gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Add missing 'const' for query functions of algorithms
0 4 0
default
4 files changed with 10 insertions and 10 deletions:
↑ Collapse diff ↑
Show white space 384 line context
... ...
@@ -1552,201 +1552,201 @@
1552 1552
    ///
1553 1553
    /// Returns the next node to be processed or \c INVALID if the queue
1554 1554
    /// is empty.
1555 1555
    Node nextNode() const {
1556 1556
      return _list_front != _list_back ? _list[_list_front + 1] : INVALID;
1557 1557
    }
1558 1558

	
1559 1559
    /// \brief Returns \c false if there are nodes
1560 1560
    /// to be processed.
1561 1561
    ///
1562 1562
    /// Returns \c false if there are nodes
1563 1563
    /// to be processed in the queue.
1564 1564
    bool emptyQueue() const { return _list_front == _list_back; }
1565 1565

	
1566 1566
    /// \brief Returns the number of the nodes to be processed.
1567 1567
    ///
1568 1568
    /// Returns the number of the nodes to be processed in the queue.
1569 1569
    int queueSize() const { return _list_back - _list_front; }
1570 1570

	
1571 1571
    /// \brief Executes the algorithm.
1572 1572
    ///
1573 1573
    /// Executes the algorithm.
1574 1574
    ///
1575 1575
    /// This method runs the %BFS algorithm from the root node(s)
1576 1576
    /// in order to compute the shortest path to each node.
1577 1577
    ///
1578 1578
    /// The algorithm computes
1579 1579
    /// - the shortest path tree (forest),
1580 1580
    /// - the distance of each node from the root(s).
1581 1581
    ///
1582 1582
    /// \pre init() must be called and at least one root node should be added
1583 1583
    /// with addSource() before using this function.
1584 1584
    ///
1585 1585
    /// \note <tt>b.start()</tt> is just a shortcut of the following code.
1586 1586
    /// \code
1587 1587
    ///   while ( !b.emptyQueue() ) {
1588 1588
    ///     b.processNextNode();
1589 1589
    ///   }
1590 1590
    /// \endcode
1591 1591
    void start() {
1592 1592
      while ( !emptyQueue() ) processNextNode();
1593 1593
    }
1594 1594

	
1595 1595
    /// \brief Executes the algorithm until the given target node is reached.
1596 1596
    ///
1597 1597
    /// Executes the algorithm until the given target node is reached.
1598 1598
    ///
1599 1599
    /// This method runs the %BFS algorithm from the root node(s)
1600 1600
    /// in order to compute the shortest path to \c t.
1601 1601
    ///
1602 1602
    /// The algorithm computes
1603 1603
    /// - the shortest path to \c t,
1604 1604
    /// - the distance of \c t from the root(s).
1605 1605
    ///
1606 1606
    /// \pre init() must be called and at least one root node should be
1607 1607
    /// added with addSource() before using this function.
1608 1608
    ///
1609 1609
    /// \note <tt>b.start(t)</tt> is just a shortcut of the following code.
1610 1610
    /// \code
1611 1611
    ///   bool reach = false;
1612 1612
    ///   while ( !b.emptyQueue() && !reach ) {
1613 1613
    ///     b.processNextNode(t, reach);
1614 1614
    ///   }
1615 1615
    /// \endcode
1616 1616
    void start(Node t) {
1617 1617
      bool reach = false;
1618 1618
      while ( !emptyQueue() && !reach ) processNextNode(t, reach);
1619 1619
    }
1620 1620

	
1621 1621
    /// \brief Executes the algorithm until a condition is met.
1622 1622
    ///
1623 1623
    /// Executes the algorithm until a condition is met.
1624 1624
    ///
1625 1625
    /// This method runs the %BFS algorithm from the root node(s) in
1626 1626
    /// order to compute the shortest path to a node \c v with
1627 1627
    /// <tt>nm[v]</tt> true, if such a node can be found.
1628 1628
    ///
1629 1629
    /// \param nm must be a bool (or convertible) node map. The
1630 1630
    /// algorithm will stop when it reaches a node \c v with
1631 1631
    /// <tt>nm[v]</tt> true.
1632 1632
    ///
1633 1633
    /// \return The reached node \c v with <tt>nm[v]</tt> true or
1634 1634
    /// \c INVALID if no such node was found.
1635 1635
    ///
1636 1636
    /// \pre init() must be called and at least one root node should be
1637 1637
    /// added with addSource() before using this function.
1638 1638
    ///
1639 1639
    /// \note <tt>b.start(nm)</tt> is just a shortcut of the following code.
1640 1640
    /// \code
1641 1641
    ///   Node rnode = INVALID;
1642 1642
    ///   while ( !b.emptyQueue() && rnode == INVALID ) {
1643 1643
    ///     b.processNextNode(nm, rnode);
1644 1644
    ///   }
1645 1645
    ///   return rnode;
1646 1646
    /// \endcode
1647 1647
    template <typename NM>
1648 1648
    Node start(const NM &nm) {
1649 1649
      Node rnode = INVALID;
1650 1650
      while ( !emptyQueue() && rnode == INVALID ) {
1651 1651
        processNextNode(nm, rnode);
1652 1652
      }
1653 1653
      return rnode;
1654 1654
    }
1655 1655

	
1656 1656
    /// \brief Runs the algorithm from the given source node.
1657 1657
    ///
1658 1658
    /// This method runs the %BFS algorithm from node \c s
1659 1659
    /// in order to compute the shortest path to each node.
1660 1660
    ///
1661 1661
    /// The algorithm computes
1662 1662
    /// - the shortest path tree,
1663 1663
    /// - the distance of each node from the root.
1664 1664
    ///
1665 1665
    /// \note <tt>b.run(s)</tt> is just a shortcut of the following code.
1666 1666
    ///\code
1667 1667
    ///   b.init();
1668 1668
    ///   b.addSource(s);
1669 1669
    ///   b.start();
1670 1670
    ///\endcode
1671 1671
    void run(Node s) {
1672 1672
      init();
1673 1673
      addSource(s);
1674 1674
      start();
1675 1675
    }
1676 1676

	
1677 1677
    /// \brief Finds the shortest path between \c s and \c t.
1678 1678
    ///
1679 1679
    /// This method runs the %BFS algorithm from node \c s
1680 1680
    /// in order to compute the shortest path to node \c t
1681 1681
    /// (it stops searching when \c t is processed).
1682 1682
    ///
1683 1683
    /// \return \c true if \c t is reachable form \c s.
1684 1684
    ///
1685 1685
    /// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a
1686 1686
    /// shortcut of the following code.
1687 1687
    ///\code
1688 1688
    ///   b.init();
1689 1689
    ///   b.addSource(s);
1690 1690
    ///   b.start(t);
1691 1691
    ///\endcode
1692 1692
    bool run(Node s,Node t) {
1693 1693
      init();
1694 1694
      addSource(s);
1695 1695
      start(t);
1696 1696
      return reached(t);
1697 1697
    }
1698 1698

	
1699 1699
    /// \brief Runs the algorithm to visit all nodes in the digraph.
1700 1700
    ///
1701 1701
    /// This method runs the %BFS algorithm in order to
1702 1702
    /// compute the shortest path to each node.
1703 1703
    ///
1704 1704
    /// The algorithm computes
1705 1705
    /// - the shortest path tree (forest),
1706 1706
    /// - the distance of each node from the root(s).
1707 1707
    ///
1708 1708
    /// \note <tt>b.run(s)</tt> is just a shortcut of the following code.
1709 1709
    ///\code
1710 1710
    ///  b.init();
1711 1711
    ///  for (NodeIt n(gr); n != INVALID; ++n) {
1712 1712
    ///    if (!b.reached(n)) {
1713 1713
    ///      b.addSource(n);
1714 1714
    ///      b.start();
1715 1715
    ///    }
1716 1716
    ///  }
1717 1717
    ///\endcode
1718 1718
    void run() {
1719 1719
      init();
1720 1720
      for (NodeIt it(*_digraph); it != INVALID; ++it) {
1721 1721
        if (!reached(it)) {
1722 1722
          addSource(it);
1723 1723
          start();
1724 1724
        }
1725 1725
      }
1726 1726
    }
1727 1727

	
1728 1728
    ///@}
1729 1729

	
1730 1730
    /// \name Query Functions
1731 1731
    /// The results of the BFS algorithm can be obtained using these
1732 1732
    /// functions.\n
1733 1733
    /// Either \ref run(Node) "run()" or \ref start() should be called
1734 1734
    /// before using them.
1735 1735

	
1736 1736
    ///@{
1737 1737

	
1738 1738
    /// \brief Checks if a node is reached from the root(s).
1739 1739
    ///
1740 1740
    /// Returns \c true if \c v is reached from the root(s).
1741 1741
    ///
1742 1742
    /// \pre Either \ref run(Node) "run()" or \ref init()
1743 1743
    /// must be called before using this function.
1744
    bool reached(Node v) { return (*_reached)[v]; }
1744
    bool reached(Node v) const { return (*_reached)[v]; }
1745 1745

	
1746 1746
    ///@}
1747 1747

	
1748 1748
  };
1749 1749

	
1750 1750
} //END OF NAMESPACE LEMON
1751 1751

	
1752 1752
#endif
Show white space 384 line context
... ...
@@ -230,526 +230,526 @@
230 230
    /// FlowMap type
231 231
    ///
232 232
    /// \ref named-templ-param "Named parameter" for setting FlowMap
233 233
    /// type.
234 234
    template <typename _FlowMap>
235 235
    struct SetFlowMap
236 236
      : public Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
237 237
                           SetFlowMapTraits<_FlowMap> > {
238 238
      typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
239 239
                          SetFlowMapTraits<_FlowMap> > Create;
240 240
    };
241 241

	
242 242
    template <typename _Elevator>
243 243
    struct SetElevatorTraits : public Traits {
244 244
      typedef _Elevator Elevator;
245 245
      static Elevator *createElevator(const Digraph&, int) {
246 246
        LEMON_ASSERT(false, "Elevator is not initialized");
247 247
        return 0; // ignore warnings
248 248
      }
249 249
    };
250 250

	
251 251
    /// \brief \ref named-templ-param "Named parameter" for setting
252 252
    /// Elevator type
253 253
    ///
254 254
    /// \ref named-templ-param "Named parameter" for setting Elevator
255 255
    /// type. If this named parameter is used, then an external
256 256
    /// elevator object must be passed to the algorithm using the
257 257
    /// \ref elevator(Elevator&) "elevator()" function before calling
258 258
    /// \ref run() or \ref init().
259 259
    /// \sa SetStandardElevator
260 260
    template <typename _Elevator>
261 261
    struct SetElevator
262 262
      : public Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
263 263
                           SetElevatorTraits<_Elevator> > {
264 264
      typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
265 265
                          SetElevatorTraits<_Elevator> > Create;
266 266
    };
267 267

	
268 268
    template <typename _Elevator>
269 269
    struct SetStandardElevatorTraits : public Traits {
270 270
      typedef _Elevator Elevator;
271 271
      static Elevator *createElevator(const Digraph& digraph, int max_level) {
272 272
        return new Elevator(digraph, max_level);
273 273
      }
274 274
    };
275 275

	
276 276
    /// \brief \ref named-templ-param "Named parameter" for setting
277 277
    /// Elevator type with automatic allocation
278 278
    ///
279 279
    /// \ref named-templ-param "Named parameter" for setting Elevator
280 280
    /// type with automatic allocation.
281 281
    /// The Elevator should have standard constructor interface to be
282 282
    /// able to automatically created by the algorithm (i.e. the
283 283
    /// digraph and the maximum level should be passed to it).
284 284
    /// However an external elevator object could also be passed to the
285 285
    /// algorithm with the \ref elevator(Elevator&) "elevator()" function
286 286
    /// before calling \ref run() or \ref init().
287 287
    /// \sa SetElevator
288 288
    template <typename _Elevator>
289 289
    struct SetStandardElevator
290 290
      : public Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
291 291
                       SetStandardElevatorTraits<_Elevator> > {
292 292
      typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
293 293
                      SetStandardElevatorTraits<_Elevator> > Create;
294 294
    };
295 295

	
296 296
    /// @}
297 297

	
298 298
  protected:
299 299

	
300 300
    Circulation() {}
301 301

	
302 302
  public:
303 303

	
304 304
    /// The constructor of the class.
305 305

	
306 306
    /// The constructor of the class.
307 307
    /// \param g The digraph the algorithm runs on.
308 308
    /// \param lo The lower bound capacity of the arcs.
309 309
    /// \param up The upper bound capacity of the arcs.
310 310
    /// \param delta The lower bound for the supply of the nodes.
311 311
    Circulation(const Digraph &g,const LCapMap &lo,
312 312
                const UCapMap &up,const DeltaMap &delta)
313 313
      : _g(g), _node_num(),
314 314
        _lo(&lo),_up(&up),_delta(&delta),_flow(0),_local_flow(false),
315 315
        _level(0), _local_level(false), _excess(0), _el() {}
316 316

	
317 317
    /// Destructor.
318 318
    ~Circulation() {
319 319
      destroyStructures();
320 320
    }
321 321

	
322 322

	
323 323
  private:
324 324

	
325 325
    void createStructures() {
326 326
      _node_num = _el = countNodes(_g);
327 327

	
328 328
      if (!_flow) {
329 329
        _flow = Traits::createFlowMap(_g);
330 330
        _local_flow = true;
331 331
      }
332 332
      if (!_level) {
333 333
        _level = Traits::createElevator(_g, _node_num);
334 334
        _local_level = true;
335 335
      }
336 336
      if (!_excess) {
337 337
        _excess = new ExcessMap(_g);
338 338
      }
339 339
    }
340 340

	
341 341
    void destroyStructures() {
342 342
      if (_local_flow) {
343 343
        delete _flow;
344 344
      }
345 345
      if (_local_level) {
346 346
        delete _level;
347 347
      }
348 348
      if (_excess) {
349 349
        delete _excess;
350 350
      }
351 351
    }
352 352

	
353 353
  public:
354 354

	
355 355
    /// Sets the lower bound capacity map.
356 356

	
357 357
    /// Sets the lower bound capacity map.
358 358
    /// \return <tt>(*this)</tt>
359 359
    Circulation& lowerCapMap(const LCapMap& map) {
360 360
      _lo = &map;
361 361
      return *this;
362 362
    }
363 363

	
364 364
    /// Sets the upper bound capacity map.
365 365

	
366 366
    /// Sets the upper bound capacity map.
367 367
    /// \return <tt>(*this)</tt>
368 368
    Circulation& upperCapMap(const LCapMap& map) {
369 369
      _up = &map;
370 370
      return *this;
371 371
    }
372 372

	
373 373
    /// Sets the lower bound map for the supply of the nodes.
374 374

	
375 375
    /// Sets the lower bound map for the supply of the nodes.
376 376
    /// \return <tt>(*this)</tt>
377 377
    Circulation& deltaMap(const DeltaMap& map) {
378 378
      _delta = &map;
379 379
      return *this;
380 380
    }
381 381

	
382 382
    /// \brief Sets the flow map.
383 383
    ///
384 384
    /// Sets the flow map.
385 385
    /// If you don't use this function before calling \ref run() or
386 386
    /// \ref init(), an instance will be allocated automatically.
387 387
    /// The destructor deallocates this automatically allocated map,
388 388
    /// of course.
389 389
    /// \return <tt>(*this)</tt>
390 390
    Circulation& flowMap(FlowMap& map) {
391 391
      if (_local_flow) {
392 392
        delete _flow;
393 393
        _local_flow = false;
394 394
      }
395 395
      _flow = &map;
396 396
      return *this;
397 397
    }
398 398

	
399 399
    /// \brief Sets the elevator used by algorithm.
400 400
    ///
401 401
    /// Sets the elevator used by algorithm.
402 402
    /// If you don't use this function before calling \ref run() or
403 403
    /// \ref init(), an instance will be allocated automatically.
404 404
    /// The destructor deallocates this automatically allocated elevator,
405 405
    /// of course.
406 406
    /// \return <tt>(*this)</tt>
407 407
    Circulation& elevator(Elevator& elevator) {
408 408
      if (_local_level) {
409 409
        delete _level;
410 410
        _local_level = false;
411 411
      }
412 412
      _level = &elevator;
413 413
      return *this;
414 414
    }
415 415

	
416 416
    /// \brief Returns a const reference to the elevator.
417 417
    ///
418 418
    /// Returns a const reference to the elevator.
419 419
    ///
420 420
    /// \pre Either \ref run() or \ref init() must be called before
421 421
    /// using this function.
422
    const Elevator& elevator() {
422
    const Elevator& elevator() const {
423 423
      return *_level;
424 424
    }
425 425

	
426 426
    /// \brief Sets the tolerance used by algorithm.
427 427
    ///
428 428
    /// Sets the tolerance used by algorithm.
429 429
    Circulation& tolerance(const Tolerance& tolerance) const {
430 430
      _tol = tolerance;
431 431
      return *this;
432 432
    }
433 433

	
434 434
    /// \brief Returns a const reference to the tolerance.
435 435
    ///
436 436
    /// Returns a const reference to the tolerance.
437 437
    const Tolerance& tolerance() const {
438 438
      return tolerance;
439 439
    }
440 440

	
441 441
    /// \name Execution Control
442 442
    /// The simplest way to execute the algorithm is to call \ref run().\n
443 443
    /// If you need more control on the initial solution or the execution,
444 444
    /// first you have to call one of the \ref init() functions, then
445 445
    /// the \ref start() function.
446 446

	
447 447
    ///@{
448 448

	
449 449
    /// Initializes the internal data structures.
450 450

	
451 451
    /// Initializes the internal data structures and sets all flow values
452 452
    /// to the lower bound.
453 453
    void init()
454 454
    {
455 455
      createStructures();
456 456

	
457 457
      for(NodeIt n(_g);n!=INVALID;++n) {
458 458
        _excess->set(n, (*_delta)[n]);
459 459
      }
460 460

	
461 461
      for (ArcIt e(_g);e!=INVALID;++e) {
462 462
        _flow->set(e, (*_lo)[e]);
463 463
        _excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_flow)[e]);
464 464
        _excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_flow)[e]);
465 465
      }
466 466

	
467 467
      // global relabeling tested, but in general case it provides
468 468
      // worse performance for random digraphs
469 469
      _level->initStart();
470 470
      for(NodeIt n(_g);n!=INVALID;++n)
471 471
        _level->initAddItem(n);
472 472
      _level->initFinish();
473 473
      for(NodeIt n(_g);n!=INVALID;++n)
474 474
        if(_tol.positive((*_excess)[n]))
475 475
          _level->activate(n);
476 476
    }
477 477

	
478 478
    /// Initializes the internal data structures using a greedy approach.
479 479

	
480 480
    /// Initializes the internal data structures using a greedy approach
481 481
    /// to construct the initial solution.
482 482
    void greedyInit()
483 483
    {
484 484
      createStructures();
485 485

	
486 486
      for(NodeIt n(_g);n!=INVALID;++n) {
487 487
        _excess->set(n, (*_delta)[n]);
488 488
      }
489 489

	
490 490
      for (ArcIt e(_g);e!=INVALID;++e) {
491 491
        if (!_tol.positive((*_excess)[_g.target(e)] + (*_up)[e])) {
492 492
          _flow->set(e, (*_up)[e]);
493 493
          _excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_up)[e]);
494 494
          _excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_up)[e]);
495 495
        } else if (_tol.positive((*_excess)[_g.target(e)] + (*_lo)[e])) {
496 496
          _flow->set(e, (*_lo)[e]);
497 497
          _excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_lo)[e]);
498 498
          _excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_lo)[e]);
499 499
        } else {
500 500
          Value fc = -(*_excess)[_g.target(e)];
501 501
          _flow->set(e, fc);
502 502
          _excess->set(_g.target(e), 0);
503 503
          _excess->set(_g.source(e), (*_excess)[_g.source(e)] - fc);
504 504
        }
505 505
      }
506 506

	
507 507
      _level->initStart();
508 508
      for(NodeIt n(_g);n!=INVALID;++n)
509 509
        _level->initAddItem(n);
510 510
      _level->initFinish();
511 511
      for(NodeIt n(_g);n!=INVALID;++n)
512 512
        if(_tol.positive((*_excess)[n]))
513 513
          _level->activate(n);
514 514
    }
515 515

	
516 516
    ///Executes the algorithm
517 517

	
518 518
    ///This function executes the algorithm.
519 519
    ///
520 520
    ///\return \c true if a feasible circulation is found.
521 521
    ///
522 522
    ///\sa barrier()
523 523
    ///\sa barrierMap()
524 524
    bool start()
525 525
    {
526 526

	
527 527
      Node act;
528 528
      Node bact=INVALID;
529 529
      Node last_activated=INVALID;
530 530
      while((act=_level->highestActive())!=INVALID) {
531 531
        int actlevel=(*_level)[act];
532 532
        int mlevel=_node_num;
533 533
        Value exc=(*_excess)[act];
534 534

	
535 535
        for(OutArcIt e(_g,act);e!=INVALID; ++e) {
536 536
          Node v = _g.target(e);
537 537
          Value fc=(*_up)[e]-(*_flow)[e];
538 538
          if(!_tol.positive(fc)) continue;
539 539
          if((*_level)[v]<actlevel) {
540 540
            if(!_tol.less(fc, exc)) {
541 541
              _flow->set(e, (*_flow)[e] + exc);
542 542
              _excess->set(v, (*_excess)[v] + exc);
543 543
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
544 544
                _level->activate(v);
545 545
              _excess->set(act,0);
546 546
              _level->deactivate(act);
547 547
              goto next_l;
548 548
            }
549 549
            else {
550 550
              _flow->set(e, (*_up)[e]);
551 551
              _excess->set(v, (*_excess)[v] + fc);
552 552
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
553 553
                _level->activate(v);
554 554
              exc-=fc;
555 555
            }
556 556
          }
557 557
          else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
558 558
        }
559 559
        for(InArcIt e(_g,act);e!=INVALID; ++e) {
560 560
          Node v = _g.source(e);
561 561
          Value fc=(*_flow)[e]-(*_lo)[e];
562 562
          if(!_tol.positive(fc)) continue;
563 563
          if((*_level)[v]<actlevel) {
564 564
            if(!_tol.less(fc, exc)) {
565 565
              _flow->set(e, (*_flow)[e] - exc);
566 566
              _excess->set(v, (*_excess)[v] + exc);
567 567
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
568 568
                _level->activate(v);
569 569
              _excess->set(act,0);
570 570
              _level->deactivate(act);
571 571
              goto next_l;
572 572
            }
573 573
            else {
574 574
              _flow->set(e, (*_lo)[e]);
575 575
              _excess->set(v, (*_excess)[v] + fc);
576 576
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
577 577
                _level->activate(v);
578 578
              exc-=fc;
579 579
            }
580 580
          }
581 581
          else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
582 582
        }
583 583

	
584 584
        _excess->set(act, exc);
585 585
        if(!_tol.positive(exc)) _level->deactivate(act);
586 586
        else if(mlevel==_node_num) {
587 587
          _level->liftHighestActiveToTop();
588 588
          _el = _node_num;
589 589
          return false;
590 590
        }
591 591
        else {
592 592
          _level->liftHighestActive(mlevel+1);
593 593
          if(_level->onLevel(actlevel)==0) {
594 594
            _el = actlevel;
595 595
            return false;
596 596
          }
597 597
        }
598 598
      next_l:
599 599
        ;
600 600
      }
601 601
      return true;
602 602
    }
603 603

	
604 604
    /// Runs the algorithm.
605 605

	
606 606
    /// This function runs the algorithm.
607 607
    ///
608 608
    /// \return \c true if a feasible circulation is found.
609 609
    ///
610 610
    /// \note Apart from the return value, c.run() is just a shortcut of
611 611
    /// the following code.
612 612
    /// \code
613 613
    ///   c.greedyInit();
614 614
    ///   c.start();
615 615
    /// \endcode
616 616
    bool run() {
617 617
      greedyInit();
618 618
      return start();
619 619
    }
620 620

	
621 621
    /// @}
622 622

	
623 623
    /// \name Query Functions
624 624
    /// The results of the circulation algorithm can be obtained using
625 625
    /// these functions.\n
626 626
    /// Either \ref run() or \ref start() should be called before
627 627
    /// using them.
628 628

	
629 629
    ///@{
630 630

	
631 631
    /// \brief Returns the flow on the given arc.
632 632
    ///
633 633
    /// Returns the flow on the given arc.
634 634
    ///
635 635
    /// \pre Either \ref run() or \ref init() must be called before
636 636
    /// using this function.
637 637
    Value flow(const Arc& arc) const {
638 638
      return (*_flow)[arc];
639 639
    }
640 640

	
641 641
    /// \brief Returns a const reference to the flow map.
642 642
    ///
643 643
    /// Returns a const reference to the arc map storing the found flow.
644 644
    ///
645 645
    /// \pre Either \ref run() or \ref init() must be called before
646 646
    /// using this function.
647
    const FlowMap& flowMap() {
647
    const FlowMap& flowMap() const {
648 648
      return *_flow;
649 649
    }
650 650

	
651 651
    /**
652 652
       \brief Returns \c true if the given node is in a barrier.
653 653

	
654 654
       Barrier is a set \e B of nodes for which
655 655

	
656 656
       \f[ \sum_{a\in\delta_{out}(B)} upper(a) -
657 657
           \sum_{a\in\delta_{in}(B)} lower(a) < \sum_{v\in B}delta(v) \f]
658 658

	
659 659
       holds. The existence of a set with this property prooves that a
660 660
       feasible circualtion cannot exist.
661 661

	
662 662
       This function returns \c true if the given node is in the found
663 663
       barrier. If a feasible circulation is found, the function
664 664
       gives back \c false for every node.
665 665

	
666 666
       \pre Either \ref run() or \ref init() must be called before
667 667
       using this function.
668 668

	
669 669
       \sa barrierMap()
670 670
       \sa checkBarrier()
671 671
    */
672
    bool barrier(const Node& node)
672
    bool barrier(const Node& node) const
673 673
    {
674 674
      return (*_level)[node] >= _el;
675 675
    }
676 676

	
677 677
    /// \brief Gives back a barrier.
678 678
    ///
679 679
    /// This function sets \c bar to the characteristic vector of the
680 680
    /// found barrier. \c bar should be a \ref concepts::WriteMap "writable"
681 681
    /// node map with \c bool (or convertible) value type.
682 682
    ///
683 683
    /// If a feasible circulation is found, the function gives back an
684 684
    /// empty set, so \c bar[v] will be \c false for all nodes \c v.
685 685
    ///
686 686
    /// \note This function calls \ref barrier() for each node,
687 687
    /// so it runs in \f$O(n)\f$ time.
688 688
    ///
689 689
    /// \pre Either \ref run() or \ref init() must be called before
690 690
    /// using this function.
691 691
    ///
692 692
    /// \sa barrier()
693 693
    /// \sa checkBarrier()
694 694
    template<class BarrierMap>
695
    void barrierMap(BarrierMap &bar)
695
    void barrierMap(BarrierMap &bar) const
696 696
    {
697 697
      for(NodeIt n(_g);n!=INVALID;++n)
698 698
        bar.set(n, (*_level)[n] >= _el);
699 699
    }
700 700

	
701 701
    /// @}
702 702

	
703 703
    /// \name Checker Functions
704 704
    /// The feasibility of the results can be checked using
705 705
    /// these functions.\n
706 706
    /// Either \ref run() or \ref start() should be called before
707 707
    /// using them.
708 708

	
709 709
    ///@{
710 710

	
711 711
    ///Check if the found flow is a feasible circulation
712 712

	
713 713
    ///Check if the found flow is a feasible circulation,
714 714
    ///
715
    bool checkFlow() {
715
    bool checkFlow() const {
716 716
      for(ArcIt e(_g);e!=INVALID;++e)
717 717
        if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false;
718 718
      for(NodeIt n(_g);n!=INVALID;++n)
719 719
        {
720 720
          Value dif=-(*_delta)[n];
721 721
          for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e];
722 722
          for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e];
723 723
          if(_tol.negative(dif)) return false;
724 724
        }
725 725
      return true;
726 726
    }
727 727

	
728 728
    ///Check whether or not the last execution provides a barrier
729 729

	
730 730
    ///Check whether or not the last execution provides a barrier.
731 731
    ///\sa barrier()
732 732
    ///\sa barrierMap()
733
    bool checkBarrier()
733
    bool checkBarrier() const
734 734
    {
735 735
      Value delta=0;
736 736
      for(NodeIt n(_g);n!=INVALID;++n)
737 737
        if(barrier(n))
738 738
          delta-=(*_delta)[n];
739 739
      for(ArcIt e(_g);e!=INVALID;++e)
740 740
        {
741 741
          Node s=_g.source(e);
742 742
          Node t=_g.target(e);
743 743
          if(barrier(s)&&!barrier(t)) delta+=(*_up)[e];
744 744
          else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e];
745 745
        }
746 746
      return _tol.negative(delta);
747 747
    }
748 748

	
749 749
    /// @}
750 750

	
751 751
  };
752 752

	
753 753
}
754 754

	
755 755
#endif
Show white space 384 line context
... ...
@@ -1436,201 +1436,201 @@
1436 1436
      }
1437 1437
      while (_stack_head>=0 && _stack[_stack_head] == INVALID) {
1438 1438
        _visitor->leave(m);
1439 1439
        --_stack_head;
1440 1440
        if (_stack_head >= 0) {
1441 1441
          _visitor->backtrack(_stack[_stack_head]);
1442 1442
          m = _digraph->source(_stack[_stack_head]);
1443 1443
          _digraph->nextOut(_stack[_stack_head]);
1444 1444
        } else {
1445 1445
          _visitor->stop(m);
1446 1446
        }
1447 1447
      }
1448 1448
      return e;
1449 1449
    }
1450 1450

	
1451 1451
    /// \brief Next arc to be processed.
1452 1452
    ///
1453 1453
    /// Next arc to be processed.
1454 1454
    ///
1455 1455
    /// \return The next arc to be processed or INVALID if the stack is
1456 1456
    /// empty.
1457 1457
    Arc nextArc() const {
1458 1458
      return _stack_head >= 0 ? _stack[_stack_head] : INVALID;
1459 1459
    }
1460 1460

	
1461 1461
    /// \brief Returns \c false if there are nodes
1462 1462
    /// to be processed.
1463 1463
    ///
1464 1464
    /// Returns \c false if there are nodes
1465 1465
    /// to be processed in the queue (stack).
1466 1466
    bool emptyQueue() const { return _stack_head < 0; }
1467 1467

	
1468 1468
    /// \brief Returns the number of the nodes to be processed.
1469 1469
    ///
1470 1470
    /// Returns the number of the nodes to be processed in the queue (stack).
1471 1471
    int queueSize() const { return _stack_head + 1; }
1472 1472

	
1473 1473
    /// \brief Executes the algorithm.
1474 1474
    ///
1475 1475
    /// Executes the algorithm.
1476 1476
    ///
1477 1477
    /// This method runs the %DFS algorithm from the root node
1478 1478
    /// in order to compute the %DFS path to each node.
1479 1479
    ///
1480 1480
    /// The algorithm computes
1481 1481
    /// - the %DFS tree,
1482 1482
    /// - the distance of each node from the root in the %DFS tree.
1483 1483
    ///
1484 1484
    /// \pre init() must be called and a root node should be
1485 1485
    /// added with addSource() before using this function.
1486 1486
    ///
1487 1487
    /// \note <tt>d.start()</tt> is just a shortcut of the following code.
1488 1488
    /// \code
1489 1489
    ///   while ( !d.emptyQueue() ) {
1490 1490
    ///     d.processNextArc();
1491 1491
    ///   }
1492 1492
    /// \endcode
1493 1493
    void start() {
1494 1494
      while ( !emptyQueue() ) processNextArc();
1495 1495
    }
1496 1496

	
1497 1497
    /// \brief Executes the algorithm until the given target node is reached.
1498 1498
    ///
1499 1499
    /// Executes the algorithm until the given target node is reached.
1500 1500
    ///
1501 1501
    /// This method runs the %DFS algorithm from the root node
1502 1502
    /// in order to compute the DFS path to \c t.
1503 1503
    ///
1504 1504
    /// The algorithm computes
1505 1505
    /// - the %DFS path to \c t,
1506 1506
    /// - the distance of \c t from the root in the %DFS tree.
1507 1507
    ///
1508 1508
    /// \pre init() must be called and a root node should be added
1509 1509
    /// with addSource() before using this function.
1510 1510
    void start(Node t) {
1511 1511
      while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != t )
1512 1512
        processNextArc();
1513 1513
    }
1514 1514

	
1515 1515
    /// \brief Executes the algorithm until a condition is met.
1516 1516
    ///
1517 1517
    /// Executes the algorithm until a condition is met.
1518 1518
    ///
1519 1519
    /// This method runs the %DFS algorithm from the root node
1520 1520
    /// until an arc \c a with <tt>am[a]</tt> true is found.
1521 1521
    ///
1522 1522
    /// \param am A \c bool (or convertible) arc map. The algorithm
1523 1523
    /// will stop when it reaches an arc \c a with <tt>am[a]</tt> true.
1524 1524
    ///
1525 1525
    /// \return The reached arc \c a with <tt>am[a]</tt> true or
1526 1526
    /// \c INVALID if no such arc was found.
1527 1527
    ///
1528 1528
    /// \pre init() must be called and a root node should be added
1529 1529
    /// with addSource() before using this function.
1530 1530
    ///
1531 1531
    /// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map,
1532 1532
    /// not a node map.
1533 1533
    template <typename AM>
1534 1534
    Arc start(const AM &am) {
1535 1535
      while ( !emptyQueue() && !am[_stack[_stack_head]] )
1536 1536
        processNextArc();
1537 1537
      return emptyQueue() ? INVALID : _stack[_stack_head];
1538 1538
    }
1539 1539

	
1540 1540
    /// \brief Runs the algorithm from the given source node.
1541 1541
    ///
1542 1542
    /// This method runs the %DFS algorithm from node \c s.
1543 1543
    /// in order to compute the DFS path to each node.
1544 1544
    ///
1545 1545
    /// The algorithm computes
1546 1546
    /// - the %DFS tree,
1547 1547
    /// - the distance of each node from the root in the %DFS tree.
1548 1548
    ///
1549 1549
    /// \note <tt>d.run(s)</tt> is just a shortcut of the following code.
1550 1550
    ///\code
1551 1551
    ///   d.init();
1552 1552
    ///   d.addSource(s);
1553 1553
    ///   d.start();
1554 1554
    ///\endcode
1555 1555
    void run(Node s) {
1556 1556
      init();
1557 1557
      addSource(s);
1558 1558
      start();
1559 1559
    }
1560 1560

	
1561 1561
    /// \brief Finds the %DFS path between \c s and \c t.
1562 1562

	
1563 1563
    /// This method runs the %DFS algorithm from node \c s
1564 1564
    /// in order to compute the DFS path to node \c t
1565 1565
    /// (it stops searching when \c t is processed).
1566 1566
    ///
1567 1567
    /// \return \c true if \c t is reachable form \c s.
1568 1568
    ///
1569 1569
    /// \note Apart from the return value, <tt>d.run(s,t)</tt> is
1570 1570
    /// just a shortcut of the following code.
1571 1571
    ///\code
1572 1572
    ///   d.init();
1573 1573
    ///   d.addSource(s);
1574 1574
    ///   d.start(t);
1575 1575
    ///\endcode
1576 1576
    bool run(Node s,Node t) {
1577 1577
      init();
1578 1578
      addSource(s);
1579 1579
      start(t);
1580 1580
      return reached(t);
1581 1581
    }
1582 1582

	
1583 1583
    /// \brief Runs the algorithm to visit all nodes in the digraph.
1584 1584

	
1585 1585
    /// This method runs the %DFS algorithm in order to
1586 1586
    /// compute the %DFS path to each node.
1587 1587
    ///
1588 1588
    /// The algorithm computes
1589 1589
    /// - the %DFS tree (forest),
1590 1590
    /// - the distance of each node from the root(s) in the %DFS tree.
1591 1591
    ///
1592 1592
    /// \note <tt>d.run()</tt> is just a shortcut of the following code.
1593 1593
    ///\code
1594 1594
    ///   d.init();
1595 1595
    ///   for (NodeIt n(digraph); n != INVALID; ++n) {
1596 1596
    ///     if (!d.reached(n)) {
1597 1597
    ///       d.addSource(n);
1598 1598
    ///       d.start();
1599 1599
    ///     }
1600 1600
    ///   }
1601 1601
    ///\endcode
1602 1602
    void run() {
1603 1603
      init();
1604 1604
      for (NodeIt it(*_digraph); it != INVALID; ++it) {
1605 1605
        if (!reached(it)) {
1606 1606
          addSource(it);
1607 1607
          start();
1608 1608
        }
1609 1609
      }
1610 1610
    }
1611 1611

	
1612 1612
    ///@}
1613 1613

	
1614 1614
    /// \name Query Functions
1615 1615
    /// The results of the DFS algorithm can be obtained using these
1616 1616
    /// functions.\n
1617 1617
    /// Either \ref run(Node) "run()" or \ref start() should be called
1618 1618
    /// before using them.
1619 1619

	
1620 1620
    ///@{
1621 1621

	
1622 1622
    /// \brief Checks if a node is reached from the root(s).
1623 1623
    ///
1624 1624
    /// Returns \c true if \c v is reached from the root(s).
1625 1625
    ///
1626 1626
    /// \pre Either \ref run(Node) "run()" or \ref init()
1627 1627
    /// must be called before using this function.
1628
    bool reached(Node v) { return (*_reached)[v]; }
1628
    bool reached(Node v) const { return (*_reached)[v]; }
1629 1629

	
1630 1630
    ///@}
1631 1631

	
1632 1632
  };
1633 1633

	
1634 1634
} //END OF NAMESPACE LEMON
1635 1635

	
1636 1636
#endif
Show white space 384 line context
... ...
@@ -177,385 +177,385 @@
177 177
    void destroyStructures() {
178 178
      if (_local_flow) {
179 179
        delete _flow;
180 180
      }
181 181
      if (_local_level) {
182 182
        delete _level;
183 183
      }
184 184
      if (_excess) {
185 185
        delete _excess;
186 186
      }
187 187
    }
188 188

	
189 189
  public:
190 190

	
191 191
    typedef Preflow Create;
192 192

	
193 193
    ///\name Named Template Parameters
194 194

	
195 195
    ///@{
196 196

	
197 197
    template <typename _FlowMap>
198 198
    struct SetFlowMapTraits : public Traits {
199 199
      typedef _FlowMap FlowMap;
200 200
      static FlowMap *createFlowMap(const Digraph&) {
201 201
        LEMON_ASSERT(false, "FlowMap is not initialized");
202 202
        return 0; // ignore warnings
203 203
      }
204 204
    };
205 205

	
206 206
    /// \brief \ref named-templ-param "Named parameter" for setting
207 207
    /// FlowMap type
208 208
    ///
209 209
    /// \ref named-templ-param "Named parameter" for setting FlowMap
210 210
    /// type.
211 211
    template <typename _FlowMap>
212 212
    struct SetFlowMap
213 213
      : public Preflow<Digraph, CapacityMap, SetFlowMapTraits<_FlowMap> > {
214 214
      typedef Preflow<Digraph, CapacityMap,
215 215
                      SetFlowMapTraits<_FlowMap> > Create;
216 216
    };
217 217

	
218 218
    template <typename _Elevator>
219 219
    struct SetElevatorTraits : public Traits {
220 220
      typedef _Elevator Elevator;
221 221
      static Elevator *createElevator(const Digraph&, int) {
222 222
        LEMON_ASSERT(false, "Elevator is not initialized");
223 223
        return 0; // ignore warnings
224 224
      }
225 225
    };
226 226

	
227 227
    /// \brief \ref named-templ-param "Named parameter" for setting
228 228
    /// Elevator type
229 229
    ///
230 230
    /// \ref named-templ-param "Named parameter" for setting Elevator
231 231
    /// type. If this named parameter is used, then an external
232 232
    /// elevator object must be passed to the algorithm using the
233 233
    /// \ref elevator(Elevator&) "elevator()" function before calling
234 234
    /// \ref run() or \ref init().
235 235
    /// \sa SetStandardElevator
236 236
    template <typename _Elevator>
237 237
    struct SetElevator
238 238
      : public Preflow<Digraph, CapacityMap, SetElevatorTraits<_Elevator> > {
239 239
      typedef Preflow<Digraph, CapacityMap,
240 240
                      SetElevatorTraits<_Elevator> > Create;
241 241
    };
242 242

	
243 243
    template <typename _Elevator>
244 244
    struct SetStandardElevatorTraits : public Traits {
245 245
      typedef _Elevator Elevator;
246 246
      static Elevator *createElevator(const Digraph& digraph, int max_level) {
247 247
        return new Elevator(digraph, max_level);
248 248
      }
249 249
    };
250 250

	
251 251
    /// \brief \ref named-templ-param "Named parameter" for setting
252 252
    /// Elevator type with automatic allocation
253 253
    ///
254 254
    /// \ref named-templ-param "Named parameter" for setting Elevator
255 255
    /// type with automatic allocation.
256 256
    /// The Elevator should have standard constructor interface to be
257 257
    /// able to automatically created by the algorithm (i.e. the
258 258
    /// digraph and the maximum level should be passed to it).
259 259
    /// However an external elevator object could also be passed to the
260 260
    /// algorithm with the \ref elevator(Elevator&) "elevator()" function
261 261
    /// before calling \ref run() or \ref init().
262 262
    /// \sa SetElevator
263 263
    template <typename _Elevator>
264 264
    struct SetStandardElevator
265 265
      : public Preflow<Digraph, CapacityMap,
266 266
                       SetStandardElevatorTraits<_Elevator> > {
267 267
      typedef Preflow<Digraph, CapacityMap,
268 268
                      SetStandardElevatorTraits<_Elevator> > Create;
269 269
    };
270 270

	
271 271
    /// @}
272 272

	
273 273
  protected:
274 274

	
275 275
    Preflow() {}
276 276

	
277 277
  public:
278 278

	
279 279

	
280 280
    /// \brief The constructor of the class.
281 281
    ///
282 282
    /// The constructor of the class.
283 283
    /// \param digraph The digraph the algorithm runs on.
284 284
    /// \param capacity The capacity of the arcs.
285 285
    /// \param source The source node.
286 286
    /// \param target The target node.
287 287
    Preflow(const Digraph& digraph, const CapacityMap& capacity,
288 288
            Node source, Node target)
289 289
      : _graph(digraph), _capacity(&capacity),
290 290
        _node_num(0), _source(source), _target(target),
291 291
        _flow(0), _local_flow(false),
292 292
        _level(0), _local_level(false),
293 293
        _excess(0), _tolerance(), _phase() {}
294 294

	
295 295
    /// \brief Destructor.
296 296
    ///
297 297
    /// Destructor.
298 298
    ~Preflow() {
299 299
      destroyStructures();
300 300
    }
301 301

	
302 302
    /// \brief Sets the capacity map.
303 303
    ///
304 304
    /// Sets the capacity map.
305 305
    /// \return <tt>(*this)</tt>
306 306
    Preflow& capacityMap(const CapacityMap& map) {
307 307
      _capacity = &map;
308 308
      return *this;
309 309
    }
310 310

	
311 311
    /// \brief Sets the flow map.
312 312
    ///
313 313
    /// Sets the flow map.
314 314
    /// If you don't use this function before calling \ref run() or
315 315
    /// \ref init(), an instance will be allocated automatically.
316 316
    /// The destructor deallocates this automatically allocated map,
317 317
    /// of course.
318 318
    /// \return <tt>(*this)</tt>
319 319
    Preflow& flowMap(FlowMap& map) {
320 320
      if (_local_flow) {
321 321
        delete _flow;
322 322
        _local_flow = false;
323 323
      }
324 324
      _flow = &map;
325 325
      return *this;
326 326
    }
327 327

	
328 328
    /// \brief Sets the source node.
329 329
    ///
330 330
    /// Sets the source node.
331 331
    /// \return <tt>(*this)</tt>
332 332
    Preflow& source(const Node& node) {
333 333
      _source = node;
334 334
      return *this;
335 335
    }
336 336

	
337 337
    /// \brief Sets the target node.
338 338
    ///
339 339
    /// Sets the target node.
340 340
    /// \return <tt>(*this)</tt>
341 341
    Preflow& target(const Node& node) {
342 342
      _target = node;
343 343
      return *this;
344 344
    }
345 345

	
346 346
    /// \brief Sets the elevator used by algorithm.
347 347
    ///
348 348
    /// Sets the elevator used by algorithm.
349 349
    /// If you don't use this function before calling \ref run() or
350 350
    /// \ref init(), an instance will be allocated automatically.
351 351
    /// The destructor deallocates this automatically allocated elevator,
352 352
    /// of course.
353 353
    /// \return <tt>(*this)</tt>
354 354
    Preflow& elevator(Elevator& elevator) {
355 355
      if (_local_level) {
356 356
        delete _level;
357 357
        _local_level = false;
358 358
      }
359 359
      _level = &elevator;
360 360
      return *this;
361 361
    }
362 362

	
363 363
    /// \brief Returns a const reference to the elevator.
364 364
    ///
365 365
    /// Returns a const reference to the elevator.
366 366
    ///
367 367
    /// \pre Either \ref run() or \ref init() must be called before
368 368
    /// using this function.
369
    const Elevator& elevator() {
369
    const Elevator& elevator() const {
370 370
      return *_level;
371 371
    }
372 372

	
373 373
    /// \brief Sets the tolerance used by algorithm.
374 374
    ///
375 375
    /// Sets the tolerance used by algorithm.
376 376
    Preflow& tolerance(const Tolerance& tolerance) const {
377 377
      _tolerance = tolerance;
378 378
      return *this;
379 379
    }
380 380

	
381 381
    /// \brief Returns a const reference to the tolerance.
382 382
    ///
383 383
    /// Returns a const reference to the tolerance.
384 384
    const Tolerance& tolerance() const {
385 385
      return tolerance;
386 386
    }
387 387

	
388 388
    /// \name Execution Control
389 389
    /// The simplest way to execute the preflow algorithm is to use
390 390
    /// \ref run() or \ref runMinCut().\n
391 391
    /// If you need more control on the initial solution or the execution,
392 392
    /// first you have to call one of the \ref init() functions, then
393 393
    /// \ref startFirstPhase() and if you need it \ref startSecondPhase().
394 394

	
395 395
    ///@{
396 396

	
397 397
    /// \brief Initializes the internal data structures.
398 398
    ///
399 399
    /// Initializes the internal data structures and sets the initial
400 400
    /// flow to zero on each arc.
401 401
    void init() {
402 402
      createStructures();
403 403

	
404 404
      _phase = true;
405 405
      for (NodeIt n(_graph); n != INVALID; ++n) {
406 406
        _excess->set(n, 0);
407 407
      }
408 408

	
409 409
      for (ArcIt e(_graph); e != INVALID; ++e) {
410 410
        _flow->set(e, 0);
411 411
      }
412 412

	
413 413
      typename Digraph::template NodeMap<bool> reached(_graph, false);
414 414

	
415 415
      _level->initStart();
416 416
      _level->initAddItem(_target);
417 417

	
418 418
      std::vector<Node> queue;
419 419
      reached.set(_source, true);
420 420

	
421 421
      queue.push_back(_target);
422 422
      reached.set(_target, true);
423 423
      while (!queue.empty()) {
424 424
        _level->initNewLevel();
425 425
        std::vector<Node> nqueue;
426 426
        for (int i = 0; i < int(queue.size()); ++i) {
427 427
          Node n = queue[i];
428 428
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
429 429
            Node u = _graph.source(e);
430 430
            if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
431 431
              reached.set(u, true);
432 432
              _level->initAddItem(u);
433 433
              nqueue.push_back(u);
434 434
            }
435 435
          }
436 436
        }
437 437
        queue.swap(nqueue);
438 438
      }
439 439
      _level->initFinish();
440 440

	
441 441
      for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
442 442
        if (_tolerance.positive((*_capacity)[e])) {
443 443
          Node u = _graph.target(e);
444 444
          if ((*_level)[u] == _level->maxLevel()) continue;
445 445
          _flow->set(e, (*_capacity)[e]);
446 446
          _excess->set(u, (*_excess)[u] + (*_capacity)[e]);
447 447
          if (u != _target && !_level->active(u)) {
448 448
            _level->activate(u);
449 449
          }
450 450
        }
451 451
      }
452 452
    }
453 453

	
454 454
    /// \brief Initializes the internal data structures using the
455 455
    /// given flow map.
456 456
    ///
457 457
    /// Initializes the internal data structures and sets the initial
458 458
    /// flow to the given \c flowMap. The \c flowMap should contain a
459 459
    /// flow or at least a preflow, i.e. at each node excluding the
460 460
    /// source node the incoming flow should greater or equal to the
461 461
    /// outgoing flow.
462 462
    /// \return \c false if the given \c flowMap is not a preflow.
463 463
    template <typename FlowMap>
464 464
    bool init(const FlowMap& flowMap) {
465 465
      createStructures();
466 466

	
467 467
      for (ArcIt e(_graph); e != INVALID; ++e) {
468 468
        _flow->set(e, flowMap[e]);
469 469
      }
470 470

	
471 471
      for (NodeIt n(_graph); n != INVALID; ++n) {
472 472
        Value excess = 0;
473 473
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
474 474
          excess += (*_flow)[e];
475 475
        }
476 476
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
477 477
          excess -= (*_flow)[e];
478 478
        }
479 479
        if (excess < 0 && n != _source) return false;
480 480
        _excess->set(n, excess);
481 481
      }
482 482

	
483 483
      typename Digraph::template NodeMap<bool> reached(_graph, false);
484 484

	
485 485
      _level->initStart();
486 486
      _level->initAddItem(_target);
487 487

	
488 488
      std::vector<Node> queue;
489 489
      reached.set(_source, true);
490 490

	
491 491
      queue.push_back(_target);
492 492
      reached.set(_target, true);
493 493
      while (!queue.empty()) {
494 494
        _level->initNewLevel();
495 495
        std::vector<Node> nqueue;
496 496
        for (int i = 0; i < int(queue.size()); ++i) {
497 497
          Node n = queue[i];
498 498
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
499 499
            Node u = _graph.source(e);
500 500
            if (!reached[u] &&
501 501
                _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
502 502
              reached.set(u, true);
503 503
              _level->initAddItem(u);
504 504
              nqueue.push_back(u);
505 505
            }
506 506
          }
507 507
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
508 508
            Node v = _graph.target(e);
509 509
            if (!reached[v] && _tolerance.positive((*_flow)[e])) {
510 510
              reached.set(v, true);
511 511
              _level->initAddItem(v);
512 512
              nqueue.push_back(v);
513 513
            }
514 514
          }
515 515
        }
516 516
        queue.swap(nqueue);
517 517
      }
518 518
      _level->initFinish();
519 519

	
520 520
      for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
521 521
        Value rem = (*_capacity)[e] - (*_flow)[e];
522 522
        if (_tolerance.positive(rem)) {
523 523
          Node u = _graph.target(e);
524 524
          if ((*_level)[u] == _level->maxLevel()) continue;
525 525
          _flow->set(e, (*_capacity)[e]);
526 526
          _excess->set(u, (*_excess)[u] + rem);
527 527
          if (u != _target && !_level->active(u)) {
528 528
            _level->activate(u);
529 529
          }
530 530
        }
531 531
      }
532 532
      for (InArcIt e(_graph, _source); e != INVALID; ++e) {
533 533
        Value rem = (*_flow)[e];
534 534
        if (_tolerance.positive(rem)) {
535 535
          Node v = _graph.source(e);
536 536
          if ((*_level)[v] == _level->maxLevel()) continue;
537 537
          _flow->set(e, 0);
538 538
          _excess->set(v, (*_excess)[v] + rem);
539 539
          if (v != _target && !_level->active(v)) {
540 540
            _level->activate(v);
541 541
          }
542 542
        }
543 543
      }
544 544
      return true;
545 545
    }
546 546

	
547 547
    /// \brief Starts the first phase of the preflow algorithm.
548 548
    ///
549 549
    /// The preflow algorithm consists of two phases, this method runs
550 550
    /// the first phase. After the first phase the maximum flow value
551 551
    /// and a minimum value cut can already be computed, although a
552 552
    /// maximum flow is not yet obtained. So after calling this method
553 553
    /// \ref flowValue() returns the value of a maximum flow and \ref
554 554
    /// minCut() returns a minimum cut.
555 555
    /// \pre One of the \ref init() functions must be called before
556 556
    /// using this function.
557 557
    void startFirstPhase() {
558 558
      _phase = true;
559 559

	
560 560
      Node n = _level->highestActive();
561 561
      int level = _level->highestActiveLevel();
... ...
@@ -729,236 +729,236 @@
729 729
      _phase = false;
730 730

	
731 731
      typename Digraph::template NodeMap<bool> reached(_graph);
732 732
      for (NodeIt n(_graph); n != INVALID; ++n) {
733 733
        reached.set(n, (*_level)[n] < _level->maxLevel());
734 734
      }
735 735

	
736 736
      _level->initStart();
737 737
      _level->initAddItem(_source);
738 738

	
739 739
      std::vector<Node> queue;
740 740
      queue.push_back(_source);
741 741
      reached.set(_source, true);
742 742

	
743 743
      while (!queue.empty()) {
744 744
        _level->initNewLevel();
745 745
        std::vector<Node> nqueue;
746 746
        for (int i = 0; i < int(queue.size()); ++i) {
747 747
          Node n = queue[i];
748 748
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
749 749
            Node v = _graph.target(e);
750 750
            if (!reached[v] && _tolerance.positive((*_flow)[e])) {
751 751
              reached.set(v, true);
752 752
              _level->initAddItem(v);
753 753
              nqueue.push_back(v);
754 754
            }
755 755
          }
756 756
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
757 757
            Node u = _graph.source(e);
758 758
            if (!reached[u] &&
759 759
                _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
760 760
              reached.set(u, true);
761 761
              _level->initAddItem(u);
762 762
              nqueue.push_back(u);
763 763
            }
764 764
          }
765 765
        }
766 766
        queue.swap(nqueue);
767 767
      }
768 768
      _level->initFinish();
769 769

	
770 770
      for (NodeIt n(_graph); n != INVALID; ++n) {
771 771
        if (!reached[n]) {
772 772
          _level->dirtyTopButOne(n);
773 773
        } else if ((*_excess)[n] > 0 && _target != n) {
774 774
          _level->activate(n);
775 775
        }
776 776
      }
777 777

	
778 778
      Node n;
779 779
      while ((n = _level->highestActive()) != INVALID) {
780 780
        Value excess = (*_excess)[n];
781 781
        int level = _level->highestActiveLevel();
782 782
        int new_level = _level->maxLevel();
783 783

	
784 784
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
785 785
          Value rem = (*_capacity)[e] - (*_flow)[e];
786 786
          if (!_tolerance.positive(rem)) continue;
787 787
          Node v = _graph.target(e);
788 788
          if ((*_level)[v] < level) {
789 789
            if (!_level->active(v) && v != _source) {
790 790
              _level->activate(v);
791 791
            }
792 792
            if (!_tolerance.less(rem, excess)) {
793 793
              _flow->set(e, (*_flow)[e] + excess);
794 794
              _excess->set(v, (*_excess)[v] + excess);
795 795
              excess = 0;
796 796
              goto no_more_push;
797 797
            } else {
798 798
              excess -= rem;
799 799
              _excess->set(v, (*_excess)[v] + rem);
800 800
              _flow->set(e, (*_capacity)[e]);
801 801
            }
802 802
          } else if (new_level > (*_level)[v]) {
803 803
            new_level = (*_level)[v];
804 804
          }
805 805
        }
806 806

	
807 807
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
808 808
          Value rem = (*_flow)[e];
809 809
          if (!_tolerance.positive(rem)) continue;
810 810
          Node v = _graph.source(e);
811 811
          if ((*_level)[v] < level) {
812 812
            if (!_level->active(v) && v != _source) {
813 813
              _level->activate(v);
814 814
            }
815 815
            if (!_tolerance.less(rem, excess)) {
816 816
              _flow->set(e, (*_flow)[e] - excess);
817 817
              _excess->set(v, (*_excess)[v] + excess);
818 818
              excess = 0;
819 819
              goto no_more_push;
820 820
            } else {
821 821
              excess -= rem;
822 822
              _excess->set(v, (*_excess)[v] + rem);
823 823
              _flow->set(e, 0);
824 824
            }
825 825
          } else if (new_level > (*_level)[v]) {
826 826
            new_level = (*_level)[v];
827 827
          }
828 828
        }
829 829

	
830 830
      no_more_push:
831 831

	
832 832
        _excess->set(n, excess);
833 833

	
834 834
        if (excess != 0) {
835 835
          if (new_level + 1 < _level->maxLevel()) {
836 836
            _level->liftHighestActive(new_level + 1);
837 837
          } else {
838 838
            // Calculation error
839 839
            _level->liftHighestActiveToTop();
840 840
          }
841 841
          if (_level->emptyLevel(level)) {
842 842
            // Calculation error
843 843
            _level->liftToTop(level);
844 844
          }
845 845
        } else {
846 846
          _level->deactivate(n);
847 847
        }
848 848

	
849 849
      }
850 850
    }
851 851

	
852 852
    /// \brief Runs the preflow algorithm.
853 853
    ///
854 854
    /// Runs the preflow algorithm.
855 855
    /// \note pf.run() is just a shortcut of the following code.
856 856
    /// \code
857 857
    ///   pf.init();
858 858
    ///   pf.startFirstPhase();
859 859
    ///   pf.startSecondPhase();
860 860
    /// \endcode
861 861
    void run() {
862 862
      init();
863 863
      startFirstPhase();
864 864
      startSecondPhase();
865 865
    }
866 866

	
867 867
    /// \brief Runs the preflow algorithm to compute the minimum cut.
868 868
    ///
869 869
    /// Runs the preflow algorithm to compute the minimum cut.
870 870
    /// \note pf.runMinCut() is just a shortcut of the following code.
871 871
    /// \code
872 872
    ///   pf.init();
873 873
    ///   pf.startFirstPhase();
874 874
    /// \endcode
875 875
    void runMinCut() {
876 876
      init();
877 877
      startFirstPhase();
878 878
    }
879 879

	
880 880
    /// @}
881 881

	
882 882
    /// \name Query Functions
883 883
    /// The results of the preflow algorithm can be obtained using these
884 884
    /// functions.\n
885 885
    /// Either one of the \ref run() "run*()" functions or one of the
886 886
    /// \ref startFirstPhase() "start*()" functions should be called
887 887
    /// before using them.
888 888

	
889 889
    ///@{
890 890

	
891 891
    /// \brief Returns the value of the maximum flow.
892 892
    ///
893 893
    /// Returns the value of the maximum flow by returning the excess
894 894
    /// of the target node. This value equals to the value of
895 895
    /// the maximum flow already after the first phase of the algorithm.
896 896
    ///
897 897
    /// \pre Either \ref run() or \ref init() must be called before
898 898
    /// using this function.
899 899
    Value flowValue() const {
900 900
      return (*_excess)[_target];
901 901
    }
902 902

	
903 903
    /// \brief Returns the flow on the given arc.
904 904
    ///
905 905
    /// Returns the flow on the given arc. This method can
906 906
    /// be called after the second phase of the algorithm.
907 907
    ///
908 908
    /// \pre Either \ref run() or \ref init() must be called before
909 909
    /// using this function.
910 910
    Value flow(const Arc& arc) const {
911 911
      return (*_flow)[arc];
912 912
    }
913 913

	
914 914
    /// \brief Returns a const reference to the flow map.
915 915
    ///
916 916
    /// Returns a const reference to the arc map storing the found flow.
917 917
    /// This method can be called after the second phase of the algorithm.
918 918
    ///
919 919
    /// \pre Either \ref run() or \ref init() must be called before
920 920
    /// using this function.
921
    const FlowMap& flowMap() {
921
    const FlowMap& flowMap() const {
922 922
      return *_flow;
923 923
    }
924 924

	
925 925
    /// \brief Returns \c true when the node is on the source side of the
926 926
    /// minimum cut.
927 927
    ///
928 928
    /// Returns true when the node is on the source side of the found
929 929
    /// minimum cut. This method can be called both after running \ref
930 930
    /// startFirstPhase() and \ref startSecondPhase().
931 931
    ///
932 932
    /// \pre Either \ref run() or \ref init() must be called before
933 933
    /// using this function.
934 934
    bool minCut(const Node& node) const {
935 935
      return ((*_level)[node] == _level->maxLevel()) == _phase;
936 936
    }
937 937

	
938 938
    /// \brief Gives back a minimum value cut.
939 939
    ///
940 940
    /// Sets \c cutMap to the characteristic vector of a minimum value
941 941
    /// cut. \c cutMap should be a \ref concepts::WriteMap "writable"
942 942
    /// node map with \c bool (or convertible) value type.
943 943
    ///
944 944
    /// This method can be called both after running \ref startFirstPhase()
945 945
    /// and \ref startSecondPhase(). The result after the second phase
946 946
    /// could be slightly different if inexact computation is used.
947 947
    ///
948 948
    /// \note This function calls \ref minCut() for each node, so it runs in
949 949
    /// \f$O(n)\f$ time.
950 950
    ///
951 951
    /// \pre Either \ref run() or \ref init() must be called before
952 952
    /// using this function.
953 953
    template <typename CutMap>
954 954
    void minCutMap(CutMap& cutMap) const {
955 955
      for (NodeIt n(_graph); n != INVALID; ++n) {
956 956
        cutMap.set(n, minCut(n));
957 957
      }
958 958
    }
959 959

	
960 960
    /// @}
961 961
  };
962 962
}
963 963

	
964 964
#endif
0 comments (0 inline)