | 950 |
/// |
951 | 951 |
/// \pre Either \ref run() or \ref init() must be called before |
952 | 952 |
/// using this function. |
953 | 953 |
template <typename CutMap> |
954 | 954 |
void minCutMap(CutMap& cutMap) const { |
955 | 955 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
956 | 956 |
cutMap.set(n, minCut(n)); |
957 | 957 |
} |
958 | 958 |
} |
959 | 959 |
|
960 | 960 |
/// @} |
961 | 961 |
}; |
962 | 962 |
} |
963 | 963 |
|
964 | 964 |
#endif |
0 comments (0 inline)