0
67
10
597
582
17
13
1
133
61
15
9
66
77
12
13
172
171
344
324
62
75
64
64
2
9
19
15
71
55
35
39
272
217
20
6
439
84
57
47
15
7
175
169
428
4
1 |
%%%%% Defining LEMON %%%%% |
|
2 |
|
|
3 |
@misc{lemon, |
|
4 |
key = {LEMON}, |
|
5 |
title = {{LEMON} -- {L}ibrary for {E}fficient {M}odeling and |
|
6 |
{O}ptimization in {N}etworks}, |
|
7 |
howpublished = {\url{http://lemon.cs.elte.hu/}}, |
|
8 |
year = 2009 |
|
9 |
} |
|
10 |
|
|
11 |
@misc{egres, |
|
12 |
key = {EGRES}, |
|
13 |
title = {{EGRES} -- {E}gerv{\'a}ry {R}esearch {G}roup on |
|
14 |
{C}ombinatorial {O}ptimization}, |
|
15 |
url = {http://www.cs.elte.hu/egres/} |
|
16 |
} |
|
17 |
|
|
18 |
@misc{coinor, |
|
19 |
key = {COIN-OR}, |
|
20 |
title = {{COIN-OR} -- {C}omputational {I}nfrastructure for |
|
21 |
{O}perations {R}esearch}, |
|
22 |
url = {http://www.coin-or.org/} |
|
23 |
} |
|
24 |
|
|
25 |
|
|
26 |
%%%%% Other libraries %%%%%% |
|
27 |
|
|
28 |
@misc{boost, |
|
29 |
key = {Boost}, |
|
30 |
title = {{B}oost {C++} {L}ibraries}, |
|
31 |
url = {http://www.boost.org/} |
|
32 |
} |
|
33 |
|
|
34 |
@book{bglbook, |
|
35 |
author = {Jeremy G. Siek and Lee-Quan Lee and Andrew |
|
36 |
Lumsdaine}, |
|
37 |
title = {The Boost Graph Library: User Guide and Reference |
|
38 |
Manual}, |
|
39 |
publisher = {Addison-Wesley}, |
|
40 |
year = 2002 |
|
41 |
} |
|
42 |
|
|
43 |
@misc{leda, |
|
44 |
key = {LEDA}, |
|
45 |
title = {{LEDA} -- {L}ibrary of {E}fficient {D}ata {T}ypes and |
|
46 |
{A}lgorithms}, |
|
47 |
url = {http://www.algorithmic-solutions.com/} |
|
48 |
} |
|
49 |
|
|
50 |
@book{ledabook, |
|
51 |
author = {Kurt Mehlhorn and Stefan N{\"a}her}, |
|
52 |
title = {{LEDA}: {A} platform for combinatorial and geometric |
|
53 |
computing}, |
|
54 |
isbn = {0-521-56329-1}, |
|
55 |
publisher = {Cambridge University Press}, |
|
56 |
address = {New York, NY, USA}, |
|
57 |
year = 1999 |
|
58 |
} |
|
59 |
|
|
60 |
|
|
61 |
%%%%% Tools that LEMON depends on %%%%% |
|
62 |
|
|
63 |
@misc{cmake, |
|
64 |
key = {CMake}, |
|
65 |
title = {{CMake} -- {C}ross {P}latform {M}ake}, |
|
66 |
url = {http://www.cmake.org/} |
|
67 |
} |
|
68 |
|
|
69 |
@misc{doxygen, |
|
70 |
key = {Doxygen}, |
|
71 |
title = {{Doxygen} -- {S}ource code documentation generator |
|
72 |
tool}, |
|
73 |
url = {http://www.doxygen.org/} |
|
74 |
} |
|
75 |
|
|
76 |
|
|
77 |
%%%%% LP/MIP libraries %%%%% |
|
78 |
|
|
79 |
@misc{glpk, |
|
80 |
key = {GLPK}, |
|
81 |
title = {{GLPK} -- {GNU} {L}inear {P}rogramming {K}it}, |
|
82 |
url = {http://www.gnu.org/software/glpk/} |
|
83 |
} |
|
84 |
|
|
85 |
@misc{clp, |
|
86 |
key = {Clp}, |
|
87 |
title = {{Clp} -- {Coin-Or} {L}inear {P}rogramming}, |
|
88 |
url = {http://projects.coin-or.org/Clp/} |
|
89 |
} |
|
90 |
|
|
91 |
@misc{cbc, |
|
92 |
key = {Cbc}, |
|
93 |
title = {{Cbc} -- {Coin-Or} {B}ranch and {C}ut}, |
|
94 |
url = {http://projects.coin-or.org/Cbc/} |
|
95 |
} |
|
96 |
|
|
97 |
@misc{cplex, |
|
98 |
key = {CPLEX}, |
|
99 |
title = {{ILOG} {CPLEX}}, |
|
100 |
url = {http://www.ilog.com/} |
|
101 |
} |
|
102 |
|
|
103 |
@misc{soplex, |
|
104 |
key = {SoPlex}, |
|
105 |
title = {{SoPlex} -- {T}he {S}equential {O}bject-{O}riented |
|
106 |
{S}implex}, |
|
107 |
url = {http://soplex.zib.de/} |
|
108 |
} |
|
109 |
|
|
110 |
|
|
111 |
%%%%% General books %%%%% |
|
112 |
|
|
113 |
@book{amo93networkflows, |
|
114 |
author = {Ravindra K. Ahuja and Thomas L. Magnanti and James |
|
115 |
B. Orlin}, |
|
116 |
title = {Network Flows: Theory, Algorithms, and Applications}, |
|
117 |
publisher = {Prentice-Hall, Inc.}, |
|
118 |
year = 1993, |
|
119 |
month = feb, |
|
120 |
isbn = {978-0136175490} |
|
121 |
} |
|
122 |
|
|
123 |
@book{schrijver03combinatorial, |
|
124 |
author = {Alexander Schrijver}, |
|
125 |
title = {Combinatorial Optimization: Polyhedra and Efficiency}, |
|
126 |
publisher = {Springer-Verlag}, |
|
127 |
year = 2003, |
|
128 |
isbn = {978-3540443896} |
|
129 |
} |
|
130 |
|
|
131 |
@book{clrs01algorithms, |
|
132 |
author = {Thomas H. Cormen and Charles E. Leiserson and Ronald |
|
133 |
L. Rivest and Clifford Stein}, |
|
134 |
title = {Introduction to Algorithms}, |
|
135 |
publisher = {The MIT Press}, |
|
136 |
year = 2001, |
|
137 |
edition = {2nd} |
|
138 |
} |
|
139 |
|
|
140 |
@book{stroustrup00cpp, |
|
141 |
author = {Bjarne Stroustrup}, |
|
142 |
title = {The C++ Programming Language}, |
|
143 |
edition = {3rd}, |
|
144 |
publisher = {Addison-Wesley Professional}, |
|
145 |
isbn = 0201700735, |
|
146 |
month = {February}, |
|
147 |
year = 2000 |
|
148 |
} |
|
149 |
|
|
150 |
|
|
151 |
%%%%% Maximum flow algorithms %%%%% |
|
152 |
|
|
153 |
@article{edmondskarp72theoretical, |
|
154 |
author = {Jack Edmonds and Richard M. Karp}, |
|
155 |
title = {Theoretical improvements in algorithmic efficiency |
|
156 |
for network flow problems}, |
|
157 |
journal = {Journal of the ACM}, |
|
158 |
year = 1972, |
|
159 |
volume = 19, |
|
160 |
number = 2, |
|
161 |
pages = {248-264} |
|
162 |
} |
|
163 |
|
|
164 |
@article{goldberg88newapproach, |
|
165 |
author = {Andrew V. Goldberg and Robert E. Tarjan}, |
|
166 |
title = {A new approach to the maximum flow problem}, |
|
167 |
journal = {Journal of the ACM}, |
|
168 |
year = 1988, |
|
169 |
volume = 35, |
|
170 |
number = 4, |
|
171 |
pages = {921-940} |
|
172 |
} |
|
173 |
|
|
174 |
@article{dinic70algorithm, |
|
175 |
author = {E. A. Dinic}, |
|
176 |
title = {Algorithm for solution of a problem of maximum flow |
|
177 |
in a network with power estimation}, |
|
178 |
journal = {Soviet Math. Doklady}, |
|
179 |
year = 1970, |
|
180 |
volume = 11, |
|
181 |
pages = {1277-1280} |
|
182 |
} |
|
183 |
|
|
184 |
@article{goldberg08partial, |
|
185 |
author = {Andrew V. Goldberg}, |
|
186 |
title = {The Partial Augment-Relabel Algorithm for the |
|
187 |
Maximum Flow Problem}, |
|
188 |
journal = {16th Annual European Symposium on Algorithms}, |
|
189 |
year = 2008, |
|
190 |
pages = {466-477} |
|
191 |
} |
|
192 |
|
|
193 |
@article{sleator83dynamic, |
|
194 |
author = {Daniel D. Sleator and Robert E. Tarjan}, |
|
195 |
title = {A data structure for dynamic trees}, |
|
196 |
journal = {Journal of Computer and System Sciences}, |
|
197 |
year = 1983, |
|
198 |
volume = 26, |
|
199 |
number = 3, |
|
200 |
pages = {362-391} |
|
201 |
} |
|
202 |
|
|
203 |
|
|
204 |
%%%%% Minimum mean cycle algorithms %%%%% |
|
205 |
|
|
206 |
@article{karp78characterization, |
|
207 |
author = {Richard M. Karp}, |
|
208 |
title = {A characterization of the minimum cycle mean in a |
|
209 |
digraph}, |
|
210 |
journal = {Discrete Math.}, |
|
211 |
year = 1978, |
|
212 |
volume = 23, |
|
213 |
pages = {309-311} |
|
214 |
} |
|
215 |
|
|
216 |
@article{dasdan98minmeancycle, |
|
217 |
author = {Ali Dasdan and Rajesh K. Gupta}, |
|
218 |
title = {Faster Maximum and Minimum Mean Cycle Alogrithms for |
|
219 |
System Performance Analysis}, |
|
220 |
journal = {IEEE Transactions on Computer-Aided Design of |
|
221 |
Integrated Circuits and Systems}, |
|
222 |
year = 1998, |
|
223 |
volume = 17, |
|
224 |
number = 10, |
|
225 |
pages = {889-899} |
|
226 |
} |
|
227 |
|
|
228 |
|
|
229 |
%%%%% Minimum cost flow algorithms %%%%% |
|
230 |
|
|
231 |
@article{klein67primal, |
|
232 |
author = {Morton Klein}, |
|
233 |
title = {A primal method for minimal cost flows with |
|
234 |
applications to the assignment and transportation |
|
235 |
problems}, |
|
236 |
journal = {Management Science}, |
|
237 |
year = 1967, |
|
238 |
volume = 14, |
|
239 |
pages = {205-220} |
|
240 |
} |
|
241 |
|
|
242 |
@article{goldberg89cyclecanceling, |
|
243 |
author = {Andrew V. Goldberg and Robert E. Tarjan}, |
|
244 |
title = {Finding minimum-cost circulations by canceling |
|
245 |
negative cycles}, |
|
246 |
journal = {Journal of the ACM}, |
|
247 |
year = 1989, |
|
248 |
volume = 36, |
|
249 |
number = 4, |
|
250 |
pages = {873-886} |
|
251 |
} |
|
252 |
|
|
253 |
@article{goldberg90approximation, |
|
254 |
author = {Andrew V. Goldberg and Robert E. Tarjan}, |
|
255 |
title = {Finding Minimum-Cost Circulations by Successive |
|
256 |
Approximation}, |
|
257 |
journal = {Mathematics of Operations Research}, |
|
258 |
year = 1990, |
|
259 |
volume = 15, |
|
260 |
number = 3, |
|
261 |
pages = {430-466} |
|
262 |
} |
|
263 |
|
|
264 |
@article{goldberg97efficient, |
|
265 |
author = {Andrew V. Goldberg}, |
|
266 |
title = {An Efficient Implementation of a Scaling |
|
267 |
Minimum-Cost Flow Algorithm}, |
|
268 |
journal = {Journal of Algorithms}, |
|
269 |
year = 1997, |
|
270 |
volume = 22, |
|
271 |
number = 1, |
|
272 |
pages = {1-29} |
|
273 |
} |
|
274 |
|
|
275 |
@article{bunnagel98efficient, |
|
276 |
author = {Ursula B{\"u}nnagel and Bernhard Korte and Jens |
|
277 |
Vygen}, |
|
278 |
title = {Efficient implementation of the {G}oldberg-{T}arjan |
|
279 |
minimum-cost flow algorithm}, |
|
280 |
journal = {Optimization Methods and Software}, |
|
281 |
year = 1998, |
|
282 |
volume = 10, |
|
283 |
pages = {157-174} |
|
284 |
} |
|
285 |
|
|
286 |
@book{dantzig63linearprog, |
|
287 |
author = {George B. Dantzig}, |
|
288 |
title = {Linear Programming and Extensions}, |
|
289 |
publisher = {Princeton University Press}, |
|
290 |
year = 1963 |
|
291 |
} |
|
292 |
|
|
293 |
@mastersthesis{kellyoneill91netsimplex, |
|
294 |
author = {Damian J. Kelly and Garrett M. O'Neill}, |
|
295 |
title = {The Minimum Cost Flow Problem and The Network |
|
296 |
Simplex Method}, |
|
297 |
school = {University College}, |
|
298 |
address = {Dublin, Ireland}, |
|
299 |
year = 1991, |
|
300 |
month = sep, |
|
301 |
} |
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_HARTMANN_ORLIN_H |
|
20 |
#define LEMON_HARTMANN_ORLIN_H |
|
21 |
|
|
22 |
/// \ingroup min_mean_cycle |
|
23 |
/// |
|
24 |
/// \file |
|
25 |
/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle. |
|
26 |
|
|
27 |
#include <vector> |
|
28 |
#include <limits> |
|
29 |
#include <lemon/core.h> |
|
30 |
#include <lemon/path.h> |
|
31 |
#include <lemon/tolerance.h> |
|
32 |
#include <lemon/connectivity.h> |
|
33 |
|
|
34 |
namespace lemon { |
|
35 |
|
|
36 |
/// \brief Default traits class of HartmannOrlin algorithm. |
|
37 |
/// |
|
38 |
/// Default traits class of HartmannOrlin algorithm. |
|
39 |
/// \tparam GR The type of the digraph. |
|
40 |
/// \tparam LEN The type of the length map. |
|
41 |
/// It must conform to the \ref concepts::Rea_data "Rea_data" concept. |
|
42 |
#ifdef DOXYGEN |
|
43 |
template <typename GR, typename LEN> |
|
44 |
#else |
|
45 |
template <typename GR, typename LEN, |
|
46 |
bool integer = std::numeric_limits<typename LEN::Value>::is_integer> |
|
47 |
#endif |
|
48 |
struct HartmannOrlinDefaultTraits |
|
49 |
{ |
|
50 |
/// The type of the digraph |
|
51 |
typedef GR Digraph; |
|
52 |
/// The type of the length map |
|
53 |
typedef LEN LengthMap; |
|
54 |
/// The type of the arc lengths |
|
55 |
typedef typename LengthMap::Value Value; |
|
56 |
|
|
57 |
/// \brief The large value type used for internal computations |
|
58 |
/// |
|
59 |
/// The large value type used for internal computations. |
|
60 |
/// It is \c long \c long if the \c Value type is integer, |
|
61 |
/// otherwise it is \c double. |
|
62 |
/// \c Value must be convertible to \c LargeValue. |
|
63 |
typedef double LargeValue; |
|
64 |
|
|
65 |
/// The tolerance type used for internal computations |
|
66 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
67 |
|
|
68 |
/// \brief The path type of the found cycles |
|
69 |
/// |
|
70 |
/// The path type of the found cycles. |
|
71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
72 |
/// and it must have an \c addFront() function. |
|
73 |
typedef lemon::Path<Digraph> Path; |
|
74 |
}; |
|
75 |
|
|
76 |
// Default traits class for integer value types |
|
77 |
template <typename GR, typename LEN> |
|
78 |
struct HartmannOrlinDefaultTraits<GR, LEN, true> |
|
79 |
{ |
|
80 |
typedef GR Digraph; |
|
81 |
typedef LEN LengthMap; |
|
82 |
typedef typename LengthMap::Value Value; |
|
83 |
#ifdef LEMON_HAVE_LONG_LONG |
|
84 |
typedef long long LargeValue; |
|
85 |
#else |
|
86 |
typedef long LargeValue; |
|
87 |
#endif |
|
88 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
89 |
typedef lemon::Path<Digraph> Path; |
|
90 |
}; |
|
91 |
|
|
92 |
|
|
93 |
/// \addtogroup min_mean_cycle |
|
94 |
/// @{ |
|
95 |
|
|
96 |
/// \brief Implementation of the Hartmann-Orlin algorithm for finding |
|
97 |
/// a minimum mean cycle. |
|
98 |
/// |
|
99 |
/// This class implements the Hartmann-Orlin algorithm for finding |
|
100 |
/// a directed cycle of minimum mean length (cost) in a digraph |
|
101 |
/// \ref amo93networkflows, \ref dasdan98minmeancycle. |
|
102 |
/// It is an improved version of \ref Karp "Karp"'s original algorithm, |
|
103 |
/// it applies an efficient early termination scheme. |
|
104 |
/// It runs in time O(ne) and uses space O(n<sup>2</sup>+e). |
|
105 |
/// |
|
106 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
107 |
/// \tparam LEN The type of the length map. The default |
|
108 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
109 |
#ifdef DOXYGEN |
|
110 |
template <typename GR, typename LEN, typename TR> |
|
111 |
#else |
|
112 |
template < typename GR, |
|
113 |
typename LEN = typename GR::template ArcMap<int>, |
|
114 |
typename TR = HartmannOrlinDefaultTraits<GR, LEN> > |
|
115 |
#endif |
|
116 |
class HartmannOrlin |
|
117 |
{ |
|
118 |
public: |
|
119 |
|
|
120 |
/// The type of the digraph |
|
121 |
typedef typename TR::Digraph Digraph; |
|
122 |
/// The type of the length map |
|
123 |
typedef typename TR::LengthMap LengthMap; |
|
124 |
/// The type of the arc lengths |
|
125 |
typedef typename TR::Value Value; |
|
126 |
|
|
127 |
/// \brief The large value type |
|
128 |
/// |
|
129 |
/// The large value type used for internal computations. |
|
130 |
/// Using the \ref HartmannOrlinDefaultTraits "default traits class", |
|
131 |
/// it is \c long \c long if the \c Value type is integer, |
|
132 |
/// otherwise it is \c double. |
|
133 |
typedef typename TR::LargeValue LargeValue; |
|
134 |
|
|
135 |
/// The tolerance type |
|
136 |
typedef typename TR::Tolerance Tolerance; |
|
137 |
|
|
138 |
/// \brief The path type of the found cycles |
|
139 |
/// |
|
140 |
/// The path type of the found cycles. |
|
141 |
/// Using the \ref HartmannOrlinDefaultTraits "default traits class", |
|
142 |
/// it is \ref lemon::Path "Path<Digraph>". |
|
143 |
typedef typename TR::Path Path; |
|
144 |
|
|
145 |
/// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm |
|
146 |
typedef TR Traits; |
|
147 |
|
|
148 |
private: |
|
149 |
|
|
150 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
151 |
|
|
152 |
// Data sturcture for path data |
|
153 |
struct PathData |
|
154 |
{ |
|
155 |
LargeValue dist; |
|
156 |
Arc pred; |
|
157 |
PathData(LargeValue d, Arc p = INVALID) : |
|
158 |
dist(d), pred(p) {} |
|
159 |
}; |
|
160 |
|
|
161 |
typedef typename Digraph::template NodeMap<std::vector<PathData> > |
|
162 |
PathDataNodeMap; |
|
163 |
|
|
164 |
private: |
|
165 |
|
|
166 |
// The digraph the algorithm runs on |
|
167 |
const Digraph &_gr; |
|
168 |
// The length of the arcs |
|
169 |
const LengthMap &_length; |
|
170 |
|
|
171 |
// Data for storing the strongly connected components |
|
172 |
int _comp_num; |
|
173 |
typename Digraph::template NodeMap<int> _comp; |
|
174 |
std::vector<std::vector<Node> > _comp_nodes; |
|
175 |
std::vector<Node>* _nodes; |
|
176 |
typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs; |
|
177 |
|
|
178 |
// Data for the found cycles |
|
179 |
bool _curr_found, _best_found; |
|
180 |
LargeValue _curr_length, _best_length; |
|
181 |
int _curr_size, _best_size; |
|
182 |
Node _curr_node, _best_node; |
|
183 |
int _curr_level, _best_level; |
|
184 |
|
|
185 |
Path *_cycle_path; |
|
186 |
bool _local_path; |
|
187 |
|
|
188 |
// Node map for storing path data |
|
189 |
PathDataNodeMap _data; |
|
190 |
// The processed nodes in the last round |
|
191 |
std::vector<Node> _process; |
|
192 |
|
|
193 |
Tolerance _tolerance; |
|
194 |
|
|
195 |
// Infinite constant |
|
196 |
const LargeValue INF; |
|
197 |
|
|
198 |
public: |
|
199 |
|
|
200 |
/// \name Named Template Parameters |
|
201 |
/// @{ |
|
202 |
|
|
203 |
template <typename T> |
|
204 |
struct SetLargeValueTraits : public Traits { |
|
205 |
typedef T LargeValue; |
|
206 |
typedef lemon::Tolerance<T> Tolerance; |
|
207 |
}; |
|
208 |
|
|
209 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
210 |
/// \c LargeValue type. |
|
211 |
/// |
|
212 |
/// \ref named-templ-param "Named parameter" for setting \c LargeValue |
|
213 |
/// type. It is used for internal computations in the algorithm. |
|
214 |
template <typename T> |
|
215 |
struct SetLargeValue |
|
216 |
: public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > { |
|
217 |
typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create; |
|
218 |
}; |
|
219 |
|
|
220 |
template <typename T> |
|
221 |
struct SetPathTraits : public Traits { |
|
222 |
typedef T Path; |
|
223 |
}; |
|
224 |
|
|
225 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
226 |
/// \c %Path type. |
|
227 |
/// |
|
228 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
|
229 |
/// type of the found cycles. |
|
230 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
231 |
/// and it must have an \c addFront() function. |
|
232 |
template <typename T> |
|
233 |
struct SetPath |
|
234 |
: public HartmannOrlin<GR, LEN, SetPathTraits<T> > { |
|
235 |
typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create; |
|
236 |
}; |
|
237 |
|
|
238 |
/// @} |
|
239 |
|
|
240 |
public: |
|
241 |
|
|
242 |
/// \brief Constructor. |
|
243 |
/// |
|
244 |
/// The constructor of the class. |
|
245 |
/// |
|
246 |
/// \param digraph The digraph the algorithm runs on. |
|
247 |
/// \param length The lengths (costs) of the arcs. |
|
248 |
HartmannOrlin( const Digraph &digraph, |
|
249 |
const LengthMap &length ) : |
|
250 |
_gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph), |
|
251 |
_best_found(false), _best_length(0), _best_size(1), |
|
252 |
_cycle_path(NULL), _local_path(false), _data(digraph), |
|
253 |
INF(std::numeric_limits<LargeValue>::has_infinity ? |
|
254 |
std::numeric_limits<LargeValue>::infinity() : |
|
255 |
std::numeric_limits<LargeValue>::max()) |
|
256 |
{} |
|
257 |
|
|
258 |
/// Destructor. |
|
259 |
~HartmannOrlin() { |
|
260 |
if (_local_path) delete _cycle_path; |
|
261 |
} |
|
262 |
|
|
263 |
/// \brief Set the path structure for storing the found cycle. |
|
264 |
/// |
|
265 |
/// This function sets an external path structure for storing the |
|
266 |
/// found cycle. |
|
267 |
/// |
|
268 |
/// If you don't call this function before calling \ref run() or |
|
269 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
|
270 |
/// structure. The destuctor deallocates this automatically |
|
271 |
/// allocated object, of course. |
|
272 |
/// |
|
273 |
/// \note The algorithm calls only the \ref lemon::Path::addFront() |
|
274 |
/// "addFront()" function of the given path structure. |
|
275 |
/// |
|
276 |
/// \return <tt>(*this)</tt> |
|
277 |
HartmannOrlin& cycle(Path &path) { |
|
278 |
if (_local_path) { |
|
279 |
delete _cycle_path; |
|
280 |
_local_path = false; |
|
281 |
} |
|
282 |
_cycle_path = &path; |
|
283 |
return *this; |
|
284 |
} |
|
285 |
|
|
286 |
/// \brief Set the tolerance used by the algorithm. |
|
287 |
/// |
|
288 |
/// This function sets the tolerance object used by the algorithm. |
|
289 |
/// |
|
290 |
/// \return <tt>(*this)</tt> |
|
291 |
HartmannOrlin& tolerance(const Tolerance& tolerance) { |
|
292 |
_tolerance = tolerance; |
|
293 |
return *this; |
|
294 |
} |
|
295 |
|
|
296 |
/// \brief Return a const reference to the tolerance. |
|
297 |
/// |
|
298 |
/// This function returns a const reference to the tolerance object |
|
299 |
/// used by the algorithm. |
|
300 |
const Tolerance& tolerance() const { |
|
301 |
return _tolerance; |
|
302 |
} |
|
303 |
|
|
304 |
/// \name Execution control |
|
305 |
/// The simplest way to execute the algorithm is to call the \ref run() |
|
306 |
/// function.\n |
|
307 |
/// If you only need the minimum mean length, you may call |
|
308 |
/// \ref findMinMean(). |
|
309 |
|
|
310 |
/// @{ |
|
311 |
|
|
312 |
/// \brief Run the algorithm. |
|
313 |
/// |
|
314 |
/// This function runs the algorithm. |
|
315 |
/// It can be called more than once (e.g. if the underlying digraph |
|
316 |
/// and/or the arc lengths have been modified). |
|
317 |
/// |
|
318 |
/// \return \c true if a directed cycle exists in the digraph. |
|
319 |
/// |
|
320 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
|
321 |
/// \code |
|
322 |
/// return mmc.findMinMean() && mmc.findCycle(); |
|
323 |
/// \endcode |
|
324 |
bool run() { |
|
325 |
return findMinMean() && findCycle(); |
|
326 |
} |
|
327 |
|
|
328 |
/// \brief Find the minimum cycle mean. |
|
329 |
/// |
|
330 |
/// This function finds the minimum mean length of the directed |
|
331 |
/// cycles in the digraph. |
|
332 |
/// |
|
333 |
/// \return \c true if a directed cycle exists in the digraph. |
|
334 |
bool findMinMean() { |
|
335 |
// Initialization and find strongly connected components |
|
336 |
init(); |
|
337 |
findComponents(); |
|
338 |
|
|
339 |
// Find the minimum cycle mean in the components |
|
340 |
for (int comp = 0; comp < _comp_num; ++comp) { |
|
341 |
if (!initComponent(comp)) continue; |
|
342 |
processRounds(); |
|
343 |
|
|
344 |
// Update the best cycle (global minimum mean cycle) |
|
345 |
if ( _curr_found && (!_best_found || |
|
346 |
_curr_length * _best_size < _best_length * _curr_size) ) { |
|
347 |
_best_found = true; |
|
348 |
_best_length = _curr_length; |
|
349 |
_best_size = _curr_size; |
|
350 |
_best_node = _curr_node; |
|
351 |
_best_level = _curr_level; |
|
352 |
} |
|
353 |
} |
|
354 |
return _best_found; |
|
355 |
} |
|
356 |
|
|
357 |
/// \brief Find a minimum mean directed cycle. |
|
358 |
/// |
|
359 |
/// This function finds a directed cycle of minimum mean length |
|
360 |
/// in the digraph using the data computed by findMinMean(). |
|
361 |
/// |
|
362 |
/// \return \c true if a directed cycle exists in the digraph. |
|
363 |
/// |
|
364 |
/// \pre \ref findMinMean() must be called before using this function. |
|
365 |
bool findCycle() { |
|
366 |
if (!_best_found) return false; |
|
367 |
IntNodeMap reached(_gr, -1); |
|
368 |
int r = _best_level + 1; |
|
369 |
Node u = _best_node; |
|
370 |
while (reached[u] < 0) { |
|
371 |
reached[u] = --r; |
|
372 |
u = _gr.source(_data[u][r].pred); |
|
373 |
} |
|
374 |
r = reached[u]; |
|
375 |
Arc e = _data[u][r].pred; |
|
376 |
_cycle_path->addFront(e); |
|
377 |
_best_length = _length[e]; |
|
378 |
_best_size = 1; |
|
379 |
Node v; |
|
380 |
while ((v = _gr.source(e)) != u) { |
|
381 |
e = _data[v][--r].pred; |
|
382 |
_cycle_path->addFront(e); |
|
383 |
_best_length += _length[e]; |
|
384 |
++_best_size; |
|
385 |
} |
|
386 |
return true; |
|
387 |
} |
|
388 |
|
|
389 |
/// @} |
|
390 |
|
|
391 |
/// \name Query Functions |
|
392 |
/// The results of the algorithm can be obtained using these |
|
393 |
/// functions.\n |
|
394 |
/// The algorithm should be executed before using them. |
|
395 |
|
|
396 |
/// @{ |
|
397 |
|
|
398 |
/// \brief Return the total length of the found cycle. |
|
399 |
/// |
|
400 |
/// This function returns the total length of the found cycle. |
|
401 |
/// |
|
402 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
403 |
/// using this function. |
|
404 |
LargeValue cycleLength() const { |
|
405 |
return _best_length; |
|
406 |
} |
|
407 |
|
|
408 |
/// \brief Return the number of arcs on the found cycle. |
|
409 |
/// |
|
410 |
/// This function returns the number of arcs on the found cycle. |
|
411 |
/// |
|
412 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
413 |
/// using this function. |
|
414 |
int cycleArcNum() const { |
|
415 |
return _best_size; |
|
416 |
} |
|
417 |
|
|
418 |
/// \brief Return the mean length of the found cycle. |
|
419 |
/// |
|
420 |
/// This function returns the mean length of the found cycle. |
|
421 |
/// |
|
422 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
|
423 |
/// following code. |
|
424 |
/// \code |
|
425 |
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum(); |
|
426 |
/// \endcode |
|
427 |
/// |
|
428 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
429 |
/// using this function. |
|
430 |
double cycleMean() const { |
|
431 |
return static_cast<double>(_best_length) / _best_size; |
|
432 |
} |
|
433 |
|
|
434 |
/// \brief Return the found cycle. |
|
435 |
/// |
|
436 |
/// This function returns a const reference to the path structure |
|
437 |
/// storing the found cycle. |
|
438 |
/// |
|
439 |
/// \pre \ref run() or \ref findCycle() must be called before using |
|
440 |
/// this function. |
|
441 |
const Path& cycle() const { |
|
442 |
return *_cycle_path; |
|
443 |
} |
|
444 |
|
|
445 |
///@} |
|
446 |
|
|
447 |
private: |
|
448 |
|
|
449 |
// Initialization |
|
450 |
void init() { |
|
451 |
if (!_cycle_path) { |
|
452 |
_local_path = true; |
|
453 |
_cycle_path = new Path; |
|
454 |
} |
|
455 |
_cycle_path->clear(); |
|
456 |
_best_found = false; |
|
457 |
_best_length = 0; |
|
458 |
_best_size = 1; |
|
459 |
_cycle_path->clear(); |
|
460 |
for (NodeIt u(_gr); u != INVALID; ++u) |
|
461 |
_data[u].clear(); |
|
462 |
} |
|
463 |
|
|
464 |
// Find strongly connected components and initialize _comp_nodes |
|
465 |
// and _out_arcs |
|
466 |
void findComponents() { |
|
467 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
|
468 |
_comp_nodes.resize(_comp_num); |
|
469 |
if (_comp_num == 1) { |
|
470 |
_comp_nodes[0].clear(); |
|
471 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
|
472 |
_comp_nodes[0].push_back(n); |
|
473 |
_out_arcs[n].clear(); |
|
474 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) { |
|
475 |
_out_arcs[n].push_back(a); |
|
476 |
} |
|
477 |
} |
|
478 |
} else { |
|
479 |
for (int i = 0; i < _comp_num; ++i) |
|
480 |
_comp_nodes[i].clear(); |
|
481 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
|
482 |
int k = _comp[n]; |
|
483 |
_comp_nodes[k].push_back(n); |
|
484 |
_out_arcs[n].clear(); |
|
485 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) { |
|
486 |
if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); |
|
487 |
} |
|
488 |
} |
|
489 |
} |
|
490 |
} |
|
491 |
|
|
492 |
// Initialize path data for the current component |
|
493 |
bool initComponent(int comp) { |
|
494 |
_nodes = &(_comp_nodes[comp]); |
|
495 |
int n = _nodes->size(); |
|
496 |
if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) { |
|
497 |
return false; |
|
498 |
} |
|
499 |
for (int i = 0; i < n; ++i) { |
|
500 |
_data[(*_nodes)[i]].resize(n + 1, PathData(INF)); |
|
501 |
} |
|
502 |
return true; |
|
503 |
} |
|
504 |
|
|
505 |
// Process all rounds of computing path data for the current component. |
|
506 |
// _data[v][k] is the length of a shortest directed walk from the root |
|
507 |
// node to node v containing exactly k arcs. |
|
508 |
void processRounds() { |
|
509 |
Node start = (*_nodes)[0]; |
|
510 |
_data[start][0] = PathData(0); |
|
511 |
_process.clear(); |
|
512 |
_process.push_back(start); |
|
513 |
|
|
514 |
int k, n = _nodes->size(); |
|
515 |
int next_check = 4; |
|
516 |
bool terminate = false; |
|
517 |
for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) { |
|
518 |
processNextBuildRound(k); |
|
519 |
if (k == next_check || k == n) { |
|
520 |
terminate = checkTermination(k); |
|
521 |
next_check = next_check * 3 / 2; |
|
522 |
} |
|
523 |
} |
|
524 |
for ( ; k <= n && !terminate; ++k) { |
|
525 |
processNextFullRound(k); |
|
526 |
if (k == next_check || k == n) { |
|
527 |
terminate = checkTermination(k); |
|
528 |
next_check = next_check * 3 / 2; |
|
529 |
} |
|
530 |
} |
|
531 |
} |
|
532 |
|
|
533 |
// Process one round and rebuild _process |
|
534 |
void processNextBuildRound(int k) { |
|
535 |
std::vector<Node> next; |
|
536 |
Node u, v; |
|
537 |
Arc e; |
|
538 |
LargeValue d; |
|
539 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
540 |
u = _process[i]; |
|
541 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) { |
|
542 |
e = _out_arcs[u][j]; |
|
543 |
v = _gr.target(e); |
|
544 |
d = _data[u][k-1].dist + _length[e]; |
|
545 |
if (_tolerance.less(d, _data[v][k].dist)) { |
|
546 |
if (_data[v][k].dist == INF) next.push_back(v); |
|
547 |
_data[v][k] = PathData(d, e); |
|
548 |
} |
|
549 |
} |
|
550 |
} |
|
551 |
_process.swap(next); |
|
552 |
} |
|
553 |
|
|
554 |
// Process one round using _nodes instead of _process |
|
555 |
void processNextFullRound(int k) { |
|
556 |
Node u, v; |
|
557 |
Arc e; |
|
558 |
LargeValue d; |
|
559 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
|
560 |
u = (*_nodes)[i]; |
|
561 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) { |
|
562 |
e = _out_arcs[u][j]; |
|
563 |
v = _gr.target(e); |
|
564 |
d = _data[u][k-1].dist + _length[e]; |
|
565 |
if (_tolerance.less(d, _data[v][k].dist)) { |
|
566 |
_data[v][k] = PathData(d, e); |
|
567 |
} |
|
568 |
} |
|
569 |
} |
|
570 |
} |
|
571 |
|
|
572 |
// Check early termination |
|
573 |
bool checkTermination(int k) { |
|
574 |
typedef std::pair<int, int> Pair; |
|
575 |
typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0)); |
|
576 |
typename GR::template NodeMap<LargeValue> pi(_gr); |
|
577 |
int n = _nodes->size(); |
|
578 |
LargeValue length; |
|
579 |
int size; |
|
580 |
Node u; |
|
581 |
|
|
582 |
// Search for cycles that are already found |
|
583 |
_curr_found = false; |
|
584 |
for (int i = 0; i < n; ++i) { |
|
585 |
u = (*_nodes)[i]; |
|
586 |
if (_data[u][k].dist == INF) continue; |
|
587 |
for (int j = k; j >= 0; --j) { |
|
588 |
if (level[u].first == i && level[u].second > 0) { |
|
589 |
// A cycle is found |
|
590 |
length = _data[u][level[u].second].dist - _data[u][j].dist; |
|
591 |
size = level[u].second - j; |
|
592 |
if (!_curr_found || length * _curr_size < _curr_length * size) { |
|
593 |
_curr_length = length; |
|
594 |
_curr_size = size; |
|
595 |
_curr_node = u; |
|
596 |
_curr_level = level[u].second; |
|
597 |
_curr_found = true; |
|
598 |
} |
|
599 |
} |
|
600 |
level[u] = Pair(i, j); |
|
601 |
if (j != 0) { |
|
602 |
u = _gr.source(_data[u][j].pred); |
|
603 |
} |
|
604 |
} |
|
605 |
} |
|
606 |
|
|
607 |
// If at least one cycle is found, check the optimality condition |
|
608 |
LargeValue d; |
|
609 |
if (_curr_found && k < n) { |
|
610 |
// Find node potentials |
|
611 |
for (int i = 0; i < n; ++i) { |
|
612 |
u = (*_nodes)[i]; |
|
613 |
pi[u] = INF; |
|
614 |
for (int j = 0; j <= k; ++j) { |
|
615 |
if (_data[u][j].dist < INF) { |
|
616 |
d = _data[u][j].dist * _curr_size - j * _curr_length; |
|
617 |
if (_tolerance.less(d, pi[u])) pi[u] = d; |
|
618 |
} |
|
619 |
} |
|
620 |
} |
|
621 |
|
|
622 |
// Check the optimality condition for all arcs |
|
623 |
bool done = true; |
|
624 |
for (ArcIt a(_gr); a != INVALID; ++a) { |
|
625 |
if (_tolerance.less(_length[a] * _curr_size - _curr_length, |
|
626 |
pi[_gr.target(a)] - pi[_gr.source(a)]) ) { |
|
627 |
done = false; |
|
628 |
break; |
|
629 |
} |
|
630 |
} |
|
631 |
return done; |
|
632 |
} |
|
633 |
return (k == n); |
|
634 |
} |
|
635 |
|
|
636 |
}; //class HartmannOrlin |
|
637 |
|
|
638 |
///@} |
|
639 |
|
|
640 |
} //namespace lemon |
|
641 |
|
|
642 |
#endif //LEMON_HARTMANN_ORLIN_H |
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_HOWARD_H |
|
20 |
#define LEMON_HOWARD_H |
|
21 |
|
|
22 |
/// \ingroup min_mean_cycle |
|
23 |
/// |
|
24 |
/// \file |
|
25 |
/// \brief Howard's algorithm for finding a minimum mean cycle. |
|
26 |
|
|
27 |
#include <vector> |
|
28 |
#include <limits> |
|
29 |
#include <lemon/core.h> |
|
30 |
#include <lemon/path.h> |
|
31 |
#include <lemon/tolerance.h> |
|
32 |
#include <lemon/connectivity.h> |
|
33 |
|
|
34 |
namespace lemon { |
|
35 |
|
|
36 |
/// \brief Default traits class of Howard class. |
|
37 |
/// |
|
38 |
/// Default traits class of Howard class. |
|
39 |
/// \tparam GR The type of the digraph. |
|
40 |
/// \tparam LEN The type of the length map. |
|
41 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
42 |
#ifdef DOXYGEN |
|
43 |
template <typename GR, typename LEN> |
|
44 |
#else |
|
45 |
template <typename GR, typename LEN, |
|
46 |
bool integer = std::numeric_limits<typename LEN::Value>::is_integer> |
|
47 |
#endif |
|
48 |
struct HowardDefaultTraits |
|
49 |
{ |
|
50 |
/// The type of the digraph |
|
51 |
typedef GR Digraph; |
|
52 |
/// The type of the length map |
|
53 |
typedef LEN LengthMap; |
|
54 |
/// The type of the arc lengths |
|
55 |
typedef typename LengthMap::Value Value; |
|
56 |
|
|
57 |
/// \brief The large value type used for internal computations |
|
58 |
/// |
|
59 |
/// The large value type used for internal computations. |
|
60 |
/// It is \c long \c long if the \c Value type is integer, |
|
61 |
/// otherwise it is \c double. |
|
62 |
/// \c Value must be convertible to \c LargeValue. |
|
63 |
typedef double LargeValue; |
|
64 |
|
|
65 |
/// The tolerance type used for internal computations |
|
66 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
67 |
|
|
68 |
/// \brief The path type of the found cycles |
|
69 |
/// |
|
70 |
/// The path type of the found cycles. |
|
71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
72 |
/// and it must have an \c addBack() function. |
|
73 |
typedef lemon::Path<Digraph> Path; |
|
74 |
}; |
|
75 |
|
|
76 |
// Default traits class for integer value types |
|
77 |
template <typename GR, typename LEN> |
|
78 |
struct HowardDefaultTraits<GR, LEN, true> |
|
79 |
{ |
|
80 |
typedef GR Digraph; |
|
81 |
typedef LEN LengthMap; |
|
82 |
typedef typename LengthMap::Value Value; |
|
83 |
#ifdef LEMON_HAVE_LONG_LONG |
|
84 |
typedef long long LargeValue; |
|
85 |
#else |
|
86 |
typedef long LargeValue; |
|
87 |
#endif |
|
88 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
89 |
typedef lemon::Path<Digraph> Path; |
|
90 |
}; |
|
91 |
|
|
92 |
|
|
93 |
/// \addtogroup min_mean_cycle |
|
94 |
/// @{ |
|
95 |
|
|
96 |
/// \brief Implementation of Howard's algorithm for finding a minimum |
|
97 |
/// mean cycle. |
|
98 |
/// |
|
99 |
/// This class implements Howard's policy iteration algorithm for finding |
|
100 |
/// a directed cycle of minimum mean length (cost) in a digraph |
|
101 |
/// \ref amo93networkflows, \ref dasdan98minmeancycle. |
|
102 |
/// This class provides the most efficient algorithm for the |
|
103 |
/// minimum mean cycle problem, though the best known theoretical |
|
104 |
/// bound on its running time is exponential. |
|
105 |
/// |
|
106 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
107 |
/// \tparam LEN The type of the length map. The default |
|
108 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
109 |
#ifdef DOXYGEN |
|
110 |
template <typename GR, typename LEN, typename TR> |
|
111 |
#else |
|
112 |
template < typename GR, |
|
113 |
typename LEN = typename GR::template ArcMap<int>, |
|
114 |
typename TR = HowardDefaultTraits<GR, LEN> > |
|
115 |
#endif |
|
116 |
class Howard |
|
117 |
{ |
|
118 |
public: |
|
119 |
|
|
120 |
/// The type of the digraph |
|
121 |
typedef typename TR::Digraph Digraph; |
|
122 |
/// The type of the length map |
|
123 |
typedef typename TR::LengthMap LengthMap; |
|
124 |
/// The type of the arc lengths |
|
125 |
typedef typename TR::Value Value; |
|
126 |
|
|
127 |
/// \brief The large value type |
|
128 |
/// |
|
129 |
/// The large value type used for internal computations. |
|
130 |
/// Using the \ref HowardDefaultTraits "default traits class", |
|
131 |
/// it is \c long \c long if the \c Value type is integer, |
|
132 |
/// otherwise it is \c double. |
|
133 |
typedef typename TR::LargeValue LargeValue; |
|
134 |
|
|
135 |
/// The tolerance type |
|
136 |
typedef typename TR::Tolerance Tolerance; |
|
137 |
|
|
138 |
/// \brief The path type of the found cycles |
|
139 |
/// |
|
140 |
/// The path type of the found cycles. |
|
141 |
/// Using the \ref HowardDefaultTraits "default traits class", |
|
142 |
/// it is \ref lemon::Path "Path<Digraph>". |
|
143 |
typedef typename TR::Path Path; |
|
144 |
|
|
145 |
/// The \ref HowardDefaultTraits "traits class" of the algorithm |
|
146 |
typedef TR Traits; |
|
147 |
|
|
148 |
private: |
|
149 |
|
|
150 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
151 |
|
|
152 |
// The digraph the algorithm runs on |
|
153 |
const Digraph &_gr; |
|
154 |
// The length of the arcs |
|
155 |
const LengthMap &_length; |
|
156 |
|
|
157 |
// Data for the found cycles |
|
158 |
bool _curr_found, _best_found; |
|
159 |
LargeValue _curr_length, _best_length; |
|
160 |
int _curr_size, _best_size; |
|
161 |
Node _curr_node, _best_node; |
|
162 |
|
|
163 |
Path *_cycle_path; |
|
164 |
bool _local_path; |
|
165 |
|
|
166 |
// Internal data used by the algorithm |
|
167 |
typename Digraph::template NodeMap<Arc> _policy; |
|
168 |
typename Digraph::template NodeMap<bool> _reached; |
|
169 |
typename Digraph::template NodeMap<int> _level; |
|
170 |
typename Digraph::template NodeMap<LargeValue> _dist; |
|
171 |
|
|
172 |
// Data for storing the strongly connected components |
|
173 |
int _comp_num; |
|
174 |
typename Digraph::template NodeMap<int> _comp; |
|
175 |
std::vector<std::vector<Node> > _comp_nodes; |
|
176 |
std::vector<Node>* _nodes; |
|
177 |
typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs; |
|
178 |
|
|
179 |
// Queue used for BFS search |
|
180 |
std::vector<Node> _queue; |
|
181 |
int _qfront, _qback; |
|
182 |
|
|
183 |
Tolerance _tolerance; |
|
184 |
|
|
185 |
// Infinite constant |
|
186 |
const LargeValue INF; |
|
187 |
|
|
188 |
public: |
|
189 |
|
|
190 |
/// \name Named Template Parameters |
|
191 |
/// @{ |
|
192 |
|
|
193 |
template <typename T> |
|
194 |
struct SetLargeValueTraits : public Traits { |
|
195 |
typedef T LargeValue; |
|
196 |
typedef lemon::Tolerance<T> Tolerance; |
|
197 |
}; |
|
198 |
|
|
199 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
200 |
/// \c LargeValue type. |
|
201 |
/// |
|
202 |
/// \ref named-templ-param "Named parameter" for setting \c LargeValue |
|
203 |
/// type. It is used for internal computations in the algorithm. |
|
204 |
template <typename T> |
|
205 |
struct SetLargeValue |
|
206 |
: public Howard<GR, LEN, SetLargeValueTraits<T> > { |
|
207 |
typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create; |
|
208 |
}; |
|
209 |
|
|
210 |
template <typename T> |
|
211 |
struct SetPathTraits : public Traits { |
|
212 |
typedef T Path; |
|
213 |
}; |
|
214 |
|
|
215 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
216 |
/// \c %Path type. |
|
217 |
/// |
|
218 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
|
219 |
/// type of the found cycles. |
|
220 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
221 |
/// and it must have an \c addBack() function. |
|
222 |
template <typename T> |
|
223 |
struct SetPath |
|
224 |
: public Howard<GR, LEN, SetPathTraits<T> > { |
|
225 |
typedef Howard<GR, LEN, SetPathTraits<T> > Create; |
|
226 |
}; |
|
227 |
|
|
228 |
/// @} |
|
229 |
|
|
230 |
public: |
|
231 |
|
|
232 |
/// \brief Constructor. |
|
233 |
/// |
|
234 |
/// The constructor of the class. |
|
235 |
/// |
|
236 |
/// \param digraph The digraph the algorithm runs on. |
|
237 |
/// \param length The lengths (costs) of the arcs. |
|
238 |
Howard( const Digraph &digraph, |
|
239 |
const LengthMap &length ) : |
|
240 |
_gr(digraph), _length(length), _best_found(false), |
|
241 |
_best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false), |
|
242 |
_policy(digraph), _reached(digraph), _level(digraph), _dist(digraph), |
|
243 |
_comp(digraph), _in_arcs(digraph), |
|
244 |
INF(std::numeric_limits<LargeValue>::has_infinity ? |
|
245 |
std::numeric_limits<LargeValue>::infinity() : |
|
246 |
std::numeric_limits<LargeValue>::max()) |
|
247 |
{} |
|
248 |
|
|
249 |
/// Destructor. |
|
250 |
~Howard() { |
|
251 |
if (_local_path) delete _cycle_path; |
|
252 |
} |
|
253 |
|
|
254 |
/// \brief Set the path structure for storing the found cycle. |
|
255 |
/// |
|
256 |
/// This function sets an external path structure for storing the |
|
257 |
/// found cycle. |
|
258 |
/// |
|
259 |
/// If you don't call this function before calling \ref run() or |
|
260 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
|
261 |
/// structure. The destuctor deallocates this automatically |
|
262 |
/// allocated object, of course. |
|
263 |
/// |
|
264 |
/// \note The algorithm calls only the \ref lemon::Path::addBack() |
|
265 |
/// "addBack()" function of the given path structure. |
|
266 |
/// |
|
267 |
/// \return <tt>(*this)</tt> |
|
268 |
Howard& cycle(Path &path) { |
|
269 |
if (_local_path) { |
|
270 |
delete _cycle_path; |
|
271 |
_local_path = false; |
|
272 |
} |
|
273 |
_cycle_path = &path; |
|
274 |
return *this; |
|
275 |
} |
|
276 |
|
|
277 |
/// \brief Set the tolerance used by the algorithm. |
|
278 |
/// |
|
279 |
/// This function sets the tolerance object used by the algorithm. |
|
280 |
/// |
|
281 |
/// \return <tt>(*this)</tt> |
|
282 |
Howard& tolerance(const Tolerance& tolerance) { |
|
283 |
_tolerance = tolerance; |
|
284 |
return *this; |
|
285 |
} |
|
286 |
|
|
287 |
/// \brief Return a const reference to the tolerance. |
|
288 |
/// |
|
289 |
/// This function returns a const reference to the tolerance object |
|
290 |
/// used by the algorithm. |
|
291 |
const Tolerance& tolerance() const { |
|
292 |
return _tolerance; |
|
293 |
} |
|
294 |
|
|
295 |
/// \name Execution control |
|
296 |
/// The simplest way to execute the algorithm is to call the \ref run() |
|
297 |
/// function.\n |
|
298 |
/// If you only need the minimum mean length, you may call |
|
299 |
/// \ref findMinMean(). |
|
300 |
|
|
301 |
/// @{ |
|
302 |
|
|
303 |
/// \brief Run the algorithm. |
|
304 |
/// |
|
305 |
/// This function runs the algorithm. |
|
306 |
/// It can be called more than once (e.g. if the underlying digraph |
|
307 |
/// and/or the arc lengths have been modified). |
|
308 |
/// |
|
309 |
/// \return \c true if a directed cycle exists in the digraph. |
|
310 |
/// |
|
311 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
|
312 |
/// \code |
|
313 |
/// return mmc.findMinMean() && mmc.findCycle(); |
|
314 |
/// \endcode |
|
315 |
bool run() { |
|
316 |
return findMinMean() && findCycle(); |
|
317 |
} |
|
318 |
|
|
319 |
/// \brief Find the minimum cycle mean. |
|
320 |
/// |
|
321 |
/// This function finds the minimum mean length of the directed |
|
322 |
/// cycles in the digraph. |
|
323 |
/// |
|
324 |
/// \return \c true if a directed cycle exists in the digraph. |
|
325 |
bool findMinMean() { |
|
326 |
// Initialize and find strongly connected components |
|
327 |
init(); |
|
328 |
findComponents(); |
|
329 |
|
|
330 |
// Find the minimum cycle mean in the components |
|
331 |
for (int comp = 0; comp < _comp_num; ++comp) { |
|
332 |
// Find the minimum mean cycle in the current component |
|
333 |
if (!buildPolicyGraph(comp)) continue; |
|
334 |
while (true) { |
|
335 |
findPolicyCycle(); |
|
336 |
if (!computeNodeDistances()) break; |
|
337 |
} |
|
338 |
// Update the best cycle (global minimum mean cycle) |
|
339 |
if ( _curr_found && (!_best_found || |
|
340 |
_curr_length * _best_size < _best_length * _curr_size) ) { |
|
341 |
_best_found = true; |
|
342 |
_best_length = _curr_length; |
|
343 |
_best_size = _curr_size; |
|
344 |
_best_node = _curr_node; |
|
345 |
} |
|
346 |
} |
|
347 |
return _best_found; |
|
348 |
} |
|
349 |
|
|
350 |
/// \brief Find a minimum mean directed cycle. |
|
351 |
/// |
|
352 |
/// This function finds a directed cycle of minimum mean length |
|
353 |
/// in the digraph using the data computed by findMinMean(). |
|
354 |
/// |
|
355 |
/// \return \c true if a directed cycle exists in the digraph. |
|
356 |
/// |
|
357 |
/// \pre \ref findMinMean() must be called before using this function. |
|
358 |
bool findCycle() { |
|
359 |
if (!_best_found) return false; |
|
360 |
_cycle_path->addBack(_policy[_best_node]); |
|
361 |
for ( Node v = _best_node; |
|
362 |
(v = _gr.target(_policy[v])) != _best_node; ) { |
|
363 |
_cycle_path->addBack(_policy[v]); |
|
364 |
} |
|
365 |
return true; |
|
366 |
} |
|
367 |
|
|
368 |
/// @} |
|
369 |
|
|
370 |
/// \name Query Functions |
|
371 |
/// The results of the algorithm can be obtained using these |
|
372 |
/// functions.\n |
|
373 |
/// The algorithm should be executed before using them. |
|
374 |
|
|
375 |
/// @{ |
|
376 |
|
|
377 |
/// \brief Return the total length of the found cycle. |
|
378 |
/// |
|
379 |
/// This function returns the total length of the found cycle. |
|
380 |
/// |
|
381 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
382 |
/// using this function. |
|
383 |
LargeValue cycleLength() const { |
|
384 |
return _best_length; |
|
385 |
} |
|
386 |
|
|
387 |
/// \brief Return the number of arcs on the found cycle. |
|
388 |
/// |
|
389 |
/// This function returns the number of arcs on the found cycle. |
|
390 |
/// |
|
391 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
392 |
/// using this function. |
|
393 |
int cycleArcNum() const { |
|
394 |
return _best_size; |
|
395 |
} |
|
396 |
|
|
397 |
/// \brief Return the mean length of the found cycle. |
|
398 |
/// |
|
399 |
/// This function returns the mean length of the found cycle. |
|
400 |
/// |
|
401 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
|
402 |
/// following code. |
|
403 |
/// \code |
|
404 |
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum(); |
|
405 |
/// \endcode |
|
406 |
/// |
|
407 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
408 |
/// using this function. |
|
409 |
double cycleMean() const { |
|
410 |
return static_cast<double>(_best_length) / _best_size; |
|
411 |
} |
|
412 |
|
|
413 |
/// \brief Return the found cycle. |
|
414 |
/// |
|
415 |
/// This function returns a const reference to the path structure |
|
416 |
/// storing the found cycle. |
|
417 |
/// |
|
418 |
/// \pre \ref run() or \ref findCycle() must be called before using |
|
419 |
/// this function. |
|
420 |
const Path& cycle() const { |
|
421 |
return *_cycle_path; |
|
422 |
} |
|
423 |
|
|
424 |
///@} |
|
425 |
|
|
426 |
private: |
|
427 |
|
|
428 |
// Initialize |
|
429 |
void init() { |
|
430 |
if (!_cycle_path) { |
|
431 |
_local_path = true; |
|
432 |
_cycle_path = new Path; |
|
433 |
} |
|
434 |
_queue.resize(countNodes(_gr)); |
|
435 |
_best_found = false; |
|
436 |
_best_length = 0; |
|
437 |
_best_size = 1; |
|
438 |
_cycle_path->clear(); |
|
439 |
} |
|
440 |
|
|
441 |
// Find strongly connected components and initialize _comp_nodes |
|
442 |
// and _in_arcs |
|
443 |
void findComponents() { |
|
444 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
|
445 |
_comp_nodes.resize(_comp_num); |
|
446 |
if (_comp_num == 1) { |
|
447 |
_comp_nodes[0].clear(); |
|
448 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
|
449 |
_comp_nodes[0].push_back(n); |
|
450 |
_in_arcs[n].clear(); |
|
451 |
for (InArcIt a(_gr, n); a != INVALID; ++a) { |
|
452 |
_in_arcs[n].push_back(a); |
|
453 |
} |
|
454 |
} |
|
455 |
} else { |
|
456 |
for (int i = 0; i < _comp_num; ++i) |
|
457 |
_comp_nodes[i].clear(); |
|
458 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
|
459 |
int k = _comp[n]; |
|
460 |
_comp_nodes[k].push_back(n); |
|
461 |
_in_arcs[n].clear(); |
|
462 |
for (InArcIt a(_gr, n); a != INVALID; ++a) { |
|
463 |
if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a); |
|
464 |
} |
|
465 |
} |
|
466 |
} |
|
467 |
} |
|
468 |
|
|
469 |
// Build the policy graph in the given strongly connected component |
|
470 |
// (the out-degree of every node is 1) |
|
471 |
bool buildPolicyGraph(int comp) { |
|
472 |
_nodes = &(_comp_nodes[comp]); |
|
473 |
if (_nodes->size() < 1 || |
|
474 |
(_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) { |
|
475 |
return false; |
|
476 |
} |
|
477 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
|
478 |
_dist[(*_nodes)[i]] = INF; |
|
479 |
} |
|
480 |
Node u, v; |
|
481 |
Arc e; |
|
482 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
|
483 |
v = (*_nodes)[i]; |
|
484 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) { |
|
485 |
e = _in_arcs[v][j]; |
|
486 |
u = _gr.source(e); |
|
487 |
if (_length[e] < _dist[u]) { |
|
488 |
_dist[u] = _length[e]; |
|
489 |
_policy[u] = e; |
|
490 |
} |
|
491 |
} |
|
492 |
} |
|
493 |
return true; |
|
494 |
} |
|
495 |
|
|
496 |
// Find the minimum mean cycle in the policy graph |
|
497 |
void findPolicyCycle() { |
|
498 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
|
499 |
_level[(*_nodes)[i]] = -1; |
|
500 |
} |
|
501 |
LargeValue clength; |
|
502 |
int csize; |
|
503 |
Node u, v; |
|
504 |
_curr_found = false; |
|
505 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
|
506 |
u = (*_nodes)[i]; |
|
507 |
if (_level[u] >= 0) continue; |
|
508 |
for (; _level[u] < 0; u = _gr.target(_policy[u])) { |
|
509 |
_level[u] = i; |
|
510 |
} |
|
511 |
if (_level[u] == i) { |
|
512 |
// A cycle is found |
|
513 |
clength = _length[_policy[u]]; |
|
514 |
csize = 1; |
|
515 |
for (v = u; (v = _gr.target(_policy[v])) != u; ) { |
|
516 |
clength += _length[_policy[v]]; |
|
517 |
++csize; |
|
518 |
} |
|
519 |
if ( !_curr_found || |
|
520 |
(clength * _curr_size < _curr_length * csize) ) { |
|
521 |
_curr_found = true; |
|
522 |
_curr_length = clength; |
|
523 |
_curr_size = csize; |
|
524 |
_curr_node = u; |
|
525 |
} |
|
526 |
} |
|
527 |
} |
|
528 |
} |
|
529 |
|
|
530 |
// Contract the policy graph and compute node distances |
|
531 |
bool computeNodeDistances() { |
|
532 |
// Find the component of the main cycle and compute node distances |
|
533 |
// using reverse BFS |
|
534 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
|
535 |
_reached[(*_nodes)[i]] = false; |
|
536 |
} |
|
537 |
_qfront = _qback = 0; |
|
538 |
_queue[0] = _curr_node; |
|
539 |
_reached[_curr_node] = true; |
|
540 |
_dist[_curr_node] = 0; |
|
541 |
Node u, v; |
|
542 |
Arc e; |
|
543 |
while (_qfront <= _qback) { |
|
544 |
v = _queue[_qfront++]; |
|
545 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) { |
|
546 |
e = _in_arcs[v][j]; |
|
547 |
u = _gr.source(e); |
|
548 |
if (_policy[u] == e && !_reached[u]) { |
|
549 |
_reached[u] = true; |
|
550 |
_dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length; |
|
551 |
_queue[++_qback] = u; |
|
552 |
} |
|
553 |
} |
|
554 |
} |
|
555 |
|
|
556 |
// Connect all other nodes to this component and compute node |
|
557 |
// distances using reverse BFS |
|
558 |
_qfront = 0; |
|
559 |
while (_qback < int(_nodes->size())-1) { |
|
560 |
v = _queue[_qfront++]; |
|
561 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) { |
|
562 |
e = _in_arcs[v][j]; |
|
563 |
u = _gr.source(e); |
|
564 |
if (!_reached[u]) { |
|
565 |
_reached[u] = true; |
|
566 |
_policy[u] = e; |
|
567 |
_dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length; |
|
568 |
_queue[++_qback] = u; |
|
569 |
} |
|
570 |
} |
|
571 |
} |
|
572 |
|
|
573 |
// Improve node distances |
|
574 |
bool improved = false; |
|
575 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
|
576 |
v = (*_nodes)[i]; |
|
577 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) { |
|
578 |
e = _in_arcs[v][j]; |
|
579 |
u = _gr.source(e); |
|
580 |
LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length; |
|
581 |
if (_tolerance.less(delta, _dist[u])) { |
|
582 |
_dist[u] = delta; |
|
583 |
_policy[u] = e; |
|
584 |
improved = true; |
|
585 |
} |
|
586 |
} |
|
587 |
} |
|
588 |
return improved; |
|
589 |
} |
|
590 |
|
|
591 |
}; //class Howard |
|
592 |
|
|
593 |
///@} |
|
594 |
|
|
595 |
} //namespace lemon |
|
596 |
|
|
597 |
#endif //LEMON_HOWARD_H |
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_KARP_H |
|
20 |
#define LEMON_KARP_H |
|
21 |
|
|
22 |
/// \ingroup min_mean_cycle |
|
23 |
/// |
|
24 |
/// \file |
|
25 |
/// \brief Karp's algorithm for finding a minimum mean cycle. |
|
26 |
|
|
27 |
#include <vector> |
|
28 |
#include <limits> |
|
29 |
#include <lemon/core.h> |
|
30 |
#include <lemon/path.h> |
|
31 |
#include <lemon/tolerance.h> |
|
32 |
#include <lemon/connectivity.h> |
|
33 |
|
|
34 |
namespace lemon { |
|
35 |
|
|
36 |
/// \brief Default traits class of Karp algorithm. |
|
37 |
/// |
|
38 |
/// Default traits class of Karp algorithm. |
|
39 |
/// \tparam GR The type of the digraph. |
|
40 |
/// \tparam LEN The type of the length map. |
|
41 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
42 |
#ifdef DOXYGEN |
|
43 |
template <typename GR, typename LEN> |
|
44 |
#else |
|
45 |
template <typename GR, typename LEN, |
|
46 |
bool integer = std::numeric_limits<typename LEN::Value>::is_integer> |
|
47 |
#endif |
|
48 |
struct KarpDefaultTraits |
|
49 |
{ |
|
50 |
/// The type of the digraph |
|
51 |
typedef GR Digraph; |
|
52 |
/// The type of the length map |
|
53 |
typedef LEN LengthMap; |
|
54 |
/// The type of the arc lengths |
|
55 |
typedef typename LengthMap::Value Value; |
|
56 |
|
|
57 |
/// \brief The large value type used for internal computations |
|
58 |
/// |
|
59 |
/// The large value type used for internal computations. |
|
60 |
/// It is \c long \c long if the \c Value type is integer, |
|
61 |
/// otherwise it is \c double. |
|
62 |
/// \c Value must be convertible to \c LargeValue. |
|
63 |
typedef double LargeValue; |
|
64 |
|
|
65 |
/// The tolerance type used for internal computations |
|
66 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
67 |
|
|
68 |
/// \brief The path type of the found cycles |
|
69 |
/// |
|
70 |
/// The path type of the found cycles. |
|
71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
72 |
/// and it must have an \c addFront() function. |
|
73 |
typedef lemon::Path<Digraph> Path; |
|
74 |
}; |
|
75 |
|
|
76 |
// Default traits class for integer value types |
|
77 |
template <typename GR, typename LEN> |
|
78 |
struct KarpDefaultTraits<GR, LEN, true> |
|
79 |
{ |
|
80 |
typedef GR Digraph; |
|
81 |
typedef LEN LengthMap; |
|
82 |
typedef typename LengthMap::Value Value; |
|
83 |
#ifdef LEMON_HAVE_LONG_LONG |
|
84 |
typedef long long LargeValue; |
|
85 |
#else |
|
86 |
typedef long LargeValue; |
|
87 |
#endif |
|
88 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
89 |
typedef lemon::Path<Digraph> Path; |
|
90 |
}; |
|
91 |
|
|
92 |
|
|
93 |
/// \addtogroup min_mean_cycle |
|
94 |
/// @{ |
|
95 |
|
|
96 |
/// \brief Implementation of Karp's algorithm for finding a minimum |
|
97 |
/// mean cycle. |
|
98 |
/// |
|
99 |
/// This class implements Karp's algorithm for finding a directed |
|
100 |
/// cycle of minimum mean length (cost) in a digraph |
|
101 |
/// \ref amo93networkflows, \ref dasdan98minmeancycle. |
|
102 |
/// It runs in time O(ne) and uses space O(n<sup>2</sup>+e). |
|
103 |
/// |
|
104 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
105 |
/// \tparam LEN The type of the length map. The default |
|
106 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
107 |
#ifdef DOXYGEN |
|
108 |
template <typename GR, typename LEN, typename TR> |
|
109 |
#else |
|
110 |
template < typename GR, |
|
111 |
typename LEN = typename GR::template ArcMap<int>, |
|
112 |
typename TR = KarpDefaultTraits<GR, LEN> > |
|
113 |
#endif |
|
114 |
class Karp |
|
115 |
{ |
|
116 |
public: |
|
117 |
|
|
118 |
/// The type of the digraph |
|
119 |
typedef typename TR::Digraph Digraph; |
|
120 |
/// The type of the length map |
|
121 |
typedef typename TR::LengthMap LengthMap; |
|
122 |
/// The type of the arc lengths |
|
123 |
typedef typename TR::Value Value; |
|
124 |
|
|
125 |
/// \brief The large value type |
|
126 |
/// |
|
127 |
/// The large value type used for internal computations. |
|
128 |
/// Using the \ref KarpDefaultTraits "default traits class", |
|
129 |
/// it is \c long \c long if the \c Value type is integer, |
|
130 |
/// otherwise it is \c double. |
|
131 |
typedef typename TR::LargeValue LargeValue; |
|
132 |
|
|
133 |
/// The tolerance type |
|
134 |
typedef typename TR::Tolerance Tolerance; |
|
135 |
|
|
136 |
/// \brief The path type of the found cycles |
|
137 |
/// |
|
138 |
/// The path type of the found cycles. |
|
139 |
/// Using the \ref KarpDefaultTraits "default traits class", |
|
140 |
/// it is \ref lemon::Path "Path<Digraph>". |
|
141 |
typedef typename TR::Path Path; |
|
142 |
|
|
143 |
/// The \ref KarpDefaultTraits "traits class" of the algorithm |
|
144 |
typedef TR Traits; |
|
145 |
|
|
146 |
private: |
|
147 |
|
|
148 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
149 |
|
|
150 |
// Data sturcture for path data |
|
151 |
struct PathData |
|
152 |
{ |
|
153 |
LargeValue dist; |
|
154 |
Arc pred; |
|
155 |
PathData(LargeValue d, Arc p = INVALID) : |
|
156 |
dist(d), pred(p) {} |
|
157 |
}; |
|
158 |
|
|
159 |
typedef typename Digraph::template NodeMap<std::vector<PathData> > |
|
160 |
PathDataNodeMap; |
|
161 |
|
|
162 |
private: |
|
163 |
|
|
164 |
// The digraph the algorithm runs on |
|
165 |
const Digraph &_gr; |
|
166 |
// The length of the arcs |
|
167 |
const LengthMap &_length; |
|
168 |
|
|
169 |
// Data for storing the strongly connected components |
|
170 |
int _comp_num; |
|
171 |
typename Digraph::template NodeMap<int> _comp; |
|
172 |
std::vector<std::vector<Node> > _comp_nodes; |
|
173 |
std::vector<Node>* _nodes; |
|
174 |
typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs; |
|
175 |
|
|
176 |
// Data for the found cycle |
|
177 |
LargeValue _cycle_length; |
|
178 |
int _cycle_size; |
|
179 |
Node _cycle_node; |
|
180 |
|
|
181 |
Path *_cycle_path; |
|
182 |
bool _local_path; |
|
183 |
|
|
184 |
// Node map for storing path data |
|
185 |
PathDataNodeMap _data; |
|
186 |
// The processed nodes in the last round |
|
187 |
std::vector<Node> _process; |
|
188 |
|
|
189 |
Tolerance _tolerance; |
|
190 |
|
|
191 |
// Infinite constant |
|
192 |
const LargeValue INF; |
|
193 |
|
|
194 |
public: |
|
195 |
|
|
196 |
/// \name Named Template Parameters |
|
197 |
/// @{ |
|
198 |
|
|
199 |
template <typename T> |
|
200 |
struct SetLargeValueTraits : public Traits { |
|
201 |
typedef T LargeValue; |
|
202 |
typedef lemon::Tolerance<T> Tolerance; |
|
203 |
}; |
|
204 |
|
|
205 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
206 |
/// \c LargeValue type. |
|
207 |
/// |
|
208 |
/// \ref named-templ-param "Named parameter" for setting \c LargeValue |
|
209 |
/// type. It is used for internal computations in the algorithm. |
|
210 |
template <typename T> |
|
211 |
struct SetLargeValue |
|
212 |
: public Karp<GR, LEN, SetLargeValueTraits<T> > { |
|
213 |
typedef Karp<GR, LEN, SetLargeValueTraits<T> > Create; |
|
214 |
}; |
|
215 |
|
|
216 |
template <typename T> |
|
217 |
struct SetPathTraits : public Traits { |
|
218 |
typedef T Path; |
|
219 |
}; |
|
220 |
|
|
221 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
222 |
/// \c %Path type. |
|
223 |
/// |
|
224 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
|
225 |
/// type of the found cycles. |
|
226 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
227 |
/// and it must have an \c addFront() function. |
|
228 |
template <typename T> |
|
229 |
struct SetPath |
|
230 |
: public Karp<GR, LEN, SetPathTraits<T> > { |
|
231 |
typedef Karp<GR, LEN, SetPathTraits<T> > Create; |
|
232 |
}; |
|
233 |
|
|
234 |
/// @} |
|
235 |
|
|
236 |
public: |
|
237 |
|
|
238 |
/// \brief Constructor. |
|
239 |
/// |
|
240 |
/// The constructor of the class. |
|
241 |
/// |
|
242 |
/// \param digraph The digraph the algorithm runs on. |
|
243 |
/// \param length The lengths (costs) of the arcs. |
|
244 |
Karp( const Digraph &digraph, |
|
245 |
const LengthMap &length ) : |
|
246 |
_gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph), |
|
247 |
_cycle_length(0), _cycle_size(1), _cycle_node(INVALID), |
|
248 |
_cycle_path(NULL), _local_path(false), _data(digraph), |
|
249 |
INF(std::numeric_limits<LargeValue>::has_infinity ? |
|
250 |
std::numeric_limits<LargeValue>::infinity() : |
|
251 |
std::numeric_limits<LargeValue>::max()) |
|
252 |
{} |
|
253 |
|
|
254 |
/// Destructor. |
|
255 |
~Karp() { |
|
256 |
if (_local_path) delete _cycle_path; |
|
257 |
} |
|
258 |
|
|
259 |
/// \brief Set the path structure for storing the found cycle. |
|
260 |
/// |
|
261 |
/// This function sets an external path structure for storing the |
|
262 |
/// found cycle. |
|
263 |
/// |
|
264 |
/// If you don't call this function before calling \ref run() or |
|
265 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
|
266 |
/// structure. The destuctor deallocates this automatically |
|
267 |
/// allocated object, of course. |
|
268 |
/// |
|
269 |
/// \note The algorithm calls only the \ref lemon::Path::addFront() |
|
270 |
/// "addFront()" function of the given path structure. |
|
271 |
/// |
|
272 |
/// \return <tt>(*this)</tt> |
|
273 |
Karp& cycle(Path &path) { |
|
274 |
if (_local_path) { |
|
275 |
delete _cycle_path; |
|
276 |
_local_path = false; |
|
277 |
} |
|
278 |
_cycle_path = &path; |
|
279 |
return *this; |
|
280 |
} |
|
281 |
|
|
282 |
/// \brief Set the tolerance used by the algorithm. |
|
283 |
/// |
|
284 |
/// This function sets the tolerance object used by the algorithm. |
|
285 |
/// |
|
286 |
/// \return <tt>(*this)</tt> |
|
287 |
Karp& tolerance(const Tolerance& tolerance) { |
|
288 |
_tolerance = tolerance; |
|
289 |
return *this; |
|
290 |
} |
|
291 |
|
|
292 |
/// \brief Return a const reference to the tolerance. |
|
293 |
/// |
|
294 |
/// This function returns a const reference to the tolerance object |
|
295 |
/// used by the algorithm. |
|
296 |
const Tolerance& tolerance() const { |
|
297 |
return _tolerance; |
|
298 |
} |
|
299 |
|
|
300 |
/// \name Execution control |
|
301 |
/// The simplest way to execute the algorithm is to call the \ref run() |
|
302 |
/// function.\n |
|
303 |
/// If you only need the minimum mean length, you may call |
|
304 |
/// \ref findMinMean(). |
|
305 |
|
|
306 |
/// @{ |
|
307 |
|
|
308 |
/// \brief Run the algorithm. |
|
309 |
/// |
|
310 |
/// This function runs the algorithm. |
|
311 |
/// It can be called more than once (e.g. if the underlying digraph |
|
312 |
/// and/or the arc lengths have been modified). |
|
313 |
/// |
|
314 |
/// \return \c true if a directed cycle exists in the digraph. |
|
315 |
/// |
|
316 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
|
317 |
/// \code |
|
318 |
/// return mmc.findMinMean() && mmc.findCycle(); |
|
319 |
/// \endcode |
|
320 |
bool run() { |
|
321 |
return findMinMean() && findCycle(); |
|
322 |
} |
|
323 |
|
|
324 |
/// \brief Find the minimum cycle mean. |
|
325 |
/// |
|
326 |
/// This function finds the minimum mean length of the directed |
|
327 |
/// cycles in the digraph. |
|
328 |
/// |
|
329 |
/// \return \c true if a directed cycle exists in the digraph. |
|
330 |
bool findMinMean() { |
|
331 |
// Initialization and find strongly connected components |
|
332 |
init(); |
|
333 |
findComponents(); |
|
334 |
|
|
335 |
// Find the minimum cycle mean in the components |
|
336 |
for (int comp = 0; comp < _comp_num; ++comp) { |
|
337 |
if (!initComponent(comp)) continue; |
|
338 |
processRounds(); |
|
339 |
updateMinMean(); |
|
340 |
} |
|
341 |
return (_cycle_node != INVALID); |
|
342 |
} |
|
343 |
|
|
344 |
/// \brief Find a minimum mean directed cycle. |
|
345 |
/// |
|
346 |
/// This function finds a directed cycle of minimum mean length |
|
347 |
/// in the digraph using the data computed by findMinMean(). |
|
348 |
/// |
|
349 |
/// \return \c true if a directed cycle exists in the digraph. |
|
350 |
/// |
|
351 |
/// \pre \ref findMinMean() must be called before using this function. |
|
352 |
bool findCycle() { |
|
353 |
if (_cycle_node == INVALID) return false; |
|
354 |
IntNodeMap reached(_gr, -1); |
|
355 |
int r = _data[_cycle_node].size(); |
|
356 |
Node u = _cycle_node; |
|
357 |
while (reached[u] < 0) { |
|
358 |
reached[u] = --r; |
|
359 |
u = _gr.source(_data[u][r].pred); |
|
360 |
} |
|
361 |
r = reached[u]; |
|
362 |
Arc e = _data[u][r].pred; |
|
363 |
_cycle_path->addFront(e); |
|
364 |
_cycle_length = _length[e]; |
|
365 |
_cycle_size = 1; |
|
366 |
Node v; |
|
367 |
while ((v = _gr.source(e)) != u) { |
|
368 |
e = _data[v][--r].pred; |
|
369 |
_cycle_path->addFront(e); |
|
370 |
_cycle_length += _length[e]; |
|
371 |
++_cycle_size; |
|
372 |
} |
|
373 |
return true; |
|
374 |
} |
|
375 |
|
|
376 |
/// @} |
|
377 |
|
|
378 |
/// \name Query Functions |
|
379 |
/// The results of the algorithm can be obtained using these |
|
380 |
/// functions.\n |
|
381 |
/// The algorithm should be executed before using them. |
|
382 |
|
|
383 |
/// @{ |
|
384 |
|
|
385 |
/// \brief Return the total length of the found cycle. |
|
386 |
/// |
|
387 |
/// This function returns the total length of the found cycle. |
|
388 |
/// |
|
389 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
390 |
/// using this function. |
|
391 |
LargeValue cycleLength() const { |
|
392 |
return _cycle_length; |
|
393 |
} |
|
394 |
|
|
395 |
/// \brief Return the number of arcs on the found cycle. |
|
396 |
/// |
|
397 |
/// This function returns the number of arcs on the found cycle. |
|
398 |
/// |
|
399 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
400 |
/// using this function. |
|
401 |
int cycleArcNum() const { |
|
402 |
return _cycle_size; |
|
403 |
} |
|
404 |
|
|
405 |
/// \brief Return the mean length of the found cycle. |
|
406 |
/// |
|
407 |
/// This function returns the mean length of the found cycle. |
|
408 |
/// |
|
409 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
|
410 |
/// following code. |
|
411 |
/// \code |
|
412 |
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum(); |
|
413 |
/// \endcode |
|
414 |
/// |
|
415 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
416 |
/// using this function. |
|
417 |
double cycleMean() const { |
|
418 |
return static_cast<double>(_cycle_length) / _cycle_size; |
|
419 |
} |
|
420 |
|
|
421 |
/// \brief Return the found cycle. |
|
422 |
/// |
|
423 |
/// This function returns a const reference to the path structure |
|
424 |
/// storing the found cycle. |
|
425 |
/// |
|
426 |
/// \pre \ref run() or \ref findCycle() must be called before using |
|
427 |
/// this function. |
|
428 |
const Path& cycle() const { |
|
429 |
return *_cycle_path; |
|
430 |
} |
|
431 |
|
|
432 |
///@} |
|
433 |
|
|
434 |
private: |
|
435 |
|
|
436 |
// Initialization |
|
437 |
void init() { |
|
438 |
if (!_cycle_path) { |
|
439 |
_local_path = true; |
|
440 |
_cycle_path = new Path; |
|
441 |
} |
|
442 |
_cycle_path->clear(); |
|
443 |
_cycle_length = 0; |
|
444 |
_cycle_size = 1; |
|
445 |
_cycle_node = INVALID; |
|
446 |
for (NodeIt u(_gr); u != INVALID; ++u) |
|
447 |
_data[u].clear(); |
|
448 |
} |
|
449 |
|
|
450 |
// Find strongly connected components and initialize _comp_nodes |
|
451 |
// and _out_arcs |
|
452 |
void findComponents() { |
|
453 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
|
454 |
_comp_nodes.resize(_comp_num); |
|
455 |
if (_comp_num == 1) { |
|
456 |
_comp_nodes[0].clear(); |
|
457 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
|
458 |
_comp_nodes[0].push_back(n); |
|
459 |
_out_arcs[n].clear(); |
|
460 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) { |
|
461 |
_out_arcs[n].push_back(a); |
|
462 |
} |
|
463 |
} |
|
464 |
} else { |
|
465 |
for (int i = 0; i < _comp_num; ++i) |
|
466 |
_comp_nodes[i].clear(); |
|
467 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
|
468 |
int k = _comp[n]; |
|
469 |
_comp_nodes[k].push_back(n); |
|
470 |
_out_arcs[n].clear(); |
|
471 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) { |
|
472 |
if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); |
|
473 |
} |
|
474 |
} |
|
475 |
} |
|
476 |
} |
|
477 |
|
|
478 |
// Initialize path data for the current component |
|
479 |
bool initComponent(int comp) { |
|
480 |
_nodes = &(_comp_nodes[comp]); |
|
481 |
int n = _nodes->size(); |
|
482 |
if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) { |
|
483 |
return false; |
|
484 |
} |
|
485 |
for (int i = 0; i < n; ++i) { |
|
486 |
_data[(*_nodes)[i]].resize(n + 1, PathData(INF)); |
|
487 |
} |
|
488 |
return true; |
|
489 |
} |
|
490 |
|
|
491 |
// Process all rounds of computing path data for the current component. |
|
492 |
// _data[v][k] is the length of a shortest directed walk from the root |
|
493 |
// node to node v containing exactly k arcs. |
|
494 |
void processRounds() { |
|
495 |
Node start = (*_nodes)[0]; |
|
496 |
_data[start][0] = PathData(0); |
|
497 |
_process.clear(); |
|
498 |
_process.push_back(start); |
|
499 |
|
|
500 |
int k, n = _nodes->size(); |
|
501 |
for (k = 1; k <= n && int(_process.size()) < n; ++k) { |
|
502 |
processNextBuildRound(k); |
|
503 |
} |
|
504 |
for ( ; k <= n; ++k) { |
|
505 |
processNextFullRound(k); |
|
506 |
} |
|
507 |
} |
|
508 |
|
|
509 |
// Process one round and rebuild _process |
|
510 |
void processNextBuildRound(int k) { |
|
511 |
std::vector<Node> next; |
|
512 |
Node u, v; |
|
513 |
Arc e; |
|
514 |
LargeValue d; |
|
515 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
516 |
u = _process[i]; |
|
517 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) { |
|
518 |
e = _out_arcs[u][j]; |
|
519 |
v = _gr.target(e); |
|
520 |
d = _data[u][k-1].dist + _length[e]; |
|
521 |
if (_tolerance.less(d, _data[v][k].dist)) { |
|
522 |
if (_data[v][k].dist == INF) next.push_back(v); |
|
523 |
_data[v][k] = PathData(d, e); |
|
524 |
} |
|
525 |
} |
|
526 |
} |
|
527 |
_process.swap(next); |
|
528 |
} |
|
529 |
|
|
530 |
// Process one round using _nodes instead of _process |
|
531 |
void processNextFullRound(int k) { |
|
532 |
Node u, v; |
|
533 |
Arc e; |
|
534 |
LargeValue d; |
|
535 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
|
536 |
u = (*_nodes)[i]; |
|
537 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) { |
|
538 |
e = _out_arcs[u][j]; |
|
539 |
v = _gr.target(e); |
|
540 |
d = _data[u][k-1].dist + _length[e]; |
|
541 |
if (_tolerance.less(d, _data[v][k].dist)) { |
|
542 |
_data[v][k] = PathData(d, e); |
|
543 |
} |
|
544 |
} |
|
545 |
} |
|
546 |
} |
|
547 |
|
|
548 |
// Update the minimum cycle mean |
|
549 |
void updateMinMean() { |
|
550 |
int n = _nodes->size(); |
|
551 |
for (int i = 0; i < n; ++i) { |
|
552 |
Node u = (*_nodes)[i]; |
|
553 |
if (_data[u][n].dist == INF) continue; |
|
554 |
LargeValue length, max_length = 0; |
|
555 |
int size, max_size = 1; |
|
556 |
bool found_curr = false; |
|
557 |
for (int k = 0; k < n; ++k) { |
|
558 |
if (_data[u][k].dist == INF) continue; |
|
559 |
length = _data[u][n].dist - _data[u][k].dist; |
|
560 |
size = n - k; |
|
561 |
if (!found_curr || length * max_size > max_length * size) { |
|
562 |
found_curr = true; |
|
563 |
max_length = length; |
|
564 |
max_size = size; |
|
565 |
} |
|
566 |
} |
|
567 |
if ( found_curr && (_cycle_node == INVALID || |
|
568 |
max_length * _cycle_size < _cycle_length * max_size) ) { |
|
569 |
_cycle_length = max_length; |
|
570 |
_cycle_size = max_size; |
|
571 |
_cycle_node = u; |
|
572 |
} |
|
573 |
} |
|
574 |
} |
|
575 |
|
|
576 |
}; //class Karp |
|
577 |
|
|
578 |
///@} |
|
579 |
|
|
580 |
} //namespace lemon |
|
581 |
|
|
582 |
#endif //LEMON_KARP_H |
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_STATIC_GRAPH_H |
|
20 |
#define LEMON_STATIC_GRAPH_H |
|
21 |
|
|
22 |
///\ingroup graphs |
|
23 |
///\file |
|
24 |
///\brief StaticDigraph class. |
|
25 |
|
|
26 |
#include <lemon/core.h> |
|
27 |
#include <lemon/bits/graph_extender.h> |
|
28 |
|
|
29 |
namespace lemon { |
|
30 |
|
|
31 |
class StaticDigraphBase { |
|
32 |
public: |
|
33 |
|
|
34 |
StaticDigraphBase() |
|
35 |
: built(false), node_num(0), arc_num(0), |
|
36 |
node_first_out(NULL), node_first_in(NULL), |
|
37 |
arc_source(NULL), arc_target(NULL), |
|
38 |
arc_next_in(NULL), arc_next_out(NULL) {} |
|
39 |
|
|
40 |
~StaticDigraphBase() { |
|
41 |
if (built) { |
|
42 |
delete[] node_first_out; |
|
43 |
delete[] node_first_in; |
|
44 |
delete[] arc_source; |
|
45 |
delete[] arc_target; |
|
46 |
delete[] arc_next_out; |
|
47 |
delete[] arc_next_in; |
|
48 |
} |
|
49 |
} |
|
50 |
|
|
51 |
class Node { |
|
52 |
friend class StaticDigraphBase; |
|
53 |
protected: |
|
54 |
int id; |
|
55 |
Node(int _id) : id(_id) {} |
|
56 |
public: |
|
57 |
Node() {} |
|
58 |
Node (Invalid) : id(-1) {} |
|
59 |
bool operator==(const Node& node) const { return id == node.id; } |
|
60 |
bool operator!=(const Node& node) const { return id != node.id; } |
|
61 |
bool operator<(const Node& node) const { return id < node.id; } |
|
62 |
}; |
|
63 |
|
|
64 |
class Arc { |
|
65 |
friend class StaticDigraphBase; |
|
66 |
protected: |
|
67 |
int id; |
|
68 |
Arc(int _id) : id(_id) {} |
|
69 |
public: |
|
70 |
Arc() { } |
|
71 |
Arc (Invalid) : id(-1) {} |
|
72 |
bool operator==(const Arc& arc) const { return id == arc.id; } |
|
73 |
bool operator!=(const Arc& arc) const { return id != arc.id; } |
|
74 |
bool operator<(const Arc& arc) const { return id < arc.id; } |
|
75 |
}; |
|
76 |
|
|
77 |
Node source(const Arc& e) const { return Node(arc_source[e.id]); } |
|
78 |
Node target(const Arc& e) const { return Node(arc_target[e.id]); } |
|
79 |
|
|
80 |
void first(Node& n) const { n.id = node_num - 1; } |
|
81 |
static void next(Node& n) { --n.id; } |
|
82 |
|
|
83 |
void first(Arc& e) const { e.id = arc_num - 1; } |
|
84 |
static void next(Arc& e) { --e.id; } |
|
85 |
|
|
86 |
void firstOut(Arc& e, const Node& n) const { |
|
87 |
e.id = node_first_out[n.id] != node_first_out[n.id + 1] ? |
|
88 |
node_first_out[n.id] : -1; |
|
89 |
} |
|
90 |
void nextOut(Arc& e) const { e.id = arc_next_out[e.id]; } |
|
91 |
|
|
92 |
void firstIn(Arc& e, const Node& n) const { e.id = node_first_in[n.id]; } |
|
93 |
void nextIn(Arc& e) const { e.id = arc_next_in[e.id]; } |
|
94 |
|
|
95 |
static int id(const Node& n) { return n.id; } |
|
96 |
static Node nodeFromId(int id) { return Node(id); } |
|
97 |
int maxNodeId() const { return node_num - 1; } |
|
98 |
|
|
99 |
static int id(const Arc& e) { return e.id; } |
|
100 |
static Arc arcFromId(int id) { return Arc(id); } |
|
101 |
int maxArcId() const { return arc_num - 1; } |
|
102 |
|
|
103 |
typedef True NodeNumTag; |
|
104 |
typedef True ArcNumTag; |
|
105 |
|
|
106 |
int nodeNum() const { return node_num; } |
|
107 |
int arcNum() const { return arc_num; } |
|
108 |
|
|
109 |
private: |
|
110 |
|
|
111 |
template <typename Digraph, typename NodeRefMap> |
|
112 |
class ArcLess { |
|
113 |
public: |
|
114 |
typedef typename Digraph::Arc Arc; |
|
115 |
|
|
116 |
ArcLess(const Digraph &_graph, const NodeRefMap& _nodeRef) |
|
117 |
: digraph(_graph), nodeRef(_nodeRef) {} |
|
118 |
|
|
119 |
bool operator()(const Arc& left, const Arc& right) const { |
|
120 |
return nodeRef[digraph.target(left)] < nodeRef[digraph.target(right)]; |
|
121 |
} |
|
122 |
private: |
|
123 |
const Digraph& digraph; |
|
124 |
const NodeRefMap& nodeRef; |
|
125 |
}; |
|
126 |
|
|
127 |
public: |
|
128 |
|
|
129 |
typedef True BuildTag; |
|
130 |
|
|
131 |
void clear() { |
|
132 |
if (built) { |
|
133 |
delete[] node_first_out; |
|
134 |
delete[] node_first_in; |
|
135 |
delete[] arc_source; |
|
136 |
delete[] arc_target; |
|
137 |
delete[] arc_next_out; |
|
138 |
delete[] arc_next_in; |
|
139 |
} |
|
140 |
built = false; |
|
141 |
node_num = 0; |
|
142 |
arc_num = 0; |
|
143 |
} |
|
144 |
|
|
145 |
template <typename Digraph, typename NodeRefMap, typename ArcRefMap> |
|
146 |
void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) { |
|
147 |
typedef typename Digraph::Node GNode; |
|
148 |
typedef typename Digraph::Arc GArc; |
|
149 |
|
|
150 |
built = true; |
|
151 |
|
|
152 |
node_num = countNodes(digraph); |
|
153 |
arc_num = countArcs(digraph); |
|
154 |
|
|
155 |
node_first_out = new int[node_num + 1]; |
|
156 |
node_first_in = new int[node_num]; |
|
157 |
|
|
158 |
arc_source = new int[arc_num]; |
|
159 |
arc_target = new int[arc_num]; |
|
160 |
arc_next_out = new int[arc_num]; |
|
161 |
arc_next_in = new int[arc_num]; |
|
162 |
|
|
163 |
int node_index = 0; |
|
164 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) { |
|
165 |
nodeRef[n] = Node(node_index); |
|
166 |
node_first_in[node_index] = -1; |
|
167 |
++node_index; |
|
168 |
} |
|
169 |
|
|
170 |
ArcLess<Digraph, NodeRefMap> arcLess(digraph, nodeRef); |
|
171 |
|
|
172 |
int arc_index = 0; |
|
173 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) { |
|
174 |
int source = nodeRef[n].id; |
|
175 |
std::vector<GArc> arcs; |
|
176 |
for (typename Digraph::OutArcIt e(digraph, n); e != INVALID; ++e) { |
|
177 |
arcs.push_back(e); |
|
178 |
} |
|
179 |
if (!arcs.empty()) { |
|
180 |
node_first_out[source] = arc_index; |
|
181 |
std::sort(arcs.begin(), arcs.end(), arcLess); |
|
182 |
for (typename std::vector<GArc>::iterator it = arcs.begin(); |
|
183 |
it != arcs.end(); ++it) { |
|
184 |
int target = nodeRef[digraph.target(*it)].id; |
|
185 |
arcRef[*it] = Arc(arc_index); |
|
186 |
arc_source[arc_index] = source; |
|
187 |
arc_target[arc_index] = target; |
|
188 |
arc_next_in[arc_index] = node_first_in[target]; |
|
189 |
node_first_in[target] = arc_index; |
|
190 |
arc_next_out[arc_index] = arc_index + 1; |
|
191 |
++arc_index; |
|
192 |
} |
|
193 |
arc_next_out[arc_index - 1] = -1; |
|
194 |
} else { |
|
195 |
node_first_out[source] = arc_index; |
|
196 |
} |
|
197 |
} |
|
198 |
node_first_out[node_num] = arc_num; |
|
199 |
} |
|
200 |
|
|
201 |
template <typename ArcListIterator> |
|
202 |
void build(int n, ArcListIterator first, ArcListIterator last) { |
|
203 |
built = true; |
|
204 |
|
|
205 |
node_num = n; |
|
206 |
arc_num = std::distance(first, last); |
|
207 |
|
|
208 |
node_first_out = new int[node_num + 1]; |
|
209 |
node_first_in = new int[node_num]; |
|
210 |
|
|
211 |
arc_source = new int[arc_num]; |
|
212 |
arc_target = new int[arc_num]; |
|
213 |
arc_next_out = new int[arc_num]; |
|
214 |
arc_next_in = new int[arc_num]; |
|
215 |
|
|
216 |
for (int i = 0; i != node_num; ++i) { |
|
217 |
node_first_in[i] = -1; |
|
218 |
} |
|
219 |
|
|
220 |
int arc_index = 0; |
|
221 |
for (int i = 0; i != node_num; ++i) { |
|
222 |
node_first_out[i] = arc_index; |
|
223 |
for ( ; first != last && (*first).first == i; ++first) { |
|
224 |
int j = (*first).second; |
|
225 |
LEMON_ASSERT(j >= 0 && j < node_num, |
|
226 |
"Wrong arc list for StaticDigraph::build()"); |
|
227 |
arc_source[arc_index] = i; |
|
228 |
arc_target[arc_index] = j; |
|
229 |
arc_next_in[arc_index] = node_first_in[j]; |
|
230 |
node_first_in[j] = arc_index; |
|
231 |
arc_next_out[arc_index] = arc_index + 1; |
|
232 |
++arc_index; |
|
233 |
} |
|
234 |
if (arc_index > node_first_out[i]) |
|
235 |
arc_next_out[arc_index - 1] = -1; |
|
236 |
} |
|
237 |
LEMON_ASSERT(first == last, |
|
238 |
"Wrong arc list for StaticDigraph::build()"); |
|
239 |
node_first_out[node_num] = arc_num; |
|
240 |
} |
|
241 |
|
|
242 |
protected: |
|
243 |
|
|
244 |
void fastFirstOut(Arc& e, const Node& n) const { |
|
245 |
e.id = node_first_out[n.id]; |
|
246 |
} |
|
247 |
|
|
248 |
static void fastNextOut(Arc& e) { |
|
249 |
++e.id; |
|
250 |
} |
|
251 |
void fastLastOut(Arc& e, const Node& n) const { |
|
252 |
e.id = node_first_out[n.id + 1]; |
|
253 |
} |
|
254 |
|
|
255 |
protected: |
|
256 |
bool built; |
|
257 |
int node_num; |
|
258 |
int arc_num; |
|
259 |
int *node_first_out; |
|
260 |
int *node_first_in; |
|
261 |
int *arc_source; |
|
262 |
int *arc_target; |
|
263 |
int *arc_next_in; |
|
264 |
int *arc_next_out; |
|
265 |
}; |
|
266 |
|
|
267 |
typedef DigraphExtender<StaticDigraphBase> ExtendedStaticDigraphBase; |
|
268 |
|
|
269 |
|
|
270 |
/// \ingroup graphs |
|
271 |
/// |
|
272 |
/// \brief A static directed graph class. |
|
273 |
/// |
|
274 |
/// \ref StaticDigraph is a highly efficient digraph implementation, |
|
275 |
/// but it is fully static. |
|
276 |
/// It stores only two \c int values for each node and only four \c int |
|
277 |
/// values for each arc. Moreover it provides faster item iteration than |
|
278 |
/// \ref ListDigraph and \ref SmartDigraph, especially using \c OutArcIt |
|
279 |
/// iterators, since its arcs are stored in an appropriate order. |
|
280 |
/// However it only provides build() and clear() functions and does not |
|
281 |
/// support any other modification of the digraph. |
|
282 |
/// |
|
283 |
/// Since this digraph structure is completely static, its nodes and arcs |
|
284 |
/// can be indexed with integers from the ranges <tt>[0..nodeNum()-1]</tt> |
|
285 |
/// and <tt>[0..arcNum()-1]</tt>, respectively. |
|
286 |
/// The index of an item is the same as its ID, it can be obtained |
|
287 |
/// using the corresponding \ref index() or \ref concepts::Digraph::id() |
|
288 |
/// "id()" function. A node or arc with a certain index can be obtained |
|
289 |
/// using node() or arc(). |
|
290 |
/// |
|
291 |
/// This type fully conforms to the \ref concepts::Digraph "Digraph concept". |
|
292 |
/// Most of its member functions and nested classes are documented |
|
293 |
/// only in the concept class. |
|
294 |
/// |
|
295 |
/// This class provides constant time counting for nodes and arcs. |
|
296 |
/// |
|
297 |
/// \sa concepts::Digraph |
|
298 |
class StaticDigraph : public ExtendedStaticDigraphBase { |
|
299 |
public: |
|
300 |
|
|
301 |
typedef ExtendedStaticDigraphBase Parent; |
|
302 |
|
|
303 |
public: |
|
304 |
|
|
305 |
/// \brief Constructor |
|
306 |
/// |
|
307 |
/// Default constructor. |
|
308 |
StaticDigraph() : Parent() {} |
|
309 |
|
|
310 |
/// \brief The node with the given index. |
|
311 |
/// |
|
312 |
/// This function returns the node with the given index. |
|
313 |
/// \sa index() |
|
314 |
static Node node(int ix) { return Parent::nodeFromId(ix); } |
|
315 |
|
|
316 |
/// \brief The arc with the given index. |
|
317 |
/// |
|
318 |
/// This function returns the arc with the given index. |
|
319 |
/// \sa index() |
|
320 |
static Arc arc(int ix) { return Parent::arcFromId(ix); } |
|
321 |
|
|
322 |
/// \brief The index of the given node. |
|
323 |
/// |
|
324 |
/// This function returns the index of the the given node. |
|
325 |
/// \sa node() |
|
326 |
static int index(Node node) { return Parent::id(node); } |
|
327 |
|
|
328 |
/// \brief The index of the given arc. |
|
329 |
/// |
|
330 |
/// This function returns the index of the the given arc. |
|
331 |
/// \sa arc() |
|
332 |
static int index(Arc arc) { return Parent::id(arc); } |
|
333 |
|
|
334 |
/// \brief Number of nodes. |
|
335 |
/// |
|
336 |
/// This function returns the number of nodes. |
|
337 |
int nodeNum() const { return node_num; } |
|
338 |
|
|
339 |
/// \brief Number of arcs. |
|
340 |
/// |
|
341 |
/// This function returns the number of arcs. |
|
342 |
int arcNum() const { return arc_num; } |
|
343 |
|
|
344 |
/// \brief Build the digraph copying another digraph. |
|
345 |
/// |
|
346 |
/// This function builds the digraph copying another digraph of any |
|
347 |
/// kind. It can be called more than once, but in such case, the whole |
|
348 |
/// structure and all maps will be cleared and rebuilt. |
|
349 |
/// |
|
350 |
/// This method also makes possible to copy a digraph to a StaticDigraph |
|
351 |
/// structure using \ref DigraphCopy. |
|
352 |
/// |
|
353 |
/// \param digraph An existing digraph to be copied. |
|
354 |
/// \param nodeRef The node references will be copied into this map. |
|
355 |
/// Its key type must be \c Digraph::Node and its value type must be |
|
356 |
/// \c StaticDigraph::Node. |
|
357 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
358 |
/// concept. |
|
359 |
/// \param arcRef The arc references will be copied into this map. |
|
360 |
/// Its key type must be \c Digraph::Arc and its value type must be |
|
361 |
/// \c StaticDigraph::Arc. |
|
362 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
363 |
/// |
|
364 |
/// \note If you do not need the arc references, then you could use |
|
365 |
/// \ref NullMap for the last parameter. However the node references |
|
366 |
/// are required by the function itself, thus they must be readable |
|
367 |
/// from the map. |
|
368 |
template <typename Digraph, typename NodeRefMap, typename ArcRefMap> |
|
369 |
void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) { |
|
370 |
if (built) Parent::clear(); |
|
371 |
Parent::build(digraph, nodeRef, arcRef); |
|
372 |
} |
|
373 |
|
|
374 |
/// \brief Build the digraph from an arc list. |
|
375 |
/// |
|
376 |
/// This function builds the digraph from the given arc list. |
|
377 |
/// It can be called more than once, but in such case, the whole |
|
378 |
/// structure and all maps will be cleared and rebuilt. |
|
379 |
/// |
|
380 |
/// The list of the arcs must be given in the range <tt>[begin, end)</tt> |
|
381 |
/// specified by STL compatible itartors whose \c value_type must be |
|
382 |
/// <tt>std::pair<int,int></tt>. |
|
383 |
/// Each arc must be specified by a pair of integer indices |
|
384 |
/// from the range <tt>[0..n-1]</tt>. <i>The pairs must be in a |
|
385 |
/// non-decreasing order with respect to their first values.</i> |
|
386 |
/// If the k-th pair in the list is <tt>(i,j)</tt>, then |
|
387 |
/// <tt>arc(k-1)</tt> will connect <tt>node(i)</tt> to <tt>node(j)</tt>. |
|
388 |
/// |
|
389 |
/// \param n The number of nodes. |
|
390 |
/// \param begin An iterator pointing to the beginning of the arc list. |
|
391 |
/// \param end An iterator pointing to the end of the arc list. |
|
392 |
/// |
|
393 |
/// For example, a simple digraph can be constructed like this. |
|
394 |
/// \code |
|
395 |
/// std::vector<std::pair<int,int> > arcs; |
|
396 |
/// arcs.push_back(std::make_pair(0,1)); |
|
397 |
/// arcs.push_back(std::make_pair(0,2)); |
|
398 |
/// arcs.push_back(std::make_pair(1,3)); |
|
399 |
/// arcs.push_back(std::make_pair(1,2)); |
|
400 |
/// arcs.push_back(std::make_pair(3,0)); |
|
401 |
/// StaticDigraph gr; |
|
402 |
/// gr.build(4, arcs.begin(), arcs.end()); |
|
403 |
/// \endcode |
|
404 |
template <typename ArcListIterator> |
|
405 |
void build(int n, ArcListIterator begin, ArcListIterator end) { |
|
406 |
if (built) Parent::clear(); |
|
407 |
StaticDigraphBase::build(n, begin, end); |
|
408 |
notifier(Node()).build(); |
|
409 |
notifier(Arc()).build(); |
|
410 |
} |
|
411 |
|
|
412 |
/// \brief Clear the digraph. |
|
413 |
/// |
|
414 |
/// This function erases all nodes and arcs from the digraph. |
|
415 |
void clear() { |
|
416 |
Parent::clear(); |
|
417 |
} |
|
418 |
|
|
419 |
protected: |
|
420 |
|
|
421 |
using Parent::fastFirstOut; |
|
422 |
using Parent::fastNextOut; |
|
423 |
using Parent::fastLastOut; |
|
424 |
|
|
425 |
public: |
|
426 |
|
|
427 |
class OutArcIt : public Arc { |
|
428 |
public: |
|
429 |
|
|
430 |
OutArcIt() { } |
|
431 |
|
|
432 |
OutArcIt(Invalid i) : Arc(i) { } |
|
433 |
|
|
434 |
OutArcIt(const StaticDigraph& digraph, const Node& node) { |
|
435 |
digraph.fastFirstOut(*this, node); |
|
436 |
digraph.fastLastOut(last, node); |
|
437 |
if (last == *this) *this = INVALID; |
|
438 |
} |
|
439 |
|
|
440 |
OutArcIt(const StaticDigraph& digraph, const Arc& arc) : Arc(arc) { |
|
441 |
if (arc != INVALID) { |
|
442 |
digraph.fastLastOut(last, digraph.source(arc)); |
|
443 |
} |
|
444 |
} |
|
445 |
|
|
446 |
OutArcIt& operator++() { |
|
447 |
StaticDigraph::fastNextOut(*this); |
|
448 |
if (last == *this) *this = INVALID; |
|
449 |
return *this; |
|
450 |
} |
|
451 |
|
|
452 |
private: |
|
453 |
Arc last; |
|
454 |
}; |
|
455 |
|
|
456 |
Node baseNode(const OutArcIt &arc) const { |
|
457 |
return Parent::source(static_cast<const Arc&>(arc)); |
|
458 |
} |
|
459 |
|
|
460 |
Node runningNode(const OutArcIt &arc) const { |
|
461 |
return Parent::target(static_cast<const Arc&>(arc)); |
|
462 |
} |
|
463 |
|
|
464 |
Node baseNode(const InArcIt &arc) const { |
|
465 |
return Parent::target(static_cast<const Arc&>(arc)); |
|
466 |
} |
|
467 |
|
|
468 |
Node runningNode(const InArcIt &arc) const { |
|
469 |
return Parent::source(static_cast<const Arc&>(arc)); |
|
470 |
} |
|
471 |
|
|
472 |
}; |
|
473 |
|
|
474 |
} |
|
475 |
|
|
476 |
#endif |
1 |
#!/usr/bin/env /usr/local/Python/bin/python2.1 |
|
2 |
""" |
|
3 |
BibTeX to Doxygen converter |
|
4 |
Usage: python bib2dox.py bibfile.bib > bibfile.dox |
|
5 |
|
|
6 |
This code is the modification of the BibTeX to XML converter |
|
7 |
by Vidar Bronken Gundersen et al. See the original copyright notices below. |
|
8 |
|
|
9 |
********************************************************************** |
|
10 |
|
|
11 |
Decoder for bibliographic data, BibTeX |
|
12 |
Usage: python bibtex2xml.py bibfile.bib > bibfile.xml |
|
13 |
|
|
14 |
v.8 |
|
15 |
(c)2002-06-23 Vidar Bronken Gundersen |
|
16 |
http://bibtexml.sf.net/ |
|
17 |
Reuse approved as long as this notification is kept. |
|
18 |
Licence: GPL. |
|
19 |
|
|
20 |
Contributions/thanks to: |
|
21 |
Egon Willighagen, http://sf.net/projects/jreferences/ |
|
22 |
Richard Mahoney (for providing a test case) |
|
23 |
|
|
24 |
Editted by Sara Sprenkle to be more robust and handle more bibtex features. |
|
25 |
(c) 2003-01-15 |
|
26 |
|
|
27 |
1. Changed bibtex: tags to bibxml: tags. |
|
28 |
2. Use xmlns:bibxml="http://bibtexml.sf.net/" |
|
29 |
3. Allow spaces between @type and first { |
|
30 |
4. "author" fields with multiple authors split by " and " |
|
31 |
are put in separate xml "bibxml:author" tags. |
|
32 |
5. Option for Titles: words are capitalized |
|
33 |
only if first letter in title or capitalized inside braces |
|
34 |
6. Removes braces from within field values |
|
35 |
7. Ignores comments in bibtex file (including @comment{ or % ) |
|
36 |
8. Replaces some special latex tags, e.g., replaces ~ with ' ' |
|
37 |
9. Handles bibtex @string abbreviations |
|
38 |
--> includes bibtex's default abbreviations for months |
|
39 |
--> does concatenation of abbr # " more " and " more " # abbr |
|
40 |
10. Handles @type( ... ) or @type{ ... } |
|
41 |
11. The keywords field is split on , or ; and put into separate xml |
|
42 |
"bibxml:keywords" tags |
|
43 |
12. Ignores @preamble |
|
44 |
|
|
45 |
Known Limitations |
|
46 |
1. Does not transform Latex encoding like math mode and special |
|
47 |
latex symbols. |
|
48 |
2. Does not parse author fields into first and last names. |
|
49 |
E.g., It does not do anything special to an author whose name is |
|
50 |
in the form LAST_NAME, FIRST_NAME |
|
51 |
In "author" tag, will show up as |
|
52 |
<bibxml:author>LAST_NAME, FIRST_NAME</bibxml:author> |
|
53 |
3. Does not handle "crossref" fields other than to print |
|
54 |
<bibxml:crossref>...</bibxml:crossref> |
|
55 |
4. Does not inform user of the input's format errors. You just won't |
|
56 |
be able to transform the file later with XSL |
|
57 |
|
|
58 |
You will have to manually edit the XML output if you need to handle |
|
59 |
these (and unknown) limitations. |
|
60 |
|
|
61 |
""" |
|
62 |
|
|
63 |
import string, re |
|
64 |
|
|
65 |
# set of valid name characters |
|
66 |
valid_name_chars = '[\w\-:]' |
|
67 |
|
|
68 |
# |
|
69 |
# define global regular expression variables |
|
70 |
# |
|
71 |
author_rex = re.compile('\s+and\s+') |
|
72 |
rembraces_rex = re.compile('[{}]') |
|
73 |
capitalize_rex = re.compile('({[^}]*})') |
|
74 |
|
|
75 |
# used by bibtexkeywords(data) |
|
76 |
keywords_rex = re.compile('[,;]') |
|
77 |
|
|
78 |
# used by concat_line(line) |
|
79 |
concatsplit_rex = re.compile('\s*#\s*') |
|
80 |
|
|
81 |
# split on {, }, or " in verify_out_of_braces |
|
82 |
delimiter_rex = re.compile('([{}"])',re.I) |
|
83 |
|
|
84 |
field_rex = re.compile('\s*(\w*)\s*=\s*(.*)') |
|
85 |
data_rex = re.compile('\s*(\w*)\s*=\s*([^,]*),?') |
|
86 |
|
|
87 |
url_rex = re.compile('\\\url\{([^}]*)\}') |
|
88 |
|
|
89 |
# |
|
90 |
# styles for html formatting |
|
91 |
# |
|
92 |
divstyle = 'margin-top: -4ex; margin-left: 8em;' |
|
93 |
|
|
94 |
# |
|
95 |
# return the string parameter without braces |
|
96 |
# |
|
97 |
def transformurls(str): |
|
98 |
return url_rex.sub(r'<a href="\1">\1</a>', str) |
|
99 |
|
|
100 |
# |
|
101 |
# return the string parameter without braces |
|
102 |
# |
|
103 |
def removebraces(str): |
|
104 |
return rembraces_rex.sub('', str) |
|
105 |
|
|
106 |
# |
|
107 |
# latex-specific replacements |
|
108 |
# (do this after braces were removed) |
|
109 |
# |
|
110 |
def latexreplacements(line): |
|
111 |
line = string.replace(line, '~', ' ') |
|
112 |
line = string.replace(line, '\\\'a', 'á') |
|
113 |
line = string.replace(line, '\\"a', 'ä') |
|
114 |
line = string.replace(line, '\\\'e', 'é') |
|
115 |
line = string.replace(line, '\\"e', 'ë') |
|
116 |
line = string.replace(line, '\\\'i', 'í') |
|
117 |
line = string.replace(line, '\\"i', 'ï') |
|
118 |
line = string.replace(line, '\\\'o', 'ó') |
|
119 |
line = string.replace(line, '\\"o', 'ö') |
|
120 |
line = string.replace(line, '\\\'u', 'ú') |
|
121 |
line = string.replace(line, '\\"u', 'ü') |
|
122 |
line = string.replace(line, '\\H o', 'õ') |
|
123 |
line = string.replace(line, '\\H u', 'ü') # ũ does not exist |
|
124 |
line = string.replace(line, '\\\'A', 'Á') |
|
125 |
line = string.replace(line, '\\"A', 'Ä') |
|
126 |
line = string.replace(line, '\\\'E', 'É') |
|
127 |
line = string.replace(line, '\\"E', 'Ë') |
|
128 |
line = string.replace(line, '\\\'I', 'Í') |
|
129 |
line = string.replace(line, '\\"I', 'Ï') |
|
130 |
line = string.replace(line, '\\\'O', 'Ó') |
|
131 |
line = string.replace(line, '\\"O', 'Ö') |
|
132 |
line = string.replace(line, '\\\'U', 'Ú') |
|
133 |
line = string.replace(line, '\\"U', 'Ü') |
|
134 |
line = string.replace(line, '\\H O', 'Õ') |
|
135 |
line = string.replace(line, '\\H U', 'Ü') # Ũ does not exist |
|
136 |
|
|
137 |
return line |
|
138 |
|
|
139 |
# |
|
140 |
# copy characters form a string decoding html expressions (&xyz;) |
|
141 |
# |
|
142 |
def copychars(str, ifrom, count): |
|
143 |
result = '' |
|
144 |
i = ifrom |
|
145 |
c = 0 |
|
146 |
html_spec = False |
|
147 |
while (i < len(str)) and (c < count): |
|
148 |
if str[i] == '&': |
|
149 |
html_spec = True; |
|
150 |
if i+1 < len(str): |
|
151 |
result += str[i+1] |
|
152 |
c += 1 |
|
153 |
i += 2 |
|
154 |
else: |
|
155 |
if not html_spec: |
|
156 |
if ((str[i] >= 'A') and (str[i] <= 'Z')) or \ |
|
157 |
((str[i] >= 'a') and (str[i] <= 'z')): |
|
158 |
result += str[i] |
|
159 |
c += 1 |
|
160 |
elif str[i] == ';': |
|
161 |
html_spec = False; |
|
162 |
i += 1 |
|
163 |
|
|
164 |
return result |
|
165 |
|
|
166 |
|
|
167 |
# |
|
168 |
# Handle a list of authors (separated by 'and'). |
|
169 |
# It gives back an array of the follwing values: |
|
170 |
# - num: the number of authors, |
|
171 |
# - list: the list of the author names, |
|
172 |
# - text: the bibtex text (separated by commas and/or 'and') |
|
173 |
# - abbrev: abbreviation that can be used for indicate the |
|
174 |
# bibliography entries |
|
175 |
# |
|
176 |
def bibtexauthor(data): |
|
177 |
result = {} |
|
178 |
bibtex = '' |
|
179 |
result['list'] = author_rex.split(data) |
|
180 |
result['num'] = len(result['list']) |
|
181 |
for i, author in enumerate(result['list']): |
|
182 |
# general transformations |
|
183 |
author = latexreplacements(removebraces(author.strip())) |
|
184 |
# transform "Xyz, A. B." to "A. B. Xyz" |
|
185 |
pos = author.find(',') |
|
186 |
if pos != -1: |
|
187 |
author = author[pos+1:].strip() + ' ' + author[:pos].strip() |
|
188 |
result['list'][i] = author |
|
189 |
bibtex += author + '#' |
|
190 |
bibtex = bibtex[:-1] |
|
191 |
if result['num'] > 1: |
|
192 |
ix = bibtex.rfind('#') |
|
193 |
if result['num'] == 2: |
|
194 |
bibtex = bibtex[:ix] + ' and ' + bibtex[ix+1:] |
|
195 |
else: |
|
196 |
bibtex = bibtex[:ix] + ', and ' + bibtex[ix+1:] |
|
197 |
bibtex = bibtex.replace('#', ', ') |
|
198 |
result['text'] = bibtex |
|
199 |
|
|
200 |
result['abbrev'] = '' |
|
201 |
for author in result['list']: |
|
202 |
pos = author.rfind(' ') + 1 |
|
203 |
count = 1 |
|
204 |
if result['num'] == 1: |
|
205 |
count = 3 |
|
206 |
result['abbrev'] += copychars(author, pos, count) |
|
207 |
|
|
208 |
return result |
|
209 |
|
|
210 |
|
|
211 |
# |
|
212 |
# data = title string |
|
213 |
# @return the capitalized title (first letter is capitalized), rest are capitalized |
|
214 |
# only if capitalized inside braces |
|
215 |
# |
|
216 |
def capitalizetitle(data): |
|
217 |
title_list = capitalize_rex.split(data) |
|
218 |
title = '' |
|
219 |
count = 0 |
|
220 |
for phrase in title_list: |
|
221 |
check = string.lstrip(phrase) |
|
222 |
|
|
223 |
# keep phrase's capitalization the same |
|
224 |
if check.find('{') == 0: |
|
225 |
title += removebraces(phrase) |
|
226 |
else: |
|
227 |
# first word --> capitalize first letter (after spaces) |
|
228 |
if count == 0: |
|
229 |
title += check.capitalize() |
|
230 |
else: |
|
231 |
title += phrase.lower() |
|
232 |
count = count + 1 |
|
233 |
|
|
234 |
return title |
|
235 |
|
|
236 |
|
|
237 |
# |
|
238 |
# @return the bibtex for the title |
|
239 |
# @param data --> title string |
|
240 |
# braces are removed from title |
|
241 |
# |
|
242 |
def bibtextitle(data, entrytype): |
|
243 |
if entrytype in ('book', 'inbook'): |
|
244 |
title = removebraces(data.strip()) |
|
245 |
else: |
|
246 |
title = removebraces(capitalizetitle(data.strip())) |
|
247 |
bibtex = title |
|
248 |
return bibtex |
|
249 |
|
|
250 |
|
|
251 |
# |
|
252 |
# function to compare entry lists |
|
253 |
# |
|
254 |
def entry_cmp(x, y): |
|
255 |
return cmp(x[0], y[0]) |
|
256 |
|
|
257 |
|
|
258 |
# |
|
259 |
# print the XML for the transformed "filecont_source" |
|
260 |
# |
|
261 |
def bibtexdecoder(filecont_source): |
|
262 |
filecont = [] |
|
263 |
file = [] |
|
264 |
|
|
265 |
# want @<alphanumeric chars><spaces>{<spaces><any chars>, |
|
266 |
pubtype_rex = re.compile('@(\w*)\s*{\s*(.*),') |
|
267 |
endtype_rex = re.compile('}\s*$') |
|
268 |
endtag_rex = re.compile('^\s*}\s*$') |
|
269 |
|
|
270 |
bracefield_rex = re.compile('\s*(\w*)\s*=\s*(.*)') |
|
271 |
bracedata_rex = re.compile('\s*(\w*)\s*=\s*{(.*)},?') |
|
272 |
|
|
273 |
quotefield_rex = re.compile('\s*(\w*)\s*=\s*(.*)') |
|
274 |
quotedata_rex = re.compile('\s*(\w*)\s*=\s*"(.*)",?') |
|
275 |
|
|
276 |
for line in filecont_source: |
|
277 |
line = line[:-1] |
|
278 |
|
|
279 |
# encode character entities |
|
280 |
line = string.replace(line, '&', '&') |
|
281 |
line = string.replace(line, '<', '<') |
|
282 |
line = string.replace(line, '>', '>') |
|
283 |
|
|
284 |
# start entry: publication type (store for later use) |
|
285 |
if pubtype_rex.match(line): |
|
286 |
# want @<alphanumeric chars><spaces>{<spaces><any chars>, |
|
287 |
entrycont = {} |
|
288 |
entry = [] |
|
289 |
entrytype = pubtype_rex.sub('\g<1>',line) |
|
290 |
entrytype = string.lower(entrytype) |
|
291 |
entryid = pubtype_rex.sub('\g<2>', line) |
|
292 |
|
|
293 |
# end entry if just a } |
|
294 |
elif endtype_rex.match(line): |
|
295 |
# generate doxygen code for the entry |
|
296 |
|
|
297 |
# enty type related formattings |
|
298 |
if entrytype in ('book', 'inbook'): |
|
299 |
entrycont['title'] = '<em>' + entrycont['title'] + '</em>' |
|
300 |
if not entrycont.has_key('author'): |
|
301 |
entrycont['author'] = entrycont['editor'] |
|
302 |
entrycont['author']['text'] += ', editors' |
|
303 |
elif entrytype == 'article': |
|
304 |
entrycont['journal'] = '<em>' + entrycont['journal'] + '</em>' |
|
305 |
elif entrytype in ('inproceedings', 'incollection', 'conference'): |
|
306 |
entrycont['booktitle'] = '<em>' + entrycont['booktitle'] + '</em>' |
|
307 |
elif entrytype == 'techreport': |
|
308 |
if not entrycont.has_key('type'): |
|
309 |
entrycont['type'] = 'Technical report' |
|
310 |
elif entrytype == 'mastersthesis': |
|
311 |
entrycont['type'] = 'Master\'s thesis' |
|
312 |
elif entrytype == 'phdthesis': |
|
313 |
entrycont['type'] = 'PhD thesis' |
|
314 |
|
|
315 |
for eline in entrycont: |
|
316 |
if eline != '': |
|
317 |
eline = latexreplacements(eline) |
|
318 |
|
|
319 |
if entrycont.has_key('pages') and (entrycont['pages'] != ''): |
|
320 |
entrycont['pages'] = string.replace(entrycont['pages'], '--', '-') |
|
321 |
|
|
322 |
if entrycont.has_key('author') and (entrycont['author'] != ''): |
|
323 |
entry.append(entrycont['author']['text'] + '.') |
|
324 |
if entrycont.has_key('title') and (entrycont['title'] != ''): |
|
325 |
entry.append(entrycont['title'] + '.') |
|
326 |
if entrycont.has_key('journal') and (entrycont['journal'] != ''): |
|
327 |
entry.append(entrycont['journal'] + ',') |
|
328 |
if entrycont.has_key('booktitle') and (entrycont['booktitle'] != ''): |
|
329 |
entry.append('In ' + entrycont['booktitle'] + ',') |
|
330 |
if entrycont.has_key('type') and (entrycont['type'] != ''): |
|
331 |
eline = entrycont['type'] |
|
332 |
if entrycont.has_key('number') and (entrycont['number'] != ''): |
|
333 |
eline += ' ' + entrycont['number'] |
|
334 |
eline += ',' |
|
335 |
entry.append(eline) |
|
336 |
if entrycont.has_key('institution') and (entrycont['institution'] != ''): |
|
337 |
entry.append(entrycont['institution'] + ',') |
|
338 |
if entrycont.has_key('publisher') and (entrycont['publisher'] != ''): |
|
339 |
entry.append(entrycont['publisher'] + ',') |
|
340 |
if entrycont.has_key('school') and (entrycont['school'] != ''): |
|
341 |
entry.append(entrycont['school'] + ',') |
|
342 |
if entrycont.has_key('address') and (entrycont['address'] != ''): |
|
343 |
entry.append(entrycont['address'] + ',') |
|
344 |
if entrycont.has_key('edition') and (entrycont['edition'] != ''): |
|
345 |
entry.append(entrycont['edition'] + ' edition,') |
|
346 |
if entrycont.has_key('howpublished') and (entrycont['howpublished'] != ''): |
|
347 |
entry.append(entrycont['howpublished'] + ',') |
|
348 |
if entrycont.has_key('volume') and (entrycont['volume'] != ''): |
|
349 |
eline = entrycont['volume']; |
|
350 |
if entrycont.has_key('number') and (entrycont['number'] != ''): |
|
351 |
eline += '(' + entrycont['number'] + ')' |
|
352 |
if entrycont.has_key('pages') and (entrycont['pages'] != ''): |
|
353 |
eline += ':' + entrycont['pages'] |
|
354 |
eline += ',' |
|
355 |
entry.append(eline) |
|
356 |
else: |
|
357 |
if entrycont.has_key('pages') and (entrycont['pages'] != ''): |
|
358 |
entry.append('pages ' + entrycont['pages'] + ',') |
|
359 |
if entrycont.has_key('year') and (entrycont['year'] != ''): |
|
360 |
if entrycont.has_key('month') and (entrycont['month'] != ''): |
|
361 |
entry.append(entrycont['month'] + ' ' + entrycont['year'] + '.') |
|
362 |
else: |
|
363 |
entry.append(entrycont['year'] + '.') |
|
364 |
if entrycont.has_key('note') and (entrycont['note'] != ''): |
|
365 |
entry.append(entrycont['note'] + '.') |
|
366 |
if entrycont.has_key('url') and (entrycont['url'] != ''): |
|
367 |
entry.append(entrycont['url'] + '.') |
|
368 |
|
|
369 |
# generate keys for sorting and for the output |
|
370 |
sortkey = '' |
|
371 |
bibkey = '' |
|
372 |
if entrycont.has_key('author'): |
|
373 |
for author in entrycont['author']['list']: |
|
374 |
sortkey += copychars(author, author.rfind(' ')+1, len(author)) |
|
375 |
bibkey = entrycont['author']['abbrev'] |
|
376 |
else: |
|
377 |
bibkey = 'x' |
|
378 |
if entrycont.has_key('year'): |
|
379 |
sortkey += entrycont['year'] |
|
380 |
bibkey += entrycont['year'][-2:] |
|
381 |
if entrycont.has_key('title'): |
|
382 |
sortkey += entrycont['title'] |
|
383 |
if entrycont.has_key('key'): |
|
384 |
sortkey = entrycont['key'] + sortkey |
|
385 |
bibkey = entrycont['key'] |
|
386 |
entry.insert(0, sortkey) |
|
387 |
entry.insert(1, bibkey) |
|
388 |
entry.insert(2, entryid) |
|
389 |
|
|
390 |
# add the entry to the file contents |
|
391 |
filecont.append(entry) |
|
392 |
|
|
393 |
else: |
|
394 |
# field, publication info |
|
395 |
field = '' |
|
396 |
data = '' |
|
397 |
|
|
398 |
# field = {data} entries |
|
399 |
if bracedata_rex.match(line): |
|
400 |
field = bracefield_rex.sub('\g<1>', line) |
|
401 |
field = string.lower(field) |
|
402 |
data = bracedata_rex.sub('\g<2>', line) |
|
403 |
|
|
404 |
# field = "data" entries |
|
405 |
elif quotedata_rex.match(line): |
|
406 |
field = quotefield_rex.sub('\g<1>', line) |
|
407 |
field = string.lower(field) |
|
408 |
data = quotedata_rex.sub('\g<2>', line) |
|
409 |
|
|
410 |
# field = data entries |
|
411 |
elif data_rex.match(line): |
|
412 |
field = field_rex.sub('\g<1>', line) |
|
413 |
field = string.lower(field) |
|
414 |
data = data_rex.sub('\g<2>', line) |
|
415 |
|
|
416 |
if field == 'url': |
|
417 |
data = '\\url{' + data.strip() + '}' |
|
418 |
|
|
419 |
if field in ('author', 'editor'): |
|
420 |
entrycont[field] = bibtexauthor(data) |
|
421 |
line = '' |
|
422 |
elif field == 'title': |
|
423 |
line = bibtextitle(data, entrytype) |
|
424 |
elif field != '': |
|
425 |
line = removebraces(transformurls(data.strip())) |
|
426 |
|
|
427 |
if line != '': |
|
428 |
line = latexreplacements(line) |
|
429 |
entrycont[field] = line |
|
430 |
|
|
431 |
|
|
432 |
# sort entries |
|
433 |
filecont.sort(entry_cmp) |
|
434 |
|
|
435 |
# count the bibtex keys |
|
436 |
keytable = {} |
|
437 |
counttable = {} |
|
438 |
for entry in filecont: |
|
439 |
bibkey = entry[1] |
|
440 |
if not keytable.has_key(bibkey): |
|
441 |
keytable[bibkey] = 1 |
|
442 |
else: |
|
443 |
keytable[bibkey] += 1 |
|
444 |
|
|
445 |
for bibkey in keytable.keys(): |
|
446 |
counttable[bibkey] = 0 |
|
447 |
|
|
448 |
# generate output |
|
449 |
for entry in filecont: |
|
450 |
# generate output key form the bibtex key |
|
451 |
bibkey = entry[1] |
|
452 |
entryid = entry[2] |
|
453 |
if keytable[bibkey] == 1: |
|
454 |
outkey = bibkey |
|
455 |
else: |
|
456 |
outkey = bibkey + chr(97 + counttable[bibkey]) |
|
457 |
counttable[bibkey] += 1 |
|
458 |
|
|
459 |
# append the entry code to the output |
|
460 |
file.append('\\section ' + entryid + ' [' + outkey + ']') |
|
461 |
file.append('<div style="' + divstyle + '">') |
|
462 |
for line in entry[3:]: |
|
463 |
file.append(line) |
|
464 |
file.append('</div>') |
|
465 |
file.append('') |
|
466 |
|
|
467 |
return file |
|
468 |
|
|
469 |
|
|
470 |
# |
|
471 |
# return 1 iff abbr is in line but not inside braces or quotes |
|
472 |
# assumes that abbr appears only once on the line (out of braces and quotes) |
|
473 |
# |
|
474 |
def verify_out_of_braces(line, abbr): |
|
475 |
|
|
476 |
phrase_split = delimiter_rex.split(line) |
|
477 |
|
|
478 |
abbr_rex = re.compile( '\\b' + abbr + '\\b', re.I) |
|
479 |
|
|
480 |
open_brace = 0 |
|
481 |
open_quote = 0 |
|
482 |
|
|
483 |
for phrase in phrase_split: |
|
484 |
if phrase == "{": |
|
485 |
open_brace = open_brace + 1 |
|
486 |
elif phrase == "}": |
|
487 |
open_brace = open_brace - 1 |
|
488 |
elif phrase == '"': |
|
489 |
if open_quote == 1: |
|
490 |
open_quote = 0 |
|
491 |
else: |
|
492 |
open_quote = 1 |
|
493 |
elif abbr_rex.search(phrase): |
|
494 |
if open_brace == 0 and open_quote == 0: |
|
495 |
return 1 |
|
496 |
|
|
497 |
return 0 |
|
498 |
|
|
499 |
|
|
500 |
# |
|
501 |
# a line in the form phrase1 # phrase2 # ... # phrasen |
|
502 |
# is returned as phrase1 phrase2 ... phrasen |
|
503 |
# with the correct punctuation |
|
504 |
# Bug: Doesn't always work with multiple abbreviations plugged in |
|
505 |
# |
|
506 |
def concat_line(line): |
|
507 |
# only look at part after equals |
|
508 |
field = field_rex.sub('\g<1>',line) |
|
509 |
rest = field_rex.sub('\g<2>',line) |
|
510 |
|
|
511 |
concat_line = field + ' =' |
|
512 |
|
|
513 |
pound_split = concatsplit_rex.split(rest) |
|
514 |
|
|
515 |
phrase_count = 0 |
|
516 |
length = len(pound_split) |
|
517 |
|
|
518 |
for phrase in pound_split: |
|
519 |
phrase = phrase.strip() |
|
520 |
if phrase_count != 0: |
|
521 |
if phrase.startswith('"') or phrase.startswith('{'): |
|
522 |
phrase = phrase[1:] |
|
523 |
elif phrase.startswith('"'): |
|
524 |
phrase = phrase.replace('"','{',1) |
|
525 |
|
|
526 |
if phrase_count != length-1: |
|
527 |
if phrase.endswith('"') or phrase.endswith('}'): |
|
528 |
phrase = phrase[:-1] |
|
529 |
else: |
|
530 |
if phrase.endswith('"'): |
|
531 |
phrase = phrase[:-1] |
|
532 |
phrase = phrase + "}" |
|
533 |
elif phrase.endswith('",'): |
|
534 |
phrase = phrase[:-2] |
|
535 |
phrase = phrase + "}," |
|
536 |
|
|
537 |
# if phrase did have \#, add the \# back |
|
538 |
if phrase.endswith('\\'): |
|
539 |
phrase = phrase + "#" |
|
540 |
concat_line = concat_line + ' ' + phrase |
|
541 |
|
|
542 |
phrase_count = phrase_count + 1 |
|
543 |
|
|
544 |
return concat_line |
|
545 |
|
|
546 |
|
|
547 |
# |
|
548 |
# substitute abbreviations into filecont |
|
549 |
# @param filecont_source - string of data from file |
|
550 |
# |
|
551 |
def bibtex_replace_abbreviations(filecont_source): |
|
552 |
filecont = filecont_source.splitlines() |
|
553 |
|
|
554 |
# These are defined in bibtex, so we'll define them too |
|
555 |
abbr_list = ['jan','feb','mar','apr','may','jun', |
|
556 |
'jul','aug','sep','oct','nov','dec'] |
|
557 |
value_list = ['January','February','March','April', |
|
558 |
'May','June','July','August','September', |
|
559 |
'October','November','December'] |
|
560 |
|
|
561 |
abbr_rex = [] |
|
562 |
total_abbr_count = 0 |
|
563 |
|
|
564 |
front = '\\b' |
|
565 |
back = '(,?)\\b' |
|
566 |
|
|
567 |
for x in abbr_list: |
|
568 |
abbr_rex.append( re.compile( front + abbr_list[total_abbr_count] + back, re.I ) ) |
|
569 |
total_abbr_count = total_abbr_count + 1 |
|
570 |
|
|
571 |
|
|
572 |
abbrdef_rex = re.compile('\s*@string\s*{\s*('+ valid_name_chars +'*)\s*=(.*)', |
|
573 |
re.I) |
|
574 |
|
|
575 |
comment_rex = re.compile('@comment\s*{',re.I) |
|
576 |
preamble_rex = re.compile('@preamble\s*{',re.I) |
|
577 |
|
|
578 |
waiting_for_end_string = 0 |
|
579 |
i = 0 |
|
580 |
filecont2 = '' |
|
581 |
|
|
582 |
for line in filecont: |
|
583 |
if line == ' ' or line == '': |
|
584 |
continue |
|
585 |
|
|
586 |
if waiting_for_end_string: |
|
587 |
if re.search('}',line): |
|
588 |
waiting_for_end_string = 0 |
|
589 |
continue |
|
590 |
|
|
591 |
if abbrdef_rex.search(line): |
|
592 |
abbr = abbrdef_rex.sub('\g<1>', line) |
|
593 |
|
|
594 |
if abbr_list.count(abbr) == 0: |
|
595 |
val = abbrdef_rex.sub('\g<2>', line) |
|
596 |
abbr_list.append(abbr) |
|
597 |
value_list.append(string.strip(val)) |
|
598 |
abbr_rex.append( re.compile( front + abbr_list[total_abbr_count] + back, re.I ) ) |
|
599 |
total_abbr_count = total_abbr_count + 1 |
|
600 |
waiting_for_end_string = 1 |
|
601 |
continue |
|
602 |
|
|
603 |
if comment_rex.search(line): |
|
604 |
waiting_for_end_string = 1 |
|
605 |
continue |
|
606 |
|
|
607 |
if preamble_rex.search(line): |
|
608 |
waiting_for_end_string = 1 |
|
609 |
continue |
|
610 |
|
|
611 |
|
|
612 |
# replace subsequent abbreviations with the value |
|
613 |
abbr_count = 0 |
|
614 |
|
|
615 |
for x in abbr_list: |
|
616 |
|
|
617 |
if abbr_rex[abbr_count].search(line): |
|
618 |
if verify_out_of_braces(line,abbr_list[abbr_count]) == 1: |
|
619 |
line = abbr_rex[abbr_count].sub( value_list[abbr_count] + '\g<1>', line) |
|
620 |
# Check for # concatenations |
|
621 |
if concatsplit_rex.search(line): |
|
622 |
line = concat_line(line) |
|
623 |
abbr_count = abbr_count + 1 |
|
624 |
|
|
625 |
|
|
626 |
filecont2 = filecont2 + line + '\n' |
|
627 |
i = i+1 |
|
628 |
|
|
629 |
|
|
630 |
# Do one final pass over file |
|
631 |
|
|
632 |
# make sure that didn't end up with {" or }" after the substitution |
|
633 |
filecont2 = filecont2.replace('{"','{{') |
|
634 |
filecont2 = filecont2.replace('"}','}}') |
|
635 |
|
|
636 |
afterquotevalue_rex = re.compile('"\s*,\s*') |
|
637 |
afterbrace_rex = re.compile('"\s*}') |
|
638 |
afterbracevalue_rex = re.compile('(=\s*{[^=]*)},\s*') |
|
639 |
|
|
640 |
# add new lines to data that changed because of abbreviation substitutions |
|
641 |
filecont2 = afterquotevalue_rex.sub('",\n', filecont2) |
|
642 |
filecont2 = afterbrace_rex.sub('"\n}', filecont2) |
|
643 |
filecont2 = afterbracevalue_rex.sub('\g<1>},\n', filecont2) |
|
644 |
|
|
645 |
return filecont2 |
|
646 |
|
|
647 |
# |
|
648 |
# convert @type( ... ) to @type{ ... } |
|
649 |
# |
|
650 |
def no_outer_parens(filecont): |
|
651 |
|
|
652 |
# do checking for open parens |
|
653 |
# will convert to braces |
|
654 |
paren_split = re.split('([(){}])',filecont) |
|
655 |
|
|
656 |
open_paren_count = 0 |
|
657 |
open_type = 0 |
|
658 |
look_next = 0 |
|
659 |
|
|
660 |
# rebuild filecont |
|
661 |
filecont = '' |
|
662 |
|
|
663 |
at_rex = re.compile('@\w*') |
|
664 |
|
|
665 |
for phrase in paren_split: |
|
666 |
if look_next == 1: |
|
667 |
if phrase == '(': |
|
668 |
phrase = '{' |
|
669 |
open_paren_count = open_paren_count + 1 |
|
670 |
else: |
|
671 |
open_type = 0 |
|
672 |
look_next = 0 |
|
673 |
|
|
674 |
if phrase == '(': |
|
675 |
open_paren_count = open_paren_count + 1 |
|
676 |
|
|
677 |
elif phrase == ')': |
|
678 |
open_paren_count = open_paren_count - 1 |
|
679 |
if open_type == 1 and open_paren_count == 0: |
|
680 |
phrase = '}' |
|
681 |
open_type = 0 |
|
682 |
|
|
683 |
elif at_rex.search( phrase ): |
|
684 |
open_type = 1 |
|
685 |
look_next = 1 |
|
686 |
|
|
687 |
filecont = filecont + phrase |
|
688 |
|
|
689 |
return filecont |
|
690 |
|
|
691 |
|
|
692 |
# |
|
693 |
# make all whitespace into just one space |
|
694 |
# format the bibtex file into a usable form. |
|
695 |
# |
|
696 |
def bibtexwasher(filecont_source): |
|
697 |
|
|
698 |
space_rex = re.compile('\s+') |
|
699 |
comment_rex = re.compile('\s*%') |
|
700 |
|
|
701 |
filecont = [] |
|
702 |
|
|
703 |
# remove trailing and excessive whitespace |
|
704 |
# ignore comments |
|
705 |
for line in filecont_source: |
|
706 |
line = string.strip(line) |
|
707 |
line = space_rex.sub(' ', line) |
|
708 |
# ignore comments |
|
709 |
if not comment_rex.match(line) and line != '': |
|
710 |
filecont.append(' '+ line) |
|
711 |
|
|
712 |
filecont = string.join(filecont, '') |
|
713 |
|
|
714 |
# the file is in one long string |
|
715 |
|
|
716 |
filecont = no_outer_parens(filecont) |
|
717 |
|
|
718 |
# |
|
719 |
# split lines according to preferred syntax scheme |
|
720 |
# |
|
721 |
filecont = re.sub('(=\s*{[^=]*)},', '\g<1>},\n', filecont) |
|
722 |
|
|
723 |
# add new lines after commas that are after values |
|
724 |
filecont = re.sub('"\s*,', '",\n', filecont) |
|
725 |
filecont = re.sub('=\s*([\w\d]+)\s*,', '= \g<1>,\n', filecont) |
|
726 |
filecont = re.sub('(@\w*)\s*({(\s*)[^,\s]*)\s*,', |
|
727 |
'\n\n\g<1>\g<2>,\n', filecont) |
|
728 |
|
|
729 |
# add new lines after } |
|
730 |
filecont = re.sub('"\s*}','"\n}\n', filecont) |
|
731 |
filecont = re.sub('}\s*,','},\n', filecont) |
|
732 |
|
|
733 |
|
|
734 |
filecont = re.sub('@(\w*)', '\n@\g<1>', filecont) |
|
735 |
|
|
736 |
# character encoding, reserved latex characters |
|
737 |
filecont = re.sub('{\\\&}', '&', filecont) |
|
738 |
filecont = re.sub('\\\&', '&', filecont) |
|
739 |
|
|
740 |
# do checking for open braces to get format correct |
|
741 |
open_brace_count = 0 |
|
742 |
brace_split = re.split('([{}])',filecont) |
|
743 |
|
|
744 |
# rebuild filecont |
|
745 |
filecont = '' |
|
746 |
|
|
747 |
for phrase in brace_split: |
|
748 |
if phrase == '{': |
|
749 |
open_brace_count = open_brace_count + 1 |
|
750 |
elif phrase == '}': |
|
751 |
open_brace_count = open_brace_count - 1 |
|
752 |
if open_brace_count == 0: |
|
753 |
filecont = filecont + '\n' |
|
754 |
|
|
755 |
filecont = filecont + phrase |
|
756 |
|
|
757 |
filecont2 = bibtex_replace_abbreviations(filecont) |
|
758 |
|
|
759 |
# gather |
|
760 |
filecont = filecont2.splitlines() |
|
761 |
i=0 |
|
762 |
j=0 # count the number of blank lines |
|
763 |
for line in filecont: |
|
764 |
# ignore blank lines |
|
765 |
if line == '' or line == ' ': |
|
766 |
j = j+1 |
|
767 |
continue |
|
768 |
filecont[i] = line + '\n' |
|
769 |
i = i+1 |
|
770 |
|
|
771 |
# get rid of the extra stuff at the end of the array |
|
772 |
# (The extra stuff are duplicates that are in the array because |
|
773 |
# blank lines were removed.) |
|
774 |
length = len( filecont) |
|
775 |
filecont[length-j:length] = [] |
|
776 |
|
|
777 |
return filecont |
|
778 |
|
|
779 |
|
|
780 |
def filehandler(filepath): |
|
781 |
try: |
|
782 |
fd = open(filepath, 'r') |
|
783 |
filecont_source = fd.readlines() |
|
784 |
fd.close() |
|
785 |
except: |
|
786 |
print 'Could not open file:', filepath |
|
787 |
washeddata = bibtexwasher(filecont_source) |
|
788 |
outdata = bibtexdecoder(washeddata) |
|
789 |
print '/**' |
|
790 |
print '\page references References' |
|
791 |
|
|
792 |
for line in outdata: |
|
793 |
print line |
|
794 |
print '*/' |
|
795 |
|
|
796 |
|
|
797 |
# main program |
|
798 |
|
|
799 |
def main(): |
|
800 |
import sys |
|
801 |
if sys.argv[1:]: |
|
802 |
filepath = sys.argv[1] |
|
803 |
else: |
|
804 |
print "No input file" |
|
805 |
sys.exit() |
|
806 |
filehandler(filepath) |
|
807 |
|
|
808 |
if __name__ == "__main__": main() |
|
809 |
|
|
810 |
|
|
811 |
# end python script |
1 |
#!/bin/bash |
|
2 |
# |
|
3 |
# This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
# |
|
5 |
# Copyright (C) 2003-2009 |
|
6 |
# Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
# (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
# |
|
9 |
# Permission to use, modify and distribute this software is granted |
|
10 |
# provided that this copyright notice appears in all copies. For |
|
11 |
# precise terms see the accompanying LICENSE file. |
|
12 |
# |
|
13 |
# This software is provided "AS IS" with no warranty of any kind, |
|
14 |
# express or implied, and with no claim as to its suitability for any |
|
15 |
# purpose. |
|
16 |
|
|
17 |
|
|
18 |
if [ ! -f ~/.lemon-bootstrap ]; then |
|
19 |
echo 'Create ~/.lemon-bootstrap'. |
|
20 |
cat >~/.lemon-bootstrap <<EOF |
|
21 |
# |
|
22 |
# Default settings for bootstraping the LEMON source code repository |
|
23 |
# |
|
24 |
EOF |
|
25 |
fi |
|
26 |
|
|
27 |
source ~/.lemon-bootstrap |
|
28 |
if [ -f ../../../.lemon-bootstrap ]; then source ../../../.lemon-bootstrap; fi |
|
29 |
if [ -f ../../.lemon-bootstrap ]; then source ../../.lemon-bootstrap; fi |
|
30 |
if [ -f ../.lemon-bootstrap ]; then source ../.lemon-bootstrap; fi |
|
31 |
if [ -f ./.lemon-bootstrap ]; then source ./.lemon-bootstrap; fi |
|
32 |
|
|
33 |
|
|
34 |
function augment_config() { |
|
35 |
if [ "x${!1}" == "x" ]; then |
|
36 |
eval $1=$2 |
|
37 |
echo Add "'$1'" to '~/.lemon-bootstrap'. |
|
38 |
echo >>~/.lemon-bootstrap |
|
39 |
echo $3 >>~/.lemon-bootstrap |
|
40 |
echo $1=$2 >>~/.lemon-bootstrap |
|
41 |
fi |
|
42 |
} |
|
43 |
|
|
44 |
augment_config LEMON_INSTALL_PREFIX /usr/local \ |
|
45 |
"# LEMON installation prefix" |
|
46 |
|
|
47 |
augment_config COIN_OR_PREFIX /usr/local/coin-or \ |
|
48 |
"# COIN-OR installation root prefix (used for CLP/CBC)" |
|
49 |
|
|
50 |
augment_config SOPLEX_PREFIX /usr/local/soplex \ |
|
51 |
"# Soplex build prefix" |
|
52 |
|
|
53 |
|
|
54 |
function ask() { |
|
55 |
echo -n "$1 [$2]? " |
|
56 |
read _an |
|
57 |
if [ "x$_an" == "x" ]; then |
|
58 |
ret="$2" |
|
59 |
else |
|
60 |
ret=$_an |
|
61 |
fi |
|
62 |
} |
|
63 |
|
|
64 |
function yesorno() { |
|
65 |
ret='rossz' |
|
66 |
while [ "$ret" != "y" -a "$ret" != "n" -a "$ret" != "yes" -a "$ret" != "no" ]; do |
|
67 |
ask "$1" "$2" |
|
68 |
done |
|
69 |
if [ "$ret" != "y" -a "$ret" != "yes" ]; then |
|
70 |
return 1 |
|
71 |
else |
|
72 |
return 0 |
|
73 |
fi |
|
74 |
} |
|
75 |
|
|
76 |
if yesorno "External build" "n" |
|
77 |
then |
|
78 |
CONFIGURE_PATH=".." |
|
79 |
else |
|
80 |
CONFIGURE_PATH="." |
|
81 |
if yesorno "Autoreconf" "y" |
|
82 |
then |
|
83 |
AUTORE=yes |
|
84 |
else |
|
85 |
AUTORE=no |
|
86 |
fi |
|
87 |
fi |
|
88 |
|
|
89 |
if yesorno "Optimize" "n" |
|
90 |
then |
|
91 |
opt_flags=' -O2' |
|
92 |
else |
|
93 |
opt_flags='' |
|
94 |
fi |
|
95 |
|
|
96 |
if yesorno "Stop on warning" "y" |
|
97 |
then |
|
98 |
werror_flags=' -Werror' |
|
99 |
else |
|
100 |
werror_flags='' |
|
101 |
fi |
|
102 |
|
|
103 |
cxx_flags="CXXFLAGS=-ggdb$opt_flags$werror_flags" |
|
104 |
|
|
105 |
if yesorno "Check with valgrind" "n" |
|
106 |
then |
|
107 |
valgrind_flags=' --enable-valgrind' |
|
108 |
else |
|
109 |
valgrind_flags='' |
|
110 |
fi |
|
111 |
|
|
112 |
if [ -f ${COIN_OR_PREFIX}/include/coin/config_coinutils.h ]; then |
|
113 |
if yesorno "Use COIN-OR (CBC/CLP)" "n" |
|
114 |
then |
|
115 |
coin_flag="--with-coin=$COIN_OR_PREFIX" |
|
116 |
else |
|
117 |
coin_flag="" |
|
118 |
fi |
|
119 |
else |
|
120 |
coin_flag="" |
|
121 |
fi |
|
122 |
|
|
123 |
if [ -f ${SOPLEX_PREFIX}/src/soplex.h ]; then |
|
124 |
if yesorno "Use Soplex" "n" |
|
125 |
then |
|
126 |
soplex_flag="--with-soplex=$SOPLEX_PREFIX" |
|
127 |
else |
|
128 |
soplex_flag="" |
|
129 |
fi |
|
130 |
else |
|
131 |
soplex_flag="" |
|
132 |
fi |
|
133 |
|
|
134 |
if [ "x$AUTORE" == "xyes" ]; then |
|
135 |
autoreconf -vif; |
|
136 |
fi |
|
137 |
${CONFIGURE_PATH}/configure --prefix=$LEMON_INSTALL_PREFIX \ |
|
138 |
$valgrind_flags \ |
|
139 |
"$cxx_flags" \ |
|
140 |
$coin_flag \ |
|
141 |
$soplex_flag \ |
|
142 |
$* |
1 |
#!/bin/sh |
|
2 |
|
|
3 |
# Run in valgrind, with leak checking enabled |
|
4 |
|
|
5 |
valgrind -q --leak-check=full "$@" 2> .valgrind-log |
|
6 |
|
|
7 |
# Save the test result |
|
8 |
|
|
9 |
result="$?" |
|
10 |
|
|
11 |
# Valgrind should generate no error messages |
|
12 |
|
|
13 |
log_contents="`cat .valgrind-log`" |
|
14 |
|
|
15 |
if [ "$log_contents" != "" ]; then |
|
16 |
cat .valgrind-log >&2 |
|
17 |
result=1 |
|
18 |
fi |
|
19 |
|
|
20 |
rm -f .valgrind-log |
|
21 |
|
|
22 |
exit $result |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#include <iostream> |
|
20 |
#include <sstream> |
|
21 |
|
|
22 |
#include <lemon/smart_graph.h> |
|
23 |
#include <lemon/lgf_reader.h> |
|
24 |
#include <lemon/path.h> |
|
25 |
#include <lemon/concepts/digraph.h> |
|
26 |
#include <lemon/concept_check.h> |
|
27 |
|
|
28 |
#include <lemon/karp.h> |
|
29 |
#include <lemon/hartmann_orlin.h> |
|
30 |
#include <lemon/howard.h> |
|
31 |
|
|
32 |
#include "test_tools.h" |
|
33 |
|
|
34 |
using namespace lemon; |
|
35 |
|
|
36 |
char test_lgf[] = |
|
37 |
"@nodes\n" |
|
38 |
"label\n" |
|
39 |
"1\n" |
|
40 |
"2\n" |
|
41 |
"3\n" |
|
42 |
"4\n" |
|
43 |
"5\n" |
|
44 |
"6\n" |
|
45 |
"7\n" |
|
46 |
"@arcs\n" |
|
47 |
" len1 len2 len3 len4 c1 c2 c3 c4\n" |
|
48 |
"1 2 1 1 1 1 0 0 0 0\n" |
|
49 |
"2 4 5 5 5 5 1 0 0 0\n" |
|
50 |
"2 3 8 8 8 8 0 0 0 0\n" |
|
51 |
"3 2 -2 0 0 0 1 0 0 0\n" |
|
52 |
"3 4 4 4 4 4 0 0 0 0\n" |
|
53 |
"3 7 -4 -4 -4 -4 0 0 0 0\n" |
|
54 |
"4 1 2 2 2 2 0 0 0 0\n" |
|
55 |
"4 3 3 3 3 3 1 0 0 0\n" |
|
56 |
"4 4 3 3 0 0 0 0 1 0\n" |
|
57 |
"5 2 4 4 4 4 0 0 0 0\n" |
|
58 |
"5 6 3 3 3 3 0 1 0 0\n" |
|
59 |
"6 5 2 2 2 2 0 1 0 0\n" |
|
60 |
"6 4 -1 -1 -1 -1 0 0 0 0\n" |
|
61 |
"6 7 1 1 1 1 0 0 0 0\n" |
|
62 |
"7 7 4 4 4 -1 0 0 0 1\n"; |
|
63 |
|
|
64 |
|
|
65 |
// Check the interface of an MMC algorithm |
|
66 |
template <typename GR, typename Value> |
|
67 |
struct MmcClassConcept |
|
68 |
{ |
|
69 |
template <typename MMC> |
|
70 |
struct Constraints { |
|
71 |
void constraints() { |
|
72 |
const Constraints& me = *this; |
|
73 |
|
|
74 |
typedef typename MMC |
|
75 |
::template SetPath<ListPath<GR> > |
|
76 |
::template SetLargeValue<Value> |
|
77 |
::Create MmcAlg; |
|
78 |
MmcAlg mmc(me.g, me.length); |
|
79 |
const MmcAlg& const_mmc = mmc; |
|
80 |
|
|
81 |
typename MmcAlg::Tolerance tol = const_mmc.tolerance(); |
|
82 |
mmc.tolerance(tol); |
|
83 |
|
|
84 |
b = mmc.cycle(p).run(); |
|
85 |
b = mmc.findMinMean(); |
|
86 |
b = mmc.findCycle(); |
|
87 |
|
|
88 |
v = const_mmc.cycleLength(); |
|
89 |
i = const_mmc.cycleArcNum(); |
|
90 |
d = const_mmc.cycleMean(); |
|
91 |
p = const_mmc.cycle(); |
|
92 |
} |
|
93 |
|
|
94 |
typedef concepts::ReadMap<typename GR::Arc, Value> LM; |
|
95 |
|
|
96 |
GR g; |
|
97 |
LM length; |
|
98 |
ListPath<GR> p; |
|
99 |
Value v; |
|
100 |
int i; |
|
101 |
double d; |
|
102 |
bool b; |
|
103 |
}; |
|
104 |
}; |
|
105 |
|
|
106 |
// Perform a test with the given parameters |
|
107 |
template <typename MMC> |
|
108 |
void checkMmcAlg(const SmartDigraph& gr, |
|
109 |
const SmartDigraph::ArcMap<int>& lm, |
|
110 |
const SmartDigraph::ArcMap<int>& cm, |
|
111 |
int length, int size) { |
|
112 |
MMC alg(gr, lm); |
|
113 |
alg.findMinMean(); |
|
114 |
check(alg.cycleMean() == static_cast<double>(length) / size, |
|
115 |
"Wrong cycle mean"); |
|
116 |
alg.findCycle(); |
|
117 |
check(alg.cycleLength() == length && alg.cycleArcNum() == size, |
|
118 |
"Wrong path"); |
|
119 |
SmartDigraph::ArcMap<int> cycle(gr, 0); |
|
120 |
for (typename MMC::Path::ArcIt a(alg.cycle()); a != INVALID; ++a) { |
|
121 |
++cycle[a]; |
|
122 |
} |
|
123 |
for (SmartDigraph::ArcIt a(gr); a != INVALID; ++a) { |
|
124 |
check(cm[a] == cycle[a], "Wrong path"); |
|
125 |
} |
|
126 |
} |
|
127 |
|
|
128 |
// Class for comparing types |
|
129 |
template <typename T1, typename T2> |
|
130 |
struct IsSameType { |
|
131 |
static const int result = 0; |
|
132 |
}; |
|
133 |
|
|
134 |
template <typename T> |
|
135 |
struct IsSameType<T,T> { |
|
136 |
static const int result = 1; |
|
137 |
}; |
|
138 |
|
|
139 |
|
|
140 |
int main() { |
|
141 |
#ifdef LEMON_HAVE_LONG_LONG |
|
142 |
typedef long long long_int; |
|
143 |
#else |
|
144 |
typedef long long_int; |
|
145 |
#endif |
|
146 |
|
|
147 |
// Check the interface |
|
148 |
{ |
|
149 |
typedef concepts::Digraph GR; |
|
150 |
|
|
151 |
// Karp |
|
152 |
checkConcept< MmcClassConcept<GR, int>, |
|
153 |
Karp<GR, concepts::ReadMap<GR::Arc, int> > >(); |
|
154 |
checkConcept< MmcClassConcept<GR, float>, |
|
155 |
Karp<GR, concepts::ReadMap<GR::Arc, float> > >(); |
|
156 |
|
|
157 |
// HartmannOrlin |
|
158 |
checkConcept< MmcClassConcept<GR, int>, |
|
159 |
HartmannOrlin<GR, concepts::ReadMap<GR::Arc, int> > >(); |
|
160 |
checkConcept< MmcClassConcept<GR, float>, |
|
161 |
HartmannOrlin<GR, concepts::ReadMap<GR::Arc, float> > >(); |
|
162 |
|
|
163 |
// Howard |
|
164 |
checkConcept< MmcClassConcept<GR, int>, |
|
165 |
Howard<GR, concepts::ReadMap<GR::Arc, int> > >(); |
|
166 |
checkConcept< MmcClassConcept<GR, float>, |
|
167 |
Howard<GR, concepts::ReadMap<GR::Arc, float> > >(); |
|
168 |
|
|
169 |
if (IsSameType<Howard<GR, concepts::ReadMap<GR::Arc, int> >::LargeValue, |
|
170 |
long_int>::result == 0) check(false, "Wrong LargeValue type"); |
|
171 |
if (IsSameType<Howard<GR, concepts::ReadMap<GR::Arc, float> >::LargeValue, |
|
172 |
double>::result == 0) check(false, "Wrong LargeValue type"); |
|
173 |
} |
|
174 |
|
|
175 |
// Run various tests |
|
176 |
{ |
|
177 |
typedef SmartDigraph GR; |
|
178 |
DIGRAPH_TYPEDEFS(GR); |
|
179 |
|
|
180 |
GR gr; |
|
181 |
IntArcMap l1(gr), l2(gr), l3(gr), l4(gr); |
|
182 |
IntArcMap c1(gr), c2(gr), c3(gr), c4(gr); |
|
183 |
|
|
184 |
std::istringstream input(test_lgf); |
|
185 |
digraphReader(gr, input). |
|
186 |
arcMap("len1", l1). |
|
187 |
arcMap("len2", l2). |
|
188 |
arcMap("len3", l3). |
|
189 |
arcMap("len4", l4). |
|
190 |
arcMap("c1", c1). |
|
191 |
arcMap("c2", c2). |
|
192 |
arcMap("c3", c3). |
|
193 |
arcMap("c4", c4). |
|
194 |
run(); |
|
195 |
|
|
196 |
// Karp |
|
197 |
checkMmcAlg<Karp<GR, IntArcMap> >(gr, l1, c1, 6, 3); |
|
198 |
checkMmcAlg<Karp<GR, IntArcMap> >(gr, l2, c2, 5, 2); |
|
199 |
checkMmcAlg<Karp<GR, IntArcMap> >(gr, l3, c3, 0, 1); |
|
200 |
checkMmcAlg<Karp<GR, IntArcMap> >(gr, l4, c4, -1, 1); |
|
201 |
|
|
202 |
// HartmannOrlin |
|
203 |
checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l1, c1, 6, 3); |
|
204 |
checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l2, c2, 5, 2); |
|
205 |
checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l3, c3, 0, 1); |
|
206 |
checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l4, c4, -1, 1); |
|
207 |
|
|
208 |
// Howard |
|
209 |
checkMmcAlg<Howard<GR, IntArcMap> >(gr, l1, c1, 6, 3); |
|
210 |
checkMmcAlg<Howard<GR, IntArcMap> >(gr, l2, c2, 5, 2); |
|
211 |
checkMmcAlg<Howard<GR, IntArcMap> >(gr, l3, c3, 0, 1); |
|
212 |
checkMmcAlg<Howard<GR, IntArcMap> >(gr, l4, c4, -1, 1); |
|
213 |
} |
|
214 |
|
|
215 |
return 0; |
|
216 |
} |
... | ... |
@@ -32,12 +32,14 @@ |
32 | 32 |
FIND_PACKAGE(COIN) |
33 | 33 |
|
34 | 34 |
INCLUDE(CheckTypeSize) |
35 | 35 |
CHECK_TYPE_SIZE("long long" LONG_LONG) |
36 | 36 |
SET(LEMON_HAVE_LONG_LONG ${HAVE_LONG_LONG}) |
37 | 37 |
|
38 |
INCLUDE(FindPythonInterp) |
|
39 |
|
|
38 | 40 |
ENABLE_TESTING() |
39 | 41 |
|
40 | 42 |
ADD_SUBDIRECTORY(lemon) |
41 | 43 |
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR}) |
42 | 44 |
ADD_SUBDIRECTORY(demo) |
43 | 45 |
ADD_SUBDIRECTORY(tools) |
... | ... |
@@ -14,12 +14,13 @@ |
14 | 14 |
m4/lx_check_coin.m4 \ |
15 | 15 |
CMakeLists.txt \ |
16 | 16 |
cmake/FindGhostscript.cmake \ |
17 | 17 |
cmake/FindCPLEX.cmake \ |
18 | 18 |
cmake/FindGLPK.cmake \ |
19 | 19 |
cmake/FindCOIN.cmake \ |
20 |
cmake/LEMONConfig.cmake.in \ |
|
20 | 21 |
cmake/version.cmake.in \ |
21 | 22 |
cmake/version.cmake \ |
22 | 23 |
cmake/nsis/lemon.ico \ |
23 | 24 |
cmake/nsis/uninstall.ico |
24 | 25 |
|
25 | 26 |
pkgconfigdir = $(libdir)/pkgconfig |
... | ... |
@@ -40,12 +41,13 @@ |
40 | 41 |
XFAIL_TESTS = |
41 | 42 |
|
42 | 43 |
include lemon/Makefile.am |
43 | 44 |
include test/Makefile.am |
44 | 45 |
include doc/Makefile.am |
45 | 46 |
include tools/Makefile.am |
47 |
include scripts/Makefile.am |
|
46 | 48 |
|
47 | 49 |
DIST_SUBDIRS = demo |
48 | 50 |
|
49 | 51 |
demo: |
50 | 52 |
$(MAKE) $(AM_MAKEFLAGS) -C demo |
51 | 53 |
... | ... |
@@ -38,12 +38,13 @@ |
38 | 38 |
AC_PROG_CXXCPP |
39 | 39 |
AC_PROG_INSTALL |
40 | 40 |
AC_DISABLE_SHARED |
41 | 41 |
AC_PROG_LIBTOOL |
42 | 42 |
|
43 | 43 |
AC_CHECK_PROG([doxygen_found],[doxygen],[yes],[no]) |
44 |
AC_CHECK_PROG([python_found],[python],[yes],[no]) |
|
44 | 45 |
AC_CHECK_PROG([gs_found],[gs],[yes],[no]) |
45 | 46 |
|
46 | 47 |
dnl Detect Intel compiler. |
47 | 48 |
AC_MSG_CHECKING([whether we are using the Intel C++ compiler]) |
48 | 49 |
AC_COMPILE_IFELSE([#ifndef __INTEL_COMPILER |
49 | 50 |
choke me |
... | ... |
@@ -79,12 +80,27 @@ |
79 | 80 |
AC_MSG_RESULT([yes]) |
80 | 81 |
else |
81 | 82 |
AC_MSG_RESULT([no]) |
82 | 83 |
fi |
83 | 84 |
AM_CONDITIONAL([WANT_TOOLS], [test x"$enable_tools" != x"no"]) |
84 | 85 |
|
86 |
dnl Support for running test cases using valgrind. |
|
87 |
use_valgrind=no |
|
88 |
AC_ARG_ENABLE([valgrind], |
|
89 |
AS_HELP_STRING([--enable-valgrind], [use valgrind when running tests]), |
|
90 |
[use_valgrind=yes]) |
|
91 |
|
|
92 |
if [[ "$use_valgrind" = "yes" ]]; then |
|
93 |
AC_CHECK_PROG(HAVE_VALGRIND, valgrind, yes, no) |
|
94 |
|
|
95 |
if [[ "$HAVE_VALGRIND" = "no" ]]; then |
|
96 |
AC_MSG_ERROR([Valgrind not found in PATH.]) |
|
97 |
fi |
|
98 |
fi |
|
99 |
AM_CONDITIONAL(USE_VALGRIND, [test "$use_valgrind" = "yes"]) |
|
100 |
|
|
85 | 101 |
dnl Checks for header files. |
86 | 102 |
AC_CHECK_HEADERS(limits.h sys/time.h sys/times.h unistd.h) |
87 | 103 |
|
88 | 104 |
dnl Checks for typedefs, structures, and compiler characteristics. |
89 | 105 |
AC_C_CONST |
90 | 106 |
AC_C_INLINE |
... | ... |
@@ -124,12 +140,13 @@ |
124 | 140 |
echo CPLEX support................. : $lx_cplex_found |
125 | 141 |
echo SOPLEX support................ : $lx_soplex_found |
126 | 142 |
echo CLP support................... : $lx_clp_found |
127 | 143 |
echo CBC support................... : $lx_cbc_found |
128 | 144 |
echo |
129 | 145 |
echo Build additional tools........ : $enable_tools |
146 |
echo Use valgrind for tests........ : $use_valgrind |
|
130 | 147 |
echo |
131 | 148 |
echo The packace will be installed in |
132 | 149 |
echo -n ' ' |
133 | 150 |
echo $prefix. |
134 | 151 |
echo |
135 | 152 |
echo '*********************************************************************' |
... | ... |
@@ -6,13 +6,13 @@ |
6 | 6 |
CONFIGURE_FILE( |
7 | 7 |
${PROJECT_SOURCE_DIR}/doc/Doxyfile.in |
8 | 8 |
${PROJECT_BINARY_DIR}/doc/Doxyfile |
9 | 9 |
@ONLY |
10 | 10 |
) |
11 | 11 |
|
12 |
IF(DOXYGEN_EXECUTABLE AND GHOSTSCRIPT_EXECUTABLE) |
|
12 |
IF(DOXYGEN_EXECUTABLE AND PYTHONINTERP_FOUND AND GHOSTSCRIPT_EXECUTABLE) |
|
13 | 13 |
FILE(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/) |
14 | 14 |
SET(GHOSTSCRIPT_OPTIONS -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha) |
15 | 15 |
ADD_CUSTOM_TARGET(html |
16 | 16 |
COMMAND ${CMAKE_COMMAND} -E remove_directory gen-images |
17 | 17 |
COMMAND ${CMAKE_COMMAND} -E make_directory gen-images |
18 | 18 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/bipartite_matching.png ${CMAKE_CURRENT_SOURCE_DIR}/images/bipartite_matching.eps |
... | ... |
@@ -25,12 +25,13 @@ |
25 | 25 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_1.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_1.eps |
26 | 26 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_2.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_2.eps |
27 | 27 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_3.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_3.eps |
28 | 28 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_4.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_4.eps |
29 | 29 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/strongly_connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/strongly_connected_components.eps |
30 | 30 |
COMMAND ${CMAKE_COMMAND} -E remove_directory html |
31 |
COMMAND ${PYTHON_EXECUTABLE} ${PROJECT_SOURCE_DIR}/scripts/bib2dox.py ${CMAKE_CURRENT_SOURCE_DIR}/references.bib >references.dox |
|
31 | 32 |
COMMAND ${DOXYGEN_EXECUTABLE} Doxyfile |
32 | 33 |
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} |
33 | 34 |
) |
34 | 35 |
|
35 | 36 |
SET_TARGET_PROPERTIES(html PROPERTIES PROJECT_LABEL BUILD_DOC) |
36 | 37 |
1 |
# Doxyfile 1.5. |
|
1 |
# Doxyfile 1.5.9 |
|
2 | 2 |
|
3 | 3 |
#--------------------------------------------------------------------------- |
4 | 4 |
# Project related configuration options |
5 | 5 |
#--------------------------------------------------------------------------- |
6 | 6 |
DOXYFILE_ENCODING = UTF-8 |
7 | 7 |
PROJECT_NAME = @PACKAGE_NAME@ |
... | ... |
@@ -18,13 +18,12 @@ |
18 | 18 |
STRIP_FROM_PATH = "@abs_top_srcdir@" |
19 | 19 |
STRIP_FROM_INC_PATH = "@abs_top_srcdir@" |
20 | 20 |
SHORT_NAMES = YES |
21 | 21 |
JAVADOC_AUTOBRIEF = NO |
22 | 22 |
QT_AUTOBRIEF = NO |
23 | 23 |
MULTILINE_CPP_IS_BRIEF = NO |
24 |
DETAILS_AT_TOP = YES |
|
25 | 24 |
INHERIT_DOCS = NO |
26 | 25 |
SEPARATE_MEMBER_PAGES = NO |
27 | 26 |
TAB_SIZE = 8 |
28 | 27 |
ALIASES = |
29 | 28 |
OPTIMIZE_OUTPUT_FOR_C = NO |
30 | 29 |
OPTIMIZE_OUTPUT_JAVA = NO |
... | ... |
@@ -88,13 +87,14 @@ |
88 | 87 |
INPUT = "@abs_top_srcdir@/doc" \ |
89 | 88 |
"@abs_top_srcdir@/lemon" \ |
90 | 89 |
"@abs_top_srcdir@/lemon/bits" \ |
91 | 90 |
"@abs_top_srcdir@/lemon/concepts" \ |
92 | 91 |
"@abs_top_srcdir@/demo" \ |
93 | 92 |
"@abs_top_srcdir@/tools" \ |
94 |
"@abs_top_srcdir@/test/test_tools.h" |
|
93 |
"@abs_top_srcdir@/test/test_tools.h" \ |
|
94 |
"@abs_top_builddir@/doc/references.dox" |
|
95 | 95 |
INPUT_ENCODING = UTF-8 |
96 | 96 |
FILE_PATTERNS = *.h \ |
97 | 97 |
*.cc \ |
98 | 98 |
*.dox |
99 | 99 |
RECURSIVE = NO |
100 | 100 |
EXCLUDE = |
... | ... |
@@ -220,13 +220,13 @@ |
220 | 220 |
INCLUDE_PATH = |
221 | 221 |
INCLUDE_FILE_PATTERNS = |
222 | 222 |
PREDEFINED = DOXYGEN |
223 | 223 |
EXPAND_AS_DEFINED = |
224 | 224 |
SKIP_FUNCTION_MACROS = YES |
225 | 225 |
#--------------------------------------------------------------------------- |
226 |
# |
|
226 |
# Options related to the search engine |
|
227 | 227 |
#--------------------------------------------------------------------------- |
228 | 228 |
TAGFILES = "@abs_top_srcdir@/doc/libstdc++.tag = http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/ " |
229 | 229 |
GENERATE_TAGFILE = html/lemon.tag |
230 | 230 |
ALLEXTERNALS = NO |
231 | 231 |
EXTERNAL_GROUPS = NO |
232 | 232 |
PERL_PATH = /usr/bin/perl |
... | ... |
@@ -63,13 +63,25 @@ |
63 | 63 |
echo; \ |
64 | 64 |
echo "Ghostscript not found."; \ |
65 | 65 |
echo; \ |
66 | 66 |
exit 1; \ |
67 | 67 |
fi |
68 | 68 |
|
69 |
|
|
69 |
references.dox: doc/references.bib |
|
70 |
if test ${python_found} = yes; then \ |
|
71 |
cd doc; \ |
|
72 |
python @abs_top_srcdir@/scripts/bib2dox.py @abs_top_builddir@/$< >$@; \ |
|
73 |
cd ..; \ |
|
74 |
else \ |
|
75 |
echo; \ |
|
76 |
echo "Python not found."; \ |
|
77 |
echo; \ |
|
78 |
exit 1; \ |
|
79 |
fi |
|
80 |
|
|
81 |
html-local: $(DOC_PNG_IMAGES) references.dox |
|
70 | 82 |
if test ${doxygen_found} = yes; then \ |
71 | 83 |
cd doc; \ |
72 | 84 |
doxygen Doxyfile; \ |
73 | 85 |
cd ..; \ |
74 | 86 |
else \ |
75 | 87 |
echo; \ |
... | ... |
@@ -277,12 +277,34 @@ |
277 | 277 |
|
278 | 278 |
This group contains some data structures implemented in LEMON in |
279 | 279 |
order to make it easier to implement combinatorial algorithms. |
280 | 280 |
*/ |
281 | 281 |
|
282 | 282 |
/** |
283 |
@defgroup geomdat Geometric Data Structures |
|
284 |
@ingroup auxdat |
|
285 |
\brief Geometric data structures implemented in LEMON. |
|
286 |
|
|
287 |
This group contains geometric data structures implemented in LEMON. |
|
288 |
|
|
289 |
- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional |
|
290 |
vector with the usual operations. |
|
291 |
- \ref lemon::dim2::Box "dim2::Box" can be used to determine the |
|
292 |
rectangular bounding box of a set of \ref lemon::dim2::Point |
|
293 |
"dim2::Point"'s. |
|
294 |
*/ |
|
295 |
|
|
296 |
/** |
|
297 |
@defgroup matrices Matrices |
|
298 |
@ingroup auxdat |
|
299 |
\brief Two dimensional data storages implemented in LEMON. |
|
300 |
|
|
301 |
This group contains two dimensional data storages implemented in LEMON. |
|
302 |
*/ |
|
303 |
|
|
304 |
/** |
|
283 | 305 |
@defgroup algs Algorithms |
284 | 306 |
\brief This group contains the several algorithms |
285 | 307 |
implemented in LEMON. |
286 | 308 |
|
287 | 309 |
This group contains the several algorithms |
288 | 310 |
implemented in LEMON. |
... | ... |
@@ -291,21 +313,23 @@ |
291 | 313 |
/** |
292 | 314 |
@defgroup search Graph Search |
293 | 315 |
@ingroup algs |
294 | 316 |
\brief Common graph search algorithms. |
295 | 317 |
|
296 | 318 |
This group contains the common graph search algorithms, namely |
297 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS) |
|
319 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS) |
|
320 |
\ref clrs01algorithms. |
|
298 | 321 |
*/ |
299 | 322 |
|
300 | 323 |
/** |
301 | 324 |
@defgroup shortest_path Shortest Path Algorithms |
302 | 325 |
@ingroup algs |
303 | 326 |
\brief Algorithms for finding shortest paths. |
304 | 327 |
|
305 |
This group contains the algorithms for finding shortest paths in digraphs |
|
328 |
This group contains the algorithms for finding shortest paths in digraphs |
|
329 |
\ref clrs01algorithms. |
|
306 | 330 |
|
307 | 331 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
308 | 332 |
when all arc lengths are non-negative. |
309 | 333 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
310 | 334 |
from a source node when arc lenghts can be either positive or negative, |
311 | 335 |
but the digraph should not contain directed cycles with negative total |
... | ... |
@@ -316,18 +340,27 @@ |
316 | 340 |
not contain directed cycles with negative total length. |
317 | 341 |
- \ref Suurballe A successive shortest path algorithm for finding |
318 | 342 |
arc-disjoint paths between two nodes having minimum total length. |
319 | 343 |
*/ |
320 | 344 |
|
321 | 345 |
/** |
346 |
@defgroup spantree Minimum Spanning Tree Algorithms |
|
347 |
@ingroup algs |
|
348 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
|
349 |
|
|
350 |
This group contains the algorithms for finding minimum cost spanning |
|
351 |
trees and arborescences \ref clrs01algorithms. |
|
352 |
*/ |
|
353 |
|
|
354 |
/** |
|
322 | 355 |
@defgroup max_flow Maximum Flow Algorithms |
323 | 356 |
@ingroup algs |
324 | 357 |
\brief Algorithms for finding maximum flows. |
325 | 358 |
|
326 | 359 |
This group contains the algorithms for finding maximum flows and |
327 |
feasible circulations. |
|
360 |
feasible circulations \ref clrs01algorithms, \ref amo93networkflows. |
|
328 | 361 |
|
329 | 362 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
330 | 363 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
331 | 364 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
332 | 365 |
\f$s, t \in V\f$ source and target nodes. |
333 | 366 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the |
... | ... |
@@ -336,18 +369,22 @@ |
336 | 369 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
337 | 370 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
338 | 371 |
\quad \forall u\in V\setminus\{s,t\} \f] |
339 | 372 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
340 | 373 |
|
341 | 374 |
LEMON contains several algorithms for solving maximum flow problems: |
342 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
|
343 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
|
344 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
|
345 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
|
375 |
- \ref EdmondsKarp Edmonds-Karp algorithm |
|
376 |
\ref edmondskarp72theoretical. |
|
377 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm |
|
378 |
\ref goldberg88newapproach. |
|
379 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees |
|
380 |
\ref dinic70algorithm, \ref sleator83dynamic. |
|
381 |
- \ref GoldbergTarjan !Preflow push-relabel algorithm with dynamic trees |
|
382 |
\ref goldberg88newapproach, \ref sleator83dynamic. |
|
346 | 383 |
|
347 |
In most cases the \ref Preflow |
|
384 |
In most cases the \ref Preflow algorithm provides the |
|
348 | 385 |
fastest method for computing a maximum flow. All implementations |
349 | 386 |
also provide functions to query the minimum cut, which is the dual |
350 | 387 |
problem of maximum flow. |
351 | 388 |
|
352 | 389 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
353 | 390 |
for finding feasible circulations, which is a somewhat different problem, |
... | ... |
@@ -359,24 +396,28 @@ |
359 | 396 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
360 | 397 |
@ingroup algs |
361 | 398 |
|
362 | 399 |
\brief Algorithms for finding minimum cost flows and circulations. |
363 | 400 |
|
364 | 401 |
This group contains the algorithms for finding minimum cost flows and |
365 |
circulations. For more information about this problem and its dual |
|
366 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
|
402 |
circulations \ref amo93networkflows. For more information about this |
|
403 |
problem and its dual solution, see \ref min_cost_flow |
|
404 |
"Minimum Cost Flow Problem". |
|
367 | 405 |
|
368 | 406 |
LEMON contains several algorithms for this problem. |
369 | 407 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
370 |
pivot strategies. |
|
408 |
pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex. |
|
371 | 409 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
372 |
cost scaling |
|
410 |
cost scaling \ref goldberg90approximation, \ref goldberg97efficient, |
|
411 |
\ref bunnagel98efficient. |
|
373 | 412 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
374 |
capacity scaling. |
|
375 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
|
376 |
|
|
413 |
capacity scaling \ref edmondskarp72theoretical. |
|
414 |
- \ref CancelAndTighten The Cancel and Tighten algorithm |
|
415 |
\ref goldberg89cyclecanceling. |
|
416 |
- \ref CycleCanceling Cycle-Canceling algorithms |
|
417 |
\ref klein67primal, \ref goldberg89cyclecanceling. |
|
377 | 418 |
|
378 | 419 |
In general NetworkSimplex is the most efficient implementation, |
379 | 420 |
but in special cases other algorithms could be faster. |
380 | 421 |
For example, if the total supply and/or capacities are rather small, |
381 | 422 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
382 | 423 |
*/ |
... | ... |
@@ -393,13 +434,13 @@ |
393 | 434 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
394 | 435 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
395 | 436 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
396 | 437 |
cut is the \f$X\f$ solution of the next optimization problem: |
397 | 438 |
|
398 | 439 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
399 |
\sum_{uv\in A |
|
440 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f] |
|
400 | 441 |
|
401 | 442 |
LEMON contains several algorithms related to minimum cut problems: |
402 | 443 |
|
403 | 444 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
404 | 445 |
in directed graphs. |
405 | 446 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
... | ... |
@@ -409,33 +450,46 @@ |
409 | 450 |
|
410 | 451 |
If you want to find minimum cut just between two distinict nodes, |
411 | 452 |
see the \ref max_flow "maximum flow problem". |
412 | 453 |
*/ |
413 | 454 |
|
414 | 455 |
/** |
415 |
@defgroup |
|
456 |
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms |
|
416 | 457 |
@ingroup algs |
417 |
\brief Algorithms for |
|
458 |
\brief Algorithms for finding minimum mean cycles. |
|
418 | 459 |
|
419 |
This group contains the algorithms for discovering the graph properties |
|
420 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
460 |
This group contains the algorithms for finding minimum mean cycles |
|
461 |
\ref clrs01algorithms, \ref amo93networkflows. |
|
421 | 462 |
|
422 |
\image html edge_biconnected_components.png |
|
423 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
|
424 |
|
|
463 |
The \e minimum \e mean \e cycle \e problem is to find a directed cycle |
|
464 |
of minimum mean length (cost) in a digraph. |
|
465 |
The mean length of a cycle is the average length of its arcs, i.e. the |
|
466 |
ratio between the total length of the cycle and the number of arcs on it. |
|
425 | 467 |
|
426 |
/** |
|
427 |
@defgroup planar Planarity Embedding and Drawing |
|
428 |
@ingroup algs |
|
429 |
\brief Algorithms for planarity checking, embedding and drawing |
|
468 |
This problem has an important connection to \e conservative \e length |
|
469 |
\e functions, too. A length function on the arcs of a digraph is called |
|
470 |
conservative if and only if there is no directed cycle of negative total |
|
471 |
length. For an arbitrary length function, the negative of the minimum |
|
472 |
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the |
|
473 |
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length |
|
474 |
function. |
|
430 | 475 |
|
431 |
This group contains the algorithms for planarity checking, |
|
432 |
embedding and drawing. |
|
476 |
LEMON contains three algorithms for solving the minimum mean cycle problem: |
|
477 |
- \ref Karp "Karp"'s original algorithm \ref amo93networkflows, |
|
478 |
\ref dasdan98minmeancycle. |
|
479 |
- \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved |
|
480 |
version of Karp's algorithm \ref dasdan98minmeancycle. |
|
481 |
- \ref Howard "Howard"'s policy iteration algorithm |
|
482 |
\ref dasdan98minmeancycle. |
|
433 | 483 |
|
434 |
\image html planar.png |
|
435 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
484 |
In practice, the Howard algorithm proved to be by far the most efficient |
|
485 |
one, though the best known theoretical bound on its running time is |
|
486 |
exponential. |
|
487 |
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space |
|
488 |
O(n<sup>2</sup>+e), but the latter one is typically faster due to the |
|
489 |
applied early termination scheme. |
|
436 | 490 |
*/ |
437 | 491 |
|
438 | 492 |
/** |
439 | 493 |
@defgroup matching Matching Algorithms |
440 | 494 |
@ingroup algs |
441 | 495 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
... | ... |
@@ -473,55 +527,73 @@ |
473 | 527 |
|
474 | 528 |
\image html bipartite_matching.png |
475 | 529 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
476 | 530 |
*/ |
477 | 531 |
|
478 | 532 |
/** |
479 |
@defgroup |
|
533 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
480 | 534 |
@ingroup algs |
481 |
\brief Algorithms for |
|
535 |
\brief Algorithms for discovering the graph properties |
|
482 | 536 |
|
483 |
This group contains the algorithms for finding minimum cost spanning |
|
484 |
trees and arborescences. |
|
537 |
This group contains the algorithms for discovering the graph properties |
|
538 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
539 |
|
|
540 |
\image html connected_components.png |
|
541 |
\image latex connected_components.eps "Connected components" width=\textwidth |
|
542 |
*/ |
|
543 |
|
|
544 |
/** |
|
545 |
@defgroup planar Planarity Embedding and Drawing |
|
546 |
@ingroup algs |
|
547 |
\brief Algorithms for planarity checking, embedding and drawing |
|
548 |
|
|
549 |
This group contains the algorithms for planarity checking, |
|
550 |
embedding and drawing. |
|
551 |
|
|
552 |
\image html planar.png |
|
553 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
554 |
*/ |
|
555 |
|
|
556 |
/** |
|
557 |
@defgroup approx Approximation Algorithms |
|
558 |
@ingroup algs |
|
559 |
\brief Approximation algorithms. |
|
560 |
|
|
561 |
This group contains the approximation and heuristic algorithms |
|
562 |
implemented in LEMON. |
|
485 | 563 |
*/ |
486 | 564 |
|
487 | 565 |
/** |
488 | 566 |
@defgroup auxalg Auxiliary Algorithms |
489 | 567 |
@ingroup algs |
490 | 568 |
\brief Auxiliary algorithms implemented in LEMON. |
491 | 569 |
|
492 | 570 |
This group contains some algorithms implemented in LEMON |
493 | 571 |
in order to make it easier to implement complex algorithms. |
494 | 572 |
*/ |
495 | 573 |
|
496 | 574 |
/** |
497 |
@defgroup approx Approximation Algorithms |
|
498 |
@ingroup algs |
|
499 |
\brief Approximation algorithms. |
|
500 |
|
|
501 |
This group contains the approximation and heuristic algorithms |
|
502 |
implemented in LEMON. |
|
503 |
*/ |
|
504 |
|
|
505 |
/** |
|
506 | 575 |
@defgroup gen_opt_group General Optimization Tools |
507 | 576 |
\brief This group contains some general optimization frameworks |
508 | 577 |
implemented in LEMON. |
509 | 578 |
|
510 | 579 |
This group contains some general optimization frameworks |
511 | 580 |
implemented in LEMON. |
512 | 581 |
*/ |
513 | 582 |
|
514 | 583 |
/** |
515 |
@defgroup lp_group |
|
584 |
@defgroup lp_group LP and MIP Solvers |
|
516 | 585 |
@ingroup gen_opt_group |
517 |
\brief |
|
586 |
\brief LP and MIP solver interfaces for LEMON. |
|
518 | 587 |
|
519 |
This group contains Lp and Mip solver interfaces for LEMON. The |
|
520 |
various LP solvers could be used in the same manner with this |
|
521 |
|
|
588 |
This group contains LP and MIP solver interfaces for LEMON. |
|
589 |
Various LP solvers could be used in the same manner with this |
|
590 |
high-level interface. |
|
591 |
|
|
592 |
The currently supported solvers are \ref glpk, \ref clp, \ref cbc, |
|
593 |
\ref cplex, \ref soplex. |
|
522 | 594 |
*/ |
523 | 595 |
|
524 | 596 |
/** |
525 | 597 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
526 | 598 |
@ingroup lp_group |
527 | 599 |
\brief Helper tools to the Lp and Mip solvers. |
... | ... |
@@ -605,13 +677,13 @@ |
605 | 677 |
|
606 | 678 |
This group contains general \c EPS drawing methods and special |
607 | 679 |
graph exporting tools. |
608 | 680 |
*/ |
609 | 681 |
|
610 | 682 |
/** |
611 |
@defgroup dimacs_group DIMACS |
|
683 |
@defgroup dimacs_group DIMACS Format |
|
612 | 684 |
@ingroup io_group |
613 | 685 |
\brief Read and write files in DIMACS format |
614 | 686 |
|
615 | 687 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
616 | 688 |
*/ |
617 | 689 |
|
... | ... |
@@ -654,40 +726,40 @@ |
654 | 726 |
|
655 | 727 |
/** |
656 | 728 |
@defgroup graph_concepts Graph Structure Concepts |
657 | 729 |
@ingroup concept |
658 | 730 |
\brief Skeleton and concept checking classes for graph structures |
659 | 731 |
|
660 |
This group contains the skeletons and concept checking classes of LEMON's |
|
661 |
graph structures and helper classes used to implement these. |
|
732 |
This group contains the skeletons and concept checking classes of |
|
733 |
graph structures. |
|
662 | 734 |
*/ |
663 | 735 |
|
664 | 736 |
/** |
665 | 737 |
@defgroup map_concepts Map Concepts |
666 | 738 |
@ingroup concept |
667 | 739 |
\brief Skeleton and concept checking classes for maps |
668 | 740 |
|
669 | 741 |
This group contains the skeletons and concept checking classes of maps. |
670 | 742 |
*/ |
671 | 743 |
|
672 | 744 |
/** |
745 |
@defgroup tools Standalone Utility Applications |
|
746 |
|
|
747 |
Some utility applications are listed here. |
|
748 |
|
|
749 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
750 |
them, as well. |
|
751 |
*/ |
|
752 |
|
|
753 |
/** |
|
673 | 754 |
\anchor demoprograms |
674 | 755 |
|
675 | 756 |
@defgroup demos Demo Programs |
676 | 757 |
|
677 | 758 |
Some demo programs are listed here. Their full source codes can be found in |
678 | 759 |
the \c demo subdirectory of the source tree. |
679 | 760 |
|
680 | 761 |
In order to compile them, use the <tt>make demo</tt> or the |
681 | 762 |
<tt>make check</tt> commands. |
682 | 763 |
*/ |
683 | 764 |
|
684 |
/** |
|
685 |
@defgroup tools Standalone Utility Applications |
|
686 |
|
|
687 |
Some utility applications are listed here. |
|
688 |
|
|
689 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
690 |
them, as well. |
|
691 |
*/ |
|
692 |
|
|
693 | 765 |
} |
... | ... |
@@ -18,30 +18,36 @@ |
18 | 18 |
|
19 | 19 |
/** |
20 | 20 |
\mainpage LEMON Documentation |
21 | 21 |
|
22 | 22 |
\section intro Introduction |
23 | 23 |
|
24 |
\subsection whatis What is LEMON |
|
25 |
|
|
26 |
LEMON stands for <b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling |
|
27 |
and <b>O</b>ptimization in <b>N</b>etworks. |
|
28 |
It is a C++ template |
|
29 |
library aimed at combinatorial optimization tasks which |
|
30 |
often involve in working |
|
31 |
with graphs. |
|
24 |
<b>LEMON</b> stands for <i><b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling |
|
25 |
and <b>O</b>ptimization in <b>N</b>etworks</i>. |
|
26 |
It is a C++ template library providing efficient implementation of common |
|
27 |
data structures and algorithms with focus on combinatorial optimization |
|
28 |
problems in graphs and networks. |
|
32 | 29 |
|
33 | 30 |
<b> |
34 | 31 |
LEMON is an <a class="el" href="http://opensource.org/">open source</a> |
35 | 32 |
project. |
36 | 33 |
You are free to use it in your commercial or |
37 | 34 |
non-commercial applications under very permissive |
38 | 35 |
\ref license "license terms". |
39 | 36 |
</b> |
40 | 37 |
|
41 |
|
|
38 |
The project is maintained by the |
|
39 |
<a href="http://www.cs.elte.hu/egres/">Egerváry Research Group on |
|
40 |
Combinatorial Optimization</a> \ref egres |
|
41 |
at the Operations Research Department of the |
|
42 |
<a href="http://www.elte.hu/">Eötvös Loránd University, |
|
43 |
Budapest</a>, Hungary. |
|
44 |
LEMON is also a member of the <a href="http://www.coin-or.org/">COIN-OR</a> |
|
45 |
initiative \ref coinor. |
|
46 |
|
|
47 |
\section howtoread How to Read the Documentation |
|
42 | 48 |
|
43 | 49 |
If you would like to get to know the library, see |
44 | 50 |
<a class="el" href="http://lemon.cs.elte.hu/pub/tutorial/">LEMON Tutorial</a>. |
45 | 51 |
|
46 | 52 |
If you know what you are looking for, then try to find it under the |
47 | 53 |
<a class="el" href="modules.html">Modules</a> section. |
... | ... |
@@ -23,13 +23,13 @@ |
23 | 23 |
|
24 | 24 |
\section mcf_def Definition (GEQ form) |
25 | 25 |
|
26 | 26 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
27 | 27 |
minimum total cost from a set of supply nodes to a set of demand nodes |
28 | 28 |
in a network with capacity constraints (lower and upper bounds) |
29 |
and arc costs. |
|
29 |
and arc costs \ref amo93networkflows. |
|
30 | 30 |
|
31 | 31 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$, |
32 | 32 |
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and |
33 | 33 |
upper bounds for the flow values on the arcs, for which |
34 | 34 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
35 | 35 |
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow |
... | ... |
@@ -75,13 +75,13 @@ |
75 | 75 |
|
76 | 76 |
- For all \f$uv\in A\f$ arcs: |
77 | 77 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
78 | 78 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
79 | 79 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
80 | 80 |
- For all \f$u\in V\f$ nodes: |
81 |
- \f$\pi(u) |
|
81 |
- \f$\pi(u)\leq 0\f$; |
|
82 | 82 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
83 | 83 |
then \f$\pi(u)=0\f$. |
84 | 84 |
|
85 | 85 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
86 | 86 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
87 | 87 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
... | ... |
@@ -142,12 +142,12 @@ |
142 | 142 |
|
143 | 143 |
- For all \f$uv\in A\f$ arcs: |
144 | 144 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
145 | 145 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
146 | 146 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
147 | 147 |
- For all \f$u\in V\f$ nodes: |
148 |
- \f$\pi(u) |
|
148 |
- \f$\pi(u)\geq 0\f$; |
|
149 | 149 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
150 | 150 |
then \f$\pi(u)=0\f$. |
151 | 151 |
|
152 | 152 |
*/ |
153 | 153 |
} |
... | ... |
@@ -83,13 +83,16 @@ |
83 | 83 |
lemon/fourary_heap.h \ |
84 | 84 |
lemon/full_graph.h \ |
85 | 85 |
lemon/glpk.h \ |
86 | 86 |
lemon/gomory_hu.h \ |
87 | 87 |
lemon/graph_to_eps.h \ |
88 | 88 |
lemon/grid_graph.h \ |
89 |
lemon/hartmann_orlin.h \ |
|
90 |
lemon/howard.h \ |
|
89 | 91 |
lemon/hypercube_graph.h \ |
92 |
lemon/karp.h \ |
|
90 | 93 |
lemon/kary_heap.h \ |
91 | 94 |
lemon/kruskal.h \ |
92 | 95 |
lemon/hao_orlin.h \ |
93 | 96 |
lemon/lgf_reader.h \ |
94 | 97 |
lemon/lgf_writer.h \ |
95 | 98 |
lemon/list_graph.h \ |
... | ... |
@@ -108,12 +111,13 @@ |
108 | 111 |
lemon/preflow.h \ |
109 | 112 |
lemon/radix_heap.h \ |
110 | 113 |
lemon/radix_sort.h \ |
111 | 114 |
lemon/random.h \ |
112 | 115 |
lemon/smart_graph.h \ |
113 | 116 |
lemon/soplex.h \ |
117 |
lemon/static_graph.h \ |
|
114 | 118 |
lemon/suurballe.h \ |
115 | 119 |
lemon/time_measure.h \ |
116 | 120 |
lemon/tolerance.h \ |
117 | 121 |
lemon/unionfind.h \ |
118 | 122 |
lemon/bits/windows.h |
119 | 123 |
... | ... |
@@ -357,12 +357,15 @@ |
357 | 357 |
/// It conforms to the \ref concepts::Digraph "Digraph" concept. |
358 | 358 |
/// |
359 | 359 |
/// The adapted digraph can also be modified through this adaptor |
360 | 360 |
/// by adding or removing nodes or arcs, unless the \c GR template |
361 | 361 |
/// parameter is set to be \c const. |
362 | 362 |
/// |
363 |
/// This class provides item counting in the same time as the adapted |
|
364 |
/// digraph structure. |
|
365 |
/// |
|
363 | 366 |
/// \tparam DGR The type of the adapted digraph. |
364 | 367 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
365 | 368 |
/// It can also be specified to be \c const. |
366 | 369 |
/// |
367 | 370 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
368 | 371 |
/// digraph are convertible to each other. |
... | ... |
@@ -716,12 +719,14 @@ |
716 | 719 |
/// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept. |
717 | 720 |
/// |
718 | 721 |
/// The adapted digraph can also be modified through this adaptor |
719 | 722 |
/// by adding or removing nodes or arcs, unless the \c GR template |
720 | 723 |
/// parameter is set to be \c const. |
721 | 724 |
/// |
725 |
/// This class provides only linear time counting for nodes and arcs. |
|
726 |
/// |
|
722 | 727 |
/// \tparam DGR The type of the adapted digraph. |
723 | 728 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
724 | 729 |
/// It can also be specified to be \c const. |
725 | 730 |
/// \tparam NF The type of the node filter map. |
726 | 731 |
/// It must be a \c bool (or convertible) node map of the |
727 | 732 |
/// adapted digraph. The default type is |
... | ... |
@@ -1311,12 +1316,14 @@ |
1311 | 1316 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
1312 | 1317 |
/// |
1313 | 1318 |
/// The adapted graph can also be modified through this adaptor |
1314 | 1319 |
/// by adding or removing nodes or edges, unless the \c GR template |
1315 | 1320 |
/// parameter is set to be \c const. |
1316 | 1321 |
/// |
1322 |
/// This class provides only linear time counting for nodes, edges and arcs. |
|
1323 |
/// |
|
1317 | 1324 |
/// \tparam GR The type of the adapted graph. |
1318 | 1325 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
1319 | 1326 |
/// It can also be specified to be \c const. |
1320 | 1327 |
/// \tparam NF The type of the node filter map. |
1321 | 1328 |
/// It must be a \c bool (or convertible) node map of the |
1322 | 1329 |
/// adapted graph. The default type is |
... | ... |
@@ -1468,12 +1475,14 @@ |
1468 | 1475 |
/// depending on the \c GR template parameter. |
1469 | 1476 |
/// |
1470 | 1477 |
/// The adapted (di)graph can also be modified through this adaptor |
1471 | 1478 |
/// by adding or removing nodes or arcs/edges, unless the \c GR template |
1472 | 1479 |
/// parameter is set to be \c const. |
1473 | 1480 |
/// |
1481 |
/// This class provides only linear time item counting. |
|
1482 |
/// |
|
1474 | 1483 |
/// \tparam GR The type of the adapted digraph or graph. |
1475 | 1484 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept |
1476 | 1485 |
/// or the \ref concepts::Graph "Graph" concept. |
1477 | 1486 |
/// It can also be specified to be \c const. |
1478 | 1487 |
/// \tparam NF The type of the node filter map. |
1479 | 1488 |
/// It must be a \c bool (or convertible) node map of the |
... | ... |
@@ -1616,12 +1625,14 @@ |
1616 | 1625 |
/// "Digraph" concept. |
1617 | 1626 |
/// |
1618 | 1627 |
/// The adapted digraph can also be modified through this adaptor |
1619 | 1628 |
/// by adding or removing nodes or arcs, unless the \c GR template |
1620 | 1629 |
/// parameter is set to be \c const. |
1621 | 1630 |
/// |
1631 |
/// This class provides only linear time counting for nodes and arcs. |
|
1632 |
/// |
|
1622 | 1633 |
/// \tparam DGR The type of the adapted digraph. |
1623 | 1634 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
1624 | 1635 |
/// It can also be specified to be \c const. |
1625 | 1636 |
/// \tparam AF The type of the arc filter map. |
1626 | 1637 |
/// It must be a \c bool (or convertible) arc map of the |
1627 | 1638 |
/// adapted digraph. The default type is |
... | ... |
@@ -1726,12 +1737,14 @@ |
1726 | 1737 |
/// "Graph" concept. |
1727 | 1738 |
/// |
1728 | 1739 |
/// The adapted graph can also be modified through this adaptor |
1729 | 1740 |
/// by adding or removing nodes or edges, unless the \c GR template |
1730 | 1741 |
/// parameter is set to be \c const. |
1731 | 1742 |
/// |
1743 |
/// This class provides only linear time counting for nodes, edges and arcs. |
|
1744 |
/// |
|
1732 | 1745 |
/// \tparam GR The type of the adapted graph. |
1733 | 1746 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
1734 | 1747 |
/// It can also be specified to be \c const. |
1735 | 1748 |
/// \tparam EF The type of the edge filter map. |
1736 | 1749 |
/// It must be a \c bool (or convertible) edge map of the |
1737 | 1750 |
/// adapted graph. The default type is |
... | ... |
@@ -2229,12 +2242,15 @@ |
2229 | 2242 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
2230 | 2243 |
/// |
2231 | 2244 |
/// The adapted digraph can also be modified through this adaptor |
2232 | 2245 |
/// by adding or removing nodes or edges, unless the \c GR template |
2233 | 2246 |
/// parameter is set to be \c const. |
2234 | 2247 |
/// |
2248 |
/// This class provides item counting in the same time as the adapted |
|
2249 |
/// digraph structure. |
|
2250 |
/// |
|
2235 | 2251 |
/// \tparam DGR The type of the adapted digraph. |
2236 | 2252 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
2237 | 2253 |
/// It can also be specified to be \c const. |
2238 | 2254 |
/// |
2239 | 2255 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
2240 | 2256 |
/// convertible to each other, moreover the \c Edge type of the adaptor |
... | ... |
@@ -2532,12 +2548,15 @@ |
2532 | 2548 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
2533 | 2549 |
/// |
2534 | 2550 |
/// The adapted graph can also be modified through this adaptor |
2535 | 2551 |
/// by adding or removing nodes or arcs, unless the \c GR template |
2536 | 2552 |
/// parameter is set to be \c const. |
2537 | 2553 |
/// |
2554 |
/// This class provides item counting in the same time as the adapted |
|
2555 |
/// graph structure. |
|
2556 |
/// |
|
2538 | 2557 |
/// \tparam GR The type of the adapted graph. |
2539 | 2558 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
2540 | 2559 |
/// It can also be specified to be \c const. |
2541 | 2560 |
/// \tparam DM The type of the direction map. |
2542 | 2561 |
/// It must be a \c bool (or convertible) edge map of the |
2543 | 2562 |
/// adapted graph. The default type is |
... | ... |
@@ -2675,12 +2694,14 @@ |
2675 | 2694 |
/// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken, |
2676 | 2695 |
/// multiplicities are counted, i.e. the adaptor has exactly |
2677 | 2696 |
/// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel |
2678 | 2697 |
/// arcs). |
2679 | 2698 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
2680 | 2699 |
/// |
2700 |
/// This class provides only linear time counting for nodes and arcs. |
|
2701 |
/// |
|
2681 | 2702 |
/// \tparam DGR The type of the adapted digraph. |
2682 | 2703 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
2683 | 2704 |
/// It is implicitly \c const. |
2684 | 2705 |
/// \tparam CM The type of the capacity map. |
2685 | 2706 |
/// It must be an arc map of some numerical type, which defines |
2686 | 2707 |
/// the capacities in the flow problem. It is implicitly \c const. |
... | ... |
@@ -3322,12 +3343,15 @@ |
3322 | 3343 |
/// costs or capacities if the algorithm considers only arc costs or |
3323 | 3344 |
/// capacities directly. |
3324 | 3345 |
/// In this case you can use \c SplitNodes adaptor, and set the node |
3325 | 3346 |
/// costs/capacities of the original digraph to the \e bind \e arcs |
3326 | 3347 |
/// in the adaptor. |
3327 | 3348 |
/// |
3349 |
/// This class provides item counting in the same time as the adapted |
|
3350 |
/// digraph structure. |
|
3351 |
/// |
|
3328 | 3352 |
/// \tparam DGR The type of the adapted digraph. |
3329 | 3353 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
3330 | 3354 |
/// It is implicitly \c const. |
3331 | 3355 |
/// |
3332 | 3356 |
/// \note The \c Node type of this adaptor is converible to the \c Node |
3333 | 3357 |
/// type of the adapted digraph. |
... | ... |
@@ -20,12 +20,13 @@ |
20 | 20 |
#define LEMON_BELLMAN_FORD_H |
21 | 21 |
|
22 | 22 |
/// \ingroup shortest_path |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Bellman-Ford algorithm. |
25 | 25 |
|
26 |
#include <lemon/list_graph.h> |
|
26 | 27 |
#include <lemon/bits/path_dump.h> |
27 | 28 |
#include <lemon/core.h> |
28 | 29 |
#include <lemon/error.h> |
29 | 30 |
#include <lemon/maps.h> |
30 | 31 |
#include <lemon/path.h> |
31 | 32 |
|
... | ... |
@@ -296,13 +297,13 @@ |
296 | 297 |
|
297 | 298 |
/// \brief \ref named-templ-param "Named parameter" for setting |
298 | 299 |
/// \c OperationTraits type. |
299 | 300 |
/// |
300 | 301 |
/// \ref named-templ-param "Named parameter" for setting |
301 | 302 |
/// \c OperationTraits type. |
302 |
/// For more information see \ref BellmanFordDefaultOperationTraits. |
|
303 |
/// For more information, see \ref BellmanFordDefaultOperationTraits. |
|
303 | 304 |
template <class T> |
304 | 305 |
struct SetOperationTraits |
305 | 306 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
306 | 307 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
307 | 308 |
Create; |
308 | 309 |
}; |
... | ... |
@@ -714,13 +715,13 @@ |
714 | 715 |
/// This function returns the 'previous arc' of the shortest path |
715 | 716 |
/// tree for node \c v, i.e. it returns the last arc of a |
716 | 717 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
717 | 718 |
/// is not reached from the root(s) or if \c v is a root. |
718 | 719 |
/// |
719 | 720 |
/// The shortest path tree used here is equal to the shortest path |
720 |
/// tree used in \ref predNode() and \predMap(). |
|
721 |
/// tree used in \ref predNode() and \ref predMap(). |
|
721 | 722 |
/// |
722 | 723 |
/// \pre Either \ref run() or \ref init() must be called before |
723 | 724 |
/// using this function. |
724 | 725 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
725 | 726 |
|
726 | 727 |
/// \brief Returns the 'previous node' of the shortest path tree for |
... | ... |
@@ -729,13 +730,13 @@ |
729 | 730 |
/// This function returns the 'previous node' of the shortest path |
730 | 731 |
/// tree for node \c v, i.e. it returns the last but one node of |
731 | 732 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
732 | 733 |
/// is not reached from the root(s) or if \c v is a root. |
733 | 734 |
/// |
734 | 735 |
/// The shortest path tree used here is equal to the shortest path |
735 |
/// tree used in \ref predArc() and \predMap(). |
|
736 |
/// tree used in \ref predArc() and \ref predMap(). |
|
736 | 737 |
/// |
737 | 738 |
/// \pre Either \ref run() or \ref init() must be called before |
738 | 739 |
/// using this function. |
739 | 740 |
Node predNode(Node v) const { |
740 | 741 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
741 | 742 |
} |
... | ... |
@@ -772,13 +773,13 @@ |
772 | 773 |
|
773 | 774 |
/// \brief Gives back a negative cycle. |
774 | 775 |
/// |
775 | 776 |
/// This function gives back a directed cycle with negative total |
776 | 777 |
/// length if the algorithm has already found one. |
777 | 778 |
/// Otherwise it gives back an empty path. |
778 |
lemon::Path<Digraph> negativeCycle() { |
|
779 |
lemon::Path<Digraph> negativeCycle() const { |
|
779 | 780 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
780 | 781 |
lemon::Path<Digraph> cycle; |
781 | 782 |
for (int i = 0; i < int(_process.size()); ++i) { |
782 | 783 |
if (state[_process[i]] != -1) continue; |
783 | 784 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
784 | 785 |
v = _gr->source((*_pred)[v])) { |
... | ... |
@@ -44,13 +44,13 @@ |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the shortest paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the shortest paths. |
50 |
///It must |
|
50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a \c PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
... | ... |
@@ -59,13 +59,14 @@ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 |
///It must |
|
65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
66 |
///By default, it is a NullMap. |
|
66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
67 | 68 |
///Instantiates a \c ProcessedMap. |
68 | 69 |
|
69 | 70 |
///This function instantiates a \ref ProcessedMap. |
70 | 71 |
///\param g is the digraph, to which |
71 | 72 |
///we would like to define the \ref ProcessedMap |
... | ... |
@@ -78,13 +79,13 @@ |
78 | 79 |
return new ProcessedMap(); |
79 | 80 |
} |
80 | 81 |
|
81 | 82 |
///The type of the map that indicates which nodes are reached. |
82 | 83 |
|
83 | 84 |
///The type of the map that indicates which nodes are reached. |
84 |
///It must |
|
85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
85 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
86 | 87 |
///Instantiates a \c ReachedMap. |
87 | 88 |
|
88 | 89 |
///This function instantiates a \ref ReachedMap. |
89 | 90 |
///\param g is the digraph, to which |
90 | 91 |
///we would like to define the \ref ReachedMap. |
... | ... |
@@ -93,13 +94,13 @@ |
93 | 94 |
return new ReachedMap(g); |
94 | 95 |
} |
95 | 96 |
|
96 | 97 |
///The type of the map that stores the distances of the nodes. |
97 | 98 |
|
98 | 99 |
///The type of the map that stores the distances of the nodes. |
99 |
///It must |
|
100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
100 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
101 | 102 |
///Instantiates a \c DistMap. |
102 | 103 |
|
103 | 104 |
///This function instantiates a \ref DistMap. |
104 | 105 |
///\param g is the digraph, to which we would like to define the |
105 | 106 |
///\ref DistMap. |
... | ... |
@@ -222,13 +223,13 @@ |
222 | 223 |
}; |
223 | 224 |
///\brief \ref named-templ-param "Named parameter" for setting |
224 | 225 |
///\c PredMap type. |
225 | 226 |
/// |
226 | 227 |
///\ref named-templ-param "Named parameter" for setting |
227 | 228 |
///\c PredMap type. |
228 |
///It must |
|
229 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
229 | 230 |
template <class T> |
230 | 231 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > { |
231 | 232 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
232 | 233 |
}; |
233 | 234 |
|
234 | 235 |
template <class T> |
... | ... |
@@ -242,13 +243,13 @@ |
242 | 243 |
}; |
243 | 244 |
///\brief \ref named-templ-param "Named parameter" for setting |
244 | 245 |
///\c DistMap type. |
245 | 246 |
/// |
246 | 247 |
///\ref named-templ-param "Named parameter" for setting |
247 | 248 |
///\c DistMap type. |
248 |
///It must |
|
249 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
249 | 250 |
template <class T> |
250 | 251 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > { |
251 | 252 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
252 | 253 |
}; |
253 | 254 |
|
254 | 255 |
template <class T> |
... | ... |
@@ -262,13 +263,13 @@ |
262 | 263 |
}; |
263 | 264 |
///\brief \ref named-templ-param "Named parameter" for setting |
264 | 265 |
///\c ReachedMap type. |
265 | 266 |
/// |
266 | 267 |
///\ref named-templ-param "Named parameter" for setting |
267 | 268 |
///\c ReachedMap type. |
268 |
///It must |
|
269 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
269 | 270 |
template <class T> |
270 | 271 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > { |
271 | 272 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
272 | 273 |
}; |
273 | 274 |
|
274 | 275 |
template <class T> |
... | ... |
@@ -282,13 +283,13 @@ |
282 | 283 |
}; |
283 | 284 |
///\brief \ref named-templ-param "Named parameter" for setting |
284 | 285 |
///\c ProcessedMap type. |
285 | 286 |
/// |
286 | 287 |
///\ref named-templ-param "Named parameter" for setting |
287 | 288 |
///\c ProcessedMap type. |
288 |
///It must |
|
289 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
289 | 290 |
template <class T> |
290 | 291 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > { |
291 | 292 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
292 | 293 |
}; |
293 | 294 |
|
294 | 295 |
struct SetStandardProcessedMapTraits : public Traits { |
... | ... |
@@ -410,14 +411,14 @@ |
410 | 411 |
|
411 | 412 |
public: |
412 | 413 |
|
413 | 414 |
///\name Execution Control |
414 | 415 |
///The simplest way to execute the BFS algorithm is to use one of the |
415 | 416 |
///member functions called \ref run(Node) "run()".\n |
416 |
///If you need more control on the execution, first you have to call |
|
417 |
///\ref init(), then you can add several source nodes with |
|
417 |
///If you need better control on the execution, you have to call |
|
418 |
///\ref init() first, then you can add several source nodes with |
|
418 | 419 |
///\ref addSource(). Finally the actual path computation can be |
419 | 420 |
///performed with one of the \ref start() functions. |
420 | 421 |
|
421 | 422 |
///@{ |
422 | 423 |
|
423 | 424 |
///\brief Initializes the internal data structures. |
... | ... |
@@ -697,18 +698,14 @@ |
697 | 698 |
start(t); |
698 | 699 |
return reached(t); |
699 | 700 |
} |
700 | 701 |
|
701 | 702 |
///Runs the algorithm to visit all nodes in the digraph. |
702 | 703 |
|
703 |
///This method runs the %BFS algorithm in order to |
|
704 |
///compute the shortest path to each node. |
|
705 |
/// |
|
706 |
///The algorithm computes |
|
707 |
///- the shortest path tree (forest), |
|
708 |
///- the distance of each node from the root(s). |
|
704 |
///This method runs the %BFS algorithm in order to visit all nodes |
|
705 |
///in the digraph. |
|
709 | 706 |
/// |
710 | 707 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
711 | 708 |
///\code |
712 | 709 |
/// b.init(); |
713 | 710 |
/// for (NodeIt n(gr); n != INVALID; ++n) { |
714 | 711 |
/// if (!b.reached(n)) { |
... | ... |
@@ -734,56 +731,58 @@ |
734 | 731 |
///functions.\n |
735 | 732 |
///Either \ref run(Node) "run()" or \ref start() should be called |
736 | 733 |
///before using them. |
737 | 734 |
|
738 | 735 |
///@{ |
739 | 736 |
|
740 |
///The shortest path to |
|
737 |
///The shortest path to the given node. |
|
741 | 738 |
|
742 |
///Returns the shortest path to |
|
739 |
///Returns the shortest path to the given node from the root(s). |
|
743 | 740 |
/// |
744 | 741 |
///\warning \c t should be reached from the root(s). |
745 | 742 |
/// |
746 | 743 |
///\pre Either \ref run(Node) "run()" or \ref init() |
747 | 744 |
///must be called before using this function. |
748 | 745 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
749 | 746 |
|
750 |
///The distance of |
|
747 |
///The distance of the given node from the root(s). |
|
751 | 748 |
|
752 |
///Returns the distance of |
|
749 |
///Returns the distance of the given node from the root(s). |
|
753 | 750 |
/// |
754 | 751 |
///\warning If node \c v is not reached from the root(s), then |
755 | 752 |
///the return value of this function is undefined. |
756 | 753 |
/// |
757 | 754 |
///\pre Either \ref run(Node) "run()" or \ref init() |
758 | 755 |
///must be called before using this function. |
759 | 756 |
int dist(Node v) const { return (*_dist)[v]; } |
760 | 757 |
|
761 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
762 |
|
|
758 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
759 |
///the given node. |
|
760 |
/// |
|
763 | 761 |
///This function returns the 'previous arc' of the shortest path |
764 | 762 |
///tree for the node \c v, i.e. it returns the last arc of a |
765 | 763 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
766 | 764 |
///is not reached from the root(s) or if \c v is a root. |
767 | 765 |
/// |
768 | 766 |
///The shortest path tree used here is equal to the shortest path |
769 |
///tree used in \ref predNode(). |
|
767 |
///tree used in \ref predNode() and \ref predMap(). |
|
770 | 768 |
/// |
771 | 769 |
///\pre Either \ref run(Node) "run()" or \ref init() |
772 | 770 |
///must be called before using this function. |
773 | 771 |
Arc predArc(Node v) const { return (*_pred)[v];} |
774 | 772 |
|
775 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
776 |
|
|
773 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
774 |
///the given node. |
|
775 |
/// |
|
777 | 776 |
///This function returns the 'previous node' of the shortest path |
778 | 777 |
///tree for the node \c v, i.e. it returns the last but one node |
779 |
/// |
|
778 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
780 | 779 |
///if \c v is not reached from the root(s) or if \c v is a root. |
781 | 780 |
/// |
782 | 781 |
///The shortest path tree used here is equal to the shortest path |
783 |
///tree used in \ref predArc(). |
|
782 |
///tree used in \ref predArc() and \ref predMap(). |
|
784 | 783 |
/// |
785 | 784 |
///\pre Either \ref run(Node) "run()" or \ref init() |
786 | 785 |
///must be called before using this function. |
787 | 786 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
788 | 787 |
G->source((*_pred)[v]); } |
789 | 788 |
|
... | ... |
@@ -798,19 +797,19 @@ |
798 | 797 |
const DistMap &distMap() const { return *_dist;} |
799 | 798 |
|
800 | 799 |
///\brief Returns a const reference to the node map that stores the |
801 | 800 |
///predecessor arcs. |
802 | 801 |
/// |
803 | 802 |
///Returns a const reference to the node map that stores the predecessor |
804 |
///arcs, which form the shortest path tree. |
|
803 |
///arcs, which form the shortest path tree (forest). |
|
805 | 804 |
/// |
806 | 805 |
///\pre Either \ref run(Node) "run()" or \ref init() |
807 | 806 |
///must be called before using this function. |
808 | 807 |
const PredMap &predMap() const { return *_pred;} |
809 | 808 |
|
810 |
///Checks if |
|
809 |
///Checks if the given node is reached from the root(s). |
|
811 | 810 |
|
812 | 811 |
///Returns \c true if \c v is reached from the root(s). |
813 | 812 |
/// |
814 | 813 |
///\pre Either \ref run(Node) "run()" or \ref init() |
815 | 814 |
///must be called before using this function. |
816 | 815 |
bool reached(Node v) const { return (*_reached)[v]; } |
... | ... |
@@ -830,13 +829,13 @@ |
830 | 829 |
|
831 | 830 |
///\brief The type of the map that stores the predecessor |
832 | 831 |
///arcs of the shortest paths. |
833 | 832 |
/// |
834 | 833 |
///The type of the map that stores the predecessor |
835 | 834 |
///arcs of the shortest paths. |
836 |
///It must |
|
835 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
837 | 836 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
838 | 837 |
///Instantiates a PredMap. |
839 | 838 |
|
840 | 839 |
///This function instantiates a PredMap. |
841 | 840 |
///\param g is the digraph, to which we would like to define the |
842 | 841 |
///PredMap. |
... | ... |
@@ -845,14 +844,14 @@ |
845 | 844 |
return new PredMap(g); |
846 | 845 |
} |
847 | 846 |
|
848 | 847 |
///The type of the map that indicates which nodes are processed. |
849 | 848 |
|
850 | 849 |
///The type of the map that indicates which nodes are processed. |
851 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
852 |
///By default it is a NullMap. |
|
850 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
851 |
///By default, it is a NullMap. |
|
853 | 852 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
854 | 853 |
///Instantiates a ProcessedMap. |
855 | 854 |
|
856 | 855 |
///This function instantiates a ProcessedMap. |
857 | 856 |
///\param g is the digraph, to which |
858 | 857 |
///we would like to define the ProcessedMap. |
... | ... |
@@ -865,13 +864,13 @@ |
865 | 864 |
return new ProcessedMap(); |
866 | 865 |
} |
867 | 866 |
|
868 | 867 |
///The type of the map that indicates which nodes are reached. |
869 | 868 |
|
870 | 869 |
///The type of the map that indicates which nodes are reached. |
871 |
///It must |
|
870 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
872 | 871 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
873 | 872 |
///Instantiates a ReachedMap. |
874 | 873 |
|
875 | 874 |
///This function instantiates a ReachedMap. |
876 | 875 |
///\param g is the digraph, to which |
877 | 876 |
///we would like to define the ReachedMap. |
... | ... |
@@ -880,13 +879,13 @@ |
880 | 879 |
return new ReachedMap(g); |
881 | 880 |
} |
882 | 881 |
|
883 | 882 |
///The type of the map that stores the distances of the nodes. |
884 | 883 |
|
885 | 884 |
///The type of the map that stores the distances of the nodes. |
886 |
///It must |
|
885 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
887 | 886 |
typedef typename Digraph::template NodeMap<int> DistMap; |
888 | 887 |
///Instantiates a DistMap. |
889 | 888 |
|
890 | 889 |
///This function instantiates a DistMap. |
891 | 890 |
///\param g is the digraph, to which we would like to define |
892 | 891 |
///the DistMap |
... | ... |
@@ -895,24 +894,20 @@ |
895 | 894 |
return new DistMap(g); |
896 | 895 |
} |
897 | 896 |
|
898 | 897 |
///The type of the shortest paths. |
899 | 898 |
|
900 | 899 |
///The type of the shortest paths. |
901 |
///It must |
|
900 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
902 | 901 |
typedef lemon::Path<Digraph> Path; |
903 | 902 |
}; |
904 | 903 |
|
905 | 904 |
/// Default traits class used by BfsWizard |
906 | 905 |
|
907 |
/// To make it easier to use Bfs algorithm |
|
908 |
/// we have created a wizard class. |
|
909 |
/// This \ref BfsWizard class needs default traits, |
|
910 |
/// as well as the \ref Bfs class. |
|
911 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
|
912 |
/// \ref BfsWizard class. |
|
906 |
/// Default traits class used by BfsWizard. |
|
907 |
/// \tparam GR The type of the digraph. |
|
913 | 908 |
template<class GR> |
914 | 909 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
915 | 910 |
{ |
916 | 911 |
|
917 | 912 |
typedef BfsWizardDefaultTraits<GR> Base; |
918 | 913 |
protected: |
... | ... |
@@ -934,13 +929,13 @@ |
934 | 929 |
//Pointer to the distance of the target node. |
935 | 930 |
int *_di; |
936 | 931 |
|
937 | 932 |
public: |
938 | 933 |
/// Constructor. |
939 | 934 |
|
940 |
/// This constructor does not require parameters, |
|
935 |
/// This constructor does not require parameters, it initiates |
|
941 | 936 |
/// all of the attributes to \c 0. |
942 | 937 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
943 | 938 |
_dist(0), _path(0), _di(0) {} |
944 | 939 |
|
945 | 940 |
/// Constructor. |
946 | 941 |
|
... | ... |
@@ -964,30 +959,23 @@ |
964 | 959 |
/// which makes it easier to use the algorithm. |
965 | 960 |
template<class TR> |
966 | 961 |
class BfsWizard : public TR |
967 | 962 |
{ |
968 | 963 |
typedef TR Base; |
969 | 964 |
|
970 |
///The type of the digraph the algorithm runs on. |
|
971 | 965 |
typedef typename TR::Digraph Digraph; |
972 | 966 |
|
973 | 967 |
typedef typename Digraph::Node Node; |
974 | 968 |
typedef typename Digraph::NodeIt NodeIt; |
975 | 969 |
typedef typename Digraph::Arc Arc; |
976 | 970 |
typedef typename Digraph::OutArcIt OutArcIt; |
977 | 971 |
|
978 |
///\brief The type of the map that stores the predecessor |
|
979 |
///arcs of the shortest paths. |
|
980 | 972 |
typedef typename TR::PredMap PredMap; |
981 |
///\brief The type of the map that stores the distances of the nodes. |
|
982 | 973 |
typedef typename TR::DistMap DistMap; |
983 |
///\brief The type of the map that indicates which nodes are reached. |
|
984 | 974 |
typedef typename TR::ReachedMap ReachedMap; |
985 |
///\brief The type of the map that indicates which nodes are processed. |
|
986 | 975 |
typedef typename TR::ProcessedMap ProcessedMap; |
987 |
///The type of the shortest paths |
|
988 | 976 |
typedef typename TR::Path Path; |
989 | 977 |
|
990 | 978 |
public: |
991 | 979 |
|
992 | 980 |
/// Constructor. |
993 | 981 |
BfsWizard() : TR() {} |
... | ... |
@@ -1051,30 +1039,31 @@ |
1051 | 1039 |
*Base::_di = alg.dist(t); |
1052 | 1040 |
return alg.reached(t); |
1053 | 1041 |
} |
1054 | 1042 |
|
1055 | 1043 |
///Runs BFS algorithm to visit all nodes in the digraph. |
1056 | 1044 |
|
1057 |
///This method runs BFS algorithm in order to compute |
|
1058 |
///the shortest path to each node. |
|
1045 |
///This method runs BFS algorithm in order to visit all nodes |
|
1046 |
///in the digraph. |
|
1059 | 1047 |
void run() |
1060 | 1048 |
{ |
1061 | 1049 |
run(INVALID); |
1062 | 1050 |
} |
1063 | 1051 |
|
1064 | 1052 |
template<class T> |
1065 | 1053 |
struct SetPredMapBase : public Base { |
1066 | 1054 |
typedef T PredMap; |
1067 | 1055 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1068 | 1056 |
SetPredMapBase(const TR &b) : TR(b) {} |
1069 | 1057 |
}; |
1070 |
///\brief \ref named-func-param "Named parameter" |
|
1071 |
///for setting PredMap object. |
|
1058 |
|
|
1059 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1060 |
///the predecessor map. |
|
1072 | 1061 |
/// |
1073 |
///\ref named-func-param "Named parameter" |
|
1074 |
///for setting PredMap object. |
|
1062 |
///\ref named-templ-param "Named parameter" function for setting |
|
1063 |
///the map that stores the predecessor arcs of the nodes. |
|
1075 | 1064 |
template<class T> |
1076 | 1065 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1077 | 1066 |
{ |
1078 | 1067 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1079 | 1068 |
return BfsWizard<SetPredMapBase<T> >(*this); |
1080 | 1069 |
} |
... | ... |
@@ -1082,17 +1071,18 @@ |
1082 | 1071 |
template<class T> |
1083 | 1072 |
struct SetReachedMapBase : public Base { |
1084 | 1073 |
typedef T ReachedMap; |
1085 | 1074 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1086 | 1075 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1087 | 1076 |
}; |
1088 |
///\brief \ref named-func-param "Named parameter" |
|
1089 |
///for setting ReachedMap object. |
|
1077 |
|
|
1078 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1079 |
///the reached map. |
|
1090 | 1080 |
/// |
1091 |
/// \ref named-func-param "Named parameter" |
|
1092 |
///for setting ReachedMap object. |
|
1081 |
///\ref named-templ-param "Named parameter" function for setting |
|
1082 |
///the map that indicates which nodes are reached. |
|
1093 | 1083 |
template<class T> |
1094 | 1084 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1095 | 1085 |
{ |
1096 | 1086 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1097 | 1087 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
1098 | 1088 |
} |
... | ... |
@@ -1100,17 +1090,19 @@ |
1100 | 1090 |
template<class T> |
1101 | 1091 |
struct SetDistMapBase : public Base { |
1102 | 1092 |
typedef T DistMap; |
1103 | 1093 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1104 | 1094 |
SetDistMapBase(const TR &b) : TR(b) {} |
1105 | 1095 |
}; |
1106 |
///\brief \ref named-func-param "Named parameter" |
|
1107 |
///for setting DistMap object. |
|
1096 |
|
|
1097 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1098 |
///the distance map. |
|
1108 | 1099 |
/// |
1109 |
/// \ref named-func-param "Named parameter" |
|
1110 |
///for setting DistMap object. |
|
1100 |
///\ref named-templ-param "Named parameter" function for setting |
|
1101 |
///the map that stores the distances of the nodes calculated |
|
1102 |
///by the algorithm. |
|
1111 | 1103 |
template<class T> |
1112 | 1104 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1113 | 1105 |
{ |
1114 | 1106 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1115 | 1107 |
return BfsWizard<SetDistMapBase<T> >(*this); |
1116 | 1108 |
} |
... | ... |
@@ -1118,17 +1110,18 @@ |
1118 | 1110 |
template<class T> |
1119 | 1111 |
struct SetProcessedMapBase : public Base { |
1120 | 1112 |
typedef T ProcessedMap; |
1121 | 1113 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1122 | 1114 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1123 | 1115 |
}; |
1124 |
///\brief \ref named-func-param "Named parameter" |
|
1125 |
///for setting ProcessedMap object. |
|
1116 |
|
|
1117 |
///\brief \ref named-func-param "Named parameter" for setting |
|
1118 |
///the processed map. |
|
1126 | 1119 |
/// |
1127 |
/// \ref named-func-param "Named parameter" |
|
1128 |
///for setting ProcessedMap object. |
|
1120 |
///\ref named-templ-param "Named parameter" function for setting |
|
1121 |
///the map that indicates which nodes are processed. |
|
1129 | 1122 |
template<class T> |
1130 | 1123 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1131 | 1124 |
{ |
1132 | 1125 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1133 | 1126 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
1134 | 1127 |
} |
... | ... |
@@ -1261,13 +1254,13 @@ |
1261 | 1254 |
/// \brief The type of the digraph the algorithm runs on. |
1262 | 1255 |
typedef GR Digraph; |
1263 | 1256 |
|
1264 | 1257 |
/// \brief The type of the map that indicates which nodes are reached. |
1265 | 1258 |
/// |
1266 | 1259 |
/// The type of the map that indicates which nodes are reached. |
1267 |
/// It must |
|
1260 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
1268 | 1261 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1269 | 1262 |
|
1270 | 1263 |
/// \brief Instantiates a ReachedMap. |
1271 | 1264 |
/// |
1272 | 1265 |
/// This function instantiates a ReachedMap. |
1273 | 1266 |
/// \param digraph is the digraph, to which |
... | ... |
@@ -1422,14 +1415,14 @@ |
1422 | 1415 |
|
1423 | 1416 |
public: |
1424 | 1417 |
|
1425 | 1418 |
/// \name Execution Control |
1426 | 1419 |
/// The simplest way to execute the BFS algorithm is to use one of the |
1427 | 1420 |
/// member functions called \ref run(Node) "run()".\n |
1428 |
/// If you need more control on the execution, first you have to call |
|
1429 |
/// \ref init(), then you can add several source nodes with |
|
1421 |
/// If you need better control on the execution, you have to call |
|
1422 |
/// \ref init() first, then you can add several source nodes with |
|
1430 | 1423 |
/// \ref addSource(). Finally the actual path computation can be |
1431 | 1424 |
/// performed with one of the \ref start() functions. |
1432 | 1425 |
|
1433 | 1426 |
/// @{ |
1434 | 1427 |
|
1435 | 1428 |
/// \brief Initializes the internal data structures. |
... | ... |
@@ -1695,18 +1688,14 @@ |
1695 | 1688 |
start(t); |
1696 | 1689 |
return reached(t); |
1697 | 1690 |
} |
1698 | 1691 |
|
1699 | 1692 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1700 | 1693 |
/// |
1701 |
/// This method runs the %BFS algorithm in order to |
|
1702 |
/// compute the shortest path to each node. |
|
1703 |
/// |
|
1704 |
/// The algorithm computes |
|
1705 |
/// - the shortest path tree (forest), |
|
1706 |
/// - the distance of each node from the root(s). |
|
1694 |
/// This method runs the %BFS algorithm in order to visit all nodes |
|
1695 |
/// in the digraph. |
|
1707 | 1696 |
/// |
1708 | 1697 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
1709 | 1698 |
///\code |
1710 | 1699 |
/// b.init(); |
1711 | 1700 |
/// for (NodeIt n(gr); n != INVALID; ++n) { |
1712 | 1701 |
/// if (!b.reached(n)) { |
... | ... |
@@ -1732,13 +1721,13 @@ |
1732 | 1721 |
/// functions.\n |
1733 | 1722 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
1734 | 1723 |
/// before using them. |
1735 | 1724 |
|
1736 | 1725 |
///@{ |
1737 | 1726 |
|
1738 |
/// \brief Checks if |
|
1727 |
/// \brief Checks if the given node is reached from the root(s). |
|
1739 | 1728 |
/// |
1740 | 1729 |
/// Returns \c true if \c v is reached from the root(s). |
1741 | 1730 |
/// |
1742 | 1731 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
1743 | 1732 |
/// must be called before using this function. |
1744 | 1733 |
bool reached(Node v) const { return (*_reached)[v]; } |
... | ... |
@@ -53,17 +53,17 @@ |
53 | 53 |
} |
54 | 54 |
|
55 | 55 |
int maxId(Arc) const { |
56 | 56 |
return Parent::maxArcId(); |
57 | 57 |
} |
58 | 58 |
|
59 |
Node fromId(int id, Node) |
|
59 |
static Node fromId(int id, Node) { |
|
60 | 60 |
return Parent::nodeFromId(id); |
61 | 61 |
} |
62 | 62 |
|
63 |
Arc fromId(int id, Arc) |
|
63 |
static Arc fromId(int id, Arc) { |
|
64 | 64 |
return Parent::arcFromId(id); |
65 | 65 |
} |
66 | 66 |
|
67 | 67 |
Node oppositeNode(const Node &node, const Arc &arc) const { |
68 | 68 |
if (node == Parent::source(arc)) |
69 | 69 |
return Parent::target(arc); |
... | ... |
@@ -352,21 +352,21 @@ |
352 | 352 |
} |
353 | 353 |
|
354 | 354 |
int maxId(Edge) const { |
355 | 355 |
return Parent::maxEdgeId(); |
356 | 356 |
} |
357 | 357 |
|
358 |
Node fromId(int id, Node) |
|
358 |
static Node fromId(int id, Node) { |
|
359 | 359 |
return Parent::nodeFromId(id); |
360 | 360 |
} |
361 | 361 |
|
362 |
Arc fromId(int id, Arc) |
|
362 |
static Arc fromId(int id, Arc) { |
|
363 | 363 |
return Parent::arcFromId(id); |
364 | 364 |
} |
365 | 365 |
|
366 |
Edge fromId(int id, Edge) |
|
366 |
static Edge fromId(int id, Edge) { |
|
367 | 367 |
return Parent::edgeFromId(id); |
368 | 368 |
} |
369 | 369 |
|
370 | 370 |
Node oppositeNode(const Node &n, const Edge &e) const { |
371 | 371 |
if( n == Parent::u(e)) |
372 | 372 |
return Parent::v(e); |
... | ... |
@@ -46,12 +46,14 @@ |
46 | 46 |
|
47 | 47 |
typedef typename Parent::Key Key; |
48 | 48 |
typedef typename Parent::Value Value; |
49 | 49 |
typedef typename Parent::Reference Reference; |
50 | 50 |
typedef typename Parent::ConstReference ConstReference; |
51 | 51 |
|
52 |
typedef typename Parent::ReferenceMapTag ReferenceMapTag; |
|
53 |
|
|
52 | 54 |
class MapIt; |
53 | 55 |
class ConstMapIt; |
54 | 56 |
|
55 | 57 |
friend class MapIt; |
56 | 58 |
friend class ConstMapIt; |
57 | 59 |
|
... | ... |
@@ -188,12 +190,14 @@ |
188 | 190 |
|
189 | 191 |
typedef typename Parent::Key Key; |
190 | 192 |
typedef typename Parent::Value Value; |
191 | 193 |
typedef typename Parent::Reference Reference; |
192 | 194 |
typedef typename Parent::ConstReference ConstReference; |
193 | 195 |
|
196 |
typedef typename Parent::ReferenceMapTag ReferenceMapTag; |
|
197 |
|
|
194 | 198 |
class MapIt; |
195 | 199 |
class ConstMapIt; |
196 | 200 |
|
197 | 201 |
friend class MapIt; |
198 | 202 |
friend class ConstMapIt; |
199 | 203 |
... | ... |
@@ -91,12 +91,24 @@ |
91 | 91 |
|
92 | 92 |
int CbcMip::_addRow() { |
93 | 93 |
_prob->addRow(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX); |
94 | 94 |
return _prob->numberRows() - 1; |
95 | 95 |
} |
96 | 96 |
|
97 |
int CbcMip::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) { |
|
98 |
std::vector<int> indexes; |
|
99 |
std::vector<Value> values; |
|
100 |
|
|
101 |
for(ExprIterator it = b; it != e; ++it) { |
|
102 |
indexes.push_back(it->first); |
|
103 |
values.push_back(it->second); |
|
104 |
} |
|
105 |
|
|
106 |
_prob->addRow(values.size(), &indexes.front(), &values.front(), l, u); |
|
107 |
return _prob->numberRows() - 1; |
|
108 |
} |
|
97 | 109 |
|
98 | 110 |
void CbcMip::_eraseCol(int i) { |
99 | 111 |
_prob->deleteColumn(i); |
100 | 112 |
} |
101 | 113 |
|
102 | 114 |
void CbcMip::_eraseRow(int i) { |
... | ... |
@@ -59,12 +59,13 @@ |
59 | 59 |
protected: |
60 | 60 |
|
61 | 61 |
virtual const char* _solverName() const; |
62 | 62 |
|
63 | 63 |
virtual int _addCol(); |
64 | 64 |
virtual int _addRow(); |
65 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
65 | 66 |
|
66 | 67 |
virtual void _eraseCol(int i); |
67 | 68 |
virtual void _eraseRow(int i); |
68 | 69 |
|
69 | 70 |
virtual void _eraseColId(int i); |
70 | 71 |
virtual void _eraseRowId(int i); |
... | ... |
@@ -69,13 +69,17 @@ |
69 | 69 |
|
70 | 70 |
/// \brief The type of the map that stores the flow values. |
71 | 71 |
/// |
72 | 72 |
/// The type of the map that stores the flow values. |
73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
74 | 74 |
/// concept. |
75 |
#ifdef DOXYGEN |
|
76 |
typedef GR::ArcMap<Value> FlowMap; |
|
77 |
#else |
|
75 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
79 |
#endif |
|
76 | 80 |
|
77 | 81 |
/// \brief Instantiates a FlowMap. |
78 | 82 |
/// |
79 | 83 |
/// This function instantiates a \ref FlowMap. |
80 | 84 |
/// \param digraph The digraph for which we would like to define |
81 | 85 |
/// the flow map. |
... | ... |
@@ -84,15 +88,18 @@ |
84 | 88 |
} |
85 | 89 |
|
86 | 90 |
/// \brief The elevator type used by the algorithm. |
87 | 91 |
/// |
88 | 92 |
/// The elevator type used by the algorithm. |
89 | 93 |
/// |
90 |
/// \sa Elevator |
|
91 |
/// \sa LinkedElevator |
|
94 |
/// \sa Elevator, LinkedElevator |
|
95 |
#ifdef DOXYGEN |
|
96 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
97 |
#else |
|
92 | 98 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
99 |
#endif |
|
93 | 100 |
|
94 | 101 |
/// \brief Instantiates an Elevator. |
95 | 102 |
/// |
96 | 103 |
/// This function instantiates an \ref Elevator. |
97 | 104 |
/// \param digraph The digraph for which we would like to define |
98 | 105 |
/// the elevator. |
... | ... |
@@ -296,13 +303,13 @@ |
296 | 303 |
/// |
297 | 304 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
298 | 305 |
/// type with automatic allocation. |
299 | 306 |
/// The Elevator should have standard constructor interface to be |
300 | 307 |
/// able to automatically created by the algorithm (i.e. the |
301 | 308 |
/// digraph and the maximum level should be passed to it). |
302 |
/// However an external elevator object could also be passed to the |
|
309 |
/// However, an external elevator object could also be passed to the |
|
303 | 310 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
304 | 311 |
/// before calling \ref run() or \ref init(). |
305 | 312 |
/// \sa SetElevator |
306 | 313 |
template <typename T> |
307 | 314 |
struct SetStandardElevator |
308 | 315 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
... | ... |
@@ -466,14 +473,14 @@ |
466 | 473 |
const Tolerance& tolerance() const { |
467 | 474 |
return _tol; |
468 | 475 |
} |
469 | 476 |
|
470 | 477 |
/// \name Execution Control |
471 | 478 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
472 |
/// If you need more control on the initial solution or the execution, |
|
473 |
/// first you have to call one of the \ref init() functions, then |
|
479 |
/// If you need better control on the initial solution or the execution, |
|
480 |
/// you have to call one of the \ref init() functions first, then |
|
474 | 481 |
/// the \ref start() function. |
475 | 482 |
|
476 | 483 |
///@{ |
477 | 484 |
|
478 | 485 |
/// Initializes the internal data structures. |
479 | 486 |
... | ... |
@@ -75,12 +75,25 @@ |
75 | 75 |
|
76 | 76 |
int ClpLp::_addRow() { |
77 | 77 |
_prob->addRow(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX); |
78 | 78 |
return _prob->numberRows() - 1; |
79 | 79 |
} |
80 | 80 |
|
81 |
int ClpLp::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) { |
|
82 |
std::vector<int> indexes; |
|
83 |
std::vector<Value> values; |
|
84 |
|
|
85 |
for(ExprIterator it = b; it != e; ++it) { |
|
86 |
indexes.push_back(it->first); |
|
87 |
values.push_back(it->second); |
|
88 |
} |
|
89 |
|
|
90 |
_prob->addRow(values.size(), &indexes.front(), &values.front(), l, u); |
|
91 |
return _prob->numberRows() - 1; |
|
92 |
} |
|
93 |
|
|
81 | 94 |
|
82 | 95 |
void ClpLp::_eraseCol(int c) { |
83 | 96 |
_col_names_ref.erase(_prob->getColumnName(c)); |
84 | 97 |
_prob->deleteColumns(1, &c); |
85 | 98 |
} |
86 | 99 |
... | ... |
@@ -72,12 +72,13 @@ |
72 | 72 |
protected: |
73 | 73 |
|
74 | 74 |
virtual const char* _solverName() const; |
75 | 75 |
|
76 | 76 |
virtual int _addCol(); |
77 | 77 |
virtual int _addRow(); |
78 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
78 | 79 |
|
79 | 80 |
virtual void _eraseCol(int i); |
80 | 81 |
virtual void _eraseRow(int i); |
81 | 82 |
|
82 | 83 |
virtual void _eraseColId(int i); |
83 | 84 |
virtual void _eraseRowId(int i); |
... | ... |
@@ -32,344 +32,342 @@ |
32 | 32 |
namespace concepts { |
33 | 33 |
|
34 | 34 |
/// \ingroup graph_concepts |
35 | 35 |
/// |
36 | 36 |
/// \brief Class describing the concept of directed graphs. |
37 | 37 |
/// |
38 |
/// This class describes the \ref concept "concept" of the |
|
39 |
/// immutable directed digraphs. |
|
38 |
/// This class describes the common interface of all directed |
|
39 |
/// graphs (digraphs). |
|
40 | 40 |
/// |
41 |
/// Note that actual digraph implementation like @ref ListDigraph or |
|
42 |
/// @ref SmartDigraph may have several additional functionality. |
|
41 |
/// Like all concept classes, it only provides an interface |
|
42 |
/// without any sensible implementation. So any general algorithm for |
|
43 |
/// directed graphs should compile with this class, but it will not |
|
44 |
/// run properly, of course. |
|
45 |
/// An actual digraph implementation like \ref ListDigraph or |
|
46 |
/// \ref SmartDigraph may have additional functionality. |
|
43 | 47 |
/// |
44 |
/// \sa |
|
48 |
/// \sa Graph |
|
45 | 49 |
class Digraph { |
46 | 50 |
private: |
47 |
/// |
|
51 |
/// Diraphs are \e not copy constructible. Use DigraphCopy instead. |
|
52 |
Digraph(const Digraph &) {} |
|
53 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
|
54 |
/// Use DigraphCopy instead. |
|
55 |
void operator=(const Digraph &) {} |
|
48 | 56 |
|
49 |
///Digraphs are \e not copy constructible. Use DigraphCopy() instead. |
|
50 |
/// |
|
51 |
Digraph(const Digraph &) {}; |
|
52 |
///\brief Assignment of \ref Digraph "Digraph"s to another ones are |
|
53 |
|
|
57 |
public: |
|
58 |
/// Default constructor. |
|
59 |
Digraph() { } |
|
54 | 60 |
|
55 |
///Assignment of \ref Digraph "Digraph"s to another ones are |
|
56 |
///\e not allowed. Use DigraphCopy() instead. |
|
57 |
|
|
58 |
void operator=(const Digraph &) {} |
|
59 |
public: |
|
60 |
///\e |
|
61 |
|
|
62 |
/// Defalult constructor. |
|
63 |
|
|
64 |
/// Defalult constructor. |
|
65 |
/// |
|
66 |
Digraph() { } |
|
67 |
/// |
|
61 |
/// The node type of the digraph |
|
68 | 62 |
|
69 | 63 |
/// This class identifies a node of the digraph. It also serves |
70 | 64 |
/// as a base class of the node iterators, |
71 |
/// thus they |
|
65 |
/// thus they convert to this type. |
|
72 | 66 |
class Node { |
73 | 67 |
public: |
74 | 68 |
/// Default constructor |
75 | 69 |
|
76 |
/// @warning The default constructor sets the iterator |
|
77 |
/// to an undefined value. |
|
70 |
/// Default constructor. |
|
71 |
/// \warning It sets the object to an undefined value. |
|
78 | 72 |
Node() { } |
79 | 73 |
/// Copy constructor. |
80 | 74 |
|
81 | 75 |
/// Copy constructor. |
82 | 76 |
/// |
83 | 77 |
Node(const Node&) { } |
84 | 78 |
|
85 |
/// Invalid constructor \& conversion. |
|
79 |
/// %Invalid constructor \& conversion. |
|
86 | 80 |
|
87 |
/// |
|
81 |
/// Initializes the object to be invalid. |
|
88 | 82 |
/// \sa Invalid for more details. |
89 | 83 |
Node(Invalid) { } |
90 | 84 |
/// Equality operator |
91 | 85 |
|
86 |
/// Equality operator. |
|
87 |
/// |
|
92 | 88 |
/// Two iterators are equal if and only if they point to the |
93 |
/// same object or both are |
|
89 |
/// same object or both are \c INVALID. |
|
94 | 90 |
bool operator==(Node) const { return true; } |
95 | 91 |
|
96 | 92 |
/// Inequality operator |
97 | 93 |
|
98 |
/// \sa operator==(Node n) |
|
99 |
/// |
|
94 |
/// Inequality operator. |
|
100 | 95 |
bool operator!=(Node) const { return true; } |
101 | 96 |
|
102 | 97 |
/// Artificial ordering operator. |
103 | 98 |
|
104 |
/// To allow the use of digraph descriptors as key type in std::map or |
|
105 |
/// similar associative container we require this. |
|
99 |
/// Artificial ordering operator. |
|
106 | 100 |
/// |
107 |
/// \note This operator only have to define some strict ordering of |
|
108 |
/// the items; this order has nothing to do with the iteration |
|
109 |
/// ordering of |
|
101 |
/// \note This operator only has to define some strict ordering of |
|
102 |
/// the nodes; this order has nothing to do with the iteration |
|
103 |
/// ordering of the nodes. |
|
110 | 104 |
bool operator<(Node) const { return false; } |
111 |
|
|
112 | 105 |
}; |
113 | 106 |
|
114 |
/// |
|
107 |
/// Iterator class for the nodes. |
|
115 | 108 |
|
116 |
/// This iterator goes through each node. |
|
117 |
/// Its usage is quite simple, for example you can count the number |
|
118 |
/// |
|
109 |
/// This iterator goes through each node of the digraph. |
|
110 |
/// Its usage is quite simple, for example, you can count the number |
|
111 |
/// of nodes in a digraph \c g of type \c %Digraph like this: |
|
119 | 112 |
///\code |
120 | 113 |
/// int count=0; |
121 | 114 |
/// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count; |
122 | 115 |
///\endcode |
123 | 116 |
class NodeIt : public Node { |
124 | 117 |
public: |
125 | 118 |
/// Default constructor |
126 | 119 |
|
127 |
/// @warning The default constructor sets the iterator |
|
128 |
/// to an undefined value. |
|
120 |
/// Default constructor. |
|
121 |
/// \warning It sets the iterator to an undefined value. |
|
129 | 122 |
NodeIt() { } |
130 | 123 |
/// Copy constructor. |
131 | 124 |
|
132 | 125 |
/// Copy constructor. |
133 | 126 |
/// |
134 | 127 |
NodeIt(const NodeIt& n) : Node(n) { } |
135 |
/// Invalid constructor \& conversion. |
|
128 |
/// %Invalid constructor \& conversion. |
|
136 | 129 |
|
137 |
/// |
|
130 |
/// Initializes the iterator to be invalid. |
|
138 | 131 |
/// \sa Invalid for more details. |
139 | 132 |
NodeIt(Invalid) { } |
140 | 133 |
/// Sets the iterator to the first node. |
141 | 134 |
|
142 |
/// Sets the iterator to the first node of |
|
135 |
/// Sets the iterator to the first node of the given digraph. |
|
143 | 136 |
/// |
144 |
NodeIt(const Digraph&) { } |
|
145 |
/// Node -> NodeIt conversion. |
|
137 |
explicit NodeIt(const Digraph&) { } |
|
138 |
/// Sets the iterator to the given node. |
|
146 | 139 |
|
147 |
/// Sets the iterator to the node of \c the digraph pointed by |
|
148 |
/// the trivial iterator. |
|
149 |
/// This feature necessitates that each time we |
|
150 |
/// iterate the arc-set, the iteration order is the same. |
|
140 |
/// Sets the iterator to the given node of the given digraph. |
|
141 |
/// |
|
151 | 142 |
NodeIt(const Digraph&, const Node&) { } |
152 | 143 |
/// Next node. |
153 | 144 |
|
154 | 145 |
/// Assign the iterator to the next node. |
155 | 146 |
/// |
156 | 147 |
NodeIt& operator++() { return *this; } |
157 | 148 |
}; |
158 | 149 |
|
159 | 150 |
|
160 |
/// |
|
151 |
/// The arc type of the digraph |
|
161 | 152 |
|
162 | 153 |
/// This class identifies an arc of the digraph. It also serves |
163 | 154 |
/// as a base class of the arc iterators, |
164 | 155 |
/// thus they will convert to this type. |
165 | 156 |
class Arc { |
166 | 157 |
public: |
167 | 158 |
/// Default constructor |
168 | 159 |
|
169 |
/// @warning The default constructor sets the iterator |
|
170 |
/// to an undefined value. |
|
160 |
/// Default constructor. |
|
161 |
/// \warning It sets the object to an undefined value. |
|
171 | 162 |
Arc() { } |
172 | 163 |
/// Copy constructor. |
173 | 164 |
|
174 | 165 |
/// Copy constructor. |
175 | 166 |
/// |
176 | 167 |
Arc(const Arc&) { } |
177 |
/// |
|
168 |
/// %Invalid constructor \& conversion. |
|
178 | 169 |
|
179 |
/// Initialize the iterator to be invalid. |
|
180 |
/// |
|
170 |
/// Initializes the object to be invalid. |
|
171 |
/// \sa Invalid for more details. |
|
181 | 172 |
Arc(Invalid) { } |
182 | 173 |
/// Equality operator |
183 | 174 |
|
175 |
/// Equality operator. |
|
176 |
/// |
|
184 | 177 |
/// Two iterators are equal if and only if they point to the |
185 |
/// same object or both are |
|
178 |
/// same object or both are \c INVALID. |
|
186 | 179 |
bool operator==(Arc) const { return true; } |
187 | 180 |
/// Inequality operator |
188 | 181 |
|
189 |
/// \sa operator==(Arc n) |
|
190 |
/// |
|
182 |
/// Inequality operator. |
|
191 | 183 |
bool operator!=(Arc) const { return true; } |
192 | 184 |
|
193 | 185 |
/// Artificial ordering operator. |
194 | 186 |
|
195 |
/// To allow the use of digraph descriptors as key type in std::map or |
|
196 |
/// similar associative container we require this. |
|
187 |
/// Artificial ordering operator. |
|
197 | 188 |
/// |
198 |
/// \note This operator only have to define some strict ordering of |
|
199 |
/// the items; this order has nothing to do with the iteration |
|
200 |
/// ordering of |
|
189 |
/// \note This operator only has to define some strict ordering of |
|
190 |
/// the arcs; this order has nothing to do with the iteration |
|
191 |
/// ordering of the arcs. |
|
201 | 192 |
bool operator<(Arc) const { return false; } |
202 | 193 |
}; |
203 | 194 |
|
204 |
/// |
|
195 |
/// Iterator class for the outgoing arcs of a node. |
|
205 | 196 |
|
206 | 197 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
207 | 198 |
/// of a digraph. |
208 |
/// Its usage is quite simple, for example you can count the number |
|
199 |
/// Its usage is quite simple, for example, you can count the number |
|
209 | 200 |
/// of outgoing arcs of a node \c n |
210 |
/// in digraph \c g of type \c Digraph as follows. |
|
201 |
/// in a digraph \c g of type \c %Digraph as follows. |
|
211 | 202 |
///\code |
212 | 203 |
/// int count=0; |
213 |
/// for (Digraph::OutArcIt |
|
204 |
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
214 | 205 |
///\endcode |
215 |
|
|
216 | 206 |
class OutArcIt : public Arc { |
217 | 207 |
public: |
218 | 208 |
/// Default constructor |
219 | 209 |
|
220 |
/// @warning The default constructor sets the iterator |
|
221 |
/// to an undefined value. |
|
210 |
/// Default constructor. |
|
211 |
/// \warning It sets the iterator to an undefined value. |
|
222 | 212 |
OutArcIt() { } |
223 | 213 |
/// Copy constructor. |
224 | 214 |
|
225 | 215 |
/// Copy constructor. |
226 | 216 |
/// |
227 | 217 |
OutArcIt(const OutArcIt& e) : Arc(e) { } |
228 |
/// |
|
218 |
/// %Invalid constructor \& conversion. |
|
229 | 219 |
|
230 |
/// |
|
220 |
/// Initializes the iterator to be invalid. |
|
221 |
/// \sa Invalid for more details. |
|
222 |
OutArcIt(Invalid) { } |
|
223 |
/// Sets the iterator to the first outgoing arc. |
|
224 |
|
|
225 |
/// Sets the iterator to the first outgoing arc of the given node. |
|
231 | 226 |
/// |
232 |
OutArcIt(Invalid) { } |
|
233 |
/// This constructor sets the iterator to the first outgoing arc. |
|
227 |
OutArcIt(const Digraph&, const Node&) { } |
|
228 |
/// Sets the iterator to the given arc. |
|
234 | 229 |
|
235 |
/// This constructor sets the iterator to the first outgoing arc of |
|
236 |
/// the node. |
|
237 |
OutArcIt(const Digraph&, const Node&) { } |
|
238 |
/// Arc -> OutArcIt conversion |
|
239 |
|
|
240 |
/// Sets the iterator to the value of the trivial iterator. |
|
241 |
/// This feature necessitates that each time we |
|
242 |
/// iterate the arc-set, the iteration order is the same. |
|
230 |
/// Sets the iterator to the given arc of the given digraph. |
|
231 |
/// |
|
243 | 232 |
OutArcIt(const Digraph&, const Arc&) { } |
244 |
///Next outgoing arc |
|
233 |
/// Next outgoing arc |
|
245 | 234 |
|
246 | 235 |
/// Assign the iterator to the next |
247 | 236 |
/// outgoing arc of the corresponding node. |
248 | 237 |
OutArcIt& operator++() { return *this; } |
249 | 238 |
}; |
250 | 239 |
|
251 |
/// |
|
240 |
/// Iterator class for the incoming arcs of a node. |
|
252 | 241 |
|
253 | 242 |
/// This iterator goes trough the \e incoming arcs of a certain node |
254 | 243 |
/// of a digraph. |
255 |
/// Its usage is quite simple, for example you can count the number |
|
256 |
/// of outgoing arcs of a node \c n |
|
257 |
/// |
|
244 |
/// Its usage is quite simple, for example, you can count the number |
|
245 |
/// of incoming arcs of a node \c n |
|
246 |
/// in a digraph \c g of type \c %Digraph as follows. |
|
258 | 247 |
///\code |
259 | 248 |
/// int count=0; |
260 |
/// for(Digraph::InArcIt |
|
249 |
/// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
261 | 250 |
///\endcode |
262 |
|
|
263 | 251 |
class InArcIt : public Arc { |
264 | 252 |
public: |
265 | 253 |
/// Default constructor |
266 | 254 |
|
267 |
/// @warning The default constructor sets the iterator |
|
268 |
/// to an undefined value. |
|
255 |
/// Default constructor. |
|
256 |
/// \warning It sets the iterator to an undefined value. |
|
269 | 257 |
InArcIt() { } |
270 | 258 |
/// Copy constructor. |
271 | 259 |
|
272 | 260 |
/// Copy constructor. |
273 | 261 |
/// |
274 | 262 |
InArcIt(const InArcIt& e) : Arc(e) { } |
275 |
/// |
|
263 |
/// %Invalid constructor \& conversion. |
|
276 | 264 |
|
277 |
/// |
|
265 |
/// Initializes the iterator to be invalid. |
|
266 |
/// \sa Invalid for more details. |
|
267 |
InArcIt(Invalid) { } |
|
268 |
/// Sets the iterator to the first incoming arc. |
|
269 |
|
|
270 |
/// Sets the iterator to the first incoming arc of the given node. |
|
278 | 271 |
/// |
279 |
InArcIt(Invalid) { } |
|
280 |
/// This constructor sets the iterator to first incoming arc. |
|
272 |
InArcIt(const Digraph&, const Node&) { } |
|
273 |
/// Sets the iterator to the given arc. |
|
281 | 274 |
|
282 |
/// This constructor set the iterator to the first incoming arc of |
|
283 |
/// the node. |
|
284 |
InArcIt(const Digraph&, const Node&) { } |
|
285 |
/// Arc -> InArcIt conversion |
|
286 |
|
|
287 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
288 |
/// This feature necessitates that each time we |
|
289 |
/// iterate the arc-set, the iteration order is the same. |
|
275 |
/// Sets the iterator to the given arc of the given digraph. |
|
276 |
/// |
|
290 | 277 |
InArcIt(const Digraph&, const Arc&) { } |
291 | 278 |
/// Next incoming arc |
292 | 279 |
|
293 |
/// Assign the iterator to the next inarc of the corresponding node. |
|
294 |
/// |
|
280 |
/// Assign the iterator to the next |
|
281 |
/// incoming arc of the corresponding node. |
|
295 | 282 |
InArcIt& operator++() { return *this; } |
296 | 283 |
}; |
297 |
/// This iterator goes through each arc. |
|
298 | 284 |
|
299 |
/// This iterator goes through each arc of a digraph. |
|
300 |
/// Its usage is quite simple, for example you can count the number |
|
301 |
/// |
|
285 |
/// Iterator class for the arcs. |
|
286 |
|
|
287 |
/// This iterator goes through each arc of the digraph. |
|
288 |
/// Its usage is quite simple, for example, you can count the number |
|
289 |
/// of arcs in a digraph \c g of type \c %Digraph as follows: |
|
302 | 290 |
///\code |
303 | 291 |
/// int count=0; |
304 |
/// for(Digraph::ArcIt |
|
292 |
/// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count; |
|
305 | 293 |
///\endcode |
306 | 294 |
class ArcIt : public Arc { |
307 | 295 |
public: |
308 | 296 |
/// Default constructor |
309 | 297 |
|
310 |
/// @warning The default constructor sets the iterator |
|
311 |
/// to an undefined value. |
|
298 |
/// Default constructor. |
|
299 |
/// \warning It sets the iterator to an undefined value. |
|
312 | 300 |
ArcIt() { } |
313 | 301 |
/// Copy constructor. |
314 | 302 |
|
315 | 303 |
/// Copy constructor. |
316 | 304 |
/// |
317 | 305 |
ArcIt(const ArcIt& e) : Arc(e) { } |
318 |
/// |
|
306 |
/// %Invalid constructor \& conversion. |
|
319 | 307 |
|
320 |
/// |
|
308 |
/// Initializes the iterator to be invalid. |
|
309 |
/// \sa Invalid for more details. |
|
310 |
ArcIt(Invalid) { } |
|
311 |
/// Sets the iterator to the first arc. |
|
312 |
|
|
313 |
/// Sets the iterator to the first arc of the given digraph. |
|
321 | 314 |
/// |
322 |
ArcIt(Invalid) { } |
|
323 |
/// This constructor sets the iterator to the first arc. |
|
315 |
explicit ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); } |
|
316 |
/// Sets the iterator to the given arc. |
|
324 | 317 |
|
325 |
/// This constructor sets the iterator to the first arc of \c g. |
|
326 |
///@param g the digraph |
|
327 |
ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); } |
|
328 |
/// Arc -> ArcIt conversion |
|
329 |
|
|
330 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
331 |
/// This feature necessitates that each time we |
|
332 |
/// iterate the arc-set, the iteration order is the same. |
|
318 |
/// Sets the iterator to the given arc of the given digraph. |
|
319 |
/// |
|
333 | 320 |
ArcIt(const Digraph&, const Arc&) { } |
334 |
///Next arc |
|
321 |
/// Next arc |
|
335 | 322 |
|
336 | 323 |
/// Assign the iterator to the next arc. |
324 |
/// |
|
337 | 325 |
ArcIt& operator++() { return *this; } |
338 | 326 |
}; |
339 |
///Gives back the target node of an arc. |
|
340 | 327 |
|
341 |
/// |
|
328 |
/// \brief The source node of the arc. |
|
342 | 329 |
/// |
343 |
Node target(Arc) const { return INVALID; } |
|
344 |
///Gives back the source node of an arc. |
|
345 |
|
|
346 |
///Gives back the source node of an arc. |
|
347 |
/// |
|
330 |
/// Returns the source node of the given arc. |
|
348 | 331 |
Node source(Arc) const { return INVALID; } |
349 | 332 |
|
350 |
/// \brief |
|
333 |
/// \brief The target node of the arc. |
|
334 |
/// |
|
335 |
/// Returns the target node of the given arc. |
|
336 |
Node target(Arc) const { return INVALID; } |
|
337 |
|
|
338 |
/// \brief The ID of the node. |
|
339 |
/// |
|
340 |
/// Returns the ID of the given node. |
|
351 | 341 |
int id(Node) const { return -1; } |
352 | 342 |
|
353 |
/// \brief |
|
343 |
/// \brief The ID of the arc. |
|
344 |
/// |
|
345 |
/// Returns the ID of the given arc. |
|
354 | 346 |
int id(Arc) const { return -1; } |
355 | 347 |
|
356 |
/// \brief |
|
348 |
/// \brief The node with the given ID. |
|
357 | 349 |
/// |
358 |
/// |
|
350 |
/// Returns the node with the given ID. |
|
351 |
/// \pre The argument should be a valid node ID in the digraph. |
|
359 | 352 |
Node nodeFromId(int) const { return INVALID; } |
360 | 353 |
|
361 |
/// \brief |
|
354 |
/// \brief The arc with the given ID. |
|
362 | 355 |
/// |
363 |
/// |
|
356 |
/// Returns the arc with the given ID. |
|
357 |
/// \pre The argument should be a valid arc ID in the digraph. |
|
364 | 358 |
Arc arcFromId(int) const { return INVALID; } |
365 | 359 |
|
366 |
/// \brief |
|
360 |
/// \brief An upper bound on the node IDs. |
|
361 |
/// |
|
362 |
/// Returns an upper bound on the node IDs. |
|
367 | 363 |
int maxNodeId() const { return -1; } |
368 | 364 |
|
369 |
/// \brief |
|
365 |
/// \brief An upper bound on the arc IDs. |
|
366 |
/// |
|
367 |
/// Returns an upper bound on the arc IDs. |
|
370 | 368 |
int maxArcId() const { return -1; } |
371 | 369 |
|
372 | 370 |
void first(Node&) const {} |
373 | 371 |
void next(Node&) const {} |
374 | 372 |
|
375 | 373 |
void first(Arc&) const {} |
... | ... |
@@ -389,51 +387,52 @@ |
389 | 387 |
|
390 | 388 |
// Dummy parameter. |
391 | 389 |
int maxId(Node) const { return -1; } |
392 | 390 |
// Dummy parameter. |
393 | 391 |
int maxId(Arc) const { return -1; } |
394 | 392 |
|
393 |
/// \brief The opposite node on the arc. |
|
394 |
/// |
|
395 |
/// Returns the opposite node on the given arc. |
|
396 |
Node oppositeNode(Node, Arc) const { return INVALID; } |
|
397 |
|
|
395 | 398 |
/// \brief The base node of the iterator. |
396 | 399 |
/// |
397 |
/// Gives back the base node of the iterator. |
|
398 |
/// It is always the target of the pointed arc. |
|
399 |
|
|
400 |
/// Returns the base node of the given outgoing arc iterator |
|
401 |
/// (i.e. the source node of the corresponding arc). |
|
402 |
Node baseNode(OutArcIt) const { return INVALID; } |
|
400 | 403 |
|
401 | 404 |
/// \brief The running node of the iterator. |
402 | 405 |
/// |
403 |
/// Gives back the running node of the iterator. |
|
404 |
/// It is always the source of the pointed arc. |
|
405 |
|
|
406 |
/// Returns the running node of the given outgoing arc iterator |
|
407 |
/// (i.e. the target node of the corresponding arc). |
|
408 |
Node runningNode(OutArcIt) const { return INVALID; } |
|
406 | 409 |
|
407 | 410 |
/// \brief The base node of the iterator. |
408 | 411 |
/// |
409 |
/// Gives back the base node of the iterator. |
|
410 |
/// It is always the source of the pointed arc. |
|
411 |
|
|
412 |
/// Returns the base node of the given incomming arc iterator |
|
413 |
/// (i.e. the target node of the corresponding arc). |
|
414 |
Node baseNode(InArcIt) const { return INVALID; } |
|
412 | 415 |
|
413 | 416 |
/// \brief The running node of the iterator. |
414 | 417 |
/// |
415 |
/// Gives back the running node of the iterator. |
|
416 |
/// It is always the target of the pointed arc. |
|
417 |
|
|
418 |
/// Returns the running node of the given incomming arc iterator |
|
419 |
/// (i.e. the source node of the corresponding arc). |
|
420 |
Node runningNode(InArcIt) const { return INVALID; } |
|
418 | 421 |
|
419 |
/// \brief |
|
422 |
/// \brief Standard graph map type for the nodes. |
|
420 | 423 |
/// |
421 |
/// Gives back the opposite node on the given arc. |
|
422 |
Node oppositeNode(const Node&, const Arc&) const { return INVALID; } |
|
423 |
|
|
424 |
/// \brief Reference map of the nodes to type \c T. |
|
425 |
/// |
|
426 |
/// Reference map of the nodes to type \c T. |
|
424 |
/// Standard graph map type for the nodes. |
|
425 |
/// It conforms to the ReferenceMap concept. |
|
427 | 426 |
template<class T> |
428 | 427 |
class NodeMap : public ReferenceMap<Node, T, T&, const T&> { |
429 | 428 |
public: |
430 | 429 |
|
431 |
///\e |
|
432 |
NodeMap(const Digraph&) { } |
|
433 |
/// |
|
430 |
/// Constructor |
|
431 |
explicit NodeMap(const Digraph&) { } |
|
432 |
/// Constructor with given initial value |
|
434 | 433 |
NodeMap(const Digraph&, T) { } |
435 | 434 |
|
436 | 435 |
private: |
437 | 436 |
///Copy constructor |
438 | 437 |
NodeMap(const NodeMap& nm) : |
439 | 438 |
ReferenceMap<Node, T, T&, const T&>(nm) { } |
... | ... |
@@ -442,23 +441,25 @@ |
442 | 441 |
NodeMap& operator=(const CMap&) { |
443 | 442 |
checkConcept<ReadMap<Node, T>, CMap>(); |
444 | 443 |
return *this; |
445 | 444 |
} |
446 | 445 |
}; |
447 | 446 |
|
448 |
/// \brief |
|
447 |
/// \brief Standard graph map type for the arcs. |
|
449 | 448 |
/// |
450 |
/// |
|
449 |
/// Standard graph map type for the arcs. |
|
450 |
/// It conforms to the ReferenceMap concept. |
|
451 | 451 |
template<class T> |
452 | 452 |
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> { |
453 | 453 |
public: |
454 | 454 |
|
455 |
///\e |
|
456 |
ArcMap(const Digraph&) { } |
|
457 |
/// |
|
455 |
/// Constructor |
|
456 |
explicit ArcMap(const Digraph&) { } |
|
457 |
/// Constructor with given initial value |
|
458 | 458 |
ArcMap(const Digraph&, T) { } |
459 |
|
|
459 | 460 |
private: |
460 | 461 |
///Copy constructor |
461 | 462 |
ArcMap(const ArcMap& em) : |
462 | 463 |
ReferenceMap<Arc, T, T&, const T&>(em) { } |
463 | 464 |
///Assignment operator |
464 | 465 |
template <typename CMap> |
... | ... |
@@ -15,504 +15,511 @@ |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup graph_concepts |
20 | 20 |
///\file |
21 |
///\brief The concept of |
|
21 |
///\brief The concept of undirected graphs. |
|
22 | 22 |
|
23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_H |
24 | 24 |
#define LEMON_CONCEPTS_GRAPH_H |
25 | 25 |
|
26 | 26 |
#include <lemon/concepts/graph_components.h> |
27 |
#include <lemon/concepts/maps.h> |
|
28 |
#include <lemon/concept_check.h> |
|
27 | 29 |
#include <lemon/core.h> |
28 | 30 |
|
29 | 31 |
namespace lemon { |
30 | 32 |
namespace concepts { |
31 | 33 |
|
32 | 34 |
/// \ingroup graph_concepts |
33 | 35 |
/// |
34 |
/// \brief Class describing the concept of |
|
36 |
/// \brief Class describing the concept of undirected graphs. |
|
35 | 37 |
/// |
36 |
/// This class describes the common interface of all Undirected |
|
37 |
/// Graphs. |
|
38 |
/// This class describes the common interface of all undirected |
|
39 |
/// graphs. |
|
38 | 40 |
/// |
39 |
/// As all concept describing classes it provides only interface |
|
40 |
/// without any sensible implementation. So any algorithm for |
|
41 |
/// |
|
41 |
/// Like all concept classes, it only provides an interface |
|
42 |
/// without any sensible implementation. So any general algorithm for |
|
43 |
/// undirected graphs should compile with this class, but it will not |
|
42 | 44 |
/// run properly, of course. |
45 |
/// An actual graph implementation like \ref ListGraph or |
|
46 |
/// \ref SmartGraph may have additional functionality. |
|
43 | 47 |
/// |
44 |
/// The LEMON undirected graphs also fulfill the concept of |
|
45 |
/// directed graphs (\ref lemon::concepts::Digraph "Digraph |
|
46 |
/// Concept"). Each edges can be seen as two opposite |
|
47 |
/// directed arc and consequently the undirected graph can be |
|
48 |
/// seen as the direceted graph of these directed arcs. The |
|
49 |
/// Graph has the Edge inner class for the edges and |
|
50 |
/// the Arc type for the directed arcs. The Arc type is |
|
51 |
/// convertible to Edge or inherited from it so from a directed |
|
52 |
/// |
|
48 |
/// The undirected graphs also fulfill the concept of \ref Digraph |
|
49 |
/// "directed graphs", since each edge can also be regarded as two |
|
50 |
/// oppositely directed arcs. |
|
51 |
/// Undirected graphs provide an Edge type for the undirected edges and |
|
52 |
/// an Arc type for the directed arcs. The Arc type is convertible to |
|
53 |
/// Edge or inherited from it, i.e. the corresponding edge can be |
|
54 |
/// obtained from an arc. |
|
55 |
/// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt |
|
56 |
/// and ArcMap classes can be used for the arcs (just like in digraphs). |
|
57 |
/// Both InArcIt and OutArcIt iterates on the same edges but with |
|
58 |
/// opposite direction. IncEdgeIt also iterates on the same edges |
|
59 |
/// as OutArcIt and InArcIt, but it is not convertible to Arc, |
|
60 |
/// only to Edge. |
|
53 | 61 |
/// |
54 |
/// In the sense of the LEMON each edge has a default |
|
55 |
/// direction (it should be in every computer implementation, |
|
56 |
/// because the order of edge's nodes defines an |
|
57 |
/// orientation). With the default orientation we can define that |
|
58 |
/// the directed arc is forward or backward directed. With the \c |
|
59 |
/// direction() and \c direct() function we can get the direction |
|
60 |
/// |
|
62 |
/// In LEMON, each undirected edge has an inherent orientation. |
|
63 |
/// Thus it can defined if an arc is forward or backward oriented in |
|
64 |
/// an undirected graph with respect to this default oriantation of |
|
65 |
/// the represented edge. |
|
66 |
/// With the direction() and direct() functions the direction |
|
67 |
/// of an arc can be obtained and set, respectively. |
|
61 | 68 |
/// |
62 |
/// The EdgeIt is an iterator for the edges. We can use |
|
63 |
/// the EdgeMap to map values for the edges. The InArcIt and |
|
64 |
/// OutArcIt iterates on the same edges but with opposite |
|
65 |
/// direction. The IncEdgeIt iterates also on the same edges |
|
66 |
/// as the OutArcIt and InArcIt but it is not convertible to Arc just |
|
67 |
/// to Edge. |
|
69 |
/// Only nodes and edges can be added to or removed from an undirected |
|
70 |
/// graph and the corresponding arcs are added or removed automatically. |
|
71 |
/// |
|
72 |
/// \sa Digraph |
|
68 | 73 |
class Graph { |
74 |
private: |
|
75 |
/// Graphs are \e not copy constructible. Use DigraphCopy instead. |
|
76 |
Graph(const Graph&) {} |
|
77 |
/// \brief Assignment of a graph to another one is \e not allowed. |
|
78 |
/// Use DigraphCopy instead. |
|
79 |
void operator=(const Graph&) {} |
|
80 |
|
|
69 | 81 |
public: |
70 |
/// \brief The undirected graph should be tagged by the |
|
71 |
/// UndirectedTag. |
|
82 |
/// Default constructor. |
|
83 |
Graph() {} |
|
84 |
|
|
85 |
/// \brief Undirected graphs should be tagged with \c UndirectedTag. |
|
72 | 86 |
/// |
73 |
/// The undirected graph should be tagged by the UndirectedTag. This |
|
74 |
/// tag helps the enable_if technics to make compile time |
|
87 |
/// Undirected graphs should be tagged with \c UndirectedTag. |
|
88 |
/// |
|
89 |
/// This tag helps the \c enable_if technics to make compile time |
|
75 | 90 |
/// specializations for undirected graphs. |
76 | 91 |
typedef True UndirectedTag; |
77 | 92 |
|
78 |
/// \brief The base type of node iterators, |
|
79 |
/// or in other words, the trivial node iterator. |
|
80 |
/// |
|
81 |
/// This is the base type of each node iterator, |
|
82 |
/// thus each kind of node iterator converts to this. |
|
83 |
/// More precisely each kind of node iterator should be inherited |
|
84 |
/// |
|
93 |
/// The node type of the graph |
|
94 |
|
|
95 |
/// This class identifies a node of the graph. It also serves |
|
96 |
/// as a base class of the node iterators, |
|
97 |
/// thus they convert to this type. |
|
85 | 98 |
class Node { |
86 | 99 |
public: |
87 | 100 |
/// Default constructor |
88 | 101 |
|
89 |
/// @warning The default constructor sets the iterator |
|
90 |
/// to an undefined value. |
|
102 |
/// Default constructor. |
|
103 |
/// \warning It sets the object to an undefined value. |
|
91 | 104 |
Node() { } |
92 | 105 |
/// Copy constructor. |
93 | 106 |
|
94 | 107 |
/// Copy constructor. |
95 | 108 |
/// |
96 | 109 |
Node(const Node&) { } |
97 | 110 |
|
98 |
/// Invalid constructor \& conversion. |
|
111 |
/// %Invalid constructor \& conversion. |
|
99 | 112 |
|
100 |
/// |
|
113 |
/// Initializes the object to be invalid. |
|
101 | 114 |
/// \sa Invalid for more details. |
102 | 115 |
Node(Invalid) { } |
103 | 116 |
/// Equality operator |
104 | 117 |
|
118 |
/// Equality operator. |
|
119 |
/// |
|
105 | 120 |
/// Two iterators are equal if and only if they point to the |
106 |
/// same object or both are |
|
121 |
/// same object or both are \c INVALID. |
|
107 | 122 |
bool operator==(Node) const { return true; } |
108 | 123 |
|
109 | 124 |
/// Inequality operator |
110 | 125 |
|
111 |
/// \sa operator==(Node n) |
|
112 |
/// |
|
126 |
/// Inequality operator. |
|
113 | 127 |
bool operator!=(Node) const { return true; } |
114 | 128 |
|
115 | 129 |
/// Artificial ordering operator. |
116 | 130 |
|
117 |
/// To allow the use of graph descriptors as key type in std::map or |
|
118 |
/// similar associative container we require this. |
|
131 |
/// Artificial ordering operator. |
|
119 | 132 |
/// |
120 |
/// \note This operator only |
|
133 |
/// \note This operator only has to define some strict ordering of |
|
121 | 134 |
/// the items; this order has nothing to do with the iteration |
122 | 135 |
/// ordering of the items. |
123 | 136 |
bool operator<(Node) const { return false; } |
124 | 137 |
|
125 | 138 |
}; |
126 | 139 |
|
127 |
/// |
|
140 |
/// Iterator class for the nodes. |
|
128 | 141 |
|
129 |
/// This iterator goes through each node. |
|
130 |
/// Its usage is quite simple, for example you can count the number |
|
131 |
/// |
|
142 |
/// This iterator goes through each node of the graph. |
|
143 |
/// Its usage is quite simple, for example, you can count the number |
|
144 |
/// of nodes in a graph \c g of type \c %Graph like this: |
|
132 | 145 |
///\code |
133 | 146 |
/// int count=0; |
134 | 147 |
/// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; |
135 | 148 |
///\endcode |
136 | 149 |
class NodeIt : public Node { |
137 | 150 |
public: |
138 | 151 |
/// Default constructor |
139 | 152 |
|
140 |
/// @warning The default constructor sets the iterator |
|
141 |
/// to an undefined value. |
|
153 |
/// Default constructor. |
|
154 |
/// \warning It sets the iterator to an undefined value. |
|
142 | 155 |
NodeIt() { } |
143 | 156 |
/// Copy constructor. |
144 | 157 |
|
145 | 158 |
/// Copy constructor. |
146 | 159 |
/// |
147 | 160 |
NodeIt(const NodeIt& n) : Node(n) { } |
148 |
/// Invalid constructor \& conversion. |
|
161 |
/// %Invalid constructor \& conversion. |
|
149 | 162 |
|
150 |
/// |
|
163 |
/// Initializes the iterator to be invalid. |
|
151 | 164 |
/// \sa Invalid for more details. |
152 | 165 |
NodeIt(Invalid) { } |
153 | 166 |
/// Sets the iterator to the first node. |
154 | 167 |
|
155 |
/// Sets the iterator to the first node of |
|
168 |
/// Sets the iterator to the first node of the given digraph. |
|
156 | 169 |
/// |
157 |
NodeIt(const Graph&) { } |
|
158 |
/// Node -> NodeIt conversion. |
|
170 |
explicit NodeIt(const Graph&) { } |
|
171 |
/// Sets the iterator to the given node. |
|
159 | 172 |
|
160 |
/// Sets the iterator to the node of \c the graph pointed by |
|
161 |
/// the trivial iterator. |
|
162 |
/// This feature necessitates that each time we |
|
163 |
/// iterate the arc-set, the iteration order is the same. |
|
173 |
/// Sets the iterator to the given node of the given digraph. |
|
174 |
/// |
|
164 | 175 |
NodeIt(const Graph&, const Node&) { } |
165 | 176 |
/// Next node. |
166 | 177 |
|
167 | 178 |
/// Assign the iterator to the next node. |
168 | 179 |
/// |
169 | 180 |
NodeIt& operator++() { return *this; } |
170 | 181 |
}; |
171 | 182 |
|
172 | 183 |
|
173 |
/// The |
|
184 |
/// The edge type of the graph |
|
174 | 185 |
|
175 |
/// The base type of the edge iterators. |
|
176 |
/// |
|
186 |
/// This class identifies an edge of the graph. It also serves |
|
187 |
/// as a base class of the edge iterators, |
|
188 |
/// thus they will convert to this type. |
|
177 | 189 |
class Edge { |
178 | 190 |
public: |
179 | 191 |
/// Default constructor |
180 | 192 |
|
181 |
/// @warning The default constructor sets the iterator |
|
182 |
/// to an undefined value. |
|
193 |
/// Default constructor. |
|
194 |
/// \warning It sets the object to an undefined value. |
|
183 | 195 |
Edge() { } |
184 | 196 |
/// Copy constructor. |
185 | 197 |
|
186 | 198 |
/// Copy constructor. |
187 | 199 |
/// |
188 | 200 |
Edge(const Edge&) { } |
189 |
/// |
|
201 |
/// %Invalid constructor \& conversion. |
|
190 | 202 |
|
191 |
/// Initialize the iterator to be invalid. |
|
192 |
/// |
|
203 |
/// Initializes the object to be invalid. |
|
204 |
/// \sa Invalid for more details. |
|
193 | 205 |
Edge(Invalid) { } |
194 | 206 |
/// Equality operator |
195 | 207 |
|
208 |
/// Equality operator. |
|
209 |
/// |
|
196 | 210 |
/// Two iterators are equal if and only if they point to the |
197 |
/// same object or both are |
|
211 |
/// same object or both are \c INVALID. |
|
198 | 212 |
bool operator==(Edge) const { return true; } |
199 | 213 |
/// Inequality operator |
200 | 214 |
|
201 |
/// \sa operator==(Edge n) |
|
202 |
/// |
|
215 |
/// Inequality operator. |
|
203 | 216 |
bool operator!=(Edge) const { return true; } |
204 | 217 |
|
205 | 218 |
/// Artificial ordering operator. |
206 | 219 |
|
207 |
/// To allow the use of graph descriptors as key type in std::map or |
|
208 |
/// similar associative container we require this. |
|
220 |
/// Artificial ordering operator. |
|
209 | 221 |
/// |
210 |
/// \note This operator only have to define some strict ordering of |
|
211 |
/// the items; this order has nothing to do with the iteration |
|
212 |
/// ordering of |
|
222 |
/// \note This operator only has to define some strict ordering of |
|
223 |
/// the edges; this order has nothing to do with the iteration |
|
224 |
/// ordering of the edges. |
|
213 | 225 |
bool operator<(Edge) const { return false; } |
214 | 226 |
}; |
215 | 227 |
|
216 |
/// |
|
228 |
/// Iterator class for the edges. |
|
217 | 229 |
|
218 |
/// This iterator goes through each edge of a graph. |
|
219 |
/// Its usage is quite simple, for example you can count the number |
|
220 |
/// |
|
230 |
/// This iterator goes through each edge of the graph. |
|
231 |
/// Its usage is quite simple, for example, you can count the number |
|
232 |
/// of edges in a graph \c g of type \c %Graph as follows: |
|
221 | 233 |
///\code |
222 | 234 |
/// int count=0; |
223 | 235 |
/// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; |
224 | 236 |
///\endcode |
225 | 237 |
class EdgeIt : public Edge { |
226 | 238 |
public: |
227 | 239 |
/// Default constructor |
228 | 240 |
|
229 |
/// @warning The default constructor sets the iterator |
|
230 |
/// to an undefined value. |
|
241 |
/// Default constructor. |
|
242 |
/// \warning It sets the iterator to an undefined value. |
|
231 | 243 |
EdgeIt() { } |
232 | 244 |
/// Copy constructor. |
233 | 245 |
|
234 | 246 |
/// Copy constructor. |
235 | 247 |
/// |
236 | 248 |
EdgeIt(const EdgeIt& e) : Edge(e) { } |
237 |
/// |
|
249 |
/// %Invalid constructor \& conversion. |
|
238 | 250 |
|
239 |
/// |
|
251 |
/// Initializes the iterator to be invalid. |
|
252 |
/// \sa Invalid for more details. |
|
253 |
EdgeIt(Invalid) { } |
|
254 |
/// Sets the iterator to the first edge. |
|
255 |
|
|
256 |
/// Sets the iterator to the first edge of the given graph. |
|
240 | 257 |
/// |
241 |
EdgeIt(Invalid) { } |
|
242 |
/// This constructor sets the iterator to the first edge. |
|
258 |
explicit EdgeIt(const Graph&) { } |
|
259 |
/// Sets the iterator to the given edge. |
|
243 | 260 |
|
244 |
/// This constructor sets the iterator to the first edge. |
|
245 |
EdgeIt(const Graph&) { } |
|
246 |
/// Edge -> EdgeIt conversion |
|
247 |
|
|
248 |
/// Sets the iterator to the value of the trivial iterator. |
|
249 |
/// This feature necessitates that each time we |
|
250 |
/// iterate the edge-set, the iteration order is the |
|
251 |
/// same. |
|
261 |
/// Sets the iterator to the given edge of the given graph. |
|
262 |
/// |
|
252 | 263 |
EdgeIt(const Graph&, const Edge&) { } |
253 | 264 |
/// Next edge |
254 | 265 |
|
255 | 266 |
/// Assign the iterator to the next edge. |
267 |
/// |
|
256 | 268 |
EdgeIt& operator++() { return *this; } |
257 | 269 |
}; |
258 | 270 |
|
259 |
/// \brief This iterator goes trough the incident undirected |
|
260 |
/// arcs of a node. |
|
261 |
/// |
|
262 |
/// This iterator goes trough the incident edges |
|
263 |
/// of a certain node of a graph. You should assume that the |
|
264 |
/// loop arcs will be iterated twice. |
|
265 |
/// |
|
266 |
/// Its usage is quite simple, for example you can compute the |
|
267 |
/// degree (i.e. count the number of incident arcs of a node \c n |
|
268 |
/// in graph \c g of type \c Graph as follows. |
|
271 |
/// Iterator class for the incident edges of a node. |
|
272 |
|
|
273 |
/// This iterator goes trough the incident undirected edges |
|
274 |
/// of a certain node of a graph. |
|
275 |
/// Its usage is quite simple, for example, you can compute the |
|
276 |
/// degree (i.e. the number of incident edges) of a node \c n |
|
277 |
/// in a graph \c g of type \c %Graph as follows. |
|
269 | 278 |
/// |
270 | 279 |
///\code |
271 | 280 |
/// int count=0; |
272 | 281 |
/// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
273 | 282 |
///\endcode |
283 |
/// |
|
284 |
/// \warning Loop edges will be iterated twice. |
|
274 | 285 |
class IncEdgeIt : public Edge { |
275 | 286 |
public: |
276 | 287 |
/// Default constructor |
277 | 288 |
|
278 |
/// @warning The default constructor sets the iterator |
|
279 |
/// to an undefined value. |
|
289 |
/// Default constructor. |
|
290 |
/// \warning It sets the iterator to an undefined value. |
|
280 | 291 |
IncEdgeIt() { } |
281 | 292 |
/// Copy constructor. |
282 | 293 |
|
283 | 294 |
/// Copy constructor. |
284 | 295 |
/// |
285 | 296 |
IncEdgeIt(const IncEdgeIt& e) : Edge(e) { } |
286 |
/// |
|
297 |
/// %Invalid constructor \& conversion. |
|
287 | 298 |
|
288 |
/// |
|
299 |
/// Initializes the iterator to be invalid. |
|
300 |
/// \sa Invalid for more details. |
|
301 |
IncEdgeIt(Invalid) { } |
|
302 |
/// Sets the iterator to the first incident edge. |
|
303 |
|
|
304 |
/// Sets the iterator to the first incident edge of the given node. |
|
289 | 305 |
/// |
290 |
IncEdgeIt(Invalid) { } |
|
291 |
/// This constructor sets the iterator to first incident arc. |
|
306 |
IncEdgeIt(const Graph&, const Node&) { } |
|
307 |
/// Sets the iterator to the given edge. |
|
292 | 308 |
|
293 |
/// This constructor set the iterator to the first incident arc of |
|
294 |
/// the node. |
|
295 |
IncEdgeIt(const Graph&, const Node&) { } |
|
296 |
/// Edge -> IncEdgeIt conversion |
|
309 |
/// Sets the iterator to the given edge of the given graph. |
|
310 |
/// |
|
311 |
IncEdgeIt(const Graph&, const Edge&) { } |
|
312 |
/// Next incident edge |
|
297 | 313 |
|
298 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
299 |
/// This feature necessitates that each time we |
|
300 |
/// iterate the arc-set, the iteration order is the same. |
|
301 |
IncEdgeIt(const Graph&, const Edge&) { } |
|
302 |
/// Next incident arc |
|
303 |
|
|
304 |
/// Assign the iterator to the next incident |
|
314 |
/// Assign the iterator to the next incident edge |
|
305 | 315 |
/// of the corresponding node. |
306 | 316 |
IncEdgeIt& operator++() { return *this; } |
307 | 317 |
}; |
308 | 318 |
|
309 |
/// The |
|
319 |
/// The arc type of the graph |
|
310 | 320 |
|
311 |
/// The directed arc type. It can be converted to the |
|
312 |
/// edge or it should be inherited from the undirected |
|
313 |
/// |
|
321 |
/// This class identifies a directed arc of the graph. It also serves |
|
322 |
/// as a base class of the arc iterators, |
|
323 |
/// thus they will convert to this type. |
|
314 | 324 |
class Arc { |
315 | 325 |
public: |
316 | 326 |
/// Default constructor |
317 | 327 |
|
318 |
/// @warning The default constructor sets the iterator |
|
319 |
/// to an undefined value. |
|
328 |
/// Default constructor. |
|
329 |
/// \warning It sets the object to an undefined value. |
|
320 | 330 |
Arc() { } |
321 | 331 |
/// Copy constructor. |
322 | 332 |
|
323 | 333 |
/// Copy constructor. |
324 | 334 |
/// |
325 | 335 |
Arc(const Arc&) { } |
326 |
/// |
|
336 |
/// %Invalid constructor \& conversion. |
|
327 | 337 |
|
328 |
/// Initialize the iterator to be invalid. |
|
329 |
/// |
|
338 |
/// Initializes the object to be invalid. |
|
339 |
/// \sa Invalid for more details. |
|
330 | 340 |
Arc(Invalid) { } |
331 | 341 |
/// Equality operator |
332 | 342 |
|
343 |
/// Equality operator. |
|
344 |
/// |
|
333 | 345 |
/// Two iterators are equal if and only if they point to the |
334 |
/// same object or both are |
|
346 |
/// same object or both are \c INVALID. |
|
335 | 347 |
bool operator==(Arc) const { return true; } |
336 | 348 |
/// Inequality operator |
337 | 349 |
|
338 |
/// \sa operator==(Arc n) |
|
339 |
/// |
|
350 |
/// Inequality operator. |
|
340 | 351 |
bool operator!=(Arc) const { return true; } |
341 | 352 |
|
342 | 353 |
/// Artificial ordering operator. |
343 | 354 |
|
344 |
/// To allow the use of graph descriptors as key type in std::map or |
|
345 |
/// similar associative container we require this. |
|
355 |
/// Artificial ordering operator. |
|
346 | 356 |
/// |
347 |
/// \note This operator only have to define some strict ordering of |
|
348 |
/// the items; this order has nothing to do with the iteration |
|
349 |
/// ordering of |
|
357 |
/// \note This operator only has to define some strict ordering of |
|
358 |
/// the arcs; this order has nothing to do with the iteration |
|
359 |
/// ordering of the arcs. |
|
350 | 360 |
bool operator<(Arc) const { return false; } |
351 | 361 |
|
352 |
/// Converison to Edge |
|
362 |
/// Converison to \c Edge |
|
363 |
|
|
364 |
/// Converison to \c Edge. |
|
365 |
/// |
|
353 | 366 |
operator Edge() const { return Edge(); } |
354 | 367 |
}; |
355 |
/// This iterator goes through each directed arc. |
|
356 | 368 |
|
357 |
/// This iterator goes through each arc of a graph. |
|
358 |
/// Its usage is quite simple, for example you can count the number |
|
359 |
/// |
|
369 |
/// Iterator class for the arcs. |
|
370 |
|
|
371 |
/// This iterator goes through each directed arc of the graph. |
|
372 |
/// Its usage is quite simple, for example, you can count the number |
|
373 |
/// of arcs in a graph \c g of type \c %Graph as follows: |
|
360 | 374 |
///\code |
361 | 375 |
/// int count=0; |
362 |
/// for(Graph::ArcIt |
|
376 |
/// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count; |
|
363 | 377 |
///\endcode |
364 | 378 |
class ArcIt : public Arc { |
365 | 379 |
public: |
366 | 380 |
/// Default constructor |
367 | 381 |
|
368 |
/// @warning The default constructor sets the iterator |
|
369 |
/// to an undefined value. |
|
382 |
/// Default constructor. |
|
383 |
/// \warning It sets the iterator to an undefined value. |
|
370 | 384 |
ArcIt() { } |
371 | 385 |
/// Copy constructor. |
372 | 386 |
|
373 | 387 |
/// Copy constructor. |
374 | 388 |
/// |
375 | 389 |
ArcIt(const ArcIt& e) : Arc(e) { } |
376 |
/// |
|
390 |
/// %Invalid constructor \& conversion. |
|
377 | 391 |
|
378 |
/// |
|
392 |
/// Initializes the iterator to be invalid. |
|
393 |
/// \sa Invalid for more details. |
|
394 |
ArcIt(Invalid) { } |
|
395 |
/// Sets the iterator to the first arc. |
|
396 |
|
|
397 |
/// Sets the iterator to the first arc of the given graph. |
|
379 | 398 |
/// |
380 |
ArcIt(Invalid) { } |
|
381 |
/// This constructor sets the iterator to the first arc. |
|
399 |
explicit ArcIt(const Graph &g) { ignore_unused_variable_warning(g); } |
|
400 |
/// Sets the iterator to the given arc. |
|
382 | 401 |
|
383 |
/// This constructor sets the iterator to the first arc of \c g. |
|
384 |
///@param g the graph |
|
385 |
ArcIt(const Graph &g) { ignore_unused_variable_warning(g); } |
|
386 |
/// Arc -> ArcIt conversion |
|
387 |
|
|
388 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
389 |
/// This feature necessitates that each time we |
|
390 |
/// iterate the arc-set, the iteration order is the same. |
|
402 |
/// Sets the iterator to the given arc of the given graph. |
|
403 |
/// |
|
391 | 404 |
ArcIt(const Graph&, const Arc&) { } |
392 |
///Next arc |
|
405 |
/// Next arc |
|
393 | 406 |
|
394 | 407 |
/// Assign the iterator to the next arc. |
408 |
/// |
|
395 | 409 |
ArcIt& operator++() { return *this; } |
396 | 410 |
}; |
397 | 411 |
|
398 |
/// |
|
412 |
/// Iterator class for the outgoing arcs of a node. |
|
399 | 413 |
|
400 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
|
401 |
/// of a graph. |
|
402 |
/// |
|
414 |
/// This iterator goes trough the \e outgoing directed arcs of a |
|
415 |
/// certain node of a graph. |
|
416 |
/// Its usage is quite simple, for example, you can count the number |
|
403 | 417 |
/// of outgoing arcs of a node \c n |
404 |
/// in graph \c g of type \c Graph as follows. |
|
418 |
/// in a graph \c g of type \c %Graph as follows. |
|
405 | 419 |
///\code |
406 | 420 |
/// int count=0; |
407 |
/// for ( |
|
421 |
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
408 | 422 |
///\endcode |
409 |
|
|
410 | 423 |
class OutArcIt : public Arc { |
411 | 424 |
public: |
412 | 425 |
/// Default constructor |
413 | 426 |
|
414 |
/// @warning The default constructor sets the iterator |
|
415 |
/// to an undefined value. |
|
427 |
/// Default constructor. |
|
428 |
/// \warning It sets the iterator to an undefined value. |
|
416 | 429 |
OutArcIt() { } |
417 | 430 |
/// Copy constructor. |
418 | 431 |
|
419 | 432 |
/// Copy constructor. |
420 | 433 |
/// |
421 | 434 |
OutArcIt(const OutArcIt& e) : Arc(e) { } |
422 |
/// |
|
435 |
/// %Invalid constructor \& conversion. |
|
423 | 436 |
|
424 |
/// |
|
437 |
/// Initializes the iterator to be invalid. |
|
438 |
/// \sa Invalid for more details. |
|
439 |
OutArcIt(Invalid) { } |
|
440 |
/// Sets the iterator to the first outgoing arc. |
|
441 |
|
|
442 |
/// Sets the iterator to the first outgoing arc of the given node. |
|
425 | 443 |
/// |
426 |
OutArcIt(Invalid) { } |
|
427 |
/// This constructor sets the iterator to the first outgoing arc. |
|
428 |
|
|
429 |
/// This constructor sets the iterator to the first outgoing arc of |
|
430 |
/// the node. |
|
431 |
///@param n the node |
|
432 |
///@param g the graph |
|
433 | 444 |
OutArcIt(const Graph& n, const Node& g) { |
434 | 445 |
ignore_unused_variable_warning(n); |
435 | 446 |
ignore_unused_variable_warning(g); |
436 | 447 |
} |
437 |
/// |
|
448 |
/// Sets the iterator to the given arc. |
|
438 | 449 |
|
439 |
/// Sets the iterator to the value of the trivial iterator. |
|
440 |
/// This feature necessitates that each time we |
|
441 |
/// |
|
450 |
/// Sets the iterator to the given arc of the given graph. |
|
451 |
/// |
|
442 | 452 |
OutArcIt(const Graph&, const Arc&) { } |
443 |
///Next outgoing arc |
|
453 |
/// Next outgoing arc |
|
444 | 454 |
|
445 | 455 |
/// Assign the iterator to the next |
446 | 456 |
/// outgoing arc of the corresponding node. |
447 | 457 |
OutArcIt& operator++() { return *this; } |
448 | 458 |
}; |
449 | 459 |
|
450 |
/// |
|
460 |
/// Iterator class for the incoming arcs of a node. |
|
451 | 461 |
|
452 |
/// This iterator goes trough the \e incoming arcs of a certain node |
|
453 |
/// of a graph. |
|
454 |
/// Its usage is quite simple, for example you can count the number |
|
455 |
/// of outgoing arcs of a node \c n |
|
456 |
/// |
|
462 |
/// This iterator goes trough the \e incoming directed arcs of a |
|
463 |
/// certain node of a graph. |
|
464 |
/// Its usage is quite simple, for example, you can count the number |
|
465 |
/// of incoming arcs of a node \c n |
|
466 |
/// in a graph \c g of type \c %Graph as follows. |
|
457 | 467 |
///\code |
458 | 468 |
/// int count=0; |
459 |
/// for( |
|
469 |
/// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
460 | 470 |
///\endcode |
461 |
|
|
462 | 471 |
class InArcIt : public Arc { |
463 | 472 |
public: |
464 | 473 |
/// Default constructor |
465 | 474 |
|
466 |
/// @warning The default constructor sets the iterator |
|
467 |
/// to an undefined value. |
|
475 |
/// Default constructor. |
|
476 |
/// \warning It sets the iterator to an undefined value. |
|
468 | 477 |
InArcIt() { } |
469 | 478 |
/// Copy constructor. |
470 | 479 |
|
471 | 480 |
/// Copy constructor. |
472 | 481 |
/// |
473 | 482 |
InArcIt(const InArcIt& e) : Arc(e) { } |
474 |
/// |
|
483 |
/// %Invalid constructor \& conversion. |
|
475 | 484 |
|
476 |
/// |
|
485 |
/// Initializes the iterator to be invalid. |
|
486 |
/// \sa Invalid for more details. |
|
487 |
InArcIt(Invalid) { } |
|
488 |
/// Sets the iterator to the first incoming arc. |
|
489 |
|
|
490 |
/// Sets the iterator to the first incoming arc of the given node. |
|
477 | 491 |
/// |
478 |
InArcIt(Invalid) { } |
|
479 |
/// This constructor sets the iterator to first incoming arc. |
|
480 |
|
|
481 |
/// This constructor set the iterator to the first incoming arc of |
|
482 |
/// the node. |
|
483 |
///@param n the node |
|
484 |
///@param g the graph |
|
485 | 492 |
InArcIt(const Graph& g, const Node& n) { |
486 | 493 |
ignore_unused_variable_warning(n); |
487 | 494 |
ignore_unused_variable_warning(g); |
488 | 495 |
} |
489 |
/// |
|
496 |
/// Sets the iterator to the given arc. |
|
490 | 497 |
|
491 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
492 |
/// This feature necessitates that each time we |
|
493 |
/// |
|
498 |
/// Sets the iterator to the given arc of the given graph. |
|
499 |
/// |
|
494 | 500 |
InArcIt(const Graph&, const Arc&) { } |
495 | 501 |
/// Next incoming arc |
496 | 502 |
|
497 |
/// Assign the iterator to the next inarc of the corresponding node. |
|
498 |
/// |
|
503 |
/// Assign the iterator to the next |
|
504 |
/// incoming arc of the corresponding node. |
|
499 | 505 |
InArcIt& operator++() { return *this; } |
500 | 506 |
}; |
501 | 507 |
|
502 |
/// \brief |
|
508 |
/// \brief Standard graph map type for the nodes. |
|
503 | 509 |
/// |
504 |
/// |
|
510 |
/// Standard graph map type for the nodes. |
|
511 |
/// It conforms to the ReferenceMap concept. |
|
505 | 512 |
template<class T> |
506 | 513 |
class NodeMap : public ReferenceMap<Node, T, T&, const T&> |
507 | 514 |
{ |
508 | 515 |
public: |
509 | 516 |
|
510 |
///\e |
|
511 |
NodeMap(const Graph&) { } |
|
512 |
/// |
|
517 |
/// Constructor |
|
518 |
explicit NodeMap(const Graph&) { } |
|
519 |
/// Constructor with given initial value |
|
513 | 520 |
NodeMap(const Graph&, T) { } |
514 | 521 |
|
515 | 522 |
private: |
516 | 523 |
///Copy constructor |
517 | 524 |
NodeMap(const NodeMap& nm) : |
518 | 525 |
ReferenceMap<Node, T, T&, const T&>(nm) { } |
... | ... |
@@ -521,161 +528,182 @@ |
521 | 528 |
NodeMap& operator=(const CMap&) { |
522 | 529 |
checkConcept<ReadMap<Node, T>, CMap>(); |
523 | 530 |
return *this; |
524 | 531 |
} |
525 | 532 |
}; |
526 | 533 |
|
527 |
/// \brief |
|
534 |
/// \brief Standard graph map type for the arcs. |
|
528 | 535 |
/// |
529 |
/// |
|
536 |
/// Standard graph map type for the arcs. |
|
537 |
/// It conforms to the ReferenceMap concept. |
|
530 | 538 |
template<class T> |
531 | 539 |
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> |
532 | 540 |
{ |
533 | 541 |
public: |
534 | 542 |
|
535 |
///\e |
|
536 |
ArcMap(const Graph&) { } |
|
537 |
/// |
|
543 |
/// Constructor |
|
544 |
explicit ArcMap(const Graph&) { } |
|
545 |
/// Constructor with given initial value |
|
538 | 546 |
ArcMap(const Graph&, T) { } |
547 |
|
|
539 | 548 |
private: |
540 | 549 |
///Copy constructor |
541 | 550 |
ArcMap(const ArcMap& em) : |
542 | 551 |
ReferenceMap<Arc, T, T&, const T&>(em) { } |
543 | 552 |
///Assignment operator |
544 | 553 |
template <typename CMap> |
545 | 554 |
ArcMap& operator=(const CMap&) { |
546 | 555 |
checkConcept<ReadMap<Arc, T>, CMap>(); |
547 | 556 |
return *this; |
548 | 557 |
} |
549 | 558 |
}; |
550 | 559 |
|
551 |
/// Reference map of the edges to type \c T. |
|
552 |
|
|
553 |
/// |
|
560 |
/// \brief Standard graph map type for the edges. |
|
561 |
/// |
|
562 |
/// Standard graph map type for the edges. |
|
563 |
/// It conforms to the ReferenceMap concept. |
|
554 | 564 |
template<class T> |
555 | 565 |
class EdgeMap : public ReferenceMap<Edge, T, T&, const T&> |
556 | 566 |
{ |
557 | 567 |
public: |
558 | 568 |
|
559 |
///\e |
|
560 |
EdgeMap(const Graph&) { } |
|
561 |
/// |
|
569 |
/// Constructor |
|
570 |
explicit EdgeMap(const Graph&) { } |
|
571 |
/// Constructor with given initial value |
|
562 | 572 |
EdgeMap(const Graph&, T) { } |
573 |
|
|
563 | 574 |
private: |
564 | 575 |
///Copy constructor |
565 | 576 |
EdgeMap(const EdgeMap& em) : |
566 | 577 |
ReferenceMap<Edge, T, T&, const T&>(em) {} |
567 | 578 |
///Assignment operator |
568 | 579 |
template <typename CMap> |
569 | 580 |
EdgeMap& operator=(const CMap&) { |
570 | 581 |
checkConcept<ReadMap<Edge, T>, CMap>(); |
571 | 582 |
return *this; |
572 | 583 |
} |
573 | 584 |
}; |
574 | 585 |
|
575 |
/// \brief |
|
586 |
/// \brief The first node of the edge. |
|
576 | 587 |
/// |
577 |
/// Direct the given edge. The returned arc source |
|
578 |
/// will be the given node. |
|
579 |
Arc direct(const Edge&, const Node&) const { |
|
580 |
return INVALID; |
|
581 |
} |
|
582 |
|
|
583 |
/// |
|
588 |
/// Returns the first node of the given edge. |
|
584 | 589 |
/// |
585 |
/// Direct the given edge. The returned arc |
|
586 |
/// represents the given edge and the direction comes |
|
587 |
/// from the bool parameter. The source of the edge and |
|
588 |
/// the directed arc is the same when the given bool is true. |
|
589 |
Arc direct(const Edge&, bool) const { |
|
590 |
return INVALID; |
|
591 |
} |
|
592 |
|
|
593 |
/// \brief Returns true if the arc has default orientation. |
|
594 |
/// |
|
595 |
/// Returns whether the given directed arc is same orientation as |
|
596 |
/// the corresponding edge's default orientation. |
|
597 |
bool direction(Arc) const { return true; } |
|
598 |
|
|
599 |
/// \brief Returns the opposite directed arc. |
|
600 |
/// |
|
601 |
/// Returns the opposite directed arc. |
|
602 |
Arc oppositeArc(Arc) const { return INVALID; } |
|
603 |
|
|
604 |
/// \brief Opposite node on an arc |
|
605 |
/// |
|
606 |
/// \return The opposite of the given node on the given edge. |
|
607 |
Node oppositeNode(Node, Edge) const { return INVALID; } |
|
608 |
|
|
609 |
/// \brief First node of the edge. |
|
610 |
/// |
|
611 |
/// \return The first node of the given edge. |
|
612 |
/// |
|
613 |
/// Naturally edges don't have direction and thus |
|
614 |
/// don't have source and target node. However we use \c u() and \c v() |
|
615 |
/// methods to query the two nodes of the arc. The direction of the |
|
616 |
/// arc which arises this way is called the inherent direction of the |
|
617 |
/// edge, and is used to define the "default" direction |
|
618 |
/// of the directed versions of the arcs. |
|
590 |
/// Edges don't have source and target nodes, however, methods |
|
591 |
/// u() and v() are used to query the two end-nodes of an edge. |
|
592 |
/// The orientation of an edge that arises this way is called |
|
593 |
/// the inherent direction, it is used to define the default |
|
594 |
/// direction for the corresponding arcs. |
|
619 | 595 |
/// \sa v() |
620 | 596 |
/// \sa direction() |
621 | 597 |
Node u(Edge) const { return INVALID; } |
622 | 598 |
|
623 |
/// \brief |
|
599 |
/// \brief The second node of the edge. |
|
624 | 600 |
/// |
625 |
/// |
|
601 |
/// Returns the second node of the given edge. |
|
626 | 602 |
/// |
627 |
/// Naturally edges don't have direction and thus |
|
628 |
/// don't have source and target node. However we use \c u() and \c v() |
|
629 |
/// methods to query the two nodes of the arc. The direction of the |
|
630 |
/// arc which arises this way is called the inherent direction of the |
|
631 |
/// edge, and is used to define the "default" direction |
|
632 |
/// of the directed versions of the arcs. |
|
603 |
/// Edges don't have source and target nodes, however, methods |
|
604 |
/// u() and v() are used to query the two end-nodes of an edge. |
|
605 |
/// The orientation of an edge that arises this way is called |
|
606 |
/// the inherent direction, it is used to define the default |
|
607 |
/// direction for the corresponding arcs. |
|
633 | 608 |
/// \sa u() |
634 | 609 |
/// \sa direction() |
635 | 610 |
Node v(Edge) const { return INVALID; } |
636 | 611 |
|
637 |
/// \brief |
|
612 |
/// \brief The source node of the arc. |
|
613 |
/// |
|
614 |
/// Returns the source node of the given arc. |
|
638 | 615 |
Node source(Arc) const { return INVALID; } |
639 | 616 |
|
640 |
/// \brief |
|
617 |
/// \brief The target node of the arc. |
|
618 |
/// |
|
619 |
/// Returns the target node of the given arc. |
|
641 | 620 |
Node target(Arc) const { return INVALID; } |
642 | 621 |
|
643 |
/// \brief |
|
622 |
/// \brief The ID of the node. |
|
623 |
/// |
|
624 |
/// Returns the ID of the given node. |
|
644 | 625 |
int id(Node) const { return -1; } |
645 | 626 |
|
646 |
/// \brief |
|
627 |
/// \brief The ID of the edge. |
|
628 |
/// |
|
629 |
/// Returns the ID of the given edge. |
|
647 | 630 |
int id(Edge) const { return -1; } |
648 | 631 |
|
649 |
/// \brief |
|
632 |
/// \brief The ID of the arc. |
|
633 |
/// |
|
634 |
/// Returns the ID of the given arc. |
|
650 | 635 |
int id(Arc) const { return -1; } |
651 | 636 |
|
652 |
/// \brief |
|
637 |
/// \brief The node with the given ID. |
|
653 | 638 |
/// |
654 |
/// |
|
639 |
/// Returns the node with the given ID. |
|
640 |
/// \pre The argument should be a valid node ID in the graph. |
|
655 | 641 |
Node nodeFromId(int) const { return INVALID; } |
656 | 642 |
|
657 |
/// \brief |
|
643 |
/// \brief The edge with the given ID. |
|
658 | 644 |
/// |
659 |
/// |
|
645 |
/// Returns the edge with the given ID. |
|
646 |
/// \pre The argument should be a valid edge ID in the graph. |
|
660 | 647 |
Edge edgeFromId(int) const { return INVALID; } |
661 | 648 |
|
662 |
/// \brief |
|
649 |
/// \brief The arc with the given ID. |
|
663 | 650 |
/// |
664 |
/// |
|
651 |
/// Returns the arc with the given ID. |
|
652 |
/// \pre The argument should be a valid arc ID in the graph. |
|
665 | 653 |
Arc arcFromId(int) const { return INVALID; } |
666 | 654 |
|
667 |
/// \brief |
|
655 |
/// \brief An upper bound on the node IDs. |
|
656 |
/// |
|
657 |
/// Returns an upper bound on the node IDs. |
|
668 | 658 |
int maxNodeId() const { return -1; } |
669 | 659 |
|
670 |
/// \brief |
|
660 |
/// \brief An upper bound on the edge IDs. |
|
661 |
/// |
|
662 |
/// Returns an upper bound on the edge IDs. |
|
671 | 663 |
int maxEdgeId() const { return -1; } |
672 | 664 |
|
673 |
/// \brief |
|
665 |
/// \brief An upper bound on the arc IDs. |
|
666 |
/// |
|
667 |
/// Returns an upper bound on the arc IDs. |
|
674 | 668 |
int maxArcId() const { return -1; } |
675 | 669 |
|
670 |
/// \brief The direction of the arc. |
|
671 |
/// |
|
672 |
/// Returns \c true if the direction of the given arc is the same as |
|
673 |
/// the inherent orientation of the represented edge. |
|
674 |
bool direction(Arc) const { return true; } |
|
675 |
|
|
676 |
/// \brief Direct the edge. |
|
677 |
/// |
|
678 |
/// Direct the given edge. The returned arc |
|
679 |
/// represents the given edge and its direction comes |
|
680 |
/// from the bool parameter. If it is \c true, then the direction |
|
681 |
/// of the arc is the same as the inherent orientation of the edge. |
|
682 |
Arc direct(Edge, bool) const { |
|
683 |
return INVALID; |
|
684 |
} |
|
685 |
|
|
686 |
/// \brief Direct the edge. |
|
687 |
/// |
|
688 |
/// Direct the given edge. The returned arc represents the given |
|
689 |
/// edge and its source node is the given node. |
|
690 |
Arc direct(Edge, Node) const { |
|
691 |
return INVALID; |
|
692 |
} |
|
693 |
|
|
694 |
/// \brief The oppositely directed arc. |
|
695 |
/// |
|
696 |
/// Returns the oppositely directed arc representing the same edge. |
|
697 |
Arc oppositeArc(Arc) const { return INVALID; } |
|
698 |
|
|
699 |
/// \brief The opposite node on the edge. |
|
700 |
/// |
|
701 |
/// Returns the opposite node on the given edge. |
|
702 |
Node oppositeNode(Node, Edge) const { return INVALID; } |
|
703 |
|
|
676 | 704 |
void first(Node&) const {} |
677 | 705 |
void next(Node&) const {} |
678 | 706 |
|
679 | 707 |
void first(Edge&) const {} |
680 | 708 |
void next(Edge&) const {} |
681 | 709 |
|
... | ... |
@@ -702,53 +730,45 @@ |
702 | 730 |
int maxId(Node) const { return -1; } |
703 | 731 |
// Dummy parameter. |
704 | 732 |
int maxId(Edge) const { return -1; } |
705 | 733 |
// Dummy parameter. |
706 | 734 |
int maxId(Arc) const { return -1; } |
707 | 735 |
|
708 |
/// \brief |
|
736 |
/// \brief The base node of the iterator. |
|
709 | 737 |
/// |
710 |
/// Returns the base node (the source in this case) of the iterator |
|
711 |
Node baseNode(OutArcIt e) const { |
|
712 |
return source(e); |
|
713 |
} |
|
714 |
/// |
|
738 |
/// Returns the base node of the given incident edge iterator. |
|
739 |
Node baseNode(IncEdgeIt) const { return INVALID; } |
|
740 |
|
|
741 |
/// \brief The running node of the iterator. |
|
715 | 742 |
/// |
716 |
/// Returns the running node (the target in this case) of the |
|
717 |
/// iterator |
|
718 |
Node runningNode(OutArcIt e) const { |
|
719 |
return target(e); |
|
720 |
|
|
743 |
/// Returns the running node of the given incident edge iterator. |
|
744 |
Node runningNode(IncEdgeIt) const { return INVALID; } |
|
721 | 745 |
|
722 |
/// \brief |
|
746 |
/// \brief The base node of the iterator. |
|
723 | 747 |
/// |
724 |
/// Returns the base node (the target in this case) of the iterator |
|
725 |
Node baseNode(InArcIt e) const { |
|
726 |
return target(e); |
|
727 |
} |
|
728 |
/// |
|
748 |
/// Returns the base node of the given outgoing arc iterator |
|
749 |
/// (i.e. the source node of the corresponding arc). |
|
750 |
Node baseNode(OutArcIt) const { return INVALID; } |
|
751 |
|
|
752 |
/// \brief The running node of the iterator. |
|
729 | 753 |
/// |
730 |
/// Returns the running node (the source in this case) of the |
|
731 |
/// iterator |
|
732 |
Node runningNode(InArcIt e) const { |
|
733 |
return source(e); |
|
734 |
|
|
754 |
/// Returns the running node of the given outgoing arc iterator |
|
755 |
/// (i.e. the target node of the corresponding arc). |
|
756 |
Node runningNode(OutArcIt) const { return INVALID; } |
|
735 | 757 |
|
736 |
/// \brief |
|
758 |
/// \brief The base node of the iterator. |
|
737 | 759 |
/// |
738 |
/// Returns the base node of the iterator |
|
739 |
Node baseNode(IncEdgeIt) const { |
|
740 |
return INVALID; |
|
741 |
} |
|
760 |
/// Returns the base node of the given incomming arc iterator |
|
761 |
/// (i.e. the target node of the corresponding arc). |
|
762 |
Node baseNode(InArcIt) const { return INVALID; } |
|
742 | 763 |
|
743 |
/// \brief |
|
764 |
/// \brief The running node of the iterator. |
|
744 | 765 |
/// |
745 |
/// Returns the running node of the iterator |
|
746 |
Node runningNode(IncEdgeIt) const { |
|
747 |
return INVALID; |
|
748 |
} |
|
766 |
/// Returns the running node of the given incomming arc iterator |
|
767 |
/// (i.e. the source node of the corresponding arc). |
|
768 |
Node runningNode(InArcIt) const { return INVALID; } |
|
749 | 769 |
|
750 | 770 |
template <typename _Graph> |
751 | 771 |
struct Constraints { |
752 | 772 |
void constraints() { |
753 | 773 |
checkConcept<BaseGraphComponent, _Graph>(); |
754 | 774 |
checkConcept<IterableGraphComponent<>, _Graph>(); |
... | ... |
@@ -15,13 +15,13 @@ |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup graph_concepts |
20 | 20 |
///\file |
21 |
///\brief The |
|
21 |
///\brief The concepts of graph components. |
|
22 | 22 |
|
23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
24 | 24 |
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
... | ... |
@@ -89,13 +89,13 @@ |
89 | 89 |
/// \brief Ordering operator. |
90 | 90 |
/// |
91 | 91 |
/// This operator defines an ordering of the items. |
92 | 92 |
/// It makes possible to use graph item types as key types in |
93 | 93 |
/// associative containers (e.g. \c std::map). |
94 | 94 |
/// |
95 |
/// \note This operator only |
|
95 |
/// \note This operator only has to define some strict ordering of |
|
96 | 96 |
/// the items; this order has nothing to do with the iteration |
97 | 97 |
/// ordering of the items. |
98 | 98 |
bool operator<(const GraphItem&) const { return false; } |
99 | 99 |
|
100 | 100 |
template<typename _GraphItem> |
101 | 101 |
struct Constraints { |
... | ... |
@@ -179,13 +179,14 @@ |
179 | 179 |
|
180 | 180 |
/// Sets the value associated with the given key. |
181 | 181 |
void set(const Key &k,const Value &t) { operator[](k)=t; } |
182 | 182 |
|
183 | 183 |
template<typename _ReferenceMap> |
184 | 184 |
struct Constraints { |
185 |
|
|
185 |
typename enable_if<typename _ReferenceMap::ReferenceMapTag, void>::type |
|
186 |
constraints() { |
|
186 | 187 |
checkConcept<ReadWriteMap<K, T>, _ReferenceMap >(); |
187 | 188 |
ref = m[key]; |
188 | 189 |
m[key] = val; |
189 | 190 |
m[key] = ref; |
190 | 191 |
m[key] = cref; |
191 | 192 |
own_ref = m[own_key]; |
... | ... |
@@ -15,13 +15,13 @@ |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup concept |
20 | 20 |
///\file |
21 |
///\brief |
|
21 |
///\brief The concept of paths |
|
22 | 22 |
/// |
23 | 23 |
|
24 | 24 |
#ifndef LEMON_CONCEPTS_PATH_H |
25 | 25 |
#define LEMON_CONCEPTS_PATH_H |
26 | 26 |
|
27 | 27 |
#include <lemon/core.h> |
... | ... |
@@ -35,19 +35,28 @@ |
35 | 35 |
|
36 | 36 |
/// \brief A skeleton structure for representing directed paths in |
37 | 37 |
/// a digraph. |
38 | 38 |
/// |
39 | 39 |
/// A skeleton structure for representing directed paths in a |
40 | 40 |
/// digraph. |
41 |
/// In a sense, a path can be treated as a list of arcs. |
|
42 |
/// LEMON path types just store this list. As a consequence, they cannot |
|
43 |
/// enumerate the nodes on the path directly and a zero length path |
|
44 |
/// cannot store its source node. |
|
45 |
/// |
|
46 |
/// The arcs of a path should be stored in the order of their directions, |
|
47 |
/// i.e. the target node of each arc should be the same as the source |
|
48 |
/// node of the next arc. This consistency could be checked using |
|
49 |
/// \ref checkPath(). |
|
50 |
/// The source and target nodes of a (consistent) path can be obtained |
|
51 |
/// using \ref pathSource() and \ref pathTarget(). |
|
52 |
/// |
|
53 |
/// A path can be constructed from another path of any type using the |
|
54 |
/// copy constructor or the assignment operator. |
|
55 |
/// |
|
41 | 56 |
/// \tparam GR The digraph type in which the path is. |
42 |
/// |
|
43 |
/// In a sense, the path can be treated as a list of arcs. The |
|
44 |
/// lemon path type stores just this list. As a consequence it |
|
45 |
/// cannot enumerate the nodes in the path and the zero length |
|
46 |
/// paths cannot store the source. |
|
47 |
/// |
|
48 | 57 |
template <typename GR> |
49 | 58 |
class Path { |
50 | 59 |
public: |
51 | 60 |
|
52 | 61 |
/// Type of the underlying digraph. |
53 | 62 |
typedef GR Digraph; |
... | ... |
@@ -56,45 +65,45 @@ |
56 | 65 |
|
57 | 66 |
class ArcIt; |
58 | 67 |
|
59 | 68 |
/// \brief Default constructor |
60 | 69 |
Path() {} |
61 | 70 |
|
62 |
/// \brief Template constructor |
|
71 |
/// \brief Template copy constructor |
|
63 | 72 |
template <typename CPath> |
64 | 73 |
Path(const CPath& cpath) {} |
65 | 74 |
|
66 |
/// \brief Template assigment |
|
75 |
/// \brief Template assigment operator |
|
67 | 76 |
template <typename CPath> |
68 | 77 |
Path& operator=(const CPath& cpath) { |
69 | 78 |
ignore_unused_variable_warning(cpath); |
70 | 79 |
return *this; |
71 | 80 |
} |
72 | 81 |
|
73 |
/// Length of the path |
|
82 |
/// Length of the path, i.e. the number of arcs on the path. |
|
74 | 83 |
int length() const { return 0;} |
75 | 84 |
|
76 | 85 |
/// Returns whether the path is empty. |
77 | 86 |
bool empty() const { return true;} |
78 | 87 |
|
79 | 88 |
/// Resets the path to an empty path. |
80 | 89 |
void clear() {} |
81 | 90 |
|
82 |
/// \brief LEMON style iterator for |
|
91 |
/// \brief LEMON style iterator for enumerating the arcs of a path. |
|
83 | 92 |
/// |
84 |
/// |
|
93 |
/// LEMON style iterator class for enumerating the arcs of a path. |
|
85 | 94 |
class ArcIt { |
86 | 95 |
public: |
87 | 96 |
/// Default constructor |
88 | 97 |
ArcIt() {} |
89 | 98 |
/// Invalid constructor |
90 | 99 |
ArcIt(Invalid) {} |
91 |
/// |
|
100 |
/// Sets the iterator to the first arc of the given path |
|
92 | 101 |
ArcIt(const Path &) {} |
93 | 102 |
|
94 |
/// Conversion to Arc |
|
103 |
/// Conversion to \c Arc |
|
95 | 104 |
operator Arc() const { return INVALID; } |
96 | 105 |
|
97 | 106 |
/// Next arc |
98 | 107 |
ArcIt& operator++() {return *this;} |
99 | 108 |
|
100 | 109 |
/// Comparison operator |
... | ... |
@@ -189,66 +198,59 @@ |
189 | 198 |
} |
190 | 199 |
|
191 | 200 |
|
192 | 201 |
/// \brief A skeleton structure for path dumpers. |
193 | 202 |
/// |
194 | 203 |
/// A skeleton structure for path dumpers. The path dumpers are |
195 |
/// the generalization of the paths. The path dumpers can |
|
196 |
/// enumerate the arcs of the path wheter in forward or in |
|
197 |
/// backward order. In most time these classes are not used |
|
198 |
/// directly rather it used to assign a dumped class to a real |
|
199 |
/// |
|
204 |
/// the generalization of the paths, they can enumerate the arcs |
|
205 |
/// of the path either in forward or in backward order. |
|
206 |
/// These classes are typically not used directly, they are rather |
|
207 |
/// used to be assigned to a real path type. |
|
200 | 208 |
/// |
201 | 209 |
/// The main purpose of this concept is that the shortest path |
202 |
/// algorithms can enumerate easily the arcs in reverse order. |
|
203 |
/// If we would like to give back a real path from these |
|
204 |
/// algorithms then we should create a temporarly path object. In |
|
205 |
/// LEMON such algorithms gives back a path dumper what can |
|
206 |
/// |
|
210 |
/// algorithms can enumerate the arcs easily in reverse order. |
|
211 |
/// In LEMON, such algorithms give back a (reverse) path dumper that |
|
212 |
/// can be assigned to a real path. The dumpers can be implemented as |
|
207 | 213 |
/// an adaptor class to the predecessor map. |
208 | 214 |
/// |
209 | 215 |
/// \tparam GR The digraph type in which the path is. |
210 |
/// |
|
211 |
/// The paths can be constructed from any path type by a |
|
212 |
/// template constructor or a template assignment operator. |
|
213 | 216 |
template <typename GR> |
214 | 217 |
class PathDumper { |
215 | 218 |
public: |
216 | 219 |
|
217 | 220 |
/// Type of the underlying digraph. |
218 | 221 |
typedef GR Digraph; |
219 | 222 |
/// Arc type of the underlying digraph. |
220 | 223 |
typedef typename Digraph::Arc Arc; |
221 | 224 |
|
222 |
/// Length of the path |
|
225 |
/// Length of the path, i.e. the number of arcs on the path. |
|
223 | 226 |
int length() const { return 0;} |
224 | 227 |
|
225 | 228 |
/// Returns whether the path is empty. |
226 | 229 |
bool empty() const { return true;} |
227 | 230 |
|
228 | 231 |
/// \brief Forward or reverse dumping |
229 | 232 |
/// |
230 |
/// If the RevPathTag is defined and true then reverse dumping |
|
231 |
/// is provided in the path dumper. In this case instead of the |
|
232 |
/// ArcIt the RevArcIt iterator should be implemented in the |
|
233 |
/// dumper. |
|
233 |
/// If this tag is defined to be \c True, then reverse dumping |
|
234 |
/// is provided in the path dumper. In this case, \c RevArcIt |
|
235 |
/// iterator should be implemented instead of \c ArcIt iterator. |
|
234 | 236 |
typedef False RevPathTag; |
235 | 237 |
|
236 |
/// \brief LEMON style iterator for |
|
238 |
/// \brief LEMON style iterator for enumerating the arcs of a path. |
|
237 | 239 |
/// |
238 |
/// |
|
240 |
/// LEMON style iterator class for enumerating the arcs of a path. |
|
239 | 241 |
class ArcIt { |
240 | 242 |
public: |
241 | 243 |
/// Default constructor |
242 | 244 |
ArcIt() {} |
243 | 245 |
/// Invalid constructor |
244 | 246 |
ArcIt(Invalid) {} |
245 |
/// |
|
247 |
/// Sets the iterator to the first arc of the given path |
|
246 | 248 |
ArcIt(const PathDumper&) {} |
247 | 249 |
|
248 |
/// Conversion to Arc |
|
250 |
/// Conversion to \c Arc |
|
249 | 251 |
operator Arc() const { return INVALID; } |
250 | 252 |
|
251 | 253 |
/// Next arc |
252 | 254 |
ArcIt& operator++() {return *this;} |
253 | 255 |
|
254 | 256 |
/// Comparison operator |
... | ... |
@@ -257,26 +259,27 @@ |
257 | 259 |
bool operator!=(const ArcIt&) const {return true;} |
258 | 260 |
/// Comparison operator |
259 | 261 |
bool operator<(const ArcIt&) const {return false;} |
260 | 262 |
|
261 | 263 |
}; |
262 | 264 |
|
263 |
/// \brief LEMON style iterator for |
|
265 |
/// \brief LEMON style iterator for enumerating the arcs of a path |
|
266 |
/// in reverse direction. |
|
264 | 267 |
/// |
265 |
/// This class is used to iterate on the arcs of the paths in |
|
266 |
/// reverse direction. |
|
268 |
/// LEMON style iterator class for enumerating the arcs of a path |
|
269 |
/// in reverse direction. |
|
267 | 270 |
class RevArcIt { |
268 | 271 |
public: |
269 | 272 |
/// Default constructor |
270 | 273 |
RevArcIt() {} |
271 | 274 |
/// Invalid constructor |
272 | 275 |
RevArcIt(Invalid) {} |
273 |
/// |
|
276 |
/// Sets the iterator to the last arc of the given path |
|
274 | 277 |
RevArcIt(const PathDumper &) {} |
275 | 278 |
|
276 |
/// Conversion to Arc |
|
279 |
/// Conversion to \c Arc |
|
277 | 280 |
operator Arc() const { return INVALID; } |
278 | 281 |
|
279 | 282 |
/// Next arc |
280 | 283 |
RevArcIt& operator++() {return *this;} |
281 | 284 |
|
282 | 285 |
/// Comparison operator |
... | ... |
@@ -209,13 +209,13 @@ |
209 | 209 |
/// Returns the value of the counter. |
210 | 210 |
operator int() {return count;} |
211 | 211 |
}; |
212 | 212 |
|
213 | 213 |
/// 'Do nothing' version of Counter. |
214 | 214 |
|
215 |
/// This class can be used in the same way as \ref Counter |
|
215 |
/// This class can be used in the same way as \ref Counter, but it |
|
216 | 216 |
/// does not count at all and does not print report on destruction. |
217 | 217 |
/// |
218 | 218 |
/// Replacing a \ref Counter with a \ref NoCounter makes it possible |
219 | 219 |
/// to turn off all counting and reporting (SubCounters should also |
220 | 220 |
/// be replaced with NoSubCounters), so it does not affect the |
221 | 221 |
/// efficiency of the program at all. |
... | ... |
@@ -108,12 +108,45 @@ |
108 | 108 |
const double ub = INF; |
109 | 109 |
const char s = 'L'; |
110 | 110 |
CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0); |
111 | 111 |
return i; |
112 | 112 |
} |
113 | 113 |
|
114 |
int CplexBase::_addRow(Value lb, ExprIterator b, |
|
115 |
ExprIterator e, Value ub) { |
|
116 |
int i = CPXgetnumrows(cplexEnv(), _prob); |
|
117 |
if (lb == -INF) { |
|
118 |
const char s = 'L'; |
|
119 |
CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0); |
|
120 |
} else if (ub == INF) { |
|
121 |
const char s = 'G'; |
|
122 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, 0, 0); |
|
123 |
} else if (lb == ub){ |
|
124 |
const char s = 'E'; |
|
125 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, 0, 0); |
|
126 |
} else { |
|
127 |
const char s = 'R'; |
|
128 |
double len = ub - lb; |
|
129 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, &len, 0); |
|
130 |
} |
|
131 |
|
|
132 |
std::vector<int> indices; |
|
133 |
std::vector<int> rowlist; |
|
134 |
std::vector<Value> values; |
|
135 |
|
|
136 |
for(ExprIterator it=b; it!=e; ++it) { |
|
137 |
indices.push_back(it->first); |
|
138 |
values.push_back(it->second); |
|
139 |
rowlist.push_back(i); |
|
140 |
} |
|
141 |
|
|
142 |
CPXchgcoeflist(cplexEnv(), _prob, values.size(), |
|
143 |
&rowlist.front(), &indices.front(), &values.front()); |
|
144 |
|
|
145 |
return i; |
|
146 |
} |
|
114 | 147 |
|
115 | 148 |
void CplexBase::_eraseCol(int i) { |
116 | 149 |
CPXdelcols(cplexEnv(), _prob, i, i); |
117 | 150 |
} |
118 | 151 |
|
119 | 152 |
void CplexBase::_eraseRow(int i) { |
... | ... |
@@ -90,12 +90,13 @@ |
90 | 90 |
CplexBase(const CplexEnv&); |
91 | 91 |
CplexBase(const CplexBase &); |
92 | 92 |
virtual ~CplexBase(); |
93 | 93 |
|
94 | 94 |
virtual int _addCol(); |
95 | 95 |
virtual int _addRow(); |
96 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
96 | 97 |
|
97 | 98 |
virtual void _eraseCol(int i); |
98 | 99 |
virtual void _eraseRow(int i); |
99 | 100 |
|
100 | 101 |
virtual void _eraseColId(int i); |
101 | 102 |
virtual void _eraseRowId(int i); |
... | ... |
@@ -44,13 +44,13 @@ |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the %DFS paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the %DFS paths. |
50 |
///It must |
|
50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a \c PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
... | ... |
@@ -59,13 +59,14 @@ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 |
///It must |
|
65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
66 |
///By default, it is a NullMap. |
|
66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
67 | 68 |
///Instantiates a \c ProcessedMap. |
68 | 69 |
|
69 | 70 |
///This function instantiates a \ref ProcessedMap. |
70 | 71 |
///\param g is the digraph, to which |
71 | 72 |
///we would like to define the \ref ProcessedMap. |
... | ... |
@@ -78,13 +79,13 @@ |
78 | 79 |
return new ProcessedMap(); |
79 | 80 |
} |
80 | 81 |
|
81 | 82 |
///The type of the map that indicates which nodes are reached. |
82 | 83 |
|
83 | 84 |
///The type of the map that indicates which nodes are reached. |
84 |
///It must |
|
85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
85 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
86 | 87 |
///Instantiates a \c ReachedMap. |
87 | 88 |
|
88 | 89 |
///This function instantiates a \ref ReachedMap. |
89 | 90 |
///\param g is the digraph, to which |
90 | 91 |
///we would like to define the \ref ReachedMap. |
... | ... |
@@ -93,13 +94,13 @@ |
93 | 94 |
return new ReachedMap(g); |
94 | 95 |
} |
95 | 96 |
|
96 | 97 |
///The type of the map that stores the distances of the nodes. |
97 | 98 |
|
98 | 99 |
///The type of the map that stores the distances of the nodes. |
99 |
///It must |
|
100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
100 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
101 | 102 |
///Instantiates a \c DistMap. |
102 | 103 |
|
103 | 104 |
///This function instantiates a \ref DistMap. |
104 | 105 |
///\param g is the digraph, to which we would like to define the |
105 | 106 |
///\ref DistMap. |
... | ... |
@@ -221,13 +222,13 @@ |
221 | 222 |
}; |
222 | 223 |
///\brief \ref named-templ-param "Named parameter" for setting |
223 | 224 |
///\c PredMap type. |
224 | 225 |
/// |
225 | 226 |
///\ref named-templ-param "Named parameter" for setting |
226 | 227 |
///\c PredMap type. |
227 |
///It must |
|
228 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
228 | 229 |
template <class T> |
229 | 230 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > { |
230 | 231 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
231 | 232 |
}; |
232 | 233 |
|
233 | 234 |
template <class T> |
... | ... |
@@ -241,13 +242,13 @@ |
241 | 242 |
}; |
242 | 243 |
///\brief \ref named-templ-param "Named parameter" for setting |
243 | 244 |
///\c DistMap type. |
244 | 245 |
/// |
245 | 246 |
///\ref named-templ-param "Named parameter" for setting |
246 | 247 |
///\c DistMap type. |
247 |
///It must |
|
248 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
248 | 249 |
template <class T> |
249 | 250 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > { |
250 | 251 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
251 | 252 |
}; |
252 | 253 |
|
253 | 254 |
template <class T> |
... | ... |
@@ -261,13 +262,13 @@ |
261 | 262 |
}; |
262 | 263 |
///\brief \ref named-templ-param "Named parameter" for setting |
263 | 264 |
///\c ReachedMap type. |
264 | 265 |
/// |
265 | 266 |
///\ref named-templ-param "Named parameter" for setting |
266 | 267 |
///\c ReachedMap type. |
267 |
///It must |
|
268 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
268 | 269 |
template <class T> |
269 | 270 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > { |
270 | 271 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
271 | 272 |
}; |
272 | 273 |
|
273 | 274 |
template <class T> |
... | ... |
@@ -281,13 +282,13 @@ |
281 | 282 |
}; |
282 | 283 |
///\brief \ref named-templ-param "Named parameter" for setting |
283 | 284 |
///\c ProcessedMap type. |
284 | 285 |
/// |
285 | 286 |
///\ref named-templ-param "Named parameter" for setting |
286 | 287 |
///\c ProcessedMap type. |
287 |
///It must |
|
288 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
288 | 289 |
template <class T> |
289 | 290 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > { |
290 | 291 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
291 | 292 |
}; |
292 | 293 |
|
293 | 294 |
struct SetStandardProcessedMapTraits : public Traits { |
... | ... |
@@ -408,14 +409,14 @@ |
408 | 409 |
|
409 | 410 |
public: |
410 | 411 |
|
411 | 412 |
///\name Execution Control |
412 | 413 |
///The simplest way to execute the DFS algorithm is to use one of the |
413 | 414 |
///member functions called \ref run(Node) "run()".\n |
414 |
///If you need more control on the execution, first you have to call |
|
415 |
///\ref init(), then you can add a source node with \ref addSource() |
|
415 |
///If you need better control on the execution, you have to call |
|
416 |
///\ref init() first, then you can add a source node with \ref addSource() |
|
416 | 417 |
///and perform the actual computation with \ref start(). |
417 | 418 |
///This procedure can be repeated if there are nodes that have not |
418 | 419 |
///been reached. |
419 | 420 |
|
420 | 421 |
///@{ |
421 | 422 |
|
... | ... |
@@ -629,18 +630,14 @@ |
629 | 630 |
start(t); |
630 | 631 |
return reached(t); |
631 | 632 |
} |
632 | 633 |
|
633 | 634 |
///Runs the algorithm to visit all nodes in the digraph. |
634 | 635 |
|
635 |
///This method runs the %DFS algorithm in order to compute the |
|
636 |
///%DFS path to each node. |
|
637 |
/// |
|
638 |
///The algorithm computes |
|
639 |
///- the %DFS tree (forest), |
|
640 |
///- the distance of each node from the root(s) in the %DFS tree. |
|
636 |
///This method runs the %DFS algorithm in order to visit all nodes |
|
637 |
///in the digraph. |
|
641 | 638 |
/// |
642 | 639 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
643 | 640 |
///\code |
644 | 641 |
/// d.init(); |
645 | 642 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
646 | 643 |
/// if (!d.reached(n)) { |
... | ... |
@@ -666,56 +663,56 @@ |
666 | 663 |
///functions.\n |
667 | 664 |
///Either \ref run(Node) "run()" or \ref start() should be called |
668 | 665 |
///before using them. |
669 | 666 |
|
670 | 667 |
///@{ |
671 | 668 |
|
672 |
///The DFS path to |
|
669 |
///The DFS path to the given node. |
|
673 | 670 |
|
674 |
///Returns the DFS path to |
|
671 |
///Returns the DFS path to the given node from the root(s). |
|
675 | 672 |
/// |
676 | 673 |
///\warning \c t should be reached from the root(s). |
677 | 674 |
/// |
678 | 675 |
///\pre Either \ref run(Node) "run()" or \ref init() |
679 | 676 |
///must be called before using this function. |
680 | 677 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
681 | 678 |
|
682 |
///The distance of |
|
679 |
///The distance of the given node from the root(s). |
|
683 | 680 |
|
684 |
///Returns the distance of |
|
681 |
///Returns the distance of the given node from the root(s). |
|
685 | 682 |
/// |
686 | 683 |
///\warning If node \c v is not reached from the root(s), then |
687 | 684 |
///the return value of this function is undefined. |
688 | 685 |
/// |
689 | 686 |
///\pre Either \ref run(Node) "run()" or \ref init() |
690 | 687 |
///must be called before using this function. |
691 | 688 |
int dist(Node v) const { return (*_dist)[v]; } |
692 | 689 |
|
693 |
///Returns the 'previous arc' of the %DFS tree for |
|
690 |
///Returns the 'previous arc' of the %DFS tree for the given node. |
|
694 | 691 |
|
695 | 692 |
///This function returns the 'previous arc' of the %DFS tree for the |
696 | 693 |
///node \c v, i.e. it returns the last arc of a %DFS path from a |
697 | 694 |
///root to \c v. It is \c INVALID if \c v is not reached from the |
698 | 695 |
///root(s) or if \c v is a root. |
699 | 696 |
/// |
700 | 697 |
///The %DFS tree used here is equal to the %DFS tree used in |
701 |
///\ref predNode(). |
|
698 |
///\ref predNode() and \ref predMap(). |
|
702 | 699 |
/// |
703 | 700 |
///\pre Either \ref run(Node) "run()" or \ref init() |
704 | 701 |
///must be called before using this function. |
705 | 702 |
Arc predArc(Node v) const { return (*_pred)[v];} |
706 | 703 |
|
707 |
///Returns the 'previous node' of the %DFS tree. |
|
704 |
///Returns the 'previous node' of the %DFS tree for the given node. |
|
708 | 705 |
|
709 | 706 |
///This function returns the 'previous node' of the %DFS |
710 | 707 |
///tree for the node \c v, i.e. it returns the last but one node |
711 |
/// |
|
708 |
///of a %DFS path from a root to \c v. It is \c INVALID |
|
712 | 709 |
///if \c v is not reached from the root(s) or if \c v is a root. |
713 | 710 |
/// |
714 | 711 |
///The %DFS tree used here is equal to the %DFS tree used in |
715 |
///\ref predArc(). |
|
712 |
///\ref predArc() and \ref predMap(). |
|
716 | 713 |
/// |
717 | 714 |
///\pre Either \ref run(Node) "run()" or \ref init() |
718 | 715 |
///must be called before using this function. |
719 | 716 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
720 | 717 |
G->source((*_pred)[v]); } |
721 | 718 |
|
... | ... |
@@ -730,19 +727,19 @@ |
730 | 727 |
const DistMap &distMap() const { return *_dist;} |
731 | 728 |
|
732 | 729 |
///\brief Returns a const reference to the node map that stores the |
733 | 730 |
///predecessor arcs. |
734 | 731 |
/// |
735 | 732 |
///Returns a const reference to the node map that stores the predecessor |
736 |
///arcs, which form the DFS tree. |
|
733 |
///arcs, which form the DFS tree (forest). |
|
737 | 734 |
/// |
738 | 735 |
///\pre Either \ref run(Node) "run()" or \ref init() |
739 | 736 |
///must be called before using this function. |
740 | 737 |
const PredMap &predMap() const { return *_pred;} |
741 | 738 |
|
742 |
///Checks if |
|
739 |
///Checks if the given node. node is reached from the root(s). |
|
743 | 740 |
|
744 | 741 |
///Returns \c true if \c v is reached from the root(s). |
745 | 742 |
/// |
746 | 743 |
///\pre Either \ref run(Node) "run()" or \ref init() |
747 | 744 |
///must be called before using this function. |
748 | 745 |
bool reached(Node v) const { return (*_reached)[v]; } |
... | ... |
@@ -762,13 +759,13 @@ |
762 | 759 |
|
763 | 760 |
///\brief The type of the map that stores the predecessor |
764 | 761 |
///arcs of the %DFS paths. |
765 | 762 |
/// |
766 | 763 |
///The type of the map that stores the predecessor |
767 | 764 |
///arcs of the %DFS paths. |
768 |
///It must |
|
765 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
769 | 766 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
770 | 767 |
///Instantiates a PredMap. |
771 | 768 |
|
772 | 769 |
///This function instantiates a PredMap. |
773 | 770 |
///\param g is the digraph, to which we would like to define the |
774 | 771 |
///PredMap. |
... | ... |
@@ -777,14 +774,14 @@ |
777 | 774 |
return new PredMap(g); |
778 | 775 |
} |
779 | 776 |
|
780 | 777 |
///The type of the map that indicates which nodes are processed. |
781 | 778 |
|
782 | 779 |
///The type of the map that indicates which nodes are processed. |
783 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
784 |
///By default it is a NullMap. |
|
780 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
781 |
///By default, it is a NullMap. |
|
785 | 782 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
786 | 783 |
///Instantiates a ProcessedMap. |
787 | 784 |
|
788 | 785 |
///This function instantiates a ProcessedMap. |
789 | 786 |
///\param g is the digraph, to which |
790 | 787 |
///we would like to define the ProcessedMap. |
... | ... |
@@ -797,13 +794,13 @@ |
797 | 794 |
return new ProcessedMap(); |
798 | 795 |
} |
799 | 796 |
|
800 | 797 |
///The type of the map that indicates which nodes are reached. |
801 | 798 |
|
802 | 799 |
///The type of the map that indicates which nodes are reached. |
803 |
///It must |
|
800 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
804 | 801 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
805 | 802 |
///Instantiates a ReachedMap. |
806 | 803 |
|
807 | 804 |
///This function instantiates a ReachedMap. |
808 | 805 |
///\param g is the digraph, to which |
809 | 806 |
///we would like to define the ReachedMap. |
... | ... |
@@ -812,13 +809,13 @@ |
812 | 809 |
return new ReachedMap(g); |
813 | 810 |
} |
814 | 811 |
|
815 | 812 |
///The type of the map that stores the distances of the nodes. |
816 | 813 |
|
817 | 814 |
///The type of the map that stores the distances of the nodes. |
818 |
///It must |
|
815 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
819 | 816 |
typedef typename Digraph::template NodeMap<int> DistMap; |
820 | 817 |
///Instantiates a DistMap. |
821 | 818 |
|
822 | 819 |
///This function instantiates a DistMap. |
823 | 820 |
///\param g is the digraph, to which we would like to define |
824 | 821 |
///the DistMap |
... | ... |
@@ -827,24 +824,20 @@ |
827 | 824 |
return new DistMap(g); |
828 | 825 |
} |
829 | 826 |
|
830 | 827 |
///The type of the DFS paths. |
831 | 828 |
|
832 | 829 |
///The type of the DFS paths. |
833 |
///It must |
|
830 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
834 | 831 |
typedef lemon::Path<Digraph> Path; |
835 | 832 |
}; |
836 | 833 |
|
837 | 834 |
/// Default traits class used by DfsWizard |
838 | 835 |
|
839 |
/// To make it easier to use Dfs algorithm |
|
840 |
/// we have created a wizard class. |
|
841 |
/// This \ref DfsWizard class needs default traits, |
|
842 |
/// as well as the \ref Dfs class. |
|
843 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
|
844 |
/// \ref DfsWizard class. |
|
836 |
/// Default traits class used by DfsWizard. |
|
837 |
/// \tparam GR The type of the digraph. |
|
845 | 838 |
template<class GR> |
846 | 839 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
847 | 840 |
{ |
848 | 841 |
|
849 | 842 |
typedef DfsWizardDefaultTraits<GR> Base; |
850 | 843 |
protected: |
... | ... |
@@ -866,13 +859,13 @@ |
866 | 859 |
//Pointer to the distance of the target node. |
867 | 860 |
int *_di; |
868 | 861 |
|
869 | 862 |
public: |
870 | 863 |
/// Constructor. |
871 | 864 |
|
872 |
/// This constructor does not require parameters, |
|
865 |
/// This constructor does not require parameters, it initiates |
|
873 | 866 |
/// all of the attributes to \c 0. |
874 | 867 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
875 | 868 |
_dist(0), _path(0), _di(0) {} |
876 | 869 |
|
877 | 870 |
/// Constructor. |
878 | 871 |
|
... | ... |
@@ -896,30 +889,23 @@ |
896 | 889 |
/// which makes it easier to use the algorithm. |
897 | 890 |
template<class TR> |
898 | 891 |
class DfsWizard : public TR |
899 | 892 |
{ |
900 | 893 |
typedef TR Base; |
901 | 894 |
|
902 |
///The type of the digraph the algorithm runs on. |
|
903 | 895 |
typedef typename TR::Digraph Digraph; |
904 | 896 |
|
905 | 897 |
typedef typename Digraph::Node Node; |
906 | 898 |
typedef typename Digraph::NodeIt NodeIt; |
907 | 899 |
typedef typename Digraph::Arc Arc; |
908 | 900 |
typedef typename Digraph::OutArcIt OutArcIt; |
909 | 901 |
|
910 |
///\brief The type of the map that stores the predecessor |
|
911 |
///arcs of the DFS paths. |
|
912 | 902 |
typedef typename TR::PredMap PredMap; |
913 |
///\brief The type of the map that stores the distances of the nodes. |
|
914 | 903 |
typedef typename TR::DistMap DistMap; |
915 |
///\brief The type of the map that indicates which nodes are reached. |
|
916 | 904 |
typedef typename TR::ReachedMap ReachedMap; |
917 |
///\brief The type of the map that indicates which nodes are processed. |
|
918 | 905 |
typedef typename TR::ProcessedMap ProcessedMap; |
919 |
///The type of the DFS paths |
|
920 | 906 |
typedef typename TR::Path Path; |
921 | 907 |
|
922 | 908 |
public: |
923 | 909 |
|
924 | 910 |
/// Constructor. |
925 | 911 |
DfsWizard() : TR() {} |
... | ... |
@@ -983,30 +969,31 @@ |
983 | 969 |
*Base::_di = alg.dist(t); |
984 | 970 |
return alg.reached(t); |
985 | 971 |
} |
986 | 972 |
|
987 | 973 |
///Runs DFS algorithm to visit all nodes in the digraph. |
988 | 974 |
|
989 |
///This method runs DFS algorithm in order to compute |
|
990 |
///the DFS path to each node. |
|
975 |
///This method runs DFS algorithm in order to visit all nodes |
|
976 |
///in the digraph. |
|
991 | 977 |
void run() |
992 | 978 |
{ |
993 | 979 |
run(INVALID); |
994 | 980 |
} |
995 | 981 |
|
996 | 982 |
template<class T> |
997 | 983 |
struct SetPredMapBase : public Base { |
998 | 984 |
typedef T PredMap; |
999 | 985 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1000 | 986 |
SetPredMapBase(const TR &b) : TR(b) {} |
1001 | 987 |
}; |
1002 |
///\brief \ref named-func-param "Named parameter" |
|
1003 |
///for setting PredMap object. |
|
988 |
|
|
989 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
990 |
///the predecessor map. |
|
1004 | 991 |
/// |
1005 |
///\ref named-func-param "Named parameter" |
|
1006 |
///for setting PredMap object. |
|
992 |
///\ref named-templ-param "Named parameter" function for setting |
|
993 |
///the map that stores the predecessor arcs of the nodes. |
|
1007 | 994 |
template<class T> |
1008 | 995 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1009 | 996 |
{ |
1010 | 997 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1011 | 998 |
return DfsWizard<SetPredMapBase<T> >(*this); |
1012 | 999 |
} |
... | ... |
@@ -1014,17 +1001,18 @@ |
1014 | 1001 |
template<class T> |
1015 | 1002 |
struct SetReachedMapBase : public Base { |
1016 | 1003 |
typedef T ReachedMap; |
1017 | 1004 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1018 | 1005 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1019 | 1006 |
}; |
1020 |
///\brief \ref named-func-param "Named parameter" |
|
1021 |
///for setting ReachedMap object. |
|
1007 |
|
|
1008 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1009 |
///the reached map. |
|
1022 | 1010 |
/// |
1023 |
/// \ref named-func-param "Named parameter" |
|
1024 |
///for setting ReachedMap object. |
|
1011 |
///\ref named-templ-param "Named parameter" function for setting |
|
1012 |
///the map that indicates which nodes are reached. |
|
1025 | 1013 |
template<class T> |
1026 | 1014 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1027 | 1015 |
{ |
1028 | 1016 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1029 | 1017 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
1030 | 1018 |
} |
... | ... |
@@ -1032,17 +1020,19 @@ |
1032 | 1020 |
template<class T> |
1033 | 1021 |
struct SetDistMapBase : public Base { |
1034 | 1022 |
typedef T DistMap; |
1035 | 1023 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1036 | 1024 |
SetDistMapBase(const TR &b) : TR(b) {} |
1037 | 1025 |
}; |
1038 |
///\brief \ref named-func-param "Named parameter" |
|
1039 |
///for setting DistMap object. |
|
1026 |
|
|
1027 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1028 |
///the distance map. |
|
1040 | 1029 |
/// |
1041 |
/// \ref named-func-param "Named parameter" |
|
1042 |
///for setting DistMap object. |
|
1030 |
///\ref named-templ-param "Named parameter" function for setting |
|
1031 |
///the map that stores the distances of the nodes calculated |
|
1032 |
///by the algorithm. |
|
1043 | 1033 |
template<class T> |
1044 | 1034 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1045 | 1035 |
{ |
1046 | 1036 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1047 | 1037 |
return DfsWizard<SetDistMapBase<T> >(*this); |
1048 | 1038 |
} |
... | ... |
@@ -1050,17 +1040,18 @@ |
1050 | 1040 |
template<class T> |
1051 | 1041 |
struct SetProcessedMapBase : public Base { |
1052 | 1042 |
typedef T ProcessedMap; |
1053 | 1043 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1054 | 1044 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1055 | 1045 |
}; |
1056 |
///\brief \ref named-func-param "Named parameter" |
|
1057 |
///for setting ProcessedMap object. |
|
1046 |
|
|
1047 |
///\brief \ref named-func-param "Named parameter" for setting |
|
1048 |
///the processed map. |
|
1058 | 1049 |
/// |
1059 |
/// \ref named-func-param "Named parameter" |
|
1060 |
///for setting ProcessedMap object. |
|
1050 |
///\ref named-templ-param "Named parameter" function for setting |
|
1051 |
///the map that indicates which nodes are processed. |
|
1061 | 1052 |
template<class T> |
1062 | 1053 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1063 | 1054 |
{ |
1064 | 1055 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1065 | 1056 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
1066 | 1057 |
} |
... | ... |
@@ -1205,13 +1196,13 @@ |
1205 | 1196 |
/// \brief The type of the digraph the algorithm runs on. |
1206 | 1197 |
typedef GR Digraph; |
1207 | 1198 |
|
1208 | 1199 |
/// \brief The type of the map that indicates which nodes are reached. |
1209 | 1200 |
/// |
1210 | 1201 |
/// The type of the map that indicates which nodes are reached. |
1211 |
/// It must |
|
1202 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
1212 | 1203 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1213 | 1204 |
|
1214 | 1205 |
/// \brief Instantiates a ReachedMap. |
1215 | 1206 |
/// |
1216 | 1207 |
/// This function instantiates a ReachedMap. |
1217 | 1208 |
/// \param digraph is the digraph, to which |
... | ... |
@@ -1366,14 +1357,14 @@ |
1366 | 1357 |
|
1367 | 1358 |
public: |
1368 | 1359 |
|
1369 | 1360 |
/// \name Execution Control |
1370 | 1361 |
/// The simplest way to execute the DFS algorithm is to use one of the |
1371 | 1362 |
/// member functions called \ref run(Node) "run()".\n |
1372 |
/// If you need more control on the execution, first you have to call |
|
1373 |
/// \ref init(), then you can add a source node with \ref addSource() |
|
1363 |
/// If you need better control on the execution, you have to call |
|
1364 |
/// \ref init() first, then you can add a source node with \ref addSource() |
|
1374 | 1365 |
/// and perform the actual computation with \ref start(). |
1375 | 1366 |
/// This procedure can be repeated if there are nodes that have not |
1376 | 1367 |
/// been reached. |
1377 | 1368 |
|
1378 | 1369 |
/// @{ |
1379 | 1370 |
|
... | ... |
@@ -1580,18 +1571,14 @@ |
1580 | 1571 |
start(t); |
1581 | 1572 |
return reached(t); |
1582 | 1573 |
} |
1583 | 1574 |
|
1584 | 1575 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1585 | 1576 |
|
1586 |
/// This method runs the %DFS algorithm in order to |
|
1587 |
/// compute the %DFS path to each node. |
|
1588 |
/// |
|
1589 |
/// The algorithm computes |
|
1590 |
/// - the %DFS tree (forest), |
|
1591 |
/// - the distance of each node from the root(s) in the %DFS tree. |
|
1577 |
/// This method runs the %DFS algorithm in order to visit all nodes |
|
1578 |
/// in the digraph. |
|
1592 | 1579 |
/// |
1593 | 1580 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
1594 | 1581 |
///\code |
1595 | 1582 |
/// d.init(); |
1596 | 1583 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
1597 | 1584 |
/// if (!d.reached(n)) { |
... | ... |
@@ -1617,13 +1604,13 @@ |
1617 | 1604 |
/// functions.\n |
1618 | 1605 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
1619 | 1606 |
/// before using them. |
1620 | 1607 |
|
1621 | 1608 |
///@{ |
1622 | 1609 |
|
1623 |
/// \brief Checks if |
|
1610 |
/// \brief Checks if the given node is reached from the root(s). |
|
1624 | 1611 |
/// |
1625 | 1612 |
/// Returns \c true if \c v is reached from the root(s). |
1626 | 1613 |
/// |
1627 | 1614 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
1628 | 1615 |
/// must be called before using this function. |
1629 | 1616 |
bool reached(Node v) const { return (*_reached)[v]; } |
... | ... |
@@ -67,15 +67,15 @@ |
67 | 67 |
///The type of the digraph the algorithm runs on. |
68 | 68 |
typedef GR Digraph; |
69 | 69 |
|
70 | 70 |
///The type of the map that stores the arc lengths. |
71 | 71 |
|
72 | 72 |
///The type of the map that stores the arc lengths. |
73 |
///It must |
|
73 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
74 | 74 |
typedef LEN LengthMap; |
75 |
///The type of the |
|
75 |
///The type of the arc lengths. |
|
76 | 76 |
typedef typename LEN::Value Value; |
77 | 77 |
|
78 | 78 |
/// Operation traits for %Dijkstra algorithm. |
79 | 79 |
|
80 | 80 |
/// This class defines the operations that are used in the algorithm. |
81 | 81 |
/// \see DijkstraDefaultOperationTraits |
... | ... |
@@ -113,13 +113,13 @@ |
113 | 113 |
|
114 | 114 |
///\brief The type of the map that stores the predecessor |
115 | 115 |
///arcs of the shortest paths. |
116 | 116 |
/// |
117 | 117 |
///The type of the map that stores the predecessor |
118 | 118 |
///arcs of the shortest paths. |
119 |
///It must |
|
119 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
120 | 120 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
121 | 121 |
///Instantiates a \c PredMap. |
122 | 122 |
|
123 | 123 |
///This function instantiates a \ref PredMap. |
124 | 124 |
///\param g is the digraph, to which we would like to define the |
125 | 125 |
///\ref PredMap. |
... | ... |
@@ -128,14 +128,14 @@ |
128 | 128 |
return new PredMap(g); |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
///The type of the map that indicates which nodes are processed. |
132 | 132 |
|
133 | 133 |
///The type of the map that indicates which nodes are processed. |
134 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
135 |
///By default it is a NullMap. |
|
134 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
135 |
///By default, it is a NullMap. |
|
136 | 136 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
137 | 137 |
///Instantiates a \c ProcessedMap. |
138 | 138 |
|
139 | 139 |
///This function instantiates a \ref ProcessedMap. |
140 | 140 |
///\param g is the digraph, to which |
141 | 141 |
///we would like to define the \ref ProcessedMap. |
... | ... |
@@ -148,13 +148,13 @@ |
148 | 148 |
return new ProcessedMap(); |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
///The type of the map that stores the distances of the nodes. |
152 | 152 |
|
153 | 153 |
///The type of the map that stores the distances of the nodes. |
154 |
///It must |
|
154 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
155 | 155 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
156 | 156 |
///Instantiates a \c DistMap. |
157 | 157 |
|
158 | 158 |
///This function instantiates a \ref DistMap. |
159 | 159 |
///\param g is the digraph, to which we would like to define |
160 | 160 |
///the \ref DistMap. |
... | ... |
@@ -166,12 +166,16 @@ |
166 | 166 |
|
167 | 167 |
///%Dijkstra algorithm class. |
168 | 168 |
|
169 | 169 |
/// \ingroup shortest_path |
170 | 170 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
171 | 171 |
/// |
172 |
///The %Dijkstra algorithm solves the single-source shortest path problem |
|
173 |
///when all arc lengths are non-negative. If there are negative lengths, |
|
174 |
///the BellmanFord algorithm should be used instead. |
|
175 |
/// |
|
172 | 176 |
///The arc lengths are passed to the algorithm using a |
173 | 177 |
///\ref concepts::ReadMap "ReadMap", |
174 | 178 |
///so it is easy to change it to any kind of length. |
175 | 179 |
///The type of the length is determined by the |
176 | 180 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
177 | 181 |
///It is also possible to change the underlying priority heap. |
... | ... |
@@ -198,14 +202,14 @@ |
198 | 202 |
class Dijkstra { |
199 | 203 |
public: |
200 | 204 |
|
201 | 205 |
///The type of the digraph the algorithm runs on. |
202 | 206 |
typedef typename TR::Digraph Digraph; |
203 | 207 |
|
204 |
///The type of the length of the arcs. |
|
205 |
typedef typename TR::LengthMap::Value Value; |
|
208 |
///The type of the arc lengths. |
|
209 |
typedef typename TR::Value Value; |
|
206 | 210 |
///The type of the map that stores the arc lengths. |
207 | 211 |
typedef typename TR::LengthMap LengthMap; |
208 | 212 |
///\brief The type of the map that stores the predecessor arcs of the |
209 | 213 |
///shortest paths. |
210 | 214 |
typedef typename TR::PredMap PredMap; |
211 | 215 |
///The type of the map that stores the distances of the nodes. |
... | ... |
@@ -301,13 +305,13 @@ |
301 | 305 |
}; |
302 | 306 |
///\brief \ref named-templ-param "Named parameter" for setting |
303 | 307 |
///\c PredMap type. |
304 | 308 |
/// |
305 | 309 |
///\ref named-templ-param "Named parameter" for setting |
306 | 310 |
///\c PredMap type. |
307 |
///It must |
|
311 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
308 | 312 |
template <class T> |
309 | 313 |
struct SetPredMap |
310 | 314 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > { |
311 | 315 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
312 | 316 |
}; |
313 | 317 |
|
... | ... |
@@ -322,13 +326,13 @@ |
322 | 326 |
}; |
323 | 327 |
///\brief \ref named-templ-param "Named parameter" for setting |
324 | 328 |
///\c DistMap type. |
325 | 329 |
/// |
326 | 330 |
///\ref named-templ-param "Named parameter" for setting |
327 | 331 |
///\c DistMap type. |
328 |
///It must |
|
332 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
329 | 333 |
template <class T> |
330 | 334 |
struct SetDistMap |
331 | 335 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > { |
332 | 336 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
333 | 337 |
}; |
334 | 338 |
|
... | ... |
@@ -343,13 +347,13 @@ |
343 | 347 |
}; |
344 | 348 |
///\brief \ref named-templ-param "Named parameter" for setting |
345 | 349 |
///\c ProcessedMap type. |
346 | 350 |
/// |
347 | 351 |
///\ref named-templ-param "Named parameter" for setting |
348 | 352 |
///\c ProcessedMap type. |
349 |
///It must |
|
353 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
350 | 354 |
template <class T> |
351 | 355 |
struct SetProcessedMap |
352 | 356 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > { |
353 | 357 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
354 | 358 |
}; |
355 | 359 |
|
... | ... |
@@ -419,13 +423,13 @@ |
419 | 423 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
420 | 424 |
///reference types with automatic allocation. |
421 | 425 |
///They should have standard constructor interfaces to be able to |
422 | 426 |
///automatically created by the algorithm (i.e. the digraph should be |
423 | 427 |
///passed to the constructor of the cross reference and the cross |
424 | 428 |
///reference should be passed to the constructor of the heap). |
425 |
///However external heap and cross reference objects could also be |
|
429 |
///However, external heap and cross reference objects could also be |
|
426 | 430 |
///passed to the algorithm using the \ref heap() function before |
427 | 431 |
///calling \ref run(Node) "run()" or \ref init(). |
428 | 432 |
///\sa SetHeap |
429 | 433 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
430 | 434 |
struct SetStandardHeap |
431 | 435 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > { |
... | ... |
@@ -440,12 +444,13 @@ |
440 | 444 |
|
441 | 445 |
/// \brief \ref named-templ-param "Named parameter" for setting |
442 | 446 |
///\c OperationTraits type |
443 | 447 |
/// |
444 | 448 |
///\ref named-templ-param "Named parameter" for setting |
445 | 449 |
///\c OperationTraits type. |
450 |
/// For more information, see \ref DijkstraDefaultOperationTraits. |
|
446 | 451 |
template <class T> |
447 | 452 |
struct SetOperationTraits |
448 | 453 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
449 | 454 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
450 | 455 |
Create; |
451 | 456 |
}; |
... | ... |
@@ -581,14 +586,14 @@ |
581 | 586 |
|
582 | 587 |
public: |
583 | 588 |
|
584 | 589 |
///\name Execution Control |
585 | 590 |
///The simplest way to execute the %Dijkstra algorithm is to use |
586 | 591 |
///one of the member functions called \ref run(Node) "run()".\n |
587 |
///If you need more control on the execution, first you have to call |
|
588 |
///\ref init(), then you can add several source nodes with |
|
592 |
///If you need better control on the execution, you have to call |
|
593 |
///\ref init() first, then you can add several source nodes with |
|
589 | 594 |
///\ref addSource(). Finally the actual path computation can be |
590 | 595 |
///performed with one of the \ref start() functions. |
591 | 596 |
|
592 | 597 |
///@{ |
593 | 598 |
|
594 | 599 |
///\brief Initializes the internal data structures. |
... | ... |
@@ -798,61 +803,63 @@ |
798 | 803 |
|
799 | 804 |
///@} |
800 | 805 |
|
801 | 806 |
///\name Query Functions |
802 | 807 |
///The results of the %Dijkstra algorithm can be obtained using these |
803 | 808 |
///functions.\n |
804 |
///Either \ref run(Node) "run()" or \ref |
|
809 |
///Either \ref run(Node) "run()" or \ref init() should be called |
|
805 | 810 |
///before using them. |
806 | 811 |
|
807 | 812 |
///@{ |
808 | 813 |
|
809 |
///The shortest path to |
|
814 |
///The shortest path to the given node. |
|
810 | 815 |
|
811 |
///Returns the shortest path to |
|
816 |
///Returns the shortest path to the given node from the root(s). |
|
812 | 817 |
/// |
813 | 818 |
///\warning \c t should be reached from the root(s). |
814 | 819 |
/// |
815 | 820 |
///\pre Either \ref run(Node) "run()" or \ref init() |
816 | 821 |
///must be called before using this function. |
817 | 822 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
818 | 823 |
|
819 |
///The distance of |
|
824 |
///The distance of the given node from the root(s). |
|
820 | 825 |
|
821 |
///Returns the distance of |
|
826 |
///Returns the distance of the given node from the root(s). |
|
822 | 827 |
/// |
823 | 828 |
///\warning If node \c v is not reached from the root(s), then |
824 | 829 |
///the return value of this function is undefined. |
825 | 830 |
/// |
826 | 831 |
///\pre Either \ref run(Node) "run()" or \ref init() |
827 | 832 |
///must be called before using this function. |
828 | 833 |
Value dist(Node v) const { return (*_dist)[v]; } |
829 | 834 |
|
830 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
831 |
|
|
835 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
836 |
///the given node. |
|
837 |
/// |
|
832 | 838 |
///This function returns the 'previous arc' of the shortest path |
833 | 839 |
///tree for the node \c v, i.e. it returns the last arc of a |
834 | 840 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
835 | 841 |
///is not reached from the root(s) or if \c v is a root. |
836 | 842 |
/// |
837 | 843 |
///The shortest path tree used here is equal to the shortest path |
838 |
///tree used in \ref predNode(). |
|
844 |
///tree used in \ref predNode() and \ref predMap(). |
|
839 | 845 |
/// |
840 | 846 |
///\pre Either \ref run(Node) "run()" or \ref init() |
841 | 847 |
///must be called before using this function. |
842 | 848 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
843 | 849 |
|
844 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
845 |
|
|
850 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
851 |
///the given node. |
|
852 |
/// |
|
846 | 853 |
///This function returns the 'previous node' of the shortest path |
847 | 854 |
///tree for the node \c v, i.e. it returns the last but one node |
848 |
/// |
|
855 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
849 | 856 |
///if \c v is not reached from the root(s) or if \c v is a root. |
850 | 857 |
/// |
851 | 858 |
///The shortest path tree used here is equal to the shortest path |
852 |
///tree used in \ref predArc(). |
|
859 |
///tree used in \ref predArc() and \ref predMap(). |
|
853 | 860 |
/// |
854 | 861 |
///\pre Either \ref run(Node) "run()" or \ref init() |
855 | 862 |
///must be called before using this function. |
856 | 863 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
857 | 864 |
G->source((*_pred)[v]); } |
858 | 865 |
|
... | ... |
@@ -867,19 +874,19 @@ |
867 | 874 |
const DistMap &distMap() const { return *_dist;} |
868 | 875 |
|
869 | 876 |
///\brief Returns a const reference to the node map that stores the |
870 | 877 |
///predecessor arcs. |
871 | 878 |
/// |
872 | 879 |
///Returns a const reference to the node map that stores the predecessor |
873 |
///arcs, which form the shortest path tree. |
|
880 |
///arcs, which form the shortest path tree (forest). |
|
874 | 881 |
/// |
875 | 882 |
///\pre Either \ref run(Node) "run()" or \ref init() |
876 | 883 |
///must be called before using this function. |
877 | 884 |
const PredMap &predMap() const { return *_pred;} |
878 | 885 |
|
879 |
///Checks if |
|
886 |
///Checks if the given node is reached from the root(s). |
|
880 | 887 |
|
881 | 888 |
///Returns \c true if \c v is reached from the root(s). |
882 | 889 |
/// |
883 | 890 |
///\pre Either \ref run(Node) "run()" or \ref init() |
884 | 891 |
///must be called before using this function. |
885 | 892 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] != |
... | ... |
@@ -892,15 +899,15 @@ |
892 | 899 |
/// |
893 | 900 |
///\pre Either \ref run(Node) "run()" or \ref init() |
894 | 901 |
///must be called before using this function. |
895 | 902 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] == |
896 | 903 |
Heap::POST_HEAP; } |
897 | 904 |
|
898 |
///The current distance of |
|
905 |
///The current distance of the given node from the root(s). |
|
899 | 906 |
|
900 |
///Returns the current distance of |
|
907 |
///Returns the current distance of the given node from the root(s). |
|
901 | 908 |
///It may be decreased in the following processes. |
902 | 909 |
/// |
903 | 910 |
///\pre Either \ref run(Node) "run()" or \ref init() |
904 | 911 |
///must be called before using this function and |
905 | 912 |
///node \c v must be reached but not necessarily processed. |
906 | 913 |
Value currentDist(Node v) const { |
... | ... |
@@ -921,15 +928,15 @@ |
921 | 928 |
{ |
922 | 929 |
///The type of the digraph the algorithm runs on. |
923 | 930 |
typedef GR Digraph; |
924 | 931 |
///The type of the map that stores the arc lengths. |
925 | 932 |
|
926 | 933 |
///The type of the map that stores the arc lengths. |
927 |
///It must |
|
934 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
928 | 935 |
typedef LEN LengthMap; |
929 |
///The type of the |
|
936 |
///The type of the arc lengths. |
|
930 | 937 |
typedef typename LEN::Value Value; |
931 | 938 |
|
932 | 939 |
/// Operation traits for Dijkstra algorithm. |
933 | 940 |
|
934 | 941 |
/// This class defines the operations that are used in the algorithm. |
935 | 942 |
/// \see DijkstraDefaultOperationTraits |
... | ... |
@@ -970,13 +977,13 @@ |
970 | 977 |
|
971 | 978 |
///\brief The type of the map that stores the predecessor |
972 | 979 |
///arcs of the shortest paths. |
973 | 980 |
/// |
974 | 981 |
///The type of the map that stores the predecessor |
975 | 982 |
///arcs of the shortest paths. |
976 |
///It must |
|
983 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
977 | 984 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
978 | 985 |
///Instantiates a PredMap. |
979 | 986 |
|
980 | 987 |
///This function instantiates a PredMap. |
981 | 988 |
///\param g is the digraph, to which we would like to define the |
982 | 989 |
///PredMap. |
... | ... |
@@ -985,14 +992,14 @@ |
985 | 992 |
return new PredMap(g); |
986 | 993 |
} |
987 | 994 |
|
988 | 995 |
///The type of the map that indicates which nodes are processed. |
989 | 996 |
|
990 | 997 |
///The type of the map that indicates which nodes are processed. |
991 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
992 |
///By default it is a NullMap. |
|
998 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
999 |
///By default, it is a NullMap. |
|
993 | 1000 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
994 | 1001 |
///Instantiates a ProcessedMap. |
995 | 1002 |
|
996 | 1003 |
///This function instantiates a ProcessedMap. |
997 | 1004 |
///\param g is the digraph, to which |
998 | 1005 |
///we would like to define the ProcessedMap. |
... | ... |
@@ -1005,13 +1012,13 @@ |
1005 | 1012 |
return new ProcessedMap(); |
1006 | 1013 |
} |
1007 | 1014 |
|
1008 | 1015 |
///The type of the map that stores the distances of the nodes. |
1009 | 1016 |
|
1010 | 1017 |
///The type of the map that stores the distances of the nodes. |
1011 |
///It must |
|
1018 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
1012 | 1019 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
1013 | 1020 |
///Instantiates a DistMap. |
1014 | 1021 |
|
1015 | 1022 |
///This function instantiates a DistMap. |
1016 | 1023 |
///\param g is the digraph, to which we would like to define |
1017 | 1024 |
///the DistMap |
... | ... |
@@ -1020,24 +1027,21 @@ |
1020 | 1027 |
return new DistMap(g); |
1021 | 1028 |
} |
1022 | 1029 |
|
1023 | 1030 |
///The type of the shortest paths. |
1024 | 1031 |
|
1025 | 1032 |
///The type of the shortest paths. |
1026 |
///It must |
|
1033 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
1027 | 1034 |
typedef lemon::Path<Digraph> Path; |
1028 | 1035 |
}; |
1029 | 1036 |
|
1030 | 1037 |
/// Default traits class used by DijkstraWizard |
1031 | 1038 |
|
1032 |
/// To make it easier to use Dijkstra algorithm |
|
1033 |
/// we have created a wizard class. |
|
1034 |
/// This \ref DijkstraWizard class needs default traits, |
|
1035 |
/// as well as the \ref Dijkstra class. |
|
1036 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
|
1037 |
/// \ref DijkstraWizard class. |
|
1039 |
/// Default traits class used by DijkstraWizard. |
|
1040 |
/// \tparam GR The type of the digraph. |
|
1041 |
/// \tparam LEN The type of the length map. |
|
1038 | 1042 |
template<typename GR, typename LEN> |
1039 | 1043 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN> |
1040 | 1044 |
{ |
1041 | 1045 |
typedef DijkstraWizardDefaultTraits<GR,LEN> Base; |
1042 | 1046 |
protected: |
1043 | 1047 |
//The type of the nodes in the digraph. |
... | ... |
@@ -1090,34 +1094,25 @@ |
1090 | 1094 |
/// which makes it easier to use the algorithm. |
1091 | 1095 |
template<class TR> |
1092 | 1096 |
class DijkstraWizard : public TR |
1093 | 1097 |
{ |
1094 | 1098 |
typedef TR Base; |
1095 | 1099 |
|
1096 |
///The type of the digraph the algorithm runs on. |
|
1097 | 1100 |
typedef typename TR::Digraph Digraph; |
1098 | 1101 |
|
1099 | 1102 |
typedef typename Digraph::Node Node; |
1100 | 1103 |
typedef typename Digraph::NodeIt NodeIt; |
1101 | 1104 |
typedef typename Digraph::Arc Arc; |
1102 | 1105 |
typedef typename Digraph::OutArcIt OutArcIt; |
1103 | 1106 |
|
1104 |
///The type of the map that stores the arc lengths. |
|
1105 | 1107 |
typedef typename TR::LengthMap LengthMap; |
1106 |
///The type of the length of the arcs. |
|
1107 | 1108 |
typedef typename LengthMap::Value Value; |
1108 |
///\brief The type of the map that stores the predecessor |
|
1109 |
///arcs of the shortest paths. |
|
1110 | 1109 |
typedef typename TR::PredMap PredMap; |
1111 |
///The type of the map that stores the distances of the nodes. |
|
1112 | 1110 |
typedef typename TR::DistMap DistMap; |
1113 |
///The type of the map that indicates which nodes are processed. |
|
1114 | 1111 |
typedef typename TR::ProcessedMap ProcessedMap; |
1115 |
///The type of the shortest paths |
|
1116 | 1112 |
typedef typename TR::Path Path; |
1117 |
///The heap type used by the dijkstra algorithm. |
|
1118 | 1113 |
typedef typename TR::Heap Heap; |
1119 | 1114 |
|
1120 | 1115 |
public: |
1121 | 1116 |
|
1122 | 1117 |
/// Constructor. |
1123 | 1118 |
DijkstraWizard() : TR() {} |
... | ... |
@@ -1183,17 +1178,18 @@ |
1183 | 1178 |
template<class T> |
1184 | 1179 |
struct SetPredMapBase : public Base { |
1185 | 1180 |
typedef T PredMap; |
1186 | 1181 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1187 | 1182 |
SetPredMapBase(const TR &b) : TR(b) {} |
1188 | 1183 |
}; |
1189 |
///\brief \ref named-func-param "Named parameter" |
|
1190 |
///for setting PredMap object. |
|
1184 |
|
|
1185 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1186 |
///the predecessor map. |
|
1191 | 1187 |
/// |
1192 |
///\ref named-func-param "Named parameter" |
|
1193 |
///for setting PredMap object. |
|
1188 |
///\ref named-templ-param "Named parameter" function for setting |
|
1189 |
///the map that stores the predecessor arcs of the nodes. |
|
1194 | 1190 |
template<class T> |
1195 | 1191 |
DijkstraWizard<SetPredMapBase<T> > predMap(const T &t) |
1196 | 1192 |
{ |
1197 | 1193 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1198 | 1194 |
return DijkstraWizard<SetPredMapBase<T> >(*this); |
1199 | 1195 |
} |
... | ... |
@@ -1201,17 +1197,19 @@ |
1201 | 1197 |
template<class T> |
1202 | 1198 |
struct SetDistMapBase : public Base { |
1203 | 1199 |
typedef T DistMap; |
1204 | 1200 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1205 | 1201 |
SetDistMapBase(const TR &b) : TR(b) {} |
1206 | 1202 |
}; |
1207 |
///\brief \ref named-func-param "Named parameter" |
|
1208 |
///for setting DistMap object. |
|
1203 |
|
|
1204 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1205 |
///the distance map. |
|
1209 | 1206 |
/// |
1210 |
///\ref named-func-param "Named parameter" |
|
1211 |
///for setting DistMap object. |
|
1207 |
///\ref named-templ-param "Named parameter" function for setting |
|
1208 |
///the map that stores the distances of the nodes calculated |
|
1209 |
///by the algorithm. |
|
1212 | 1210 |
template<class T> |
1213 | 1211 |
DijkstraWizard<SetDistMapBase<T> > distMap(const T &t) |
1214 | 1212 |
{ |
1215 | 1213 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1216 | 1214 |
return DijkstraWizard<SetDistMapBase<T> >(*this); |
1217 | 1215 |
} |
... | ... |
@@ -1219,29 +1217,31 @@ |
1219 | 1217 |
template<class T> |
1220 | 1218 |
struct SetProcessedMapBase : public Base { |
1221 | 1219 |
typedef T ProcessedMap; |
1222 | 1220 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1223 | 1221 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1224 | 1222 |
}; |
1225 |
///\brief \ref named-func-param "Named parameter" |
|
1226 |
///for setting ProcessedMap object. |
|
1223 |
|
|
1224 |
///\brief \ref named-func-param "Named parameter" for setting |
|
1225 |
///the processed map. |
|
1227 | 1226 |
/// |
1228 |
/// \ref named-func-param "Named parameter" |
|
1229 |
///for setting ProcessedMap object. |
|
1227 |
///\ref named-templ-param "Named parameter" function for setting |
|
1228 |
///the map that indicates which nodes are processed. |
|
1230 | 1229 |
template<class T> |
1231 | 1230 |
DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1232 | 1231 |
{ |
1233 | 1232 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1234 | 1233 |
return DijkstraWizard<SetProcessedMapBase<T> >(*this); |
1235 | 1234 |
} |
1236 | 1235 |
|
1237 | 1236 |
template<class T> |
1238 | 1237 |
struct SetPathBase : public Base { |
1239 | 1238 |
typedef T Path; |
1240 | 1239 |
SetPathBase(const TR &b) : TR(b) {} |
1241 | 1240 |
}; |
1241 |
|
|
1242 | 1242 |
///\brief \ref named-func-param "Named parameter" |
1243 | 1243 |
///for getting the shortest path to the target node. |
1244 | 1244 |
/// |
1245 | 1245 |
///\ref named-func-param "Named parameter" |
1246 | 1246 |
///for getting the shortest path to the target node. |
1247 | 1247 |
template<class T> |
... | ... |
@@ -18,32 +18,25 @@ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIM2_H |
20 | 20 |
#define LEMON_DIM2_H |
21 | 21 |
|
22 | 22 |
#include <iostream> |
23 | 23 |
|
24 |
///\ingroup |
|
24 |
///\ingroup geomdat |
|
25 | 25 |
///\file |
26 | 26 |
///\brief A simple two dimensional vector and a bounding box implementation |
27 |
/// |
|
28 |
/// The class \ref lemon::dim2::Point "dim2::Point" implements |
|
29 |
/// a two dimensional vector with the usual operations. |
|
30 |
/// |
|
31 |
/// The class \ref lemon::dim2::Box "dim2::Box" can be used to determine |
|
32 |
/// the rectangular bounding box of a set of |
|
33 |
/// \ref lemon::dim2::Point "dim2::Point"'s. |
|
34 | 27 |
|
35 | 28 |
namespace lemon { |
36 | 29 |
|
37 | 30 |
///Tools for handling two dimensional coordinates |
38 | 31 |
|
39 | 32 |
///This namespace is a storage of several |
40 | 33 |
///tools for handling two dimensional coordinates |
41 | 34 |
namespace dim2 { |
42 | 35 |
|
43 |
/// \addtogroup |
|
36 |
/// \addtogroup geomdat |
|
44 | 37 |
/// @{ |
45 | 38 |
|
46 | 39 |
/// Two dimensional vector (plain vector) |
47 | 40 |
|
48 | 41 |
/// A simple two dimensional vector (plain vector) implementation |
49 | 42 |
/// with the usual vector operations. |
... | ... |
@@ -252,19 +252,20 @@ |
252 | 252 |
/// This implementation is based on doubly-linked lists, from each |
253 | 253 |
/// node the outgoing and the incoming arcs make up lists, therefore |
254 | 254 |
/// one arc can be erased in constant time. It also makes possible, |
255 | 255 |
/// that node can be removed from the underlying graph, in this case |
256 | 256 |
/// all arcs incident to the given node is erased from the arc set. |
257 | 257 |
/// |
258 |
/// This class fully conforms to the \ref concepts::Digraph |
|
259 |
/// "Digraph" concept. |
|
260 |
/// It provides only linear time counting for nodes and arcs. |
|
261 |
/// |
|
258 | 262 |
/// \param GR The type of the graph which shares its node set with |
259 | 263 |
/// this class. Its interface must conform to the |
260 | 264 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
261 | 265 |
/// concept. |
262 |
/// |
|
263 |
/// This class fully conforms to the \ref concepts::Digraph |
|
264 |
/// "Digraph" concept. |
|
265 | 266 |
template <typename GR> |
266 | 267 |
class ListArcSet : public ArcSetExtender<ListArcSetBase<GR> > { |
267 | 268 |
typedef ArcSetExtender<ListArcSetBase<GR> > Parent; |
268 | 269 |
|
269 | 270 |
public: |
270 | 271 |
|
... | ... |
@@ -682,19 +683,20 @@ |
682 | 683 |
/// This implementation is based on doubly-linked lists, from each |
683 | 684 |
/// node the incident edges make up lists, therefore one edge can be |
684 | 685 |
/// erased in constant time. It also makes possible, that node can |
685 | 686 |
/// be removed from the underlying graph, in this case all edges |
686 | 687 |
/// incident to the given node is erased from the arc set. |
687 | 688 |
/// |
689 |
/// This class fully conforms to the \ref concepts::Graph "Graph" |
|
690 |
/// concept. |
|
691 |
/// It provides only linear time counting for nodes, edges and arcs. |
|
692 |
/// |
|
688 | 693 |
/// \param GR The type of the graph which shares its node set |
689 | 694 |
/// with this class. Its interface must conform to the |
690 | 695 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
691 | 696 |
/// concept. |
692 |
/// |
|
693 |
/// This class fully conforms to the \ref concepts::Graph "Graph" |
|
694 |
/// concept. |
|
695 | 697 |
template <typename GR> |
696 | 698 |
class ListEdgeSet : public EdgeSetExtender<ListEdgeSetBase<GR> > { |
697 | 699 |
typedef EdgeSetExtender<ListEdgeSetBase<GR> > Parent; |
698 | 700 |
|
699 | 701 |
public: |
700 | 702 |
|
... | ... |
@@ -864,13 +866,13 @@ |
864 | 866 |
} |
865 | 867 |
|
866 | 868 |
void first(Arc& arc) const { |
867 | 869 |
arc.id = arcs.size() - 1; |
868 | 870 |
} |
869 | 871 |
|
870 |
void next(Arc& arc) |
|
872 |
static void next(Arc& arc) { |
|
871 | 873 |
--arc.id; |
872 | 874 |
} |
873 | 875 |
|
874 | 876 |
void firstOut(Arc& arc, const Node& node) const { |
875 | 877 |
arc.id = (*_nodes)[node].first_out; |
876 | 878 |
} |
... | ... |
@@ -951,19 +953,20 @@ |
951 | 953 |
/// |
952 | 954 |
/// This implementation is slightly faster than the \c ListArcSet, |
953 | 955 |
/// because it uses continuous storage for arcs and it uses just |
954 | 956 |
/// single-linked lists for enumerate outgoing and incoming |
955 | 957 |
/// arcs. Therefore the arcs cannot be erased from the arc sets. |
956 | 958 |
/// |
959 |
/// This class fully conforms to the \ref concepts::Digraph "Digraph" |
|
960 |
/// concept. |
|
961 |
/// It provides only linear time counting for nodes and arcs. |
|
962 |
/// |
|
957 | 963 |
/// \warning If a node is erased from the underlying graph and this |
958 | 964 |
/// node is the source or target of one arc in the arc set, then |
959 | 965 |
/// the arc set is invalidated, and it cannot be used anymore. The |
960 | 966 |
/// validity can be checked with the \c valid() member function. |
961 |
/// |
|
962 |
/// This class fully conforms to the \ref concepts::Digraph |
|
963 |
/// "Digraph" concept. |
|
964 | 967 |
template <typename GR> |
965 | 968 |
class SmartArcSet : public ArcSetExtender<SmartArcSetBase<GR> > { |
966 | 969 |
typedef ArcSetExtender<SmartArcSetBase<GR> > Parent; |
967 | 970 |
|
968 | 971 |
public: |
969 | 972 |
|
... | ... |
@@ -1170,21 +1173,21 @@ |
1170 | 1173 |
} |
1171 | 1174 |
|
1172 | 1175 |
void first(Arc& arc) const { |
1173 | 1176 |
arc.id = arcs.size() - 1; |
1174 | 1177 |
} |
1175 | 1178 |
|
1176 |
void next(Arc& arc) |
|
1179 |
static void next(Arc& arc) { |
|
1177 | 1180 |
--arc.id; |
1178 | 1181 |
} |
1179 | 1182 |
|
1180 | 1183 |
void first(Edge& arc) const { |
1181 | 1184 |
arc.id = arcs.size() / 2 - 1; |
1182 | 1185 |
} |
1183 | 1186 |
|
1184 |
void next(Edge& arc) |
|
1187 |
static void next(Edge& arc) { |
|
1185 | 1188 |
--arc.id; |
1186 | 1189 |
} |
1187 | 1190 |
|
1188 | 1191 |
void firstOut(Arc& arc, const Node& node) const { |
1189 | 1192 |
arc.id = (*_nodes)[node].first_out; |
1190 | 1193 |
} |
... | ... |
@@ -1301,19 +1304,20 @@ |
1301 | 1304 |
/// |
1302 | 1305 |
/// This implementation is slightly faster than the \c ListEdgeSet, |
1303 | 1306 |
/// because it uses continuous storage for edges and it uses just |
1304 | 1307 |
/// single-linked lists for enumerate incident edges. Therefore the |
1305 | 1308 |
/// edges cannot be erased from the edge sets. |
1306 | 1309 |
/// |
1310 |
/// This class fully conforms to the \ref concepts::Graph "Graph" |
|
1311 |
/// concept. |
|
1312 |
/// It provides only linear time counting for nodes, edges and arcs. |
|
1313 |
/// |
|
1307 | 1314 |
/// \warning If a node is erased from the underlying graph and this |
1308 | 1315 |
/// node is incident to one edge in the edge set, then the edge set |
1309 | 1316 |
/// is invalidated, and it cannot be used anymore. The validity can |
1310 | 1317 |
/// be checked with the \c valid() member function. |
1311 |
/// |
|
1312 |
/// This class fully conforms to the \ref concepts::Graph |
|
1313 |
/// "Graph" concept. |
|
1314 | 1318 |
template <typename GR> |
1315 | 1319 |
class SmartEdgeSet : public EdgeSetExtender<SmartEdgeSetBase<GR> > { |
1316 | 1320 |
typedef EdgeSetExtender<SmartEdgeSetBase<GR> > Parent; |
1317 | 1321 |
|
1318 | 1322 |
public: |
1319 | 1323 |
... | ... |
@@ -21,13 +21,13 @@ |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/bits/graph_extender.h> |
24 | 24 |
|
25 | 25 |
///\ingroup graphs |
26 | 26 |
///\file |
27 |
///\brief |
|
27 |
///\brief FullDigraph and FullGraph classes. |
|
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
class FullDigraphBase { |
32 | 32 |
public: |
33 | 33 |
|
... | ... |
@@ -48,13 +48,13 @@ |
48 | 48 |
public: |
49 | 49 |
|
50 | 50 |
typedef True NodeNumTag; |
51 | 51 |
typedef True ArcNumTag; |
52 | 52 |
|
53 | 53 |
Node operator()(int ix) const { return Node(ix); } |
54 |
int index(const Node& node) |
|
54 |
static int index(const Node& node) { return node._id; } |
|
55 | 55 |
|
56 | 56 |
Arc arc(const Node& s, const Node& t) const { |
57 | 57 |
return Arc(s._id * _node_num + t._id); |
58 | 58 |
} |
59 | 59 |
|
60 | 60 |
int nodeNum() const { return _node_num; } |
... | ... |
@@ -145,79 +145,87 @@ |
145 | 145 |
}; |
146 | 146 |
|
147 | 147 |
typedef DigraphExtender<FullDigraphBase> ExtendedFullDigraphBase; |
148 | 148 |
|
149 | 149 |
/// \ingroup graphs |
150 | 150 |
/// |
151 |
/// \brief A full |
|
151 |
/// \brief A directed full graph class. |
|
152 | 152 |
/// |
153 |
/// This is a simple and fast directed full graph implementation. |
|
154 |
/// From each node go arcs to each node (including the source node), |
|
155 |
/// therefore the number of the arcs in the digraph is the square of |
|
156 |
/// the node number. This digraph type is completely static, so you |
|
157 |
/// can neither add nor delete either arcs or nodes, and it needs |
|
158 |
/// constant space in memory. |
|
153 |
/// FullDigraph is a simple and fast implmenetation of directed full |
|
154 |
/// (complete) graphs. It contains an arc from each node to each node |
|
155 |
/// (including a loop for each node), therefore the number of arcs |
|
156 |
/// is the square of the number of nodes. |
|
157 |
/// This class is completely static and it needs constant memory space. |
|
158 |
/// Thus you can neither add nor delete nodes or arcs, however |
|
159 |
/// the structure can be resized using resize(). |
|
159 | 160 |
/// |
160 |
/// This class fully conforms to the \ref concepts::Digraph |
|
161 |
/// "Digraph concept". |
|
161 |
/// This type fully conforms to the \ref concepts::Digraph "Digraph concept". |
|
162 |
/// Most of its member functions and nested classes are documented |
|
163 |
/// only in the concept class. |
|
162 | 164 |
/// |
163 |
/// |
|
165 |
/// This class provides constant time counting for nodes and arcs. |
|
166 |
/// |
|
167 |
/// \note FullDigraph and FullGraph classes are very similar, |
|
164 | 168 |
/// but there are two differences. While this class conforms only |
165 |
/// to the \ref concepts::Digraph "Digraph" concept, the \c FullGraph |
|
166 |
/// class conforms to the \ref concepts::Graph "Graph" concept, |
|
167 |
/// moreover \c FullGraph does not contain a loop arc for each |
|
168 |
/// node as \c FullDigraph does. |
|
169 |
/// to the \ref concepts::Digraph "Digraph" concept, FullGraph |
|
170 |
/// conforms to the \ref concepts::Graph "Graph" concept, |
|
171 |
/// moreover FullGraph does not contain a loop for each |
|
172 |
/// node as this class does. |
|
169 | 173 |
/// |
170 | 174 |
/// \sa FullGraph |
171 | 175 |
class FullDigraph : public ExtendedFullDigraphBase { |
172 | 176 |
typedef ExtendedFullDigraphBase Parent; |
173 | 177 |
|
174 | 178 |
public: |
175 | 179 |
|
176 |
/// \brief |
|
180 |
/// \brief Default constructor. |
|
181 |
/// |
|
182 |
/// Default constructor. The number of nodes and arcs will be zero. |
|
177 | 183 |
FullDigraph() { construct(0); } |
178 | 184 |
|
179 | 185 |
/// \brief Constructor |
180 | 186 |
/// |
181 | 187 |
/// Constructor. |
182 | 188 |
/// \param n The number of the nodes. |
183 | 189 |
FullDigraph(int n) { construct(n); } |
184 | 190 |
|
185 | 191 |
/// \brief Resizes the digraph |
186 | 192 |
/// |
187 |
/// Resizes the digraph. The function will fully destroy and |
|
188 |
/// rebuild the digraph. This cause that the maps of the digraph will |
|
193 |
/// This function resizes the digraph. It fully destroys and |
|
194 |
/// rebuilds the structure, therefore the maps of the digraph will be |
|
189 | 195 |
/// reallocated automatically and the previous values will be lost. |
190 | 196 |
void resize(int n) { |
191 | 197 |
Parent::notifier(Arc()).clear(); |
192 | 198 |
Parent::notifier(Node()).clear(); |
193 | 199 |
construct(n); |
194 | 200 |
Parent::notifier(Node()).build(); |
195 | 201 |
Parent::notifier(Arc()).build(); |
196 | 202 |
} |
197 | 203 |
|
198 | 204 |
/// \brief Returns the node with the given index. |
199 | 205 |
/// |
200 |
/// Returns the node with the given index. Since it is a static |
|
201 |
/// digraph its nodes can be indexed with integers from the range |
|
202 |
/// |
|
206 |
/// Returns the node with the given index. Since this structure is |
|
207 |
/// completely static, the nodes can be indexed with integers from |
|
208 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
209 |
/// The index of a node is the same as its ID. |
|
203 | 210 |
/// \sa index() |
204 | 211 |
Node operator()(int ix) const { return Parent::operator()(ix); } |
205 | 212 |
|
206 | 213 |
/// \brief Returns the index of the given node. |
207 | 214 |
/// |
208 |
/// Returns the index of the given node. Since it is a static |
|
209 |
/// digraph its nodes can be indexed with integers from the range |
|
210 |
/// <tt>[0..nodeNum()-1]</tt>. |
|
211 |
/// \sa operator() |
|
212 |
|
|
215 |
/// Returns the index of the given node. Since this structure is |
|
216 |
/// completely static, the nodes can be indexed with integers from |
|
217 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
218 |
/// The index of a node is the same as its ID. |
|
219 |
/// \sa operator()() |
|
220 |
static int index(const Node& node) { return Parent::index(node); } |
|
213 | 221 |
|
214 | 222 |
/// \brief Returns the arc connecting the given nodes. |
215 | 223 |
/// |
216 | 224 |
/// Returns the arc connecting the given nodes. |
217 |
Arc arc( |
|
225 |
Arc arc(Node u, Node v) const { |
|
218 | 226 |
return Parent::arc(u, v); |
219 | 227 |
} |
220 | 228 |
|
221 | 229 |
/// \brief Number of nodes. |
222 | 230 |
int nodeNum() const { return Parent::nodeNum(); } |
223 | 231 |
/// \brief Number of arcs. |
... | ... |
@@ -280,13 +288,13 @@ |
280 | 288 |
} |
281 | 289 |
} |
282 | 290 |
|
283 | 291 |
public: |
284 | 292 |
|
285 | 293 |
Node operator()(int ix) const { return Node(ix); } |
286 |
int index(const Node& node) |
|
294 |
static int index(const Node& node) { return node._id; } |
|
287 | 295 |
|
288 | 296 |
Edge edge(const Node& u, const Node& v) const { |
289 | 297 |
if (u._id < v._id) { |
290 | 298 |
return Edge(_eid(u._id, v._id)); |
291 | 299 |
} else if (u._id != v._id) { |
292 | 300 |
return Edge(_eid(v._id, u._id)); |
... | ... |
@@ -517,47 +525,53 @@ |
517 | 525 |
typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase; |
518 | 526 |
|
519 | 527 |
/// \ingroup graphs |
520 | 528 |
/// |
521 | 529 |
/// \brief An undirected full graph class. |
522 | 530 |
/// |
523 |
/// This is a simple and fast undirected full graph |
|
524 |
/// implementation. From each node go edge to each other node, |
|
525 |
/// therefore the number of edges in the graph is \f$n(n-1)/2\f$. |
|
526 |
/// This graph type is completely static, so you can neither |
|
527 |
/// add nor delete either edges or nodes, and it needs constant |
|
528 |
/// space in memory. |
|
531 |
/// FullGraph is a simple and fast implmenetation of undirected full |
|
532 |
/// (complete) graphs. It contains an edge between every distinct pair |
|
533 |
/// of nodes, therefore the number of edges is <tt>n(n-1)/2</tt>. |
|
534 |
/// This class is completely static and it needs constant memory space. |
|
535 |
/// Thus you can neither add nor delete nodes or edges, however |
|
536 |
/// the structure can be resized using resize(). |
|
529 | 537 |
/// |
530 |
/// This |
|
538 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
|
539 |
/// Most of its member functions and nested classes are documented |
|
540 |
/// only in the concept class. |
|
531 | 541 |
/// |
532 |
/// The \c FullGraph and \c FullDigraph classes are very similar, |
|
533 |
/// but there are two differences. While the \c FullDigraph class |
|
542 |
/// This class provides constant time counting for nodes, edges and arcs. |
|
543 |
/// |
|
544 |
/// \note FullDigraph and FullGraph classes are very similar, |
|
545 |
/// but there are two differences. While FullDigraph |
|
534 | 546 |
/// conforms only to the \ref concepts::Digraph "Digraph" concept, |
535 | 547 |
/// this class conforms to the \ref concepts::Graph "Graph" concept, |
536 |
/// moreover \c FullGraph does not contain a loop arc for each |
|
537 |
/// node as \c FullDigraph does. |
|
548 |
/// moreover this class does not contain a loop for each |
|
549 |
/// node as FullDigraph does. |
|
538 | 550 |
/// |
539 | 551 |
/// \sa FullDigraph |
540 | 552 |
class FullGraph : public ExtendedFullGraphBase { |
541 | 553 |
typedef ExtendedFullGraphBase Parent; |
542 | 554 |
|
543 | 555 |
public: |
544 | 556 |
|
545 |
/// \brief |
|
557 |
/// \brief Default constructor. |
|
558 |
/// |
|
559 |
/// Default constructor. The number of nodes and edges will be zero. |
|
546 | 560 |
FullGraph() { construct(0); } |
547 | 561 |
|
548 | 562 |
/// \brief Constructor |
549 | 563 |
/// |
550 | 564 |
/// Constructor. |
551 | 565 |
/// \param n The number of the nodes. |
552 | 566 |
FullGraph(int n) { construct(n); } |
553 | 567 |
|
554 | 568 |
/// \brief Resizes the graph |
555 | 569 |
/// |
556 |
/// Resizes the graph. The function will fully destroy and |
|
557 |
/// rebuild the graph. This cause that the maps of the graph will |
|
570 |
/// This function resizes the graph. It fully destroys and |
|
571 |
/// rebuilds the structure, therefore the maps of the graph will be |
|
558 | 572 |
/// reallocated automatically and the previous values will be lost. |
559 | 573 |
void resize(int n) { |
560 | 574 |
Parent::notifier(Arc()).clear(); |
561 | 575 |
Parent::notifier(Edge()).clear(); |
562 | 576 |
Parent::notifier(Node()).clear(); |
563 | 577 |
construct(n); |
... | ... |
@@ -565,37 +579,39 @@ |
565 | 579 |
Parent::notifier(Edge()).build(); |
566 | 580 |
Parent::notifier(Arc()).build(); |
567 | 581 |
} |
568 | 582 |
|
569 | 583 |
/// \brief Returns the node with the given index. |
570 | 584 |
/// |
571 |
/// Returns the node with the given index. Since it is a static |
|
572 |
/// graph its nodes can be indexed with integers from the range |
|
573 |
/// |
|
585 |
/// Returns the node with the given index. Since this structure is |
|
586 |
/// completely static, the nodes can be indexed with integers from |
|
587 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
588 |
/// The index of a node is the same as its ID. |
|
574 | 589 |
/// \sa index() |
575 | 590 |
Node operator()(int ix) const { return Parent::operator()(ix); } |
576 | 591 |
|
577 | 592 |
/// \brief Returns the index of the given node. |
578 | 593 |
/// |
579 |
/// Returns the index of the given node. Since it is a static |
|
580 |
/// graph its nodes can be indexed with integers from the range |
|
581 |
/// <tt>[0..nodeNum()-1]</tt>. |
|
582 |
/// \sa operator() |
|
583 |
|
|
594 |
/// Returns the index of the given node. Since this structure is |
|
595 |
/// completely static, the nodes can be indexed with integers from |
|
596 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
597 |
/// The index of a node is the same as its ID. |
|
598 |
/// \sa operator()() |
|
599 |
static int index(const Node& node) { return Parent::index(node); } |
|
584 | 600 |
|
585 | 601 |
/// \brief Returns the arc connecting the given nodes. |
586 | 602 |
/// |
587 | 603 |
/// Returns the arc connecting the given nodes. |
588 |
Arc arc( |
|
604 |
Arc arc(Node s, Node t) const { |
|
589 | 605 |
return Parent::arc(s, t); |
590 | 606 |
} |
591 | 607 |
|
592 |
/// \brief Returns the edge |
|
608 |
/// \brief Returns the edge connecting the given nodes. |
|
593 | 609 |
/// |
594 |
/// Returns the edge connects the given nodes. |
|
595 |
Edge edge(const Node& u, const Node& v) const { |
|
610 |
/// Returns the edge connecting the given nodes. |
|
611 |
Edge edge(Node u, Node v) const { |
|
596 | 612 |
return Parent::edge(u, v); |
597 | 613 |
} |
598 | 614 |
|
599 | 615 |
/// \brief Number of nodes. |
600 | 616 |
int nodeNum() const { return Parent::nodeNum(); } |
601 | 617 |
/// \brief Number of arcs. |
... | ... |
@@ -56,12 +56,48 @@ |
56 | 56 |
int GlpkBase::_addRow() { |
57 | 57 |
int i = glp_add_rows(lp, 1); |
58 | 58 |
glp_set_row_bnds(lp, i, GLP_FR, 0.0, 0.0); |
59 | 59 |
return i; |
60 | 60 |
} |
61 | 61 |
|
62 |
int GlpkBase::_addRow(Value lo, ExprIterator b, |
|
63 |
ExprIterator e, Value up) { |
|
64 |
int i = glp_add_rows(lp, 1); |
|
65 |
|
|
66 |
if (lo == -INF) { |
|
67 |
if (up == INF) { |
|
68 |
glp_set_row_bnds(lp, i, GLP_FR, lo, up); |
|
69 |
} else { |
|
70 |
glp_set_row_bnds(lp, i, GLP_UP, lo, up); |
|
71 |
} |
|
72 |
} else { |
|
73 |
if (up == INF) { |
|
74 |
glp_set_row_bnds(lp, i, GLP_LO, lo, up); |
|
75 |
} else if (lo != up) { |
|
76 |
glp_set_row_bnds(lp, i, GLP_DB, lo, up); |
|
77 |
} else { |
|
78 |
glp_set_row_bnds(lp, i, GLP_FX, lo, up); |
|
79 |
} |
|
80 |
} |
|
81 |
|
|
82 |
std::vector<int> indexes; |
|
83 |
std::vector<Value> values; |
|
84 |
|
|
85 |
indexes.push_back(0); |
|
86 |
values.push_back(0); |
|
87 |
|
|
88 |
for(ExprIterator it = b; it != e; ++it) { |
|
89 |
indexes.push_back(it->first); |
|
90 |
values.push_back(it->second); |
|
91 |
} |
|
92 |
|
|
93 |
glp_set_mat_row(lp, i, values.size() - 1, |
|
94 |
&indexes.front(), &values.front()); |
|
95 |
return i; |
|
96 |
} |
|
97 |
|
|
62 | 98 |
void GlpkBase::_eraseCol(int i) { |
63 | 99 |
int ca[2]; |
64 | 100 |
ca[1] = i; |
65 | 101 |
glp_del_cols(lp, 1, ca); |
66 | 102 |
} |
67 | 103 |
... | ... |
@@ -51,12 +51,13 @@ |
51 | 51 |
virtual ~GlpkBase(); |
52 | 52 |
|
53 | 53 |
protected: |
54 | 54 |
|
55 | 55 |
virtual int _addCol(); |
56 | 56 |
virtual int _addRow(); |
57 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
57 | 58 |
|
58 | 59 |
virtual void _eraseCol(int i); |
59 | 60 |
virtual void _eraseRow(int i); |
60 | 61 |
|
61 | 62 |
virtual void _eraseColId(int i); |
62 | 63 |
virtual void _eraseRowId(int i); |
... | ... |
@@ -291,17 +291,15 @@ |
291 | 291 |
/// "ReadWriteMap" on the graph nodes. |
292 | 292 |
/// |
293 | 293 |
/// \return The value of the minimum cut between \c s and \c t. |
294 | 294 |
/// |
295 | 295 |
/// \pre \ref run() must be called before using this function. |
296 | 296 |
template <typename CutMap> |
297 |
Value minCutMap(const Node& s, |
|
297 |
Value minCutMap(const Node& s, |
|
298 | 298 |
const Node& t, |
299 |
///< |
|
300 | 299 |
CutMap& cutMap |
301 |
///< |
|
302 | 300 |
) const { |
303 | 301 |
Node sn = s, tn = t; |
304 | 302 |
bool s_root=false; |
305 | 303 |
Node rn = INVALID; |
306 | 304 |
Value value = std::numeric_limits<Value>::max(); |
307 | 305 |
|
... | ... |
@@ -356,16 +354,16 @@ |
356 | 354 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
357 | 355 |
/// and call its \ref GomoryHu::run() "run()" method. |
358 | 356 |
/// |
359 | 357 |
/// This example counts the nodes in the minimum cut separating \c s from |
360 | 358 |
/// \c t. |
361 | 359 |
/// \code |
362 |
/// |
|
360 |
/// GomoryHu<Graph> gom(g, capacities); |
|
363 | 361 |
/// gom.run(); |
364 | 362 |
/// int cnt=0; |
365 |
/// for( |
|
363 |
/// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; |
|
366 | 364 |
/// \endcode |
367 | 365 |
class MinCutNodeIt |
368 | 366 |
{ |
369 | 367 |
bool _side; |
370 | 368 |
typename Graph::NodeIt _node_it; |
371 | 369 |
typename Graph::template NodeMap<bool> _cut; |
... | ... |
@@ -391,13 +389,13 @@ |
391 | 389 |
/// \endcode |
392 | 390 |
/// and |
393 | 391 |
/// \code |
394 | 392 |
/// MinCutNodeIt(gomory, t, s, false); |
395 | 393 |
/// \endcode |
396 | 394 |
/// does not necessarily give the same set of nodes. |
397 |
/// However it is ensured that |
|
395 |
/// However, it is ensured that |
|
398 | 396 |
/// \code |
399 | 397 |
/// MinCutNodeIt(gomory, s, t, true); |
400 | 398 |
/// \endcode |
401 | 399 |
/// and |
402 | 400 |
/// \code |
403 | 401 |
/// MinCutNodeIt(gomory, s, t, false); |
... | ... |
@@ -453,16 +451,16 @@ |
453 | 451 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
454 | 452 |
/// and call its \ref GomoryHu::run() "run()" method. |
455 | 453 |
/// |
456 | 454 |
/// This example computes the value of the minimum cut separating \c s from |
457 | 455 |
/// \c t. |
458 | 456 |
/// \code |
459 |
/// |
|
457 |
/// GomoryHu<Graph> gom(g, capacities); |
|
460 | 458 |
/// gom.run(); |
461 | 459 |
/// int value=0; |
462 |
/// for( |
|
460 |
/// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) |
|
463 | 461 |
/// value+=capacities[e]; |
464 | 462 |
/// \endcode |
465 | 463 |
/// The result will be the same as the value returned by |
466 | 464 |
/// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)". |
467 | 465 |
class MinCutEdgeIt |
468 | 466 |
{ |
... | ... |
@@ -139,13 +139,13 @@ |
139 | 139 |
bool _preScale; |
140 | 140 |
///Constructor |
141 | 141 |
|
142 | 142 |
///Constructor |
143 | 143 |
///\param gr Reference to the graph to be printed. |
144 | 144 |
///\param ost Reference to the output stream. |
145 |
///By default it is <tt>std::cout</tt>. |
|
145 |
///By default, it is <tt>std::cout</tt>. |
|
146 | 146 |
///\param pros If it is \c true, then the \c ostream referenced by \c os |
147 | 147 |
///will be explicitly deallocated by the destructor. |
148 | 148 |
DefaultGraphToEpsTraits(const GR &gr, std::ostream& ost = std::cout, |
149 | 149 |
bool pros = false) : |
150 | 150 |
g(gr), os(ost), |
151 | 151 |
_coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0), |
... | ... |
@@ -509,13 +509,13 @@ |
509 | 509 |
GraphToEps<T> &negateY(bool b=true) { |
510 | 510 |
_negY=b;return *this; |
511 | 511 |
} |
512 | 512 |
|
513 | 513 |
///Turn on/off pre-scaling |
514 | 514 |
|
515 |
///By default graphToEps() rescales the whole image in order to avoid |
|
515 |
///By default, graphToEps() rescales the whole image in order to avoid |
|
516 | 516 |
///very big or very small bounding boxes. |
517 | 517 |
/// |
518 | 518 |
///This (p)rescaling can be turned off with this function. |
519 | 519 |
/// |
520 | 520 |
GraphToEps<T> &preScale(bool b=true) { |
521 | 521 |
_preScale=b;return *this; |
... | ... |
@@ -1111,25 +1111,25 @@ |
1111 | 1111 |
///Generates an EPS file from a graph |
1112 | 1112 |
|
1113 | 1113 |
///\ingroup eps_io |
1114 | 1114 |
///Generates an EPS file from a graph. |
1115 | 1115 |
///\param g Reference to the graph to be printed. |
1116 | 1116 |
///\param os Reference to the output stream. |
1117 |
///By default it is <tt>std::cout</tt>. |
|
1117 |
///By default, it is <tt>std::cout</tt>. |
|
1118 | 1118 |
/// |
1119 | 1119 |
///This function also has a lot of |
1120 | 1120 |
///\ref named-templ-func-param "named parameters", |
1121 | 1121 |
///they are declared as the members of class \ref GraphToEps. The following |
1122 | 1122 |
///example shows how to use these parameters. |
1123 | 1123 |
///\code |
1124 | 1124 |
/// graphToEps(g,os).scale(10).coords(coords) |
1125 | 1125 |
/// .nodeScale(2).nodeSizes(sizes) |
1126 | 1126 |
/// .arcWidthScale(.4).run(); |
1127 | 1127 |
///\endcode |
1128 | 1128 |
/// |
1129 |
///For more detailed examples see the \ref graph_to_eps_demo.cc demo file. |
|
1129 |
///For more detailed examples, see the \ref graph_to_eps_demo.cc demo file. |
|
1130 | 1130 |
/// |
1131 | 1131 |
///\warning Don't forget to put the \ref GraphToEps::run() "run()" |
1132 | 1132 |
///to the end of the parameter list. |
1133 | 1133 |
///\sa GraphToEps |
1134 | 1134 |
///\sa graphToEps(GR &g, const char *file_name) |
1135 | 1135 |
template<class GR> |
... | ... |
@@ -467,24 +467,28 @@ |
467 | 467 |
typedef GraphExtender<GridGraphBase> ExtendedGridGraphBase; |
468 | 468 |
|
469 | 469 |
/// \ingroup graphs |
470 | 470 |
/// |
471 | 471 |
/// \brief Grid graph class |
472 | 472 |
/// |
473 |
/// This class implements a special graph type. The nodes of the |
|
474 |
/// graph can be indexed by two integer \c (i,j) value where \c i is |
|
475 |
/// in the \c [0..width()-1] range and j is in the \c |
|
476 |
/// [0..height()-1] range. Two nodes are connected in the graph if |
|
477 |
/// the indexes differ exactly on one position and exactly one is |
|
478 |
/// the difference. The nodes of the graph can be indexed by position |
|
479 |
/// with the \c operator()() function. The positions of the nodes can be |
|
480 |
/// get with \c pos(), \c col() and \c row() members. The outgoing |
|
473 |
/// GridGraph implements a special graph type. The nodes of the |
|
474 |
/// graph can be indexed by two integer values \c (i,j) where \c i is |
|
475 |
/// in the range <tt>[0..width()-1]</tt> and j is in the range |
|
476 |
/// <tt>[0..height()-1]</tt>. Two nodes are connected in the graph if |
|
477 |
/// the indices differ exactly on one position and the difference is |
|
478 |
/// also exactly one. The nodes of the graph can be obtained by position |
|
479 |
/// using the \c operator()() function and the indices of the nodes can |
|
480 |
/// be obtained using \c pos(), \c col() and \c row() members. The outgoing |
|
481 | 481 |
/// arcs can be retrieved with the \c right(), \c up(), \c left() |
482 | 482 |
/// and \c down() functions, where the bottom-left corner is the |
483 | 483 |
/// origin. |
484 | 484 |
/// |
485 |
/// This class is completely static and it needs constant memory space. |
|
486 |
/// Thus you can neither add nor delete nodes or edges, however |
|
487 |
/// the structure can be resized using resize(). |
|
488 |
/// |
|
485 | 489 |
/// \image html grid_graph.png |
486 | 490 |
/// \image latex grid_graph.eps "Grid graph" width=\textwidth |
487 | 491 |
/// |
488 | 492 |
/// A short example about the basic usage: |
489 | 493 |
///\code |
490 | 494 |
/// GridGraph graph(rows, cols); |
... | ... |
@@ -493,37 +497,38 @@ |
493 | 497 |
/// for (int j = 0; j < graph.height(); ++j) { |
494 | 498 |
/// val[graph(i, j)] = i + j; |
495 | 499 |
/// } |
496 | 500 |
/// } |
497 | 501 |
///\endcode |
498 | 502 |
/// |
499 |
/// This graph type fully conforms to the \ref concepts::Graph |
|
500 |
/// "Graph concept". |
|
503 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
|
504 |
/// Most of its member functions and nested classes are documented |
|
505 |
/// only in the concept class. |
|
506 |
/// |
|
507 |
/// This class provides constant time counting for nodes, edges and arcs. |
|
501 | 508 |
class GridGraph : public ExtendedGridGraphBase { |
502 | 509 |
typedef ExtendedGridGraphBase Parent; |
503 | 510 |
|
504 | 511 |
public: |
505 | 512 |
|
506 |
/// \brief Map to get the indices of the nodes as dim2::Point |
|
513 |
/// \brief Map to get the indices of the nodes as \ref dim2::Point |
|
514 |
/// "dim2::Point<int>". |
|
507 | 515 |
/// |
508 |
/// Map to get the indices of the nodes as dim2::Point |
|
516 |
/// Map to get the indices of the nodes as \ref dim2::Point |
|
517 |
/// "dim2::Point<int>". |
|
509 | 518 |
class IndexMap { |
510 | 519 |
public: |
511 | 520 |
/// \brief The key type of the map |
512 | 521 |
typedef GridGraph::Node Key; |
513 | 522 |
/// \brief The value type of the map |
514 | 523 |
typedef dim2::Point<int> Value; |
515 | 524 |
|
516 | 525 |
/// \brief Constructor |
517 |
/// |
|
518 |
/// Constructor |
|
519 | 526 |
IndexMap(const GridGraph& graph) : _graph(graph) {} |
520 | 527 |
|
521 | 528 |
/// \brief The subscript operator |
522 |
/// |
|
523 |
/// The subscript operator. |
|
524 | 529 |
Value operator[](Key key) const { |
525 | 530 |
return _graph.pos(key); |
526 | 531 |
} |
527 | 532 |
|
528 | 533 |
private: |
529 | 534 |
const GridGraph& _graph; |
... | ... |
@@ -537,19 +542,15 @@ |
537 | 542 |
/// \brief The key type of the map |
538 | 543 |
typedef GridGraph::Node Key; |
539 | 544 |
/// \brief The value type of the map |
540 | 545 |
typedef int Value; |
541 | 546 |
|
542 | 547 |
/// \brief Constructor |
543 |
/// |
|
544 |
/// Constructor |
|
545 | 548 |
ColMap(const GridGraph& graph) : _graph(graph) {} |
546 | 549 |
|
547 | 550 |
/// \brief The subscript operator |
548 |
/// |
|
549 |
/// The subscript operator. |
|
550 | 551 |
Value operator[](Key key) const { |
551 | 552 |
return _graph.col(key); |
552 | 553 |
} |
553 | 554 |
|
554 | 555 |
private: |
555 | 556 |
const GridGraph& _graph; |
... | ... |
@@ -563,38 +564,33 @@ |
563 | 564 |
/// \brief The key type of the map |
564 | 565 |
typedef GridGraph::Node Key; |
565 | 566 |
/// \brief The value type of the map |
566 | 567 |
typedef int Value; |
567 | 568 |
|
568 | 569 |
/// \brief Constructor |
569 |
/// |
|
570 |
/// Constructor |
|
571 | 570 |
RowMap(const GridGraph& graph) : _graph(graph) {} |
572 | 571 |
|
573 | 572 |
/// \brief The subscript operator |
574 |
/// |
|
575 |
/// The subscript operator. |
|
576 | 573 |
Value operator[](Key key) const { |
577 | 574 |
return _graph.row(key); |
578 | 575 |
} |
579 | 576 |
|
580 | 577 |
private: |
581 | 578 |
const GridGraph& _graph; |
582 | 579 |
}; |
583 | 580 |
|
584 | 581 |
/// \brief Constructor |
585 | 582 |
/// |
586 |
/// Construct a grid graph with given size. |
|
583 |
/// Construct a grid graph with the given size. |
|
587 | 584 |
GridGraph(int width, int height) { construct(width, height); } |
588 | 585 |
|
589 |
/// \brief |
|
586 |
/// \brief Resizes the graph |
|
590 | 587 |
/// |
591 |
/// Resize the graph. The function will fully destroy and rebuild |
|
592 |
/// the graph. This cause that the maps of the graph will |
|
593 |
/// reallocated automatically and the previous values will be |
|
594 |
/// lost. |
|
588 |
/// This function resizes the graph. It fully destroys and |
|
589 |
/// rebuilds the structure, therefore the maps of the graph will be |
|
590 |
/// reallocated automatically and the previous values will be lost. |
|
595 | 591 |
void resize(int width, int height) { |
596 | 592 |
Parent::notifier(Arc()).clear(); |
597 | 593 |
Parent::notifier(Edge()).clear(); |
598 | 594 |
Parent::notifier(Node()).clear(); |
599 | 595 |
construct(width, height); |
600 | 596 |
Parent::notifier(Node()).build(); |
... | ... |
@@ -606,72 +602,72 @@ |
606 | 602 |
/// |
607 | 603 |
/// Gives back the node on the given position. |
608 | 604 |
Node operator()(int i, int j) const { |
609 | 605 |
return Parent::operator()(i, j); |
610 | 606 |
} |
611 | 607 |
|
612 |
/// \brief |
|
608 |
/// \brief The column index of the node. |
|
613 | 609 |
/// |
614 | 610 |
/// Gives back the column index of the node. |
615 | 611 |
int col(Node n) const { |
616 | 612 |
return Parent::col(n); |
617 | 613 |
} |
618 | 614 |
|
619 |
/// \brief |
|
615 |
/// \brief The row index of the node. |
|
620 | 616 |
/// |
621 | 617 |
/// Gives back the row index of the node. |
622 | 618 |
int row(Node n) const { |
623 | 619 |
return Parent::row(n); |
624 | 620 |
} |
625 | 621 |
|
626 |
/// \brief |
|
622 |
/// \brief The position of the node. |
|
627 | 623 |
/// |
628 | 624 |
/// Gives back the position of the node, ie. the <tt>(col,row)</tt> pair. |
629 | 625 |
dim2::Point<int> pos(Node n) const { |
630 | 626 |
return Parent::pos(n); |
631 | 627 |
} |
632 | 628 |
|
633 |
/// \brief |
|
629 |
/// \brief The number of the columns. |
|
634 | 630 |
/// |
635 | 631 |
/// Gives back the number of the columns. |
636 | 632 |
int width() const { |
637 | 633 |
return Parent::width(); |
638 | 634 |
} |
639 | 635 |
|
640 |
/// \brief |
|
636 |
/// \brief The number of the rows. |
|
641 | 637 |
/// |
642 | 638 |
/// Gives back the number of the rows. |
643 | 639 |
int height() const { |
644 | 640 |
return Parent::height(); |
645 | 641 |
} |
646 | 642 |
|
647 |
/// \brief |
|
643 |
/// \brief The arc goes right from the node. |
|
648 | 644 |
/// |
649 | 645 |
/// Gives back the arc goes right from the node. If there is not |
650 | 646 |
/// outgoing arc then it gives back INVALID. |
651 | 647 |
Arc right(Node n) const { |
652 | 648 |
return Parent::right(n); |
653 | 649 |
} |
654 | 650 |
|
655 |
/// \brief |
|
651 |
/// \brief The arc goes left from the node. |
|
656 | 652 |
/// |
657 | 653 |
/// Gives back the arc goes left from the node. If there is not |
658 | 654 |
/// outgoing arc then it gives back INVALID. |
659 | 655 |
Arc left(Node n) const { |
660 | 656 |
return Parent::left(n); |
661 | 657 |
} |
662 | 658 |
|
663 |
/// \brief |
|
659 |
/// \brief The arc goes up from the node. |
|
664 | 660 |
/// |
665 | 661 |
/// Gives back the arc goes up from the node. If there is not |
666 | 662 |
/// outgoing arc then it gives back INVALID. |
667 | 663 |
Arc up(Node n) const { |
668 | 664 |
return Parent::up(n); |
669 | 665 |
} |
670 | 666 |
|
671 |
/// \brief |
|
667 |
/// \brief The arc goes down from the node. |
|
672 | 668 |
/// |
673 | 669 |
/// Gives back the arc goes down from the node. If there is not |
674 | 670 |
/// outgoing arc then it gives back INVALID. |
675 | 671 |
Arc down(Node n) const { |
676 | 672 |
return Parent::down(n); |
677 | 673 |
} |
... | ... |
@@ -259,13 +259,13 @@ |
259 | 259 |
} |
260 | 260 |
|
261 | 261 |
int dimension(Arc arc) const { |
262 | 262 |
return arc._id >> _dim; |
263 | 263 |
} |
264 | 264 |
|
265 |
int index(Node node) |
|
265 |
static int index(Node node) { |
|
266 | 266 |
return node._id; |
267 | 267 |
} |
268 | 268 |
|
269 | 269 |
Node operator()(int ix) const { |
270 | 270 |
return Node(ix); |
271 | 271 |
} |
... | ... |
@@ -279,33 +279,54 @@ |
279 | 279 |
typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase; |
280 | 280 |
|
281 | 281 |
/// \ingroup graphs |
282 | 282 |
/// |
283 | 283 |
/// \brief Hypercube graph class |
284 | 284 |
/// |
285 |
/// This class implements a special graph type. The nodes of the graph |
|
286 |
/// are indiced with integers with at most \c dim binary digits. |
|
285 |
/// HypercubeGraph implements a special graph type. The nodes of the |
|
286 |
/// graph are indexed with integers having at most \c dim binary digits. |
|
287 | 287 |
/// Two nodes are connected in the graph if and only if their indices |
288 | 288 |
/// differ only on one position in the binary form. |
289 |
/// This class is completely static and it needs constant memory space. |
|
290 |
/// Thus you can neither add nor delete nodes or edges, however, |
|
291 |
/// the structure can be resized using resize(). |
|
292 |
/// |
|
293 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
|
294 |
/// Most of its member functions and nested classes are documented |
|
295 |
/// only in the concept class. |
|
296 |
/// |
|
297 |
/// This class provides constant time counting for nodes, edges and arcs. |
|
289 | 298 |
/// |
290 | 299 |
/// \note The type of the indices is chosen to \c int for efficiency |
291 | 300 |
/// reasons. Thus the maximum dimension of this implementation is 26 |
292 | 301 |
/// (assuming that the size of \c int is 32 bit). |
293 |
/// |
|
294 |
/// This graph type fully conforms to the \ref concepts::Graph |
|
295 |
/// "Graph concept". |
|
296 | 302 |
class HypercubeGraph : public ExtendedHypercubeGraphBase { |
297 | 303 |
typedef ExtendedHypercubeGraphBase Parent; |
298 | 304 |
|
299 | 305 |
public: |
300 | 306 |
|
301 | 307 |
/// \brief Constructs a hypercube graph with \c dim dimensions. |
302 | 308 |
/// |
303 | 309 |
/// Constructs a hypercube graph with \c dim dimensions. |
304 | 310 |
HypercubeGraph(int dim) { construct(dim); } |
305 | 311 |
|
312 |
/// \brief Resizes the graph |
|
313 |
/// |
|
314 |
/// This function resizes the graph. It fully destroys and |
|
315 |
/// rebuilds the structure, therefore the maps of the graph will be |
|
316 |
/// reallocated automatically and the previous values will be lost. |
|
317 |
void resize(int dim) { |
|
318 |
Parent::notifier(Arc()).clear(); |
|
319 |
Parent::notifier(Edge()).clear(); |
|
320 |
Parent::notifier(Node()).clear(); |
|
321 |
construct(dim); |
|
322 |
Parent::notifier(Node()).build(); |
|
323 |
Parent::notifier(Edge()).build(); |
|
324 |
Parent::notifier(Arc()).build(); |
|
325 |
} |
|
326 |
|
|
306 | 327 |
/// \brief The number of dimensions. |
307 | 328 |
/// |
308 | 329 |
/// Gives back the number of dimensions. |
309 | 330 |
int dimension() const { |
310 | 331 |
return Parent::dimension(); |
311 | 332 |
} |
... | ... |
@@ -317,30 +338,30 @@ |
317 | 338 |
return Parent::projection(node, n); |
318 | 339 |
} |
319 | 340 |
|
320 | 341 |
/// \brief The dimension id of an edge. |
321 | 342 |
/// |
322 | 343 |
/// Gives back the dimension id of the given edge. |
323 |
/// It is in the [0..dim-1] |
|
344 |
/// It is in the range <tt>[0..dim-1]</tt>. |
|
324 | 345 |
int dimension(Edge edge) const { |
325 | 346 |
return Parent::dimension(edge); |
326 | 347 |
} |
327 | 348 |
|
328 | 349 |
/// \brief The dimension id of an arc. |
329 | 350 |
/// |
330 | 351 |
/// Gives back the dimension id of the given arc. |
331 |
/// It is in the [0..dim-1] |
|
352 |
/// It is in the range <tt>[0..dim-1]</tt>. |
|
332 | 353 |
int dimension(Arc arc) const { |
333 | 354 |
return Parent::dimension(arc); |
334 | 355 |
} |
335 | 356 |
|
336 | 357 |
/// \brief The index of a node. |
337 | 358 |
/// |
338 | 359 |
/// Gives back the index of the given node. |
339 | 360 |
/// The lower bits of the integer describes the node. |
340 |
int index(Node node) |
|
361 |
static int index(Node node) { |
|
341 | 362 |
return Parent::index(node); |
342 | 363 |
} |
343 | 364 |
|
344 | 365 |
/// \brief Gives back a node by its index. |
345 | 366 |
/// |
346 | 367 |
/// Gives back a node by its index. |
... | ... |
@@ -424,13 +424,13 @@ |
424 | 424 |
/// node("source", src). |
425 | 425 |
/// node("target", trg). |
426 | 426 |
/// attribute("caption", caption). |
427 | 427 |
/// run(); |
428 | 428 |
///\endcode |
429 | 429 |
/// |
430 |
/// By default the reader uses the first section in the file of the |
|
430 |
/// By default, the reader uses the first section in the file of the |
|
431 | 431 |
/// proper type. If a section has an optional name, then it can be |
432 | 432 |
/// selected for reading by giving an optional name parameter to the |
433 | 433 |
/// \c nodes(), \c arcs() or \c attributes() functions. |
434 | 434 |
/// |
435 | 435 |
/// The \c useNodes() and \c useArcs() functions are used to tell the reader |
436 | 436 |
/// that the nodes or arcs should not be constructed (added to the |
... | ... |
@@ -2218,13 +2218,13 @@ |
2218 | 2218 |
/// second is a functor, which takes just one \c std::string |
2219 | 2219 |
/// parameter. At the reading process, each line of the section |
2220 | 2220 |
/// will be given to the functor object. However, the empty lines |
2221 | 2221 |
/// and the comment lines are filtered out, and the leading |
2222 | 2222 |
/// whitespaces are trimmed from each processed string. |
2223 | 2223 |
/// |
2224 |
/// For example let's see a section, which contain several |
|
2224 |
/// For example, let's see a section, which contain several |
|
2225 | 2225 |
/// integers, which should be inserted into a vector. |
2226 | 2226 |
///\code |
2227 | 2227 |
/// @numbers |
2228 | 2228 |
/// 12 45 23 |
2229 | 2229 |
/// 4 |
2230 | 2230 |
/// 23 6 |
... | ... |
@@ -18,23 +18,25 @@ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_LIST_GRAPH_H |
20 | 20 |
#define LEMON_LIST_GRAPH_H |
21 | 21 |
|
22 | 22 |
///\ingroup graphs |
23 | 23 |
///\file |
24 |
///\brief ListDigraph |
|
24 |
///\brief ListDigraph and ListGraph classes. |
|
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/error.h> |
28 | 28 |
#include <lemon/bits/graph_extender.h> |
29 | 29 |
|
30 | 30 |
#include <vector> |
31 | 31 |
#include <list> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 |
class ListDigraph; |
|
36 |
|
|
35 | 37 |
class ListDigraphBase { |
36 | 38 |
|
37 | 39 |
protected: |
38 | 40 |
struct NodeT { |
39 | 41 |
int first_in, first_out; |
40 | 42 |
int prev, next; |
... | ... |
@@ -59,12 +61,13 @@ |
59 | 61 |
public: |
60 | 62 |
|
61 | 63 |
typedef ListDigraphBase Digraph; |
62 | 64 |
|
63 | 65 |
class Node { |
64 | 66 |
friend class ListDigraphBase; |
67 |
friend class ListDigraph; |
|
65 | 68 |
protected: |
66 | 69 |
|
67 | 70 |
int id; |
68 | 71 |
explicit Node(int pid) { id = pid;} |
69 | 72 |
|
70 | 73 |
public: |
... | ... |
@@ -74,12 +77,13 @@ |
74 | 77 |
bool operator!=(const Node& node) const {return id != node.id;} |
75 | 78 |
bool operator<(const Node& node) const {return id < node.id;} |
76 | 79 |
}; |
77 | 80 |
|
78 | 81 |
class Arc { |
79 | 82 |
friend class ListDigraphBase; |
83 |
friend class ListDigraph; |
|
80 | 84 |
protected: |
81 | 85 |
|
82 | 86 |
int id; |
83 | 87 |
explicit Arc(int pid) { id = pid;} |
84 | 88 |
|
85 | 89 |
public: |
... | ... |
@@ -113,26 +117,26 @@ |
113 | 117 |
} |
114 | 118 |
|
115 | 119 |
|
116 | 120 |
void first(Arc& arc) const { |
117 | 121 |
int n; |
118 | 122 |
for(n = first_node; |
119 |
n!=-1 && nodes[n]. |
|
123 |
n != -1 && nodes[n].first_out == -1; |
|
120 | 124 |
n = nodes[n].next) {} |
121 |
arc.id = (n == -1) ? -1 : nodes[n]. |
|
125 |
arc.id = (n == -1) ? -1 : nodes[n].first_out; |
|
122 | 126 |
} |
123 | 127 |
|
124 | 128 |
void next(Arc& arc) const { |
125 |
if (arcs[arc.id].next_in != -1) { |
|
126 |
arc.id = arcs[arc.id].next_in; |
|
129 |
if (arcs[arc.id].next_out != -1) { |
|
130 |
arc.id = arcs[arc.id].next_out; |
|
127 | 131 |
} else { |
128 | 132 |
int n; |
129 |
for(n = nodes[arcs[arc.id].target].next; |
|
130 |
n!=-1 && nodes[n].first_in == -1; |
|
133 |
for(n = nodes[arcs[arc.id].source].next; |
|
134 |
n != -1 && nodes[n].first_out == -1; |
|
131 | 135 |
n = nodes[n].next) {} |
132 |
arc.id = (n == -1) ? -1 : nodes[n]. |
|
136 |
arc.id = (n == -1) ? -1 : nodes[n].first_out; |
|
133 | 137 |
} |
134 | 138 |
} |
135 | 139 |
|
136 | 140 |
void firstOut(Arc &e, const Node& v) const { |
137 | 141 |
e.id = nodes[v.id].first_out; |
138 | 142 |
} |
... | ... |
@@ -308,241 +312,258 @@ |
308 | 312 |
|
309 | 313 |
/// \addtogroup graphs |
310 | 314 |
/// @{ |
311 | 315 |
|
312 | 316 |
///A general directed graph structure. |
313 | 317 |
|
314 |
///\ref ListDigraph is a simple and fast <em>directed graph</em> |
|
315 |
///implementation based on static linked lists that are stored in |
|
318 |
///\ref ListDigraph is a versatile and fast directed graph |
|
319 |
///implementation based on linked lists that are stored in |
|
316 | 320 |
///\c std::vector structures. |
317 | 321 |
/// |
318 |
///It conforms to the \ref concepts::Digraph "Digraph concept" and it |
|
319 |
///also provides several useful additional functionalities. |
|
320 |
/// |
|
322 |
///This type fully conforms to the \ref concepts::Digraph "Digraph concept" |
|
323 |
///and it also provides several useful additional functionalities. |
|
324 |
///Most of its member functions and nested classes are documented |
|
321 | 325 |
///only in the concept class. |
322 | 326 |
/// |
327 |
///This class provides only linear time counting for nodes and arcs. |
|
328 |
/// |
|
323 | 329 |
///\sa concepts::Digraph |
324 |
|
|
330 |
///\sa ListGraph |
|
325 | 331 |
class ListDigraph : public ExtendedListDigraphBase { |
326 | 332 |
typedef ExtendedListDigraphBase Parent; |
327 | 333 |
|
328 | 334 |
private: |
329 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
|
330 |
|
|
331 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
|
332 |
/// |
|
335 |
/// Digraphs are \e not copy constructible. Use DigraphCopy instead. |
|
333 | 336 |
ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {}; |
334 |
///\brief Assignment of ListDigraph to another one is \e not allowed. |
|
335 |
///Use copyDigraph() instead. |
|
336 |
|
|
337 |
///Assignment of ListDigraph to another one is \e not allowed. |
|
338 |
/// |
|
337 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
|
338 |
/// Use DigraphCopy instead. |
|
339 | 339 |
void operator=(const ListDigraph &) {} |
340 | 340 |
public: |
341 | 341 |
|
342 | 342 |
/// Constructor |
343 | 343 |
|
344 | 344 |
/// Constructor. |
345 | 345 |
/// |
346 | 346 |
ListDigraph() {} |
347 | 347 |
|
348 | 348 |
///Add a new node to the digraph. |
349 | 349 |
|
350 |
/// |
|
350 |
///This function adds a new node to the digraph. |
|
351 | 351 |
///\return The new node. |
352 | 352 |
Node addNode() { return Parent::addNode(); } |
353 | 353 |
|
354 | 354 |
///Add a new arc to the digraph. |
355 | 355 |
|
356 |
/// |
|
356 |
///This function adds a new arc to the digraph with source node \c s |
|
357 | 357 |
///and target node \c t. |
358 | 358 |
///\return The new arc. |
359 |
Arc addArc( |
|
359 |
Arc addArc(Node s, Node t) { |
|
360 | 360 |
return Parent::addArc(s, t); |
361 | 361 |
} |
362 | 362 |
|
363 | 363 |
///\brief Erase a node from the digraph. |
364 | 364 |
/// |
365 |
/// |
|
365 |
///This function erases the given node along with its outgoing and |
|
366 |
///incoming arcs from the digraph. |
|
366 | 367 |
/// |
367 |
|
|
368 |
///\note All iterators referencing the removed node or the connected |
|
369 |
///arcs are invalidated, of course. |
|
370 |
void erase(Node n) { Parent::erase(n); } |
|
368 | 371 |
|
369 | 372 |
///\brief Erase an arc from the digraph. |
370 | 373 |
/// |
371 |
/// |
|
374 |
///This function erases the given arc from the digraph. |
|
372 | 375 |
/// |
373 |
|
|
376 |
///\note All iterators referencing the removed arc are invalidated, |
|
377 |
///of course. |
|
378 |
void erase(Arc a) { Parent::erase(a); } |
|
374 | 379 |
|
375 | 380 |
/// Node validity check |
376 | 381 |
|
377 |
/// This function gives back true if the given node is valid, |
|
378 |
/// ie. it is a real node of the graph. |
|
382 |
/// This function gives back \c true if the given node is valid, |
|
383 |
/// i.e. it is a real node of the digraph. |
|
379 | 384 |
/// |
380 |
/// \warning A Node pointing to a removed item |
|
381 |
/// could become valid again later if new nodes are |
|
382 |
/// |
|
385 |
/// \warning A removed node could become valid again if new nodes are |
|
386 |
/// added to the digraph. |
|
383 | 387 |
bool valid(Node n) const { return Parent::valid(n); } |
384 | 388 |
|
385 | 389 |
/// Arc validity check |
386 | 390 |
|
387 |
/// This function gives back true if the given arc is valid, |
|
388 |
/// ie. it is a real arc of the graph. |
|
391 |
/// This function gives back \c true if the given arc is valid, |
|
392 |
/// i.e. it is a real arc of the digraph. |
|
389 | 393 |
/// |
390 |
/// \warning An Arc pointing to a removed item |
|
391 |
/// could become valid again later if new nodes are |
|
392 |
/// |
|
394 |
/// \warning A removed arc could become valid again if new arcs are |
|
395 |
/// added to the digraph. |
|
393 | 396 |
bool valid(Arc a) const { return Parent::valid(a); } |
394 | 397 |
|
395 |
/// Change the target of |
|
398 |
/// Change the target node of an arc |
|
396 | 399 |
|
397 |
/// |
|
400 |
/// This function changes the target node of the given arc \c a to \c n. |
|
398 | 401 |
/// |
399 |
///\note The <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s referencing |
|
400 |
///the changed arc remain valid. However <tt>InArcIt</tt>s are |
|
401 |
/// |
|
402 |
///\note \c ArcIt and \c OutArcIt iterators referencing the changed |
|
403 |
///arc remain valid, but \c InArcIt iterators are invalidated. |
|
402 | 404 |
/// |
403 | 405 |
///\warning This functionality cannot be used together with the Snapshot |
404 | 406 |
///feature. |
405 | 407 |
void changeTarget(Arc a, Node n) { |
406 | 408 |
Parent::changeTarget(a,n); |
407 | 409 |
} |
408 |
/// Change the source of |
|
410 |
/// Change the source node of an arc |
|
409 | 411 |
|
410 |
/// |
|
412 |
/// This function changes the source node of the given arc \c a to \c n. |
|
411 | 413 |
/// |
412 |
///\note The <tt>InArcIt</tt>s referencing the changed arc remain |
|
413 |
///valid. However the <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s are |
|
414 |
/// |
|
414 |
///\note \c InArcIt iterators referencing the changed arc remain |
|
415 |
///valid, but \c ArcIt and \c OutArcIt iterators are invalidated. |
|
415 | 416 |
/// |
416 | 417 |
///\warning This functionality cannot be used together with the Snapshot |
417 | 418 |
///feature. |
418 | 419 |
void changeSource(Arc a, Node n) { |
419 | 420 |
Parent::changeSource(a,n); |
420 | 421 |
} |
421 | 422 |
|
422 |
/// |
|
423 |
/// Reverse the direction of an arc. |
|
423 | 424 |
|
424 |
///\note The <tt>ArcIt</tt>s referencing the changed arc remain |
|
425 |
///valid. However <tt>OutArcIt</tt>s and <tt>InArcIt</tt>s are |
|
426 |
/// |
|
425 |
/// This function reverses the direction of the given arc. |
|
426 |
///\note \c ArcIt, \c OutArcIt and \c InArcIt iterators referencing |
|
427 |
///the changed arc are invalidated. |
|
427 | 428 |
/// |
428 | 429 |
///\warning This functionality cannot be used together with the Snapshot |
429 | 430 |
///feature. |
430 |
void reverseArc(Arc e) { |
|
431 |
Node t=target(e); |
|
432 |
changeTarget(e,source(e)); |
|
433 |
changeSource(e,t); |
|
431 |
void reverseArc(Arc a) { |
|
432 |
Node t=target(a); |
|
433 |
changeTarget(a,source(a)); |
|
434 |
changeSource(a,t); |
|
434 | 435 |
} |
435 | 436 |
|
436 |
/// Reserve memory for nodes. |
|
437 |
|
|
438 |
/// Using this function it is possible to avoid the superfluous memory |
|
439 |
/// allocation: if you know that the digraph you want to build will |
|
440 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
|
441 |
/// then it is worth reserving space for this amount before starting |
|
442 |
/// to build the digraph. |
|
443 |
/// \sa reserveArc |
|
444 |
void reserveNode(int n) { nodes.reserve(n); }; |
|
445 |
|
|
446 |
/// Reserve memory for arcs. |
|
447 |
|
|
448 |
/// Using this function it is possible to avoid the superfluous memory |
|
449 |
/// allocation: if you know that the digraph you want to build will |
|
450 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
|
451 |
/// then it is worth reserving space for this amount before starting |
|
452 |
/// to build the digraph. |
|
453 |
/// \sa reserveNode |
|
454 |
void reserveArc(int m) { arcs.reserve(m); }; |
|
455 |
|
|
456 | 437 |
///Contract two nodes. |
457 | 438 |
|
458 |
///This function contracts two nodes. |
|
459 |
///Node \p b will be removed but instead of deleting |
|
460 |
///incident arcs, they will be joined to \p a. |
|
461 |
///The last parameter \p r controls whether to remove loops. \c true |
|
462 |
/// |
|
439 |
///This function contracts the given two nodes. |
|
440 |
///Node \c v is removed, but instead of deleting its |
|
441 |
///incident arcs, they are joined to node \c u. |
|
442 |
///If the last parameter \c r is \c true (this is the default value), |
|
443 |
///then the newly created loops are removed. |
|
463 | 444 |
/// |
464 |
///\note The <tt>ArcIt</tt>s referencing a moved arc remain |
|
465 |
///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s |
|
466 |
/// |
|
445 |
///\note The moved arcs are joined to node \c u using changeSource() |
|
446 |
///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are |
|
447 |
///invalidated for the outgoing arcs of node \c v and \c InArcIt |
|
448 |
///iterators are invalidated for the incomming arcs of \c v. |
|
449 |
///Moreover all iterators referencing node \c v or the removed |
|
450 |
///loops are also invalidated. Other iterators remain valid. |
|
467 | 451 |
/// |
468 | 452 |
///\warning This functionality cannot be used together with the Snapshot |
469 | 453 |
///feature. |
470 |
void contract(Node |
|
454 |
void contract(Node u, Node v, bool r = true) |
|
471 | 455 |
{ |
472 |
for(OutArcIt e(*this, |
|
456 |
for(OutArcIt e(*this,v);e!=INVALID;) { |
|
473 | 457 |
OutArcIt f=e; |
474 | 458 |
++f; |
475 |
if(r && target(e)==a) erase(e); |
|
476 |
else changeSource(e,a); |
|
459 |
if(r && target(e)==u) erase(e); |
|
460 |
else changeSource(e,u); |
|
477 | 461 |
e=f; |
478 | 462 |
} |
479 |
for(InArcIt e(*this, |
|
463 |
for(InArcIt e(*this,v);e!=INVALID;) { |
|
480 | 464 |
InArcIt f=e; |
481 | 465 |
++f; |
482 |
if(r && source(e)==a) erase(e); |
|
483 |
else changeTarget(e,a); |
|
466 |
if(r && source(e)==u) erase(e); |
|
467 |
else changeTarget(e,u); |
|
484 | 468 |
e=f; |
485 | 469 |
} |
486 |
erase( |
|
470 |
erase(v); |
|
487 | 471 |
} |
488 | 472 |
|
489 | 473 |
///Split a node. |
490 | 474 |
|
491 |
///This function splits a node. First a new node is added to the digraph, |
|
492 |
///then the source of each outgoing arc of \c n is moved to this new node. |
|
493 |
///If \c connect is \c true (this is the default value), then a new arc |
|
494 |
///from \c n to the newly created node is also added. |
|
475 |
///This function splits the given node. First, a new node is added |
|
476 |
///to the digraph, then the source of each outgoing arc of node \c n |
|
477 |
///is moved to this new node. |
|
478 |
///If the second parameter \c connect is \c true (this is the default |
|
479 |
///value), then a new arc from node \c n to the newly created node |
|
480 |
///is also added. |
|
495 | 481 |
///\return The newly created node. |
496 | 482 |
/// |
497 |
///\note The <tt>ArcIt</tt>s referencing a moved arc remain |
|
498 |
///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s may |
|
499 |
/// |
|
483 |
///\note All iterators remain valid. |
|
500 | 484 |
/// |
501 |
///\warning This functionality cannot be used |
|
485 |
///\warning This functionality cannot be used together with the |
|
502 | 486 |
///Snapshot feature. |
503 | 487 |
Node split(Node n, bool connect = true) { |
504 | 488 |
Node b = addNode(); |
505 |
for(OutArcIt e(*this,n);e!=INVALID;) { |
|
506 |
OutArcIt f=e; |
|
507 |
++f; |
|
508 |
changeSource(e,b); |
|
509 |
|
|
489 |
nodes[b.id].first_out=nodes[n.id].first_out; |
|
490 |
nodes[n.id].first_out=-1; |
|
491 |
for(int i=nodes[b.id].first_out; i!=-1; i=arcs[i].next_out) { |
|
492 |
arcs[i].source=b.id; |
|
510 | 493 |
} |
511 | 494 |
if (connect) addArc(n,b); |
512 | 495 |
return b; |
513 | 496 |
} |
514 | 497 |
|
515 | 498 |
///Split an arc. |
516 | 499 |
|
517 |
///This function splits an arc. First a new node \c b is added to |
|
518 |
///the digraph, then the original arc is re-targeted to \c |
|
519 |
/// |
|
500 |
///This function splits the given arc. First, a new node \c v is |
|
501 |
///added to the digraph, then the target node of the original arc |
|
502 |
///is set to \c v. Finally, an arc from \c v to the original target |
|
503 |
///is added. |
|
504 |
///\return The newly created node. |
|
520 | 505 |
/// |
521 |
///\ |
|
506 |
///\note \c InArcIt iterators referencing the original arc are |
|
507 |
///invalidated. Other iterators remain valid. |
|
522 | 508 |
/// |
523 | 509 |
///\warning This functionality cannot be used together with the |
524 | 510 |
///Snapshot feature. |
525 |
Node split(Arc e) { |
|
526 |
Node b = addNode(); |
|
527 |
addArc(b,target(e)); |
|
528 |
changeTarget(e,b); |
|
529 |
|
|
511 |
Node split(Arc a) { |
|
512 |
Node v = addNode(); |
|
513 |
addArc(v,target(a)); |
|
514 |
changeTarget(a,v); |
|
515 |
return v; |
|
530 | 516 |
} |
531 | 517 |
|
518 |
///Clear the digraph. |
|
519 |
|
|
520 |
///This function erases all nodes and arcs from the digraph. |
|
521 |
/// |
|
522 |
///\note All iterators of the digraph are invalidated, of course. |
|
523 |
void clear() { |
|
524 |
Parent::clear(); |
|
525 |
} |
|
526 |
|
|
527 |
/// Reserve memory for nodes. |
|
528 |
|
|
529 |
/// Using this function, it is possible to avoid superfluous memory |
|
530 |
/// allocation: if you know that the digraph you want to build will |
|
531 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
|
532 |
/// then it is worth reserving space for this amount before starting |
|
533 |
/// to build the digraph. |
|
534 |
/// \sa reserveArc() |
|
535 |
void reserveNode(int n) { nodes.reserve(n); }; |
|
536 |
|
|
537 |
/// Reserve memory for arcs. |
|
538 |
|
|
539 |
/// Using this function, it is possible to avoid superfluous memory |
|
540 |
/// allocation: if you know that the digraph you want to build will |
|
541 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
|
542 |
/// then it is worth reserving space for this amount before starting |
|
543 |
/// to build the digraph. |
|
544 |
/// \sa reserveNode() |
|
545 |
void reserveArc(int m) { arcs.reserve(m); }; |
|
546 |
|
|
532 | 547 |
/// \brief Class to make a snapshot of the digraph and restore |
533 | 548 |
/// it later. |
534 | 549 |
/// |
535 | 550 |
/// Class to make a snapshot of the digraph and restore it later. |
536 | 551 |
/// |
537 | 552 |
/// The newly added nodes and arcs can be removed using the |
538 | 553 |
/// restore() function. |
539 | 554 |
/// |
540 |
/// \warning Arc and node deletions and other modifications (e.g. |
|
541 |
/// contracting, splitting, reversing arcs or nodes) cannot be |
|
555 |
/// \note After a state is restored, you cannot restore a later state, |
|
556 |
/// i.e. you cannot add the removed nodes and arcs again using |
|
557 |
/// another Snapshot instance. |
|
558 |
/// |
|
559 |
/// \warning Node and arc deletions and other modifications (e.g. |
|
560 |
/// reversing, contracting, splitting arcs or nodes) cannot be |
|
542 | 561 |
/// restored. These events invalidate the snapshot. |
562 |
/// However, the arcs and nodes that were added to the digraph after |
|
563 |
/// making the current snapshot can be removed without invalidating it. |
|
543 | 564 |
class Snapshot { |
544 | 565 |
protected: |
545 | 566 |
|
546 | 567 |
typedef Parent::NodeNotifier NodeNotifier; |
547 | 568 |
|
548 | 569 |
class NodeObserverProxy : public NodeNotifier::ObserverBase { |
... | ... |
@@ -706,45 +727,46 @@ |
706 | 727 |
|
707 | 728 |
public: |
708 | 729 |
|
709 | 730 |
/// \brief Default constructor. |
710 | 731 |
/// |
711 | 732 |
/// Default constructor. |
712 |
/// |
|
733 |
/// You have to call save() to actually make a snapshot. |
|
713 | 734 |
Snapshot() |
714 | 735 |
: digraph(0), node_observer_proxy(*this), |
715 | 736 |
arc_observer_proxy(*this) {} |
716 | 737 |
|
717 | 738 |
/// \brief Constructor that immediately makes a snapshot. |
718 | 739 |
/// |
719 |
/// This constructor immediately makes a snapshot of the digraph. |
|
720 |
/// \param _digraph The digraph we make a snapshot of. |
|
721 |
|
|
740 |
/// This constructor immediately makes a snapshot of the given digraph. |
|
741 |
Snapshot(ListDigraph &gr) |
|
722 | 742 |
: node_observer_proxy(*this), |
723 | 743 |
arc_observer_proxy(*this) { |
724 |
attach( |
|
744 |
attach(gr); |
|
725 | 745 |
} |
726 | 746 |
|
727 | 747 |
/// \brief Make a snapshot. |
728 | 748 |
/// |
729 |
/// Make a snapshot of the digraph. |
|
730 |
/// |
|
731 |
/// This function |
|
749 |
/// This function makes a snapshot of the given digraph. |
|
750 |
/// It can be called more than once. In case of a repeated |
|
732 | 751 |
/// call, the previous snapshot gets lost. |
733 |
/// \param _digraph The digraph we make the snapshot of. |
|
734 |
void save(ListDigraph &_digraph) { |
|
752 |
void save(ListDigraph &gr) { |
|
735 | 753 |
if (attached()) { |
736 | 754 |
detach(); |
737 | 755 |
clear(); |
738 | 756 |
} |
739 |
attach( |
|
757 |
attach(gr); |
|
740 | 758 |
} |
741 | 759 |
|
742 | 760 |
/// \brief Undo the changes until the last snapshot. |
743 |
// |
|
744 |
/// Undo the changes until the last snapshot created by save(). |
|
761 |
/// |
|
762 |
/// This function undos the changes until the last snapshot |
|
763 |
/// created by save() or Snapshot(ListDigraph&). |
|
764 |
/// |
|
765 |
/// \warning This method invalidates the snapshot, i.e. repeated |
|
766 |
/// restoring is not supported unless you call save() again. |
|
745 | 767 |
void restore() { |
746 | 768 |
detach(); |
747 | 769 |
for(std::list<Arc>::iterator it = added_arcs.begin(); |
748 | 770 |
it != added_arcs.end(); ++it) { |
749 | 771 |
digraph->erase(*it); |
750 | 772 |
} |
... | ... |
@@ -752,15 +774,15 @@ |
752 | 774 |
it != added_nodes.end(); ++it) { |
753 | 775 |
digraph->erase(*it); |
754 | 776 |
} |
755 | 777 |
clear(); |
756 | 778 |
} |
757 | 779 |
|
758 |
/// \brief |
|
780 |
/// \brief Returns \c true if the snapshot is valid. |
|
759 | 781 |
/// |
760 |
/// |
|
782 |
/// This function returns \c true if the snapshot is valid. |
|
761 | 783 |
bool valid() const { |
762 | 784 |
return attached(); |
763 | 785 |
} |
764 | 786 |
}; |
765 | 787 |
|
766 | 788 |
}; |
... | ... |
@@ -792,16 +814,12 @@ |
792 | 814 |
int first_free_arc; |
793 | 815 |
|
794 | 816 |
public: |
795 | 817 |
|
796 | 818 |
typedef ListGraphBase Graph; |
797 | 819 |
|
798 |
class Node; |
|
799 |
class Arc; |
|
800 |
class Edge; |
|
801 |
|
|
802 | 820 |
class Node { |
803 | 821 |
friend class ListGraphBase; |
804 | 822 |
protected: |
805 | 823 |
|
806 | 824 |
int id; |
807 | 825 |
explicit Node(int pid) { id = pid;} |
... | ... |
@@ -845,14 +863,12 @@ |
845 | 863 |
Arc (Invalid) { id = -1; } |
846 | 864 |
bool operator==(const Arc& arc) const {return id == arc.id;} |
847 | 865 |
bool operator!=(const Arc& arc) const {return id != arc.id;} |
848 | 866 |
bool operator<(const Arc& arc) const {return id < arc.id;} |
849 | 867 |
}; |
850 | 868 |
|
851 |
|
|
852 |
|
|
853 | 869 |
ListGraphBase() |
854 | 870 |
: nodes(), first_node(-1), |
855 | 871 |
first_free_node(-1), arcs(), first_free_arc(-1) {} |
856 | 872 |
|
857 | 873 |
|
858 | 874 |
int maxNodeId() const { return nodes.size()-1; } |
... | ... |
@@ -1161,137 +1177,141 @@ |
1161 | 1177 |
|
1162 | 1178 |
/// \addtogroup graphs |
1163 | 1179 |
/// @{ |
1164 | 1180 |
|
1165 | 1181 |
///A general undirected graph structure. |
1166 | 1182 |
|
1167 |
///\ref ListGraph is a simple and fast <em>undirected graph</em> |
|
1168 |
///implementation based on static linked lists that are stored in |
|
1183 |
///\ref ListGraph is a versatile and fast undirected graph |
|
1184 |
///implementation based on linked lists that are stored in |
|
1169 | 1185 |
///\c std::vector structures. |
1170 | 1186 |
/// |
1171 |
///It conforms to the \ref concepts::Graph "Graph concept" and it |
|
1172 |
///also provides several useful additional functionalities. |
|
1173 |
/// |
|
1187 |
///This type fully conforms to the \ref concepts::Graph "Graph concept" |
|
1188 |
///and it also provides several useful additional functionalities. |
|
1189 |
///Most of its member functions and nested classes are documented |
|
1174 | 1190 |
///only in the concept class. |
1175 | 1191 |
/// |
1192 |
///This class provides only linear time counting for nodes, edges and arcs. |
|
1193 |
/// |
|
1176 | 1194 |
///\sa concepts::Graph |
1177 |
|
|
1195 |
///\sa ListDigraph |
|
1178 | 1196 |
class ListGraph : public ExtendedListGraphBase { |
1179 | 1197 |
typedef ExtendedListGraphBase Parent; |
1180 | 1198 |
|
1181 | 1199 |
private: |
1182 |
///ListGraph is \e not copy constructible. Use copyGraph() instead. |
|
1183 |
|
|
1184 |
///ListGraph is \e not copy constructible. Use copyGraph() instead. |
|
1185 |
/// |
|
1200 |
/// Graphs are \e not copy constructible. Use GraphCopy instead. |
|
1186 | 1201 |
ListGraph(const ListGraph &) :ExtendedListGraphBase() {}; |
1187 |
///\brief Assignment of ListGraph to another one is \e not allowed. |
|
1188 |
///Use copyGraph() instead. |
|
1189 |
|
|
1190 |
///Assignment of ListGraph to another one is \e not allowed. |
|
1191 |
/// |
|
1202 |
/// \brief Assignment of a graph to another one is \e not allowed. |
|
1203 |
/// Use GraphCopy instead. |
|
1192 | 1204 |
void operator=(const ListGraph &) {} |
1193 | 1205 |
public: |
1194 | 1206 |
/// Constructor |
1195 | 1207 |
|
1196 | 1208 |
/// Constructor. |
1197 | 1209 |
/// |
1198 | 1210 |
ListGraph() {} |
1199 | 1211 |
|
1200 | 1212 |
typedef Parent::OutArcIt IncEdgeIt; |
1201 | 1213 |
|
1202 | 1214 |
/// \brief Add a new node to the graph. |
1203 | 1215 |
/// |
1204 |
/// |
|
1216 |
/// This function adds a new node to the graph. |
|
1205 | 1217 |
/// \return The new node. |
1206 | 1218 |
Node addNode() { return Parent::addNode(); } |
1207 | 1219 |
|
1208 | 1220 |
/// \brief Add a new edge to the graph. |
1209 | 1221 |
/// |
1210 |
/// Add a new edge to the graph with source node \c s |
|
1211 |
/// and target node \c t. |
|
1222 |
/// This function adds a new edge to the graph between nodes |
|
1223 |
/// \c u and \c v with inherent orientation from node \c u to |
|
1224 |
/// node \c v. |
|
1212 | 1225 |
/// \return The new edge. |
1213 |
Edge addEdge(const Node& s, const Node& t) { |
|
1214 |
return Parent::addEdge(s, t); |
|
1226 |
Edge addEdge(Node u, Node v) { |
|
1227 |
return Parent::addEdge(u, v); |
|
1215 | 1228 |
} |
1216 | 1229 |
|
1217 |
/// |
|
1230 |
///\brief Erase a node from the graph. |
|
1218 | 1231 |
/// |
1219 |
/// |
|
1232 |
/// This function erases the given node along with its incident arcs |
|
1233 |
/// from the graph. |
|
1220 | 1234 |
/// |
1221 |
|
|
1235 |
/// \note All iterators referencing the removed node or the incident |
|
1236 |
/// edges are invalidated, of course. |
|
1237 |
void erase(Node n) { Parent::erase(n); } |
|
1222 | 1238 |
|
1223 |
/// |
|
1239 |
///\brief Erase an edge from the graph. |
|
1224 | 1240 |
/// |
1225 |
/// |
|
1241 |
/// This function erases the given edge from the graph. |
|
1226 | 1242 |
/// |
1227 |
|
|
1243 |
/// \note All iterators referencing the removed edge are invalidated, |
|
1244 |
/// of course. |
|
1245 |
void erase(Edge e) { Parent::erase(e); } |
|
1228 | 1246 |
/// Node validity check |
1229 | 1247 |
|
1230 |
/// This function gives back true if the given node is valid, |
|
1231 |
/// ie. it is a real node of the graph. |
|
1248 |
/// This function gives back \c true if the given node is valid, |
|
1249 |
/// i.e. it is a real node of the graph. |
|
1232 | 1250 |
/// |
1233 |
/// \warning A Node pointing to a removed item |
|
1234 |
/// could become valid again later if new nodes are |
|
1251 |
/// \warning A removed node could become valid again if new nodes are |
|
1235 | 1252 |
/// added to the graph. |
1236 | 1253 |
bool valid(Node n) const { return Parent::valid(n); } |
1254 |
/// Edge validity check |
|
1255 |
|
|
1256 |
/// This function gives back \c true if the given edge is valid, |
|
1257 |
/// i.e. it is a real edge of the graph. |
|
1258 |
/// |
|
1259 |
/// \warning A removed edge could become valid again if new edges are |
|
1260 |
/// added to the graph. |
|
1261 |
bool valid(Edge e) const { return Parent::valid(e); } |
|
1237 | 1262 |
/// Arc validity check |
1238 | 1263 |
|
1239 |
/// This function gives back true if the given arc is valid, |
|
1240 |
/// ie. it is a real arc of the graph. |
|
1264 |
/// This function gives back \c true if the given arc is valid, |
|
1265 |
/// i.e. it is a real arc of the graph. |
|
1241 | 1266 |
/// |
1242 |
/// \warning An Arc pointing to a removed item |
|
1243 |
/// could become valid again later if new edges are |
|
1267 |
/// \warning A removed arc could become valid again if new edges are |
|
1244 | 1268 |
/// added to the graph. |
1245 | 1269 |
bool valid(Arc a) const { return Parent::valid(a); } |
1246 |
/// Edge validity check |
|
1247 | 1270 |
|
1248 |
/// This function gives back true if the given edge is valid, |
|
1249 |
/// ie. it is a real arc of the graph. |
|
1271 |
/// \brief Change the first node of an edge. |
|
1250 | 1272 |
/// |
1251 |
/// \warning A Edge pointing to a removed item |
|
1252 |
/// could become valid again later if new edges are |
|
1253 |
/// added to the graph. |
|
1254 |
bool valid(Edge e) const { return Parent::valid(e); } |
|
1255 |
/// |
|
1273 |
/// This function changes the first node of the given edge \c e to \c n. |
|
1256 | 1274 |
/// |
1257 |
/// This function changes the end \c u of \c e to node \c n. |
|
1258 |
/// |
|
1259 |
///\note The <tt>EdgeIt</tt>s and <tt>ArcIt</tt>s referencing the |
|
1260 |
///changed edge are invalidated and if the changed node is the |
|
1261 |
///base node of an iterator then this iterator is also |
|
1262 |
///invalidated. |
|
1275 |
///\note \c EdgeIt and \c ArcIt iterators referencing the |
|
1276 |
///changed edge are invalidated and all other iterators whose |
|
1277 |
///base node is the changed node are also invalidated. |
|
1263 | 1278 |
/// |
1264 | 1279 |
///\warning This functionality cannot be used together with the |
1265 | 1280 |
///Snapshot feature. |
1266 | 1281 |
void changeU(Edge e, Node n) { |
1267 | 1282 |
Parent::changeU(e,n); |
1268 | 1283 |
} |
1269 |
/// \brief Change the |
|
1284 |
/// \brief Change the second node of an edge. |
|
1270 | 1285 |
/// |
1271 |
/// This function changes the |
|
1286 |
/// This function changes the second node of the given edge \c e to \c n. |
|
1272 | 1287 |
/// |
1273 |
///\note The <tt>EdgeIt</tt>s referencing the changed edge remain |
|
1274 |
///valid, however <tt>ArcIt</tt>s and if the changed node is the |
|
1275 |
/// |
|
1288 |
///\note \c EdgeIt iterators referencing the changed edge remain |
|
1289 |
///valid, but \c ArcIt iterators referencing the changed edge and |
|
1290 |
///all other iterators whose base node is the changed node are also |
|
1291 |
///invalidated. |
|
1276 | 1292 |
/// |
1277 | 1293 |
///\warning This functionality cannot be used together with the |
1278 | 1294 |
///Snapshot feature. |
1279 | 1295 |
void changeV(Edge e, Node n) { |
1280 | 1296 |
Parent::changeV(e,n); |
1281 | 1297 |
} |
1298 |
|
|
1282 | 1299 |
/// \brief Contract two nodes. |
1283 | 1300 |
/// |
1284 |
/// This function contracts two nodes. |
|
1285 |
/// Node \p b will be removed but instead of deleting |
|
1286 |
/// its neighboring arcs, they will be joined to \p a. |
|
1287 |
/// The last parameter \p r controls whether to remove loops. \c true |
|
1288 |
/// |
|
1301 |
/// This function contracts the given two nodes. |
|
1302 |
/// Node \c b is removed, but instead of deleting |
|
1303 |
/// its incident edges, they are joined to node \c a. |
|
1304 |
/// If the last parameter \c r is \c true (this is the default value), |
|
1305 |
/// then the newly created loops are removed. |
|
1289 | 1306 |
/// |
1290 |
/// \note The <tt>ArcIt</tt>s referencing a moved arc remain |
|
1291 |
/// valid. |
|
1307 |
/// \note The moved edges are joined to node \c a using changeU() |
|
1308 |
/// or changeV(), thus all edge and arc iterators whose base node is |
|
1309 |
/// \c b are invalidated. |
|
1310 |
/// Moreover all iterators referencing node \c b or the removed |
|
1311 |
/// loops are also invalidated. Other iterators remain valid. |
|
1292 | 1312 |
/// |
1293 | 1313 |
///\warning This functionality cannot be used together with the |
1294 | 1314 |
///Snapshot feature. |
1295 | 1315 |
void contract(Node a, Node b, bool r = true) { |
1296 | 1316 |
for(IncEdgeIt e(*this, b); e!=INVALID;) { |
1297 | 1317 |
IncEdgeIt f = e; ++f; |
... | ... |
@@ -1304,24 +1324,58 @@ |
1304 | 1324 |
} |
1305 | 1325 |
e = f; |
1306 | 1326 |
} |
1307 | 1327 |
erase(b); |
1308 | 1328 |
} |
1309 | 1329 |
|
1330 |
///Clear the graph. |
|
1331 |
|
|
1332 |
///This function erases all nodes and arcs from the graph. |
|
1333 |
/// |
|
1334 |
///\note All iterators of the graph are invalidated, of course. |
|
1335 |
void clear() { |
|
1336 |
Parent::clear(); |
|
1337 |
} |
|
1338 |
|
|
1339 |
/// Reserve memory for nodes. |
|
1340 |
|
|
1341 |
/// Using this function, it is possible to avoid superfluous memory |
|
1342 |
/// allocation: if you know that the graph you want to build will |
|
1343 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
|
1344 |
/// then it is worth reserving space for this amount before starting |
|
1345 |
/// to build the graph. |
|
1346 |
/// \sa reserveEdge() |
|
1347 |
void reserveNode(int n) { nodes.reserve(n); }; |
|
1348 |
|
|
1349 |
/// Reserve memory for edges. |
|
1350 |
|
|
1351 |
/// Using this function, it is possible to avoid superfluous memory |
|
1352 |
/// allocation: if you know that the graph you want to build will |
|
1353 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
|
1354 |
/// then it is worth reserving space for this amount before starting |
|
1355 |
/// to build the graph. |
|
1356 |
/// \sa reserveNode() |
|
1357 |
void reserveEdge(int m) { arcs.reserve(2 * m); }; |
|
1310 | 1358 |
|
1311 | 1359 |
/// \brief Class to make a snapshot of the graph and restore |
1312 | 1360 |
/// it later. |
1313 | 1361 |
/// |
1314 | 1362 |
/// Class to make a snapshot of the graph and restore it later. |
1315 | 1363 |
/// |
1316 | 1364 |
/// The newly added nodes and edges can be removed |
1317 | 1365 |
/// using the restore() function. |
1318 | 1366 |
/// |
1319 |
/// \warning Edge and node deletions and other modifications |
|
1320 |
/// (e.g. changing nodes of edges, contracting nodes) cannot be |
|
1321 |
/// restored |
|
1367 |
/// \note After a state is restored, you cannot restore a later state, |
|
1368 |
/// i.e. you cannot add the removed nodes and edges again using |
|
1369 |
/// another Snapshot instance. |
|
1370 |
/// |
|
1371 |
/// \warning Node and edge deletions and other modifications |
|
1372 |
/// (e.g. changing the end-nodes of edges or contracting nodes) |
|
1373 |
/// cannot be restored. These events invalidate the snapshot. |
|
1374 |
/// However, the edges and nodes that were added to the graph after |
|
1375 |
/// making the current snapshot can be removed without invalidating it. |
|
1322 | 1376 |
class Snapshot { |
1323 | 1377 |
protected: |
1324 | 1378 |
|
1325 | 1379 |
typedef Parent::NodeNotifier NodeNotifier; |
1326 | 1380 |
|
1327 | 1381 |
class NodeObserverProxy : public NodeNotifier::ObserverBase { |
... | ... |
@@ -1485,45 +1539,46 @@ |
1485 | 1539 |
|
1486 | 1540 |
public: |
1487 | 1541 |
|
1488 | 1542 |
/// \brief Default constructor. |
1489 | 1543 |
/// |
1490 | 1544 |
/// Default constructor. |
1491 |
/// |
|
1545 |
/// You have to call save() to actually make a snapshot. |
|
1492 | 1546 |
Snapshot() |
1493 | 1547 |
: graph(0), node_observer_proxy(*this), |
1494 | 1548 |
edge_observer_proxy(*this) {} |
1495 | 1549 |
|
1496 | 1550 |
/// \brief Constructor that immediately makes a snapshot. |
1497 | 1551 |
/// |
1498 |
/// This constructor immediately makes a snapshot of the graph. |
|
1499 |
/// \param _graph The graph we make a snapshot of. |
|
1500 |
|
|
1552 |
/// This constructor immediately makes a snapshot of the given graph. |
|
1553 |
Snapshot(ListGraph &gr) |
|
1501 | 1554 |
: node_observer_proxy(*this), |
1502 | 1555 |
edge_observer_proxy(*this) { |
1503 |
attach( |
|
1556 |
attach(gr); |
|
1504 | 1557 |
} |
1505 | 1558 |
|
1506 | 1559 |
/// \brief Make a snapshot. |
1507 | 1560 |
/// |
1508 |
/// Make a snapshot of the graph. |
|
1509 |
/// |
|
1510 |
/// This function |
|
1561 |
/// This function makes a snapshot of the given graph. |
|
1562 |
/// It can be called more than once. In case of a repeated |
|
1511 | 1563 |
/// call, the previous snapshot gets lost. |
1512 |
/// \param _graph The graph we make the snapshot of. |
|
1513 |
void save(ListGraph &_graph) { |
|
1564 |
void save(ListGraph &gr) { |
|
1514 | 1565 |
if (attached()) { |
1515 | 1566 |
detach(); |
1516 | 1567 |
clear(); |
1517 | 1568 |
} |
1518 |
attach( |
|
1569 |
attach(gr); |
|
1519 | 1570 |
} |
1520 | 1571 |
|
1521 | 1572 |
/// \brief Undo the changes until the last snapshot. |
1522 |
// |
|
1523 |
/// Undo the changes until the last snapshot created by save(). |
|
1573 |
/// |
|
1574 |
/// This function undos the changes until the last snapshot |
|
1575 |
/// created by save() or Snapshot(ListGraph&). |
|
1576 |
/// |
|
1577 |
/// \warning This method invalidates the snapshot, i.e. repeated |
|
1578 |
/// restoring is not supported unless you call save() again. |
|
1524 | 1579 |
void restore() { |
1525 | 1580 |
detach(); |
1526 | 1581 |
for(std::list<Edge>::iterator it = added_edges.begin(); |
1527 | 1582 |
it != added_edges.end(); ++it) { |
1528 | 1583 |
graph->erase(*it); |
1529 | 1584 |
} |
... | ... |
@@ -1531,15 +1586,15 @@ |
1531 | 1586 |
it != added_nodes.end(); ++it) { |
1532 | 1587 |
graph->erase(*it); |
1533 | 1588 |
} |
1534 | 1589 |
clear(); |
1535 | 1590 |
} |
1536 | 1591 |
|
1537 |
/// \brief |
|
1592 |
/// \brief Returns \c true if the snapshot is valid. |
|
1538 | 1593 |
/// |
1539 |
/// |
|
1594 |
/// This function returns \c true if the snapshot is valid. |
|
1540 | 1595 |
bool valid() const { |
1541 | 1596 |
return attached(); |
1542 | 1597 |
} |
1543 | 1598 |
}; |
1544 | 1599 |
}; |
1545 | 1600 |
... | ... |
@@ -143,13 +143,13 @@ |
143 | 143 |
/// ordering of the items. |
144 | 144 |
bool operator<(Col c) const {return _id < c._id;} |
145 | 145 |
}; |
146 | 146 |
|
147 | 147 |
///Iterator for iterate over the columns of an LP problem |
148 | 148 |
|
149 |
/// Its usage is quite simple, for example you can count the number |
|
149 |
/// Its usage is quite simple, for example, you can count the number |
|
150 | 150 |
/// of columns in an LP \c lp: |
151 | 151 |
///\code |
152 | 152 |
/// int count=0; |
153 | 153 |
/// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count; |
154 | 154 |
///\endcode |
155 | 155 |
class ColIt : public Col { |
... | ... |
@@ -238,13 +238,13 @@ |
238 | 238 |
/// ordering of the items. |
239 | 239 |
bool operator<(Row r) const {return _id < r._id;} |
240 | 240 |
}; |
241 | 241 |
|
242 | 242 |
///Iterator for iterate over the rows of an LP problem |
243 | 243 |
|
244 |
/// Its usage is quite simple, for example you can count the number |
|
244 |
/// Its usage is quite simple, for example, you can count the number |
|
245 | 245 |
/// of rows in an LP \c lp: |
246 | 246 |
///\code |
247 | 247 |
/// int count=0; |
248 | 248 |
/// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count; |
249 | 249 |
///\endcode |
250 | 250 |
class RowIt : public Row { |
... | ... |
@@ -940,12 +940,20 @@ |
940 | 940 |
virtual void _eraseColId(int col) { cols.eraseIndex(col); } |
941 | 941 |
virtual void _eraseRowId(int row) { rows.eraseIndex(row); } |
942 | 942 |
|
943 | 943 |
virtual int _addCol() = 0; |
944 | 944 |
virtual int _addRow() = 0; |
945 | 945 |
|
946 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u) { |
|
947 |
int row = _addRow(); |
|
948 |
_setRowCoeffs(row, b, e); |
|
949 |
_setRowLowerBound(row, l); |
|
950 |
_setRowUpperBound(row, u); |
|
951 |
return row; |
|
952 |
} |
|
953 |
|
|
946 | 954 |
virtual void _eraseCol(int col) = 0; |
947 | 955 |
virtual void _eraseRow(int row) = 0; |
948 | 956 |
|
949 | 957 |
virtual void _getColName(int col, std::string& name) const = 0; |
950 | 958 |
virtual void _setColName(int col, const std::string& name) = 0; |
951 | 959 |
virtual int _colByName(const std::string& name) const = 0; |
... | ... |
@@ -1204,24 +1212,30 @@ |
1204 | 1212 |
|
1205 | 1213 |
///\param l is the lower bound (-\ref INF means no bound) |
1206 | 1214 |
///\param e is a linear expression (see \ref Expr) |
1207 | 1215 |
///\param u is the upper bound (\ref INF means no bound) |
1208 | 1216 |
///\return The created row. |
1209 | 1217 |
Row addRow(Value l,const Expr &e, Value u) { |
1210 |
Row r=addRow(); |
|
1211 |
row(r,l,e,u); |
|
1218 |
Row r; |
|
1219 |
e.simplify(); |
|
1220 |
r._id = _addRowId(_addRow(l - *e, ExprIterator(e.comps.begin(), cols), |
|
1221 |
ExprIterator(e.comps.end(), cols), u - *e)); |
|
1212 | 1222 |
return r; |
1213 | 1223 |
} |
1214 | 1224 |
|
1215 | 1225 |
///Add a new row (i.e a new constraint) to the LP |
1216 | 1226 |
|
1217 | 1227 |
///\param c is a linear expression (see \ref Constr) |
1218 | 1228 |
///\return The created row. |
1219 | 1229 |
Row addRow(const Constr &c) { |
1220 |
Row r=addRow(); |
|
1221 |
row(r,c); |
|
1230 |
Row r; |
|
1231 |
c.expr().simplify(); |
|
1232 |
r._id = _addRowId(_addRow(c.lowerBounded()?c.lowerBound():-INF, |
|
1233 |
ExprIterator(c.expr().comps.begin(), cols), |
|
1234 |
ExprIterator(c.expr().comps.end(), cols), |
|
1235 |
c.upperBounded()?c.upperBound():INF)); |
|
1222 | 1236 |
return r; |
1223 | 1237 |
} |
1224 | 1238 |
///Erase a column (i.e a variable) from the LP |
1225 | 1239 |
|
1226 | 1240 |
///\param c is the column to be deleted |
1227 | 1241 |
void erase(Col c) { |
... | ... |
@@ -29,12 +29,17 @@ |
29 | 29 |
|
30 | 30 |
int SkeletonSolverBase::_addRow() |
31 | 31 |
{ |
32 | 32 |
return ++row_num; |
33 | 33 |
} |
34 | 34 |
|
35 |
int SkeletonSolverBase::_addRow(Value, ExprIterator, ExprIterator, Value) |
|
36 |
{ |
|
37 |
return ++row_num; |
|
38 |
} |
|
39 |
|
|
35 | 40 |
void SkeletonSolverBase::_eraseCol(int) {} |
36 | 41 |
void SkeletonSolverBase::_eraseRow(int) {} |
37 | 42 |
|
38 | 43 |
void SkeletonSolverBase::_getColName(int, std::string &) const {} |
39 | 44 |
void SkeletonSolverBase::_setColName(int, const std::string &) {} |
40 | 45 |
int SkeletonSolverBase::_colByName(const std::string&) const { return -1; } |
... | ... |
@@ -42,12 +42,14 @@ |
42 | 42 |
|
43 | 43 |
/// \e |
44 | 44 |
virtual int _addCol(); |
45 | 45 |
/// \e |
46 | 46 |
virtual int _addRow(); |
47 | 47 |
/// \e |
48 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
49 |
/// \e |
|
48 | 50 |
virtual void _eraseCol(int i); |
49 | 51 |
/// \e |
50 | 52 |
virtual void _eraseRow(int i); |
51 | 53 |
|
52 | 54 |
/// \e |
53 | 55 |
virtual void _getColName(int col, std::string& name) const; |
... | ... |
@@ -53,13 +53,13 @@ |
53 | 53 |
/// Null map. (a.k.a. DoNothingMap) |
54 | 54 |
|
55 | 55 |
/// This map can be used if you have to provide a map only for |
56 | 56 |
/// its type definitions, or if you have to provide a writable map, |
57 | 57 |
/// but data written to it is not required (i.e. it will be sent to |
58 | 58 |
/// <tt>/dev/null</tt>). |
59 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
59 |
/// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
60 | 60 |
/// |
61 | 61 |
/// \sa ConstMap |
62 | 62 |
template<typename K, typename V> |
63 | 63 |
class NullMap : public MapBase<K, V> { |
64 | 64 |
public: |
65 | 65 |
///\e |
... | ... |
@@ -86,13 +86,13 @@ |
86 | 86 |
/// Constant map. |
87 | 87 |
|
88 | 88 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
89 | 89 |
/// value to each key. |
90 | 90 |
/// |
91 | 91 |
/// In other aspects it is equivalent to \c NullMap. |
92 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
92 |
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
93 | 93 |
/// concept, but it absorbs the data written to it. |
94 | 94 |
/// |
95 | 95 |
/// The simplest way of using this map is through the constMap() |
96 | 96 |
/// function. |
97 | 97 |
/// |
98 | 98 |
/// \sa NullMap |
... | ... |
@@ -155,13 +155,13 @@ |
155 | 155 |
/// Constant map with inlined constant value. |
156 | 156 |
|
157 | 157 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
158 | 158 |
/// value to each key. |
159 | 159 |
/// |
160 | 160 |
/// In other aspects it is equivalent to \c NullMap. |
161 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
161 |
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
162 | 162 |
/// concept, but it absorbs the data written to it. |
163 | 163 |
/// |
164 | 164 |
/// The simplest way of using this map is through the constMap() |
165 | 165 |
/// function. |
166 | 166 |
/// |
167 | 167 |
/// \sa NullMap |
... | ... |
@@ -227,16 +227,16 @@ |
227 | 227 |
|
228 | 228 |
/// \brief Map for storing values for integer keys from the range |
229 | 229 |
/// <tt>[0..size-1]</tt>. |
230 | 230 |
/// |
231 | 231 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
232 | 232 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
233 |
/// It can be used with some data structures, for example |
|
234 |
/// \c UnionFind, \c BinHeap, when the used items are small |
|
235 |
/// integers. This map conforms the \ref concepts::ReferenceMap |
|
236 |
/// "ReferenceMap" concept. |
|
233 |
/// It can be used together with some data structures, e.g. |
|
234 |
/// heap types and \c UnionFind, when the used items are small |
|
235 |
/// integers. This map conforms to the \ref concepts::ReferenceMap |
|
236 |
/// "ReferenceMap" concept. |
|
237 | 237 |
/// |
238 | 238 |
/// The simplest way of using this map is through the rangeMap() |
239 | 239 |
/// function. |
240 | 240 |
template <typename V> |
241 | 241 |
class RangeMap : public MapBase<int, V> { |
242 | 242 |
template <typename V1> |
... | ... |
@@ -337,23 +337,23 @@ |
337 | 337 |
/// Map type based on \c std::map |
338 | 338 |
|
339 | 339 |
/// This map is essentially a wrapper for \c std::map with addition |
340 | 340 |
/// that you can specify a default value for the keys that are not |
341 | 341 |
/// stored actually. This value can be different from the default |
342 | 342 |
/// contructed value (i.e. \c %Value()). |
343 |
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
|
343 |
/// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap" |
|
344 | 344 |
/// concept. |
345 | 345 |
/// |
346 | 346 |
/// This map is useful if a default value should be assigned to most of |
347 | 347 |
/// the keys and different values should be assigned only to a few |
348 | 348 |
/// keys (i.e. the map is "sparse"). |
349 | 349 |
/// The name of this type also refers to this important usage. |
350 | 350 |
/// |
351 |
/// Apart form that this map can be used in many other cases since it |
|
351 |
/// Apart form that, this map can be used in many other cases since it |
|
352 | 352 |
/// is based on \c std::map, which is a general associative container. |
353 |
/// However keep in mind that it is usually not as efficient as other |
|
353 |
/// However, keep in mind that it is usually not as efficient as other |
|
354 | 354 |
/// maps. |
355 | 355 |
/// |
356 | 356 |
/// The simplest way of using this map is through the sparseMap() |
357 | 357 |
/// function. |
358 | 358 |
template <typename K, typename V, typename Comp = std::less<K> > |
359 | 359 |
class SparseMap : public MapBase<K, V> { |
... | ... |
@@ -703,13 +703,13 @@ |
703 | 703 |
/// another type using the default conversion. |
704 | 704 |
|
705 | 705 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
706 | 706 |
/// "readable map" to another type using the default conversion. |
707 | 707 |
/// The \c Key type of it is inherited from \c M and the \c Value |
708 | 708 |
/// type is \c V. |
709 |
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
|
709 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
710 | 710 |
/// |
711 | 711 |
/// The simplest way of using this map is through the convertMap() |
712 | 712 |
/// function. |
713 | 713 |
template <typename M, typename V> |
714 | 714 |
class ConvertMap : public MapBase<typename M::Key, V> { |
715 | 715 |
const M &_m; |
... | ... |
@@ -1782,28 +1782,28 @@ |
1782 | 1782 |
/// Returns a \c LoggerBoolMap class |
1783 | 1783 |
|
1784 | 1784 |
/// This function just returns a \c LoggerBoolMap class. |
1785 | 1785 |
/// |
1786 | 1786 |
/// The most important usage of it is storing certain nodes or arcs |
1787 | 1787 |
/// that were marked \c true by an algorithm. |
1788 |
/// For example it makes easier to store the nodes in the processing |
|
1788 |
/// For example, it makes easier to store the nodes in the processing |
|
1789 | 1789 |
/// order of Dfs algorithm, as the following examples show. |
1790 | 1790 |
/// \code |
1791 | 1791 |
/// std::vector<Node> v; |
1792 |
/// dfs(g |
|
1792 |
/// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s); |
|
1793 | 1793 |
/// \endcode |
1794 | 1794 |
/// \code |
1795 | 1795 |
/// std::vector<Node> v(countNodes(g)); |
1796 |
/// dfs(g |
|
1796 |
/// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s); |
|
1797 | 1797 |
/// \endcode |
1798 | 1798 |
/// |
1799 | 1799 |
/// \note The container of the iterator must contain enough space |
1800 | 1800 |
/// for the elements or the iterator should be an inserter iterator. |
1801 | 1801 |
/// |
1802 | 1802 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
1803 |
/// it cannot be used when a readable map is needed, for example as |
|
1803 |
/// it cannot be used when a readable map is needed, for example, as |
|
1804 | 1804 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
1805 | 1805 |
/// |
1806 | 1806 |
/// \relates LoggerBoolMap |
1807 | 1807 |
template<typename Iterator> |
1808 | 1808 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
1809 | 1809 |
return LoggerBoolMap<Iterator>(it); |
... | ... |
@@ -1822,13 +1822,13 @@ |
1822 | 1822 |
/// - \b immutable: the id of an item does not change (even if you |
1823 | 1823 |
/// delete other nodes). |
1824 | 1824 |
/// |
1825 | 1825 |
/// Using this map you get access (i.e. can read) the inner id values of |
1826 | 1826 |
/// the items stored in the graph, which is returned by the \c id() |
1827 | 1827 |
/// function of the graph. This map can be inverted with its member |
1828 |
/// class \c InverseMap or with the \c operator() member. |
|
1828 |
/// class \c InverseMap or with the \c operator()() member. |
|
1829 | 1829 |
/// |
1830 | 1830 |
/// \tparam GR The graph type. |
1831 | 1831 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1832 | 1832 |
/// \c GR::Edge). |
1833 | 1833 |
/// |
1834 | 1834 |
/// \see RangeIdMap |
... | ... |
@@ -1862,15 +1862,17 @@ |
1862 | 1862 |
|
1863 | 1863 |
private: |
1864 | 1864 |
const Graph* _graph; |
1865 | 1865 |
|
1866 | 1866 |
public: |
1867 | 1867 |
|
1868 |
/// \brief |
|
1868 |
/// \brief The inverse map type of IdMap. |
|
1869 | 1869 |
/// |
1870 |
/// |
|
1870 |
/// The inverse map type of IdMap. The subscript operator gives back |
|
1871 |
/// an item by its id. |
|
1872 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
1871 | 1873 |
/// \see inverse() |
1872 | 1874 |
class InverseMap { |
1873 | 1875 |
public: |
1874 | 1876 |
|
1875 | 1877 |
/// \brief Constructor. |
1876 | 1878 |
/// |
... | ... |
@@ -1879,35 +1881,52 @@ |
1879 | 1881 |
|
1880 | 1882 |
/// \brief Constructor. |
1881 | 1883 |
/// |
1882 | 1884 |
/// Constructor for creating an id-to-item map. |
1883 | 1885 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
1884 | 1886 |
|
1885 |
/// \brief Gives back |
|
1887 |
/// \brief Gives back an item by its id. |
|
1886 | 1888 |
/// |
1887 |
/// Gives back |
|
1889 |
/// Gives back an item by its id. |
|
1888 | 1890 |
Item operator[](int id) const { return _graph->fromId(id, Item());} |
1889 | 1891 |
|
1890 | 1892 |
private: |
1891 | 1893 |
const Graph* _graph; |
1892 | 1894 |
}; |
1893 | 1895 |
|
1894 | 1896 |
/// \brief Gives back the inverse of the map. |
1895 | 1897 |
/// |
1896 | 1898 |
/// Gives back the inverse of the IdMap. |
1897 | 1899 |
InverseMap inverse() const { return InverseMap(*_graph);} |
1898 | 1900 |
}; |
1899 | 1901 |
|
1902 |
/// \brief Returns an \c IdMap class. |
|
1903 |
/// |
|
1904 |
/// This function just returns an \c IdMap class. |
|
1905 |
/// \relates IdMap |
|
1906 |
template <typename K, typename GR> |
|
1907 |
inline IdMap<GR, K> idMap(const GR& graph) { |
|
1908 |
return IdMap<GR, K>(graph); |
|
1909 |
} |
|
1900 | 1910 |
|
1901 | 1911 |
/// \brief General cross reference graph map type. |
1902 | 1912 |
|
1903 | 1913 |
/// This class provides simple invertable graph maps. |
1904 | 1914 |
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) |
1905 | 1915 |
/// and if a key is set to a new value, then stores it in the inverse map. |
1906 |
/// The values of the map can be accessed |
|
1907 |
/// with stl compatible forward iterator. |
|
1916 |
/// The graph items can be accessed by their values either using |
|
1917 |
/// \c InverseMap or \c operator()(), and the values of the map can be |
|
1918 |
/// accessed with an STL compatible forward iterator (\c ValueIt). |
|
1919 |
/// |
|
1920 |
/// This map is intended to be used when all associated values are |
|
1921 |
/// different (the map is actually invertable) or there are only a few |
|
1922 |
/// items with the same value. |
|
1923 |
/// Otherwise consider to use \c IterableValueMap, which is more |
|
1924 |
/// suitable and more efficient for such cases. It provides iterators |
|
1925 |
/// to traverse the items with the same associated value, but |
|
1926 |
/// it does not have \c InverseMap. |
|
1908 | 1927 |
/// |
1909 | 1928 |
/// This type is not reference map, so it cannot be modified with |
1910 | 1929 |
/// the subscript operator. |
1911 | 1930 |
/// |
1912 | 1931 |
/// \tparam GR The graph type. |
1913 | 1932 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
... | ... |
@@ -1942,62 +1961,72 @@ |
1942 | 1961 |
/// |
1943 | 1962 |
/// Construct a new CrossRefMap for the given graph. |
1944 | 1963 |
explicit CrossRefMap(const Graph& graph) : Map(graph) {} |
1945 | 1964 |
|
1946 | 1965 |
/// \brief Forward iterator for values. |
1947 | 1966 |
/// |
1948 |
/// This iterator is an |
|
1967 |
/// This iterator is an STL compatible forward |
|
1949 | 1968 |
/// iterator on the values of the map. The values can |
1950 | 1969 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
1951 | 1970 |
/// They are considered with multiplicity, so each value is |
1952 | 1971 |
/// traversed for each item it is assigned to. |
1953 |
class |
|
1972 |
class ValueIt |
|
1954 | 1973 |
: public std::iterator<std::forward_iterator_tag, Value> { |
1955 | 1974 |
friend class CrossRefMap; |
1956 | 1975 |
private: |
1957 |
|
|
1976 |
ValueIt(typename Container::const_iterator _it) |
|
1958 | 1977 |
: it(_it) {} |
1959 | 1978 |
public: |
1960 | 1979 |
|
1961 |
ValueIterator() {} |
|
1962 |
|
|
1963 |
ValueIterator& operator++() { ++it; return *this; } |
|
1964 |
ValueIterator operator++(int) { |
|
1965 |
|
|
1980 |
/// Constructor |
|
1981 |
ValueIt() {} |
|
1982 |
|
|
1983 |
/// \e |
|
1984 |
ValueIt& operator++() { ++it; return *this; } |
|
1985 |
/// \e |
|
1986 |
ValueIt operator++(int) { |
|
1987 |
ValueIt tmp(*this); |
|
1966 | 1988 |
operator++(); |
1967 | 1989 |
return tmp; |
1968 | 1990 |
} |
1969 | 1991 |
|
1992 |
/// \e |
|
1970 | 1993 |
const Value& operator*() const { return it->first; } |
1994 |
/// \e |
|
1971 | 1995 |
const Value* operator->() const { return &(it->first); } |
1972 | 1996 |
|
1973 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
|
1974 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
|
1997 |
/// \e |
|
1998 |
bool operator==(ValueIt jt) const { return it == jt.it; } |
|
1999 |
/// \e |
|
2000 |
bool operator!=(ValueIt jt) const { return it != jt.it; } |
|
1975 | 2001 |
|
1976 | 2002 |
private: |
1977 | 2003 |
typename Container::const_iterator it; |
1978 | 2004 |
}; |
2005 |
|
|
2006 |
/// Alias for \c ValueIt |
|
2007 |
typedef ValueIt ValueIterator; |
|
1979 | 2008 |
|
1980 | 2009 |
/// \brief Returns an iterator to the first value. |
1981 | 2010 |
/// |
1982 |
/// Returns an |
|
2011 |
/// Returns an STL compatible iterator to the |
|
1983 | 2012 |
/// first value of the map. The values of the |
1984 | 2013 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
1985 | 2014 |
/// range. |
1986 |
ValueIterator beginValue() const { |
|
1987 |
return ValueIterator(_inv_map.begin()); |
|
2015 |
ValueIt beginValue() const { |
|
2016 |
return ValueIt(_inv_map.begin()); |
|
1988 | 2017 |
} |
1989 | 2018 |
|
1990 | 2019 |
/// \brief Returns an iterator after the last value. |
1991 | 2020 |
/// |
1992 |
/// Returns an |
|
2021 |
/// Returns an STL compatible iterator after the |
|
1993 | 2022 |
/// last value of the map. The values of the |
1994 | 2023 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
1995 | 2024 |
/// range. |
1996 |
ValueIterator endValue() const { |
|
1997 |
return ValueIterator(_inv_map.end()); |
|
2025 |
ValueIt endValue() const { |
|
2026 |
return ValueIt(_inv_map.end()); |
|
1998 | 2027 |
} |
1999 | 2028 |
|
2000 | 2029 |
/// \brief Sets the value associated with the given key. |
2001 | 2030 |
/// |
2002 | 2031 |
/// Sets the value associated with the given key. |
2003 | 2032 |
void set(const Key& key, const Value& val) { |
... | ... |
@@ -2029,12 +2058,20 @@ |
2029 | 2058 |
/// If there are more items with the same associated value, |
2030 | 2059 |
/// only one of them is returned. |
2031 | 2060 |
Key operator()(const Value& val) const { |
2032 | 2061 |
typename Container::const_iterator it = _inv_map.find(val); |
2033 | 2062 |
return it != _inv_map.end() ? it->second : INVALID; |
2034 | 2063 |
} |
2064 |
|
|
2065 |
/// \brief Returns the number of items with the given value. |
|
2066 |
/// |
|
2067 |
/// This function returns the number of items with the given value |
|
2068 |
/// associated with it. |
|
2069 |
int count(const Value &val) const { |
|
2070 |
return _inv_map.count(val); |
|
2071 |
} |
|
2035 | 2072 |
|
2036 | 2073 |
protected: |
2037 | 2074 |
|
2038 | 2075 |
/// \brief Erase the key from the map and the inverse map. |
2039 | 2076 |
/// |
2040 | 2077 |
/// Erase the key from the map and the inverse map. It is called by the |
... | ... |
@@ -2079,16 +2116,18 @@ |
2079 | 2116 |
_inv_map.clear(); |
2080 | 2117 |
Map::clear(); |
2081 | 2118 |
} |
2082 | 2119 |
|
2083 | 2120 |
public: |
2084 | 2121 |
|
2085 |
/// \brief The inverse map type. |
|
2122 |
/// \brief The inverse map type of CrossRefMap. |
|
2086 | 2123 |
/// |
2087 |
/// The inverse of this map. The subscript operator of the map |
|
2088 |
/// gives back the item that was last assigned to the value. |
|
2124 |
/// The inverse map type of CrossRefMap. The subscript operator gives |
|
2125 |
/// back an item by its value. |
|
2126 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
2127 |
/// \see inverse() |
|
2089 | 2128 |
class InverseMap { |
2090 | 2129 |
public: |
2091 | 2130 |
/// \brief Constructor |
2092 | 2131 |
/// |
2093 | 2132 |
/// Constructor of the InverseMap. |
2094 | 2133 |
explicit InverseMap(const CrossRefMap& inverted) |
... | ... |
@@ -2109,37 +2148,37 @@ |
2109 | 2148 |
} |
2110 | 2149 |
|
2111 | 2150 |
private: |
2112 | 2151 |
const CrossRefMap& _inverted; |
2113 | 2152 |
}; |
2114 | 2153 |
|
2115 |
/// \brief |
|
2154 |
/// \brief Gives back the inverse of the map. |
|
2116 | 2155 |
/// |
2117 |
/// |
|
2156 |
/// Gives back the inverse of the CrossRefMap. |
|
2118 | 2157 |
InverseMap inverse() const { |
2119 | 2158 |
return InverseMap(*this); |
2120 | 2159 |
} |
2121 | 2160 |
|
2122 | 2161 |
}; |
2123 | 2162 |
|
2124 |
/// \brief Provides continuous and unique |
|
2163 |
/// \brief Provides continuous and unique id for the |
|
2125 | 2164 |
/// items of a graph. |
2126 | 2165 |
/// |
2127 | 2166 |
/// RangeIdMap provides a unique and continuous |
2128 |
/// |
|
2167 |
/// id for each item of a given type (\c Node, \c Arc or |
|
2129 | 2168 |
/// \c Edge) in a graph. This id is |
2130 | 2169 |
/// - \b unique: different items get different ids, |
2131 | 2170 |
/// - \b continuous: the range of the ids is the set of integers |
2132 | 2171 |
/// between 0 and \c n-1, where \c n is the number of the items of |
2133 | 2172 |
/// this type (\c Node, \c Arc or \c Edge). |
2134 | 2173 |
/// - So, the ids can change when deleting an item of the same type. |
2135 | 2174 |
/// |
2136 | 2175 |
/// Thus this id is not (necessarily) the same as what can get using |
2137 | 2176 |
/// the \c id() function of the graph or \ref IdMap. |
2138 | 2177 |
/// This map can be inverted with its member class \c InverseMap, |
2139 |
/// or with the \c operator() member. |
|
2178 |
/// or with the \c operator()() member. |
|
2140 | 2179 |
/// |
2141 | 2180 |
/// \tparam GR The graph type. |
2142 | 2181 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
2143 | 2182 |
/// \c GR::Edge). |
2144 | 2183 |
/// |
2145 | 2184 |
/// \see IdMap |
... | ... |
@@ -2261,22 +2300,22 @@ |
2261 | 2300 |
Map::set(p, qi); |
2262 | 2301 |
_inv_map[qi] = p; |
2263 | 2302 |
Map::set(q, pi); |
2264 | 2303 |
_inv_map[pi] = q; |
2265 | 2304 |
} |
2266 | 2305 |
|
2267 |
/// \brief Gives back the \e |
|
2306 |
/// \brief Gives back the \e range \e id of the item |
|
2268 | 2307 |
/// |
2269 |
/// Gives back the \e |
|
2308 |
/// Gives back the \e range \e id of the item. |
|
2270 | 2309 |
int operator[](const Item& item) const { |
2271 | 2310 |
return Map::operator[](item); |
2272 | 2311 |
} |
2273 | 2312 |
|
2274 |
/// \brief Gives back the item belonging to a \e |
|
2313 |
/// \brief Gives back the item belonging to a \e range \e id |
|
2275 | 2314 |
/// |
2276 |
/// Gives back the item belonging to |
|
2315 |
/// Gives back the item belonging to the given \e range \e id. |
|
2277 | 2316 |
Item operator()(int id) const { |
2278 | 2317 |
return _inv_map[id]; |
2279 | 2318 |
} |
2280 | 2319 |
|
2281 | 2320 |
private: |
2282 | 2321 |
|
... | ... |
@@ -2284,13 +2323,15 @@ |
2284 | 2323 |
Container _inv_map; |
2285 | 2324 |
|
2286 | 2325 |
public: |
2287 | 2326 |
|
2288 | 2327 |
/// \brief The inverse map type of RangeIdMap. |
2289 | 2328 |
/// |
2290 |
/// The inverse map type of RangeIdMap. |
|
2329 |
/// The inverse map type of RangeIdMap. The subscript operator gives |
|
2330 |
/// back an item by its \e range \e id. |
|
2331 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
2291 | 2332 |
class InverseMap { |
2292 | 2333 |
public: |
2293 | 2334 |
/// \brief Constructor |
2294 | 2335 |
/// |
2295 | 2336 |
/// Constructor of the InverseMap. |
2296 | 2337 |
explicit InverseMap(const RangeIdMap& inverted) |
... | ... |
@@ -2302,13 +2343,13 @@ |
2302 | 2343 |
/// The key type of the InverseMap. |
2303 | 2344 |
typedef typename RangeIdMap::Value Key; |
2304 | 2345 |
|
2305 | 2346 |
/// \brief Subscript operator. |
2306 | 2347 |
/// |
2307 | 2348 |
/// Subscript operator. It gives back the item |
2308 |
/// that the |
|
2349 |
/// that the given \e range \e id currently belongs to. |
|
2309 | 2350 |
Value operator[](const Key& key) const { |
2310 | 2351 |
return _inverted(key); |
2311 | 2352 |
} |
2312 | 2353 |
|
2313 | 2354 |
/// \brief Size of the map. |
2314 | 2355 |
/// |
... | ... |
@@ -2320,24 +2361,33 @@ |
2320 | 2361 |
private: |
2321 | 2362 |
const RangeIdMap& _inverted; |
2322 | 2363 |
}; |
2323 | 2364 |
|
2324 | 2365 |
/// \brief Gives back the inverse of the map. |
2325 | 2366 |
/// |
2326 |
/// Gives back the inverse of the |
|
2367 |
/// Gives back the inverse of the RangeIdMap. |
|
2327 | 2368 |
const InverseMap inverse() const { |
2328 | 2369 |
return InverseMap(*this); |
2329 | 2370 |
} |
2330 | 2371 |
}; |
2331 | 2372 |
|
2373 |
/// \brief Returns a \c RangeIdMap class. |
|
2374 |
/// |
|
2375 |
/// This function just returns an \c RangeIdMap class. |
|
2376 |
/// \relates RangeIdMap |
|
2377 |
template <typename K, typename GR> |
|
2378 |
inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) { |
|
2379 |
return RangeIdMap<GR, K>(graph); |
|
2380 |
} |
|
2381 |
|
|
2332 | 2382 |
/// \brief Dynamic iterable \c bool map. |
2333 | 2383 |
/// |
2334 | 2384 |
/// This class provides a special graph map type which can store a |
2335 | 2385 |
/// \c bool value for graph items (\c Node, \c Arc or \c Edge). |
2336 | 2386 |
/// For both \c true and \c false values it is possible to iterate on |
2337 |
/// the keys. |
|
2387 |
/// the keys mapped to the value. |
|
2338 | 2388 |
/// |
2339 | 2389 |
/// This type is a reference map, so it can be modified with the |
2340 | 2390 |
/// subscript operator. |
2341 | 2391 |
/// |
2342 | 2392 |
/// \tparam GR The graph type. |
2343 | 2393 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
... | ... |
@@ -2700,12 +2750,17 @@ |
2700 | 2750 |
/// |
2701 | 2751 |
/// This class provides a special graph map type which can store an |
2702 | 2752 |
/// integer value for graph items (\c Node, \c Arc or \c Edge). |
2703 | 2753 |
/// For each non-negative value it is possible to iterate on the keys |
2704 | 2754 |
/// mapped to the value. |
2705 | 2755 |
/// |
2756 |
/// This map is intended to be used with small integer values, for which |
|
2757 |
/// it is efficient, and supports iteration only for non-negative values. |
|
2758 |
/// If you need large values and/or iteration for negative integers, |
|
2759 |
/// consider to use \ref IterableValueMap instead. |
|
2760 |
/// |
|
2706 | 2761 |
/// This type is a reference map, so it can be modified with the |
2707 | 2762 |
/// subscript operator. |
2708 | 2763 |
/// |
2709 | 2764 |
/// \note The size of the data structure depends on the largest |
2710 | 2765 |
/// value in the map. |
2711 | 2766 |
/// |
... | ... |
@@ -2981,21 +3036,23 @@ |
2981 | 3036 |
Value value; |
2982 | 3037 |
}; |
2983 | 3038 |
} |
2984 | 3039 |
|
2985 | 3040 |
/// \brief Dynamic iterable map for comparable values. |
2986 | 3041 |
/// |
2987 |
/// This class provides a special graph map type which can store |
|
3042 |
/// This class provides a special graph map type which can store a |
|
2988 | 3043 |
/// comparable value for graph items (\c Node, \c Arc or \c Edge). |
2989 | 3044 |
/// For each value it is possible to iterate on the keys mapped to |
2990 |
/// the value |
|
3045 |
/// the value (\c ItemIt), and the values of the map can be accessed |
|
3046 |
/// with an STL compatible forward iterator (\c ValueIt). |
|
3047 |
/// The map stores a linked list for each value, which contains |
|
3048 |
/// the items mapped to the value, and the used values are stored |
|
3049 |
/// in balanced binary tree (\c std::map). |
|
2991 | 3050 |
/// |
2992 |
/// The map stores for each value a linked list with |
|
2993 |
/// the items which mapped to the value, and the values are stored |
|
2994 |
/// in balanced binary tree. The values of the map can be accessed |
|
2995 |
/// with stl compatible forward iterator. |
|
3051 |
/// \ref IterableBoolMap and \ref IterableIntMap are similar classes |
|
3052 |
/// specialized for \c bool and \c int values, respectively. |
|
2996 | 3053 |
/// |
2997 | 3054 |
/// This type is not reference map, so it cannot be modified with |
2998 | 3055 |
/// the subscript operator. |
2999 | 3056 |
/// |
3000 | 3057 |
/// \tparam GR The graph type. |
3001 | 3058 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
... | ... |
@@ -3068,60 +3125,67 @@ |
3068 | 3125 |
} |
3069 | 3126 |
|
3070 | 3127 |
public: |
3071 | 3128 |
|
3072 | 3129 |
/// \brief Forward iterator for values. |
3073 | 3130 |
/// |
3074 |
/// This iterator is an |
|
3131 |
/// This iterator is an STL compatible forward |
|
3075 | 3132 |
/// iterator on the values of the map. The values can |
3076 | 3133 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
3077 |
class |
|
3134 |
class ValueIt |
|
3078 | 3135 |
: public std::iterator<std::forward_iterator_tag, Value> { |
3079 | 3136 |
friend class IterableValueMap; |
3080 | 3137 |
private: |
3081 |
|
|
3138 |
ValueIt(typename std::map<Value, Key>::const_iterator _it) |
|
3082 | 3139 |
: it(_it) {} |
3083 | 3140 |
public: |
3084 | 3141 |
|
3085 |
ValueIterator() {} |
|
3086 |
|
|
3087 |
ValueIterator& operator++() { ++it; return *this; } |
|
3088 |
ValueIterator operator++(int) { |
|
3089 |
|
|
3142 |
/// Constructor |
|
3143 |
ValueIt() {} |
|
3144 |
|
|
3145 |
/// \e |
|
3146 |
ValueIt& operator++() { ++it; return *this; } |
|
3147 |
/// \e |
|
3148 |
ValueIt operator++(int) { |
|
3149 |
ValueIt tmp(*this); |
|
3090 | 3150 |
operator++(); |
3091 | 3151 |
return tmp; |
3092 | 3152 |
} |
3093 | 3153 |
|
3154 |
/// \e |
|
3094 | 3155 |
const Value& operator*() const { return it->first; } |
3156 |
/// \e |
|
3095 | 3157 |
const Value* operator->() const { return &(it->first); } |
3096 | 3158 |
|
3097 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
|
3098 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
|
3159 |
/// \e |
|
3160 |
bool operator==(ValueIt jt) const { return it == jt.it; } |
|
3161 |
/// \e |
|
3162 |
bool operator!=(ValueIt jt) const { return it != jt.it; } |
|
3099 | 3163 |
|
3100 | 3164 |
private: |
3101 | 3165 |
typename std::map<Value, Key>::const_iterator it; |
3102 | 3166 |
}; |
3103 | 3167 |
|
3104 | 3168 |
/// \brief Returns an iterator to the first value. |
3105 | 3169 |
/// |
3106 |
/// Returns an |
|
3170 |
/// Returns an STL compatible iterator to the |
|
3107 | 3171 |
/// first value of the map. The values of the |
3108 | 3172 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
3109 | 3173 |
/// range. |
3110 |
ValueIterator beginValue() const { |
|
3111 |
return ValueIterator(_first.begin()); |
|
3174 |
ValueIt beginValue() const { |
|
3175 |
return ValueIt(_first.begin()); |
|
3112 | 3176 |
} |
3113 | 3177 |
|
3114 | 3178 |
/// \brief Returns an iterator after the last value. |
3115 | 3179 |
/// |
3116 |
/// Returns an |
|
3180 |
/// Returns an STL compatible iterator after the |
|
3117 | 3181 |
/// last value of the map. The values of the |
3118 | 3182 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
3119 | 3183 |
/// range. |
3120 |
ValueIterator endValue() const { |
|
3121 |
return ValueIterator(_first.end()); |
|
3184 |
ValueIt endValue() const { |
|
3185 |
return ValueIt(_first.end()); |
|
3122 | 3186 |
} |
3123 | 3187 |
|
3124 | 3188 |
/// \brief Set operation of the map. |
3125 | 3189 |
/// |
3126 | 3190 |
/// Set operation of the map. |
3127 | 3191 |
void set(const Key& key, const Value& value) { |
... | ... |
@@ -3233,15 +3297,15 @@ |
3233 | 3297 |
/// \tparam GR The digraph type. |
3234 | 3298 |
/// \see TargetMap |
3235 | 3299 |
template <typename GR> |
3236 | 3300 |
class SourceMap { |
3237 | 3301 |
public: |
3238 | 3302 |
|
3239 |
///\ |
|
3303 |
/// The key type (the \c Arc type of the digraph). |
|
3240 | 3304 |
typedef typename GR::Arc Key; |
3241 |
///\ |
|
3305 |
/// The value type (the \c Node type of the digraph). |
|
3242 | 3306 |
typedef typename GR::Node Value; |
3243 | 3307 |
|
3244 | 3308 |
/// \brief Constructor |
3245 | 3309 |
/// |
3246 | 3310 |
/// Constructor. |
3247 | 3311 |
/// \param digraph The digraph that the map belongs to. |
... | ... |
@@ -3274,15 +3338,15 @@ |
3274 | 3338 |
/// \tparam GR The digraph type. |
3275 | 3339 |
/// \see SourceMap |
3276 | 3340 |
template <typename GR> |
3277 | 3341 |
class TargetMap { |
3278 | 3342 |
public: |
3279 | 3343 |
|
3280 |
///\ |
|
3344 |
/// The key type (the \c Arc type of the digraph). |
|
3281 | 3345 |
typedef typename GR::Arc Key; |
3282 |
///\ |
|
3346 |
/// The value type (the \c Node type of the digraph). |
|
3283 | 3347 |
typedef typename GR::Node Value; |
3284 | 3348 |
|
3285 | 3349 |
/// \brief Constructor |
3286 | 3350 |
/// |
3287 | 3351 |
/// Constructor. |
3288 | 3352 |
/// \param digraph The digraph that the map belongs to. |
... | ... |
@@ -3316,14 +3380,16 @@ |
3316 | 3380 |
/// \tparam GR The graph type. |
3317 | 3381 |
/// \see BackwardMap |
3318 | 3382 |
template <typename GR> |
3319 | 3383 |
class ForwardMap { |
3320 | 3384 |
public: |
3321 | 3385 |
|
3386 |
/// The key type (the \c Edge type of the digraph). |
|
3387 |
typedef typename GR::Edge Key; |
|
3388 |
/// The value type (the \c Arc type of the digraph). |
|
3322 | 3389 |
typedef typename GR::Arc Value; |
3323 |
typedef typename GR::Edge Key; |
|
3324 | 3390 |
|
3325 | 3391 |
/// \brief Constructor |
3326 | 3392 |
/// |
3327 | 3393 |
/// Constructor. |
3328 | 3394 |
/// \param graph The graph that the map belongs to. |
3329 | 3395 |
explicit ForwardMap(const GR& graph) : _graph(graph) {} |
... | ... |
@@ -3356,14 +3422,16 @@ |
3356 | 3422 |
/// \tparam GR The graph type. |
3357 | 3423 |
/// \see ForwardMap |
3358 | 3424 |
template <typename GR> |
3359 | 3425 |
class BackwardMap { |
3360 | 3426 |
public: |
3361 | 3427 |
|
3428 |
/// The key type (the \c Edge type of the digraph). |
|
3429 |
typedef typename GR::Edge Key; |
|
3430 |
/// The value type (the \c Arc type of the digraph). |
|
3362 | 3431 |
typedef typename GR::Arc Value; |
3363 |
typedef typename GR::Edge Key; |
|
3364 | 3432 |
|
3365 | 3433 |
/// \brief Constructor |
3366 | 3434 |
/// |
3367 | 3435 |
/// Constructor. |
3368 | 3436 |
/// \param graph The graph that the map belongs to. |
3369 | 3437 |
explicit BackwardMap(const GR& graph) : _graph(graph) {} |
... | ... |
@@ -3395,13 +3463,13 @@ |
3395 | 3463 |
/// in constant time. On the other hand, the values are updated automatically |
3396 | 3464 |
/// whenever the digraph changes. |
3397 | 3465 |
/// |
3398 | 3466 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
3399 | 3467 |
/// may provide alternative ways to modify the digraph. |
3400 | 3468 |
/// The correct behavior of InDegMap is not guarantied if these additional |
3401 |
/// features are used. For example the functions |
|
3469 |
/// features are used. For example, the functions |
|
3402 | 3470 |
/// \ref ListDigraph::changeSource() "changeSource()", |
3403 | 3471 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
3404 | 3472 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
3405 | 3473 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
3406 | 3474 |
/// |
3407 | 3475 |
/// \sa OutDegMap |
... | ... |
@@ -3525,13 +3593,13 @@ |
3525 | 3593 |
/// in constant time. On the other hand, the values are updated automatically |
3526 | 3594 |
/// whenever the digraph changes. |
3527 | 3595 |
/// |
3528 | 3596 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
3529 | 3597 |
/// may provide alternative ways to modify the digraph. |
3530 | 3598 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
3531 |
/// features are used. For example the functions |
|
3599 |
/// features are used. For example, the functions |
|
3532 | 3600 |
/// \ref ListDigraph::changeSource() "changeSource()", |
3533 | 3601 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
3534 | 3602 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
3535 | 3603 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
3536 | 3604 |
/// |
3537 | 3605 |
/// \sa InDegMap |
... | ... |
@@ -3693,10 +3761,297 @@ |
3693 | 3761 |
template <typename GR, typename POT> |
3694 | 3762 |
PotentialDifferenceMap<GR, POT> |
3695 | 3763 |
potentialDifferenceMap(const GR& gr, const POT& potential) { |
3696 | 3764 |
return PotentialDifferenceMap<GR, POT>(gr, potential); |
3697 | 3765 |
} |
3698 | 3766 |
|
3767 |
|
|
3768 |
/// \brief Copy the values of a graph map to another map. |
|
3769 |
/// |
|
3770 |
/// This function copies the values of a graph map to another graph map. |
|
3771 |
/// \c To::Key must be equal or convertible to \c From::Key and |
|
3772 |
/// \c From::Value must be equal or convertible to \c To::Value. |
|
3773 |
/// |
|
3774 |
/// For example, an edge map of \c int value type can be copied to |
|
3775 |
/// an arc map of \c double value type in an undirected graph, but |
|
3776 |
/// an arc map cannot be copied to an edge map. |
|
3777 |
/// Note that even a \ref ConstMap can be copied to a standard graph map, |
|
3778 |
/// but \ref mapFill() can also be used for this purpose. |
|
3779 |
/// |
|
3780 |
/// \param gr The graph for which the maps are defined. |
|
3781 |
/// \param from The map from which the values have to be copied. |
|
3782 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
3783 |
/// \param to The map to which the values have to be copied. |
|
3784 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
3785 |
template <typename GR, typename From, typename To> |
|
3786 |
void mapCopy(const GR& gr, const From& from, To& to) { |
|
3787 |
typedef typename To::Key Item; |
|
3788 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
|
3789 |
|
|
3790 |
for (ItemIt it(gr); it != INVALID; ++it) { |
|
3791 |
to.set(it, from[it]); |
|
3792 |
} |
|
3793 |
} |
|
3794 |
|
|
3795 |
/// \brief Compare two graph maps. |
|
3796 |
/// |
|
3797 |
/// This function compares the values of two graph maps. It returns |
|
3798 |
/// \c true if the maps assign the same value for all items in the graph. |
|
3799 |
/// The \c Key type of the maps (\c Node, \c Arc or \c Edge) must be equal |
|
3800 |
/// and their \c Value types must be comparable using \c %operator==(). |
|
3801 |
/// |
|
3802 |
/// \param gr The graph for which the maps are defined. |
|
3803 |
/// \param map1 The first map. |
|
3804 |
/// \param map2 The second map. |
|
3805 |
template <typename GR, typename Map1, typename Map2> |
|
3806 |
bool mapCompare(const GR& gr, const Map1& map1, const Map2& map2) { |
|
3807 |
typedef typename Map2::Key Item; |
|
3808 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
|
3809 |
|
|
3810 |
for (ItemIt it(gr); it != INVALID; ++it) { |
|
3811 |
if (!(map1[it] == map2[it])) return false; |
|
3812 |
} |
|
3813 |
return true; |
|
3814 |
} |
|
3815 |
|
|
3816 |
/// \brief Return an item having minimum value of a graph map. |
|
3817 |
/// |
|
3818 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
|
3819 |
/// minimum value of the given graph map. |
|
3820 |
/// If the item set is empty, it returns \c INVALID. |
|
3821 |
/// |
|
3822 |
/// \param gr The graph for which the map is defined. |
|
3823 |
/// \param map The graph map. |
|
3824 |
template <typename GR, typename Map> |
|
3825 |
typename Map::Key mapMin(const GR& gr, const Map& map) { |
|
3826 |
return mapMin(gr, map, std::less<typename Map::Value>()); |
|
3827 |
} |
|
3828 |
|
|
3829 |
/// \brief Return an item having minimum value of a graph map. |
|
3830 |
/// |
|
3831 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
|
3832 |
/// minimum value of the given graph map. |
|
3833 |
/// If the item set is empty, it returns \c INVALID. |
|
3834 |
/// |
|
3835 |
/// \param gr The graph for which the map is defined. |
|
3836 |
/// \param map The graph map. |
|
3837 |
/// \param comp Comparison function object. |
|
3838 |
template <typename GR, typename Map, typename Comp> |
|
3839 |
typename Map::Key mapMin(const GR& gr, const Map& map, const Comp& comp) { |
|
3840 |
typedef typename Map::Key Item; |
|
3841 |
typedef typename Map::Value Value; |
|
3842 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
|
3843 |
|
|
3844 |
ItemIt min_item(gr); |
|
3845 |
if (min_item == INVALID) return INVALID; |
|
3846 |
Value min = map[min_item]; |
|
3847 |
for (ItemIt it(gr); it != INVALID; ++it) { |
|
3848 |
if (comp(map[it], min)) { |
|
3849 |
min = map[it]; |
|
3850 |
min_item = it; |
|
3851 |
} |
|
3852 |
} |
|
3853 |
return min_item; |
|
3854 |
} |
|
3855 |
|
|
3856 |
/// \brief Return an item having maximum value of a graph map. |
|
3857 |
/// |
|
3858 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
|
3859 |
/// maximum value of the given graph map. |
|
3860 |
/// If the item set is empty, it returns \c INVALID. |
|
3861 |
/// |
|
3862 |
/// \param gr The graph for which the map is defined. |
|
3863 |
/// \param map The graph map. |
|
3864 |
template <typename GR, typename Map> |
|
3865 |
typename Map::Key mapMax(const GR& gr, const Map& map) { |
|
3866 |
return mapMax(gr, map, std::less<typename Map::Value>()); |
|
3867 |
} |
|
3868 |
|
|
3869 |
/// \brief Return an item having maximum value of a graph map. |
|
3870 |
/// |
|
3871 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
|
3872 |
/// maximum value of the given graph map. |
|
3873 |
/// If the item set is empty, it returns \c INVALID. |
|
3874 |
/// |
|
3875 |
/// \param gr The graph for which the map is defined. |
|
3876 |
/// \param map The graph map. |
|
3877 |
/// \param comp Comparison function object. |
|
3878 |
template <typename GR, typename Map, typename Comp> |
|
3879 |
typename Map::Key mapMax(const GR& gr, const Map& map, const Comp& comp) { |
|
3880 |
typedef typename Map::Key Item; |
|
3881 |
typedef typename Map::Value Value; |
|
3882 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
|
3883 |
|
|
3884 |
ItemIt max_item(gr); |
|
3885 |
if (max_item == INVALID) return INVALID; |
|
3886 |
Value max = map[max_item]; |
|
3887 |
for (ItemIt it(gr); it != INVALID; ++it) { |
|
3888 |
if (comp(max, map[it])) { |
|
3889 |
max = map[it]; |
|
3890 |
max_item = it; |
|
3891 |
} |
|
3892 |
} |
|
3893 |
return max_item; |
|
3894 |
} |
|
3895 |
|
|
3896 |
/// \brief Return the minimum value of a graph map. |
|
3897 |
/// |
|
3898 |
/// This function returns the minimum value of the given graph map. |
|
3899 |
/// The corresponding item set of the graph must not be empty. |
|
3900 |
/// |
|
3901 |
/// \param gr The graph for which the map is defined. |
|
3902 |
/// \param map The graph map. |
|
3903 |
template <typename GR, typename Map> |
|
3904 |
typename Map::Value mapMinValue(const GR& gr, const Map& map) { |
|
3905 |
return map[mapMin(gr, map, std::less<typename Map::Value>())]; |
|
3906 |
} |
|
3907 |
|
|
3908 |
/// \brief Return the minimum value of a graph map. |
|
3909 |
/// |
|
3910 |
/// This function returns the minimum value of the given graph map. |
|
3911 |
/// The corresponding item set of the graph must not be empty. |
|
3912 |
/// |
|
3913 |
/// \param gr The graph for which the map is defined. |
|
3914 |
/// \param map The graph map. |
|
3915 |
/// \param comp Comparison function object. |
|
3916 |
template <typename GR, typename Map, typename Comp> |
|
3917 |
typename Map::Value |
|
3918 |
mapMinValue(const GR& gr, const Map& map, const Comp& comp) { |
|
3919 |
return map[mapMin(gr, map, comp)]; |
|
3920 |
} |
|
3921 |
|
|
3922 |
/// \brief Return the maximum value of a graph map. |
|
3923 |
/// |
|
3924 |
/// This function returns the maximum value of the given graph map. |
|
3925 |
/// The corresponding item set of the graph must not be empty. |
|
3926 |
/// |
|
3927 |
/// \param gr The graph for which the map is defined. |
|
3928 |
/// \param map The graph map. |
|
3929 |
template <typename GR, typename Map> |
|
3930 |
typename Map::Value mapMaxValue(const GR& gr, const Map& map) { |
|
3931 |
return map[mapMax(gr, map, std::less<typename Map::Value>())]; |
|
3932 |
} |
|
3933 |
|
|
3934 |
/// \brief Return the maximum value of a graph map. |
|
3935 |
/// |
|
3936 |
/// This function returns the maximum value of the given graph map. |
|
3937 |
/// The corresponding item set of the graph must not be empty. |
|
3938 |
/// |
|
3939 |
/// \param gr The graph for which the map is defined. |
|
3940 |
/// \param map The graph map. |
|
3941 |
/// \param comp Comparison function object. |
|
3942 |
template <typename GR, typename Map, typename Comp> |
|
3943 |
typename Map::Value |
|
3944 |
mapMaxValue(const GR& gr, const Map& map, const Comp& comp) { |
|
3945 |
return map[mapMax(gr, map, comp)]; |
|
3946 |
} |
|
3947 |
|
|
3948 |
/// \brief Return an item having a specified value in a graph map. |
|
3949 |
/// |
|
3950 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
|
3951 |
/// the specified assigned value in the given graph map. |
|
3952 |
/// If no such item exists, it returns \c INVALID. |
|
3953 |
/// |
|
3954 |
/// \param gr The graph for which the map is defined. |
|
3955 |
/// \param map The graph map. |
|
3956 |
/// \param val The value that have to be found. |
|
3957 |
template <typename GR, typename Map> |
|
3958 |
typename Map::Key |
|
3959 |
mapFind(const GR& gr, const Map& map, const typename Map::Value& val) { |
|
3960 |
typedef typename Map::Key Item; |
|
3961 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
|
3962 |
|
|
3963 |
for (ItemIt it(gr); it != INVALID; ++it) { |
|
3964 |
if (map[it] == val) return it; |
|
3965 |
} |
|
3966 |
return INVALID; |
|
3967 |
} |
|
3968 |
|
|
3969 |
/// \brief Return an item having value for which a certain predicate is |
|
3970 |
/// true in a graph map. |
|
3971 |
/// |
|
3972 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
|
3973 |
/// such assigned value for which the specified predicate is true |
|
3974 |
/// in the given graph map. |
|
3975 |
/// If no such item exists, it returns \c INVALID. |
|
3976 |
/// |
|
3977 |
/// \param gr The graph for which the map is defined. |
|
3978 |
/// \param map The graph map. |
|
3979 |
/// \param pred The predicate function object. |
|
3980 |
template <typename GR, typename Map, typename Pred> |
|
3981 |
typename Map::Key |
|
3982 |
mapFindIf(const GR& gr, const Map& map, const Pred& pred) { |
|
3983 |
typedef typename Map::Key Item; |
|
3984 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
|
3985 |
|
|
3986 |
for (ItemIt it(gr); it != INVALID; ++it) { |
|
3987 |
if (pred(map[it])) return it; |
|
3988 |
} |
|
3989 |
return INVALID; |
|
3990 |
} |
|
3991 |
|
|
3992 |
/// \brief Return the number of items having a specified value in a |
|
3993 |
/// graph map. |
|
3994 |
/// |
|
3995 |
/// This function returns the number of items (\c Node, \c Arc or \c Edge) |
|
3996 |
/// having the specified assigned value in the given graph map. |
|
3997 |
/// |
|
3998 |
/// \param gr The graph for which the map is defined. |
|
3999 |
/// \param map The graph map. |
|
4000 |
/// \param val The value that have to be counted. |
|
4001 |
template <typename GR, typename Map> |
|
4002 |
int mapCount(const GR& gr, const Map& map, const typename Map::Value& val) { |
|
4003 |
typedef typename Map::Key Item; |
|
4004 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
|
4005 |
|
|
4006 |
int cnt = 0; |
|
4007 |
for (ItemIt it(gr); it != INVALID; ++it) { |
|
4008 |
if (map[it] == val) ++cnt; |
|
4009 |
} |
|
4010 |
return cnt; |
|
4011 |
} |
|
4012 |
|
|
4013 |
/// \brief Return the number of items having values for which a certain |
|
4014 |
/// predicate is true in a graph map. |
|
4015 |
/// |
|
4016 |
/// This function returns the number of items (\c Node, \c Arc or \c Edge) |
|
4017 |
/// having such assigned values for which the specified predicate is true |
|
4018 |
/// in the given graph map. |
|
4019 |
/// |
|
4020 |
/// \param gr The graph for which the map is defined. |
|
4021 |
/// \param map The graph map. |
|
4022 |
/// \param pred The predicate function object. |
|
4023 |
template <typename GR, typename Map, typename Pred> |
|
4024 |
int mapCountIf(const GR& gr, const Map& map, const Pred& pred) { |
|
4025 |
typedef typename Map::Key Item; |
|
4026 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
|
4027 |
|
|
4028 |
int cnt = 0; |
|
4029 |
for (ItemIt it(gr); it != INVALID; ++it) { |
|
4030 |
if (pred(map[it])) ++cnt; |
|
4031 |
} |
|
4032 |
return cnt; |
|
4033 |
} |
|
4034 |
|
|
4035 |
/// \brief Fill a graph map with a certain value. |
|
4036 |
/// |
|
4037 |
/// This function sets the specified value for all items (\c Node, |
|
4038 |
/// \c Arc or \c Edge) in the given graph map. |
|
4039 |
/// |
|
4040 |
/// \param gr The graph for which the map is defined. |
|
4041 |
/// \param map The graph map. It must conform to the |
|
4042 |
/// \ref concepts::WriteMap "WriteMap" concept. |
|
4043 |
/// \param val The value. |
|
4044 |
template <typename GR, typename Map> |
|
4045 |
void mapFill(const GR& gr, Map& map, const typename Map::Value& val) { |
|
4046 |
typedef typename Map::Key Item; |
|
4047 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
|
4048 |
|
|
4049 |
for (ItemIt it(gr); it != INVALID; ++it) { |
|
4050 |
map.set(it, val); |
|
4051 |
} |
|
4052 |
} |
|
4053 |
|
|
3699 | 4054 |
/// @} |
3700 | 4055 |
} |
3701 | 4056 |
|
3702 | 4057 |
#endif // LEMON_MAPS_H |
... | ... |
@@ -485,14 +485,14 @@ |
485 | 485 |
return *this; |
486 | 486 |
} |
487 | 487 |
|
488 | 488 |
/// \name Execution Control |
489 | 489 |
/// The simplest way to execute the algorithm is to use |
490 | 490 |
/// one of the member functions called \c run(...). \n |
491 |
/// If you need more control on the execution, |
|
492 |
/// first you must call \ref init(), then you can add several |
|
491 |
/// If you need better control on the execution, |
|
492 |
/// you have to call \ref init() first, then you can add several |
|
493 | 493 |
/// source nodes with \ref addSource(). |
494 | 494 |
/// Finally \ref start() will perform the arborescence |
495 | 495 |
/// computation. |
496 | 496 |
|
497 | 497 |
///@{ |
498 | 498 |
... | ... |
@@ -37,39 +37,41 @@ |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 41 |
/// |
42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
43 |
/// for finding a \ref min_cost_flow "minimum cost flow" |
|
43 |
/// for finding a \ref min_cost_flow "minimum cost flow" |
|
44 |
/// \ref amo93networkflows, \ref dantzig63linearprog, |
|
45 |
/// \ref kellyoneill91netsimplex. |
|
44 | 46 |
/// This algorithm is a specialized version of the linear programming |
45 | 47 |
/// simplex method directly for the minimum cost flow problem. |
46 | 48 |
/// It is one of the most efficient solution methods. |
47 | 49 |
/// |
48 | 50 |
/// In general this class is the fastest implementation available |
49 | 51 |
/// in LEMON for the minimum cost flow problem. |
50 | 52 |
/// Moreover it supports both directions of the supply/demand inequality |
51 |
/// constraints. For more information see \ref SupplyType. |
|
53 |
/// constraints. For more information, see \ref SupplyType. |
|
52 | 54 |
/// |
53 | 55 |
/// Most of the parameters of the problem (except for the digraph) |
54 | 56 |
/// can be given using separate functions, and the algorithm can be |
55 | 57 |
/// executed using the \ref run() function. If some parameters are not |
56 | 58 |
/// specified, then default values will be used. |
57 | 59 |
/// |
58 | 60 |
/// \tparam GR The digraph type the algorithm runs on. |
59 | 61 |
/// \tparam V The value type used for flow amounts, capacity bounds |
60 |
/// and supply values in the algorithm. By default it is \c int. |
|
62 |
/// and supply values in the algorithm. By default, it is \c int. |
|
61 | 63 |
/// \tparam C The value type used for costs and potentials in the |
62 |
/// algorithm. By default it is the same as \c V. |
|
64 |
/// algorithm. By default, it is the same as \c V. |
|
63 | 65 |
/// |
64 | 66 |
/// \warning Both value types must be signed and all input data must |
65 | 67 |
/// be integer. |
66 | 68 |
/// |
67 | 69 |
/// \note %NetworkSimplex provides five different pivot rule |
68 | 70 |
/// implementations, from which the most efficient one is used |
69 |
/// by default. For more information see \ref PivotRule. |
|
71 |
/// by default. For more information, see \ref PivotRule. |
|
70 | 72 |
template <typename GR, typename V = int, typename C = V> |
71 | 73 |
class NetworkSimplex |
72 | 74 |
{ |
73 | 75 |
public: |
74 | 76 |
|
75 | 77 |
/// The type of the flow amounts, capacity bounds and supply values |
... | ... |
@@ -119,53 +121,51 @@ |
119 | 121 |
/// Enum type containing constants for selecting the pivot rule for |
120 | 122 |
/// the \ref run() function. |
121 | 123 |
/// |
122 | 124 |
/// \ref NetworkSimplex provides five different pivot rule |
123 | 125 |
/// implementations that significantly affect the running time |
124 | 126 |
/// of the algorithm. |
125 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
|
127 |
/// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
|
126 | 128 |
/// proved to be the most efficient and the most robust on various |
127 | 129 |
/// test inputs according to our benchmark tests. |
128 |
/// However another pivot rule can be selected using the \ref run() |
|
130 |
/// However, another pivot rule can be selected using the \ref run() |
|
129 | 131 |
/// function with the proper parameter. |
130 | 132 |
enum PivotRule { |
131 | 133 |
|
132 |
/// The First Eligible pivot rule. |
|
134 |
/// The \e First \e Eligible pivot rule. |
|
133 | 135 |
/// The next eligible arc is selected in a wraparound fashion |
134 | 136 |
/// in every iteration. |
135 | 137 |
FIRST_ELIGIBLE, |
136 | 138 |
|
137 |
/// The Best Eligible pivot rule. |
|
139 |
/// The \e Best \e Eligible pivot rule. |
|
138 | 140 |
/// The best eligible arc is selected in every iteration. |
139 | 141 |
BEST_ELIGIBLE, |
140 | 142 |
|
141 |
/// The Block Search pivot rule. |
|
143 |
/// The \e Block \e Search pivot rule. |
|
142 | 144 |
/// A specified number of arcs are examined in every iteration |
143 | 145 |
/// in a wraparound fashion and the best eligible arc is selected |
144 | 146 |
/// from this block. |
145 | 147 |
BLOCK_SEARCH, |
146 | 148 |
|
147 |
/// The Candidate List pivot rule. |
|
149 |
/// The \e Candidate \e List pivot rule. |
|
148 | 150 |
/// In a major iteration a candidate list is built from eligible arcs |
149 | 151 |
/// in a wraparound fashion and in the following minor iterations |
150 | 152 |
/// the best eligible arc is selected from this list. |
151 | 153 |
CANDIDATE_LIST, |
152 | 154 |
|
153 |
/// The Altering Candidate List pivot rule. |
|
155 |
/// The \e Altering \e Candidate \e List pivot rule. |
|
154 | 156 |
/// It is a modified version of the Candidate List method. |
155 | 157 |
/// It keeps only the several best eligible arcs from the former |
156 | 158 |
/// candidate list and extends this list in every iteration. |
157 | 159 |
ALTERING_LIST |
158 | 160 |
}; |
159 | 161 |
|
160 | 162 |
private: |
161 | 163 |
|
162 | 164 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
163 | 165 |
|
164 |
typedef std::vector<Arc> ArcVector; |
|
165 |
typedef std::vector<Node> NodeVector; |
|
166 | 166 |
typedef std::vector<int> IntVector; |
167 | 167 |
typedef std::vector<bool> BoolVector; |
168 | 168 |
typedef std::vector<Value> ValueVector; |
169 | 169 |
typedef std::vector<Cost> CostVector; |
170 | 170 |
|
171 | 171 |
// State constants for arcs |
... | ... |
@@ -361,39 +361,38 @@ |
361 | 361 |
} |
362 | 362 |
|
363 | 363 |
// Find next entering arc |
364 | 364 |
bool findEnteringArc() { |
365 | 365 |
Cost c, min = 0; |
366 | 366 |
int cnt = _block_size; |
367 |
int e |
|
367 |
int e; |
|
368 | 368 |
for (e = _next_arc; e < _search_arc_num; ++e) { |
369 | 369 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
370 | 370 |
if (c < min) { |
371 | 371 |
min = c; |
372 |
|
|
372 |
_in_arc = e; |
|
373 | 373 |
} |
374 | 374 |
if (--cnt == 0) { |
375 |
if (min < 0) |
|
375 |
if (min < 0) goto search_end; |
|
376 | 376 |
cnt = _block_size; |
377 | 377 |
} |
378 | 378 |
} |
379 |
if (min == 0 || cnt > 0) { |
|
380 |
for (e = 0; e < _next_arc; ++e) { |
|
381 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
382 |
if (c < min) { |
|
383 |
min = c; |
|
384 |
min_arc = e; |
|
385 |
} |
|
386 |
if (--cnt == 0) { |
|
387 |
if (min < 0) break; |
|
388 |
cnt = _block_size; |
|
389 |
|
|
379 |
for (e = 0; e < _next_arc; ++e) { |
|
380 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
381 |
if (c < min) { |
|
382 |
min = c; |
|
383 |
_in_arc = e; |
|
384 |
} |
|
385 |
if (--cnt == 0) { |
|
386 |
if (min < 0) goto search_end; |
|
387 |
cnt = _block_size; |
|
390 | 388 |
} |
391 | 389 |
} |
392 | 390 |
if (min >= 0) return false; |
393 |
|
|
391 |
|
|
392 |
search_end: |
|
394 | 393 |
_next_arc = e; |
395 | 394 |
return true; |
396 | 395 |
} |
397 | 396 |
|
398 | 397 |
}; //class BlockSearchPivotRule |
399 | 398 |
|
... | ... |
@@ -425,13 +424,13 @@ |
425 | 424 |
_source(ns._source), _target(ns._target), |
426 | 425 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
427 | 426 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
428 | 427 |
_next_arc(0) |
429 | 428 |
{ |
430 | 429 |
// The main parameters of the pivot rule |
431 |
const double LIST_LENGTH_FACTOR = |
|
430 |
const double LIST_LENGTH_FACTOR = 0.25; |
|
432 | 431 |
const int MIN_LIST_LENGTH = 10; |
433 | 432 |
const double MINOR_LIMIT_FACTOR = 0.1; |
434 | 433 |
const int MIN_MINOR_LIMIT = 3; |
435 | 434 |
|
436 | 435 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
437 | 436 |
std::sqrt(double(_search_arc_num))), |
... | ... |
@@ -442,65 +441,61 @@ |
442 | 441 |
_candidates.resize(_list_length); |
443 | 442 |
} |
444 | 443 |
|
445 | 444 |
/// Find next entering arc |
446 | 445 |
bool findEnteringArc() { |
447 | 446 |
Cost min, c; |
448 |
int e |
|
447 |
int e; |
|
449 | 448 |
if (_curr_length > 0 && _minor_count < _minor_limit) { |
450 | 449 |
// Minor iteration: select the best eligible arc from the |
451 | 450 |
// current candidate list |
452 | 451 |
++_minor_count; |
453 | 452 |
min = 0; |
454 | 453 |
for (int i = 0; i < _curr_length; ++i) { |
455 | 454 |
e = _candidates[i]; |
456 | 455 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
457 | 456 |
if (c < min) { |
458 | 457 |
min = c; |
459 |
|
|
458 |
_in_arc = e; |
|
460 | 459 |
} |
461 |
if (c >= 0) { |
|
460 |
else if (c >= 0) { |
|
462 | 461 |
_candidates[i--] = _candidates[--_curr_length]; |
463 | 462 |
} |
464 | 463 |
} |
465 |
if (min < 0) { |
|
466 |
_in_arc = min_arc; |
|
467 |
return true; |
|
468 |
} |
|
464 |
if (min < 0) return true; |
|
469 | 465 |
} |
470 | 466 |
|
471 | 467 |
// Major iteration: build a new candidate list |
472 | 468 |
min = 0; |
473 | 469 |
_curr_length = 0; |
474 | 470 |
for (e = _next_arc; e < _search_arc_num; ++e) { |
475 | 471 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
476 | 472 |
if (c < 0) { |
477 | 473 |
_candidates[_curr_length++] = e; |
478 | 474 |
if (c < min) { |
479 | 475 |
min = c; |
480 |
|
|
476 |
_in_arc = e; |
|
481 | 477 |
} |
482 |
if (_curr_length == _list_length) |
|
478 |
if (_curr_length == _list_length) goto search_end; |
|
483 | 479 |
} |
484 | 480 |
} |
485 |
if (_curr_length < _list_length) { |
|
486 |
for (e = 0; e < _next_arc; ++e) { |
|
487 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
488 |
if (c < 0) { |
|
489 |
_candidates[_curr_length++] = e; |
|
490 |
if (c < min) { |
|
491 |
min = c; |
|
492 |
min_arc = e; |
|
493 |
} |
|
494 |
if (_curr_length == _list_length) break; |
|
481 |
for (e = 0; e < _next_arc; ++e) { |
|
482 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
483 |
if (c < 0) { |
|
484 |
_candidates[_curr_length++] = e; |
|
485 |
if (c < min) { |
|
486 |
min = c; |
|
487 |
_in_arc = e; |
|
495 | 488 |
} |
489 |
if (_curr_length == _list_length) goto search_end; |
|
496 | 490 |
} |
497 | 491 |
} |
498 | 492 |
if (_curr_length == 0) return false; |
493 |
|
|
494 |
search_end: |
|
499 | 495 |
_minor_count = 1; |
500 |
_in_arc = min_arc; |
|
501 | 496 |
_next_arc = e; |
502 | 497 |
return true; |
503 | 498 |
} |
504 | 499 |
|
505 | 500 |
}; //class CandidateListPivotRule |
506 | 501 |
|
... | ... |
@@ -546,13 +541,13 @@ |
546 | 541 |
_source(ns._source), _target(ns._target), |
547 | 542 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
548 | 543 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
549 | 544 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
550 | 545 |
{ |
551 | 546 |
// The main parameters of the pivot rule |
552 |
const double BLOCK_SIZE_FACTOR = 1. |
|
547 |
const double BLOCK_SIZE_FACTOR = 1.0; |
|
553 | 548 |
const int MIN_BLOCK_SIZE = 10; |
554 | 549 |
const double HEAD_LENGTH_FACTOR = 0.1; |
555 | 550 |
const int MIN_HEAD_LENGTH = 3; |
556 | 551 |
|
557 | 552 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
558 | 553 |
std::sqrt(double(_search_arc_num))), |
... | ... |
@@ -575,52 +570,49 @@ |
575 | 570 |
_candidates[i--] = _candidates[--_curr_length]; |
576 | 571 |
} |
577 | 572 |
} |
578 | 573 |
|
579 | 574 |
// Extend the list |
580 | 575 |
int cnt = _block_size; |
581 |
int last_arc = 0; |
|
582 | 576 |
int limit = _head_length; |
583 | 577 |
|
584 |
for ( |
|
578 |
for (e = _next_arc; e < _search_arc_num; ++e) { |
|
585 | 579 |
_cand_cost[e] = _state[e] * |
586 | 580 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
587 | 581 |
if (_cand_cost[e] < 0) { |
588 | 582 |
_candidates[_curr_length++] = e; |
589 |
last_arc = e; |
|
590 | 583 |
} |
591 | 584 |
if (--cnt == 0) { |
592 |
if (_curr_length > limit) |
|
585 |
if (_curr_length > limit) goto search_end; |
|
593 | 586 |
limit = 0; |
594 | 587 |
cnt = _block_size; |
595 | 588 |
} |
596 | 589 |
} |
597 |
if (_curr_length <= limit) { |
|
598 |
for (int e = 0; e < _next_arc; ++e) { |
|
599 |
_cand_cost[e] = _state[e] * |
|
600 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
601 |
if (_cand_cost[e] < 0) { |
|
602 |
_candidates[_curr_length++] = e; |
|
603 |
last_arc = e; |
|
604 |
} |
|
605 |
if (--cnt == 0) { |
|
606 |
if (_curr_length > limit) break; |
|
607 |
limit = 0; |
|
608 |
cnt = _block_size; |
|
609 |
|
|
590 |
for (e = 0; e < _next_arc; ++e) { |
|
591 |
_cand_cost[e] = _state[e] * |
|
592 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
593 |
if (_cand_cost[e] < 0) { |
|
594 |
_candidates[_curr_length++] = e; |
|
595 |
} |
|
596 |
if (--cnt == 0) { |
|
597 |
if (_curr_length > limit) goto search_end; |
|
598 |
limit = 0; |
|
599 |
cnt = _block_size; |
|
610 | 600 |
} |
611 | 601 |
} |
612 | 602 |
if (_curr_length == 0) return false; |
613 |
|
|
603 |
|
|
604 |
search_end: |
|
614 | 605 |
|
615 | 606 |
// Make heap of the candidate list (approximating a partial sort) |
616 | 607 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
617 | 608 |
_sort_func ); |
618 | 609 |
|
619 | 610 |
// Pop the first element of the heap |
620 | 611 |
_in_arc = _candidates[0]; |
612 |
_next_arc = e; |
|
621 | 613 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
622 | 614 |
_sort_func ); |
623 | 615 |
_curr_length = std::min(_head_length, _curr_length - 1); |
624 | 616 |
return true; |
625 | 617 |
} |
626 | 618 |
|
... | ... |
@@ -630,13 +622,17 @@ |
630 | 622 |
|
631 | 623 |
/// \brief Constructor. |
632 | 624 |
/// |
633 | 625 |
/// The constructor of the class. |
634 | 626 |
/// |
635 | 627 |
/// \param graph The digraph the algorithm runs on. |
636 |
|
|
628 |
/// \param arc_mixing Indicate if the arcs have to be stored in a |
|
629 |
/// mixed order in the internal data structure. |
|
630 |
/// In special cases, it could lead to better overall performance, |
|
631 |
/// but it is usually slower. Therefore it is disabled by default. |
|
632 |
NetworkSimplex(const GR& graph, bool arc_mixing = false) : |
|
637 | 633 |
_graph(graph), _node_id(graph), _arc_id(graph), |
638 | 634 |
INF(std::numeric_limits<Value>::has_infinity ? |
639 | 635 |
std::numeric_limits<Value>::infinity() : |
640 | 636 |
std::numeric_limits<Value>::max()) |
641 | 637 |
{ |
642 | 638 |
// Check the value types |
... | ... |
@@ -668,37 +664,39 @@ |
668 | 664 |
_thread.resize(all_node_num); |
669 | 665 |
_rev_thread.resize(all_node_num); |
670 | 666 |
_succ_num.resize(all_node_num); |
671 | 667 |
_last_succ.resize(all_node_num); |
672 | 668 |
_state.resize(max_arc_num); |
673 | 669 |
|
674 |
// Copy the graph |
|
670 |
// Copy the graph |
|
675 | 671 |
int i = 0; |
676 | 672 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
677 | 673 |
_node_id[n] = i; |
678 | 674 |
} |
679 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
680 |
i = 0; |
|
681 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
682 |
_arc_id[a] = i; |
|
683 |
_source[i] = _node_id[_graph.source(a)]; |
|
684 |
_target[i] = _node_id[_graph.target(a)]; |
|
685 |
|
|
675 |
if (arc_mixing) { |
|
676 |
// Store the arcs in a mixed order |
|
677 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
678 |
int i = 0, j = 0; |
|
679 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
680 |
_arc_id[a] = i; |
|
681 |
_source[i] = _node_id[_graph.source(a)]; |
|
682 |
_target[i] = _node_id[_graph.target(a)]; |
|
683 |
if ((i += k) >= _arc_num) i = ++j; |
|
684 |
} |
|
685 |
} else { |
|
686 |
// Store the arcs in the original order |
|
687 |
int i = 0; |
|
688 |
for (ArcIt a(_graph); a != INVALID; ++a, ++i) { |
|
689 |
_arc_id[a] = i; |
|
690 |
_source[i] = _node_id[_graph.source(a)]; |
|
691 |
_target[i] = _node_id[_graph.target(a)]; |
|
692 |
} |
|
686 | 693 |
} |
687 | 694 |
|
688 |
// Initialize maps |
|
689 |
for (int i = 0; i != _node_num; ++i) { |
|
690 |
_supply[i] = 0; |
|
691 |
} |
|
692 |
for (int i = 0; i != _arc_num; ++i) { |
|
693 |
_lower[i] = 0; |
|
694 |
_upper[i] = INF; |
|
695 |
_cost[i] = 1; |
|
696 |
} |
|
697 |
_have_lower = false; |
|
698 |
|
|
695 |
// Reset parameters |
|
696 |
reset(); |
|
699 | 697 |
} |
700 | 698 |
|
701 | 699 |
/// \name Parameters |
702 | 700 |
/// The parameters of the algorithm can be specified using these |
703 | 701 |
/// functions. |
704 | 702 |
|
... | ... |
@@ -765,13 +763,12 @@ |
765 | 763 |
|
766 | 764 |
/// \brief Set the supply values of the nodes. |
767 | 765 |
/// |
768 | 766 |
/// This function sets the supply values of the nodes. |
769 | 767 |
/// If neither this function nor \ref stSupply() is used before |
770 | 768 |
/// calling \ref run(), the supply of each node will be set to zero. |
771 |
/// (It makes sense only if non-zero lower bounds are given.) |
|
772 | 769 |
/// |
773 | 770 |
/// \param map A node map storing the supply values. |
774 | 771 |
/// Its \c Value type must be convertible to the \c Value type |
775 | 772 |
/// of the algorithm. |
776 | 773 |
/// |
777 | 774 |
/// \return <tt>(*this)</tt> |
... | ... |
@@ -786,13 +783,12 @@ |
786 | 783 |
/// \brief Set single source and target nodes and a supply value. |
787 | 784 |
/// |
788 | 785 |
/// This function sets a single source node and a single target node |
789 | 786 |
/// and the required flow value. |
790 | 787 |
/// If neither this function nor \ref supplyMap() is used before |
791 | 788 |
/// calling \ref run(), the supply of each node will be set to zero. |
792 |
/// (It makes sense only if non-zero lower bounds are given.) |
|
793 | 789 |
/// |
794 | 790 |
/// Using this function has the same effect as using \ref supplyMap() |
795 | 791 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
796 | 792 |
/// assigned to \c t and all other nodes have zero supply value. |
797 | 793 |
/// |
798 | 794 |
/// \param s The source node. |
... | ... |
@@ -813,13 +809,13 @@ |
813 | 809 |
/// \brief Set the type of the supply constraints. |
814 | 810 |
/// |
815 | 811 |
/// This function sets the type of the supply/demand constraints. |
816 | 812 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
817 | 813 |
/// type will be used. |
818 | 814 |
/// |
819 |
/// For more information see \ref SupplyType. |
|
815 |
/// For more information, see \ref SupplyType. |
|
820 | 816 |
/// |
821 | 817 |
/// \return <tt>(*this)</tt> |
822 | 818 |
NetworkSimplex& supplyType(SupplyType supply_type) { |
823 | 819 |
_stype = supply_type; |
824 | 820 |
return *this; |
825 | 821 |
} |
... | ... |
@@ -845,17 +841,17 @@ |
845 | 841 |
/// \endcode |
846 | 842 |
/// |
847 | 843 |
/// This function can be called more than once. All the parameters |
848 | 844 |
/// that have been given are kept for the next call, unless |
849 | 845 |
/// \ref reset() is called, thus only the modified parameters |
850 | 846 |
/// have to be set again. See \ref reset() for examples. |
851 |
/// However the underlying digraph must not be modified after this |
|
847 |
/// However, the underlying digraph must not be modified after this |
|
852 | 848 |
/// class have been constructed, since it copies and extends the graph. |
853 | 849 |
/// |
854 | 850 |
/// \param pivot_rule The pivot rule that will be used during the |
855 |
/// algorithm. For more information see \ref PivotRule. |
|
851 |
/// algorithm. For more information, see \ref PivotRule. |
|
856 | 852 |
/// |
857 | 853 |
/// \return \c INFEASIBLE if no feasible flow exists, |
858 | 854 |
/// \n \c OPTIMAL if the problem has optimal solution |
859 | 855 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
860 | 856 |
/// optimal flow and node potentials (primal and dual solutions), |
861 | 857 |
/// \n \c UNBOUNDED if the objective function of the problem is |
... | ... |
@@ -874,13 +870,13 @@ |
874 | 870 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
875 | 871 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
876 | 872 |
/// |
877 | 873 |
/// It is useful for multiple run() calls. If this function is not |
878 | 874 |
/// used, all the parameters given before are kept for the next |
879 | 875 |
/// \ref run() call. |
880 |
/// However the underlying digraph must not be modified after this |
|
876 |
/// However, the underlying digraph must not be modified after this |
|
881 | 877 |
/// class have been constructed, since it copies and extends the graph. |
882 | 878 |
/// |
883 | 879 |
/// For example, |
884 | 880 |
/// \code |
885 | 881 |
/// NetworkSimplex<ListDigraph> ns(graph); |
886 | 882 |
/// |
... | ... |
@@ -67,21 +67,21 @@ |
67 | 67 |
/// \brief Template copy constructor |
68 | 68 |
/// |
69 | 69 |
/// This constuctor initializes the path from any other path type. |
70 | 70 |
/// It simply makes a copy of the given path. |
71 | 71 |
template <typename CPath> |
72 | 72 |
Path(const CPath& cpath) { |
73 |
|
|
73 |
pathCopy(cpath, *this); |
|
74 | 74 |
} |
75 | 75 |
|
76 | 76 |
/// \brief Template copy assignment |
77 | 77 |
/// |
78 | 78 |
/// This operator makes a copy of a path of any other type. |
79 | 79 |
template <typename CPath> |
80 | 80 |
Path& operator=(const CPath& cpath) { |
81 |
|
|
81 |
pathCopy(cpath, *this); |
|
82 | 82 |
return *this; |
83 | 83 |
} |
84 | 84 |
|
85 | 85 |
/// \brief LEMON style iterator for path arcs |
86 | 86 |
/// |
87 | 87 |
/// This class is used to iterate on the arcs of the paths. |
... | ... |
@@ -255,22 +255,22 @@ |
255 | 255 |
/// \brief Template copy constructor |
256 | 256 |
/// |
257 | 257 |
/// This path can be initialized with any other path type. It just |
258 | 258 |
/// makes a copy of the given path. |
259 | 259 |
template <typename CPath> |
260 | 260 |
SimplePath(const CPath& cpath) { |
261 |
|
|
261 |
pathCopy(cpath, *this); |
|
262 | 262 |
} |
263 | 263 |
|
264 | 264 |
/// \brief Template copy assignment |
265 | 265 |
/// |
266 | 266 |
/// This path can be initialized with any other path type. It just |
267 | 267 |
/// makes a copy of the given path. |
268 | 268 |
template <typename CPath> |
269 | 269 |
SimplePath& operator=(const CPath& cpath) { |
270 |
|
|
270 |
pathCopy(cpath, *this); |
|
271 | 271 |
return *this; |
272 | 272 |
} |
273 | 273 |
|
274 | 274 |
/// \brief Iterator class to iterate on the arcs of the paths |
275 | 275 |
/// |
276 | 276 |
/// This class is used to iterate on the arcs of the paths |
... | ... |
@@ -434,13 +434,13 @@ |
434 | 434 |
/// \brief Template copy constructor |
435 | 435 |
/// |
436 | 436 |
/// This path can be initialized with any other path type. It just |
437 | 437 |
/// makes a copy of the given path. |
438 | 438 |
template <typename CPath> |
439 | 439 |
ListPath(const CPath& cpath) : first(0), last(0) { |
440 |
|
|
440 |
pathCopy(cpath, *this); |
|
441 | 441 |
} |
442 | 442 |
|
443 | 443 |
/// \brief Destructor of the path |
444 | 444 |
/// |
445 | 445 |
/// Destructor of the path |
446 | 446 |
~ListPath() { |
... | ... |
@@ -450,13 +450,13 @@ |
450 | 450 |
/// \brief Template copy assignment |
451 | 451 |
/// |
452 | 452 |
/// This path can be initialized with any other path type. It just |
453 | 453 |
/// makes a copy of the given path. |
454 | 454 |
template <typename CPath> |
455 | 455 |
ListPath& operator=(const CPath& cpath) { |
456 |
|
|
456 |
pathCopy(cpath, *this); |
|
457 | 457 |
return *this; |
458 | 458 |
} |
459 | 459 |
|
460 | 460 |
/// \brief Iterator class to iterate on the arcs of the paths |
461 | 461 |
/// |
462 | 462 |
/// This class is used to iterate on the arcs of the paths |
... | ... |
@@ -760,13 +760,13 @@ |
760 | 760 |
|
761 | 761 |
/// \brief Template copy constructor |
762 | 762 |
/// |
763 | 763 |
/// This path can be initialized from any other path type. |
764 | 764 |
template <typename CPath> |
765 | 765 |
StaticPath(const CPath& cpath) : arcs(0) { |
766 |
|
|
766 |
pathCopy(cpath, *this); |
|
767 | 767 |
} |
768 | 768 |
|
769 | 769 |
/// \brief Destructor of the path |
770 | 770 |
/// |
771 | 771 |
/// Destructor of the path |
772 | 772 |
~StaticPath() { |
... | ... |
@@ -776,13 +776,13 @@ |
776 | 776 |
/// \brief Template copy assignment |
777 | 777 |
/// |
778 | 778 |
/// This path can be made equal to any other path type. It simply |
779 | 779 |
/// makes a copy of the given path. |
780 | 780 |
template <typename CPath> |
781 | 781 |
StaticPath& operator=(const CPath& cpath) { |
782 |
|
|
782 |
pathCopy(cpath, *this); |
|
783 | 783 |
return *this; |
784 | 784 |
} |
785 | 785 |
|
786 | 786 |
/// \brief Iterator class to iterate on the arcs of the paths |
787 | 787 |
/// |
788 | 788 |
/// This class is used to iterate on the arcs of the paths |
... | ... |
@@ -925,76 +925,84 @@ |
925 | 925 |
Path, |
926 | 926 |
typename enable_if<typename Path::BuildTag, void>::type |
927 | 927 |
> { |
928 | 928 |
static const bool value = true; |
929 | 929 |
}; |
930 | 930 |
|
931 |
template <typename Target, typename Source, |
|
932 |
bool buildEnable = BuildTagIndicator<Target>::value> |
|
931 |
template <typename From, typename To, |
|
932 |
bool buildEnable = BuildTagIndicator<To>::value> |
|
933 | 933 |
struct PathCopySelectorForward { |
934 |
static void copy(Target& target, const Source& source) { |
|
935 |
target.clear(); |
|
936 |
for (typename Source::ArcIt it(source); it != INVALID; ++it) { |
|
937 |
target.addBack(it); |
|
934 |
static void copy(const From& from, To& to) { |
|
935 |
to.clear(); |
|
936 |
for (typename From::ArcIt it(from); it != INVALID; ++it) { |
|
937 |
to.addBack(it); |
|
938 | 938 |
} |
939 | 939 |
} |
940 | 940 |
}; |
941 | 941 |
|
942 |
template <typename Target, typename Source> |
|
943 |
struct PathCopySelectorForward<Target, Source, true> { |
|
944 |
static void copy(Target& target, const Source& source) { |
|
945 |
target.clear(); |
|
946 |
|
|
942 |
template <typename From, typename To> |
|
943 |
struct PathCopySelectorForward<From, To, true> { |
|
944 |
static void copy(const From& from, To& to) { |
|
945 |
to.clear(); |
|
946 |
to.build(from); |
|
947 | 947 |
} |
948 | 948 |
}; |
949 | 949 |
|
950 |
template <typename Target, typename Source, |
|
951 |
bool buildEnable = BuildTagIndicator<Target>::value> |
|
950 |
template <typename From, typename To, |
|
951 |
bool buildEnable = BuildTagIndicator<To>::value> |
|
952 | 952 |
struct PathCopySelectorBackward { |
953 |
static void copy(Target& target, const Source& source) { |
|
954 |
target.clear(); |
|
955 |
for (typename Source::RevArcIt it(source); it != INVALID; ++it) { |
|
956 |
target.addFront(it); |
|
953 |
static void copy(const From& from, To& to) { |
|
954 |
to.clear(); |
|
955 |
for (typename From::RevArcIt it(from); it != INVALID; ++it) { |
|
956 |
to.addFront(it); |
|
957 | 957 |
} |
958 | 958 |
} |
959 | 959 |
}; |
960 | 960 |
|
961 |
template <typename Target, typename Source> |
|
962 |
struct PathCopySelectorBackward<Target, Source, true> { |
|
963 |
static void copy(Target& target, const Source& source) { |
|
964 |
target.clear(); |
|
965 |
|
|
961 |
template <typename From, typename To> |
|
962 |
struct PathCopySelectorBackward<From, To, true> { |
|
963 |
static void copy(const From& from, To& to) { |
|
964 |
to.clear(); |
|
965 |
to.buildRev(from); |
|
966 | 966 |
} |
967 | 967 |
}; |
968 | 968 |
|
969 | 969 |
|
970 |
template <typename Target, typename Source, |
|
971 |
bool revEnable = RevPathTagIndicator<Source>::value> |
|
970 |
template <typename From, typename To, |
|
971 |
bool revEnable = RevPathTagIndicator<From>::value> |
|
972 | 972 |
struct PathCopySelector { |
973 |
static void copy(Target& target, const Source& source) { |
|
974 |
PathCopySelectorForward<Target, Source>::copy(target, source); |
|
973 |
static void copy(const From& from, To& to) { |
|
974 |
PathCopySelectorForward<From, To>::copy(from, to); |
|
975 | 975 |
} |
976 | 976 |
}; |
977 | 977 |
|
978 |
template <typename Target, typename Source> |
|
979 |
struct PathCopySelector<Target, Source, true> { |
|
980 |
static void copy(Target& target, const Source& source) { |
|
981 |
PathCopySelectorBackward<Target, Source>::copy(target, source); |
|
978 |
template <typename From, typename To> |
|
979 |
struct PathCopySelector<From, To, true> { |
|
980 |
static void copy(const From& from, To& to) { |
|
981 |
PathCopySelectorBackward<From, To>::copy(from, to); |
|
982 | 982 |
} |
983 | 983 |
}; |
984 | 984 |
|
985 | 985 |
} |
986 | 986 |
|
987 | 987 |
|
988 | 988 |
/// \brief Make a copy of a path. |
989 | 989 |
/// |
990 |
/// This function makes a copy of a path. |
|
991 |
template <typename Target, typename Source> |
|
992 |
void copyPath(Target& target, const Source& source) { |
|
993 |
checkConcept<concepts::PathDumper<typename Source::Digraph>, Source>(); |
|
994 |
|
|
990 |
/// This function makes a copy of a path. |
|
991 |
template <typename From, typename To> |
|
992 |
void pathCopy(const From& from, To& to) { |
|
993 |
checkConcept<concepts::PathDumper<typename From::Digraph>, From>(); |
|
994 |
_path_bits::PathCopySelector<From, To>::copy(from, to); |
|
995 |
} |
|
996 |
|
|
997 |
/// \brief Deprecated version of \ref pathCopy(). |
|
998 |
/// |
|
999 |
/// Deprecated version of \ref pathCopy() (only for reverse compatibility). |
|
1000 |
template <typename To, typename From> |
|
1001 |
void copyPath(To& to, const From& from) { |
|
1002 |
pathCopy(from, to); |
|
995 | 1003 |
} |
996 | 1004 |
|
997 | 1005 |
/// \brief Check the consistency of a path. |
998 | 1006 |
/// |
999 | 1007 |
/// This function checks that the target of each arc is the same |
1000 | 1008 |
/// as the source of the next one. |
... | ... |
@@ -1012,24 +1020,26 @@ |
1012 | 1020 |
} |
1013 | 1021 |
return true; |
1014 | 1022 |
} |
1015 | 1023 |
|
1016 | 1024 |
/// \brief The source of a path |
1017 | 1025 |
/// |
1018 |
/// This function returns the source of the given path. |
|
1026 |
/// This function returns the source node of the given path. |
|
1027 |
/// If the path is empty, then it returns \c INVALID. |
|
1019 | 1028 |
template <typename Digraph, typename Path> |
1020 | 1029 |
typename Digraph::Node pathSource(const Digraph& digraph, const Path& path) { |
1021 |
return digraph.source(path.front()); |
|
1030 |
return path.empty() ? INVALID : digraph.source(path.front()); |
|
1022 | 1031 |
} |
1023 | 1032 |
|
1024 | 1033 |
/// \brief The target of a path |
1025 | 1034 |
/// |
1026 |
/// This function returns the target of the given path. |
|
1035 |
/// This function returns the target node of the given path. |
|
1036 |
/// If the path is empty, then it returns \c INVALID. |
|
1027 | 1037 |
template <typename Digraph, typename Path> |
1028 | 1038 |
typename Digraph::Node pathTarget(const Digraph& digraph, const Path& path) { |
1029 |
return digraph.target(path.back()); |
|
1039 |
return path.empty() ? INVALID : digraph.target(path.back()); |
|
1030 | 1040 |
} |
1031 | 1041 |
|
1032 | 1042 |
/// \brief Class which helps to iterate through the nodes of a path |
1033 | 1043 |
/// |
1034 | 1044 |
/// In a sense, the path can be treated as a list of arcs. The |
1035 | 1045 |
/// lemon path type stores only this list. As a consequence, it |
... | ... |
@@ -49,13 +49,17 @@ |
49 | 49 |
typedef typename CapacityMap::Value Value; |
50 | 50 |
|
51 | 51 |
/// \brief The type of the map that stores the flow values. |
52 | 52 |
/// |
53 | 53 |
/// The type of the map that stores the flow values. |
54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
55 |
#ifdef DOXYGEN |
|
56 |
typedef GR::ArcMap<Value> FlowMap; |
|
57 |
#else |
|
55 | 58 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
59 |
#endif |
|
56 | 60 |
|
57 | 61 |
/// \brief Instantiates a FlowMap. |
58 | 62 |
/// |
59 | 63 |
/// This function instantiates a \ref FlowMap. |
60 | 64 |
/// \param digraph The digraph for which we would like to define |
61 | 65 |
/// the flow map. |
... | ... |
@@ -64,15 +68,18 @@ |
64 | 68 |
} |
65 | 69 |
|
66 | 70 |
/// \brief The elevator type used by Preflow algorithm. |
67 | 71 |
/// |
68 | 72 |
/// The elevator type used by Preflow algorithm. |
69 | 73 |
/// |
70 |
/// \sa Elevator |
|
71 |
/// \sa LinkedElevator |
|
72 |
|
|
74 |
/// \sa Elevator, LinkedElevator |
|
75 |
#ifdef DOXYGEN |
|
76 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
77 |
#else |
|
78 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
|
79 |
#endif |
|
73 | 80 |
|
74 | 81 |
/// \brief Instantiates an Elevator. |
75 | 82 |
/// |
76 | 83 |
/// This function instantiates an \ref Elevator. |
77 | 84 |
/// \param digraph The digraph for which we would like to define |
78 | 85 |
/// the elevator. |
... | ... |
@@ -92,13 +99,14 @@ |
92 | 99 |
/// \ingroup max_flow |
93 | 100 |
/// |
94 | 101 |
/// \brief %Preflow algorithm class. |
95 | 102 |
/// |
96 | 103 |
/// This class provides an implementation of Goldberg-Tarjan's \e preflow |
97 | 104 |
/// \e push-relabel algorithm producing a \ref max_flow |
98 |
/// "flow of maximum value" in a digraph |
|
105 |
/// "flow of maximum value" in a digraph \ref clrs01algorithms, |
|
106 |
/// \ref amo93networkflows, \ref goldberg88newapproach. |
|
99 | 107 |
/// The preflow algorithms are the fastest known maximum |
100 | 108 |
/// flow algorithms. The current implementation uses a mixture of the |
101 | 109 |
/// \e "highest label" and the \e "bound decrease" heuristics. |
102 | 110 |
/// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$. |
103 | 111 |
/// |
104 | 112 |
/// The algorithm consists of two phases. After the first phase |
... | ... |
@@ -254,13 +262,13 @@ |
254 | 262 |
/// |
255 | 263 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
256 | 264 |
/// type with automatic allocation. |
257 | 265 |
/// The Elevator should have standard constructor interface to be |
258 | 266 |
/// able to automatically created by the algorithm (i.e. the |
259 | 267 |
/// digraph and the maximum level should be passed to it). |
260 |
/// However an external elevator object could also be passed to the |
|
268 |
/// However, an external elevator object could also be passed to the |
|
261 | 269 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
262 | 270 |
/// before calling \ref run() or \ref init(). |
263 | 271 |
/// \sa SetElevator |
264 | 272 |
template <typename T> |
265 | 273 |
struct SetStandardElevator |
266 | 274 |
: public Preflow<Digraph, CapacityMap, |
... | ... |
@@ -388,14 +396,14 @@ |
388 | 396 |
return _tolerance; |
389 | 397 |
} |
390 | 398 |
|
391 | 399 |
/// \name Execution Control |
392 | 400 |
/// The simplest way to execute the preflow algorithm is to use |
393 | 401 |
/// \ref run() or \ref runMinCut().\n |
394 |
/// If you need more control on the initial solution or the execution, |
|
395 |
/// first you have to call one of the \ref init() functions, then |
|
402 |
/// If you need better control on the initial solution or the execution, |
|
403 |
/// you have to call one of the \ref init() functions first, then |
|
396 | 404 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
397 | 405 |
|
398 | 406 |
///@{ |
399 | 407 |
|
400 | 408 |
/// \brief Initializes the internal data structures. |
401 | 409 |
/// |
... | ... |
@@ -29,16 +29,13 @@ |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/bits/graph_extender.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
class SmartDigraph; |
35 |
///Base of SmartDigraph |
|
36 | 35 |
|
37 |
///Base of SmartDigraph |
|
38 |
/// |
|
39 | 36 |
class SmartDigraphBase { |
40 | 37 |
protected: |
41 | 38 |
|
42 | 39 |
struct NodeT |
43 | 40 |
{ |
44 | 41 |
int first_in, first_out; |
... | ... |
@@ -184,119 +181,89 @@ |
184 | 181 |
typedef DigraphExtender<SmartDigraphBase> ExtendedSmartDigraphBase; |
185 | 182 |
|
186 | 183 |
///\ingroup graphs |
187 | 184 |
/// |
188 | 185 |
///\brief A smart directed graph class. |
189 | 186 |
/// |
190 |
///This is a simple and fast digraph implementation. |
|
191 |
///It is also quite memory efficient, but at the price |
|
192 |
///that <b> it does support only limited (only stack-like) |
|
193 |
///node and arc deletions</b>. |
|
194 |
/// |
|
187 |
///\ref SmartDigraph is a simple and fast digraph implementation. |
|
188 |
///It is also quite memory efficient but at the price |
|
189 |
///that it does not support node and arc deletion |
|
190 |
///(except for the Snapshot feature). |
|
195 | 191 |
/// |
196 |
///\ |
|
192 |
///This type fully conforms to the \ref concepts::Digraph "Digraph concept" |
|
193 |
///and it also provides some additional functionalities. |
|
194 |
///Most of its member functions and nested classes are documented |
|
195 |
///only in the concept class. |
|
196 |
/// |
|
197 |
///This class provides constant time counting for nodes and arcs. |
|
198 |
/// |
|
199 |
///\sa concepts::Digraph |
|
200 |
///\sa SmartGraph |
|
197 | 201 |
class SmartDigraph : public ExtendedSmartDigraphBase { |
198 | 202 |
typedef ExtendedSmartDigraphBase Parent; |
199 | 203 |
|
200 | 204 |
private: |
201 |
|
|
202 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
|
203 |
|
|
204 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
|
205 |
/// |
|
205 |
/// Digraphs are \e not copy constructible. Use DigraphCopy instead. |
|
206 | 206 |
SmartDigraph(const SmartDigraph &) : ExtendedSmartDigraphBase() {}; |
207 |
///\brief Assignment of SmartDigraph to another one is \e not allowed. |
|
208 |
///Use DigraphCopy() instead. |
|
209 |
|
|
210 |
///Assignment of SmartDigraph to another one is \e not allowed. |
|
211 |
/// |
|
207 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
|
208 |
/// Use DigraphCopy instead. |
|
212 | 209 |
void operator=(const SmartDigraph &) {} |
213 | 210 |
|
214 | 211 |
public: |
215 | 212 |
|
216 | 213 |
/// Constructor |
217 | 214 |
|
218 | 215 |
/// Constructor. |
219 | 216 |
/// |
220 | 217 |
SmartDigraph() {}; |
221 | 218 |
|
222 | 219 |
///Add a new node to the digraph. |
223 | 220 |
|
224 |
/// Add a new node to the digraph. |
|
225 |
/// \return The new node. |
|
221 |
///This function adds a new node to the digraph. |
|
222 |
///\return The new node. |
|
226 | 223 |
Node addNode() { return Parent::addNode(); } |
227 | 224 |
|
228 | 225 |
///Add a new arc to the digraph. |
229 | 226 |
|
230 |
/// |
|
227 |
///This function adds a new arc to the digraph with source node \c s |
|
231 | 228 |
///and target node \c t. |
232 | 229 |
///\return The new arc. |
233 |
Arc addArc( |
|
230 |
Arc addArc(Node s, Node t) { |
|
234 | 231 |
return Parent::addArc(s, t); |
235 | 232 |
} |
236 | 233 |
|
237 |
/// \brief Using this it is possible to avoid the superfluous memory |
|
238 |
/// allocation. |
|
239 |
|
|
240 |
/// Using this it is possible to avoid the superfluous memory |
|
241 |
/// allocation: if you know that the digraph you want to build will |
|
242 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
|
243 |
/// then it is worth reserving space for this amount before starting |
|
244 |
/// to build the digraph. |
|
245 |
/// \sa reserveArc |
|
246 |
void reserveNode(int n) { nodes.reserve(n); }; |
|
247 |
|
|
248 |
/// \brief Using this it is possible to avoid the superfluous memory |
|
249 |
/// allocation. |
|
250 |
|
|
251 |
/// Using this it is possible to avoid the superfluous memory |
|
252 |
/// allocation: if you know that the digraph you want to build will |
|
253 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
|
254 |
/// then it is worth reserving space for this amount before starting |
|
255 |
/// to build the digraph. |
|
256 |
/// \sa reserveNode |
|
257 |
void reserveArc(int m) { arcs.reserve(m); }; |
|
258 |
|
|
259 | 234 |
/// \brief Node validity check |
260 | 235 |
/// |
261 |
/// This function gives back true if the given node is valid, |
|
262 |
/// ie. it is a real node of the graph. |
|
236 |
/// This function gives back \c true if the given node is valid, |
|
237 |
/// i.e. it is a real node of the digraph. |
|
263 | 238 |
/// |
264 | 239 |
/// \warning A removed node (using Snapshot) could become valid again |
265 |
/// |
|
240 |
/// if new nodes are added to the digraph. |
|
266 | 241 |
bool valid(Node n) const { return Parent::valid(n); } |
267 | 242 |
|
268 | 243 |
/// \brief Arc validity check |
269 | 244 |
/// |
270 |
/// This function gives back true if the given arc is valid, |
|
271 |
/// ie. it is a real arc of the graph. |
|
245 |
/// This function gives back \c true if the given arc is valid, |
|
246 |
/// i.e. it is a real arc of the digraph. |
|
272 | 247 |
/// |
273 | 248 |
/// \warning A removed arc (using Snapshot) could become valid again |
274 |
/// |
|
249 |
/// if new arcs are added to the graph. |
|
275 | 250 |
bool valid(Arc a) const { return Parent::valid(a); } |
276 | 251 |
|
277 |
///Clear the digraph. |
|
278 |
|
|
279 |
///Erase all the nodes and arcs from the digraph. |
|
280 |
/// |
|
281 |
void clear() { |
|
282 |
Parent::clear(); |
|
283 |
} |
|
284 |
|
|
285 | 252 |
///Split a node. |
286 | 253 |
|
287 |
///This function splits a node. First a new node is added to the digraph, |
|
288 |
///then the source of each outgoing arc of \c n is moved to this new node. |
|
289 |
///If \c connect is \c true (this is the default value), then a new arc |
|
290 |
///from \c n to the newly created node is also added. |
|
254 |
///This function splits the given node. First, a new node is added |
|
255 |
///to the digraph, then the source of each outgoing arc of node \c n |
|
256 |
///is moved to this new node. |
|
257 |
///If the second parameter \c connect is \c true (this is the default |
|
258 |
///value), then a new arc from node \c n to the newly created node |
|
259 |
///is also added. |
|
291 | 260 |
///\return The newly created node. |
292 | 261 |
/// |
293 |
///\note The <tt>Arc</tt>s |
|
294 |
///referencing a moved arc remain |
|
295 |
///valid. However <tt>InArc</tt>'s and <tt>OutArc</tt>'s |
|
296 |
///may be invalidated. |
|
262 |
///\note All iterators remain valid. |
|
263 |
/// |
|
297 | 264 |
///\warning This functionality cannot be used together with the Snapshot |
298 | 265 |
///feature. |
299 | 266 |
Node split(Node n, bool connect = true) |
300 | 267 |
{ |
301 | 268 |
Node b = addNode(); |
302 | 269 |
nodes[b._id].first_out=nodes[n._id].first_out; |
... | ... |
@@ -305,12 +272,40 @@ |
305 | 272 |
arcs[i].source=b._id; |
306 | 273 |
} |
307 | 274 |
if(connect) addArc(n,b); |
308 | 275 |
return b; |
309 | 276 |
} |
310 | 277 |
|
278 |
///Clear the digraph. |
|
279 |
|
|
280 |
///This function erases all nodes and arcs from the digraph. |
|
281 |
/// |
|
282 |
void clear() { |
|
283 |
Parent::clear(); |
|
284 |
} |
|
285 |
|
|
286 |
/// Reserve memory for nodes. |
|
287 |
|
|
288 |
/// Using this function, it is possible to avoid superfluous memory |
|
289 |
/// allocation: if you know that the digraph you want to build will |
|
290 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
|
291 |
/// then it is worth reserving space for this amount before starting |
|
292 |
/// to build the digraph. |
|
293 |
/// \sa reserveArc() |
|
294 |
void reserveNode(int n) { nodes.reserve(n); }; |
|
295 |
|
|
296 |
/// Reserve memory for arcs. |
|
297 |
|
|
298 |
/// Using this function, it is possible to avoid superfluous memory |
|
299 |
/// allocation: if you know that the digraph you want to build will |
|
300 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
|
301 |
/// then it is worth reserving space for this amount before starting |
|
302 |
/// to build the digraph. |
|
303 |
/// \sa reserveNode() |
|
304 |
void reserveArc(int m) { arcs.reserve(m); }; |
|
305 |
|
|
311 | 306 |
public: |
312 | 307 |
|
313 | 308 |
class Snapshot; |
314 | 309 |
|
315 | 310 |
protected: |
316 | 311 |
|
... | ... |
@@ -329,70 +324,66 @@ |
329 | 324 |
nodes.pop_back(); |
330 | 325 |
} |
331 | 326 |
} |
332 | 327 |
|
333 | 328 |
public: |
334 | 329 |
|
335 |
///Class to make a snapshot of the digraph and to |
|
330 |
///Class to make a snapshot of the digraph and to restore it later. |
|
336 | 331 |
|
337 |
///Class to make a snapshot of the digraph and to |
|
332 |
///Class to make a snapshot of the digraph and to restore it later. |
|
338 | 333 |
/// |
339 | 334 |
///The newly added nodes and arcs can be removed using the |
340 |
///restore() function. |
|
341 |
///\note After you restore a state, you cannot restore |
|
342 |
///a later state, in other word you cannot add again the arcs deleted |
|
343 |
///by restore() using another one Snapshot instance. |
|
335 |
///restore() function. This is the only way for deleting nodes and/or |
|
336 |
///arcs from a SmartDigraph structure. |
|
344 | 337 |
/// |
345 |
///\warning If you do not use correctly the snapshot that can cause |
|
346 |
///either broken program, invalid state of the digraph, valid but |
|
347 |
///not the restored digraph or no change. Because the runtime performance |
|
348 |
///the validity of the snapshot is not stored. |
|
338 |
///\note After a state is restored, you cannot restore a later state, |
|
339 |
///i.e. you cannot add the removed nodes and arcs again using |
|
340 |
///another Snapshot instance. |
|
341 |
/// |
|
342 |
///\warning Node splitting cannot be restored. |
|
343 |
///\warning The validity of the snapshot is not stored due to |
|
344 |
///performance reasons. If you do not use the snapshot correctly, |
|
345 |
///it can cause broken program, invalid or not restored state of |
|
346 |
///the digraph or no change. |
|
349 | 347 |
class Snapshot |
350 | 348 |
{ |
351 | 349 |
SmartDigraph *_graph; |
352 | 350 |
protected: |
353 | 351 |
friend class SmartDigraph; |
354 | 352 |
unsigned int node_num; |
355 | 353 |
unsigned int arc_num; |
356 | 354 |
public: |
357 | 355 |
///Default constructor. |
358 | 356 |
|
359 | 357 |
///Default constructor. |
360 |
///To actually make a snapshot you must call save(). |
|
361 |
/// |
|
358 |
///You have to call save() to actually make a snapshot. |
|
362 | 359 |
Snapshot() : _graph(0) {} |
363 | 360 |
///Constructor that immediately makes a snapshot |
364 | 361 |
|
365 |
///This constructor immediately makes a snapshot of the digraph. |
|
366 |
///\param graph The digraph we make a snapshot of. |
|
367 |
|
|
362 |
///This constructor immediately makes a snapshot of the given digraph. |
|
363 |
/// |
|
364 |
Snapshot(SmartDigraph &gr) : _graph(&gr) { |
|
368 | 365 |
node_num=_graph->nodes.size(); |
369 | 366 |
arc_num=_graph->arcs.size(); |
370 | 367 |
} |
371 | 368 |
|
372 | 369 |
///Make a snapshot. |
373 | 370 |
|
374 |
///Make a snapshot of the digraph. |
|
375 |
/// |
|
376 |
///This function |
|
371 |
///This function makes a snapshot of the given digraph. |
|
372 |
///It can be called more than once. In case of a repeated |
|
377 | 373 |
///call, the previous snapshot gets lost. |
378 |
///\param graph The digraph we make the snapshot of. |
|
379 |
void save(SmartDigraph &graph) |
|
380 |
{ |
|
381 |
_graph=&graph; |
|
374 |
void save(SmartDigraph &gr) { |
|
375 |
_graph=&gr; |
|
382 | 376 |
node_num=_graph->nodes.size(); |
383 | 377 |
arc_num=_graph->arcs.size(); |
384 | 378 |
} |
385 | 379 |
|
386 | 380 |
///Undo the changes until a snapshot. |
387 | 381 |
|
388 |
///Undo the changes until a snapshot created by save(). |
|
389 |
/// |
|
390 |
///\note After you restored a state, you cannot restore |
|
391 |
///a later state, in other word you cannot add again the arcs deleted |
|
392 |
/// |
|
382 |
///This function undos the changes until the last snapshot |
|
383 |
///created by save() or Snapshot(SmartDigraph&). |
|
393 | 384 |
void restore() |
394 | 385 |
{ |
395 | 386 |
_graph->restoreSnapshot(*this); |
396 | 387 |
} |
397 | 388 |
}; |
398 | 389 |
}; |
... | ... |
@@ -505,29 +496,29 @@ |
505 | 496 |
} |
506 | 497 |
|
507 | 498 |
void first(Node& node) const { |
508 | 499 |
node._id = nodes.size() - 1; |
509 | 500 |
} |
510 | 501 |
|
511 |
void next(Node& node) |
|
502 |
static void next(Node& node) { |
|
512 | 503 |
--node._id; |
513 | 504 |
} |
514 | 505 |
|
515 | 506 |
void first(Arc& arc) const { |
516 | 507 |
arc._id = arcs.size() - 1; |
517 | 508 |
} |
518 | 509 |
|
519 |
void next(Arc& arc) |
|
510 |
static void next(Arc& arc) { |
|
520 | 511 |
--arc._id; |
521 | 512 |
} |
522 | 513 |
|
523 | 514 |
void first(Edge& arc) const { |
524 | 515 |
arc._id = arcs.size() / 2 - 1; |
525 | 516 |
} |
526 | 517 |
|
527 |
void next(Edge& arc) |
|
518 |
static void next(Edge& arc) { |
|
528 | 519 |
--arc._id; |
529 | 520 |
} |
530 | 521 |
|
531 | 522 |
void firstOut(Arc &arc, const Node& v) const { |
532 | 523 |
arc._id = nodes[v._id].first_out; |
533 | 524 |
} |
... | ... |
@@ -618,95 +609,115 @@ |
618 | 609 |
typedef GraphExtender<SmartGraphBase> ExtendedSmartGraphBase; |
619 | 610 |
|
620 | 611 |
/// \ingroup graphs |
621 | 612 |
/// |
622 | 613 |
/// \brief A smart undirected graph class. |
623 | 614 |
/// |
624 |
/// This is a simple and fast graph implementation. |
|
625 |
/// It is also quite memory efficient, but at the price |
|
626 |
/// that <b> it does support only limited (only stack-like) |
|
627 |
/// node and arc deletions</b>. |
|
628 |
/// |
|
615 |
/// \ref SmartGraph is a simple and fast graph implementation. |
|
616 |
/// It is also quite memory efficient but at the price |
|
617 |
/// that it does not support node and edge deletion |
|
618 |
/// (except for the Snapshot feature). |
|
629 | 619 |
/// |
630 |
/// \ |
|
620 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept" |
|
621 |
/// and it also provides some additional functionalities. |
|
622 |
/// Most of its member functions and nested classes are documented |
|
623 |
/// only in the concept class. |
|
624 |
/// |
|
625 |
/// This class provides constant time counting for nodes, edges and arcs. |
|
626 |
/// |
|
627 |
/// \sa concepts::Graph |
|
628 |
/// \sa SmartDigraph |
|
631 | 629 |
class SmartGraph : public ExtendedSmartGraphBase { |
632 | 630 |
typedef ExtendedSmartGraphBase Parent; |
633 | 631 |
|
634 | 632 |
private: |
635 |
|
|
636 |
///SmartGraph is \e not copy constructible. Use GraphCopy() instead. |
|
637 |
|
|
638 |
///SmartGraph is \e not copy constructible. Use GraphCopy() instead. |
|
639 |
/// |
|
633 |
/// Graphs are \e not copy constructible. Use GraphCopy instead. |
|
640 | 634 |
SmartGraph(const SmartGraph &) : ExtendedSmartGraphBase() {}; |
641 |
|
|
642 |
///\brief Assignment of SmartGraph to another one is \e not allowed. |
|
643 |
///Use GraphCopy() instead. |
|
644 |
|
|
645 |
///Assignment of SmartGraph to another one is \e not allowed. |
|
646 |
///Use GraphCopy() instead. |
|
635 |
/// \brief Assignment of a graph to another one is \e not allowed. |
|
636 |
/// Use GraphCopy instead. |
|
647 | 637 |
void operator=(const SmartGraph &) {} |
648 | 638 |
|
649 | 639 |
public: |
650 | 640 |
|
651 | 641 |
/// Constructor |
652 | 642 |
|
653 | 643 |
/// Constructor. |
654 | 644 |
/// |
655 | 645 |
SmartGraph() {} |
656 | 646 |
|
657 |
///Add a new node to the graph. |
|
658 |
|
|
659 |
/// Add a new node to the graph. |
|
647 |
/// \brief Add a new node to the graph. |
|
648 |
/// |
|
649 |
/// This function adds a new node to the graph. |
|
660 | 650 |
/// \return The new node. |
661 | 651 |
Node addNode() { return Parent::addNode(); } |
662 | 652 |
|
663 |
///Add a new edge to the graph. |
|
664 |
|
|
665 |
///Add a new edge to the graph with node \c s |
|
666 |
///and \c t. |
|
667 |
///\return The new edge. |
|
668 |
Edge addEdge(const Node& s, const Node& t) { |
|
669 |
|
|
653 |
/// \brief Add a new edge to the graph. |
|
654 |
/// |
|
655 |
/// This function adds a new edge to the graph between nodes |
|
656 |
/// \c u and \c v with inherent orientation from node \c u to |
|
657 |
/// node \c v. |
|
658 |
/// \return The new edge. |
|
659 |
Edge addEdge(Node u, Node v) { |
|
660 |
return Parent::addEdge(u, v); |
|
670 | 661 |
} |
671 | 662 |
|
672 | 663 |
/// \brief Node validity check |
673 | 664 |
/// |
674 |
/// This function gives back true if the given node is valid, |
|
675 |
/// ie. it is a real node of the graph. |
|
665 |
/// This function gives back \c true if the given node is valid, |
|
666 |
/// i.e. it is a real node of the graph. |
|
676 | 667 |
/// |
677 | 668 |
/// \warning A removed node (using Snapshot) could become valid again |
678 |
/// |
|
669 |
/// if new nodes are added to the graph. |
|
679 | 670 |
bool valid(Node n) const { return Parent::valid(n); } |
680 | 671 |
|
672 |
/// \brief Edge validity check |
|
673 |
/// |
|
674 |
/// This function gives back \c true if the given edge is valid, |
|
675 |
/// i.e. it is a real edge of the graph. |
|
676 |
/// |
|
677 |
/// \warning A removed edge (using Snapshot) could become valid again |
|
678 |
/// if new edges are added to the graph. |
|
679 |
bool valid(Edge e) const { return Parent::valid(e); } |
|
680 |
|
|
681 | 681 |
/// \brief Arc validity check |
682 | 682 |
/// |
683 |
/// This function gives back true if the given arc is valid, |
|
684 |
/// ie. it is a real arc of the graph. |
|
683 |
/// This function gives back \c true if the given arc is valid, |
|
684 |
/// i.e. it is a real arc of the graph. |
|
685 | 685 |
/// |
686 | 686 |
/// \warning A removed arc (using Snapshot) could become valid again |
687 |
/// |
|
687 |
/// if new edges are added to the graph. |
|
688 | 688 |
bool valid(Arc a) const { return Parent::valid(a); } |
689 | 689 |
|
690 |
/// \brief Edge validity check |
|
691 |
/// |
|
692 |
/// This function gives back true if the given edge is valid, |
|
693 |
/// ie. it is a real edge of the graph. |
|
694 |
/// |
|
695 |
/// \warning A removed edge (using Snapshot) could become valid again |
|
696 |
/// when new edges are added to the graph. |
|
697 |
bool valid(Edge e) const { return Parent::valid(e); } |
|
698 |
|
|
699 | 690 |
///Clear the graph. |
700 | 691 |
|
701 |
/// |
|
692 |
///This function erases all nodes and arcs from the graph. |
|
702 | 693 |
/// |
703 | 694 |
void clear() { |
704 | 695 |
Parent::clear(); |
705 | 696 |
} |
706 | 697 |
|
698 |
/// Reserve memory for nodes. |
|
699 |
|
|
700 |
/// Using this function, it is possible to avoid superfluous memory |
|
701 |
/// allocation: if you know that the graph you want to build will |
|
702 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
|
703 |
/// then it is worth reserving space for this amount before starting |
|
704 |
/// to build the graph. |
|
705 |
/// \sa reserveEdge() |
|
706 |
void reserveNode(int n) { nodes.reserve(n); }; |
|
707 |
|
|
708 |
/// Reserve memory for edges. |
|
709 |
|
|
710 |
/// Using this function, it is possible to avoid superfluous memory |
|
711 |
/// allocation: if you know that the graph you want to build will |
|
712 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
|
713 |
/// then it is worth reserving space for this amount before starting |
|
714 |
/// to build the graph. |
|
715 |
/// \sa reserveNode() |
|
716 |
void reserveEdge(int m) { arcs.reserve(2 * m); }; |
|
717 |
|
|
707 | 718 |
public: |
708 | 719 |
|
709 | 720 |
class Snapshot; |
710 | 721 |
|
711 | 722 |
protected: |
712 | 723 |
|
... | ... |
@@ -739,68 +750,63 @@ |
739 | 750 |
nodes.pop_back(); |
740 | 751 |
} |
741 | 752 |
} |
742 | 753 |
|
743 | 754 |
public: |
744 | 755 |
|
745 |
///Class to make a snapshot of the |
|
756 |
///Class to make a snapshot of the graph and to restore it later. |
|
746 | 757 |
|
747 |
///Class to make a snapshot of the |
|
758 |
///Class to make a snapshot of the graph and to restore it later. |
|
748 | 759 |
/// |
749 |
///The newly added nodes and arcs can be removed using the |
|
750 |
///restore() function. |
|
760 |
///The newly added nodes and edges can be removed using the |
|
761 |
///restore() function. This is the only way for deleting nodes and/or |
|
762 |
///edges from a SmartGraph structure. |
|
751 | 763 |
/// |
752 |
///\note After you restore a state, you cannot restore |
|
753 |
///a later state, in other word you cannot add again the arcs deleted |
|
754 |
/// |
|
764 |
///\note After a state is restored, you cannot restore a later state, |
|
765 |
///i.e. you cannot add the removed nodes and edges again using |
|
766 |
///another Snapshot instance. |
|
755 | 767 |
/// |
756 |
///\warning If you do not use correctly the snapshot that can cause |
|
757 |
///either broken program, invalid state of the digraph, valid but |
|
758 |
///not the restored digraph or no change. Because the runtime performance |
|
759 |
///the validity of the snapshot is not stored. |
|
768 |
///\warning The validity of the snapshot is not stored due to |
|
769 |
///performance reasons. If you do not use the snapshot correctly, |
|
770 |
///it can cause broken program, invalid or not restored state of |
|
771 |
///the graph or no change. |
|
760 | 772 |
class Snapshot |
761 | 773 |
{ |
762 | 774 |
SmartGraph *_graph; |
763 | 775 |
protected: |
764 | 776 |
friend class SmartGraph; |
765 | 777 |
unsigned int node_num; |
766 | 778 |
unsigned int arc_num; |
767 | 779 |
public: |
768 | 780 |
///Default constructor. |
769 | 781 |
|
770 | 782 |
///Default constructor. |
771 |
///To actually make a snapshot you must call save(). |
|
772 |
/// |
|
783 |
///You have to call save() to actually make a snapshot. |
|
773 | 784 |
Snapshot() : _graph(0) {} |
774 | 785 |
///Constructor that immediately makes a snapshot |
775 | 786 |
|
776 |
///This constructor immediately makes a snapshot of the digraph. |
|
777 |
///\param graph The digraph we make a snapshot of. |
|
778 |
Snapshot(SmartGraph &graph) { |
|
779 |
graph.saveSnapshot(*this); |
|
787 |
/// This constructor immediately makes a snapshot of the given graph. |
|
788 |
/// |
|
789 |
Snapshot(SmartGraph &gr) { |
|
790 |
gr.saveSnapshot(*this); |
|
780 | 791 |
} |
781 | 792 |
|
782 | 793 |
///Make a snapshot. |
783 | 794 |
|
784 |
///Make a snapshot of the graph. |
|
785 |
/// |
|
786 |
///This function |
|
795 |
///This function makes a snapshot of the given graph. |
|
796 |
///It can be called more than once. In case of a repeated |
|
787 | 797 |
///call, the previous snapshot gets lost. |
788 |
///\param graph The digraph we make the snapshot of. |
|
789 |
void save(SmartGraph &graph) |
|
798 |
void save(SmartGraph &gr) |
|
790 | 799 |
{ |
791 |
|
|
800 |
gr.saveSnapshot(*this); |
|
792 | 801 |
} |
793 | 802 |
|
794 |
///Undo the changes until |
|
803 |
///Undo the changes until the last snapshot. |
|
795 | 804 |
|
796 |
///Undo the changes until a snapshot created by save(). |
|
797 |
/// |
|
798 |
///\note After you restored a state, you cannot restore |
|
799 |
///a later state, in other word you cannot add again the arcs deleted |
|
800 |
/// |
|
805 |
///This function undos the changes until the last snapshot |
|
806 |
///created by save() or Snapshot(SmartGraph&). |
|
801 | 807 |
void restore() |
802 | 808 |
{ |
803 | 809 |
_graph->restoreSnapshot(*this); |
804 | 810 |
} |
805 | 811 |
}; |
806 | 812 |
}; |
... | ... |
@@ -88,12 +88,25 @@ |
88 | 88 |
|
89 | 89 |
_row_names.push_back(std::string()); |
90 | 90 |
|
91 | 91 |
return soplex->nRows() - 1; |
92 | 92 |
} |
93 | 93 |
|
94 |
int SoplexLp::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) { |
|
95 |
soplex::DSVector v; |
|
96 |
for (ExprIterator it = b; it != e; ++it) { |
|
97 |
v.add(it->first, it->second); |
|
98 |
} |
|
99 |
soplex::LPRow r(l, v, u); |
|
100 |
soplex->addRow(r); |
|
101 |
|
|
102 |
_row_names.push_back(std::string()); |
|
103 |
|
|
104 |
return soplex->nRows() - 1; |
|
105 |
} |
|
106 |
|
|
94 | 107 |
|
95 | 108 |
void SoplexLp::_eraseCol(int i) { |
96 | 109 |
soplex->removeCol(i); |
97 | 110 |
_col_names_ref.erase(_col_names[i]); |
98 | 111 |
_col_names[i] = _col_names.back(); |
99 | 112 |
_col_names_ref[_col_names.back()] = i; |
... | ... |
@@ -81,12 +81,13 @@ |
81 | 81 |
protected: |
82 | 82 |
|
83 | 83 |
virtual const char* _solverName() const; |
84 | 84 |
|
85 | 85 |
virtual int _addCol(); |
86 | 86 |
virtual int _addRow(); |
87 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
87 | 88 |
|
88 | 89 |
virtual void _eraseCol(int i); |
89 | 90 |
virtual void _eraseRow(int i); |
90 | 91 |
|
91 | 92 |
virtual void _eraseColId(int i); |
92 | 93 |
virtual void _eraseRowId(int i); |
... | ... |
@@ -372,13 +372,13 @@ |
372 | 372 |
} |
373 | 373 |
|
374 | 374 |
///Returns the running state of the timer |
375 | 375 |
|
376 | 376 |
///This function returns the number of stop() exections that is |
377 | 377 |
///necessary to really stop the timer. |
378 |
///For example the timer |
|
378 |
///For example, the timer |
|
379 | 379 |
///is running if and only if the return value is \c true |
380 | 380 |
///(i.e. greater than |
381 | 381 |
///zero). |
382 | 382 |
int running() { return _running; } |
383 | 383 |
|
384 | 384 |
... | ... |
@@ -40,13 +40,13 @@ |
40 | 40 |
/// |
41 | 41 |
/// The class implements the \e Union-Find data structure. |
42 | 42 |
/// The union operation uses rank heuristic, while |
43 | 43 |
/// the find operation uses path compression. |
44 | 44 |
/// This is a very simple but efficient implementation, providing |
45 | 45 |
/// only four methods: join (union), find, insert and size. |
46 |
/// For more features see the \ref UnionFindEnum class. |
|
46 |
/// For more features, see the \ref UnionFindEnum class. |
|
47 | 47 |
/// |
48 | 48 |
/// It is primarily used in Kruskal algorithm for finding minimal |
49 | 49 |
/// cost spanning tree in a graph. |
50 | 50 |
/// \sa kruskal() |
51 | 51 |
/// |
52 | 52 |
/// \pre You need to add all the elements by the \ref insert() |
... | ... |
@@ -85,13 +85,13 @@ |
85 | 85 |
|
86 | 86 |
if test x"$with_coin_libdir" != x"no"; then |
87 | 87 |
CBC_LDFLAGS="-L$with_coin_libdir" |
88 | 88 |
elif test x"$with_coin" != x"yes"; then |
89 | 89 |
CBC_LDFLAGS="-L$with_coin/lib" |
90 | 90 |
fi |
91 |
CBC_LIBS="-lOsi -lCbc |
|
91 |
CBC_LIBS="-lOsi -lCbc -lCbcSolver -lClp -lOsiClp -lCoinUtils -lVol -lOsiVol -lCgl -lm -llapack -lblas" |
|
92 | 92 |
|
93 | 93 |
lx_save_cxxflags="$CXXFLAGS" |
94 | 94 |
lx_save_ldflags="$LDFLAGS" |
95 | 95 |
lx_save_libs="$LIBS" |
96 | 96 |
CXXFLAGS="$CBC_CXXFLAGS" |
97 | 97 |
LDFLAGS="$CBC_LDFLAGS" |
1 | 1 |
#! /usr/bin/env python |
2 |
# |
|
3 |
# This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
# |
|
5 |
# Copyright (C) 2003-2009 |
|
6 |
# Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
# (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
# |
|
9 |
# Permission to use, modify and distribute this software is granted |
|
10 |
# provided that this copyright notice appears in all copies. For |
|
11 |
# precise terms see the accompanying LICENSE file. |
|
12 |
# |
|
13 |
# This software is provided "AS IS" with no warranty of any kind, |
|
14 |
# express or implied, and with no claim as to its suitability for any |
|
15 |
# purpose. |
|
2 | 16 |
|
3 | 17 |
import sys |
4 | 18 |
|
5 | 19 |
from mercurial import ui, hg |
6 | 20 |
from mercurial import util |
7 | 21 |
1 | 1 |
#!/bin/bash |
2 |
# |
|
3 |
# This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
# |
|
5 |
# Copyright (C) 2003-2009 |
|
6 |
# Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
# (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
# |
|
9 |
# Permission to use, modify and distribute this software is granted |
|
10 |
# provided that this copyright notice appears in all copies. For |
|
11 |
# precise terms see the accompanying LICENSE file. |
|
12 |
# |
|
13 |
# This software is provided "AS IS" with no warranty of any kind, |
|
14 |
# express or implied, and with no claim as to its suitability for any |
|
15 |
# purpose. |
|
2 | 16 |
|
3 | 17 |
set -e |
4 | 18 |
|
5 | 19 |
if [ $# = 0 ]; then |
6 | 20 |
echo "Usage: $0 release-id" |
7 | 21 |
exit 1 |
1 | 1 |
#!/bin/bash |
2 |
# |
|
3 |
# This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
# |
|
5 |
# Copyright (C) 2003-2009 |
|
6 |
# Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
# (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
# |
|
9 |
# Permission to use, modify and distribute this software is granted |
|
10 |
# provided that this copyright notice appears in all copies. For |
|
11 |
# precise terms see the accompanying LICENSE file. |
|
12 |
# |
|
13 |
# This software is provided "AS IS" with no warranty of any kind, |
|
14 |
# express or implied, and with no claim as to its suitability for any |
|
15 |
# purpose. |
|
2 | 16 |
|
3 | 17 |
YEAR=`date +%Y` |
4 | 18 |
HGROOT=`hg root` |
5 | 19 |
|
6 | 20 |
function hg_year() { |
7 | 21 |
if [ -n "$(hg st $1)" ]; then |
1 |
if USE_VALGRIND |
|
2 |
TESTS_ENVIRONMENT=$(top_srcdir)/scripts/valgrind-wrapper.sh |
|
3 |
endif |
|
4 |
|
|
1 | 5 |
EXTRA_DIST += \ |
2 | 6 |
test/CMakeLists.txt |
3 | 7 |
|
4 | 8 |
noinst_HEADERS += \ |
5 | 9 |
test/graph_test.h \ |
6 | 10 |
test/test_tools.h |
... | ... |
@@ -27,12 +31,13 @@ |
27 | 31 |
test/heap_test \ |
28 | 32 |
test/kruskal_test \ |
29 | 33 |
test/maps_test \ |
30 | 34 |
test/matching_test \ |
31 | 35 |
test/min_cost_arborescence_test \ |
32 | 36 |
test/min_cost_flow_test \ |
37 |
test/min_mean_cycle_test \ |
|
33 | 38 |
test/path_test \ |
34 | 39 |
test/planarity_test \ |
35 | 40 |
test/preflow_test \ |
36 | 41 |
test/radix_sort_test \ |
37 | 42 |
test/random_test \ |
38 | 43 |
test/suurballe_test \ |
... | ... |
@@ -76,12 +81,13 @@ |
76 | 81 |
test_lp_test_SOURCES = test/lp_test.cc |
77 | 82 |
test_maps_test_SOURCES = test/maps_test.cc |
78 | 83 |
test_mip_test_SOURCES = test/mip_test.cc |
79 | 84 |
test_matching_test_SOURCES = test/matching_test.cc |
80 | 85 |
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc |
81 | 86 |
test_min_cost_flow_test_SOURCES = test/min_cost_flow_test.cc |
87 |
test_min_mean_cycle_test_SOURCES = test/min_mean_cycle_test.cc |
|
82 | 88 |
test_path_test_SOURCES = test/path_test.cc |
83 | 89 |
test_planarity_test_SOURCES = test/planarity_test.cc |
84 | 90 |
test_preflow_test_SOURCES = test/preflow_test.cc |
85 | 91 |
test_radix_sort_test_SOURCES = test/radix_sort_test.cc |
86 | 92 |
test_suurballe_test_SOURCES = test/suurballe_test.cc |
87 | 93 |
test_random_test_SOURCES = test/random_test.cc |
... | ... |
@@ -1368,57 +1368,49 @@ |
1368 | 1368 |
GridGraph::Node n1 = graph(0,0); |
1369 | 1369 |
GridGraph::Node n2 = graph(0,1); |
1370 | 1370 |
GridGraph::Node n3 = graph(1,0); |
1371 | 1371 |
GridGraph::Node n4 = graph(1,1); |
1372 | 1372 |
|
1373 | 1373 |
GridGraph::EdgeMap<bool> dir_map(graph); |
1374 |
dir_map[graph.right(n1)] = graph.u(graph.right(n1)) == n1; |
|
1375 |
dir_map[graph.up(n1)] = graph.u(graph.up(n1)) != n1; |
|
1376 |
dir_map[graph.left(n4)] = graph.u(graph.left(n4)) != n4; |
|
1377 |
dir_map[graph.down(n4)] = graph.u(graph.down(n4)) != n4; |
|
1374 |
dir_map[graph.right(n1)] = graph.u(graph.right(n1)) != n1; |
|
1375 |
dir_map[graph.up(n1)] = graph.u(graph.up(n1)) == n1; |
|
1376 |
dir_map[graph.left(n4)] = graph.u(graph.left(n4)) == n4; |
|
1377 |
dir_map[graph.down(n4)] = graph.u(graph.down(n4)) == n4; |
|
1378 | 1378 |
|
1379 | 1379 |
// Apply several adaptors on the grid graph |
1380 |
typedef SplitNodes< ReverseDigraph< const Orienter< |
|
1381 |
const GridGraph, GridGraph::EdgeMap<bool> > > > |
|
1382 |
RevSplitGridGraph; |
|
1383 |
typedef ReverseDigraph<const RevSplitGridGraph> SplitGridGraph; |
|
1380 |
typedef SplitNodes<Orienter< const GridGraph, GridGraph::EdgeMap<bool> > > |
|
1381 |
SplitGridGraph; |
|
1384 | 1382 |
typedef Undirector<const SplitGridGraph> USplitGridGraph; |
1385 |
typedef Undirector<const USplitGridGraph> UUSplitGridGraph; |
|
1386 |
checkConcept<concepts::Digraph, RevSplitGridGraph>(); |
|
1387 | 1383 |
checkConcept<concepts::Digraph, SplitGridGraph>(); |
1388 | 1384 |
checkConcept<concepts::Graph, USplitGridGraph>(); |
1389 |
checkConcept<concepts::Graph, UUSplitGridGraph>(); |
|
1390 | 1385 |
|
1391 |
RevSplitGridGraph rev_adaptor = |
|
1392 |
splitNodes(reverseDigraph(orienter(graph, dir_map))); |
|
1393 |
SplitGridGraph adaptor = |
|
1386 |
SplitGridGraph adaptor = splitNodes(orienter(graph, dir_map)); |
|
1394 | 1387 |
USplitGridGraph uadaptor = undirector(adaptor); |
1395 |
UUSplitGridGraph uuadaptor = undirector(uadaptor); |
|
1396 | 1388 |
|
1397 | 1389 |
// Check adaptor |
1398 | 1390 |
checkGraphNodeList(adaptor, 8); |
1399 | 1391 |
checkGraphArcList(adaptor, 8); |
1400 | 1392 |
checkGraphConArcList(adaptor, 8); |
1401 | 1393 |
|
1402 |
checkGraphOutArcList(adaptor, rev_adaptor.inNode(n1), 1); |
|
1403 |
checkGraphOutArcList(adaptor, rev_adaptor.outNode(n1), 1); |
|
1404 |
checkGraphOutArcList(adaptor, rev_adaptor.inNode(n2), 2); |
|
1405 |
checkGraphOutArcList(adaptor, rev_adaptor.outNode(n2), 1); |
|
1406 |
checkGraphOutArcList(adaptor, rev_adaptor.inNode(n3), 1); |
|
1407 |
checkGraphOutArcList(adaptor, rev_adaptor.outNode(n3), 1); |
|
1408 |
checkGraphOutArcList(adaptor, rev_adaptor.inNode(n4), 0); |
|
1409 |
checkGraphOutArcList(adaptor, rev_adaptor.outNode(n4), 1); |
|
1394 |
checkGraphOutArcList(adaptor, adaptor.inNode(n1), 1); |
|
1395 |
checkGraphOutArcList(adaptor, adaptor.outNode(n1), 1); |
|
1396 |
checkGraphOutArcList(adaptor, adaptor.inNode(n2), 1); |
|
1397 |
checkGraphOutArcList(adaptor, adaptor.outNode(n2), 0); |
|
1398 |
checkGraphOutArcList(adaptor, adaptor.inNode(n3), 1); |
|
1399 |
checkGraphOutArcList(adaptor, adaptor.outNode(n3), 1); |
|
1400 |
checkGraphOutArcList(adaptor, adaptor.inNode(n4), 1); |
|
1401 |
checkGraphOutArcList(adaptor, adaptor.outNode(n4), 2); |
|
1410 | 1402 |
|
1411 |
checkGraphInArcList(adaptor, rev_adaptor.inNode(n1), 1); |
|
1412 |
checkGraphInArcList(adaptor, rev_adaptor.outNode(n1), 1); |
|
1413 |
checkGraphInArcList(adaptor, rev_adaptor.inNode(n2), 1); |
|
1414 |
checkGraphInArcList(adaptor, rev_adaptor.outNode(n2), 0); |
|
1415 |
checkGraphInArcList(adaptor, rev_adaptor.inNode(n3), 1); |
|
1416 |
checkGraphInArcList(adaptor, rev_adaptor.outNode(n3), 1); |
|
1417 |
checkGraphInArcList(adaptor, rev_adaptor.inNode(n4), 1); |
|
1418 |
checkGraphInArcList(adaptor, rev_adaptor.outNode(n4), 2); |
|
1403 |
checkGraphInArcList(adaptor, adaptor.inNode(n1), 1); |
|
1404 |
checkGraphInArcList(adaptor, adaptor.outNode(n1), 1); |
|
1405 |
checkGraphInArcList(adaptor, adaptor.inNode(n2), 2); |
|
1406 |
checkGraphInArcList(adaptor, adaptor.outNode(n2), 1); |
|
1407 |
checkGraphInArcList(adaptor, adaptor.inNode(n3), 1); |
|
1408 |
checkGraphInArcList(adaptor, adaptor.outNode(n3), 1); |
|
1409 |
checkGraphInArcList(adaptor, adaptor.inNode(n4), 0); |
|
1410 |
checkGraphInArcList(adaptor, adaptor.outNode(n4), 1); |
|
1419 | 1411 |
|
1420 | 1412 |
checkNodeIds(adaptor); |
1421 | 1413 |
checkArcIds(adaptor); |
1422 | 1414 |
|
1423 | 1415 |
checkGraphNodeMap(adaptor); |
1424 | 1416 |
checkGraphArcMap(adaptor); |
... | ... |
@@ -1435,35 +1427,20 @@ |
1435 | 1427 |
checkArcIds(uadaptor); |
1436 | 1428 |
|
1437 | 1429 |
checkGraphNodeMap(uadaptor); |
1438 | 1430 |
checkGraphEdgeMap(uadaptor); |
1439 | 1431 |
checkGraphArcMap(uadaptor); |
1440 | 1432 |
|
1441 |
checkGraphIncEdgeArcLists(uadaptor, rev_adaptor.inNode(n1), 2); |
|
1442 |
checkGraphIncEdgeArcLists(uadaptor, rev_adaptor.outNode(n1), 2); |
|
1443 |
checkGraphIncEdgeArcLists(uadaptor, rev_adaptor.inNode(n2), 3); |
|
1444 |
checkGraphIncEdgeArcLists(uadaptor, rev_adaptor.outNode(n2), 1); |
|
1445 |
checkGraphIncEdgeArcLists(uadaptor, rev_adaptor.inNode(n3), 2); |
|
1446 |
checkGraphIncEdgeArcLists(uadaptor, rev_adaptor.outNode(n3), 2); |
|
1447 |
checkGraphIncEdgeArcLists(uadaptor, rev_adaptor.inNode(n4), 1); |
|
1448 |
checkGraphIncEdgeArcLists(uadaptor, rev_adaptor.outNode(n4), 3); |
|
1449 |
|
|
1450 |
// Check uuadaptor |
|
1451 |
checkGraphNodeList(uuadaptor, 8); |
|
1452 |
checkGraphEdgeList(uuadaptor, 16); |
|
1453 |
checkGraphArcList(uuadaptor, 32); |
|
1454 |
checkGraphConEdgeList(uuadaptor, 16); |
|
1455 |
checkGraphConArcList(uuadaptor, 32); |
|
1456 |
|
|
1457 |
checkNodeIds(uuadaptor); |
|
1458 |
checkEdgeIds(uuadaptor); |
|
1459 |
checkArcIds(uuadaptor); |
|
1460 |
|
|
1461 |
checkGraphNodeMap(uuadaptor); |
|
1462 |
checkGraphEdgeMap(uuadaptor); |
|
1463 |
|
|
1433 |
checkGraphIncEdgeArcLists(uadaptor, adaptor.inNode(n1), 2); |
|
1434 |
checkGraphIncEdgeArcLists(uadaptor, adaptor.outNode(n1), 2); |
|
1435 |
checkGraphIncEdgeArcLists(uadaptor, adaptor.inNode(n2), 3); |
|
1436 |
checkGraphIncEdgeArcLists(uadaptor, adaptor.outNode(n2), 1); |
|
1437 |
checkGraphIncEdgeArcLists(uadaptor, adaptor.inNode(n3), 2); |
|
1438 |
checkGraphIncEdgeArcLists(uadaptor, adaptor.outNode(n3), 2); |
|
1439 |
checkGraphIncEdgeArcLists(uadaptor, adaptor.inNode(n4), 1); |
|
1440 |
checkGraphIncEdgeArcLists(uadaptor, adaptor.outNode(n4), 3); |
|
1464 | 1441 |
} |
1465 | 1442 |
|
1466 | 1443 |
int main(int, const char **) { |
1467 | 1444 |
// Check the digraph adaptors (using ListDigraph) |
1468 | 1445 |
checkReverseDigraph(); |
1469 | 1446 |
checkSubDigraph(); |
... | ... |
@@ -62,13 +62,13 @@ |
62 | 62 |
typedef Digraph::Arc Arc; |
63 | 63 |
|
64 | 64 |
Digraph gr; |
65 | 65 |
Node s, t, n; |
66 | 66 |
Arc e; |
67 | 67 |
Value l; |
68 |
int k; |
|
68 |
int k=3; |
|
69 | 69 |
bool b; |
70 | 70 |
BF::DistMap d(gr); |
71 | 71 |
BF::PredMap p(gr); |
72 | 72 |
LengthMap length; |
73 | 73 |
concepts::Path<Digraph> pp; |
74 | 74 |
|
... | ... |
@@ -93,12 +93,13 @@ |
93 | 93 |
e = const_bf_test.predArc(t); |
94 | 94 |
s = const_bf_test.predNode(t); |
95 | 95 |
b = const_bf_test.reached(t); |
96 | 96 |
d = const_bf_test.distMap(); |
97 | 97 |
p = const_bf_test.predMap(); |
98 | 98 |
pp = const_bf_test.path(t); |
99 |
pp = const_bf_test.negativeCycle(); |
|
99 | 100 |
|
100 | 101 |
for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {} |
101 | 102 |
} |
102 | 103 |
{ |
103 | 104 |
BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
104 | 105 |
::SetDistMap<concepts::ReadWriteMap<Node,Value> > |
... | ... |
@@ -129,12 +130,13 @@ |
129 | 130 |
|
130 | 131 |
l = bf_test.dist(t); |
131 | 132 |
e = bf_test.predArc(t); |
132 | 133 |
s = bf_test.predNode(t); |
133 | 134 |
b = bf_test.reached(t); |
134 | 135 |
pp = bf_test.path(t); |
136 |
pp = bf_test.negativeCycle(); |
|
135 | 137 |
} |
136 | 138 |
} |
137 | 139 |
|
138 | 140 |
void checkBellmanFordFunctionCompile() |
139 | 141 |
{ |
140 | 142 |
typedef int Value; |
... | ... |
@@ -16,12 +16,13 @@ |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/concepts/digraph.h> |
20 | 20 |
#include <lemon/list_graph.h> |
21 | 21 |
#include <lemon/smart_graph.h> |
22 |
#include <lemon/static_graph.h> |
|
22 | 23 |
#include <lemon/full_graph.h> |
23 | 24 |
|
24 | 25 |
#include "test_tools.h" |
25 | 26 |
#include "graph_test.h" |
26 | 27 |
|
27 | 28 |
using namespace lemon; |
... | ... |
@@ -32,12 +33,15 @@ |
32 | 33 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
33 | 34 |
Digraph G; |
34 | 35 |
|
35 | 36 |
checkGraphNodeList(G, 0); |
36 | 37 |
checkGraphArcList(G, 0); |
37 | 38 |
|
39 |
G.reserveNode(3); |
|
40 |
G.reserveArc(4); |
|
41 |
|
|
38 | 42 |
Node |
39 | 43 |
n1 = G.addNode(), |
40 | 44 |
n2 = G.addNode(), |
41 | 45 |
n3 = G.addNode(); |
42 | 46 |
checkGraphNodeList(G, 3); |
43 | 47 |
checkGraphArcList(G, 0); |
... | ... |
@@ -280,12 +284,20 @@ |
280 | 284 |
G.addNode(); |
281 | 285 |
snapshot.save(G); |
282 | 286 |
|
283 | 287 |
G.addArc(G.addNode(), G.addNode()); |
284 | 288 |
|
285 | 289 |
snapshot.restore(); |
290 |
snapshot.save(G); |
|
291 |
|
|
292 |
checkGraphNodeList(G, 4); |
|
293 |
checkGraphArcList(G, 4); |
|
294 |
|
|
295 |
G.addArc(G.addNode(), G.addNode()); |
|
296 |
|
|
297 |
snapshot.restore(); |
|
286 | 298 |
|
287 | 299 |
checkGraphNodeList(G, 4); |
288 | 300 |
checkGraphArcList(G, 4); |
289 | 301 |
} |
290 | 302 |
|
291 | 303 |
void checkConcepts() { |
... | ... |
@@ -314,12 +326,16 @@ |
314 | 326 |
{ // Checking SmartDigraph |
315 | 327 |
checkConcept<Digraph, SmartDigraph>(); |
316 | 328 |
checkConcept<AlterableDigraphComponent<>, SmartDigraph>(); |
317 | 329 |
checkConcept<ExtendableDigraphComponent<>, SmartDigraph>(); |
318 | 330 |
checkConcept<ClearableDigraphComponent<>, SmartDigraph>(); |
319 | 331 |
} |
332 |
{ // Checking StaticDigraph |
|
333 |
checkConcept<Digraph, StaticDigraph>(); |
|
334 |
checkConcept<ClearableDigraphComponent<>, StaticDigraph>(); |
|
335 |
} |
|
320 | 336 |
{ // Checking FullDigraph |
321 | 337 |
checkConcept<Digraph, FullDigraph>(); |
322 | 338 |
} |
323 | 339 |
} |
324 | 340 |
|
325 | 341 |
template <typename Digraph> |
... | ... |
@@ -369,16 +385,128 @@ |
369 | 385 |
check(g.valid(e2), "Wrong validity check"); |
370 | 386 |
|
371 | 387 |
check(!g.valid(g.nodeFromId(-1)), "Wrong validity check"); |
372 | 388 |
check(!g.valid(g.arcFromId(-1)), "Wrong validity check"); |
373 | 389 |
} |
374 | 390 |
|
391 |
void checkStaticDigraph() { |
|
392 |
SmartDigraph g; |
|
393 |
SmartDigraph::NodeMap<StaticDigraph::Node> nref(g); |
|
394 |
SmartDigraph::ArcMap<StaticDigraph::Arc> aref(g); |
|
395 |
|
|
396 |
StaticDigraph G; |
|
397 |
|
|
398 |
checkGraphNodeList(G, 0); |
|
399 |
checkGraphArcList(G, 0); |
|
400 |
|
|
401 |
G.build(g, nref, aref); |
|
402 |
|
|
403 |
checkGraphNodeList(G, 0); |
|
404 |
checkGraphArcList(G, 0); |
|
405 |
|
|
406 |
SmartDigraph::Node |
|
407 |
n1 = g.addNode(), |
|
408 |
n2 = g.addNode(), |
|
409 |
n3 = g.addNode(); |
|
410 |
|
|
411 |
G.build(g, nref, aref); |
|
412 |
|
|
413 |
checkGraphNodeList(G, 3); |
|
414 |
checkGraphArcList(G, 0); |
|
415 |
|
|
416 |
SmartDigraph::Arc a1 = g.addArc(n1, n2); |
|
417 |
|
|
418 |
G.build(g, nref, aref); |
|
419 |
|
|
420 |
check(G.source(aref[a1]) == nref[n1] && G.target(aref[a1]) == nref[n2], |
|
421 |
"Wrong arc or wrong references"); |
|
422 |
checkGraphNodeList(G, 3); |
|
423 |
checkGraphArcList(G, 1); |
|
424 |
|
|
425 |
checkGraphOutArcList(G, nref[n1], 1); |
|
426 |
checkGraphOutArcList(G, nref[n2], 0); |
|
427 |
checkGraphOutArcList(G, nref[n3], 0); |
|
428 |
|
|
429 |
checkGraphInArcList(G, nref[n1], 0); |
|
430 |
checkGraphInArcList(G, nref[n2], 1); |
|
431 |
checkGraphInArcList(G, nref[n3], 0); |
|
432 |
|
|
433 |
checkGraphConArcList(G, 1); |
|
434 |
|
|
435 |
SmartDigraph::Arc |
|
436 |
a2 = g.addArc(n2, n1), |
|
437 |
a3 = g.addArc(n2, n3), |
|
438 |
a4 = g.addArc(n2, n3); |
|
439 |
|
|
440 |
digraphCopy(g, G).nodeRef(nref).run(); |
|
441 |
|
|
442 |
checkGraphNodeList(G, 3); |
|
443 |
checkGraphArcList(G, 4); |
|
444 |
|
|
445 |
checkGraphOutArcList(G, nref[n1], 1); |
|
446 |
checkGraphOutArcList(G, nref[n2], 3); |
|
447 |
checkGraphOutArcList(G, nref[n3], 0); |
|
448 |
|
|
449 |
checkGraphInArcList(G, nref[n1], 1); |
|
450 |
checkGraphInArcList(G, nref[n2], 1); |
|
451 |
checkGraphInArcList(G, nref[n3], 2); |
|
452 |
|
|
453 |
checkGraphConArcList(G, 4); |
|
454 |
|
|
455 |
std::vector<std::pair<int,int> > arcs; |
|
456 |
arcs.push_back(std::make_pair(0,1)); |
|
457 |
arcs.push_back(std::make_pair(0,2)); |
|
458 |
arcs.push_back(std::make_pair(1,3)); |
|
459 |
arcs.push_back(std::make_pair(1,2)); |
|
460 |
arcs.push_back(std::make_pair(3,0)); |
|
461 |
arcs.push_back(std::make_pair(3,3)); |
|
462 |
arcs.push_back(std::make_pair(4,2)); |
|
463 |
arcs.push_back(std::make_pair(4,3)); |
|
464 |
arcs.push_back(std::make_pair(4,1)); |
|
465 |
|
|
466 |
G.build(6, arcs.begin(), arcs.end()); |
|
467 |
|
|
468 |
checkGraphNodeList(G, 6); |
|
469 |
checkGraphArcList(G, 9); |
|
470 |
|
|
471 |
checkGraphOutArcList(G, G.node(0), 2); |
|
472 |
checkGraphOutArcList(G, G.node(1), 2); |
|
473 |
checkGraphOutArcList(G, G.node(2), 0); |
|
474 |
checkGraphOutArcList(G, G.node(3), 2); |
|
475 |
checkGraphOutArcList(G, G.node(4), 3); |
|
476 |
checkGraphOutArcList(G, G.node(5), 0); |
|
477 |
|
|
478 |
checkGraphInArcList(G, G.node(0), 1); |
|
479 |
checkGraphInArcList(G, G.node(1), 2); |
|
480 |
checkGraphInArcList(G, G.node(2), 3); |
|
481 |
checkGraphInArcList(G, G.node(3), 3); |
|
482 |
checkGraphInArcList(G, G.node(4), 0); |
|
483 |
checkGraphInArcList(G, G.node(5), 0); |
|
484 |
|
|
485 |
checkGraphConArcList(G, 9); |
|
486 |
|
|
487 |
checkNodeIds(G); |
|
488 |
checkArcIds(G); |
|
489 |
checkGraphNodeMap(G); |
|
490 |
checkGraphArcMap(G); |
|
491 |
|
|
492 |
int n = G.nodeNum(); |
|
493 |
int m = G.arcNum(); |
|
494 |
check(G.index(G.node(n-1)) == n-1, "Wrong index."); |
|
495 |
check(G.index(G.arc(m-1)) == m-1, "Wrong index."); |
|
496 |
} |
|
497 |
|
|
375 | 498 |
void checkFullDigraph(int num) { |
376 | 499 |
typedef FullDigraph Digraph; |
377 | 500 |
DIGRAPH_TYPEDEFS(Digraph); |
501 |
|
|
378 | 502 |
Digraph G(num); |
503 |
check(G.nodeNum() == num && G.arcNum() == num * num, "Wrong size"); |
|
504 |
|
|
505 |
G.resize(num); |
|
506 |
check(G.nodeNum() == num && G.arcNum() == num * num, "Wrong size"); |
|
379 | 507 |
|
380 | 508 |
checkGraphNodeList(G, num); |
381 | 509 |
checkGraphArcList(G, num * num); |
382 | 510 |
|
383 | 511 |
for (NodeIt n(G); n != INVALID; ++n) { |
384 | 512 |
checkGraphOutArcList(G, n, num); |
... | ... |
@@ -416,12 +544,15 @@ |
416 | 544 |
{ // Checking SmartDigraph |
417 | 545 |
checkDigraphBuild<SmartDigraph>(); |
418 | 546 |
checkDigraphSplit<SmartDigraph>(); |
419 | 547 |
checkDigraphSnapshot<SmartDigraph>(); |
420 | 548 |
checkDigraphValidity<SmartDigraph>(); |
421 | 549 |
} |
550 |
{ // Checking StaticDigraph |
|
551 |
checkStaticDigraph(); |
|
552 |
} |
|
422 | 553 |
{ // Checking FullDigraph |
423 | 554 |
checkFullDigraph(8); |
424 | 555 |
} |
425 | 556 |
} |
426 | 557 |
|
427 | 558 |
int main() { |
... | ... |
@@ -35,12 +35,15 @@ |
35 | 35 |
|
36 | 36 |
Graph G; |
37 | 37 |
checkGraphNodeList(G, 0); |
38 | 38 |
checkGraphEdgeList(G, 0); |
39 | 39 |
checkGraphArcList(G, 0); |
40 | 40 |
|
41 |
G.reserveNode(3); |
|
42 |
G.reserveEdge(3); |
|
43 |
|
|
41 | 44 |
Node |
42 | 45 |
n1 = G.addNode(), |
43 | 46 |
n2 = G.addNode(), |
44 | 47 |
n3 = G.addNode(); |
45 | 48 |
checkGraphNodeList(G, 3); |
46 | 49 |
checkGraphEdgeList(G, 0); |
... | ... |
@@ -253,23 +256,39 @@ |
253 | 256 |
G.addNode(); |
254 | 257 |
snapshot.save(G); |
255 | 258 |
|
256 | 259 |
G.addEdge(G.addNode(), G.addNode()); |
257 | 260 |
|
258 | 261 |
snapshot.restore(); |
262 |
snapshot.save(G); |
|
263 |
|
|
264 |
checkGraphNodeList(G, 4); |
|
265 |
checkGraphEdgeList(G, 3); |
|
266 |
checkGraphArcList(G, 6); |
|
267 |
|
|
268 |
G.addEdge(G.addNode(), G.addNode()); |
|
269 |
|
|
270 |
snapshot.restore(); |
|
259 | 271 |
|
260 | 272 |
checkGraphNodeList(G, 4); |
261 | 273 |
checkGraphEdgeList(G, 3); |
262 | 274 |
checkGraphArcList(G, 6); |
263 | 275 |
} |
264 | 276 |
|
265 | 277 |
void checkFullGraph(int num) { |
266 | 278 |
typedef FullGraph Graph; |
267 | 279 |
GRAPH_TYPEDEFS(Graph); |
268 | 280 |
|
269 | 281 |
Graph G(num); |
282 |
check(G.nodeNum() == num && G.edgeNum() == num * (num - 1) / 2, |
|
283 |
"Wrong size"); |
|
284 |
|
|
285 |
G.resize(num); |
|
286 |
check(G.nodeNum() == num && G.edgeNum() == num * (num - 1) / 2, |
|
287 |
"Wrong size"); |
|
288 |
|
|
270 | 289 |
checkGraphNodeList(G, num); |
271 | 290 |
checkGraphEdgeList(G, num * (num - 1) / 2); |
272 | 291 |
|
273 | 292 |
for (NodeIt n(G); n != INVALID; ++n) { |
274 | 293 |
checkGraphOutArcList(G, n, num - 1); |
275 | 294 |
checkGraphInArcList(G, n, num - 1); |
... | ... |
@@ -408,12 +427,16 @@ |
408 | 427 |
GRAPH_TYPEDEFS(Graph); |
409 | 428 |
Graph G(width, height); |
410 | 429 |
|
411 | 430 |
check(G.width() == width, "Wrong column number"); |
412 | 431 |
check(G.height() == height, "Wrong row number"); |
413 | 432 |
|
433 |
G.resize(width, height); |
|
434 |
check(G.width() == width, "Wrong column number"); |
|
435 |
check(G.height() == height, "Wrong row number"); |
|
436 |
|
|
414 | 437 |
for (int i = 0; i < width; ++i) { |
415 | 438 |
for (int j = 0; j < height; ++j) { |
416 | 439 |
check(G.col(G(i, j)) == i, "Wrong column"); |
417 | 440 |
check(G.row(G(i, j)) == j, "Wrong row"); |
418 | 441 |
check(G.pos(G(i, j)).x == i, "Wrong column"); |
419 | 442 |
check(G.pos(G(i, j)).y == j, "Wrong row"); |
... | ... |
@@ -483,12 +506,17 @@ |
483 | 506 |
} |
484 | 507 |
|
485 | 508 |
void checkHypercubeGraph(int dim) { |
486 | 509 |
GRAPH_TYPEDEFS(HypercubeGraph); |
487 | 510 |
|
488 | 511 |
HypercubeGraph G(dim); |
512 |
check(G.dimension() == dim, "Wrong dimension"); |
|
513 |
|
|
514 |
G.resize(dim); |
|
515 |
check(G.dimension() == dim, "Wrong dimension"); |
|
516 |
|
|
489 | 517 |
checkGraphNodeList(G, 1 << dim); |
490 | 518 |
checkGraphEdgeList(G, dim * (1 << (dim-1))); |
491 | 519 |
checkGraphArcList(G, dim * (1 << dim)); |
492 | 520 |
|
493 | 521 |
Node n = G.nodeFromId(dim); |
494 | 522 |
... | ... |
@@ -19,27 +19,44 @@ |
19 | 19 |
#include <deque> |
20 | 20 |
#include <set> |
21 | 21 |
|
22 | 22 |
#include <lemon/concept_check.h> |
23 | 23 |
#include <lemon/concepts/maps.h> |
24 | 24 |
#include <lemon/maps.h> |
25 |
#include <lemon/list_graph.h> |
|
25 | 26 |
#include <lemon/smart_graph.h> |
27 |
#include <lemon/adaptors.h> |
|
28 |
#include <lemon/dfs.h> |
|
29 |
#include <algorithm> |
|
26 | 30 |
|
27 | 31 |
#include "test_tools.h" |
28 | 32 |
|
29 | 33 |
using namespace lemon; |
30 | 34 |
using namespace lemon::concepts; |
31 | 35 |
|
32 | 36 |
struct A {}; |
33 | 37 |
inline bool operator<(A, A) { return true; } |
34 | 38 |
struct B {}; |
35 | 39 |
|
36 | 40 |
class C { |
37 |
int |
|
41 |
int _x; |
|
38 | 42 |
public: |
39 |
C(int |
|
43 |
C(int x) : _x(x) {} |
|
44 |
int get() const { return _x; } |
|
45 |
}; |
|
46 |
inline bool operator<(C c1, C c2) { return c1.get() < c2.get(); } |
|
47 |
inline bool operator==(C c1, C c2) { return c1.get() == c2.get(); } |
|
48 |
|
|
49 |
C createC(int x) { return C(x); } |
|
50 |
|
|
51 |
template <typename T> |
|
52 |
class Less { |
|
53 |
T _t; |
|
54 |
public: |
|
55 |
Less(T t): _t(t) {} |
|
56 |
bool operator()(const T& t) const { return t < _t; } |
|
40 | 57 |
}; |
41 | 58 |
|
42 | 59 |
class F { |
43 | 60 |
public: |
44 | 61 |
typedef A argument_type; |
45 | 62 |
typedef B result_type; |
... | ... |
@@ -50,12 +67,20 @@ |
50 | 67 |
}; |
51 | 68 |
|
52 | 69 |
int func(A) { return 3; } |
53 | 70 |
|
54 | 71 |
int binc(int a, B) { return a+1; } |
55 | 72 |
|
73 |
template <typename T> |
|
74 |
class Sum { |
|
75 |
T& _sum; |
|
76 |
public: |
|
77 |
Sum(T& sum) : _sum(sum) {} |
|
78 |
void operator()(const T& t) { _sum += t; } |
|
79 |
}; |
|
80 |
|
|
56 | 81 |
typedef ReadMap<A, double> DoubleMap; |
57 | 82 |
typedef ReadWriteMap<A, double> DoubleWriteMap; |
58 | 83 |
typedef ReferenceMap<A, double, double&, const double&> DoubleRefMap; |
59 | 84 |
|
60 | 85 |
typedef ReadMap<A, bool> BoolMap; |
61 | 86 |
typedef ReadWriteMap<A, bool> BoolWriteMap; |
... | ... |
@@ -326,12 +351,16 @@ |
326 | 351 |
"Something is wrong with EqualMap"); |
327 | 352 |
} |
328 | 353 |
|
329 | 354 |
// LoggerBoolMap |
330 | 355 |
{ |
331 | 356 |
typedef std::vector<int> vec; |
357 |
checkConcept<WriteMap<int, bool>, LoggerBoolMap<vec::iterator> >(); |
|
358 |
checkConcept<WriteMap<int, bool>, |
|
359 |
LoggerBoolMap<std::back_insert_iterator<vec> > >(); |
|
360 |
|
|
332 | 361 |
vec v1; |
333 | 362 |
vec v2(10); |
334 | 363 |
LoggerBoolMap<std::back_insert_iterator<vec> > |
335 | 364 |
map1(std::back_inserter(v1)); |
336 | 365 |
LoggerBoolMap<vec::iterator> map2(v2.begin()); |
337 | 366 |
map1.set(10, false); |
... | ... |
@@ -345,12 +374,229 @@ |
345 | 374 |
"Something is wrong with LoggerBoolMap"); |
346 | 375 |
|
347 | 376 |
int i = 0; |
348 | 377 |
for ( LoggerBoolMap<vec::iterator>::Iterator it = map2.begin(); |
349 | 378 |
it != map2.end(); ++it ) |
350 | 379 |
check(v1[i++] == *it, "Something is wrong with LoggerBoolMap"); |
380 |
|
|
381 |
typedef ListDigraph Graph; |
|
382 |
DIGRAPH_TYPEDEFS(Graph); |
|
383 |
Graph gr; |
|
384 |
|
|
385 |
Node n0 = gr.addNode(); |
|
386 |
Node n1 = gr.addNode(); |
|
387 |
Node n2 = gr.addNode(); |
|
388 |
Node n3 = gr.addNode(); |
|
389 |
|
|
390 |
gr.addArc(n3, n0); |
|
391 |
gr.addArc(n3, n2); |
|
392 |
gr.addArc(n0, n2); |
|
393 |
gr.addArc(n2, n1); |
|
394 |
gr.addArc(n0, n1); |
|
395 |
|
|
396 |
{ |
|
397 |
std::vector<Node> v; |
|
398 |
dfs(gr).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
|
399 |
|
|
400 |
check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3, |
|
401 |
"Something is wrong with LoggerBoolMap"); |
|
402 |
} |
|
403 |
{ |
|
404 |
std::vector<Node> v(countNodes(gr)); |
|
405 |
dfs(gr).processedMap(loggerBoolMap(v.begin())).run(); |
|
406 |
|
|
407 |
check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3, |
|
408 |
"Something is wrong with LoggerBoolMap"); |
|
409 |
} |
|
410 |
} |
|
411 |
|
|
412 |
// IdMap, RangeIdMap |
|
413 |
{ |
|
414 |
typedef ListDigraph Graph; |
|
415 |
DIGRAPH_TYPEDEFS(Graph); |
|
416 |
|
|
417 |
checkConcept<ReadMap<Node, int>, IdMap<Graph, Node> >(); |
|
418 |
checkConcept<ReadMap<Arc, int>, IdMap<Graph, Arc> >(); |
|
419 |
checkConcept<ReadMap<Node, int>, RangeIdMap<Graph, Node> >(); |
|
420 |
checkConcept<ReadMap<Arc, int>, RangeIdMap<Graph, Arc> >(); |
|
421 |
|
|
422 |
Graph gr; |
|
423 |
IdMap<Graph, Node> nmap(gr); |
|
424 |
IdMap<Graph, Arc> amap(gr); |
|
425 |
RangeIdMap<Graph, Node> nrmap(gr); |
|
426 |
RangeIdMap<Graph, Arc> armap(gr); |
|
427 |
|
|
428 |
Node n0 = gr.addNode(); |
|
429 |
Node n1 = gr.addNode(); |
|
430 |
Node n2 = gr.addNode(); |
|
431 |
|
|
432 |
Arc a0 = gr.addArc(n0, n1); |
|
433 |
Arc a1 = gr.addArc(n0, n2); |
|
434 |
Arc a2 = gr.addArc(n2, n1); |
|
435 |
Arc a3 = gr.addArc(n2, n0); |
|
436 |
|
|
437 |
check(nmap[n0] == gr.id(n0) && nmap(gr.id(n0)) == n0, "Wrong IdMap"); |
|
438 |
check(nmap[n1] == gr.id(n1) && nmap(gr.id(n1)) == n1, "Wrong IdMap"); |
|
439 |
check(nmap[n2] == gr.id(n2) && nmap(gr.id(n2)) == n2, "Wrong IdMap"); |
|
440 |
|
|
441 |
check(amap[a0] == gr.id(a0) && amap(gr.id(a0)) == a0, "Wrong IdMap"); |
|
442 |
check(amap[a1] == gr.id(a1) && amap(gr.id(a1)) == a1, "Wrong IdMap"); |
|
443 |
check(amap[a2] == gr.id(a2) && amap(gr.id(a2)) == a2, "Wrong IdMap"); |
|
444 |
check(amap[a3] == gr.id(a3) && amap(gr.id(a3)) == a3, "Wrong IdMap"); |
|
445 |
|
|
446 |
check(nmap.inverse()[gr.id(n0)] == n0, "Wrong IdMap::InverseMap"); |
|
447 |
check(amap.inverse()[gr.id(a0)] == a0, "Wrong IdMap::InverseMap"); |
|
448 |
|
|
449 |
check(nrmap.size() == 3 && armap.size() == 4, |
|
450 |
"Wrong RangeIdMap::size()"); |
|
451 |
|
|
452 |
check(nrmap[n0] == 0 && nrmap(0) == n0, "Wrong RangeIdMap"); |
|
453 |
check(nrmap[n1] == 1 && nrmap(1) == n1, "Wrong RangeIdMap"); |
|
454 |
check(nrmap[n2] == 2 && nrmap(2) == n2, "Wrong RangeIdMap"); |
|
455 |
|
|
456 |
check(armap[a0] == 0 && armap(0) == a0, "Wrong RangeIdMap"); |
|
457 |
check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap"); |
|
458 |
check(armap[a2] == 2 && armap(2) == a2, "Wrong RangeIdMap"); |
|
459 |
check(armap[a3] == 3 && armap(3) == a3, "Wrong RangeIdMap"); |
|
460 |
|
|
461 |
check(nrmap.inverse()[0] == n0, "Wrong RangeIdMap::InverseMap"); |
|
462 |
check(armap.inverse()[0] == a0, "Wrong RangeIdMap::InverseMap"); |
|
463 |
|
|
464 |
gr.erase(n1); |
|
465 |
|
|
466 |
if (nrmap[n0] == 1) nrmap.swap(n0, n2); |
|
467 |
nrmap.swap(n2, n0); |
|
468 |
if (armap[a1] == 1) armap.swap(a1, a3); |
|
469 |
armap.swap(a3, a1); |
|
470 |
|
|
471 |
check(nrmap.size() == 2 && armap.size() == 2, |
|
472 |
"Wrong RangeIdMap::size()"); |
|
473 |
|
|
474 |
check(nrmap[n0] == 1 && nrmap(1) == n0, "Wrong RangeIdMap"); |
|
475 |
check(nrmap[n2] == 0 && nrmap(0) == n2, "Wrong RangeIdMap"); |
|
476 |
|
|
477 |
check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap"); |
|
478 |
check(armap[a3] == 0 && armap(0) == a3, "Wrong RangeIdMap"); |
|
479 |
|
|
480 |
check(nrmap.inverse()[0] == n2, "Wrong RangeIdMap::InverseMap"); |
|
481 |
check(armap.inverse()[0] == a3, "Wrong RangeIdMap::InverseMap"); |
|
482 |
} |
|
483 |
|
|
484 |
// SourceMap, TargetMap, ForwardMap, BackwardMap, InDegMap, OutDegMap |
|
485 |
{ |
|
486 |
typedef ListGraph Graph; |
|
487 |
GRAPH_TYPEDEFS(Graph); |
|
488 |
|
|
489 |
checkConcept<ReadMap<Arc, Node>, SourceMap<Graph> >(); |
|
490 |
checkConcept<ReadMap<Arc, Node>, TargetMap<Graph> >(); |
|
491 |
checkConcept<ReadMap<Edge, Arc>, ForwardMap<Graph> >(); |
|
492 |
checkConcept<ReadMap<Edge, Arc>, BackwardMap<Graph> >(); |
|
493 |
checkConcept<ReadMap<Node, int>, InDegMap<Graph> >(); |
|
494 |
checkConcept<ReadMap<Node, int>, OutDegMap<Graph> >(); |
|
495 |
|
|
496 |
Graph gr; |
|
497 |
Node n0 = gr.addNode(); |
|
498 |
Node n1 = gr.addNode(); |
|
499 |
Node n2 = gr.addNode(); |
|
500 |
|
|
501 |
gr.addEdge(n0,n1); |
|
502 |
gr.addEdge(n1,n2); |
|
503 |
gr.addEdge(n0,n2); |
|
504 |
gr.addEdge(n2,n1); |
|
505 |
gr.addEdge(n1,n2); |
|
506 |
gr.addEdge(n0,n1); |
|
507 |
|
|
508 |
for (EdgeIt e(gr); e != INVALID; ++e) { |
|
509 |
check(forwardMap(gr)[e] == gr.direct(e, true), "Wrong ForwardMap"); |
|
510 |
check(backwardMap(gr)[e] == gr.direct(e, false), "Wrong BackwardMap"); |
|
511 |
} |
|
512 |
|
|
513 |
check(mapCompare(gr, |
|
514 |
sourceMap(orienter(gr, constMap<Edge, bool>(true))), |
|
515 |
targetMap(orienter(gr, constMap<Edge, bool>(false)))), |
|
516 |
"Wrong SourceMap or TargetMap"); |
|
517 |
|
|
518 |
typedef Orienter<Graph, const ConstMap<Edge, bool> > Digraph; |
|
519 |
Digraph dgr(gr, constMap<Edge, bool>(true)); |
|
520 |
OutDegMap<Digraph> odm(dgr); |
|
521 |
InDegMap<Digraph> idm(dgr); |
|
522 |
|
|
523 |
check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 1, "Wrong OutDegMap"); |
|
524 |
check(idm[n0] == 0 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap"); |
|
525 |
|
|
526 |
gr.addEdge(n2, n0); |
|
527 |
|
|
528 |
check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 2, "Wrong OutDegMap"); |
|
529 |
check(idm[n0] == 1 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap"); |
|
530 |
} |
|
531 |
|
|
532 |
// CrossRefMap |
|
533 |
{ |
|
534 |
typedef ListDigraph Graph; |
|
535 |
DIGRAPH_TYPEDEFS(Graph); |
|
536 |
|
|
537 |
checkConcept<ReadWriteMap<Node, int>, |
|
538 |
CrossRefMap<Graph, Node, int> >(); |
|
539 |
checkConcept<ReadWriteMap<Node, bool>, |
|
540 |
CrossRefMap<Graph, Node, bool> >(); |
|
541 |
checkConcept<ReadWriteMap<Node, double>, |
|
542 |
CrossRefMap<Graph, Node, double> >(); |
|
543 |
|
|
544 |
Graph gr; |
|
545 |
typedef CrossRefMap<Graph, Node, char> CRMap; |
|
546 |
CRMap map(gr); |
|
547 |
|
|
548 |
Node n0 = gr.addNode(); |
|
549 |
Node n1 = gr.addNode(); |
|
550 |
Node n2 = gr.addNode(); |
|
551 |
|
|
552 |
map.set(n0, 'A'); |
|
553 |
map.set(n1, 'B'); |
|
554 |
map.set(n2, 'C'); |
|
555 |
|
|
556 |
check(map[n0] == 'A' && map('A') == n0 && map.inverse()['A'] == n0, |
|
557 |
"Wrong CrossRefMap"); |
|
558 |
check(map[n1] == 'B' && map('B') == n1 && map.inverse()['B'] == n1, |
|
559 |
"Wrong CrossRefMap"); |
|
560 |
check(map[n2] == 'C' && map('C') == n2 && map.inverse()['C'] == n2, |
|
561 |
"Wrong CrossRefMap"); |
|
562 |
check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1, |
|
563 |
"Wrong CrossRefMap::count()"); |
|
564 |
|
|
565 |
CRMap::ValueIt it = map.beginValue(); |
|
566 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
|
567 |
it == map.endValue(), "Wrong value iterator"); |
|
568 |
|
|
569 |
map.set(n2, 'A'); |
|
570 |
|
|
571 |
check(map[n0] == 'A' && map[n1] == 'B' && map[n2] == 'A', |
|
572 |
"Wrong CrossRefMap"); |
|
573 |
check(map('A') == n0 && map.inverse()['A'] == n0, "Wrong CrossRefMap"); |
|
574 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap"); |
|
575 |
check(map('C') == INVALID && map.inverse()['C'] == INVALID, |
|
576 |
"Wrong CrossRefMap"); |
|
577 |
check(map.count('A') == 2 && map.count('B') == 1 && map.count('C') == 0, |
|
578 |
"Wrong CrossRefMap::count()"); |
|
579 |
|
|
580 |
it = map.beginValue(); |
|
581 |
check(*it++ == 'A' && *it++ == 'A' && *it++ == 'B' && |
|
582 |
it == map.endValue(), "Wrong value iterator"); |
|
583 |
|
|
584 |
map.set(n0, 'C'); |
|
585 |
|
|
586 |
check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A', |
|
587 |
"Wrong CrossRefMap"); |
|
588 |
check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap"); |
|
589 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap"); |
|
590 |
check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap"); |
|
591 |
check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1, |
|
592 |
"Wrong CrossRefMap::count()"); |
|
593 |
|
|
594 |
it = map.beginValue(); |
|
595 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
|
596 |
it == map.endValue(), "Wrong value iterator"); |
|
351 | 597 |
} |
352 | 598 |
|
353 | 599 |
// CrossRefMap |
354 | 600 |
{ |
355 | 601 |
typedef SmartDigraph Graph; |
356 | 602 |
DIGRAPH_TYPEDEFS(Graph); |
... | ... |
@@ -543,16 +789,16 @@ |
543 | 789 |
Ivm::ItemIt it(map1, static_cast<double>(i)); |
544 | 790 |
check(static_cast<Item>(it) == items[i], "Wrong value"); |
545 | 791 |
++it; |
546 | 792 |
check(static_cast<Item>(it) == INVALID, "Wrong value"); |
547 | 793 |
} |
548 | 794 |
|
549 |
for (Ivm:: |
|
795 |
for (Ivm::ValueIt vit = map1.beginValue(); |
|
550 | 796 |
vit != map1.endValue(); ++vit) { |
551 | 797 |
check(map1[static_cast<Item>(Ivm::ItemIt(map1, *vit))] == *vit, |
552 |
"Wrong |
|
798 |
"Wrong ValueIt"); |
|
553 | 799 |
} |
554 | 800 |
|
555 | 801 |
for (int i = 0; i < num; ++i) { |
556 | 802 |
map1.set(items[i], static_cast<double>(i % 2)); |
557 | 803 |
} |
558 | 804 |
check(distance(map1.beginValue(), map1.endValue()) == 2, "Wrong size"); |
... | ... |
@@ -568,8 +814,186 @@ |
568 | 814 |
check(map1[static_cast<Item>(it)] == 1.0, "Wrong value"); |
569 | 815 |
++n; |
570 | 816 |
} |
571 | 817 |
check(n == num, "Wrong number"); |
572 | 818 |
|
573 | 819 |
} |
820 |
|
|
821 |
// Graph map utilities: |
|
822 |
// mapMin(), mapMax(), mapMinValue(), mapMaxValue() |
|
823 |
// mapFind(), mapFindIf(), mapCount(), mapCountIf() |
|
824 |
// mapCopy(), mapCompare(), mapFill() |
|
825 |
{ |
|
826 |
DIGRAPH_TYPEDEFS(SmartDigraph); |
|
827 |
|
|
828 |
SmartDigraph g; |
|
829 |
Node n1 = g.addNode(); |
|
830 |
Node n2 = g.addNode(); |
|
831 |
Node n3 = g.addNode(); |
|
832 |
|
|
833 |
SmartDigraph::NodeMap<int> map1(g); |
|
834 |
SmartDigraph::ArcMap<char> map2(g); |
|
835 |
ConstMap<Node, A> cmap1 = A(); |
|
836 |
ConstMap<Arc, C> cmap2 = C(0); |
|
837 |
|
|
838 |
map1[n1] = 10; |
|
839 |
map1[n2] = 5; |
|
840 |
map1[n3] = 12; |
|
841 |
|
|
842 |
// mapMin(), mapMax(), mapMinValue(), mapMaxValue() |
|
843 |
check(mapMin(g, map1) == n2, "Wrong mapMin()"); |
|
844 |
check(mapMax(g, map1) == n3, "Wrong mapMax()"); |
|
845 |
check(mapMin(g, map1, std::greater<int>()) == n3, "Wrong mapMin()"); |
|
846 |
check(mapMax(g, map1, std::greater<int>()) == n2, "Wrong mapMax()"); |
|
847 |
check(mapMinValue(g, map1) == 5, "Wrong mapMinValue()"); |
|
848 |
check(mapMaxValue(g, map1) == 12, "Wrong mapMaxValue()"); |
|
849 |
|
|
850 |
check(mapMin(g, map2) == INVALID, "Wrong mapMin()"); |
|
851 |
check(mapMax(g, map2) == INVALID, "Wrong mapMax()"); |
|
852 |
|
|
853 |
check(mapMin(g, cmap1) != INVALID, "Wrong mapMin()"); |
|
854 |
check(mapMax(g, cmap2) == INVALID, "Wrong mapMax()"); |
|
855 |
|
|
856 |
Arc a1 = g.addArc(n1, n2); |
|
857 |
Arc a2 = g.addArc(n1, n3); |
|
858 |
Arc a3 = g.addArc(n2, n3); |
|
859 |
Arc a4 = g.addArc(n3, n1); |
|
860 |
|
|
861 |
map2[a1] = 'b'; |
|
862 |
map2[a2] = 'a'; |
|
863 |
map2[a3] = 'b'; |
|
864 |
map2[a4] = 'c'; |
|
865 |
|
|
866 |
// mapMin(), mapMax(), mapMinValue(), mapMaxValue() |
|
867 |
check(mapMin(g, map2) == a2, "Wrong mapMin()"); |
|
868 |
check(mapMax(g, map2) == a4, "Wrong mapMax()"); |
|
869 |
check(mapMin(g, map2, std::greater<int>()) == a4, "Wrong mapMin()"); |
|
870 |
check(mapMax(g, map2, std::greater<int>()) == a2, "Wrong mapMax()"); |
|
871 |
check(mapMinValue(g, map2, std::greater<int>()) == 'c', |
|
872 |
"Wrong mapMinValue()"); |
|
873 |
check(mapMaxValue(g, map2, std::greater<int>()) == 'a', |
|
874 |
"Wrong mapMaxValue()"); |
|
875 |
|
|
876 |
check(mapMin(g, cmap1) != INVALID, "Wrong mapMin()"); |
|
877 |
check(mapMax(g, cmap2) != INVALID, "Wrong mapMax()"); |
|
878 |
check(mapMaxValue(g, cmap2) == C(0), "Wrong mapMaxValue()"); |
|
879 |
|
|
880 |
check(mapMin(g, composeMap(functorToMap(&createC), map2)) == a2, |
|
881 |
"Wrong mapMin()"); |
|
882 |
check(mapMax(g, composeMap(functorToMap(&createC), map2)) == a4, |
|
883 |
"Wrong mapMax()"); |
|
884 |
check(mapMinValue(g, composeMap(functorToMap(&createC), map2)) == C('a'), |
|
885 |
"Wrong mapMinValue()"); |
|
886 |
check(mapMaxValue(g, composeMap(functorToMap(&createC), map2)) == C('c'), |
|
887 |
"Wrong mapMaxValue()"); |
|
888 |
|
|
889 |
// mapFind(), mapFindIf() |
|
890 |
check(mapFind(g, map1, 5) == n2, "Wrong mapFind()"); |
|
891 |
check(mapFind(g, map1, 6) == INVALID, "Wrong mapFind()"); |
|
892 |
check(mapFind(g, map2, 'a') == a2, "Wrong mapFind()"); |
|
893 |
check(mapFind(g, map2, 'e') == INVALID, "Wrong mapFind()"); |
|
894 |
check(mapFind(g, cmap2, C(0)) == ArcIt(g), "Wrong mapFind()"); |
|
895 |
check(mapFind(g, cmap2, C(1)) == INVALID, "Wrong mapFind()"); |
|
896 |
|
|
897 |
check(mapFindIf(g, map1, Less<int>(7)) == n2, |
|
898 |
"Wrong mapFindIf()"); |
|
899 |
check(mapFindIf(g, map1, Less<int>(5)) == INVALID, |
|
900 |
"Wrong mapFindIf()"); |
|
901 |
check(mapFindIf(g, map2, Less<char>('d')) == ArcIt(g), |
|
902 |
"Wrong mapFindIf()"); |
|
903 |
check(mapFindIf(g, map2, Less<char>('a')) == INVALID, |
|
904 |
"Wrong mapFindIf()"); |
|
905 |
|
|
906 |
// mapCount(), mapCountIf() |
|
907 |
check(mapCount(g, map1, 5) == 1, "Wrong mapCount()"); |
|
908 |
check(mapCount(g, map1, 6) == 0, "Wrong mapCount()"); |
|
909 |
check(mapCount(g, map2, 'a') == 1, "Wrong mapCount()"); |
|
910 |
check(mapCount(g, map2, 'b') == 2, "Wrong mapCount()"); |
|
911 |
check(mapCount(g, map2, 'e') == 0, "Wrong mapCount()"); |
|
912 |
check(mapCount(g, cmap2, C(0)) == 4, "Wrong mapCount()"); |
|
913 |
check(mapCount(g, cmap2, C(1)) == 0, "Wrong mapCount()"); |
|
914 |
|
|
915 |
check(mapCountIf(g, map1, Less<int>(11)) == 2, |
|
916 |
"Wrong mapCountIf()"); |
|
917 |
check(mapCountIf(g, map1, Less<int>(13)) == 3, |
|
918 |
"Wrong mapCountIf()"); |
|
919 |
check(mapCountIf(g, map1, Less<int>(5)) == 0, |
|
920 |
"Wrong mapCountIf()"); |
|
921 |
check(mapCountIf(g, map2, Less<char>('d')) == 4, |
|
922 |
"Wrong mapCountIf()"); |
|
923 |
check(mapCountIf(g, map2, Less<char>('c')) == 3, |
|
924 |
"Wrong mapCountIf()"); |
|
925 |
check(mapCountIf(g, map2, Less<char>('a')) == 0, |
|
926 |
"Wrong mapCountIf()"); |
|
927 |
|
|
928 |
// MapIt, ConstMapIt |
|
929 |
/* |
|
930 |
These tests can be used after applying bugfix #330 |
|
931 |
typedef SmartDigraph::NodeMap<int>::MapIt MapIt; |
|
932 |
typedef SmartDigraph::NodeMap<int>::ConstMapIt ConstMapIt; |
|
933 |
check(*std::min_element(MapIt(map1), MapIt(INVALID)) == 5, |
|
934 |
"Wrong NodeMap<>::MapIt"); |
|
935 |
check(*std::max_element(ConstMapIt(map1), ConstMapIt(INVALID)) == 12, |
|
936 |
"Wrong NodeMap<>::MapIt"); |
|
937 |
|
|
938 |
int sum = 0; |
|
939 |
std::for_each(MapIt(map1), MapIt(INVALID), Sum<int>(sum)); |
|
940 |
check(sum == 27, "Wrong NodeMap<>::MapIt"); |
|
941 |
std::for_each(ConstMapIt(map1), ConstMapIt(INVALID), Sum<int>(sum)); |
|
942 |
check(sum == 54, "Wrong NodeMap<>::ConstMapIt"); |
|
943 |
*/ |
|
944 |
|
|
945 |
// mapCopy(), mapCompare(), mapFill() |
|
946 |
check(mapCompare(g, map1, map1), "Wrong mapCompare()"); |
|
947 |
check(mapCompare(g, cmap2, cmap2), "Wrong mapCompare()"); |
|
948 |
check(mapCompare(g, map1, shiftMap(map1, 0)), "Wrong mapCompare()"); |
|
949 |
check(mapCompare(g, map2, scaleMap(map2, 1)), "Wrong mapCompare()"); |
|
950 |
check(!mapCompare(g, map1, shiftMap(map1, 1)), "Wrong mapCompare()"); |
|
951 |
|
|
952 |
SmartDigraph::NodeMap<int> map3(g, 0); |
|
953 |
SmartDigraph::ArcMap<char> map4(g, 'a'); |
|
954 |
|
|
955 |
check(!mapCompare(g, map1, map3), "Wrong mapCompare()"); |
|
956 |
check(!mapCompare(g, map2, map4), "Wrong mapCompare()"); |
|
957 |
|
|
958 |
mapCopy(g, map1, map3); |
|
959 |
mapCopy(g, map2, map4); |
|
960 |
|
|
961 |
check(mapCompare(g, map1, map3), "Wrong mapCompare() or mapCopy()"); |
|
962 |
check(mapCompare(g, map2, map4), "Wrong mapCompare() or mapCopy()"); |
|
963 |
|
|
964 |
Undirector<SmartDigraph> ug(g); |
|
965 |
Undirector<SmartDigraph>::EdgeMap<char> umap1(ug, 'x'); |
|
966 |
Undirector<SmartDigraph>::ArcMap<double> umap2(ug, 3.14); |
|
967 |
|
|
968 |
check(!mapCompare(g, map2, umap1), "Wrong mapCompare() or mapCopy()"); |
|
969 |
check(!mapCompare(g, umap1, map2), "Wrong mapCompare() or mapCopy()"); |
|
970 |
check(!mapCompare(ug, map2, umap1), "Wrong mapCompare() or mapCopy()"); |
|
971 |
check(!mapCompare(ug, umap1, map2), "Wrong mapCompare() or mapCopy()"); |
|
972 |
|
|
973 |
mapCopy(g, map2, umap1); |
|
974 |
|
|
975 |
check(mapCompare(g, map2, umap1), "Wrong mapCompare() or mapCopy()"); |
|
976 |
check(mapCompare(g, umap1, map2), "Wrong mapCompare() or mapCopy()"); |
|
977 |
check(mapCompare(ug, map2, umap1), "Wrong mapCompare() or mapCopy()"); |
|
978 |
check(mapCompare(ug, umap1, map2), "Wrong mapCompare() or mapCopy()"); |
|
979 |
|
|
980 |
mapCopy(g, map2, umap1); |
|
981 |
mapCopy(g, umap1, map2); |
|
982 |
mapCopy(ug, map2, umap1); |
|
983 |
mapCopy(ug, umap1, map2); |
|
984 |
|
|
985 |
check(!mapCompare(ug, umap1, umap2), "Wrong mapCompare() or mapCopy()"); |
|
986 |
mapCopy(ug, umap1, umap2); |
|
987 |
check(mapCompare(ug, umap1, umap2), "Wrong mapCompare() or mapCopy()"); |
|
988 |
|
|
989 |
check(!mapCompare(g, map1, constMap<Node>(2)), "Wrong mapCompare()"); |
|
990 |
mapFill(g, map1, 2); |
|
991 |
check(mapCompare(g, constMap<Node>(2), map1), "Wrong mapFill()"); |
|
992 |
|
|
993 |
check(!mapCompare(g, map2, constMap<Arc>('z')), "Wrong mapCompare()"); |
|
994 |
mapCopy(g, constMap<Arc>('z'), map2); |
|
995 |
check(mapCompare(g, constMap<Arc>('z'), map2), "Wrong mapCopy()"); |
|
996 |
} |
|
997 |
|
|
574 | 998 |
return 0; |
575 | 999 |
} |
... | ... |
@@ -47,13 +47,14 @@ |
47 | 47 |
|
48 | 48 |
// itoa(stat,buf1, 10); |
49 | 49 |
check(mip.type()==stat, buf.str()); |
50 | 50 |
|
51 | 51 |
if (stat == MipSolver::OPTIMAL) { |
52 | 52 |
std::ostringstream sbuf; |
53 |
|
|
53 |
sbuf << "Wrong optimal value ("<< mip.solValue() |
|
54 |
<<" instead of " << exp_opt << ")"; |
|
54 | 55 |
check(std::abs(mip.solValue()-exp_opt) < 1e-3, sbuf.str()); |
55 | 56 |
//+ecvt(exp_opt,2) |
56 | 57 |
} |
57 | 58 |
} |
58 | 59 |
|
59 | 60 |
void aTest(MipSolver& mip) |
... | ... |
@@ -34,13 +34,17 @@ |
34 | 34 |
///using good source browsers like e.g. \c emacs. |
35 | 35 |
/// |
36 | 36 |
///For example |
37 | 37 |
///\code check(0==1,"This is obviously false.");\endcode will |
38 | 38 |
///print something like this (and then exits). |
39 | 39 |
///\verbatim file_name.cc:123: error: This is obviously false. \endverbatim |
40 |
#define check(rc, msg) \ |
|
41 |
if(!(rc)) { \ |
|
42 |
std::cerr << __FILE__ ":" << __LINE__ << ": error: " << msg << std::endl; \ |
|
43 |
abort(); \ |
|
44 |
|
|
40 |
#define check(rc, msg) \ |
|
41 |
{ \ |
|
42 |
if(!(rc)) { \ |
|
43 |
std::cerr << __FILE__ ":" << __LINE__ << ": error: " \ |
|
44 |
<< msg << std::endl; \ |
|
45 |
abort(); \ |
|
46 |
} else { } \ |
|
47 |
} \ |
|
48 |
|
|
45 | 49 |
|
46 | 50 |
#endif |
0 comments (0 inline)