0
4
0
10
10
203
244
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
|
21 | 21 |
/** |
22 | 22 |
@defgroup datas Data Structures |
23 | 23 |
This group contains the several data structures implemented in LEMON. |
24 | 24 |
*/ |
25 | 25 |
|
26 | 26 |
/** |
27 | 27 |
@defgroup graphs Graph Structures |
28 | 28 |
@ingroup datas |
29 | 29 |
\brief Graph structures implemented in LEMON. |
30 | 30 |
|
31 | 31 |
The implementation of combinatorial algorithms heavily relies on |
32 | 32 |
efficient graph implementations. LEMON offers data structures which are |
33 | 33 |
planned to be easily used in an experimental phase of implementation studies, |
34 | 34 |
and thereafter the program code can be made efficient by small modifications. |
35 | 35 |
|
36 | 36 |
The most efficient implementation of diverse applications require the |
37 | 37 |
usage of different physical graph implementations. These differences |
38 | 38 |
appear in the size of graph we require to handle, memory or time usage |
39 | 39 |
limitations or in the set of operations through which the graph can be |
40 | 40 |
accessed. LEMON provides several physical graph structures to meet |
41 | 41 |
the diverging requirements of the possible users. In order to save on |
42 | 42 |
running time or on memory usage, some structures may fail to provide |
43 | 43 |
some graph features like arc/edge or node deletion. |
44 | 44 |
|
45 | 45 |
Alteration of standard containers need a very limited number of |
46 | 46 |
operations, these together satisfy the everyday requirements. |
47 | 47 |
In the case of graph structures, different operations are needed which do |
48 | 48 |
not alter the physical graph, but gives another view. If some nodes or |
49 | 49 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
50 | 50 |
this is the case. It also may happen that in a flow implementation |
51 | 51 |
the residual graph can be accessed by another algorithm, or a node-set |
52 | 52 |
is to be shrunk for another algorithm. |
53 | 53 |
LEMON also provides a variety of graphs for these requirements called |
54 | 54 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
55 | 55 |
in conjunction with other graph representations. |
56 | 56 |
|
57 | 57 |
You are free to use the graph structure that fit your requirements |
58 | 58 |
the best, most graph algorithms and auxiliary data structures can be used |
59 | 59 |
with any graph structure. |
60 | 60 |
|
61 | 61 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
62 | 62 |
*/ |
63 | 63 |
|
64 | 64 |
/** |
65 | 65 |
@defgroup graph_adaptors Adaptor Classes for Graphs |
66 | 66 |
@ingroup graphs |
67 | 67 |
\brief Adaptor classes for digraphs and graphs |
68 | 68 |
|
69 | 69 |
This group contains several useful adaptor classes for digraphs and graphs. |
70 | 70 |
|
71 | 71 |
The main parts of LEMON are the different graph structures, generic |
72 | 72 |
graph algorithms, graph concepts, which couple them, and graph |
73 | 73 |
adaptors. While the previous notions are more or less clear, the |
74 | 74 |
latter one needs further explanation. Graph adaptors are graph classes |
75 | 75 |
which serve for considering graph structures in different ways. |
76 | 76 |
|
77 | 77 |
A short example makes this much clearer. Suppose that we have an |
78 | 78 |
instance \c g of a directed graph type, say ListDigraph and an algorithm |
79 | 79 |
\code |
80 | 80 |
template <typename Digraph> |
81 | 81 |
int algorithm(const Digraph&); |
82 | 82 |
\endcode |
83 | 83 |
is needed to run on the reverse oriented graph. It may be expensive |
84 | 84 |
(in time or in memory usage) to copy \c g with the reversed |
85 | 85 |
arcs. In this case, an adaptor class is used, which (according |
86 | 86 |
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph. |
87 | 87 |
The adaptor uses the original digraph structure and digraph operations when |
88 | 88 |
methods of the reversed oriented graph are called. This means that the adaptor |
89 | 89 |
have minor memory usage, and do not perform sophisticated algorithmic |
90 | 90 |
actions. The purpose of it is to give a tool for the cases when a |
91 | 91 |
graph have to be used in a specific alteration. If this alteration is |
92 | 92 |
obtained by a usual construction like filtering the node or the arc set or |
93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
94 | 94 |
To come back to the reverse oriented graph, in this situation |
95 | 95 |
\code |
96 | 96 |
template<typename Digraph> class ReverseDigraph; |
97 | 97 |
\endcode |
98 | 98 |
template class can be used. The code looks as follows |
99 | 99 |
\code |
100 | 100 |
ListDigraph g; |
101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
102 | 102 |
int result = algorithm(rg); |
103 | 103 |
\endcode |
104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
105 | 105 |
This techniques give rise to an elegant code, and based on stable |
106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
107 | 107 |
|
108 | 108 |
In flow, circulation and matching problems, the residual |
109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
112 | 112 |
obtained. For other examples, the interested user is referred to the |
113 | 113 |
detailed documentation of particular adaptors. |
114 | 114 |
|
115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
116 | 116 |
capabilities of the original graph while in other cases this would be |
117 | 117 |
meaningless. This means that the concepts that they meet depend |
118 | 118 |
on the graph adaptor, and the wrapped graph. |
119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
121 | 121 |
adaptor modifies the original digraph. |
122 | 122 |
However in case of a residual digraph, this operation has no sense. |
123 | 123 |
|
124 | 124 |
Let us stand one more example here to simplify your work. |
125 | 125 |
ReverseDigraph has constructor |
126 | 126 |
\code |
127 | 127 |
ReverseDigraph(Digraph& digraph); |
128 | 128 |
\endcode |
129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
130 | 130 |
reference to a graph is given, then it have to be instantiated with |
131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
132 | 132 |
\code |
133 | 133 |
int algorithm1(const ListDigraph& g) { |
134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
135 | 135 |
return algorithm2(rg); |
136 | 136 |
} |
137 | 137 |
\endcode |
138 | 138 |
*/ |
139 | 139 |
|
140 | 140 |
/** |
141 | 141 |
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs |
142 | 142 |
@ingroup graphs |
143 | 143 |
\brief Graph types between real graphs and graph adaptors. |
144 | 144 |
|
145 | 145 |
This group contains some graph types between real graphs and graph adaptors. |
146 | 146 |
These classes wrap graphs to give new functionality as the adaptors do it. |
147 | 147 |
On the other hand they are not light-weight structures as the adaptors. |
148 | 148 |
*/ |
149 | 149 |
|
150 | 150 |
/** |
151 | 151 |
@defgroup maps Maps |
152 | 152 |
@ingroup datas |
153 | 153 |
\brief Map structures implemented in LEMON. |
154 | 154 |
|
155 | 155 |
This group contains the map structures implemented in LEMON. |
156 | 156 |
|
157 | 157 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
158 | 158 |
new maps from existing ones. |
159 | 159 |
|
160 | 160 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
161 | 161 |
*/ |
162 | 162 |
|
163 | 163 |
/** |
164 | 164 |
@defgroup graph_maps Graph Maps |
165 | 165 |
@ingroup maps |
166 | 166 |
\brief Special graph-related maps. |
167 | 167 |
|
168 | 168 |
This group contains maps that are specifically designed to assign |
169 | 169 |
values to the nodes and arcs/edges of graphs. |
170 | 170 |
|
171 | 171 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
172 | 172 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
173 | 173 |
*/ |
174 | 174 |
|
175 | 175 |
/** |
176 | 176 |
\defgroup map_adaptors Map Adaptors |
177 | 177 |
\ingroup maps |
178 | 178 |
\brief Tools to create new maps from existing ones |
179 | 179 |
|
180 | 180 |
This group contains map adaptors that are used to create "implicit" |
181 | 181 |
maps from other maps. |
182 | 182 |
|
183 | 183 |
Most of them are \ref concepts::ReadMap "read-only maps". |
184 | 184 |
They can make arithmetic and logical operations between one or two maps |
185 | 185 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
186 | 186 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
187 | 187 |
|
188 | 188 |
The typical usage of this classes is passing implicit maps to |
189 | 189 |
algorithms. If a function type algorithm is called then the function |
190 | 190 |
type map adaptors can be used comfortable. For example let's see the |
191 | 191 |
usage of map adaptors with the \c graphToEps() function. |
192 | 192 |
\code |
193 | 193 |
Color nodeColor(int deg) { |
194 | 194 |
if (deg >= 2) { |
195 | 195 |
return Color(0.5, 0.0, 0.5); |
196 | 196 |
} else if (deg == 1) { |
197 | 197 |
return Color(1.0, 0.5, 1.0); |
198 | 198 |
} else { |
199 | 199 |
return Color(0.0, 0.0, 0.0); |
200 | 200 |
} |
201 | 201 |
} |
202 | 202 |
|
203 | 203 |
Digraph::NodeMap<int> degree_map(graph); |
204 | 204 |
|
205 | 205 |
graphToEps(graph, "graph.eps") |
206 | 206 |
.coords(coords).scaleToA4().undirected() |
207 | 207 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
208 | 208 |
.run(); |
209 | 209 |
\endcode |
210 | 210 |
The \c functorToMap() function makes an \c int to \c Color map from the |
211 | 211 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
212 | 212 |
and the previously created map. The composed map is a proper function to |
213 | 213 |
get the color of each node. |
214 | 214 |
|
215 | 215 |
The usage with class type algorithms is little bit harder. In this |
216 | 216 |
case the function type map adaptors can not be used, because the |
217 | 217 |
function map adaptors give back temporary objects. |
218 | 218 |
\code |
219 | 219 |
Digraph graph; |
220 | 220 |
|
221 | 221 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
222 | 222 |
DoubleArcMap length(graph); |
223 | 223 |
DoubleArcMap speed(graph); |
224 | 224 |
|
225 | 225 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
226 | 226 |
TimeMap time(length, speed); |
227 | 227 |
|
228 | 228 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
229 | 229 |
dijkstra.run(source, target); |
230 | 230 |
\endcode |
231 | 231 |
We have a length map and a maximum speed map on the arcs of a digraph. |
232 | 232 |
The minimum time to pass the arc can be calculated as the division of |
233 | 233 |
the two maps which can be done implicitly with the \c DivMap template |
234 | 234 |
class. We use the implicit minimum time map as the length map of the |
235 | 235 |
\c Dijkstra algorithm. |
236 | 236 |
*/ |
237 | 237 |
|
238 | 238 |
/** |
239 | 239 |
@defgroup matrices Matrices |
240 | 240 |
@ingroup datas |
241 | 241 |
\brief Two dimensional data storages implemented in LEMON. |
242 | 242 |
|
243 | 243 |
This group contains two dimensional data storages implemented in LEMON. |
244 | 244 |
*/ |
245 | 245 |
|
246 | 246 |
/** |
247 | 247 |
@defgroup paths Path Structures |
248 | 248 |
@ingroup datas |
249 | 249 |
\brief %Path structures implemented in LEMON. |
250 | 250 |
|
251 | 251 |
This group contains the path structures implemented in LEMON. |
252 | 252 |
|
253 | 253 |
LEMON provides flexible data structures to work with paths. |
254 | 254 |
All of them have similar interfaces and they can be copied easily with |
255 | 255 |
assignment operators and copy constructors. This makes it easy and |
256 | 256 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
257 | 257 |
any kind of path structure. |
258 | 258 |
|
259 | 259 |
\sa lemon::concepts::Path |
260 | 260 |
*/ |
261 | 261 |
|
262 | 262 |
/** |
263 | 263 |
@defgroup auxdat Auxiliary Data Structures |
264 | 264 |
@ingroup datas |
265 | 265 |
\brief Auxiliary data structures implemented in LEMON. |
266 | 266 |
|
267 | 267 |
This group contains some data structures implemented in LEMON in |
268 | 268 |
order to make it easier to implement combinatorial algorithms. |
269 | 269 |
*/ |
270 | 270 |
|
271 | 271 |
/** |
272 | 272 |
@defgroup algs Algorithms |
273 | 273 |
\brief This group contains the several algorithms |
274 | 274 |
implemented in LEMON. |
275 | 275 |
|
276 | 276 |
This group contains the several algorithms |
277 | 277 |
implemented in LEMON. |
278 | 278 |
*/ |
279 | 279 |
|
280 | 280 |
/** |
281 | 281 |
@defgroup search Graph Search |
282 | 282 |
@ingroup algs |
283 | 283 |
\brief Common graph search algorithms. |
284 | 284 |
|
285 | 285 |
This group contains the common graph search algorithms, namely |
286 | 286 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
287 | 287 |
*/ |
288 | 288 |
|
289 | 289 |
/** |
290 | 290 |
@defgroup shortest_path Shortest Path Algorithms |
291 | 291 |
@ingroup algs |
292 | 292 |
\brief Algorithms for finding shortest paths. |
293 | 293 |
|
294 | 294 |
This group contains the algorithms for finding shortest paths in digraphs. |
295 | 295 |
|
296 | 296 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
297 | 297 |
when all arc lengths are non-negative. |
298 | 298 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
299 | 299 |
from a source node when arc lenghts can be either positive or negative, |
300 | 300 |
but the digraph should not contain directed cycles with negative total |
301 | 301 |
length. |
302 | 302 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
303 | 303 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
304 | 304 |
lenghts can be either positive or negative, but the digraph should |
305 | 305 |
not contain directed cycles with negative total length. |
306 | 306 |
- \ref Suurballe A successive shortest path algorithm for finding |
307 | 307 |
arc-disjoint paths between two nodes having minimum total length. |
308 | 308 |
*/ |
309 | 309 |
|
310 | 310 |
/** |
311 | 311 |
@defgroup max_flow Maximum Flow Algorithms |
312 | 312 |
@ingroup algs |
313 | 313 |
\brief Algorithms for finding maximum flows. |
314 | 314 |
|
315 | 315 |
This group contains the algorithms for finding maximum flows and |
316 | 316 |
feasible circulations. |
317 | 317 |
|
318 | 318 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
319 | 319 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
320 | 320 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
321 | 321 |
\f$s, t \in V\f$ source and target nodes. |
322 | 322 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the |
323 | 323 |
following optimization problem. |
324 | 324 |
|
325 | 325 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
326 | 326 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
327 | 327 |
\quad \forall u\in V\setminus\{s,t\} \f] |
328 | 328 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
329 | 329 |
|
330 | 330 |
LEMON contains several algorithms for solving maximum flow problems: |
331 | 331 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
332 | 332 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
333 | 333 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
334 | 334 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
335 | 335 |
|
336 | 336 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
337 | 337 |
fastest method for computing a maximum flow. All implementations |
338 | 338 |
provides functions to also query the minimum cut, which is the dual |
339 | 339 |
problem of the maximum flow. |
340 | 340 |
*/ |
341 | 341 |
|
342 | 342 |
/** |
343 | 343 |
@defgroup min_cost_flow Minimum Cost Flow Algorithms |
344 | 344 |
@ingroup algs |
345 | 345 |
|
346 | 346 |
\brief Algorithms for finding minimum cost flows and circulations. |
347 | 347 |
|
348 | 348 |
This group contains the algorithms for finding minimum cost flows and |
349 | 349 |
circulations. |
350 | 350 |
|
351 | 351 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
352 | 352 |
minimum total cost from a set of supply nodes to a set of demand nodes |
353 | 353 |
in a network with capacity constraints (lower and upper bounds) |
354 | 354 |
and arc costs. |
355 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
|
356 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and |
|
355 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{Z}\f$, |
|
356 |
\f$upper: A\rightarrow\mathbf{Z}\cup\{+\infty\}\f$ denote the lower and |
|
357 | 357 |
upper bounds for the flow values on the arcs, for which |
358 |
\f$0 \leq lower(uv) \leq upper(uv)\f$ holds for all \f$uv\in A\f$. |
|
359 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow |
|
360 |
|
|
358 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
|
359 |
\f$cost: A\rightarrow\mathbf{Z}\f$ denotes the cost per unit flow |
|
360 |
on the arcs and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the |
|
361 | 361 |
signed supply values of the nodes. |
362 | 362 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
363 | 363 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
364 | 364 |
\f$-sup(u)\f$ demand. |
365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z} |
|
365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}\f$ solution |
|
366 | 366 |
of the following optimization problem. |
367 | 367 |
|
368 | 368 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
369 | 369 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
370 | 370 |
sup(u) \quad \forall u\in V \f] |
371 | 371 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
372 | 372 |
|
373 | 373 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
374 | 374 |
zero or negative in order to have a feasible solution (since the sum |
375 | 375 |
of the expressions on the left-hand side of the inequalities is zero). |
376 | 376 |
It means that the total demand must be greater or equal to the total |
377 | 377 |
supply and all the supplies have to be carried out from the supply nodes, |
378 | 378 |
but there could be demands that are not satisfied. |
379 | 379 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
380 | 380 |
constraints have to be satisfied with equality, i.e. all demands |
381 | 381 |
have to be satisfied and all supplies have to be used. |
382 | 382 |
|
383 | 383 |
If you need the opposite inequalities in the supply/demand constraints |
384 | 384 |
(i.e. the total demand is less than the total supply and all the demands |
385 | 385 |
have to be satisfied while there could be supplies that are not used), |
386 | 386 |
then you could easily transform the problem to the above form by reversing |
387 | 387 |
the direction of the arcs and taking the negative of the supply values |
388 | 388 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
389 | 389 |
However \ref NetworkSimplex algorithm also supports this form directly |
390 | 390 |
for the sake of convenience. |
391 | 391 |
|
392 | 392 |
A feasible solution for this problem can be found using \ref Circulation. |
393 | 393 |
|
394 | 394 |
Note that the above formulation is actually more general than the usual |
395 | 395 |
definition of the minimum cost flow problem, in which strict equalities |
396 | 396 |
are required in the supply/demand contraints, i.e. |
397 | 397 |
|
398 | 398 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) = |
399 | 399 |
sup(u) \quad \forall u\in V. \f] |
400 | 400 |
|
401 | 401 |
However if the sum of the supply values is zero, then these two problems |
402 | 402 |
are equivalent. So if you need the equality form, you have to ensure this |
403 | 403 |
additional contraint for the algorithms. |
404 | 404 |
|
405 | 405 |
The dual solution of the minimum cost flow problem is represented by node |
406 | 406 |
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$. |
407 |
An \f$f: A\rightarrow\mathbf{Z} |
|
407 |
An \f$f: A\rightarrow\mathbf{Z}\f$ feasible solution of the problem |
|
408 | 408 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$ |
409 | 409 |
node potentials the following \e complementary \e slackness optimality |
410 | 410 |
conditions hold. |
411 | 411 |
|
412 | 412 |
- For all \f$uv\in A\f$ arcs: |
413 | 413 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
414 | 414 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
415 | 415 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
416 |
- For all \f$u\in V\f$: |
|
416 |
- For all \f$u\in V\f$ nodes: |
|
417 | 417 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
418 | 418 |
then \f$\pi(u)=0\f$. |
419 | 419 |
|
420 | 420 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
421 |
\f$uv\in A\f$ with respect to the |
|
421 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
|
422 | 422 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
423 | 423 |
|
424 |
All algorithms provide dual solution (node potentials) as well |
|
424 |
All algorithms provide dual solution (node potentials) as well, |
|
425 | 425 |
if an optimal flow is found. |
426 | 426 |
|
427 | 427 |
LEMON contains several algorithms for solving minimum cost flow problems. |
428 | 428 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
429 | 429 |
pivot strategies. |
430 | 430 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
431 | 431 |
cost scaling. |
432 | 432 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
433 | 433 |
capacity scaling. |
434 | 434 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
435 | 435 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
436 | 436 |
|
437 | 437 |
Most of these implementations support the general inequality form of the |
438 | 438 |
minimum cost flow problem, but CancelAndTighten and CycleCanceling |
439 | 439 |
only support the equality form due to the primal method they use. |
440 | 440 |
|
441 | 441 |
In general NetworkSimplex is the most efficient implementation, |
442 | 442 |
but in special cases other algorithms could be faster. |
443 | 443 |
For example, if the total supply and/or capacities are rather small, |
444 | 444 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
445 | 445 |
*/ |
446 | 446 |
|
447 | 447 |
/** |
448 | 448 |
@defgroup min_cut Minimum Cut Algorithms |
449 | 449 |
@ingroup algs |
450 | 450 |
|
451 | 451 |
\brief Algorithms for finding minimum cut in graphs. |
452 | 452 |
|
453 | 453 |
This group contains the algorithms for finding minimum cut in graphs. |
454 | 454 |
|
455 | 455 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
456 | 456 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
457 | 457 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
458 | 458 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
459 | 459 |
cut is the \f$X\f$ solution of the next optimization problem: |
460 | 460 |
|
461 | 461 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
462 | 462 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f] |
463 | 463 |
|
464 | 464 |
LEMON contains several algorithms related to minimum cut problems: |
465 | 465 |
|
466 | 466 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
467 | 467 |
in directed graphs. |
468 | 468 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
469 | 469 |
calculating minimum cut in undirected graphs. |
470 | 470 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
471 | 471 |
all-pairs minimum cut in undirected graphs. |
472 | 472 |
|
473 | 473 |
If you want to find minimum cut just between two distinict nodes, |
474 | 474 |
see the \ref max_flow "maximum flow problem". |
475 | 475 |
*/ |
476 | 476 |
|
477 | 477 |
/** |
478 | 478 |
@defgroup graph_properties Connectivity and Other Graph Properties |
479 | 479 |
@ingroup algs |
480 | 480 |
\brief Algorithms for discovering the graph properties |
481 | 481 |
|
482 | 482 |
This group contains the algorithms for discovering the graph properties |
483 | 483 |
like connectivity, bipartiteness, euler property, simplicity etc. |
484 | 484 |
|
485 | 485 |
\image html edge_biconnected_components.png |
486 | 486 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
487 | 487 |
*/ |
488 | 488 |
|
489 | 489 |
/** |
490 | 490 |
@defgroup planar Planarity Embedding and Drawing |
491 | 491 |
@ingroup algs |
492 | 492 |
\brief Algorithms for planarity checking, embedding and drawing |
493 | 493 |
|
494 | 494 |
This group contains the algorithms for planarity checking, |
495 | 495 |
embedding and drawing. |
496 | 496 |
|
497 | 497 |
\image html planar.png |
498 | 498 |
\image latex planar.eps "Plane graph" width=\textwidth |
499 | 499 |
*/ |
500 | 500 |
|
501 | 501 |
/** |
502 | 502 |
@defgroup matching Matching Algorithms |
503 | 503 |
@ingroup algs |
504 | 504 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
505 | 505 |
|
506 | 506 |
This group contains the algorithms for calculating |
507 | 507 |
matchings in graphs and bipartite graphs. The general matching problem is |
508 | 508 |
finding a subset of the edges for which each node has at most one incident |
509 | 509 |
edge. |
510 | 510 |
|
511 | 511 |
There are several different algorithms for calculate matchings in |
512 | 512 |
graphs. The matching problems in bipartite graphs are generally |
513 | 513 |
easier than in general graphs. The goal of the matching optimization |
514 | 514 |
can be finding maximum cardinality, maximum weight or minimum cost |
515 | 515 |
matching. The search can be constrained to find perfect or |
516 | 516 |
maximum cardinality matching. |
517 | 517 |
|
518 | 518 |
The matching algorithms implemented in LEMON: |
519 | 519 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
520 | 520 |
for calculating maximum cardinality matching in bipartite graphs. |
521 | 521 |
- \ref PrBipartiteMatching Push-relabel algorithm |
522 | 522 |
for calculating maximum cardinality matching in bipartite graphs. |
523 | 523 |
- \ref MaxWeightedBipartiteMatching |
524 | 524 |
Successive shortest path algorithm for calculating maximum weighted |
525 | 525 |
matching and maximum weighted bipartite matching in bipartite graphs. |
526 | 526 |
- \ref MinCostMaxBipartiteMatching |
527 | 527 |
Successive shortest path algorithm for calculating minimum cost maximum |
528 | 528 |
matching in bipartite graphs. |
529 | 529 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
530 | 530 |
maximum cardinality matching in general graphs. |
531 | 531 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
532 | 532 |
maximum weighted matching in general graphs. |
533 | 533 |
- \ref MaxWeightedPerfectMatching |
534 | 534 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
535 | 535 |
perfect matching in general graphs. |
536 | 536 |
|
537 | 537 |
\image html bipartite_matching.png |
538 | 538 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
539 | 539 |
*/ |
540 | 540 |
|
541 | 541 |
/** |
542 | 542 |
@defgroup spantree Minimum Spanning Tree Algorithms |
543 | 543 |
@ingroup algs |
544 | 544 |
\brief Algorithms for finding a minimum cost spanning tree in a graph. |
545 | 545 |
|
546 | 546 |
This group contains the algorithms for finding a minimum cost spanning |
547 | 547 |
tree in a graph. |
548 | 548 |
*/ |
549 | 549 |
|
550 | 550 |
/** |
551 | 551 |
@defgroup auxalg Auxiliary Algorithms |
552 | 552 |
@ingroup algs |
553 | 553 |
\brief Auxiliary algorithms implemented in LEMON. |
554 | 554 |
|
555 | 555 |
This group contains some algorithms implemented in LEMON |
556 | 556 |
in order to make it easier to implement complex algorithms. |
557 | 557 |
*/ |
558 | 558 |
|
559 | 559 |
/** |
560 | 560 |
@defgroup approx Approximation Algorithms |
561 | 561 |
@ingroup algs |
562 | 562 |
\brief Approximation algorithms. |
563 | 563 |
|
564 | 564 |
This group contains the approximation and heuristic algorithms |
565 | 565 |
implemented in LEMON. |
566 | 566 |
*/ |
567 | 567 |
|
568 | 568 |
/** |
569 | 569 |
@defgroup gen_opt_group General Optimization Tools |
570 | 570 |
\brief This group contains some general optimization frameworks |
571 | 571 |
implemented in LEMON. |
572 | 572 |
|
573 | 573 |
This group contains some general optimization frameworks |
574 | 574 |
implemented in LEMON. |
575 | 575 |
*/ |
576 | 576 |
|
577 | 577 |
/** |
578 | 578 |
@defgroup lp_group Lp and Mip Solvers |
579 | 579 |
@ingroup gen_opt_group |
580 | 580 |
\brief Lp and Mip solver interfaces for LEMON. |
581 | 581 |
|
582 | 582 |
This group contains Lp and Mip solver interfaces for LEMON. The |
583 | 583 |
various LP solvers could be used in the same manner with this |
584 | 584 |
interface. |
585 | 585 |
*/ |
586 | 586 |
|
587 | 587 |
/** |
588 | 588 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
589 | 589 |
@ingroup lp_group |
590 | 590 |
\brief Helper tools to the Lp and Mip solvers. |
591 | 591 |
|
592 | 592 |
This group adds some helper tools to general optimization framework |
593 | 593 |
implemented in LEMON. |
594 | 594 |
*/ |
595 | 595 |
|
596 | 596 |
/** |
597 | 597 |
@defgroup metah Metaheuristics |
598 | 598 |
@ingroup gen_opt_group |
599 | 599 |
\brief Metaheuristics for LEMON library. |
600 | 600 |
|
601 | 601 |
This group contains some metaheuristic optimization tools. |
602 | 602 |
*/ |
603 | 603 |
|
604 | 604 |
/** |
605 | 605 |
@defgroup utils Tools and Utilities |
606 | 606 |
\brief Tools and utilities for programming in LEMON |
607 | 607 |
|
608 | 608 |
Tools and utilities for programming in LEMON. |
609 | 609 |
*/ |
610 | 610 |
|
611 | 611 |
/** |
612 | 612 |
@defgroup gutils Basic Graph Utilities |
613 | 613 |
@ingroup utils |
614 | 614 |
\brief Simple basic graph utilities. |
615 | 615 |
|
616 | 616 |
This group contains some simple basic graph utilities. |
617 | 617 |
*/ |
618 | 618 |
|
619 | 619 |
/** |
620 | 620 |
@defgroup misc Miscellaneous Tools |
621 | 621 |
@ingroup utils |
622 | 622 |
\brief Tools for development, debugging and testing. |
623 | 623 |
|
624 | 624 |
This group contains several useful tools for development, |
625 | 625 |
debugging and testing. |
626 | 626 |
*/ |
627 | 627 |
|
628 | 628 |
/** |
629 | 629 |
@defgroup timecount Time Measuring and Counting |
630 | 630 |
@ingroup misc |
631 | 631 |
\brief Simple tools for measuring the performance of algorithms. |
632 | 632 |
|
633 | 633 |
This group contains simple tools for measuring the performance |
634 | 634 |
of algorithms. |
635 | 635 |
*/ |
636 | 636 |
|
637 | 637 |
/** |
638 | 638 |
@defgroup exceptions Exceptions |
639 | 639 |
@ingroup utils |
640 | 640 |
\brief Exceptions defined in LEMON. |
641 | 641 |
|
642 | 642 |
This group contains the exceptions defined in LEMON. |
643 | 643 |
*/ |
644 | 644 |
|
645 | 645 |
/** |
646 | 646 |
@defgroup io_group Input-Output |
647 | 647 |
\brief Graph Input-Output methods |
648 | 648 |
|
649 | 649 |
This group contains the tools for importing and exporting graphs |
650 | 650 |
and graph related data. Now it supports the \ref lgf-format |
651 | 651 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
652 | 652 |
postscript (EPS) format. |
653 | 653 |
*/ |
654 | 654 |
|
655 | 655 |
/** |
656 | 656 |
@defgroup lemon_io LEMON Graph Format |
657 | 657 |
@ingroup io_group |
658 | 658 |
\brief Reading and writing LEMON Graph Format. |
659 | 659 |
|
660 | 660 |
This group contains methods for reading and writing |
661 | 661 |
\ref lgf-format "LEMON Graph Format". |
662 | 662 |
*/ |
663 | 663 |
|
664 | 664 |
/** |
665 | 665 |
@defgroup eps_io Postscript Exporting |
666 | 666 |
@ingroup io_group |
667 | 667 |
\brief General \c EPS drawer and graph exporter |
668 | 668 |
|
669 | 669 |
This group contains general \c EPS drawing methods and special |
670 | 670 |
graph exporting tools. |
671 | 671 |
*/ |
672 | 672 |
|
673 | 673 |
/** |
674 | 674 |
@defgroup dimacs_group DIMACS format |
675 | 675 |
@ingroup io_group |
676 | 676 |
\brief Read and write files in DIMACS format |
677 | 677 |
|
678 | 678 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
679 | 679 |
*/ |
680 | 680 |
|
681 | 681 |
/** |
682 | 682 |
@defgroup nauty_group NAUTY Format |
683 | 683 |
@ingroup io_group |
684 | 684 |
\brief Read \e Nauty format |
685 | 685 |
|
686 | 686 |
Tool to read graphs from \e Nauty format data. |
687 | 687 |
*/ |
688 | 688 |
|
689 | 689 |
/** |
690 | 690 |
@defgroup concept Concepts |
691 | 691 |
\brief Skeleton classes and concept checking classes |
692 | 692 |
|
693 | 693 |
This group contains the data/algorithm skeletons and concept checking |
694 | 694 |
classes implemented in LEMON. |
695 | 695 |
|
696 | 696 |
The purpose of the classes in this group is fourfold. |
697 | 697 |
|
698 | 698 |
- These classes contain the documentations of the %concepts. In order |
699 | 699 |
to avoid document multiplications, an implementation of a concept |
700 | 700 |
simply refers to the corresponding concept class. |
701 | 701 |
|
702 | 702 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
703 | 703 |
implementation of the %concepts should provide, however completely |
704 | 704 |
without implementations and real data structures behind the |
705 | 705 |
interface. On the other hand they should provide nothing else. All |
706 | 706 |
the algorithms working on a data structure meeting a certain concept |
707 | 707 |
should compile with these classes. (Though it will not run properly, |
708 | 708 |
of course.) In this way it is easily to check if an algorithm |
709 | 709 |
doesn't use any extra feature of a certain implementation. |
710 | 710 |
|
711 | 711 |
- The concept descriptor classes also provide a <em>checker class</em> |
712 | 712 |
that makes it possible to check whether a certain implementation of a |
713 | 713 |
concept indeed provides all the required features. |
714 | 714 |
|
715 | 715 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
716 | 716 |
*/ |
717 | 717 |
|
718 | 718 |
/** |
719 | 719 |
@defgroup graph_concepts Graph Structure Concepts |
720 | 720 |
@ingroup concept |
721 | 721 |
\brief Skeleton and concept checking classes for graph structures |
722 | 722 |
|
723 | 723 |
This group contains the skeletons and concept checking classes of LEMON's |
724 | 724 |
graph structures and helper classes used to implement these. |
725 | 725 |
*/ |
726 | 726 |
|
727 | 727 |
/** |
728 | 728 |
@defgroup map_concepts Map Concepts |
729 | 729 |
@ingroup concept |
730 | 730 |
\brief Skeleton and concept checking classes for maps |
731 | 731 |
|
732 | 732 |
This group contains the skeletons and concept checking classes of maps. |
733 | 733 |
*/ |
734 | 734 |
|
735 | 735 |
/** |
736 | 736 |
\anchor demoprograms |
737 | 737 |
|
738 | 738 |
@defgroup demos Demo Programs |
739 | 739 |
|
740 | 740 |
Some demo programs are listed here. Their full source codes can be found in |
741 | 741 |
the \c demo subdirectory of the source tree. |
742 | 742 |
|
743 | 743 |
In order to compile them, use the <tt>make demo</tt> or the |
744 | 744 |
<tt>make check</tt> commands. |
745 | 745 |
*/ |
746 | 746 |
|
747 | 747 |
/** |
748 | 748 |
@defgroup tools Standalone Utility Applications |
749 | 749 |
|
750 | 750 |
Some utility applications are listed here. |
751 | 751 |
|
752 | 752 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
753 | 753 |
them, as well. |
754 | 754 |
*/ |
755 | 755 |
|
756 | 756 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <algorithm> |
30 | 30 |
|
31 | 31 |
#include <lemon/core.h> |
32 | 32 |
#include <lemon/math.h> |
33 |
#include <lemon/maps.h> |
|
34 |
#include <lemon/circulation.h> |
|
35 |
#include <lemon/adaptors.h> |
|
36 | 33 |
|
37 | 34 |
namespace lemon { |
38 | 35 |
|
39 | 36 |
/// \addtogroup min_cost_flow |
40 | 37 |
/// @{ |
41 | 38 |
|
42 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
43 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
44 | 41 |
/// |
45 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
46 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
47 | 44 |
/// This algorithm is a specialized version of the linear programming |
48 | 45 |
/// simplex method directly for the minimum cost flow problem. |
49 | 46 |
/// It is one of the most efficient solution methods. |
50 | 47 |
/// |
51 | 48 |
/// In general this class is the fastest implementation available |
52 | 49 |
/// in LEMON for the minimum cost flow problem. |
53 |
/// Moreover it supports both direction of the supply/demand inequality |
|
54 |
/// constraints. For more information see \ref ProblemType. |
|
50 |
/// Moreover it supports both directions of the supply/demand inequality |
|
51 |
/// constraints. For more information see \ref SupplyType. |
|
52 |
/// |
|
53 |
/// Most of the parameters of the problem (except for the digraph) |
|
54 |
/// can be given using separate functions, and the algorithm can be |
|
55 |
/// executed using the \ref run() function. If some parameters are not |
|
56 |
/// specified, then default values will be used. |
|
55 | 57 |
/// |
56 | 58 |
/// \tparam GR The digraph type the algorithm runs on. |
57 | 59 |
/// \tparam F The value type used for flow amounts, capacity bounds |
58 | 60 |
/// and supply values in the algorithm. By default it is \c int. |
59 | 61 |
/// \tparam C The value type used for costs and potentials in the |
60 | 62 |
/// algorithm. By default it is the same as \c F. |
61 | 63 |
/// |
62 | 64 |
/// \warning Both value types must be signed and all input data must |
63 | 65 |
/// be integer. |
64 | 66 |
/// |
65 | 67 |
/// \note %NetworkSimplex provides five different pivot rule |
66 | 68 |
/// implementations, from which the most efficient one is used |
67 | 69 |
/// by default. For more information see \ref PivotRule. |
68 | 70 |
template <typename GR, typename F = int, typename C = F> |
69 | 71 |
class NetworkSimplex |
70 | 72 |
{ |
71 | 73 |
public: |
72 | 74 |
|
73 | 75 |
/// The flow type of the algorithm |
74 | 76 |
typedef F Flow; |
75 | 77 |
/// The cost type of the algorithm |
76 | 78 |
typedef C Cost; |
77 | 79 |
#ifdef DOXYGEN |
78 | 80 |
/// The type of the flow map |
79 | 81 |
typedef GR::ArcMap<Flow> FlowMap; |
80 | 82 |
/// The type of the potential map |
81 | 83 |
typedef GR::NodeMap<Cost> PotentialMap; |
82 | 84 |
#else |
83 | 85 |
/// The type of the flow map |
84 | 86 |
typedef typename GR::template ArcMap<Flow> FlowMap; |
85 | 87 |
/// The type of the potential map |
86 | 88 |
typedef typename GR::template NodeMap<Cost> PotentialMap; |
87 | 89 |
#endif |
88 | 90 |
|
89 | 91 |
public: |
90 | 92 |
|
91 |
/// \brief |
|
93 |
/// \brief Problem type constants for the \c run() function. |
|
92 | 94 |
/// |
93 |
/// Enum type |
|
95 |
/// Enum type containing the problem type constants that can be |
|
96 |
/// returned by the \ref run() function of the algorithm. |
|
97 |
enum ProblemType { |
|
98 |
/// The problem has no feasible solution (flow). |
|
99 |
INFEASIBLE, |
|
100 |
/// The problem has optimal solution (i.e. it is feasible and |
|
101 |
/// bounded), and the algorithm has found optimal flow and node |
|
102 |
/// potentials (primal and dual solutions). |
|
103 |
OPTIMAL, |
|
104 |
/// The objective function of the problem is unbounded, i.e. |
|
105 |
/// there is a directed cycle having negative total cost and |
|
106 |
/// infinite upper bound. |
|
107 |
UNBOUNDED |
|
108 |
}; |
|
109 |
|
|
110 |
/// \brief Constants for selecting the type of the supply constraints. |
|
111 |
/// |
|
112 |
/// Enum type containing constants for selecting the supply type, |
|
113 |
/// i.e. the direction of the inequalities in the supply/demand |
|
114 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
|
115 |
/// |
|
116 |
/// The default supply type is \c GEQ, since this form is supported |
|
117 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
118 |
/// algorithm, as well. |
|
119 |
/// The \c LEQ problem type can be selected using the \ref supplyType() |
|
94 | 120 |
/// function. |
95 | 121 |
/// |
122 |
/// Note that the equality form is a special case of both supply types. |
|
123 |
enum SupplyType { |
|
124 |
|
|
125 |
/// This option means that there are <em>"greater or equal"</em> |
|
126 |
/// supply/demand constraints in the definition, i.e. the exact |
|
127 |
/// formulation of the problem is the following. |
|
128 |
/** |
|
129 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
130 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
131 |
sup(u) \quad \forall u\in V \f] |
|
132 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
133 |
*/ |
|
134 |
/// It means that the total demand must be greater or equal to the |
|
135 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
136 |
/// negative) and all the supplies have to be carried out from |
|
137 |
/// the supply nodes, but there could be demands that are not |
|
138 |
/// satisfied. |
|
139 |
GEQ, |
|
140 |
/// It is just an alias for the \c GEQ option. |
|
141 |
CARRY_SUPPLIES = GEQ, |
|
142 |
|
|
143 |
/// This option means that there are <em>"less or equal"</em> |
|
144 |
/// supply/demand constraints in the definition, i.e. the exact |
|
145 |
/// formulation of the problem is the following. |
|
146 |
/** |
|
147 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
148 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
|
149 |
sup(u) \quad \forall u\in V \f] |
|
150 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
151 |
*/ |
|
152 |
/// It means that the total demand must be less or equal to the |
|
153 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
154 |
/// positive) and all the demands have to be satisfied, but there |
|
155 |
/// could be supplies that are not carried out from the supply |
|
156 |
/// nodes. |
|
157 |
LEQ, |
|
158 |
/// It is just an alias for the \c LEQ option. |
|
159 |
SATISFY_DEMANDS = LEQ |
|
160 |
}; |
|
161 |
|
|
162 |
/// \brief Constants for selecting the pivot rule. |
|
163 |
/// |
|
164 |
/// Enum type containing constants for selecting the pivot rule for |
|
165 |
/// the \ref run() function. |
|
166 |
/// |
|
96 | 167 |
/// \ref NetworkSimplex provides five different pivot rule |
97 | 168 |
/// implementations that significantly affect the running time |
98 | 169 |
/// of the algorithm. |
99 | 170 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
100 | 171 |
/// proved to be the most efficient and the most robust on various |
101 | 172 |
/// test inputs according to our benchmark tests. |
102 | 173 |
/// However another pivot rule can be selected using the \ref run() |
103 | 174 |
/// function with the proper parameter. |
104 | 175 |
enum PivotRule { |
105 | 176 |
|
106 | 177 |
/// The First Eligible pivot rule. |
107 | 178 |
/// The next eligible arc is selected in a wraparound fashion |
108 | 179 |
/// in every iteration. |
109 | 180 |
FIRST_ELIGIBLE, |
110 | 181 |
|
111 | 182 |
/// The Best Eligible pivot rule. |
112 | 183 |
/// The best eligible arc is selected in every iteration. |
113 | 184 |
BEST_ELIGIBLE, |
114 | 185 |
|
115 | 186 |
/// The Block Search pivot rule. |
116 | 187 |
/// A specified number of arcs are examined in every iteration |
117 | 188 |
/// in a wraparound fashion and the best eligible arc is selected |
118 | 189 |
/// from this block. |
119 | 190 |
BLOCK_SEARCH, |
120 | 191 |
|
121 | 192 |
/// The Candidate List pivot rule. |
122 | 193 |
/// In a major iteration a candidate list is built from eligible arcs |
123 | 194 |
/// in a wraparound fashion and in the following minor iterations |
124 | 195 |
/// the best eligible arc is selected from this list. |
125 | 196 |
CANDIDATE_LIST, |
126 | 197 |
|
127 | 198 |
/// The Altering Candidate List pivot rule. |
128 | 199 |
/// It is a modified version of the Candidate List method. |
129 | 200 |
/// It keeps only the several best eligible arcs from the former |
130 | 201 |
/// candidate list and extends this list in every iteration. |
131 | 202 |
ALTERING_LIST |
132 | 203 |
}; |
133 | 204 |
|
134 |
/// \brief Enum type for selecting the problem type. |
|
135 |
/// |
|
136 |
/// Enum type for selecting the problem type, i.e. the direction of |
|
137 |
/// the inequalities in the supply/demand constraints of the |
|
138 |
/// \ref min_cost_flow "minimum cost flow problem". |
|
139 |
/// |
|
140 |
/// The default problem type is \c GEQ, since this form is supported |
|
141 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
142 |
/// algorithm as well. |
|
143 |
/// The \c LEQ problem type can be selected using the \ref problemType() |
|
144 |
/// function. |
|
145 |
/// |
|
146 |
/// Note that the equality form is a special case of both problem type. |
|
147 |
enum ProblemType { |
|
148 |
|
|
149 |
/// This option means that there are "<em>greater or equal</em>" |
|
150 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
151 |
/// problem is the following. |
|
152 |
/** |
|
153 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
154 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
155 |
sup(u) \quad \forall u\in V \f] |
|
156 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
157 |
*/ |
|
158 |
/// It means that the total demand must be greater or equal to the |
|
159 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
160 |
/// negative) and all the supplies have to be carried out from |
|
161 |
/// the supply nodes, but there could be demands that are not |
|
162 |
/// satisfied. |
|
163 |
GEQ, |
|
164 |
/// It is just an alias for the \c GEQ option. |
|
165 |
CARRY_SUPPLIES = GEQ, |
|
166 |
|
|
167 |
/// This option means that there are "<em>less or equal</em>" |
|
168 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
169 |
/// problem is the following. |
|
170 |
/** |
|
171 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
172 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
|
173 |
sup(u) \quad \forall u\in V \f] |
|
174 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
175 |
*/ |
|
176 |
/// It means that the total demand must be less or equal to the |
|
177 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
178 |
/// positive) and all the demands have to be satisfied, but there |
|
179 |
/// could be supplies that are not carried out from the supply |
|
180 |
/// nodes. |
|
181 |
LEQ, |
|
182 |
/// It is just an alias for the \c LEQ option. |
|
183 |
SATISFY_DEMANDS = LEQ |
|
184 |
}; |
|
185 |
|
|
186 | 205 |
private: |
187 | 206 |
|
188 | 207 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
189 | 208 |
|
190 | 209 |
typedef typename GR::template ArcMap<Flow> FlowArcMap; |
191 | 210 |
typedef typename GR::template ArcMap<Cost> CostArcMap; |
192 | 211 |
typedef typename GR::template NodeMap<Flow> FlowNodeMap; |
193 | 212 |
|
194 | 213 |
typedef std::vector<Arc> ArcVector; |
195 | 214 |
typedef std::vector<Node> NodeVector; |
196 | 215 |
typedef std::vector<int> IntVector; |
197 | 216 |
typedef std::vector<bool> BoolVector; |
198 | 217 |
typedef std::vector<Flow> FlowVector; |
199 | 218 |
typedef std::vector<Cost> CostVector; |
200 | 219 |
|
201 | 220 |
// State constants for arcs |
202 | 221 |
enum ArcStateEnum { |
203 | 222 |
STATE_UPPER = -1, |
204 | 223 |
STATE_TREE = 0, |
205 | 224 |
STATE_LOWER = 1 |
206 | 225 |
}; |
207 | 226 |
|
208 | 227 |
private: |
209 | 228 |
|
210 | 229 |
// Data related to the underlying digraph |
211 | 230 |
const GR &_graph; |
212 | 231 |
int _node_num; |
213 | 232 |
int _arc_num; |
214 | 233 |
|
215 | 234 |
// Parameters of the problem |
216 | 235 |
FlowArcMap *_plower; |
217 | 236 |
FlowArcMap *_pupper; |
218 | 237 |
CostArcMap *_pcost; |
219 | 238 |
FlowNodeMap *_psupply; |
220 | 239 |
bool _pstsup; |
221 | 240 |
Node _psource, _ptarget; |
222 | 241 |
Flow _pstflow; |
223 |
|
|
242 |
SupplyType _stype; |
|
243 |
|
|
244 |
Flow _sum_supply; |
|
224 | 245 |
|
225 | 246 |
// Result maps |
226 | 247 |
FlowMap *_flow_map; |
227 | 248 |
PotentialMap *_potential_map; |
228 | 249 |
bool _local_flow; |
229 | 250 |
bool _local_potential; |
230 | 251 |
|
231 | 252 |
// Data structures for storing the digraph |
232 | 253 |
IntNodeMap _node_id; |
233 | 254 |
ArcVector _arc_ref; |
234 | 255 |
IntVector _source; |
235 | 256 |
IntVector _target; |
236 | 257 |
|
237 | 258 |
// Node and arc data |
238 | 259 |
FlowVector _cap; |
239 | 260 |
CostVector _cost; |
240 | 261 |
FlowVector _supply; |
241 | 262 |
FlowVector _flow; |
242 | 263 |
CostVector _pi; |
243 | 264 |
|
244 | 265 |
// Data for storing the spanning tree structure |
245 | 266 |
IntVector _parent; |
246 | 267 |
IntVector _pred; |
247 | 268 |
IntVector _thread; |
248 | 269 |
IntVector _rev_thread; |
249 | 270 |
IntVector _succ_num; |
250 | 271 |
IntVector _last_succ; |
251 | 272 |
IntVector _dirty_revs; |
252 | 273 |
BoolVector _forward; |
253 | 274 |
IntVector _state; |
254 | 275 |
int _root; |
255 | 276 |
|
256 | 277 |
// Temporary data used in the current pivot iteration |
257 | 278 |
int in_arc, join, u_in, v_in, u_out, v_out; |
258 | 279 |
int first, second, right, last; |
259 | 280 |
int stem, par_stem, new_stem; |
260 | 281 |
Flow delta; |
261 | 282 |
|
283 |
public: |
|
284 |
|
|
285 |
/// \brief Constant for infinite upper bounds (capacities). |
|
286 |
/// |
|
287 |
/// Constant for infinite upper bounds (capacities). |
|
288 |
/// It is \c std::numeric_limits<Flow>::infinity() if available, |
|
289 |
/// \c std::numeric_limits<Flow>::max() otherwise. |
|
290 |
const Flow INF; |
|
291 |
|
|
262 | 292 |
private: |
263 | 293 |
|
264 | 294 |
// Implementation of the First Eligible pivot rule |
265 | 295 |
class FirstEligiblePivotRule |
266 | 296 |
{ |
267 | 297 |
private: |
268 | 298 |
|
269 | 299 |
// References to the NetworkSimplex class |
270 | 300 |
const IntVector &_source; |
271 | 301 |
const IntVector &_target; |
272 | 302 |
const CostVector &_cost; |
273 | 303 |
const IntVector &_state; |
274 | 304 |
const CostVector &_pi; |
275 | 305 |
int &_in_arc; |
276 | 306 |
int _arc_num; |
277 | 307 |
|
278 | 308 |
// Pivot rule data |
279 | 309 |
int _next_arc; |
280 | 310 |
|
281 | 311 |
public: |
282 | 312 |
|
283 | 313 |
// Constructor |
284 | 314 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
285 | 315 |
_source(ns._source), _target(ns._target), |
286 | 316 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
287 | 317 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
288 | 318 |
{} |
289 | 319 |
|
290 | 320 |
// Find next entering arc |
291 | 321 |
bool findEnteringArc() { |
292 | 322 |
Cost c; |
293 | 323 |
for (int e = _next_arc; e < _arc_num; ++e) { |
294 | 324 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
295 | 325 |
if (c < 0) { |
296 | 326 |
_in_arc = e; |
297 | 327 |
_next_arc = e + 1; |
298 | 328 |
return true; |
299 | 329 |
} |
300 | 330 |
} |
301 | 331 |
for (int e = 0; e < _next_arc; ++e) { |
302 | 332 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
303 | 333 |
if (c < 0) { |
304 | 334 |
_in_arc = e; |
305 | 335 |
_next_arc = e + 1; |
306 | 336 |
return true; |
307 | 337 |
} |
308 | 338 |
} |
309 | 339 |
return false; |
310 | 340 |
} |
311 | 341 |
|
312 | 342 |
}; //class FirstEligiblePivotRule |
313 | 343 |
|
314 | 344 |
|
315 | 345 |
// Implementation of the Best Eligible pivot rule |
316 | 346 |
class BestEligiblePivotRule |
317 | 347 |
{ |
318 | 348 |
private: |
319 | 349 |
|
320 | 350 |
// References to the NetworkSimplex class |
321 | 351 |
const IntVector &_source; |
322 | 352 |
const IntVector &_target; |
323 | 353 |
const CostVector &_cost; |
324 | 354 |
const IntVector &_state; |
325 | 355 |
const CostVector &_pi; |
326 | 356 |
int &_in_arc; |
327 | 357 |
int _arc_num; |
328 | 358 |
|
329 | 359 |
public: |
330 | 360 |
|
331 | 361 |
// Constructor |
332 | 362 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
333 | 363 |
_source(ns._source), _target(ns._target), |
334 | 364 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
335 | 365 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num) |
336 | 366 |
{} |
337 | 367 |
|
338 | 368 |
// Find next entering arc |
339 | 369 |
bool findEnteringArc() { |
340 | 370 |
Cost c, min = 0; |
341 | 371 |
for (int e = 0; e < _arc_num; ++e) { |
342 | 372 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
343 | 373 |
if (c < min) { |
344 | 374 |
min = c; |
345 | 375 |
_in_arc = e; |
346 | 376 |
} |
347 | 377 |
} |
348 | 378 |
return min < 0; |
349 | 379 |
} |
350 | 380 |
|
351 | 381 |
}; //class BestEligiblePivotRule |
352 | 382 |
|
353 | 383 |
|
354 | 384 |
// Implementation of the Block Search pivot rule |
355 | 385 |
class BlockSearchPivotRule |
356 | 386 |
{ |
357 | 387 |
private: |
358 | 388 |
|
359 | 389 |
// References to the NetworkSimplex class |
360 | 390 |
const IntVector &_source; |
361 | 391 |
const IntVector &_target; |
362 | 392 |
const CostVector &_cost; |
363 | 393 |
const IntVector &_state; |
364 | 394 |
const CostVector &_pi; |
365 | 395 |
int &_in_arc; |
366 | 396 |
int _arc_num; |
367 | 397 |
|
368 | 398 |
// Pivot rule data |
369 | 399 |
int _block_size; |
370 | 400 |
int _next_arc; |
371 | 401 |
|
372 | 402 |
public: |
373 | 403 |
|
374 | 404 |
// Constructor |
375 | 405 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
376 | 406 |
_source(ns._source), _target(ns._target), |
377 | 407 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
378 | 408 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
379 | 409 |
{ |
380 | 410 |
// The main parameters of the pivot rule |
381 | 411 |
const double BLOCK_SIZE_FACTOR = 2.0; |
382 | 412 |
const int MIN_BLOCK_SIZE = 10; |
383 | 413 |
|
384 | 414 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
385 | 415 |
std::sqrt(double(_arc_num))), |
386 | 416 |
MIN_BLOCK_SIZE ); |
387 | 417 |
} |
388 | 418 |
|
389 | 419 |
// Find next entering arc |
390 | 420 |
bool findEnteringArc() { |
391 | 421 |
Cost c, min = 0; |
392 | 422 |
int cnt = _block_size; |
393 | 423 |
int e, min_arc = _next_arc; |
394 | 424 |
for (e = _next_arc; e < _arc_num; ++e) { |
395 | 425 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
396 | 426 |
if (c < min) { |
397 | 427 |
min = c; |
398 | 428 |
min_arc = e; |
399 | 429 |
} |
400 | 430 |
if (--cnt == 0) { |
401 | 431 |
if (min < 0) break; |
402 | 432 |
cnt = _block_size; |
403 | 433 |
} |
404 | 434 |
} |
405 | 435 |
if (min == 0 || cnt > 0) { |
406 | 436 |
for (e = 0; e < _next_arc; ++e) { |
407 | 437 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
408 | 438 |
if (c < min) { |
409 | 439 |
min = c; |
410 | 440 |
min_arc = e; |
411 | 441 |
} |
412 | 442 |
if (--cnt == 0) { |
413 | 443 |
if (min < 0) break; |
414 | 444 |
cnt = _block_size; |
415 | 445 |
} |
416 | 446 |
} |
417 | 447 |
} |
418 | 448 |
if (min >= 0) return false; |
419 | 449 |
_in_arc = min_arc; |
420 | 450 |
_next_arc = e; |
421 | 451 |
return true; |
422 | 452 |
} |
423 | 453 |
|
424 | 454 |
}; //class BlockSearchPivotRule |
425 | 455 |
|
426 | 456 |
|
427 | 457 |
// Implementation of the Candidate List pivot rule |
428 | 458 |
class CandidateListPivotRule |
429 | 459 |
{ |
430 | 460 |
private: |
431 | 461 |
|
432 | 462 |
// References to the NetworkSimplex class |
433 | 463 |
const IntVector &_source; |
434 | 464 |
const IntVector &_target; |
435 | 465 |
const CostVector &_cost; |
436 | 466 |
const IntVector &_state; |
437 | 467 |
const CostVector &_pi; |
438 | 468 |
int &_in_arc; |
439 | 469 |
int _arc_num; |
440 | 470 |
|
441 | 471 |
// Pivot rule data |
442 | 472 |
IntVector _candidates; |
443 | 473 |
int _list_length, _minor_limit; |
444 | 474 |
int _curr_length, _minor_count; |
445 | 475 |
int _next_arc; |
446 | 476 |
|
447 | 477 |
public: |
448 | 478 |
|
449 | 479 |
/// Constructor |
450 | 480 |
CandidateListPivotRule(NetworkSimplex &ns) : |
451 | 481 |
_source(ns._source), _target(ns._target), |
452 | 482 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
453 | 483 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
454 | 484 |
{ |
455 | 485 |
// The main parameters of the pivot rule |
456 | 486 |
const double LIST_LENGTH_FACTOR = 1.0; |
457 | 487 |
const int MIN_LIST_LENGTH = 10; |
458 | 488 |
const double MINOR_LIMIT_FACTOR = 0.1; |
459 | 489 |
const int MIN_MINOR_LIMIT = 3; |
460 | 490 |
|
461 | 491 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
462 | 492 |
std::sqrt(double(_arc_num))), |
463 | 493 |
MIN_LIST_LENGTH ); |
464 | 494 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
465 | 495 |
MIN_MINOR_LIMIT ); |
466 | 496 |
_curr_length = _minor_count = 0; |
467 | 497 |
_candidates.resize(_list_length); |
468 | 498 |
} |
469 | 499 |
|
470 | 500 |
/// Find next entering arc |
471 | 501 |
bool findEnteringArc() { |
472 | 502 |
Cost min, c; |
473 | 503 |
int e, min_arc = _next_arc; |
474 | 504 |
if (_curr_length > 0 && _minor_count < _minor_limit) { |
475 | 505 |
// Minor iteration: select the best eligible arc from the |
476 | 506 |
// current candidate list |
477 | 507 |
++_minor_count; |
478 | 508 |
min = 0; |
479 | 509 |
for (int i = 0; i < _curr_length; ++i) { |
480 | 510 |
e = _candidates[i]; |
481 | 511 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
482 | 512 |
if (c < min) { |
483 | 513 |
min = c; |
484 | 514 |
min_arc = e; |
485 | 515 |
} |
486 | 516 |
if (c >= 0) { |
487 | 517 |
_candidates[i--] = _candidates[--_curr_length]; |
488 | 518 |
} |
489 | 519 |
} |
490 | 520 |
if (min < 0) { |
491 | 521 |
_in_arc = min_arc; |
492 | 522 |
return true; |
493 | 523 |
} |
494 | 524 |
} |
495 | 525 |
|
496 | 526 |
// Major iteration: build a new candidate list |
497 | 527 |
min = 0; |
498 | 528 |
_curr_length = 0; |
499 | 529 |
for (e = _next_arc; e < _arc_num; ++e) { |
500 | 530 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
501 | 531 |
if (c < 0) { |
502 | 532 |
_candidates[_curr_length++] = e; |
503 | 533 |
if (c < min) { |
504 | 534 |
min = c; |
505 | 535 |
min_arc = e; |
506 | 536 |
} |
507 | 537 |
if (_curr_length == _list_length) break; |
508 | 538 |
} |
509 | 539 |
} |
510 | 540 |
if (_curr_length < _list_length) { |
511 | 541 |
for (e = 0; e < _next_arc; ++e) { |
512 | 542 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
513 | 543 |
if (c < 0) { |
514 | 544 |
_candidates[_curr_length++] = e; |
515 | 545 |
if (c < min) { |
516 | 546 |
min = c; |
517 | 547 |
min_arc = e; |
518 | 548 |
} |
519 | 549 |
if (_curr_length == _list_length) break; |
520 | 550 |
} |
521 | 551 |
} |
522 | 552 |
} |
523 | 553 |
if (_curr_length == 0) return false; |
524 | 554 |
_minor_count = 1; |
525 | 555 |
_in_arc = min_arc; |
526 | 556 |
_next_arc = e; |
527 | 557 |
return true; |
528 | 558 |
} |
529 | 559 |
|
530 | 560 |
}; //class CandidateListPivotRule |
531 | 561 |
|
532 | 562 |
|
533 | 563 |
// Implementation of the Altering Candidate List pivot rule |
534 | 564 |
class AlteringListPivotRule |
535 | 565 |
{ |
536 | 566 |
private: |
537 | 567 |
|
538 | 568 |
// References to the NetworkSimplex class |
539 | 569 |
const IntVector &_source; |
540 | 570 |
const IntVector &_target; |
541 | 571 |
const CostVector &_cost; |
542 | 572 |
const IntVector &_state; |
543 | 573 |
const CostVector &_pi; |
544 | 574 |
int &_in_arc; |
545 | 575 |
int _arc_num; |
546 | 576 |
|
547 | 577 |
// Pivot rule data |
548 | 578 |
int _block_size, _head_length, _curr_length; |
549 | 579 |
int _next_arc; |
550 | 580 |
IntVector _candidates; |
551 | 581 |
CostVector _cand_cost; |
552 | 582 |
|
553 | 583 |
// Functor class to compare arcs during sort of the candidate list |
554 | 584 |
class SortFunc |
555 | 585 |
{ |
556 | 586 |
private: |
557 | 587 |
const CostVector &_map; |
558 | 588 |
public: |
559 | 589 |
SortFunc(const CostVector &map) : _map(map) {} |
560 | 590 |
bool operator()(int left, int right) { |
561 | 591 |
return _map[left] > _map[right]; |
562 | 592 |
} |
563 | 593 |
}; |
564 | 594 |
|
565 | 595 |
SortFunc _sort_func; |
566 | 596 |
|
567 | 597 |
public: |
568 | 598 |
|
569 | 599 |
// Constructor |
570 | 600 |
AlteringListPivotRule(NetworkSimplex &ns) : |
571 | 601 |
_source(ns._source), _target(ns._target), |
572 | 602 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
573 | 603 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), |
574 | 604 |
_next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost) |
575 | 605 |
{ |
576 | 606 |
// The main parameters of the pivot rule |
577 | 607 |
const double BLOCK_SIZE_FACTOR = 1.5; |
578 | 608 |
const int MIN_BLOCK_SIZE = 10; |
579 | 609 |
const double HEAD_LENGTH_FACTOR = 0.1; |
580 | 610 |
const int MIN_HEAD_LENGTH = 3; |
581 | 611 |
|
582 | 612 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
583 | 613 |
std::sqrt(double(_arc_num))), |
584 | 614 |
MIN_BLOCK_SIZE ); |
585 | 615 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
586 | 616 |
MIN_HEAD_LENGTH ); |
587 | 617 |
_candidates.resize(_head_length + _block_size); |
588 | 618 |
_curr_length = 0; |
589 | 619 |
} |
590 | 620 |
|
591 | 621 |
// Find next entering arc |
592 | 622 |
bool findEnteringArc() { |
593 | 623 |
// Check the current candidate list |
594 | 624 |
int e; |
595 | 625 |
for (int i = 0; i < _curr_length; ++i) { |
596 | 626 |
e = _candidates[i]; |
597 | 627 |
_cand_cost[e] = _state[e] * |
598 | 628 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
599 | 629 |
if (_cand_cost[e] >= 0) { |
600 | 630 |
_candidates[i--] = _candidates[--_curr_length]; |
601 | 631 |
} |
602 | 632 |
} |
603 | 633 |
|
604 | 634 |
// Extend the list |
605 | 635 |
int cnt = _block_size; |
606 | 636 |
int last_arc = 0; |
607 | 637 |
int limit = _head_length; |
608 | 638 |
|
609 | 639 |
for (int e = _next_arc; e < _arc_num; ++e) { |
610 | 640 |
_cand_cost[e] = _state[e] * |
611 | 641 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
612 | 642 |
if (_cand_cost[e] < 0) { |
613 | 643 |
_candidates[_curr_length++] = e; |
614 | 644 |
last_arc = e; |
615 | 645 |
} |
616 | 646 |
if (--cnt == 0) { |
617 | 647 |
if (_curr_length > limit) break; |
618 | 648 |
limit = 0; |
619 | 649 |
cnt = _block_size; |
620 | 650 |
} |
621 | 651 |
} |
622 | 652 |
if (_curr_length <= limit) { |
623 | 653 |
for (int e = 0; e < _next_arc; ++e) { |
624 | 654 |
_cand_cost[e] = _state[e] * |
625 | 655 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
626 | 656 |
if (_cand_cost[e] < 0) { |
627 | 657 |
_candidates[_curr_length++] = e; |
628 | 658 |
last_arc = e; |
629 | 659 |
} |
630 | 660 |
if (--cnt == 0) { |
631 | 661 |
if (_curr_length > limit) break; |
632 | 662 |
limit = 0; |
633 | 663 |
cnt = _block_size; |
634 | 664 |
} |
635 | 665 |
} |
636 | 666 |
} |
637 | 667 |
if (_curr_length == 0) return false; |
638 | 668 |
_next_arc = last_arc + 1; |
639 | 669 |
|
640 | 670 |
// Make heap of the candidate list (approximating a partial sort) |
641 | 671 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
642 | 672 |
_sort_func ); |
643 | 673 |
|
644 | 674 |
// Pop the first element of the heap |
645 | 675 |
_in_arc = _candidates[0]; |
646 | 676 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
647 | 677 |
_sort_func ); |
648 | 678 |
_curr_length = std::min(_head_length, _curr_length - 1); |
649 | 679 |
return true; |
650 | 680 |
} |
651 | 681 |
|
652 | 682 |
}; //class AlteringListPivotRule |
653 | 683 |
|
654 | 684 |
public: |
655 | 685 |
|
656 | 686 |
/// \brief Constructor. |
657 | 687 |
/// |
658 | 688 |
/// The constructor of the class. |
659 | 689 |
/// |
660 | 690 |
/// \param graph The digraph the algorithm runs on. |
661 | 691 |
NetworkSimplex(const GR& graph) : |
662 | 692 |
_graph(graph), |
663 | 693 |
_plower(NULL), _pupper(NULL), _pcost(NULL), |
664 |
_psupply(NULL), _pstsup(false), |
|
694 |
_psupply(NULL), _pstsup(false), _stype(GEQ), |
|
665 | 695 |
_flow_map(NULL), _potential_map(NULL), |
666 | 696 |
_local_flow(false), _local_potential(false), |
667 |
_node_id(graph) |
|
697 |
_node_id(graph), |
|
698 |
INF(std::numeric_limits<Flow>::has_infinity ? |
|
699 |
std::numeric_limits<Flow>::infinity() : |
|
700 |
std::numeric_limits<Flow>::max()) |
|
668 | 701 |
{ |
669 |
LEMON_ASSERT(std::numeric_limits<Flow>::is_integer && |
|
670 |
std::numeric_limits<Flow>::is_signed, |
|
671 |
"The flow type of NetworkSimplex must be signed integer"); |
|
672 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_integer && |
|
673 |
std::numeric_limits<Cost>::is_signed, |
|
674 |
"The cost type of NetworkSimplex must be signed integer"); |
|
702 |
// Check the value types |
|
703 |
LEMON_ASSERT(std::numeric_limits<Flow>::is_signed, |
|
704 |
"The flow type of NetworkSimplex must be signed"); |
|
705 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
|
706 |
"The cost type of NetworkSimplex must be signed"); |
|
675 | 707 |
} |
676 | 708 |
|
677 | 709 |
/// Destructor. |
678 | 710 |
~NetworkSimplex() { |
679 | 711 |
if (_local_flow) delete _flow_map; |
680 | 712 |
if (_local_potential) delete _potential_map; |
681 | 713 |
} |
682 | 714 |
|
683 | 715 |
/// \name Parameters |
684 | 716 |
/// The parameters of the algorithm can be specified using these |
685 | 717 |
/// functions. |
686 | 718 |
|
687 | 719 |
/// @{ |
688 | 720 |
|
689 | 721 |
/// \brief Set the lower bounds on the arcs. |
690 | 722 |
/// |
691 | 723 |
/// This function sets the lower bounds on the arcs. |
692 |
/// If neither this function nor \ref boundMaps() is used before |
|
693 |
/// calling \ref run(), the lower bounds will be set to zero |
|
694 |
/// |
|
724 |
/// If it is not used before calling \ref run(), the lower bounds |
|
725 |
/// will be set to zero on all arcs. |
|
695 | 726 |
/// |
696 | 727 |
/// \param map An arc map storing the lower bounds. |
697 | 728 |
/// Its \c Value type must be convertible to the \c Flow type |
698 | 729 |
/// of the algorithm. |
699 | 730 |
/// |
700 | 731 |
/// \return <tt>(*this)</tt> |
701 |
template <typename LOWER> |
|
702 |
NetworkSimplex& lowerMap(const LOWER& map) { |
|
732 |
template <typename LowerMap> |
|
733 |
NetworkSimplex& lowerMap(const LowerMap& map) { |
|
703 | 734 |
delete _plower; |
704 | 735 |
_plower = new FlowArcMap(_graph); |
705 | 736 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
706 | 737 |
(*_plower)[a] = map[a]; |
707 | 738 |
} |
708 | 739 |
return *this; |
709 | 740 |
} |
710 | 741 |
|
711 | 742 |
/// \brief Set the upper bounds (capacities) on the arcs. |
712 | 743 |
/// |
713 | 744 |
/// This function sets the upper bounds (capacities) on the arcs. |
714 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
715 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
716 |
/// the upper bounds (capacities) will be set to |
|
717 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
|
745 |
/// If it is not used before calling \ref run(), the upper bounds |
|
746 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
|
747 |
/// unbounded from above on each arc). |
|
718 | 748 |
/// |
719 | 749 |
/// \param map An arc map storing the upper bounds. |
720 | 750 |
/// Its \c Value type must be convertible to the \c Flow type |
721 | 751 |
/// of the algorithm. |
722 | 752 |
/// |
723 | 753 |
/// \return <tt>(*this)</tt> |
724 |
template<typename UPPER> |
|
725 |
NetworkSimplex& upperMap(const UPPER& map) { |
|
754 |
template<typename UpperMap> |
|
755 |
NetworkSimplex& upperMap(const UpperMap& map) { |
|
726 | 756 |
delete _pupper; |
727 | 757 |
_pupper = new FlowArcMap(_graph); |
728 | 758 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
729 | 759 |
(*_pupper)[a] = map[a]; |
730 | 760 |
} |
731 | 761 |
return *this; |
732 | 762 |
} |
733 | 763 |
|
734 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
735 |
/// |
|
736 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
737 |
/// It is just an alias for \ref upperMap(). |
|
738 |
/// |
|
739 |
/// \return <tt>(*this)</tt> |
|
740 |
template<typename CAP> |
|
741 |
NetworkSimplex& capacityMap(const CAP& map) { |
|
742 |
return upperMap(map); |
|
743 |
} |
|
744 |
|
|
745 |
/// \brief Set the lower and upper bounds on the arcs. |
|
746 |
/// |
|
747 |
/// This function sets the lower and upper bounds on the arcs. |
|
748 |
/// If neither this function nor \ref lowerMap() is used before |
|
749 |
/// calling \ref run(), the lower bounds will be set to zero |
|
750 |
/// on all arcs. |
|
751 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
752 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
753 |
/// the upper bounds (capacities) will be set to |
|
754 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
|
755 |
/// |
|
756 |
/// \param lower An arc map storing the lower bounds. |
|
757 |
/// \param upper An arc map storing the upper bounds. |
|
758 |
/// |
|
759 |
/// The \c Value type of the maps must be convertible to the |
|
760 |
/// \c Flow type of the algorithm. |
|
761 |
/// |
|
762 |
/// \note This function is just a shortcut of calling \ref lowerMap() |
|
763 |
/// and \ref upperMap() separately. |
|
764 |
/// |
|
765 |
/// \return <tt>(*this)</tt> |
|
766 |
template <typename LOWER, typename UPPER> |
|
767 |
NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) { |
|
768 |
return lowerMap(lower).upperMap(upper); |
|
769 |
} |
|
770 |
|
|
771 | 764 |
/// \brief Set the costs of the arcs. |
772 | 765 |
/// |
773 | 766 |
/// This function sets the costs of the arcs. |
774 | 767 |
/// If it is not used before calling \ref run(), the costs |
775 | 768 |
/// will be set to \c 1 on all arcs. |
776 | 769 |
/// |
777 | 770 |
/// \param map An arc map storing the costs. |
778 | 771 |
/// Its \c Value type must be convertible to the \c Cost type |
779 | 772 |
/// of the algorithm. |
780 | 773 |
/// |
781 | 774 |
/// \return <tt>(*this)</tt> |
782 |
template<typename COST> |
|
783 |
NetworkSimplex& costMap(const COST& map) { |
|
775 |
template<typename CostMap> |
|
776 |
NetworkSimplex& costMap(const CostMap& map) { |
|
784 | 777 |
delete _pcost; |
785 | 778 |
_pcost = new CostArcMap(_graph); |
786 | 779 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
787 | 780 |
(*_pcost)[a] = map[a]; |
788 | 781 |
} |
789 | 782 |
return *this; |
790 | 783 |
} |
791 | 784 |
|
792 | 785 |
/// \brief Set the supply values of the nodes. |
793 | 786 |
/// |
794 | 787 |
/// This function sets the supply values of the nodes. |
795 | 788 |
/// If neither this function nor \ref stSupply() is used before |
796 | 789 |
/// calling \ref run(), the supply of each node will be set to zero. |
797 | 790 |
/// (It makes sense only if non-zero lower bounds are given.) |
798 | 791 |
/// |
799 | 792 |
/// \param map A node map storing the supply values. |
800 | 793 |
/// Its \c Value type must be convertible to the \c Flow type |
801 | 794 |
/// of the algorithm. |
802 | 795 |
/// |
803 | 796 |
/// \return <tt>(*this)</tt> |
804 |
template<typename SUP> |
|
805 |
NetworkSimplex& supplyMap(const SUP& map) { |
|
797 |
template<typename SupplyMap> |
|
798 |
NetworkSimplex& supplyMap(const SupplyMap& map) { |
|
806 | 799 |
delete _psupply; |
807 | 800 |
_pstsup = false; |
808 | 801 |
_psupply = new FlowNodeMap(_graph); |
809 | 802 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
810 | 803 |
(*_psupply)[n] = map[n]; |
811 | 804 |
} |
812 | 805 |
return *this; |
813 | 806 |
} |
814 | 807 |
|
815 | 808 |
/// \brief Set single source and target nodes and a supply value. |
816 | 809 |
/// |
817 | 810 |
/// This function sets a single source node and a single target node |
818 | 811 |
/// and the required flow value. |
819 | 812 |
/// If neither this function nor \ref supplyMap() is used before |
820 | 813 |
/// calling \ref run(), the supply of each node will be set to zero. |
821 | 814 |
/// (It makes sense only if non-zero lower bounds are given.) |
822 | 815 |
/// |
816 |
/// Using this function has the same effect as using \ref supplyMap() |
|
817 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
|
818 |
/// assigned to \c t and all other nodes have zero supply value. |
|
819 |
/// |
|
823 | 820 |
/// \param s The source node. |
824 | 821 |
/// \param t The target node. |
825 | 822 |
/// \param k The required amount of flow from node \c s to node \c t |
826 | 823 |
/// (i.e. the supply of \c s and the demand of \c t). |
827 | 824 |
/// |
828 | 825 |
/// \return <tt>(*this)</tt> |
829 | 826 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) { |
830 | 827 |
delete _psupply; |
831 | 828 |
_psupply = NULL; |
832 | 829 |
_pstsup = true; |
833 | 830 |
_psource = s; |
834 | 831 |
_ptarget = t; |
835 | 832 |
_pstflow = k; |
836 | 833 |
return *this; |
837 | 834 |
} |
838 | 835 |
|
839 |
/// \brief Set the |
|
836 |
/// \brief Set the type of the supply constraints. |
|
840 | 837 |
/// |
841 |
/// This function sets the problem type for the algorithm. |
|
842 |
/// If it is not used before calling \ref run(), the \ref GEQ problem |
|
838 |
/// This function sets the type of the supply/demand constraints. |
|
839 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
|
843 | 840 |
/// type will be used. |
844 | 841 |
/// |
845 |
/// For more information see \ref |
|
842 |
/// For more information see \ref SupplyType. |
|
846 | 843 |
/// |
847 | 844 |
/// \return <tt>(*this)</tt> |
848 |
NetworkSimplex& problemType(ProblemType problem_type) { |
|
849 |
_ptype = problem_type; |
|
845 |
NetworkSimplex& supplyType(SupplyType supply_type) { |
|
846 |
_stype = supply_type; |
|
850 | 847 |
return *this; |
851 | 848 |
} |
852 | 849 |
|
853 | 850 |
/// \brief Set the flow map. |
854 | 851 |
/// |
855 | 852 |
/// This function sets the flow map. |
856 | 853 |
/// If it is not used before calling \ref run(), an instance will |
857 | 854 |
/// be allocated automatically. The destructor deallocates this |
858 | 855 |
/// automatically allocated map, of course. |
859 | 856 |
/// |
860 | 857 |
/// \return <tt>(*this)</tt> |
861 | 858 |
NetworkSimplex& flowMap(FlowMap& map) { |
862 | 859 |
if (_local_flow) { |
863 | 860 |
delete _flow_map; |
864 | 861 |
_local_flow = false; |
865 | 862 |
} |
866 | 863 |
_flow_map = ↦ |
867 | 864 |
return *this; |
868 | 865 |
} |
869 | 866 |
|
870 | 867 |
/// \brief Set the potential map. |
871 | 868 |
/// |
872 | 869 |
/// This function sets the potential map, which is used for storing |
873 | 870 |
/// the dual solution. |
874 | 871 |
/// If it is not used before calling \ref run(), an instance will |
875 | 872 |
/// be allocated automatically. The destructor deallocates this |
876 | 873 |
/// automatically allocated map, of course. |
877 | 874 |
/// |
878 | 875 |
/// \return <tt>(*this)</tt> |
879 | 876 |
NetworkSimplex& potentialMap(PotentialMap& map) { |
880 | 877 |
if (_local_potential) { |
881 | 878 |
delete _potential_map; |
882 | 879 |
_local_potential = false; |
883 | 880 |
} |
884 | 881 |
_potential_map = ↦ |
885 | 882 |
return *this; |
886 | 883 |
} |
887 | 884 |
|
888 | 885 |
/// @} |
889 | 886 |
|
890 | 887 |
/// \name Execution Control |
891 | 888 |
/// The algorithm can be executed using \ref run(). |
892 | 889 |
|
893 | 890 |
/// @{ |
894 | 891 |
|
895 | 892 |
/// \brief Run the algorithm. |
896 | 893 |
/// |
897 | 894 |
/// This function runs the algorithm. |
898 | 895 |
/// The paramters can be specified using functions \ref lowerMap(), |
899 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
|
900 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
901 |
/// \ref |
|
896 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
897 |
/// \ref supplyType(), \ref flowMap() and \ref potentialMap(). |
|
902 | 898 |
/// For example, |
903 | 899 |
/// \code |
904 | 900 |
/// NetworkSimplex<ListDigraph> ns(graph); |
905 |
/// ns. |
|
901 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
|
906 | 902 |
/// .supplyMap(sup).run(); |
907 | 903 |
/// \endcode |
908 | 904 |
/// |
909 | 905 |
/// This function can be called more than once. All the parameters |
910 | 906 |
/// that have been given are kept for the next call, unless |
911 | 907 |
/// \ref reset() is called, thus only the modified parameters |
912 | 908 |
/// have to be set again. See \ref reset() for examples. |
913 | 909 |
/// |
914 | 910 |
/// \param pivot_rule The pivot rule that will be used during the |
915 | 911 |
/// algorithm. For more information see \ref PivotRule. |
916 | 912 |
/// |
917 |
/// \return \c true if a feasible flow can be found. |
|
918 |
bool run(PivotRule pivot_rule = BLOCK_SEARCH) { |
|
919 |
|
|
913 |
/// \return \c INFEASIBLE if no feasible flow exists, |
|
914 |
/// \n \c OPTIMAL if the problem has optimal solution |
|
915 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
|
916 |
/// optimal flow and node potentials (primal and dual solutions), |
|
917 |
/// \n \c UNBOUNDED if the objective function of the problem is |
|
918 |
/// unbounded, i.e. there is a directed cycle having negative total |
|
919 |
/// cost and infinite upper bound. |
|
920 |
/// |
|
921 |
/// \see ProblemType, PivotRule |
|
922 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { |
|
923 |
if (!init()) return INFEASIBLE; |
|
924 |
return start(pivot_rule); |
|
920 | 925 |
} |
921 | 926 |
|
922 | 927 |
/// \brief Reset all the parameters that have been given before. |
923 | 928 |
/// |
924 | 929 |
/// This function resets all the paramaters that have been given |
925 | 930 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
926 |
/// \ref capacityMap(), \ref boundMaps(), \ref costMap(), |
|
927 |
/// \ref supplyMap(), \ref stSupply(), \ref problemType(), |
|
931 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(), |
|
928 | 932 |
/// \ref flowMap() and \ref potentialMap(). |
929 | 933 |
/// |
930 | 934 |
/// It is useful for multiple run() calls. If this function is not |
931 | 935 |
/// used, all the parameters given before are kept for the next |
932 | 936 |
/// \ref run() call. |
933 | 937 |
/// |
934 | 938 |
/// For example, |
935 | 939 |
/// \code |
936 | 940 |
/// NetworkSimplex<ListDigraph> ns(graph); |
937 | 941 |
/// |
938 | 942 |
/// // First run |
939 |
/// ns.lowerMap(lower). |
|
943 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
|
940 | 944 |
/// .supplyMap(sup).run(); |
941 | 945 |
/// |
942 | 946 |
/// // Run again with modified cost map (reset() is not called, |
943 | 947 |
/// // so only the cost map have to be set again) |
944 | 948 |
/// cost[e] += 100; |
945 | 949 |
/// ns.costMap(cost).run(); |
946 | 950 |
/// |
947 | 951 |
/// // Run again from scratch using reset() |
948 | 952 |
/// // (the lower bounds will be set to zero on all arcs) |
949 | 953 |
/// ns.reset(); |
950 |
/// ns. |
|
954 |
/// ns.upperMap(capacity).costMap(cost) |
|
951 | 955 |
/// .supplyMap(sup).run(); |
952 | 956 |
/// \endcode |
953 | 957 |
/// |
954 | 958 |
/// \return <tt>(*this)</tt> |
955 | 959 |
NetworkSimplex& reset() { |
956 | 960 |
delete _plower; |
957 | 961 |
delete _pupper; |
958 | 962 |
delete _pcost; |
959 | 963 |
delete _psupply; |
960 | 964 |
_plower = NULL; |
961 | 965 |
_pupper = NULL; |
962 | 966 |
_pcost = NULL; |
963 | 967 |
_psupply = NULL; |
964 | 968 |
_pstsup = false; |
965 |
|
|
969 |
_stype = GEQ; |
|
966 | 970 |
if (_local_flow) delete _flow_map; |
967 | 971 |
if (_local_potential) delete _potential_map; |
968 | 972 |
_flow_map = NULL; |
969 | 973 |
_potential_map = NULL; |
970 | 974 |
_local_flow = false; |
971 | 975 |
_local_potential = false; |
972 | 976 |
|
973 | 977 |
return *this; |
974 | 978 |
} |
975 | 979 |
|
976 | 980 |
/// @} |
977 | 981 |
|
978 | 982 |
/// \name Query Functions |
979 | 983 |
/// The results of the algorithm can be obtained using these |
980 | 984 |
/// functions.\n |
981 | 985 |
/// The \ref run() function must be called before using them. |
982 | 986 |
|
983 | 987 |
/// @{ |
984 | 988 |
|
985 | 989 |
/// \brief Return the total cost of the found flow. |
986 | 990 |
/// |
987 | 991 |
/// This function returns the total cost of the found flow. |
988 |
/// |
|
992 |
/// Its complexity is O(e). |
|
989 | 993 |
/// |
990 | 994 |
/// \note The return type of the function can be specified as a |
991 | 995 |
/// template parameter. For example, |
992 | 996 |
/// \code |
993 | 997 |
/// ns.totalCost<double>(); |
994 | 998 |
/// \endcode |
995 | 999 |
/// It is useful if the total cost cannot be stored in the \c Cost |
996 | 1000 |
/// type of the algorithm, which is the default return type of the |
997 | 1001 |
/// function. |
998 | 1002 |
/// |
999 | 1003 |
/// \pre \ref run() must be called before using this function. |
1000 |
template <typename Num> |
|
1001 |
Num totalCost() const { |
|
1002 |
|
|
1004 |
template <typename Value> |
|
1005 |
Value totalCost() const { |
|
1006 |
Value c = 0; |
|
1003 | 1007 |
if (_pcost) { |
1004 | 1008 |
for (ArcIt e(_graph); e != INVALID; ++e) |
1005 | 1009 |
c += (*_flow_map)[e] * (*_pcost)[e]; |
1006 | 1010 |
} else { |
1007 | 1011 |
for (ArcIt e(_graph); e != INVALID; ++e) |
1008 | 1012 |
c += (*_flow_map)[e]; |
1009 | 1013 |
} |
1010 | 1014 |
return c; |
1011 | 1015 |
} |
1012 | 1016 |
|
1013 | 1017 |
#ifndef DOXYGEN |
1014 | 1018 |
Cost totalCost() const { |
1015 | 1019 |
return totalCost<Cost>(); |
1016 | 1020 |
} |
1017 | 1021 |
#endif |
1018 | 1022 |
|
1019 | 1023 |
/// \brief Return the flow on the given arc. |
1020 | 1024 |
/// |
1021 | 1025 |
/// This function returns the flow on the given arc. |
1022 | 1026 |
/// |
1023 | 1027 |
/// \pre \ref run() must be called before using this function. |
1024 | 1028 |
Flow flow(const Arc& a) const { |
1025 | 1029 |
return (*_flow_map)[a]; |
1026 | 1030 |
} |
1027 | 1031 |
|
1028 | 1032 |
/// \brief Return a const reference to the flow map. |
1029 | 1033 |
/// |
1030 | 1034 |
/// This function returns a const reference to an arc map storing |
1031 | 1035 |
/// the found flow. |
1032 | 1036 |
/// |
1033 | 1037 |
/// \pre \ref run() must be called before using this function. |
1034 | 1038 |
const FlowMap& flowMap() const { |
1035 | 1039 |
return *_flow_map; |
1036 | 1040 |
} |
1037 | 1041 |
|
1038 | 1042 |
/// \brief Return the potential (dual value) of the given node. |
1039 | 1043 |
/// |
1040 | 1044 |
/// This function returns the potential (dual value) of the |
1041 | 1045 |
/// given node. |
1042 | 1046 |
/// |
1043 | 1047 |
/// \pre \ref run() must be called before using this function. |
1044 | 1048 |
Cost potential(const Node& n) const { |
1045 | 1049 |
return (*_potential_map)[n]; |
1046 | 1050 |
} |
1047 | 1051 |
|
1048 | 1052 |
/// \brief Return a const reference to the potential map |
1049 | 1053 |
/// (the dual solution). |
1050 | 1054 |
/// |
1051 | 1055 |
/// This function returns a const reference to a node map storing |
1052 | 1056 |
/// the found potentials, which form the dual solution of the |
1053 |
/// \ref min_cost_flow "minimum cost flow" |
|
1057 |
/// \ref min_cost_flow "minimum cost flow problem". |
|
1054 | 1058 |
/// |
1055 | 1059 |
/// \pre \ref run() must be called before using this function. |
1056 | 1060 |
const PotentialMap& potentialMap() const { |
1057 | 1061 |
return *_potential_map; |
1058 | 1062 |
} |
1059 | 1063 |
|
1060 | 1064 |
/// @} |
1061 | 1065 |
|
1062 | 1066 |
private: |
1063 | 1067 |
|
1064 | 1068 |
// Initialize internal data structures |
1065 | 1069 |
bool init() { |
1066 | 1070 |
// Initialize result maps |
1067 | 1071 |
if (!_flow_map) { |
1068 | 1072 |
_flow_map = new FlowMap(_graph); |
1069 | 1073 |
_local_flow = true; |
1070 | 1074 |
} |
1071 | 1075 |
if (!_potential_map) { |
1072 | 1076 |
_potential_map = new PotentialMap(_graph); |
1073 | 1077 |
_local_potential = true; |
1074 | 1078 |
} |
1075 | 1079 |
|
1076 | 1080 |
// Initialize vectors |
1077 | 1081 |
_node_num = countNodes(_graph); |
1078 | 1082 |
_arc_num = countArcs(_graph); |
1079 | 1083 |
int all_node_num = _node_num + 1; |
1080 | 1084 |
int all_arc_num = _arc_num + _node_num; |
1081 | 1085 |
if (_node_num == 0) return false; |
1082 | 1086 |
|
1083 | 1087 |
_arc_ref.resize(_arc_num); |
1084 | 1088 |
_source.resize(all_arc_num); |
1085 | 1089 |
_target.resize(all_arc_num); |
1086 | 1090 |
|
1087 | 1091 |
_cap.resize(all_arc_num); |
1088 | 1092 |
_cost.resize(all_arc_num); |
1089 | 1093 |
_supply.resize(all_node_num); |
1090 | 1094 |
_flow.resize(all_arc_num); |
1091 | 1095 |
_pi.resize(all_node_num); |
1092 | 1096 |
|
1093 | 1097 |
_parent.resize(all_node_num); |
1094 | 1098 |
_pred.resize(all_node_num); |
1095 | 1099 |
_forward.resize(all_node_num); |
1096 | 1100 |
_thread.resize(all_node_num); |
1097 | 1101 |
_rev_thread.resize(all_node_num); |
1098 | 1102 |
_succ_num.resize(all_node_num); |
1099 | 1103 |
_last_succ.resize(all_node_num); |
1100 | 1104 |
_state.resize(all_arc_num); |
1101 | 1105 |
|
1102 | 1106 |
// Initialize node related data |
1103 | 1107 |
bool valid_supply = true; |
1104 |
|
|
1108 |
_sum_supply = 0; |
|
1105 | 1109 |
if (!_pstsup && !_psupply) { |
1106 | 1110 |
_pstsup = true; |
1107 | 1111 |
_psource = _ptarget = NodeIt(_graph); |
1108 | 1112 |
_pstflow = 0; |
1109 | 1113 |
} |
1110 | 1114 |
if (_psupply) { |
1111 | 1115 |
int i = 0; |
1112 | 1116 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
1113 | 1117 |
_node_id[n] = i; |
1114 | 1118 |
_supply[i] = (*_psupply)[n]; |
1115 |
|
|
1119 |
_sum_supply += _supply[i]; |
|
1116 | 1120 |
} |
1117 |
valid_supply = (_ptype == GEQ && sum_supply <= 0) || |
|
1118 |
(_ptype == LEQ && sum_supply >= 0); |
|
1121 |
valid_supply = (_stype == GEQ && _sum_supply <= 0) || |
|
1122 |
(_stype == LEQ && _sum_supply >= 0); |
|
1119 | 1123 |
} else { |
1120 | 1124 |
int i = 0; |
1121 | 1125 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
1122 | 1126 |
_node_id[n] = i; |
1123 | 1127 |
_supply[i] = 0; |
1124 | 1128 |
} |
1125 | 1129 |
_supply[_node_id[_psource]] = _pstflow; |
1126 | 1130 |
_supply[_node_id[_ptarget]] = -_pstflow; |
1127 | 1131 |
} |
1128 | 1132 |
if (!valid_supply) return false; |
1129 | 1133 |
|
1130 |
// Infinite capacity value |
|
1131 |
Flow inf_cap = |
|
1132 |
std::numeric_limits<Flow>::has_infinity ? |
|
1133 |
std::numeric_limits<Flow>::infinity() : |
|
1134 |
std::numeric_limits<Flow>::max(); |
|
1135 |
|
|
1136 | 1134 |
// Initialize artifical cost |
1137 |
Cost |
|
1135 |
Cost ART_COST; |
|
1138 | 1136 |
if (std::numeric_limits<Cost>::is_exact) { |
1139 |
|
|
1137 |
ART_COST = std::numeric_limits<Cost>::max() / 4 + 1; |
|
1140 | 1138 |
} else { |
1141 |
|
|
1139 |
ART_COST = std::numeric_limits<Cost>::min(); |
|
1142 | 1140 |
for (int i = 0; i != _arc_num; ++i) { |
1143 |
if (_cost[i] > |
|
1141 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
|
1144 | 1142 |
} |
1145 |
|
|
1143 |
ART_COST = (ART_COST + 1) * _node_num; |
|
1146 | 1144 |
} |
1147 | 1145 |
|
1148 |
// Run Circulation to check if a feasible solution exists |
|
1149 |
typedef ConstMap<Arc, Flow> ConstArcMap; |
|
1150 |
ConstArcMap zero_arc_map(0), inf_arc_map(inf_cap); |
|
1151 |
FlowNodeMap *csup = NULL; |
|
1152 |
bool local_csup = false; |
|
1153 |
if (_psupply) { |
|
1154 |
csup = _psupply; |
|
1155 |
} else { |
|
1156 |
csup = new FlowNodeMap(_graph, 0); |
|
1157 |
(*csup)[_psource] = _pstflow; |
|
1158 |
(*csup)[_ptarget] = -_pstflow; |
|
1159 |
local_csup = true; |
|
1160 |
} |
|
1161 |
bool circ_result = false; |
|
1162 |
if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) { |
|
1163 |
// GEQ problem type |
|
1164 |
if (_plower) { |
|
1165 |
if (_pupper) { |
|
1166 |
Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap> |
|
1167 |
circ(_graph, *_plower, *_pupper, *csup); |
|
1168 |
circ_result = circ.run(); |
|
1169 |
} else { |
|
1170 |
Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap> |
|
1171 |
circ(_graph, *_plower, inf_arc_map, *csup); |
|
1172 |
circ_result = circ.run(); |
|
1173 |
} |
|
1174 |
} else { |
|
1175 |
if (_pupper) { |
|
1176 |
Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap> |
|
1177 |
circ(_graph, zero_arc_map, *_pupper, *csup); |
|
1178 |
circ_result = circ.run(); |
|
1179 |
} else { |
|
1180 |
Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap> |
|
1181 |
circ(_graph, zero_arc_map, inf_arc_map, *csup); |
|
1182 |
circ_result = circ.run(); |
|
1183 |
} |
|
1184 |
} |
|
1185 |
} else { |
|
1186 |
// LEQ problem type |
|
1187 |
typedef ReverseDigraph<const GR> RevGraph; |
|
1188 |
typedef NegMap<FlowNodeMap> NegNodeMap; |
|
1189 |
RevGraph rgraph(_graph); |
|
1190 |
NegNodeMap neg_csup(*csup); |
|
1191 |
if (_plower) { |
|
1192 |
if (_pupper) { |
|
1193 |
Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap> |
|
1194 |
circ(rgraph, *_plower, *_pupper, neg_csup); |
|
1195 |
circ_result = circ.run(); |
|
1196 |
} else { |
|
1197 |
Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap> |
|
1198 |
circ(rgraph, *_plower, inf_arc_map, neg_csup); |
|
1199 |
circ_result = circ.run(); |
|
1200 |
} |
|
1201 |
} else { |
|
1202 |
if (_pupper) { |
|
1203 |
Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap> |
|
1204 |
circ(rgraph, zero_arc_map, *_pupper, neg_csup); |
|
1205 |
circ_result = circ.run(); |
|
1206 |
} else { |
|
1207 |
Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap> |
|
1208 |
circ(rgraph, zero_arc_map, inf_arc_map, neg_csup); |
|
1209 |
circ_result = circ.run(); |
|
1210 |
} |
|
1211 |
} |
|
1212 |
} |
|
1213 |
if (local_csup) delete csup; |
|
1214 |
if (!circ_result) return false; |
|
1215 |
|
|
1216 | 1146 |
// Set data for the artificial root node |
1217 | 1147 |
_root = _node_num; |
1218 | 1148 |
_parent[_root] = -1; |
1219 | 1149 |
_pred[_root] = -1; |
1220 | 1150 |
_thread[_root] = 0; |
1221 | 1151 |
_rev_thread[0] = _root; |
1222 | 1152 |
_succ_num[_root] = all_node_num; |
1223 | 1153 |
_last_succ[_root] = _root - 1; |
1224 |
_supply[_root] = -sum_supply; |
|
1225 |
if (sum_supply < 0) { |
|
1226 |
|
|
1154 |
_supply[_root] = -_sum_supply; |
|
1155 |
if (_sum_supply < 0) { |
|
1156 |
_pi[_root] = -ART_COST; |
|
1227 | 1157 |
} else { |
1228 |
_pi[_root] = |
|
1158 |
_pi[_root] = ART_COST; |
|
1229 | 1159 |
} |
1230 | 1160 |
|
1231 | 1161 |
// Store the arcs in a mixed order |
1232 | 1162 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
1233 | 1163 |
int i = 0; |
1234 | 1164 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
1235 | 1165 |
_arc_ref[i] = e; |
1236 | 1166 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
1237 | 1167 |
} |
1238 | 1168 |
|
1239 | 1169 |
// Initialize arc maps |
1240 | 1170 |
if (_pupper && _pcost) { |
1241 | 1171 |
for (int i = 0; i != _arc_num; ++i) { |
1242 | 1172 |
Arc e = _arc_ref[i]; |
1243 | 1173 |
_source[i] = _node_id[_graph.source(e)]; |
1244 | 1174 |
_target[i] = _node_id[_graph.target(e)]; |
1245 | 1175 |
_cap[i] = (*_pupper)[e]; |
1246 | 1176 |
_cost[i] = (*_pcost)[e]; |
1247 | 1177 |
_flow[i] = 0; |
1248 | 1178 |
_state[i] = STATE_LOWER; |
1249 | 1179 |
} |
1250 | 1180 |
} else { |
1251 | 1181 |
for (int i = 0; i != _arc_num; ++i) { |
1252 | 1182 |
Arc e = _arc_ref[i]; |
1253 | 1183 |
_source[i] = _node_id[_graph.source(e)]; |
1254 | 1184 |
_target[i] = _node_id[_graph.target(e)]; |
1255 | 1185 |
_flow[i] = 0; |
1256 | 1186 |
_state[i] = STATE_LOWER; |
1257 | 1187 |
} |
1258 | 1188 |
if (_pupper) { |
1259 | 1189 |
for (int i = 0; i != _arc_num; ++i) |
1260 | 1190 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
1261 | 1191 |
} else { |
1262 | 1192 |
for (int i = 0; i != _arc_num; ++i) |
1263 |
_cap[i] = |
|
1193 |
_cap[i] = INF; |
|
1264 | 1194 |
} |
1265 | 1195 |
if (_pcost) { |
1266 | 1196 |
for (int i = 0; i != _arc_num; ++i) |
1267 | 1197 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
1268 | 1198 |
} else { |
1269 | 1199 |
for (int i = 0; i != _arc_num; ++i) |
1270 | 1200 |
_cost[i] = 1; |
1271 | 1201 |
} |
1272 | 1202 |
} |
1273 | 1203 |
|
1274 | 1204 |
// Remove non-zero lower bounds |
1275 | 1205 |
if (_plower) { |
1276 | 1206 |
for (int i = 0; i != _arc_num; ++i) { |
1277 | 1207 |
Flow c = (*_plower)[_arc_ref[i]]; |
1278 |
if (c != 0) { |
|
1279 |
_cap[i] -= c; |
|
1208 |
if (c > 0) { |
|
1209 |
if (_cap[i] < INF) _cap[i] -= c; |
|
1210 |
_supply[_source[i]] -= c; |
|
1211 |
_supply[_target[i]] += c; |
|
1212 |
} |
|
1213 |
else if (c < 0) { |
|
1214 |
if (_cap[i] < INF + c) { |
|
1215 |
_cap[i] -= c; |
|
1216 |
} else { |
|
1217 |
_cap[i] = INF; |
|
1218 |
} |
|
1280 | 1219 |
_supply[_source[i]] -= c; |
1281 | 1220 |
_supply[_target[i]] += c; |
1282 | 1221 |
} |
1283 | 1222 |
} |
1284 | 1223 |
} |
1285 | 1224 |
|
1286 | 1225 |
// Add artificial arcs and initialize the spanning tree data structure |
1287 | 1226 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1288 | 1227 |
_thread[u] = u + 1; |
1289 | 1228 |
_rev_thread[u + 1] = u; |
1290 | 1229 |
_succ_num[u] = 1; |
1291 | 1230 |
_last_succ[u] = u; |
1292 | 1231 |
_parent[u] = _root; |
1293 | 1232 |
_pred[u] = e; |
1294 |
_cost[e] = art_cost; |
|
1295 |
_cap[e] = inf_cap; |
|
1233 |
_cost[e] = ART_COST; |
|
1234 |
_cap[e] = INF; |
|
1296 | 1235 |
_state[e] = STATE_TREE; |
1297 |
if (_supply[u] > 0 || (_supply[u] == 0 && |
|
1236 |
if (_supply[u] > 0 || (_supply[u] == 0 && _sum_supply <= 0)) { |
|
1298 | 1237 |
_flow[e] = _supply[u]; |
1299 | 1238 |
_forward[u] = true; |
1300 |
_pi[u] = - |
|
1239 |
_pi[u] = -ART_COST + _pi[_root]; |
|
1301 | 1240 |
} else { |
1302 | 1241 |
_flow[e] = -_supply[u]; |
1303 | 1242 |
_forward[u] = false; |
1304 |
_pi[u] = |
|
1243 |
_pi[u] = ART_COST + _pi[_root]; |
|
1305 | 1244 |
} |
1306 | 1245 |
} |
1307 | 1246 |
|
1308 | 1247 |
return true; |
1309 | 1248 |
} |
1310 | 1249 |
|
1311 | 1250 |
// Find the join node |
1312 | 1251 |
void findJoinNode() { |
1313 | 1252 |
int u = _source[in_arc]; |
1314 | 1253 |
int v = _target[in_arc]; |
1315 | 1254 |
while (u != v) { |
1316 | 1255 |
if (_succ_num[u] < _succ_num[v]) { |
1317 | 1256 |
u = _parent[u]; |
1318 | 1257 |
} else { |
1319 | 1258 |
v = _parent[v]; |
1320 | 1259 |
} |
1321 | 1260 |
} |
1322 | 1261 |
join = u; |
1323 | 1262 |
} |
1324 | 1263 |
|
1325 | 1264 |
// Find the leaving arc of the cycle and returns true if the |
1326 | 1265 |
// leaving arc is not the same as the entering arc |
1327 | 1266 |
bool findLeavingArc() { |
1328 | 1267 |
// Initialize first and second nodes according to the direction |
1329 | 1268 |
// of the cycle |
1330 | 1269 |
if (_state[in_arc] == STATE_LOWER) { |
1331 | 1270 |
first = _source[in_arc]; |
1332 | 1271 |
second = _target[in_arc]; |
1333 | 1272 |
} else { |
1334 | 1273 |
first = _target[in_arc]; |
1335 | 1274 |
second = _source[in_arc]; |
1336 | 1275 |
} |
1337 | 1276 |
delta = _cap[in_arc]; |
1338 | 1277 |
int result = 0; |
1339 | 1278 |
Flow d; |
1340 | 1279 |
int e; |
1341 | 1280 |
|
1342 | 1281 |
// Search the cycle along the path form the first node to the root |
1343 | 1282 |
for (int u = first; u != join; u = _parent[u]) { |
1344 | 1283 |
e = _pred[u]; |
1345 |
d = _forward[u] ? |
|
1284 |
d = _forward[u] ? |
|
1285 |
_flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]); |
|
1346 | 1286 |
if (d < delta) { |
1347 | 1287 |
delta = d; |
1348 | 1288 |
u_out = u; |
1349 | 1289 |
result = 1; |
1350 | 1290 |
} |
1351 | 1291 |
} |
1352 | 1292 |
// Search the cycle along the path form the second node to the root |
1353 | 1293 |
for (int u = second; u != join; u = _parent[u]) { |
1354 | 1294 |
e = _pred[u]; |
1355 |
d = _forward[u] ? |
|
1295 |
d = _forward[u] ? |
|
1296 |
(_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e]; |
|
1356 | 1297 |
if (d <= delta) { |
1357 | 1298 |
delta = d; |
1358 | 1299 |
u_out = u; |
1359 | 1300 |
result = 2; |
1360 | 1301 |
} |
1361 | 1302 |
} |
1362 | 1303 |
|
1363 | 1304 |
if (result == 1) { |
1364 | 1305 |
u_in = first; |
1365 | 1306 |
v_in = second; |
1366 | 1307 |
} else { |
1367 | 1308 |
u_in = second; |
1368 | 1309 |
v_in = first; |
1369 | 1310 |
} |
1370 | 1311 |
return result != 0; |
1371 | 1312 |
} |
1372 | 1313 |
|
1373 | 1314 |
// Change _flow and _state vectors |
1374 | 1315 |
void changeFlow(bool change) { |
1375 | 1316 |
// Augment along the cycle |
1376 | 1317 |
if (delta > 0) { |
1377 | 1318 |
Flow val = _state[in_arc] * delta; |
1378 | 1319 |
_flow[in_arc] += val; |
1379 | 1320 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
1380 | 1321 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
1381 | 1322 |
} |
1382 | 1323 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
1383 | 1324 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
1384 | 1325 |
} |
1385 | 1326 |
} |
1386 | 1327 |
// Update the state of the entering and leaving arcs |
1387 | 1328 |
if (change) { |
1388 | 1329 |
_state[in_arc] = STATE_TREE; |
1389 | 1330 |
_state[_pred[u_out]] = |
1390 | 1331 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
1391 | 1332 |
} else { |
1392 | 1333 |
_state[in_arc] = -_state[in_arc]; |
1393 | 1334 |
} |
1394 | 1335 |
} |
1395 | 1336 |
|
1396 | 1337 |
// Update the tree structure |
1397 | 1338 |
void updateTreeStructure() { |
1398 | 1339 |
int u, w; |
1399 | 1340 |
int old_rev_thread = _rev_thread[u_out]; |
1400 | 1341 |
int old_succ_num = _succ_num[u_out]; |
1401 | 1342 |
int old_last_succ = _last_succ[u_out]; |
1402 | 1343 |
v_out = _parent[u_out]; |
1403 | 1344 |
|
1404 | 1345 |
u = _last_succ[u_in]; // the last successor of u_in |
1405 | 1346 |
right = _thread[u]; // the node after it |
1406 | 1347 |
|
1407 | 1348 |
// Handle the case when old_rev_thread equals to v_in |
1408 | 1349 |
// (it also means that join and v_out coincide) |
1409 | 1350 |
if (old_rev_thread == v_in) { |
1410 | 1351 |
last = _thread[_last_succ[u_out]]; |
1411 | 1352 |
} else { |
1412 | 1353 |
last = _thread[v_in]; |
1413 | 1354 |
} |
1414 | 1355 |
|
1415 | 1356 |
// Update _thread and _parent along the stem nodes (i.e. the nodes |
1416 | 1357 |
// between u_in and u_out, whose parent have to be changed) |
1417 | 1358 |
_thread[v_in] = stem = u_in; |
1418 | 1359 |
_dirty_revs.clear(); |
1419 | 1360 |
_dirty_revs.push_back(v_in); |
1420 | 1361 |
par_stem = v_in; |
1421 | 1362 |
while (stem != u_out) { |
1422 | 1363 |
// Insert the next stem node into the thread list |
1423 | 1364 |
new_stem = _parent[stem]; |
1424 | 1365 |
_thread[u] = new_stem; |
1425 | 1366 |
_dirty_revs.push_back(u); |
1426 | 1367 |
|
1427 | 1368 |
// Remove the subtree of stem from the thread list |
1428 | 1369 |
w = _rev_thread[stem]; |
1429 | 1370 |
_thread[w] = right; |
1430 | 1371 |
_rev_thread[right] = w; |
1431 | 1372 |
|
1432 | 1373 |
// Change the parent node and shift stem nodes |
1433 | 1374 |
_parent[stem] = par_stem; |
1434 | 1375 |
par_stem = stem; |
1435 | 1376 |
stem = new_stem; |
1436 | 1377 |
|
1437 | 1378 |
// Update u and right |
1438 | 1379 |
u = _last_succ[stem] == _last_succ[par_stem] ? |
1439 | 1380 |
_rev_thread[par_stem] : _last_succ[stem]; |
1440 | 1381 |
right = _thread[u]; |
1441 | 1382 |
} |
1442 | 1383 |
_parent[u_out] = par_stem; |
1443 | 1384 |
_thread[u] = last; |
1444 | 1385 |
_rev_thread[last] = u; |
1445 | 1386 |
_last_succ[u_out] = u; |
1446 | 1387 |
|
1447 | 1388 |
// Remove the subtree of u_out from the thread list except for |
1448 | 1389 |
// the case when old_rev_thread equals to v_in |
1449 | 1390 |
// (it also means that join and v_out coincide) |
1450 | 1391 |
if (old_rev_thread != v_in) { |
1451 | 1392 |
_thread[old_rev_thread] = right; |
1452 | 1393 |
_rev_thread[right] = old_rev_thread; |
1453 | 1394 |
} |
1454 | 1395 |
|
1455 | 1396 |
// Update _rev_thread using the new _thread values |
1456 | 1397 |
for (int i = 0; i < int(_dirty_revs.size()); ++i) { |
1457 | 1398 |
u = _dirty_revs[i]; |
1458 | 1399 |
_rev_thread[_thread[u]] = u; |
1459 | 1400 |
} |
1460 | 1401 |
|
1461 | 1402 |
// Update _pred, _forward, _last_succ and _succ_num for the |
1462 | 1403 |
// stem nodes from u_out to u_in |
1463 | 1404 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
1464 | 1405 |
u = u_out; |
1465 | 1406 |
while (u != u_in) { |
1466 | 1407 |
w = _parent[u]; |
1467 | 1408 |
_pred[u] = _pred[w]; |
1468 | 1409 |
_forward[u] = !_forward[w]; |
1469 | 1410 |
tmp_sc += _succ_num[u] - _succ_num[w]; |
1470 | 1411 |
_succ_num[u] = tmp_sc; |
1471 | 1412 |
_last_succ[w] = tmp_ls; |
1472 | 1413 |
u = w; |
1473 | 1414 |
} |
1474 | 1415 |
_pred[u_in] = in_arc; |
1475 | 1416 |
_forward[u_in] = (u_in == _source[in_arc]); |
1476 | 1417 |
_succ_num[u_in] = old_succ_num; |
1477 | 1418 |
|
1478 | 1419 |
// Set limits for updating _last_succ form v_in and v_out |
1479 | 1420 |
// towards the root |
1480 | 1421 |
int up_limit_in = -1; |
1481 | 1422 |
int up_limit_out = -1; |
1482 | 1423 |
if (_last_succ[join] == v_in) { |
1483 | 1424 |
up_limit_out = join; |
1484 | 1425 |
} else { |
1485 | 1426 |
up_limit_in = join; |
1486 | 1427 |
} |
1487 | 1428 |
|
1488 | 1429 |
// Update _last_succ from v_in towards the root |
1489 | 1430 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
1490 | 1431 |
u = _parent[u]) { |
1491 | 1432 |
_last_succ[u] = _last_succ[u_out]; |
1492 | 1433 |
} |
1493 | 1434 |
// Update _last_succ from v_out towards the root |
1494 | 1435 |
if (join != old_rev_thread && v_in != old_rev_thread) { |
1495 | 1436 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1496 | 1437 |
u = _parent[u]) { |
1497 | 1438 |
_last_succ[u] = old_rev_thread; |
1498 | 1439 |
} |
1499 | 1440 |
} else { |
1500 | 1441 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1501 | 1442 |
u = _parent[u]) { |
1502 | 1443 |
_last_succ[u] = _last_succ[u_out]; |
1503 | 1444 |
} |
1504 | 1445 |
} |
1505 | 1446 |
|
1506 | 1447 |
// Update _succ_num from v_in to join |
1507 | 1448 |
for (u = v_in; u != join; u = _parent[u]) { |
1508 | 1449 |
_succ_num[u] += old_succ_num; |
1509 | 1450 |
} |
1510 | 1451 |
// Update _succ_num from v_out to join |
1511 | 1452 |
for (u = v_out; u != join; u = _parent[u]) { |
1512 | 1453 |
_succ_num[u] -= old_succ_num; |
1513 | 1454 |
} |
1514 | 1455 |
} |
1515 | 1456 |
|
1516 | 1457 |
// Update potentials |
1517 | 1458 |
void updatePotential() { |
1518 | 1459 |
Cost sigma = _forward[u_in] ? |
1519 | 1460 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
1520 | 1461 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
1521 | 1462 |
// Update potentials in the subtree, which has been moved |
1522 | 1463 |
int end = _thread[_last_succ[u_in]]; |
1523 | 1464 |
for (int u = u_in; u != end; u = _thread[u]) { |
1524 | 1465 |
_pi[u] += sigma; |
1525 | 1466 |
} |
1526 | 1467 |
} |
1527 | 1468 |
|
1528 | 1469 |
// Execute the algorithm |
1529 |
|
|
1470 |
ProblemType start(PivotRule pivot_rule) { |
|
1530 | 1471 |
// Select the pivot rule implementation |
1531 | 1472 |
switch (pivot_rule) { |
1532 | 1473 |
case FIRST_ELIGIBLE: |
1533 | 1474 |
return start<FirstEligiblePivotRule>(); |
1534 | 1475 |
case BEST_ELIGIBLE: |
1535 | 1476 |
return start<BestEligiblePivotRule>(); |
1536 | 1477 |
case BLOCK_SEARCH: |
1537 | 1478 |
return start<BlockSearchPivotRule>(); |
1538 | 1479 |
case CANDIDATE_LIST: |
1539 | 1480 |
return start<CandidateListPivotRule>(); |
1540 | 1481 |
case ALTERING_LIST: |
1541 | 1482 |
return start<AlteringListPivotRule>(); |
1542 | 1483 |
} |
1543 |
return |
|
1484 |
return INFEASIBLE; // avoid warning |
|
1544 | 1485 |
} |
1545 | 1486 |
|
1546 | 1487 |
template <typename PivotRuleImpl> |
1547 |
|
|
1488 |
ProblemType start() { |
|
1548 | 1489 |
PivotRuleImpl pivot(*this); |
1549 | 1490 |
|
1550 | 1491 |
// Execute the Network Simplex algorithm |
1551 | 1492 |
while (pivot.findEnteringArc()) { |
1552 | 1493 |
findJoinNode(); |
1553 | 1494 |
bool change = findLeavingArc(); |
1495 |
if (delta >= INF) return UNBOUNDED; |
|
1554 | 1496 |
changeFlow(change); |
1555 | 1497 |
if (change) { |
1556 | 1498 |
updateTreeStructure(); |
1557 | 1499 |
updatePotential(); |
1558 | 1500 |
} |
1559 | 1501 |
} |
1502 |
|
|
1503 |
// Check feasibility |
|
1504 |
if (_sum_supply < 0) { |
|
1505 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1506 |
if (_supply[u] >= 0 && _flow[e] != 0) return INFEASIBLE; |
|
1507 |
} |
|
1508 |
} |
|
1509 |
else if (_sum_supply > 0) { |
|
1510 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1511 |
if (_supply[u] <= 0 && _flow[e] != 0) return INFEASIBLE; |
|
1512 |
} |
|
1513 |
} |
|
1514 |
else { |
|
1515 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1516 |
if (_flow[e] != 0) return INFEASIBLE; |
|
1517 |
} |
|
1518 |
} |
|
1560 | 1519 |
|
1561 | 1520 |
// Copy flow values to _flow_map |
1562 | 1521 |
if (_plower) { |
1563 | 1522 |
for (int i = 0; i != _arc_num; ++i) { |
1564 | 1523 |
Arc e = _arc_ref[i]; |
1565 | 1524 |
_flow_map->set(e, (*_plower)[e] + _flow[i]); |
1566 | 1525 |
} |
1567 | 1526 |
} else { |
1568 | 1527 |
for (int i = 0; i != _arc_num; ++i) { |
1569 | 1528 |
_flow_map->set(_arc_ref[i], _flow[i]); |
1570 | 1529 |
} |
1571 | 1530 |
} |
1572 | 1531 |
// Copy potential values to _potential_map |
1573 | 1532 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1574 | 1533 |
_potential_map->set(n, _pi[_node_id[n]]); |
1575 | 1534 |
} |
1576 | 1535 |
|
1577 |
return |
|
1536 |
return OPTIMAL; |
|
1578 | 1537 |
} |
1579 | 1538 |
|
1580 | 1539 |
}; //class NetworkSimplex |
1581 | 1540 |
|
1582 | 1541 |
///@} |
1583 | 1542 |
|
1584 | 1543 |
} //namespace lemon |
1585 | 1544 |
|
1586 | 1545 |
#endif //LEMON_NETWORK_SIMPLEX_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <fstream> |
21 |
#include <limits> |
|
21 | 22 |
|
22 | 23 |
#include <lemon/list_graph.h> |
23 | 24 |
#include <lemon/lgf_reader.h> |
24 | 25 |
|
25 | 26 |
#include <lemon/network_simplex.h> |
26 | 27 |
|
27 | 28 |
#include <lemon/concepts/digraph.h> |
28 | 29 |
#include <lemon/concept_check.h> |
29 | 30 |
|
30 | 31 |
#include "test_tools.h" |
31 | 32 |
|
32 | 33 |
using namespace lemon; |
33 | 34 |
|
34 | 35 |
char test_lgf[] = |
35 | 36 |
"@nodes\n" |
36 |
"label sup1 sup2 sup3 sup4 sup5\n" |
|
37 |
" 1 20 27 0 20 30\n" |
|
38 |
" 2 -4 0 0 -8 -3\n" |
|
39 |
" 3 0 0 0 0 0\n" |
|
40 |
" 4 0 0 0 0 0\n" |
|
41 |
" 5 9 0 0 6 11\n" |
|
42 |
" 6 -6 0 0 -5 -6\n" |
|
43 |
" 7 0 0 0 0 0\n" |
|
44 |
" 8 0 0 0 0 3\n" |
|
45 |
" 9 3 0 0 0 0\n" |
|
46 |
" 10 -2 0 0 -7 -2\n" |
|
47 |
" 11 0 0 0 -10 0\n" |
|
48 |
" 12 -20 -27 0 -30 -20\n" |
|
49 |
"\n" |
|
37 |
"label sup1 sup2 sup3 sup4 sup5 sup6\n" |
|
38 |
" 1 20 27 0 30 20 30\n" |
|
39 |
" 2 -4 0 0 0 -8 -3\n" |
|
40 |
" 3 0 0 0 0 0 0\n" |
|
41 |
" 4 0 0 0 0 0 0\n" |
|
42 |
" 5 9 0 0 0 6 11\n" |
|
43 |
" 6 -6 0 0 0 -5 -6\n" |
|
44 |
" 7 0 0 0 0 0 0\n" |
|
45 |
" 8 0 0 0 0 0 3\n" |
|
46 |
" 9 3 0 0 0 0 0\n" |
|
47 |
" 10 -2 0 0 0 -7 -2\n" |
|
48 |
" 11 0 0 0 0 -10 0\n" |
|
49 |
" 12 -20 -27 0 -30 -30 -20\n" |
|
50 |
"\n" |
|
50 | 51 |
"@arcs\n" |
51 |
" cost cap low1 low2\n" |
|
52 |
" 1 2 70 11 0 8\n" |
|
53 |
" 1 3 150 3 0 1\n" |
|
54 |
" 1 4 80 15 0 2\n" |
|
55 |
" 2 8 80 12 0 0\n" |
|
56 |
" 3 5 140 5 0 3\n" |
|
57 |
" 4 6 60 10 0 1\n" |
|
58 |
" 4 7 80 2 0 0\n" |
|
59 |
" 4 8 110 3 0 0\n" |
|
60 |
" 5 7 60 14 0 0\n" |
|
61 |
" 5 11 120 12 0 0\n" |
|
62 |
" 6 3 0 3 0 0\n" |
|
63 |
" 6 9 140 4 0 0\n" |
|
64 |
" 6 10 90 8 0 0\n" |
|
65 |
" 7 1 30 5 0 0\n" |
|
66 |
" 8 12 60 16 0 4\n" |
|
67 |
" 9 12 50 6 0 0\n" |
|
68 |
"10 12 70 13 0 5\n" |
|
69 |
"10 2 100 7 0 0\n" |
|
70 |
"10 7 60 10 0 0\n" |
|
71 |
"11 10 20 14 0 6\n" |
|
72 |
"12 11 30 10 0 0\n" |
|
52 |
" cost cap low1 low2 low3\n" |
|
53 |
" 1 2 70 11 0 8 8\n" |
|
54 |
" 1 3 150 3 0 1 0\n" |
|
55 |
" 1 4 80 15 0 2 2\n" |
|
56 |
" 2 8 80 12 0 0 0\n" |
|
57 |
" 3 5 140 5 0 3 1\n" |
|
58 |
" 4 6 60 10 0 1 0\n" |
|
59 |
" 4 7 80 2 0 0 0\n" |
|
60 |
" 4 8 110 3 0 0 0\n" |
|
61 |
" 5 7 60 14 0 0 0\n" |
|
62 |
" 5 11 120 12 0 0 0\n" |
|
63 |
" 6 3 0 3 0 0 0\n" |
|
64 |
" 6 9 140 4 0 0 0\n" |
|
65 |
" 6 10 90 8 0 0 0\n" |
|
66 |
" 7 1 30 5 0 0 -5\n" |
|
67 |
" 8 12 60 16 0 4 3\n" |
|
68 |
" 9 12 50 6 0 0 0\n" |
|
69 |
"10 12 70 13 0 5 2\n" |
|
70 |
"10 2 100 7 0 0 0\n" |
|
71 |
"10 7 60 10 0 0 -3\n" |
|
72 |
"11 10 20 14 0 6 -20\n" |
|
73 |
"12 11 30 10 0 0 -10\n" |
|
73 | 74 |
"\n" |
74 | 75 |
"@attributes\n" |
75 | 76 |
"source 1\n" |
76 | 77 |
"target 12\n"; |
77 | 78 |
|
78 | 79 |
|
79 |
enum |
|
80 |
enum SupplyType { |
|
80 | 81 |
EQ, |
81 | 82 |
GEQ, |
82 | 83 |
LEQ |
83 | 84 |
}; |
84 | 85 |
|
85 | 86 |
// Check the interface of an MCF algorithm |
86 | 87 |
template <typename GR, typename Flow, typename Cost> |
87 | 88 |
class McfClassConcept |
88 | 89 |
{ |
89 | 90 |
public: |
90 | 91 |
|
91 | 92 |
template <typename MCF> |
92 | 93 |
struct Constraints { |
93 | 94 |
void constraints() { |
94 | 95 |
checkConcept<concepts::Digraph, GR>(); |
95 | 96 |
|
96 | 97 |
MCF mcf(g); |
97 | 98 |
|
98 | 99 |
b = mcf.reset() |
99 | 100 |
.lowerMap(lower) |
100 | 101 |
.upperMap(upper) |
101 |
.capacityMap(upper) |
|
102 |
.boundMaps(lower, upper) |
|
103 | 102 |
.costMap(cost) |
104 | 103 |
.supplyMap(sup) |
105 | 104 |
.stSupply(n, n, k) |
106 | 105 |
.flowMap(flow) |
107 | 106 |
.potentialMap(pot) |
108 | 107 |
.run(); |
109 | 108 |
|
110 | 109 |
const MCF& const_mcf = mcf; |
111 | 110 |
|
112 | 111 |
const typename MCF::FlowMap &fm = const_mcf.flowMap(); |
113 | 112 |
const typename MCF::PotentialMap &pm = const_mcf.potentialMap(); |
114 | 113 |
|
115 |
|
|
114 |
c = const_mcf.totalCost(); |
|
116 | 115 |
double x = const_mcf.template totalCost<double>(); |
117 | 116 |
v = const_mcf.flow(a); |
118 |
|
|
117 |
c = const_mcf.potential(n); |
|
118 |
|
|
119 |
v = const_mcf.INF; |
|
119 | 120 |
|
120 | 121 |
ignore_unused_variable_warning(fm); |
121 | 122 |
ignore_unused_variable_warning(pm); |
122 | 123 |
ignore_unused_variable_warning(x); |
123 | 124 |
} |
124 | 125 |
|
125 | 126 |
typedef typename GR::Node Node; |
126 | 127 |
typedef typename GR::Arc Arc; |
127 | 128 |
typedef concepts::ReadMap<Node, Flow> NM; |
128 | 129 |
typedef concepts::ReadMap<Arc, Flow> FAM; |
129 | 130 |
typedef concepts::ReadMap<Arc, Cost> CAM; |
130 | 131 |
|
131 | 132 |
const GR &g; |
132 | 133 |
const FAM &lower; |
133 | 134 |
const FAM &upper; |
134 | 135 |
const CAM &cost; |
135 | 136 |
const NM ⊃ |
136 | 137 |
const Node &n; |
137 | 138 |
const Arc &a; |
138 | 139 |
const Flow &k; |
139 | 140 |
Flow v; |
141 |
Cost c; |
|
140 | 142 |
bool b; |
141 | 143 |
|
142 | 144 |
typename MCF::FlowMap &flow; |
143 | 145 |
typename MCF::PotentialMap &pot; |
144 | 146 |
}; |
145 | 147 |
|
146 | 148 |
}; |
147 | 149 |
|
148 | 150 |
|
149 | 151 |
// Check the feasibility of the given flow (primal soluiton) |
150 | 152 |
template < typename GR, typename LM, typename UM, |
151 | 153 |
typename SM, typename FM > |
152 | 154 |
bool checkFlow( const GR& gr, const LM& lower, const UM& upper, |
153 | 155 |
const SM& supply, const FM& flow, |
154 |
|
|
156 |
SupplyType type = EQ ) |
|
155 | 157 |
{ |
156 | 158 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
157 | 159 |
|
158 | 160 |
for (ArcIt e(gr); e != INVALID; ++e) { |
159 | 161 |
if (flow[e] < lower[e] || flow[e] > upper[e]) return false; |
160 | 162 |
} |
161 | 163 |
|
162 | 164 |
for (NodeIt n(gr); n != INVALID; ++n) { |
163 | 165 |
typename SM::Value sum = 0; |
164 | 166 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
165 | 167 |
sum += flow[e]; |
166 | 168 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
167 | 169 |
sum -= flow[e]; |
168 | 170 |
bool b = (type == EQ && sum == supply[n]) || |
169 | 171 |
(type == GEQ && sum >= supply[n]) || |
170 | 172 |
(type == LEQ && sum <= supply[n]); |
171 | 173 |
if (!b) return false; |
172 | 174 |
} |
173 | 175 |
|
174 | 176 |
return true; |
175 | 177 |
} |
176 | 178 |
|
177 | 179 |
// Check the feasibility of the given potentials (dual soluiton) |
178 | 180 |
// using the "Complementary Slackness" optimality condition |
179 | 181 |
template < typename GR, typename LM, typename UM, |
180 | 182 |
typename CM, typename SM, typename FM, typename PM > |
181 | 183 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
182 | 184 |
const CM& cost, const SM& supply, const FM& flow, |
183 | 185 |
const PM& pi ) |
184 | 186 |
{ |
185 | 187 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
186 | 188 |
|
187 | 189 |
bool opt = true; |
188 | 190 |
for (ArcIt e(gr); opt && e != INVALID; ++e) { |
189 | 191 |
typename CM::Value red_cost = |
190 | 192 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
191 | 193 |
opt = red_cost == 0 || |
192 | 194 |
(red_cost > 0 && flow[e] == lower[e]) || |
193 | 195 |
(red_cost < 0 && flow[e] == upper[e]); |
194 | 196 |
} |
195 | 197 |
|
196 | 198 |
for (NodeIt n(gr); opt && n != INVALID; ++n) { |
197 | 199 |
typename SM::Value sum = 0; |
198 | 200 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
199 | 201 |
sum += flow[e]; |
200 | 202 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
201 | 203 |
sum -= flow[e]; |
202 | 204 |
opt = (sum == supply[n]) || (pi[n] == 0); |
203 | 205 |
} |
204 | 206 |
|
205 | 207 |
return opt; |
206 | 208 |
} |
207 | 209 |
|
208 | 210 |
// Run a minimum cost flow algorithm and check the results |
209 | 211 |
template < typename MCF, typename GR, |
210 | 212 |
typename LM, typename UM, |
211 |
typename CM, typename SM > |
|
212 |
void checkMcf( const MCF& mcf, bool mcf_result, |
|
213 |
typename CM, typename SM, |
|
214 |
typename PT > |
|
215 |
void checkMcf( const MCF& mcf, PT mcf_result, |
|
213 | 216 |
const GR& gr, const LM& lower, const UM& upper, |
214 | 217 |
const CM& cost, const SM& supply, |
215 |
bool |
|
218 |
PT result, bool optimal, typename CM::Value total, |
|
216 | 219 |
const std::string &test_id = "", |
217 |
|
|
220 |
SupplyType type = EQ ) |
|
218 | 221 |
{ |
219 | 222 |
check(mcf_result == result, "Wrong result " + test_id); |
220 |
if ( |
|
223 |
if (optimal) { |
|
221 | 224 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type), |
222 | 225 |
"The flow is not feasible " + test_id); |
223 | 226 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
224 | 227 |
check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(), |
225 | 228 |
mcf.potentialMap()), |
226 | 229 |
"Wrong potentials " + test_id); |
227 | 230 |
} |
228 | 231 |
} |
229 | 232 |
|
230 | 233 |
int main() |
231 | 234 |
{ |
232 | 235 |
// Check the interfaces |
233 | 236 |
{ |
234 | 237 |
typedef int Flow; |
235 | 238 |
typedef int Cost; |
236 | 239 |
typedef concepts::Digraph GR; |
237 | 240 |
checkConcept< McfClassConcept<GR, Flow, Cost>, |
238 | 241 |
NetworkSimplex<GR, Flow, Cost> >(); |
239 | 242 |
} |
240 | 243 |
|
241 | 244 |
// Run various MCF tests |
242 | 245 |
typedef ListDigraph Digraph; |
243 | 246 |
DIGRAPH_TYPEDEFS(ListDigraph); |
244 | 247 |
|
245 | 248 |
// Read the test digraph |
246 | 249 |
Digraph gr; |
247 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
|
248 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr); |
|
250 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr); |
|
251 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr); |
|
249 | 252 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
250 | 253 |
Node v, w; |
251 | 254 |
|
252 | 255 |
std::istringstream input(test_lgf); |
253 | 256 |
DigraphReader<Digraph>(gr, input) |
254 | 257 |
.arcMap("cost", c) |
255 | 258 |
.arcMap("cap", u) |
256 | 259 |
.arcMap("low1", l1) |
257 | 260 |
.arcMap("low2", l2) |
261 |
.arcMap("low3", l3) |
|
258 | 262 |
.nodeMap("sup1", s1) |
259 | 263 |
.nodeMap("sup2", s2) |
260 | 264 |
.nodeMap("sup3", s3) |
261 | 265 |
.nodeMap("sup4", s4) |
262 | 266 |
.nodeMap("sup5", s5) |
267 |
.nodeMap("sup6", s6) |
|
263 | 268 |
.node("source", v) |
264 | 269 |
.node("target", w) |
265 | 270 |
.run(); |
271 |
|
|
272 |
// Build a test digraph for testing negative costs |
|
273 |
Digraph ngr; |
|
274 |
Node n1 = ngr.addNode(); |
|
275 |
Node n2 = ngr.addNode(); |
|
276 |
Node n3 = ngr.addNode(); |
|
277 |
Node n4 = ngr.addNode(); |
|
278 |
Node n5 = ngr.addNode(); |
|
279 |
Node n6 = ngr.addNode(); |
|
280 |
Node n7 = ngr.addNode(); |
|
281 |
|
|
282 |
Arc a1 = ngr.addArc(n1, n2); |
|
283 |
Arc a2 = ngr.addArc(n1, n3); |
|
284 |
Arc a3 = ngr.addArc(n2, n4); |
|
285 |
Arc a4 = ngr.addArc(n3, n4); |
|
286 |
Arc a5 = ngr.addArc(n3, n2); |
|
287 |
Arc a6 = ngr.addArc(n5, n3); |
|
288 |
Arc a7 = ngr.addArc(n5, n6); |
|
289 |
Arc a8 = ngr.addArc(n6, n7); |
|
290 |
Arc a9 = ngr.addArc(n7, n5); |
|
291 |
|
|
292 |
Digraph::ArcMap<int> nc(ngr), nl1(ngr, 0), nl2(ngr, 0); |
|
293 |
ConstMap<Arc, int> nu1(std::numeric_limits<int>::max()), nu2(5000); |
|
294 |
Digraph::NodeMap<int> ns(ngr, 0); |
|
295 |
|
|
296 |
nl2[a7] = 1000; |
|
297 |
nl2[a8] = -1000; |
|
298 |
|
|
299 |
ns[n1] = 100; |
|
300 |
ns[n4] = -100; |
|
301 |
|
|
302 |
nc[a1] = 100; |
|
303 |
nc[a2] = 30; |
|
304 |
nc[a3] = 20; |
|
305 |
nc[a4] = 80; |
|
306 |
nc[a5] = 50; |
|
307 |
nc[a6] = 10; |
|
308 |
nc[a7] = 80; |
|
309 |
nc[a8] = 30; |
|
310 |
nc[a9] = -120; |
|
266 | 311 |
|
267 | 312 |
// A. Test NetworkSimplex with the default pivot rule |
268 | 313 |
{ |
269 | 314 |
NetworkSimplex<Digraph> mcf(gr); |
270 | 315 |
|
271 | 316 |
// Check the equality form |
272 | 317 |
mcf.upperMap(u).costMap(c); |
273 | 318 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
274 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
|
319 |
gr, l1, u, c, s1, mcf.OPTIMAL, true, 5240, "#A1"); |
|
275 | 320 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
276 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
|
321 |
gr, l1, u, c, s2, mcf.OPTIMAL, true, 7620, "#A2"); |
|
277 | 322 |
mcf.lowerMap(l2); |
278 | 323 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
279 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
|
324 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#A3"); |
|
280 | 325 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
281 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
|
326 |
gr, l2, u, c, s2, mcf.OPTIMAL, true, 8010, "#A4"); |
|
282 | 327 |
mcf.reset(); |
283 | 328 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
284 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
|
329 |
gr, l1, cu, cc, s1, mcf.OPTIMAL, true, 74, "#A5"); |
|
285 | 330 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
286 |
gr, l2, cu, cc, s2, true, 94, "#A6"); |
|
331 |
gr, l2, cu, cc, s2, mcf.OPTIMAL, true, 94, "#A6"); |
|
287 | 332 |
mcf.reset(); |
288 | 333 |
checkMcf(mcf, mcf.run(), |
289 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
|
290 |
checkMcf(mcf, mcf.boundMaps(l2, u).run(), |
|
291 |
gr, |
|
334 |
gr, l1, cu, cc, s3, mcf.OPTIMAL, true, 0, "#A7"); |
|
335 |
checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(), |
|
336 |
gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8"); |
|
337 |
mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4); |
|
338 |
checkMcf(mcf, mcf.run(), |
|
339 |
gr, l3, u, c, s4, mcf.OPTIMAL, true, 6360, "#A9"); |
|
292 | 340 |
|
293 | 341 |
// Check the GEQ form |
294 |
mcf.reset().upperMap(u).costMap(c).supplyMap( |
|
342 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s5); |
|
295 | 343 |
checkMcf(mcf, mcf.run(), |
296 |
gr, l1, u, c, s4, true, 3530, "#A9", GEQ); |
|
297 |
mcf.problemType(mcf.GEQ); |
|
344 |
gr, l1, u, c, s5, mcf.OPTIMAL, true, 3530, "#A10", GEQ); |
|
345 |
mcf.supplyType(mcf.GEQ); |
|
298 | 346 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
299 |
gr, l2, u, c, s4, true, 4540, "#A10", GEQ); |
|
300 |
mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5); |
|
347 |
gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ); |
|
348 |
mcf.supplyType(mcf.CARRY_SUPPLIES).supplyMap(s6); |
|
301 | 349 |
checkMcf(mcf, mcf.run(), |
302 |
gr, l2, u, c, |
|
350 |
gr, l2, u, c, s6, mcf.INFEASIBLE, false, 0, "#A12", GEQ); |
|
303 | 351 |
|
304 | 352 |
// Check the LEQ form |
305 |
mcf.reset().problemType(mcf.LEQ); |
|
306 |
mcf.upperMap(u).costMap(c).supplyMap(s5); |
|
353 |
mcf.reset().supplyType(mcf.LEQ); |
|
354 |
mcf.upperMap(u).costMap(c).supplyMap(s6); |
|
307 | 355 |
checkMcf(mcf, mcf.run(), |
308 |
gr, l1, u, c, |
|
356 |
gr, l1, u, c, s6, mcf.OPTIMAL, true, 5080, "#A13", LEQ); |
|
309 | 357 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
310 |
gr, l2, u, c, s5, true, 5930, "#A13", LEQ); |
|
311 |
mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4); |
|
358 |
gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ); |
|
359 |
mcf.supplyType(mcf.SATISFY_DEMANDS).supplyMap(s5); |
|
312 | 360 |
checkMcf(mcf, mcf.run(), |
313 |
gr, l2, u, c, |
|
361 |
gr, l2, u, c, s5, mcf.INFEASIBLE, false, 0, "#A15", LEQ); |
|
362 |
|
|
363 |
// Check negative costs |
|
364 |
NetworkSimplex<Digraph> nmcf(ngr); |
|
365 |
nmcf.lowerMap(nl1).costMap(nc).supplyMap(ns); |
|
366 |
checkMcf(nmcf, nmcf.run(), |
|
367 |
ngr, nl1, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A16"); |
|
368 |
checkMcf(nmcf, nmcf.upperMap(nu2).run(), |
|
369 |
ngr, nl1, nu2, nc, ns, nmcf.OPTIMAL, true, -40000, "#A17"); |
|
370 |
nmcf.reset().lowerMap(nl2).costMap(nc).supplyMap(ns); |
|
371 |
checkMcf(nmcf, nmcf.run(), |
|
372 |
ngr, nl2, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A18"); |
|
314 | 373 |
} |
315 | 374 |
|
316 | 375 |
// B. Test NetworkSimplex with each pivot rule |
317 | 376 |
{ |
318 | 377 |
NetworkSimplex<Digraph> mcf(gr); |
319 |
mcf.supplyMap(s1).costMap(c). |
|
378 |
mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2); |
|
320 | 379 |
|
321 | 380 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
322 |
gr, l2, u, c, s1, true, 5970, "#B1"); |
|
381 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B1"); |
|
323 | 382 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
324 |
gr, l2, u, c, s1, true, 5970, "#B2"); |
|
383 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B2"); |
|
325 | 384 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
326 |
gr, l2, u, c, s1, true, 5970, "#B3"); |
|
385 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B3"); |
|
327 | 386 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
328 |
gr, l2, u, c, s1, true, 5970, "#B4"); |
|
387 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B4"); |
|
329 | 388 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
330 |
gr, l2, u, c, s1, true, 5970, "#B5"); |
|
389 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B5"); |
|
331 | 390 |
} |
332 | 391 |
|
333 | 392 |
return 0; |
334 | 393 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup tools |
20 | 20 |
///\file |
21 | 21 |
///\brief DIMACS problem solver. |
22 | 22 |
/// |
23 | 23 |
/// This program solves various problems given in DIMACS format. |
24 | 24 |
/// |
25 | 25 |
/// See |
26 | 26 |
/// \code |
27 | 27 |
/// dimacs-solver --help |
28 | 28 |
/// \endcode |
29 | 29 |
/// for more info on usage. |
30 | 30 |
|
31 | 31 |
#include <iostream> |
32 | 32 |
#include <fstream> |
33 | 33 |
#include <cstring> |
34 | 34 |
|
35 | 35 |
#include <lemon/smart_graph.h> |
36 | 36 |
#include <lemon/dimacs.h> |
37 | 37 |
#include <lemon/lgf_writer.h> |
38 | 38 |
#include <lemon/time_measure.h> |
39 | 39 |
|
40 | 40 |
#include <lemon/arg_parser.h> |
41 | 41 |
#include <lemon/error.h> |
42 | 42 |
|
43 | 43 |
#include <lemon/dijkstra.h> |
44 | 44 |
#include <lemon/preflow.h> |
45 | 45 |
#include <lemon/matching.h> |
46 | 46 |
#include <lemon/network_simplex.h> |
47 | 47 |
|
48 | 48 |
using namespace lemon; |
49 | 49 |
typedef SmartDigraph Digraph; |
50 | 50 |
DIGRAPH_TYPEDEFS(Digraph); |
51 | 51 |
typedef SmartGraph Graph; |
52 | 52 |
|
53 | 53 |
template<class Value> |
54 | 54 |
void solve_sp(ArgParser &ap, std::istream &is, std::ostream &, |
55 | 55 |
DimacsDescriptor &desc) |
56 | 56 |
{ |
57 | 57 |
bool report = !ap.given("q"); |
58 | 58 |
Digraph g; |
59 | 59 |
Node s; |
60 | 60 |
Digraph::ArcMap<Value> len(g); |
61 | 61 |
Timer t; |
62 | 62 |
t.restart(); |
63 | 63 |
readDimacsSp(is, g, len, s, desc); |
64 | 64 |
if(report) std::cerr << "Read the file: " << t << '\n'; |
65 | 65 |
t.restart(); |
66 | 66 |
Dijkstra<Digraph, Digraph::ArcMap<Value> > dij(g,len); |
67 | 67 |
if(report) std::cerr << "Setup Dijkstra class: " << t << '\n'; |
68 | 68 |
t.restart(); |
69 | 69 |
dij.run(s); |
70 | 70 |
if(report) std::cerr << "Run Dijkstra: " << t << '\n'; |
71 | 71 |
} |
72 | 72 |
|
73 | 73 |
template<class Value> |
74 | 74 |
void solve_max(ArgParser &ap, std::istream &is, std::ostream &, |
75 | 75 |
Value infty, DimacsDescriptor &desc) |
76 | 76 |
{ |
77 | 77 |
bool report = !ap.given("q"); |
78 | 78 |
Digraph g; |
79 | 79 |
Node s,t; |
80 | 80 |
Digraph::ArcMap<Value> cap(g); |
81 | 81 |
Timer ti; |
82 | 82 |
ti.restart(); |
83 | 83 |
readDimacsMax(is, g, cap, s, t, infty, desc); |
84 | 84 |
if(report) std::cerr << "Read the file: " << ti << '\n'; |
85 | 85 |
ti.restart(); |
86 | 86 |
Preflow<Digraph, Digraph::ArcMap<Value> > pre(g,cap,s,t); |
87 | 87 |
if(report) std::cerr << "Setup Preflow class: " << ti << '\n'; |
88 | 88 |
ti.restart(); |
89 | 89 |
pre.run(); |
90 | 90 |
if(report) std::cerr << "Run Preflow: " << ti << '\n'; |
91 | 91 |
if(report) std::cerr << "\nMax flow value: " << pre.flowValue() << '\n'; |
92 | 92 |
} |
93 | 93 |
|
94 | 94 |
template<class Value> |
95 | 95 |
void solve_min(ArgParser &ap, std::istream &is, std::ostream &, |
96 | 96 |
Value infty, DimacsDescriptor &desc) |
97 | 97 |
{ |
98 | 98 |
bool report = !ap.given("q"); |
99 | 99 |
Digraph g; |
100 | 100 |
Digraph::ArcMap<Value> lower(g), cap(g), cost(g); |
101 | 101 |
Digraph::NodeMap<Value> sup(g); |
102 | 102 |
Timer ti; |
103 | 103 |
|
104 | 104 |
ti.restart(); |
105 | 105 |
readDimacsMin(is, g, lower, cap, cost, sup, infty, desc); |
106 | 106 |
ti.stop(); |
107 | 107 |
Value sum_sup = 0; |
108 | 108 |
for (Digraph::NodeIt n(g); n != INVALID; ++n) { |
109 | 109 |
sum_sup += sup[n]; |
110 | 110 |
} |
111 | 111 |
if (report) { |
112 | 112 |
std::cerr << "Sum of supply values: " << sum_sup << "\n"; |
113 | 113 |
if (sum_sup <= 0) |
114 | 114 |
std::cerr << "GEQ supply contraints are used for NetworkSimplex\n\n"; |
115 | 115 |
else |
116 | 116 |
std::cerr << "LEQ supply contraints are used for NetworkSimplex\n\n"; |
117 | 117 |
} |
118 | 118 |
if (report) std::cerr << "Read the file: " << ti << '\n'; |
119 | 119 |
|
120 | 120 |
ti.restart(); |
121 | 121 |
NetworkSimplex<Digraph, Value> ns(g); |
122 |
ns.lowerMap(lower).capacityMap(cap).costMap(cost).supplyMap(sup); |
|
123 |
if (sum_sup > 0) ns.problemType(ns.LEQ); |
|
122 |
ns.lowerMap(lower).upperMap(cap).costMap(cost).supplyMap(sup); |
|
123 |
if (sum_sup > 0) ns.supplyType(ns.LEQ); |
|
124 | 124 |
if (report) std::cerr << "Setup NetworkSimplex class: " << ti << '\n'; |
125 | 125 |
ti.restart(); |
126 | 126 |
bool res = ns.run(); |
127 | 127 |
if (report) { |
128 | 128 |
std::cerr << "Run NetworkSimplex: " << ti << "\n\n"; |
129 | 129 |
std::cerr << "Feasible flow: " << (res ? "found" : "not found") << '\n'; |
130 | 130 |
if (res) std::cerr << "Min flow cost: " << ns.totalCost() << '\n'; |
131 | 131 |
} |
132 | 132 |
} |
133 | 133 |
|
134 | 134 |
void solve_mat(ArgParser &ap, std::istream &is, std::ostream &, |
135 | 135 |
DimacsDescriptor &desc) |
136 | 136 |
{ |
137 | 137 |
bool report = !ap.given("q"); |
138 | 138 |
Graph g; |
139 | 139 |
Timer ti; |
140 | 140 |
ti.restart(); |
141 | 141 |
readDimacsMat(is, g, desc); |
142 | 142 |
if(report) std::cerr << "Read the file: " << ti << '\n'; |
143 | 143 |
ti.restart(); |
144 | 144 |
MaxMatching<Graph> mat(g); |
145 | 145 |
if(report) std::cerr << "Setup MaxMatching class: " << ti << '\n'; |
146 | 146 |
ti.restart(); |
147 | 147 |
mat.run(); |
148 | 148 |
if(report) std::cerr << "Run MaxMatching: " << ti << '\n'; |
149 | 149 |
if(report) std::cerr << "\nCardinality of max matching: " |
150 | 150 |
<< mat.matchingSize() << '\n'; |
151 | 151 |
} |
152 | 152 |
|
153 | 153 |
|
154 | 154 |
template<class Value> |
155 | 155 |
void solve(ArgParser &ap, std::istream &is, std::ostream &os, |
156 | 156 |
DimacsDescriptor &desc) |
157 | 157 |
{ |
158 | 158 |
std::stringstream iss(static_cast<std::string>(ap["infcap"])); |
159 | 159 |
Value infty; |
160 | 160 |
iss >> infty; |
161 | 161 |
if(iss.fail()) |
162 | 162 |
{ |
163 | 163 |
std::cerr << "Cannot interpret '" |
164 | 164 |
<< static_cast<std::string>(ap["infcap"]) << "' as infinite" |
165 | 165 |
<< std::endl; |
166 | 166 |
exit(1); |
167 | 167 |
} |
168 | 168 |
|
169 | 169 |
switch(desc.type) |
170 | 170 |
{ |
171 | 171 |
case DimacsDescriptor::MIN: |
172 | 172 |
solve_min<Value>(ap,is,os,infty,desc); |
173 | 173 |
break; |
174 | 174 |
case DimacsDescriptor::MAX: |
175 | 175 |
solve_max<Value>(ap,is,os,infty,desc); |
176 | 176 |
break; |
177 | 177 |
case DimacsDescriptor::SP: |
178 | 178 |
solve_sp<Value>(ap,is,os,desc); |
179 | 179 |
break; |
180 | 180 |
case DimacsDescriptor::MAT: |
181 | 181 |
solve_mat(ap,is,os,desc); |
182 | 182 |
break; |
183 | 183 |
default: |
184 | 184 |
break; |
185 | 185 |
} |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
int main(int argc, const char *argv[]) { |
189 | 189 |
typedef SmartDigraph Digraph; |
190 | 190 |
|
191 | 191 |
typedef Digraph::Arc Arc; |
192 | 192 |
|
193 | 193 |
std::string inputName; |
194 | 194 |
std::string outputName; |
195 | 195 |
|
196 | 196 |
ArgParser ap(argc, argv); |
197 | 197 |
ap.other("[INFILE [OUTFILE]]", |
198 | 198 |
"If either the INFILE or OUTFILE file is missing the standard\n" |
199 | 199 |
" input/output will be used instead.") |
200 | 200 |
.boolOption("q", "Do not print any report") |
201 | 201 |
.boolOption("int","Use 'int' for capacities, costs etc. (default)") |
202 | 202 |
.optionGroup("datatype","int") |
203 | 203 |
#ifdef HAVE_LONG_LONG |
204 | 204 |
.boolOption("long","Use 'long long' for capacities, costs etc.") |
205 | 205 |
.optionGroup("datatype","long") |
206 | 206 |
#endif |
207 | 207 |
.boolOption("double","Use 'double' for capacities, costs etc.") |
208 | 208 |
.optionGroup("datatype","double") |
209 | 209 |
.boolOption("ldouble","Use 'long double' for capacities, costs etc.") |
210 | 210 |
.optionGroup("datatype","ldouble") |
211 | 211 |
.onlyOneGroup("datatype") |
212 | 212 |
.stringOption("infcap","Value used for 'very high' capacities","0") |
213 | 213 |
.run(); |
214 | 214 |
|
215 | 215 |
std::ifstream input; |
216 | 216 |
std::ofstream output; |
217 | 217 |
|
218 | 218 |
switch(ap.files().size()) |
219 | 219 |
{ |
220 | 220 |
case 2: |
221 | 221 |
output.open(ap.files()[1].c_str()); |
222 | 222 |
if (!output) { |
223 | 223 |
throw IoError("Cannot open the file for writing", ap.files()[1]); |
224 | 224 |
} |
225 | 225 |
case 1: |
226 | 226 |
input.open(ap.files()[0].c_str()); |
227 | 227 |
if (!input) { |
228 | 228 |
throw IoError("File cannot be found", ap.files()[0]); |
229 | 229 |
} |
230 | 230 |
case 0: |
231 | 231 |
break; |
232 | 232 |
default: |
233 | 233 |
std::cerr << ap.commandName() << ": too many arguments\n"; |
234 | 234 |
return 1; |
235 | 235 |
} |
236 | 236 |
std::istream& is = (ap.files().size()<1 ? std::cin : input); |
237 | 237 |
std::ostream& os = (ap.files().size()<2 ? std::cout : output); |
238 | 238 |
|
239 | 239 |
DimacsDescriptor desc = dimacsType(is); |
240 | 240 |
|
241 | 241 |
if(!ap.given("q")) |
242 | 242 |
{ |
243 | 243 |
std::cout << "Problem type: "; |
244 | 244 |
switch(desc.type) |
245 | 245 |
{ |
246 | 246 |
case DimacsDescriptor::MIN: |
247 | 247 |
std::cout << "min"; |
248 | 248 |
break; |
249 | 249 |
case DimacsDescriptor::MAX: |
250 | 250 |
std::cout << "max"; |
251 | 251 |
break; |
252 | 252 |
case DimacsDescriptor::SP: |
253 | 253 |
std::cout << "sp"; |
254 | 254 |
case DimacsDescriptor::MAT: |
255 | 255 |
std::cout << "mat"; |
256 | 256 |
break; |
257 | 257 |
default: |
258 | 258 |
exit(1); |
259 | 259 |
break; |
260 | 260 |
} |
261 | 261 |
std::cout << "\nNum of nodes: " << desc.nodeNum; |
262 | 262 |
std::cout << "\nNum of arcs: " << desc.edgeNum; |
263 | 263 |
std::cout << "\n\n"; |
264 | 264 |
} |
265 | 265 |
|
266 | 266 |
if(ap.given("double")) |
267 | 267 |
solve<double>(ap,is,os,desc); |
268 | 268 |
else if(ap.given("ldouble")) |
269 | 269 |
solve<long double>(ap,is,os,desc); |
270 | 270 |
#ifdef HAVE_LONG_LONG |
271 | 271 |
else if(ap.given("long")) |
272 | 272 |
solve<long long>(ap,is,os,desc); |
273 | 273 |
#endif |
274 | 274 |
else solve<int>(ap,is,os,desc); |
275 | 275 |
|
276 | 276 |
return 0; |
277 | 277 |
} |
0 comments (0 inline)